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HYBRID VISUALIZATIONS FOR DATA EXPLORATION

Christophe VIAU

ABSTRACT

Information Visualization (Infovis) graphically encodes information to help a user explore a

data set visually and interactively. This graphical encoding can take the form of widespread

visualizations such as bar charts and scatterplots. Multiple visualizations can share the same

functional space to form complete tools for visual exploration or for communicating infor-

mation. There is multiple ways of combining these visualizations. The assembly of multiple

visualizations can give some complex assemblies sometimes called hybrid visualizations.

A hybrid visualization is the result of assembling multiple simpler visualizations. For example,

NodeTrix (Henry et al., 2007a) is composed of a node-link diagram and an adjacency matrix,

and MatLink (Henry and Fekete, 2007a) adds arc links to an adjacency matrix. This integration

of multiple visualizations can be a way to combine their advantages into a coherent structure.

The integration can be achieved, for example, through color coding, or through explicit linking

(such as with arrows), or through interaction (such as when different visualizations respond to

the manipulation of others). Recent literature contains several examples of new hybrid visu-

alizations, most often to deal with complex datasets where the user can benefit from multiple,

complementary visual encodings of the same data. However, to date, there is almost no theory

or framework to help researchers understand and characterize existing hybrids or design new

ones.

This thesis advances the state of the art in hybrid visualizations in two ways: first, by devel-

oping a framework that defines and characterizes hybrid visualizations to help better identify,

describe and design them, and second, by demonstrating a variety of novel hybrids. The hybrid

visualizations we explored cover a wide range of possibilities. Two of the most general and

widely used data types in Infovis, multidimensional multivariate data and graph (i.e., network)

data, are each the subject of a chapter in the thesis, with novel hybrid visualization techniques

presented for each. A wide range of possibilities for integration is also presented using a

pipeline model.

After some preliminary material, chapter 2 of the thesis presents a conceptual framework that

defines and characterizes hybrid visualizations. This framework was itself derived from ex-

perience designing the hybrid visualizations presented in the subsequent chapters. A hybrid

visualization is described as a graphical encoding using other visualizations as building blocks.

We present a pipeline to illustrate the assembly of a visualization, starting from the generation

of basic shapes or glyphs, then placed on a layout, embellished by adding other graphical ele-

ments, then sent to some view transform operators and assembled on the same space. Simple

charts can be described with this pipeline as well as more complex assembly and new hybrids

are described.
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Chapter 3 presents ConnectedCharts, an example of a hybrid assembled on the assembly level

of the pipeline, made of multiple multidimensional and multivariate charts explicitly connected

by lines or curves showing the relationship between their elements. A user interface enables

the interactive assembly of ConnectedCharts, including a wide range of previously-published

hybrid visualizations, as well as novel hybrid arrangements. ConnectedCharts serve as an illus-

tration of the conceptual framework in chapter 2, by exploring possible connections between

different graphics depending on the relationship of their encoded data types.

Chapter 4 presents another user interface, this time for graph exploration, that incorporates

several highly integrated hybrid visualizations. A Parallel Scatter Plot Matrix (P-SPLOM) is

presented that constitutes a fusion of a Scatter Plot Matrix (SPLOM) and a Parallel Coordinates

Plot (PCP). A radial menu called the FlowVizMenu enables the modification of a visualization

integrated at the center of the menu. This menu is also used to select the dimensions for

configuring a third hybrid based on an Attribute-Driven Layout (ADL) that combines a node-

link diagram and a scatterplot.

The characterization of hybrid visualizations offered by the conceptual framework, as well as

the illustration of the framework by innovative hybrid visualizations, are the main contributions

of this thesis to the Infovis community.

Keywords: information visualization, hybrid visualization, Infovis, graph



VISUALISATIONS HYBRIDES POUR L’EXPLORATION DE DONNÉES

Christophe VIAU

RÉSUMÉ

L’Infovis encode graphiquement de l’information pour aider un utilisateur à explorer visuelle-

ment et interactivement un ensemble de données. Cet encodage graphique peut prendre la

forme de visualisations largement répandues, comme les diagrammes à barres et les diagrammes

à nuage de points. Plusieurs visualisations peuvent partager le même espace fonctionnel pour

former des outils complets servant à explorer un ensemble de données ou à communiquer de

l’information. Il existe de nombreuses façons de combiner ces visualisations, pouvant donner

des assemblages complexes parfois appelées visualisations hybrides.

Une visualisation hybride est le résultat de l’assemblage de plusieurs types de visualisations.

Par exemple, NodeTrix (Henry et al., 2007a) intègre un diagramme noeuds-liens (node-link

diagram) et une matrice d’adjacence (adjacency matrix) et MatLink (Henry and Fekete, 2007a)

ajoute des liens en arcs à une matrice. Cet intégration de visualisations peut être une façon

d’allier les avantages de plusieurs visualisations différentes dans un ensemble cohérent et

solidement lié. Cette liaison peut se faire par des codes de couleur, par des liens explicites

comme des flèches, par une interaction coordonnées où les visualisations réagissent à la ma-

nipulation d’une autre. Nous avons étudiés ces différentes stratégies d’assemblage de deux

façons: en proposant une bonne variété de visualisations hybrides et en élaborant une définition

et une caractérisation des visualisations hybrides permettant de mieux les identifier, les décrire

et les concevoir. Les prototypes d’hybrides que nous décrivons couvrent une large gamme de

possibilités. Les données les plus utilisées en Infovis, soit les données multidimensionnelles

multivariées et les données de graphes sont représentées, chacunes faisant l’objet d’un chapitre

entier. Une large palette de possibilités d’intégration est aussi représentée, du simple code de

couleur partagé entre deux graphiques jusqu’à la fusion de visualisations coordonnées par la

couleur, les formes, l’animation et l’interactivité.

Nous présentons en premier lieu une définition et une caractérisation des visualisations hy-

brides découlant des expérimentations des chapitres suivants. Une visualisation hybride est

décrite comme un encodage graphique utilisant d’autres visualisations comme matériau servant

à l’assemblage. Nous présentons une sorte de diagramme d’assemblage que nous appelons un

pipeline pour illustrer l’assemblage de visualisations, à partir de la génération de formes de

base ou de glyphes, qui sont ensuite disposés selon un patron, embellis par l’ajout d’autres

éléments graphiques, puis transformé pour être assemblé dans la même vue. Des graphiques

simples peuvent être décrits par ce pipeline d’assemblage de visualisations, ainsi que des com-

binaisons plus complexes et de nouveaux hybrides.

Le chapitre suivant donne un bon exemple d’intégration de bas niveau. Les ConnectedCharts

sont des graphiques multidimensionnels et multivariés explicitement connectés par des lignes

montrant bien la relation entre leurs éléments. Un prototype permet d’assembler toutes sortes
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de visualisation hybrides trouvées dans la littérature ainsi que de nouveaux agencements. Il

sert d’illustration à un cadre conceptuel explorant les connections possibles entre différents

graphiques selon la parenté de leur types de données encodées.

Une autre interface, cette fois pour la visualisations de données de graphes, présente plusieurs

visualisations hybrides fortement intégrées. Le P-SPLOM provient de la fusion d’une matrice

de diagrammes à nuage de points (SPLOM) et d’une série de diagrammes à coordonnées par-

allèles. Un menu radial nommé FlowVizMenu permet de faire varier une visualisation qui y

est intégrée. Ce menu sert à choisir les dimensions à utiliser pour une troisième visualisation

hybride: le Attribute-Driven Layout fusionnant un diagramme noeuds-liens à un diagramme à

nuage de points.

La définition et la caractérisation des visualisations hybrides ainsi que l’illustration de ce cadre

théorique par la conception d’hybrides novateurs sont les contributions principales de cette

thèse au domaine de l’Infovis.

Mots-clés: visualisation de l’information, visualization hybride, Infovis, graphe
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INTRODUCTION

Infovis

Infovis has been described as: “the use of computer-supported, interactive, visual representa-

tions of abstract data to amplify cognition”(Card et al., 1999). Finding the right representation

makes it easier to visually extract useful information from abstract data, like numbers and per-

centages. A trend in the data is easier to detect by seeing a line going up than by reading a

series of numbers. Some statistics can be used to detect and quantify some characteristics of

this trend without using visualization. But the line in a line chart also shows some details,

some changes of slope, the shape of the whole curve, some peaks, all at once, without losing

the relationship between the different parts and the whole. The human perceptual system is

excellent at detecting patterns, trends, visual groupings, and anomalies in patterns (Thomas

and Cook, 2005).

Visualization helps “make sense” of data. It gives a shape to abstract data to assist in “solving

problems”(Purchase et al., 2008). Exploring data in a visual way helps to turn a series of

numbers into actionable insights. Visualization is also used to communicate these insights.

Choosing the right visualization for effective exploration and communication can be difficult.

Some tasks or some datasets need a combination of multiple visualizations, or even require to

design custom ones. For example, a complex dataset in aerial traffic routing, can be composed

of geographic coordinates, a network of routes between airports, planes velocity, weather, etc.

In this case, we could use multiple visualizations, like a map for watching the traffic in real-

time, a network to resolve transit issues, a line chart to monitor the temperature, etc. But

if these visual tools have to be used in coordination, they must be visually integrated, for

example being on the same screen. Some visualization can also be integrated further. For

example a network showing the trajectory between airports can be overlaid on a map to place

these airports in a geographical context, the color of the map can represent the temperature,

etc. Multiple uncoordinated views can thus be combined in a single visualization built from

mostly the same elements.
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We will call hybrid visualizations the result of combining multiple preexisting visualizations,

for example overlaying a network on a map, drawing a histogram at the axes of a scatterplot or

nesting some bar charts into a table. Some guidelines can help in choosing the right visualiza-

tion for some specific tasks (Few, 2004). But combining visualization is a design task harder

to generalize and needs a better conceptual framework for the design of new hybrid visual-

izations. This thesis addresses this situation by proposing a more systematic framework for

thinking about hybrids (chapter 2) and by exploring new hybrid visualizations to demonstrate

its value (chapters 3 and 4).

Scope of this research

One of the goals of this thesis is to cover two large categories of datasets: multidimensional

multivariate data, and graph (or network) data. An example of a multivariate multidimensional

dataset might consist of measurable quantities such as price, profit and weight of various prod-

ucts in various stores. In this example, “product” and “store” can be thought of as independent

variables and the measurable characteristics like price and weight could be called dependent

variables. For each given product, for example, we may want to know their price or to calculate

some statistics on their price over time, so price depends on product. As do Wong and Bergeron

(1997), “we adopt the convention that the term “multidimensional” refers to the dimensionality

of the independent variables, while the term “multivariate” refers to the dimensionality of the

dependent variables. An example of multidimensional multivariate visualization is described

in chapter 3.

Another widely used data structure in Infovis is the graph, also called a network. The graph

encodes a set of elements and the relationship between these elements, such as a social network

with links between individuals of a community or a biological network including possible inter-

actions between proteins. This data structure is typically represented by a node-link diagram,

with nodes represented by shapes and links by lines joining these shapes. Hybrid visualizations

of graphs are the topic of chapter 4.
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By studying hybrid visualizations of these two common data structures, both our theoretical

and applied exploration covers a significant portion of the opportunities for innovation in Info-

vis.

The contributions of this thesis are mainly about designing innovative hybrid visualizations,

supported by a conceptual framework offering a definition and some criteria for the character-

ization of hybrid visualizations.

Thesis organization

This thesis is organized as follows. First, chapter 1 gives an overview of literature to establish

additional context and present some of the more important models and significant achieve-

ments in Infovis. Then, chapters 2 through 4 present research that is based, respectively, on

three papers. The first of these chapters called “Characterizing Hybrid Visualizations” develops

a model of hybrid visualizations to help describe and design them. Next, the chapter “Connect-

edCharts: A hybrid Visualization by Explicit Linking” presents a user interface connecting

different graphics, exploring the possibilities of explicit connections, drawing lines between

graphics and between related items in multiple graphics. Next, chapter 4, called “FlowViz-

Menu, P-SPLOM and AD-Layout: Hybrid Visualizations for Network Exploration”, presents

an application of new hybrid visualizations to the field of interactive graph exploration. The

content of chapter 3 was published in (Viau and McGuffin, 2012), and of chapter 4 in (Viau

et al., 2010), and chapter 2 has been submitted for publication. A discussion and a conclusion

then summarize and help bind the content of these three papers.

The research behind the three papers were performed in the reverse order of their presenta-

tion in this thesis. Chronologically, graph visualization (motivated by a specific application in

bioinformatics) was studied (chapter 4); next, a more generic application motivated the work

in chapter 3; and finally a model was developed (chapter 2). So the hybrid visualization model

is the result of the previous design experience, thinking about the needs and the possibilities

of hybrids while working on it and afterwards. But introducing the model first in this thesis



4

will go from general to specific, defining further the context of creation of specialized hybrid

visualizations.



CHAPTER 1

LITERATURE SURVEY

1.1 Important models in Infovis

A survey of some “must read” books will help define the field of information visualization.

The Infovis field can’t be easily summarized by a few seminal books. It is a mixture of multiple

research fields, like statistics, human-computer interaction, psychology of perception, graphic

design and semiology. But some trends can be identified. For example, we can survey some im-

portant contributions to graphical encoding, design and semiology as well has placing Infovis

in a historical context.

The history of visualization does not have precise limits. Tufte’s books (Tufte, 1983) give

a great overview of the history of graphics. The definition of the field itself is often impre-

cise. We could say that scientific visualization takes care of spatial data, data visualization is

more data transformation oriented, visual data mining is more algorithm oriented, information

visualization more on presenting high level results and infographics more about information

design. But there is no clear agreement on any of these terms. Infovis is associated with statis-

tical graphics as visual tools to make sense of data. Their is a certain consensus on describing

Infovis as using non-spatial or abstract data as opposed to Scientific Visualization (Scivis) visu-

alizing spatial data. For example, Voigt (2002) defines it as the “visualization of abstract data.

This is data that has no inherent mapping to space.” For Tory and Moller (2004), it “involves

abstract, nonspatial data”, and for Maria Cristina Ferreira de Oliveira (2003), “in information

visualization, the graphical models may represent abstract concepts and relationships that do

not necessarily have a counterpart in the physical world.” So we will define Infovis as the study

of visualization resulting from the graphical encoding of abstract data.

A visualization follows a set of graphical encoding rules for mapping data to graphics and

organizing the different elements. We will explain what is a graphical encoding throughout

this thesis. Let’s describe for now Infovis as a research field exploring the graphical encoding
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of data, using a visual language, suitable for a task, with the general goals to extract and

communicate information.

1.2 Graphical encoding

We can see a visualization as formed by three fundamental ingredients: data, graphical encod-

ing and interaction. This view conforms with Munzner’s model for the design of a visualization

(Munzner, 2009), and also with Keim’s classification of information visualization and visual

data mining techniques (Keim, 2002). We can see the same elements as a dynamic process in

a chain of operations starting from the data, through visualization operations with the goal of

satisfying a user task with a need for interaction, perception and cognition. One good model

for this chain of operations from data to user is Chi and Riedl (1998) operator interaction

framework. Another inspiration, closely related to Chi and Riedl’s model, is from (Card and

Mackinlay, 1997): data types, function for recoding data, recoded data, visual mapping, view

transformation and manipulation widgets.

Infovis visually encodes abstract data in an arbitrary way, using a language consisting of

signs, “syntactically notational”, forming the “sentences of a graphic language”, according

to Ziemkiewicz and Kosara (2009). Wilkinson is another influential author on visual semiol-

ogy and his book “The Grammar of Graphics" (Wilkinson, 2010) is the groundwork for a lot

of visualization libraries. like Data-Driven Documents (Bostock et al., 2011), Protovis (Bo-

stock and Heer, 2009) and ggplot2 (Wickham, 2009). Wilkinson (2010) developed a complete

formalism to describe visualizations as a visual language with semantic rules. We will not get

into the “meaning” of a visualization but only into the assembly process starting from the data

to get to a suitable shape.

We call this process of translating data to graphics “graphical encoding”. According to Gee

et al. (2005), “Information visualizations attempt to efficiently map data variables onto visual

dimensions in order to create graphic representations”. So graphical encoding is at the core

of Infovis research. Every visualization uses graphical elements with data mapped to visual

attributes as the building block of a visual language. The process often follows Bertin’s “Semi-
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ology of Graphics” (Bertin, 1998) where a graphical element, called a mark, can vary according

to different attributes, such as position, size and color, to encode information.

Bertin’s terminology of marks and attributes makes an important distinction between “at-

tributes of the plane” and “retinal attributes”. Marks are graphical elements, the building blocks

of visualizations, like bars, wedges, axes, etc. The attributes of the plane are the x and y com-

ponents of the position of a mark. Other attributes, like color, orientation, size and texture,

are retinal attributes that can be immediately perceived and used to visually group, compare,

relate and do other perceptual tasks. For Bertin, the position is a privileged attribute and it must

be used to encode the most important aspect of the data. Additional data dimensions can be

encoded by retinal attributes as a complement.

Wickham (2009), author of ggplot2, an important R package to develop visualizations, de-

scribes this mapping from data to graphics in two steps. First the data variables are associated

to their graphical attributes, which he call aesthetics. Then the values are mapped into aesthetic

space. For example, the variable Product price can be associate with the x position of the dots

of a scatterplot. Then the price values are scaled to map to the pixel space of the scatterplot

drawn on a screen. The author uses a model inspired from Wilkinson, who uses the same kind

of process to map data to graphics. Engelhardt (2002) uses the terms elementary graphic object

and visual attributes. These different terminologies illustrates the same concepts of marks and

attributes derived from Bertin.

Graphical encoding can be formalized by an arbitrary set of rules. We can describe a visu-

alization by listing a set of graphical elements, the way they are assembled and the data they

encode. For example we can describe a simple bar chart using this arbitrary notation:

• Data (data)

– Categorical (c)

– Quantitative (q)

• Graphical elements:

– Rectangles (bar)



8

– Axis length (l)

• Graphical attributes:

– Position: x, y

– Size: weight (w), height (h)

• Subset of rules for mapping data to graphics:

– Quantitative is mapped on bar’s height proportionally to data max and to chart

height

bar.h = data.q / data.q.max * axisY.length

– Juxtaposed bars have equal width sized to fit in the chart width

bar.w = axisX.length / data.c.size

– Bars are uniformly distributed on the x axis

bar.x = data.c.index / data.c.size * axisX.length

– Bars are aligned to the x axis

bar.y = axisX - bar.h

This minimal description is enough for a visualization engineer to implement this simple bar

chart in a programming language. For example, using D3.js (Bostock et al., 2011), a library

inspired by Wilkinson’s Grammar of graphics (Wilkinson, 2010) and successor of Protovis

(Bostock and Heer, 2009), this bar chart could be described by the same simple mapping to x,

y, width and height on as many rectangles as there are values in the dataset.

var data = d3.range(10).map(Math.random);

var w = 400,
h = 200,
barW = w / data.length,
barH = function(d, i){return d / d3.max(data) * h;},
barX = function(d, i){return i / data.length * w;},
barY = function(d, i){return h - barH(d);};

d3.select("body")
.append("svg")
.attr("width", w)
.attr("height", h)
.selectAll("rect")
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.data(data)

.enter().append("rect")

.attr("width", barW)

.attr("height", barH)

.attr("x", barX)

.attr("y", barY);

1.3 From data to graphics

Graphical encoding is the process of translating data to graphics. To translate data in a mean-

ingful way, the resulting shape must efficiently represent the characteristics of the data.

Many authors, like APT (Mackinlay, 1986), SAGE (Roth and Mattis, 1990), IDES (Goldstein

et al., 1994), Polaris (Stolte et al., 2002) and Boz (Casner, 1989), studied data characterization

for automating the presentation of graphics, and find some rules for automatically choose the

right mapping from data to graphics. One important characteristic of the data is its data type.

The term data type can be confusing. (Shneiderman, 1996) uses data type in a broad sense to

use as categories. By data type, he means 1-2-3 dimensional data, temporal and multidimen-

sional data and tree and network data. Other authors use the term “data type” with a meaning

derived from Stevens (Stevens, 1946) scale types: “nominal”, “ordinal”, “interval” and “ratio”.

For example, Zhang (1996) and Bertin take their categories from Stevens, while automated pre-

sentation system mainly use an equivalent terminology, like “categorical” and “quantitative”.

Roth and Mattis (1990) add spatial and temporal coordinates to these data types for a better

characterization to suit the rules for automatic presentation. In this thesis, we, will borrow the

simple characteristics from APT and SAGE and use the type “categorical” for data elements

that can be listed, counted, sometimes sorted (i.e.: apple, orange, banana), and “quantitative”

for data elements representing a value, a measure (i.e.: 1, 2, 3).

For Zhang (1996) and Dastani (2002) as well as for the automated presentation systems previ-

ously cited, there is a correspondence, or some affinities, between some data types and some

graphical attributes. Zhang illustrates this by describing a correspondence between data types

and and graphical attributes. For example, a shape can only encode a nominal value because it
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can’t systematically be ordered in a natural way or measured relatively to another shape wher-

ever a price can be represented by a height because comparing heights and comparing prices

are both possible. So Zhang, as well as the automated systems cited above, all define a table of

correspondence between data types and some specific visualizations. We will suggest our own

table derived from these concepts in the chapter 3.

Data characteristics help to choose the right type of visualization for encoding a dataset effi-

ciently. But combining multiple visualizations is more than simply choosing the right chart.

It is more about understanding how a visualization is built and extend this knowledge to the

assembly of multiple visualizations.

Recent literature contains several examples of new hybrid visualizations. However, to date

there is almost no theory or framework about hybrids to help researchers understand them or

design new ones. The work on graphical encoding, for example on automated presentation,

has proven effective (Mackinlay et al., 2007), but is of a limited use to describe or generate

new combinations of visualizations. Casner (1989) clearly states that: “it is unlikely that BOZ

will produce new graphic designs that differ radically from existing designs”. APT provides

only one strategy to assemble two visualizations: “compose two designs by merging parts that

encode the same information” (Mackinlay, 1986). A more flexible model is needed to explore

the design space of hybrid visualizations.

1.4 Hybrid visualizations

Many graphics, like bar charts (Fig. 1.1 bottom left), scatterplots (Fig. 1.1 top left), paral-

lel coordinates plot (Fig. 1.1 top right), node-link diagrams ((Fig. 1.1 bottom middle)) and

adjacency matrices ((Fig. 1.1 bottom right)), are widely used in Infovis and known for their

effective encoding of certain data types for certain tasks. But a dataset is sometimes best rep-

resented by multiple different charts. For example, in Business Intelligence (BI), a dashboard

with information on the performance of a business can display line graphs to show the trend

in profits over time, bar charts to compare the costs of manufacturing different products, and

scatterplots to show the correlation between advertising, expenditures and the amount of sales.
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Figure 1.1 Different encoding patterns: scatterplot, parallel coordinates plot, bar chart,

node-link diagram, adjacency matrix.

The same dataset can be presented by several types of diagrams to support and cater to different

tasks (trend detection, comparison, correlation).

So different part of the same dataset can be encoded by different visualizations, choosing the

most suitable for the task and the most consistent with the data characteristics. The same

dataset can be displayed using two different graphical encodings (i.e., a pie chart and a line

chart for sales price), two graphics can show two different parts of the same dataset (i.e., a bar

chart for sales prices and a map for clients location), two different levels of information (i.e.,

a bar chart showing sales price for each quarter and another one for each weeks), or even two

related dataset (i.e., bar chart for sales price and a network for relationship between the clients).

Some visualizations are more suitable than others for certain data characteristics and tasks. A

visualization designer may want to combine the advantages of multiple types of visualizations.

But their his many different ways of assembling multiple visualizations. One solution is to

juxtapose the visualizations on the same space. A problem with juxtaposing charts is the diffi-

culty to make sense of related information across multiple graphical structures. Coordination

between views, like brushing and linking, can help visually and conceptually group related

elements. But the attention is split between views. Another solution is to bring the different

views closer by fusing the views into one. We will explore, particularly in chapter 2, some
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strategies to combine visualizations. But we will describe some of them here to give examples

of existing hybrids found in the literature and help define what is a hybrid visualization.

A visualization is the result of a graphical encoding. For example, distributing points on a

line, like mapping some data as the position of dots on an axis, gives a visualization. A hybrid

visualizations is the result of graphical encoding using other visualizations as building blocks.

The axis described above can be combined with other axis encoding other dimensions of the

data. The corresponding dots on each axis can be linked by a line, giving a basic PCP. So we

can see a PCP as formed by smaller visualization units. And we can describe multiple hybrids

formed by combining PCPs with other types of visualization.

1.5 Description of existing hybrid visualizations

Visualizations can be combined in many different ways. Some combinations can be loose, for

example placing two visualizations in the same space. But it can also be more tight, like the

fusion of two charts in a new single coherent visualization. From loose to tight assembly, there

is a whole spectrum of possibilities.

A scatterplot and a bar chart can be placed on the same screen. The layout, the relative posi-

tioning of these charts, like grouping, alignment and scaling, helps to emphasize a relationship

between them. It is a passive strategy acting only on geometric attributes (i.e., size, posi-

tion, orientation) of the visualization as a whole, not on individual parts. Providing linking by

color-coding or with explicit links like arrows, Dynamically updating these attributes, the color

highlighting or the arrows, is a way to integrate them more tightly, for one to feel more like a

part of the other. The bar chart could also be nested into the scatterplot or stitched, connected at

its border. The elements of each visualization are thus more tightly connected. The tightest as-

sembly uses sub-components of visualizations as building blocks. Each graphics are dissected

into smaller graphical components then reassembled to form a single new visualization sharing

some characteristics from both.

A graph (also called a network) could be visualized using an arc diagram or an adjacency

matrix. These two views are complementary, each having their own advantages for certain
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tasks. One possibility to combine their advantages would be to display them side-by-side, as

in MatrixExplorer (Henry and Fekete, 2006), and to coordinate selection across the two views

so that selecting in one will highlight corresponding elements in the other. However, we can

go even further than this. For example, MatLink (Henry and Fekete, 2007a) stitches the arc

diagram to the border of the adjacency matrix (See Figures 1.2 A)).

Figure 1.2 Two examples of hybrid visualizations. In A), an arc diagram is integrated

with an adjacency matrix as in MatLink (Henry and Fekete, 2007a). In B), a

scatterplot is integrated with a PCP, as in SPPC (Yuan et al., 2009) or in

FLINA (Claessen and van Wijk, 2011)

Other examples of graph hybrids integrate a node-link diagram to an adjacency matrix or to

a scatterplot. NodeTrix (Henry et al., 2007a) transforms some selected nodes to a matrix

while preserving links between those matrices, as in a node-link diagram clustered as matrices.

Elastic hierarchies (Zhao et al., 2005) allows to collapse any branch of a tree to a matrix in a

hierarchical way and to transform back any cell of the matrix to a branch. MatrixZoom (Abello

and van Ham, 2004) display the link of a hierarchical tree on the edge of an adjacency matrix.

GraphDice (Bezerianos et al., 2010a) and the Attribute-Driven Layout of (Viau et al., 2010)

fuse the node of a node-link diagram on the corresponding dot of a scatterplot.
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Many hybrids based on a PCP have been proposed in the literature. PCPs are well known

in the Infovis community interested in multidimensional visualizations, in great part due to

the extensive studies of Inselberg (1985). Vertical axes are arranged in a parallel sequence

representing each dimension of the dataset. Each member of the dataset is represented by a

polyline joining each of these axes at a height dependent on the value of this member to this

dimension. Many PCPs can be juxtaposed, like in the PCP matrix of (Albuquerque et al.,

2009) and of (Heinrich et al., 2012). We refer to this one as an example of a non-hybrid, being

the assembly of visualizations of the same type. The PCP can be juxtaposed to other type of

graphics to form a basic type of hybrid, like in (Chung and Zhuo, 2008) where a graph is used

to manipulate the graphical attributes of a PCP, or in (Holten and van Wijk, 2010) and (Steed

et al., 2009) where scatterplots are added to each axis. The last one also add a histogram to

each axis. Collins et al. (2009) are presenting a combination of a PCP and a tag cloud. Yuan

et al. (2009) integrates more tightly a PCP to a scatterplot and (Viau et al., 2010) shows a

transition from a PCP to a scatterplot matrix (Claessen and van Wijk, 2011).

Most of these examples of hybrid visualizations are no older than four years. Maybe this trend

is too young to have motivated the community to think of a model or even just define hy-

brid visualizations. Two very recent papers were published when this thesis was nearly final-

ized. Product Plots (Wickham and Hofmann, 2011) (the first author being the creator of ggplot

(Wickham, 2009)), explores some interesting hybrids by combination of multiple graphical

encodings. Another even more recent paper, Exploring the Design Space of Composite Vi-

sualization (Javed and Elmqvist, 2012), uses an approach similar to our chapter 2, describing

some assemblies in similar terms, like juxtaposition, superimposition, overloading and nesting,

which illustrates that the Infovis community is in need of better models to understand hybrid

visualizations. But the papers on the subject are still rare and very few designers justify their

hybrid designs. This is the main motivation behind the work that we present in this thesis.
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2.1 Abstract

Previous literature has proposed many combinations of visualizations, such as focus and con-

text views, multiple coordinated views, small multiples, and various “hybrid” visualizations

that combine features of simpler visualizations. To better understand the ways that visual-

izations can be combined, we analyze different ways that a dataset can be fed into multiple

visualization pipelines, where each pipeline generates a different view or simple visualization.

We also analyze how the output of these multiple pipelines can then be combined into a single,

integrated visualization, possibly yielding a hybrid visualization. We also review previous ex-

amples of hybrid visualization, showing how each of them fit into our framework. Our work

formalizes the meaning of “hybrid visualization” and clarifies issues around them, creating

opportunities to identify new kinds of hybrids that are more clearly situated with respect to

previous work.

2.2 Introduction

The use of multiple, side-by-side views onto a dataset (Wang Baldonado et al., 2000; Roberts,

2007), showing different aspects of the data and often linked through coordination (North and

Shneiderman, 2000a), has become a standard approach for designers and researchers. Such

multiple views are one way of combining several individual visualizations. The past several
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years of research in Infovis have also seen a growing number of more exotic combinations

of visualizations that are sometimes called “hybrids” (Zhao et al., 2005; Henry and Fekete,

2007b; Henry et al., 2007a; Yuan et al., 2009).

With a growing number of examples of hybrids, however, it becomes increasingly important to

answer the questions: “What is a hybrid, or combination, of visualizations?”, and “What kinds

of hybrids, or combinations, are possible and may have not yet been discovered?” We offer

answers to these questions by distinguishing between 6 different kinds of combinations of vi-

sualizations, each of which can be modeled with a variant of the familiar visualization pipeline

of operators. The 6 are: side-by-side assembly, overlay assembly, heterogeneous visualiza-

tions, nested visualizations, hybrid layouts, and hybrid glyphs. For each kind of combination,

we discuss how the pipeline is modified with respect to a simple visualization, and also present

some examples of such combinations (including some novel visualizations), and discuss issues

surrounding each kind of combination. Finally, we also present examples of new combinations

or hybrid visualizations that were directly inspired by taking two simple visualizations and

proceeding down the list of possible kinds of combinations, as though through a “checklist”,

thinking about what each kind of combination would imply.

By formalizing the notion of hybrid visualization, we are able to classify and contrast previous

work, and to think more systematically about hybrid visualizations. We believe this will some-

times help designers and researchers to discover new visualizations, as we demonstrate with

the novel hybrid visualizations presented later in this paper.

Our contributions are (1) the identification of 6 distinct kinds of combinations of visualiza-

tions, (2) examples of how to model these by modifying the standard visualization pipeline,

(3) examples of new hybrid visualizations that were inspired by thinking about each kind of

combination that might be possible.

2.3 Background

A visualization can be seen as a dynamic process, as a chain of operations starting from the

data and passing through operators with the goal of satisfiying a user task. Two good models
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for this chain of operations are Chi and Riedl’s operator interaction framework (Chi and Riedl,

1998) and the closely related model of Card and Mackinlay (Card and Mackinlay, 1997).

The characterization of data and of graphical encoding were effectively formalized by research

on the automatic presentation of visualization and on visual grammar. Many automated presen-

tation systems such as APT (Mackinlay, 1986), SAGE (Roth and Mattis, 1990), IDES (Gold-

stein et al., 1994), Polaris (Stolte et al., 2002) and Boz (Casner, 1989) are based on an assembly

algebra and on a rigid formalism based on rules aiming for the optimal presentation of visual-

izations. This type of automation has proven effective (Mackinlay et al., 2007),

Designing a good visualization requires a good knowledge of the data characteristics, of the

possible graphical encodings and of the user task. Composing multiple visualizations is no

different, but at a higher level of graphical encoding. For example, a list of numbers can be

encoded by the height of multiple rectangles; these rectangles can be aligned and distributed to

form a simple barchart, and these barcharts can be stacked to form small multiples, etc. Graph-

ical encoding has been extensively studied by Wilkinson (Wilkinson, 2010), Bertin (Bertin,

1967), and others (Card et al., 1999) (Ware, 2004) (Dastani, 2002). But the design of hybrid

visualizations and how to compose them from existing ones is still a territory to explore.

2.4 Visualization Pipeline

Different versions of the visualization pipeline have been presented in previous literature (Chi

and Riedl, 1998) (Card et al., 1999, chapter 1) (Carpendale, 1999, chapter 1). These have

largely presented the pipeline as a linear process, with data flowing into a single sequence of

transformations, yielding a single visualization. One way we can model the combination of

multiple visualizations, such as in a hybrid, is by having the pipeline split apart into two or

more branches, and later merge before the final output. We have therefore developed our own

variant of a set of pipeline operations that allow us to model both simple visualizations as well

as combinations with branching. Figures 2.1 and 2.2 illustrate two simple cases.

Figure 2.1 shows a dataset of four tuples serving as input. The first operator generates glyphs,

whose radius depends on the 3rd column of the data, and whose color depends on the 4th
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Figure 2.1 A pipeline modeling the mapping of multidimensional data to a scatterplot.

Figure 2.2 A network dataset visualized as a node-link diagram.

column. Next, a layout operator positions the glyphs, using the 1st and 2nd columns for the

x and y coordinates, respectively. Finally, a view transform operator scales and translates the

view seen by the user.

Figure 2.2 shows a graph (or network) as input data, transformed into a set of node glyphs,

which are then positioned in 2D and scaled and translated.

In our pipeline, two kinds of information may flow along the “pipes” connecting operators:

data that is stored in memory, and geometric objects. Data may be lists, multidimensional data,

graphs (i.e., networks), etc. Geometric objects may be glyphs, or “graphics” (larger objects

composed of glyphs) which might be nested within other geometric objects. Data is always

shown in our figures using green ink, whereas geometric objects are shown in black or with
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other colors. The line segments connecting operators show the kind of information passed from

one to the next: two green line segments for data, two black line segments for multiple geomet-

ric objects (such as glyphs), and a single black line segment for a single geometric object (such

as a graphic). For example, in Figures 2.1 and 2.2, we start with only a dataset at the right end

of the pipeline (shown with two green line segments, since the data are plural). Once glyphs

have been generated, two black line segments are added, to show that both geometric objects

and data flow to the next stage. The input to the view transform operator, however, is only a

single geometric object (a single black line segment), i.e. a graphic, because at that point the

original dataset is no longer needed.

Our pipelines are constructed using 6 kinds of operators (Figure 2.3).

Figure 2.3 Legend listing the 6 kinds of operators used in the pipeline.

Data operators serve to transform, split, or merge streams of data. Glyph generation operators

create geometric objects as a function of input data. Layout operators embed geometric ob-

jects by positioning them within a 2-dimensional space, yielding a graphic, i.e., a composite
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geometric object. Embellish operators are used to add “decorations” to a geometric object.

Embellish operators can add line segments or curves to connect the glyphs within a graphic, or

add closed curves to indicate subsets of glyphs. View transform operators serve to translate and

scale a geometric object. Finally, Assemble operators can combine multiple geometric objects

(i.e., graphics) to create side-by-side views, for example.

At a minimum, a visualization pipeline must use at least one Glyph generator operator, one

Layout operator, and one View transform operator. Additional operators of any type are possi-

ble, as will be seen in the subsequent examples.

We now present several ways to combine visualizations, roughly ordered from simplest to most

complex, showing how each can be modeled using the pipeline. Note that the way we model

various combinations and hybrids is not always unique; there are sometimes alternative ways of

describing a combination that give the same output. However, the methods we present are use-

ful perspectives to take for understanding and explaining a given combination, and the pipelines

modeling them help to be more precise about the meaning of each kind of combination.

2.5 Methods for Combining Visualizations

2.5.1 Geometric Assembly

2.5.1.1 Side-by-Side Assembly

The simplest way to combine two visualizations is to display them side-by-side. This requires

that there be two pipeline streams, either originating at different datasets, or because a single

pipeline was somehow split into two streams. Figure 2.4 shows an example. Such side-by-side

views may correspond to small multiples (Tufte, 1983), multiple coordinated views (Wang Bal-

donado et al., 2000; Roberts, 2007), or focus-and-context views (Carpendale, 1999, chapter 2).

Figure 2.4, for example, shows a world map beside a zoomed view of Africa.

Notice that there are two View transform operators in Figure 2.4. In side-by-side assemblies,

these two operators may be independent, or may be connected somehow. For example, North
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Figure 2.4 Side-by-side assembly of two views of the same data.

(North, 2000) discusses forms of coordinated views where navigating in one view causes a

corresponding navigation in the other (navigation ↔ navigation coordination), or where selec-

tion in one view causes the other view to navigate to the corresponding element (selection ↔
navigation coordination).

Views may also be constrained to have one or both axes in common. For example, a scatterplot

matrix (Hartigan, 1975) can be thought of as an assembly of a large number of individual views

(the scatterplots), and in this case any two views that are adjacent typically share a common

(horizontal or vertical) axis with the same scale, to ease the comparison of points across the

views.

During assembly, it is also possible to draw line segments connecting corresponding elements

in the two views, to explicitly link elements. Examples in previous work include (Diaconis and

Friedman, 1980; Collins and Carpendale, 2007; Claessen and van Wijk, 2011).
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Certain hybrid visualizations involve “stitching” two representations together along an edge,

possibly showing the result within a single viewport window. Because the representations

are essentially side-by-side, we can model this with the same kind of side-by-side assembly.

Figure 2.5 shows MatLink (Henry and Fekete, 2007b) in this way. MatLink combines an

adjacency matrix view of a network with an arc diagram (Bertin, 1967; Wattenberg, 2002)

of the same network. The fact that the resulting hybrid may be displayed within a single

window, rather than two side-by-side windows, is rather incidental, and can be accounted for

by requiring that the two View transform operators remain synchronized.

Figure 2.5 MatLink (Henry and Fekete, 2007b) can be thought of as a side-by-side

assembly of an adjacency matrix and an arc diagram.



23

2.5.1.2 Overlaying Assembly

A second way of assembling the output of View transform operators is to render their out-

put in overlapping spaces, compositing them with alpha blending, for example. Macroscope

(Lieberman, 1997) is an example of this (Figure 2.6).

Figure 2.6 Overlaying assembly: A zoomed view of Africa is alpha blended over a

world map, producing output similar to Macroscope (Lieberman, 1997).

An additional example of overlaying assembly is when two charts are drawn within the same

2D space. For example, a line chart of CO2 emissions over time might be overlaid on a line

chart of average global temperature over time. These two charts would share the same horizon-

tal axis (time) but have different vertical axes (concentration and temperature, respectively).

2.5.2 Heterogeneous Combinations of Glyphs

Visualizations such as Elastic Hierarchies (Figure 2.7) or NodeTrix (Figure 2.8) do not involve

simply overlaying two simpler visualizations. Instead, in both cases, the data is partitioned into
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two subsets, each of which is rendered using a different representation (node-link and treemap

in the former case, node-link and matrix in the latter) and the two representations are then

combined within a common 2D space. In both Elastic Hierarchies and NodeTrix, each node

of the dataset is shown only once, unlike the case in Figure 2.4 where each country of Africa

appears twice, at different scales.

Figure 2.7 Elastic Hierarchies (Zhao et al., 2005) combine node-link and treemap

representations of tree data.

Figure 2.8 NodeTrix (Henry et al., 2007b) combines node-link and adjacency matrix

representations of network data.
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Elastic Hierarchies and NodeTrix are examples of hybrids that we call heterogeneous visual-

izations. We model them with the pipeline in Figure 2.9, where data is split into two subsets,

and the resulting geometric objects are later merged. The essential characteristic of a hetero-

geneous visualization is the splitting of the data into non-overlapping subsets that are fed into

separate branches, each passing through a Glyph generation operator, later to be merged in a

common 2D space.

Figure 2.9 Pipeline describing NodeTrix.

2.5.3 Nesting Visualizations

It is also possible to reduce a visualization in size to play the role of a glyph inside a larger

visualization. We refer to such combinations as nested visualizations. An example is modeled

in Figure 2.10. The essential feature of such nesting is that the output of one Layout operator

L2 is fed into another Layout operator L1, implying that the layout L2 is applied recursively

within the layout of L1. This process could be extended, in theory, for visualizations having 3

or more layout levels.

Examples of nested visualizations in previous work include Microsoft Pivot1, which nests

photo thumbnails inside barchart bars; TableLens (Rao and Card, 1994), which nests numeric

data and simple graphics inside a tabular layout; TopoLayout (Archambault et al., 2007), which

nests different graph layouts according to a decomposition of a graph; and barcharts in Tulip

(Auber et al., 2012) which display individual nodes inside bars (Figure 2.11).

1http://www.microsoft.com/silverlight/pivotviewer/
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Figure 2.10 A nested visualization: a barchart containing color swatches.

Figure 2.11 A barchart in Tulip (Auber et al., 2012), showing individual graph nodes

inside each bar.

During interaction, zooming in or out of a nested visualization may cause the representation

of certain elements to change in a scale-appropriate manner. This behavior is usually called

semantic zooming (Bederson and Hollan, 1994).
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In the course of our search for examples of nested visualizations, a novel case occurred to us:

the “bullet” glyphs proposed by Stephen Few2 can be nested inside a Gantt chart, allowing for

a richer indication of the progress of each stage of a project (Figure 2.12).

Figure 2.12 A mockup of a Gantt chart whose bars have been replaced with Few’s bullet

glyphs.

2.5.4 Hybrid Layout Operators

Yet another approach for creating a hybrid visualization is to combine aspects of the layout

algorithms of two other visualizations. Given two pre-existing visualizations that use Layout

operators LA and LB, respectively, the idea is to create a new operator L′ = LA ⊕LB, where ⊕
is some kind of combination of operators. A simple example would be an L′ that uses the x

coordinate of LA and the y coordinate of LB. The new Layout operator L′ can then be used

inside any pipeline, even the simple, linear pipelines of Figures 2.1 and 2.2. Figure 2.13 shows

an example where the layouts used in two barcharts are combined to produce a scatterplot’s

layout.

Some visualization systems allow for a whole range of Layout operators, where the x and y

components can be modified independently. These include “graph drawing by axis separa-

tion” (Koren and Harel, 2005) and GraphDice (Bezerianos et al., 2010b). For example, with

2http://www.perceptualedge.com/articles/misc/Bullet_Graph_Design_Spec.pdf
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Figure 2.13 The layout of points in a scatterplot can be seen as a combination of the

layouts in two barcharts.

GraphDice, a user may choose to layout the nodes of a graph with an x coordinate correspond-

ing to the node’s degree, and a y coordinate corresponding to the node’s clustering coefficient.

Other combinations of layouts are not so obvious, but can still lead to novel visualizations.

We examined two ways of depicting 1-dimensional datasets: the histogram (Figure 2.14, lower

left), and a “TableLens-style” (Rao and Card, 1994) chart of records sorted by value (Fig-

ure 2.14, upper left). It was not immediately apparent to us if the layouts of these two charts

could be combined, since they show glyphs corresponding to different kinds of data elements:

the histogram shows rectangle glyphs corresponding to aggregated subsets of data, whereas

the TableLens chart shows individual records as line segments. However, observe that, in the

TableLens chart, the right extremities of the line segments are the most important portion of the

line segments, since they convey the x-coordinate of each record. Notice also that these extrem-

ities can be binned (Figure 2.14, upper right) into rectangles of constant width, whose height

is proportional to the number of records enclosed. Finally, these rectangles can be translated

downward (Figure 2.14, lower right) to align their bottom edges, recreating the histogram’s

layout. The two charts on the right half of Figure 2.14 appear to be new hybrid charts that

show both aggregate-level information (through the height of the rectangles) as well as indi-

vidual data elements. All four charts in the figure have the same x axis, but the positioning of
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glyphs (points and/or rectangles) along y is different between the upper two charts and lower

two.

Figure 2.14 Visualizations of a 1-dimensional set of numbers. Upper-left: a

TableLens-style depiction (Rao and Card, 1994). Lower-left: histogram of

the same data. Upper-right and lower-right: hybrid depictions that mix the

layouts of the first two charts.

2.5.5 Hybrid Glyph Generation Operators

The last approach we discuss involves creating a new Glyph generation operator G′ = GA⊕GB

by combining characteristics of two pre-existing operators GA and GB, and then using G′ within

a pipeline. For example, if GA maps some data variable x1 to the color of glyphs, and GB

maps another variables x2 to the size of glyphs, then a simple combination G′ could map

x1,x2 to color and size, respectively, or may instead map x1,x2 to the width and height of the
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glyphs. Figure 2.15 shows another example. Such combinations are easy to perform because

the attributes of the glyphs are orthogonal.

Figure 2.15 A Nightingale diagram varies the radius of its glyphs, whereas a pie chart

varies their angles. Combining these yields a new visualization where each

glyph’s radius and angle is varied.

However, if the glyphs to be combined do not have the same shape or same attributes, com-

bining them may be less obvious and require creativity. The later sections present examples of

combinations of the point glyphs in a scatterplot with other points or with the polygonal lines

in a parallel coordinates plot, yielding hybrid glyphs.

2.6 Example Design Studies

To demonstrate the value of distinguishing different ways of combining visualizations, we

now present the results of two attempts to combine different visualizations. First, we consider

ways of combining scatterplots, and then ways of combining scatterplots and PCP (Inselberg,

1985; Wegman, 1990). In each case, rather than proceed in a completely ad hoc manner, the

preceding 6 kinds of combinations served as analogies and focal points for brainstorming and

formulating questions about how the visualizations might be combined.

2.6.1 Example 1: Combining Scatterplots

In this section, we consider ways of combining two (or more) scatterplots. Such combinations

could be useful, for example, when visualizing a 4-dimensional dataset, where each tuple is of

the form (a,b,c,d), and each scatterplot serves to show two of the 4 dimensions. We consider
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most of the approaches presented in the preceding sections for combining visualizations to see

what results can be produced.

Side-by-side and overlaying assembly yield Figure 2.16, A and B. Notice that it is necessary

in both cases to link the corresponding points with line segments to make the visualizations

intelligible. Interestingly, the combination in Figure 2.16, A, was proposed in (Diaconis and

Friedman, 1980), where line segments were also used to link points.

Figure 2.16 Combinations of scatterplots. A: side-by-side assembly, linked with line

segments. B: overlaying assembly, linked with line segments. C: a

heterogeneous combination. D: nesting.

The combination in Figure 2.16, B, however, is novel to our knowledge, and although it was

inspired by thinking about overlaying assembly (section 2.5.1.2), it could also be interpreted

as a visualization of hybrid glyphs (section 2.5.5) where pairs of points are merged into line

segments. Thus, more than one approach for combining visualizations may yield the same

result. Indeed, we do not claim that the approaches for combining visualizations are mutually

exclusive, but rather that they provide useful perspectives for describing and thinking about

combinations of visualizations.
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Figure 2.16, C, shows a heterogeneous combination of Chernoff faces (Chernoff, 1973) and

simple points. The Chernoff faces, or other glyphs, would depict variables beyond the x and y

coordinates of the scatterplot. This hybrid was inspired by simply asking what a heterogeneous

combination of scatterplots would look like. It was not immediately obvious whether this com-

bination has any use. Upon reflection, however, we notice that if all points were displayed as

Chernoff faces, this could easily create inter-glyph occlusion. It could indeed be desirable for

the user to specify a subset of points to display as glyphs. Such a subset could be specified

through direct selection (pointing, or lasso selection), or by manipulating a slider, e.g., to spec-

ify that we want all tuples with some variable within some range to be displayed as Chernoff

faces.

Figure 2.16, D, nests scatterplots within a scatterplot. This could be useful in a 4-dimensional

dataset that has been partitioned into a small number of subsets, such as clusters. Each subset,

or cluster, could have a corresponding small scatterplot to show individual tuples along two of

the dimensions. These small scatterplots could, in turn, be located within the larger scatterplot

by their average value along the two remaining dimensions.

2.6.2 Example 2: Scatterplots + Parallel Coordinates

We now perform a similar exercise, trying to combine scatterplot(s) with PCPs. Side-by-side

assembly produces Figure 2.17, A, and again requires line segments to explicitly link elements.

Overlaying assembly produces Figure 2.17, B, which we note is very similar to Scattering

Points in Parallel Coordinates (Yuan et al., 2009) (SPPC) (Yuan et al., 2009). SPPC can be

thought of as an overlay assembly (section 2.5.1.2), with the additional characteristic that the

polygonal lines in the PCP are replaced with curves passing through the scatterplot points.

Such curving of the polygonal lines could be thought of as the result of merging the layout

of the PCP and scatterplots (section 2.5.4), or as a merging of the scatterplot points and PCP

polygonal lines (section 2.5.5). As in the previous section, there is more than one way of

describing the hybrid combination.
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Figure 2.17 Combinations of scatterplots and parallel coordinate plots (PCP). A:

side-by-side assembly, linked with line segments. B: overlaying assembly,

similar to (Yuan et al., 2009). C: a heterogeneous combination, where the

focus (under the mouse cursor) is rendered as a scatterplot, and the context

is rendered in PCP form. D: PCPs nested within a scatterplot.

A heterogeneous combination of scatterplots and PCPs is shown in Figure 2.17, C. We imagine

that it might be useful for the user to see a “focal” region as a scatterplot, and to see the

surrounding “context” as a PCP, since the polygonal lines of the PCP might make it easier to see

links to distant axes. Thus, Figure 2.17, C shows a mouse cursor over the focal region, which
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might follow the cursor as it moves, like a lens. Notice, however, that in this heterogeneous

visualization, rather than having the dataset partitioned into two subsets of tuples, it is divided

into two subsets of dimensions, each of which is rendered differently. In other words, if the

data is stored in a table (rows corresponding to tuples, columns to dimensions), the table is

split into two subsets of columns rather than two subsets of rows. Two of the dimensions are

rendered as a scatterplot, and the remaining are shown with a PCP. Of course, it would also be

possible to partition the data into subsets of tuples, e.g., showing selected tuples as points and

remaining ones as polygonal lines.

Nesting PCPs within a scatterplot produces Figure 2.17, D, which could be used in a way

analogous to the nested visualization in Figure 2.16, D.

Finally, during this design study, another hybrid that occured to us is shown in Figure 2.18.

This visualization is redundant in that pairs of dimensions are shown both as a scatterplot and a

pair of PCP axes. In terms of the approaches we have described for combining visualizations,

Figure 2.18 could be seen as multiple visualizations assembled side-by-side (section 2.5.1.1).

Figure 2.18 Another combination of scatterplots with PCPs.

2.7 Conclusion

Our work distinguishes between 6 kinds of combinations of visualizations: side-by-side as-

sembly, overlay assembly, heterogeneous visualizations, nested visualizations, hybrid layouts,

and hybrid glyphs. We have shown how to model each kind of combination as a modification to

the visualization pipeline, and positioned previous work with respect to the 6 kinds of combi-

nations. We have also presented a few novel visualizations: bullet glyphs nested within a Gantt

chart (Figure 2.12), variants of histograms that display individual records (Figure 2.14), hy-

brid combinations of scatterplots (Figure 2.16) and of scatterplots and parallel coordinate plots
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(Figures 2.17 and 2.18). These novel hybrids were discovered by thinking deliberately about

the different kinds of combinations that are possible with existing visualizations, demonstrating

the generative design potential from having explicitly distinguished types of combinations.

2.8 Future Directions

Future work could examine different kinds of tasks and interactions for enacting changes to

the visualization pipeline, given that the pipeline may split, merge, or pass through multiple

Layout operators, requiring extensions to previous work on visualization tasks and interactions.

Future studies might also compare different kinds of hybrid visualizations, to establish which

ones succeed at combining the advantages of component visualizations, and to what degree.

Future work might also extend our work to 3-dimensional layouts and 3D visualizations. In 3D,

certain visualizations have proposed updating pipeline operators automatically in response to

camera motion (such as distortion viewing (Carpendale et al., 1997) which updates 3D layout

based on camera position; and importance-driven rendering (Viola et al., 2004) which updates

opacity based on camera position). In a hybrid 3D visualization, new kinds of automatic re-

sponses to camera motion may be warranted, such as changing the representation of subsets of

data as the user moves through the 3D space.
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3.1 Abstract

Multidimensional multivariate data can be visualized using many different well-known charts,

such as bar charts, stacked bar charts, grouped bar charts, scatterplots, or pivot tables, or also

using more advanced high-dimensional techniques such as scatterplot matrices or parallel co-

ordinate plots. These many techniques have different advantages, and users may wish to use

several charts or data graphics to understand a dataset from different perspectives. We present

ConnectedCharts, a technique for displaying relationships between multiple charts. Connect-

edCharts allow for hybrid combinations of bar charts, scatterplots, and parallel coordinates,

with curves drawn to show the conceptual links between charts. The charts can be thought

of as coordinated views, where linking is achieved not only through interactive brushing, but

also with explicitly drawn curves that connect corresponding data tuples or axes. We present

a formal description of a design space of many simple charts, and also identify different kinds

of connections that can be displayed between related charts. Our prototype implementation

demonstrates how the connections between multiple charts can make relationships clearer and

can serve to document the history of a user’s analytical process, leading to potential applica-

tions in visual analytics and dashboard design.
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Figure 3.1 A ConnectedChart showing a text table, bar charts, parallel coordinate axes,

and scatterplots. (Real data set.)

Figure 3.2 A ConnectedChart with four barcharts, and a scatterplot, displaying 5

dependent variables that are functions of time. In this case, GPU temperature

is a smooth, slowly varying function of time, hence the connection between

the scatterplot’s horizontal axis and the barchart below it exhibits an

interesting, continuous variation. (Synthetic data set.)

3.2 Introduction

The use of multiple views onto the same data, or related data, is a common approach in visu-

alization. Users are given multiple perspectives of their data, allowing them to benefit from
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the advantages of each view, and to compare across views. To help the user understand the

relationships between views, some form of linking is required. Two common approaches are

to use color or drawing line segments or curves to link corresponding data elements. However,

if there are many data elements and all links are displayed at once, we either quickly run out

of distinguishable colors, or suffer from line clutter. For this reason, linking is often only dis-

played in response to mouse motion: hovering over an element causes the links between that

element and related ones to be displayed (either in the form of a color highlight or line or curve

segments). This approach is elegant and can be applied to even large data sets, but it constrains

the user to exploring relationships one element at a time, requiring the user to interact with the

data, possibly for an extended period of time, to extract useful visual feedback.

We propose a new technique, called ConnectedCharts (Figures 3.1, 3.2), situated in the middle

ground between the extremes of linking all elements, and only linking the element under the

mouse cursor. In our work, curves are drawn between charts (data graphics), showing the

correspondence between data elements (tuples) when possible, or otherwise between axes.

Occlusion is avoided within each chart by “anchoring” the curves to the edges or axes of the

chart. Also, rather than drawing all possible links, only those that have been created by the

user (in the process of creating the charts) are displayed.

We have applied our technique to visualizing multidimensional multivariate data, such as data

from a relational database table. Some very flexible visualizations of such data already exist,

for example, FLINA (Claessen and van Wijk, 2011), which supports combinations of scatter-

plots and parallel coordinate plots, and Polaris (Stolte et al., 2002) / Tableau (Mackinlay et al.,

2007), which can display multiple charts of the same type within a tabular grid. Connected-

Charts supports scatterplots and PCPs, but unlike FLINA, it also supports bar charts and other

2D charts, and also allows data tuples to be aggregated differently in each chart. Compared to

Polaris / Tableau, ConnectedCharts offers more flexibility in that different kinds of charts can

be instantiated at once, and can be positioned freely within a 2D space instead of being limited

to a grid.



40

A user may use ConnectedCharts to explore a data set, creating new charts to answer new ques-

tions, with connections displayed to the previous charts. In such a scenario, the connections

may serve to record and retrace the history of a user’s analytical steps. A set of charts and

their connections may also be designed and presented to an end-user, for use as a dashboard,

in which case the connections elucidate the relationships between the views of the data, even

when related charts are not side-by-side.

Although ConnectedCharts can result in many line segments or curves being displayed (Fig-

ure 3.2), the same is also true of parallel coordinate plots, where the line segments or curves

serve to depict distributions, relationships, correlations, clusters, and inverse correlations. Con-

nectedCharts can be thought of as a generalization of parallel coordinate plots, that allow the

advantages of these connections to be leveraged not just for 1-dimensional axes, but for many

kinds of charts (Figure 3.3).

Figure 3.3 One of the potential uses of ConnectedCharts is to enrich parallel coordinate

displays by expanding axes interactively. Here, the b axis is converted into a

barchart showing time t, and the f axis is converted into a scatterplot against

g. ConnectedCharts allow charts to be intermixed with parallel coordinate

axes.
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Our contributions include (1) a formal description of a design space of charts based on plots

of 2D rectangles, general enough to subsume scatterplots, bar charts, Gantt charts, and vari-

ants; (2) an analysis of the types of connections that can be displayed between charts; (3) a

demonstration of how ConnectedCharts can be used to produce SPLOMs, PCPs, and hybrid

combinations of these and other charts; (4) a generalization of the Attribute Relation Graph of

Interest (ARGOI) presented in (Claessen and van Wijk, 2011).

3.3 Background

3.3.1 Linking and coordination across views

Many visualizations involve multiple views of data that are somehow linked to convey a re-

lationship between the views. Buja et al. (Buja et al., 1991) give several techniques for this:

linking with color (e.g., drawing corresponding elements with the same color), linking “by

drawing lines connecting [corresponding] points”, and linking “over time” with a “smooth an-

imation” from one view to another. Wong and Bergeron (Wong and Bergeron, 1997) point out

that linking can also be done by aligning axes in different views, as is done with the scatterplots

in a scatterplot matrix (SPLOM) (Hartigan, 1975).

At least some of these linking techniques can be performed interactively. For example, it may

not be feasible to draw all data elements in colors that distinguish the corresponding subsets of

points from each other, nor may it be useful to draw all line segments between corresponding

points. However, if the mouse cursor hovers over an element, the corresponding elements

could then be indicated with a highlight color or line segments. An example of such interactive

linking is “brushing and linking” (Becker and Cleveland, 1987).

Interactive linking of views is also called coordination (Wang Baldonado et al., 2000; Roberts,

2007), which is also very common in visualizations. North (North, 2000) presents a software

framework for this, and distinguishes 3 types of coordination: selection ↔ selection (i.e., se-

lection in one view causes a selection in another), selection ↔ navigation, and navigation ↔
navigation.
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Of particular relevance to the current work is linking done using line segments or curves. In-

teractive linking across views with line segments dates back at least to work by Ted Nelson

in the early 1970s (Nelson, 1999). Line segments between views have been used for meta-

visualization of the coordination of views (Weaver, 2005; Tobiasz et al., 2009). There are also

several examples of line segments and curves drawn between corresponding data elements in

different views. “M and N” plots (Diaconis and Friedman, 1980) are an early example: in a

“2 and 2” plot, points in corresponding 2D scatterplots are connected to convey 4-dimensional

tuples. Parallel coordinates (Inselberg, 1985; Wegman, 1990) use line segments to connect tu-

ples across multiple axes, and each axis can be thought of as a 1D “view” of the data. VisLink

(Collins and Carpendale, 2007) is a general framework for connecting data elements across

views. More recent examples of connecting elements across views include (Aris and Shneider-

man, 2007; Viau et al., 2010). There is also evidence that connecting elements allows a user to

find elements faster than with simple highlighting (Steinberger et al., 2011).

With ConnectedCharts, we can make use of interactive color highlighting, but also display

static curves to link together charts. These curves are distinct from previous work in a few

ways: first, rather than statically display all possible linking curves between corresponding

elements, we only display those that the user has established through their interactions with the

charts, avoiding excessive clutter; second, the connecting curves between charts are “anchored”

to the axes or edges of charts, avoiding clutter or occlusion within each chart; third, we allow

for several kinds of charts to be connected, and identify several kinds of connections that can

be shown (see section 3.6).

Note that we do not propose ConnectedCharts as a replacement to brushing and linking. In-

stead, we see these two approaches as having complementary advantages (Figure 3.4): brush-

ing and linking is flexible and scales well to large data sets, but requires the user to invest time

moving a pointing device over the data. ConnectedCharts, however, can reveal relationships

at a glance prior to any interaction, and even without reading axis labels, just like how the

connective lines in parallel coordinates reveal relationships between their axes.
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Figure 3.4 Brushing and connections are complementary approaches. Top: brushing

without connections. The user must interactively roll over data elements with

a pointing device to discover relationships. Notice the parallel coordinate

axes in the center, that can be brushed, but that do not display connections,

making them less informative than usual parallel coordinates. Middle:

Displaying connections between charts and between parallel coordinate axes

allows the user to see common variables, correlations (e.g., between

variables c, d, and e), and inverse correlations (between a and b, and between

b and c) without any mouse interaction. Bottom: The advantages of both

approaches combined.

3.3.2 Support for history in visualization

Recent work (Heer et al., 2008; Shrinivasan and van Wijk, 2008) has presented support for

navigating a user’s history of their views of data. The connections in ConnectedCharts can

be used to convey and retrace a user’s history of analytical steps, and unlike previous work,

the views and their (historical) connections are displayed in the same 2D space, rather than in

separate viewports. In our prototype, the user can zoom in on a single view or zoom out to

see its connections and other views. Furthermore, the user is free to edit connections, meaning
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that they may no longer reflect the user’s true history; this can be both an advantage and a

disadvantage.

3.3.3 Multiple views of multidimensional multivariate data

Dimensional anchors (Hoffman et al., 1999) and FLINA (Claessen and van Wijk, 2011) allow

for many combinations and variants of scatterplots and parallel coordinate plots to be displayed

of multivariate data. As will be seen, ConnectedCharts also allow for combinations of scatter-

plots and PCPs. However, ConnectedCharts also supports other kinds of charts (such as bar

charts, stacked bar charts, and grouped bar charts) and supports aggregated data. We also

generalize the notion of ARGOI presented in (Claessen and van Wijk, 2011).

Polaris (Stolte et al., 2002), and its successor Tableau (Mackinlay et al., 2007), allow for multi-

ple charts to be displayed of multidimensional multivariate data, arranged in a grid of rows and

columns; the charts are implicitly linked by the alignment of their axes. As presented in the

literature, the charts in the grid are always of the same type (e.g., a grid of scatterplots, or of bar

charts). ConnectedCharts, in contrast, allows charts of different types to be freely positioned

within a 2D space, giving the user more freedom. Nevertheless, grid-like arrangements are still

permissible in ConnectedCharts (e.g., Figure 3.12).

Product plots (Wickham and Hofmann, 2011) allow many kinds of charts to be generated based

on a few variants of rectangles: bars, spines, tiles and flucts. The charts in ConnectedCharts

are also based on plots of rectangles. ConnectedCharts does not support all the kinds of charts

in product plots, but supports others (such as scatterplots) and could eventually be extended to

support all product plots.

3.4 Data model

Many data sets can be thought of as a table where each column is an attribute (or field) and

each row is a tuple. Typically, some of the attributes are best thought of as independent, while

the others are dependent. These are often referred to as dimensions and measures, respectively,

in the database literature, and correspond to the domains and codomains of a function. For
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example, in Figure 3.5(left), color and petals are independent, percentage is dependent, and the

data set can be thought of as a function, or mapping, from (color, petals) pairs to percentages.

Figure 3.5 An example flower data set. Left: the raw data d : Color × Petals �→
Percentage. Right: the data aggregated over petals, yielding d[Petals] : Color

�→ Percentage.

As another example, consider a table d with 6 columns: 4 independent variables corresponding

to product P, region R, year Y , and month M, and 2 dependent variables corresponding to sales

S and expenses E. The table can be thought of as a mapping d : P×R×Y ×M �→ S ×E.

Written in another way, the sales s ∈ S and expenses e ∈ E are a function (s,e) = d(p,r,y,m)

of product p ∈ P, region r ∈ R, year y ∈ Y and month m ∈ M.

It is common to also distinguish between categorical attributes (also called nominal, finite, or

discrete) such as a set of products, and quantitative attributes (also called metric, or continu-

ous) such as real numbers. For example, Mackinlay et al. (Mackinlay et al., 2007) distinguish

between quantitative dependent, quantitative independent, and categorical data fields, which

they denote as Qd, Qi, and C, respectively. In our work, we note that quantitative indepen-

dent variables must be discretized to a finite number of values to fit in computer memory, and

therefore independent variables can always be thought of as discrete, and therefore “categor-

ical” in some sense. For example, time is normally thought of as quantitative, but must be

discretized when used as an independent variable (e.g., reduced to a set of months or days).

Thus, for simplicity, we treat all independent variables as categorical, meaning discrete or dis-

cretized. On the other hand, the dependent variables, such as sales, are quantitative in the most

general case. Hence, we define C1, . . . ,CM as the M (categorical) domains, and Q1, . . . ,QN as
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the N (quantitative) codomains in the dataset. We can then think of a dataset d as a mapping

d : C1 × . . .×CM �→ Q1 × . . .×QN , with (q1, . . . ,qN) = d(c1, . . . ,cM).

A common operation in database systems is aggregating (also called rolling-up or projecting),

which removes one of the independent variables Ci in the dataset and replaces the dependent

variables with aggregations (e.g., sums, or averages) over the values of the removed variable.

Figure 3.5(right) shows an example of this. In general, aggregating dataset d over the domain

Ci can be defined as

d[Ci](c1, . . . ,ci−1,ci+1, . . . ,cM)

= ∑
c�∈Ci

d(c1, . . . ,ci−1,c�,ci+1, . . . ,cM)

Returning to the earlier example involving sales and expenses, an aggregation over both year

and month would be defined as

(s,e) = d[Y,M](p,r) = ∑
(y,m)∈Y×M

d(p,r,y,m)

In general, any dataset d can be aggregated along any combination of its independent variables,

yielding a collection of tables d,d[C1],d[C2],d[C1,C2], . . . ,d[C1,...,CM ]. Each of these tables can be

visualized using various different charts.

3.5 A design space of charts

Before identifying different kinds of connections that can be shown between data graphics or

charts, we first define the different kinds of charts to consider. Rather than consider all possible

charts or visualizations, we have identified a small number of “ingredients” that are amenable

to analysis, but that can be combined to yield a rich design space containing many commonly

known charts, as well as a few novel kinds of charts.

We assume that each chart shows all the tuples of a data set d, which may or may not have been

aggregated over some independent variables. We further assume that each tuple is represented
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graphically as a rectangle in the chart, where each rectangle has a position (x,y), width w,

and height h. The chart maps each tuple (c1, . . . ,cM,q1, . . . ,qN) to a rectangle (x,y,w,h). For

example, in a bar chart, each rectangle has x = ci for some categorical variable ci (ignoring

scaling factors) and y = 0, as well as width w = K for some constant K, and height h = q j for

some quantitative variable q j (again, ignoring scaling factors). We can therefore write that the

rectangles are given by (x,y,w,h) = (ci,0,K,q j). Converting this to a shorthand notation, we

can define bar charts as charts with a mapping of the form (C,0,K,Q) (Figure 3.6, upper left).

Figure 3.6 Examples of charts in the design space. Well-known charts include bar charts

(C,0,K,Q), scatterplots (Q,Q,K,K), Gantt charts (Q,C,Q,K), stacked bar

charts (C,CS,K,Q), grouped bar charts (CC,0,K,Q), parallel bar charts

(CC,C,K,Q). Interesting variants include bar charts with variable width

(C,0,Q,Q), and scatterplots with rectangular glyphs (Q,Q,Q,Q).
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As another example, a scatterplot of two quantitative variables qi and q j corresponds to the

mapping (x,y,w,h) = (qi,q j,K,K), where the “points” in the scatterplot are actually small

K ×K squares. In shorthand, this is (Q,Q,K,K) (Figure 3.6, upper right).

The chart (C,C,Q,Q) (Figure 3.6) might be called a “table of 2D bars” with (x,y,w,h) =

(ci,c j,qk,ql). Note that, when we write (C,C,Q,Q), we imply that each C and each Q is

distinct (i.e., has a different subscript). In contrast, a chart of the form (x,y,w,h) = (ci,ci,q j,q j)

redundantly encodes ci and q j twice, plotting squares along a diagonal. Such a redundant chart

is not captured by our shorthand notation, but is not so interesting anyway.

We allow independent variables to be nested in the computation of x or y. For example, if the

categorical variables are stored as positive integers (that is, ci ∈ Ci = {1,2, . . . , |Ci|} for all i),

and we wish to plot a grouped bar chart where each group of bars corresponds to a value of

Ci, and each bar within a group corresponds to a value of Cj, we might define x = ci +
1

|Cj|c j

(ignoring margins or scaling factors). We then say that Cj is nested within Ci, and denote such

a grouped bar chart as (CiCj,0,K,Qk) or simply (CC,0,K,Q). Another example of a chart

involving nesting is parallel bar charts (CiCj,Ck,K,Ql) (see (CC,C,K,Q) in Figure 3.6), where

Ci and Ck establish the columns and rows, respectively, of a grid, and within each cell of the

grid is a (Cj,0,K,Ql) bar chart. This nesting of variables corresponds directly to the notions

of “hierarchical axis” of Mihalisin et al. (Mihalisin et al., 1991), “dimensional stacking” in

LeBlanc et al. (LeBlanc et al., 1990), and also to the “cross” operator in the table algebra of

Polaris (Stolte et al., 2002).

The last ingredient in our design space allows rectangles to be stacked along a categorical

variable Ci; we denote this stacking with CS
i . For example, a stacked bar chart described with

(C1,CS
2 ,K,Q1) has the y of each rectangle equal to the sum of the heights of rectangles whose

tuples have smaller values of c2.

To more precisely define our design space, we note that, in our shorthand notation, each of x

and y may be given by any of the following: 0 (zero), Q, C, CS, or a sequence of one or more

C followed by a final Q, C, or CS. In addition, each of w and h may be given by K (a constant)
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or Q. For example, the chart (C1C2Q1,C3C4Q2,Q3,Q4) would be a table of columns (C1),

sub-columns (C2), rows (C3) and sub-rows (C4), within which each cell contains a (Q1 versus

Q2) scatterplot of 2D bar glyphs encoding Q3 and Q4 in their width and height, respectively.

In theory, it is possible to automatically enumerate the possible charts in this design space,

however there are (countably) infinitely many unless some limit is imposed on the nesting

depth.

Our design space could be extended in a few straight-forward ways. Each rectangle, in addi-

tion to having a position, width, and height, could also be given a variable color α , yielding

5 parameters (x,y,w,h,α). A scatterplot of rectangular glyphs with variable width, height,

and color is shown in the lower right corner of Figure 3.6. Another extension would add a

text label t to each rectangle, to show a numeric value or a string. For example, the chart

(x,y,w,h, t) = (C1,C2,Q1,K,Q1) would be a table of horizontal bars, where the width and text

label of each bar redundantly show the same quantitative value, allowing a user to quickly scan

for interesting values (by looking at the bars) and then read precise values using the text labels:

this kind of chart might be called a “back bar chart”, since the bars appear behind the text

labels.

Figure 3.7 shows the charts implemented in our prototype. In addition to the charts based on

plotting rectangles from our design space, we added a “text table” chart to enable displaying

precise numeric quantities.

3.6 Types of connections

The groundwork laid by the previous sections allows us to now analyze the types of connections

that we may want to display between charts. We distinguish two types of connections: those

between corresponding tuples, and those between corresponding axes.

To display connections between corresponding tuples, we must have the same tuples in the two

charts. This is of course not the case if the data has been aggregated differently in the two

charts. For example, in Figure 3.8, the text table and grouped bar chart show some data set

d : Region×Year �→ . . ., whereas the charts along the top row show d[Year] (i.e., aggregated
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Figure 3.7 Examples of the charts supported by our prototype: bar chart; 1D axis plot;

stacked bar chart; table of bars; grouped bar chart; a scatterplot variant where

the location of tuples, instead of being shown with points, is shown by the

upper-right corner of overlapping rectangles; a scatterplot whose marks are

rectangular glyphs with variable width and height; text table. Normal

scatterplots are also supported. Normally, the orange lines within each chart

are only drawn in the direction of neighboring connected charts; in these

examples, we assume a neighboring chart is situated to the north and to the

east, so the orange lines extend up and right.

over the Year variable, leaving Region as the only distinguishing categorical variable), and

the bar chart in the left bottom corner shows d[Region] (leaving Year as the only distinguishing

categorical variable).

The datasets d, d[Year], and d[Region] have 30, 5, and 6 tuples, respectively, and it would not make

sense to try to connect the 5 tuples in a chart showing d[Year] to the 6 tuples in some other chart

showing d[Region]. If, however, the data in the two charts is aggregated the same way, we can

connect the tuples in one chart to the tuples in the other. There are two sub-cases to consider:
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connecting tuples through a Q axis, and connecting tuples through a C axis. Two examples

of connections through Q are shown in the top row of Figure 3.8, where the Q axes are either

the same, or different (notice how the connections between different Q axes is similar to the

connections in parallel coordinates). To connect through a C axis, if it is the same C axis in

both charts, we recommend simply connecting the values of the C axes (see Figure 3.8), since

there are presumably multiple tuples for each value of the C axis, and connecting all tuples

would only create more connective lines or curves without any benefit.

Figure 3.8 Examples of different connections between charts. Top left to top center:

tuples are connected across the same Q axis (Mean HDI). Top center to top

right: tuples are connected across different Q axes (Mean HDI and Fertility

rate). Top left to middle row: values of a C axis (Region) are connected.

Middle row to bottom center: an entire C axis is connected to another C axis

(Year). Bottom left to bottom center: an entire Q axis is connected to another

Q axis (Mean HDI).

If the data in the two charts is not aggregated in the same way, then it is not possible to connect

tuples. However, it is still possible to connect axes. Two examples are shown in Figure 3.8,

one for a C axis, and another for a Q axis.
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Note that we intentionally do not draw connections involving a C variable nested within another

C variable. We also do not draw connections involving a Q variable mapped to rectangle width

or height, unless the x or y, respectively, of the rectangle is equal to zero. For example, the Q

variable in a (C,0,K,Q) bar chart can be connected to another Q variable in another chart (as

shown in Figure 3.8, top left to top center), because the y of rectangles in that chart is equal to

zero. However, in a scatterplot of glyphs (Q1,Q2,Q3,Q4), we do not draw connections from

Q3 or Q4 to an axis in another chart. We did consider ways of graphically depicting such

connections, but in the end decided that they would be too confusing.

3.7 ConnectedCharts prototype

Our prototype is implemented in JavaScript using Data-Driven-Documents (D3) (Bostock

et al., 2011), a graphical toolkit that allows data to be bound to graphical elements like SVG

shapes. In most of our charts, the graphical “marks” are rectangles, so defining a chart with D3

is done by mapping the data to the rectangle’s attributes. Smoothly animated transitions be-

tween different kinds of charts, although not currently implemented, would be straight forward

to do, since the attributes of the rectangles could simply be animated from one chart to another.

Figure 3.7 shows most of the implemented charts. These charts are positioned within a 2D

space that can be zoomed and panned. Each chart can be dragged, cloned, and deleted, and

hovering over rectangles in a chart causes related elements to highlight. A popup menu (Fig-

ure 3.9) allows the (independent and dependent) variables of the chart to be edited.

Given a set of independent and dependent variables associated with a chart, a small set of

rules determine which mappings are appropriate for the chart. The following table lists these

rules: the first column is the number of independent variables, the 2nd column is the number

of dependent variables, and the third column lists the appropriate chart types. Notice that, in

every case, the number of independent variables is equal to the number of Cs appearing in the

mapping, and the number of dependent variables is equal to the number of Qs.
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Figure 3.9 A popup menu allows the variables associated with a chart to be changed,

which can cause the type of chart to change.

Table 3.1 Rules for mapping independent and dependent variables to a chart.

∗ 1 1D axis (0,Q,K,K)
1 1 bar chart (C,0,K,Q)
∗ 2 scatterplot (Q,Q,K,K)

overlapping rectangles (0,0,Q,Q)
1 2 bar chart whose bars have

variable width and height (C,0,Q,Q)
∗ 3 scatterplot of glyphs

with variable height (Q,Q,K,Q)
∗ 4 scatterplot of glyphs with

variable width and height (Q,Q,Q,Q)

2 1 stacked bar chart (C,CS,K,Q)
grouped bar chart (CC,0,K,Q)
table of bars (C,C,K,Q)
text table (x,y, t) = (C,C,Q)

As an example, if there is 1 independent variable and 2 dependent variables associated with

the chart, then the rules for (*,2) and (1,2) would apply, allowing for a scatterplot, overlapping

rectangles, or a bar chart whose bars have variable width and height. Selecting the chart and

hitting the spacebar allows the user to cycle through these 3 chart types.

A typical workflow could start with a single chart, which could be cloned with a shift-drag.

Then, in the cloned chart, the user could choose new variables for each axis with the right-click



54

menu, switch chart types with the spacebar, then connect the charts with a drag and drop from

one chart’s axis to the other.

3.7.1 Data

The dataset shown in Figures 3.1, 3.8, 3.10, 3.11, and 3.12 is based on the Human Development

Report by the United Nations Development Programme (UNDP) (http://hdr.undp.org/en/reports/

global/hdr2011/download/). In this dataset, countries were grouped by Region to form a first

independent variable (C), and Year was used as a second independent variable. Dependent

variables (Q) include HDI (Human Development Index), GNI (Gross National Income) per

capita, Life expectancy, and Fertility rate.

3.7.2 Examples

Figure 3.10 illustrates one way that ConnectedCharts can be used to successively analyze a

dataset, and how the connections reveal the history of the user’s analytical process. The con-

figuration in Figure 3.10 starts with a text table of Human Development Index (HDI) for each

region over a number of years. The table of bars makes it easier to perceive some overall pat-

terns. This table is then “split”, so to speak, into two stacked bar charts, one for each combi-

nation of one categorical variable “slicing” the other. Finally, ordinary bar charts are produced

(by aggregating), to emphasize the totals, for easy comparison and detection of trends. Each

step of the process is recorded in the form of the connections, making it easy to follow the

same exploratory path.

Figure 3.11 illustrates another analytical process. Finally, Figure 3.12 shows that entire PCPs

and SPLOMs can be instantiated, by appropriately connecting together the relevant charts.

Furthermore, many variations and mixtures of these can be created, incorporating bar charts

and their variants, as the user sees fit.
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Figure 3.10 A: HDI for each year and region. B: The same data, shown with parallel

bars instead of numbers, to enable quick, visual inspection. C: The same

bars stacked along years, and along regions. D: Equivalent bar charts,

aggregated by year, and by region.

3.8 Generalizing ARGOIs

Claessen and van Wijk (Claessen and van Wijk, 2011) introduced the notion of an Attribute

Relation Graph of Interest (Claessen and van Wijk, 2011) (ARGOI), where each node is a

variable, and each edge is a pair of variables (each edge corresponding to a scatterplot or pair

of parallel coordinate axes). Our ConnectedCharts can be modelled by a graph analogous to

the ARGOI, but in our case the graph is a hypergraph (i.e., a graph with hyperedges, each of

which can be incident on many nodes), since in our case each chart would be a hyperedge, and

each chart may display multiple variables. We call this graph the hyper-ARGOI.

The dual of the hyper-ARGOI would also be useful for modeling ConnectedCharts: in this

case, each node would be a chart, and each hyperedge would be a variable that is possibly

displayed in many charts.
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Figure 3.11 The top row of charts show a parallel-coordinates-style comparison of

variables. Connections between A and B show HDI versus GNI. B: a

scatterplot of GNI (vertically) and fertility rate (horizontally) reveals a tuple

with low GNI and high fertility. C: connections between B and C reveal the

tuple to be Africa, which has the highest fertility rate. D: Africa also has the

lowest HDI. E: In fact, Africa’s HDI has been the lowest over all years.

Finally, a third way to model a ConnectedCharts visualization would be with a bipartite graph:

one set of nodes for variables, another set of nodes for charts, and edges between a variable and

a chart when the former appears in the latter. Notice that all three structures, the hyper-ARGOI,

its dual, and the bipartite graph, encode the same information and are isomorphic.

Note that none of these graphs correspond directly to the connections actually displayed by

ConnectedCharts, since ConnectedCharts only displays the connections established by the user

through interaction, ensuring that excessive clutter can be avoided.
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Figure 3.12 Both a scatterplot matrix and parallel coordinates plot can be instantiated as

a ConnectedChart, as can a hybrid mixture of them, shown here.

3.9 Conclusions and future directions

We have presented a technique for linking together charts using line segments and curves that

can be applied to many different kinds of charts, including scatterplots, bar charts, and variants.

We have also shown how multiple charts may be assembled to create parallel coordinate plots,

scatterplot matrices, and mixtures of these with each other or other types of charts. Connected-

Charts allows for tuples in different charts to be aggregated to different levels, and for charts to

positioned freely in a 2D space. Because the ConnectedCharts technique does not require that

all possible connections be displayed, the connections that are displayed can be a compromise

between showing all possible links and showing only links in response to brushing.

We have also presented a formal description of a design space of charts based on plotting

rectangles, and shown how this design space encompasses many useful kinds of charts, includ-
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ing scatterplots of rectangular glyphs and Gantt charts. We have also distinguished different

kinds of connections (section 3.6) that may be displayed between charts, and pointed out that

Claessen and van Wijk’s (Claessen and van Wijk, 2011) notion of ARGOI can be generalized

to a hyper-ARGOI.

For future work, we are interested in implementing improvements to the user interface of our

prototype. For example, a popup menu based on the FlowVizMenu (Viau et al., 2010) might al-

low for a gestural-style of interaction with the charts, to clone and modify them. Macros might

also be implemented to allow the user to quickly instantiate entire PCPs or SPLOMs without

having to construct them one chart at a time. Techniques for enhancing parallel coordinates, or

reducing clutter, such as edge bundling, might be used to similarly enhance ConnectedCharts.

A more ambitious project would be to automatically instantiate a set of ConnectedCharts, based

on some arbitrary dataset that has been read in by the system: which charts would be most

informative to the user, and with which connections between them?
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4.1 Abstract

A standard approach for visualizing multivariate networks is to use one or more multidimen-

sional views (for example, scatterplots) for selecting nodes by various metrics, possibly coor-

dinated with a node-link view of the network. In this paper, we present three novel approaches

for achieving a tighter integration of these views through hybrid techniques for multidimen-

sional visualization, graph selection and layout. First, we present the FlowVizMenu, a radial

menu containing a scatterplot that can be popped up transiently and manipulated with rapid,

fluid gestures to select and modify the axes of its scatterplot. Second, the FlowVizMenu can

be used to steer an attribute-driven layout of the network, causing certain nodes of a node-link

diagram to move toward their corresponding positions in a scatterplot while others can be po-

sitioned manually or by force-directed layout. Third, we describe a novel hybrid approach that

combines a scatterplot matrix (SPLOM) and parallel coordinates called the Parallel Scatterplot

Matrix (P-SPLOM), which can be used to visualize and select features within the network. We

also describe a novel arrangement of scatterplots called the Scatterplot Staircase (SPLOS) that

requires less space than a traditional scatterplot matrix. Initial user feedback is reported.
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Figure 4.1 The FLowVizMenu controls the AD-layout and the selected SPLOM is

highlighted in the P-SPLOM.

4.2 Introduction

The most common approach for visualizing a network is a node-link diagram, for which there

are many layout algorithms (di Battista et al., 1998). Unfortunately, some networks are so com-

plicated that it may be impossible to give them a layout that makes the most important nodes,

their connections, and their immediate neighbors clearly visible. For example, in our own work

with biological networks, we often have individual nodes with over 300 neighbors; just laying

out these neighbors in a clear way is challenging. In addition, a single, automatically generated

layout may not be appropriate for all situations, leading to users often manually adjusting and

repositioning certain nodes in the node-link diagram. When the nodes of interest to the user are

not immediately visible, some indirect means of searching and selecting them is required. For

example, a spreadsheet interface (such as that in (Brown et al., 2009; Bezerianos et al., 2010a))

might list all nodes and allow them to be sorted by name, degree, clustering coefficient, etc.

and selected. Another possibility is to have a scatterplot, of clustering coefficient versus degree

for example, within which the user may select nodes (Chiricota et al., 2004).

Taking this idea further, for any given network, we could compute various metrics associated

with each node (such as degree, clustering coefficient, betweenness centrality, etc.) and we
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may also have various attributes associated with each node (protein name, biological function,

cellular localization, etc.) Such multidimensional data motivates the use of standard multi-

dimensional visualization techniques, in particular: Scatter Plot Matrix (SPLOM) (Hartigan,

1975) and Parallel Coordinates Plot (PCP) (d’Ocagne, 1885; Inselberg, 1985; Wegman, 1990).

Recent research by Bezerianos et al. (2010a) takes such an approach, using a SPLOM to visu-

alize a multivariate graph. In their system, the SPLOM serves as a kind of overview of the data,

and is coordinated with a single zoomed-in scatterplot that serves as the focus. Links between

nodes are drawn on top of the scatterplot to reveal the graph’s structure. A ScatterDice-style

interface (Elmqvist et al., 2008) allows for transitions of dimensions through 3D rotation.

Our work further explores the design space of network visualizations that incorporate multi-

dimensional visualization techniques. We have developed a novel combination of a node-link

diagram, a SPLOM, and PCPs (Figures 4.1 and 4.2). The layout of our node-link diagram can

be modified manually, or through force-directed layout, or attribute-driven layout, or a mixture

of these. Our SPLOM and PCPs are combined into a Parallel Scatterplot Matrix (P-SPLOM)

that affords fluid transition between scatterplots, 3D PCPs, and normal (2D) PCPs using 3D ro-

tation. We also present a novel popup widget that enables rapid, fluid gestures to select within

scatterplots and modify the layout of the node-link diagram. Together, these techniques pro-

vide a greater variety, and a tighter integration, of visualizations of the network than has been

previously possible.

Our contributions are (1) a novel popup widget for manipulating multidimensional visualiza-

tions called the FlowVizMenu; (2) a technique for mixing attribute-driven layout with force-

directed and manual layout of nodes within a node-link diagram; (3) a novel integration of

SPLOMs, PCPs, and 3D PCPs called the P-SPLOM; (4) an investigation of the tradeoffs of

different orderings of the axes within a P-SPLOM; and (5) a novel arrangement of scatterplots

called the Scatterplot Staircase (SPLOS). We also report initial user feedback.
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Figure 4.2 Selecting (in red) and brushing (in yellow) within the FlowVizMenu’s

scatterplot shows linking with the node-link diagram. Along the bottom of

this screenshot, the P-SPLOM has been converted to a single row PCP, and

selected nodes are shown as red polylines.

4.3 Related Work

Recent work on multivariate graph visualization includes (Wattenberg, 2006; Aris and Shnei-

derman, 2007; Bezerianos et al., 2010a). Of these, the most similar to our current work is

GraphDice (Bezerianos et al., 2010a), in which there are two main views: the SPLOM, and a

single zoomed-in scatterplot. The nodes in the scatterplot are always positioned according to

the selected dimensions, such as degree, centrality, etc. — this could be called attribute-driven

layout. Two special dimensions are the x and y positions of the nodes in a force-directed layout.

Selecting these x and y positions as the dimensions for the scatterplot results in a “scatterplot”

showing the force-directed layout of the graph. Our work differs from GraphDice in several

respects: we allow mixing of manual, force-directed, and attribute-driven layout; we allow the

SPLOM to be rearranged in many different ways, as discussed in Section 4.7; our SPLOM
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can also be rotated in 3D to yield 3D parallel coordinate plots or normal (2D) PCPs. Our

FlowVizMenu also differs from the ControlMenu used in (Bezerianos et al., 2010a) to rotate

dimensions, as discussed in Section 4.5.

Our system uses parallel coordinate plots (Inselberg, 1985; Wegman, 1990). 3D variants of

PCPs have been proposed before, including (Fanea et al., 2005; Johansson et al., 2006), and,

most relevant to our work, (Falkman, 2001; Rübel and et al, 2006). The “Cube” of Falkman

(2001), and 3D parallel coordinates of Rübel and et al (2006), are both essentially sequences

of parallel planes, with each plane containing a scatterplot. This can be equated with taking

normal 2D PCPs and replacing each axis with a scatterplot on a plane. The links connecting

corresponding points on consecutive planes could be compared to the links between planes in

VisLink (Collins and Carpendale, 2007). We will refer to this 3D variant of PCPs as simply 3D

PCPs. The P-SPLOM we present in this work is a novel unification of SPLOMs, PCPs, and

3D PCPs, achieved through a simple 3D rotation of the scatterplots.

Hybrid multidimensional visualizations have also been proposed before, including combina-

tions of PCPs and scatterplots (Qu et al., 2007; Yuan et al., 2009; Steed et al., 2009; Holten and

van Wijk, 2010) (see also (Xu et al., 2007) for a similar idea) and parallel coordinates displayed

within a matrix (Albuquerque et al., 2009). Our P-SPLOM contributes one additional hybrid

multidimensional visualization, with tradeoffs compared to previous work. For example, the

scatterplot-PCP hybrid of (Holten and van Wijk, 2010) displays both the points of scatterplots

and the polylines of a PCP at the same time, but at an increased cost in screen space. On the

other hand, our P-SPLOM allows users to only view scatterplots, or only view a PCP, or view

a 3D PCP showing both the points within each (partially rotated) scatterplot and the polylines

of the PCP.

4.4 Metrics used

In principle, any number of attributes (protein name, biological function, cellular localization,

etc.) associated with the nodes could be used as dimensions in our system. Our system does

not require the network to have any attributes, however, as several metrics are defined and com-
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puted for each node from the network structure itself. These include: index: a unique integer

identifying the node (although this dimension often has little meaning, its use within a scatter-

plot can help de-occlude points to reveal a distribution); degree: the number of neighbors of

the node; between, close, eigen: the betweenness, closeness, and eigenvector centrali-

ties, respectively1; cluster: the clustering coefficient; core: the shell associated with the

k-core decomposition of the network (Wuchty and Almaas, 2005); s-mean and s-sdev: the

average and standard deviation, respectively, of the strength (as defined in (Auber et al., 2003))

of the edges adjacent on the node.

4.5 The FlowVizMenu

The Human Computer Interaction (HCI) community has proposed several popup widgets that

afford a gestural style of interaction (Callahan et al., 1988; Kurtenbach and Buxton, 1993; Pook

et al., 2000; Guimbretière and Winograd, 2000; Kurtenbach et al., 1999), some of which have

been applied to interactive visualization (McGuffin and Jurisica, 2009). Popup widgets have

several advantages: they require no screen space when not in use; they eliminate the need to

travel back and forth between a work area and menu bars or panels of widgets located in the

periphery; and they can also be invoked by holding down a button, keyboard key, or stylus tip,

resulting in kinesthetic feedback that helps avoid mode errors (Sellen et al., 1992) and helps to

integrate the selection of arguments into a single phrase or gesture (Buxton, 1986).

The FlowVizMenu2 is a novel popup widget that contains a multidimensional visualization,

and allows dimensions to be selected through outward and inward motions. Figure 4.3 shows

the variant we implemented, which displays a single scatterplot at a time. The menu is popped

up with a keyboard key, after which the pointing device may brush over the scatterplot (Fig-

ure 4.2). The user may also select dimensions for the scatterplot by stroking outward or in-

ward, for x and y respectively. This allows the user to quickly switch between, and compare,

scatterplots. The outward-inward motions were inspired by those in the original FlowMenu

(Guimbretière and Winograd, 2000). These quick, continuous gestures have been found to

1http://en.wikipedia.org/wiki/Centrality
2We initially considered calling this widget the MatchWheel, because MatchWheel + HotBox form a chiasm

with MatchBox + HotWheel, two well known toy car brands.
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yield good selection performance (Guimbretière, 2003). When the pointer crosses over the

name of a dimension, a smooth transition occurs, showing the new dimension rotate into the

old dimension’s place. The FlowVizMenu’s rotation transition is similar to that in (Elmqvist

et al., 2008; Bezerianos et al., 2010a) except that we use an orthographic projection instead

of a perspective projection, to maintain the position of the points along the unchanging axis.

Furthermore, when the pointer crosses over the name of a dimension, the user may “scrub” to

control the progression of the transition. This scrubbing functionality is comparable to the way

a Control Menu (Pook et al., 2000) works, in that it uses the mouse drag to control a contin-

uous parameter. Thus, the FlowVizMenu can be seen as a hybrid between a FlowMenu and a

Control Menu that furthermore incorporates a visualization. Teoh et al. (2004) also proposed

a radial layout of small visualizations to be used for navigation, however their radial layout is

not within a popup widget.

Figure 4.3 Our implemented FlowVizMenu. Left: the cluster × close scatterplot

was selected by stroking outward through the dimension for the horizontal

axis and then inward through the dimension for the vertical axis. As the user

strokes over the dimension names (dashed parts of the red arrow), the

scatterplot rotates away from the previously selected axis and towards the

new one. The user may “scrub” over the dimension name to slow down or

replay this rotation. Right: Drawing a figure-8 gesture allows the user to

rotate between two different scatterplots, in this case toggling between

s-sdev and eigen on the vertical axis while maintaining close on the

horizontal axis. This allows for comparison of the two scatterplots within a

relatively small space.
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We can also compare our implemented FlowVizMenu with the control menu used in GraphDice

(Bezerianos et al., 2010a). Both are used to transition between dimensions in a scatterplot, and

both allow for scrubbing. However, because GraphDice’s control menu only makes use of

outward motions, it contains 2 copies of every dimension: one for the scatterplot’s horizontal

axis, and another for the vertical axis. Furthermore, the menu items in GraphDice’s control

menu only cover half a circle. The end result is that the dimensions in our FlowVizMenu each

cover an angle that is four times larger, enabling easier and faster selection. Our FlowVizMenu

also differs in that it contains a visualization, whereas GraphDice’s control menu is used to

control an underlying visualization. As shown in Figure 4.2, this means the user can perform

brushing and linking for coordination with other views without leaving the FlowVizMenu.

In our FlowVizMenu, each repeated outward-inward motion will normally replace the two

dimensions in the scatterplot with new dimensions. Hence, a repeated figure-8 motion (Fig-

ure 4.3, right) cycles between two scatterplots. However, it also occurred to us that repeated

outward-inward motion could be useful for accumulating dimensions. In our implementation,

holding down the shift key during motions causes the dimensions to be accumulated along the

axes using principle component analysis (PCA). For example, holding down Shift, and moving

out through dimension A, in through B, out through C, and in through D, will cause the system

to compute a PCA projection from A × C to the horizontal axis, and a separate PCA projection

from B × D to the vertical axis.

Another way that dimensions could be “accumulated” during repeated motions is in building

up a PCP. We designed (but did not implement) this idea, as shown in Figure 4.4, where the

accumulated dimensions result in a 1D histogram, then a 2D scatterplot, then a 3- (or more)

axis PCP. Yet another design (also not implemented) is shown in Figure 4.5.

We hypothesized that because our implemented FlowVizMenu contains only a single scatter-

plot, it might be usable on a device with a small screen, and useful even without any additional

views of the data. We have prototyped a FlowVizMenu with JavaScript that can be used on

Apple’s iPhone and iPod touch devices (Figure 4.6). The size of the menu items and the sur-

rounding space were chosen to reduce finger occlusion and to be able to move around the
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Figure 4.4 Mock-up of alternative design: selecting a single dimension causes a

histogram to be displayed (Left), selecting a second dimension causes a

scatterplot to be displayed (Middle), selecting additional dimensions

transitions to a parallel coordinate plot (Right).

Figure 4.5 Mock-up of a 2nd alternative design: Here, rather than “containing” a

visualization, the FlowVizMenu is used to build up a visualization

underneath, depositing or editing each piece of the visualization. Left: the

FlowVizMenu is popped up over each cell of a matrix of scatterplots to

choose the desired axes. Right: the FlowVizMenu is used to choose the axes

within a parallel coordinate plot.

menu and scrub with ease. Such a widget might be combined with functionality in (Büring

et al., 2006) for zooming in on the scatterplot.

In addition to the FlowVizMenu, users can also pop up a hotbox (McGuffin and Jurisica, 2009)

to manually reposition nodes or manipulate the node-link diagram of the network.

4.6 Attribute-Driven Layout

As already seen, the FlowVizMenu can be used to brush or select nodes that have, for example,

both low degree but high betweenness centrality (such nodes could correspond to “bridges” in

the network). Such functionality is useful when the node-link diagram is so dense that it is

difficult to see individual nodes.
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Figure 4.6 Implemented version of the FlowVizMenu for iPhone/iPod touch platform.

The dimensions within a single scatterplot can be transitioned with gestures.

This section shows how the FlowVizMenu can also be used to drive an Attribute-Driven Layout

(ADL) of the node-link diagram, or of a subset of nodes in the node-link diagram. For this, the

user first activates the ADL scatterplot, which is displayed as a square region in the node-link

diagram (see left sides of Figures 4.1 and 4.7). Then, when the user pops up the FlowVizMenu

and selects two axes, the ADL scatterplot displays red and blue dots showing the corresponding

scatterplot positions of selected and unselected nodes, respectively. Any nodes in the node-link

diagram that have not been previously locked in place by the user are then animated to lie under

their corresponding dots. The user may then select new axes within the FlowVizMenu, causing

the positions of the red and blue dots to update immediately, after which the (unlocked) nodes

again animate to their new positions under the dots. The use of smoothly animated transitions

makes it easier to follow the trajectories of nodes and observe the behavior of groups of nodes

during transitions.

As mentioned, with ADL, each unselected node is shown in black, and its corresponding po-

sition in the ADL scatterplot is shown with a blue dot. If the node is locked in some position

different from the blue dot’s position, the blue dot is easy to distinguish against the white back-

ground. However, if the node is not locked, then at the end of the animated transition the node

moves under the blue dot, which then becomes difficult to see against the black background of

the node. This was an intentional design choice, because the blue dot is almost redundant in
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that case. The red dots for selected nodes, however, are always visible, enhancing the visibility

of selected nodes.

Figure 4.7 A mixture of attribute-driven layout, force-directed layout, and manual

layout. At right, four nodes were positioned manually and locked in place.

Next, several of their neighbours (also shown at right) were positioned with

force-directed layout and then locked in place. The remaining nodes, which

were not locked by the user, are positioned according to the ADL scatterplot

(left) being manipulated via the FlowVizMenu.

In between invocations of the FlowVizMenu, the user may also manually reposition nodes, lock

or unlock certain nodes, and reposition unlocked nodes using force-directed layout. Because

ADL only affects unlocked nodes, the user may freely mix manual layout, force-directed lay-

out, and ADL. The result is a hybrid visualization that leverages the fact that scatterplots show

two dimensions at once, while also allowing the user to see the edges (drawn as straight line

segments) within the graph, and also mix in force-directed or manually repositioned nodes as

desired. An alternative approach, where the user has two separate views (one of the node-link
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diagram and one scatterplot view), requires more screen space and could require more effort to

mentally integrate the two views.

Nevertheless, the user may still sometimes prefer to deactivate the ADL scatterplot, so that they

can keep the force-directed node-link diagram separate from, for example, the 2D scatterplot

in the FlowVizMenu (which allows for brushing and linking with the node-link diagram). The

user is free to choose the approach best suited to their needs.

4.7 Scatterplot matrices (SPLOMs)

The FlowVizMenu only displays a single scatterplot at a time, which can be useful for saving

screen space. The user can also transition between different scatterplots within the FlowViz-

Menu with fast gestures. However, at times the user may want a more global view of the data,

and wish to compare several scatterplots simultaneously. For this, we use a scatterplot matrix

(SPLOM).

The SPLOM and node-link diagram in our system can be zoomed and panned independently,

and the FlowVizMenu’s corresponding scatterplot is highlighted in the SPLOM. Brushing and

linking can be performed between points in the SPLOM and nodes in the node-link diagram.

Furthermore, the user can reduce the SPLOM to a single row of scatterplots, or even a single

scatterplot, that can then be zoomed in to a larger size.

Our SPLOM can be ordered in the standard format shown in Figure 4.8 where each row con-

tains only one kind of vertical axis, and each column contains only one kind of horizontal

axis. Naturally, this simplifies comparison of scatterplots within the same row or column. Cer-

tain systems, such as (Elmqvist et al., 2008), allow the rows and columns of a SPLOM to be

reordered, for added flexibility, while still maintaining a single vertical axis within each row

and a single horizontal axis within each column. Our system dispenses with this constraint,

allowing other arrangements to be investigated. For example, the user may not be interested

in comparing scatterplots with a common axis, or in seeing all possible scatterplots. Thus, we

developed variants of the standard SPLOM, with different orderings of scatterplots or of their

axes, which we now describe.
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Figure 4.8 A standard SPLOM (scatterplot matrix).

4.7.1 Ranked scatterplot matrix

Our first variant of the SPLOM orders scatterplots according to some ranking or metric of

interest. Currently, our implementation of the ranked SPLOM orders scatterplots in descending

order of the absolute value of their Pearson correlation coefficient, filling the first row from

left-to-right, then the 2nd row, etc. This allows the user to see the scatterplots showing the

strongest correlations at the top left of the matrix. It would also be possible to rank scatterplots

according to any of the metrics listed in (Wilkinson et al., 2005), or with the “quality-measures”

in (Albuquerque et al., 2009), or even allow the user to define their own “ranking” by dragging

and dropping scatterplots to insert them at any position in the matrix.
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4.7.2 Scatterplot staircase (SPLOS)

This variant, which we call the Scatterplot Staircase or SPLOS (Figures 4.9A and 4.9C), shows

only the scatterplots of consecutive pairs of dimensions, arranged in a staircase pattern, such

that adjacent scatterplots share an axis along their common edge. To our knowledge, this

staircase pattern of scatterplots is novel, but we note that it was inspired by quilts (Watson

et al., 2008) (which use a staircase of adjacency matrices) and also by an arrangement of

adjacent scatterplots sharing axes on page 135 of (Tufte, 1983). Notice that the scatterplots

involved in the SPLOS are located adjacent to the diagonal in the standard SPLOM. If the

N dimensions in the data set are x1,x2, . . . ,xN , then the N − 1 scatterplots in the staircase are

x2 × x1,x2 × x3,x4 × x3,x4 × x5, . . . The entire staircase pattern is 
N/2� columns wide and

�N/2 rows tall. Although not implemented, it would be possible to rotate the staircase 45

degrees (Figures 4.9D, 4.10C) to take up less screen space. If each axis has length L, we

can compare the space efficiency of the SPLOS, rotated SPLOS, and other multidimensional

visualization techniques (Figure 4.1), where the Parallel Coordinate Plot is assumed to have

spacing between axes that is proportional to L (i.e., the spacing is kL, for some constant k), to

prevent the slopes of line segments from becoming too extreme.

From the comparison, we see that the area required by the SPLOS is about 1/4 that required

by a standard SPLOM. This means the user can have an overview of data that takes up less

screen space, or that can be enlarged to take up the same space as a standard SPLOM but

with each scatterplot 4 times larger. The area required by the rotated SPLOS is even smaller

at 3
2NL2 (i.e., linear in N, and comparable to PCP). Comparing the rotated SPLOS with a

single row of scatterplots, the rotated SPLOS requires 50% more area but has an aspect ratio

that is 3 times closer to 1 (which may be advantageous in certain contexts) and also has the

advantage that each dimension in the SPLOS lies on an axis shared by two scatterplots, easing

comparisons. Note that the scatterplots used in the SPLOS are the same as those embedded in

PCPs in (Holten and van Wijk, 2010), but with the advantage that pairs of scatterplots with a

common axis are adjacent and aligned, again easing comparisons. Finally, given the perceptual
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advantages of scatterplots over parallel coordinates (Li et al., 2010), we feel the SPLOS is an

interesting compromise between the standard SPLOM and PCPs.

Table 4.1 The area required for different SPLOMs configurations.

Area Required
Aspect

Ratio

Standard SPLOM
(N −1)L× (N −1)L = Θ(N2L2) 1

(lower triangular half only)

Single Row of Scatterplots
NL×L = NL2 N

(e.g., Figures 4.10A, 4.10B, 4.11A)

Scatterplot Staircase (SPLOS) 
N/2�L×�N/2L = Θ(1
4N2L2) Θ(1)

(e.g., Figures 4.9A, 4.9C)

Scatterplot Staircase (SPLOS)
1√
2
NL× 3√

2
L = 3

2NL2 1
3Nrotated 45◦

(e.g., Figures 4.9D, 4.10C)

Parallel Coordinate Plot (PCP)
(N −1)kL×L = Θ(kNL2) Θ(kN)

(e.g., Figures 4.10D, 4.11D)

4.7.3 Parallel scatterplot matrix (P-SPLOM)

Our system allows the scatterplots within a SPLOM to be rotated in 3D around either their ver-

tical or horizontal axis. Figure 4.11 illustrates this for a single row of a SPLOM. Figures 4.11A

through 4.11D show how a rotation around the vertical axes causes the visualization to tran-

sition from a sequence of scatterplots to a PCP. In between these two extremes, the user may

rotate around both the vertical and horizontal axes (Figures 4.11E, F) yielding a 3D parallel

coordinate plot (3D PCP) similar to those in (Falkman, 2001; Rübel and et al, 2006). Although

this is done for a single row of the SPLOM in Figure 4.11, such rotation is also allowed within

the full matrix (Figures 4.12, 4.13). Because these visualizations combine SPLOMs, PCPs,

and 3D PCPs with seamless transitions, we call this combination based on rotation a Parallel

Scatterplot Matrix (P-SPLOM).
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Figure 4.9 A: a SPLOS of 4 scatterplots, for the same dataset and same 5 dimensions as

in Figure 4.8. B and C: a standard SPLOM (B) of 7 dimensions, and the

corresponding SPLOS (C) for the same 7 dimensions but composed of only 6

scatterplots. D: If there are N dimensions, and the N −1 scatterplots have

axes of length L, and the staircase is rotated 45◦ counterclockwise, the area

of the bounding rectangle is linear in N.

Several orderings of the axes are possible within P-SPLOMs. For illustration purposes, con-

sider first the axes within a standard SPLOM (Figure 4.8). If there are five dimensions named

A, B, C, D, and E, we could specify the axes within the standard SPLOM with the table 4.2.

If the above ordering of axes is used within a P-SPLOM, the PCPs that result after rotation are

not useful, because each row and each column will contain the same PCP axis repeated five

times (see Figure 4.13, top row). Thus, our system also allows an ordering of axes that we call

Doubly-Latin, because it involves two Latin squares (see table 4.3).



75

Figure 4.10 Four visualizations of the same 7-dimensional network data. A: a single row

of scatterplots from a standard SPLOM. Notice that one dimension

(index) is crossed with all other dimensions. B: another row of

scatterplots, now where each scatterplot involves 2 consecutive dimensions.

C: a Scatterplot Staircase (SPLOS) rotated 45 degrees. Each adjacent pair

of scatterplots share an axis. D: parallel coordinates plot (PCP). The

SPLOS is scaled and positioned such that, for each axis shared by two

scatterplots in the SPLOS, the midpoint of the axis is aligned with the

corresponding axis of the PCP.

Table 4.2 Description of a standard SPLOM.

Standard SPLOM

horizontal axes vertical axes

A B C D E A A A A A

A B C D E B B B B B

A B C D E C C C C C

A B C D E D D D D D

A B C D E E E E E E
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Figure 4.11 A single row of a P-SPLOM. A: a single row of scatterplots, with two points

selected and highlighted in red. B-C: as the scatterplots are rotated around

their vertical axes, links (in grey) between corresponding points are faded

in. D: after rotating 90 degrees, the result is a Parallel Coordinate Plot. E:

during rotation, the user may also rotate around the horizontal axes,

resulting in a 3D PCP. F: an alternate ordering of axes for 3D PCP,

facilitating comparison between consecutive pairs of scatterplots.

Table 4.3 Description of a doubly-latin SPLOM.

Doubly-Latin SPLOM

horizontal axes vertical axes

E D C B A A B C D E

A E D C B B C D E A

B A E D C C D E A B

C B A E D D E A B C

D C B A E E A B C D
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Figure 4.12 Rotation of scatterplots within a P-SPLOM is possible along the horizontal

and vertical axes simultaneously. Here, the user has rotated the scatterplots

approximately 90 degrees around the horizontal axes, and 45 degrees

around the vertical axes. Links between corresponding points are shown in

grey. Each row and each column of this matrix could be further rotated into

a PCP.

An example of this ordering is in Figure 4.13 (2nd row). The Doubly-Latin ordering is useful

for transitioning to PCPs because every row contains each kind of vertical axis once, and every

column contains each kind of horizontal axis once. Thus, if the user focuses on any single row

or column and rotates toward a PCP, all dimensions will be visible after the rotation within that

one row or column. Figure 4.12 shows the full matrix for a Doubly-Latin P-SPLOM during

rotation. Each column and each row of this figure is a 3D PCP that would (after complete

rotation) contain all axes. As a side note, if the number of dimensions is odd, the Doubly-

Latin ordering results in an Euler square (also known as a Graeco-Latin square), which has

the property that every possible pair of dimensions occurs once. This is useful before rotating

toward PCPs, since it guarantees all possible scatterplots will be visible in the full matrix. In

other words, the Euler square is a permutation of the scatterplots in the standard SPLOM.

At the same time, the Doubly-Latin ordering has the disadvantage that within any given row

or column, there can be redundant scatterplots. For example, within the Doubly-Latin matrix
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Figure 4.13 Each row shows a different ordering of the dimensions within the

P-SPLOM. The left column shows the full scatterplot matrix (without

rotation), the middle column shows the PCP resulting after a 90 degree

rotation around the y axes, and the right column shows the PCP resulting

after a 90 degree rotation around the x axes.

shown in Figure 4.13, the first row of scatterplots is E×A, D×B, C×C, B×D, A×E; i.e., the last

two scatterplots are transpositions of the first two. The same redundancy is seen in the Doubly-

Latin scatterplots in Figure 4.14. This redundancy does not matter after a full rotation toward

PCPs, but is does make the Doubly-Latin ordering less attractive for use with 3D PCPs of a
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Figure 4.14 Each row shows a different ordering of the dimensions within a single row

of scatterplots. The left column shows the scatterplots without rotation, the

middle column shows the 3D PCP resulting after a partial rotation, and the

right column shows the PCP resulting after a 90 degree rotation around the

y axes.

single row or column. Thus, our system also allows for what we call a Singly-Latin ordering,

because it only involves one Latin square:

Table 4.4 Description of a singly-latin SPLOM.

Singly-Latin SPLOM

horizontal axes vertical axes

B C D E A A B C D E

B C D E A E A B C D

B C D E A D E A B C

B C D E A C D E A B

B C D E A B C D E A

The above Singly-Latin ordering has the advantage that within any given row (but not column),

we find each vertical axis once (making it good for rotation toward PCP) and each horizontal

axis once. Furthermore, within any given row, there are no redundant scatterplots, making the

ordering reasonable for 3D PCPs. For example, Figures 4.11A through 4.11E show the first
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row of the Singly-Latin P-SPLOM whose ordering is given above. Notice the pattern of pairs

of dimensions in the 1st row: B×A,C×B,D×C, . . . (i.e., the x axis of one is the y axis of the

next). The same pattern is seen in Figure 4.10B.

There is, however, still a minor disadvantage of the Singly-Latin ordering for 3D PCPs: within

the 1st row, each pair of consecutive scatterplots share a dimension on different axes, mak-

ing comparisons more difficult. For example, in Figure 4.11E, the left-most scatterplot has

degree on its horizontal axis, and the next scatterplot has degree on its vertical axis.

Thus, our system also supports an Interlaced Singly-Latin ordering, which results from tak-

ing the Singly-Latin ordering and swapping the axes of scatterplots in every other column. The

first row of an Interlaced Singly-Latin P-SPLOM is shown in Figure 4.11F. Notice now that

degree is the horizontal axis of the 1st and 2nd scatterplots, and cluster is the vertical

axis of the 2nd and 3rd scatterplots, etc. Notice also that the scatterplots in Figure 4.11F are

the same as in the staircase pattern of Figure 4.9A! This ordering facilitates comparisons across

the scatterplots when using the 3D PCP.

The table 4.5 summarizes the tradeoffs between the different orderings for P-SPLOMs.

Table 4.5 Tradeoffs between different configurations for P-SPLOMs

full single single single

scatterplot row of row row

matrix scatterplots 3D PCP PCP

(not (not (partially (fully

rotated) rotated) rotated) rotated)

Fig. 4.13 Fig. 4.14 Fig. 4.14 Fig. 4.14

Standard best good good worst

Doubly-Latin
redundant

redundant redundant best
if N even

Singly-Latin good good good best

Interlaced
good good best redundant

Singly-Latin
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The user may switch between all these orderings at run time, triggering a smoothly animated

transition from the old ordering to the new ordering. The user may also switch between viewing

the full matrix or focus on a single row, and may also transition between “flat” scatterplots to

3D PCP or PCP through rotation (Figure 4.11). Thus, the user is free to choose the visualization

that best suits their needs. Nevertheless, the above table indicates that the Singly-Latin ordering

may be the best compromise across all the views of the data, since it is the only one that avoids

redundancy in all cases.

4.8 Initial user feedback

We asked five bioinformaticians (four men and one woman, between 24 and 43 years old) to

help us evaluate our system’s user interface for the exploration of biological networks. All five

participants are experienced computer users and work with network data. Each participant was

given a ten minute demonstration and explanation of the interface, in part to demonstrate some

of the possibilities afforded by metric-based exploration. Next, a set of questions were asked

regarding the potential relevance of metric-based graph exploration for bioinformatics.

Participants were then allowed to freely explore the interface while thinking aloud. A second

set of open-ended questions was then asked regarding the user interface and the participant’s

impressions. Participants quickly understood the logic behind each interface element. The

effectiveness of the interface for selection was noted in particular (“it’s a very quick way to

pick out interesting outliers”, “it allows you to swiftly do something that might have taken a lot

longer just manually picking through the graph.”) Smoothly animated transitions were seen as

useful (“The transition is helpful, because I think if it was just done without transition, then you

would lose sight of [the data]”). One participant stated “It would be cool if there were some

sort of protein, say, that had high degree and low betweenness centrality, some unexpected

relationship.” Upon hearing this, one of us (Jurisica) pointed out that the opposite would be

interesting: a node with high centrality and low degree would correspond to a node that, if

removed, would disconnect the graph. All participants stated they would use the interface in

their daily work if it were available to them.
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4.9 Example of use with real-world data

To further evaluate our prototype, we tested its use with a real-world biological network (Fig-

ure 4.15). We wanted to visually explore the network and see how we could make use of the

advanced features of the interface, going beyond simply selecting clusters or high degree nodes

as is possible with status quo software. First, in the P-SPLOM and in the force-directed lay-

out, we could see that the network was composed of a few nodes of high degree surrounded

by many nodes of degree one. A preliminary layout was made by combining FlowVizMenu

selection with hotbox (McGuffin and Jurisica, 2009) layout commands. The highest-degree

nodes were selected using the FlowVizMenu, and then laid out in a circular pattern (and locked

in place) using the hotbox. The degree-one neighbors of the highest-degree nodes were then

selected and laid out on a secondary circle (also locked in place) surrounding the first. The

remaining nodes, in the center of these two circles, were structurally less obvious. To find

interesting features in these remaining nodes, we tried to follow the insight that a node with

low degree but high centrality could be a good candidate to investigate. The FlowVizMenu

was used to select these two dimensions and steer the ADL view. One node stood apart and

corresponded to our criteria. A direct selection in the ADL revealed the name of one particular

protein, which our bioinformatics collaborators intend to further investigate.

4.10 Conclusions and Future Directions

We have presented novel approaches to multivariate graph visualization that integrate previous

techniques, through popup gestural interaction (the FlowVizMenu) and through the use of hy-

brids (the P-SPLOM which unifies scatterplot matrices, normal 2D parallel coordinates, and 3D

parallel coordinates, with seamless transitions between them; and our attribute-driven layout

which can be mixed with force-directed layout and manual positioning). We have also pre-

sented an investigation of possible orderings of dimensions within P-SPLOMs, and the novel

Scatterplot Staircase (SPLOS). Together, we feel these techniques provide a flexible toolbox

for dissecting a network, isolating nodes of interest, and manipulating the layout. We also

note that the P-SPLOM and SPLOS are general multidimensional visualization techniques that

could be applied to non-network data.
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Figure 4.15 Example use of the FlowVizMenu combined with ADL to explore a

biological network. Prior to using the ADL shown here, the highest-degree

nodes and their low-degree neighbors were manually positioned onto

circular layouts. The remaining nodes are laid out with ADL to find a

candidate node with high centrality and low degree, since such properties

could signify it acts as a bridge, having special biological significance.

Possible future directions include: deploying the techniques as a plugin for biological network

software such as NAViGaTOR (Brown et al., 2009) or Cytoscape; applying the FlowVizMenu,

P-SPLOM and SPLOS to non-network data; and further adapting the FlowVizMenu or related

techniques for use on small screens or mobile platforms.

One question that remains open is what value, if any, there is in displaying a full matrix of

parallel coordinates (Figures 4.12 and 4.13). Currently, there is much redundancy in these

views due to pairs of axes being repeated. However, a different ordering of dimensions might
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eliminate this redundancy. Otherwise, users may be best to reduce the matrix to a single row

or column before rotating to PCP.

There are also several avenues open for future evaluation. For example, how does user perfor-

mance with our FlowVizMenu compare to that with GraphDice’s control menu? How accept-

ing are users of SPLOMs that do not use the standard ordering? These can only be answered

by future work.



CONCLUSION

Summary and discussion

The last three chapters presented a pipeline for characterizing hybrid visualizations as well

as several innovative prototypes. The first article, Characterizing Hybrid Visualizations, de-

scribes an extension of a standard visualization pipeline, showing how existing visualizations

can be visually described and new ones can be designed using this model. The second article,

ConnectedCharts, presents a subset of the possibilities that can be described by the pipeline,

focusing on explicit linking between graphics. The final article, FlowVizMenu, presents a more

domain-specific application of another subset of possibilities: combining multidimensional vi-

sualizations with graphs for biological network exploration.

The three papers explore the design space of hybrid visualizations. Designing hybrids by com-

bining multiple visualization can be a way to use multiple graphical encodings for different

parts of the dataset or for different tasks. Two visualizations can be placed side by side in the

same functional space. A coordination between them, like selecting from one to highlight cor-

responding values in the other, can help place them in synergy, and a whole range of assembly

patterns can be explored.

Hybrid visualizations

Characterizing hybrid visualizations presents a pipeline describing how to combine visualiza-

tions to form new hybrids. Six different kinds of combinations are illustrated by this pipeline:

side-by-side assembly, overlay assembly, heterogeneous visualizations, nested visualizations,

hybrid layouts, and hybrid glyphs.

The pipeline starts form the dataset that can be split into parts. Each part can use a different

encoding at various stages. First, a glyph is generated to represent the data values, then a layout

positions these glyphs. More graphical element are added to decorate the result of the previous

stage, which is then assembled into the view.
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They can be combined in multiple ways. Side-by-side assembly corresponds to small multiples

or coordinated views, where many visualizations share the same space, side-by-side or stitched

on each other. Some examples are coordinated views (Roberts, 2007), SPLOMs and MatLink

(Henry and Fekete, 2007b) Overlaying assembly superimposed multiple visualizations, often

using transparency or cutout for both visualizations to be visible. An example is Macroscope

(Lieberman, 1997). In heterogeneous combinations of glyphs, two data subsets are rendered

using different encoding and then recombined. Elastic hierarchies (Zhao et al., 2005) and

NodeTrix (Henry et al., 2007a) both combine two visual representations of a graph dataset.

Nesting assembly embed some visualizations into another. For example in TableLens (Rao and

Card, 1994), bar charts are nested in a table view. Hybrid layout combines multiple layout into

one visualization. For example, GraphDice (Bezerianos et al., 2010b) positions the nodes of

a node-link diagram according to the dots of a selected scatterplot. Hybrid glyph generation

assembles the different graphical encodings at the glyph generation stage. For example a polar

area chart can be combined with a pie chart using varying angles, as in a pie chart, and varying

heights, as in polar area chart, for each wedges.

This chapter also demonstrates the usefulness of the pipeline for designing new hybrids. The

first example explores the combination of scatterplots. The second one combines scatterplots

and PCPs. This conceptual framework helps define what is a hybrid visualization and how

to assemble them. Many configurations can be explored using this tool. We presented in the

following chapters some new hybrids derived from this conceptual framework.

ConnectedCharts

ConnectedCharts illustrates the assembly by explicit linking between a large number of graph-

ics revealing a system to characterize the data dimensions and variables represented. An inter-

face allows building interactive assemblages inspired by existing or novel hybrid combinations.

ConnectedCharts generalizes some hybrids found in the literature. Flexible Linked Axis (Claessen

and van Wijk, 2011) (FLINA) provides tools for the layout of PCP axes in any configurations,

allowing arbitrary axis to be converted to a scatterplot or a histogram. Our work can replicate
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part of this interface, but with more different types of charts and with a way to automatically

infer the connectability of any two charts.

Another model generalized by ConnectedCharts is Dimensional Anchor (Hoffman et al., 1999)

(DA) a simple encoding pattern for quantitative data where each value is mapped to a position

on a line and is projected from this line. We can easily recognize this pattern in a PCP axis.

But the same DA can form the basic structure of a bar chart, a scatterplot and many more mul-

tidimensional and multivariate graphics. The author shows many original variants of existing

visualizations using DA, like polar PCPs, in his thesis (Hoffman, 1999). DA, as discussed by

the author, is a “graphic primitive” to build a lot of different charts. Our framework extends

this notion to linking different charts, like if the DA structure were projecting outwards, trying

to connect to other related anchors. DA is not a hybrid, it is a graphical primitive to assemble

charts. ConnectedCharts use the same kind of primitive extensively to study a complete design

space of hybrid visualizations by stitching.

One of the main goals of ConnectedCharts was to explore explicit linking between charts.

We see a lot of brushing and linking in the literature. The explicit linking, with arrows and

lines added to link related elements is far less common. It is used with graph data structure,

where links are part of the dataset. But links between charts are supplementary information

not in the dataset. It adds high-level information on the relationship between the different

encoding used, revealing their structure and the relationship between these structures. There

is a good evaluation of this type of link in a paper from Waldner et al. (2010) and another

from Steinberger et al. (2011) and a good formal description of an explicit linking interface in

Collins and Carpendale (2007).

Some applications or improvement of ConnectedCharts were not discussed extensively in the

paper. For example, this type of relationship inference could be used to partly automate or to

guide the layout of a dashboard. We can imagine having some related charts laid out accord-

ing to the affinities, to the connectability between charts without displaying explicit links but

using the same framework to indentify these relations. For example, bar charts and scatterplots

sharing a common axis can be aligned and rescale for easy comparison. Or an interface like



88

a “Snap-together” visualization (North and Shneiderman, 2000b) could detect the type of the

shared axis when two charts are juxtaposed, or snapped, and scale accordingly, or they could

even change axis dimension to share with the other. The ability to link any kind of data config-

uration, copy, subset and aggregation, is one of the main contributions of ConnectedCharts.

One interesting feature of ConnectedCharts is the way it cycles through dimensions when it is

cloned. For example, cloning an axis adds a new chart with the next dimension found on the

dataset. This could lead to the design of a shortcut to quickly generate an encoding pattern like

a PCP from a series of axes and a SPLOM from a grid of scatterplots. A gesture could start

a series of cloning following the pattern detected in the first few cloning steps. For example,

an axis is cloned, adding another one with the next dimension in the dataset. Then the last one

is also cloned. Then, a gesture can tell the interface to generate a series of axes, one for each

dimension in the dataset, all linked by polylines to form a PCP of the complete dataset. It is

in fact kind of an hybrid generator, but some hybrids are more common and there generation

could be further automated.

FlowVizMenu, P-SPLOM and A-D layout

FlowVizMenu and the related hybrid network visualizations explore the combination of mul-

tidimensional and graph visualizations. The FlowVizMenu is a radial menu inspired by the

FlowMenu (Guimbretière and Winograd, 2000) and the ControlMenu (Pook et al., 2000) ma-

nipulating the state of a visualization integrated at its core. This is an example of nesting, to

use the same terminology as our pipeline, supplemented by an interaction operating on the

menu display. This integration by interaction is common when a visualization is integrated to

a control element. A visualization, like a control element, can be used to manipulate another.

The scatterplot of FlowVizMenu as well as the P-SPLOM provide a brushing and linking and

explicit linking of the nodes of the network corresponding to the points selected in the scatter-

plot. In addition to this first level of integration by explicit linking, our P-SPLOM consists of

SPLOM which can transition to a PCP. This fusion between the points of a PCP and those of a

scatterplot is an example of integration at the glyph level, where the elements of a visualization

are reassembled, where the structure changes and not only the graphical attributes. The explo-
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ration of different configurations for different latin squares SPLOMs shows several variants of

SPLOMs. A third visualization, the Attribute-Driven Layout (ADL) positions the nodes of the

network on each corresponding point of a scatterplot. This is another example of integration by

fusing glyphs, where the nodes of a node-link diagram fuse with the points of a scatterplot. The

FlowVizMenu is used to select the attributes to be used for the scatterplot of the ADL. All the

visualizations are integrated by juxtaposition, brushing and linking, coordinated interaction,

explicit linking, nesting and fusion, thus covering a wide range of integration described by the

hybrid assembly pipeline of chapter 2.

The FlowVizMenu had some influence on the design of ConnectedCharts. For example, one

alternate design shows the FlowVizMenu as a tool to generate some charts, changing chart

types with the number of dimensions and laying down a series of chart, almost like in the

cloning, changing dimensions and changing chart type process in ConnectCharts. In fact, this

whole process could have been done with a FlowVizMenu instead of drag and drop, popup

menus and keyboard hotkeys. An assembly similar to one P-SPLOM state can also be built

with ConnectedCharts, where each scatterplots of a SPLOM is linked to its neighbor.

In all the hybrid visualizations we proposed, the most tightly integrated one is probably the

P-SPLOM. The rotation of each scatterplot of the SPLOM can be seen as a collapsing or a

projection of each scatterplot on one of their axes. This kind of projection of every dots on

an axis is done the same way as the projection on the axes in ConnectedCharts to define the

anchors for linking each axis.

Contributions an evaluation

The main contribution of this thesis is to propose novel hybrid visualizations applied to the

exploration of the most common data types in Infovis (i.e., multidimensional multivariate and

graph), as well as an original pipeline for the description of hybrid visualizations, to better

define, analyze and design this type of visualization so widespread and so little studied.

The type of design and theoretical framework we present in this thesis can’t hardly be validated

like a paper about a new algorithm or about the application of an existing visualization to a spe-
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cific domain. Munzner (2008), in “Process and Pitfalls in Writing Information Visualization

Research Papers”, categorizes and describe precisely the different types of contributions. For

simplicity, we can say that innovations can be in the design (of new algorithms, development

tools or visualizations), in the evaluation, application and comparison of existing visualiza-

tions, or in the development of theoretical models. Our research touches on two of these three

categories. Characterizing Hybrid Visualizations is about the design and the description of

visualizations. It was inspired by Chi’s and Card’s model previously cited. To develop and

validate our model, we first based our work on solid ground, extending a standard pipeline

metaphor to the design of hybrids and discussing the rationale extensively. Second, we proved

the usefulness of this pipeline by creating some new hybrid visualizations. ConnectedCharts

and FlowVizMenu are natural extensions of this work and, even if not using the pipeline as a

diagram, is using the same workflow for the exploration of the design space of many new ideas.

ConnectedCharts can be seen as an article about a new hybrid visualization exploring why

and how to connect multiple charts. But the most important parts of the paper are defining

the rules to describe the mapping from data to graphics, inspired and built on previous work,

to describe some interesting visual and conceptual relationships between different graphical

encodings. We validated this model of relationships between charts and this exploration of

the design space of explicit linking by building a prototype and by describing how the model

generalizes previous work like FLINA (Claessen and van Wijk, 2011), DA (Hoffman et al.,

1999) and Product plots (Wickham and Hofmann, 2011). This work also validates the hybrid

conceptual framework by precisely describing a constrained design space where whole charts

are linked on the view levels by adding lines to emphasize the relationships between the data

elements mapped on their axes.

FlowVizMenu is less of an application study than the description of a design space. We started

with a general problem in bioinformatics: exploring complex data with a combination of multi-

dimensional and graph visualizations. Starting from this challenge, we explored the possibility

of graphically and functionally combine traditional multidimensional and graph visualizations,

like SPLOM, PCP and node-link diagram. We validated this design by qualitative assessments,
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but the most important part of this work, the exploration of the design space of hybrid visual-

izations, was validated mostly by analytical justification of design choices and by discussions

of alternatives.

Future work

The study that we reserve for future work would make a more comprehensive overview of hy-

brid visualizations and evaluate the effectiveness of hybrids for a variety of tasks in a variety

of areas. The most important comparison to do would be between a set of integrated visual-

izations and the same set without integration. We hope our characterization work can allow

further studies of whether the integration of different visualizations is an effective strategy.

Exploring the design space of hybrid visualizations is also a subject worth investigating. One

way of exploring these possibilities is by dissecting visualizations in smaller components and

finding a way to reassemble them in a new visualization. For example, a bar charts is made of

rectangles, axis, and textual marks. For each rectangle, the height is encoding quantitative data

and the relative position is possibly encoding an ordering. One way to integrate it with a PCP,

for example, is to align a horizontal bar chart on each axis, as in FLINA and Guided Analysis

of Hurricane Trends (Steed et al., 2009). In both cases, the bar chart is a histogram, the height

of each bar encoding the frequency of each range. But other configuration are possibles. A

bar chart could redundantly encode the values also encoded by the dot of each axis. In this

configuration, the bar chart help spread the marks, that can be superimposed and occluded on

the axis, and allows them to be sorted according to an arbitrary criteria. Each PCP axis can have

one bar representing, for example, the mean value, only forming a bar charts when looking at

all the bars on all axes. The spacing between axes can vary in width according to the values

encoded by the bar chart. There is a lot of possibilities to explore, possibly one for each way

of combining two elements of the visualizations to integrate.

A tool we could call a design space matrix, as illustrated in fig 4.16, can present a matrix of

possible combinations. Both charts to assemble can be dissected in arbitrarily small compo-

nents, like dots, axes, lines, points. The components of one chart can be listed on the rows and
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the other on the columns. Each cell is the intersection of a component of the first chart and of

the second. For each possibility, the designer could try to imagine what would be a good way

to integrate those components. This design space matrix can be a tool to explore less obvious

possibilities before relying on well known patterns.

Figure 4.16 Multiple combinations can be displayed on a matrix with the graphical

elements listed on the rows and on the columns. Each cell represents some

possible combinations of a row element and a column element.

A design space largely unexplored is the transitioning between visualizations. Instead of find-

ing ways to integrate charts spatially, it can be done temporally, a chart transforming into

another. One excellent evaluation of animated transitions is the one by Heer and Robertson

(2007).

Each integration pattern could be studied more deeply. ConnectedCharts was all about explicit

linking. But the same exercise could be done with nesting, juxtaposing, synchronized interac-



93

tion or certain types of fusion of elements. For example, the systematic embedding of charts

in a table, like the bar charts in TableLens (Rao and Card, 1994), could lead to novel hybrid

visualizations transitioning from a table to a matrix of bars, a scatterplot, a stacked bar charts

and even a node-link diagram.

An example of this idea of using transition between multiple charts nested in a table is shown

in figure 4.17. A standard table shows some numbers on a grid. Then, each cell can be divided

vertically proportionally to the value of the data. We can call the result a “matrix of bars”,

like the one in ConnectedCharts 3.6. The cells can also be divided vertically, and an animated

transition helps to keep the mental map between the different configurations. In the next con-

figuration, the bar on each cell can leave their cell and stack at the bottom of the table. The

visualization is thus decoupled from the table, but the transition from matrix of bars to stacked

bar chart makes it easy to relate the chart to the table. More complicated configurations can

be done. For example, the figure 4.17 shows the transition to a scatterplot and to a node-link

diagram. This whole concept is the result of a free design exploration, without starting from the

needs or the tasks and without evaluation, but is useful to visualize and to challenge part of the

design space of hybrid visualizations by starting with arbitrary design constraints, like using

nesting on a grid and transitions between configurations. Future work could start from a real-

world problem and explore a constrained design space instead of starting with a preconception

of how the visualization task should be solved.

Our work extends part of the standard visualization pipeline going from the data to the view.

But a large part of this model has been put aside, for example interaction. Chi’s operator’s

interaction framework (Chi and Riedl, 1998) describes how a user can interact on every stage

of the visualization pipeline. Extending this interaction framework to hybrid visualizations

or to multimodal interaction could be an interesting challenge. More specifically, using visu-

alizations as control elements, like we do with a menu or a form element, a study closer to

HCI, is a promising avenue. Our FlowVizMenu integrates a visualization in a radial menu.

But the visualization itself could act as a menu. The brushing and explicit linking between the

FlowVizMenu and the network acts more like a selection menu. An example of this exploration
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Figure 4.17 Prototype of a hybrid nesting visulizations in a table with animated

transitions between them.

path is shown in figure 4.18. A visual menu is made of a percentage column chart. A click on

a slice of the column opens another column, transitioning into a kind of icicle tree acting as a

visual hierarchical menu.

Infovis is at the intersection of multiple field of research, like perception psychology, HCI,

graphic design, computer engineering. Strong models are borrowed from semiology as well

as from statistics and other apparently disjoint domain. The design of visualizations, more

specifically, is a mostly a mix between information design and data science. But these differ-

ent speciality collaborate in Infovis aiming for a specific goal: understanding and creating new

tools to help users extract useful information and get insights from their data. Hybrid visualiza-

tion is a design space mainly unexplored, but the many new hybrids and design studies we see
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Figure 4.18 A visualization can be used as a control element. Here a 100% column

chart acts as a menu. Each menu elements have a height representing some

values associated with the element listed. A click on a menu element opens

a submenu in a way that looks like an icicle tree. ( c© 2011 SAP)

in the recent literature show that the subject matters. Understanding how visualizations can be

combined can be a challenging design task. But it is also a way to study how different mental

models, different goals, different tasks, can collaborate in an exploration process to “amplify

cognition” and to give a meaningful shape to data.
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