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TOWARDS IMPROVED RANS/k− ε MODELLING OF TURBULENT
INCOMPRESSIBLE FLOWS FOR WIND ENERGY APPLICATIONS

Jonathon SUMNER

ABSTRACT

The advancement of wind energy as a viable and competitive alternative to traditional sources

is dependent on the development of advanced modelling techniques to decrease both the cost of

energy and the cost uncertainty. Of special importance in this effort is the improvement of wind

energy assessment tools. While so-called linearized models have dominated this field in the

past, models based on the Reynolds-Averaged Navier–Stokes (RANS) equations are becoming

more popular, especially for difficult sites involving complex terrain and multiple wakes. Al-

though RANS modelling is implicitly more appropriate for complex flows than its lower-order

derivatives, refinements are required to better adapt it to the needs of the sector and improve

accuracy. With that in mind, this dissertation strives to make fundamental improvements in the

use of RANS-based models for the simulation of atmospheric and wake flows.

Despite common use of the RANS equations with k− ε closure for simulations involving the

atmospheric boundary layer, challenges remain in its implementation – even for the simplest

case involving horizontally homogeneous conditions. Most notably, the distributions of turbu-

lent kinetic energy and its dissipation rate have proved difficult to maintain near solid bound-

aries, particularly in wind energy and wind engineering applications where the near-wall grid

is relatively coarse. In the first study of this dissertation, the origin of these errors is investi-

gated and it is shown that by applying appropriate discretization schemes in conjunction with

the Richards and Hoxey boundary conditions, truly invariant profiles of all flow properties can

be obtained on such grids. Furthermore, based on this finding, a wall treatment for practical
grids is proposed that could be implemented for non-homogeneous conditions.

The second study focuses on the physical modelling of atmospheric flows. The limited-length-

scale k− ε model proposed by Apsley and Castro for the atmospheric boundary layer is re-

visited with special attention given to its predictions in the constant-stress surface layer. The

original model proposes a modification to the length-scale-governing ε equation that ensures

consistency with surface-layer scaling in the limit of small �m/�max (where �m is the mixing

length and �max its maximum) and yet imposes a limit on �m as �m/�max approaches one. How-

ever, within the equilibrium surface layer and for moderate values of z/�max, the predicted

profiles of velocity, mixing length, and dissipation rate using the Apsley and Castro model do

not coincide with analytical solutions. In view of this, a general ε transport equation is derived

herein in terms of an arbitrary desired mixing-length expression that ensures exact agreement

with corresponding analytical solutions for both neutral and stable stability. From this result, a

new expression for the closure coefficient Cε3 can be inferred that shows it tends to a constant

only for limiting values of z/L (where z is the height above ground and L is the Monin-Obukhov

length); and, furthermore, that the values of Cε3 for z/L → 0 and z/L → ∞ differ by a factor of

exactly two.
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Wake modelling also plays an important role in wind energy assessment. These models must

be reasonably accurate – to minimize financial risk – and yet economical so that many layouts

can be tested within reasonable time. While numerous such models have been proposed, an es-

pecially attractive approach is based on the solution of the RANS equations with two-equation

turbulence closure and an actuator disk representation of the rotor. The validity of this approach

and its inherent limitations however remain to be fully understood. In the final study, detailed

wind tunnel measurements in the wake of a porous disk (with similar aerodynamic properties

as a turbine rotor) immersed in a uniform flow are compared with the predictions of several

turbulence closures, including a newly proposed one. Agreement with measurements is found

to be excellent for all models. This unexpected outcome appears to derive from a fundamental

difference in the turbulent nature of the homogeneous wind tunnel flow and that of the atmo-

spheric boundary layer. This result suggests that the largest source of uncertainty in turbulence

modelling remains the production term and leads to a discussion on similarity requirements for

wind tunnel testing.

Keywords: wind energy, atmospheric surface layer, computational fluid dynamics, turbulence

modelling, k − ε closure, finite volume method, discretization error, wall treatment, mixing

length, stably-stratified flow, wind turbine wakes, wind tunnel, actuator disk.



ÉVALUATION ET AMÉLIORATION DE LA MODÉLISATION DES
ÉCOULEMENTS INCOMPRESSIBLES ET TURBULENTS À PARTIR DES

ÉQUATIONS DE NAVIER–STOKES MOYENNÉES AVEC LA FERMATURE k− ε
POUR LES APPLICATIONS ÉOLIENNES

Jonathon SUMNER

RÉSUMÉ

La promotion de l’énergie éolienne comme une alternative viable et compétitive aux sources

traditionnelles est dépendant du développement des techniques de modélisation avancées qui

vont diminuer à la fois le coût de l’énergie et l’incertitude reliée à son évaluation. D’une im-

portance particulière dans cet effort est l’amélioration des outils d’évaluation de la production

des projets éoliens. Bien que des modèles linéarisés ont dominé ce domaine dans le passé, les

modèles basés sur les équations de Navier–Stokes moyennées (RANS) sont de plus en plus

populaires, surtout pour les sites difficiles où les effets de topographie et de sillage sont im-

portants et se mélangent. Cependant, même si la modélisation RANS est implicitement plus

appropriée pour les écoulements complexes que ses dérivés d’ordre inférieur, des améliora-

tions sont nécessaires pour l’adapter aux besoins du secteur et améliorer la précision. Avec

cela à l’esprit, cette thèse vise à apporter des améliorations fondamentales en ce qui concerne

l’utilisation de modèles basés sur les équations RANS pour la simulation des écoulements

atmosphériques et en sillage d’une éolienne.

Malgré l’utilisation courante des équations RANS avec le modèle k−ε comme fermeture pour

les simulations en couche limite atmosphérique, des défis subsistent dans la mise en œuvre

de cette approche – même pour le cas le plus simple impliquant des conditions homogènes.

Plus particulièrement, les distributions d’énergie cinétique turbulente et son taux de dissipa-

tion se sont révélées difficiles à maintenir à proximité des frontières solides, ce qui est surtout

problématique quand les maillages à proximité de la paroi sont relativement grossiers. Dans la

première étude de cette thèse, l’origine de ces erreurs est investigué et il est démontré qu’en ap-

pliquant des schémas de discrétisation appropriées et les conditions aux frontières de Richards

et Hoxey, des profils invariants de toutes les propriétés d’écoulement peuvent être obtenus sur

de tels maillages. En outre, grâce à ce travail, un traitement de paroi pour les maillages pra-
tiques est proposé qui peut être appliqué aux conditions non-homogènes.

La deuxième étude se concentre sur la modélisation physique des écoulements atmosphériques.

Le modèle k− ε modifié de Apsley et Castro pour la couche limite atmosphérique est revisité

avec une attention particulière à ses prédictions dans la couche limite de surface où le cisaille-

ment est constant. Ces auteurs ont proposé une modification à l’équation de ε (qui détermine

l’échelle de longueur des mouvements turbulents) afin d’imposer une limite sur la longueur de

mélange en respectant toutefois la similitude près de la paroi. Cependant, des simulations de la

couche limite de surface avec cette fermeture peuvent donner des profils de vitesse, longueur

de mélange, et taux de dissipation de turbulence qui ne coïncident pas avec les solutions an-

alytiques. Compte tenu de cela, une équation de ε générique est dérivée en termes d’une
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distribution de la longueur de mélange arbitraire qui assure la concordance exacte avec les so-

lutions analytiques correspondantes pour des conditions de stratification thermique neutre ainsi

que stable. De ce résultat, une nouvelle expression pour le coefficient de fermeture Cε3 peut

être déduite démontrant que ce coefficient n’est constant que pour des valeurs extremes de z/L
(où z est la distance du sol et L est la longueur de Monin-Obukhov). En fait, Cε3 varie d’un

facteur de deux entre les limites de z/L → 0 et z/L → ∞.

La modélisation du sillage d’une éolienne a aussi un rôle important à jouer dans l’évaluation

d’un projet éolien. Ces modèles doivent être assez précis – afin de minimiser les risques fi-

nanciers – et pourtant économique de telle sorte que de nombreuses configurations peuvent

être évaluées dans un délai raisonnable. Tandis que plusieurs modèles de ce genre ont été déjà

proposés, une approche particulièrement intéressante est basée sur la solution des équations

RANS avec une fermeture à deux équations et où l’action du rotor est modelisée par un disque

actuateur. La validité d’une telle approche et ses limitations inhérentes reste toutefois à être

pleinement comprises. Dans la dernière étude, des mesures détaillées en soufflerie dans le sil-

lage d’un disque poreux (avec les mêmes propriétés aérodynamiques d’une éolienne) immergé

dans un écoulement uniforme sont comparées avec les prévisions de plusieurs fermetures, y

compris une nouvelle proposition. L’accord avec les mesures est jugé excellent pour tous les

modèles. Ce résultat inattendu semble provenir d’une différence fondamentale dans la nature

turbulente de l’écoulement en soufflerie et celle de la couche limite atmosphérique. De plus, ce

résultat suggère que la plus grande source d’incertitude dans la modélisation de la turbulence

reste dans le terme de production et conduit à une discussion sur les exigences de similarité

pour des essais en soufflerie.

Mots-clés: énergie éolienne, couche limite de surface, modélisation numérique en dynamique

des fluides, modélisation de la turbulence, la fermature k− ε , méthodes aux volumes finies,

erreur de discretisation, traitement à la paroi, longueur de melange, stratification thermique

stable, sillages des éoliennes, soufflerie, disque actuateur.
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INTRODUCTION

0.1 Context

The new millenium has seen the beginning of a global energy revolution. The spectre of peak

oil, heightened concerns regarding pollution, greenhouse gas emissions and climate change,

and attractive government subsidies are stimulating the development of a new market for sus-

tainable energy sources. For the first time, onshore wind has been recognized as a potentially

competitive primary electricity generation source by the International Energy Agency (IEA,

2010b), while renewables as a sector have recently experienced incredible growth (IEA, 2011).

Wind-based energy conversion systems remain the most economically viable option and make

the largest contribution to the clean energy movement (in terms of installed capacity). As en-

ergy demands climb and the cost of traditional sources increases, wind energy will not only

see its capacity grow but also its market share: it is forecast to provide as much as 13% of

worldwide electricity needs by 2035 (IEA, 2010a).

At first glance, this outlook may seem overly optimistic. In fact, the wind energy sector has

been growing at a breakneck pace since the mid-nineties: worldwide cumulative installed ca-

pacity grew at an average rate of nearly 30% annually in the period from 1996 to 2010, as

shown in figure 0.1 (Pullen and Sawyer, eds., 2010). Even if the year-on-year growth rate has

recently slowed, the above projections remain realistic. This is predicated by the fact that while

wind energy has long established itself as an ecologically sound alternative to the trifecta of

oil, coal, and gas, it is rapidly becoming an economically competitive option as well.

However, despite generally favourable socio-economic conditions and a relatively mature tech-

nology, the wind energy industry faces several obstacles to increasing penetration levels and

attaining absolute cost parity. These have been enumerated by the European Wind Energy

Technology Platform and translated into a set of strategic research and development objectives

(TPWind, 2008). Among the numerous initiatives proposed, one of the predominant themes

centres around the reduction of uncertainties in wind resource assessment, improved predic-
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tion of wind farm energy production, and better evaluation of turbine loading. Furthermore,

implicit to the objective of attaining cost parity is the idea of optimal exploitation.

Figure 0.1 Global cumulative installed wind capacity 1996–2010.

From: Pullen and Sawyer, eds. (2010)

0.1.1 Technical challenges

The common thread is a need for improved modelling. Consider first wind resource assess-

ment. Evaluation of site suitability is generally based on direct observation via a short mea-

surement campaign (∼1 year) where wind speed and temperature statistics are recorded at a

few discrete locations and at several heights. The compiled data is then correlated to long-

term regional observations to improve climatological representivity (Nielsen et al., 2001) upon

which energy projections may then be based. The end result is a characterization of the wind

resource, in terms of direction, frequency and intensity, at the measurement locations only.

The challenge is to spatially extrapolate these observations to the entire region of interest. The

importance of accuracy in this work is underlined by the fact that energy production is pro-

portional to the cube of wind speed: a 1% uncertainty in the extrapolated independent variable

becomes a 3% uncertainty in the dependent variable.

The problem of micro-siting turbines – that is, the determining of optimal positions – is doubly

challenging given the implicit nature of the task: turbines themselves affect the local resource

by removing kinetic energy and increasing downstream turbulence1. As topographic influences

become more important, the combined effect of multiple wakes and surface conditions on flow

properties becomes increasingly difficult to predict leading to appreciable uncertainty in the

1A good wind farm flow model might be simply defined as one that provides accurate predictions of these two

effects.
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forecasted energy production. To further complicate the issue, turbine positioning is subject to

loading requirements which are highly dependent on both the average wind velocity and the

level of turbulence. While accurately extrapolating the mean velocity can be a difficult task in

and of itself, it is considerably easier than extrapolating the energy contained in the turbulent

fluctuations about the mean.

0.1.2 The need for advanced models

It is worth noting that the most common approach for wind energy assesment still involves the

use of a linearized model – one that is based on a simplified form of the equations governing

flow fluid – such as WAsP (Troen and Petersen, 1989) or MS-Micro (Taylor et al., 1983).

Although these models are, to some extent, a reflection of the available computing power at the

time of their development, they are clearly inspired by early-generation wind farms. They are

valid for thermally neutral flow over gently sloping terrain and low hills and perform very well

when predicting the flowfield for cases that conform to this limited parameter space (Ayotte,

2008). However, the modern wind energy industry is expanding and looking to exploit both

offshore and mountainous sites. As the terrain becomes more complex, non-linear effects such

as recirculation become dominant flow features and linearized models are ill-suited. In fact, the

calculations of Ayotte (2008) over smooth and rough two-dimensional hills suggest that such

models yield unacceptably large error for slopes greater than 0.2.

As may be surmised from the preceding, advanced mathematical models will be required to

adequately address the technical challenges the wind energy sector presently faces. To this

end, computational fluid dynamics (CFD) – the field dedicated to solving the partial differen-

tial equations governing fluid flow by approximate numerical means – is being increasingly

used to deal with the inherent complexity of atmospheric flows and their interaction with tur-

bines, both individually and in large groups. Although use of CFD is expected to improve the

accuracy of resource predictions in areas where flow separation and thermal effects are char-

acteristic of the flow (Landberg et al., 2003), this approach has never been the tool of choice

of wind energy specialists and its pace of adoption remains slow for a variety of reasons. At

the research level, CFD has long been used to predict the flow over complex terrain (see Bit-
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suamlak et al. (1999) for a concise review) and wind energy related applications can be found

in the recent literature. Hashimoto et al. (2007) applied CFD to the problem of ideal turbine

siting, not only for the improved flowfield representation but also for its ability to estimate

turbulence properties. Further examples can be found of CFD being used to help design mea-

surement campaigns in the selection of proper measurement sites (Bechmann et al., 2007) and

in numerical site calibration (Brodeur and Masson, 2008). Palma et al. (2008) have provided

guidance on the use of CFD in combination with conventional techniques for wind resource

assessment and micro-siting in another recent case study. The development of new commer-

cial CFD software marketed specifically to the wind energy sector will help build confidence

in these methods and contribute to increased use by industry.

The overarching objective of the present work is to support this paradigm shift. In particular,

the goal is to improve modelling techniques related to wind energy assessment in order to

reduce cost uncertainty and the associated financial risks. Diminishing such hurdles opens the

door to greater investment which supports the ultimate end of reducing dependence on fossil

fuels and developing a more sustainable energy mix.

0.2 Scope and methodology

At the scale of wind farms, the application of CFD techniques is largely focused on the predic-

tion of the flowfield over topography and on the evaluation of wind turbine wakes. A slightly

more precise statement of the dissertation objectives is then to improve modelling of a) atmo-

spheric flows, and b) the rotor-wind interaction. Research in these areas is generally divided

along two lines: those who are interested in describing, in as much detail as possible, the

time-varying turbulent structures that arise from the interactions of the wind with terrain and

with an operating rotor, and those who are primarily interested in modelling such effects for

macroscopic analyses. While the former group often employs high-order transient numeri-

cal methods based on large- or detached-eddy simulation to investigate the development and

dissipation of vortical structures, the latter group is more interested in modelling the energy

available, the extraction process, and its influence on far-wake turbulent flow properties in a

time-averaged sense. Immediately, then, a distinction in methodologies can be made based on
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physical realism; the present work falls squarely into the latter category where the interest is

simply in the “average” flow.

0.2.1 Conservation laws and mathematical modelling

The nature of turbulent flows is such that an exact solution to the governing equations is simply

impossible to attain, especially at high Reynolds number (Gatski and Rumsey, 2002). However,

in many instances one is satisfied with modelling the effects of turbulence on the mean flow

and, although use of large-eddy simulation (LES) for wind energy applications has started in

earnest, the majority of models are based on the steady, incompressible Reynolds-Averaged

Navier–Stokes (RANS) equations derived from the principles of conservation of mass and

momentum:

∇ ·�U = 0, (1)

∇ ·�U�U =−∇p+∇ ·τ ′+�f . (2)

Here, �U represents the mean velocity vector and p is the modified mean pressure (normalized

by fluid density) (Pope, 2000). �f represents a body force (e.g. Coriolis, buoyancy, etc.). τ ′ is

the deviatoric component of the kinematic Reynolds stress tensor. It appears as part of the time-

averaging process and represents the turbulent transport of momentum. It is often assumed to

dominate the viscous terms which have been neglected.

The rank-2 stress tensor is symmetric and introduces six new unknowns – the covariances of

the time-varying components of the velocity field: u′u′, u′v′, u′w′, v′v′, v′w′, and w′w′. The four

RANS equations contain thus a total of ten unknowns and are open. To close the system, the

Boussinesq linear (or isotropic) eddy-viscosity hypothesis is often applied

τ ′i j =−u′iu′j = 2νtSi j − 2

3
kδi j (3)



6

where Si j is the mean strain rate tensor, the components of which are

Si j =
1

2

(
∂Ui

∂x j
+

∂Uj

∂xi

)
(4)

and the eddy viscosity, νt , must be modeled. The isotropic part of the stresses related to the

turbulent kinetic energy, i.e. 2k/3, can be subsumed by the pressure term (Gatski and Rumsey,

2002) – thus “modifying” it – as their action on the flow is the same and pressure loses its

meaning as a thermodynamic variable for incompressible flows (Pope, 2000). This leaves

τ ′ = 2νtS. (5)

If desired, viscous effects can be reintroduced by replacing νt with an effective viscosity νe f f =

νt +ν .

The most popular closure of this type is the standard k− ε model of Jones and Launder (1972)

wherein the eddy viscosity is given by

νt =Cμ
k2

ε
(6)

and Cμ is a closure coefficient. The turbulent kinetic energy, k, and its dissipation rate, ε , are

each modelled with transport equations. In steady form,

∇ · k�U = ∇ ·
(

νt

σk
∇k
)
+Pk − ε, (7)

∇ · ε�U = ∇ ·
(

νt

σε
∇ε
)
+Cε1Pk

ε
k
−Cε2

ε2

k
(8)

where Cε1, Cε2, σε , and σk are closure coefficients and again νt could be replaced by νe f f to

account for viscous action. Pk is a source term representing the rate of production of k,

Pk = 2νtSi jSi j. (9)
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0.2.2 Justification of approach

In some sense, RANS modelling appears to be a half measure. Yes, the non-linearity of the

fluid flow equations is maintained and basic conservation laws respected, but the description

of turbulence is inherently limited. This is a considerable drawback given the importance of

turbulence in many flows. Why not then use eddy-resolving schemes directly?

For the moment, the simple answer is that RANS-based modelling is both more practical and

more mature. This situation is admittedly transient; on a horizon of five to ten years eddy-

resolving techniques may well come to dominate atmospheric flow modelling for wind energy

applications. Certainly, research on the use of LES for such purposes is increasing and the

recent works of e.g. Brasseur and Wei (2010) and Meyers and Meneveau (2012) make this

prediction all the more plausible. LES is analogous to direct numerical simulation for high

Reynolds number flows as a large fraction of the turbulent kinetic energy is directly resolved

(see Pope (2000); Sagaut (2006) for review of method). Sub-grid scale models are used to

handle turbulence at scales smaller than some filter width, which is often the grid itself. At

this scale, the eddy-viscosity concept has more relevance and the assumption of isotropy may

be valid. Although many problems associated with RANS closure can be avoided using an

LES-based approach, the computational effort is considerably greater. In a review on the use

of LES for flow over complex terrain, Wood (2000) concluded that true LES of atmospheric

boundary layer flow over a three-dimensional, rough surface of arbitrary shape was still a long

way off based on the grid refinement and averaging time required to properly resolve non-linear

interactions at all scales and obtain meaningful turbulence statistics. Citing the work of Chow

and Street (2004) (see Chow and Street (2009) for most recent developments) and Chow et al.

(2006) regarding LES modelling of flow over Askervein and a valley in the Alps, Ayotte (2008)

also concludes that direct use of LES specifically for wind energy is not yet feasible, although

concedes that at some point it will likely be used as part of wind farm design. As a case in

point, Uchida and Ohya have developed an LES-based model for analyzing neutral flow over

variable orography (Uchida and Ohya, 1999, 2003) and applied it to the problem of proper site

selection (Uchida and Ohya, 2006).
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The difficulties in applying LES to wall-bounded flows are largely due to impractical grid re-

quirements in the near-wall region (Piomelli and Balaras, 2002; Piomelli, 2008) – the region

of greatest importance for wind energy purposes. Hybrid RANS/LES methods, in which the

near-wall flow is modeled using a RANS approach that is coupled to an LES model away

from the surface, appear to offer a way out. Silva Lopes and Palma (2002) were the first to

analyze Askervein using such an approach and a later paper by Silva Lopes et al. (2007) elab-

orates on the strengths and weaknesses of using a hybrid scheme. More recently, Bechmann

and Sørensen (2010) have also applied a hybrid model to Askervein that uses an unsteady

RANS/k − ε closure in the near-wall region and LES with k − ε acting as a sub-grid model

for the outer layer. Validation with the Askervein data shows, as reported by others, that cal-

culations using standard RANS/k− ε result in an underestimation of hill top wind speeds and

leeside turbulent kinetic energy while the proposed hybrid RANS/LES approach yielded ex-

cellent agreement with these measurements.

This cursory review on the topic of LES reveals the progress, the possibilities, and the road-

blocks. The near-certain eventuality of LES supplanting RANS for atmospheric flow modelling

would, on the surface, diminish the importance of the work presented here and the continued

push for better RANS turbulence closures in both the wind energy and wind engineering fields.

But this should not be seen as the case. Firstly, RANS modelling is something of a bridge to

more advanced techniques: a jump from linearized solvers to LES is simply not in the cards.

Secondly, for the reasons mentioned above, LES is some time away from being truly practical

and an interim solution is required to deal with complex cases; the RANS equations coupled

with two-equation closure appear to be the most suitable approach (Bechmann et al., 2011).

Thirdly, as mentioned above, RANS (or more specifically URANS) models have an important

role to play in hybrid schemes.

There is another, perhaps subtle, reason for continued research in RANS-based flow modelling:

as computing power increases and LES becomes feasible, RANS simulations will too become

that much more economical. It is in this context that one might envision the use of RANS-based

models for the optimization of wind farms; an application that depends on relatively accurate
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modelling and one in which LES will surely be unable to make any significant contribution for

the foreseeable future. Given that even modest increases in production can yield significant

financial gains, there is a strong impetus to develop modelling tools which accurately predict

the mean flow properties within a park and that can subsequently be incorporated as part of a

scheme to systematically improve layouts.

Given these arguments, this thesis aims to resolve some fundamental issues related to RANS/k−
ε modelling of flows for wind energy assessment purposes.

0.3 Thesis organization

This dissertation is presented as a series of manuscripts. In the first article, the basic prob-

lem of simulating a steady, incompressible, horizontally homogeneous, and neutrally stratified

surface-layer flow with the RANS equations and k − ε closure is considered. Historically,

the simulation of such flows has proved surprisingly problematic which is particular given the

availability of an analytical solution. Chapter 1, entitled k− ε simulations of the neutral at-

mospheric boundary layer: analysis and correction of discretization errors on practical grids,

treats this problem directly.

In the second article, The Apsley and Castro limited-length-scale k− ε model revisited for im-

proved performance in the atmospheric surface layer, the surface-layer model presented in

Chapter 1 is adapted to account for more realistic conditions. In general, the mixing length –

a parameter related to the maximum size of turbulent eddies – is predicted to increase propor-

tionally with height above ground in the standard k− ε model but, in reality, cannot increase

indefinitely. Rather, it tends to be bounded by some physical constraint: stable stratification,

boundary layer depth, etc. Regardless of the source of the limit, the standard model must be

modified to account for this action. This has proven tricky in the past, and here a single modi-

fied formulation of the k− ε model is proposed that can reproduce both neutral length-limited

and stable surface layers. This is of special importance to offshore wind farms where stable

conditions are common, rotor diameters are large and hub heights relatively low: wind shear

effects become quite important and must be accurately reproduced.
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In the closing chapter on the Evaluation of RANS modelling of wind turbine wake flow us-

ing wind tunnel measurements, the actuator disk concept is added to the RANS/eddy-viscosity

framework for the purpose of wake analysis. This topic is something of a minefield: this com-

bination of models has previously been shown to have fundamental flaws. Here, a modified

closure is proposed, that hopes to partially address the known issues, and wind tunnel experi-

ments are solicited as a means to evaluate several two-equation turbulence closures.

Following the dissertation conclusions, two additional and more practical case studies are pre-

sented as annexes. Annex I provides a summary of several wind flow simulations over the small

isolated island of Bolund while the simulations presented in Annex II concern the flow through

an entire wind farm situated in moderately complex terrain. Most importantly, the suitability of

RANS-based models for wind resource assessment and for the estimation of wind farm power

performance is assessed by comparing predictions with field measurements.



LITERATURE REVIEW

Foreword

The following chapter presents an overview of the application of CFD for wind energy as-

sessment and is based largely on the survey published by Sumner et al. (2010). More critical

discussions of the literature as it relates to the research presented herein are contained in the

manuscripts. The following serves to provide context to the work and highlight the contribu-

tions of this dissertation.

0.4 RANS modelling of atmospheric flows

0.4.1 Homogeneous conditions

The simplest atmospheric flow is that of the idealized surface layer wherein the shear stress and

sensible heat flux are assumed constant with height, there is no pressure gradient in the flow

direction, and the velocity distribution is logarithmic or perhaps log-linear. Although rarely

observed, this model of the flow in the lowest portion of the atmosphere has importance for

CFD applications not only in the validation of codes but also as the approach flow in both wind

engineering and wind energy simulations.

It is only recently that idealized surface-layer flows have been accurately simulated using com-

mon CFD techniques. Richards and Hoxey (1993) made the most important contribution to

this effort by defining the appropriate boundary conditions for the k − ε model (for neutral

conditions). Several others have since commented on lingering difficulties related to wall func-

tion implementation issues (Blocken et al., 2007) and unexpected near-wall distributions of

turbulent kinetic energy (Hargreaves and Wright, 2007). Fortuitously, problems in specifying

proper boundary conditions have become less relevant with the recent availability of high-

quality, open-source CFD software that allows users to modify the source code directly. On

the other hand, the problems with respect to the turbulent kinetic energy distribution have been

more difficult to resolve and have been the focus of several recent works (by e.g. Gorlé et al.

(2009) and Parente et al. (2011)).
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The challenge in modelling surface-layer flows is somewhat increased when the heat flux is

non-zero. Until lately, the effect of atmospheric stability has been somewhat overlooked by the

wind energy community. It may, however, be an important factor for offshore installations as

stable thermal stratification is common and wind shear effects are exacerbated by very large

rotors. Additionally, Eidsvik (2005) postulates that stability effects in mountainous terrain may

lead to large uncertainties for RANS models. Efforts have already been made to incorporate

buoyancy effects in a RANS/k − ε framework. The modification proposed by Rodi (1987)

wherein a buoyancy-dependent term is added to the transport equations is commonly used;

however, the value chosen for the closure coefficent Cε3 varies greatly. Freedman and Jacobson

(2003) have since shown that, in fact, any constant value for Cε3 is inconsistent with similarity

theory. Alinot and Masson (2005) have thus proposed a polynomial expression for Cε3 in

the dimensionless stability parameter z/L, where z is height above ground and L the Monin-

Obukhov length, based on surface-layer similarity profiles.

0.4.2 Heterogeneous conditions

Most current use of CFD for flow simulations in complex terrain entails the solution of the

incompressible RANS equations with two-equation turbulence closure. Often, thermal effects

and the Coriolis force are neglected. Lower-order turbulence models are avoided as they appear

to lack the sophistication required to handle recirculation whereas higher-order methods require

longer computing times. As mentioned already, the k − ε model, and variants thereof, are

presently the most popular closures.

Many authors have previously reported on the known weaknesses of the standard model which,

in the context of flow over complex terrain, tend to manifest as an overestimation of turbulent

kinetic energy and an underestimation of mean flow recirculation. To try to remedy these

issues, variations on the k − ε theme are common. Chen and Kim (1987) modified the ε

equation by adding a new production term in an effort to balance turbulence production for

highly strained flows. In their derivation of the RNG k− ε model, Yakhot and Orszag (1986)

and Yakhot and Smith (1992) modified the standard ε equation in a similar manner.
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Maurizi (2000) has tested these two versions of the k− ε model, along with its standard form,

for flow over two-dimensional valleys using wind tunnel data from the RUSVAL experiment.

For gentle slopes with attached flow, all three models yield similar results for the mean velocity

field. However, when recirculation is present, the mean flow solution is much more sensitive

to the ε transport equation and results between the models vary considerably; the RNG version

yields the best agreement with data. Considering the prediction of turbulent kinetic energy,

differences are present even for attached flow, and none of the models provide consistently

better predictions. For the Reynolds stresses, the RNG model again appears to provide the best

results, however Maurizi suggests a transport equation for u′w′ be included to overcome some

fundamental problems with the modelling of this quantity under the eddy-viscosity concept. It

is further recommended that for flows involving recirculation, the RNG model should be used.

Ying et al. (1994) have performed a similar analysis over the two-dimensional analytical hill

from the RUSHIL experiment by solving the compressible RANS equations again using three

closure schemes: the standard k− ε model, an algebraic Reynolds stress model (ARSM) and

an extended k− ε − u′w′ model that includes a transport equation for the u′w′ stress compo-

nent. All the closure schemes provide reasonable and roughly equivalent results for the mean

velocity field but, again, large discrepancies are observed in the calculated turbulent shear

stress. Focusing on predictions at the hilltop, both the standard model and the ARSM provide

poor underestimations of u′w′ while the k− ε − u′w′ model provides satisfactory results. The

improvement is attributed to the ability of second-order closure to account for advection of

upstream turbulence.

While some researchers have focused on modifying the ε equation, others have taken a closer

look at the prescription of the time scale used in the definition of eddy-viscosity. Whereas

standard k− ε uses

νt =Cμkτε (10)

with the relaxation time being defined as

τε =
k
ε
. (11)
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Durbin (1996) proposed imposing a realizability constraint,

τ = min [τε ,τD] (12)

with

τD =
2

3Cμ
√

2|S|2

Nagano et al. (2001) and Nagano and Hattori (2003) have developed this idea further and

proposed various mixed time scale models based on mean strain rate and vorticity tensors

(referred to as the S model and Ω model, respectively, and S−Ω for their hybrid).

Despite some success using the revised non-linear k− ε model proposed by Shih et al. (1995)

for flow over a curved hill (Lun et al., 2003), numerical stability problems prompted Lun et

al. to evaluate these improved linear k − ε models for wind energy predictions in complex

terrain (Lun et al., 2007). For flow over a single isolated hill, the Durbin model predicts

upstream turbulent kinetic energy well, but severely underestimates its magnitude in the wake.

Conversely, the Ω model performs well in the wake, but overestimates k upstream. In terms

of mean velocity, the Ω model is in good agreement with measurements whereas the Durbin

model grossly overestimates the size of the recirculation zone behind the hill. Use of the mixed

time scale model S−Ω somewhat corrects the overestimation of k at the hill top and generally

improves estimates of separation and reattachment points in the hill wake. From this analysis

and others, Lun et al. conclude that the S−Ω version performs best; Muramaki et al. (2003)

have integrated this approach as part of a wind turbine micro-siting scheme.

In his analysis of computational wind energy assessment methods, Ayotte (2008) has also

simulated flow over symmetric two-dimensional hills of various slope using a full Reynolds

stress transport model (RSTM) and compared with wind tunnel data. Mean flow predictions

are in excellent agreement with measurements except in the wake region for large slopes where

the mean flow recovers too quickly. This points to limitations in the RANS approach that will

not likely be overcome by any of the above treatments and suggests the need for more advanced

eddy-resolving techniques, especially if accurate turbulence predictions are desired. It was
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further confirmed that the predicted mean velocity is relatively insensitive to the closure used:

tests indicate that two-equation k− ε and full second-order closures yield negligibly different

results.

Considering flow over real terrain, Kim and Patel (2000) have investigated the performance of

RNG k− ε by simulating neutral flow through the Sirhowy Valley in Wales, over an embank-

ment on the Rhine in Germany, and over Askervein hill in Scotland. The choice of RNG was

motivated by case studies involving flow over a triangular ridge and several two-equation clo-

sure schemes. In general, the RNG-based model best predicted mean velocity and turbulence

characteristics, including the size and shape of recirculation zones. In a separate work, Kim

et al. (2000) presented further case studies using the RNG model for Cooper’s Ridge, Kettles

Hill, Askervein hill, and the Sirhowy Valley. For Cooper’s Ridge, the simulation results for

mean wind speed at 3 m above ground level show good agreement with measurements on the

windward slope and at the hill top. Similar conclusions can be made for the flow prediction

over Kettles Hill. For Askervein, predicted 10-m velocities are in good agreement, even on

the leeside, although hill top wind speeds are underestimated. Some problems predicting hill

top and leeside turbulence are noted. The Sirhowy Valley simulations further demonstrate the

ability of the RNG model to predict separation and reattachment. El Kasmi and Masson have

also applied the RNG model to simulate the flow over Blashavel hill using a set of closure

coefficients calibrated for the atmospheric boundary layer (El Kasmi and Masson, 2010).

Starting with Raithby et al. (1987), many RANS models (e.g. Kim and Patel (2000); Castro

et al. (2003); Eidsvik (2005); Undheim et al. (2006); Prospathopoulos and Voutsinas (2006);

Laporte (2008)) have been evaluated using the Askervein Hill experiment (see Taylor and Te-

unissen (1987) for description, Mickle et al. (1988) for data). Castro et al. (2003) have carried

out a grid dependence study using the standard k − ε model in addition to unsteady RANS

calculations to investigate low-frequency, time-dependent effects in the lee of the hill. Mean

velocities at 10 m are well predicted, but k is overestimated in the upstream region. More

recently, Eidsvik (2005) presented a down-scaling method for wind power estimation in moun-

tainous terrain for near-neutral flows based, at the smallest scale, on a RANS/k− ε approach
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which is validated using the Askervein data. To account for the anisotropy of turbulence, Ei-

dsvik employs the non-linear algebraic stress model proposed by Gatski and Speziale (1993).

As for Castro et al., mean velocity predictions agree well with measurements at 10 m, even in

the lee of the hill. Upstream turbulence is correctly predicted, however hill top values under-

estimate observations. Prospathopoulos and Voutsinas (2006) have used the Askervein case to

develop guidelines for RANS simulations in complex terrain.

An extensive wind flow measurement campaign over the small, isolated island of Bolund has

recently been carried out by Risø DTU to provide a new database for the validation of flow

models over real topography (Berg et al., 2011). A blind comparison based on these mea-

surements has underlined the challenges involved in making flow predictions over complex

terrain (Bechmann et al., 2011). Importantly, the lower bound of the average speed-up error

for two-equation RANS closures was pegged at 6.5% for estimates in the outer layer, suffi-

ciently far from ground, and roughly 10% overall. While this result is significantly better than

that of linearized models and somewhat better than LES, there remains considerable room for

improvement.

In addition to variable surface roughness and orography, complex terrain also implies the pos-

sible presence of forested regions. Given that forest canopies absorb momentum over a finite

depth, a distributed drag force is a more appropriate boundary condition than simply incorpo-

rating a displacement height within the velocity wall function (Ayotte, 2008). Lopes da Costa

et al. (2006) used the extended k− ε model of Svensson and Häggkvist (1990) and an addi-

tional drag term in the momentum equation to study the wind over two moderately complex

sites with forest cover. Comparisons with wind data above the forest highlight the importance

of incorporating the distributed effect of canopies when predicting mean wind speed and tur-

bulence properties. Dalpé and Masson (2008) have implemented a similar approach with the

modified k− ε closure of Katul et al. (2004). Results of one-dimensional simulations within

and above three different forests are in good agreement with measurements. Ayotte (2008)

has implemented second-order closure and compared with LES calculations for flow over a

forested hill. Here, the problems observed for an unforested hill are somewhat exacerbated:
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the increased drag causes the flow to be more prone to separation. The influence of eddies with

length scales related to the hill and canopy are not adequately modeled with a RANS approach.

Considering the ensemble, it is interesting to note that, for the purposes wind resource as-

sessment, it appears the exact closure scheme has little impact on the predicted mean flow

velocity for locations of interest for simple cases (i.e. an isolated hill top) although the RNG

variant seems best at dealing with flow recirculation. As alluded to in the introduction, the

accurate prediction of turbulent properties is much more difficult and there is considerably less

agreement between closure schemes. Given the importance of turbulence predictions for the

evaluation of turbine loads, the use of an additional transport equation for u′w′ seems prudent

and worth further investigation.

0.5 RANS modelling of wind turbine wakes

Extensive reviews of the modelling of wind turbine wakes have been previously reported by

Crespo et al. (1999), by Vermeer et al. (2003), and more recently by Sanderse et al. (2011).

Here, the focus is on developments involving the use of CFD for the modelling of far wakes

in the context of wind farms. As mentioned previously, far-wake modelling is dominated by

actuator disk methods as the action of the blades need only be accounted for in an average

sense. Methods for specifying forces applied by the actuator disk on the flow vary; usually

constant loading is assumed or blade-element momentum theory is applied (see Mikkelsen

(2003)), although the choice of method appears to have little effect on resolved far wake prop-

erties (El Kasmi and Masson, 2008). There are also differences in the application of the rotor

thrust within a finite volume scheme: it generally appears either as a “volume” force or as a

discrete pressure discontinuity.

0.5.1 Single wake

Considering a single isolated rotor in a uniform flow, Sørensen et al. (1998) have used the ac-

tuator disk concept to analyze wind turbine wake states for laminar conditions; however, most

current analyses incorporate turbulence effects. Standard k−ε closure typically underestimates

the velocity defect as turbulent diffusion is too high in the wake region. El Kasmi and Masson
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(2008) have applied the Chen and Kim modified ε equation to a discrete volume around the

rotor to correct this weakness and improve wake predictions for a single turbine. The Chen and

Kim modification effectively limits the turbulent kinetic energy (and viscosity) in this region

as the new ε source term is a function of the turbulence production rate.

Cabezón et al. (2009) have presented a comparison of single-wake RANS simulations using

various two-equation closure schemes, as well as RSTM, for the Sexbierum experiment. They

have shown that while standard k− ε grossly underestimates the velocity defect, the use of the

El Kasmi and Masson approach greatly improves predictions. The realizable model proposed

by Shih et al. also performs well. In both cases, the improvement is explained by an increase in

the dissipation rate in the region of the rotor. In terms of velocity defect, the results are compa-

rable to RSTM and in good agreement with data. All models tend to underestimate turbulence

intensity, especially in the near wake, except along the axis of rotation where agreement with

measurements is better. With respect to wake turbulence intensity, an earlier study by Gómez-

Elvira et al. (2005) looked at the anisotropy of wake turbulence using the Sexbierum case with

an explicit algebraic stress model. Prospathopoulos et al. (2009) have carried out a similar

analysis to Cabezón et al. using the Nibe wake data and k−ω closure for both neutral and sta-

ble conditions. Here, the El Kasmi and Masson and Durbin corrections both improve velocity

defect predictions.

However, as Réthoré (2009) argues, non-physical increases in ε to temper overestimations of

νt makes application of these methods somewhat dubious for multiple wakes. More gener-

ally, Réthoré has exposed some fundamental problems with the use of the acuator disk/eddy-

viscosity concepts for modelling wind turbine wakes that suggest a completely different ap-

proach may be needed. One possibility is LES. Although the eddy-viscosity concept may be

used for sub-grid models, the context in which it is applied is more appropriate and should not

pose the same problems (Réthoré, 2009). Jimenez et al. (2007) have implemented a simplified

LES/actuator disk approach and comparisons of calculated turbulence properties are in good

agreement with experimental data. RSTM may also be an attractive solution.
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0.5.2 Multiple wakes

The objective of wake modelling, at the scale of wind farms, is to accurately predict the velocity

defect and increase in turbulence to better model power variations and fatigue loading. Early

approaches to accounting for the velocity defect in micro-siting relied on empirically derived

guidelines outlining minimum distances between turbines in an array (Patel, 1999). Using an

actuator disk approach to analyze a two-row array, Ammara et al. (2002) have shown these

guidelines to be overly conservative. Barthelmie et al. (2009) have carried out a comparison of

wind farm models, ranging from engineering to full CFD models, for predicting power losses

due to wake effects in the large Horns Rev wind park. Although models are not specifically

identified in the presented results, the RANS/k− ε models tend to overpredict wake losses for

narrow measurement sectors; wider sectors yield better agreement with data. Barthelmie et al.

(2007) have also published a summary of developments on the use of actuator disks to study

wakes within a wind farm. To be sure, accurately predicting cumulative wake effects remains

a challenge.

0.6 Contributions

Despite the impressive body of work dedicated to atmospheric and wake flow modelling, there

is no dearth of new research directions. It would certainly be tempting to address the problem

of modelling flow through wind farms situated in arbitrarily complex terrain directly and some

attention is directed towards that end herein. However, the primary focus is on simpler cases

where, perhaps surprisingly, difficulties persist. A case in point: the exact2 reproduction of neu-

tral similarity profiles appears to be impossible without the use of excessively fine grids (Gorlé

et al., 2009). Whereas proposals have been made to minimize this problem, the contribution of

the first study of this dissertation is an in-depth analysis of the source of the error. It is found to

stem from approximations commonly used in the finite-volume discretization of the governing

equations; a conclusion supported by the work of Richards and Norris (2011). Furthermore,

a novel remedy is proposed such that near-exact distributions are obtained on practical grids.

In the same vein, the second work is also concerned with surface-layer flows, however the

2Here, the term exact is used in a numerical sense, i.e. the difference with theory is trivial.
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attention is on physical modelling and calibration of the turbulence closure to reproduce obser-

vations. More specifically, a comprehensive formulation of the k− ε model is derived that is

capable of exactly3 reproducing both neutral length-limited and stable surface-layer flows.

Central to the ultimate objective of improving energy predictions is the refinement of far-wake

models. Despite limitations in actuator-disk/eddy-viscosity modelling that seem to preclude

the development of a general and accurate closure, the popularity and computational efficiency

of such an approach beg for a reasonable solution. This is the backdrop against which the

third study has been carried out. For the reasons mentioned previously, lower-order RANS

modelling is likely a mainstay, at least in the near to medium term, and the goal of this work

is to try to improve accuracy in light of the known issues. To this end, a new modified k− ε

closure is presented, similar to that of El Kasmi and Masson (2008), which aims at sidestepping

the fundamental problem of an excessive eddy viscosity in the wake.

More generally, the aim of the final study is to contribute to the understanding of the applicabil-

ity (or not) of RANS/two-equation closures by comparing model predictions with observations.

Again, a simple case is considered based on extensive wind tunnel measurements carried out

at Polytech’Orléans (Espana, 2009) of the flow properties in the wake of a porous disk placed

in a uniform flow. As will be shown, comparing model predictions with these observations is

unfortunately uninformative in this case: all models accurately predict wake properties. As it

turns out, the primary contribution of this work is the proposed refinements to the testing pro-

cedure based on a detailed analysis of the determination of freestream properties from wake

measurements and a discussion of similarity requirements.

Additionally, two case studies involving RANS simulations of flow over moderately complex

terrain are considered. In the first, a summary of submissions to the Bolund blind comparison

of flow models is presented. In the second, power production estimates for a Spanish wind

farm based on several closure schemes (including a stress transport model) and two distinct

actuator disk implementations are compared with measurements. Here, the aims are to bench-

3Here, the term exact is used in a mathematical sense, i.e. the theoretical distributions of flow properties are

solutions of the model equations.
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mark RANS modelling of flow over complex terrain and to contribute to the relatively limited

existing literature on the topic of wind farm performance evaluation.
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Foreword

In this chapter, the fundamental problem of simulating a steady, incompressible, shear-driven,

boundary-layer flow using the RANS equations with standard k − ε closure is analyzed in

depth. Although this topic is well-founded in theory and has been previously discussed in

the literature, most notably by Richards and Hoxey (1993), is has nonetheless attracted new

attention recently (by e.g. Blocken et al. (2007); Hargreaves and Wright (2007); Gorlé et al.

(2009); Richards and Norris (2011); Parente et al. (2011)). This renewed interest in such a basic

flow has been largely motivated by the inability of many commercial CFD solvers to exactly

reproduce the known analytical solution, raising questions regarding their general validity for

atmospheric flows.

As it turns out, the errors in predicted velocity and turbulence properties can be significantly

reduced with properly specified boundary conditions. The most stubborn case is the near-wall

turbulent kinetic energy profile, which often contains a sharp anomalous peak in the first few

cells. In the following, a systematic analysis of common finite-volume discretization schemes

is presented to illustrate the source of this error and demonstrate how it may be remedied.



24

Abstract

The RANS/k− ε approach is the popular and practical choice for carrying out simulations in-

volving the atmospheric boundary layer. However, despite its widespread use, implementation

of this approach is not without its challenges – even when considering the simplest case of hor-

izontally homogeneous conditions. Most notably, the distributions of turbulent kinetic energy

and its dissipation rate have proved difficult to maintain near solid boundaries, particularly in

wind engineering applications where the near-wall grid is relatively coarse. In this work, the

origin of these errors is investigated and it is shown that by applying appropriate discretization

schemes in conjunction with the Richards and Hoxey boundary conditions, truly invariant pro-

files of all flow properties can be obtained on such grids. Furthermore, based on this finding,

a wall treatment for coarse grids is proposed that could be implemented for non-homogeneous

conditions. All simulations are carried out using OpenFOAM-1.6.x.

1.1 Introduction

Simulation of atmospheric boundary layer (ABL) flow is a topic of increasing interest within

the computational fluid dynamics community. An accurate description of the mean turbulent

flow within the first few hundred metres of the atmosphere is especially pertinent in the analysis

of pollutant dispersion, in the evaluation of wind-induced loading on structures, and in deter-

mining site-suitability for wind energy projects. Although large-eddy simulation is becoming

increasingly popular, the RANS approach remains the practical tool of choice for such work.

Within this context, by far the most popular closure scheme is the k− ε turbulence model of

Jones and Launder (1972).

Numerically reproducing ABL flow using a RANS/k − ε approach can be divided into two

main tasks: the derivation of appropriate boundary conditions and model constants, and their

numerical implementation. The first task has been fully addressed by Richards and Hoxey

(1993) (RH) and the widely accepted best practice for simulating neutral equilibrium surface

layer flow using the k− ε model is laid out in their oft-cited paper (Franke et al., 2007). Their
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boundary conditions and prescription of model constants are mathematically consistent and

ensure the inflow profiles are an exact solution of the model equations.

The second task has been more difficult to address. Maintaining turbulence properties un-

der horizontally homogeneous conditions has proved problematic (Richards and Younis, 1990;

Richards et al., 2002; Riddle et al., 2004; Blocken et al., 2008), largely due to challenges in

implementing the full RH conditions in commercial software (Franke et al., 2007; Blocken

et al., 2007; Hargreaves and Wright, 2007). The presence of streamwise gradients in flow

properties can thus often be attributed to the use of an inconsistent set of boundary conditions

or to limitations in ks-type wall functions for simulating ABL flow, or both, which initiates the

development of an internal boundary layer at the domain inlet (see arguments by Blocken et al.

(2007)). Recently, Hargreaves and Wright (2007) have addressed these problems by imple-

menting the full RH boundary conditions, as well as a commonly used subset, in FluentTM, to

highlight the importance of using the full set and to demonstrate how to better maintain inlet

profiles over flat terrain using commercial software. They significantly reduced the presence of

streamwise gradients everywhere except the near-wall region where a spike in the k distribution

persists along with an overestimation of ε and an (albeit much smaller) underestimation of U .

Even so, many of the original implementation difficulties with commercial software may be

considered overcome and, at the same time, the recent availability of high-quality open-source

CFD software obviates such challenges as users can modify the source code.

The unmitigated spike in k is often attributed to an overestimation of the turbulence production

term in the first few cells nearest the wall. More precisely, it is likely due to an imbalance be-

tween calculated production and dissipation terms stemming from the fact that both are depen-

dent on quantities that vary rapidly as z → 0 and are thus poorly approximated using standard

finite volume method (FVM) discretization schemes unless cell heights are exceedingly small.

This leads to a third task: treatment of the inevitable discretization errors that arise due to the

use of coarse grids recurrent in wind engineering applications. This last topic has received less

attention and is the focus of the present study.
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This work thus aims to clearly identify the source of and provide corrections for numerical

errors near solid boundaries that arise when using the k− ε turbulence model for ABL flow.

Strategies are suggested herein which aim to yield truly horizontally homogeneous distribu-

tions of all turbulent flow properties on practical grids; grids which, for whatever reason (e.g.

computational time, memory requirements, etc.), do not have sufficient fineness to properly

resolve strong near-wall gradients in flow properties. Specifically, wall-damping-style func-

tions are proposed, in the spirit of low-Re k − ε models (Lam and Bremhorst, 1981; Chien,

1982), to adjust the source terms in the k and ε transport equations to correct for discretization

errors. Furthermore, it is proposed to correct diffusion terms in the ε and momentum equa-

tions by replacing piecewise linear approximations with other weighting schemes inspired by

analytically derived near-wall distributions of these quantities. Since it is postulated that these

errors are entirely numerical in nature, all corrections are formulated purely in terms of grid

geometry. Although the open-source CFD software OpenFOAM (OpenCFD, 2009b) has been

used to analyze and develop improved discretization schemes, by interpreting them in terms of

corrections to standard discretization methods (at least partial) implementation in commercial

software should be possible.

The following section summarizes the RANS/k − ε model as applied to surface layer flow.

Section 1.3 outlines the case study used for the analysis of discretization error and a review of

boundary conditions is given in section 1.4. Section 1.5 presents, term-by-term, the discretiza-

tion of the governing equations and derivation of the required corrections. Simulations with

corrected discretization schemes and a newly proposed wall treatment are also included.
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1.2 Governing equations

1.2.1 RANS equations with k− ε closure

Neglecting molecular viscosity, the Reynolds-averaged mass and momentum conservation

equations for the steady motion of an incompressible fluid are

∇ ·�U = 0, (1.1)

∇ ·�U�U =−∇p+∇ ·τ ′ (1.2)

where

τ ′ = 2νtS (1.3)

is the kinematic Reynolds stress tensor and the Boussinesq eddy-viscosity assumption has been

applied. �U represents the mean velocity vector with components (U,V,W ) and p is a modified

mean pressure (Pope, 2000). S is the mean strain rate tensor.

The turbulent viscosity νt is calculated in the k− ε model as

νt =Cμ
k2

ε
(1.4)

where k and ε are deduced from transport equations:

∇ · k�U = ∇ ·
(

νt

σk
∇k
)
+Gk − ε, (1.5)

∇ · ε�U = ∇ ·
(

νt

σε
∇ε
)
+Cε1Gk

ε
k
−Cε2

ε2

k
(1.6)

with

Gk = 2νtS : S (1.7)

and the molecular viscosity disregarded.

In addition to the original model constants (Cμ , σk, σε , Cε1, Cε2) proposed by Jones and Laun-

der, several alternative sets have been proposed for atmospheric flows (Crespo et al., 1985;
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Richards and Hoxey, 1993; Apsley and Castro, 1997; Bechmann and Sørensen, 2010). From

a mathematical standpoint, any set that satisfies the governing equations and is employed con-

sistently in the formulation of boundary conditions is appropriate (Richards and Hoxey, 1993;

Franke et al., 2007).

1.2.2 Two-dimensional surface layer flow

For the sake of simplicity, the present analysis is limited to two-dimensional flow where the

x axis is defined by the mean wind direction and the z axis is normal to the ground. Assum-

ing a constant shear stress, zero pressure gradient and horizontal homogeneity, the governing

equations simplify to

νt
∂U
∂ z

= u∗2, (1.8)

∂
∂ z

(
νt

σk

∂k
∂ z

)
+Gk − ε = 0, (1.9)

∂
∂ z

(
νt

σε

∂ε
∂ z

)
+Cε1Gk

ε
k
−Cε2

ε2

k
= 0 (1.10)

with

Gk = νt

(
∂U
∂ z

)2

(1.11)

and u∗ =
√

τ ′w is the characteristic friction velocity of the surface layer related to the kinematic

wall shear stress (Richards and Hoxey, 1993).

If model constants are chosen such that

σε =
κ2

(Cε2 −Cε1)
√

Cμ
(1.12)

where κ is the von Karman universal constant, equations (1.13)–(1.15) are an exact solution

of equations (1.8)–(1.10) and correspond to fully developed, neutrally stratified surface-layer
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flow (Richards and Hoxey, 1993).

U(z) =
u∗

κ
ln

(
z
z0

)
(1.13)

k(z) =
u∗2√

Cμ
(1.14)

ε(z) =
u∗3

κz
(1.15)

1.3 Case study

For the purposes of comparison, Task 1 of the blind test case proposed by Richards et al.

(2002) as part of the Computational Wind Engineering 2000 Conference Competition has been

chosen. The objective is straightforward: to maintain equilibrium inlet profiles of all flow

properties in an empty domain. The atmospheric parameters that define the inlet conditions

are listed in table 1.1. The model constants used for the simulations, which satisfy condition

(1.12), are given in table 1.2.

Table 1.1 Inlet profile characteristics

Reference height, zre f 6 m

Aerodynamic roughness length, z0 0.01 m

Displacement height, d 0 m

Reference mean wind speed, Ure f 10 m/s

κ 0.40

Table 1.2 k− ε model constants

Cμ Cε1 Cε2 σk σε κ
0.09 1.44 1.92 1.0 1.1111 0.40

Hargreaves and Wright (2007) also used this test case and a quasi-2D version of their grid is

reproduced for the present work. This grid is practical and representative of what would be

used to discretize an upstream fetch in a typical wind engineering application. The domain
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length and height are 5000 m and 500 m, respectively. The horizontal direction is uniformly

discretized using 500 cells whereas 50 cells are used to discretize the vertical direction. Cell

heights are geometrically expanded, starting with a near-wall cell height of 1 m, using a ratio

of 1.076.

1.4 Boundary conditions

Inlet

The profiles of velocity, turbulent kinetic energy and its dissipation rate are given by equations

(1.13)–(1.15), respectively.

Outlet

All variables assume a fully-developed condition in the flow direction.

Surface: Equilibrium conditions

Control volumes adjacent to the bottom and top boundaries are illustrated in figure 1.1. A

common interpretation of the RH conditions involves explicitly assuming Gk = ε in the near-

wall cell (Undheim et al., 2006; Brodeur and Masson, 2008). Under this assumption, the

turbulent kinetic energy and its dissipation rate can be directly specified as

kP =
u∗2

g√
Cμ

, (1.16)

εP =
u∗3

g

κzP
(1.17)

where u∗g is the local friction velocity based on the near-ground velocity,

u∗g =
κUP

ln(zP/z0)
. (1.18)
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z = 0
z0

zP

zn

zN

zt
zNT

Figure 1.1 Control volumes adjacent to the surface and top boundaries. The second

near-wall cell is labeled with respect to the wall-adjacent cell. The region between z = 0

and z = z0 is not resolved

Richards and Hoxey suggest the wall shear stress also be specified based on local conditions

(i.e. τ ′w = u∗2
g ). This quantity is approximated through finite differencing with

τ ′w = νt,w
∂U
∂ z

∣∣∣∣
z=z0

≈ νt,w
(UP −Uw)

(zP − z0)
(1.19)

where the turbulent viscosity in the surface layer can be expressed as

νt = κu∗gz. (1.20)

Equating the two expressions for τ ′w and taking νt,w = νt,P, the wall velocity must be set ac-

cording to

Uw =UP −
u∗g
κ
(zP − z0)

zP
. (1.21)

By definition, the velocity should be zero at z = z0 and this condition is respected in the calcu-

lation of u∗g. However, in the discretization of the governing equations, the wall velocity only

appears in gradient calculations and, given the highly non-linear fashion in which U varies

towards the wall1, the combination of equations (1.19), (1.20) and (1.21) ensures that the con-

tribution of the wall shear stress to the momentum balance for the wall-adjacent cell is correct.

1For the values of z+ considered here.
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Surface: Non-equilibrium conditions

The previous set of surface conditions explicitly assumes that the turbulence production and

dissipation rates are always equal in the near-wall cell, regardless of local conditions or flow

history. Although in some cases this is a convenient choice, and perfectly appropriate for the

present case, it is usually not a necessary assumption.

The original proposal by Richards and Hoxey calls for the source terms in the discretized k

transport equation for the near-wall cell to be modified such that Gk = ε when kP satisfies

equation (1.16). Assuming a locally logarithmic velocity profile, the near-wall cell-averaged

production rate is

Gk,P =
u∗3

g

2κ(zP − z0)
ln

(
2zP − z0

z0

)
. (1.22)

Richards and Hoxey suggest the average dissipation rate be calculated with

εP =

√
CμkPu∗g

2κ(zP − z0)
ln

(
2zP − z0

z0

)
(1.23)

and its cell-centre value for the wall-adjacent cell fixed as

εP =

√
CμkPu∗g
κzP

. (1.24)

The wall shear stress is now modeled with2

τ ′w =C1/4
μ k1/2

P u∗g. (1.25)

2Reconsidering the turbulence production rate, if the shear stress is taken as uniform over the height of the

first cell and the velocity profile is again assumed locally logarithmic, it can be argued that Gk,P should be

Gk,P =
τ ′wu∗g

2κ(zP − z0)
ln

(
2zP − z0

z0

)

which is slightly different from equation (1.22).
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Substituting equation (1.24) into (1.4) yields

νt,P =

√
CμkP

u∗g
κzP (1.26)

and the wall velocity becomes

Uw =UP −
u∗2

g

κC1/4
μ k1/2

P

(zP − z0)

zP
. (1.27)

When kP satisfies equation (1.16), equations (1.24), (1.26) and (1.27) simplify to (1.17), (1.20)

and (1.21), respectively.

Top boundary

The inlet profiles should be maintained entirely through a balance between the driving shear

stress at the upper boundary and the retarding shear stress at the surface. Following the RH

recommendations, a constant kinematic shear stress τ ′t = u∗2
sl is applied. The upper boundary

velocity is thus specified using

Ut =UNT +
u∗2

sl
νt,t

(zt − zNT ) (1.28)

where

u∗sl =
κUre f

ln(zre f /z0)
.

To minimize the influence of the upper boundary on the resolved magnitudes of k and ε , gra-

dient conditions are imposed. For k, a zero gradient condition is prescribed while the gradient

of ε is fixed using
∂ε
∂ z

=− u∗3
sl

κz2
t
. (1.29)
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1.5 Analysis and correction of discretization errors

1.5.1 Solution using standard FVM schemes

To illustrate the problem encountered near solid boundaries, figure 1.2 compares the outlet dis-

tributions of velocity, turbulent kinetic energy, and turbulence dissipation and production rates

with those prescribed at the inlet for the lowest 10 m of the boundary layer. Here, equations

(1.1), (1.2), (1.5) and (1.6) have been discretized using upwind differencing for all convection

terms and central-differencing for all diffusion terms. The SIMPLE method has been employed

to handle pressure-velocity coupling. The solution is considered converged when the normal-

ized residuals for all variables become stable; this corresponds to an absolute tolerance less

than 10−6.3

It is evident that although the velocity profile is fairly well maintained, the k and ε distributions

do not respect their analytical solutions near the wall. Hargreaves and Wright (2007) note that

the ESDU experimental data (ESDU, 1985) support a non-uniform k distribution with a near-

ground maximum. However, this is a separate modelling problem requiring a separate set of

k and ε (and possibly velocity) boundary conditions to be specified; Yang et al. (2009) and

Gorlé et al. (2009) have recently made efforts to derive such a set. In the present context, the

non-uniformity in the resolved k profile is unintended.

Clearly, there exists an imbalance between calculated production and dissipation rates of k in

the first few cells near the wall and, furthermore, both are overestimated. Compared to the

FluentTMsimulations of Hargreaves and Wright, the maximum relative error in k and ε at the

outlet is considerably smaller. Nonetheless, the resolved near-wall velocity profile is quite

similar.

As the inlet profiles represent an exact solution of the governing equations with the RH bound-

ary conditions, the errors observed in figure 1.2 must be entirely numerical in nature. Figure 1.3

shows the relative error of each variable with respect to its inlet value as a function of down-

stream position in the second near-wall cell. The rapid variation in k and ε in the first few

3All simulations have been carried out using OpenFOAM 1.6.x (OpenCFD, 2009b).
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Figure 1.2 Comparison of resolved surface layer properties at outlet with inflow using

the Richards and Hoxey boundary conditions

downstream cells suggests the inflow is adapting to the effects of discretization after which it

stabilizes. Richards and Norris (2011) have similarly concluded that the near-wall overestima-

tion of k stems directly from discretization error.
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Figure 1.3 Relative error in flow properties with respect to inlet values at second

near-wall cell

1.5.2 Grid sensitivity analysis

Figure 1.4 presents the near-wall k distribution using 50, 100 and 200 cells to discretize the

vertical direction (the height of the wall-adjacent cell and the grid expansion factor are roughly

halved with each refinement). A peak in k is always present in the second cell. If the overes-

timation of k stems from numerical errors, it is expected that sufficient grid refinement would

eventually result in a uniform distribution. The work of Gorlé et al. (2009) has shown this to

be true: in their analysis of atmospheric dispersion in a wind tunnel, a z+ of approximately 30

yielded perfect horizontal homogeneity. For the current grid, z+ ≈ 2×104. As noted by others,

this level of refinement will not be practical for many ABL flows, especially for large domains

in which obstacles are present. The solution proposed herein is thus to adapt the numerical

method. In the following section, the FVM schemes used to discretize the governing equations

are reviewed and revised such that the inflow will be preserved on relatively coarse grids.
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Figure 1.4 Near-wall k distribution using successively finer grids

1.5.3 Derivation of corrections to standard FVM schemes

For the case under consideration, the solution of equations (1.1), (1.2), (1.5) and (1.6) does not

yield equations (1.13)–(1.15) as the approximations introduced in the discretization process

result in some non-negligible error. However, by revising the FVM schemes in light of the

known analytical solution, it should be possible to eliminate this effect. Corrections to standard

discretization schemes are thus developed by comparing exact expressions with those found by

introducing the analytical solution into the discretized form of the governing equations. A

typical control volume (CV) and its upper and lower neighbours are illustrated in figure 1.5.

1.5.3.1 k− ε equations

Evaluation of convection terms

For the present case, all convections terms integrate to zero as required, regardless of the con-

vection scheme.
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zP
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zN

Figure 1.5 Arbitrary control volume P and its neighbours

Evaluation of source terms

Source terms are generally treated explicitly and evaluated as

∫
CV

SdV = SΔV ≈ SPΔV (1.30)

the underlying assumption being that SP → S for sufficiently small ΔV . In the case of the

k− ε source terms, it is proposed to apply wall-damping-style functions such that f · SP = S.

Considering the production rate, the volume average is calculated analytically as

Gk =
1

ΔV

∫
CV

νt

(
∂U
∂ z

)2

dV

=
1

Δz
u∗3

κ
ln

(
zn

zs

) (1.31)

while the finite-volume approximation of this quantity is

Gk,P = νt,P

(
∂U
∂ z

)2

. (1.32)

The average gradient of U will be correctly calculated using the scheme presented in section

1.5.3.2. The discretization error here stems from the inequality

(
∂U
∂ z

)2

	=
(

∂U
∂ z

)2

.
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The correction is thus

fG =
Gk

Gk,P
=

Δz

zP ln

(
zn

zs

) . (1.33)

Interestingly, applying a similar analysis to the dissipation rate yields

fε =
1

fG
.

The source term corrections for the ε equation are

fGε =
Δz2

znzs ln

(
zn

zs

)2
, (1.34)

fε2 =
z2

P
znzs

. (1.35)

Evaluation of diffusion terms

Laplacian terms are evaluated as follows (Jasak, 1996; OpenCFD, 2009b)

∫
CV

∇ · (γ∇φ)dV =
∮

S
(γ∇φ) · n̂dS

≈ ∑
f

γ f (∇φ) f ·�s f
(1.36)

where n̂ is the local surface normal and dS an elemental surface area. �s f is the finite face

area vector. It is necessary to specify a scheme for calculating the surface normal gradient

of the general scalar φ and its diffusion coefficient; assuming piecewise linear distributions

is the most common approach. For the present case, treating the coefficient γ in this way is

appropriate as νt ∝ z within the idealized surface layer (see equation (1.20)). This scheme is

also appropriate for the gradient of k. However, the surface normal gradient for ε is poorly

estimated through central-differencing.
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Given that ε is inversely proportional to the normal wall distance, the surface normal gradient

at a horizontal face should be
∂ε
∂ z

∣∣∣∣
f

∝ − 1

z2
f

whereas central-differencing yields

∂ε
∂ z

∣∣∣∣
n
≈ Δε

Δz
∝ − 1

zNzP
(1.37)

and the required correction is

f∇ε =
zNzP

z2
n

. (1.38)

f∇ε is set to unity for vertical faces. The Laplacian term is evaluated as

∫
CV

∇ ·
(

νt

σε
∇ε
)

dV ≈ ∑
f

νt, f

σε
f∇ε(∇ε) f ·�s f . (1.39)

Finally, the steady k− ε transport equations become

∇ · k�U = ∇ ·
(

νt

σk
∇k
)
+

Gk

fε
− fεε, (1.40)

∇ · ε�U = ∇ ·
(

νt

σε
∇ε
)
+Cε1 fGεGk

ε
k
−Cε2 fε2

ε2

k
. (1.41)

1.5.3.2 The momentum equation

Evaluation of convection and pressure terms

Integration of the discretized analytical solution causes these terms to go to zero regardless of

the chosen convection scheme.
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Evaluation of Reynolds stresses

Calculation of the Reynolds stresses is divided into implicit and explicit components

∇ ·τ ′ = ∇ ·
(

νt∇�U
)

︸ ︷︷ ︸
implicit

+∇ ·
(

νt

(
∇�UT− 1

3
(∇ ·�U)I

))
︸ ︷︷ ︸

explicit

.

Treating the explicit component first, the average gradient of a field quantity within a control

volume is evaluated through Gauss’s Theorem as

∫
CV

∇φdV =
∮

S
φ n̂dS. (1.42)

The FVM approximates this quantity as a discrete sum over all control volume faces (Ferziger

and Perić, 2002) ∮
S

φ n̂dS ≈ ∑
f

φ f�s f . (1.43)

As such, an interpolation scheme is required to estimate face values from cell-centre values.

The usual scheme is linear interpolation. However, when the variable of interest varies in a

highly non-linear manner, it may be more appropriate to adopt different weighting schemes.

For U , it is proposed to evaluate its face value using

Un = αUP +(1−α)UN (1.44)

where

α =
ln(zN/zn)

ln(zN/zP)
. (1.45)

By virtue of continuity, the second explicit term must go to zero.4

4In fact, it can be shown that the entire explicit term is zero for the present case; the correction factor is

included here as it is needed in the calculation of the turbulence production rate and it may have application for

non-homogeneous flows. For such cases, however, some care is required when evaluating the stress divergence as

the use of a non-zero wall velocity boundary condition could result in a significant error in the explicit part. The

simplest solution is to reformulate the shear stress boundary condition using

νt,w =
κC1/4

μ k1/2
P (zP − z0)

ln(zP/z0)
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Concerning the implicit term, evaluation of the Laplacian will be markedly improved by using

an alternate scheme for the surface normal gradient of U . Analytically, the gradient of U at

horizontal cell faces is
∂U
∂ z

∣∣∣∣
n
=

u∗

κzn
=

UN −UP

zn ln

(
zN

zP

) . (1.46)

Central-differencing yields
∂U
∂ z

∣∣∣∣
n
≈ UN −UP

zN − zP
(1.47)

and the required correction is

f∇U =
zN − zP

zn ln

(
zN

zP

) . (1.48)

f∇U is set to unity for vertical faces. The Laplacian term is evaluated as

∫
CV

∇ · (νt∇�U)dV ≈ ∑
f

νt, f f∇U(∇�U) f ·�s f . (1.49)

1.5.4 Solution using corrected FVM schemes

Figure 1.6 presents the outlet distributions of velocity and turbulence properties using the pro-

posed corrections. With respect to the previous results using standard FVM schemes, the pro-

files here are decidedly improved. Indeed, the calculated distributions of U , k and ε at the

outlet lie directly on their inlet distributions. Gk is still overestimated but the fε factor neatly

corrects for it. The maximum errors in flow properties are now shifted to the upper boundary,

but in all cases remain less than one-tenth of one percent.

The fact that inlet profiles have been maintained is not a surprising result as, in essence, the

correction factors force the numerical method to yield the analytical solution. Of course, to

know the flow solution a priori is rare and such corrections cannot be derived for every case.

But, as shown in figure 1.7, the proposed corrections rapidly go to unity away from the wall and

are likely unnecessary for the majority of the domain. The largest corrections occur at the first

internal face and concern the gradient calculations of ε and U . This is followed by the volume

with Uw = 0.
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Figure 1.6 Comparison of resolved surface layer properties at outlet with inflow using

the Richards and Hoxey boundary conditions and proposed corrections to discretization

schemes

integral corrections for k− ε source terms in the second near-wall cell (note that fGε ≈ fε ).

Beyond the second internal face, the corrections are only on the order of a few percent. This

suggests that it may be possible to use f = 1 beyond the second cell and incorporate f as part
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of the wall treatment in the first two near-wall cells. This would have the distinct advantage of

facilitating the generalization of this approach to complex geometries as close to the surface a

wall-normal direction can be defined and used to replace z in equations (1.33)–(1.35), (1.38),

(1.45), (1.48).
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Figure 1.7 Wall functions used to correct discretization errors

1.5.5 Implementation as part of wall treatment

In the context of high Re flows, it is normal to make some assumptions about near-wall flow

properties to avoid integrating to the wall. This entails use of a law-of-the-wall for velocity

with prescriptions for turbulence properties in the wall-adjacent cell. Here, an extended wall

treatment is proposed wherein the usual RH conditions are applied in the first cell while the

corrected discretization schemes developed in the preceding sections are applied in the first and

second cells, i.e.

f =

⎧⎨
⎩ f zn,1 ≤ z ≤ zn,2

1 z > zn,2

where zn,i denotes the location of the upper face of the ith near-wall cell. α is treated similarly.
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Unlike in the wall-adjacent cell, no variables are explicitly prescribed in the second cell. As

per usual, they are all determined as part of the flow solution. Rather, the construction of the

discretized equations for the first three cells is modified through f and α5. Essentially, it is

proposed to use a different set of discretization schemes in the near-wall region adapted to

ABL flow.

This approach is similar to that of Kalitzin et al. (2005) where numerical errors involved with

standard wall functions and various RANS turbulence models were reduced through the use

of lookup tables to specify the proper momentum flux at the first internal face. Of course, the

definition of a “coarse” grid in their work is quite different from the present. The above pro-

posal is also comparable to those recently presented by Richards and Norris (2011) and Parente

et al. (2011) whereby the spike in k is reported to be removed by modifying the calculation of

the turbulence production rate. In the case of Richards and Norris, they have demonstrated

with a 1D simulation that a perfectly uniform k distribution can be attained by discretizing Gk

using the shear stress evaluated at cell faces (as opposed to cell centres). Parente et al. have

proposed modifying the Richards and Hoxey wall functions such that a) Gk and ε are based on

cell-centre values (as opposed to cell-averaged ones) and b) the velocity in the wall-adjacent

cell is specified (as opposed to solved). Using a nearly identical test case, they have shown that

this treatment removes the peak in k and limits the maximum error to around five percent.

Figure 1.8 presents the flow solution with the proposed wall treatment. This approach appears

to be sufficient to maintain the velocity profile as its inlet and outlet profiles are difficult to

distinguish. The turbulent kinetic energy profile is not quite uniform, however it varies from

its analytical value by less than one percent. With respect to the uncorrected results (see figure

1.2), the maximum percent error in all variables has decreased by roughly an order of magni-

tude. As a point of interest, the outlet profiles for k with wall treatments extending to the third

and fourth near-wall cells are also shown. The profile slowly tends to uniform as more cells

are incorporated into the wall treatment. This highlights the sensitivity of k to its source terms

and hints at why maintaining inlet distributions has been somewhat elusive.

5The third near-wall cell shares a face with the second cell and so its discretized equations are also affected.
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Figure 1.8 Comparison of resolved surface layer properties at outlet with inflow using

the Richards and Hoxey boundary conditions and corrected discretization schemes in first

two cells only. The resolved k profile at the outlet with corrected discretization schemes

extended to the first three and four cells is also shown

Figure 1.9 expands on the above analysis by presenting the maximum error in k for three

different values of z0 (spanning four orders of magnitude) and seven different grids. For these
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simulations, the shear stress from the reference case has been maintained (i.e. u∗ = 0.625 m/s)

and the grid has been refined as in section 3.4: the expansion factor and near-wall cell height

are roughly halved at each refinement (see table 1.3). Although z+ is usually considered the

appropriate non-dimensional wall-normal distance, in the present case the molecular viscosity

is taken as null and, strictly speaking, z+ is undefined; (z−z0)/z0 is however a useful substitute

and plotting the error against this parameter yields a smooth distribution.

Most importantly, the error in k is limited to less than one percent for all cases considered.

When cell heights are large with respect to z0, the error is essentially independent of grid size.

This is likely due to the fact that the underlying discretization problem is essentially unchanged

with refinement; as shown in figure 1.4, the peak in k is not much diminished as the number

of cells is doubled. But continued grid refinement must eventually lead to an exact solution as

discretization errors become negligible. Indeed, for normalized first cell heights less than one,

a rapid and monotonic decrease in the maximum error is observed.
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Figure 1.9 Maximum relative error in k at outlet as a function of normalized first cell

height. The maximum error is located at the third cell for all cases except

2(zP − z0)/z0 ≈ 10000, where it is at the fifth cell
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Although figure 1.9 suggests that non-uniform surface roughness should pose no special prob-

lems, some care must be exercised in the use of this wall treatment for flow over surfaces with

variable orography. The near-wall grid must be constructed by extruding the surface mesh

normal to the wall such that
1

ΔV

∫
CV

φdV ≈ 1

Δn

∫ n

s
φdn

as the derivation of equations (1.33)–(1.35) assumes constant cross-sectional area in the wall-

normal direction.

Table 1.3 Sensitivity analysis parameters

Grid 1 2 3 4 5 6 7

Aerodynamic roughness length, z0 [m] {10−4, 10−2, 100}

Cells in wall-normal direction [×102] 2−1 20 21 22 23 24 25

Approximate first cell height [m] 20 2−1 2−2 2−3 2−4 2−5 2−6

1.6 Conclusions

Numerically reproducing neutral equilibrium surface layer flow is a subject that has recently

received a fair amount of attention in the computational wind engineering community. Herein,

it has been shown that maintaining inlet profiles of velocity, turbulent kinetic energy and its

dissipation rate on practical grids is possible if a) the full RH conditions are implemented,

and b) discretization errors are corrected. These appear to be the necessary and sufficient

conditions.

In addition, an extended wall treatment has been proposed in which corrected discretization

schemes are applied in the first two near-wall cells. For the cases considered, this approach

acceptably maintains the inlet velocity profile while limiting the error in turbulent kinetic en-

ergy to less than one percent. This treatment may also be useful for other closure schemes and

inflow conditions, but this remains to be evaluated. Future work is also required to test the

proposed wall treatment under non-homogeneous flow conditions.
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Foreword

With boundary conditions and discretization issues related to the simulation of (neutral) surface-

layer flows addressed, the attention in this chapter turns to questions of physical modelling.

Concerning near-surface atmospheric flows, the standard implementation of the k− ε model

is strictly only valid for neutral thermal stratification where, under equilibrium conditions, the

mixing length increases linearly with height above ground and model predictions match the-

ory. However, the physical reality is that the mixing length does not increase indefinitely: it is

generally limited by some physical process to a finite maximum.

Detering and Etling (1985) recognized this weakness with k−ε-type closures and adjustments

to the standard k− ε model have since been proposed. Of greatest interest here is the work

of Apsley and Castro (1997), who have modified the ε equation to impose an upper bound

on the mixing length for atmospheric boundary layer simulations. However, in the context of

surface-layer simulations, it is found that this modified closure is not entirely in agreement

with theory. In this chapter, the framework proposed by Apsley and Castro to modify the ε

equation is refined and the boundary conditions of Richards and Hoxey are generalized such

that the mathematical model can be calibrated to exactly yield an arbitrary desired mixing

length distribution for surface layer simulations.
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Abstract

The limited-length-scale k − ε model proposed by Apsley and Castro for the atmospheric

boundary layer (Boundary-Layer Meteorology, 1997, Vol. 83, 75–98) is revisited with spe-

cial attention given to its predictions in the constant-stress surface layer. The original model

proposes a modification to the length-scale-governing ε equation that ensures consistency with

surface-layer scaling in the limit of small �m/�max (where �m is the mixing length and �max its

maximum) and yet imposes a limit on �m as �m/�max approaches one. However, within the

equilibrium surface layer and for moderate values of z/�max, the predicted profiles of velocity,

mixing length, and dissipation rate using the Apsley and Castro model do not coincide with

analytical solutions. In view of this, a general ε transport equation is derived herein in terms of

an arbitrary desired mixing-length expression that ensures exact agreement with corresponding

analytical solutions for both neutral and stable stability. From this result, a new expression for

Cε3 can be inferred that shows this coefficient tends to a constant only for limiting values of

z/L; and, furthermore, that the values of Cε3 for z/L → 0 and z/L → ∞ differ by a factor of

exactly two.

2.1 Introduction

We begin by restating the primary motivation for the Apsley and Castro (1997) model that “in

many flows of interest, there is some maximum size of turbulent eddy - a scale defined, for

example, by boundary-layer depth or imposed by stratification.” From this observation nat-

urally arises the question of how such a limit on the mixing length might be imposed using

two-equation turbulence closure, especially since the standard k− ε model implies a mixing

length that increases roughly linearly and without limit away from the ground (Detering and

Etling, 1985). The Apsley and Castro solution consists of an additional source term in the ε

transport equation multiplied by a weighting function that serves to cancel net production of ε

as the mixing length �m approaches some limiting value �max and thus limit its growth. Further-

more, the weighting function ensures that the model reduces to the standard k−ε equations for

�m 
 �max, so as to be consistent with surface-layer scaling.
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In the original paper, a simple weighting function �m/�max was proposed. In this work, we

look at the performance of the original model in the surface layer and ask what exact form the

weighting function should take. The objective is to modify the Apsley and Castro model such

that it is not only consistent with surface-layer scaling in the limit of small �m/�max but in fact

yields the exact similarity profiles when only the surface layer is considered.

The following section briefly reviews a model of the equilibrium, incompressible, constant-

stress surface layer, as well as the Apsley and Castro limited-length-scale model. The deriva-

tion of an exact form for the standard ε transport equation, for an arbitrary desired mixing-

length expression, is given in section 3. Supposing �m to be half the harmonic mean between

the Prandtl mixing length and some established maximum, one-dimensional numerical simu-

lations of the surface layer using the Apsley and Castro ε equation, the derived ε equation,

and an empirical fit follow in section 4 for both neutral and stable conditions. A discussion

regarding Cε3 is presented in section 5 followed by a brief conclusion. For consistency, the

same notation as the original Apsley and Castro paper has been used throughout.

2.2 The equilibrium surface layer

2.2.1 Governing equations

For the discussion that follows, the Apsley and Castro model for equilibrium atmospheric

boundary-layer flow is simplified for the idealized surface layer by ignoring Coriolis effects

and pressure gradients, and assuming a constant heat flux. By defining U in the direction

of the mean flow, the velocity field is just �U = (U(z),0,0) and, assuming viscous effects are

negligible, the steady incompressible Reynolds-Averaged Navier–Stokes equations reduce to

d
dz

(−u′w′) = 0. (2.1)

The eddy viscosity concept is used to relate the Reynolds stresses to mean flow properties via

−u′w′ = νt
dU
dz

(2.2)
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where the turbulent viscosity νt is modelled with standard k− ε closure (Jones and Launder,

1972), viz.

νt ∝
√

k�, (2.3)

� ∝
k3/2

ε
, (2.4)

and the conservation of momentum is thus expressed as

d
dz

(
νt

dU
dz

)
= 0. (2.5)

The transport equations for turbulent kinetic energy (TKE) k and its dissipation rate ε corre-

sponding to equilibrium surface-layer flow are

d
dz

(
νt

dk
dz

)
+Πk − ε = 0, (2.6)

d
dz

(
νt

σε

dε
dz

)
+Pε −Cε2

ε2

k
= 0, (2.7)

where

Pε = ΠkCε1
ε
k

(2.8)

and Πk is the total turbulence production rate from both mechanical shear (Pk) and thermal

effects (Gk), where

Pk ≡−u′w′dU
dz

= νt

(
dU
dz

)2

, (2.9)

Gk ≡ αgθ ′w′ =−αg
νt

σθ

dΘ
dz

. (2.10)

Here, α is the coefficient of thermal expansion, g is the gravitational field strength, and σθ is

the turbulent Prandtl number.
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For a constant heat flux, the transport equation for mean potential temperature Θ is simply

d
dz

(
νt

σθ

dΘ
dz

)
= 0. (2.11)

2.2.2 A comment on k− ε closure for stably-stratified surface-layer flow

As in the Apsley and Castro model, the velocity scale implied in equation (2.3) is often taken as

u0 =C1/4
μ k1/2. Using the definition of TKE and assuming equilibrium conditions (i.e. u0 = u∗),

Cμ can thus be calibrated using statistical data from surface-layer field experiments with

1√
Cμ

=
1

2

[(
σu

u∗

)2

+

(
σv

u∗

)2

+

(
σw

u∗

)2
]

(2.12)

where the right-hand side of equation (2.12) is the inverse of the structure function. Pahlow

et al. (2001) have used least-squares regression to fit velocity variance data from several sources

and found that all components follow Monin-Obukhov scaling and increase rapidly as z/L �
0.1. This suggests that the coefficient of proportionality between k and u2∗ also depends on the

stability condition and thus Cμ = f (z/L).

Be that as it may, for the present work we nonetheless follow the Apsley and Castro model and

take Cμ as a constant and equal to its neutral value. One consequence of this assumption is

that for surface-layer simulations, with the aforementioned velocity scale, k will be modelled

as invariant with height and stability

k =
u2∗√
Cμ

. (2.13)

A second consequence is related to the TKE budget. For the surface layer, this can be written

in terms of length scales as (Panofsky and Dutton, 1984)

1

�t
+

1

�m
− 1

κL
− 1

�ε
+ I = 0. (2.14)
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In the stable surface layer, it is generally assumed that �m ≈ �ε and turbulent transport is neg-

ligible, which implies that the pressure imbalance I cancels with buoyant production (Kaimal

and Finnigan, 1994)1. By taking Cμ as a constant in equation (2.13), we ensure infinite �t .

However, in the k − ε model, the pressure contribution is not explicitly modelled; thus we

cannot respect �m ≈ �ε and, to balance the modelled TKE budget, we enforce local equilibrium

1

�ε
=

1

�m
− 1

κL
, (2.15)

which likely overestimates the importance of buoyancy effects (Frenzen and Vogel (2001) have

however plotted the left-hand and right-hand sides of the above equation based on their own

measurements and found the residual to be tolerably small for stable conditions). Also im-

plicit to this simplified budget equation is the assumption that, for neutral conditions, turbulent

production is exactly balanced by dissipation, which is not universally accepted (Frenzen and

Vogel, 2001; Pahlow et al., 2001; Hartogensis and Bruin, 2005). Clearly, two-equation closure

can only approximate the observed turbulence structure in the surface layer. Nevertheless, the

primary objective is to predict the turbulent viscosity (or, moreover, the mixing length) and,

with the following caveat, this model does so exactly.

The turbulent viscosity is defined by the relationship between shear stresses and mean velocity

gradients. Taking �m = κz/φm, similarity theory requires νt = u∗�m whereas equation (2.3) and

equation (2.4) yield νt = u∗�ε . Of course, these are equivalent for neutral flow. However, for

non-neutral flows, a correction is required for buoyancy effects. Assuming local equilibrium,

Apsley and Castro reason that

νt =
τ ′2

ε
(1−R f ) (2.16)

where the flux Richardson number R f ≡−Gk/Pk. If we take equation (2.13) with Cμ constant,

by virtue of the simplified TKE budget, (1−R f ) is exactly equal to the ratio of length scales.

1An analysis by Cuxart et al. (2002) casts some doubt on this accounting of the energy distribution by sug-

gesting that turbulent transport may, in fact, be an important process in the stable nocturnal boundary layer while

the pressure imbalance is often of similar order as the other terms and the buoyancy contribution is negligible.
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The turbulent viscosity is then consistent with similarity theory if calculated as

νt =Cμ
k2

ε
(1−R f ) (2.17)

where Cμ is effectively reduced by (1−R f ).

This approach represents but one of several possibilities for modelling stable flow with the

k− ε model. In general, though, either the assumption of local equilibrium is exactly satisfied

(by ensuring the transport term is zero) and the turbulent viscosity consequently modified to

account for �ε 	= �m or the standard equation for νt is maintained (by changing the velocity

scale to u0 = C1/4
μ k1/2(1−R f )

−1/4) and small violations of the local equilibrium assumption

accepted. Here, we aim to derive a model for which, among other things, Monin-Obukhov

similarity theory is an exact solution to the model equations and have thus adopted the former

approach. In the context of stably-stratified atmospheric flow, Alinot and Masson (2005) have

investigated use of the latter. The Level-2.5 model of Freedman and Jacobson (2003) also

follows the latter approach but, in addition, takes Cμ as a function of R f .

2.2.3 The mixing length

By default, equations (2.6) and (2.7) only agree with similarity theory for purely neutral con-

ditions where the mixing length is unbounded and given by �m = κz. Apsley and Castro have

proposed a modified k− ε closure to model an atmospheric boundary layer where the mixing

length is limited through stable stratification or some other physical process. For example, the

mixing length may be prescribed as (Blackadar, 1962)

�m =
κz

1+κz/�max
(2.18)

where �max is given by κL/β for stable conditions or can be determined from observations

for neutral conditions (Apsley and Castro, 1997). Under the assumption of constant shear

stress and heat flux, and taking σθ as independent of stability, the corresponding surface-layer
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distributions of velocity, potential temperature and turbulence properties are given by

U(z) = u∗
∫ z

z0

1

�m
dz′, (2.19)

ΔΘ(z) = σθ θ∗
∫ z

z0

1

�m
dz′, (2.20)

k(z) =
u2∗√
Cμ

, (2.21)

ε(z) =
u3∗
�ε

(2.22)

where z0 corresponds to the aerodynamic roughness length and z ≥ z0.

2.2.4 Imposing a mixing-length limit

The turbulence transport equations must be modified to yield the desired mixing-length ex-

pression such that equations (2.19)-(2.22) represent a solution to the system of differential

equations governing fluid flow. In the context of a general atmospheric boundary layer, Apsley

and Castro propose the following modification to the ε equation. If �max can be specified a

priori, they suggest

Pε =

[
Cε1 +(Cε2 −Cε1)

�m

�max

]
Πkε

k
(2.23)

with �m = u3
0/ε . For stable conditions, where �max might be determined from local flow prop-

erties, they propose

Pε =Cε1(1+Cε3R′
f )

Πkε
k

(2.24a)

=

[
Cε1 +(Cε2 −Cε1)β

(
1− �m

�ε

)]
Πkε

k
(2.24b)

where R′
f ≡−Gk/Πk.

As �m → �max in the first case or �m/�ε → (β − 1)/β in the second, the source terms in the ε

equation cancel and ε (and consequently the mixing length) becomes constant. Furthermore,

for �m 
 �max or �m ≈ �ε , equations (2.23) and (2.24a) reduce to equation (2.8). Clearly, both

approaches have the desired behaviour for limiting values of �m. They do not, however, guar-
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antee that the resolved ε distribution will match its analytical solution given by equation (2.22).

Apsley and Castro acknowledge that equations (2.23) and (2.24a) are but the simplest way to

achieve the desired length-limiting action; the question of the exact form required to reproduce

a desired surface layer is addressed in the next section.

2.3 Revised limited-length-scale model

2.3.1 Definition of a weighting function

Incorporating the destruction of ε into the Apsley and Castro production term and recalling

that Πk = ε for an equilibrium boundary layer, one can write

d
dz

(
νt

σε

dε
dz

)
+(Cε2 −Cε1)

ε2

k

(
�m

�max
−1

)
= 0, (2.25a)

which can be further generalized as

d
dz

(
νt

σε

dε
dz

)
+F(Cε2 −Cε1)

ε2

k
= 0 (2.25b)

where F is a weighting function that corrects the net production of ε such that the model

equations yield the desired mixing-length expression.

2.3.2 Derivation of an exact weighting function

The exact weighting function for a desired mixing-length expression can be derived by substi-

tuting the corresponding analytical solution into equation (2.25b) and solving for F . Here, we

consider the general case of �ε 	= �m. Recalling that νt = u∗�m and ε = u3∗/�ε , the first term

simplifies to

d
dz

(
νt

dε
dz

)
=

u4∗
�2

ε

[
2
�m

�ε

(
d�ε
dz

)2

− d�m

dz
d�ε
dz

− �m
d2�ε
dz2

]
. (2.26)
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Substituting equation (2.26) into equation (2.25b) with the surface-layer distributions for k and

ε yields

2
�m

�ε

(
d�ε
dz

)2

− d�m

dz
d�ε
dz

− �m
d2�ε
dz2

+Fσε(Cε2 −Cε1)
√

Cμ = 0. (2.27)

For atmospheric flows, the k − ε model should be calibrated such that the combination of

coefficients appearing in the last term is simply κ2 (Detering and Etling, 1985). Thus,

F =
1

κ2

[
d�m

dz
d�ε
dz

+ �m
d2�ε
dz2

−2
�m

�ε

(
d�ε
dz

)2
]
. (2.28)

Now, reverting to the original equation (2.7) for ε and redefining Pε as

Pε =
[
Cε1 +(F +1)(Cε2 −Cε1)

]Πkε
k

(2.29)

the above weighting function ensures the system of equations (2.19)-(2.22) is an exact solution

of the model equations for a desired mixing-length expression. Note that, while �m may be

arbitrarily chosen, the expression for �ε is fixed by the TKE budget.

2.3.2.1 Stable conditions

Here we take �m = κz/φm (and similarly �ε = κz/φε ) that is consistent with equation (2.18) if

φm is assumed to be a linear function of z/L equal to unity for neutral conditions, viz.

φm = 1+β
( z

L

)
. (2.30)

Although more advanced fits for φm have been proposed that cover the full stability range (see

Cheng and Brutsaert, 2005), this form has the advantage of simplifying the resulting expression

for F . However, in strictest terms, its valid range is limited by some critical value of z/L. In
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terms of φ , equation (2.28) becomes2

F =
1−2φm

(φmφε)2
, (2.31)

which can be written in terms of length scales by inverting the mixing-length expression for z

and replacing κL/β with �max,

F =−(1+R′
f
)2
(

�m

�max
+1

)(
1− �m

�max

)3

(2.32)

where �m = u3
0/Pk. It can be completely expressed in terms of local flow properties by substi-

tuting �m/�max = βR f . Using equation (2.32) in the ε transport equation results in a form very

similar to that of Freedman and Jacobson (2003) except that, in their case, the (1−R f ) appear-

ing in the equation (2.17) has been effectively subsumed into the expression for k, reducing F

by (1+R′
f )

1/2.

2.3.2.2 Neutral conditions

For neutral conditions, equation (2.28) shortens to

F =
1

κ2

[
�m

d2�m

dz2
−
(

d�m

dz

)2
]
. (2.33)

In the simplest case where �m = κz, F =−1, which reduces equation (2.29) to equation (2.8).

If �m is given by equation (2.18),

F =−
(

�m

�max
+1

)(
1− �m

�max

)3

. (2.34)

If �max is taken as infinite, equation (2.29) again reduces to equation (2.8) and the standard

k− ε model is recovered.

Comparison of equations (2.32) and (2.34) shows that there are two distinct parts to the weight-

ing function: one that is concerned with the magnitude of �max and a second accounting for the

2An expanded derivation is provided in Appendix 3.
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source of the limiting action. The necessity of the stability-dependent term can be understood

by considering that, for a given �max, the shear production rate is the same but the net turbu-

lence production must always be zero. Any contribution from Gk to the overall budget then

must be compensated by a decrease in ε . The role of the (1+R′
f ) factor is to dampen the

length-limiting action thereby ensuring Pk +Gk − ε = 0.

2.3.2.3 Exact expression in the Apsley and Castro form

A good approximation to equation (2.34) is given by

(F +1) =

(
�m

�max

)γ
(2.35)

where

γ = 10−�m/�max . (2.36)

Using the relationship between equations (2.34) and (2.32), this can be further generalized to

(F +1) = (1+R′
f )

2

[(
�m

�max

)γ
−1

]
+1. (2.37)

In this light, the Apsley and Castro weighting function can be considered a special case where

γ = 1 and stability effects are ignored. Figure 2.1 shows a plot of the Apsley and Castro

(i.e. �m/�max), exact (equation (2.34)), and “empirical” (equation (2.35)) weighting functions

as a function of the non-dimensional height ζ = z/�max for the mixing-length expression given

by equation (2.18) and neutral conditions. Both the Apsley and Castro and empirical weighting

functions have large errors for small ζ but, as F + 1 is quite small, this is not critical. More

significant is the large difference between the Apsley and Castro and exact weighting functions

for moderate values of ζ (say, 0.1− 10) where the limiting action of the Apsley and Castro

approach is less aggressive. As will be shown, this leads to an overestimation of the mixing

length and consequently an underestimation of velocity in the surface layer.
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Figure 2.1 Comparison of weighting functions for a neutral length-limited surface layer

2.4 One-dimensional simulations

2.4.1 Grid, boundary conditions, and numerics

The Apsley and Castro model was not intended to resolve surface-layer flow uniquely. While

its ε equation ensures �m < �max is everywhere respected, the corollary is that for simulations

of the idealized surface layer in a domain where κzmax > �max, �m ≈ �max will be implicitly

imposed at the upper boundary. This could lead to problems for surface-layer simulations if

the domain height is insufficient. To illustrate, similarity theory requires the ratio of �m/�max

at ζ = 10 to be roughly 0.8 whereas the Apsley and Castro closure would predict unity if the

upper boundary was located at this level. The problem is easily sidestepped by extending the

domain to ζ = 250 (where �m/�max > 0.99). This is well beyond physical heights for which

Coriolis effects can be safely neglected, but is a simple expedient by which the appropriate

numerical conditions are ensured.

The lower and upper limits of the domain are thus placed at ζ = z0/�max and ζ = 250, respec-

tively, and the grid is discretized using 1116 cells for the neutral simulation and 880 cells for
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the stable one. Such a high density of cells serves to ensure discretization errors are entirely

negligible. For both grids, the near-wall cell centre has a non-dimensional height (= zu∗/ν)

of 30 that is sufficient to properly resolve the strong vertical gradients near the ground (Gorlé

et al., 2009). The grids are geometrically expanded using a ratio of 1.01.

The boundary conditions are essentially those of Richards and Hoxey (1993) generalized for an

arbitrary mixing-length expression. For the momentum equations, horizontal kinematic shear

stresses of −u0wu∗w and u2
∗sl are exerted at the lower and upper boundaries, respectively, while

the vertical velocity component is set to zero. The local wall friction velocity u∗w is calculated

from the flow solution in the wall-adjacent cell using

u∗w =
UP∫ zP

z0

1

�m
dz′

, (2.38a)

which for equation (2.18) becomes

u∗w =
κUP

ln(zP/z0)+κ(zP − z0)/�max
. (2.38b)

u∗sl is the surface layer friction velocity (specified a priori) related to the shear stress that,

under these idealized conditions, drives the flow.

Wall functions are used to specify turbulence properties at the lower boundary. The near-wall

cell centre ε is specified with

εP =

√
Cμku∗w

�ε
, (2.39)
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where �ε is related to the mixing length via equation (2.15). The source terms for the k equation

in the wall-adjacent cell are set using:

Πk,P =
u3∗w
Δz

∫ 2zP−z0

z0

(
1

�m
− 1

κL

)
dz′

= u3
∗w

[
1

2κ(zP − z0)
ln

(
2zp − z0

z0

)
+

1

�max
− 1

κL

]
, (2.40)

εP =

√
Cμk

u2∗w
Πk,P. (2.41)

The gradient of k at the wall is taken as zero. To avoid biasing the solution, turbulence proper-

ties at the upper boundary are specified through Neumann conditions: the gradient of k again

being taken as zero and that of ε derived from

dε
dz

=
d
dz

(
u3
∗sl
�ε

)

=−u3
∗sl

κz2
. (2.42)

The surface sensible heat flux is constant in the surface layer and is used to formulate the

condition for mean potential temperature at both boundaries

dΘ
dz

=− QH

ρcp

σθ
νt

. (2.43)

Using equation (2.17) to calculate the eddy viscosity, equations (2.5)–(2.7) and (2.11) are re-

solved with OpenFOAM 1.6.x (OpenCFD, 2009a). The same k − ε model coefficients and

constants as in the Apsley and Castro simulations are used:

Cμ = 0.09, Cε1 = 1.44, Cε2 = 1.92, σk = 1.0, σε = 1.111, σθ = 0.9.

Given the absence of pressure gradients and momentum sources, the resolved kinematic shear-

stress distribution must be uniform at convergence (i.e. τ ′(z) = u2
∗sl), regardless of the weight-

ing function. Furthermore, at equilibrium, the velocity scale and the friction velocity are iden-
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tical (i.e. u0 = u∗). Thus, a convenient measure of convergence is the normalized residual

R = max |u0(z)− u∗sl|/u∗sl . All fields are initialized with an approximate solution such that

u0 	= u∗sl and the solution is considered converged (to the accuracy provided by the numer-

ical discretization) when further iteration provides negligible improvement in R; generally,

R f inal ∼ 10−5. As the residual is essentially the maximum relative error in
√

k, its magnitude

is also a measure of the extent to which the local equilibrium condition is respected.

2.4.2 Neutral length-limited surface layer

Figure 2.2 compares the predicted normalized velocity and mixing length distributions with

analytical solutions for a neutral atmosphere defined by z0 = 0.3 m, u∗sl = 0.65 m s−1 and

�max = 36 m (these are the fitted parameters used by Apsley and Castro for the Leipzig data).

All profiles overlap in the near-wall region and are not shown. Clearly, the resolved velocity

distributions are dependent on the method by which the length scale is limited in the ε equa-

tion: the profile generated using the exact weighting function (equation (2.34)) coincides with

the analytical solution whereas the error in predicted velocity associated with the other func-

tions depends on how closely the resolved mixing length matches the desired distribution. As

expected, the Apsley and Castro weighting function does not limit the mixing length quickly

enough (i.e. F + 1 is too small for all ζ ) and, at ζ = 10, the velocity deficit using the Apsley

and Castro model is greater than 12%. As the empirical F is in fairly close agreement with

the exact function, the resolved mixing length is much closer to the analytical solution and the

error in predicted velocity considerably less.

2.4.3 Stable surface layer simulation

To simulate stable flow, the original Apsley and Castro model would, in fact, use �ε/�max as

it supposes a single turbulent length scale. As here we distinguish between �ε and �m (most

notably in the calculation of the eddy viscosity) and as the intent of the model is to limit the

latter quantity, simulations are carried out using �m/�max.

With that in mind, figure 2.3 presents the resolved normalized profiles of mean velocity, mean

potential temperature difference, mixing length and TKE budget using the three weighting
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Figure 2.2 Resolved normalized profiles of mean velocity (with associated error) and

mixing length for neutral length-limited atmospheric conditions using the Apsley and

Castro, exact, and empirical weighting functions

functions and compares them with similarity theory (i.e. equations (2.19) and (2.20)). Sta-

ble atmospheric conditions are defined by z0 = 0.3 m, L = 100 m, QH = −20 W m−2 (with

QH/(ρcp) = −1.625× 10−2 m K s−1) and u∗sl = 0.28 m s−1. The corresponding mixing-

length limit is �max = 8 m.

The resolved normalized mixing length profiles are quite similar to the neutral case as are the

errors in predicted velocity. Of course, the TKE budget is quite different. The exact weighting

function (equation (2.32)) properly reproduces all budget terms whereas the (modified) Apsley

and Castro approach only predicts the buoyant production correctly; the other components are

underestimated. Although not shown, the empirical weighting function again provides a better

approximation.
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stably-stratified atmospheric conditions using the Apsley and Castro, exact, and empirical

weighting functions. The turbulence budget predictions using the empirical weighting

function have been omitted for clarity
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2.5 Regarding Cε3

As the ε equation is now exact for equilibrium stably-stratified surface-layer flow (at least in

the context of section 2.2.2), we can comment briefly on the Cε3 coefficient. Taking equa-

tion (2.24a) for the production term, the preceding derivation of the exact weighting function

can be recast as an expression for Cε3

Cε3 =
(Cε2 −Cε1)

Cε1

[
1− (1+R′

f )
2

(
�m

�max
+1

)(
1− �m

�max

)3
]

1

R′
f
. (2.44)

This may be somewhat unexpected form as the trailing 1/R′
f cancels its counterpart in equa-

tion (2.24a) and the so-called buoyancy term is no longer simply a coefficient multiplied by the

buoyant production rate. Rather Cε3 is itself a function of R′
f and is now a multiplier of the total

production rate, effectively making Cε1 variable as in Freedman and Jacobson (2003). Unlike

in their work, the Cε3R′
f term is non-zero for z/L = 0, if �max is not large, as equation (2.44) is

valid for stable and neutral length-limited conditions.

Several authors have simulated stable surface-layer flow using k− ε closure and various pro-

posals regarding Cε3 can be found in the literature. However, the ε equation varies among

them: many calculate Pε using equation (2.24a) while

Pε =Cε1Pk
ε
k
+Cε1C�

ε3Gk
ε
k

(2.45)

is also common. The two expressions are equivalent if C�
ε3 = 1−Cε3.

Figure 2.4 compares some of these proposals for the stable atmosphere considered in section

2.4.3. As not all models use the same set of coefficients, direct comparisons are difficult and a

more just portrait is hoped to be achieved by plotting Cε3Cε1/(Cε2−Cε1). Historically, Cε3 has

generally been considered a constant. Based on experiments involving stably-stratified shear

flows, Rodi (1987) suggested that 0.8 ≤ Cε3 ≤ 1. In applying Rodi’s model to atmospheric

flows, Kitada (1987) assumed unity whereas the Apsley and Castro model predicts Cε3 to be

1.67. Based on the Kansas surface-layer experiments of Businger et al. (1971), Betts and
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Haroutunian (1983) found 2.15 through numerical optimization but additionally suggested Cε3

should be a continuous function of z/L. Using data from FLEX’76 (Brockmann et al., 1984),

Burchard and Baumert (1995) have argued Cε3 could be as high as 2.4. A summary of other

proposals for constant C�
ε3 can be found in Baumert and Peters (2000).

Freedman and Jacobson (2003) have conclusively shown, however, that constant coefficients

are inconsistent with similarity theory for non-neutral flow. Their expression for Cε3 is plotted

assuming constant Cμ which, as mentioned, differs from equation (2.44) only by a factor of

(1+R′
f )

1/2. Alinot and Masson (2005) have opted for an approximate solution by fitting a

fifth-order polynomial based on similarity theory. All the variable Cε3 expressions are in good

agreement for z/L > 0.1 while their differences likely have little effect for a weakly-stratified

flow.
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Figure 2.4 Comparison of various proposals for Cε3 for a stable atmosphere defined by

z0 = 0.3 m and L = 100 m. The Alinot and Masson polynomial is plotted for

z0/L ≤ z/L ≤ 2

Whereas the Apsley and Castro model anticipates the coefficient of (Cε2 −Cε1)/Cε1 to be β ,

the expression derived here finds it to vary by a factor of exactly two between (β −1) and 2(β −
1). The optimized value of Betts and Haroutunian is based on simulations for 0.1 < z/L < 1
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and, perhaps unsurprisingly, transects the exact expressions over this range. Interestingly, the

constant value proposed by Rodi and used by Kitada does not lie within the predicted limits

of Cε3. It is suggested that, if a constant value must be used, it should at least satisfy the

requirement

(β −1)≤ Cε1Cε3

(Cε2 −Cε1)
≤ 2(β −1).

But, as the buoyancy term is unimportant for near-neutral conditions, it is preferable to take

the constant value closer to its lower limit. In this light, the Apsley and Castro proposal of β

seems reasonable.

2.6 Conclusions

The original limited-length-scale k− ε model proposed by Apsley and Castro has been previ-

ously shown to be effective at reproducing observations in both the neutral and stable atmo-

spheric boundary layers while being quite elegant in its simplicity. Here, the performance of

this model specifically in the constant-stress surface layer, where Coriolis forces and pressure

gradients can be neglected, has been evaluated. For the mixing-length expression considered,

simulations indicate that the original model is slow in limiting the growth of �m, which leads

to non-negligible errors in predicted velocity.

Given this, a general ε transport equation and the boundary conditions required to exactly

reproduce surface-layer profiles of velocity, potential temperature, and turbulence properties

corresponding to an arbitrary desired mixing-length expression have been derived based on the

framework of the original model. Taking �m = (1/κz+1/�max)
−1, a single exact formulation

of the k− ε model covering both stable and length-limited neutral conditions results. The per-

formance of this closure for general boundary-layer simulations and under non-homogeneous

conditions remains to be evaluated.

Fitting an empirical equation, of similar form as the original model, to this exact formulation

shows that, in terms of velocity predictions, the Apsley and Castro weighting function is gen-

erally too small (i.e. γ should always be ≤ 1) and, in terms of resolved turbulence properties,
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explicit correction for the flux Richardson number is needed to distinguish between length

scales.

Considering stably-stratified flow, the derived ε equation has been recast to yield a new ex-

pression for Cε3. It is very similar to that of Freedman and Jacobson (2003) (with constant

Cμ ), however differences in the modelling of the TKE lead to a reduction by (1+R′
f )

1/2 in the

stability-dependent term. Also, whereas Freedman and Jacobson (2003) derive a consistency

condition between all k− ε model coefficients, here the standard coefficients are calibrated to

neutral conditions and Cε3 is related to them by satisfying the simplified TKE budget.

To close, a comment on the treatment of TKE as independent of stability might be warranted.

Although this proves beneficial by ensuring that local equilibrium is always satisfied, it would

be fair to say that we may be sacrificing some of the flow physics for the sake of mathematical

consistency. As for other possibilities, the TKE could be modelled as non-uniform by assuming

a different velocity scale or by taking Cμ as a function of stability (or both). It is quite common

to take Cμ as a constant in k− ε models so, considering the former option, it is worth noting

that the reduction in TKE in the surface layer associated with the use of a stability-dependent

expression for k is, at most, 1−√1−1/β , or roughly 10%. Thus, for stable surface-layer sim-

ulations, taking k constant is not an altogether unreasonable approximation within the context

of this model. Similarly, for atmospheric boundary-layer simulations, the assumption of in-

variant TKE in the derivation of the ε equation also appears to be reasonable since differences

in the derived Cε3 expressions are small and only noticeable for z/L � 0.1 where buoyancy

effects assume less importance.
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Foreword

The previous chapters have explored two aspects of modelling the homogeneous surface-layer

within a RANS/k− ε context. At some point, however, the presence of a rotor and the energy

extraction process also needs to be taken into account. While modelling the system of vor-

tices shed from an operating rotor in a turbulent flow would likely provide the most accurate

description of wake properties, this level of detail is generally unnecessary for analyses at the

scale of wind farms. Of primary interest is modelling the so-called far wake.

Unfortunately, the k−ε model is notorious for its poor wake predictions. This flaw stems from

weaknesses in the eddy-viscosity concept that are exacerbated by actuator disk modelling of

the rotor (Réthoré, 2009). What is attempted here is a validation of various turbulence closures,

including a newly proposed one, based on wind tunnel measurements downstream of a porous

disk. While these case studies prove ill-suited to the task, as all models perform well, the

necessary wind tunnel conditions are deduced from the discussion. Likely, the most important

contributions of this work are the method by which flow and rotor properties are deduced from

wake measurements and the discussion on similitude.
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Abstract

Wake modelling plays a central role in the planning of a wind farm during the evaluation of

losses, prediction of the energy yield, and estimation of turbine loads. These models must be

reasonably accurate – to minimize financial risk – and yet economical so that many configu-

rations can be tested within reasonable time. While many such models have been proposed,

an especially attractive approach is based on the solution of the Reynolds-Averaged Navier–

Stokes equations with two-equation turbulence closure and an actuator disk representation of

the rotor. The validity of this approach and its inherent limitations however remains to be fully

understood. To this end, detailed wind tunnel measurements in the wake of a porous disk (with

similar aerodynamic properties as a turbine rotor) immersed in a uniform flow are compared

with the predictions of several closures. Agreement with measurements is found to be excellent

for all models. This unexpected result seems to derive from a fundamental difference in the

turbulent nature of the homogeneous wind tunnel flow and that of the atmospheric boundary

layer.

3.1 Introduction

All wind energy technology is based on the conversion of some fraction of the kinetic energy of

moving air into useful mechanical energy through aerodynamic interaction with a rotor. Con-

sequently, wind speeds downstream of a well-designed wind turbine are considerably lower

than those upstream. This region of reduced wind speed and increased turbulence intensity

is the so-called wake. Clearly, a wind turbine operating in the wake of another will extract

less energy and experience larger fatigue loads than its upstream neighbour. Yet, for economic

reasons, large-scale exploitation of the wind resource typically involves installing turbines in a

densely packed arrangement with the majority of machines operating under wake conditions.

The ability to accurately quantify and minimize wake effects is thus essential for the commer-

cial success of most industrial-scale wind energy projects.

While various methods have been developed to model the wake of horizontal-axis turbines

(see e.g. Crespo et al. (1999); Vermeer et al. (2003); Sanderse et al. (2011)), one of the most
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promising approaches for wind farm analysis is based on the solution of the Reynolds-Averaged

Navier–Stokes (RANS) equations wherein the rotor is represented by a pressure discontinuity

derived from the turbine thrust curve (Ammara et al., 2002). The appeal lies in the physical

realism of predictions: conservation of mass and momentum is always respected and the in-

herently non-linear nature of fluid flow is retained. The main disadvantages of this approach

are that i) the blade geometry and near-wake flow characteristics are not resolved and ii) the

turbulence is entirely modelled. However, if the primary interest lies in the prediction of flow

properties far downstream, where the rotor influence on the flow is more or less axisymmetric

due to diffusive processes, the relative economy of this method makes it especially attractive.

Of course, the accuracy of predictions will largely depend on the relative importance of turbu-

lent processes in the flow and how well they are modelled. In this regard, it is hoped that the

comparison of flow solutions with highly detailed wind tunnel measurements will help iden-

tify weaknesses and lead to improvements. Herein, solutions from a RANS-based generalized

actuator-disk method, with various turbulence models, will be validated against experiments

involving the wake of a porous disk. The perfect analogy between a numerical actuator disk

and a physical porous disk makes these comparisons particularly relevant: differences between

predictions and measurements should be attributable primarily to the choice of governing equa-

tions and turbulence closure. The following popular two-equation turbulence models will be

considered: standard k− ε (Jones and Launder, 1972), RNG k− ε (Yakhot and Orszag, 1986;

Yakhot and Smith, 1992), and rotor-corrected k−ε (El Kasmi and Masson, 2008). In addition,

a modified k − ε closure wherein the eddy-viscosity assumption is partially dropped for the

near-rotor region will also be investigated.

Model rotors immersed in both a uniform flow and in a modelled atmospheric boundary layer

have previously been studied at the PRISME Laboratory of the University of Orléans (Espana,

2009). In these experiments, laser Doppler anemometry was employed to obtain a detailed

description of the wake flow. Herein, numerical predictions for homogeneous conditions are

compared with these measurements.
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3.2 Wind tunnel experiments

3.2.1 Reduction of scale

Physical modelling of atmospheric flows in wind tunnels is a powerful tool. It has already

been used for several decades in environmental research and extensive guidelines have been

published by Snyder (1981) and the German Engineering Association VDI (VDI, 2000). The

typical strategy is to reduce all length scales (i.e. building and vegetation dimensions, boundary

layer thickness, etc.) while maintaining the dimensionless parameters describing the fluid, flow

and thermal properties, that is the Prandtl (Pr), Eckert (Ec), Reynolds (Re), Rossby (Ro), and

Richardson (Ri) numbers. The turbulence intensity level is also maintained.

Since the fluid in both cases is air and the flow velocity is relatively low, Pr and Ec will always

be similar. The Rossby criterion, which represents the influence of the Coriolis force on the

flow, does not need to be respected if the longest dimension of the modelled area is smaller than

approximately 5 km. No thermal effects are taken into account (Ri = 0) which corresponds

to neutral stability conditions at full scale. It is not necessary to respect Reynolds number

similarity (where Re is based on the rotor diameter: ReD = 105 at model scale and ReD = 108

at full scale) if Reynolds number independence can be demonstrated. This is generally the

case for very turbulent approach flows over rough surfaces and sharp-edged obstacles, and

at a geometric scale larger than 1:1000. In such cases, model velocities can be on the same

order as at full scale, usually < 20 m/s. In this work, Reynolds number independence has been

systematically checked, repeating measurements of flow properties over the range of velocities

available in the wind tunnel. Modelling the wind turbine rotor with a porous disk made from

a metallic mesh contributes to fulfilling these conditions since the flow through a grid is found

to be Reynolds number independent (Comte-Bellot and Corrsin, 1966).

3.2.2 Porous disk and actuator disk theory

The simplified theory of an actuator disk enables consideration of the energy extraction pro-

cess without reference to any specific rotor design. Its physical equivalent is a porous disk:
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simulation of flow through an actuator disk will resemble the observed flow passing through a

porous disk.

The axial induction factor, a, is defined as the ratio of the induced velocity at the disk to the

freestream velocity, U∞. If the disk is divided into annular elements, a unique induction factor

can be calculated for each element based on the streamtube which contains it. Global thrust

and power coefficients are related to the disk-averaged induction by

CT ≡ T
1
2ρAdiskU2

∞
= 4a(1−a), (3.1)

CP ≡ P
1
2ρAdiskU3

∞
= 4a(1−a)2 (3.2)

where T denotes the force on the disk caused by the pressure drop across the rotor plane, P is

the power extracted from the air, ρ is the air density, and Adisk is the disk/rotor area. According

to equations (3.1) and (3.2), one induction factor corresponds to a unique operating point of

the modelled wind turbine. In the present study, the porous disk had a diameter D = 0.10 m.

Two different types of disks made from metallic mesh were used: one with a mesh size of 3.2

mm and a wire diameter of 1 mm and another with a mesh size of 5.6 mm and a wire diameter

of 1.4 mm. They were fixed in place via a 5-mm-diameter mast. The disk solidities were 45%

and 35%. Table 3.1 provides a summary of the disk properties.

Table 3.1 Summary of porous disk properties

Disk Mesh size [mm] Wire diameter [mm] Solidity [%]

1 5.6 1.4 35

2 3.2 1 45

3.2.3 Flow conditions

Wake measurements were carried out under homogeneous conditions at the Eiffel-type wind

tunnel at the PRISME Laboratory. The test section has a width and height of 0.5 m, and a length

of 2 m. Two different turbulence-generating grids were fixed at the entrance of the test section
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to augment the turbulence intensity. The model wind turbines were placed 0.5 m downstream

of the grids. Grid characteristics are listed in table I-3.

Table 3.2 Dimensions of grids used to generate

upstream turbulence. The streamwise turbulence

intensity, IU , is given near the disk location

Grid IU [%] Mesh size [mm2] Lattice type

1 3 22.5×22.5 Circular bars

∅2.5 mm

2 12 40×40 Square bars

20×20 mm2

3.2.4 Deducing disk thrust from wake data

Similarity between the wind tunnel experiments and the numerical simulations is achieved

by maintaining three non-dimensional parameters: the disk thrust coefficient, the turbulence

intensity, and the turbulent Reynolds number based on the disk diameter and the turbulent

eddy viscosity,

Ret =
DU∞

νt
. (3.3)

While a method for characterizing the thrust (and power) coefficient of the porous disks has

been previously presented by Aubrun et al. (2007), the approach is revisited here to account

for possible wind tunnel blockage effects.

The challenge in determining the aerodynamic properties of the disk lies in the fact that the

thrust has not been directly measured. Rather, it must be deduced from the measured velocity

deficit in the wake through a control volume analysis. As shown in figure 3.1, the control

volume is taken coincident with the wind tunnel where the inflow is defined by flow conditions

in absence of a disk and the outflow location is defined by the various wake measurements.

Considering the tunnel cross section (0.5× 0.5 m2) and relative size of the disks, the work of
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Mikkelsen (2003) suggests that tunnel blockage effects should be taken into account. They are

nonetheless expected to be small (average blockage is 1.3%).

T
U∞

p = 0

Awt

Uwake

pwake

Awake

U ′

U ′

Figure 3.1 Control volume analysis of wind tunnel

The total number of unknowns is four: the freestream velocity U∞, the velocity field between

the measurement region and the wall U ′(r), the wake pressure pwake, and the disk thrust T .

If a smoothness condition is applied to the velocity distribution in the radial direction and the

unmeasured velocity is assumed to be uniform (i.e., U ′ = Uwake(r = Rwake)), the freestream

velocity can be determined directly from continuity:

U∞ =
1

Awt

[
U ′ (Awt −Awake)+

∫∫
Awake

UwakedA
]

(3.4)

where the integral in the wake is evaluated numerically from measurements assuming axisym-

metric conditions. As U∞ may vary slightly for each of set of wake measurements, a separate

value is deduced for each control volume.

The thrust coefficient and wake pressure can be estimated by considering conservation of mo-

mentum and energy. For the low turbulence case, any contribution from wall shear stress to the

overall momentum balance is likely negligible and the wall can be modelled with a full-slip

condition. The momentum balance yields:

−T −
∫∫

Awake

pwakedA =−ρU2
∞Awt +

∫∫
Awake

ρU2
wakedA+ρU ′2 (Awt −Awake) . (3.5)

Normalizing by −1/2ρU2
∞Adisk, equation (3.5) can be solved for the disk thrust coefficient.
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As pwake cannot be neglected a priori, the Bernoulli equation is applied from the inflow to the

disk and from the disk to the outflow along the axis of symmetry. After some algebra,

CT = 1− 2

U2
∞

[
pwake

ρ
+

1

2
U2

wake(r = 0)

]
. (3.6)

If pwake = 0, the familiar expression CT = 4a(1−a) results. By combining the normalized form

of equation (3.5) with equation (3.6), estimates of both CT and pwake/ρ can be determined from

each set of wake measurements.

Figure 3.2 presents the results of such an analysis for each disk with low ambient turbulence.

In both cases, the scatter in the predicted thrust coefficient is quite low; the average thrust co-

efficients are 0.61 and 0.43. Interestingly, the velocity outside the wake is found to be roughly

2-2.5% greater than U∞, supporting the assertion that blockage effects may be small but no-

ticeable.
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Figure 3.2 Thrust coefficient and wake pressure normalized with dynamic pressure

deduced from wake measurements at various downstream positions with low ambient

turbulence. Symbols: × low-induction disk; � high-induction disk

Figure 3.3 presents an identical analysis for the more turbulent inflow. Clearly, the analysis

is invalid as the predicted disk thrust varies greatly for different control volumes. Likely, the

assumption of frictionless flow in the Bernoulli equation proves inaccurate as wake velocity
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recovery is not entirely due to a decrease in pressure but rather through diffusion of momentum

from outside the wake. The best estimate of the thrust coefficient is obtained from the nearest

wake measurements where turbulence effects might be expected to have least influence. Values

of 0.56 and 0.73 are used for the low- and high-solidity disks, respectively. This result implies

that the aerodynamic properties of the porous disks are dependent on flow properties and further

emphasizes the need for Ret and I similarity.
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deduced from wake measurements at various downstream positions with high ambient

turbulence. Symbols: × low-induction disk; � high-induction disk

3.3 Mathematical models

3.3.1 RANS equations

The mathematical model is based on the finite-volume solution of the steady RANS equations

with two-equation turbulence closure. Conservation of mass and momentum are expressed in

differential form as

∇ ·�U = 0, (3.7)

∇ ·�U�U =− 1

ρ
∇p+∇ ·τ ′ (3.8)
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where �U represents the mean velocity vector, ρ is the fluid density, and p is the modified mean

pressure (Pope, 2000). τ ′ is the deviatoric component of the kinematic stresses where, to close

the equations, the eddy-viscosity concept is used to relate turbulent stresses to the mean strain

rate tensor, S, in analogy with viscous stresses in a Newtonian fluid:

τ ′ = 2(ν +νt)S (3.9)

where ν is the molecular viscosity and νt must be modelled. In general, the turbulent viscosity

is derived from the transport of two turbulent quantities: the turbulent kinetic energy, k, and its

dissipation rate, ε , viz.

νt =Cμ
k2

ε
. (3.10)

3.3.2 Turbulence

The most common RANS closures are based on the eddy-viscosity assumption and a two-

equation parameterization of turbulent effects. While two-equation closure has proven to be

remarkably accurate for many common engineering flows, it has several well-known weak-

nesses (see Wilcox (1998) for an overview). Combining these models with an actuator disk

representation of the rotor only compounds these problems: the eddy-viscosity assumption ties

turbulence production to velocity gradients leading to an erroneous increase in k across the

actuator surface (Réthoré, 2009).

Some remedies have been proposed. The model of El Kasmi and Masson (2008) aims to treat

this problem specifically: the dissipation equation is augmented with a term tied to the local

strain rate but is only applied in the immediate vicinity of the rotor (i.e. in a cylinder formed

by projecting the rotor a distance of ±0.25D in the disk-normal direction). In this regard,

the RNG model is quite similar in that it also proposes an additional term in the dissipation

equation although it is applied over the entire domain.
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In light of the work of Réthoré (2009), one might expect any closure based on the eddy viscosity

assumption used in conjunction with an actuator disk to be at best approximate. This simple

fact provides considerable impetus to further develop stress transport models. However, the

popularity and relative economy of two-equation closures continues to make them attractive.

A tempting work-around to the eddy-viscosity/actuator disk problem is to simply drop source

terms in the k− ε model in the near-disk region. This sidesteps the original over-production

problem and also avoids unphysical increases in dissipation that may be used to compensate. To

investigate the possible advantages of such a scheme (referred to here as ‘Sumner & Masson’),

simulations will be carried out wherein the k−ε source terms are neglected in the El Kasmi &

Masson correction volume.

For all closures, the steady transport equation for turbulent kinetic energy is

∇ · k�U = ∇ ·
(

νt

σk
∇k
)
+Pk − ε (3.11)

where the turbulent production rate is given by

Pk = 2νtS : S. (3.12)

The steady transport equation for dissipation rate for the standard model is implemented as

∇ · ε�U = ∇ ·
(

νt

σε
∇ε
)
+χ1

(
Cε1Pk

ε
k
−Cε2

ε2

k
+χ2Cε4

P2
k
k

)
. (3.13)

Here χ1 and χ2 are step functions taking values of zero or one depending on the desired model

behaviour and region of space. The El Kasmi & Masson model sets χ2 to unity in a small

volume around the rotor; otherwise it is null. The Sumner & Masson proposal is to set χ1 = 0

in this same region of “non-equilibrium turbulence”; otherwise it is unity. For the standard

k− ε model, χ1 = 1 and χ2 = 0 throughout the domain.
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The RNG ε equation takes a slightly different form:

∇ · ε�U = ∇ ·
(

νt

σε
∇ε
)
+(Cε1 −R)Pk

ε
k
−Cε2

ε2

k
(3.14)

with the additional term a function of the strain rate tensor

η =
√

2S : S
k
ε
, (3.15)

R =
η (1−η/η0)

1+βη3
. (3.16)

Cμ , Cε1, Cε2, Cε4, σε , σk, η0 and β are closure coefficients; standard values are used for all

models.

3.3.3 Computational domain and grid generation

Although the wind tunnel geometry is square, the simulations assume axisymmetric conditions.

Thus, a wedge-shaped domain is dimensioned and discretized based on the recommendations

of Leclerc (1998). The disk is uniformly divided into 36 cells while geometric expansion is

used to decrease the cell density away from the disk. The grid is smooth and at no point does

the cell aspect ratio exceed 25. A schematic is illustrated in figure 3.4.

2.5D

8D 20D

36 cells

36 cells

90 cells 234 cells

Figure 3.4 Schematic representation of computational grid
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3.3.4 Boundary conditions

At the inflow boundary, uniform distributions of velocity, turbulent kinetic energy and its dis-

sipation rate are specified. To ensure Ret similarity, the dissipation rate is set as follows:

ε0 =Cμk2
0

Ret

DU0
(3.17)

where k0 = k, the spatial average value of turbulent kinetic energy measured near the disk

location without the disk present, and U0 is the inflow wind speed (which corresponds roughly

to the calculated U∞). D is the equivalent full-scale rotor diameter. Ret is determined from

wind tunnel conditions using equation (3.3) where D is the diameter of the porous disk and the

turbulent eddy viscosity is estimated from

νt =Cμ
k

2

ε
. (3.18)

The in situ dissipation rate is assumed to be related to the maximize size of the opening in the

grid used to generate turbulence via (Wilcox, 1998)

ε =Cμ
k

3/2

0.07L
. (3.19)

The turbulence properties are maintained from the inlet to the location where k has been mea-

sured (at or just upstream of the disk position) by means of additional source terms in the

turbulence transport equations (Leclerc, 1998)

Saxi
k = ε0, (3.20)

Saxi
ε =Cε2

ε2
0

k0
. (3.21)

Turbulence freely dissipates downstream of this position.

The radial boundary is treated with a full-slip condition. The outflow assumes fully developed

flow while the outlet pressure is fixed to zero.
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The actuator disk is treated as a discrete pressure jump across a set of cell faces. Two separate

implementations have been tested: one based on a constant thrust coefficient and the freestream

velocity,

Δp(r,θ) =
1

2
ρU2

∞CT (3.22)

and the other on a constant drag coefficient and the local velocities at the disk,

Δp(r,θ) =
1

2
ρU(r,θ)2CD. (3.23)

The model predictions are nearly identical and the constant thrust coefficient representation

has been retained for the following simulations.

3.3.5 Computational considerations

All simulations are carried out using OpenFOAM 1.6.x (OpenCFD, 2009b). The RANS and

turbulent transport equations are discretized using the QUICK scheme (Leonard, 1979) for con-

vection terms. To ensure boundedness, the interpolated face value of the convected quantity is

limited between upwind and downwind values. Other terms are discretized with standard cen-

tral differencing. The SIMPLE (Patankar, 1980) algorithm is used to handle pressure-velocity

coupling and the systems of linear equations are solved with a geometric-algebraic multigrid

algorithm. The inflow is used to define the initial conditions and iterations are carried out until

the normalized equation residuals have decreased several orders of magnitude and stabilize.

3.4 Results

3.4.1 Velocity defect

Figures 3.5 and 3.6 compare the predicted radial distributions of the normalized axial velocity

at several downstream positions with wind tunnel measurements for the low- and high- solidity

disks, respectively. In both cases, the calculated velocity defect along the symmetry axis is in

excellent agreement with measurements. Furthermore, and particularly for the higher solidity
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disk, the relatively small effect of tunnel blockage can be discerned from the fact that the

normalized velocity outside the wake is consistently greater than unity. Again, the agreement

here between simulations and observations is quite good.
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Figure 3.5 Comparison of predicted and measured velocity defect downstream of a

porous disk with thrust coefficient of CT = 0.43 at 3% turbulence intensity

The largest differences are found in the shear layer at the disk edge. In general, it appears

that the ε–correcting models perform slightly better in the very near wake while standard k−ε

(with or without the source-term correction at the rotor) performs marginally better within the

rotor shadow in the far wake.

Figures 3.7 and 3.8 compare predicted wake velocity distributions with measurements for an

ambient streamwise turbulence intensity of 12%. In this case, there is remarkably little dif-

ference between the various closure schemes. Again, the predicted centreline velocity defect

coincides very closely with the wind tunnel observations. Considering the radial velocity dis-

tribution, some asymmetry in the measurements is noted with simulations mimicking the ob-
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Figure 3.6 Comparison of predicted and measured velocity defect downstream of a

porous disk with thrust coefficient of CT = 0.61 at 3% turbulence intensity

servations very closely only for the ‘upper’ half. With respect to the low turbulence case,

increased diffusion leads to a much less distinct wake region and smoother velocity profiles.

The ability of the models to capture wake recovery is demonstrated by the excellent agreement

at 10D.

3.4.2 Turbulent kinetic energy

Figure 3.9 presents the turbulent kinetic energy in the wake (normalized by U2
∞) of the two disks

at low turbulence intensity. Only the half wake has been shown for brevity. The numerical

results are largely in agreement with observations. It can be seen, however, that while the

simulations predict the maximum for turbulent kinetic energy to be located at, or very near, the

disk edge, the measurements suggest that it migrates towards the wake centre with downstream

distance.
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Figure 3.7 Comparison of predicted and measured velocity defect downstream of a

porous disk with thrust coefficient of CT = 0.56 at 12% turbulence intensity

The results for the higher turbulence level are quite similar (see figure 3.10). As might be

expected, neglecting the source terms in the turbulence transport equations in the volume im-

mediately surrounding the rotor serves to decrease k somewhat in this region. However, this

does not appear to have an important effect downstream.

3.5 Discussion

Overall, predictions are in very good agreement with measurements and all models perform

exceedingly well. This is, however, entirely unexpected and appears to contradict the works of

several other authors who have applied these closures to the analysis of wind turbine wakes.

A case in point is the work of El Kasmi and Masson (2008) where the standard k− ε model

has been applied to study the MOD-0A, Nibe B and Danwin turbines and has been shown to

greatly overpredict wake recovery. They further demonstrate that their proposed correction

yields significant improvement for single-wake simulations.
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Figure 3.8 Comparison of predicted and measured velocity defect downstream of a

porous disk with thrust coefficient of CT = 0.73 at 12% turbulence intensity

This gives rise to two questions. First, why are the solutions so nearly independent of closure,

even for the highly turbulent case? Second, why is the performance of the k−ε model so much

improved?

3.5.1 The ε equation

Logic dictates that if the predictions of all models are essentially identical, the models them-

selves must be as well. This is indeed the case, at both low and high turbulence intensity,

although for unique reasons. To illustrate, figure 3.11 presents the distribution of terms in the ε

equation (normalized by the local dissipation rate, Cε2ε2/k), downstream of the disk at 95% ra-

dius for the low-turbulence, low-CT case. In the very near wake, the terms indeed vary between

closures which explains the differences in wake turbulence predictions. However, at roughly

2D, it can be seen that the normalized production for all models is near unity which indicates

that the source terms in fact cancel: the models are essentially identical and the (turbulence)
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Figure 3.9 Comparison of predicted and measured turbulent kinetic energy (half wake

only) downstream of a porous disk with thrust coefficient of CT = 0.43 (top) and

CT = 0.61 (bottom) at 3% turbulence intensity

problem is reduced to one of convection-diffusion type. The similarity of solutions for veloc-

ity defect is further assured by the fact that the influence of eddy viscosity in the momentum

equations is relatively small given the low level of turbulence.

Figure 3.12 presents the same analysis but for the high-turbulence, high-CT case. Of greatest

interest here is the production term for x/D> 1. This term is what distinguishes the models and

it is interesting to note that in the region of highest shear (near the disk edge) the dissipation

term is larger than the production term: the problem is reduced to one of turbulence decay. This

can be seen in the measurements: the wake turbulence level drops off rapidly as production is

insufficient to increase, or even maintain, k. As the production term assumes less importance,

the differences between the models is also diminished.
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Figure 3.10 Comparison of predicted and measured turbulent kinetic energy (half wake

only) downstream of a porous disk with thrust coefficient of CT = 0.56 (top) and

CT = 0.73 (bottom) at 12% turbulence intensity
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Figure 3.12 Normalized convection (C), diffusion (D) and production (P) terms of the ε
transport equation downstream of the disk at 95% radius (CT = 0.73, IU = 12%)

3.5.2 Similitude

The preceding analysis clarifies why all models yield similar predictions and also hints at why

the predictions are so accurate: dependence on the modelling of turbulence production – the

greatest source of uncertainty – is minimal. But these results are still at odds with past studies

carried out at similar velocity and turbulence intensity levels. Plotting the ambient conditions

in a non-dimensional space defined by turbulence intensity and turbulent Reynolds number

serves to provide context. As shown in figure 3.13, the conditions from the cited case studies,

where the k− ε model has been shown to perform poorly, all fall within a fairly narrow range

of Ret . This stems from the fact that turbulence intensity in the atmosphere increases rapidly

as Ret decreases. Considering a neutral atmosphere (with Cμ = 0.033 and the von Karman

constant taken as 0.4), it can be shown that

Iatm =
4.79D
RetH

. (3.24)

For the range of Iatm and D/H generally observed, Ret varies from just 40 to 60, as indicated

by the shaded region.
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The wind tunnel conditions numerically reproduced here are well outside this envelope. More-

over, moving towards higher Ret or lower I has the effect of decreasing the importance of

turbulence modelling. These observations suggest that in addition to maintaining the afore-

mentioned dimensionless parameters, another parameter representing the turbulence dissipa-

tion should be considered in the design of wind tunnel experiments for the study of wind

turbine wake flow. Considering the adimensional form of the RANS equations wherein the

eddy-viscosity assumption has been used to model the Reynolds stresses, Ret is particularly

relevant.
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Figure 3.13 Comparison of ambient turbulent flow conditions for various wake studies

3.6 Closing remarks

Turbulent flow through an actuator disk has been simulated and compared with wind tunnel

measurements of flow through a porous disk in an effort to evaluate the ability of various two-

equation RANS closures to simulate the wake of a wind turbine.

Regarding the numerical representation of wind tunnel conditions, the assumption of axisym-

metric conditions for the simulations appears quite reasonable. Furthermore, the quality of

agreement with measurements both inside and outside the wake validates the methods by which

the thrust coefficient, freestream wind speed and turbulence dissipation have been estimated.
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Although some discrepancy between modelled and measured conditions is noted, the distri-

butions of velocity and turbulent kinetic energy in the wake are generally very well predicted.

While asymmetry in the measurements explains some of the observed differences, the results at

2D suggest that the numerical approach may be too diffusive. This, however, does not appear

to adversely affect far-wake predictions.

Significantly, the results are nearly independent of the turbulence closure as the turbulence

production term seems to play a relatively minor role. Although the wind tunnel observations

have been demonstrated to be Reynolds number independent, they are not necessary represen-

tative of full-scale atmospheric conditions despite the fact that the turbulence intensity level

is maintained. Specifically, dissipation seems too high. To improve similarity between full-

scale and wind-tunnel experiments, at least for the purposes of turbulence model validation,

it is suggested to maintain non-dimensional parameters quantifying both turbulent kinetic en-

ergy and its dissipation rate. Turbulence intensity and the turbulent Reynolds number are good

candidates.

To address the need for representative conditions and to provide a more challenging test of

these closures, the present analysis is currently being repeated based on wake measurements

behind a single and multiple porous disks in a modelled atmospheric boundary layer.





CONCLUSION

The objective of this research has been to tackle some fundamental issues related to RANS/k−
ε modelling of flows for wind energy assessment purposes. To that end, modest, but con-

ceptually significant, contributions have been made towards the simulation of the atmospheric

surface layer. Notably, it has been demonstrated that lingering anomalies in the near-wall dis-

tributions of flow properties for such simulations are directly related to linearity assumptions

in the finite-volume discretization of the governing equations. Furthermore, an extended wall

treatment wherein corrected discretization schemes are applied only in the first two near-wall

cells has been shown to limit the error in turbulent kinetic energy (the most difficult case) to

less than one percent for the range of conditions likely to arise in a typical wind energy (or

wind engineering) simulation.

With respect to physical modelling of the neutral and stable surface layer, a general transport

equation for the turbulence dissipation rate and a consistent set of boundary conditions have

been derived which, taken together, will exactly reproduce profiles of velocity, potential tem-

perature, and turbulence properties corresponding to a desired mixing length expression. If the

typical form based on the harmonic mean between the Prandtl mixing length and some estab-

lished maximum is selected, a single exact formulation of the k−ε model results equally appli-

cable to neutral and stable conditions. As a consequence of this last incarnation of the ε equa-

tion, a new expression for the historically enigmatic Cε3 closure coefficient has been derived

which is unique, but largely in agreement, with other recently proposed stability-dependent

expressions.

Additionally, these two contributions are likely to find useful application in the simulation

of both atmospheric boundary-layer flows, where Coriolis effects and pressure gradients are

important parameters, and flows over complex terrain. The proposed wall treatment can be

generalized in terms of a local wall-normal co-ordinate to permit greater first-cell heights while

minimizing the introduction of discretization errors. The proposed ε transport equation is, of

course, applicable to arbitrarily complex flows. Any improvements that these proposals may

bring to such cases remain to be quantified.
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As regards the modelling of wind turbine wakes, a new closure has been proposed wherein the

source terms in the turbulence transport equations are dropped in a discrete volume around the

actuator disk to avoid the rapid increase in eddy viscosity otherwise observed in this region.

Subsequently, the predictions of several two-equation closures for the mean flow properties in

the far wake of a porous disk have been compared with detailed wind tunnel measurements.

In general, all models are found to perform exceedingly well with the distributions of velocity

and turbulent kinetic energy nearly coinciding with observations. The surprising accuracy and

apparent independence of the results with respect to the closure appears to be due to the rela-

tive insignificance of turbulence production in these experiments. To improve similarity with

full-scale conditions, it is suggested that wind tunnel conditions mimic not only the observed

turbulence intensity but the turbulent Reynolds number as well.

With an eye to the ultimate goals of improving wind resource assessment and reducing uncer-

tainty in energy yield calculations, two additional case studies have been carried out and are

included as annexes. In the first study, wind speed and turbulent kinetic energy predictions

of several two-equation turbulence closures for neutrally stratified flow over a small isolated

island are compared with measurements. As these simulations have been completed “blindly”,

i.e. based solely on a specified inflow and topographic information, the error analysis is espe-

cially pertinent and yields an unbiased measure of accuracy. It is found that, outside of the

wake region, RANS modelling generally provides good estimates of wind speed-up factors but

fails to attain the same level of accuracy for turbulence predictions. In the second study, the

flow through a medium-sized wind farm situated on a plateau has been simulated using both the

k−ε and RNG turbulence models. In light of some of the limitations of two-equation closures,

simulations have also been carried out using a stress transport model to investigate possible ad-

vantages of a higher-order scheme. In addition, two actuator disk implementations have been

considered, their primary difference being the method by which the rotor thrust is determined.

While power predictions tend to lie within one standard deviation of observations it is interest-

ing to note that no single combination of actuator disk model and turbulence closure is found

to be significantly more accurate than the rest. Although the stress transport model appears to
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have some advantage over its two-equation counterparts, the additional computational cost is

quite high.

To close, while tangible improvements in the RANS modelling of wind-energy-related flows

have been demonstrated in this dissertation – particularly with respect to atmospheric flows –

it must be acknowledged that this work barely scratches the surface in the larger context. To

reach the greater objectives of improved wind resource assessment and turbine micro-siting, a

litany of issues remain to be addressed from the accurate extrapolation of turbulence intensity,

to the quantification of limitations on the RANS framework itself. Nonetheless, it is hoped that

by considering such fundamental cases as those presented here, this work will serve to solidify

the foundation upon which future developments might be based.
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Foreword

Although the studies considered within the body of the dissertation focus on simple geome-

tries, the goal has been nonetheless to contribute to the development of modelling techniques

applicable to the most difficult wind resource and wind energy assessments: those for which

empirical and simplified approaches typically struggle. In this annex and the next, attempts are

made to advance RANS modelling of such cases in a more direct way.

The following article is a collaborative effort between several participants of the Bolund blind

comparison; an exercise that involved simulating neutrally stratified flow over a small coastal

island (Bechmann et al., 2011). Here, the predictions of five distinct RANS implementations

are summarized and a comparison with measurements reveals some of the strengths and weak-

nesses of RANS/two-equation modelling of atmospheric flows over variable terrain.
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Abstract

In the Bolund blind comparison of flow models organized by Risø DTU, modelers were invited

to predict the wind speed and turbulent kinetic energy over a low coastal island of moderate

complexity given only the topographic description of the site and upstream conditions. A de-

tailed overview of five RANS-based models which participated in this exercise, as well as their

respective predictions for four wind directions, are given herein. Comparisons with available

measurements suggest that models based on RANS/two-equation closure can provide reason-

ably good estimates of the speed-up factor, especially outside the wake region. Despite some

differences in model formulation, the agreement between models is impressive and the differ-

ences in overall mean error for speed-up factor at 5 m agl (neglecting the wake) is quite small.

The results for predicted turbulence are somewhat less encouraging; the model results are less

consistent and the error with respect to measurements generally greater. By far, the best re-

solved case corresponds to an easterly wind where the slope on the windward side of the hill

is less steep. For this case, the average error in speed-up factor is less than 3% for all models.

While this result is encouraging, further research is clearly needed to improve agreement with

measurements and meet the long-term objectives set by the European Wind Energy Technology

Platform of 3% uncertainty in predicted lifetime energy production and turbine loading.

1 Introduction

Wind energy is one of the fastest growing energy sectors worldwide, consistently producing

annual double-digit increases in installed capacity (Pullen and Sawyer, eds., 2010). However,

although the resource itself is inexhaustable, the infrastructure requirements for a wind energy

project are non-negligible; that is to say, large-scale wind farms require a considerable amount

of space and past developments have occupied most ‘ideal’ sites. The continued high de-

mand for energy from renewable sources (of which on-shore wind energy is, at least currently,

the most economically competitive (IEA, 2010b)) coupled with the scarcity of relatively flat,

windy, terrestrial sites has naturally led to a surge in developments both offshore and in com-

plex terrain.
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Each setting presents unique challenges for wind park modelling and resource assessment.

In the case of offshore wind farms, accurate determination of wake effects is likely the most

important modelling task and considerable efforts are being made to develop advanced wind

farm wake models (see e.g. Crespo et al. (1999); Vermeer et al. (2003); Sanderse et al. (2011);

Barthelmie et al. (2011)). For wind farms located in complex terrain, prediction of topographic

effects is probably more important than wake effects (although these too can have an important

impact on the production), especially where flow separation may be present, which is famously

difficult to properly resolve.

Despite the challenges, the ability to accurately evaluate mean turbulent flow properties (i.e.

mean wind speed, turbulence intensity, and inclination) is essential to the success of wind

power projects. As such, decreasing modelling uncertainties has been formally recognized as

an important research goal and is explicitly included as part of the European Wind Energy

Technology Platform objectives (TPWind, 2008). Among other things, this manifesto sets the

ambitious long-term objective of obtaining 3% uncertainty in lifetime energy production and

external loading predictions, regardless of site conditions. Certainly, this level of uncertainty is

only attainable with advanced modelling approaches, be they physical (e.g. wind tunnel, water

flume, etc.) or high-order numerical ones (e.g. RANS, DES, LES, etc.).

The most popular dataset available for the purposes of validating numerical wind flow models

in complex terrain is based on the Askervein experiment, which was carried out in 1982–83

(Taylor and Teunissen, 1987; Mickle et al., 1988). Although several similar measurement cam-

paigns were performed around this time (e.g. Bradley (1980); Jenkins et al. (1981); Mason and

King (1985); Salmon et al. (1988); Emeis et al. (1993)), the Askervein case remains something

of a benchmark and has been extensively used by the wind energy and meteorological com-

munity for the purposes of validating both RANS and LES models (Raithby et al., 1987; Kim

and Patel, 2000; Castro et al., 2003; Eidsvik, 2005; Undheim et al., 2006; Prospathopoulos

and Voutsinas, 2006; Silva Lopes et al., 2007; Laporte, 2008; Chow and Street, 2009; Bech-

mann and Sørensen, 2010). State-of-the-art for its time, the Askervein experiment has certainly

advanced flow modelling over the last few decades. However, measurement techniques have
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since greatly improved (with, for example, the advent of high-frequency sonic anemometers)

as has as the need for more detailed validation datasets.

With this in mind, the Bolund experiment was undertaken by Risø DTU in 2007–08 where the

flow over a low coastal island was extensively measured. For the purposes of model validation,

the Bolund experiment has many advantages: neutral atmospheric stability, negligible Coriolis

effects, a fully developed inflow, and it was heavily instrumented. The blind comparison of

flow models based on this dataset (Bechmann et al., 2011) has provided an estimate of the

current uncertainty for a range of flow modelling techniques.

The aim of the present work is to demonstrate the state-of-the-art in RANS/two-equation clo-

sure for the purposes of wind energy resource assessment over (moderately) complex terrain.

Herein, five RANS-based models that participated in the blind comparison and performed well

are presented along with their respective predictions1. All models are based on a RANS for-

mulation with two-equation turbulence closure. In principle, the boundary conditions are all

quite similar, but in practice implementations vary between softwares. Domain extents, grid

generation techniques and numerics are all unique.

The following section provides a very brief overview of the Bolund experiment and blind com-

parison. An outline of the RANS approach and its closure, followed by a detailed look at each

of the five models (from ÉTS, CENER, Vattenfall, Risø DTU and CRES) is given in section

3. Calculated horizontal and vertical distributions of speed-up factor and added turbulence are

presented in section 5 for four wind directions and compared with measurements. Although

it is difficult to directly compare the various models due to differences in domain size and

discretization, some general conclusions are offered in section 5.

1Some of the results have been revised with respect to the original submissions to reflect software improve-

ments and to ensure full second-order accuracy and iterative convergence.
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2 The Bolund blind comparison

The Bolund experiment measured the flow over a 12-m high coastal island during a 3-month

period from 2007 to 2008. Ten masts were distributed over two axes corresponding to wind di-

rections of 270 (or 90) and 239 degrees; most measurements are taken with sonic anemometers

(for full details regarding the experiment set-up see Berg et al. (2011)). The dataset has been

filtered for neutral stability and, given the low heights, Coriolis effects are negligible. Further-

more, the approach flow is well developed as uniform conditions are present for a significant

upstream distance (for westerly winds).

The Bolund blind comparison was based on the dataset resulting from the Bolund experiment.

In this exercise, flow modelers were invited to provide predictions of wind velocity and turbu-

lence properties at 600 discrete points for four wind directions (corresponding to 270, 255, 239

and 90 degrees) based solely on the topographic description of the site and upstream observa-

tions (for full details regarding the blind comparison see Bechmann et al. (2011)). Risø DTU

suggested inflow conditions derived by fitting reference measurements to surface layer similar-

ity theory:

s(z) =
u�0

κ
ln

(
z− zg

z0

)
, (A I-1)

k(z) = 5.8u2
�0 (A I-2)

where s is the mean wind speed, k is the turbulent kinetic energy and the von Karman constant,

κ , is taken as 0.40. The ground height, zg, is assumed to be 0.75 m. The reference friction

velocity, u�0, and roughness length, z0, depend on the wind direction (see table I-1). Models

based on k− ε closure could then specify the dissipation rate using

ε(z) =
u3
�0

κ(z− zg)
(A I-3)
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Figure-A I-1 Overview of Bolund and tower installations

Table-A I-1 Reference flow properties for different flow directions

Case Direction [deg] z0 [m] u�0 [m/s]

1 270 0.0003 0.40

2 255 0.0003 0.40

3 239 0.0003 0.40

4 90 0.015 0.50

whereas for k−ω closure the analytical turbulent length scale is based on

ω(z) = 5.8
u�0

(z− zg)
. (A I-4)

Modelers were at liberty to define the other boundary conditions. For the simulations presented

herein, the equilibrium inflow profiles are also used to define conditions at the upper boundary.

Generally, all models assume a fully developed condition (i.e. zero gradient in flow proper-

ties normal to the boundary) at the outlet. For non-polar (i.e. Cartesian) domains, the lateral

boundaries are either treated using symmetry (ÉTS) or zero-gradient (CRES) conditions.

3 Mathematical models

All models are based on a finite-volume solution of the Reynolds-Averaged Navier-Stokes

(RANS) equations with two-equation turbulence closure. Conservation of mass and momen-
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tum can be expressed in differential form as

∇ ·�U = 0, (A I-5)

∂�U
∂ t

+∇ ·�U�U =− 1

ρ
∇p+∇ ·τ ′+�f (A I-6)

where �U represents the mean velocity vector (s = ‖�U‖), p is the mean pressure and ρ is the

fluid density (Pope, 2000). �f represents a body force (e.g. Coriolis, buoyancy, etc.) which are

neglected here. τ ′ is the kinematic Reynolds stress tensor; it appears as part of the averag-

ing process and represents the effect of turbulent transport of momentum, which is generally

assumed to dominate viscous terms.

To close the equations, the eddy-viscosity concept is used to relate turbulent shearing stresses,

τ ′, to the mean strain rate, S:

τ ′ = 2νtS (A I-7)

where νt must be modeled. In general, the turbulent viscosity is derived from the transport of

two turbulent quantities: the turbulent kinetic energy and some length-scale governing equation

(here either the dissipation rate, ε , or the specific dissipation, ω). The turbulence transport is

modeled with either (Jones and Launder, 1972; Wilcox, 1998)

dk
dt

+∇ · k�U = ∇ ·
(

νt

σk
∇k
)
+Pk − ε (A I-8)

dk
dt

+∇ · k�U = ∇ · (σ�νt∇k)+Pk −β�kω (A I-9)

and one of the following

dε
dt

+∇ · ε�U = ∇ ·
(

νt

σε
∇ε
)
+Cε1Pk

ε
k
−Cε2

ε2

k
(A I-10)

dω
dt

+∇ ·ω�U = ∇ · (σνt∇ω)+αPk
ω
k
−βω2 (A I-11)
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Table-A I-2 Turbulence model closure coefficients

A B C D E

ÉTS CENER Vattenfall Risø DTU CRES

OpenFOAM Fluent OpenFOAM EllipSys3D In-house

RNG k− ε k− ε k− ε k− ε k−ω
κ 0.40 0.4187 0.4187 0.40 0.40

Cμ or β� 0.0297 0.0297 0.033 0.03 0.033

Cε1 0.403 1.138 1.21 1.21 -

Cε2 1.68 1.92 1.92 1.92 -

σk 1.00 1.00 1.00 1.00 -

σε 1.30 1.30 1.30 1.30 -

η0 4.38 - - - -

β 0.012 - - - 0.0275

α - - - - 0.3706

σ - - - - 0.5

σ� - - - - 0.5

where the turbulence production rate is calculated using

Pk = 2νtS : S (A I-12)

and the turbulent viscosity is modeled with

νt =Cμ
k2

ε
=

k
ω
. (A I-13)

A summary of model coefficients is provided in table I-2.

The numerical and spatial discretization of these equations is unique to each model, as is the

treatment of the rough wall. The salient features of the five models are thus summarized below.

3.1 Model A: ÉTS surface layer model in OpenFOAM 1.6 (ID0053)

Grid generation

A simple in-house code was prepared to generate the grid by a three-step process. First, the na-

tive surfer files describing the orography and surface roughness were coarsened (to dimensions

of 0.5 m in the flow direction and 2 m in the cross-flow direction) and rotated to be aligned with



107

P

W

�UP‖�UP⊥

n̂

zg + z0

zg

Figure-A I-2 Schematic of near-ground cell

the mean flow direction. Second, the surface grid was horizontally extrapolated to increase the

size of the domain. Lastly, the surface grid was projected vertically. This method resulted in

excess cells in some areas and some highly skewed cells on the cliff face (see figure I-3a). De-

spite some non-orthogonality and skewness, the meshes pass OpenFOAM grid quality tests2.

Mesh properties are summarized in table I-3.

Turbulence modelling

The RNG k − ε model (Yakhot and Orszag, 1986; Yakhot and Smith, 1992) was used with

constants modified for the atmospheric boundary layer (El Kasmi and Masson, 2010).

Wall treatment

Figure I-2 shows an arbitrary cell adjacent to the ground. Here, a kinematic shear stress of

τ ′w = u0u�w was applied based on local conditions:

u0 =C1/4
μ k1/2, (A I-14)

u�w ≈ κUP‖

ln

(
n⊥+ z0

z0

) , (A I-15)

n⊥ = (�rP −�rW ) · n̂ (A I-16)

2The standard OpenFOAM utility checkMesh was used to evaluate mesh quality.
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where�r is the position vector. The shear stress was imposed by modifying the wall viscosity

using

νtw =
κu0n⊥

ln

(
n⊥+ z0

z0

) . (A I-17)

The source terms in the k transport equation are set using:

Pk =
u0u2

�w
2κn⊥

ln

(
2n⊥+ z0

z0

)
, (A I-18)

ε =
u2

0u�w

2κn⊥
ln

(
2n⊥+ z0

z0

)
(A I-19)

while the value of ε at the centre of the wall-adjacent cell is prescribed as

εP =
u2

0u�w

κ(n⊥+ z0)
. (A I-20)

Numerics

Convection terms are discretized using second-order linear upwinding while other terms are

approximated using central differencing. The SIMPLE method of Patankar (1980) (as imple-

mented in simpleFoam (OpenCFD, 2009b)) is used to solve the coupled system of equations.

To reduce computing times, the domain is subdivided contiguously for parallel solution. In ad-

dition, a geometric-algebraic multigrid solver is used for the pressure equation. The solution is

considered converged when further iteration fails to produce decreases in normalized equation

residuals.

3.2 Model B: CENER surface layer model in FLUENT 12 (ID0036)

Grid generation

The computational domain consists of a structured cartesian grid with terrain-following coordi-

nates generated through ANSYS ICEM CFD Hexa. A NURBS surface is first created from the
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contour lines and then a block topology containing the grid nodes is generated and projected

over the surface. For the Bolund simulation, total extents of 1260 m (E-W direction), 1170 m

(N-S direction) and 100 m in the vertical direction are considered. Horizontal resolution at the

position of the hill is equal to 0.8 m in both directions, decreasing towards the external corners

of the grid. The near-wall cell height is 0.30 m. This distribution results in a final domain of

approximately 3 million cells.

Turbulence modelling

The standard k − ε turbulence model was used with coefficients calibrated for surface layer

flows (Alinot and Masson, 2005; Sanz Rodrigo et al., 2008).

Wall treatment

The ground is simulated as a wall through the adaptation of the standard wall functions, by

establishing a link between the turbulent law-of-the-wall modified for sand-grain roughness

and the surface boundary layer log-law based on the roughness length following the method

proposed by Blocken et al. (2007).

Numerics

A second-order upwind scheme based on a multi-linear reconstruction approach is used for all

dependent variables (Barth and Jespersen, 1989).

3.3 Model C: Vattenfall surface layer model in OpenFOAM 1.5 (ID0016)

Grid generation

The domain is discretized using a nine-block structured grid with hexahedral cells, generated

with ANSYS ICEM CFD Hexa. The domain shape is cylindrical with a radius of 400 m and a

height of 200 m. The fluid domain was rotated for each of the four cases, in order to align the
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inner block mesh with the flow direction. The near-wall cell height was 0.30 m, and the total

number of cells was approximately 3 million.

Turbulence modelling

The standard k−ε model was used with constants modified for the atmospheric boundary layer

(Panofsky and Dutton, 1984).

Wall treatment

Standard wall functions modified to account for surface roughness were used, as described by

Blocken et al. (2007) and Cebeci and Bradshaw (1977).

Numerics

The convection terms were discretized using a second order upwind scheme. For pressure and

diffusion terms, second-order central differencing was used.

3.4 Model D: Risø EllipSys3D (ID0000)

Grid generation

Since the EllipSys3D code uses terrain-following coordinates it is possible for the lower bound-

ary of the computational mesh to follow the topography. To generate the computational grid,

a surface grid is first constructed using an in-house 2D surface grid generator and then the

volume grid is generated using the enhanced hyperbolic grid generator HypGrid3D (Sørensen,

1998). As shown in figure I-3d, using a true surface projection when generating the surface

grid allows good resolution in areas of steep terrain and avoids highly skewed cells on the cliff

face of Bolund.

For the present simulations, a polar computational domain is chosen, which was used for all

wind directions. The domain has a radius of 5500m and a height of 1100m. The height of the
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near-wall grid cells is less than 0.01 m and the horizontal resolution near Bolund is about 1 m.

Roughly 13 million grid cells are used to discretize the domain (grid level 1). To assure that

the flow is sufficiently resolved, simulation results have been compared on coarser grid levels.

The coarse grid levels are constructed by removing every second grid point in all directions.

The grid convergence study showed that grid level 3 (� 0.2 mill. cells) and grid level 2 (� 1.6

mill cells) gave near identical results to grid level 1.

Turbulence modelling

The turbulence in the boundary layer is modeled by the k− ε eddy viscosity model (Launder

and Spalding, 1974). The originally proposed model constants were established for industrial

flows (with hydraulically smooth walls), while slightly different values have been proposed for

atmospheric flows over rough surfaces (e.g. Panofsky and Dutton (1984); Zeman and Jensen

(1987); Raithby et al. (1987); Sogachev and Panferov (2006)). The set presented in table I-2

has been calibrated for neutrally stratified atmospheric flows.

Wall treatment

The logarithmic equilibrium assumptions result in the treatment of the velocities and turbulent

quantities at the walls (see Sørensen (1995); Sørensen et al. (2007); Hackman (1982) for de-

tails). The boundary conditions for the velocities are implemented through the skin friction

at the wall. In the EllipSys3D implementation, the first cell is placed on top of the roughness

elements, as in figure I-2. The advantages of this procedure is that there are no restrictions on

the minimum height of the first cell, which in case of large shifts in roughness height from sea

to shore may otherwise pose unwanted restrictions on the computational grid. The skin friction

is evaluated at the wall-adjacent cell centre, where the variables are stored, as τw = ρu0u�w.

The boundary condition for the turbulent kinetic energy equation reduces to a balance between

the production (Pk) and dissipation (ε) of the quantity itself. In the code, this is implemented

with a von Neumann condition on the turbulent kinetic energy, and by replacing the produc-

tion and dissipation terms in the first cell using equations A I-18 and A I-21, respectively.
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The equation for the dissipation of turbulent kinetic energy is abandoned in the wall-adjacent

cell; instead the dissipation is specified according to the balance between the production and

dissipation obtained for a fully developed flow,

ε =
u3

0

κ (n⊥+ z0)
. (A I-21)

Numerics

The flow solver EllipSys3D was used for all computations. This code has been developed

in co-operation between the Department of Mechanical Engineering at the Technical Univer-

sity of Denmark (DTU) and Risø DTU (see Michelsen (1994, 1992); Sørensen (1995)). It

is a multi-block, finite-volume discretization of the incompressible Navier-Stokes (NS) equa-

tions in general curvilinear coordinates. The code uses a co-located variable arrangement, and

Rhie/Chow interpolation (Rhie, 1981) to avoid odd/even pressure decoupling. As the code

solves the incompressible flow equations, no equation of state exists for the pressure, and in

the present work the SIMPLE algorithm of Patankar and Spalding (1972) is used to enforce

the pressure/velocity coupling. The EllipSys3D code is parallelized with MPI for execution on

distributed memory machines, using a non-overlapping domain decomposition technique.

In order to accelerate the overall algorithm, a multi-level grid sequence is used in steady-

state computations. The convective terms are discretized using a third-order QUICK upwind

scheme, implemented using the deferred correction approach first suggested by Khosla and

Rubin (1974). Central differences are used for the remaining terms. The three momentum

equations are solved decoupled using a red/black Gauss-Seidel point solver and the solution of

the Poisson system arising from the pressure correction equation is accelerated using a multi-

grid method.
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3.5 Model E: CRES surface layer model (ID0017)

Grid generation

The grid was generated using a straightforward in-house procedure. First, a surface grid was

obtained from the provided terrain data (without interpolation) by simply keeping one of every

four grid points; this resulted in an equidistant mesh in the xy-plane with a grid spacing of 1

m. This discretization covered the entire Bolund hill ranging from -98 to +192 m in the x-

direction and from -132 to +118 m in the y-direction. The surface grid was extended outside

this region by means of a geometrical progression using ratios of 1.35 and 1.25 in the x and y

directions, respectively. The final range of the x and y coordinates was (-400, 400) and (-210,

210), respectively, using 320×271 grid points.

In order to generate the 3D mesh, the surface grid is stacked in the normal direction by setting

the distance of the first grid point from the ground to 0.15 m and using a geometrical progres-

sion of 1.18. The height of the computational domain was set to 1000 m and 45 grid points

were distributed in the vertical direction. However, in the case of the Bolund hill, the very

steep slopes, especially in the escarpment region, resulted in highly skewed cells, which could

reduce the accuracy of predictions. To compensate, the grid in the xz-plane was made quasi-

orthogonal using an elliptic grid generator, that incorporates appropriate source terms which

control the distribution of grid lines, and applies an orthogonality assumption at the ground

boundary (see figure I-3e). In the resulting mesh, the minimum distance from the ground re-

mained very close to 0.15 m. A comparison of these two grid generation techniques showed

that the steep velocity gradients at regions of high flow acceleration are better predicted using

the latter scheme.

Turbulence modelling

The Wilcox k−ω turbulence model (Wilcox, 1998), suitably modified for atmospheric flows,

was used for turbulence closure. The modified coefficients were established using the boundary

condition for k at the wall k = u2∗/
√

β∗ and the fact that u∗/k has been measured between 0.17
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and 0.18 for a neutral atmosphere. By retaining the turbulence decay ratio value of 1.2 observed

by Townsend (1976), the model coefficients can be calibrated and are listed in table I-2.

Boundary conditions

Wall functions were used close to the ground by demanding that the logarithmic velocity profile

was maintained at the first grid point above ground. For k and ω , the surface conditions were

such that the inflow profiles defined by similarity theory were conserved.

Numerics

The incompressible RANS equations were numerically integrated by means of an implicit

pressure correction scheme. A matrix-free algorithm for pressure updating was introduced,

which maintained the compatibility of the velocity and pressure field corrections, allowing for

practically unlimited large time steps within the time integration process. The basic idea of

this method is that there is no need to approximate the pressure correction operator in order to

obtain an analytical expression for it; instead the pressure correction equation can be solved

using a conjugate gradient solver where the complete term computation is only requested.

Since the pressure correction operator is, in general, non-symmetric the restarting GMRES

conjugate gradient method was preferred among others because of its smooth convergence

behavior. For steady flow (non-time-accurate) computations, as those performed here, the

governing equations are not fully converged at each time level. One internal iteration per time

step, with a selected dimension of the Krylov subspace of the order 10, is usually enough for

final convergence. For the Bolund simulation cases, a time step equal to 0.05 was appropriate

to achieve a convergence of more than 4 orders of magnitude after 8000 time steps.

The velocity vector was normalized by a reference value U∞ and the pressure (or rather the

pressure divided by the density) term by U2
∞, where U∞ was considered to be the freestream

velocity, obtained from the logarithmic law of the input wind speed profile for a height of 1000

m agl. Distances were normalized by the maximum height of the Bolund hill (≈ 12 m), taken

as its characteristic length.
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Table-A I-3 Grid and domain properties

A B C D E

ÉTS CENER Vattenfall Risø DTU CRES

OpenFOAM Fluent OpenFOAM EllipSys3D In-house

Upstream extension (m) 400 480 400 5500 300

Downstream extension (m) 300 490 400 5500 200

Lateral extensions (m) 200 460 400 5500 100

Domain height (m) 120 100 200 1100 1000

Grid type Structured Block structured Block structured Block structured Structured

Grid generation In-house ICEM CFD Hexa ICEM CFD Hexa In-house In-house

Cell type Hexahedral Hexahedral Hexahedral Hexahedral Hexahedral

Total cell count 7.56×106 3.05×106 3.1×106 13×106 4×106

Near-wall cell height (m) < 0.10 0.30 0.30 0.01 0.15

Spatial discretization was performed on a computational domain, resulting from a body-fitted

coordinate transformation, using finite-difference/finite-volume techniques. The convection

terms in the momentum equations were handled by a second-order upwind scheme bounded

through a limiter, while the diffusion terms were discretized using centered second-order schemes.

According to a staggering technique, the Cartesian velocity components were stored at grid-

nodes, while pressure was computed at mid-cells, thus allowing for pressure field computation

without any explicit need of pressure boundary conditions. The velocity-pressure decoupling

was prevented through a linear fourth-order dissipation term added to the continuity equation.

The turbulence transport equations were linearized and discretized in time following a proce-

dure similar to that of the velocity equations. The two equations were handled in an implicit,

but decoupled, way (Prospathopoulos et al., 2011).

4 Results

Results are non-dimensionalized and presented in terms of speed-up factor and added turbu-

lence. The speed-up factor is defined as

ΔS =
s(x,y,z)− s(x0,y0,z)

s(x0,y0,z)
(A I-22)

while the added turbulence is given by

Δk =
k(x,y,z)− k(x0,y0,z)

s(x0,y0,z)2
(A I-23)
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(a) ÉTS

(b) CENER (c) Vattenfall

(d) Risø DTU (e) CRES

Figure-A I-3 Discretization at western cliff face: Projection of case 1 meshes onto line

(plane) B near mast 7.

and the subscript 0 refers to a reference quantity (for brevity, s(x0,y0,z) will be simply denoted

as s0).

Experimental speed-up factors are calculated using a reference logarithmic velocity profile

based on the measurement of the 5-m sonic anemometer at the reference mast. The 5-m wind

speed measurement is extrapolated to the desired height using

s(z)
u�0

=
s0(zsonic)

u�0
+

1

κ
ln

(
z

zsonic

)
. (A I-24)
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The reference turbulence level is assumed constant with height and thus not corrected. In the

following sections, the normalized predictions of all models are compared with measurements

(i.e. normalized mean value ± one standard deviation) along principal axes roughly parallel to

the inflow as well as at selected masts along these same axes.

4.1 Case 1 – 270 degrees

Case 1 corresponds to a westerly wind with the hill strongly resembling a forward-facing step

geometry. The predicted and measured axial distributions of speed-up factor and added turbu-

lence are shown in figure I-4; the simulations have been normalized using the predicted wind

speed at (-208 m, 0 m) for axial distributions and (-180.8 m, -103.3 m) for vertical distributions.

All measurements are normalized using M0.

Considering first the wind speed at 5 m (all heights are with respect to ground level), all model

predictions are in fairly close agreement with measurements. The speed-up over the cliff (near

M6) and wake recovery are clearly the most difficult aspects of the flow to accurately predict.

The situation is much the same at 2 m, except for a larger spread in the model predictions over

the hill with the ÉTS model predicting lower wind speeds. There is somewhat less consensus

when turbulence is considered. The large peak in k at 2 m is underestimated, while at 5 m

turbulence over the hill is grossly overestimated.

Figure I-5 presents vertical distributions of speed-up factor at masts 3, 6, 7 and 8 as well as

added turbulence at masts 6 and 8. Agreement with measurements is very good at masts 7 and

8, while the models do a reasonable job of reproducing the flow acceleration and increase in

turbulent kinetic energy over the hill at mast 6. There is some disagreement between models at

mast 3 where, as seen in the axial distribution, the ÉTS model recovers more slowly.

4.2 Case 2 – 255 degrees

For this wind direction, the shape of the hill more closely resembles a forward-backward facing

step configuration. Considering masts along line A, figure I-6 present vertical distributions of
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Figure-A I-4 Case 1 – Axial distribution of speed-up factor and added turbulence at 2

and 5 m agl along line B for wind direction of 270◦

speed-up factor and added turbulence where all results are normalized using the wind speed at

M0. Again, the models accurately predict the slow down in front of the cliff face (at M1) and

seem to pass an average line through the measurements at the mast located at the cliff edge

(M2). The predictions neatly bound the observations at mast 3 with no model predicting both

the 2-m and 5-m speed-up. With the backface being slightly steeper, a stronger recirculation

zone is present, which is not as well resolved as the flow at mast 8 for case 1.
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Figure-A I-5 Case 1 – Vertical distribution of speed-up factor at masts 3, 6, 7 and 8 and

added turbulence at masts 6 and 8 for wind direction of 270◦
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4.3 Case 3 – 239 degrees

For this case, the incident wind direction is parallel to line A and the hill geometry is similar

to case 2. Distributions of speed-up factor and added turbulence along this axis are presented

in figure I-7 where the simulations are normalized using the wind speed at (-178.3 m, -107.1

m) for axial distributions and (-180.8 m, -103.3 m) for vertical distributions. As previously, all

measurements are normalized using M0.

The concurrence of model results for this case is certainly encouraging as is the generally good

agreement with measurements. The 5-m speed-up at mast 3 clearly overestimated; in fact, the

models generally overpredict the velocity at mast 3, as seen in figure I-8. The only significant

difference in predicted speed-up factors is at 2 m, just behind the cliff face (at M2), where

the ÉTS model again predicts slightly lower wind speeds which, in this case, are supported by

measurements.

As for the previous cases, the peak in turbulent kinetic energy at the upstream cliff at 2 m is

underestimated while the peak predicted by all models at 5 m is not present in the data.

4.4 Case 4 – 90 degrees

For case 4, the flow approaches from the shore and there are two changes in surface roughness,

as opposed to one. Also, the hill geometry on the windward side is much smoother for this

configuration. This is reflected in the measured speed-up factor which shows less variation

over the hill than the previous cases, as shown in figures I-9 and I-10. Here, the wind speed and

turbulent kinetic energy have been normalized using the simulated wind speed at (329.0 m, 0

m) for axial distributions while vertical distributions use (327.3 m, -39.3 m). All measurements

are normalized using M9.

Given this, perhaps the excellent agreement between models and measurements is unsurprising.

Outside of the wake region, there are only negligible differences in predicted speed-up factor

and agreement with measurements is excellent. The differences between models in the wake
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Figure-A I-6 Case 2 – Vertical distribution of speed-up factor at masts 1, 2, 3 and 4 and

added turbulence at masts 2 and 3 for wind direction of 255◦
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Figure-A I-7 Case 3 – Axial distribution of speed-up factor and added turbulence at 2

and 5 m agl along line A for wind direction of 239◦

is, however, much greater than for the westerly cases. The largest discrepancies are for added

turbulence where measurements suggest that over the hill there is none (in fact, a small decrease

is present) but models expect a small increase. The predicted increase is likely unavoidable

given the velocity gradient associated to the change in ground level.
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Figure-A I-8 Case 3 – Vertical distribution of speed-up factor at masts 1, 2, 3, and 4

and added turbulence at masts 2 and 4 for wind direction of 239◦
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Figure-A I-9 Case 4 – Axial distribution of speed-up factor and added turbulence at 2

and 5 m agl along line B for wind direction of 90◦

4.5 Overall results

It is somewhat difficult to attain an objective, non-biased estimate of the accuracy of the models

by comparing field predictions with measurements at a few discrete locations. However, as

proposed in the recently published analysis of the blind comparison results Bechmann et al.

(2011), the accuracy of the numerical predictions at these points can be quantified by the
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Figure-A I-10 Case 4 – Vertical distribution of speed-up factor at masts 3, 6, 7 and 8

and added turbulence at masts 3 and 7 for wind direction of 90◦
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speed-up factor error,

ζΔS =
∣∣ΔSmodel −ΔSexp

∣∣×100 (A I-25)

where the fractional speed-up is given by equation A I-22. For the purposes of calculating

errors, ΔSmodel is linearly interpolated so as to coincide with measurements. Given the some-

times large discrepancies between cup and sonic anemometer measurements, only sonic data

are used in the error analysis. Table I-4 summarizes the mean errors in predicted speed-up

factor over all masts for all models and all cases at 2 and 5 m. Also included is the mean error

at 5 m if masts located in the hill wake are neglected (i.e. masts 4, 5, 8 and 9 for cases 1–3 and

masts 0, 1 and 7 for case 4).

Considering the ensemble, no model clearly stands out from the rest in terms of predictive

capability. Ignoring the wake, the difference between the maximum and minimum errors for

each case varies marginally between 0.4 and 2.1% at 5 m. Given the model similarities, this is

perhaps to be expected and in some way reflects the maturity RANS/two-equation modelling

has achieved in its application to atmospheric flows. The one outlier is case 3 where the lower

near-ground wind speeds over the hill predicted by the ÉTS model result in a markedly lower

error at 2 m. Given that the Risø DTU boundary conditions are nearly identical to those of

ÉTS, the reason for the lower predicted wind speeds must stem from either the use of RNG

closure or the discretization. Subsequent simulations by ÉTS using the k− ε model have also

yielded lower near-ground wind speeds just behind the cliff edge, which suggests discretization

is playing a role and that results may not be grid independent. The lower error should be

considered in this light.

Looking at the results case-by-case at 5 m without the wake, the case 4 configuration is by far

the easiest to reproduce by the methods evaluated here: all models have errors less than 3%,

contrary to the other cases where they are on the order of 5–10%.
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Table-A I-4 Overall mean errors in speed-up factor

A B C D E

ÉTS CENER Vattenfall Risø DTU CRES

OpenFOAM Fluent OpenFOAM EllipSys3D In-house

RNG k− ε k− ε k− ε k− ε k−ω
Case 1 2 m 13.8 13.4 15.9 14.5 11.9

5 m 7.2 7.2 6.7 7.8 8.8

5 m, no wake 6.6 4.5 5.2 5.2 6.2

Case 2 2 m 24.6 26.7 27.0 28.1 26.1

5 m 17.1 16.6 16.8 17.4 16.4

5 m, no wake 6.8 6.4 7.0 6.5 7.2

Case 3 2 m 9.6 22.5 21.2 21.1 20.2

5 m 9.4 9.2 8.9 8.9 9.2

5 m, no wake 9.4 7.6 8.0 7.9 8.1

Case 4 2 m 9.6 8.4 6.1 6.4 7.6

5 m 11.3 8.8 6.0 5.0 6.3

5 m, no wake 2.9 2.7 2.5 2.6 2.5

A similar analysis can be carried out for the turbulent kinetic energy by defining the increase

in turbulence intensity as

ΔI =

√
k−√

k0

s0
. (A I-26)

The error is then normalized against the measured turbulent kinetic energy at the reference

mast divided by the measured and corrected reference velocity, i.e.

ζΔI =

∣∣ΔImodel −ΔIexp
∣∣(√

k0/s0

)
exp

×100. (A I-27)

Table I-5 summarizes the mean errors in predicted added turbulence.

Casual inspection of table I-5 suggests the turbulent kinetic energy is much more difficult to

accurately resolve. The errors are much larger and the differences between models are also

greater. Certainly, the use of the eddy viscosity concept and the imposition of isotropy are

partly to blame; two-equation closure is fundamentally limited in the extent to which it can

reproduce the turbulence structure of the atmospheric boundary layer. However, unlike for

speed-up factor, one model does stand out from the rest. In every instance, the Risø DTU
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Table-A I-5 Overall mean errors in predicted added turbulence

A B C D E

ÉTS CENER Vattenfall Risø DTU CRES

OpenFOAM Fluent OpenFOAM EllipSys3D In-house

RNG k− ε k− ε k− ε k− ε k−ω
Case 1 2 m 46.0 47.5 46.1 44.6 50.2

5 m 24.7 28.3 25.4 23.5 29.0

5 m, no wake 32.5 33.0 26.0 23.6 26.2

Case 2 2 m 42.6 44.5 44.3 37.1 45.1

5 m 33.5 33.5 30.7 28.8 28.4

5 m, no wake 31.9 33.0 25.8 24.9 23.2

Case 3 2 m 29.4 36.8 40.0 32.4 39.7

5 m 18.9 18.7 17.2 15.4 13.2

5 m, no wake 25.8 28.2 21.5 20.0 17.2

Case 4 2 m 13.0 9.6 6.9 5.1 12.5

5 m 9.4 6.0 7.1 6.0 9.1

5 m, no wake 4.1 5.4 5.6 4.5 4.9

model has either the lowest or second lowest error in predicted added turbulence intensity. As

for velocity, the errors for case 4 are by far the smallest.

5 Conclusions

The parameters of the blind comparison were not sufficiently controlled to formulate any best

practice recommendations regarding turbulence modelling, grid generation, boundary condi-

tions, etc. However, that is not to say that some general conclusions cannot be drawn from the

results presented here.

First, it is evident that methods based on RANS/two-equation closure produce consistent results

when applied correctly. Further research on turbulence modelling is clearly needed to improve

agreement with measurements; however, the RANS flow predictions compare well with one

another. This would likely be further improved if grid independency was formally evaluated

by all modelers; the fixed deadline of the blind comparison made this difficult to carry out in

some cases. In formulation, little distinguishes the models and, although this has yet to be

formally verified, it is suspected that the majority of the differences observed in the results are

related to the mesh.



129

Second, the models have greatest difficulty in the wake region. Certainly, two-equation closure

is not ideal for recirculating flows; one might reasonably expect significant improvement with

a second-order closure scheme. In the context of wind resource assessment for wind energy

purposes, this is not so much of a concern for sites like Bolund as turbines would rarely be

sited in topographic wakes or possible separation or recirculation zones in such terrain. How-

ever, these conditions may be unavoidable for more complex sites where accurate prediction

of topographic wake properties then assumes greater importance.

Third, turbulence kinetic energy is generally more difficult to accurately predict than velocity.

For wind resource assessment, the energy content is the most important parameter, but for

siting purposes manufacturers require a more detailed description of the flow to assess turbine

(fatigue) loads.

Lastly, although RANS-based modelling is fundamentally more valid than linearized approaches

when dealing with complex sites, it is not a silver bullet. The Bolund site is only moderately

complex and yet errors in predicted wind speed are still far from meeting the TPWind ob-

jectives. Furthermore, atmospheric stability has been ignored, a possibly important factor for

both offshore and mountainous sites. With these facts in mind, the errors presented here might

be considered lower bounds. Clearly, more research is required to handle even the simplest

complex case if the requirements of TPWind are to be met.

Since Bolund, at least two more wind measurement campaigns have been undertaken by the

community, both more challenging than the Bolund topography. CENER has organized one

based on their experimental complex terrain wind farm Alaiz, while Risø DTU has instru-

mented a very mountainous site in India. It is hoped that the present work will in some way

contribute to even better results of RANS/two-equation models in future blind tests.
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Foreword

In all likelihood, the worst-case scenario for a wind energy yield analysis is represented by a

dense wind farm sited in complex terrain where wake and topographic effects are important and

interwoven. The complexity of such cases make them ideal for validation purposes and, so, the

ability of several RANS closures and two actuator disk implementations to predict the energy

yield of a medium-size wind farm situated in so-called simple-complex terrain is analyzed here.

This work has been jointly carried out with the Wind Resource Assessment and Forecasting

Service of CENER during an internship from August 2010 to June 2011.
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Abstract

The atmospheric flow through a wind farm situated in moderately complex terrain is simulated

in an effort to predict the energy capture of the park as a whole. The Reynolds-Averaged

Navier–Stokes equations are used to model fluid motion while the effect of turbine rotors is

modeled using the actuator disk concept wherein the rotor acts as a momentum sink. The

performance of three RANS turbulence closure schemes (standard k − ε , RNG k − ε , and a

Reynolds stress transport model) as well as two actuator disk implementations (which differ

in how the reference wind speed is determined) are evaluated. Computational times are also

briefly discussed.

1 Introduction

It has been shown that common two-equation RANS turbulence closures are not well adapted to

actuator disk modelling of the wind turbine rotor (Réthoré, 2009). This combination of mod-

els is nonetheless incredibly popular for wind farm analyses given its relative economy and

reasonably accurate velocity predictions for isolated rotors (see e.g. Barthelmie et al. (2009);

Sanderse et al. (2011); Politis et al. (2012)). However, a fundamental change is likely needed to

make significant improvements in velocity and turbulence predictions within a real wind farm.

As the actuator disk representation of the rotor is by far the most economical (in comparison

to actuator surface or line approaches) and is probably a mainstay, it is more appropriate to

reconsider the closure. Of course, the greatest weakness of many lower-order turbulence mod-

els is the reliance on the eddy viscosity approximation which ties stresses to strain rates in the

flow and imposes a single turbulent length scale. On the other hand, Reynolds stress transport

models avoid these problems entirely by modelling each component of the stress tensor with

its own transport equation and might be a promising alternative.

Traditionally, stress transport models have received relatively less attention as the closure prob-

lem still has to be dealt with and the additional equations add to the computational burden.

Furthermore, some question remains as to whether the extra effort in fact yields more accurate

predictions. But, in light of the possible benefits, second-order closure might be worth a closer
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look and is investigated herein for the purposes of wind farm power performance analysis. This

study presents a comparison of measured and predicted power ratios for a wind farm sited in

moderately complex terrain using two common two-equation closures and a stress transport

model. In addition, two actuator disk implementations are investigated.

2 Mathematical modelling

The objective of this study is to take a closer look at two important aspects of wind farm

modelling in the context of popular RANS–actuator disk models: the turbulence closure and the

actuator disk implementation. In general, the flow is considered steady and incompressible with

the effect of turbulence on the transport of momentum being modeled with the Reynolds stress

tensor and the effect of wind turbine rotors being represented by sink terms in the momentum

equation.

Commonly, the turbulence closure is based on a two-equation parametrization of turbulence

effects: the energy contained in the fluctuations and a measure of its rate of dissipation. These

models are founded on the assumption that the momentum transport due to turbulence can

be seen as stemming from an additional viscosity, generally orders of magnitude greater than

the molecular viscosity, that may be deduced from local flow properties. The most popular

two-equation RANS closure is the k− ε model which is well known to provide poor estimates

of wind turbine wake properties. Although modifications to the standard model have been

proposed (El Kasmi and Masson, 2008; Cabezón et al., 2011; Prospathopoulos et al., 2011),

a recent critique of eddy-viscosity-based models for wind turbine applications has shown that

all models based on this formulation are probably weak. These arguments provide the impetus

to consider second-order closures. Here, the standard k− ε model, its RNG variant, and the

Reynolds stress transport model (RSTM) of Gibson and Launder (1978) are tested. The model

closure coefficients are calibrated for neutral surface layer flow where the von Karman constant,

κ , is taken as 0.4187.

Concerning rotor modelling, the actuator disk method has been shown to yield nearly identical

predictions of velocity defect as its higher-order counterpart the actuator line outside the very



134

near wake region (Réthoré et al., 2011). It is thus expected to be an adequate representation of

the rotor for the purposes of evaluating wind farm energy capture as only far wake wind speeds

are of interest. While coupling the actuator disk model with blade-element/momentum theory

is quite feasible, it is somewhat impractical (as global thrust and power curves are often the

only information available) and is likely unnecessary for such large-scale analyses.

However, application of actuator disk modelling in complex terrain and in densely-packed

wind farms poses a unique problem when the actuator disk implementation is based on thrust

and power curves. The challenge lies in the proper estimation of the reference wind speed. In

theory, this is the wind speed at the location of the wind turbine rotor that would be observed

if the wind turbine was not present: it represents the quantity of energy available at the rotor

location.

Two possibilities are immediately apparent. The first relies on establishing a relationship be-

tween the wind speed at some ‘freestream’ location and the reference wind speed at the rotor.

In its simplest form, a one-to-one ratio might be supposed. A more evolved approach might

invoke some assumption regarding axial induction at the rotor itself; so far, improvements

yielded by such methods for wind farms in complex terrain have been modest Prospathopoulos

et al. (2011). The first actuator disk implementation tested here follows this track and takes the

wind speed two diameters directly upstream of the rotor as the reference wind speed. As the

rotor thrust is determined iteratively as part of the flow solution it is referred to as an elliptic

implementation.

The second possibility is to introduce the wind turbines sequentially in a row-by-row fashion

such that the reference wind speeds for downstream turbines are calculated before their rotors

are introduced. The advantage of such an approach is that the impacts of topography and wake

recovery should be better captured although at the expense of longer run times. In this case, the

rotor thrust is static and based only on upstream influences; it is thus referred to as a parabolic

implementation.



135

In both cases, the elemental thrust introduced in the discretized momentum equations as a sink

term is given by

Δ�Ti =
1

2
ρCT

(
‖n̂ ·�U∅‖

)
U2
∅A∅

ΔVi

V∅

(
n̂ ·Û∅

)2 n̂ (A II-1)

while the power is estimated using

P =
1

2
ρCP

(
‖n̂ ·�U∅‖

)
U3
∅A∅‖n̂ ·Û∅‖3 (A II-2)

where ρ is the air density, CP and CT are the turbine power and thrust coefficients, n̂ is the

disk-normal direction, A∅ is the swept area, ΔVi/V∅ is the fraction of the total rotor volume

occupied by cell i, and �U∅ is the reference wind velocity. The subscript ∅ refers to a quantity

related to the actuator disk.

There remains the question of the best measure of energy content. An argument could be made

that an average based on the wind speed cubed would be most representative. In standardized

power performance testing however the hub height wind speed is presumed to be representative.

For wake flow, this practice overly conservative: hub height wind speeds at the wake centre are

at or near a minimum. As a first-order improvement, it is proposed to use the disk-averaged

wind speed as the reference wind speed U∅.

3 Case study

The case study is based on a Spanish wind farm consisting of 43 wind turbines arranged in five

rows with hub heights of 45 m and 55 m. The turbine thrust and power coefficient curves have

been provided by the manufacturer. The terrain surrounding the wind farm is shown in figure

II-1. A roughness length of z0 = 0.0082 m is assumed for the entire site.

Observations have been filtered by sector and power as part of the European UPWIND project.

The conditions for the present study correspond to a wind direction of 327◦±5◦, a wind speed

at the reference turbine of 8.0±0.5 m/s (by inverse power curve), and a turbulence intensity of

roughly 12% at the meteorological mast at hub height.
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Figure-A II-1 Orography and layout of wind farm. Each contour level represents a

10-m change in elevation. Wind turbines are indicated by a cross while meteorological

masts are represented by a triangle

4 Numerics

All simulations are run using OpenFOAM 1.7. The SIMPLE algorithm is used for pressure-

velocity coupling. The convection terms in the momentum equation are discretized using a

bounded version of QUICK; other convection terms use simple upwinding. All other terms

are discretized with central differences. The simulations are run in parallel based on non-

overlapping domain decomposition. Customized OpenFOAM solvers have been developed to

introduce rotors “parabolically” and define reference wind speeds by the methods described

above.

For the row-by-row introduction of rotors, the row convergence criteria are based on three

parameters: the momentum equation residuals (< 10−4), the maximum relative change in ref-

erence wind speed (< 10−5), and a minimum number of iterations to ensure convection of

upstream changes (500). For the elliptic actuator disk implementation, final convergence is

based solely on normalized equation residuals; a tolerance of 10−5 is specified.
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Equilibrium neutral surface-layer profiles of velocity, turbulent kinetic energy, dissipation rate,

and stress tensor are specified at the inflow, located 11 km upstream of the wind farm. The

friction velocity is calibrated to yield the measured power at the reference turbine. The out-

flow is placed 4 km downstream where a fully developed condition is assumed. The lateral

boundaries, 2 km to each side of the wind farm, assume a symmetry condition. Freestream

conditions are imposed at the upper boundary, roughly 1.5 km from the surface. Standard wall

functions, with appropriate modifications for atmospheric flow (Blocken et al., 2007), are used

at the surface.

The domain is discretized using a structured mesh consisting of eight million cells with a near-

wall cell height of 1 m; cell heights are expanded away from the wall. Each rotor is subdivided

into roughly 40 cells.

5 Results & Conclusions

Figures II-2 and II-3 present the power ratios for the second and third rows of the wind farm.

For the second row, the predictions of all models for nearly every turbine lie within one standard

deviation of the observed power ratio. Significantly, no single combination of actuator disk

implementation and turbulence closure stands out from the rest although the RSTM variants are

generally somewhat more reliable than the two-equation closures. For row three, the agreement

with measurement is not as impressive: all models over-predict the power production at turbine

7 with outliers also at 2, 3 and 5. Overall, the parabolic / RSTM model seems to provide the

best agreement with measurements for this row, but only marginally so.

Returning to the original question regarding accuracy and computational effort related to the

use of a stress transport model, the preliminary findings of this case study demonstrate that

while some improvement in power predictions can be expected, it comes at a significant price:

the run time (in terms of cpu-hours) for parabolic / RSTM was more than double that of

parabolic / k− ε .
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Figure-A II-2 Power ratios for turbines in second row. All results and measurements

are normalized using the power output of the reference turbine (wt101)

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Turbine

P
o
w

er
ra

ti
o

Data

Parabolic / k− ε
Parabolic / RNG

Parabolic / RSTM

Elliptic / k− ε
Elliptic / RNG

Elliptic / RSTM

Figure-A II-3 Power ratios for turbines in third row. All results and measurements are

normalized using the power output of the reference turbine (wt101)
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DERIVATION OF EXACT WEIGHTING FUNCTION FOR STABLE CONDITIONS

Recalling the general form for the weighting function

F =
1

κ2

[
d�m

dz
d�ε
dz
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dz2

−2
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and subsituting the following relationships
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yields
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Expressing F in terms of length scales gives

F =
(�m�ε)
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. (A 2-9)



140

Inverting equation (2.18) for z, substituting into the above and simplifying then leads to

F =−
(
�ε
�m

)2( �m

�max
+1

)(
1− �m

�max

)3

, (A 2-10)

which is identical to equation (2.32) as the ratio of length scales is (1+R′
f ).
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