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DEVELOPMENT OF AN EXOSKELETON ROBOT FOR UPPER-LIMB 
REHABILITATION 

 

Mohammad Habibur RAHMAN 

 

RESUME 

 
Pour assister ou réadapter les personnes présentant une altération du fonctionnement d’un 
membre supérieur, nous avons développé un exosquelette robotique représentant un membre 
supérieur nommé, ETS-MARSE (motion assistive robotic-exoskeleton for superior extremity). 
MARSE est composé d’un support déplaçable pour l’épaule, d’un support déplaçable pour le 
coude et l’avant-bras et d’un support déplaçable pour le poignet. Il est conçu pour être porté 
sur le côté latéral du membre supérieur afin de fournir des mouvements naturels de l'épaule 
(flexion/extension verticale et horizontale et rotation interne/externe), du coude 
(flexion/extension), de l’avant-bras (pronation/supination) et de l’articulation du poignet 
(déviation radiale/ulnaire et flexion/extension). Cette thèse se concentre sur la modélisation, 
la conception (composants mécaniques et électriques), le développement et le contrôle de 
MARSE.  
 
Le robot MARSE proposée a été modélisé à partir de la biomécanique d’un membre 
supérieur, il a un poids relativement faible, un excellent rapport puissance/poids, facilement 
mis ou enlevé, et il est capable de compenser efficacement la gravité. De plus, afin d'éviter 
l'acheminement complexe des câbles qui pourraient se trouver dans plusieurs types 
d’exosquelettes, un nouveau mécanisme de transmission de puissance a été introduit pour 
aider la rotation interne/externe de l'articulation de l'épaule ainsi que la pronation/supination 
de l'avant-bras. L'exosquelette est conçu pour être utilisé par des adultes typiques. Cependant, 
des dispositions pour ajuster la longueur des membres ont été effectuées afin d’accommoder 
un grand éventail d’utilisateurs. La totalité du bras robotique est fabriquée principalement en 
aluminium, excepté pour les sections sous forte pression qui ont été fabriquées en acier pour 
donner à l’exosquelette une structure relativement légère. Des moteurs synchrones 
(incorporés avec des systèmes d’entraînement harmonique direct) ont été utilisés pour 
actionner MARSE. 
 
La cinématique de MARSE a été développée en se basant sur les notations de Denavit-
Hartenberg modifiées. Dans le modèle dynamique et le contrôle, les paramètres du robot tels 
que les longueurs, la masse de ses membres et l’inertie sont estimés en fonction des 
propriétés d’un bras d'un adulte typique. Bien que l'exosquelette ait été développé avec 
l'objectif d'offrir différentes formes de thérapie de réadaptation (nommé mouvements passifs 
du bras, thérapie active-assistée, et thérapie résistive), cette recherche s'est concentrée 
uniquement sur la forme passive de la réadaptation. 
 
Les mouvements et les exercices passifs d’un bras sont généralement effectués à une vitesse 
plus lente que la vitesse naturelle du bras. Par conséquent, un PID simple et un PID avec 
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souplesse ‘compliance’ ont été initialement utilisés pour contrôler le robot MARSE. Par la 
suite, la réalisation de la modélisation de la dynamique du mouvement du bras humain, qui 
est non linéaire par sa nature, ainsi qu’une méthode de commande par couple précalculé 
(CTC) et une méthode de commande par mode de glissement avec une loi de convergence 
exponentielle (mSMERL) ont été employées pour contrôler MARSE. Notez que pour 
améliorer les performances transitoires de poursuite et pour réduire les vibrations, cette thèse 
a proposé le mSMERL, une nouvelle approche de contrôle non linéaire qui combine le 
concept de la technique de mode glissant avec une loi de convergence exponentielle. 
L'architecture de contrôle a été mise en œuvre sur un FPGA (field-programmable gate array) 
conjointement avec un ordinateur incluant un système d’exploitation en temps réel. 
 
Pour les expériences, des exercices typiques de réadaptation pour le déplacement d’une ou 
plusieurs articulations ont été exécutés. Ces expériences ont été réalisées avec des sujets 
humains sains où les poursuites (trajectoires préprogrammées recommandées par un 
thérapeute ou un clinicien) de trajectoires sous la forme d'exercices de réadaptation passive 
ont été effectuées. 
 
Cette thèse se concentre aussi sur le développement d’un prototype (modèle réduit) d’un 
membre supérieur à 7 DDL nommé « master exoskeleton arm » (mExoArm). De plus, des 
expériences ont été réalisées avec le mExoArm où les sujets (utilisateurs de robots) ont opéré 
mExoArm pour manœuvrer MARSE dans le but de fournir une réadaptation passive. Les 
résultats expérimentaux montrent que MARSE peut accomplir efficacement des exercices de 
réadaptation passive pour des mouvements de l'épaule, coude et poignet. Utiliser mExoArm 
offre aux utilisateurs une certaine souplesse sur les trajectoires préprogrammées 
sélectionnées, en particulier dans le choix de l'amplitude des mouvements et la vitesse du 
mouvement. Par ailleurs, le mExoArm pourrait potentiellement être utilisé pour la 
réadaptation à distance. 
 
Mots Clés : Bras déficient, Thérapie de réadaptation passive, Exosquelette robotique; 
réhabilitation; Contrôle non linéaire, PID, Commande par mode précalculé, Loi de 
convergence exponentielle modifiée, Poursuite de trajectoire. 
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ABSTRACT 

 
To assist or rehabilitate individuals with impaired upper-limb function, we have developed 
an upper-limb exoskeleton robot, the ETS-MARSE (motion assistive robotic-exoskeleton for 
superior extremity). The MARSE is comprised of a shoulder motion support part, an elbow 
and forearm motion support part, and a wrist motion support part. It is designed to be worn 
on the lateral side of the upper limb in order to provide naturalistic movements of the 
shoulder (i.e., vertical and horizontal flexion/extension, and internal/external rotation), elbow 
(i.e., flexion/extension), forearm (i.e., pronation/supination), and wrist joint (i.e., radial/ulnar 
deviation, and flexion/extension). This thesis focuses on the modeling, design (mechanical 
and electrical components), development, and control of the developed MARSE. 
 
The proposed MARSE was modeled based on the upper-limb biomechanics; it has a relatively 
low weight, an excellent power/weight ratio, can be easily fitted or removed, and is able to 
effectively compensate for gravity. Moreover, to avoid complex cable routing that could be 
found in many exoskeleton systems, a novel power transmission mechanism was introduced 
for assisting shoulder joint internal/external rotation and for forearm pronation/supination. 
The exoskeleton was designed for use by typical adults. However, provisions are included for 
link length adjustments to accommodate a wide range of users. The entire exoskeleton arm 
was fabricated primarily in aluminum except the high stress joint sections which were 
fabricated in mild steel to give the exoskeleton structure a relatively light weight. Brushless 
DC motors (incorporated with Harmonic Drives) were used to actuate the developed MARSE. 
 
The kinematic model of the MARSE was developed based on modified Denavit-Hartenberg 
notations. In dynamic modeling and control, robot parameters such as robot arm link lengths, 
upper-limb masses, and inertia, are estimated according to the upper limb properties of a 
typical adult. Though the exoskeleton was developed with the goal of providing different 
forms of rehab therapy (namely passive arm movements, active-assisted therapy, and 
resistive therapy), this research concentrated only on passive form of rehabilitation. 
 
Passive arm movements and exercises are usually performed slowly compared to the natural 
speed of arm movement. Therefore, to control the developed MARSE, a computationally 
inexpensive a PID controller and a PID-based compliance controller were primarily 
employed. Further, realizing the dynamic modeling of human arm movement which is 
nonlinear in nature, a nonlinear computed torque control (CTC) and a modified sliding mode 
exponential reaching law (mSMERL) techniques were employed to control the MARSE. Note 
that to improve transient tracking performance and to reduce chattering, this thesis proposed 
the mSMERL, a novel nonlinear control strategy that combined the concept of boundary layer 
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technique and the exponential reaching law. The control architecture was implemented on a 
field-programmable gate array (FPGA) in conjunction with a RT-PC. 
 
In experiments, typical rehabilitation exercises for single and multi joint movements (e.g., 
reaching) were performed. Experiments were carried out with healthy human subjects where 
trajectories (i.e., pre-programmed trajectories recommended by therapist/clinician) tracking 
the form of passive rehabilitation exercises were carried out.  
 
This thesis also focused on the development of a 7DoFs upper-limb prototype (lower scaled) 
‘master exoskeleton arm’ (mExoArm). Furthermore, experiments were carried out with the 
mExoArm where subjects (robot users) operate the mExoArm (like a joystick) to maneuver 
the MARSE to provide passive rehabilitation.  
 
Experimental results show that the developed MARSE can effectively perform passive 
rehabilitation exercises for shoulder, elbow and wrist joint movements. Using mExoArm 
offers users some flexibility over pre-programmed trajectories selection approach, especially 
in choosing range of movement and speed of motion. Moreover, the mExoArm could 
potentially be used to tele-operate the MARSE in providing rehabilitation exercises. 
 
Key words: Arm impairment, Passive rehabilitation therapy, Robotic exoskeleton; 
Rehabilitation; Nonlinear control, PID control, Computed torque control, Modified 
exponential reaching law, Trajectory tracking 
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INTRODUCTION 
 

Physical disabilities such as full or partial loss of function in the shoulder, elbow or wrist are 

a common impairment in the elderly, but can also be a secondary effect due to strokes, sports 

injuries, trauma, occupational injuries, and spinal cord injuries. Through the last decades the 

number of disabled people has increased at an alarming rate. Further, studies have shown that 

a majority of disabled people are senior citizens. Recent statistics among G8 nations reveal 

that 15.9% of the total population in Canada is aged 65 and over compared with 22.9% in 

Japan, 20.3% in Italy, 20.6% in Germany, 16.8% in France, 16.5% in the United Kingdom, 

13.0% in Russia and 13.1% in the United States (CIA, 2011). 

 

 

In Canada, the number of seniors has reached a record 4.5 million, accounting for 13.5 % of 

the total population (Turcotte and Schellenberg, 2007). The number is 0.2 % higher than one 

year earlier. It can be seen from the Figure 0.2 that this number has progressively increased 

since 1920, where seniors accounted for about 5 % of the total population. It is projected that 

in 2026 this number will be increased to 21.2%, i.e., more than four times more than in 1920 

(Turcotte and Schellenberg, 2007). In 2036, one of four people in the population may be 
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estimated to be aged. This statistic is quite alarming as aging is one of leading causes of 

disabilities. 

 

In addition to geriatric disorders, the other major cause of disabilities is stroke. Stroke 

remains an important cause for morbidity and mortality, and the most common cause of 

disability. According to the World Health Organization, strokes affects more than 15 million 

people worldwide each year (Mackay and Mensah, 2004). Among these, 85% of stroke 

survivors will incur acute arm impairment, and 40% will be chronically impaired or 

permanently disabled (Parker, Wade and Langton, 1986). This results in a burden on their 

families, communities and to the country as well. According to the statistics found in ‘Atlas 

of Heart Disease and Stroke’ (Mackay and Mensah, 2004) “stroke burden is projected to rise 

from around 38 million disability-adjusted life years (DALYs) globally in 1990 to 61 million 

DALYs in 2020”. The Canadian Stroke Network reports that fifty thousand Canadians suffer 

from strokes each year, and over 300,000 Canadians are currently living with the effects of a 

Figure 0.2 Statistics of Canadian population aged 65 or older 
Adapted from Turcotte and Schellenberg (2007) 



3 

stroke (Tracking Heart Disease and Stroke in Canada, 2009). Moreover, arm impairment, 

especially dislocation of the shoulder, elbow, and/or wrist joint, is very common in children 

and adults alike due to sports, falls, and traumatic injuries such as car crashes (Arciero and 

Taylor, 1998; Mehta and Bain, 2004; Reid, 1992; Sheps, Hildebrand and Boorman, 2004; 

Westin et al., 1995). Rehabilitation programs are the main method to promote functional 

recovery in these individuals (Gresham et al., 1997), which implies a long commitment by a 

therapist/clinician or an instructed family member. Since the number of such cases is 

constantly growing and that duration of treatment is long, exoskeleton robots could 

significantly contribute to the success of these programs. Recent studies also revealed that 

stroke-affected patients who received robot-assisted therapy showed considerable reduction 

in motor impairments and regained significant functional abilities (Colombo et al., 2005; Lo 

et al., 2010). For example, researchers at MIT have conducted clinical trials with more than 

300 stroke patients since 1991, where the MIT-MANUS, a planar robotic device, was used to 

provide therapy for shoulder and elbow joint movement (Masia et al., 2007). This approach 

could significantly reduce arm impairment (Kwakkel, Kollen and Krebs, 2008).  

 

To assist physically disabled individuals with impaired upper limb function, extensive 

research has been carried out in many branches of robotics, particularly on wearable robots 

e.g., exoskeletons (Garrec et al., 2008; Nef et al., 2009; Rahman et al., 2006). Although 

much progress has been made, we are still far from the desired achievement, as existing 

robots have not yet been able to restore body mobility or function. 

 

Therefore, to take part in this venture, this research focuses on the development of a 7DoFs 

exoskeleton type robot named ETS-MARSE (motion assistive robotic-exoskeleton for 

superior extremity) to ease daily upper-limb movements as well as to provide effective 

rehabilitation therapy to the superior extremity of physically weak persons (such as elderly 

people and/or physically disabled individuals who are no longer possess a full range of 

motion), so that they would be able to take care of themselves with the help of MARSE. In 

society, it is important that physically handicapped people be able to take care of themselves 

without the help of others. The ETS-MARSE is comprised of a shoulder motion support part, 
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an elbow and forearm motion support part, and a wrist motion support part. It is designed to 

be worn on the lateral side of the upper limb in order to provide naturalistic movements of 

shoulder (i.e., vertical and horizontal flexion/extension, and internal/external rotation), elbow 

(i.e., flexion/extension), forearm (i.e., pronation/supination), and wrist joint (i.e., radial/ulnar 

deviation, and flexion/extension).  

 

This thesis focuses on the modeling, design, development, and control of the ETS-MARSE 

(Rahman et al., 2011c; 2011e; 2012c). A kinematic model of the MARSE was developed 

based on modified Denavit-Hartenberg (DH) notations (Denavit and Hartenberg, 1955). In 

dynamic modeling and control, robot parameters such as robot arm link lengths, masses of 

different link segments, upper-limb masses, and inertia, were estimated according to the 

upper limb properties of a typical adult (Winter, 1990; Zatsiorsky and Seluyanov, 1983). 

 

It is to be noted that, though the ETS-MARSE was developed with the goal of providing 

different forms of rehab therapy (namely passive rehabilitation therapy; active rehabilitation 

therapy, active-assisted therapy, and resistive therapy), this research concentrated only on 

the passive form of rehabilitation. Passive arm movements and exercises are usually 

performed slowly (Gordon et al., 2004; Mary and Mark, 2004; Physical Therapy Standards, 

2011; Stroke Rehab Exercises, 2010; Tsao and Mirbagheri, 2007) compared to the natural 

speed of arm movement. Therefore, as a first step, we implemented a computationally 

inexpensive PID controller, rather than complex model-based control algorithms. Most 

industrial robots nowadays use this control technique because of problems with estimation of 

dynamic parameters (Craig, 2005). Later on, to introduce some compliance in the system, we 

have applied a ‘compliance control with gravity compensation’ technique as an alternative 

approach to perform similar ‘passive rehabilitation therapy’ (Rahman et al., 2012d). 

Furthermore, to realize better tracking performance of the MARSE, the dynamic models of 

human upper-limb (ANNEX I and ANNEX II) and ETS-MARSE were considered in the 

nonlinear control techniques (Rahman et al., 2011d; 2011f). Note that the dynamic modeling 

of human arm movement is nonlinear in nature, therefore nonlinear computed torque control 

(CTC) and modified sliding mode exponential reaching law (mSMERL) techniques were 
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employed to control the ETS-MARSE, where trajectory tracking (i.e., pre-programmed 

trajectory tracking approach) that corresponds to typical rehabilitation (passive) exercises of 

the shoulder, elbow, forearm and wrist joint movements were carried out to evaluate 

performances of the ETS-MARSE and the controllers. Note that the exponential reaching law 

(ERL) (Fallaha et al., 2011) shows high control activity during the transient even though it 

was able to reduce chattering in steady state. To solve this problem, this research introduced 

a mSMERL (Rahman et al., 2012c) that combined the concept of the boundary layer function 

with a ERL (Fallaha et al., 2011) to implement trajectory tracking in the developed MARSE.  

 

In experiments, typical rehabilitation exercises for single and multi joint movements (e.g., 

reaching) were performed. Experiments were carried out with healthy human subjects where 

trajectories (i.e., pre-programmed trajectories recommended by a therapist/clinician) tracking 

the form of passive rehabilitation exercises were carried out. Furthermore, experiments were 

carried out with the mExoArm, an upper-limb prototype 7DoFs (lower scaled) motion 

indicator) where subjects (robot users) operate the mExoArm (like a joystick) to maneuver 

the MARSE to provide passive rehabilitation. Experimental results show that the ETS-MARSE 

can efficiently perform the passive rehabilitation therapy. This thesis is organized as follows: 

 

Chapter 1: Literature Review 

This chapter is a critical overview of research work conducted in the fields of development of 

orthoses and/or robotic exoskeletons, methods adopted to control such robots and their real 

world applications are presented. 

 

Chapter 2: Motion Assistive Robotic-Exoskeleton for Superior Extremity (MARSE) 

This chapter outlines the overall design of the proposed ETS-MARSE. It describes the 

motivation for the major design choices and gives the reader an overall sense of the complete 

hardware package and the components that comprise it. 
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Chapter 3: Kinematics and Dynamics 

Chapter 3 describes the kinematics and the dynamics of the ETS-MARSE. The modified DH 

notations were used to develop the kinematic modeling, whereas in dynamic modeling the 

iterative Newton-Euler formulation was used. 

 
Chapter 4: Control and Simulation 

This chapter presents the theoretical structure of the different control techniques (such as 

PID, Computed Torque Control, Sliding Mode Control with Exponential Reaching Law, and 

Compliance Control with Gravity Compensation) that were applied to maneuver the MARSE 

to follow a reference trajectory. This chapter also presents simulation results to validate the 

ETS-MARSE model developed in Chapter-3, and also to evaluate the performance of the 

different control techniques with regard to trajectory tracking. 

 
Chapter 5: Experiments and Results 

To evaluate the performance of the ETS-MARSE and the control techniques, this chapter 

describes experimental set-up and the procedure carried out during the experiments. The 

chapter presents all the test results, discusses the test results in great detail, and gives some 

specific comments on the test results. 

 
Conclusions and Recommendations 

Finally, the Conclusions section of the paper summarizes the research outcomes and suggests 

directions for further research in section Recommendations.  

 



 

CHAPTER 1 
 
 

LITERATURE REVIEW 

To assist physically disabled individuals with impaired upper limb function, extensive 

research has been carried out in many branches of robotics, particularly on wearable robots 

(e.g., exoskeletons, powered orthosis devices etc.) and/or end-effector based robotic devices 

(i.e., devices which do not actively support or hold the subject’s upper-limb but connect with 

the subject’s hand or forearm (Brose et al., 2010; Burgar et al., 2000; Culmer et al., 2010; 

Krebs et al., 2000; Loureiro et al., 2003; Takahashi et al., 2008). Note that exoskeleton type 

robotic devices are either wheelchair mounted (Alexander, Nelson and Shah, 1992; Gopura, 

Kiguchi and Yang, 2009; Homma and Arai, 1995; Johnson and Buckley, 1997; Kiguchi et 

al., 2003; Rahman et al., 2000; Sanchez et al., 2005; Tsagarakis and Caldwell, 2003) or floor 

mounted (Carignan, Tang and Roderick, 2009; Frisoli et al., 2009; Garrec et al., 2008; Gupta 

and O'Malley, 2006; Nef et al., 2009; Noritsugu and Tanaka, 1997; Perry, Rosen and Burns, 

2007; Rahman et al., 2010c) but the end-effector devices are commonly floor/desk mounted.  

 

1.1  End-effector based Rehabilitative Devices (State of the Arts) 

Some potential end-effector based rehabilitative devices are: MIT-MANUS (a 3DoFs planar 

robot developed at MIT (Krebs et al., 2000), a later version of which includes a hand module 

for whole arm rehabilitation (Masia et al., 2007); GENTLE/s system (Loureiro et al., 2003) 

(which utilized an active 3DoFs haptic master robot that connects the subject’s arm through a 

wrist orthosis and uses virtual reality (VR) technologies to deliver therapy); iPAM system 

(Culmer et al., 2010) (developed at the University of Leeds that uses dual robotic arms (each 

having 3 active DoFs) to deliver therapy via two orthoses located on the upper arm and wrist 

of the subjects); MIME system (Burgar et al., 2000) (developed under the joint collaboration 

of VA Palo Alto and Stanford University, the system incorporated a PUMA-260 robot and 

two commercial mobile arm supports modified to limit arm movement to the horizontal plane 

(2D), a later version of which uses PUMA-560 to provide therapy in 3D workspace); and 

HWARD (Takahashi et al., 2008) (a 3 DoFs desk mounted pneumatically actuated device 
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that was developed at University of California to assist the subject’s hand in grasp and in 

release movements). Another upper limb motion assist system was developed by Homma and 

Arai (1995) around the mid 90s. The system used parallel strings/cords (one end of which 

was attached to a plate mounted over the subject’s head and other end to the subject’s arm) to 

suspend the arm at the level of the elbow and wrist (Homma and Arai, 1995). Motion of the 

subject’s arm was generated by changing each string’s length according to the subject’s voice 

command or head motion. Researchers of Okayama University have developed an active 

support splint (ASSIST) driven by pneumatic soft actuators to assist wrist joint 

Table 1.2 State of the arts: end-effector based rehabilitative devices 
 

Project / Institute/ 

Researcher / Year 

Arm 

Support 

Control / 

Method 
Actuation/Operating Mechanism / Brief Description 

MIT-MANUS, MIT 

(Masia et al., 2007) 

Forearm, 

Wrist 
IMC 

The 1st version of this device used a 3DoFs planer robot to provide 

physical therapy to stroke victims. A later version includes a hand 

module for whole arm rehabilitation. 

iPAM system, 

University of Leeds   

Upper arm, 

Wrist 
ADC 

This system uses a dual robotic arm (each having 3 active DoFs) to 

deliver therapy via two orthoses located on the upper arm and wrist 

of the subjects. 

HWARD, (Takahashi 

et al., 2008)  
Wrist PneC 

This system is a 3DoFs desk-mounted pneumatically actuated 

device that was developed to assist the subject’s hand in grasp and 

in release movements. Joint angle sensors in the robot are used to 

measure the movement of the robot’s joints. 

MIME system, VA 

Palo Alto and Stanford 

University, 2000  

Forearm - 

The system incorporated a PUMA-260 robot and two commercial 

mobile arm supports modified to limit arm movement to the 

horizontal plane (2D); a later version uses PUMA-560 to provide 

therapy in 3D workspace. 

Homma and Arai, 

AIST, (Homma and 

Arai, 1995) 

Forearm, 

wrist 
- 

The system used a parallel mechanism to suspend the upper arm at 

the elbow and wrist level. Motion of the upper limb was generated 

by changing the length of each string according to the command 

given by the user using voice, head motion and so on. 

GENTLE/s system 

(Loureiro et al., 2003)  

Through 

Wrist 

Orthosis 

BP 

The system utilizes an active 3DoFs haptic master robot that 

connects the subject’s arm through a wrist orthosis and uses virtual 

reality (VR) technologies to deliver therapy. 

ADC = Admittance Control; IMC = Impedance Control; PneC = Pneumatic Control, BP = Bead Pathway 
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flexion/extension motion for elderly or physically handicapped individuals in need of care 

and therefore to relieve a burden for caregivers (Sasaki, Noritsugu and Takaiwa, 2005). 

Experiments have shown that with ASSIST the amplitude of EMG signals decreases 

compared to without the use of ASSIST. Therefore, it was evident that the burden for the 

muscle can be decreased considerably using the ASSIST. 

 

1.2 Exoskeleton type Rehabilitative Devices (State of the Arts) 

One of the earliest wheelchair mounted robotic orthoses was the Balanced Forearm Orthosis 

(BFO), developed in the mid-sixties, designed to move subjects’ arms in the horizontal plane 

(Alexander, Nelson and Shah, 1992). A later version of the BFO includes an additional joint 

to allow movement assistance in the vertical direction but the device was rarely used due to 

its poor gravity compensation techniques. The motorised upper-limb orthosis system 

(MULOS) was also a wheelchair mounted device having 5 DoFs developed at the University 

of Newcastle in 1997 (Johnson and Buckley, 1997). Apart from some limitations in safety 

and control issues, the project seemed promising but was ended in 1997 (Tsagarakis and 

Caldwell, 2003). Some other wheelchair or chair mounted exoskeleton or orthosis devices 

developed for upper limb rehabilitation are: the ‘Functional upper limb orthosis’ (Rahman et 

al., 2000) (a 4 DoFs orthosis developed under the joint project between Drexel University 

and A.I. duPont Hospital for children, informally tested on 10 subjects); the Pneu-WREX 

(Sanchez et al., 2005) (a 5 DoFs pneumatically actuated robot developed at University of 

California); the Saga University’s ‘exoskeleton robot for shoulder and elbow joint motion 

assist’ (Kiguchi et al., 2003; Rahman et al., 2006), a later version of which was named as 

SUEFUL-7, having 7 DoFs and controlled by skin surface electromyogram (EMG) signals 

(Gopura, Kiguchi and Yang, 2009). Another chair mounted orthosis is the Hybrid Arm 

Orthosis (HAO) developed by Benjuya and Kenney in 1990 to assist upper limb motion at 

the level of shoulder abduction, elbow flexion and wrist supination (Benjuya and Kenney, 

1990). 
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Table 1.3 State of the arts: exoskeleton type rehabilitative devices 
 

Project / Institute / 

Researcher / Year / Ref. 
DoFs Sensors Actuators 

Actuator 

Placement 

Actuation 

Mechanism 
Control 

Therapeutic 

Regime 

Floor-Mounted 

ETS-MARSE, (Rahman et 
al., 2011c; 2012b)  

7 
Force 
sensor 

Brushless 
DC motors 

Joint Gear Drive 
PID, CTC, 
CC, SMC, 
SMERL 

E, F, W 

ABLE, (Garrec et al., 
2008) 

4 
Force 
sensor 

DC 
faulhaber 

Remote 
Ball-screw 
and cable 

Force 
Feedback 

S, E 

CADEN-7, University of 
Washington,  (Perry, 
Rosen and Burns, 2007) 

7 
Force, 
EMG 

Rare earth 
brushed 
motors 

Joint and 
Remote 

Gear Drive, 
Cable 

PID, EMG S, E, F, W 

L-EXOS, PERCRO, 
(Frisoli et al., 2009) 

5 
Force 
sensor 

DC servo 
Joint and 
Remote 

Gear Drive, 
Cable 

IMC S, E, F 

Soft-actuated 
exoskeleton, (Tsagarakis 
and Caldwell, 2003) 

7 
Strain 
gauge 

Pneumatic 
muscle 

actuators 
Remote 

Linkage, 
Cable 

IMC S, E, F, W 

MGA exoskeleton, 
(Carignan, Tang and 
Roderick, 2009) 

6 
Force 
sensor 

Brushless 
DC motors 

Joint Gear Drive ADC, IMC S, E, W 

Ritsumeikan Univ., 
(Nagai et al., 1998) 

8 
Force 
sensor 

DC servo 
Joint and 
Remote 

Linkage, 
Direct Drive 

Power 
Assist 

Control, 
IMC 

S, E, F, W 

ARMin-III, (Nef, Guidali 
and Riener, 2009) 

4 
Force 
sensor 

Brushed 
motors 

Joint and 
Remote 

Gear Drive,  
Belt Drive, 

Cable 

PD, CTC, 
IMC 

S, E 

MAHI exoskeleton, 
(Gupta and O'Malley, 
2006) 

5 
Force 
sensor 

Frameless 
electrical  
motors 

Joint 
Direct Drive, 

Parallel 
mechanism 

- E, F, W 

Noritsugu and Tanaka, 
(Noritsugu and Tanaka, 
1997) 

2 
Force 
sensor 

Pneumatic 
rubber  
muscle 

Remote 
Linkage, 

Cable 
IMC S,E 

Chair-Mounted 

SUEFUL-7 (Gopura, 
Kiguchi and Yang, 2009)  

7 
Force, 
EMG 

DC servo 
motors 

Joint and 
Remote 

Gear Drive, 
Cable 

Force , 
EMG 

S, E, F, W 

Pneu-WREX , Univ. of 
California, 2005  

5 - Pneumatic Remote Linkage 
Force 

Control 
S, E, W 

MULOS, University of 
Newcastle, 1997  5 Pressure, 

Force 

Electric 
motors, 

hydraulic 
actuator 

Joint and 
Remote 

Gear drive, 
Hydraulic 

transmission, 
Linkage 

- S, E,  

PID = Proportional Integral Derivative; CTC = Computed Torque Control; SMC = Sliding Mode Control; SMERL = Sliding Mode 

Exponential Reaching Law; EMG = Electromyogram based Control; IMC = Impedance Control; ADC = Admittance Control; 

S = Shoulder; E =Elbow; Forearm = F; Wrist = W. 
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Some potential floor mounted (or grounded type) exoskeletons found in recent years are: 

ABLE (Garrec et al., 2008) (a 4 DoFs exoskeleton developed at CEA-LIST, Interactive 

Robotics Unit, France); CADEN-7 (Perry, Rosen and Burns, 2007) (a 7 DoFs cable driven 

exoskeleton developed at the University of Washington); L-EXOS (Frisoli et al., 2009) (a 5 

DoFs force-feedback exoskeleton developed by PERCRO, Italy to provide neuro-

rehabilitation in VR environments); ‘Soft-actuated exoskeleton’ (Tsagarakis and Caldwell, 

2003) (a 7 DoFs exoskeleton actuated by pneumatic muscle actuators developed at the 

University of Salford, UK to provide physiotherapy  under isotonic, isokinetic, and training 

modes of operation); MGA exoskeleton (Carignan, Tang and Roderick, 2009) (a 6 DoFs 

exoskeleton designed primarily for shoulder rehabilitation where  as a control approach 

impedance and admittance control  schemes were used); ARMin (Nef et al., 2009) (a 6 DoFs 

robot developed at the Swiss Federal Institute of Technology, currently under clinical 

evaluation in hospitals in Switzerland and in the United States); ‘Rehabilitation Robot’ 

developed at Okayama University (Noritsugu and Tanaka, 1997) (a 2 DoFs robot actuated by 

pneumatic rubber artificial muscles); and MAHI exoskeleton (Gupta and O'Malley, 2006) (a 

5 DoFs haptic arm exoskeleton developed at Rice University). The detailed background of 

exoskeleton robot research is explained in Refs. (Kiguchi et al., 2003; Rahman, 2005; 

Rahman et al., 2011h; Tsagarakis and Caldwell, 2003). Tables 1.1 and 1.2 highlight and 

compare some features (e.g., DoFs, sensors and actuators used, placement of actuators, 

actuation mechanism, therapeutic regime, control approach) of these devices. 

 

1.3 Limitations of Existing Rehabilitative Devices and Robotic Exoskeletons 

Although much progress has been made in the field of rehabilitation robotics to develop an 

upper-limb motion assistive robotic device/exoskeleton, we are still far from the desired goal, 

as existing robots have not yet been able to restore body mobility or function. This is due to 

limitations in the area of proper hardware design and also of control algorithms to develop 

intelligent and autonomous robots to perform intelligent tasks.  
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Limitations in design of hardware: 

Our survey of the recent literature revealed some of the limitations of existing exoskeleton 

systems, which encouraged and motivated us to go through this research. In particular, 

exoskeleton systems have been designed with limited degrees of freedom and range of 

motion compared to that of human upper extremities (Frisoli et al., 2009; Garrec et al., 2008; 

Homma and Arai, 1995; Takahashi et al., 2008). Others have employed a robust and complex 

structure (Yupeng, Hyung-Soon and Li-Qun, 2009), are relatively heavy, with bulky joints 

(Carignan, Tang and Roderick, 2009), or have relatively weak joint mechanisms (Homma 

and Arai, 1995; Kiguchi et al., 2003). Some show a lack of proper safety measures and 

compensation for gravity forces (Culmer et al., 2010; Homma and Arai, 1995; Takahashi et 

al., 2008). Some have been designed using a closed circular structure as an arm holder 

(Gopura, Kiguchi and Yang, 2009; Gupta and O'Malley, 2006), making it unrealistic and 

inconvenient to insert and remove the arm. The use of wire ropes or complex cable routing as 

a transmission mechanism has been an approach in other types of robots (Frisoli et al., 2009; 

Kiguchi et al., 2003; Perry, Rosen and Burns, 2007), which can produce undesirable 

vibration and excessive compliance in the system. Problems can become severe when 

transmission wires, ropes and/or cables slide away from the guide pulleys. 

 

The ETS-MARSE developed in this research has considered the above limitations and is 

designed based on the upper-limb joint movements; it has a relatively low weight, a higher 

power to weight ratio, can be easily fitted or removed, and is able to effectively compensate 

for gravity. Moreover, to avoid complex cable routing that could be found in many 

exoskeleton systems (Frisoli et al., 2009; Kiguchi et al., 2003; Perry, Rosen and Burns, 

2007), a novel power transmission mechanism has been introduced for assisting shoulder 

joint internal/external rotation (Rahman et al., 2010a; 2012b; 2012d), and for forearm 

pronation/supination (Rahman et al., 2011b; Rahman et al., 2010c). Cable transmissions 

always add some undesirable vibration and can loosen up during operation, therefore they 

should be avoided. On the other hand, it is practically impossible to use conventional gear 

mechanisms (for shoulder joint internal/external rotation and for forearm 

pronation/supination), since in such a case, meshing gears are supposed to rotate around a 
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physical axis of rotation (e.g., shaft), but we are unable to fit such a mechanical shaft along 

the line of axis of human arm motion (e.g., with the humerus/radius) especially in case of 

shoulder joint internal/external rotation and for forearm pronation/supination. To solve these 

issues, this research introduced an innovative concept of power transmission, a combination 

of custom made open type bearing and open type meshing gear assembly, where motion is 

transmitted from an anti-backlash gear (mounted on a motor shaft) to an open-type custom-

made meshing ring gear. A detail of this mechanism is discussed in Chapter 2. 

 

Limitations in control approaches:  

Like limitations in the design of exoskeleton hardware, developing smart control algorithms 

is another major issue that needs to be properly addressed. Unlike most industrial robots 

which can be modeled easily and controlled by linear control techniques, the control strategy 

for this type of exoskeleton robots is quite complex and difficult. This is mainly due to the 

nonlinear characteristics of their dynamic model and to the limitation of estimating proper 

dynamic parameters. In the literature, robotic devices have been used to provide a passive 

form of rehabilitation, which involves moving the person’s limb through a pre-determined 

trajectory (i.e., trajectory tracking). This has been performed using various linear approaches, 

such as PD (Nef, Mihelj and Riener, 2007), PID (Tsagarakis and Caldwell, 2003; Yu and 

Rosen, 2010); as well as other nonlinear control techniques, e.g., computed torque control 

(Nagai et al., 1998; Nef, Mihelj and Riener, 2007) and impedance control (Noritsugu and 

Tanaka, 1997). Note that as a key requirement to provide passive rehabilitation and/or 

passive arm movement assistance, a consistent high dynamic tracking performance is 

required to maneuver the exoskeleton in an efficient, smooth and continuous manner. The 

use of linear control approaches seems limited in its ability to solve the issues associated with 

nonlinearity in modeling. On the other hand, for other examples where the computed torque 

control approach was used, the dynamic model was simplified ignoring mass/inertia terms, 

and/or centrifugal terms (Bergamasco et al., 1994; Nef, Mihelj and Riener, 2007). In such 

cases, tracking performance of the controller was significantly reduced. Moreover, these 

controllers may lack the robustness necessary to cope with uncertainties, for instance the 

mass of the human upper-limb which varies from person to person. 
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Several other nonlinear control strategies have been proposed for the trajectory tracking of 

exoskeleton robots, such as the work of Kyoungchul and Tomizuka (Kyoungchul and 

Tomizuka, 2009); their approach is based on an fictitious gain, which is postulated to be in 

the motion control system of a human body. Yang et al. (Yang et al., 2009) proposed a 

model based on a fuzzy-adaptation technique for control of the lower extremity. Gomes et al. 

(Gomes, Silveira and Siqueira, 2009) proposed an adaptation algorithm based on neural 

networks. However, neural network and fuzzy logic controls suffer from a slow response 

time as these control techniques require heavy computation.  

 

The sliding mode control (SMC) approach has previously been used for many motion control 

systems (Sabanovic, 2011) such as control of mobile robots (Defoort et al., 2008), actuator 

control (Foo and Rahman, 2010), control of robotic manipulators (Islam and Liu, 2011; Xu et 

al., 2007) etc. However, its application to exoskeleton robots is relatively new and a few 

researchers are using this approach (Beyl et al., 2008; Ming-Kun and Tsan-Hsiu, 2009). The 

robustness of the SMC can theoretically ensure perfect tracking performance despite 

parameters or model uncertainties (Slotine and Li, 1991; Xinghuo and Kaynak, 2009). 

Moreover, the SMC is simple in structure, has good transient performance and is fast in 

response. We therefore consider the SMC as a good solution to deliver a consistently high 

dynamic tracking performance. One major drawback of using SMC in practical application is 

chattering, defined as a high frequency finite amplitude control signal originating from the 

discontinuous sign function. Various methods were proposed to minimize and/or eliminate 

this chattering, e.g., replacing the sign function with a boundary layer function (Slotine and 

Li, 1991), using fuzzy logic to adjust the boundary layer function (Bartolini et al., 2000), 

using a continuous smooth approximation, using a disturbance observer (Kawamura, Ito and 

Sakamoto, 1992), using an adaptive fuzzy system (Erbatur and Kaynak, 2001), and/or using 

power rate reaching strategy (Gao and Hung, 1993). Although chattering can be controlled 

with these modifications, it comes at a cost as tracking performance of the system is 

negatively affected and steady-state errors increase. The reaching law proposed by Fallah et 

al. (Fallaha et al., 2011) considers the above limitations and is designed based upon the 

choice of an exponential term that adapts with the variations of the switching function, which 
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is able to deal with the chattering/tracking performances dilemma. However, the control 

effort using the ERL (Fallaha et al., 2011) is still higher during the transient even the 

chattering is reduced. To solve this issue, this research introduced a mSMERL that combined 

the concept of the boundary layer function (Slotine and Li, 1991) with a ERL (Fallaha et al., 

2011) to implement trajectory tracking in the developed MARSE. Note that to evaluate the 

performance of mSMERL, similar passive rehabilitation exercises were carried out using PID, 

CTC, conventional SMC and mSMERL techniques. Details of these control technique are 

given in Chapter 4. 

 

Research on robotic exoskeletons and/or orthoses as discussed above implies that there are 

still significant problems in the development of upper limb rehabilitative and motion assistive 

exoskeleton. To fulfill the aspirations of the exoskeleton robot users, those problems should 

be solved. 

 

1.4 Research Objectives and Hypothesis 

The specific aims of this research project, based on the limitations outlined above, are: 

• to develop an exoskeleton robot that includes its modeling (kinematic and dynamic), 

design (mechanical and electrical components), development and control; 

• to develop a control strategy to provide passive rehabilitation therapy to the upper 

extremities. 

 

It is expected that the developed controller will be able to maneuver the ETS-MARSE 

effectively to provide passive rehabilitation therapy. In next section a brief description on 

passive arm therapy is presented. 

 

1.5 Passive Rehabilitation Therapy 

Upper extremity impairment is very common due to geriatric disorders and/or following a 

stroke or other conditions such as sports, falls, and traumatic injuries. Its treatment relies on 

rehabilitation programs, especially on passive arm movement therapy at the early stages of 
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impairment. The complete rehabilitation protocol is comprised of several therapeutic 

approaches, namely passive rehabilitation therapy, active rehabilitation therapy, active-

assisted therapy, and resistive therapy. Depending on the patient’s arm impairment, their 

physiotherapist or clinician selects the appropriate therapeutic approach and exercises. In this 

research, however, we have focused only on passive rehabilitation therapy.  

 

Passive arm movement therapy is the very first type of physiotherapy treatment given to 

patients, mainly to improve their passive range of movement. In this therapeutic approach, 

patients remain relaxed (i.e., the therapy does not require subject’s participation) while 

physical therapies in the form of different (joint based) exercises (Physical Therapy 

Standards, 2011) are employed by physiotherapists, skilled caregivers, and/or trained family 

members to restore or regain the upper-limb mobility and function (Post-Stroke 

Rehabilitation Fact Sheet, 2011; Stroke Rehab Exercises, 2010; Wang, 2011). To be noted, 

this therapy is the key treatment for the patients who are unable to actively move their arm 

throughout their complete range of motion following a surgery (Physical Therapy Standards, 

2011) at the shoulder joint, elbow joint or wrist joint due to the dislocation of the joints; or as 

the result of a stroke mostly due to spasticity and increased muscle tone (Nonoperative 

Treatment: Physical Therapy, 2011; Post-Stroke Rehabilitation Fact Sheet, 2011).  

 

Several hypotheses exist as to how upper extremity rehabilitation may be improved. Studies 

reveal that intensive and repetitive therapies significantly improve motor skill (Huang et al., 

2009). Note that the passive rehabilitation therapy does not contribute in building muscle but 

does help to prevent contractures, increases range of motion and thus maintains and promotes 

mobility of the patients (Wang, 2011). Therefore, once resistance to passive arm movements 

in individuals has diminished it is essential that they practice active movements. For 

example, the subjects perform any specific task under the guidance of a physiotherapist or a 

caregiver. This therapeutic approach is known as ‘assist as need’. To provide such therapy 

with a robotic rehabilitation protocol, the robotic devices will guide the subject’s movement 

to complete the specified task. Further studies reveal that enhanced motor learning occurs in 

the ‘active rehabilitation therapy’ mode, when patients (independently) practice a variety of 
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functional tasks (Winstein, Merians and Sullivan, 1999) such as grasping and reaching 

movements and receive feedback (e.g., visual and haptic feedback) intermittently (Lum, 

Burgar and Shor, 2004; Winstein et al., 2003). However, this research concentrates on 

passive rehabilitation therapy, therefore the key factors of this therapy (i.e., the intensive and 

repetitive movements of the affected extremity) need to be integrated in rehabilitation 

paradigms and this can be done through rehabilitation robotics.  

 

It has already been shown in several studies that robotic devices are able to provide 

consistent training (Colombo et al., 2005; Fazekas, Horvath and Toth, 2006) and to measure 

performance with high reliability and accuracy (Dobkin, 2004; Nef, Mihelj and Riener, 2007; 

Rahman et al., 2012d). Moreover, experimental studies reveal that patients who receive robot 

assisted therapy show considerable improvement of motor skills compared to conventional 

therapy techniques (Lum et al., 2002; Masiero et al., 2007). The ETS-MARSE was therefore 

developed to take part in rehabilitation programs. Experiments were carried out to evaluate 

its performance in providing passive arm movement therapy (Rahman et al., 2011a). Details 

of these experiments are given in Chapter 5.  

 

1.6 Contribution 

This research focused on the modeling design, development and control of a 7 DoFs robotic 

exoskeleton, ETS-MARSE. Contributions of this research are as follows: 

• ETS-MARSRE, a prototype of human upper-limb corresponding to the natural range of 

motion of superior extremities, was developed (Rahman et al., 2010a; 2011c; 2011d; 

2012b; 2012d; Rahman et al., 2009) with the goal of providing different forms of 

rehabilitation therapy. The ETS-MARSE should be worn on the lateral sides of subject’s 

upper limb and will assist upper-limb movements for the: 

• horizontal flexion/extension motion of the shoulder joint; 

• vertical flexion/extension motion of the shoulder joint;  

• internal/external rotation of the shoulder joint; 

• flexion/extension motion of the elbow joint; 
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• pronation/supination of forearm motion; 

• flexion/extension of the wrist joint; and 

• radial/ulnar deviation of the wrist joint. 

 

• introduction of an innovative concept of power transmission, a combination of custom 

made open type bearing and open type meshing gear assembly (Rahman et al., 2010a; 

Rahman et al., 2010c); 

 

• introduction of a mSMERL (Rahman et al., 2012c) that combines the concept of the 

boundary layer function (Slotine and Li, 1991) with a ERL (Fallaha et al., 2011) to 

implement the dynamic trajectory tracking of the ETS-MARSE. Compared to 

conventional SMC, the proposed mSMERL significantly reduces chattering and gives 

smother trajectory tracking both in transient and in steady state position; and 

 

• design and development of a mExoArm (Rahman et al., 2009), an upper-limb prototype 

7DoFs (lower scaled manipulator) exoskeleton arm to maneuver or tele-operate (like a 

joystick) the ETS-MARSE (or any other exoskeletons) to follow a desired trajectory. 

 

. 



 

CHAPTER 2 
 
 

MOTION ASSISTIVE ROBOTIC EXOSKELETON FOR SUPERIOR EXTREMITY 
(ETS-MARSE) 

This chapter outlines the overall design of the ETS-MARSE. Based on the concept of human 

upper limb articulations and joint movements, the robotic exoskeleton for this study was 

designed to provide movement assistance for: 

• shoulder abduction/adduction (2DoFs); 

• upper arm rotation (1DoF); 

• elbow flexion/extension ( 1DoF); 

• forearm pronation/supination (1DoF); and 

• wrist joint movements (2DoFs). 

 

In the next section of this chapter, the general design considerations for a motion assistive 

rehabilitative device and/or exoskeleton system are highlighted for the motivation of major 

design choices of the ETS-MASRE. The midsection of the chapter focuses on some key 

design aspects of the ETS-MARSE. The last section of this chapter gives the reader an overall 

sense of the complete hardware package and the components that comprise it. 

 

2.1 General Design Considerations  

The fundamental design criteria (Meng and Lee, 2006; Tsagarakis and Caldwell, 2003) for an 

upper extremity motion assistive device or a robotic exoskeleton system are as follows: 

 

1) Degrees of freedom and range of motion: 

To assist humans’ daily activities properly, the degrees of freedom (DoFs) and the range 

of motion of the exoskeleton robot must correspond to the natural range of a human. 

Humans upper extremities are composed of 7DoFs (shoulder joint: 3DoFs, elbow joint: 

1DoF, forearm: 1DoF, wrist joint: 2DoFs). The shoulder joint having 3DoFs is 

considered a ball-and-socket joint (Gray and Clemente, 1985; Hallaceli, Manisali and 
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Flexion 

Extension 

 

Figure 2.1 Shoulder joint, horizontal flexion/extension 

Gunal, 2004; Holzbaur, Murray and Delp, 2005), whereas the elbow joint is a simple 

hinge joint (Gray and Clemente, 1985), therefore, it has only 1DoF. The movements 

associated with shoulder, elbow, forearm and wrist joints are as follows: 
 

Movements associated with the shoulder joint: 

• horizontal flexion/extension motion (Figure 2.1); 

• vertical flexion/extension motion (Figure 2.2);  

• internal/external rotation (Figure 2.3). 

Movements associated with the elbow joint and forearm: 

• flexion/extension (Figure 2.5); 

•  pronation/supination (Figure 2.6). 

Movements associated with the wrist joint: 

• flexion/extension (Figure 2.7); 

• radial/ulnar deviation (Figure 2.7). 
 

A combination of the shoulder joint’s horizontal and vertical flexion/extension motion is 

depicted in Figure 2.4. This motion is also known as abduction/adduction motion of the 

shoulder joint. Note that Figures 2.1-2.5, and Figure 2.7 were drawn using ‘Interactive 

Functional Anatomy’ software (Hillman, 2003). The anatomical ranges of human upper 

limbs (shoulder, elbow, forearm and wrist joints’ movements) are presented in Table 2.1 

to Table 2.3. 

 

 



21 

Table 2.1 Shoulder joint’s range of movements 
 

Types of motion  
Anatomical Range (Hamilton, Weimar and Luttgens, 2008) 

Source1 Source2 Source3 

Vertical Flexion 180° 170° 180° 

Vertical Extension 50° 30° 60° 

Abduction 180° 170° 180° 

Adduction 50° - - 

Internal rotation 90° 90° 90° 

External rotation 90° 90° 60°-90° 

Flexion 

Extension 

 

Figure 2.2 Shoulder joint, vertical flexion/extension 

Internal Rotation                                     Initial Position                                   External Rotation      

Figure 2.3 Shoulder joint, internal/external rotation 
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Adduction 

Initial Position (Adducted) 

Abduction 

 

 

Figure 2.4 Shoulder joint, abduction/adduction 

 

 

 

  

Initial Position                                  

Flexion 

Extension 

 

Figure 2.5 Elbow joint, flexion/extension 
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Pronation Supination 
Initial Position

Figure 2.6 Forearm pronation/supination 

Extension Flexion Neutral 

Radial deviation Ulnar deviation Neutral 

Figure 2.7 Wrist joint movements 
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Table 2.2 Elbow and forearm range of movements 
 

 

Table 2.3 Wrist joint range of movements 
 

°Types of motion  
Anatomical Range (Hamilton, Weimar and Luttgens, 2008) 

Source1 Source2 Source3 

Flexion 60° 90° 60° 

Extension 60° 70° 50° 

Radial Deviation 20° 20° 20° 

Ulnar Deviation 30° 30° 30° 

 

Therefore, an upper extremity robotic exoskeleton should have 7DoFs and must 

correspond to the natural range of a human to be able to provide every variety of 

movement to the upper extremities. 

 

2) Light weight with low mass/inertia:  

The structure of the exoskeleton arm should be light in weight to minimize the gravity 

load and the inertia effects. Therefore, a proper selection of materials is necessary so that 

the structure possesses sufficient strength and is light in weight. Reasonable material 

choices could include duralumin, aluminum, or carbon fiber. Besides, a proper selection 

of actuators is necessary as it is the actuators which are usually heavier in weight and 

contribute significantly to gravity/inertia effects.  

 

 

Types of motion    
Anatomical Range (Hamilton, Weimar and Luttgens, 2008) 

Source1 Source2 Source3 

Flexion 140° 140° 145° 

Extension 0° 0° 5°-15° 

Pronation 80° 90° 80° 

Supination 80° 85° 90° 
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3) Safety: 

A motion assistive device such as an exoskeleton type robot usually works in close 

contact with the patient, therefore proper and adequate safety features (in hardware and in 

software) must be included in the design of such devices. 

 
4) Wearing comfort: 

Such devices are supposed to be used by patients for longer periods of time, e.g., for 

rehabilitation therapy which may take 30-90 minutes per session. Therefore, the device 

must be comfortable (e.g, ease of fitting, adjustment and removal) and should cause no 

pain or fatigue to the patient. 

 
5) Accurate force feedback: 

Accurate force feedback is essential for proper control of the motion of the exoskeleton, 

as well as to relieve robot users from fatigue. Inaccurate or delayed force feedback tends 

to restrict motion rather than assist it. 

 

6) Complexity: 

In general, a device with a simple structure will be easier to fabricate, be less costly, be 

more reliable, and thus gain more user acceptance than an unnecessarily complex device. 

Therefore, in design steps complexity should be kept to a minimum level. 

 
7) Gravity force compensation: 

It is very important that an assistive device can actively support or compensate the 

subject’s arm gravity load as well as the device’s own weight while in motion. Poor 

gravity compensation may add extra load to the subject’s arm which is problematic.  

 

2.2 Design Consideration for ETS-MARSE 

Based on the aforementioned requirements; the steps towards meeting the design criteria for 

the ETS-MARSE are presented under the same sub headings: 

 



26 

1) Degrees of freedom and range of motion: 

To ease daily upper-limb movements as well as to provide effective rehab therapy to the 

upper extremities, the ETS-MARSE developed in this research is composed of 7DoFs, 

therefore it is able to provide every variety of movement to the shoulder, elbow, forearm 

and wrist joint. Considering the safety of the robot users and the range of movements 

required to perform essential daily activities e.g., eating, grasping, washing the body 

etc.(Rosen et al., 2005), preliminary studies on the anatomical range of upper limb 

motion were conducted (Hamilton, Weimar and Luttgens, 2008; Rahman et al., 2011e; 

Rosen et al., 2005) to choose the suitable range for the ETS-MARSE (Rahman et al., 

2011c). Details on the selected range of motion of the ETS-MARSE are summarized in 

Table 2.4. 

Table 2.4 ETS-MARSE’s Workspace 
 

 Types of Motion ETS-MARSE’s Workspace 

            Shoulder Joint 

Joint 1} 
Flexion 140° 

Extension 0° 

Joint 2} 
Abduction 140° 

Adduction 0° 

Joint 3} 
Internal rotation - 85° 

External rotation +75° 

              Elbow & Forearm 

Joint 4} 
Flexion 120° 

Extension 0° 

Joint 5} 
Pronation - 85° 

Supination +85° 

           Wrist Joint 

Joint 6} 
Flexion + 60° 

Extension - 50° 

Joint 7} 
Radial Deviation + 20° 

Ulnar Deviation - 25° 
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2) Light weight with low mass/inertia: 

The entire ETS-MARSE arm was fabricated in aluminum to give the exoskeleton structure 

a relatively light weight. Note that aluminum is a low density metal having reasonable 

strength characteristics and is very suitable for this kind of application. The high stress 

joint sections of the exoskeleton system were fabricated in mild steel. This resulted in a 

stable and light structure to the exoskeleton. It is to be noted that, in the design of ETS-

MARSE, power to weight ratio was maximized by selecting appropriate actuators for each 

joint mechanism. Simulation was carried out to investigate the maximum torque required 

or developed for each joint movement. Results of these simulations are presented in 

Chapter-4. Note that the actuators were then selected based on the simulated results, to 

optimize the power/weight ratio  

 

In this research we have used brushless DC motors, Maxon EC90, Maxon EC45. Detailed 

specifications of these motors can be found in ANNEX IX and ANNEX X. It should be 

mentioned that brushless DC motors have many advantages compared to brushed DC 

motors, including high torque to weight ratio, long life span (as there is no brush and 

commutator erosion), more torque per watt, increased reliability, reduced noise, and little 

or no maintenance (Glinka and Polak, 2001; Kothari and Nagrath, 2004). Moreover these 

motors are able to develop maximum torque when stationary (Gopal, 2002).  

 

3) Safety: 

To satisfy this requirement, mechanical stoppers were added at each joint to limit the 

joints’ rotation within the range of ETS-MARSE’s workspace (Table 2.4). An emergency 

switch is also installed to cut off the power should the need arise. On top of these 

hardware safety features, software safety features were added in the control algorithm 

which include limiting the joints’ ranges of movements depending on patient 

requirements, limiting the joints’ speed, limiting the joints’ torques and limiting the 

voltage values, which are the final output of the controller and the command values to the 

motor drivers. 
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4) Wearing comfort: 

Soft flexible straps were used to hold the upper arm, forearm and wrist in proper position. 

The ETS-MARSE arm was designed for use by a ‘typical adult’. However, provisions are 

included to adjust the link length to accommodate a wide range of users (5ft ~6.2ft), 

which is one of the key aspects of the design. To facilitate ease of fitting adjustment and 

removal, an open-type forearm and upper arm cup is used to hold the subject’s arm 

instead of closed structure (Gopura, Kiguchi and Yang, 2009).  

 

5) Accurate force feedback:  

To satisfy this requirement, a high linearity 6 axis force sensor (NANO17-R-1.8-M2-

M1PCI, ATI) was instrumented underneath the wrist handle to obtain accurate real time 

force measurements. The detailed specifications of the force sensor can be found in 

ANNEX VIII. Note that the force sensor signals are intended to input information to the 

controller while developing a control strategy to provide active rehabilitation therapy.  

 
6) Gravity force compensation:  

The controllers were designed so that they update the gravity terms in real time to 

compensate for gravity effects. Note that the compliance control with gravity force 

compensation technique and other nonlinear control techniques such as computed torque 

control, sliding mode control and modified sliding mode exponential reaching law 

control used in this research include the human arm dynamics (i.e., mass/inertia 

properties) as well as the dynamics of the ETS-MARSE arm. 

 

7) Complexity:  

The key design consideration of the ETS-MARSE was to make it compact in shape while 

keeping the complexity to a minimum. For example, to avoid the complex cable routing 

that can be found in many exoskeleton systems (Frisoli et al., 2009; Kiguchi et al., 2003), 

a novel power transmission mechanism was introduced for assisting shoulder joint 

internal/external rotation (Rahman et al., 2010a) and for forearm pronation/supination 

(Rahman et al., 2011b). 
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Details of the development of the ETS-MARSE are described in the next sections. 

 

2.3 Development of ETS- MARSE 

The general layout of the development of the ETS-MARSE system is outlined in Figure 2.8. 

As seen from the layout, the entire process is divided into two major phases; the hardware 

phase that includes CAD modeling, simulation, design, and fabrication; and the control 

phase which includes kinematic and dynamic modeling, control, simulations, and 

experiments. This chapter describes only the hardware implementation steps. 

2.4 Hardware implementation of ETS-MARSE 

2.4.1 CAD Modeling 

In this step, a detailed study of the biomechanics of human upper extremities was performed 

(Rahman et al., 2011e) to estimate the upper limb parameters such as arm length, mass of 

Simulation 

ETS-MARSE 

CAD Modeling

Design 

Fabrication Control 

Simulation 

Experiment 

Hardware Phase Control Phase 

ETS-MARSE 

Kinematic and Dynamic Modeling 

Figure 2.8 General layout of the development of ETS-MARSE 
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different limb segments (ANNEX I), joint articulations and range of movements. (Holzbaur, 

Murray and Delp, 2005; Rosen et al., 2005; Winter, 1990) to model the ETS-MARSE. Later, 

taking into account the aforementioned design considerations, CAD modeling of the 

proposed exoskeleton system was carried out using Pro-Engineer software. Note that the 

mass and inertial characteristics of the ETS-MARSE were estimated in CAD environment 

(ANNEX III to ANNEX VII). 

 

2.4.2 Simulation 

In the hardware implementation phase, simulation was carried out in two stages. In the first 

stage, a simulation was carried out to determine the maximum torque for each joint 

movement (Rahman et al., 2011e). The mass and inertia characteristics of human upper 

extremities used in the simulation are given in ANNEX I and ANNEX II and those for the 

ETS-MARSE arm are given in ANNEX III to ANNEX VII. Note that the simulation was 

carried out in Simulink (MathWorks, USA) environment. Details of the simulation results are 

presented in CHAPTER 4 (Rahman et al., 2011e). Based on the simulated results, actuators 

were selected to optimize the power/weight ratio. The second stage of the simulation was 

performed just before beginning the fabrication process, where the CAD model of the ETS-

MARSE was double checked and validated in regards to achieving the targeted joints’ range 

of motion. Moreover, in this stage, the compatibility of the system was verified for necessary 

instrumentation of electrical and electronic parts. It should be noted that the second stage of 

simulation was carried out in CAD (Pro-Engineer software) environment. 

 

2.4.3 Design 

1) Mechanical Design 

The exoskeleton-robot ETS-MARSE developed in this research (Figure 2.9) is comprised 

of three major parts: the shoulder motion support part, the elbow and forearm motion 

support part, and the wrist motion support part.  
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Shoulder motion support part (horizontal and vertical flexion/extension): 

The shoulder joint motion support part has 3DoFs (Rahman et al., 2010a) and is able to 

assist with horizontal and vertical flexion/extension motion, and internal/external rotation 

of shoulder joint. To assist with horizontal and vertical flexion/extension motions, it 

consists of two motors (Maxon EC-90), two links (link-A, and link-B), and two 

potentiometers. Link-A holds motor-1 at one end (Figure 2.11) and is rigidly fixed to the 

base structure of the robot (Figure 2.10) at its other end. As shown in Figure 2.11, link-B, 

which is hinged with motor-1 and carries motor-2 on its other end, is ‘L’ shaped in order 

to accommodate the subject’s shoulder joint. Therefore, the axes of rotation of motors 1 

and 2 intersect at the centre of rotation of the subject’s shoulder joint (point-B, Figure 

2.10). Moreover, by adjusting the seating height (e.g., using a height adjustable chair) it 

would be easy to align the centre of rotation of the shoulder joint of the subject to that of 

the ETS-MARSE. It is worth mentioning here that there is no scapular elevation (rather 

Figure 2.9 ETS-MARSE (CAD, view) 
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than pure rotation) during the abduction of the glenohumeral joint (GHJ) (Hallaceli, 

Manisali and Gunal, 2004). However, the scapular elevation of subjects, which is 

common due to GHJ flexion, will be allowed normally during the vertical flexion motion 

of the ETS-MARSE and there should be no discomfort to the subject if the centre of 

rotation of their shoulder joint is aligned with that of ETS-MARSE. Note that motor-1 is 

responsible for the shoulder joint’s horizontal flexion/extension motion and motor-2 is for 

the vertical flexion/extension motion. 

 

The actuation mechanisms developed for the shoulder joint internal/external rotation 

(1DoF) support part and the forearm motion support part (1DoF) are somewhat complex, 

as it is impossible to place any actuator along the axis of rotation of the upper arm (e.g., 

with the humerus/radius), due to the anatomical configuration of the human arm. Some 

devices use gear mechanisms with a closed circular structure of forearm/upper arm cup 

Figure 2.10 A 7 DoFs ETS-MARSE arm, (right hand side view) 
 

Wrist handle

Motor-1, Shoulder joint 
(Horizontal flexion/extension) 

Upper arm cup

Motor-2, Shoulder joint 
(Vertical flexion/extension)

Motor-3, Shoulder Joint 
(Internal/external rotation) 

          Elbow joint

Forearm cup

Motor-4 

Base

Motor-5, Forearm 
(Pronation/supination)

          Shoulder joint
A

B

D 

C
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(Gopura, Kiguchi and Yang, 2009; Gupta and O'Malley, 2006). However, it is unrealistic 

and inconvenient to insert and remove the arm through a closed circular structure. Other 

devices make use of a complex cable transmission mechanism to assist with forearm 

motion (Frisoli et al., 2009; Perry, Rosen and Burns, 2007). One of the major limitations 

of such cable driven systems is that it delivers undesirable vibration and excessive 

compliance to the system. To deal with this problem, this research introduced an 

innovative concept of power transmission, a combination of a custom-made open-type 

bearing and open type meshing gear assembly (Rahman et al., 2010c), where motion is 

transmitted from an anti-backlash gear (mounted on a motor shaft) to an open type, 

custom-made meshing ring gear that is rigidly attached to the open type upper/forearm 

cup. Details of this transmission mechanism are discussed below. 

  

Link- B

Upper arm cup

 Link-A

 Motor-1 

 Motor-2 

Potentiometer

 Link-D

 Link-C

Figure 2.11 Shoulder motion support part  
(horizontal and vertical flexion/extension motion) 
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A new power transmission mechanism (alternate gear mechanism): 

The transmission mechanism as proposed in this research introduced the concept and the 

development of an open type bearing. Unlike conventional bearings as depicted in Figure 

2.12, this open type bearing makes use of two layers of bearing balls (Figure 2.13), 

therefore it requires two specially designed bearing ball cages. Moreover, it has three 

bearing races (upper race, intermediate race, and lower race, Figure 2.13 and Figure 2.14) 

instead of two as often found in the conventional type of bearing. Figure 2.13 shows the 

intermediate race which is designed to hold stainless steel balls (4mm diameter) on its 

both sides by using the bearing ball cages. The upper and lower race assembly is shown 

in Figure 2.14, where it can be seen that the bearing races were assembled with the upper 

arm or forearm cup. As also depicted in Figure 2.14, the ring gear which is used in 

transmitting power from the actuator is assembled underneath the arm cup. The entire 

bearing assembly is shown in Figure 2.15. Note that the ball bearings are positioned 

between the groove of the intermediate race and the upper/lower races, and act as a 

frictionless rotating mechanism.  

Ball Bearing 

Ball 

Thrust bearing 

Inner race 

Outer race 

Cage 

Upper race 

Lower race 

Figure 2.12 Conventional bearing 
Adapted from Silberwolf (2006) 
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The developed actuation mechanism, which is a combination of an open type gear and 

bearing, is depicted in Figure 2.16, where it can be seen that the actuator (motor) is 

rigidly mounted on the back of the intermediate race. It is the anti-backlash gear which is 

clamped along the motor shaft and transmits the actuator (rotary) motion to the ring gear. 

Since the ring gear is firmly fixed to the arm cup, it rotates the arm cup as well over the 

custom-designed open type bearing. 

 

 

  

Cage 

Intermediate race 

Cage 

Bearing ball 

Figure 2.13 Intermediate race assembly 
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Lower race

Upper race

Dowel pins 

Ring gear

Upper-arm / 
 Forearm cup 

Upper-arm /
 Forearm cup

Figure 2.14 Upper and lower race assembly 

 

 

Ring gear 

Upper arm / forearm cup 

Bearing ball 

Ball cage 
 

Upper race 

 

Lower race 

 

Intermediate race 

Figure 2.15 An open type bearing assembly 
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Anti-backlash gear 

Motor 

Ring gear 

Intermediate race 

Figure 2.16 Actuation mechanism with an open type bearing and a ring gear 

Upper arm cup 
(Moving part) 

Upper arm link

Link-E 

Link-C 

Link-D 

Potentiometer 

Potentiometer

Right Hand Side View Left Hand Side View

Outer circular ring 
(Intermediate race) 

(Fixed part) 

Forearm link

Figure 2.17 Shoulder joint internal/external rotation support part  
(when elbow motor is unplugged from elbow joint) 
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Shoulder motion support part (internal/external rotation) (Rahman et al., 2012d): 

To assist with shoulder joint internal/external rotation, the ETS-MARSE is comprised of 

an upper arm link, a sliding link (link-C), a motor (Maxon EC-45), a potentiometer, and 

an alternate gear mechanism as discussed above (i.e., a custom-made open type bearing, a 

ring gear, and an anti-backlash gear assembly). The upper-arm link, as shown in Figure 

2.17, is hinged with the motor-2 (Figure 2.11) and holds the entire MARSE arm. The link-

C (Figure 2.18) is rigidly fixed with the outer circular ring (i.e., with the intermediate race 

of the bearing) and is able to slide along the upper arm link (Figure 2.18, dotted arrow) so 

that the distance between the upper arm cup and shoulder joint (as well as the distance 

between elbow joint and shoulder joint) may be adjusted to accommodate a wide range of 

users. The open half-circular structure of the upper arm cup allows users to position the 

arm easily, without having to insert the arm through a closed circular structure. As 

depicted in Figure 2.18, the motor-3 (Maxon EC-45) is rigidly mounted on the back of 

Forearm 

Stainless steel ball

Motor-3

Outer circular ring
(Intermediate race)

(Fixed part) 

 

Anti-backlash 
Gear 

Upper arm Link 

Link C 

Figure 2.18 Intermediate race assembly with the upper arm link 
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the intermediate race (i.e., with the fixed outer ring). Figure 2.19 shows the anti-backlash 

gear which is clamped along the motor shaft to transmit the rotary motion to the ring 

gear. As discussed previously, in the development of ‘alternate gear mechanism’, since 

the ring gear is firmly fixed underneath the upper arm cup (Figure 2.19), it is therefore 

responsible for rotation of the upper arm cup over the custom-designed open type 

bearing. 

 

Elbow and forearm motion support part (Rahman et al., 2011b; Rahman et al., 2010c): 

The elbow motion support part is comprised of a forearm link, a fixed link (Link-D), a 

motor (Maxon EC-90) and a potentiometer. As shown in Figure 2.20, link-D acts as a 

bridge between the shoulder joint internal/external rotation support part and the elbow 

motion support part. One end is assembled with the upper-arm cup and the other end 

holds the elbow motor as well as the elbow motion support part. The forearm link as 

Anti-backlash gear 

Upper arm cup 
(moving part) 

Stopper 

Intermediate race 
(fixed part) 

Stopper groove 

Ring gear 

Figure 2.19 Actuation mechanism for shoulder joint internal/external rotation 
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depicted in Figure 2.20 is hinged with the elbow motor at the elbow joint (Figure 2.20) 

and carries the entire forearm motion support part.  

 

 

The forearm motion support part consists of a sliding link (link-E), a motor (Maxon EC-

45), a potentiometer, and an alternate gear mechanism (i.e., a custom made open type 

bearing, a ring gear, and an anti-backlash gear assembly). The sliding link (link-E) is 

rigidly fixed with the intermediate race (i.e., outer circular ring as depicted in Figure 

2.22) and is able to slide along the forearm link (Figure 2.22 dotted arrow) to adjust the 

distance between the forearm strap and the elbow joint (as well as to adjust the distance 

between elbow and wrist joints). The design principle of the forearm motion support part 

is quite similar to that of the shoulder joint internal/external support part. As for the 

Motor-4 
(Elbow joint) 

Shoulder joint internal/external 
rotation support part 

Forearm link 
Link-D 

Forearm motion support part 

Figure 2.20 Elbow motion support part 
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upper-arm cup, the open half-circular structure of the forearm cup allows users to place 

and position their forearm easily, without having to insert the forearm through a closed 

circular structure. The motor (Maxon-EC45) is rigidly mounted on the back of the fixed 

outer circular ring. Figure 2.22 shows the anti-backlash gear, which is clamped along the 

motor shaft to transmit the rotary motion to the ring gear. As also shown in Figure 2.22, 

the ring gear (open type) is firmly fixed to the forearm arm cup and is responsible for 

rotating the forearm arm cup over the custom-designed open type bearing. Note that to 

hold the upper arm/forearm in a proper position, soft arm straps (Figure 2.23) are 

attached to the upper-arm and forearm cups. 

 

  

Stainless steel ball 

Forearm link 

Outer circular ring 
(Intermediate race, 

fixed part)

 Link-E 

Potentiometer 

Figure 2.21 Forearm motion support part (when forearm cup is not assembled) 



42 

 

Figure 2.23 ETS-MARSE with its user 

 Upper arm strap

 Forearm strap

 Link-I

Outer ring  

Forearm cup  

Ring gear 

Groove
Stopper 

Motor 

Anti backlash gear

Intermediate race 

Figure 2.22 Forearm motion support part, showing the gear arrangement and forearm cup 
assembly to the fixed outer ring 
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Wrist motion support part (Rahman et al., 2010b):  

The wrist motion support part (as shown in Figure 2.24) has 2DoFs: one for assisting 

‘radial/ulnar deviation,’ the other for assisting ‘flexion/extension’ motion. To assist in the 

movement of radial/ulnar deviation (at wrist joint), the ETS-MARSE is comprised of a 

fixed link (link-F), a motor (Maxon EC-45), and a potentiometer. Link-F (as shown in 

Figure 2.24) is rigidly fixed with the forearm cup and holds motor-6 (Maxon EC-45) at 

its other end, which corresponds to joint 6 (radial/ulnar deviation) of the ETS-MARSE.  

 

 

The flexion/extension motion support part of the wrist joint consists of three fixed links 

(G, H and I), one sliding link (link-K), a motor (Maxon EC-45), a potentiometer, and a 

wrist handle. As shown in Figure 2.24, link-G is hinged with joint-6 and holds the 

flexion/extension motion support part of the wrist joint. Link-H at its one end is fixed 

with link-G and rigidly holds motor-7 to its other end. It can be seen also from Figure 

Forearm Link 

Link-F 

 Link-G 

Motor-6 

Motor-7

Forearm cup

 Link-H 

Wrist Handle 

 Force Sensor 

 Link-J 

 Link-I

Figure 2.24 Wrist motion support part (2DoFs) 
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2.24 that link-I is hinged to motor-7 and carries the wrist handle on its other end. A 

sliding link (link-J) is positioned in between link-I and the wrist handle, which allows to 

adjust the distance between the wrist joint and the wrist grip. 

 

 

As shown in Figure 2.25, a high linearity 6-axis force sensor (Nano 17, ATI) is 

instrumented underneath the wrist handle to measure the instantaneous reaction force. 

Note that the force sensor is installed within a fixture which is designed in such a way so 

that it can protect the sensor from overloading and/or torque. This signal will be used to 

actuate ETS-MARSE in order to provide active assistance.  

 

The detailed specifications of the ETS-MARSE are summarized in Table 2.5. 

 

Force sensor 

Link-I 

Wrist handle 

Fixture 

Link-J 

Figure 2.25 Force sensor assembly 
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Table 2.5 ETS-MARSE at a Glance 
 

Mass and Inertia* (diagonal terms) Characteristics  

ETS-MARSE 
Arm Segment 

Segment length 
(cm)  

Segment weight 
(kg) 

Moment of Inertia I (kg.m2) 

Ixx Iyy Izz 

Shoulder JointA 14.0 3.47 0.0232 0.0148 0.013 

Upper armB 25 ± 8.85 3.737 0.0233 0.0128 0.020 

ForearmC 26 ± 4.75 2.066 0.0166 0.0100 0.0126 

Wrist - 0.779 0.0029 0.0019 0.0012 

Hand D  9.8 ± 3.55 0.49 0.0010 0.0012 0.0003 

Actuators, Maxon (Brushless) 

Spec EC-90, Flat 90W (Joint-1,2,4) EC-45, 30W  (Joint-3,5-7) 

Nominal Voltage (V) 24 12 

Nominal Speed (rpm) 2650 2860 

Nominal Torque (mNm) 387 59 

Max. Perm. Speed (rpm) 5000 10000 

Torque Const. (mNm/A) 70.5 25.5 

Stall Torque (mNm) 4670 255 

Weight (g) 648 88 

Harmonic Drives 

Spec: CSF-2XH- 
2UH-17-120-F  

(Joint 1,2) 
2XH-14-100-F  

(Joint 4) 
2XH-11-100-F  

(Joint 3,5-7) 

Torque at 2000 rpm (Nm) 24 7.8 5

Repeated Peak Torque (Nm) 54 28 11

Average Torque (Nm) 39 11 8.9

Gear Ratio 120 100 100

Force Sensors, ATI, Nano 17 

Axes: Fx, Fy (±N) Fz (±N) Tx, Ty  (±Nmm) Tz (±Nmm) 

 50 70 500 500
APoint-A to point-B (shoulder joint, Figure 2.10);  BShoulder joint to Elbow (point-C, Figure 2.10);  

CElbow to Wrist (point-D, Figure 2.10); D Wrist / Knuckle II middle 

*The mass and inertia properties of the MARSE were estimated from the CAD modelling using Pro/Engineer software. 
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It can be seen from Table 2.5 that the weight of the ETS-MARSE arm from shoulder joint to 

wrist handle is 7.072 kg (and from point-A (Figure 2.10) to wrist handle is 10.542 kg). 

Compared to the existing exoskeleton devices having at least shoulder and elbow motion 

support parts the developed ETS-MARSE is found to be light in weight. For example, weight 

of the ARMin-III exoskeleton (4DoFs) is 18.775 kg (Nef, Guidali and Riener, 2009), and 

weight of MGA exoskeleton (6DoFs) is 12 kg (Carignan, Tang and Roderick, 2009). 

 

2) Electrical and Electronic Design (Rahman et al., 2011c): 

The electrical and electronic configuration for the ETS-MARSE system is depicted in 

Figure 2.26. It consists of a CompactRIO (NI cRIO-9074), a main board, motor driver 

cards, a real-time PC, a host PC, and actuators.  

 

 

CompactRIO: 

The cRIO-9074 by National Instruments is an integrated system that combines a real-time 

400 MHz processor, 128 MB of DRAM, 256 MB of non-volatile memory, and a 

reconfigurable field-programmable gate array (FPGA) for embedded machine control and 

Host PC
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ADC NI-9205

ADC NI-9205

DAC NI-9264

DIO NI-9403
2

P22 Digital I/O

Relay
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Emergency
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36V
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PWM Servo 
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(ZB12A8)
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Motors Drivers Card
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(ATI,Nano17)
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7
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mExoArm

Force Sensor
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(10K)

Real Time 
PC
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ETS-MARSE System 

 

Figure 2.26 Electrical and electronic configuration 
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data logging. The unit has two Ethernet ports (10/100 Mb/s) and a RS232 port, which is 

used for communication with the host PC and real-time PC via TCP/IP. The input/output 

modules used with cRIO-9074 unit were NI 9205 - analog input module (spec: 16-bit, 32 

channels, ± 10 V); NI 9264 -analog output module, (spec: 16-bit, 16 channels, ± 10 V); 

and NI 9403 -digital I/O module (32 channels). 

 

Main board: 

The main board as shown in Figure 2.26 acts as a motherboard, and is powered by an AC 

120V (60Hz) power supply. A voltage regulator was used to convert the AC supply to 

DC 36V and 10V, as required by its various components. The motherboard routes various 

analog and digital signals from/to the cRIO-9074 from/to the ETS-MARSE system. For 

instance, it routes analog inputs (from the potentiometer and current feedback) to the NI-

9205 module; analog outputs (e.g., motor driver reference voltage) from the NI-9264 

module; and digital outputs (e.g., to activate the motors, relay switch control etc.) from 

the NI-9403 module to the ETS-MARSE system. The board as shown was designed to 

have slots for motor driver cards, only one of which is depicted in Figure 2.26. Note that 

as a safety feature, an emergency stop switch was installed with the board to cut off the 

power in case of emergency. In addition, a 6A safety fuse was also used to protect 

different electrical /electronic components. 

 

Motor driver cards:  

Motor driver cards which carry the motor drivers (ZB12A8) were custom-designed to fit 

in the slots of the main board. The drivers used are type PWM servo amplifiers, specially 

designed to drive brushless DC motors at high switching frequency (33 kHz) (spec: 

reference voltage: ± 15 VDC; analog output: ± 10 VDC; maximum continuous current: ± 

6 A). Note that to double the safety features, 3A safety fuses were installed in each of the 

motor driver cards.  
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Real-Time (RT) PC and host PC:  

In the early stages of our research, the NI cRIO-9074 as shown in Figure 2.26 was used 

for data logging and also to execute the control algorithm (at a maximum of 2.5ms) for a 

4DoFs exoskeleton robot. Because the controller now deals with the dynamics of the 

7DoFs ETS-MARSE, to speed up the execution time an RT-PC (spec: Intel i5 dual core, 

3.66 GHz, 2 GB of RAM, OS: LabView Real-Time 10.02f, Ethernet Chipset Intel 5550) 

was employed to deal with the control algorithm, leaving the tasks of data acquisition and 

internal current loop control to the FPGA, cRIO-9074. Note that the control architecture 

of the control techniques as well as all program codes (I/O communication) were built in 

the LabVIEW environment (National Instruments, USA). The host PC as depicted in the 

schematic (Figure 2.26) is for display purposes (e.g., joint’s position, velocity, torque, 

etc.) only.  

 

Actuators:  

The motors used for the ETS-MARSE are brushless DC motors (ANNEX IX and ANNEX 

X). Harmonic drives are incorporated into the motors in order to increase the torque and 

to reduce the speed of rotation. Detailed specifications of the HD can be found in 

ANNEX XI. 

 

2.4.4 Fabrication 

The entire ETS-MARSE arm was fabricated with aluminum to give the exoskeleton 

structure a relatively light weight. The high stress joint sections such as motor shafts (for 

joint 3, and joint 5) and the bearing cages of the exoskeleton were fabricated in mild 

steel. 

 



 

CHAPTER 3 
 
 

KINEMATICS AND DYNAMICS 

In this chapter, we present the kinematic and dynamic modeling of the ETS-MARSE. The first 

section of this chapter describes the details of the kinematic modeling. Modified Denavit-

Hartenberg (DH) notations were used to develop the kinematic model. The mid section of the 

chapter briefly explains the iterative Newton-Euler method which was used to develop the 

dynamic model of the ETS-MARSE. The chapter ends with a brief discussion on Jacobians, 

which map the joint space velocity with the Cartesian velocity. 

 

3.1 Kinematics 

To rehabilitate and ease human upper limb movement, the ETS-MARSE was modeled based 

on the anatomy and biomechanics of the human upper limb. Modified DH conventions were 

used in developing the kinematic model. The procedure of coordinate frame assignment (link 

frame attachment) and the definition of DH parameters are briefly summarized in the next 

subsection. 

 

3.1.1 Coordinate Frame Assignment Procedure  

There are different ways to assign coordinate frames to the manipulator links. For the ETS-

MARSE we have followed the Denavit-Hartenberg method. (Craig, 2005; Denavit and 

Hartenberg, 1955). The steps are as follows (Hartenberg and Denavit, 1964): 

• assume each joint is 1DoF revolute joint; 

• identify and locate the axes of rotation; 

• label the joint axes ܼ଴, …… , ܼ௡; 
• locate the origin of each link-frame (Oi) where the common perpendicular line between 

the successive joint axes (i.e., ܼ௜ିଵ	and	ܼ௜) intersects. If the joint axes are not parallel, 

locate the link-frame origin at the point of intersection between the axes; 
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• locate the Xi axis (at link frame origin Oi) as pointing along the common normal line 

between the axes ܼ௜ିଵ	and	ܼ௜. If the joint axes intersect, establish Xi in a direction  

normal to the plane containing both axes (ܼ௜ିଵ	and	ܼ௜); 
• establish the Yi axis through the origin Oi to complete a right-hand coordinate system. 

 

 

3.1.2 Definition of D-H Parameters 

A link of a robot can be described by four parameters (two parameters for describing the link 

itself and other two for describing the link’s relation to a neighboring link) if we assign the 

co-ordinate frames as described above (Denavit and Hartenberg, 1955). These parameters are 

known as Denavit-Hartenberg (DH) parameters. The definitions of the DH parameters are 

given below (Hartenberg and Denavit, 1964): 

 
 

Figure 3.1 Coordinate frame assignment 
Adapted from Craig (2005) 

Link	 ݅ − 1

1−݅ܽ݅ߠ 1−݅ߙ

Axis  ݅ − 1 

Axis  ݅ 
Link  ݅ 

෡ܺ ݅ ܽ݅
෡ܼ݅ ෡ܻ݅ 

෡ܺ ݅−1 

෡ܻ݅−1 

݀݅

෡ܼ݅−1 
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Link Length (ai) : the length measured along Xi, from axis Zi to axis Zi+1; 

Link Twist (αi)   : the angle measured about Xi, from axis Zi to axis Zi+1; 

Link Offset (di)  : the distance measured along the axis Zi; from Xi-1 to Xi, and 

Joint Angle (θi)  : the angle measured about Zi, from Xi-1 to Xi  

 

To obtain the DH parameters, we assume that the co-ordinate frames (i.e., the link-frames 

which map between the successive axes of rotation) coincide with the joint axes of rotation 

and have the same order, i.e., frame {1}	coincides with joint 1, frame {2} with joint 2, and so 

on.  

 

As shown in Figure 3.2, the joint axes of rotation of the ETS-MARSE corresponding to that of 

the human upper limb are indicated by dark black arrow heads (i.e., Zi). In this model, joints 
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Figure 3.2 Link frame attachments to the ETS-MARSE 
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1, 2, and 3 together constitute the shoulder joint, where joint 1 corresponds to horizontal 

flexion/extension, joint 2 represents vertical flexion/extension, and joint 3 corresponds to 

internal/external rotation of the shoulder joint. The elbow joint is located at a distance de 

(length of humerus) apart from the shoulder joint. Note that joint 4 represents the 

flexion/extension of the elbow joint and joint 5 corresponds to pronation/supination of the 

forearm. As depicted in Figure 3.2, joints 6 and 7 intersect at the wrist joint, at a distance dw 

(length of radius) from the elbow joint, where joint 6 corresponds to radial/ulnar deviation, 

and joint 7 to flexion/extension.  

 

The modified DH parameters corresponding to the placement of the link frames (in Figure 

3.2) are summarized in Table 3.1. These DH parameters are used to get the homogeneous 

transfer matrix, which represents the positions and orientations of the reference frame with 

respect to the fixed reference frame. It is assumed that the fixed reference frame {0} is 

located at distance ds apart from the first reference frame {1}. 
 

  

Table 3.1 Modified Denavit-Hartenberg parameters 
 

Joint (i) αi-1 di ai-1 θi 

1 0 ds 0 θ1 

2 -π/2 0 0 θ2 

3 π/2 de 0 θ3 

4 -π/2 0 0 θ4 

5 π/2 dw 0 θ5 

6 -π/2 0 0 θ6 - π/2 

7 -π/2 0 0 θ7 

where, αi-1 is the link twist, ai-1 corresponds to link length, di stands for link 

offset, and θi is the joint angle of the ETS-MARSE. 



53 

We know that the general form of a link transformation that relates frame {݅} relative to the 

frame {݅ − 1} (Craig, 2005) is:  

 ܶ௜௜ିଵ = ൦ ܴ௜௜ିଵ ଷ×ଷ ܲ௜௜ିଵ ଷ×ଵ
0ଵ×ଷ 1 ൪ (3.1)

where, ܴ௜௜ିଵ  is the rotation matrix that describes frame {݅} relative to frame {݅ − 1} and can 

be expressed as: 

and, ܲ௜௜ିଵ 	 is the vector that locates the origin of frame {݅} relative to frame {݅ − 1} and can 

be expressed as: 

Using Equations (3.1) to (3.3) the individual homogeneous transfer matrix that relates two 

successive frame (of Figure 3.2) can be found as: 

  

 ܴ௜௜ିଵ = ൥ cos ௜ߠ −sin ௜ߠ 0sin ௜ߠ cos ௜ିଵߙ cos ௜ߠ cos ௜ିଵߙ − sin ௜ିଵsinߙ ௜ߠ sin ௜ିଵߙ cos ௜ߠ sin ௜ିଵߙ cos ௜ିଵߙ ൩ (3.2)

 ܲ௜௜ିଵ = [ܽ௜ିଵ ݏ− ௜ିଵߙ ݀௜ ܿ ௜ିଵߙ ݀௜]் (3.3)

 

ܶଵ଴ = ൦cos ଵߠ −sin ଵߠ 0 0sin ଵߠ cos ଵߠ 0 00 0 1 ݀௦0 0 0 1 ൪, ܶଶଵ = ൦ cos ଶߠ −sin ଶߠ 0 00 0 1 0−sin ଶߠ −cos ଶߠ 0 00 0 0 1൪ 
 

ܶଷଶ = ൦cos ଷߠ −sin ଷߠ 0 00 0 −1 −݀௘sin ଷߠ cos ଷߠ 0 00 0 0 1 ൪, ܶସଷ = ൦ cos ସߠ −sin ସߠ 0 00 0 1 0−sin ସߠ −cos ସߠ 0 00 0 0 1൪ 
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The homogenous transformation matrix that relates frame {7} to frame {0} can be obtained 

by multiplying individual transformation matrices. 

 

The single transformation matrix thus found from Equation (3.5) represents the positions and 

orientations of the reference frame attached to the wrist joint (axis 7) with respect to the fixed 

reference frame {0}. 

 

3.2 Inverse Kinematics 

The inverse kinematics solution for a manipulator is computationally costly compared to 

direct kinematics. Due to the nonlinear nature of the equations to solve, it is often hard to 

find a closed form solution; sometimes multiple solutions may also exist (Siciliano, 

Sciavicco and Villani, 2009). Moreover, an inverse kinematics problem for a redundant 

manipulator is much more complex since it gives infinite solutions. We know that, for a 

manipulator having a square Jacobian, joint velocities can be found from the following 

relation (Craig, 2005): 

 

ܶହସ = ൦ܿݏ݋ ହߠ ݊݅ݏ− ହߠ 0 00 0 −1 −݀௪݊݅ݏ ହߠ ݏ݋ܿ ହߠ 0 00 0 0 1 ൪, ܶ	଺ହ = ൦ ݏ݋ܿ ଺ߠ ݊݅ݏ− ଺ߠ 0 00 0 1 ݊݅ݏ−0 ଺ߠ ݏ݋ܿ− ଺ߠ 0 00 0 0 1൪,	
	
ܶ଻଺ = ൦ ݏ݋ܿ ଻ߠ ݊݅ݏ− ଻ߠ 0 00 0 1 ݊݅ݏ−0 ଻ߠ ݏ݋ܿ− ଻ߠ 0 00 0 0 1൪. 

(3.4)

 ܶ଻଴ = [ ܶ. ܶଶଵ ܶ.ସଷ ܶହସ .ଵ଴ ܶ଺ହ . ܶ଻଺ ] (3.5)

ሶߠ  = ሶݒ (ߠ)ଵିܬ  (3.6)
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where (ߠ)ܬ is ݊ × ݊ Jacobian matrix, ߠሶ  is ݊ × 1 joint space velocity vector, and ݒሶ  is 6 × 1 

Cartesian velocity vector. Therefore, inverse kinematic solutions can be obtained easily by 

simply integrating the joint velocities. 

 

The ETS-MARSE is a redundant manipulator; therefore it is not possible to find closed form 

solutions. Moreover, its Jacobian is not square, therefore we are not able to directly use 

Equation (3.6) to find joint positions. As an alternative approach, the inverse kinematic 

solution of the ETS-MARSE was obtained by using the pseudo inverse of Jacobian matrix (ߠ)ܬ (Siciliano, Sciavicco and Villani, 2009). For a redundant manipulator, the Equation 

(3.6) can be reformulated as (Siciliano, Sciavicco and Villani, 2009): 

where ܬற(ߠ) is the pseudo inverse generalized, and can be expressed as: 

 

3.3 Singularity Analysis  

The ETS-MARSE arm will be in a singular configuration when it is straight down (ߠଶ = 0୭, 

and/or ߠସ = 0୭, and/or ߠ଺ = −90୭) by the side (i.e., a singularity will occur when the axes 

of rotation of joint-1 (Z1), and joint-3 (Z3) , and/or joint-5 (Z5), and/or joint-7 (Z7) are  

aligned with each other). Note that the joint-space based control algorithms (that includes 

both linear and nonlinear control techniques e.g., PID control, computed torque control, 

sliding mode control) do not require a Jacobian matrix or inversion of a Jacobian matrix, 

therefore singularity is not a big issue in this case. On the other hand, Cartesian based control 

approaches, which are often used to maneuver the manipulator in a straight line motion, 

require Jacobian or inverse Jacobian matrices; therefore for this type of control the 

singularity must be properly dealt with. Interestingly to replicate these type of trajectories as 

a rehabilitative exercises e.g., to follow a square trajectory over the surface of a table, joints 

2, 4 and 6 are usually far away from the singular configuration of the ETS-MARSE model. 

ሶߠ  = ሶݒ(ߠ)றܬ  (3.7)

(ߠ)றܬ  = ൯ିଵ (3.8)(ߠ)்ܬ(ߠ)ܬ൫(ߠ)்ܬ
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Note that anatomically rotation of joint-6 is limited to +20° to -25°. Moreover, as a safety 

measure when using Cartesian based control, a singularity could be easily avoided by 

limiting the position of joint-2, and joint-4 to more than 10° (i.e., ߠଶ, and	ߠସ ≥ 	10୭).  

 

3.4 Dynamics 

The studies of dynamics discuss the manipulator motions and the forces and torque that cause 

them. Among the various methods found in literature the iterative Newton-Euler formulation 

and the Lagrangian formulation are widely used to develop the dynamic model of a 

manipulator. Note that for a 6DoFs manipulator the Newton-Euler approach is 100 times 

(computationally) more efficient compared to the Lagrangian approach (Craig, 2005). 

Therefore, we have used the iterative Newton-Euler method (Luh, Walker and Paul, 1980) to 

develop the dynamic model of the ETS-MARSE. A brief overview of this method is given 

below. 

 

Iterative Newton-Euler Formulation: 

In this approach, the manipulator’s joint torque is computed iteratively using Newton’s and 

Euler’s equations. For a rigid body manipulator, Newton’s and Euler’s equations can be 

expressed as follows: 

 

Newton’s Equation: 

where ܨ is the force acting at the centre of mass, ݉, of a rigid body, therefore moving the 

mass at acceleration ݒሶ஼. 
 

Euler’s Equation: 

ܨ  = ሶ஼ (3.9)ݒ݉

 ܰ = ஼ܫ ሶ߱ + ߱ × ஼ܫ ߱ (3.10)



57 

where ܰ is the moment acting on a rigid body having inertia tensor ܫ஼  at its centre of mass; 

and therefore causing the motion of the rigid body with angular velocity and acceleration, ߱, ሶ߱  respectively. 

 

The algorithm to compute joint torques (߬௜) as well as to derive the dynamic model of a 

manipulator includes the following steps:  

 

• Outward iterations: 

Step 1: compute the link velocities (angular) and accelerations (linear and angular) 

iteratively from link 1 out to link n. 

Step 2: compute inertial force and torque (acting at the centre of mass) of each link using 

Newton-Euler equations. 
 

• Inward iterations: 

Step 3: compute forces and torques of interaction and joint recursively from link n back 

to link 1. Complete derivation of Newton-Euler formulation can be found in (Craig, 

2005; Luh, Walker and Paul, 1980). 

 

The dynamic equation of a rigid body manipulator derived from the Newton-Euler 

formulation can be written in the following form: 

where (ߠ)ܯ is the ݊ × ݊ mass matrix of the manipulator, ܸ൫ߠ, ݊ ሶ൯ is anߠ × 1 vector of 

centrifugal and coriolis terms, and (ߠ)ܩ is an ݊ × 1 vector of gravity terms. Adding friction 

to the model, the dynamic equation becomes: 

 ߬ = ሷߠ(ߠ)ܯ + ܸ൫ߠ, ሶ൯ߠ + (3.11) (ߠ)ܩ

 ߬ = ሷߠ(ߠ)ܯ + ܸ൫ߠ, ሶ൯ߠ + (ߠ)ܩ + ,ߠ൫ܨ ሶ൯ (3.12)ߠ
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where ܨ൫ߠ, ሶ൯ߠ ∈ ℝ଻
 is the vector of nonlinear coulomb friction and can be expressed by the 

following relation. 

 

Identification of ETS-MARSE Parameters: 

The mass, centrifugal & coriolis terms, and gravity terms ((ߠ)ܯ, ܸ൫ߠ, ,ሶ൯ߠ and	(ߠ)ܩ) in 

Equation (3.11) were computed (symbolically) in MATLAB (The Mathworks, USA). To 

verify and validate the MATLAB outputs the same computation was performed using the 

HEMERO robotic toolbox (Maza and Ollero, 2001), a toolbox for MATLAB/Simulink. Note 

that both approaches gave exactly the same results. For the ETS-MARSE as depicted in 

Figure 3.2, the location of centre of mass can be identified as: 
 ஼ܲଵଵ = [0 0 ଵ]், ஼ܲଶଶݖ− = [0 ଶݕ− 0]், ஼ܲଷଷ = [0 0 0]் 

 ஼ܲସସ = [0 ସݕ− 0]், ஼ܲହହ = [0 0 0]், ஼ܲ଺଺ = [0 ଺ݕ− 0]், and 

 ஼ܲ଻଻ = ଻ݔ] 0 0]்  

 

3.5 Jacobians  

In robotics, we generally use Jacobians (ߠ)ܬ to relate joints’ velocities to the Cartesian 

velocities of the end-effector (Craig, 2005). For instance, 

For a ݊ DoFs robot, the Jacobian is 6 × ݊ matrix, ߠሶ  is ݊ × 1 vector, and ݒ଴  is 6 × 1 vector. 

This 6 × 1 Cartesian velocity vector is comprised of a 3 × 1 linear velocity vector (ݒ) and 3 × 1 rotational velocity vector (߱). 

,ߠ൫ܨ  ሶ൯ߠ = ܿ. ሶ൯. (3.13)ߠ൫݊݃ݏ

଴ߥ  = ଴ܬ ሶߠ(ߠ)  (3.14)
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The Jacobian of ETS-MARSE was computed in MATLAB/Simulink (The Mathworks, USA). 

Note that Jacobians of any dimension can be defined. The number of rows equals the number 

of DoFs in the Cartesian space being considered. The number of columns in a Jacobian is 

equal to the number of joints for the manipulator. 

 

 

଴ߥ  = ቈ ଴߱଴ݒ ቉. (3.15)





 

CHAPTER 4 
 
 

CONTROL AND SIMULATION 

This chapter focuses on the different control techniques (such as PID, Computed Torque 

Control, Sliding Mode Control with Exponential Reaching Law, and Compliance Control 

with Gravity Compensation) which were employed to maneuver the ETS-MARSE to follow a 

reference trajectory.  

 

4.1 PID Control 

The PID control1 technique is the most widely used control technique for industrial 

applications (Craig, 2005). It is simple in design and efficient in computation. Moreover, it is 

considered a robust control technique. The general layout of the PID control approach is 

depicted in Figure 4.1. The joint torque commands of the ETS-MARSE can be expressed by 

the following equation: 

where ߠௗ, ߠ ∈ ℝ଻ are the vectors of desired and measured joint angles respectively,  ߠௗሶ , ሶߠ ∈ ℝ଻are the vectors of desired and measured joint velocities respectively, KP, KV, KI are 

the diagonal positive definite gain matrices, and ߬ ∈ ℝ଻ is the generalized torque vector. Let 

the error vector E and its derivative be: 

Therefore, this equation (4.1) can be re-formulated as an error equation: 

 

                                                 
 

1 Passive arm movements and exercises are usually performed very slowly compared to the natural speed of 
arm movement. As first step, therefore, we implemented PID control techniques. 

 ߬ = ௗߠ)௉ܭ − (ߠ + ሶௗߠ௏൫ܭ − ሶ൯ߠ + ூܭ න(ߠௗ − (4.1) ݐ݀(ߠ

ܧ  = ௗߠ − ;ߠ ሶܧ = ௗሶߠ − ሶߠ  (4.2)
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The relation (4.3) is decoupled, therefore individual torque command for each joint would be 

as follows. 

where ݁௜ = 	ௗ೔ߠ − ௜ߠ ⋯ (݅ = 1, ,௜ߠ ;(7⋯,2   are the measured and desired trajectory for	ௗ೔ߠ	

joint i respectively, and  ܧሶ = [݁ଵሶ ݁ଶሶ ⋯ ݁଻ሶ ௗߠ	 ,்[ = ௗభߠ] ௗమߠ ⋯ ߠ	 ,்[ௗళߠ = ଵߠ] ଶߠ ⋯ ௉ܭ ;்[଻ߠ = ௉భܭ]݃ܽ݅݀ ௉మܭ ⋯ ௏ܭ ,்[௉ళܭ = ௏భܭ]݃ܽ݅݀ ௏మܭ ⋯ ூܭ ௏ళ]், andܭ = ூభܭ]݃ܽ݅݀ ூమܭ ⋯  .்[ூళܭ

 ߬ = ܧ௉ܭ + ሶܧ௏ܭ + ூܭ නܧ (4.3) ݐ݀

 ߬௜ = ௉೔݁௜ܭ + ௏೔݁పሶܭ + ூ೔ܭ න ݁௜ (4.4) ݐ݀

KP KV 

Σ 

Σ 

Σdθ

dθ
E

E

+ −

−

+

++

KI 

 Edt

+

θ

τ

θ

Figure 4.1 Schematic diagram of PID control 
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Simulation with PID: 

Simulations were carried out in the SIMULINK environment (The Mathworks, USA). Figure 

4.2 shows the results of the simulation that was performed to highlight the tracking 

performance of the controller for each joint movement (of the MARSE). As depicted in 

Figure 4.2, the trajectory began with shoulder joint vertical flexion (joint-2) up to 90°. Then, 

maintaining that position, shoulder joint horizontal flexion/extension (joint-1) movements 

were performed followed by shoulder joint extension to 0°. The exercise again initiates with 

elbow joint (joint-4) flexion up to 120°  followed by elbow extension to 90°, and then while 

maintaining that position, shoulder joint internal/external rotation (joint-3), forearm 

pronation/supination (joint-5), wrist joint radial/ulnar deviation (joint-6), and wrist joint 

flexion/extension (joint-7) movements were performed. The top-most plots of Figure 4.2 

compare the desired joint angles, also known as desired trajectories (dotted lines) to 

measured joint angles, often known as measured trajectories (solid lines). Note that the 

desired trajectories and associated velocities were generated using the cubic polynomial 

approach (Craig, 2005). Intermediate plots of Figure 4.2 show the error as a function of time 

Figure 4.2 Simulated results with PID controller showing trajectory tracking for individual 
joint movement 
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(i.e., deviation between desired and measured trajectories). It is obvious from these plots that 

the controller’s performance is excellent, as maximum tracking errors are found to be less 

than 2°. Generated joint torque corresponding to the trajectory are plotted in the bottom row.  

 

Note that the control gains used for the simulation were found by trial and error, and are as 

follows: ܭ௉ = ݀݅ܽ݃[175 1000 175 200 250 175 ௏ܭ ,[175 = ݀݅ܽ݃[0.5 0.5 0.5 0.5 0.5 0.5 0.5], and ܭூ = ݀݅ܽ݃[2 100 2 15 2 2 2]. 
 

4.2 Compliance Control with Gravity Compensation 

The gravity model of a manipulator is often added to the control law to realize the simple 

model based control (Craig, 2005) as well as to minimize the static position error. One of the 

existing techniques of gravity compensation is the addition of a gravity model with a control 

law, such as with a PID control law as found in (Craig, 2005; Yang et al., 2011). De Luca et 

al. (2005) proposed a similar technique for the gravity compensation but with the PD control 

law. Both approaches mentioned above work on the stiff position control which is sometimes 

the cause of an end-effector being jammed or damaged when it interacts with the 

environment. As a solution to this problem, Salisbury (1980), proposed an active stiffness 

control technique where the position gain (Kp) of a joint based control system was modified 

to provide some stiffness to the end-effector along the Cartesian degree of freedom (Craig, 

2005; Salisbury, 1980). Later, Craig (2005) implemented this concept with a PD control law, 

where the position gain of the controller was modified as proposed by Salisbury (1980). 

However, in this thesis, we propose a modified version of compliance control technique that 

combines the concept of softening position gains (Salisbury, 1980) and the gravity weight 

compensation (Craig, 2005). Therefore, the gravity model of the ETS-MARSE was included 

in the control law. The general layout of the compliance control technique is depicted in 

Figure 4.3. Unlike the compliance technique suggested by Salisbury (1980) and Craig 
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(2005), we have added an integral term to obtain a better tracking performance as well as to 

minimize the steady state error.  

 

In this control scheme, the position gain (Kp) of the Equation (4.3), is modified to provide 

some stiffness to the end-effector along the Cartesian degree of freedom (Craig, 2005; 

Salisbury, 1980). We know that the stiffness characteristics of a spring can be expressed by 

the following equation. 

where ∆ݔ ∈ ℝ଺×ଵ is the generalized displacement vector (consists of three ℝଷ×ଵ orthogonal  

translation vector and three infinitesimal rotations ℝଷ×ଵ about the orthogonal axis (Salisbury, 

ܨ ,((1980 = [ ௫݂ ௬݂ ௭݂ ߬௫௬ ߬௬௭ ߬௭௫]் ∈ ℝ଺×ଵ is the force and torque vector, and 	ܭ௣௫ ∈ ℝ଺×଺ is the positive definite diagonal matrix known as spring constant having three 

linear stiffnesses in X, Y, and Z directions followed by three rotational stiffnesses in XY, YZ 

and ZX planes.  

 

Using the definition of Jacobian (Schilling, 1990) we may write: 

where (ߠ)ܬ ∈ ℝ଺×௡ is the manipulator Jacobian matrix, and ݀ݔ,  represents the ߠ݀

infinitesimal displacement of tool and joints, respectively. 

 

Now, if the tool (end-effector) deflection, ∆ݔ, and corresponding joint deflection ∆ߠ are 

small enough, i.e., approaching infinitesimal, then we can equate ∆ݔ with ݀ݔ, and ∆ߠ with ݀ߠ (Schilling, 1990), and thus equation (4.6) can be re-written as: 

Combining relations (4.5) and (4.7), we have 

ܨ  = (4.5) ݔ∆௣௫ܭ

ݔ݀  = (4.6) ߠ݀(ߠ)ܬ

ݔ∆  = (4.7) ߠ∆(ߠ)ܬ
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Therefore, considering a static force F applied to the end-effector, the joint torques can be 

computed easily by: 

where Ks is the joint space stiffness matrix. Note that the Jacobian is written here in the end-

effector frame which transforms the Cartesian stiffness to the joint space stiffness. Therefore, 

equation (4.9) represents the required joint torques (߬) that should be applied due to a change 

of joint angles (∆ߠ) so that the end-effector behaves as a Cartesian spring (in 6 DoFs), of 

which the spring constant is denoted as	ܭ௣௫ ∈ ℝ଺×଺ (Salisbury, 1980). 

ܨ  = (4.8) ߠ∆(ߠ)ܬ௣௫ܭ

 ߬ = ܨ்(ߠ)ܬ = ᇩᇭᇭᇭᇪᇭᇭᇭᇫ௄ೞ(ߠ)ܬ௣௫ܭ்(ߠ)ܬ
(4.9) ߠ∆
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Figure 4.3 Schematic diagram of compliance control with gravity compensation 
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The control law as seen from the schematic (Figure 4.3) can be expressed by the following 

relation: 

where	(ߠ)ܩ = ൫߲ ௚ܲ(ߠ)/߲ߠ൯்is the .	݊ × 1 gravitational vector, and ௚ܲ(ߠ) is the potential 

energy due to gravity (Craig, 2005).  

 

Comparing equations (4.3) and (4.10), it is evident that control law for the developed 

compliance control technique is quite similar to the joint based position controller, except for 

the position gain (Kp, of equation (4.3)) which is modified to provide some stiffness to the 

end-effector so that it exhibits some spring characteristics along the Cartesian degree of 

freedom (Craig, 2005; Salisbury, 1980).  

 

Note that the control gains KP, KV, KI of PID control and Kpx, Kv, Ki of compliance control are 

positive definite matrices. A proper choice of these matrices ensures the stability of the 

system (Alvarez-Ramirez, Cervantes and Kelly, 2000; Rocco, 1996). 

 

4.3 Computed Torque Control (CTC) 

To realize better tracking performance of the ETS-MARSE, the dynamic model of the MARSE 

(as well as dynamic model of the human upper limb) needs to be included in the control law. 

Next, we therefore implemented a nonlinear computed torque control (CTC) technique. Its 

control law includes both the human arm and MARSE’s dynamic model. Note that human 

arm was modeled as purely viso-elastic (i.e., elastic/viscous behavior of arm was ignored). 

 

The dynamic behavior of the ETS-MARSE can be expressed by the well-known rigid body 

dynamic equation as:  

 ߬ = ᇩᇭᇭᇭᇪᇭᇭᇭᇫ௄ೞ(ߠ)ܬ௣௫ܭ்(ߠ)ܬ ܧ + ሶܧ௩ܭ + ௜ܭ නܧ ݐ݀ + (4.10) (ߠ)ܩ

ሷߠ(ߠ)ܯ  + ܸ൫ߠ, ሶ൯ߠ + (ߠ)ܩ + ,ߠ൫ܨ ሶ൯ߠ = ߬ (4.11)
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where ߠ ∈ ℝ଻ is the joint variables vector, ߬	 is the generalized torque vector, (ߠ)ܯ ∈ ℝ଻×଻			is the inertia matrix, ܸ൫ߠ, ሶ൯ߠ ∈ ℝ଻ is the coriolis/centrifugal vector, (ߠ)ܩ ∈ ℝ଻ is the gravity vector, and ܨ൫ߠ, ሶ൯ߠ ∈ ℝ଻
 is the friction vector. Note that the 

friction vector is modeled as a nonlinear coulomb friction, and can be expressed as: 

where c is the coulomb-friction constant. Equation (4.11) can be written as: 

  .is symmetrical and positive definite (ߠ)ܯ always exists since (ߠ)ଵିܯ

 

The layout of the modified computed torque control technique is depicted in Figure 4.4. 

Unlike the conventional computed torque control approach, here we have added an integral 

term to have a better tracking performance and to compensate the trajectory tracking error 

 ߬௙௥௜௖௧௜௢௡ = ,ߠ൫ܨ ሶ൯ߠ = ܿ. ሶ൯ (4.12)ߠ൫݊݃ݏ

ሷߠ  = ,ߠ൫ܸൣ(ߠ)ଵିܯ− ሶ൯ߠ + (ߠ)ܩ + ,ߠ൫ܨ ሶ൯൧ߠ + (4.13) ߬(ߠ)ଵିܯ
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that usually occurs due to imperfect dynamic modeling, parameter estimation, and also for 

external disturbances. The control torque in Figure 4.4 can be written as: 

From relations (4.11) and (4.14), we may write: 

where	ߠௗ, ,ሶௗߠ and	ߠሷௗ are the desired position, velocity and acceleration, respectively, and Kp, 

Kv, and Ki diagonal positive definite matrices. Let the error vector E and its derivative be: 

Therefore, equation (4.15) can be rewritten in the following form:  

where the control gains Kp, Kv, and Ki	  are positive definite matrices. Therefore, a proper 

choice of these matrices ensures the stability of the system. 

  

 
߬ = (ߠ)ܯ ൤ߠௗሷ + ሶௗߠ௩൫ܭ − ௗߠ)௣ܭ+ሶ൯ߠ − (ߠ + ௜ܭ න(ߠௗ − ൨ݐ݀(ߠ + ܸ൫ߠ, +ሶ൯ߠ (ߠ)ܩ + ,ߠ൫ܨ ሶ൯ (4.14)ߠ

ሷߠ  = ௗሷߠ + ሶௗߠ௩൫ܭ − ௗߠ)௣ܭ+ሶ൯ߠ − (ߠ + ௜ܭ න(ߠௗ − (4.15) ݐ݀(ߠ

ܧ  = ௗߠ − ;ߠ ሶܧ = ௗሶߠ − ሶߠ ሷܧ , = ௗሷߠ − ሷߠ  (4.16)

ሷܧ  + ሶܧ௩ܭ + ܧ௣ܭ + ௜ܭ නܧ ݐ݀ = 0 (4.17)
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Simulation with CTC (Rahman et al., 2011e): 

To produce dynamic simulations, upper-limb parameters such as arm lengths (i.e., upper-

arm, forearm, and hand), mass of different segments (e.g., forearm) and inertia parameters, 

were estimated according to the upper limb properties of a typical adult (Rahman et al., 

2011e; Winter, 1990). 

 

Simulations were carried out to maneuver the MARSE to follow pre-programmed trajectories 

that correspond to recommended passive rehabilitation protocol (Mary and Mark, 2004; 

Physical Therapy Standards, 2011; Stroke Rehab Exercises, 2010).  

 

Shoulder joint movements: 

Figure 4.5 shows the simulation results of shoulder joint vertical flexion/extension motion 

(i.e., passive forward elevation) where the MARSE is supposed to lift the subject’s arm (from 

the initial position, i.e., all joint angle at 0°) to a specific position over the head (e.g., in 

Figure 4.5a, the elevation was set at 115°), hold that position for a few seconds (e.g., in 

Figure 4.5a, 3s) and then slowly move the joint back to its initial position. The topmost plot 

of Figure 4.5 compares the desired joint angles (or reference trajectories, dotted line) to 

measured joint angles (or measured trajectories, solid line). The intermediate plot of Figure 

4.5 shows the error as a function of time (i.e., deviation between desired and measured 

trajectories). It can be seen (Figure 4.5a) that the tracking error was quite small (<0.1°) and 

that the most noticeable one was the steady state error (i.e., when MARSE is maintaining the 

position at 115° against gravity) which lies below and/or near around 0.01°. The generated 

joint torque corresponding to the trajectory is plotted in the bottom row of Figure 4.5a. 
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Figure 4.5b shows the same exercise but some perturbations (10% of maximum joint torque 

as found in Figure 4.5a) were added, as apparent from three spikes (enclosed in orange dotted 

circle) from bottom row of Figure 4.5b. Adding sudden perturbation did not disturb the 

system, and the tracking performance of the controller was also very good, with tracking 

error less than 0.5°. Further, the system showed some amount of compliance, which is 

desirable for this kind of robot-assisted therapeutic system. 
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Figure 4.5 Passive rehabilitation exercise, shoulder joint vertical flexion/extension 
(a) Passive forward elevation considering perfect estimation of dynamic parameters 
(of human upper-limb) (b) Passive forward elevation of shoulder joint where some 

perturbations were added to disturb the system 
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Figure 4.6 shows abduction/adduction motion (Figure 2.4) where a coordinated movement of 

shoulder horizontal and vertical flexion/extension motion were performed. Again, the 

tracking performance of the controller was excellent, with tracking error less than 0.5° and 

the steady state position error below 0.010. Note that also in this case, the perturbation to the 

system (in the form of noise) was set at 10% of maximum joint torque.  
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Figure 4.6 Shoulder joint abduction/adduction 
(a) Shoulder joint vertical flexion/extension (0°-90°) (b) Shoulder joint horizontal 

flexion/extension (0°-90°) 
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A coordinated movement of the elbow (flexion/extension) and shoulder joint 

internal/external rotation is depicted in Figure 4.7. The exercise began with elbow flexion, 

followed by shoulder joint internal/external rotation (Figure 2.3) while maintaining the elbow 
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Figure 4.7 Cooperative movement of elbow and shoulder joint  
(a) Elbow joint`s movement where MARSE is supposed to flex from its initial position up 

to an angle 90°, and finally maintain that position against gravity  
(b) Shoulder joint internal/external rotation 
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at 90°. As for previous tracking simulations, Figure 4.7 also demonstrates the good 

performance of the controller, with error limited to less than 0.25°. The 3rd row of the plots 

displays velocity tracking, where it can be seen that the measured velocity (solid line) 

overlaps with the desired velocity (dotted line), thus demonstrating the excellent performance 

of the controller with respect to both position and velocity tracking. 
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Figure 4.8 Passive arm therapy, a co-operative movement of forearm and elbow joint motion
(a) Elbow joint, flexion/extension (the exercise began with elbow flexion, then repetitive 

pronation/supination was performed (Figure 4.8b))  
(b) Repetitive movement of forearm (pronation/supination) 
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Elbow and forearm movements: 

Figure 4.8 shows a cooperative movement of both the elbow and the forearm. As shown in  

Figure 4.8a, the exercise began with elbow flexion, then repetitive pronation/supination was 

performed (Figure 4.8b); finally the exercise ends with the extension of the elbow to 0° 

(Figure 4.8a). Figure 4.8 also demonstrates the good performance of the controller, where 

measured trajectories overlapped with the reference trajectories, with the error in tracking 

limited to less than 1°.  
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Wrist joint movements: 

A simulation of recommended passive rehabilitation exercises involving movements of the 

wrist joint (Physical Therapy Standards, 2011) are depicted in Figure 4.9 and Figure 4.10. 

The objective of these exercises is to provide radial/ulnar movement (Figure 4.9) and 

flexion/extension motion of the wrist joint (Figure 4.10), while maintaining the elbow at 90°. 

It is also obvious from these plots that the tracking error was quite small since it lies below 
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Figure 4.9 Repetitive movement of wrist joint (radial/ulnar deviation) while elbow 
maintaining steady position at 90° 

(a) Elbow flexion at 90° (b) Radial/ulnar deviation 
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and/or near 0.25° and the steady state error was even less than 0.1°. 

 

For all tasks shown in Figure 4.5 through Figure 4.10, the maximum tracking deviation was 

below 1°, and for all cases the steady state error was always less than 0.1°. Simulation results 

thus validate the developed model and also evaluate the performance of the computed torque 

control technique with respect to trajectory tracking. Note that the control gains used for this 

control are as follows: 
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Figure 4.10 Repetitive movement of wrist joint (flexion/extension) while elbow maintaining 
steady position at 90° 

(a) Elbow flexion at 90° (b) Wrist joint flexion/extension 
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௉ܭ = ݀݅ܽ݃[10 10 10 10 10 10 10], and ܭ௏ = ݀݅ܽ݃[5 5 5 5 5 5 5]. 
  

4.4 Modified Sliding Mode with Exponential Reaching Law (mSMERL) 

In this section, the theoretical structure of the mSMERL is presented for the dynamic 

trajectory tracking of the ETS-MARSE. We first define the control algorithm by conventional 

sliding modes, and then modify the algorithm by exponential reaching law and adding 

boundary layer neighboring to the sliding surface. The general layout corresponding to the 

mSMERL is depicted in Figure 4.11. 

 
The first step in the sliding mode control is to choose the sliding (or switching) surface ܵ in 

terms of the tracking error. Let the tracking error for each joint is defined as:  
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Figure 4.11 Schematic diagram of sliding mode ERL in combination with boundary layer 
neighboring to the sliding surface 
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and the sliding surface as:  

where ߠ௜ௗ	is the desired trajectory for joint ݅	, and ௜ܵ is the sliding surface of each DoF.  

 
Let	Σ = [ ଵܵ ܵଶ ⋯ ܵ௠]் be the sliding surface for the ETS-MARSE. Therefore, we have: 

Equation (4.20) is a first order differential equation, which implies that if the sliding surface 

is reached, the tracking error will converge to zero as long as the error vector stays on the 

surface. The convergence rate is in direct relation with the value of	ߣ. Figure 4.12 shows how 

this mechanism takes place in the phase plane; where it can be seen that there are two modes 

in sliding mode approach. The first mode, named reaching mode, is the step in which the 

error vector (݁, ሶ݁)	is attracted to the switching/sliding surface Σ = 0. In the second mode, 

also known as sliding mode, the error vector slides on the surface until it reaches the 

equilibrium point (0,0) . 

 
Considering the following Lyapunov function candidate: 

 ݁௜ = ௜ߠ − ݅)          ⋯           ௜ௗߠ = 1,⋯ ,݉) (4.18)

 ௜ܵ = ௜݁௜ߣ + ݁పሶ            ⋯          (݅ = 1,⋯ ,݉) (4.19)

 Σ = ൥ ଵ݁ଵߣ + ݁ଵሶ⋮ߣ௠݁௠ + ݁௠ሶ ൩ (4.20)
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which is continuous and nonnegative. The derivative of V		yields: 

 

 

By choosing Σሶ  as given in equation (4.23), relation (4.22) is ensured to be decreasing. 

 ܸ = 12Σ்Σ (4.21)

 ሶܸ = Σ்Σሶ  (4.22)

 Σሶ = .ܭ− (Σ)݊݃݅ݏ , ,ݐ∀ ܭ > 0 		⇒ ሶܸ < 0 (4.23)

ܵ = ݁ߣ + ሶ݁ = 0 

(݁(0), ሶ݁ (0)) 

݁ 

ሶ݁ 

Figure 4.12 Sliding mode mechanism in phase plane 
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Expression (4.23) is known as the reaching law. It is to be noted that the discontinuous term ܭ.  in Equation (4.23) often leads to a high control activity, known as chattering. In	(Σ)݊݃݅ݏ

most systems, the chattering phenomenon is undesirable, because it can excite high 

frequency dynamics which could be the cause of severe damage. One of the most known 

approaches found in literature is to smoothen the discontinuous term in the control input with 

the continuous term	ܭ.  .(Slotine and Li, 1991) (Σ/ϕ)ݐܽݏ

Using equation (4.25), the reaching law therefore becomes: 

However, by performing this substitution, the convergence of the system stays within a 

boundary layer neighborhood of the switching surface. The size of the neighborhood is 

directly affected by the choice of Φ. Therefore, with this technique, the chattering level is 

controlled, but the tracking performance of the system is negatively affected.  However, the 

reaching law proposed by (Fallaha et al., 2011), considers the above limitations and is 

designed based upon the choice of an exponential term that adapts with the variations of the 

switching function which is able to deal with the chattering/ tracking performance dilemma. 

The exponential reaching law (Fallaha et al., 2011) can be expressed as: 

     where, 

(Σ௜)݊݃݅ݏ = ቐ Σ௜	ݎ݋݂	1 > Σ௜	ݎ݋݂	00 = 0−1 ݎ݋݂ Σ௜ < 0	 
(Σ)݊݃݅ݏ	 = (Σଵ)݊݃݅ݏ] … ݎ݋݂ and ,்[(Σ௡)݊݃݅ݏ (݅ ∈ {1, … , ݊}): 

 

 

(4.24)

where, ݐܽݏ(Σ/ϕ) = (Σଵ/ϕଵ)ݐܽݏ] … ݅)	ݎ݋݂ and ,்[(Σ௡/ϕ௡)ݐܽݏ ∈ {1,… , ݊}): 
 

(Σ௜/ϕ௜)ݐܽݏ = ቐ 1	for	Σ௜ 	≥ ϕ௜Σ௜ ϕ௜⁄ 	for − ϕ௜ ≤ Σ௜ ≤ ϕ௜−1 ݎ݋݂ Σ௜ ≤ ϕ௜ ,ݐ∀					 0 < ϕ௜ ≪ 1  (4.25)

 Σሶ = .ܭ− (Σ/ϕ)ݐܽݏ , ,ݐ∀ ܭ > 0 		 (4.26)

 Σሶ = (Σ)ܭ− . (Σ)݊݃݅ݏ , ,ݐ∀ ܭ > 0			 (4.27)
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where 0 ଴௜ߜ> ௜ߙ		;1≥ >0, and, ௜݌ > 0.  
 
The values of ߜ଴௜, ,௜ߙ and	 ௜ܲ	can be fixed as proposed in (Fallaha et al., 2011).  

 
If ߜ଴௜ is selected as 1, the equation (4.27) becomes as equation (4.23). Therefore, it can be 

said that conventional SMC is a subset of exponential SMC. Fallaha et al.’s. (2011) findings 

for ERL are as follows (Fallaha et al., 2011):  

 

 “In equation (4.27) with increasing |ܵ|, ܰ(ܵ) tend to ߜ଴௜ and consequently	݇/ܰ(ܵ) 
converges to ݇௜/ߜ଴௜, which is greater than ݇௜. This means that ݇/ܰ(ܵ) increases in the 

reaching phase, and accordingly the attraction of the sliding surface will be faster. On the 

other side, with decreasing	|ܵ|	, N(ܵ) tends to 1 and then ݇/ܰ(ܵ) converges to	݇. This means 

where 

 
(Σ)ܭ = ݀݅ܽ݃ ቀ ௞೔ே೔ (ௌ೔ )ቁ … (݅ = 1,… ,݉),			and (4.28)

 ௜ܰ( ௜ܵ) = ଴௜ߜ + (1 − ଴௜)݁ିఈ೔|ௌ೔|೛೔ߜ  (4.29)

Figure 4.13 Switching function with ERL for different values of k and δ0 

Adapted from Fallaha et al. (2011) 

s 

t		ߜ଴ଷ,	݇ଷ 		ߜ଴ଶ, 	݇ଶ 

,଴ଵߜ			 	݇ଵ 

ݎݐ

S (0) 

଴ߜ = 1, ݇ 

Conventional Sliding mode
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that when the system approaches the sliding surface ݇/ܰ(ܵ)	 gradually decreases and 

consequently reduces the chattering. The exponential sliding mode thus adapts to the 

variations of the switching function by letting ݇/ܰ(ܵ) vary between ݇ and	݇/ߜ଴. Figure 4.13 

shows the switching function with the exponential sliding control for different values of ݇ 

and	ߜ଴. As can be seen in this figure, if we select ߜ଴௜ = 1, the exponential sliding control will 

be the same as the conventional sliding mode control”. 

 

Note that though the chattering level is significantly reduced using ERL, still the controller 

shows high control activity during the transient. To deal with this problem, we propose a new 

reaching law, that combines the concept of ERL (Fallaha et al., 2011) and that of the 

boundary layer (Slotine and Li, 1991) and can be written as follows:   

 

Therefore and considering: ߠሷ ௗ = ଵௗሷߠൣ ଶௗሷߠ … ሷ௠ௗߠ ൧், ܧሶ = [݁ଵሶ ݁ଶሶ ⋯ ݁௠ሶ ]், and 

Λ = ൥ߣ௜ 0 00 ⋱ 00 0  .௠൩ߣ

where ܧሷ = ሷߠ − ௗሷߠ .Therefore, relation (4.31) can be written as: 

Substituting the value of ߠሷ   from equation (4.13) in equation (4.32), we obtain: 

 Σሶ = (Σ)ܭ− . (Σ/ϕ)ݐܽݏ , ,ݐ∀ ܭ > 0 		 (4.30)

 Σ = Λܧ + ሶܧ ⇒ Σሶ = Λܧሶ + ሷܧ  (4.31)

 Σሶ = Λܧሶ + ሷߠ − ௗሷߠ  (4.32)

 Σሶ = Λܧሶ − ௗሷߠ − ,ߠ൫ܸൣ(ߠ)ଵିܯ ሶ൯ߠ + (ߠ)ܩ + ,ߠ൫ܨ ሶ൯൧ߠ + (4.33) ߬(ߠ)ଵିܯ
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Replacing Σሶ  by its value given in equation (4.30) 

The torque ߬ can be isolated and thus give: 

where K	 and Λ	are diagonal positive definite matrices, therefore the control law given in 

relation (4.35) ensures that the control system is stable. Details of the stability analysis can be 

found in (Fallaha et al., 2011). 

 

4.4.1 Simulated results with SMC (Rahman et al., 2010c): 

A very commonly used rehabilitation exercise involving co-operative motion of the elbow 

and forearm (Physical Therapy Standards, 2011) is depicted in Figure 4.14. The objective of 

.(Σ)ܭ− (Σ/ϕ)ݐܽݏ = Λܧሶ − ௗሷߠ − ,ߠ൫ܸൣ(ߠ)ଵିܯ ሶ൯ߠ + (ߠ)ܩ + ,ߠ൫ܨ ሶ൯ߠ − ߬൧ (4.34)

 
߬	 = (ߠ)ܯ− ቀΛܧሶ − ሷߠ ௗ + .(Σ)ܭ +ቁ(߶/ߑ)ݐܽݏ ൣܸ൫ߠ, ሶ൯ߠ + (ߠ)ܩ + ,ߠ൫ܨ ሶ൯൧ (4.35)ߠ
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Figure 4.14 Cooperative movement of elbow and forearm 
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this task is to supinate the forearm from the initial position to the fully supinated position 

(Figure 2.6), while simultaneously flexing the elbow from complete extension to complete 

flexion (Figure 2.5) and next, to inversely move the forearm from full supination to full 

pronation (Figure 4.14), while the elbow simultaneously goes from complete flexion to 

extension. The top most plots of Figure 4.14 compare the desired trajectories to measured 

trajectories. Controller tracking performance is certainly obvious from this figure since the 

desired and measured trajectories also overlapped in this case and the deviation was well 

below 0.01°.  
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Figure 4.15 Cooperative movement of elbow and forearm, grabbing extra 0.5 kg mass 
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Figure 4.15 and Figure 4.16 show a similar type of rehabilitation exercises as Figure 4.14 

except a weight of 0.5 kg mass is added to the user’s wrist for the exercise of Figure 4.15 and 

a weight of 1.0 kg mass is added for the exercise depicted in Figure 4.16. These are a kind of 

typical occupational therapy, grabbing a weight of 0.5 kg to1.0 kg and lifting it up to elbow 

flexion of 120°. 

 

 
Like previous tracking simulations, Figure 4.15 and Figure 4.16 also demonstrate the good 

performance of the controller, with error limited to less than 0.01°. 

 

As depicted in Figure 4.14 to Figure 4.16, the maximum tracking deviation is observed at the 
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Figure 4.16 Cooperative movement of elbow and forearm, grabbing extra 1 kg mass 
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level of elbow flexion/extension which was below 0.01° (i.e., tracking error is 0.007% of the 

total range). Simulated results thus validate the developed model and also evaluate the 

performance of the control techniques in regard to trajectory tracking. 

 

4.4.2 Simulated results with conventional SMERL 

Reaching movement which is fundamental to many activities of daily life is depicted in 

Figure 4.17, where the subject is supposed to move his or her hand gently in a diagonal 

direction. This movement involves simultaneous and repetitive motion at the elbow and 

shoulder joints. The topmost plots of Figure 4.17 depict the measured trajectories (dotted 

line) and the desired trajectories (dotted line) where it can be found that both are matched 

together. It can also be seen from the error plots (intermediate plots) that the tracking errors 
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Figure 4.17 Simulated results with SMERL, diagonal reaching movement 



88 

are less than 0.1° and thus demonstrate the good performance of the controller.  

 

Note that the control gains used for this simulation were found by trial and error, and are as 

follows: 

For SMC Λ = ݀݅ܽ݃[40 40 40 40 40 14 40], and ܭ = ݀݅ܽ݃[0.1 0.1 0.1 0.1 0.1 0.1 0.1]. 
 

For SMERL ߜ଴௜ = ௜ߙ ,0.1 = 3, ௜ܲ = 1	, Λ = ݀݅ܽ݃[40 40 40 40 40 14 40], and ܭ = ݀݅ܽ݃[0.01 0.01 0.01 0.01 0.01 0.01 0.01]. 
 

The next chapter focuses on experiments. Note that the experiments were conducted on 

subjects in a seated position. Since the ETS-MARSE is mounted on a rigid base structure on 

the floor, wearing the ETS-MARSE arm will not impinge any load to the subjects. Further, the 

control algorithm is designed to compensate gravity loads efficiently and smoothly (mass of 

the MARSE arm and that of the upper limb).  

 

4.5 Cartesian Trajectory Tracking with Joint based Control  

The general layout of the control architecture for ‘Cartesian trajectory tracking with joint 

based control’ is given in Figure 4.18 where ߠௗ, ,	ሶௗߠ	  ,ሷௗ represent desired joint positionߠ

velocity and acceleration respectively and those for Cartesian co-ordinates are represented by ݒௗ, ,	ሶௗݒ	  .ሷௗ respectivelyݒ

 

The left dotted box (Figure 4.18) indicates the Cartesian to joint space trajectory conversion 

process. Given an end-effector position and orientation (ݒௗ), desired Cartesian velocities 
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 .can be found using cubic polynomial method (Craig, 2005) (ሷௗݒ) and accelerations (	ሶௗݒ	)

Once Cartesian velocities are found, it is quite simple to find joint space variables 

,ௗߠ) ,	ሶௗߠ	  ሷௗ) using Equation (3.7). It can also be seen from Figure 4.18 (the right dottedߠ

square box) that once desired joint variables are found the control scheme followed the 

principal of joint based control approach (Craig, 2005). As seen from Figure 4.18 the inputs 

to the controllers are joint errors (ߠߜ) and output is the torque command (߬) to the ETS-

MARSE. 
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Controller 
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Figure 4.18 Cartesian trajectory tracking with joint based control 
 





 

CHAPTER 5 
 
 

EXPERIMENTS AND RESULTS 

The first section of this chapter briefly describes the experimental setup and the 

implementation of the control techniques. In the mid sections of the chapter, experimental 

results with different control techniques (e.g., PID, CTC, mSMERL) are presented. In 

experiments, we introduced two options for providing passive therapy. In the first option, the 

MARSE was maneuvered to follow a pre-programmed trajectory (Physical Therapy 

Standards, 2011) that corresponds to the recommended passive rehabilitation protocol. For 

the second option, users have the flexibility to maneuver the ETS-MARSE with the developed 

master exoskeleton arm (mExoArm). Note that in all cases a quantitative measure of 

trajectory tracking that represents passive arm movement therapy is evaluated by measuring 

tracking errors as a function of time (i.e., deviation between desired and measured 

trajectories). The chapter ends with a brief discussion on the experimental results. 

 

5.1 Experimental Setup and Control Implementation 

Experimental set-up for the ETS-MARSE system is depicted in Figure 5.1. Potentiometers, 

which are incorporated with each joint of the MARSE, are sampled at 1 ms. The signals are 

then filtered prior to being sent to the controller. Filtering is important to eliminate high 

Compact-Rio (FPGA) 
 

 

Desired Trajectory

mExoArm
RT-PC 

Controller

Potentiometer

Motor  
Driver 

ETS-MARSE	
Figure 5.1 Experimental setup 
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frequency or noisy data from the desired signals. As depicted in Figure 5.2, the velocity of 

joints is found easily from the output vector of second order filtering. The parameters of the 

filter were set by trial and error to ω0 = 30 rad/s, and ζ = 0.9. 

 

Control architecture for the ETS-MARSE system is depicted in Figure 5.3. The joints’ torque 

commands are the output of the controller. However, the torque commands are converted to 

motor currents and finally to reference voltage as voltage value is the drive command for the 

motor drivers. Note that the controller (PID/CTC/ mSMERL) updates the torque commands 

every 1.25 ms and is executed in RT-PC (left dotted circle, Figure 5.3). Furthermore, to 

realize the real time control of the MARSE, and also to ensure the right control torque 
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Figure 5.2 Schematic diagram of 2nd order filtering 
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commands were sent to the joints (as well as the reference voltage commands for the 

drivers), we have also added a PI controller (right dotted circle, Figure 5.3) to minimize the 

differences between desired and measured currents (i.e., the error command to PI controller). 

The PI controller runs 25 times faster than the torque control loop and is executed in FPGA. 

The current signals measured from the current monitor output of motor drivers are sampled at 

0.1 ms, and are then filtered with a 2nd order filter with a damping factor ζ=0.90 and natural 

frequency ω0=3000 rad/s prior to being sent to the PI controller. 

 

5.2 Passive Rehabilitation Using Pre-determined Exercises 

The intent of this protocol was to provide rehabilitation from a library of passive 

rehabilitation exercises, which was already formed (Chapter 4, subsections 4.3.1, and 4.4.1) 

according to recommended passive therapy (Physical Therapy Standards, 2011). 

 

Experiments were carried out with healthy male human subjects (age: 24-34 years; height: 

162-177cm; weight: 58-118 kg; number of subjects: 2) to provide a passive rehab therapy. 

This includes passive exercises for shoulder joint movement, elbow and forearm movement, 

and wrist joint movement.  

 

5.2.1 Experimental Results with PID Control (Rahman et al., 2011d; 2012d) 

Shoulder joint movements: 

Figure 5.4 shows the experimental results of shoulder joint vertical flexion/extension motion 

where the MARSE raises the subject’s arm (from the initial position, i.e., all joints are at 0°) 

to a specific position over the head (e.g., in Figure 5.4a, the elevation was set to 130°), holds 

that position for a few seconds (e.g., in Figure 5.4a, 4sec) and then slowly moves the joint 

back to its initial position. The topmost plot of Figure 5.4 compares the desired joint angles 

(or reference trajectories, dotted line) to measured joint angles (or measured trajectories, 

solid line). It is obvious from the figure that the controller’s performance was excellent since 

measured trajectories overlapped with the desired trajectories. The intermediate plot of 



94 

Figure 5.4 shows the error as a function of time (i.e., deviation between desired and 

measured trajectories). It can be seen that the tracking error was quite small (<2.5°) and that 

the most noticeable one was the steady state error (i.e., when MARSE is maintaining the 

position at 130° against gravity) which lies below and/or near around 0.1°. Note the two 

spikes as apparent in the error plots; these are due to static friction that has a large value 

during the initiation of the upward (where error was around 3°, Figure 5.4a) and the 

downward movement (e.g., in Figure 5.4a, downward movement starts from 130°, where 

deviation was around 4°). The generated joint torque corresponding to the trajectory is 
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Figure 5.4 Shoulder joint vertical flexion/extension motion 
(a) Passive forward elevation up to 130° (b) Passive forward elevation up to 120°  

(c) Passive forward elevation up to 90°, showing fast movement compared to other exercises
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plotted in the bottom row of Figure 5.4. Passive forward elevations at different joint angles 

are depicted in Figure 5.4b and Figure 5.4c. These exercises are also known as pointing 

movements, with the goal of gradually increasing the passive range of movement (ROM).  

 

Figure 5.5 shows a passive horizontal flexion/extension motion of the shoulder joint, where 

passive forward elevation (i.e. vertical flexion of shoulder joint) is maintained at 90°. Again, 

        (a)                                                                               (b) 
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the tracking performance of the controller was excellent, with tracking error less than 2° and 

the steady state position error below 0.05°.  

 

Figure 5.6 demonstrates a co-operative movement of the elbow (flexion/extension) and 

shoulder joint (internal/external rotation). The objective of this exercise is to provide 

repetitive movement at the level of the shoulder joint while maintaining the elbow at 90°. As 

shown in Figure 5.6a, the exercise begins with elbow flexion, then repetitive internal/external 
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Figure 5.6 Passive arm therapy; a cooperative movement of shoulder and elbow joint motion 
(a) Elbow joint flexion/extension 

(b) Repetitive movement of shoulder joint internal/external rotation 
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rotation is performed (Figure 5.6b); the exercise ends with the extension of the elbow to 0° 

(Figure 5.6a). The 3rd row of the plots (from the top) displays velocity tracking (where dotted 

line indicates the desired velocity and the solid line indicates measured velocity). The results 

demonstrate good performance of the controller. The maximum tracking error was observed 

at the level of shoulder joint internal/external rotation which was around 2.75°. However, in 

this case as well, the steady state position error was found below 0.05°. 

 

Elbow and forearm movements: 

A typical rehabilitation exercise involving elbow joint flexion extension movement is 

depicted in Figure 5.7. The exercise began with the elbow joint at 90°. Also in this case, the 
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tracking performance is obvious as the desired (dotted line) and measured trajectories (solid 

line) are overlapping and the tracking deviation is well below 1.5°. 

 

 

Depending on the subject, it is often required to change the speed of such exercises. Figure 
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Figure 5.8 Elbow joint flexion/extension performed at different speeds  
(a) Experiment duration 21s (b) Experiment duration 17s 
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exercise as depicted in Figure 5.8(a) took 21s whereas the similar exercise as shown in 

Figure 5.8(b) took 17s to complete. Therefore, from Figure 5.7 and Figure 5.8, we may 

conclude that at a variety of speeds the controller shows excellent tracking performance with 

error limited to less than 1.5°. 

 

Figure 5.9 shows the tracking performance of the controller during forearm 

pronation/supination. In this experiment, the full range of forearm movement was carried out 

from an initial position with the elbow joint at 90° and the forearm at 0°. Thereafter, as 

shown in Figure 5.9, the MARSE was directed to alternatively supinate and pronate the 

forearm , as it is often recommended to perform this movement repeatedly (Physical Therapy 

Standards, 2011). It can be seen that the tracking error was quite small (<2°). 
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A very common rehabilitation exercise involving cooperative and simultaneous movements 

of the elbow and forearm is depicted in Figure 5.10. The objective of this task is to pronate 

the forearm from its initial position to the fully pronated position, while simultaneously 

flexing the elbow from its initial position (90°) to complete flexion and then to reverse the 

movement. Controller tracking performance is certainly obvious from these Figures since the 

desired and measured trajectories also completely overlapped in this case, with error smaller 

than 2.5°.  
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Figure 5.10 Cooperative and simultaneous motion of elbow and forearm movement 
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Wrist joint movements: 

A typical rehabilitation exercise involving movements of wrist joint is depicted in Figure 

5.11. The objective of these exercises is to provide radial/ulnar movement (Figure 5.11a) and 

flexion/extension motion of the wrist joint (Figure 5.11b). These exercises are typically 

carried out for a few minutes and involve repetitive movements of the wrist joint. 

 

Note that because the physical limit of the developed wrist joint is +60° in flexion and -50° in 

extension, the trajectory tracking was performed within the range of +57° to -48°. These 

results show a similar tracking performance of the controller as for the other experiments.  
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Figure 5.11 Wrist joint movements (a) Radial/ulnar deviation (b) Flexion/extension 
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Reaching movements: 

Reaching movements are widely used and recommended for multi joint movement exercises. 

A repetitive diagonal reaching movement is depicted in Figure 5.12, where the subject is 

supposed to move his or her hand diagonally (with the elbow initially at 90°). Typically this 

exercise is repeated approximately 10 times (Physical Therapy Standards, 2011), therefore a 

few repetitions are depicted in Figure 5.12. It is obvious from these figures that the 

controller’s performance was excellent since measured trajectories in this case also 

overlapped with the desired trajectories with error in tracking less than 2.5°. 

  

 

All joints’ simultaneous movements: 

To further evaluate the performance of the controller with regard to multi joint movements, 

an experiment was performed that involves simultaneous movements of all joints; i.e., 

shoulder, elbow, forearm and wrist joint movements together (7DoFs). The results of this 

experiment are depicted in Figure 5.13. It can be seen from the plots that the controller 

performance was impressive as again the tracking error was quite small (< 2.8°) . 

0 5 10 15 20 25
-25

0

25

50

Time (s)

A
ng

le
 (

de
g)

Shoulder Joint: Horizontal Flex./Ext.

0 5 10 15 20 25
-5

0

5

Time (s)

 E
rr

or
 (

de
g)

0 5 10 15 20 25
-25

0

25

Time (s)

T
or

qu
e 

(N
m

)

0 5 10 15 20 25
-25

0

25

75

Time (s)

Shoulder Joint: Vertical Flex./Ext.

0 5 10 15 20 25
-5

0

5

Time (s)

0 5 10 15 20 25
-25

0

25

50

Time (s)

0 5 10 15 20 25
20

40

60

80

100

Time (s)

Elbow: Flexion/Extension

0 5 10 15 20 25
-5

0

5

Time (s)

0 5 10 15 20 25
-10

0

10

20

Time (s)

0 5 10 15 20 25
-100

-50

0

Time (s)

Pronation/Supination

0 5 10 15 20 25
-5

0

5

Time (s)

0 5 10 15 20 25
-5

0

5

Time (s)

Figure 5.12 Diagonal reaching movements 



103 

 

 

As depicted from Figure 5.4 to Figure 5.13, the maximum tracking deviation was observed to 

be around 2.8°, (at the level of shoulder joint internal/external rotation in case of all joints’ 

simultaneous movement, Figure 5.13) with a maximum steady state position error of around 

0.1°. Experimental results thus evaluate the performance of the ETS-MARSE and control 

technique (PID) in regard to trajectory tracking as well as to provide passive rehabilitation at 

the level of shoulder, elbow, and forearm and wrist joint movement.  

 
Note that the control gains used for these experiments were found by trial and error, and are 

as follows: ܭ௉ = ݀݅ܽ݃[110 250 75 175 75 50 ௏ܭ ,[20 = ݀݅ܽ݃[30 25 10 30 10 5 5],, and ܭூ = ݀݅ܽ݃[30 100 25 100 25 50 10]. 
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Figure 5.13 Simultaneous movements of MARSE arm in7DoFs 
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5.2.2 Experimental Results with Compliance Control (Rahman et al., 2012d) 

Figure 5.14 shows the results obtained with compliance control for elbow joint 

flexion/extension and shoulder joint internal/external rotation. It can be seen in Figure 5.14 

that this control approach (compliance control with gravity compensation) gave better 

tracking performance compared to the PID control technique. Note that for the same passive 

exercises, the maximum tracking error was around 2.8° with the PID control technique, 

whereas with compliance control it was around 0.5° (compare Figure 5.14 with Figure 5.6b 

and Figure 5.7). 
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To further evaluate the performance of the compliance control technique and also to show 

some compliance nature of the controller, an experiment was carried out where the subject is 

directed to push the wrist handle (i.e., X, Y, and Z directions with respect base frame) while 

the MARSE is at the steady state position, maintaining the elbow joint angle at 90° against 

gravity (see topmost plot of Figure 5.15). The 2nd row of Figure 5.15 compares the desired 

positions of the wrist joint (dotted line) to the measured position (solid line) of wrist joint in 

Cartesian space. It is obvious from the figure that the end-effector exhibits some spring 

characteristics along the Cartesian degree of freedom (Figure 5.15, last two rows).  

 

Experimental results thus evaluated the performance of the compliance control with regard to 

trajectory tracking. Note that these experiments were conducted with a 4DoFs MARSE 

(Rahman et al., 2012d) that involves shoulder (3DoFs) and elbow joint (1DoF). The control 
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gains used for this control were found by trial and error, and are as follows: 
௉௫ܭ  = ݀݅ܽ݃[20 20 20 60 60 ௩ܭ ,[60 = ݀݅ܽ݃[10 50 10 60], and ܭ௜ = ݀݅ܽ݃[10 150 10 200]. 
 
5.2.3 Experimental Results with Computed Torque Control (Rahman et al., 2011c) 

Shoulder, elbow and forearm movements: 

Passive rehabilitation exercises involving elbow joint movement are depicted in Figure 5.16, 

                   (a)                                                            (b) 

0 5 10 15

0

50

100

Time (s)

Elbow: Flexion/Extension

0 5 10 15
-5

0

5

Time (s)

0 5 10 15
-40

-20

0

20

40

Time (s)

0 5 10 15

0

50

100

Time (s)

A
ng

le
 (

de
g)

Elbow: Flexion/Extension

0 5 10 15
-5

0

5

Time (s)

 E
rr

or
 (

de
g)

0 5 10 15
-40

-20

0

20

40

Time (s)

T
or

qu
e 

(N
m

)

Figure 5.16 Elbow joint flexion/extension 
(a) Exercise was performed by subject-A having body weight of 63 kg, height 167cm 

(b) Exercise was performed by subject-B having body weight of 100 kg, and height 180 cm
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where the ETS-MARSE is supposed to flex from its initial position (0°), up to an angle of 90°, 

hold that position against gravity for few seconds, and then go back to the initial position, 

i.e., extension of the elbow to 0°. Note that all exercises presented in this thesis were 

performed with subject-A except this one which was performed with two participants 

(subjects-A & B). It is clear from the figure that the controller’s performance was excellent 

since the measured trajectories (solid line) overlapped with the desired trajectories (dotted 

line). It can be seen that the tracking error was quite small (<2°) and that the most noticeable 

was the steady state error (i.e., when the MARSE is maintaining the position of 90° against 

gravity), which lies below 0.2°. It is important to perform passive repetitive movements to 

the elbow joint in order to increase mobility and muscle tone. A repetitive passive elbow 

flexion/extension (i.e., 0° to 120°) exercise is shown in Figure 5.17.  
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Note that the control gains used for this control were found by trial and error, and are as 

follows: ܭ௉ = ݀݅ܽ݃[1000 700 115 800 1500 6000 ௩ܭ ,[750 = ݀݅ܽ݃[100 120 15 110 100 300 110], and ܭ௜ = ݀݅ܽ݃[100 800 300 800 1500 6000 1000]. 
 

A cooperative movement of the elbow (flexion/extension) and shoulder joint internal/external 

rotation are depicted in Figure 5.18. As shown in Figure 5.18, the exercise begins with elbow 

flexion, and then repetitive internal/external rotation is performed; finally, the exercise ends 

with the extension of the elbow to 0°. The 3rd row of the plots (from the top) displays 

velocity tracking (where the solid line indicates measured velocity and dotted line indicates 
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Figure 5.18 Cooperative movement of elbow and shoulder joint int./ext. rotation 
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desired velocity). It can be seen from the plots that the tracking error was quite small (<2.5°). 

Note that for the same passive exercises performed with the PID control technique, the 

maximum tracking error (at the level of shoulder joint internal/external rotation) was around 

2.75° whereas with CTC it was around 1.5° (compare to Figure 5.18 with Figure 5.6b). 

 

 

Figure 5.19 demonstrates a typical rehabilitation exercise involving simultaneous motions of 

the elbow and forearm. The objective of this task is to supinate the forearm from its initial 

position (0°) to the fully supinated position while simultaneously flexing the elbow from 

complete extension to complete flexion (120°) and next, inversely moving the forearm from 

full supination to a full pronation position (Figure 2.6), while the elbow simultaneously goes 
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Figure 5.19 Cooperative and simultaneous motion of elbow and forearm 
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from complete flexion to extension (0°). Controller tracking performance is certainly obvious 

from these plots since the desired and measured trajectories overlapped again in this case 

with tracking error less than 2°. 

 

 

Reaching movements are widely used and recommended for multi-joint movement exercises. 

A straight-ahead reaching movement is depicted in Figure 5.20, where the subject is 

supposed to slide his or her hand gently over the surface of a table, with the elbow initially at 

90°. This movement is similar to dusting a table, which involves simultaneous and repetitive 

rotation at the elbow (extension) and shoulder joints. Typically this exercise is repeated 

approximately 10 times (Physical Therapy Standards, 2011), so a full cycle is depicted in 

Figure 5.20.  
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Wrist joint movements: 

Figure 5.21 shows the motion of ETS-MARSE for radial/ulnar deviation. In these 

experiments, the elbow flexed to a 90° position, and thereafter, repetitive radial/ulnar 

movement is performed while maintaining the elbow at the same position. This is a type of 

typical occupational therapy, which gives the impression of dusting the surface of a table. It 

is sometimes recommended to keep the elbow at 90° while performing passive wrist 

movement (Physical Therapy Standards, 2011). However, it is certainly evident from these 

results that MARSE users can perform the same passive wrist movement in any elbow 

position, depending on the patient’s physical condition. Moreover, these results also 
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Figure 5.21 Repetitive movement of wrist joint (radial/ulnar deviation) while 
maintaining elbow at 90° 
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demonstrate that the MARSE is able to compensate for the gravity effect, which is very 

important for these types of robotic applications in addition to providing passive arm therapy. 

 

 

Figure 5.22 shows the passive flexion/extension motion of the wrist joint. Similar to the 

exercises depicted in Figure 5.18 and Figure 5.21, Figure 5.22 demonstrates the repetitive 

flexion/extension at the level of the wrist joint, where the elbow joint is supposed to be 

maintained at a 90° position while performing passive flexion/extension therapy. As shown in 

Figure 5.22, the tracking performance of the controller was excellent. Furthermore, the 

steady state position error was found to be quite small (<0.65°).  
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As depicted in Figure 5.16 to Figure 5.22, the maximum tracking deviation observed around 

was 2.5° and the maximum steady state position error around 0.65°. Experimental results thus 

evaluate the performance of the control technique with regard to trajectory tracking as well as 

to provide passive rehabilitation. 

 
5.2.4 Evaluation of mSMERL Regard to Trajectory Tracking 

In this section, the trajectory tracking performance of the ETS-MARSE was evaluated with 

the mSMERL (Equation (4.30)). Also, a comparison was made with the conventional SMC 

(Equation (4.26)) to further evaluate the mSMERL’s performance with regard to chattering 

reduction. It is to be noted that, the ‘conventional SMC’ as mentioned in this thesis is the 

modified form of the basic SMC, where the discontinuous term ܭ.  of a basic SMC 	(Σ)݊݃݅ݏ

(Equation (4.23)) was smoothened with the continuous term ܭ.  .(Equation (4.26)) (Σ/ϕ)ݐܽݏ

The control gains used for the experiments were found by trial and error, and are as follows: 

For conventional SMC: Λ = ݀݅ܽ݃[10 10 10 10 10 10 10], and ܭ = ݀݅ܽ݃[200 100 230 400 2250 3500 500]. 
For mSMERL: ߜ଴௜ = ௜ߙ ,0.5 = 2, ௜ܲ = 2	, Λ = ݀݅ܽ݃[10 10 10 10 10 10 10], and ܭ = ݀݅ܽ݃[200 100 150 250 1500 3000 300]. 

 

Shoulder joint movements: 

Figure 5.23 shows the experimental results of shoulder joint vertical flexion/extension 

motion. Note that in all our experiments (in this subsection and also shown in the next 

subsection) the MARSE initiated its motion with the elbow joint at 90°. Therefore, as shown 

in Figure 5.23 the experiment begins with the extension of elbow from its initial position 
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(90°) and thereafter the MARSE performs a shoulder joint vertical extension up to 90° and 

finally the trial ends with the flexion of the shoulder joint.  
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Figure 5.23 Shoulder joint vertical flexion/extension  
(a) mSMERL (b) SMC with boundary layer 
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The 1st row of the plots of Figure 5.23 compares the desired joint angles (or reference 

trajectories, dotted line) to measured joint angles (or measured trajectories, solid line). It is 

clear from the Figure that both controllers’ performance was excellent since measured 

trajectories overlapped with the desired trajectories.  

 
The 2nd row of the plots shows the tracking error as a function of time i.e., the deviation 

between desired and measured trajectories. It can be seen that the tracking error was quite 

small (<1°) and that the most noticeable was the steady state error which lies below 0.1°. 

However, comparing the torque plots (3rd row of the plots), it seems that mSMERL gave 

smoother tracking (during the transient and steady state) and reduced chattering (dotted 

circle, 3rd row) compared to that of the conventional SMC technique.  

To further evaluate the performance of the controllers, shoulder joint internal/external 
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(a) mSMERL (b) conventional SMC with boundary layer 
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movement was performed (keeping the elbow at its initial position i.e., 90°). Experimental 

results for these exercises are illustrated in Figure 5.24, where it can be found that the sudden 

perturbation (as apparent from the spike in the error/torque plots) was employed while 

following the trajectory. The results demonstrated that mSMERL responds faster than the 

conventional SMC to recover from a larger tracking error. Moreover, it gave smoother 

tracking as compared (see torque plots) to the conventional SMC. 

 

Elbow and forearm movements: 

Figure 5.25 demonstrates a cooperative movement of the elbow (flexion/extension) and 

forearm. The objective of this experiment was to demonstrate the tracking performance of the 

two controllers for forearm pronation/supination while maintaining the elbow steady at 90°. 

As shown in Figure 5.25, the exercise began with elbow extension followed by flexion up to 

90°, thereafter maintaining that position while forearm pronation/supination was performed. 

Again, it was evident that tracking performance of the controllers was very good, with the 

steady state position error below 0.1°. In this case also, in this case modified ERL provided 

smoother tracking compared to SMC as evident from torque plots. 

 

It is recommended to maintain shoulder joint vertical flexion at 90° while performing passive 

shoulder joint horizontal flexion/extension, and likewise, to maintain the elbow at 90° while 

performing internal/external rotation. However, it is evident from our results that MARSE 

users can do the same passive arm movements in any position of elbow and shoulder 

elevation, depending on the physical condition of patient. Moreover, these results 

demonstrate that the ETS-MARSE is able to compensate the gravity effect, which is very 

much important for this type of robotic applications, as well as to provide passive arm 

therapy. 
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Figure 5.25 Cooperative movement of elbow and forearm 
(a) mSMERL (b) Conventional SMC with boundary layer 
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Figure 5.26 Cooperative and simultaneous movement of elbow and forearm 
(a) mSMERL (b) Conventional SMC with boundary layer 
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Figure 5.26 shows another experiment that involves a co-operative and simultaneous 

movement of both elbow and forearm. The objective of this task is to pronate the forearm 

from a neutral position, while simultaneously flexing the elbow from its initial position (90°) 

and then reversing the movement. The ability of the controller to track this movement is 

apparent from Figure 5.26, since the tracking errors are found to be quite small (<2.5°). 

 

Wrist joint movements: 

Figure 5.27 shows the trajectory tracking of the MARSE for wrist joint movements 

(radial/ulnar deviation and flexion/extension). The trial shows similar tracking performance 

of the mSMERL, where tracking error was found to be less than 1.5°. 
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Figure 5.27 Wrist joint movements with mSMERL 
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Reaching movements: 

Reaching movements in a diagonal direction, one of the popular multi-joint movement 

exercises, were performed, as depicted in Figure 5.28. The exercise involves simultaneous 

movements at the level of shoulder, elbow and forearm. These results also show the similar 

tracking performance of the modified SMERL, with error in tracking less than 1.5°. 

 

 

All joints’ simultaneous movements: 

To further evaluate the performance of the mSMERL in regard to dynamic trajectory tracking, 

an experiment involving simultaneous movements of all joints; i.e., shoulder, elbow, forearm 

and wrist joint movements (7DoFs) was performed (Figure 5.29). It can be seen from the 

plots that the controller performance was excellent as again the tracking error was quite small 

(less than 1.5°), except for joints 2 to 4, where the maximum tracking error was observed at 
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Figure 5.28 Diagonal reaching movement with mSMERL 
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the level of shoulder joint internal rotation (due to the high static friction), which was around 

5°. 

 

 

Experimental results thus demonstrated the efficient performance of the control techniques as 

well as the ETS-MARSE in regard to trajectory tracking. Moreover, it is apparent from these 

results that mSMERL reduced chattering (both during the transient and steady state) and gave 

better tracking compared to SMC. Note that these experiments are often used as an exercise 

to provide passive rehabilitation of the human upper limbs (Physical Therapy Standards, 

2011) and therefore could be performed with the ETS-MARSE and mSMERL. 

 

5.2.5  Trajectory Tracking Performance Evaluation of PID, CTC, and mSMERL  

In this subsection we compare the dynamic trajectory tracking performance of the ETS-

MARSE with the PID, CTC, and mSMERL controls. The exercises used for this comparison 

can be grouped under two categories; ‘single joint movement’ and ‘multi joint movements’. 
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Figure 5.29 Simultaneous movements of shoulder, elbow, forearm and wrist 
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Single joint movement:  

In this category, two experiments were conducted that show single joint movement. Among 

these, one joint movement was chosen so that its motion had relatively less influence on the 

system’s dynamics, especially on the gravity terms. Therefore, a repetitive movement 

consisting in forearm pronation and supination was performed to compare the trajectory 

tracking performance of the PID, CTC, and mSMERL. A second joint was chosen so that its 

motion had significant effect on the dynamics of the system, especially on the gravity terms. 

Therefore, elbow joint flexion/extension motion was considered.  

 

Figure 5.30 compares the trajectory tracking performance of the PID, CTC, and mSMERL 
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Figure 5.30 Forearm pronation/supination 
(a) PID (b) CTC and (c) mSMERL 
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control for forearm pronation/supination movement. It can be seen from the error plots that 

the mSMERL gave the better tracking performance compared to PID and CTC; and CTC 

shows the poorer tracking. 
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Figure 5.31 Elbow flexion/extension (maximum velocity 21.55 deg/s)  
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Figure 5.31 to Figure 5.33 show elbow joint flexion/extension motion for tracking, conducted 

at three different speeds; 21.55 deg/s, 24.65 deg/s, and 28.75 deg/s respectively. As shown 

from Figure 5.31, the trial took 24 sec. to complete, whereas the experiment shown in Figure 

5.32 took 21 sec., and the one depicted in Figure 5.33 took 18 sec. As for previous trials, 

mSMERL shows excellent tracking compared to PID and CTC; and also in this case CTC 

showed the poorest performance.  

 

Note that passive arm movements and exercises are usually performed slowly (Physical 
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arm movement; therefore all the exercises presented in this chapter were performed at a low 

to moderate speed, aiming to form a library of ‘robot assisted passive rehabilitation 

protocol’. However, to evaluate the tracking performance of the ETS-MARSE as well as the 

performance of the controllers at high speed, experiments involving multi joint movements 

were conducted. The next subsection describes two of these exercises. 

Multi joint movements: 

Figure 5.34 shows the cooperative and simultaneous movement of forearm 

pronation/supination and elbow flexion/extension which was performed at a relatively high 

speed. The maximum velocity observed at the level of elbow joint movement was 65.9 deg/s 

and that for the forearm movement was 58.5 deg/s. Figure 5.35 plotted the end-effector 
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Figure 5.33 Elbow flexion/extension (maximum velocity 28.75 deg/s) 
(a) PID (b) CTC and (c) mSMERL 
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tracking for the same exercise. Also in this trial mSMERL showed better tracking compared 

to PID and CTC.  
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To further evaluate the performance of the controllers, the same exercise was performed 

(Figure 5.36) at higher speed. The maximum velocity observed in this case (Figure 5.36) was 

88 deg/s at the level of elbow joint movement; and 90 deg/s for the forearm.  
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Figure 5.36 Simultaneous movement of elbow and forearm, exercise-1B 
(a) mSMERL (b) CTC (c) PID 
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It can be seen from the Figure 5.36 that it took only 2 seconds to supinate the forearm from a 

fully pronated position, while simultaneously a flexion motion was performed from full 

extension of the elbow joint. Also, it was found from the Figure 5.36, that it took 1.5 sec for 

the extension motion to complete from a fully flexed position. 

 

0 2 4 6 8
-2

0

2

Time (s)

X
 (

cm
)

End-effector Tracking error

0 2 4 6 8
-2

0

2

Time (s)

Y
 (

cm
)

0 2 4 6 8
-5

0

5

Time (s)

Z
 (

cm
)

25
30

35
40

450
5

10
15

20
25

20

25

30

35

40

45

←final position←start position

X(cm)

End-effector Desired and Measured Trajectory

Y(cm)

Z
(c

m
)

0 2 4 6 8
0

20

40

Time (s)

A
ng

le
 (

de
g)

Joint-1: Horiz. Flex./Ext.

0 2 4 6 8
-50

0

50

100

Time (s)

Joint-2: Vert. Flex./Ext.

0 2 4 6 8
0

50

100

Time (s)

Joint-4: Flex./Ext.

0 2 4 6 8
-100

-50

0

50

Time (s)

Joint-5: Pron. /Sup. 

0 2 4 6 8
-5

0

5

Time (s)

 E
rr

or
 (

de
g)

0 2 4 6 8
-5

0

5

Time (s)
0 2 4 6 8

-5

0

5

Time (s)
0 2 4 6 8

-5

0

5

Time (s)

0 2 4 6 8
-40

-20

0

20

Time (s)

V
e

l. 
(d

e
g/

s)

0 2 4 6 8
-50

0

50

Time (s)
0 2 4 6 8

-50

0

50

Time (s)
0 2 4 6 8

-50

0

50

Time (s)

Figure 5.37 Diagonal reaching movements with mSMERL, exercise-2A  
(time to reach a diagonal target: 2s.; Time to reach & back from a diagonal target: 4s.) 
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Figure 5.37 shows another multi-joint movement exercise, ‘the diagonal reaching 

movements’, which were performed relatively at a high speed with mSMERL. The exercise 

involves simultaneous movements in four joints, i.e., in 4DoFs (joint-1: shoulder joint 

horizontal flexion/extension, joint-2: shoulder joint vertical flexion/extension, joint-4: elbow  
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Figure 5.38 Diagonal reaching movements with CTC, exercise-2A 
(time to reach a diagonal target: 2s.; time to reach & back from a diagonal target: 4s.) 
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flexion/extension, joint-5: pronation/supination). Figure 5.38 and Figure 5.39 show the same 

exercise performed with CTC and PID controls respectively. It can be seen from these 

figures that it took only 2 seconds to reach diagonal targets ahead, and the tracking error was 
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(time to reach a diagonal target: 2s.; time to reach & back from a diagonal target: 4s.) 
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still found to be small in all cases (Figure 5.37 to Figure 5.39). The maximum end-point 

tracking error observed was 2.4 cm in the Z direction in CTC technique. 

 

Figure 5.40 shows a similar diagonal reaching movement exercise but performed at much 

higher speed with a PID control technique. It can be seen from the plots that in this case the 
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Figure 5.41 End-effector tracking (diagonal reaching) exercise-2B 
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mSMERL for elbow joint flexion/extension motion (as depicted in Figure 5.39). In the case of 

diagonal reaching movements, however, tracking error for the same motion was found to be 

larger for forearm pronation/supination when compared to mSMERL.  

 

5.3 Cartesian Trajectory Tracking (Rahman et al., 2012a) 

The schematic diagram of the Cartesian trajectory tracking exercises is given in Figure 5.42. 

As shown in Figure 5.42a, the exercise began at point-A with elbow joint at 90° and then 
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Figure 5.43 Reaching movement exercise with PID control 
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To further evaluate the performance of the ETS-MARSE, another exercise representing square 

shape trajectory (Figure 5.42b, path: WXYZ) tracking in a 2D plane was performed with 

both control techniques. The results of this trail are depicted in Figure 5.45, where it can be 

found that also in this case the errors are quite small. The maximum tracking error observed 

for the PID controller was less than 1.5cm and that for SMERL was less than 0.75cm. 
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Figure 5.45 Square shape trajectory tracking on 2D plane 
(a) PID control (b) SMERL control 
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Furthermore, to evaluate the performance of the ETS-MARSE for Cartesian trajectory 

tracking in a 3D plane, the same square shape trajectory tracking was performed in a 3D 

plane. The result of this experiment is show in Figure 5.46. Like previous trials, again the 

controller showed notable tracking performance with end-point tracking error below 1.5cm.  

 

 

From these experimental results it can be concluded that the ETS-MARSE is able to perform 

Cartesian trajectory tracking very efficiently.  
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Figure 5.46 Square shape trajectory tracking in 3D plane (PID control) 
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5.4 Passive Rehab Therapy Using master Exoskeleton Arm (Rahman et al., 
2011g)  

The ‘master exoskeleton arm’ (mExoArm) as shown in Figure 5.47 was developed to tele-

operate the ETS-MARSE as well as to provide passive rehabilitation. It is assumed that users 

(patients) can operate the mExoArm with their good (functional) hand, or alternatively, that it 

can be operated by a family member or caretaker.  

 

The entire mExoArm was constructed with ABS (acrylonitrile butadiene styrene) by rapid 

prototyping except the base, which was made in Aluminum (Figure 5.47c). As depicted in 

Figure 5.47, a potentiometer was incorporated in each joint with the arm link to give the 

desired rotational movement of the joints as well as to measure the angle of rotation. For 

safety reasons, mechanical stoppers were added at each joint in the design of mExoArm to 

Potentiometer 

          (a)                (b)                         (c) 

Figure 5.47 A 7DoFs upper-limb prototype mExoArm 
(a) Left-front view (initial position) (b) Joints 1, 2 are rotated to 30°, joint 3 is to 60° and 

joint 4 is to70° (c) mExoArm after fabrication 
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limit the joints’ movement within the range of MARSE’s joints’ limits (see Table 2.4). Using 

mExoArm provides flexibility in choosing the range and speed of movements and as well as 

the ability to provide motion assistance. 

 

5.4.1 Experimental Results with PID Control 

The experimental results with the mExoArm for shoulder joint horizontal flexion/extension 

and internal/external rotation are depicted in Figure 5.48 and Figure 5.49, respectively. In 

those tasks, the subject (robot user) operates the mExoArm with his left hand to perform 

repetitive movements. It is seen from the top-most plots that the desired trajectories (solid 

line) overlapped with the measured ones (dotted line). The tracking error was once again 

found to be quite small (<4°).  
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Figure 5.48 Shoulder joint movements by mExoArm 
(a) Repetitive movement of shoulder joint horizontal flexion/extension  

(b) Shoulder joint vertical flexion/extension 
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To further evaluate the performance of the mExoArm, repetitive elbow flexion/extension 

movements were performed at various speeds. Experimental results for these exercises are 

illustrated in Figure 5.50. The results demonstrate excellent tracking performance of the 

controller even for the varying speed of movement. In this case, the maximum tracking error 

observed was around 5°. 
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Figure 5.49 Passive rehabilitation by mExoArm, combined shoulder and elbow movement 
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To further evaluate the performance of the mExoArm to provide multi-joint movements 

exercises, a co-operative motion of elbow and shoulder movement was performed using the 

mExoArm, as shown in Figure 5.51. The results reveal that in all cases (Figure 5.51) the 

measured trajectory overlapped with the desired trajectory with tracking error less than 4°. 

 

Finally, another co-operative exercise involving elbow and wrist joint flexion/extension 

movements is performed using the mExoArm (Figure 5.52). In these experiments, the elbow 

is supposed to flex at a 90° position, and thereafter, repetitive wrist joint (flexion/extension) 

movement is performed while maintaining the elbow at the same position. As shown in 

Figure 5.52, the exercise ends with a simultaneous movement of wrist and elbow joint. It is 

evident from this plots that the tracking errors are quite small (less than 3.8°) and thus 
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Figure 5.50 Repetitive elbow flexion/extension by mExoArm 
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demonstrate good performance of the controller in providing rehabilitation therapy using the 

mExoArm. 
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Figure 5.51 Reaching movement by mExoArm 
(a) Shoulder joint vertical flexion/extension (b) Elbow flexion/extension 



143 

 

5.4.2 Experimental Results with CTC 

The experimental results with the mExoArm for elbow flexion/extension are depicted in 

Figure 5.53. In these tasks, the subject (robot user) operates the mExoArm with his left hand 

to perform repetitive movement. As shown in the top-most plots, the desired trajectories 

(solid line) overlapped with the measured ones (dotted line). The tracking error was again 

was found to be quite small (<3°). Note that in the same experiment performed with PID 

control (Figure 5.50), the PID gave similar tracking performance as the CTC. 

 

To further evaluate the performance of the mExoArm, repetitive forearm pronation/supination 

was performed at various speeds. Experimental results for these exercises are illustrated in 
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Figure 5.52 Cooperative motion of wrist and elbow joint using mExoArm 
(a) Elbow flexion/extension (b) Repetitive movement of wrist joint flexion/extension 
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Figure 5.54. The results demonstrate excellent tracking performance of the controller even 

with varying speed of movement, where tracking error was found to be less than 2.5°. 

 

 

Finally, a cooperative motion of elbow and forearm movement using the mExoArm is shown 

in Figure 5.55. The results reveal that in all cases (Figure 5.55(a) and Figure 5.55(b)) the 

tracking errors are less than 3.5° and thus confirm the performance of effective passive 

rehabilitation using the mExoArm. Note that a few spikes are apparent in the error plots; these 
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Figure 5.53 Repetitive movement of elbow joint using mExoArm 
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are due to static friction that has a large value in the transient and therefore shows a larger 

tracking error.  

 

 

Using the mExoArm is an alternative way to provide passive therapy as well as to provide 

motion assistance. It gives therapists or caregivers the flexibility to replicate different 

rehabilitation trajectories promptly, according to subject’s requirements, to maneuver the 

ETS-MARSE. Moreover, complex 3D joint space movement can be replicated easily by the 

mExoArm rather than using inverse kinematics, which might require a Jacobian matrix. 

Furthermore, the mExoArm could potentially be used to tele-operate the MARSE.  
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Figure 5.54 Repetitive movement of forearm using mExoArm 
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5.5 Discussion 

The goal of this research was to design, build and control an exoskeleton robot to provide 

passive rehabilitation therapy. ETS-MARSE, a 7DoFs exoskeleton robot, was developed. As a 

control strategy to maneuver the ETS-MARSE, different control techniques were employed. 

Experimental results demonstrate that mSMERL and PID control techniques are the best 

choices to maneuver the ETS-MARSE to provide passive arm movement therapy. These 

control techniques are robust and simple to design. Theoretically, with perfect dynamic 
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Figure 5.55 Passive rehabilitation by mExoArm  
(simultaneous movement of elbow and forearm) 
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modeling, CTC should give better tracking performance compared to PID control when the 

MARSE is maneuvered at a high speeds. However, in practice it is difficult to estimate or find 

exact dynamic parameters. Moreover, it is challenging to model the nonlinear frictions terms. 

Therefore, while using a nonlinear control approach, it was often necessary to simplify the 

dynamic model. Indeed, we did so in the dynamic modeling of the ETS-MARSE using the 

following strategies: 

 
• using only the diagonal elements (i.e., Ixx , Iyy, and Izz) of the inertial terms. The details of 

mass and inertia characteristics of each joint segment can be found in ANNEX I - 

ANNEX VII; 

 
• assuming that the structure of the MARSE arm is symmetric. Therefore, the origin of the 

centre of gravity for each joint segment lies on the axis of symmetry. In our case, we 

have considered the axis of symmetry to be along the Z0 axis (i.e., on XZ0 plane);  

 
• modeling of the viscous friction term was ignored, considering the exercises will be 

performed at a low speed (passive rehabilitation therapy exercises should be performed 

slowly because of the subject’s arm impairment). However, viscous friction terms are 

relevant when the MARSE is maneuvered at high speeds. Therefore, a viscous friction 

model should be included in the control law when developing a control strategy to 

provide active motion assistance.  

 

Note that this simplification in the modeling was done only to save computation time. 

However, comparing the natural variability of human arm movement (Buneo et al., 1995; 

Hay et al., 2005; Meyer et al., 1988; Sanger, 2000; Sarlegna and Sainburg, 2007), with these 

results (Figure 5.4 - Figure 5.41) we may conclude that the ETS-MARSE can efficiently track 

the desired trajectories, and thus should be adequate for the purpose of performing passive 

arm movement therapy. Many individuals with arm impairment resulting from a surgery to 

the joints or following a stroke cannot perform their various activities of daily living 

independently. Thus, the development of the ETS-MARSE and the validation of the results 

were a very important first step for the use of ETS-MARSE in rehabilitation.  
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However, it should be noted that the ETS-MARSE with different control strategies could 

potentially be used as: 

• a motion assistance device to help individuals with limited upper limb strength; 

• a therapeutic device to provide different forms of rehabilitation therapy ranging from 

passive movements to assisted movements; 

• a power assistance device, i.e.; as a human arm amplifier to scale down the load of 

interaction (Kazerooni, 1996); 

• a master device for tele-operation (master/slave) of other robotic devices; and 

• a haptic device. 

 

 

 



 

CONCLUSION 

 

A 7DoFs robotic exoskeleton, ETS-MARSE, (motion assistive robotic-exoskeleton for 

superior extremity) corresponding to the human upper limb was developed to provide 

grounds for effective rehabilitation of people with disabilities at the level of shoulder, elbow, 

forearm and wrist joint movements. In this thesis we have presented the modeling, design 

(mechanical and electrical components), development, and control strategies of the ETS-

MARSE. 

 

To avoid the complex cable routing that can be found in many exoskeleton systems, an 

innovative power transmission mechanism (a combination of an open type bearing and a gear 

assembly) was introduced for assisting shoulder joint internal/external rotation and for 

forearm pronation/supination (Rahman et al., 2012b). 

 

The kinematic model of the MARSE was developed based on modified Denavit-Hartenberg 

notations, whereas in dynamic modeling the iterative Newton-Euler formulation was used. In 

experiments, typical rehabilitation exercises for single and multi joint movements (e.g., 

reaching) were performed with different control techniques such as PID, Compliance Control 

with Gravity Compensation, Computed Torque Control, and Sliding Mode Control with 

Exponential Reaching Law. Note that the control architecture was implemented on a field-

programmable gate array (FPGA) in conjunction with a RT-PC. 

 

To improve transient tracking performance and to reduce chattering in conventional sliding 

mode control, this thesis proposed the mSMERL, a novel nonlinear control strategy that 

combined the boundary layer technique and the exponential reaching law. Experiments were 

performed to compare the dynamic tracking performance of the conventional SMC and 

mSMERL, where it was demonstrated that mSMERL is able to reduce chattering (during the 

transient and steady state) and give better tracking performance. 
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Experiments were carried out with healthy human subjects where trajectories (i.e., pre-

programmed trajectories recommended by a therapist/clinician) tracking in the form of 

passive rehabilitation exercises were carried out.  

 

This thesis also focused on the development of a 7DoFs upper-limb prototype (lower scaled), 

mExoArm. Furthermore, experiments were carried out with the mExoArm where subjects 

(robot users) operated the mExoArm (like a joystick) to maneuver the MARSE to provide 

passive rehabilitation.  

 

Experimental results show that the ETS-MARSE can effectively perform passive 

rehabilitation exercises for shoulder, elbow and wrist joint movements. Using mExoArm 

offers users some flexibility over the pre-programmed trajectory selection approach, 

especially in choosing the range of movement and the speed of motion. Moreover, the 

mExoArm could potentially be used to tele-operate the MARSE in providing rehabilitation 

exercises. 

 

 



 

RECOMMENDATIONS 

 

To provide ‘active assistance rehabilitation,’ future projects may include developing a 

force sensor-based controller to control the ETS-MARSE. Future studies/works can also 

be expanded as follows: 

• developing a lighter version of ETS-MARSE and introducing a shoulder joint centre of 

rotation mechanism (Rahman, 2005) to make the exoskeleton more realistic; 

• considering many physically disabled individuals use wheel chairs, it is 

recommended to set up the system (ETS-MARSE) on a mobile wheel chair to increase 

the mobility of such individuals; 

• to reflect the user’s intention of motion, an electromyogram (EMG) based control 

algorithm could be developed (Perry, Rosen and Burns, 2007; Rahman, 2005). This 

control technique could be used for motion assistance to perform daily upper-limb 

tasks, as well as to provide active and resistive rehabilitation; 

• studies can be carried out to measure the effects of the use of the ETS-MARSE by 

analyzing the EMG signals during different experimental conditions; 

• the assessment and evaluation of the ETS-MARSE used to perform therapy with upper 

limb-impaired individuals; 

• development of a software to provide virtual reality based rehabilitation (Cardoso et 

al., 2006; Carignan, Tang and Roderick, 2009; Filler, 1999; Frisoli et al., 2009; 

Stewart et al., 2006). This will help subjects to interact more with the MASRE; 

• updating the library of existing passive rehabilitation exercises with more Cartesian 

trajectory based exercises, for example, to maneuver the ETS-MARSE to follow a 

circular trajectory. For this purpose, it is recommended to develop and use the 

analytic/geometric inverse kinematics solution of the ETS-MARSE;  

• finally, it is recommended for the 2nd version of the MARSE to replace the existing 

actuators with another type that comes with an encoder. 

 





 

ANNEX I 
 
 

MASS CHARACTERISTICS OF UPPER LIMB  

Table-A I-1 Mass characteristics of upper limb 
Adapted from Winter (1990)  

 

Segments & 
Definition 

Segment 
Length/ 
Stature 

Segment 
Weight/ 

Body 
Weight 

Centre of Mass / 
Segment length 

Radius of Gyration / 
Segment length 

Proximal Distal C of G Proximal Distal

Handa 0.108 0.006 0.506 0.494 0.297 0.587 0.577 

Forearmb 0.146 0.016 0.430 0.570 0.303 0.526 0.647 

Upper armc 0.186 0.028 0.436 0.564 0.322 0.542 0.645 

F'arm and 
hand 

0.254 0.022 0.682 0.318 0.468 0.827 0.565 

Upper limb 0.44 0.050 0.530 0.470 0.368 0.645 0.569 

 

 





 

ANNEX II 
 
 

REGRESSION COEFFICIENT FOR INERTIA CHARACTERISTICS OF UPPER 
LIMB 

 

Table-A II-1 Regression coefficients for inertia characteristics of upper limb 
Adapted from Zatsiorsky and Seluyanov (1983) 

 

Limb Segment Constant 
Body Weight  

(kg) 
Stature   

(cm) 
R 

                        Moment of Inertia around X axis1 (kg.cm2) 

Upper arm -250.70 1.56 1.512 0.62 

Forearm -64.00 0.95 0.340 0.71 

Hand -19.50 0.17 0.116 0.50 

                     Moment of Inertia around Y axis (kg.cm2) 

Upper arm -232.00 1.525 1.343 0.62 

Forearm -67.90 0.855 0.376 0.71 

Hand -13.68 0.088 0.092 0.43 

                       Moment of Inertia around Z axis (kg.cm2) 

Upper arm -16.90 0.6620 0.0435 0.44 

Forearm 5.66 0.3060 -0.0880 0.66 

Hand -6.26 0.0762 0.0347 0.43 

The origin of the coordinate system for each segment is the center of gravity of that 
segment. The X axis is defined as the frontal plane and +X is the direction from origin 
towards the front of the body. The Y axis is defined as the saggital plane and +Y is the 
direction from the origin towards the left of the body. The Z axis is defined as the 
transverse plane and +Z is the direction from the origin towards the head. 

1 Ex.: Moment of Inertia of hand around X axis (kg.cm2) = -19.5 + 0.17×Body weight 
(kg) +0.116×Stature (cm) 





 

ANNEX III 
 
 

MASS AND INERTIA PROPERTIES OF ETS-MARSE (JOINT 1) 

 
VOLUME =  1.1666059e+06  MM^3 
SURFACE AREA =  2.6215932e+05  MM^2 
AVERAGE DENSITY =  2.9789404e-06 KILOGRAM / MM^3 
MASS =  3.4752495e+00 KILOGRAM  
 
CENTER OF GRAVITY with respect to ACS1 coordinate frame: 
X   Y   Z     7.1281479e-02  1.3820600e+02  9.8419371e+01  MM 
 
INERTIA with respect to ACS1 coordinate frame:  (KILOGRAM * MM^2) 
 
INERTIA TENSOR: 
Ixx Ixy Ixz  1.2331398e+05  8.0547490e+00  1.7284770e+01 
Iyx Iyy Iyz  8.0547490e+00  4.8503730e+04 -5.5872595e+04 
Izx Izy Izz  1.7284770e+01 -5.5872595e+04  7.9265440e+04 
 
INERTIA at CENTER OF GRAVITY with respect to ACS1 coordinate frame:  (KILOGRAM * MM^2) 
 
INERTIA TENSOR: 
Ixx Ixy Ixz  2.3271023e+04  4.2291269e+01  4.1665308e+01 
Iyx Iyy Iyz  4.2291269e+01  1.4841151e+04 -8.6017360e+03 
Izx Izy Izz  4.1665308e+01 -8.6017360e+03  1.2885029e+04 
 
PRINCIPAL MOMENTS OF INERTIA:  (KILOGRAM * MM^2) 
I1  I2  I3   5.2057331e+03  2.2520233e+04  2.3271236e+04 
 
ROTATION MATRIX from ACS1 orientation to PRINCIPAL AXES: 
      -0.00328       -0.00506       -0.99998 
       0.66596        0.74596       -0.00596 
       0.74598       -0.66597        0.00092 
 
ROTATION ANGLES from ACS1 orientation to PRINCIPAL AXES (degrees): 
angles about x  y  z  81.186        -89.654        122.943  
 
RADII OF GYRATION with respect to PRINCIPAL AXES: 
R1  R2  R3 3.8703296e+01  8.0499549e+01  8.1830787e+01  MM 
--------------------------------------------- 

x1 
y1 

z1 

			{1} 





 

ANNEX IV 
 
 

MASS AND INERTIA PROPERTIES OF MARSE (JOINT 3 TO 4) 

 
VOLUME =  1.2802069e+06  MM^3 
SURFACE AREA =  4.0565661e+05  MM^2 
AVERAGE DENSITY =  2.9192983e-06 KILOGRAM / MM^3 
MASS =  3.7373057e+00 KILOGRAM  
 
CENTER OF GRAVITY with respect to ACS3 coordinate frame: 
X   Y   Z    -1.3132288e+01 -1.9564783e+02  9.7970448e+01  MM 
 
INERTIA with respect to ACS3 coordinate frame:  (KILOGRAM * MM^2) 
 
INERTIA TENSOR: 
Ixx Ixy Ixz  2.0221063e+05 -7.6078882e+03  2.6231526e+03 
Iyx Iyy Iyz -7.6078882e+03  4.9351145e+04  7.7300247e+04 
Izx Izy Izz  2.6231526e+03  7.7300247e+04  1.6380061e+05 
 
INERTIA at CENTER OF GRAVITY with respect to ACS3 coordinate frame:  (KILOGRAM * MM^2) 
 
INERTIA TENSOR: 
Ixx Ixy Ixz  2.3282321e+04  1.9943853e+03 -2.1851758e+03 
Iyx Iyy Iyz  1.9943853e+03  1.2835181e+04  5.6646701e+03 
Izx Izy Izz -2.1851758e+03  5.6646701e+03  2.0099222e+04 
 
PRINCIPAL MOMENTS OF INERTIA:  (KILOGRAM * MM^2) 
I1  I2  I3   9.1803237e+03  2.2523374e+04  2.4513026e+04 
 
ROTATION MATRIX from ACS3 orientation to PRINCIPAL AXES: 
      -0.19549        0.56925        0.79858 
       0.85399        0.49916       -0.14676 
      -0.48217        0.65329       -0.58372 
 
ROTATION ANGLES from ACS3 orientation to PRINCIPAL AXES (degrees): 
angles about x  y  z 165.887         52.995       -108.953  
 
RADII OF GYRATION with respect to PRINCIPAL AXES: 
R1  R2  R3 4.9562098e+01  7.7631399e+01  8.0987717e+01  MM 
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ANNEX V 
 
 

MASS AND INERTIA PROPERTIES OF MARSE (JOINT 5 TO 6)  

 
VOLUME =  7.1350560e+05  MM^3 
SURFACE AREA =  2.8785468e+05  MM^2 
AVERAGE DENSITY =  2.8968622e-06 KILOGRAM / MM^3 
MASS =  2.0669274e+00 KILOGRAM  
 
CENTER OF GRAVITY with respect to ACS3 coordinate frame: 
X   Y   Z    -2.9383700e+01 -1.6327282e+02  5.8954981e+01  MM 
 
INERTIA with respect to ACS3 coordinate frame:  (KILOGRAM * MM^2) 
 
INERTIA TENSOR: 
Ixx Ixy Ixz  7.8898450e+04 -7.7485550e+03  8.8775641e+02 
Iyx Iyy Iyz -7.7485550e+03  1.9006818e+04  2.5121506e+04 
Izx Izy Izz  8.8775641e+02  2.5121506e+04  6.9550487e+04 
 
INERTIA at CENTER OF GRAVITY with respect to ACS3 coordinate frame:  (KILOGRAM * MM^2) 
 
INERTIA TENSOR: 
Ixx Ixy Ixz  1.6614270e+04  2.1676525e+03 -2.6928139e+03 
Iyx Iyy Iyz  2.1676525e+03  1.0038230e+04  5.2257871e+03 
Izx Izy Izz -2.6928139e+03  5.2257871e+03  1.2665717e+04 
 
PRINCIPAL MOMENTS OF INERTIA:  (KILOGRAM * MM^2) 
I1  I2  I3   4.9852696e+03  1.6297714e+04  1.8035234e+04 
 
ROTATION MATRIX from ACS3 orientation to PRINCIPAL AXES: 
      -0.27911        0.48242        0.83028 
       0.74558        0.65377       -0.12922 
      -0.60515        0.58298       -0.54215 
 
ROTATION ANGLES from ACS3 orientation to PRINCIPAL AXES (degrees): 
angles about x  y  z 166.593         56.128       -120.052  
 
RADII OF GYRATION with respect to PRINCIPAL AXES: 
R1  R2  R3 4.9111332e+01  8.8797499e+01  9.3411056e+01  MM 
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ANNEX VI 
 
 

MASS AND INERTIA PROPERTIES OF MARSE JOINT (6 TO 7) 

 
VOLUME =  2.8582113e+05  MM^3 
SURFACE AREA =  8.5025779e+04  MM^2 
AVERAGE DENSITY =  2.7274235e-06 KILOGRAM / MM^3 
MASS =  7.7955526e-01 KILOGRAM  
 
CENTER OF GRAVITY with respect to ACS3 coordinate frame: 
X   Y   Z    -3.5105217e-01 -1.2182464e+02  4.1709658e+01  MM 
 
INERTIA with respect to ACS3 coordinate frame:  (KILOGRAM * MM^2) 
 
INERTIA TENSOR: 
Ixx Ixy Ixz  1.5876690e+04 -3.2520218e+01 -5.5588749e+00 
Iyx Iyy Iyz -3.2520218e+01  3.2997940e+03  2.9519696e+03 
Izx Izy Izz -5.5588749e+00  2.9519696e+03  1.2791835e+04 
 
INERTIA at CENTER OF GRAVITY with respect to ACS3 coordinate frame:  (KG * MM^2) 
 
INERTIA TENSOR: 
Ixx Ixy Ixz  2.9509324e+03  8.1886817e-01 -1.6973330e+01 
Iyx Iyy Iyz  8.1886817e-01  1.9435091e+03 -1.0091564e+03 
Izx Izy Izz -1.6973330e+01 -1.0091564e+03  1.2221701e+03 
 
PRINCIPAL MOMENTS OF INERTIA:  (KILOGRAM * MM^2) 
I1  I2  I3   5.1109475e+02  2.6541433e+03  2.9513736e+03 
 
ROTATION MATRIX from ACS3 orientation to PRINCIPAL AXES: 
       0.00549       -0.03516       -0.99937 
       0.57593        0.81710       -0.02558 
       0.81748       -0.57542        0.02474 
 
ROTATION ANGLES from ACS3 orientation to PRINCIPAL AXES (degrees): 
angles about x  y  z  45.960        -87.960         81.120  
 
RADII OF GYRATION with respect to PRINCIPAL AXES: 
R1  R2  R3 2.5605146e+01  5.8349714e+01  6.1530244e+01  MM 
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ANNEX VII 
 
 

MASS AND INERTIA PROPERTIES OF ETS-MARSE (JOINT 7) 

 
VOLUME =  2.2210442e+05  MM^3 
SURFACE AREA =  5.6142600e+04  MM^2 
AVERAGE DENSITY =  2.2358638e-06 KILOGRAM / MM^3 
MASS =  4.9659523e-01 KILOGRAM  
 
CENTER OF GRAVITY with respect to ACS5 coordinate frame: 
X   Y   Z     6.2263936e+01 -3.2098638e-04 -5.0780305e+01  MM 
 
INERTIA with respect to ACS5 coordinate frame:  (KILOGRAM * MM^2) 
 
INERTIA TENSOR: 
Ixx Ixy Ixz  2.3267685e+03  7.3359374e-02  1.3953111e+03 
Iyx Iyy Iyz  7.3359374e-02  4.4618044e+03 -1.1194287e-02 
Izx Izy Izz  1.3953111e+03 -1.1194287e-02  2.2712931e+03 
 
INERTIA at CENTER OF GRAVITY with respect to ACS5 coordinate frame:  (KG * MM^2) 
 
INERTIA TENSOR: 
Ixx Ixy Ixz  1.0462285e+03  6.3434483e-02 -1.7481457e+02 
Iyx Iyy Iyz  6.3434483e-02  1.2560652e+03 -3.0998907e-03 
Izx Izy Izz -1.7481457e+02 -3.0998907e-03  3.4609385e+02 
 
PRINCIPAL MOMENTS OF INERTIA:  (KILOGRAM * MM^2) 
I1  I2  I3   3.0487194e+02  1.0874504e+03  1.2560652e+03 
 
ROTATION MATRIX from ACS5 orientation to PRINCIPAL AXES: 
       0.22951        0.97331        0.00036 
      -0.00001       -0.00037        1.00000 
       0.97331       -0.22951       -0.00007 
 
ROTATION ANGLES from ACS5 orientation to PRINCIPAL AXES (degrees): 
angles about x  y  z -90.004          0.000        -76.732  
 
RADII OF GYRATION with respect to PRINCIPAL AXES: 
R1  R2  R3 2.4777498e+01  4.6795432e+01  5.0292685e+01  MM 
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ANNEX VIII 
 
 

FORCE SENSOR SPECIFICATIONS, NANO-17 
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ANNEX XI 
 
 

HARMONIC DRIVE (HD) SPECIFICATIONS 
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