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FOREWORD

Now virtue is concerned with passions and actions, in which excess is a form
of failure, and so is defect, while the intermediate is praised and is a form of
success, and being praised and being successful are both characteristics of virtue.
Therefore virtue is a kind of mean, since, as we have seen, it aims at what is
intermediate. Aristotle, Nicomachean Ethics, Book 11

Engineering is the art of creating valuable processes. It is not merely the direct application
of mathematical formulas, nor is it a synthesis of observations and measurement. Rather the
method is analogous to construction, where the experimental data are the bricks and the mathe-
matical techniques the mortar. As far as engineering is concerned, the method is without merit
if it doesn’t have practical value, and the data are just a collection of artifacts until they are
analyzed and their nature understood. The method is not to be evaluated based on a restricted
set of criteria, but as whole. From the balance between the conceptual and the factual emerges

the value of the method.

The engineering research presented in this thesis focuses on image processing, and is the result
of pursuing such balance. Now, the techniques we apply in engineering must have context
to be of any use. Hence, neither the proposed segmentation algorithms nor the registration
method we describe can be considered to constitute definitive solutions to the image processing
problem in its most fundamental meaning. Hopefully, by formalizing these techniques within
their respective context, and by seeking to balance the conceptual and the factual, an important

subset of problems can be solved.






AVANT-PROPOS

Or; la vertu a rapport a des affections et a des actions dans lesquelles [’exces est
erreur et le défaut objet de blame, tandis que le moyen est objet de louange et de
réussite, double avantage propre a la vertu. La vertu est donc une sorte de juste
milieu en ce sens qu’elle vise le moyen. Aristote, Ethique 2 Nicomagque, Livre II

L’ingénierie est I’art de créer des processus utiles. Il ne n’agit donc pas de la simple application
de formules mathématiques, ni d’une synthese de mesures et d’observations. Plutdt, la méthode
s’apparente a une construction ou les données expérimentales sont les briques et les techniques
mathématiques composent le mortier. En ingénierie, la méthode n’est rien si elle ne mene pas
a une application pratique ; les données ne sont qu’ une collection de faits si elles ne sont pas
analysées et comprises. Ainsi, la méthode ne sera-t-elle pas jugée qu’en fonction d’un seul
critere précis, fut-il théorique ou pratique, mais en fonction de ses performances générales. De

I’équilibre entre le conceptuel et le factuel se dégage la valeur de la méthode.

Les travaux de recherche présentés dans cette these s’intéressent au traitement des images et
sont le fruit d’une telle poursuite de I’équilibre. Bien siir, la technique se doit également d’étre
encrée dans son contexte. Ainsi, ni les méthodes de segmentation proposées, ni la méthode de
recalage décrite ne prétendent résoudre le probleme du traitement des images en son sens le
plus fondamental. Néanmoins, ces méthodes ont été formalisées consciencieusement, en dosant
le mieux possible I’apport théorique et I’apport pratique, de fagon a résoudre un sous-ensemble

intéressant de problemes.






A Nadine,

pour son soutien inconditionnel






ACKNOWLEDGEMENTS

I wish to express my deepest gratitude to Mohamed Cheriet, my thesis advisor, for his guid-
ance, support and insight. Above all, Mohamed instilled in me his passion for research, an
undertaking that cannot be reduced to the simple application of complex formulas. He has
taught me that research requires imagination, personal commitment, and hard work. I will

always be indebted to him.

I am grateful to Sylvain Deschénes, my thesis co-advisor, for sharing with me his expertise and

introducing me to to the realities of clinical practice at CHU Ste-Justine Hospital.

I thank the board of examiners, Jean-Marc Lina, Rita Noumeir, and Tien Dai Bui, for their time

and your precious comment.

I am grateful to my collaborators on many of the articles presented in this thesis: Hari Sun-
dar, Reza Farrahi Moghaddam, Luc Duong, Julien Couet, Chantale Lapierre, and Sylvain De-
schénes. This work could not have been done without them.

I must also thank my past and present colleagues at Synchromedia: Reza, Samir, Vincent, Se-
bastidn, Solen, Mathias, Adolph (Guoqgiang), Fereydoun, Rachid, Shaohua, Youssouf, Abdel-
hamid, Ali, Ehsan, Tara, Lukas, Martha, Moshiur, Jonathan, Ridha, and Martin. I will always
remember our many stimulating discussions. Luc Duong provided his encouragement and
timely advice on many occasions. Many thanks, too, to the member of the LinCS lab: Jonathan,
Julien, Faten, Jean-Philippe, and Mathieu, not to mention my colleagues in the Livia lab, my
first lab at the ETS: Carlos, Clément, Dominique, Eduardo, Eulanda, Eric, Jean-Francois, Lu-
ana, Paulo, and Marcelo. I am deeply grateful to Farida Cheriet, director of the Liv4D lab
at the Ecole Polytechnique de Montréal, for her guidance in the biomedical world, and thank
all the members of her lab, including Herve, Philippe, Pascale, Fouzi, Rafik, Rola, Olivier,
Martin, Lama, Jonathan, Jérémie, Pascal, Samuel, Claudia, Fantin, Séverine, among others,
for their time and lively discussions. Special thanks to all the members of the research team
at CHU Ste-Justine. The involvement of Nagib Dahdah, Chantale Lapierre, and Josée Dubois

was essential to the accomplishment of this research.

I am indebted to Hari Sundar, who was my supervisor at Siemens Corporate Research, from
whom I learned so much, to the managers at Siemens, Christophe Chefd Hotel, Rui Liao, and
Frank Sauer, who made this experience possible, to my colleagues Pascal Dufour, Sofiene

Jenzri, and the Siemens Demons team, and many too numerous to name.



XII

I thank all team members at C-Tec. I am particularly grateful to Ludovic, Jean-Christophe,

Nicolas, Yan, Christian, Philippe, Israel and John whose ideas certainly influenced my research.
I also wish to thank my family and friends:

Je tiens également a remercier les membres de ma famille et mes amis. En tout premier lieu, je
veux souligner I’importance des valeurs que m’ont transmises mes parents. Cette these n’aurait
Jjamais vu le jour sans la présence de Claudel, ma mere, qui m’a transmis patience, constance
et tempérance, ces marques de caractere si essentielles en recherche, ou celle de André, mon
peére, qui m’a amené a croire que je pouvais changer le monde, méme modestement, et qui m’a

appris a remettre en question l’ordre établi.

A mon frere et a mes soeurs, Léa, Maude, Louis, Christine, Noémie, Emmanuelle et Camille,
Jje vous dis merci pour tous ces moments de joie, mais aussi pour tous vos projets et idées les

plus décalés. A ma famille élargie, merci d’avoir su attiser ma curiosité.

Cette these est dédicacée a ma femme, Nadine, pour son soutien inconditionnel et indéfectible.

Sans toi, je n’aurais pas pu aller au bout de cette odyssée.

J’exprime avec plaisir ma reconnaissance envers les membres de ma belle-famille, Lise, Paul
et Julie, pour leur accueil complet et leur générosité sans faille. Assurément, a vos cotés je suis

devenu une meilleure personne.

L’apport de mes amis est également trop important pour je puisse le passer sous silence. Tout
d’abord mes amis d’enfance, Jonathan, Benoit, Fred, Patrick?, aussi Jean-Francois le disparu,
Anne-Christine, Amélie, Genevieve, Isabelle, Richard, Gilles, Stéphane, Pascal, Linda, Marya-
nick, Félix, Valérie, Karl, Jérome. Avec vous, au quotidien et durant nos aventures, j’ai pu me
définir. Tout aussi important est la contribution de mes amis que la vie m’a amené a connaitre
un peu plus tard : Fred, Jean-Charles, Patrick, Fernand, Karine, Nancy, Alex, Delphine, Marc,

Hélene. Au travers ces soirées, travaux et sorties, vous avez ouvert mes horizons.

J adresse aussi de sinceres remerciements a mon cousin Vivek pour ses commentaires précis et

attentionnés lors de la relecture de certains de mes textes.

Finally, I acknowledge the financial support of the Natural Sciences and Engineering Research
Council of Canada (NSERC-CRSNG), le Fond de recherche du Québec - Nature et technologie
(FQRNT), and the ETS scholarship program, which made this research possible.



DIFFERENTIAL GEOMETRY METHODS FOR BIOMEDICAL IMAGE
PROCESSING: FROM SEGMENTATION TO 2D/3D REGISTRATION

David RIVEST-HENAULT

ABSTRACT

This thesis establishes a biomedical image analysis framework for the advanced visualization
of biological structures. It consists of two important parts: 1) the segmentation of some struc-
tures of interest in 3D medical scans, and 2) the registration of patient-specific 3D models
with 2D interventional images. Segmenting biological structures results in 3D computational
models that are simple to visualize and that can be analyzed quantitatively. Registering a 3D
model with interventional images permits to position the 3D model within the physical world.
By combining the information from a 3D model and 2D interventional images, the proposed
framework can improve the guidance of surgical intervention by reducing the ambiguities in-
herent to the interpretation of 2D images.

Two specific segmentation problems are considered: 1) the segmentation of large structures
with low frequency intensity nonuniformity, and 2) the detection of fine curvilinear structures.
First, we directed our attention toward the segmentation of relatively large structures with low
frequency intensity nonuniformity. Such structures are important in medical imaging since they
are commonly encountered in MRI. Also, the nonuniform diffusion of the contrast agent in
some other modalities, such as CTA, leads to structures of nonuniform appearance. A level-set
method that uses a local-linear region model is defined, and applied to the challenging problem
of segmenting brain tissues in MRI. The unique characteristics of the proposed method permit
to account for important image nonuniformity implicitly. To the best of our knowledge, this is
the first time a region-based level-set model has been used to perform the segmentation of real
world MRI brain scans with convincing results.

The second segmentation problem considered is the detection of fine curvilinear structures in
3D medical images. Detecting those structures is crucial since they can represent veins, ar-
teries, bronchi or other important tissues. Unfortunately, most currently available curvilinear
structure detection filters incur significant signal lost at bifurcations of two structures. This
peculiarity limits the performance of all subsequent processes, whether it be understanding
an angiography acquisition, computing an accurate tractography, or automatically classifying
the image voxels. This thesis presents a new curvilinear structure detection filter that is ro-
bust to the presence of X- and Y-junctions. At the same time, it is conceptually simple and
deterministic, and allows for an intuitive representation of the structure’s principal directions.

Once a 3D computational model is available, it can be used to enhance surgical guidance. A
2D/3D non-rigid method is proposed that brings a 3D centerline model of the coronary arteries
into correspondence with bi-plane fluoroscopic angiograms. The registered model is overlaid
on top of the interventional angiograms to provide surgical assistance during image-guided
chronic total occlusion procedures, which reduces the uncertainty inherent in 2D interven-
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tional images. A fully non-rigid registration model is proposed and used to compensate for any
local shape discrepancy. This method is based on a variational framework, and uses a simulta-
neous matching and reconstruction process. With a typical run time of less than 3 seconds, the
algorithms are fast enough for interactive applications.

Keywords: Segmentation, 2D/3D registration, registration, level-set, local-linear region model,
variational framework, vessel detection, curvilinear structures, brain tissues, cardiology, coro-
nary arteries, MAPCA, CT, CTA, MRI, MRA, fluoroscopy, angiography



METHODES DE GEOMETRIE DIFFERENTIELLE POUR LE TRAITEMENT DES
IMAGES BIOMEDICALES : DE LA SEGMENTATION AU RECALAGE 2D/3D

David RIVEST-HENAULT

RESUME

Cette these introduit une plate-forme d’imagerie biomédicale pour la visualisation avancée de
structures biologiques. Elle est constituée de deux principaux types d’opérations : 1) la seg-
mentation de quelques structures d’intérét dans des images 3D ; et 2) le recalage d’un modele
3D de structures biologiques propres a un patient avec I’imagerie interventionnelle 2D. Le fait
de segmenter une structure biologique en 3D résulte en un modele discret qui soit simple a
visualiser et a comprendre. Ce dernier peut également étre analysé et mesuré de fagon infor-
matisée. En contrepartie, recaler un modele 3D avec les images interventionnelles permet de
situer celui-ci dans le monde physique et donc de le positionner par rapport aux autres objets
de la salle d’opération. En combinant I’information d’un modele 3D et celle des images inter-
ventionnelles 2D, la plate-forme proposée vise a améliorer le guidage chirurgical en réduisant
les ambiguités inhérentes a I’interprétation des images 2D.

En ce qui a trait a la segmentation, deux problemes spécifiques sont considérés : 1) les struc-
tures présentant des variations d’intensité de basse fréquence ; et 2) la détection de structures
curvilinéaires fines. Premierement, nous nous sommes concentrés sur la segmentation de struc-
tures larges présentant des variations d’intensité de basse fréquence. De telles structures sont
importantes dans le contexte de I’imagerie médicale puisqu’elles se retrouvent fréquemment,
notamment en imagerie par résonance magnétique (IRM). De méme, en angiographie, il est
possible qu’une diffusion non-uniforme de I’agent de contraste résulte en des structures présen-
tant de telle variation d’intensité. Nous avons donc défini une méthode par surfaces de niveaux
utilisant une modélisation localement linéaire des intensités de régions et appliqué cette mé-
thode au probleme de la segmentation de ces structures. Il est démontré que les caractéristiques
propres a cette méthode permettent de prendre en compte de facon implicite la non-uniformité
de I’'intensité des structures dans les IRM. Ainsi, au meilleur de notre connaissance, cette mé-
thode est la premiere utilisant les surfaces de niveaux a atteindre des résultats convaincants
pour la segmentation des tissus cérébraux dans les IRM.

Le deuxieme probleme de segmentation considéré consiste en la détection et la segmentation
des structures curvilinéaires fines dans les images tridimensionnelles. En imagerie médicale, la
détection de ces structures est cruciale puisque ces dernieres peuvent représenter des veines, des
arteres, des bronches ou d’autres classes importantes de tissus. Malencontreusement, la plupart
des méthodes présentement disponibles produisent un signal fortement atténué a la rencontre de
deux structures formant un carrefour. Cette singularité peut donc réduire la performance d’un
traitement subséquent tel que : I’étude automatisée d’une image d’angiographie, le calcul de la
trajectoire des vaisseaux, ou I’étiquetage automatique des pixels composant I’image. La pré-
sente these introduit un nouveau filtre de vaisseaux qui est robuste a la présence de carrefours
en X ou en Y apparaissant le long des structures. En méme temps, il reste conceptuellement
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simple, déterministe et il permet une représentation intuitive des directions principales de la
structure de I’image.

Une fois qu’un modele 3D discret a été€ créé, celui-ci peut étre utilisé afin d’améliorer le gui-
dage chirurgical. Aussi, une méthode de recalage non-rigide 2D/3D est proposée pour amener
un modele des arteres coronaires en correspondance avec des images de fluoroscopie biplan.
Le modele ainsi recalé est superposé sur les images interventionnelles afin de favoriser un
meilleur guidage chirurgical durant les interventions percutanées pour les opérations d’occlu-
sions totales chroniques. De ce fait, I’incertitude inhérente aux images bidimensionnelles s’en
trouve amoindri. Une méthode de recalage complétement non-rigide est définie et permet de
réduire de facon localisée toute différence de forme. Cette nouvelle méthode, fondée sur le cal-
cul variationnel, met en scéne un processus d’appariement et de reconstruction simultanés afin
de calculer la transformation. Grace a un temps de calcul généralement sous les trois secondes,
I’algorithme reste assez rapide pour étre utilisé de fagon interactive.

Mots-clés: Segmentation, recalage 2D/3D, recalage, level-set, modele de région localement
linéaire, méthode variationnelle, détection de vaisseaux sanguin, structures curvilinéaire, tis-
sus cérébraux, cardiologie, arteres coronaires, arteres collatérales aorto-pulmonaires majeures
(MAPCA), CT-scan, CTA, IRM, ARM, fluoroscopie
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INTRODUCTION

In recent decades, medical imaging had a fundamental impact in almost every branch of
medicine. With in vivo techniques to image patient tissues, practitioners are able to accurately
diagnose an even broader range of conditions, study the structure and the functions of human
brain, perform sophisticated laparoscopic interventions on a daily basis, and make detailed
surgical plans before entering the operating room. The development of non-invasive imaging
procedures, such as magnetic resonance imaging and ultrasound, makes it ethically possible to

study healthy subjects, enabling scientists to acquire a deeper understanding of the living body.

But this sophistication is not in itself sufficient to surmount all the medical hurdles. As the
world’s population is getting older, the increase in prevalence of aging-associated diseases
represents a major medical challenge. The causes of many of those conditions, such as the
Alzheimer’s disease and dementia, are still only partially understood. More prospective and
retrospective studies are needed if neurologists are to sharpen their expertise and to gain a better
understanding of the causes and characteristics of those conditions. New imaging devices allow
to observe an always increasing range of biophysical phenomena, but analyzing the acquired
images requires time and energy, which puts a practical bound on how much information we

can extract from them.

An aged population is also more at risk of developing vascular disorders. In fact, heart diseases
are now the leading causes of mortality in Canada, where they account for 32% of all deaths
(Fondation des maladies du coeur, 2008), a situation similar to that in the USA (36.3% of
deaths) (AHA News, 2008; Rosamond et al., 2008; Kung et al., 2008) and in the rest of the
world (30% of deaths) (World Health Organization, 2008). But vascular problems are not
only an issue among the elderly. Heart diseases are among the most commonly encountered
congenital disorders, and, among them, are the principal cause of death. In many of those cases,
the well being of the patient depends on the outcome of a complex surgical procedure. The
always improving imaging tools consistently help to make routine ambitious clinical protocols,

but many challenges still lay on the way to risk-free intervention.

While modern medical imaging modalities permit to gain fabulous insight about the patients
inner structures, the interpretation and study of medical images remains tedious, complex, and
error prone. In some circumstances, the targeted tissues might be poorly visible, or adjacent
structures might be hard to discriminate. In other cases, accurately delineating the structures
of interest manually might be too time consuming to be of practical use. The problem of

accurately positioning the image information within the physical world is also of the highest



importance in many clinical situations. Notwithstanding those various difficulties, recognizing
and extracting high level information from medical images is key to gaining a better under-
standing of a patient inner structures, and, ultimately, will foster the emergence of innovative

treatments.

The objective of this thesis is to establish a biomedical image analysis framework for ad-
vanced visualization and surgical guidance. It consists of two main parts: 1) the creation of 3D
patients-specific models by segmenting some structures of interest in 3D medical scans, and 2)
the registration of patient-specific 3D models with other medical images. Image segmentation
is concerned with the accurate and repeatable delineation of biological structures in medical
images. Such techniques are highly valuable since the segmented image regions constitute a
computational model of some important patient structures, and thus enable scientists and prac-
titioners to study the morphology of the tissues in a detailed and quantitative way. Similarly
to a road map, a 3D model can also serve as a reference during surgical intervention planning
and execution. But it is also possible to envision more sophisticated applications for such 3D
model. This model can also serve during the operation to enhance the interventional image. If
the 3D model is carefully aligned and warped on top of the interventional images, it will com-
plement those images, and reveals critical information that is not directly available from the
interventional methodology. We refer to such alignment and warping process as 2D/3D model
to feature image registration, and this constitutes the second part of our framework. Since a
2D/3D registration process positions the 3D model with respect to the interventional image,
and thus with respect to the physical world, it creates a convincing and intuitive geometrical
reference that can significantly reduce the ambiguity inherent to the guidance of percutaneous

interventions.

At the practical level, two broad types of applications were targeted for the evaluation of the
performance of the proposed methods: 1) brain morphological studies, and 2) vascular in-
terventions. The study of brain morphology is a fundamental part of many researches on
Alzheimer’s disease and dementia. At the image processing level, it is often required to dis-
cern between the three main tissue classes. In the past few years, this segmentation problem
formed an almost canonical benchmark for general purpose and specialized image segmenta-
tion algorithms, and thus presented an interesting opportunity to test an important constituent
of our framework. In what concerns the vascular interventions, two specific clinical situations
were considered. In work done in collaboration with Ste-Justine Hospital, we were interested
in segmenting two types of complex vascular structures, major aorto-pulmonary arteries and

coronary arteries, in order to ease surgical planning. The assumption being that a 3D model of



the structure is easier to visualize and understand than the full scan. The 2D/3D registration and
surgical guidance aspect of framework described here was developed in great part in collabo-
ration with Siemens Corporate Research. There, it was question of registering a model of the
coronary arteries with interventional fluoroscopy. Clinically speaking, this can help to reduce
ambiguities during one of the most delicate type of non-invasive heart surgeries: percutaneous
intervention of chronic total occlusion of a coronary artery. In the following paragraphs, we
briefly cover the specific problems that were tackled in this research, and discuss their relative
importance. As it will be possible to recognize, the research presented here encompass a large
variety of methods and a broad range of practical applications. While this rather large field of
view might seem unnecessary at first, we feel that it was essential to clearly demonstrate the

theoretical benefits of all proposed image processing approaches.

Segmenting large, relatively uniform, structures in 3D medical scans has many practical ap-
plications in biomedical analysis, especially when the exact shape of some tissue is of great
interest. Perhaps one of the most striking example of such application is the segmentation of
brain tissues in magnetic resonance imaging. In morphological neurological studies, an impor-
tant task is to separate the white matter from the gray matter and cerebrospinal fluid. Having
those structures segmented greatly facilitates the study of the brain morphology and helps to
characterize many conditions and pathologies. Unfortunately, various limitations of the acqui-
sition device result in images that are corrupted by different types of noise. Imperfections in
the radio frequency coil cause low frequency wave-like interfering patterns to appear and re-
sults in non-uniform voxel intensity recordings even for uniform structures. This characteristic
of the image is very challenging for most automatic segmentation algorithms since the correct
segmentation depends on local feature of the images: no global threshold would produce an
acceptable segmentation. This does not imply that the problem cannot be solved by an auto-
matic process, only that a capable method would need to consider more involved processes and
features. But what type of process and what kind of features would permit to segment such
structures that might be relatively uniform locally, but where the intensity could present large
variation from one region of the image to the other, even for the same class of tissues? The
solution that is proposed in this thesis is to compute local linear models of the image intensity,
which are robust to low frequency non-uniformity, and to use those models to guide the seg-
mentation process. This idea, based on a differential geometry formulation of the problem, has
been implemented within the level-set active contour framework. This algorithm was able to
generate, to the best of our knowledge, the best published results for this category of algorithms
on the publicly available IBSR database.



After having defined our method for the segmentation of large structures, we attempted to
adapt this framework to another vastly different problem that is clinically relevant: the seg-
mentation of vascular structures. During work done in collaboration with Ste-Justine Hospital
and also with Siemens Corporate Research, it soon appeared that the proposed region based
active contour method was of limited use in what concerns the segmentation of very fine tubu-
lar structures. The reason of this limitation is twofold. On one side, the viscosity term used in
most active contour schemes causes a bias against all small or narrow structures. On the other
side, the recorded voxel intensities for very fine structures become dominated by the partial
volume effect, which makes regional pixel intensity modelling ineffective at those locations.
Those two aspects of the fine tubular structure segmentation problem call for a method that
is more specific than the proposed active contour scheme. Fine tubular, or curvilinear, struc-
tures can be detected by analyzing the local contrast around each voxel position: if a structure
is present, one would expect little intensity variation in one direction, and much larger inten-
sity variation in the other directions. As it would be discussed in chapter 1, many approaches
of this type were proposed in the literature, but most of them are ineffective when the target
structure present bifurcations or crossings. This brings the following question: is it possible to
define a generic image filter that would detect fine curvilinear structures in 3D medical images
without excluding bifurcations? In our research, we investigated a new computational model
that uses finite differences and a spherical sampling scheme to this end. The results is a new
curvilinear structure detection method that is both more specific and more sensitive than the
existing method. This new technique has been demonstrated on MRI and CT scan for the de-
tection of different curvilinear structures, and is not tied to any specific 3D imaging modality

or biological structures.

This new curvilinear detection method can be used standalone to segment simple tubular struc-
ture, or it can complement the segmentation generated by a more general purpose algorithm.
For example, for the segmentation of a pulmonary artery tree, the main vessels could be seg-
mented by an active contour method, and the fine ramification by the curvilinear detection
method proposed. If the structure of interest is approximately tubular and reasonably salient,
the two segmentation results can be merged and will integrate gracefully. Thus, the two meth-
ods can be perceived as complimentary. We believe that in a clinical situation, those two

techniques can be used together to segment a large variety of vascular structures.

Segmenting tissues in medical images permits to clearly distinguish the target structures from
the background elements and ease various morphological studies. In fact, the segmentation

result can essentially be regarded as a patient-specific 3D model of the anatomical structures



of interest. If we are to consider the domain of image-based surgical assistance, this brings
the question of quantitatively relating the virtual 3D model with the interventional images, and
thus with the physical world. That is, how to position the 3D model with respect to the patient

body and surgical instruments in the operative room?

Let us assume that during a certain surgical procedure, the interventional biplane fluoroscope
has been dutifully calibrated, then it is reasonable to admit that the visualized image are an ac-
curate geometric representation of the scene and that they can be used to guide the surgical op-
eration. Unfortunately, although the interventional images might be correct, there are situations
where they are too limited to unambiguously guide the procedure. For example, the visibility
of some structures of interest might depends on the presence of a toxic contrast agent, which,
for patient safety sake, might only be injected parsimoniously into a human body. In other
situation, the 2D nature of the interventional image can make it very challenging to correctly
understand the 3D geometry of the target structures. In such cases, displaying a 3D model of
the patient structures on top of, or along with, the interventional images can certainly help the
practitioner building a more accurate mental image of the patient body, in less time. However,
the 3D model needs to be carefully aligned within the scene in order to minimize the observed
inter-modality discrepancy and to constitute a coherent representation of the whole scene. Us-
ing the calibration of the apparatus as a starting point and the 2D and 3D images features, it
is possible to convincingly align the 3D model with the 2D interventional images, a process
known as a 2D/3D registration. In mathematical optimization terms, the 2D/3D registration
problem is generally considered as well posed if only rigid, affine, or other restricted paramet-
ric transformation models are considered. Nevertheless, the rotational nature of the problem
makes it strongly non-linear, and thus hard to minimize. In addition, various patient move-
ments, such as respiration and the beating of the heart, can significantly deform the structures
of interest during the course of the intervention. This makes it very important to non-rigidly
deform the 3D patient model to preserve visual consistency. This, however, is a hard ill-posed
problem. Since, surgical guidance is considered, there is also the question of computational
complexity. Indeed, it is hard to believe that the surgeon would place an intervention on hold
to accommodate a slow registration algorithm. Thus, the question is: is it possible to create a
2D/3D non-rigid registration process that is fast enough to be used during an intervention? The
algorithm defined in this thesis takes benefit of a differential geometry formulation to tackle
this challenge. This allows the proposed approach to compute a non-rigid 2D/3D registration
in typically less than 3 seconds on contemporary commodity hardware. The method has been
tested on datasets from 5 patients with cardiac disorders with good results. Thus, its capability,

performance and speed makes this method suitable for intra-operative usage.



Taken together, the level-set segmentation method, the curvilinear structure detection tech-
nique, and the 2D/3D registration algorithm defined in this thesis form a segmentation and reg-
istration framework that is useful in the context of general biological structure visualization,
with a special emphasis on vascular interventions. Taken individually, they allow to perform
their own range of specific task, as described in the following chapters. Nonetheless, before
developing the theoretical aspect of this research further, it is essential to consider the clinical
context of the work, and to highlight the challenges arising at the practical level. Then, the
research problems that are considered can be stated and discussed more formally. Finally, an

outline of this thesis is presented.

0.1 Clinical context

The practical value of any computerized biomedical analysis tool will strongly depends on the
specific characteristics of the problem considered. It is therefore necessary to precise the ap-
plication domains of the research, both in clinical and in biomedical image analysis terms. As
introduced earlier, during the course of our research, we were interested in brain tissue imaging
and also in two severe vascular conditions: residual major aorto-pulmonary collateral arteries
(MAPCAS) in pediatric cardiology, and chronic total occlusion (CTO) of the coronary arter-
ies in adults. In the case of brain imaging, the modality of choice is the magnetic resonance
imaging (MRI). In what concerns vascular conditions, the pre operative assessment modality
of choice is generally the computerized tomography (CT), a technology that uses X-rays to
generate a 3D image of the vascular structures. These CT scans are used to analyze the prob-
lematic structures at the diagnostic, planning and surgical levels. In the following paragraphs
we expose those various pathological conditions and discuss the challenges associated with the

imaging modalities involved in both their study and treatments.

The morphology of the human brain changes widely during the lifespan of an individual (Sakai
et al., 2011). In fact, neurologists have observed than the accumulation of memories and
experiences are linked with physiological changes in the brain tissues. While in the past this
knowledge could only be acquired from the study of post-mortem organs, the advance of MRI
in recent decades made it possible to acquire in-vivo images of a patient’s brain with virtually
no risk for the health of either the patient or the practitioners. The acquisition of multiple
snapshots of the brain of an individual at different points in time, in a longitudinal study, allows
to appreciate how brain development is related with morphological changes with an interesting

accuracy. While some of those morphological changes are part of the normal aging process,



others are linked with the progressions of divers neurological conditions such as Alzheimer’s

disease, dementia with Lewy bodies, or Parkinson disease.

Although these aging-related neurological disorders are widespread among the elderly, their
complex pathophysiological mechanisms are still only poorly understood. As a result, few
treatments exist for those conditions (Venneri, 2007). Brain volumetric studies permit to sup-
port diagnostic, help monitor the progress of the condition, and permit to gain knowledge
about the structural aspects of the diseases. (Bozzali et al., 2008) In a brain volumetric study,
the volume and shape of the various brain structures are analyzed and compared. This allows
to localize abnormalities, and to quantify the change in volume of the various brain tissues on
a voxel-to-voxel basis. The validity and accuracy of the study thus depends on the availability

of good quality segmentations of a number of brain scans.

Most brain volumetric studies use T1-weighted MRI as the input modality. Such images
present a high soft tissues contrast that, in the best case scenario, allows to clearly identify
the boundaries between the congregation of neurons, or gray matter (GM), the interconnec-
tions, or white matter (WM), and the cerebrospinal fluid (CSF). Brain tissues segmentation is
generally performed initially using a manual or semi-automatic method (Bozzali et al., 2008).
When a segmentation becomes available for a certain patient, registration based approaches
can then be used to capture relatively small changes.! Unfortunately, T1-weighted MR images
are generally corrupted by low-frequency intensity non-uniformities, caused by imperfection
in the radio-frequency coil of the MRI apparatus (van Leemput et al., 1999). This defect, often
referred to as the bias field of the system, makes it difficult to clearly distinguish between the
different brain tissue classes. In addition, the limited resolution available from the imaging
technology implies that more than one tissue class might be present in a single voxel. This so-
called partial volume effect blurs the boundaries between the different tissues and complicates
the task of the neurologists further. The presence of the bias field and the partial volume effect
makes it difficult to obtain accurate and repeatable brain segmentation, which in turn can limit

the accuracy of brain volumetric studies.

Theses difficulties call for the development of automatic brain tissue segmentation methods that
would be more repeatable and requires less effort than the manual or semi-manual methods.
However, designing a method that is appropriated for this task is especially challenging because

of the presence of intensity non-uniformity. In the worst cases, the voxel representing the white

IRegistration-based brain tissue segmentation is a rapidly evolving field with always improving methods able
to cope with larger and larger variations. However, the problem of producing good initial segmentations is still of
interest in the definition of atlases, for immature brains, and for brains with abnormalities.



matter in a certain image region are darker than the voxel representing gray matter in another
image region, a situation that would confuse most classical segmentation algorithms. In such
case, the voxel intensities need to be interpreted locally: on a T1-weighted image, white matter
voxels are always lighter than surrounding gray matter voxels, in a certain neighbourhood,
even if than is not true for all the voxels over the complete image domain. In addition, the
bias field induced variation is generally smooth and of low frequency. This suggests that an
appropriate segmentation method could use a region model capable of taking into account such
characteristics. Also, since the different biological structures are mostly continuous, a certain
degree of spacial coherence can be taken into account. In summary, a segmentation method
that is robust to progressive change in the intensity of the structures to segment and that can
enforce a certain spacial coherence could help to produce repeatable and accurate brain tissue

segmentations.

180 213 180

WM
CSF 177
GM

171

(a) (b)

Figure 0.1 Sample brain tissue segmentation. a) expert segmentation, b) intensity
non-uniformity in a white matter region, the numbers indicate the intensity level, and
¢) one case where WM voxels are darker than GM voxels.

The problem of segmenting structures with intensity variation is frequently encountered in
medical imaging, and from a broader perspective, this thesis focuses on researching computa-
tional tools for diagnosis and surgical planning and guidance. As such, it is our goal to propose
methods that are applicable to a large set of medical situations. Consequently, we did not re-
strict ourselves to brain volumetric studies as an application, and we also address the topic of
surgical guidance in vascular interventions. Specifically, we were interested in two other clin-
ical problems: the treatment of MAPCAs, and chronic total occlusions (CTO) of the coronary

arteries.



MAPCAs, although part of normal embryonic development, are often harmful after birth, and
are associated with severe cyanotic congenital heart defects, such as the tetralogy of Fallot or
pulmonary atresia with ventricular septal defect. In tetralogy of Fallot, the pulmonary artery
(see Figure 0.2) can be severely atrophied, or even be absent, which prevents oxygen-poor
blood from being re-oxygenated by passing through the lung, as is normally the case (see Fig-
ure 0.3). Instead, minimal circulation is ensured by one or more MAPCAs directly linking
the aorta to the lungs. As the normal function of the aorta is to deliver oxygen-rich blood to
the circulatory system, the oxygenation process is inefficient. The treatment of such a condi-
tion generally requires one or more delicate surgical interventions. During the unifocalization
procedure, the MAPCAs are consolidated in a way that reconstruct a functional pulmonary
vascular bed. In addition, any potential secondary irrigation paths are shut in order to restore
a normal blood flow. The shape and disposition of the MAPCAs are complex and vary widely
from one individual to another. Some vessels can also be very small. Therefore, good surgical

planning is crucial to the success of the operation.

Figure 0.2 Pulmonary vessels, heart, and lungs. Frontal (left) and dorsal (right) views.
Ilustrations taken from Gray (1918).

Although analysis of blood flow is usually performed using 2D fluoroscopy with targeted con-
trast agent injection using catheters (see Figure 0.4), understanding the complex geometry of
MAPCAs requires a 3D CT angiography (CTA) in the vast majority of cases. Generally CTA,
and not magnetic resonance angiography, is favored in these cases, because its higher spatial
resolution makes it possible to capture smaller vessels. In addition, because of the CTA’s much
shorter acquisition time, it might not be necessary to sedate the patient, and so avoid the risk

of harm to fragile pediatric patients.
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Figure 0.3 Normal blood flow through the heart. The aorta is highlighted in red and the
pulmonary artery in blue. Illustration adapted from Yaddah (2006).

Figure 0.4 X-ray angiography of MAPCAs. Contrast agent injection in the aorta clearly
demonstrate the passage of the blood through collateral arteries. Lateral (left) and frontal
(right) views.

The 3D information gathered by the CTA scan makes it possible to resolve most geometric am-
biguities with good precision and helps to determine the dimensions of the structures, enabling
the physician to prescribe the most appropriate treatment. However, since the 3D volume is
dense, the structures of interest cannot be visualized directly. Hounsfield units (HU) to inten-

sity and HU to opacity mappings are generally used to generate a selective visualization that
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better highlights the structures. Still, it may not be possible to distinguish the structures that are
of interest from other structures with similar tissue characteristics using this basic technique.
In addition, in some situations an incomplete representation or a poor visualization might result
from the uneven propagation of the contrast agent, partial volume effect, or motion artifacts,
for example. A high quality patient specific model can be created from the 3D scan which
captures the geometry of all the structures of interest and removes any distracting background
(see Figure 0.5). Such a model can facilitate the practitioner’s understanding of the patient

geometry, which is key to the success of the procedure.

Figure 0.5 CTA scan of a young child with MAPCAs. Volume rendering (/eft), volume
rendering with transparent soft tissues (middle), and 3D presentation of the segmented
aorta and attached MAPCAs (right).

MAPCA procedures are usually highly invasive. Surgical guidance is achieved using mono-
or biplane fluoroscopy with periodic contrast agent injection. The fluoroscopic images are ac-
quired on-demand, rather than continuously, to minimize patient exposure to X-rays. These 2D
images are difficult to interpret and can be geometrically ambiguous. As a result, the surgeon
regularly needs to refer to the 3D model during the intervention, but establishing correspon-
dence between the 3D model and the 2D images can be challenging. Keeping the 3D model
aligned with the interventional image would help the surgical navigation process, thereby de-
creasing the risk and possibly reducing patient exposure to X-rays and contrast agent. However,
the creation of an accurate patient specific 3D model is difficult and time consuming, and align-
ing it with the interventional images is a challenging correspondence problem. These issues

were important factors in our decision to undertake this research.

Other vascular conditions bring different but related challenges. Specifically, we also address

the problem of surgical guidance during the treatment of chronic total occlusions (CTO) of the
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Figure 0.6 The coronary arteries. As presented by Gray (1918) (left and middle), and a
top view of the volume rendering of a CTA scan.

coronary arteries. CTO is the result of a severe accumulation of plaque in the coronary arteries
(see Figure 0.6), and are characterized by very low perfusion level over a period longer than
three months (Gade and Wong, 2006). This type of lesion is encountered in 15% to 30% of
the patients referred for coronary angiography and the presence of CTO is the most powerful
predictor of referral for coronary bypass surgery (Grantham et al., 2009). CTO has been re-
ferred to as the final frontier in interventional cardiology (Stone et al., 2005). The treatment
of CTO generally involves minimally invasive (laparoscopic) percutaneous coronary interven-
tion (PCI). Compared to MAPCAs interventions, although the clinical context is very different,
there are many similarities to be found at the image processing level. X-ray fluoroscopy with
direct contrast injection is the modality of choice for the guidance of percutaneous coronary
interventions. This modality has two major drawbacks: the limited depth perception inherent
in 2D images, and the fact that the contrast agent is quickly washed away by the circulating
blood. Furthermore, some parts of the coronary arteries are almost totally blocked in CTO.
As a results, the contrast agent cannot reach the distal segments of the vessel, making them
almost invisible on interventional imagery, as illustrated in Figure 0.7. This situation makes
the surgical procedure particularly hazardous, because the practitioner has to guess the position
and shape of the arteries, and move the catheter along with great care, so as not to perforate the

vessel.

In contrast to X-ray fluoroscopy with direct contrast agent injection, CTA with intravenous
contrast injection has different imaging characteristics, and it is often possible to segment the
coronary arteries on the 3D scan. Providing precise geometric information can help the physi-
cian to make a more accurate diagnosis and prepare a better surgical plan. The extracted model

can also serve as a reference during the intervention. However, aligning the artery model with
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the interventional images is difficult to achieve, either mentally or with a computational tool.
In addition, the coronary artery geometry is altered by both the respiration and heart beat of
the patient. Since the CTA is usually acquired under a breath hold and the intervention is per-
formed under free breathing conditions, non-rigid registration is essential to obtaining a good
fit between the model and the interventional images. At the image processing level, some of
the challenges in the PCI of CTO are similar to those that arise in the treatment of MAPCAs.
In both cases, it is crucial to gain an understanding of the geometry of the complex structures
of interest. Also relating this geometry to the interventional images is key to the success of the
procedure, but performing such a quasi-intermodal registration is a difficult correspondence

problem.

Figure 0.7 Biplane fluoroscopy of a left coronary artery with CTO

0.2 Problem statement

Multiple problems arise during visualization of complex anatomical structures in the context of
diagnostic and surgical guidance. From an engineering point of view, it is possible to discern
problems at three different levels: 1) clinical, 2) medical imaging, and 3) image processing, as

summarized in Figure 0.8.

At the clinical level, the practitioner needs to gather the information that is necessary to ac-
complish his task. So, it is question of observing and measuring the physical world. Problems
arising at this level depend only on the physical condition of the patient and on the clinical

protocol, and are not tied to a specific imaging modality. In this research, we considered vastly
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Figure 0.8 Summary of the research problems discussed in section 0.2

different clinical situations. Although they first seem unrelated, we will see later that they share

a common set of problems at the image processing level. Specifically, in brain morphological

studies, two important questions arise at the clinical level: a) How can the shape of internal

anatomical structures be quantified? b) How can the geometry of complex structures be visu-

alized and understood. One way to answer those questions is to delineate the different brain



15

tissue classes in a 3D scan. Once this is done, a 3D computational can be created, visualized

and studied quantitatively.

It is obvious that the two questions presented above are equally important in the context of
surgical planning and guidance since dimensioning a biological structure and understanding
its shape is important in order to prepare a good surgical plan. However, considering the
fact that vascular interventions are generally guided by X-rays raises other crucial questions:
a) How can the geometrical uncertainty inherent in limited interventional imagery (e.g. 2D
fluoroscopy) be reduced during the guidance of surgical procedures? b) Are all structures of
interest visible on the interventional images? If not, how can those structures be visualized
during surgical procedures? c) Is it possible to provide surgical guidance with less X-ray irra-
diation and contrast agent injection, hence optimizing the benefit-risk ratio? In a difficult case,
it is critical that the practitioner has access to the best possible information to maximize the
chance of a successful procedure. In summary, the practitioner must be able to conceive an ac-
curate mental image of the target structures, and, during the procedure, appropriate navigation

guidance must be used to provide live update about the position and shape of the structures.

Various radiological techniques are available that readily offer partial answers to many of these
questions. Ideally, the imaging modalities would have infinite temporal and spatial resolution,
very high contrast, and would provide the same level of information to the practitioner as direct
inspection. In practice, however, because of equipment quality and theoretical limitations, the
situation is more complex. This means that problems arising at the medical imaging level inter-
fere with the ability of radiologists to extract the information needed by the practitioner from
the images. MRI is the modality of choice for brain imaging since it has better soft tissue con-
trast than the alternatives. However, the limited precision of the radio frequency coils results
in the presence of a significant bias field affecting the image intensity and the partial volume
effect blurs the boundary between tissue classes. In addition, a whole head scan is generally
performed, which makes discriminating the different brain tissues tedious. In what concerns
the two vascular conditions discussed above, CTO and MAPCA s interventions, CTA is used to
capture the 3D geometry of the structure of interest before the procedure. This modality makes
it possible to accurately capture the patient anatomy in 3D, with some limitations. First of all,
since the 3D scans are dense, individualizing a specific structure is difficult. In addition, back-
ground structures can have the same appearance as the structures of interest, and the intensity
of the structures of interest can be affected by many factors, for example a) the dispersion of
the contrast agent, b) the partial volume effect, ¢) motion artifacts, d) the presence of noise,

and e) the precision of the imaging device. Finally, a more fundamental problem is that the
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shape and position of the structures change with patient respiration and cardiac cycle. Because
of this, the images of the structure observed in the operating room will ineluctably be different

that what can be seen on the CT.

In treatment of MAPCAs and CTO, surgical guidance is commonly ensured using X-ray flu-
oroscopy with direct contrast agent injection, a modality that also have important limitations.
In practice, for vascular interventions, the visibility of the structures of interest depends on a
contrast agent that is quickly washed away by circulating blood. Moreover, some physical con-
ditions of the patient can make parts of the structures of interest invisible under fluoroscopy,
as in CTO. This situation can be precarious because the surgeons has to guess the position and
shape of the structure during the intervention. The fact that X-ray fluoroscopy is inherently 2D
and has very little depth information is significant: this further complicates the interpretation
of the geometry during the procedure. This problem can be alleviated by comparing the inter-
ventional images with the pre-operative CTA, but since the shape and position of the structures
change with patient respiration and cardiac cycle, this is not a trivial task. Without doubt, these
problems can be addressed in different way. In the future, it is possible that more sophisticated
non invasive operational modalities, such as ultrasound or MRI devices, but with higher spatial
resolution, faster acquisition time, and better tissue discrimination properties, would appear
and improve the guidance process with very low risk for the patients. However, these new
modalities might not be available in all clinical setting, where the current duo of CTA and X-
ray fluoroscopy is now well established. In addition, the fact that X-ray fluoroscopy is the most
widespread interventional modality ensures that it will remain relevant for many years. In this
respect, solutions at the image processing level are more likely to have a short term impact, and
fundamental advances might well be appropriate with the new modalities, when they become

available.

The problems related to the visualization of the structures in the 3D scans can be addressed by
an appropriate segmentation method, assuming reasonable calibration of the intrinsic parame-
ters of the apparatus. However, the definition of a segmentation method is made more complex
by limitations of the medical imaging modalities and by fundamental image processing prob-
lems associated with the chosen imaging modalities. For example, extracting the structure of
interest from any 3D scan is difficult, because background structures can have the same in-
tensity. Also, various factors can alter the spatial distribution of the intensity of the structure
in the volume: dispersion of the contrast agent, partial volume effect, motion artifact, noise,
and the intrinsic precision of the imaging device. In what concerns MR brain imaging, the

presence of a bias field constitutes the main challenge. This problem is probably not to be
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resolved in hardware anytime soon since some of newer MR technologies, such as device with
array detectors or the use stronger static field, actually result in a stronger bias field. For vas-
cular structures, especially MAPCAs, the exact shape and position of the structures can vary
significantly from one patient to another. At a higher abstraction level, image segmentation is
a challenging problem in any practical application. At the same time, this process is essential
since it is equivalent to extracting the relevant information from a huge set of data points in
order to get an understanding of the physical world depicted by the image. In this problem, it
is needed to delineate structures that have a nonuniform appearance over the image domain,
variable sizes and various saliency characteristics. These issues are common to most 3D med-
ical imaging applications. For instance, in MAPCAs the intensity of the aorta varies with the
dispersion of the contrast agent, while in brain MRI the intensity of the volume varies because
of limitations in the imaging device, but in both cases the challenge is to segment complex
structures with a spatially variant intensity. In addition, many medical imaging segmentation
problems are strongly multiscalar in nature. The fact that the structures under observation can
be close to other unrelated structures adds to the challenge as well. For example, with MAP-
CAs, the aorta is many times larger than the smaller arteries. It is also close to other salient

structures, such as the chambers of the heart, which are also filled with contrast agent.

At this point it is important to recognize that the potential impact of 3D medical image seg-
mentation goes beyond the context of discussed clinical situations. The problem of observing
and quantifying the shape of anatomical structures is crucial in many areas of medicine. For
example, 3D segmentation methods can be used to capture patient geometry for the design of
prosthesis, also segmented guts or airways allow to generate virtual endoscopy, thereby easing
the diagnostic of cancer, and 3D models of the brain tissues are quantified and analyzed in
cross-sectional and longitudinal studies on human brain aging. In vascular interventions, a pa-
tient specific 3D geometric model could certainly serve as a useful reference before and during

the procedure.

In what concerns surgical interventions guidance, this task is made complex by many of the
problems revealed earlier. The information provided during the intervention by the ubiquitous
X-ray fluoroscopy is incomplete, due to its 2D nature, and its quality varies over time. For
some complex pathologies, like CTO, portions of the structures of interest may be invisible un-
der X-ray fluoroscopy, because they cannot be reached by the flow of the contrast agent. Given
adequate knowledge of the geometry of the structure, perhaps obtained using the segmentation
method discussed in the above paragraph, those problems could be addressed by registering a

3D model of the structure with the interventional images. In turn, the computed registration
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transformation could be used to overlay the 3D model on top of the 2D images, producing
enhanced imagery. This combined imagery can facilitate the guidance of surgical intervention
since this enable the practitioner to see a reference geometric model in the same frames as the
interventional images, which reduce ambiguities in the interpretation of the fluoroscopy. Al-
though both CTA and fluoroscopy use X-rays as the imaging source, these two modalities differ
greatly in nature: the former is a reconstructed image, while the latter is a projective image.
This quasi-intermodality makes finding correspondences between the images a difficult task.
In addition, patient respiration and heartbeat can cause significant shape difference between
the 3D model and the 2D images. Using a non-rigid registration method makes it possible
to compensate for the discrepancy, but finding its transformation parameters is a challenging

inverse problem.

This thesis focuses on the definition of a visualization and surgical guidance framework that is
composed of two important parts: 1) the creation of a 3D patient specific model by segmenting
a 3D scan, and 2) the registration of this model with 2D interventional fluoroscopies. As
discussed above, the definition of such a framework comes with its own set of image processing
problems, which represent the main research issues considered in this thesis. In what concern
the definition of a segmentation method appropriated for complex biological structures with

spatially variant intensity levels, the main hurdles are as follows:

1. No single segmentation algorithm is suited to all situations, as the structures of inter-
est are characterized by a wide variability in shape and size, and integrating multiple

strategies is required;

ii.  The structures of interest can be close, both spatially and in intensity, to other background

structures;

iii.  The saliency of the structures of interest vary on the image domain.

For the registration of the 3D model with the interventional images, the principal challenges

are as follows:

iv.  making quasi intermodal correspondence requires an accurate and efficient strategy;
V. 2D/3D non-rigid registration is an ill posed inverse problem:;

vi.  The shape and position of the structures vary in time.
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Specifically, we proposed to tackle these problems on three fronts. First, generic image seg-
mentation techniques are investigated in order to identify the best methods for segmenting
vascular structures with spatially varying intensity. Second, since the generic segmentation
methods generally fail at segmenting the smaller vascular structures, localized techniques spe-
cialized for the task of detecting and segmenting small blood vessels are considered. Last, but

not least, 2D/3D registration methods applicable in context of surgical guidance are researched.

By addressing these image processing problems, this research is aimed at defining methods

that are applicable in a clinical setting, and that provide solutions to interventional challenges.
0.3 Outline of the thesis

The next chapter presents a review of state-of-the-art methods that are relevant to the defini-
tion of the proposed framework. After, based on this literature review, the objectives of the
presented research are defined, and the proposed general methodology is exposed in chapter 2.
The three following chapters present the manuscripts written in response to specific research
problematic. The manuscript defining our new method for the segmentation of anatomical
structures with spatially varying intensity is presented in chapter 3. A curvilinear structure
detection filter for vessel detection in 3D scans is described in chapter 4