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STATIC AND DYNAMI C OVERPRODUCTION AN D SELECTION O F 
CLASSIEIER ENSEMBLE S WIT H GENETI C ALGORITHM S 

MIRANDA DOS SANTOS, Eulanda 

ABSTRACT 

The overproduce-and-choose sttategy is a static classifier ensemble sélection approach, 
which is divided into overproduction and sélection phases. This thesis focuses on the sé­
lection phase, which is the challenge in overproduce-and-choose strategy. When this phase 
is implemented as an opttmization process, the search criterion and the search algorithm 
are the two major topics involved. In this thesis, we concenttate in optimization processes 
conducted using genetic algorithms guided by both single- and multi-objective functions. 
We first focus on finding the best search criterion. Various search criteria are investigated, 
such as diversity, the error rate and ensemble size. Error rate and diversity measures are 
directly compared in the single-objective optimization approach. Diversity measures are 
combined with the error rate and with ensemble size, in pairs of objective functions, to 
guide the multi-optimization approach. Expérimental results are presented and discussed. 

Thereafter, we show that besides focusing on the characteristics of the décision profiles of 
ensemble members, the conlrol of overfitting at the sélection phase of overproduce-and-
choose strategy must also be taken into account. We show how overfitfing can be detected 
at the sélection phase and présent three stratégies to control overfitting. Thèse stratégies 
are tailored for the classifier ensemble sélection problcm and compared. This comparison 
allows us to show that a global validation strategy should be applied to control overfitting 
in optimization processes involving a classifier ensembles sélection task. Furthermore, this 
study has helped us establish that this global validation strategy can be used as a tool to 
measure the relationship between diversity and classification performance when diversity 
measures are employed as single-objective functions. 

Finally, the main contribution of this thesis is a proposed dynamic overproduce-and-
choose strategy. While the static overproduce-and-choose sélection strategy has tradi-
tionally focused on finding the most accuratc subsel of classifiers during the sélection 
phase, and using it to predict the class of ail the test samples, our dynamic overproduce-
and-choose strategy allows the .sélection of the most confident subset of classifiers to label 
each test sample individually. Our method combines optimization and dynamic sélection 
in a two-level sélection phase. The optimization level is intended to générale a population 
of highly accurate classifier ensembles, while the dynamic sélection level applies mea­
sures of confidence in order to sélect the ensemble with the highest degree of confidence 
in the current décision. Three différent confidence measures are presented and compared. 
Our method outperforms classical static and dynamic sélection stratégies. 



SURPRODUCTION E T SELECTION STATIQU E ET DYNAMIQUE DE S 
ENSEMBLES D E CLASSIFICATEURS AVE C ALGORITHMES GÉNÉTIQUE S 

MIRANDA DOS SANTOS, liulanda 

RÉSUMÉ 

La stratégie de "surproduction et choix" est une approche de sélecfion stafique des ensem­
bles de classificateurs, et elle est divisée en deux étapes: une phase de surproduction et 
une phase de sélecfion. Cette thèse porte principalement sur l'étude de la phase de sélec­
tion, qui constitue le défi le plus important dans la stratégie de surproduction et choix. La 
phase de sélection est considérée ici comme un problème d'optimisation mono ou multi-
critère. Conséquemment, le choix de la fonction objectif et de l'algorithme de recherche 
font l'objet d'une attention particulière dans cette thèse. Les critères étudiés incluent 
les mesures de diversité, le taux d'erreur et la cardinalité de l'ensemble. L'optimisafion 
monocritère permet la comparaison objective des mesures de diversité par rapport à la per­
formance globale des ensembles. De plus, les mesures de diversité sont combinées avec 
le taux d'erreur ou la cardinalité de l'ensemble lors de l'optimisation multicritère. Des 
résultats expérimentaux sont présentés et discutés. 

Ensuite, on montre expérimentalement que le surapprentissage est potentiellement présent 
lors la phase de sélection du meilleur ensemble de classificateurs. Nous proposons 
une nouvelle méthode pour délecter la présence de surapprentissage durant le processus 
d'optimisation (phase de sélection). Trois stratégies sont ensuite analysées pour tenter de 
contrôler le surapprentissage. L'analyse des résultats révèle qu'une stratégie de valida­
tion globale doit être considérée pour contrôler le surapprentissage pendant le processus 
d'optimisation des ensembles de classificateurs. Cette étude a également permis de véri­
fier que la stratégie globale de validation peut être ufilisée comme outil pour mesurer em­
piriquement la relation possible entre la diversité et la performance globale des ensembles 
de classificateurs. 

Finalement, la plus importante contribufion de cette thèse est la mise en oeuvre d'une 
nouvelle stratégie pour la sélecfion dynamique des ensembles de classificateurs. Les 
approches traditionnelles pour la sélecfion des ensembles de classificateurs sont essen­
tiellement stafiques, c'est-à-dire que le choix du meilleur ensemble est définitif et celui-ci 
servira pour classer tous les exemples futurs. La stratégie de surproduction et choix dy­
namique proposée dans cette thèse permet la sélection, pour chaque exemple à classer, du 
sous-ensemble de classificateurs le plus confiant pour décider de la classe d'appartenance. 
Notre méthode conciHc l'opfimisafion et la sélection dynamique dans une phase de 
sélection à deux niveaux. L'objectif du premier niveau est de produire une population 
d'ensembles de classificateurs candidats qui montrent une grande capacité de généralisa-
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fion, alors que le deuxième niveau se charge de sélecfionner dynamiquement l'ensemble 
qui présente le degré de cerfitude le plus élevé pour décider de la classe d'appartenance de 
l'objet à classer. La méthode de sélection dynamique proposée domine les approches con­
ventionnelles (approches statiques) sur les problèmes de reconnaissance de formes étudiés 
dans le cadre de cette thèse. 



SURPRODUCTION E T SELECTION STATIQU E ET DYNAMIQUE DE S 
ENSEMBLES D E CLASSIFICATEURS AVE C ALGORITHMES GÉNÉTIQUE S 

MIRANDA DOS SANTOS, Eulanda 

SYNTHÈSE 

Le choix du meilleur classificaleur est toujours dépendant de la connaissance a priori dé­
finie par la base de données utilisée pour l'apprentissage. Généralement la capacité de 
généraliser sur des nouvelles données n'est pas safisfaisante étant donné que le problème 
de reconnaissance est mal défini. Afin de palier à ce problème, les ensembles de clas­
sificateurs permettent en général une augmentation de la capacité de généraliser sur de 
nouvelles données. 

Les méthodes proposées pour la sélection des ensembles de classificateurs sont réparties 
en deux catégories : la sélection statique et la sélection dynamique. Dans le premier cas, le 
sous-ensemble des classificateurs le plus performant, trouvé pendant la phase d'entraîne­
ment, est utilisé pour classer tous les échanttllons de la base de test. Dans le second cas, le 
choix est fait dynamiquement durant la phase de test, en tenant compte des propriétés de 
l'échantillon à classer. La stratégie de "surproduction et choix" est une approche statique 
pour la sélection de classificateurs. Cette stratégie repose sur l'hypothèse que plusieurs 
classificateurs candidats sont redondants et n'apportent pas de contribution supplémen­
taire lors de la fusion des décisions individuelles. 

La stratégie de "surproduction et choix" est divisée en deux étapes de ttaitement : la phase 
de surproduction et la phase de sélection. La phase de surproduction est responsable de 
générer un large groupe initial de classificateurs candidats, alors que la phase de sélec­
tion cherche à tester les différents sous-ensembles de classificateurs afin de choisir le 
sous-ensemble le plus performant. La phase de surproduction peut être mise en oeuvre 
en ufilisant n'importe quelle méthode de génération des ensembles de classificateurs, et 
ce indépendamment du choix des classificateurs de base. Cependant, la phase de sélection 
est l'aspect fondamental de la stratégie de surproduction et choix. Ceci reste un problème 
non résolu dans la littérature. 

La phase de sélecfion est formalisée comme un problème d'optimisation mono ou multi­
critère. Conséquemment, le choix de la fonction objectif et de l'algorithme de recherche 
sont les aspects les plus importants à considérer. Il n'y a pas de consensus actuellement 
dans la littérature concernant le choix de la fonction objectif lin termes d'algorithmes de 
recherche, plusieurs algorithmes ont été proposées pour la réalisation du processus de sé­
lecfion. Les algorithmes génétiques sont intéressants parce qu'ils génèrent les N meilleures 
solutions à la fin du processus d'optimisafion. En effet, plusieurs solufions sont dispo-
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nibles à la fin du processus ce qui permet éventuellement la conception d'une phase de 
post-traitement dans les systèmes réels. 

L'objectif principal de cette thèse est de proposer une alternative à l'approche classique 
de type surproduction et choix (approche statique). Cette nouvelle stratégie de surproduc­
tion et choix dynamique, permet la sélection du sous-ensemble des classificateurs le plus 
compétent pour décider la classe d'appartenance de chaque échantillon de test à classer. 

Le premier chapitre présente l'état de l'art dans les domaines des ensembles des classifica­
teurs. Premièrement, les méthodes classiques proposées pour la combinaison d'ensemble 
de classificateurs sont présentées et analysées. Ensuite, une typologie des méthodes pu­
bliées pour la sélection dynamique de classificateurs est présentée et la stratégie de sur­
production et choix est introduite. 

Les critères de recherche pour guider le processus d'optimisafion de la phase de sélection 
sont évalués au chapitre deux. Les algorithmes génétiques monocritère et mulficritère sont 
utilisés pour la mise en oeuvre du processus d'optimisation. Nous avons analysé quatorze 
fonctions objectives qui sont proposées dans la littérature pour la sélection des ensembles 
de classificateurs : le taux d'erreur, douze mesures de diversité et la cardinalité. Le taux 
d'erreur et les mesures de diversité ont été directement comparés en utifisant une approche 
d'optimisation monocritère. Cette comparaison permet de vérifier la possibilité de rem­
placer le taux d'erreur par la diversité pour trouver le sous-ensemble des classificateurs 
le plus performant. De plus, les mesures de diversité ont été ufihsées conjointement avec 
le taux d'erreur pour l'étude des approches d'optimisation multicritère. Ces expériences 
permettent de vérifier si l'ufilisafion conjointe de la diversité et du taux d'erreur permet 
la sélection des ensembles classificateurs plus performants. Ensuite, nous avons montré 
l'analogie qui existe entre la sélecfion de caractéristiques et la sélection des ensembles des 
classificateurs en tenant compte conjointement des mesures de cardinalité des ensembles 
avec le taux d'erreur (ou une mesure de diversité). Les résultats expérimentaux ont a été 
obtenus sur un problème de reconnaissance de chiffres manuscrits. 

Le chapitre trois constitue une contribution importante de cette thèse. Nous montrons dans 
quelle mesure le processus de sélection des en.sembles de classificateurs souffre du pro­
blème de surapprenfissage. Etant donné que les algorithmes génétiques monocritère et 
multicritère sont utilisés dans cette thèse, trois stratégies basées sur un mécanisme d'ar­
chivage des meilleures solutions sont présentées et comparées. Ces stratégies sont : la 
validation parfielle, oîi le mécanisme d'archivage est mis à jour seulement à la fin du 
processus d'optimisation ; "backwarding", oii le mécanisme d'archivage est mis à jour à 
chaque génération sur la base de la meilleure solution identifiée pour chaque populafion 
durant l'évolution ; et la vaUdation globale, qui permet la mise à jour de l'archive avec la 
meilleure solution identifiée dans la base de données de validation à chaque génération. 
Finalement, la stratégie de validafion globale est présentée comme un outil pour mesurer 
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le lien entre la diversité d'opinion évaluée entte les membres de l'ensemble et la perfor­
mance globale. Nous avons montré expérimentalement que plusieurs mesures de diversité 
ne sont pas reliées avec la performance globale des ensembles, ce qui confirme plusieurs 
études publiées récemment sur ce sujet. 

Finalement, la contribution la plus importante de cette thèse, soit la mise en oeuvre d'une 
nouvelle stratégie pour la sélection dynamique des ensembles de classificateurs, fait l'objet 
du chapitre quatre. Les approches tradifionnelles pour la sélection des ensembles de clas­
sificateurs sont essentiellement statiques, c'est-à-dire que le choix du meilleur ensemble 
est définitif et celui-ci servira pour classer tous les exemples futurs. La stratégie de sur­
production et choix dynamique proposée dans cette thèse permet la sélection, pour chaque 
exemple à classer, du sous-ensemble de classificateurs le plus confiant pour décider de la 
classe d'appartenance. Notre méthode concilie l'optimisation et la sélection dynamique 
dans une phase de sélection à deux niveaux. L'objectif du premier niveau est de produire 
une population d'ensembles de classificateurs candidats qui montrent une grande capacité 
de généralisation, alors que le deuxième niveau se charge de sélecfionner dynamiquement 
l'ensemble qui présente le degré de certitude le plus élevé pour décider de la classe d'ap­
partenance de l'objet à classer. La méthode de sélection dynamique proposée domine les 
approches conventionnelles (approches statiques) sur les problèmes de reconnaissance de 
formes étudiés dans le cadre de cette thèse. 
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INTRODUCTION 

The ensemble of classifiers method has become a dominant approach in several différent 

fields of application such as Machine Leaming and Pattern Récognition. Such interest is 

motivated by the theoretical [16] and expérimental [31; 96] studies, which show that clas­

sifier ensembles may improve traditional single classifiers. Among the various ensemble 

génération metiiods available, the most popular are bagging [5], boosting [21] and the ran­

dom subspace method [32]. Two main approaches for the design of classifier ensembles 

are clearly defined in the literature: (1) classifier fusion; and (2) classifier sélection. 

The most common and most gênerai opération is the combination of ail classifiers mem­

bers' décisions. Majority voting, sum, product, maximum, minimum [35], Bayesian rule 

[86] and Dempster-Shafer [68] are examples of functions used to combine ensemble mem­

bers' décisions. Classifier fusion relies on the assumption that ail ensemble members 

make independent errors. Thus, pooling the décisions of the ensemble members may lead 

to increasing the overall performance of the System. However, it is difficult to impose 

independence among ensemble's component members, especially since the component 

classifiers are redundant [78], i.e. they provide responses to the same problem [30]. As 

a conséquence, there is no guarantee that a particular ensemble combination method will 

achieve error independence. When the condition of independence is not verified, it cannot 

be guaranteed that the combination of classifier members' décision will improve the final 

classification performance. 

Classifier sélection is traditionally defined as a sttategy which assumes that each ensemble 

membcr is an expert in some local régions of the feature space [107]. The most locally 

accurate classifier is selected to esfimate the class of each particular test pattern. Two caté­

gories of classifier sélection techniques exist: static and dynamic. In the first case, régions 

of compétence are defined during the training phase, while in the second case, they are 

defined during the classification phase taking into account the characteristics of the sam-



pie to be classified. However, there may be a drawback to both sélection stratégies: when 

the local expert does not classify the test pattern correcfiy, there is no way to avoid the 

misclassification [80]. Moreover, thèse approaches, for instance Dynamic  Classifier  Sé-

lection with  Local  Accuracy  (DCS-LA) [101], often involve high Computing complexity, 

as a resuit of cstimating régions of compétence, and may be critically affected by parame­

ters such as the number of neighbors considered (k  value) for régions defined by k nearest 

neighbors and distance functions. 

Another définition of static classifier sélection can be found in the Neural Network liter­

ature. It is called either the overproduce-and-choose  strategy  [58] or the test-and-select 

methodology [78]. From this différent perspective, the overproduction phase involves the 

génération of an initial large pool of candidate classifiers, while the sélection phase is in­

tended to test différent subsets in order to sélect the best performing subset of classifiers, 

which is then used to classify the whole test set. The assumption behind overproduce-and-

choose strategy is that candidate classifiers are redundant as an analogy with the feature 

subset sélection problem. Thus, finding the most relevant subset of classifiers is better 

than combining ail the available classifiers. 

Problem Statemen t 

In this thesis, the focus is on the overproduce-and-choose sttategy, which is traditionally 

divided into two phases: (1) overproducfion; and (2) sélection. The former is devoted to 

constructing an initial large pool of classifiers. The latter tests différent combinations of 

thèse classifiers in order to identify the optimal candidate ensemble. Clearly, the over­

production phase may be undertaken using any ensemble génération method and base 

classifier model. The sélection phase, however, is the fundamental issue in overproduce-

and-choose strategy, since it focuses on finding the subset of classifiers with optimal accu­

racy. This remains an open problem in the literature. Although the search for the optimal 

subset of classifiers can be exhaustive [78], search algorithms might be used when a large 



initial pool of candidate classifiers C  is involved due to the exponential complexity of an 

exhaustive search, since the size of •p(C) is 2", n  being the number of classifiers in C and 

V{C) the powerset of C defining the population of ail possible candidate ensembles. 

When dealing with the sélection phase using a non-exhaustive search, two important as­

pects should be analyzed: (1) the search criterion; and (2) the search algorithm. The 

first aspect has received a great deal of attenfion in the récent literature, without much 

consensus. Ensemble combination performance, ensemble size and diversity measures 

are the most fréquent search criteria employed in the Uterature. Performance is the most 

obvions of thèse, since it allows the main objective of pattem récognition, i.e. finding 

predictors with a high récognition rate, to be achieved. Ensemble size is interesting due 

to the possibility of increasing performance while minimizing the number of classifiers in 

order to accomplish requirements of high performance and low ensemble size [62]. Fi­

nally, there is agreement on the important rôle played by diversity since ensembles can be 

more accurate than individual classifiers only when classifier members présent diversity 

among themselves. Nonetheless, the relationship between diversity measures and accu­

racy is unclear [44]. The combination of performance and diversity as search criteria in a 

multi-objective optimization approach offers a better way to overcome such an apparent 

dilemma by allowing the simultaneous use of both measures. 

In terms of search algorithms, several algorithms hâve been applied in the literature for 

the sélection phase, ranging from ranking the n  best classifiers [58] to genetic algorithms 

(GAs) [70]. GAs are attractive since they allow the fairly easy implementation of en­

semble classifier sélection tasks as optimization processes [82] using both single- and 

multi-objective functions. Moreover, population-based GAs are good for classifier sélec­

tion problems because of the possibility of dealing with a population of solufions rather 

than only one, which can be important in performing a post-processing phase. However it 

has been shown that such stochastic search algorithms when used in conjunction to Ma­

chine Leaming techniques are prone to overfitting in différent application problems like 



the distribution estimation algorithms [102], the design of evolutionary multi-objective 

leaming System [46], multi-objective pattem classification [3], multi-objective optimiza­

tion of Support Vector Machines [87] and wrapper-based feature subset sélection [47; 22]. 

Even though différent aspects hâve been addressed in works that investigate overfitting 

in the context of ensemble of classifiers, for instance regularization terms [63] and meth­

ods for tuning classifiers members [59], very few work has been devoted to the control of 

overfitting at the sélection phase. 

Besides search criterion and search algorithm, other difficulties are concemed when per­

forming sélection of classifier ensembles. Classical overproduce-and-choose strategy is 

subject to two main problems. Eirst, a fixed subset of classifiers defined using a train-

ing/optimization dataset may not be well adapted for the whole test set. This problem is 

similar to searching for a universal best individual classifier, i.e. due to différences among 

samples, there is no individual classifier that is perfecUy adapted for every test sample. 

Moreover, as stated by the "No Free Lunch" theorem [10], no algorithm may be assumed 

to be better than any other algorithm when averaged over ail possible classes of problems. 

The second problem occurs when Pareto-based algorithms are used at the sélection phase. 

Thèse algorithms are efficient tools for overproduce-and-choose strategy due to their ca-

pacity to solve multi-objective optimization  problems  (MOOPs) such as the simultaneous 

use of diversity and classification performance as the objective functions. They use Pareto 

dominance to solve MOOPs. Since a Pareto front is a set of nondominated solutions rep-

resenting différent tradeoffs with respect to the multiple objective functions, the task of 

selecting the best subset of classifiers is more complex. This is a persistent problem in 

MOOPs applications. Often, only one objective function is taken into account to perform 

the choice. In [89], for example, the solution with the highest classification performance 

was picked up to classify the test samples, even though the solutions were optimized re-

garding both diversity and classificafion performance measures. 



Goals of the Research and Contribution s 

The first goal of this thesis is to détermine the best objective funcfion for finding high-

performance classifier ensembles at the sélecfion phase, when this sélection is formulated 

as an optimization problem performed by both single- and muUi-objecfive GAs. Sev­

eral issues were addressed in order to deal with this problem: (1) the error rate and di­

versity measures were directly compared using a single-objective optimization approach 

performed by GA. This direct comparison allowed us to verify the possibility of using di­

versity instead of performance to find high-performance subset of classifiers. (2) diversity 

measures were applied in combination with the error rate in pairs of objecfive funcfions in 

a multi-optimization approach performed by multi-objective GA (MOGA) in order to in­

vestigate whether including both performance and diversity as objecfive functions leads to 

sélection of high-performance classifier ensembles. Finally, (3) we invesfigated the possi­

bility of establishing an analogy between feature subset sélection and ensemble classifier 

sélection by combining ensemble size with the error rate, as well as with the diversity 

measures in pairs of objective funcfions in the muhi-opfimization approach. Part of this 

analysis was presented in [72]. 

The second goal is to show experimentally that an overfitting control strategy must be 

conducted during  the optimization process, which is performed at the sélection phase. In 

this study, we used the bagging and random subspace algorithms for ensemble génération 

at the overproduction phase. The classification error rate and a set of diversity measures 

were applied as search criteria. Since both GA and MOGA search algorithms were exam-

ined, we invesfigated in this thesis the use of an auxiliary archive to store the best subset 

of classifiers (or Pareto front in the MOGA case) obtained in a validation process using 

a validation dataset to control overfitting. Three différent stratégies to update the aux­

iliary archive hâve been compared and adapted in this thesis to the context of single and 

multi-objective sélection of classifier ensembles: (\)  partial validation  where the auxiliary 

archive is updated only in the last génération of the optimization process; (2) backward-



ing [67] which relies on monitoring the optimization process by updating the auxiliary 

archive with the best solution from each génération and (3) global  validation  [62] up­

dating the archive by storing in it the Pareto front (or the best solution in the GA case) 

identified on the validation dataset at each génération step. 

The global validation strategy is presented as a tool to show the relafionship between 

diversity and performance, specifically when diversity measures are used to guide GA. 

The assumpfion is that if a strong relationship between diversity and performance exists, 

the solufion obtained by performing global validation solely guided by diversity should be 

close or equal to the solution with the highest performance among ail solutions evaluated. 

This offers a new possibility to analyze the relationship between diversity and performance 

which has received a great deal of attention in the literature. In [75], we présent this 

overfitting analysis. 

Finally, the last goal is to propose a dynamic overproduce-and-choose strategy which com­

bines optimization and dynamic sélection in a two-level sélection phase to allow sélecfion 

of the most confident subset of classifiers to label each test sample individually. Sélecfion 

at the opfimization level is intended to générale a population of highly accurate candidate 

classifier ensembles, while at the dynamic sélection level measures of confidence are used 

to reveal the candidate ensemble with highest degree of confidence in the current décision. 

Three différent confidence measures are investigated. 

Our objective is to overcome the three drawbacks mentioned above: Rather than select­

ing only one candidate ensemble found during the optimization level, as is done in static 

overproduce-and-choose strategy, the sélection of the best candidate ensemble is based 

directly on the test pattems. Our assumption is that the generalization performance will 

increase, since a population of potential high accuracy candidate ensembles are considered 

to sélect the most compétent solution for each test sample. 'Fhis first point is parficularly 

important in problems involving Pareto-based algorithms, because our method allows ail 



equafiy compétent solutions over the Pareto front to be tested; (2) Instead of using only 

one local expert to classify each test sample, as is done in traditional classifier sélec­

tion stratégies (both static and dynamic), the sélection of a subset of classifiers may de-

crease misclassification; and, finally, (3) Our dynamic sélection avoids estimating régions 

of compétence and distance measures in selecting the best candidate ensemble for each 

test sample, since it relies on calculating confidence measures rather than on performance. 

Moreover, we prove both theoretically and experimentally that the sélection of the solution 

with the highest level of confidence among its members permits an increase in the "degree 

of certainty" of the classification, increasing the generalization performance as a consé­

quence. Thèse interesting results motivated us to investigate three confidence measures in 

this thesis which measure the extent of consensus of candidate ensembles: (l)  Ambiguity 

measures the number of classifiers in disagreement with the majority voting; (2) Margin, 

inspired by the definifion of margin, measures the différence between the number of votes 

assigned to the two classes with the highest number of votes, indicating the candidate en­

semble's level of certainty about the majority voting class; and (3) Strength relative  to  the 

closest class  [8] also measures the différence between the number of votes received by 

the majority voting class and the class with the second highest number of votes; however, 

this différence is divided by the performance achieved by each candidate ensemble when 

assigning the majority voting class for samples contained in a validation dataset. ITiis ad-

ditional information indicates how often each candidate ensemble made the right décision 

in assigning the selected class. 

As marginal contributions, we also point out the best method for the overproduction phase 

on comparing bagging and the random subspace method. In [73], we first introduced the 

idea that choosing the candidate ensemble with the largest consensus, measured using 

ambiguity, to predict the test pattern class leads to selecting the solution with greatest 

certainty in the current décision. In [74], we présent the complète dynamic overproduce-

and-choose strategy. 



Organization o f the Thesi s 

This thesis is organized as follows. In Chapter 1, we présent a brief overview of the liter­

ature related to ensemble of classifiers in order to be able to introduce ail définitions and 

research work related to the overproduce-and-choose strategy. Firstly, the combination of 

classifier ensemble is presented. Then, the ttaditional définition of dynamic classifier sé­

lecfion is summarized. Finally, the overproduce-and-choose strategy is explained. In this 

chapter we emphasize that the overproduce-and-choose strategy is based on combining 

classifier sélection and fusion. In addition, it is shown that the overproduce-and-choose 

stratégies reported in the literature are static sélection approaches. 

In Chapter 2, we investigate the search algorithm and search criteria at the sélection phase, 

when this sélection is performed as an optimization process. Single- and multi-objective 

GAs are used to conduct the optimization process, while fourteen objective functions are 

used to guide this optimization. Thus, the experiments and the results are presented and 

analyzed. 

The overfitting aspect is addressed in Chapter 3. We demonstrate the circumstances under 

which the process of classifier ensemble sélection results in overfitting. ITien, three straté­

gies used to control overfitting are introduced. Finally, expérimental results are presented. 

In Chapter 4 we présent our proposed dynamic overproduce-and-choose strategy. We 

describe the opfimization and the dynamic sélection levels performed in the two-level 

sélection phase by population-based GAs and confidence-based measures respectively. 

Then, the experiments and the results obtained are presented. Finally, our conclusions and 

suggestions for future work are discussed. 



CHAPTER 1 

LITERATURE REVIE W 

Leaming algorithms are used to solve tasks for which the design of software using tta­

ditional programming techniques is difficult. Machine failures predicfion, filter for elec-

tronic mail messages and handwritten digits récognition are examples of thèse tasks. Sev­

eral différent learning algorithms hâve been proposed in the literature such as Décision 

Trees, Neural Networks, k  Nearest Neighbors (kNN), Support Vector Machines (SVM), 

etc. (Jiven sample x  and its class label u.\.  with an unknown function uj^  = f{x),  ail thèse 

learning algorithms focus on finding in the hypothesis space / / the best approximation 

function //, which is a classifier, to the funcfion /(;r). Hence, the goal of thèse learning 

algorithms is the design of a robust well-suited single classifier to the problem concemed. 

Classifier ensembles attempt to overcome the complex task of designing a robust, well-

suited individual classifier by combining the décisions of relatively simpler classifiers. It 

has been shown that significant performance improvements can be obtained by creating 

classifier ensembles and combining their classifier members' outputs instead of using sin­

gle classifiers. Altinçay [2] and Tremblay et al. [89] showed that ensemble of kNN is 

superior to single kNN; Zhang [105] and Valentini [93] concluded that ensemble of SVM 

outperforms single SVM and Ruta and Gabrys [71] demonstrated performance improve­

ments by combining ensemble of Neural Networks, instead of using a single Neural Net­

work. Moreover, the wide applicability of ensemble-of-classifier techniques is important, 

since most of the leaming techniques available in the literature may be used for generat­

ing classifier ensembles. Besides, ensembles are effective tools to solve difficulty Pattern 

Récognition problems such as remote sensing, person récognition, intrusion détection, 

médical applications and others [54]. 
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According to Dietterich [16] there are three main reasons for the improved performance 

verified using classifier ensembles: (1) statistical;  (2) compulational;  and (3) representa-

tional. Figure 1 illustrâtes thèse reasons. The first aspect is related to the problem that 

arises when a learning algorithm finds différent hypothèses h^,  which appear equally ac­

curate during the training phase, but chooses the less compétent hypothesis, when tested 

in unknown data. This problem may be avoided by combining ail classifiers. The compu­

lational reason refers to the situation when learning algorithms get stuck in local optima, 

since the combination of différent local minima may lead to better solutions. The last 

reason refers to the situation when the hypothesis space H  does not contain good approx­

imations to the function f{x).  In this case, classifier ensembles allow to expand the space 

of functions evaluated, leading to a better approximation of f{x). 

Staristicn C'ompiiT.itionn 

Representational 

Figure 1 The statistical, compulational and representational reasons for combining 
classifiers [16]. 
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However, the literature has shown that diversity is the key issue for employing classifier 

ensembles successfully [44]. Il is intuitively accepted that ensemble members must be dif­

férent from each other, exhibiting especially diverse errors [7]. However, highly accurate 

and reliable classificafion is required in practical machine learning and pattem récognition 

applications. Thus, ideally, ensemble classifier members must be accurate and différent 

from each other to ensure performance improvement. 'Fherefore, the key challenge for 

classifier ensemble research is to understand and measure diversity in order to establish 

the perfect trade-off between diversity and accuracy [23]. 

Although the concept of diversity is still considered an ill-defined concept [7], there are 

several différent measures of diversity reported in the literature from différent fields of re­

search. Moreover, the most widely used ensemble création techniques, bagging, boosting 

and the random subspace method are focused on incorporating the concept of diversity 

into the construction of effecfive ensembles. Bagging and the random subspace method 

impliciUy try to create diverse ensemble members by using random samples or random 

features respectively, to train each classifier, while boosting try to explicitly ensure diver­

sity among classifiers. The overproduce-and-choose strategy is another way to explicitly 

enforce a measure of diversity during the génération of ensembles. This strategy allows 

the sélection of accurate and diverse classifier members [69]. 

This chapter is organized as follows. In section 1.1, it is presented a survey of construction 

of classifier ensembles. Ensemble création methods are described in section 1.1.1, while 

the combination functions are discussed in section 1.1.2. In section 1.2 it is presented an 

overview of classifier sélection. The classical dynamic classifier sélection is discussed in 

section 1.2.1; the overproduce-and-choose strategy is presented in section 1.2.2; and the 

problem of overfitfing in overproduce-and-choose strategy is analysed in section 1.2.3. 

Finally, section 1.3 présents the dicussion. 
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1.1 Constructio n o f classifier ensemble s 

The constmction of classifier ensembles may be performed by adopting différent straté­

gies. One possibility is to manipulate the classifier models involved, such as using différent 

classifier types [70], différent classifier architectures [71] and différent leaming parame­

ters initialization [2]. Another option is varying the data, for instance using différent data 

sources, différent pre-processing methods, différent sampling methods, distortion, etc. It 

is important to mention that the génération of an ensemble of classifiers involves the de­

sign of the classifiers members and the choice of the fusion function to combine their 

décisions. Thèse two aspects are analyzed in this section. 

1.1.1 Stratégie s for generating classifie r ensemble s 

Some authors [77; 7] hâve proposed to divide the ensemble création methods into différent 

catégories. Sharkey [77] hâve shown that the following four aspects can be manipulated 

to yield ensembles of Neural Networks: initial conditions, training data, topology of the 

networks and the training algorithm. More recently, Brown et. al. [7] proposed that 

ensemble création methods may be divided into three groups according to the aspects 

that are manipulated. (1) Star'ting  point in  hypothesis  space  involves varying the start 

points of the classifiers, such as the initial random weights of Neural Networks. (2) Set of 

accessible hypothesis  is related to varying the topology of the classifiers or the data, used 

for training ensemble's component members. Finally, (3) traversai  of  hypothesis space  is 

focused on enlarging the search space in order to evaluate a large amount of hypothesis 

using genetic algorithms and penalty methods, for example. We présent in this section the 

main ensemble creafion methods divided into five groups. This categorization takes into 

account whether or not one of the following aspects are manipulated: training examples, 

input features, output targets, ensemble members and injecting randomness. 
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Manipulating th e Training Example s 

This first group contains methods, which constmct classifier ensembles by varying the 

training samples in order to generate différent datasets for training the ensemble members. 

The following ensemble constmcfion methods are examples of this kind of approach. 

• Bagging  - It is a bootstrap technique proposed by Breiman [5]. Bagging is an 

acronym for fiootstrap A^^regation Veaming,  which builds n  replicate training 

datasets by randomly sampling, with replacement, from the original ttaining dataset. 

Thus, each replicated dataset is used to train one classifier member. The classifiers 

outputs are then combined via an appropriate fusion function. It is expected that 

63,2% of the original training samples will be included in each replicate [5]. 

• Boosting  -  Several variants of boosting hâve been proposed. We describe hère the 

Adaboost (short for A<i(3ptive Boosting) algorithm proposed by Freund and Schapire 

[21], which appears to be the most popular boosting variant [54J. This ensemble 

création method is similar to bagging, since it also manipulâtes the training exam­

ples to generate multiple hypothèses. However, boosting is an itérative algorithm, 

which assigns weights to each example contained in the training dataset and génér­

âtes classifiers sequentially. At each itération, the algorithm adjusts the weights of 

the misclassified training samples by previous classifiers. Thus, the samples consid­

ered by previous classifiers as difficult for classification, will hâve higher chances 

to be put together to form the training set for future classifiers. fhe final ensem­

ble composed of ail classifiers generated at each itération is usually combined by 

majority voting or weighted voting. 

• Ensemble  Clustering  - It is a method used in unsupervised classification that is moti­

vated for the success of classifier ensembles in the supervised classification context. 

The idea is to use a partition génération process to produce différent clusters. Af-

terwards, thèse partitions are combined in order to produce an improved solution. 
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Diversity among clusters is also important for the success of this ensemble création 

method and several stratégies to provide diversity in cluster algorithms hâve been 

investigated [26]. 

It is important to take into account the distinction between unstable  or stable  classifiers 

[42]. 'Hie first group is strongly dépendent on the training samples, while the second group 

is less sensitive to changes on the ttaining dataset. The literature has shown that unstable 

classifiers, such as Décision Trees and Neural Networks, présent high variance, which is a 

component of the bias-variance décomposition of the error framework [19]. Consequently, 

stable classifiers like kNN and Fischer linear discriminant présent low variance. Indeed, 

one of the advantages of combining individual classifiers to compose one ensemble is 

to reducc the variance component of the error [59]. Thus, due to the fact that boosting 

is assumed to reduce both bias and variance [19], this ensemble génération method is 

efficient using both stable and unstable classifiers. On the other hand, bagging is mostiy 

effective with unstable classifiers, since bagging is assumed to reduce variance [94]. 

Manipulating th e Input Feature s 

Thèse methods construct classifier ensembles manipulating the original set of features 

available for training. The objecfive is to provide a partial view of the training dataset to 

each ensemble member, leading them to be différent from each other. In addition, thèse 

methods try to reduce the number of features to fight the effects of the so-called curse  of 

dimensionality problem  [90]. 

• Feature  Subset Sélection  -  The objective of ensemble feature sélection is to build sets 

of classifiers using small subsets of features whilst keeping high accurate classifiers, 

as was done in [51]. An interesting overview about several techniques used to create 

ensemble feature sélection is presented in [90]. 
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• The  Random Subspace  Method  -  'Fhis method introduced by Ho in [32] is considered 

to be a feature subset sélection approach. Il works by randomly choosing n  différent 

subspaces from the original feature space. Each random subspace is used to train 

one individual classifier. The n  classifiers are usually combined by the majority 

voting rule. Although the random subspace method is supposed to reduce variance 

[94], it is assumed be an efficient method for building ensembles using both stable 

and unstable classifiers. 

Manipulating th e Output Target s 

This group contains methods, which are based on manipulating the labels of the samples 

contained in the training dataset. In the error-correcting output coding technique used 

by Dietterich and Bakiri [18], a multi-class problem is transformed into a set of binary 

problems. At each itération a new binary division of the training dataset is used to train a 

new classifier. Another example is the method proposed by Breiman [6], which introduces 

noise to change some class labels of the ttaining samples. 

Manipulating th e Ensemble Members (Heterogeneous Ensembles ) 

Thèse methods work by using différent classifier types [70], différent classifier architec­

tures [69] or différent initializations of the leaming parameters [107], whilst maintaining 

the same training dataset. For instance, Valentini and Dietterich [95] used an ensemble 

of SVM with kernel RBE (radial basis functions) in which the classifier members were 

trained using différent parameters a.  Ruta and Gabrys [70] employed 15 différent leam­

ing algorithms, including Quadratic discriminant. Radial Basis Network, k-NN, Décision 

Tree, and others, in order to compose an ensemble of 15 heterogeneous classifiers. 
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Injecting randomnes s 

This group contains methods, which inject randomness into the classifier members to pro­

duce différent classifiers in order to build ensembles. The random initial weights of Neural 

Networks [78] and the random choice of the feature that décides the split at the internai 

nodes of Décision Tree [17], are examples of randomness injected into classifier members. 

1.1.2 Combinatio n Functio n 

The application of one of the above mentioned ensemble création methods générâtes an 

initial set of classifiers C,  where C  = {ci,C2,... ,c„}. Figure 2 shows that the ensem­

ble generafion method is employed using samples x,,̂  contained in the training dataset 

T . Given such a pool of classifiers, the most common operafion is the fusion of ail n 

classifiers. Thus, an effective way of combining the classifier members' outputs must 

be found. Even though some classification techniques, such as Neural Networks [97] and 

Polynomial classifiers [20], hâve been used to combine classifier members, there are many 

différent classifier fusion funcfions proposed. In this section we présent a brief description 

of some of the most widely used fusion functions. 

T 

X,,( 

Ensemble 
Génération 

Method 
-C =  {c i ,C2 , . . . ,C„} 

Figure 2 Overview of the creafion process of classifier ensembles. 
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Majority Votin g 

It is the simplest and most popular method to combine classifiers. The definifion presented 

in Equafion 1.1 is also called Plurality  vote  [40]. Considering the set oïn  classifiers, yi  as 

the class label output of the /-th classifier, and a classification problem with the following 

set of class labels Q.  = [uj] , 1̂2 • • •, ^c]i majority voting for sample :r is calculated as: 

n 

m.v[.v) =  max^.^j ^ y,^^  (1-1) 
i=\ 

When there is a tie for the number of votes, it may be broken randomly or a rejection strat­

egy must be performed. There are other versions of vote, such as unanimous consensus, 

weighted voting, etc [40]. 

Product Rul e 

It is a simple combination function that is calculated taking into account outputs of classi­

fiers Ci provided as class probabilities P[iOk\yi{x)),  denoting that the class label of sample 

X is uJk if classifier Q assigns the class label output yi.  The product mie is computed as: 

n 

pr{x)=^rr^axU,\{PMy^{x)) (1.2) 

Sum Rul e 

This funcfion also opérâtes using the class probabilities provided by classifier members c,. 

The décision is obtained as follows: 

n 

sr{x) =  maxLi X^/'C^^cly.^r)) (1.3) 
( - 1 
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Maximum Rul e 

It is possible to approximate the combination functions product (Equation 1.2) and sum 

(Equation 1.3) by its upper or lower bounds. If the sum is approximated by the maximum 

of the class probabilities, max rule is obtained as: 

ma.r{.v) = max^,^imax"^jP(a;fc|i/,(aO) (1-4) 

Minimum Rul e 

This function is obtained through approximating the product mie of class probabilities by 

the minimum: 

min{x) ^ maXfc^imin"^iP(cjfc|f/i(x)) (1.5) 

Naive Baye s 

This method, also called Bayesian combination mie [86], assumes that classifier members 

are mutually independent and opérâtes on the confusion matrix of each classifier member 

c,. The objecfive is to take into account the performance of each classifier c,,  for each 

class involved in the classification problem, over samples contained in dataset T. Let 

P{tOt\yi{x) —  ujk) be an estimated of the probability that the tme class label of sample x 

is uJt if classifier c, assigns as output the class label u^k- The  probability P{iJt\y,{x)  = uj^) 

is computed as the ratio between the number of training samples assigned by classifier 

Cj to class uJk,  whose tme class label is cot,  and the total number of ttaining samples as­

signed by c, to class iv^.  Thus, Naive Bayes classifies new samples using thèse estimated 

probabihties as follows: 

n 

nbk{x) =  Yl  Pi^tlVi(x)  =  LJk)  (1 .6) 
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Naive Bayes décision mie sélects the class with the highest probability computed by the 

estimated probabilities in Equation 1.6. 

Dempster-Shafer 

This combination method is based on belief funcfions. Given the set of class labels 

Q, = {uji.^h  •  • •  ^^v}, the set Q  has subsets which are known as proposifions. The set 

of propositions is denoted as P.  Letting A  and B  dénote two arbitrary class sets where 

A &  P and B  e  P,  a  basic probability assignment (bpa)  is assigned to each proposition, 

for instance bpa.{A)  represents the output of the classifier on A.  Thus, the basic proba­

bihties assigned to ail subsets of A  are  added in order to calculate a numeric value in the 

range [0,1] that indicates the belief in proposition, as follows: 

bel{A) = ^ 6 p a ( / l ) (1.7) 
BÇ.A 

Given the sets A  and B  with two différent basic probabilities, bpai{A)  for one classifier 

and bpa2{B)  for the other classifier, C  indicates the basic probability of their conjunction 

C =  An  B,  which is proportional to bpai{A)  x bpa2{B). Finally, the classifiers are then 

combined by using the Dempster-Shafer rule as: 

The fusion functions described in this section are few examples of the variety of classifier 

combinafion mies reported in the literature. Other approaches to combine ensemble clas­

sifier members include Behavior-Knowledge Space (BKS) [33], Décision Templates [41] 

and Wemecke's method [98]. 

Classifier fusion assumes error independence among ensemble's component members. 

This means that the classifier members are supposed to misclassify différent pattems [43]. 
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In this way, fiie combinafion of classifier members' décision will improve the final classi­

fication performance. However, when the condition of independence is no verified, there 

is no guarantee that the combination of classifiers will outperf'orm single classifiers [83]. 

On the one hand, it is difficult to impose independence among ensemble's component 

members. On the other, the sélection of classifiers has focused on finding either the most 

efficient individual classifier or the best subset of classifiers, rather than combining ail 

available n  classifiers. Therefore, classifier sélecfion techniques avoid the assumption of 

independence. Classifier sélection is described in the next section. 

1.2 Classifie r Sélectio n 

It was mentioned in the introduction that classifier sélection is traditionally defined as a 

strategy that assumes each ensemble member as an expert in some régions of compétence 

[55; 107]. The sélection is called dynamic or static whether the régions of compétence 

are defined during the test or the training phase respectively. However, several methods 

reported in the literature as dynamic classifier sélection methods define régions of com­

pétence during the training phase [107; 81; 79]. Thèse stratégies are discussed in section 

1.2.1. 'ITie overproduce-and-choose strategy, which is the classifier ensemble sélection 

technique studied in this thesis, is classically assumed to be a static classifier sélection 

method [69]. In section 1.2.2 we présent an overview of the overproduce-and-choose 

strategy. 

1.2.1 Dynami c Classifier Sélectio n 

Classical dynamic classifier  sélection  (DCS) methods are divided into three levels, as illus-

trated in Figure 3. The first level, called classifier génération  employs one of the ensemble 

création methods presented in section 1.1.1, using the samples x,,g contained in the train­

ing dataset T,  to obtain classifiers to compose the initial pool of classifiers C.  However, 

rather than combining ail available n  classifiers using one of the fusion functions men­

tioned in section 1.1.2, the second level called région  of compétence  génération,  uses T 
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or an independent validafion dataset V to produce régions of compétence Rj.  Finally, Dy-

namic Sélection  chooses a winning partition R*  and the winning classifier c*,  over samples 

contained in R*,  to assign the label lOk  to the sample x,,^ from the test dataset G-

Theoretically, level 2 and level 3 are performed during the test phase in DCS methods, i.e. 

based on samples x, g. Due to the high Computing complexity of esfimating régions of 

compétence dynamically [40], several DCS methods preestimate régions of compétence 

during the training phase [107; 81; 79], and perform only the third level during the test 

phase. Thus, the term DCS will hereafter be used to refer to approaches, which assign 

label uJk  taking into account the test samples, whatever the phase in which the régions of 

compétence are generated. 

r 

Classifier 
Génération 

C =  {ci ,C2,- • ,Cn} 

2 
Région o f 
Compétence 
Génération 

- « 1 -

-R2- Dynamic 
Sélection - • - / ? ; 

x,,< 

Figure 3 'Fhe classical DCS process: DCS is divided into three levels focusing 
on training individual classifiers, generating régions of compétence and 
selecting the most compétent classifier for each région. 

The main différence between the various DCS methods is the partition génération strategy 

employed. K nearest neighbors [101], clustering [38] and various training datasets [81] 

are examples of techniques used. In DCS-LA {Dynamic  Classifier  Sélection  with  Local 

Accuracy), proposed by Woods [101], the first level générâtes a population of five het-
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erogeneous classifiers through feature subset sélection. The algorithm defines the local 

région R*  as the sel of k nearest neighbors from T surrounding x,_y. 'ITius, at the third 

level, the local accuracy of each classifier c,  is estimated, and the most locally accurate 

classifier c* is then selected to estimate the true class of x, g. Giacinto and RoH [24] pro­

posed an approach very similar to Woods' method. The différence is that the local région 

used to estimate the individual performances of each c,  is defined as the nearest neighbors 

from V that hâve a similarity with x,,^ that is higher than a threshold. Such a similarity 

is measured by comparing the vector of class labels assigned by each c, to x,_g and to its 

neighbors. 

In the clustering and sélection method proposed by Kuncheva [38], multilayerperceptrons 

(MLPs) with différent number of nodes in the hidden layer compose C. Thus, at the second 

level, the feature space is partitioned into clusters using K means, and cluster centroids are 

computed. At the third level, the région with a cluster center nearest to x,,g is picked up 

as R*  and the c, with the highest classification accuracy is nominated to label x̂ ĝ. In the 

DCS method employed by Sohn and Shin [85], T is first divided into n  clusters, cluster 

centroids are computed and each cluster is used to train one classifier. The base algorithm 

was a logistic model. The second level and the third level are conducted as in Kuncheva's 

method [38]. Liu et al. [45] presented a clustering and selecfion-based method that first 

générâtes three heterogeneous classifiers to compose C.  At the second level, T is divided 

into two groups for each Q: (1) correctly classified training samples; and (2) misclassified 

training samples. Thèse two groups are further partitioned using a clustering algorithm to 

compose régions of compétence, i.e. each c, has its own. At the dynamic sélection level, 

the cluster closest to x, g from each of c,'s régions of compétence is pointed out and the 

most accurate classifier is chosen to assign x,,g's label. 

Singh and Singh [81] described a DCS method for image région labeling in which the first 

level générâtes C  by ttaining each c,  (kNN classifiers) with n  différent training datasets 

which are obtained through applying n  différent texture analysis methods. The régions of 
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compétence are defined at the second level as the class centroids of each training dataset. 

The sélection level measures the distance between Xi,g and ail the class centroids. Then, 

the c,  responsible by the closest région is selected to classify x;,g. In [107], a DCS method 

for data stream mining applications is proposed. For the first level, T  is divided into 

n chunks which are further used to train the n  DT classifiers that compose C.  Vocal 

régions are generated with statistical information on the attribute values of samples from 

V. Finally, at the third level, the most accurate classifier in the région sharing the same 

statistical information on attribute values with x, g is selected to label it. 

It is important to mention that ail thèse methods pick up only one candidate classifier 

to make the décision. This may lead to a classifier with a low level of confidence in its 

décision, or even one with a wrong décision, being chosen. A combination of sélection 

and fusion has been investigated in the literature as a strategy for avoiding this drawback. 

Kuncheva [39] proposed to use statistical tests to switch between sélection and fusion. 

The classifier c*,  selected using clustering and sélection [38], is employed to label Xi,g 

only when it is significantly better than the remaining classifiers. Otherwise, ail classifiers 

in C are combined through décision templates. Gunes et al. [28] applied a fuzzy clustering 

algoridim in combination with ambiguity rejection in order make it possible to deal with 

overlapping régions of compétence. 'Hiey switch between classifying x, g using either c* or 

the combination of the best adapted classifiers whether x,_g falls into a single cluster or into 

an ambiguous cluster, respectively. The k-nearest-oracles (KNORA) method proposed 

by Ko et al. [36] explores the properfies of the oracle concept [15] to sélect the most 

suitable classifier ensemble for each test sample. KNORA first finds the set of k nearest 

neighbors from V surrounding x,,g. Then the algorithm sélects each classifier c,, which 

correctly classifies this set of neighbors, to compose a classifier ensemble. This selected 

classifier ensemble is then used for classifying Xi,g. In the method used by Tsymbal et 

al. [92], called Dynamic Voting with Sélection (DVS), a weight is determined for each 

classifier c,  according to its local accuracy measured using the set of k nearest neighbors 
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from V surrounding x, g. 'Fhen, the classifiers with the lowest accuracy are rcmoved, 

while the remaining classifiers are combined through weighted voting to assign the class 

of x,,g. Finally, Soares et al. [84] hâve tailored Kuncheva's method [39] to sélect candidate 

classifiers based on accuracy and diversity. 

Table 1 summarizes the DCS methods reported in ihe  literature and mentioned in this 

section. It is interesting to note that heterogeneous classifiers at the first level, clustering 

at the second level and accuracy as a sélection criterion at the third level are most often 

applied. An alternative to DCS is the overproduce-and-choose strategy, which allows the 

sélection of classifier ensembles instead of only one classifier. Hence, this strategy is also 

based on combining sélection and fusion, as it is explained in the next section. 

Table I 

Compilation of some of the results reported in the DCS literature highlighting the type of 
base classifiers, the strategy employed for generating régions of compétence, and the 

phase in which they are generated, the criteria used to perform the sélection and whether 
or not fusion is also used (Het: heterogeneous classifiers). 

Référence 
Number 
1107] 
124J 
1101] 
1811 
138] 
185] 
145] 
[39] 
128] 
136] 
192] 
184] 

Classilier 
Members 
D'Y 
Het 
Het 
kNN 
MLP 
Logistic 
Het 
MLP/Het 
Bayesian 
kNN 
Het 
Het 

Régions of 
Compétence 
Blocks of samples 
kNN rule 
kNN rule 
Différent features 
Clustering 
Clustering 
Clustering 
Clustering 
Clustering 
kNN rule 
kNN rule 
Clustering 

Partition 
Phase 
Training 
Lest 
Test 
Lraining 
Training 
Lraining 
Lraining 
Lraining 
Lraining 
Lest 
Lest 
Lraining 

Sélection 
Criteria 
Accuracy 
Accuracy 
Accuracy 
Distance measure 
Distance & accuracy 
Distance & accuracy 
Distance & accuracy 
Distance & accuracy 
Distance measure 
Oracle 
Accuracy 
Accuracy & diversity 

Sélection 
/fusion 
Sélection 
Sélection 
Sélection 
Sélection 
Sélection 
Sélection 
Sélection 
Sélection or fusion 
Sélection or fusion 
Sélection & fusion 
Sélection & fusion 
Sélection & fusion 
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1.2.2 Overproduce-and-Choos e Strateg y 

Given the pool of classifiers C  ~  {ci, C2,. . . , c,,} generated using any ensemble création 

method, classifier fusion combines the n  classifiers assuming that they are ail important 

and independent. By contrast, classifier sélection, especially DCS, sélects one individual 

classifier c*  to assign the label of each sample contained in the test dataset Ç. A combina­

tion of both approaches is the overproduce-and-choose  strategy  (OCS). The objective of 

OCS is to find the most relevant subset of classifiers, based on the assumption that clas­

sifiers in C  are redundant [106]. Once the best subset of classifiers has been selected, the 

output of its classifier members must be combined. 

Methods based on OCS are divided into two phases: (l)  overproduction;  and (2) sélection. 

The first phase is related to the first level of DCS, hère however, the overproducfion phase 

must constmct an initial large  pool of candidate classifiers C,  using the training dataset T. 

The second phase is devoted to identify the best performing subset of classifiers in V{C). 

As mentioned in the introduction, V{C)  is the powerset of C defining the population of ail 

possible candidate ensembles Cf  The  selected ensemble C*  is then combined to estimate 

the class labels of the samples contained in the test dataset Ç.  Figure 4 illustrâtes the OCS 

phases. 

OCS based in heuristic techniques has been proposed in the literature. Margineantu and 

Dietterich [48] proposed an OCS to reduce the compulational costs of boosting. The 

pool C  was composed of homogeneous DT generated by boosting. Then, pmning algo­

rithms were applied to sélect each classifier c, used to form C*.  'Fhe authors pointed 

out a diversity-based pmning algorithm, which used Kappa diversity, as the best pmning 

method. Partridge and Yates [58] generated the pool C  using two types of Neural Net­

works, MLP and Radial Basis Function (RBF). The Neural Networks were trained using 

différent number of hidden units and weight initialization. They proposed the use of two 

heuristics during the sélection phase. The first heurisfic relies on ranking the candidate 
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Figure 4 Overview of the OCS process. OCS is divided into the overproduction 
and the sélection phases. The overproduction phase créâtes a large pool of 
classifiers, while the sélection phase focus on finding the most performing 
subset of classifiers. 

classifiers by its performance and selecting the k  best to compose C*,  where k  <  n.  The 

second heuristic, picks the classifier with the highest performance, from each type of clas­

sifier, to compose C*.  In the same light, Canuto et al. [9] generated C  using heterogeneous 

classifiers such as MLP, RBF, SVM, kNN, and others, and tested différent fixed sizes of 

classifier ensembles. 'ITieir sélection phase took into account both performance and diver­

sity of each candidate ensemble generated. Aksela and Laaksonen [1] also generated a 

pool C  of heterogeneous classifiers at the overproducfion phase. Neural Networks, SVM, 

etc, are examples of classifiers u.sed. The authors successfully applied an OCS for se­

lecting classifiers focusing on the diversity of errors. The candidate ensembles were also 

generated using fixed ensembles' size. 

Although thèse heurisfic-based approaches lead to reduce the complexity of the sélection 

phase, there is no guarantee that the optimal solution will be found. An alternative to 

heuristic-based OCS is to use search algorithms. When performing OCS using search 
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algorithms, it is important to choose the best search criterion and the best search algo­

rithm for the classifier ensemble sélection problem. Sharkey and Sharkey [78] proposed 

an exhaustive search algorithm to find C* from an initial pool C  composed of MLPs. The 

classifiers were trained using différent number of hidden units and différent random initial 

conditions. 'Fhus, candidate ensembles' performances were used to guide the sélection 

phase. Based on the same idea, Zhou et al. [107] developed équations, which were used 

to identify the classifiers that should be eliminated from C  in order to keep the combina­

tion with optimal accuracy. Their pool C  was composed of différent Neural Networks. 

Nonetheless, non-exhaustive search algorithms might be used when a large C  is available 

due to the high Computing complexity of an exhaustive search, since the size of V{C)  is 

2". 

Several non-exhaustive search algorithms hâve been applied in the literature for the sélec­

tion of classifier ensembles. Zhou et al. [107] proposed GANSEN (GA-based Sélective 

Ensemble), which employs GAs to assign random weight to each Neural Network and 

evolves thèse weights by assessing the performance of the combination obtained when 

each Neural Network is included in the ensemble. Then, each Neural Network whose 

weight is higher than a fixed threshold is used to compose C*.  Roli et al. [69] compared 

forward (ES), backward (BS) and tabu (TS) search algorithms, guided by accuracy and 

the following three diversity measures: generalized diversity (r), Q-statistic [44] ($) and 

double-fault (6),  called by the authors compound diversity. Their initial pool C  was com­

posed of heterogeneous classifiers such as MLP, kNN and RBF. They concluded that the 

search criteria and the search algorithms investigated presented équivalent results. Follow­

ing the idea of identifying the best search criteria and search algorithm, Ruta and Gabrys 

[70], used the candidate ensembles' error rate and 12 diversity measures, including the 

same measures investigated by Roli et al. [69], to guide the following 5 single-objective 

search algorithms: ES, BS, GA, stochastic hill-climbing (HC) search and population-based 

incrémental leaming (PBIL). They concluded that diversity was not a better measure for 
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finding ensembles that perform well than the candidate ensembles' error rate. Their ini­

tial pool of candidate classifiers was composed of 15 heterogeneous classifiers, including 

MLR kNN, RBE, Quadratic Bayes, and others. 

The combination of the error rate and diversity as search criteria allows the simultaneous 

use of both measures in OCS. It is not surprising that this idea has already been inves­

tigated in the literature. Opitz and Shavlik [53] applied a GA using a single-objective 

function combining both the error rate and ambiguity diversity measure (as defined in 

[53]) to search for C*  in a population C  of Neural Networks. They showed that this OCS 

outperformed the combination of ail classifiers in C.  Zenobi and Cunningham [104] cre-

ated at the overproduction phase a pool C  of kNN classifiers by applying a feature subset 

sélection approach. At the sélection phase, ambiguity (as defined in [104]) and the error 

rate were used to guide a hill-climbing search method. They showed that their combined 

approach outperformed the ensembles selected using the error rate as the only objective 

function. Tremblay et al. [89] used a MOGA (a modified version of Non-dominated Sort­

ing G A - NSGA [11]) guided by pairs of objective functions compose of the error rate 

with the following four diversity measures: ambiguity [104] (7), fault majority [70] (A), 

entropy (^  and Q-statistic ($) [44]. They generated a pool C  of kNN classifiers gener­

ated by the random subspace method at the overproduction phase. '̂ They concluded that 

MOGA did not find better ensembles than single-objective GA using only the error rate 

as the objective function. Finally, in the OCS proposed by Oliveira et al. [51], a feature 

subset sélection process was applied to generate a population of Neural Networks at the 

overproduction phase. The sélection phase was also guided by 7 and the error rate as the 

objective functions. 

It is important to mention that, thèse previous works on OCS hâve one characteristic in 

common: the solution C*  assumed to be the best candidate ensemble, found and analyzed 

during the sélection phase, is used to classify ail samples contained in Ç. Due to this char­

acteristic, we call this method static  (SOCS). However, as mentioned in the introduction. 
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there is no guarantee that the C* chosen is indeed the solution most likely to be the correct 

one for classifying each test sample x,,g individually. In Chapter 4, we propose a dynamic 

OCS to avoid this drawback. 

Table II présents some of the results reported in the literature dealing with OCS. Il is im­

portant to see that heterogeneous classifiers at the overproduction phase and GA guided 

by the error rate at the choice phase, are most often appfied. Moreover, the error rate is 

the search criterion most frequently pointed out as the best évaluation function for select­

ing C*.  Thèse results show that the définition of the best search algorithm and the best 

search criterion for the sélection phase of OCS is still an open issue. Moreover, much less 

work has been devoted to combining différent search criteria in a multi-objective sélection 

phase. Thèse issues are addressed in Chapter 2 of this thesis. In addition, as shown in Table 

11, most of the search algorithms employed in OCS are stochastic search algorithms, such 

as G A, HC and PBIL. However, taking into account that the problem of selecting classi­

fier ensembles can be assumed as a leaming task, the literature has shown that stochasfic 

search algorithms are prone to overfitting when used in conjunction with Machine L^eam-

ing techniques. In next section, the problem of overfitting in OCS is described. 

'Fable II 

Compilation of some of the results reported in the OCS fiterature (FSS: Feature Subset 
Sélection, and RSS: Random Subspace. 

Référence 
number 
1107J 
[58] 
[78] 
[70] 
[9] 
[69] 
148] 

[Il 
[51] 
[89] 

Classifier 
Members 
NN 
NN 
NN 
Hel 
Het 
Het 
DT 
Het 
.NN 
kNN 

Ensemble 
Method 
NNHet 
NNHet 
NNHel 
Het 
Het 
Het 
Boosting 
Hel 
FSS 
RSS 

Search 
criterion 
Error rate 
Error rate 
Error rate 
Error rate and diversily(I2) 
6 and Ç 
Error rate, r , Ç and â 
Error rate. Kappa 
Diversity (11) 
A and Error rate 
Error rate. 7, A. ô and Ç 

Search 
algorithm 
GA 
N best 
Exhaustive 
GA, FS. BS. HC and PBIL 
N best 
FS. BS and TS 
Pruning 
N best 
NSGA 
NSGA 

Best Searc h 
criteria 
-
-
-
Error rate 
No best 
-
Kappa 

-
-
Error rate 
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1.2.3 Overfittin g i n Overproduce-and-Choose Strateg y 

It has been shown in the last section that the research in classifier sélection has focused 

on the characteristics of the décision profiles of ensemble members in order to optimize 

performance, lliese characteristics are particularly important in the sélection of ensemble 

members performed in OCS. However, the control of overfitting is a challenge in Machine 

Learning, and it is difficult to monitor this when creating classifier ensembles. 

Overfitting is a key problem in supervised classification tasks. Il is the phenomenon de­

tected when a learning algorithm fits the training set so well that noise and the peculiarities 

of the training data are memorized. As a resuit of this, the leaming algorithm's perfor­

mance drops when it is tested in an unknown dataset. The amount of data used for the 

leaming process is fundamental in this context. Small datasets are more prone to overfit­

ting than large datasets [37], although, due to the complexity of some learning problems, 

even large datasets can be affected by overfitting. In an attempt to tackle this issue, sev­

eral Machine Leaming studies hâve proposed solutions, such as: regularization methods, 

adding noise to the training set, cross-validation and early stopping [64]. Early stopping 

is the most common solution for overfitting. 

Moreover, overfitting in pattern récognition has attracted considérable attention in opti­

mization applications. Llorà et al. [46] suggested the use of optimization constraints to 

remove the overfitted solutions over the Pareto front in an evolutionary multi-objective 

leaming System. Wiegand et al. [100] [62] proposed global validation stratégies for the 

evolutionary optimization of Neural Network parameters. Loughrey and C!unningham [47] 

presented an early-stopping criterion to control overfitting in wrapper-based feature subset 

sélection using stochastic search algorithms such as GA and Simulated Annealing. Finally, 

Robilliard and Fonlupt [67] proposed "backwarding", a method for preventing overfitting 

in Genetic Programming. 
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Overfitting control methods applied to pattern récognition problems may be divided into 

three catégories. The first contains problem-dependent methods, which, as the name sug-

gests, cannot be widely reused [46; 91]. The second contains the early  stopping-based 

methods [47], which can be directly used in single-objective optimizafion problems. The 

method proposed in [47], for example, relies on determining a stopping génération number 

by averaging the best solution from each génération over a set of 10-fold cross-validation 

trials. However, defining an early-stopping criterion is more difficult when a Pareto front 

(i.e. a set of non-dominated solutions) is involved due to the fact that comparing sets of 

equal importance is a very complex task. Finally, the third contains the archive-based 

methods [62; 100; 67], which hâve been shown to be efficient tools for tackling overfitting 

[100; 67] and may be widely reused in ail optimization problems [62]. 

We show in the next Chapter that the sélection phase of OCS may be formulated as an 

optimization problem. Hence, since it has been shown that the optimization process can 

generate overfitted solufions [47; 65] and considering that the création of classifier en­

sembles with a high level of generalization performance is the main objective in leaming 

problems [53], it is important to take the necessary précautions to avoid overfitting in 

OCS. Even though, very few work has been devoted to the control of overfitting in clas­

sifier ensemble sélection tasks. Tsymbal et al. [91] suggested that using individual mem­

ber accuracy (instead of ensemble accuracy) together with diversity in a genetic search 

can overcome overfitfing. Radtke et al. [62] proposed a global validation method for 

multi-objective evolutionary optimization including ensemble sélection. In Chapter 3 we 

show how overfitting can be detected at the sélection phase of OCS and investigate three 

différent archive-based overfitting control method. 'Fhey are analyzed in the context of 

population-based evolutionary algorithms with single- and multi-objective functions. 
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1.3 Discussio n 

In this chapter we hâve presented a literature review of classifier ensembles related to 

our research. It has been observed that classifier fusion and classifier sélection are the 

two approaches available to designing classifier ensembles. In the context of classifier fu­

sion, différent methods for generating classifier ensembles and fusion functions hâve been 

briefiy described. In terms of classifier sélection, the two main methods for selecting clas­

sifiers hâve been presented and discussed. 'ITiese methods arc dynamic classilier sélection 

and overproduce-and-choose strategy. 

It has been observed that the overproduce-and-choose strategy is the main topic of this 

thesis. We hâve seen that, even though several important contributions hâve been made in 

this topic, the définition of the best search criterion for finding the best subset of classifiers 

is still an open quesfion. Moreover, the control of overfitting in the overproduce-and-

choose strategy is often neglected. Finally, we hâve observed that the previous works on 

overproduce-and-choose strategy define a single classifier ensemble to label ail samples 

contained in the test dataset. This leads to a drawback since the selected ensemble is not 

assured to be the most likely to be correct for classifying each test sample individually. 

We hâve called this strategy as static overproduce-and-choose strategy. In the next chapter 

we will analyze several search criteria and single- and multi-objective GA as the search 

algorithms in the context of static overproduce-and-choose strategy. 



CHAPTER 2 

STATIC OVERPRODUCE-AND-CHOOS E STRATEG Y 

In the previous chapter we mentioned that the search for the best subset of classifiers 

in SOCS is frequentiy conducted using search algorithms, when an initial large pool of 

classifiers C  is involved. Even though there is no guarantee that a particular non-exhaustive 

search algorithm will find the optimal subset of classifiers, since the complète powerset 

'P{C) is not evaluated, search algorithms are employed in order to avoid both problems, 

the high complexity of generating the powerset 7^(C) using an exhaustive enumeration and 

the low number of candidate ensembles generated using heuristic-based approaches [69]. 

It is interesting to note that, when dealing with a non-exhaustive search, the sélection 

phase required by SOCS can be easily formulated as an optimization problem in which 

the search algorithm opérâtes by minimizing/maximizing one objective function or a set 

of objective functions. 

In Figure 5 it is shown how the sélection phase may be implemented as an optimization 

process. In the overproduction phase, T is used by any ensemble création method to 

generate C.  Then, the sélection phase performs an optimization process conducted by the 

search algorithm, which calculâtes the objective function using samples x,,„ contained in 

an optimization dataset O.  The objective of the optimization process is to generate and test 

différent combinations of the initial classifiers Q in order to identify the best performing 

candidate ensemble. 

We may categorize two gênerai stratégies for selecting classifier ensembles by performing 

an optimization process: (1) sélection without validation; and (2) sélection with validation. 

The first and simplest procédure relies on selecting the best candidate ensemble on the 

same dataset as used during the search process. There is no independent validation dataset 

hère, but rather the optimization process is performed using a dataset for a fixed number 



34 

X,,( 
;; 

Ensemble _ 
Génération 11^ = {ci.c^ 

Method 
,c„} 

OVERPRODUCTION PHASE SELECTION PHASE 

Figure 5 The overproduction and sélection phases of SOCS. The sélection phase is 
formulated as an optimization process, which générâtes différent candidate 
ensembles. This optimization process uses a validafion strategy to avoid 
overfitting. The best candidate ensemble is then selected to classify the test 
samples. 

of générations. A populafion of solufions is generated and analyzed. Then, the same 

optimization dataset is used to identify the best performing candidate ensemble C*.  This 

procédure was applied in [90] for ensemble feature sélection. Flowever, it is well accepted 

in the Uterature that an independent data set must be used to vaUdate sélection methods in 

order to reduce overfitting and increase the generalization ability [78; 65]. 

Following this idea, in the second sélection strategy when the optimization process is 

finished, the best solution Cf  obtained on a validafion dataset V is picked up to classify 

the test samples in G- Tremblay et al. [89] hâve applied the second procédure in a classifier 

ensemble sélection problem. As is illustrated in Figure 5, the second strategy is employed 

in this thesis. In the next chapter we describe how the validation procédure is conducted. 
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In this chapter, our focus is on the two important aspects that must be analyzed when deal­

ing with the optimization process using a non-exhaustive search: (1) the search algorithm; 

and (2) the search criterion [70]. Evolutionary algorithms appear to fit well with the sé­

lection phase of SOCS in the context of optimization processes [82]. Moreover, Ruta and 

Gabrys [70] observe that population-based evolutionary algorithms allow the possibility of 

dealing witii a population of classifier ensembles rather than one individual best candidate 

ensemble. This important property enabled us to propose our dynamic SOCS in chapter 5. 

The problem of choosing the most appropriate search criterion is the challenge in the 

literature. Although it is widely accepted that diversity is an important criterion, the re­

lationship between diversity and performance is unclear. As mentioned in the previous 

chapter, the combination of the classification error rate and diversity as search criteria in 

a multi-objective optimization approach, offers the possibility of enforcing both search 

criteria at the sélection phase of SOCS. Finally, it can be observed that, since SOCS re­

lies on the idea that component classifiers are redundant, an analogy can be established 

between feature subset sélection and SOCS. Feature subset sélection (FSS) approaches 

work by selecting the most discriminant features in order to reduce the number of features 

and to increase the récognition rate. Following this analogy, the sélection phase of SOCS 

could focus on discarding redundant classifiers in order to increase performance and re­

duce complexity. Based on thèse standpoints, our objective in this chapter is to conduct 

an expérimental study to answer the foUowing questions: 

1. Which measure is the best objective function for finding high-performance classifier 

ensembles? 

2. Can we find better performing ensembles by including both performance and diver­

sity as objective functions in a multi-optimization process? 

3. Is il possible to establish an analogy between FSS and SOCS, i.e. can we reduce the 

number of classifiers while at the same time increasing performance? 
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In sections 2.1 and 2.2 wc describe the détails of both the overproduction and the sélec­

tion phases. Then, a description of the parameter settings on experiments is presented in 

section 2.3.1. Finally, the experiments and the results obtained are presented in section 

2.3. 

2.1 Overproductio n Phas e 

Random Subspace-based ensembles of kNN are used to perform the overproduction phase 

of the experiments carried out in this chapter. The Random Subspace (RSS) method is one 

of the most popular ensemble construction methods apart from Bagging and Boosting. As 

described in section 1.1.1, each randomly chosen subspace is used to train one individual 

classifier. In this way, a small number of features are used, reducing the training-time 

process and the so-called curse of dimensionality. Since the RSS method has the advantage 

of being capable of dealing with huge feature spaces, kNN appears to be a good candidate 

as a learner in a RSS-based ensemble. Indeed, Ho [31] maintains that, by using RSS to 

generate ensembles of kNN, we may achieve high generalization rates and avoid the high 

dimensionality problem, which is the main problem with kNN classifiers. We use in this 

chapter an ensemble of 100 kNN classifiers, which was generated using the RSS method. 

We présent in section 2.3.1 détails related to the set up of the parameters. 

2.2 Sélectio n Phase 

We discuss in this section the search criteria and the search algorithm, which are the two 

main factors analyzed when dealing with the optimization process at the sélection phase. 

2.2.1 Searc h Criteri a 

The previous works on classifier ensemble sélection summarized in Table II hâve one 

characteristic in common: performance of solutions was the only criterion used to déter­

mine whether or not one sélecfion criterion was better than the others. Although Ruta 



37 

and Gabrys [70] mentioned the necessity of dealing with performance, complexity and 

overfitfing in selecfing classifier ensembles, they did not analyze ail three aspects simulta-

neously. According to the authors, using the ensemble performance as the search criterion 

meets the requirement for high performance, while using a search algorithm addresses the 

complexity aspect and using a post-processing approach, such as the sélecfion and fusion 

approach that they propose, may reduce overfitting. However, as mentioned before, com­

plexity in terms of number of classifiers should also be addressed. Moreover, as it will be 

detailed in the next chapter, an improvement in generalized performance can be obtained 

by controlling overfitting during the optimization process without the need for a sélection 

fusion method. 

Hence, ensemble error rate, ensemble size and diversity measures are the most fréquent 

search criteria employed in the literature (70). The first, is the most obvions search cri­

terion. By applying a search on minimizing the error rate (e),  we may accomplish the 

main objective in pattern récognition, which is to find high-performance predictors. In 

terms of ensemble size, the minimization of the number of classifiers, which is inspired 

by FSS methods through which it is possible to increase recognifion rates while reducing 

the number of features, appears to be a good objective function. The hope is to increase 

the récognition rate while minimizing the number of classifiers in order to meet both the 

performance and complexity requirements. Finally, the important rôle played by diversity 

is clearly defined in the literature. liven though, Kuncheva and Whitaker [44] hâve shown 

that diversity and accuracy do not hâve a strong relationship and concluded that accuracy 

estimation cannot be substituted for diversity. Thèse results were confirmed by Ruta and 

Gabrys [70] in the context of classifier subset sélection. They used diversity measures to 

guide the sélecfion of classifier ensembles in order to reduce the generalization error. ITiey 

concluded that diversity is not a better measure for finding ensembles that perform well 

than e. By contrast, Aksela and Laaksonen [1] successfully applied a method for selecting 

classifiers focusing on the diversity of errors. Moreover, diversity measures appear to be 
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an altemative to perform the optimization process without assuming a given combination 

function [69]. Therefore, there is no consensus about how and where to measure diversity 

nor which proposed diversity measure is the best one. 

Various approaches defining diversity hâve been proposed. In this section, we describe 

the diversity measures used in the optimization process conducted in the experiments pre­

sented in this chapter. In order to simplify the description of the measures, we use the 

following notation. Let Cj  be the candidate ensemble of classifiers, X  the dataset, and l 

and /( their respective cardinalities. X°^  dénotes the number of examples classified in X, 

where a,  b may assume the value of 1 when the classifier is correct and 0 otherwise. r{x) 

dénotes the number of classifiers that correctly classify sample x.  It is worth noting that 

dissimilarity measures must be maximized, while similarity  measures must be minimized 

when used as objective functions during the optimization process. The pairwise measures 

are calculated for each pair of classifiers ci  and c^,  while the non-pairwise measures are 

calculated on the whole ensemble Cj. 

Ambiguity - The classificafion ambiguity (dissimilarity) measure proposed by Zenobi and 

Cunningham [104] is defined as: 

0 i f V i =  '^k 
ai{x)={ (2.1) 

1 otherwise 

where a,  is the ambiguity and y,  is the output of the /"' classifier on the observation x,  and 

^\. is the candidate ensemble output. The ambiguity of the ensemble is: 
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Corrélation Coefficient [44] - A pairwise similarity measure calculated as: 

/Vn/yoo _ /yoiA^io 
Pik = , (2.3) 

^(yviiyvio) + (yvoiyvoo) ^ (A^nyvoo) y  (A îoyyoo) 

Difficulty Measur e [44] - Given F  calculated from { y , y , . . . , l } , which represents the 

number of classifiers in Cj  that correctly classify a pattem x,  this similarity measure may 

be calculated as: 

9 = Va.r{F)  (2.4) 

Disagreement [44] - A pairwise dissimilarity measure measured as: 

Double-fault [44] - A pairwise similarity measure defined as: 

yVOO 

Entropy [44] - A dissimilarity measure which can be calculated as follows: 

1 " 1 

Fault Majorit y - A pairwise dissimilarity measure proposed by Ruta and Gabrys [70] 

which sélects those classifiers with the highest probability of contribufing to the majority 
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voting error of the classifier combination: 

j = \l/2\i'  =  l 

, E . " - i - | l - y a M . r , ) - 0 ] / n if j=0 
x,*j =  < ; (2.9 ) 

l- J2l: 1 -U - yi.k\m{xk)  =  0]/nj  otherwise 

where in{x,)  is the number of classifiers making error on observation x,,  m{xi)  = / — 

J2j=i Vij'  ^^^  where Vi,j is 1 if correct and 0 otherwise, by classifier j and example /. 

Generalized Diversit y [44] - A measure also based on the distribution Y  defined for the 

coïncident failure diversity. Letting p{i),  p{l),  p{2)  be the probability that /, 1 and 2 

classifier(s) respectively, fail when classifying a sample x,  we calculate: 

P(l) = E l P ' (2.10) 
1^1 

The dissimilarity generalized diversity is calculated as: 

- ' - ^ (2.12 ) 

Coïncident Failur e Diversit y [44] - The resuit of a modification to Generalized Diver­

sity (Equation 2.12), which is based on the same distribution proposed for the difficulty 
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measure. Hère, however, Y  -- j  dénotes the proportion of classifiers that do not cor­

rectly classify a randomly chosen sample :r. Therefore, Y  =  l  —  F (F  from the difficulty 

measure). It is also a dissimilarity measure, which is defined as follows: 

0 PO = 1.0 

-po) l^q=\  l  (/ -ôiyEUffciyP. Po<o 
(2.13) 

Interrater Agreemen t [44] - A similarity measure written as: 

n{l- l ) p ( l - p ) 

where p  is the average individual accuracy: 

p - = i - ^ r ( x O (2.15) 
1=1 

Kohavi-Wolpert [44] - A dissimilarity measure calculated as: 

' / '=^;r^è^(^^')(^-^(^')) (2-16) 

1=1 

Q-Statics [44] - A pairwise measure calculated as: 

yyllyyOO _ fsfOl  jsj 10 
^hk = j^njsfoo  j^  yvoiyyio (2.17) 

Summarizing, fourteen search criteria are used to guide the optimization process of the 

sélection phase presented in this chapter. As shown in Table III, thèse search criteria com­

prise twelve diversity measures, plus the ensemble's combined error rate and ensemble 

size. 
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Table 111 

List of search criteria used in the optimization process of the SOCS conducted in this 
chapter. The type spécifies whether the search criterion must be minimized (similarity) or 

maximized (dissimilarity) 

Nanie 
Krror rate 
Ensemble size 
Ambiguity 
Coïncident failure diversity 
Corrélation coefficient 
Difficulty measure 
Disagreement 
Double-fault 
Entropy 
Fault majority 
Generalized diversity 
Interrater agreement 
Kohavi-Wolpert 
Q-statistic 

Label 
( 

C 
7(104] 
a [44] 
p[44] 
0[44] 
r/[44] 
5 144] 
^ 4 4 ] 
A (70] 
r | 4 4 ] 
K[44] 
)/-144[ 
<P [44] 

Type 
Similarity 
Similarity 
Dissimilarity 
13issimilarity 
Similarity 
Similarity 
Dissimilarity 
Similarity 
Dissimilarity 
Dissimilarity 
Dissimilarity 
Similarity 
Dissimilarity 
Similarity 

2.2.2 Searc h Algorithms: Single - and Multi-Objective GAs 

Single- and multi-objective  GA (MOGA) are the two stratégies available when dealing 

with GAs. Traditionally, when the opfimization process is conducted as a single-objective 

problem, GA is guided by an objective function during a fixed maximum number of gén­

érations (user defined inax{g)).  The sélection of classifier ensembles is applied in the 

context of GA based on binary vectors. Each individual, called chromosome, is repre-

sented by a binary vector with a size n,  since the initial pool of classifiers is composed 

of n  members. Inifially, a population with a fixed number of chromosomes is randomly 

created, i.e. a random population of candidate classifier ensembles. ITius, at each généra­

tion step g,  the algorithm calculâtes fitness of each candidate ensemble in the population 

C{g), which is the population of ensembles found at each génération g.  The population is 

evolved through the operators of crossover and mutation. 
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Figure 6(a) depicts an example of the évolution of the optimization process for max{g) = 

1,000 using GA as the search algorithm and the minimization of the error rate e as the 

objective function. Even though we employed e as objective function, we show in Figure 

6(a) plots of e versus number of classifiers Ç, to better illustrate the problem. Each point on 

the plot corresponds to a candidate ensemble Cj taken from 'P(C) and evaluated during the 

optimization process. Indeed, thèse points represent the complète search space explored 

for max{g)  = 1,000. The number of individuals at any C{g)  is 128. It is important to 

mention that thèse candidate ensembles are projected onto the validation dataset in Figure 

6(a), since our sélection phase is conducted with validation. In SOCS, the solution with 

lowest e is selected as the best solution C*',  which is further used to classify the test 

samples, as shown in Figure 5. Diamond represents C*' in Figure 6(a). 

Ensembles evaluate d C 

0 Bes l solution c ' 

i:iU|l|l||^iP luiiliiiiiiiiiiiliiïii»"- '-oH- i 

Ensembles evaluate d C 

O Paret o fron t 

Q Bes l solutio n c ' 

llIlUPHifu. 

10 2 0 3 0 4 0 5 0 6 0 7 0 
Ensemble siz e 

(a) GA guided by p 

10 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 10 0 
Ensemble siz e 

(b) NSGA-n guided by e and C 

Figure 6 Optimization using GA with the error rate e as the objective function in 
Figure 6(a). Optimization using NSGA-II and the pair of objective functions: 
e and ensemble size ( in Figure 6(b). The complète search space, the Pareto 
front (circles) and the best solution C*'  (diamonds) are projected onto the 
validation dataset. The best performing solutions are highlighted by arrows. 

MOGAs often constitute solutions to optimization processes guided by multi-objective 

functions. Since the combination of e and diversity measures as search criteria has been in­

vestigated in the literature as a strategy to sélect accurate and diverse candidate ensembles 
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[89; 104], MOGAs allow the simultaneous use of both measures to guide the optimization 

process of SOCS. Thèse algorithms use Pareto dominance to reproduce the individuals. 

A Pareto front is a set of nondominated solutions representing différent tradeoffs between 

the multi-objective functions. In our classifier ensemble sélection applicafion, a candi­

date ensemble solution C,  is said to dominate solution Cj,  denoted C,  :<  Cj, if C,  is no 

worse than ( j on ail the objective functions and C, is better than Cj  in at least one objec­

tive function. Based on this non-domination criterion, solutions over the Pareto front are 

considered to be equally important. 

Among several Pareto-based evolutionary algorithms proposed in the literature, NSGA-II 

(elitist non-dominated sorting genetic algorithm) [11] appears to be interesting because 

it has two important characteristics: a full elite-preservation strategy and a diversity-

preserving mechanism using the crowding distance as the distance measure. The crowding 

distance does not need any parameter to be set [11]. Elitism is used to provide the means to 

keep good solutions among générations, and the diversity-preserving mechanism is used 

to allow a better spread among the solutions over the Pareto front. In addition, in appendix 

1 we investigated three différent MOGAs: (1) NSGA [11]; (2) NSGA-II [13]; and (3) 

controlled elitist NSGA [14]. Our results indicated that the three MOGAs investigated 

presented équivalent performances when guiding the optimization process. 

NSGA-II [11] works as follows. At each génération step g,  a parent population Ci{g)  of 

size w  evolves and an offspring population C''(^), also of size w,  is created. Thèse two 

populations are combined to create a third population C{g)  of size 2w.  The population 

Q^{g) is sorted according to the nondominance criteria, and différent nondominated fronts 

are obtained. Then, the new population C(.g + 1) is filled by the fronts according to the 

Pareto ranking. In this way, the worst fronts are discarded, since the size of C((7 + 1) is 

w. When the last front allowed to be included in C{g  -|- 1) has more solutions than the 

C>{g f 1) available free space, the crowding distance is measured in order to sélect the 
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most isolated solutions in the objective space in order to increase diversity. Algorithm 1 

sununarizes NSGA-II. 

The optimization process performed by NSGA-II for inax{g)  =-  1,000 is illustrated in 

Figure 6(b). NSGA-II was employed, using the pair of objective functions: jointly mini­

mize the error rate e and the ensemble size (. Circles on the plot represent the Pareto front. 

Due to the fact that ail solutions over the Pareto front are equally important, the sélection 

of the best candidate ensemble C*'  is more complex. Several works reported in the liter­

ature take into account only one objective function to perform the sélection. In [89], [51] 

and [62], the candidate ensemble with lowest e was chosen as the best solution C*',  even 

though the optimization process was guided regarding multi-objective functions. We also 

sélect the solution with lowest e as C*  ,  to classify the test samples in order to perform 

SOCS in this chapter. Diamond indicates the solution C*  in Figure 6(b). In chapter 5 we 

propose a dynamics SOCS to sélect the best candidate ensemble dynamically. 

Algorithm 1  NSGA-H 

1 
2 
3 
4 
5 

6 
7 
8 
9 

10 
11 
12 
13 
14 

Créâtes initial population C( l ) of w chromosomes 
while g  <  max{g)  do 

créâtes C'(p) 
setC^{g) =  C{g)UCHg) 
perform a nondominated sorting to C''{g)  and identify différent fronts Ck,  k  -
1,2,...,etc 
while |C(^ -f- 1)1 + \Ck\  <wdo 

s e t C ( y + l ) : = C ( p + l ) U C , 
set k:=k -\-  1 

end whil e 
perform crowding distance sort to Ck 
set C{g  +  l)-C{g  + 1) U € , [ 1 : {'w -  \C{g  +  1)|)J 
créâtes C^ig  + 1) from C{g  +  1) 
set g:=g + 1 

end whil e 
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2.3 Experiment s 

A séries of experiments has been carried out to investigate the search criteria and the search 

algorithm we proposed to deal with at the beginning of this chapter. Our experiments are 

broken down into three main séries. In the first séries, 13 différent objecfive functions, 

including the 12 diversity measures, are appfied individually as single-objective functions. 

In the second séries, the diversity measures are used in pairs of objective functions com­

bined with the error rate in a multi-objective approach. Finally, the third séries is per­

formed by applying pairs of objective functions combining either the diversity measures 

or the error rate with ensemble size. We begin our analysis taking into account perfor­

mance (section 2.3.2), foUowed by a ensemble size analysis (section 2.3.3). It is important 

to mention that ail the experiments were replicated 30 times and the results were tested 

on multiple comparisons using the Kruskal-Wallis nonparametric statistical test by testing 

the equality between mean values. 'Fhe confidence level was 95% (a  = 0.05), and the 

Dunn-Sidak correction was applied to the critical values. First, we présent a description 

of the parameters settings on experiments. 

2.3.1 Paramete r Settings on Experiment s 

The détails of the parameters used in our experiments are described hère. 'Hiese détails 

are related to the database, the ensemble constmction method and the search algorithms. 

Database 

The experiments were carried out using the NIST Spécial Database 19 (NIST SD19) 

which is a popular database used to investigate digit récognition algorithms. It is com­

posed of 10 digit classes extracted from eight handwritten sample form (hsf) séries, hsf-

(0,1,2,3,4,6,7,8). It was originally divided into 3 sets: hsf-{0123}, hsf-7 and hsf-4. The 

last two sets are referred hère as data-testl (60,089 samples) and data-test2 (58,646 sam­

ples). Data-test2 is well known to be more difficult to use for classification than data-testl 
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[25]. On the basis of the results available in the literature, the représentation proposed by 

Oliveira et al. [52] appears to be well defined and well suited to the NlS'f SD19 database. 

The features are a combinafion of the concavity, contour and surface of characters. 'Fhe 

final feature vector is composed of 132 components: 78 for concavity, 48 for contour and 

6 for surface. 

Ensemble Construction Metho d 

As mentioned in section 2.1, RSS is used during the overproduction phase to générale an 

initial pool of 100 kNN classifiers. Majority vofing was used as the combination func­

tion. 'fhis combination function is shown in Equafion 1.1, chapter 1. In [89], rigorous 

expérimental tests were conducted to set up parameters such as: k value and the number 

of prototypes (to kNN classifiers), the number of subspace dimensions and the number of 

classifier members to RSS, the size of the optimization and the size of the validation data 

sets. The best parameters defined in [89] are used in this chapter. Table IV summarizes 

the parameter sets used. 

Table IV 

Experiments parameters related to the classifiers, ensemble génération method and 
database. 

Number of nearest neighbors (k) 
Random subspace (number of features) 
Training data set (hsf-j0123}) 
Optimization data set size (hsf-{0123)) 
Validation data set (hsf-(01231) 
Data-testl Oisf-7) 
Data-test2 (hsf-4) 

1 
32 
5,000 
10,000 
10,000 
60.089 
58,646 
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Genetic Algorithm s 

The population-based evolutionary algorithms used in this work are both single- and multi-

objective GAs. Since we use an initial pool composed of 100 classifiers, each individual is 

represented by a binary vector with a size of 100. Experiments were carried out to define 

the genefic parameters in [4]. Table V shows the parameter settings employed. The same 

parameters were used for both GAs. 

Table V 

Genetic Algorithms parameters 

Population size 
Number of générations 
Probability of crossover 
F*robability of mutation 

128 
1000 
0.8 
0.01 

One-point crossover and bit-flip mutation 

2.3.2 Performanc e Analysi s 

In order to define the best objective function for our problem, we carried out an expéri­

mental invesfigation focusing on performance (récognition rate). The first question to be 

answered is: Which measure is the best objective function for finding high-performance 

classifier ensembles? Among the measures featured in section 2.2.1, the error rate e 

(1 —récognition rate) and the diversity measures are the most obvions candidates. ITie way 

to compare thèse measures directly is to apply a single-objective optimization approach. 

This direct comparison allows us to verify the possibility of using diversity instead e  to 

find high-performance classifier ensembles. 
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Experiments with G A 

GA-based experiments were conducted to compare 13 différent objecfives functions: e 

and the 12 diversity measures. As explained previously, each experiment was replicated 

30 times in order to arrive at a better comparison of the results. Hence, each of the 13 

objective functions employed generated 30 optimized classifier ensembles. Figure 7 shows 

the comparison results of the 30 replications on data-testl (Figure 7(a)) and on data-test2 

(Figure 7(b)). 
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Figure 7 Results of 30 replicafions using GA and 13 différent objective functions. The 
performances were calculated on the data-testl (Figure 7(a)) and on the data-
test2 (Figure 7(b)). 

Thèse experiments show that: 

a. Diversity measures are not better than the error rate e as an objective function for 

generating high-performance classifier ensembles. The Kmskal-Wallis nonparamet­

ric statistical test shows that e  found ensembles which are significantly différent 

from those found by ail the diversity measures. 
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b. The most successful diversity measure was the difficulty measure 9.  However, the 

performance of the classifier ensembles found using this measure was, on average, 

0.12% (data-testl) and 0.31% (data-test2) worse than that of the ensembles found 

using e direcUy. 

c. Fault majority A was the worst objective function. 'Fhis is a différent resuit from 

those presented by Ruta and Gabrys [70]. l'hey observed that measures with better 

corrélation with majority voting error, i.e. fault majority and double-fault Ô,  are bet­

ter objective functions for generating high-performance ensembles than the others. 

We found that 5  was the third best diversity measure and A was the worst objective 

function, even though there is no significant différence, according to the Kmskal-

Wallis statistical test, between A, coïncident failure, disagreement and enU ôpy on 

data-testl, and among the three first measures on data-test2. 

The results achieved using GA were expected, apart from those for A and 8.  In fact, we 

confirmed the results of previous work, e.g. [70] and [44], that diversity alone cannot 

substitute for e as an objective function for finding the highest performing classifier en­

sembles. Since diversity alone is no better than c, can we find better performing ensembles 

by including both objective functions in the optimization process? We try to answer this 

question using a multi-objective optimization approach in the next section. 

Experiments with  NSGA-I I 

We continue our expérimental study using NSGA-II as the search algorithm. Fhe pre-

liminary study with GA suggested that diversity alone is not better than t  for generating 

the best performing classifier ensemble. This observation led us to use both t  and diver­

sity jointly to guide the optimization process with NSGA-II, since we hâve the option of 

combining différent objective functions. The hope is that greater diversity between base 

classifiers leads to the sélection of high-performance classifier ensembles. 
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Figure 8 Results of 30 replications using NSGA-II and 13 différent pairs of objective 
functions. The performances were calculated on data-testl (Figure 8(a)) and 
data-test2 (Figure 8(b)). The first value corresponds to GA with the error rate 
e as the objective function while the second value corresponds to NSGA-II 
guided by e with ensemble size (. 

Each diversity measure menfioned in section 2.2.1 was combined with e  to make up pairs 

of objective functions to guide the optimization process. Again, the optimization process 

using each pair of objective functions was replicated 30 times. Figure 8 shows the results 

of 30 repUcafions on data-testl (Figure 8(a)) and data-test2 (Figure 8(b)). It is important 

to mention that the first value corresponds to the results using GA as the search algorithm 

and e as the objective function. This means that we can compare the single- and multi-

objective results. The second value corresponds to the results using NSGA-II guided by 

ensemble size (, with e  as the objective functions (discussed in the next section). 

Some observations can be made from thèse results: 

a. By including both diversity and e in a multi-objective optimization process, we may 

find more high-performance classifier ensembles than by using diversity alone; how­

ever, the performance of thèse ensembles is still worse than the performance of the 

ensembles found using (  in the single-objective optimization process. 
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b. The best diversity measures are difficulty 9,  interrater agreement K.,  corrélation co­

efficient p  and double-fault à  on data-testl. The Kmskal-Wallis test shows that the 

first three measures found classifier ensembles with no significantly différent mean 

ranks from those found using GA with c as the objective function on data-testl. On 

data-test2, almost ail the diversity measure results were similar. According to the 

Kxuskal-WalUs statistical test, except for coïncident failure a  and 9,  ail the diversity 

measures found classifier ensembles with no significanfiy différent mean ranks on 

data-test2. It is important to note that the différence between ensembles found using 

diversity (multi-objective optimization) and ensembles found using only e (single-

objective optimization) was dramatically less. The classifier ensembles found using 

the three best diversity measures were, on average, 0.05% worse than those found 

using only e on data-testl and 0.13% worse on data-test2, 

c. It is interesting to note that 9  found high-performance classifier ensembles on data-

testl, but, on data-test2, 9  yielded one of the worst performances. Such behavior 

shows that thèse two data sets are actually very différent. 

d. The two measures pointed oui by Ruta and Gabrys [70] as the best diversity mea­

sures (6  and A) found better classifier ensembles on multi-objective than on single-

objective optimization, as was the case for ail the measures. However, especially 

on data-testl, A was the worst measure, and, once again, was significantly différent 

from the other measures, as shown by the Kxuskal-Wallis test. 

As indicated in the beginning of this chapter, besides performance, we hâve to take into 

account ensemble size when selecting classifier ensembles. In the following section, this 

aspect is analyzed. 
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2.3.3 Ensembl e Siz e Analysis 

Our ensemble size analysis relies on the analogy between feature subset sélecfion and 

SOCS. In this sensé, discarding redundant classifiers could improve performance. Hence, 

the minimization of the ensemble size (  is the most obvions objective funcfion to use to 

achieve such a réduction in the number of classifiers. However, (  cannot be used in a 

single-objective optimization process, because it might be combined with other measures 

in order to increase performance while reducing the number of classifiers. In fine with 

this idea, we combine (  with e and the 12 diversity measures described in section 2.2.1 

to make up pairs of objecfive functions to guide the opfimization process using NSGA-

II. Figure 9 présents a graph containing the size of the classifier ensembles found in 30 

replications generated by each pair of objective functions, while the performances are 

shown in Figure 10 (10(a), data-testl and 10(b), data-test2). The first value corresponds 

to the results obtained using GA as the search algorithm and e as the objective function in 

order to arrive at a better comparison. 

Figure 9 Size of the classifier ensembles found using 13 différent measures combined 
with ensemble size (  in paks of objective funcfions used by NSGA-II. 
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We also show the ensemble si/e of the classifier ensembles found in the first two séries 

of experiments, i.e., single objective functions and diversity combined with e. This allows 

us to better analyze the ensemble size issue. Figure 11 shows the ensemble size of the 

classifier ensembles found with G A (Figure 11 (a)) and with NSGA-II combining e with 

diversity (Figure 1 l(b)). Based on ail thèse results, we observe that: 
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Figure 10 Performance of the classifier ensembles found using NSGA-II with pairs of 
objective functions made up of ensemble size ( and the 13 différent measures. 
Performances were calculated on data-testl (Figure 10(a)) and on data-test2 
(Figure 10(b)). 

a. Diversity combined with (  in pairs of objective funcfions does not find high-

performance classifier ensembles. Taking into account ail the results obtained in ail 

the séries of experiments, the performances of the ensembles found using thèse pairs 

of objective functions made up of (  and diversity showed the worst performances. 

In contrast, those ensembles were the smallest. It is interesfing to note that, using 

this combination of objecfive functions, NSGA-II converges to the same solution 

at each replication, with the exception of the difficulty measure 9.  The minimum 

number of classifiers allowed by the search algorithms was 5. Fhis fixed minimum 

ensemble size was defined to avoid generating too small classifier ensembles. 
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Figure 11 Ensemble size of the classifier ensembles found using GA (Figure 1 l(a)) and 
NSGA-II (Figure 1 l(b)). Each optimization process was performed 30 times. 

b. The most successful diversity measure in terms of performance was 9. However, the 

performance of the ensembles obtained using (  and e are better. According to the 

Kmskal-Wallis statistical test, the performances are significantly différent. 

c. The analogy between ESS and SOCS may be established. The performance of our 

baseline System, i.e. the pool of 100 kNN (96.28% on data-testl), is 0.07% worse 

than the average resuit using (  and e  as the objective functions (average of 96.35% 

on data-testl (Figure 10), while the averaged ensemble size is 27 classifiers (Figure 

40). However, better performing classifier ensembles can be found using G A and 

e. The Kxuskal-Wallis statistical test showed that the performances are significantly 

différent. Moreover, the combination of (  and e as the objective funcfion did not 

establish the best trade-off between thèse two measures. Interrater agreement K 

combined with e generated smaller (24 classifiers on average) and better performing 

classifier ensembles (96.41% and 92.16%, on average, on data-testl and on datâ­

tes t2 respectively. Figure 8). 



56 

d. Ambiguity 7 combined with e, and Kohavi-Wolpert (/' combined with e, found the 

largest classifier ensembles (45 classifiers on average). What is more interesting is 

that, although we found the best performing classifier ensemble using GA as the 

search algorithm and e as the objective function, such single-objective function did 

not find the largest solutions. 

2.4 Discussion 

This chapter presented the expérimental results of a study using the single- and multi-

objective optimization processes to perform the sélection phase of SOCS. An ensemble 

of 100 kNN classifiers generated using the Random Subspace method was used as the 

initial pool of classifiers. Fourteen différent objective functions were applied: 12 diversity 

measures, error rate and ensemble size. The experiments were divided into three séries. In 

the first, the error rate and the 12 diversity measures were directly compared in a single-

optimization approach. In the second, the 12 diversity measures were combined with the 

error rate to make up pairs of objective funcfions in a mulfi-optimization approach. Finally, 

in the third, the error rate and the 12 diversity measures were combined with ensemble size 

in pairs of objective functions, again in a mulfi-optimization approach. 

'Fhe first séries of experiments was conducted in order to answer the first quesfion (1) 

posed in the beginning of this chapter. Our results confirm the observafion made in pre­

vious work that diversity alone cannot be better than the error rate at finding the most 

accurate classifier ensembles. The difficulty measure was the best diversity measure when 

the diversity measures are compared. In our attempt to answer question (2) when both the 

error rate and diversity are combined in a mulfi-objective approach (second séries of ex­

periments), we found that the performance of the solufions using diversity is much higher 

than the performance of the solufions using diversity in a single-objecfive opfimization 

approach. However, the performance of the classifier ensembles found using diversity 

measures combined with the error rate to guide the sélecfion were still worse than the per-
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formance of the ensembles found using only the error rate, although the différence was 

reduced. 

We are now able to establish an analogy between feature subset sélection and SOCS, in 

response to question (3). By combining ensemble size and the error rate in a pair of ob­

jective functions, we increased the initial pool of classifier performances and decreased 

the number of classifiers to 27, instead of 100, from the initial pool. In contrast, diversity 

measures achieved the worst performance in the third séries of experiments. Moreover, 

the combined minimization of ensemble size and error rate was not the best pair of objec­

tive funcfions to accomplish the trade-off between complexity and performance. In fact, 

interrater agreement combined with the error rate established the best trade-off between 

performance and ensemble size. We conclude, therefore, that it is not necessary to include 

ensemble size in the optimizafion process. The réduction in the number of classifiers is a 

conséquence of the sélection of classifiers, whatever the objective function used to guide 

the search. Some objective functions generate smaller classifier ensembles, while others 

generate bigger ones. 

It is also important to observe that our experiments showed that ensemble size and di­

versity are not confiicting objective functions (see Figure 9). We observe that we cannot 

decrease the generalization error rate by combining this pair of objective functions. In 

appendix 3, we présent further évidence to show why diversity and ensemble size are not 

confiicting objective functions. Moreover, we can see in Table XXIV and Table XXV in 

appendix 2, that the results obtained using diversity measures in a single-objective opti­

mization approach are quite similar to the results obtained using diversity combined with 

ensemble size in pairs of objective functions in a multi-objective optimization approach. 

Hence, the minimum number of classifiers is achieved when using most of the diversity 

measures in single-objective opfimization (see Figure 1 l(a)). 'Fhus, the results related to 

the first séries of our experiments may be différent if the minimum number of classifiers 

is fixed and larger than we hâve defined in this chapter, i.e. 5 classifiers. 
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Moreover, in this chapter, we conducted the optimization processes using, besides the 

traditional optimization dataset, a validation dataset in order to avoid overfiUing during 

the sélection phase of SOCS. Despite such apparent overfiUing conlrol, we observed that 

this strategy fails to address the overfitting phenomenon since, although an independent 

dataset was used to validate the solufions, the overfitfing phenomenon may sfiU be présent. 

In the next chapter we show that overfitting can be detected at the sélection phase of SOCS 

and présent stratégies to control overfitting. 



CHAPTER 3 

OVERFITTING-CAUTIOUS SELECTION O F CLASSIFIER ENSEMBLE S 

We show in this chapter that overfitting can be detected during the sélection phase of 

SOCS, this sélection phase being formulated as an opfimization problem. We attempt to 

prove experimentally that an overfitting control strategy must be conducted during  the 

optimization process. In order to pursue our analysis on population-based evolufionary 

algorithms, we keep using both single- and multi-objective GA. Taking into account this, 

we investigate the use of an auxiliary archive A  to store the best performing candidate 

ensembles (or Pareto fronts in the MOGA case) obtained in a validation process using the 

validation partition V to control overfitting. Three différent stratégies for update A  hâve 

been compared and adapted in this chapter to the context of the single- and multi-objective 

sélection of classifier ensembles: (l)  partial  validation  where A  is updated only in the last 

génération of the optimization process; (2) bach\>arding [67] which relies on monitoring 

the optimizafion process by updating A  with the best solufion from each génération; and 

(3) global validation  [62] updating A  by storing in it the Pareto front (or the best solution 

in the GA case) identified on V  at each génération step. 

Besides the ensemble of kNN created at the overproduction phase using the RSS method 

in the previous chapter, two additional initial pool of classifiers are investigated in this 

chapter: (1) a pool of DT created using bagging; and (2) a pool of DT created using the 

RSS method. In addition, considering the results related to the analysis of search criteria 

obtained previously, we use only four diversity measures (described in section 2.2.1) and e 

to guide the optimization process presented in this chapter. Diversity measures are applied 

by NSGA-II in combination with e in pairs of objective functions. Moreover, e, as well 

as the diversity measures, are employed as single-objective functions by GA. To avoid 

the problem of reaching a too small ensemble size, we defined a large fixed minimum 

ensemble size for ail diversity measures in our experiments. It is important to mention 
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that in appendix 2, we carried out an overfitting analysis using both GA and NSGA-II, 

guided by ail the objective funcfions and combinations of objective functions discussed 

previously. 

In this chapter, the global validation strategy is presented as a tool to show the relationship 

between diversity and performance, specifically when diversity measures are used to guide 

GA. The assumption is that, if a strong relationship exists between diversity and perfor­

mance, the solution obtained by performing global validafion solely guided by diversity 

should be close, or equal, to the solution with the highest performance among ail solutions 

evaluated. This offers a new possibility for analyzing the relationship between diversity 

and perf'ormance, which has received a great deal of attention in the literature [44; 17; 70]. 

Our objective in this chapter is to answer the following questions: 

1. Which is the best sù^ategy employing an archive A  for reducing overfitting at the 

sélection phase of SOCS when this sélection is formulated as an optimization prob­

lem? 

2. Are classifier ensembles generated by bagging and RSS equally affected by overfit­

ting in the sélection of classifier ensembles? 

The following section demonstrates the circumstances under which the process of classi­

fier ensemble sélecfion results in overfitfing. In section 3.2, three stratégies used to control 

overfitting are introduced. The parameters employed for the experiments are described 

in section 3.3, where the validation stratégies are applied using holdout and A--fold cross-

validation schemes. Finally, expérimental results are presented in section 3.3. 

3.1 Overfittin g i n Selecting Classifier Ensemble s 

The problem of selecfing classifier ensembles, using an optimization dataset O  can be for­

mulated as a leaming task, since the search algorithm opérâtes by minimizing/maximizing 
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the objective function, such as maximizing the classification perf'ormance or maximizing 

the diversity of the members of a given ensemble Cf  Indeed, Radtke et al. [62] showed 

that multi-objecfive evolutionary optimization, such as the sélection of classifier ensem­

bles, is prone to overfitting. We may define overfitting in the context of ensemble sélection 

inspired by the définition provided by Milchell [49] in the following way. Let C* and C*' 

be the besl performing candidate ensembles found through calculating the error rate e for 

each élément of P(C) over samples contained in O  and V  respectively. Consider the clas­

sification error e of thèse two candidate ensembles measured using samples from V.  We 

will dénote this classification error by e{V,  C*) and e{V,  C*'). In this setfing, C*  is said 

to overfit on O  if an altemative candidate ensemble C*'  G P(C) can be found such that 

e ( V . C ; ) > e ( V , q ' ) . 

The sélection process for classifier ensembles in SOCS is illustrated in Figure 12. An en­

semble création method is employed using T to generate the initial pool of classifiers C. 

'Fhus, the search algorithm calculâtes fitness on O  by testing différent candidate ensem­

bles. The best candidate ensemble C*'  is identified in V to prevent overfitting. Finally, the 

generalization performance of C*'  is measured using the test dataset (G)-  Hence, SOCS 

requires at least thèse four datasets. It is important to mention that V is différent from 

the validation dataset typically used to adjust base classifier parameters, such as weights 

in MLP, the number of neighbors considered (k  value) in kNN classifiers, etc. When 

such parameter adjustment is necessary, a fifth dataset must be used, as was done in [62], 

to avoid overly oplimistic performance as.sessment. The following sections describe how 

overfitting can be detected in single- and multi-objective optimization problems performed 

by GAs. 

3.1.1 Overfittin g i n single-objective G  A 

In Figure 13, e is employed as Ihe objective function to guide G A using the NIST-digits 

database as the problem and RSS as the method to generate C as a pool of 100 kNN clas-
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Figure 12 Overview of the process of sélection of classifier ensembles and the points of 
entry of the four datasets used. 

sifiers. Thèse same parameters were investigated in last chapter, section 2.3.1. Although 

GA was only guided by e, we show plots of e versus the ensemble's size to better illustrate 

the process. 

We dénote C(^) as the population of candidate classifier ensembles found at each généra­

tion g  and the best candidate ensemble found by evaluating ail individuals from C{g)  on 

O by Cj{g).  Each point on the plot corresponds to a candidate ensemble Cj  taken from 

V{C) and evaluated during the opfimization process. Indeed, thèse points represent the 

complète search space explored for max{g)  = 1,000. The number of individuals at any 

C(^) is 128. 

Actually, the overfitting phenomenon measured when selecting classifier ensembles 

présents a behavior very similar to what is seen in a typical Machine Learning process, 

i.e. the chance that the search algorithm will overfit on samples taken from O  increases 

with the number of générations. This phenomenon can be observed in Figure 13(e), which 

shows the évolution of e{0,  C*  ) in the search space. On the one hand, it is clear that the 

optimization process could be stopped before overfitting starts to occur in this problem 



63 

m» 
c (Qvaluatod ) 

0 CJI I 

ii!M^:/!iiji':'H'- : 

20 3 0 4 0 5 0 6 0 7 0 8 0 9 0 10 0 
Ensemble sue 

(a) O  dataset and g  =  l 

ÊÊÊÊÊ-: 

c. (evajualad) 

0 Cj(l ) 

;!. :i '•'•/• :••-:... . 

20 3 0 4 0 5 0 6 0 7 0 6 0 9 0 10 0 
EnsemUa si; » 

(b) V dataset and g =  l 

c (evaJualed ) 

0 C'(52 ) 

• • l ' . i . - . i - i ' ; , . • ! , - l ' i . , *-. .1 I , ' . , • *. • 

^. . : : . : i i ; j l i i i i !! ' ; î : •"'•:••• :̂  ••••  • 

-'iiiiP''' 
i|lii;'-!''i:i!î''i; 

20 3 0 4 0 5 0 6 0 7 0 8 0 3 0 10 0 
EnsembJo su e 

(c) O  dataset and g  =  52 

" ^ ^ ^ 

c (evaJualad ) 

0 C|(62 | 

I..'>'••'.'•:.•',•':•. 

20 3 0 4 0 5 0 6 0 7 0 8 0 3 0 10 0 
Ensamble Si^ e 

(d) V dataset and g  = 52 

;'i!::iii^fi 

: - 1 
> 

ijiiil'!';. m 
i.li:'î;:''i- ••• ;: 
iMîiiii;.; • 

• S 
0 c ; • 

o 0 | • 

* • • : • . 

• 

20 30 40 50 60 70 80 90 100 

(e) O  dataset and max (g) 

48 

46 

44 

4 2 

40 

38 

36 

34 

32 

: | j jli|il|iii!!l ^ 

- C 

0 o ; • 

o c ' • 

overiilting 

• 

20 3 0 4 0 5 0 e O 7 0 8 0 9 0 10 0 

(0 V dataset and max{g) 

Figure 13 Optimization using GA guided by e. Hère, we follow the évolution of C'j{g) 
(diamonds) from ^ = 1 to max{g)  (Figures 13(a), 13(c) and 13(e)) on 
the optimization dataset O,  as well as on the validation dataset V  (Figures 
13(b), 13(d) and 13(0)- The overfitfing is measured as the différence in error 
between C*' (circles) andC* (13(0)- There is a 0.30% overfit in this example, 
where the minimal error is reached slightly after g  -  r/i on V,  and overfitting 
is measured by comparing it to the minimal error reached on O. Solutions not 
yet evaluated are in grey and the best performing solutions are highlighted by 
arrows. 
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using GA. On the other, it is difficult to define a stopping criterion to control overfitting in 

a multi-objective optimization process, as explained in section 3.1.2. 

3.1.2 Overfittin g i n MOGA 

Figure 14 (left) illustrâtes the optimization process performed for max{g) —  1,000 using 

NSGA-n guided by the following pair of objective functions: jointly minimize e  and dif­

ficulty measure (section 2.2.1) in the same problem investigated with GA in last section. 

The Pareto front from population C{g)  found in O is denoted by Ck{g). Thus, C^ (dia­

monds) and C .̂' (circles) represent the final Pareto fronts found in O and V respectively. 

Especially noteworthy in Figure 14(0 is that, besides the fact that the solutions over C^' 

are différent from solutions over C ,̂, which was expected considering that V and O are dif­

férent datasets, the nondominated solufions over C^' are discarded during the opfimization 

process (Figure 14(e)). Hence, the définition of a stopping criterion for multi-objective op­

timization problems is difficult for the following reasons: (1) solutions over Ck{g)  found 

during the optimization process may not be nondominated solutions over V  and (2) since 

the évolution of Ck{g) must be monitored on V, comparing sets of equally important so­

lutions is a complex task. We show in the next section that the use of an auxiliary archive 

A makes it possible to control overfitting taking into account thèse aspects. 

3.2 Overfittin g Contro l Method s 

The focus of this chapter is to evaluate stratégies that rely on using V  to create an archive 

A to control overfitting, since thèse memory-based stratégies may be appfied in any op­

timization problem. The idea is to use the error rate measured on V as an estimation 

of the generalization error. In order to accomplish the objectives of this chapter, we hâve 

adapted two overfitting control stratégies to the context of classifier ensemble sélection for 

both single- and multi-objective optimization problems: (1) backwarding originally pro­

posed in [67] to prevent overfitting in GP; and (2) global validation  proposed in [62] and 
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Figure 14 Optimization using NSGA-II and the pair of objective functions: difficulty 
measure and e.  We follow the évolution of Ck{g)  (diamonds) from g  = l 
to max (g) (Figures 14(a), 14(c) and 14(e)) on the optimization dataset O, 
as well as on the validation dataset V  (Figures 14(b), 14(d) and 14(f)). The 
overfitting is measured as the différence in error between the most accurate 
solution in C*^ (circles) and in C^ (14(f)). There is a 0.20% overfit in this 
example, where the minimal error is reached slighfiy after g  = 15 on V, and 
overfitting is measured by comparing it to the minimal error reached on O. 
Solufions not yet evaluated are in grey. 
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[67] to control overfitting in multi-objective evolutionary optimization problems. Partial 

validation, a control strategy iradilionafiy used to avoid overfitting in classifier ensemble 

sélection problems [89] is also investigated. This is the strategy used in previous chapter. 

It is interesting to note that thèse stratégies can be ordered with respect to the cardinality 

of the solution set used for overfitting control: partial  validation  uses only the last popu­

lation of solutions (or C .̂ in the MOGA case) and backwarding validâtes the best solution 

(or Cl{g))  at each g,  while global validation  uses ail solutions at each g. 

It is important to note that the global validation  strategy is employed in [62] in a complex 

two-level System which includes feature extraction, feature sélection and classifier ensem­

ble sélection, ail performed by MOGA. In this thesis, we adapt their strategy to single-

objective GA. As mentioned earlier, we use ensembles generated by bagging (BAG) and 

RSS. 

3.2.1 Partia l Validatio n (PV ) 

The first and simplest procédure relies on selecting C'*'  at the end of the opfimization 

process by validating the last population C{7nax{g))  (for GA) or C .̂ (respectively for 

MOGA). Consequently, in PV, it is assumed that, Cf  G C{m.ax{g))  and C*'  G 0;^. 

Hence, there is only one update on A,  more precisely for 'max{g).  PV is summarized in 

Algorithm 2. 

Algorithm 2  Partial Validation 

1: Créâtes initial population C(l ) of u; chromosomes 
2: ^ - 0 
3: fo r each génération g G  { 1 , . . . ,max{g)}  d o 
4: perform ail genetic operators and generate new population C{g  + 1). 
5: en d fo r 
6: validate ail solutions from C{rnax{g))  (for GA) or C;̂  (for MOGA) 
7: choose as C* the solution with highest récognition rate 

8: update A  by storing C*' 
9: retur n C*'  stored in A 
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3.2.2 Backwardin g (BV ) 

Overfitting remains uncontrolled even when PV is used, because C{tnax{g))  (for G A) 

or C'̂  for MOGA are composed of overfitted solutions, as explained in section 3.1. An 

alternative to PV is to validate not only C{rnax{g))  (or C;̂ .), but the C*{g)  (or Ci,.{g)) 

found at each génération. ITie BV method [67] proposed for GP problems is based on this 

idea. The authors advocate that GP is prone to overfitfing especially on later générations 

as in Machine Leaming tasks. Motivated by this observation, they proposed BV to control 

overfitting by monitoring the optimization process on V  to détermine the point where GP 

starts to overfit O.  This approach uses A to store the best solution found before overfitting 

starts to occur. Even though e is not the only objective function used to guide GA in this 

chapter, we use e to represent the objective function in Algorithm 3, which shows how 

BV is employed with GA. However, other objective functions can be used without loss of 

gcnerality. 

Where multi-objective optimization is concemed, Pareto fronts must be stored in A instead 

of individual solutions. 'Faking into account that BV relies on comparing each new solution 

found on O  to the solution stored on A, this fact leads to the following question: How can 

Pareto fronts be compared so as to identify whether or not one Pareto front is better than the 

others. Because of the various tradeoffs over the Pareto front, the définition of a quality 

measure is much more complex in multi-objective than in single-objective optimization 

problems. Some quality measures such as the Pareto front spread, the objective functions 

spread [103], the epsilon indicator and the coverage function [108] hâve been proposed. In 

order to détermine whether or not the Ck{g) found at each génération is better than the C^' 

stored in A,  we propose to use the Pareto quality measure called the coverage  function, 

introduced by Zitzler et al. [108]. This measure was used in [61] to define a stopping 

criterion for MOGAs. 
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Algorithm 3  Backwarding for GA 

1: Créâtes inifial population C( l ) of u; chromosomes 
2: A  =  ib 
3: Find q ( l ) and set C*' : C*{1) 
4: Store C]'  in A 
5: fo r each génération y G { 1 , . . . , max{g)]  d o 
6: perform ail genetic operators 
7: generate new population C(y + 1) and find C*{g  + 1) as usual 

8: i f e ( V , q ) ( ( 7 + l ) < e ( V , C 7 ' ) t h e n 

9: s e t C ; ' : = C 7 ( ( 7 + l ) 
10: update A  by storing in it the new C*' 
11: en d if 
12: en d fo r 
13: retur n C*'stored on ^ 

The coverage function, measured on V, is based on the weak dominance criteria and indi­

cates the number of candidate ensembles in Ck{g)  that are weakly dominated by at least 

one solution in C|.'. Given two solutions C,  G C^' and Cj  G Ck{g), we may say that Ci 

covers Cj  if C,  is not worse than Cj  in ail objective functions. The idea is to verify the 

Pareto improvement among générations on A. Coverage can be denoted as: 

cov{Ct,Ck{g)) (3.1) 

In this way, the average number of solutions in C .̂' covering the solutions on Ck{g)  is 

calculated. 'Fhus, cov{Cl^,Ck{g))  <  1 or cou{C*f^,Ck{g))  = 1, whether C .̂' covers the 

entire Pareto Ck{g)  or not. The Pareto improvement at each génération is then measured 

as: 

im.p{Ck{g). C*') =r.  1 - coviCi;,Ck{g))  (3.2) 

Improvement reaches its maximum (imp  1) when there is no solution on Ck{g)  cov-

ered by solutions on Cl  and its lowest possible value {imp  ~~  0), when ail solutions on 
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Ck{g) are covered by those on Cj^'. Consequently, the update of A  is dépendent on the 

improvement obtained between thèse two Pareto fronts. When imp  >  0, ^ is updated; 

otherwise, there is no update. The BV for MOGA is summarized in Algorithm 4. 

Algorithm 4 Backwarding for MOGA 

2 
3: 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

Créâtes initial population C( l ) of u; chromosomes 
A^iè 
Find Cfc(l) and sel C^ ' :=CA.(1) 

Store C .̂' in A 
for each génération ^, ^ G {1 max{g)}  do 

peri'orm ail genetic operators; 
generate C{g  +  1) and find Ck{g  + 1) as usual 
i{imp{Ck{g + 1), C^/) > 0 then 

setC^':=Cfc(p + l) 
update A  by storing in it the new C .̂' 

end if 
end for 
return C ,̂' stored on A to pick up C*'. 

3.2.3 Globa l Validatio n (GV) 

There is a problem with BV because, since, at each génération, GA (or MOGA) créâtes 

a population of solutions, C*{g)  (or Ck{g)  for MOGA) found on O  may not be the best 

solution (or Pareto front) on V. An approach avoiding such a limitation is global validation 

GV [62; 100], which relies on using A  to validate the entire populafion C{g)  from each 

génération. 

GV works as follows in the context of multi-objective optimization (Algorithm 5): at each 

g step, ail solutions are validated, and thus the set of non-dominated solutions found on V 

is stored in A.  When the optimization process is completed, two sets of non-dominated 

solutions are available: (1) the traditional Cl  found on O;  and (2) C^', the set of non­

dominated solutions found on V. In Figure 14(f), the solutions composing C'̂ ' stored in A 

are represented by circles. As can be observed in this figure, the solutions stored in A are 

différent from the solutions over C^. 
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Algorithm 5  Global Validation for MOGA 

1 
2 
3: 
4 
5 
6 
7: 
8: 
9 

10 

Créâtes initial population C( l ) of  w  chromosomes 
^ - = 0 
for each génération g G  { 1 , . . . , 7nax{g)}  d o 

pert'orm ail genetic operators 
generate C(.g -(- 1) 
validate ail solutions in C{g  + 1) over samples contained in V 
perform a nondominated sorting to C((/ + 1) U ^ to find C ,̂' 
update A  by storing in it C .̂' 

end fo r 
return Cĵ ,' stored in A 

We propose to change Radtke et al.'s method [62] slightly to adapt it to single-objective 

optimization problems. Since no Pareto front is involved when using GA, we are interested 

in the best solution C*'.  In this case, it is sufficient to validate ail solutions at each new 

génération, find the best solution C*'  (g) and compare it to C*',  which is stored in A.  In 

this way, we keep the solution C*' found on V stored in A. Ixtting e represent the objective 

function, the complète GV algorithm for GA is described in Algorithm 6. 

Algorithm 6  Global Validation for GA 

1 
2 
3 
4 
5 
6 
7 

9 
10 
11 
12 
13 
14 
15 

Créâtes initial population C( l ) of  w  chromosomes 
A =  ^ 
Validate ail solutions in C( l ) over samples contained in V 
Find C';'(l) from C(l ) 
setr';':-r;'(i) 
for each génération ^ G { 1 , . . . , iriax{g)}  d o 

perform ail genetic opérations and generate C{g  +  1) 
validate ail solutions m C{g  +  \) 
i\ndCfig+ 1) 
i f e ( V , C ; ' ) ( ^ + l ) < e ( V , C 7 ' ) t h e n 

se tC ' ; ' :=C7' (5 + l) 
update A  by storing in il the new C*' 

end if 
end fo r 
return C*'  stored in A 

An example of the GV strategy for single-objecfive GA is illustrated in Figure 13(0- This 

figure shows overfitfing when comparing e(V, C*') and e{V, C*). The ensemble Cf  prob-
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ably has higher generalization performance than C*  obtained in O.  In section 3.3, we 

analyze such an assumption experimentally. 

3.3 Experiment s 

The parameters and the expérimental protocol employed are described in sections 3.3.1 

and 3.3.2 respectively. 

3.3.1 Paramete r Setting s on Experiment s 

The databases, ensemble constmction methods, search algorithms and objective functions 

used to conduct the experiments are defined in this section. 

Databases 

It is important to note that the databases must be large enough to be partitioned into the four 

above-mentioned datasets: T, O,  V and G,  to perform experiments using the holdout val­

idation strategy, as was done in the previous chapter. However, very few large databases 

containing real classification problems are available in the literature. SOCS is gênerai 

enough to be conducted using small datasets by applying /:-fold cross-vafidation. Ac-

cordingly, we performed experiments using both the holdout and 10-fold cross-validation 

stratégies. Another important aspect taken into account in selecting the databases for our 

experiments is that relatively high-dimensional feature spaces are necessary for the RSS 

method. 

Two databases were used in the holdout validation experiments: (1) NIST Spécial 

Database 19 containing digits (NIST SD19), used in the previous chapter, which we call 

NIST-digits hère; and (2) NIST SD19 containing handwritten uppercase letters, which we 

caU NIST-letters hère. We use the représentation proposed by Oliveira et al. [52] for 

both databases. Table VI lists important information about thèse two databases and the 

partitions used to compose the four separate datasets. Thèse same partitions were used 
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in [89] for NIST-digits and in [61] for NIST-letters. We used the two test datasets from 

NIST-digits, as was done in the previous chapter. 

Table VI I describcs the three databases used in the 10-fold cross-validation experiments: 

dna, texture and satimage. The Dna and satimage datasets are provided by Project Statlog 

on www.niaad.liacc.up.pt/old/staUog; and textur e is available within the UCI machine 

Learning Repository. 

Table VI 

Spécifications of the large datasets used in the experiments in section 3.3.3. 

Dataset #  uf Trainin g Optimizatio n Validatio n 
features Se t (T) Se t (C) Se t (V) 

NIST-digits 132 5,000 10,000 10,000 

NIST-letters 132 43,160 3.980 7,960 

fable VII 

Spécifications of the small datasets used in the experiments in section 3.3.4. 

Dataset # of samples # of features Features RSS Pool C size 
m 45 m 
40 20 100 
36 8̂ 100 

Ensemble Construction Method s and Base Classifier s 

We chose kNN and DT as the base classifiers in our experiments. The C4.5 algorithm [60] 

(Release 8) was used to constmct the trees with pruning. In addition, we used A- = 1 for 

kNN classifiers in ail databases without fine-tuning this parameter in order to avoid addi­

tional experiments. BAG and RSS were applied to generate the initial pools of classifiers 

in our experiments. 'IFiree initial pools of 100 classifiers were created: (1) 100 DT and (2) 

Test 
Set (G) 

testl 60,089 
test2 58,646 

12,092 

Features 
RSS 
32 

32 

PooIC 
size 
100 

100 

dna 
texture 
satimage 

3186 
5500 
6435 

http://www.niaad.liacc.up.pt/old/staUog
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100 kNN, which were generated using RSS, and (3) 100 DT, which was generated using 

BAG (BAG is mostiy effective with unstable classifiers, such as D'F). The size of the sub­

sets of features used by RSS is shown in Table VI for large datasets and in Table VII for 

small datasets. The same subspaces are used for both kNN and DT classifiers. Majority 

voting was used as the combination function. 

Objective Function s 

In order to reduce redundancy in our experiments, we chose to employ only four diversity 

measures: (1) difficulty measure (9),  which was pointed out as the best diversity measure 

when the diversity measures were compared in single-objective optimization problems; (2) 

double-fault (6),  which was one of the best diversity measure used in combination with the 

error rate to guide NSGA-II, (3) coïncident failure diversity (a),  which was chosen due to 

the conclusions presented by Kuncheva and Whitaker [44] indicating that this measure is 

less correlated to the other measures; (4) ambiguity (7) as defined in [104], which was not 

investigated in [44]. Kuncheva and Whitaker [44] studied ten diversity measures. 'ITiey 

conclude that thèse diversity measures may be divided into three différent groups, taking 

into account the corrélation among measures: the double-fault alone; coïncident failure 

diversity (also alone); and the remaining eight diversity measures. 

In terms of ensemble size, we hâve shown in the previous chapter that the réduction in 

the number of classifiers is a conséquence of the optimizafion task, whatever the objective 

function used to guide the search. Hence, there is no need to explicitly include ensemble 

size in the optimization process. 

Genetic Algorithm s 

The same parameters used in the previous chapter is also employed in our experiments in 

this chapter. 
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3.3.2 Expérimenta l Protoco l 

Our experiments were broken down into three main séries. In the first and second séries, 

the holdout and 10-fold cross-validation stratégies were implemented to verify the impact 

of overfitting in large and small databases respectively. The validation control methods 

PV, BV and GV were also compared in order to détermine the best method for controlling 

overfitting. Diversity measures were employed in pairs of objective functions combined 

with e by NSGA-11, and only c was used to guide GA in both séries of experiments. 

Finally, in the third séries, diversity measures were applied individually as single-objective 

functions. As a resuit of this last séries of experiments, we show that the relationship 

between diversity and performance may be measured using the GV strategy. 

The sélection phase perf'ormed for large datasets was also replicated 30 times, as was 

done in the previous chapter, owing to the use of stochastic search algorithms. To conduct 

the 10-fold cross-validation experiments, the original whole datasets were divided into 10 

folds. Each time, one of the 10 folds was used as G, another fold as V, a  third as O and the 

other 7 were put together to form T. Thus, T, O  and V were used at the overproduction 

phase to generate the initial pools of classifiers, to perform the optimization process and 

to perform the three validation stratégies respectively. This process was repeated 10 times, 

i.e. the optimization process was repeated for 10 trials. Il is also important to mention that 

the sélection phase was replicated 30 times for each trial. Thus, the mean of the error rates 

over 30 replications for each trial were computed and the error rates reported in ail tables 

of results were obtained as the mean of the error rates across ail 10 trials. 

Then, in both stratégies, the best solution for each mn was picked up according to the 

overfitting control strategy employed. The solutions were tested on multiple comparisons 

using the Kmskal-Wallis nonparametric statistical test by testing the equality between 

mean values. The confidence level was 95% (a  ^ 0.05), and the Dunn-Sidak correcfion 

was applied to the critical values. 



75 

3.3.3 Holdou t validatio n result s 

Table VIII shows the mean error rates obtained using both GA and NSGA-II search al­

gorithms in NIST-digit s data-test l and data-test2 , and in NIST-letters . ITie error rates 

obtained by combining the initial pool of 100 classifiers are also included in this table as 

well as the results with no overfitting control, denoted NV. 

Thèse experiments showed the following: 

a. Fhe results from the fiterature [37], which conclude that complex leaming problems 

are more affected by overfitting, are confirmed. There are more problems presenting 

overfitting in NIST-digits data-test2 than in data-testl. As we mentioned in section 

2.3.1, NIST-digits data-test2 is more difficult to use for classification. 

b. NSGA-II is more prone to overfitting than GA. Even though, in the majority of the 

experiments using GA, at least one of the validation methods slightly decreased the 

error rates when compared with NV, the différences are not significant. In contrast, 

thèse différences are more likely to be significant in experiments with NSGA-II. Of 

36 cases using NSGA-II, an overfitting control decreased the error rates in 30. In 17 

of thèse experiments, the différences were significant. 

c. When overfitting was detected, GV outperformed both PV and BV. Fhe Kmskal-

WaUis test shows that, among 19 cases where overfitting control decreased the error 

rates significanfiy, GV was the best strategy in 18 problems. 

d. In terms of ensemble création methods, our results indicate an order relation be­

tween the methods investigated for the NIST-digits database. BAG was more prone 

to overfitting than RSS. In addition, ensembles of DT were less prone to overfitting 

than ensembles of kNN, both generated using RSS. For the NIST-letters database, 

the results were équivalent. 
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Table VIII 

Mean and standard déviation values of the error rates obtained on 30 replications 
comparing sélection procédures on large datasets using GA and NSGA-II. Values in bold 

indicate that a validation method decreased the error rates significanfiy, and underlined 
values indicate that a vafidation strategy is significantly better than the others. 

NIST-digits - testl (lOOkNN = 3.72; lOODT-RSS = 2.92; lOODT-BAG = 5.65) 

Metliod Va l 
NV 
PV 

kNN-RSS 3 ^ 

GV 
NV 
PV 

DT-RSS 3 ^ 

GV 
NV 
PV 

DT-BAG g ^ 

GV 

GA 
error (e) 

3.60(0.06) 
3.60 (0.06) 
3.57 (0.07) 
3.55 (0.06) 
2.82 (0.05) 
2.80 (0.05) 
2.83 (0.05) 
2.84 (0.06) 
5.20 (0.07) 
5.18(0.07) 
5.18(0.05) 
5.18(0.06) 

NSGA-II 
ambiguity (7) coïncident (a)  difficulty (0)  double-fault (6) 

3.66(0.06) 3.67(0.03) 3.64(0.05) 3.63(0.07) 
3.70(0.07) 3.68(0.04) 3.63(0.05) 3.64(0.07) 
3.70(0.07) 3.65(0.03) 3.63(0.07) 3.64(0.07) 
3.63(0.06) 3.62(0.06) 3.60(0.08) 3.60(0.09) 
2.96(0.10) 2.92(0.07) 2.81(0.03) 2.81(0.04) 
2.97(0.10) 2.97(0.11) 2.83(0.02) 2.82(0.05) 
2.97(0.10) 2.97(0.11) 2.83(0.02) 2.82(0.06) 
2.94(0.08) 2.94(0.09) 2.82(0.06) 2.84(0.07) 
5.73(0.07) 5.87(0.12) 5.67(0.06) 5.73(0.08) 
5.71(0.08) 5.86(0.10) 5.68(0.05) 5.73(0.08) 
5.71(0.08) 5.85(0.10) 5.69(0.05) 5.72(0.09) 
5.54(0.06) 5.56(0.11) 5.55(0.09) 5.57(0.07) 

NIST-digits - test2 (lOOkNN = 8.10; lOODT-RSS = 6.67; lOODT-BAG = 10.99) 
NV 
PV 

kNN-RSS 
nV 
GV 
NV 
PV 

DT-RSS 3 ^ 

GV 
NV 
PV 

DT-BAG 3 ^ 

GV 

7.91 (0.14) 
7.89(0.12) 
7.85(0.17) 
7.80(0.13) 
6.53 (0.08) 
6.50 (0.09) 
6.53 (0.09) 
6.53(0.09) 
10.16(0.15) 
10.11 (0.15) 
10.11(0.13) 
10.09(0.13) 

7.90(0.14) 8.09(0.16) 8.12(0.09) 8.12(0.09) 
7.97(0.15) 8.11(0.18) 8.11(0.11) 8.14(0.12) 
7.97(0.15) 8.10(0.18) 8.11(0.10) 8.14(0.14) 
7.87(0.13) 7.94(0.15) 7.93(0.10) 7.93(0.13) 
6.76(0.17) 6.77(0.14) 6.59(0.11) 6.60(0.10) 
6.79(0.18) 6.88(0.21) 6.69(0.06) 6.65(0.11) 
6.79(0.18) 6.88(0.21) 6.69(0.06) 6.65(0.12) 
6.73(0.13) 6.76(0.12) 6.59(0.09) 6.63(0.13) 
10.99(0.17) 11.28(0.28) 11.05(0.08) 11.13(0.08) 
10.96(0.17) 11.25(0.23) 11.06(0.11) 11.12(0.21) 
10.94(0.17) 11.24(0.24) 11.06(0.10) 11.10(0.14) 
10.68(0.11) 10.76(0.22) 10.76(0.15) 10.83(0.07) 

NIST-le«cr (lOOkNN = 6.60; lOODI-RSS = 6.06; lOODT-BAG = 7.63) 
NV 
PV 

kNN-RSS 3 ^ 

GV 
NV 
PV 

DT-RSS 3 ^ 

GV 
NV 
PV 

DT-BAG 3 ^ 

GV 

6.49(0.11) 
6.50 (0.09) 
6.47(0.12) 
6.49 (0.09) 
6.03 (0.07) 
6.03 (0.07) 
6.05 (0.09) 
6.01 (0.09) 
7.71 (0.10) 
7.69 (0.08) 
7.71 (0.10) 
7.70 (0.08) 

6.58(0.10) 6.73(0.25) 6.41(0.09) 6.55(0.13) 
6.58(0.11) 6.71(0.26) 6.43(0.11) 6.60(0.12) 
6.58(0.12) 6.71(0.26) 6.43(0.11) 6.58(0.12) 
6.54(0.14) 6.50(0.13) 6.33(0.16) 6.45(0.12) 
6.24(0.11) 6.34(0.19) 5.93(0.08) 6.10(0.12) 
6.25(0.11) 6.34(0.19) 5.92(0.06) 6.11(0.12) 
6.24(0.11) 6.34(0.19) 5.92(0.07) 6.03(0.13) 
6.08(0.09) 6.12(0.14) 5.89(0.07) 6.02(0.10) 
7.68(0.09) 8.00(0.14) 7.56(0.08) 7.78(0.12) 
7.64(0.07) 8.08(0.18) 7.51(0.05) 7.78(0.13) 
7.64(0.07) 8.03(0.16) 7.51(0.05) 7.76(0.12) 
7.64(0.07) 7.87(0.14) 7.54(0.08) 7.64(0.12) 
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e. Although this thesis does not focus on comparing ensemble création methods in 

terms of performance, our results indicate that ensembles generated with BAG per­

formed worse than ensembles generated by RSS. Also, DT ensembles performed 

better than kNN. 

f. 'Fhe sélection of ensembles of classifiers was a better option than combining the 

initial pools of classifiers. For NIST-digits , GA using e as the objective function, 

and for NIST-letters , NSGA-II using 9  and e as the pair of objective functions, 

found solutions better than the baseline composed of 100 classifiers in aU three 

problems. 

3.3.4 Cross-validatio n result s 

Table IX summarizes the mean values and the standard déviation values achieved on the 

three small datasets presented in 'Fable VIL We also report the error rates obtained on 

combining the initial pools of classifiers by majority voting. 

Based on thèse results, it may be observed that: 

a. F'or small databases, NSGA-II was also more prone to overfitting than GA. The 

overfitting control stratégies significantly decreased the error raies of the solutions 

found by GA only in one case (dn a wilh kNN-based ensembles) out of nine, while 

they significanfiy reduced the error rates of the solutions found by NSGA-II in 16 

of 36 cases. 

b. In 15 cases in which overfiUing was detected, the différence between the overfit­

ting control methods was significant. GV was also the best strategy for controUing 

overfitting in this séries of experiments. 

c. Textur e is a highly stable database: it has the same class distribution and il can be 

easily classified, since the error rates can be lower than 1% (see results obtained 
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Table IX 

Mean and standard déviation values of the error rates obtained on 30 replications 
comparing sélection procédures on small datasets using GA and NSGA-II. Values in bold 

indicate that a validation method decreased the error rates significanfiy, and underfincd 
values indicate when a validation strategy is significanfiy better than the others. 

Texture (lOOkNN 

Metliod 

kNN-RSS 

DT-RSS 

DT-BAG 

Val 
NV 
PV 
BV 
GV 
NV 
PV 
BV 
GV 
NV 
PV 
BV 
GV 

GA 
error (e) 

1.09(0.03) 
1.09(0.04) 
1.08(0.04) 
1.11 (0.03) 
2,54 (0.07) 
2.52 (0.09) 
2,55 (0.08) 
2,51 (0,09) 
3,58(0,10) 
3,53 (0,08) 
3.60 (0,08) 
3,58 (0,08) 

= 1,11; lOODT-RSS = 2,56; lOODT-BAG = 3,60) 
NSGA-II 

ambiguity (7) 
1,28(0.03) 
1,40(0.06) 
1,41 (0,06) 
1.26(0,06) 

2,94(0,11) 
3,03(0,14) 
3,04(0,15) 
2.93(0.15) 
3,60(0,09) 
3,63(0,13) 
3.62(0.11) 
3.63(0,10) 

coincident (a) 
1.19(0.06) 
1.21 (0.07) 
1.21 (0.08) 
1,18(0.08) 
3,16(0,15) 
3,41 (0,19) 
3,42(0,15) 
3,20(0,21) 
4,09(0,15) 
4.18(0,20) 
4,17(0.18) 
4.01 (0.15) 

difficulty (61) 
0,87 (0,03) 
0.84 (0.03) 
0.88 (0,04) 
0.95 (0.05) 
2.40 (0,05) 
2,41 (0,06) 
2,44 (0,06) 
2,41 (0,09) 
3,49 (0,09) 
3,55 (0.08) 
3.46(0.12) 
3,43(0.11) 

double-fault (ô) 
0,90 (0.05) 
0.94 (0,06) 
0.89 (0.06) 
0.98 (0,09) 
3.00(0.14) 
3,09(0,11) 
3,10(0,10) 
2,91 (0.18) 
4,02(0,14) 
4,14(0,19) 
4.14(0.20) 
4.04 (0,22) 

kNN-RSS 

DT-RSS 

DT-BAG 

DNAdOOkNN: 
NV 
PV 
BV 
GV 
NV 
PV 
BV 
GV 
NV 
PV 
BV 
GV 

8.01 (0.27) 
8,02 (0,2) 

7.64 (0.24) 
7.69 (0,23) 
5.10(0,24) 
4.99(0.18) 
4.98 (0.25) 
4.97(0,16) 
5,00(0,10) 
4,99(0,11) 
4,98(0.15) 
4,99 (0,08) 

= 6,87; lOODT-RSS = 5,05; lOODT-BAG = 5.02) 
9,61 (0,36) 
9,85 (0,35) 
9,82 (0.37) 
8.60 (0.37) 
6,44 (0,25) 
6,76(0,31) 
6.76 (0.30) 
5.93 (0.29) 
5,35 (0,14) 
5,50(0.12) 
5.51 (0.11 ) 
5.36 (0.20) 

10,60(0,51 
10,85 (0,55) 
10,76(0.52) 
8.75 (0,45) 
7,05 (0,43) 
7,30 (0,46) 
7.30 (0,47) 
6.36 (0,42) 
5,51 (0,22) 
5.69 (0.20) 
5,69 (0,20) 
5,41 (0,21) 

8,86 (0,22 
8,93 (0,20) 
8.85(0.21) 
8.01 (0,33) 
5,15(0,18) 
4,96(0,12) 
4,93(0.14) 
4.77(0.17) 
5,13(0,14) 
5.08(0.12) 
4,99(0.12) 
4,93(0.13) 

9.21 (0.35) 
9,38 (0,39) 
9,37(0,41) 
8.36 (0.30) 
6,20 (0,27) 
6,31 (0,30) 
6.30 (0.30) 
5.67 (0,33) 
5,55 (0,23) 
5.35(0,14) 
5,38(0,15) 
5,54 (0,22) 

Satimage (lOOkNN = 8.59; lOODT-RSS = 8,64; lOODT-BAG = 9.59) 

kNN-RSS 

DT-RSS 

DT-BAG 

NV 
PV 
BV 
GV 
NV 
PV 
BV 
GV 
NV 
PV 
BV 
GV 

8.64 (0.09) 
8,62 (0,07) 
8,57(0,10) 
8.58(0,11) 
8,83(0,11) 
8.80 (0,09) 
8.81 (0,09) 
8.82(0,12) 
9,63 (0,09) 
9,61 (0,07) 
9,65(0,10) 
9.63 (0.09) 

8.76(0.12) 
8,76 (0.09) 
8,75 (0.09) 
8.69(0.10) 
8,92(0.11) 
9.00(0.12) 
9.00(0.10) 
8.77(0.11) 
9.81 (0,10) 
9,81 (0.12) 
9,82(0,12) 
9.65(0,14) 

9,12(0,16) 
9.25(0.17) 
9.23(0.18) 
9,05(0.17) 
9.44(0.20) 
9,63 (0,22) 
9,61 (0,23) 
9.19(0,18) 
10.40(0,19) 
10.55(0.18) 
10,53(0,17) 
10,25 (0,22) 

8,81 (0,23) 
8,88 (0,25) 
8,88 (0,26) 
8.84(0.18 
8,88(0.10) 
8.93(0.12) 
8,94(0.11) 
8.75(0.13) 
9.91 (0.13) 
9,89 (0,09) 
9,91 (0.09) 
9.71(0,13) 

9,15(0,14) 
9,28(0,13) 
9,33(0,14) 
9,15(0,17) 
9,25(0,19) 
9,38(0,18) 
9,39(0,17) 
9.03(0,17) 
10.14(0,18) 
10.34(0,17) 
10,35(0.16) 
10,10(0,16) 
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using 9  and e to guide NSGA-II). Hence, it is not surprising that our results do not 

show overfitting in this database. 

d. For dna , overfitting was detected in the two problems involving ensembles gen­

erated using RSS. For satimage , D'F-based ensembles generated using RSS were 

more prone to overfitting than the other two methods. 'Fhus, unlike the NIST-digit s 

results, BAG was less prone to overfitting than RSS for thèse two databases. 

e. RSS-based ensembles presented lower error rates than BAG-based ensembles in ail 

three databases. 

f. The solutions found by NSGA-II guided by 9  and e were better than the baseline 

combination for textur e and dna , except for ensembles of kNN for dna . However, 

for satimage , sélection did not outperform combination. 

3.3.5 Relationshi p between performanc e an d diversity 

When GA was guided by diversity measures as single-objective functions, we observed 

that a relationship between diversity measures and performance could be measured using 

the GV strategy, as illustrated in Figure 15. The same optimization problem investigated 

in section 3.1 is shown hère. GA was guided by the minimization of 9  as the objective 

function. It is important to mention that the optimization was only guided by 9.  The 

reason for showing plots of e versus 9  in this figure is to demonstrate the relationship 

between this diversity measure and performance. 

Figure 15 shows aU Cj evaluated during the opfimization process (points) and C*  (in 

terms of 9  values) found on O.  Il is interesfing to note that Figure 16 confirms that the 

overfitting problem is also detected when 9  is the objective function used to guide GA, 

since e(V,C'*) > e{V,C*').  Thus, in this example, there is an overfitting measured by 

e(V, C*')-t{V, Cf)  - 0.23. The use of GV allows us to keep {C*')  stored in A. However, 

Figure 16 also shows that C*  is not the solution with the smallest t  among ail candidate 
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Figure 15 Optinfization using GA with fiie 9 as the objective function. ail Cj  evaluated 
during the optimization process (points), C* (diamonds), ('*' (circles) and C'j 
(stars) in O.  Arrows highlight C'j. 

ensembles evaluated. In fact, the solufion denoted C'j  is the candidate ensemble with 

lowest e. 

Thèse observations lead us to propose the use of GV as a tool to measure the relationship 

between diversity and performance. ITie assumption is that there is a relationship between 

thèse two measures when the generafization performance is increased by keeping the so­

lution Cj'  stored in A (based on diversity values). In addition, the relationship may range 

from weak to strong, based on the différence (overfitting) between e(V, C*') and e{V,(''j). 

For instance, since e{VX''j)-  ({V,('*')  = 0.05 in Figure 16, a 0.23'X' overfitting was con­

trolled using GV and a 0.05% overfitting remains uncontrolled. Because this différence is 

close to 0, 9  is strongly related to performance in this problem. 

Taking into account that the relationship between diversity and performance has been mea­

sured in the literature, using correlafion measures [44| and kappa-error diagrams [17] for 

example, the use of GV offers a différent strategy for analyzing such a key aspect in the 



81 

. c 
0 c ; 
o c ' 

overfitting 

uncônt^llgdjçiyirfiîting " 

3.0 
0.035 0.036 0.037 0.038 0.039 0.04 0.041 0.042 0.043 

Difficulty Measur e 

Figure 16 Optimizafion using G A with the 9 as the objective function. Ail Cj evaluated 
during the optimization process (points), C* (diamonds), C* (circles) and Cj 
(stars) in V. Controlled and uncontrolled overfitfing using GV. 

ensembles of classifiers fiterature. However, taking into account the results obtained previ­

ously, there may be a drawback to this strategy: diversity measures are not independent of 

ensemble size, i.e. when diversity measures are employed as single-objective functions, a 

minimization of the number of classifiers may resuit. It is expected that ensembles which 

are too small will perform considerably less well than other approaches [1; 50], such as 

combining the initial pools of classifiers or selecting the best subset of classifiers using 

GA only guided by e or MOGA guided by e combined with diversity. 

To avoid the problem of reaching a too small ensemble size, we defined a large fixed mini­

mum ensemble size for ail diversity measures in this séries of experiments. TTie minimum 

ensemble size was fixed based on the médian size of the ensembles obtained using e as 

a single-objective function calculated on the three small datasets described in Table VII. 

Taking into account thèse results, we set the minimum ensemble size to 49 classifiers. 
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The four diversity measures investigated in this chapter were used in this séries of experi­

ments. 'Fhe objective of the experiments was to verify which measure is the most closely 

related to performance. The relationship between the four diversity measures and perfor­

mance is measured by calculating the uncontrolled overfiUing 0 •^-  ({y,C'f)  -  tiy,  C'*'). 

The lower 0, the stronger the relationship. 

Table X summarizes the results obtained. We hâve also included the results achieved using 

GA guided only by e, so that the solutions found by ail five single-objective functions 

investigated in this chapter can be compared. 'Fhese results are the same as those shown 

in Fable IX. 

Our results indicate that the différences among the results obtained with diversity measures 

are smafi, except for dn a in RSS-based ensembles. In fact, we confirmed the results of 

previous work, e.g. [70] and [44], that diversity measures are highly correlated. However, 

our experiments reveal important information about the relationship between performance 

and diversity. 'Faking into account the assumption that the doser to zéro the uncontrolled 

overfitting, the stronger the relationship between the two measures, we can observe the 

following results: 

a. The diversity measure b  was more closely related to performance. The uncontrolled 

overfitting 0 was either zéro or as close as possible to zéro in 5 cases out of a total 

of9 cases. 

b. The diversity measure 7 was less closely related to performance. Fhe results ob­

tained using 7 presented the highest 0 in 6 cases. 

c. 9  was highly related to performance and appears to be better than t  for guiding the 

sélection of Ihe ensembles of classifiers. In 8 cases, 9  found solufions better than 

those found using e as a single-objective funcfion. In addifion, the ensembles found 
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Table X 

Mean and standard déviation values of the error rates obtained on measuring the 
uncontrolled overfitting. The relationship between diversity and performance is stronger 

as 0 decreases. '̂ Fhe best resuit for each case is shown in bold. 

Method 

kNN-RSS 

G A e = 1,11 

DT-RSS 

GAe = 2.51 

DT-BAG 

G A e = 3,58 

Stratej^y 

e(v,r;) 
Kv,r;) 

<yxf) 
<ViC'^) 

<V.Cf) 
e{y,c]) 
<t> 

ambiguity (7) 

1,20(0,04) 
1,12(0,03) 
0,08 (0,03) 
2,80(0,04) 
2,63 (0,08) 
0,18(0,06) 

3,59 (0,09) 
3.61 (0,09) 
-0,02(0,09) 

Texture 
coincident (a) 

1.12(0,03) 
1,09(0,04) 
0.03 (0,04) 

2,50 (0,08) 
2,50 (0,07) 
0,00 (0,07) 

3,56(0,07) 
3,61 (0,08) 
-0,05 (0,08) 

difficulty (0) 
1.01 (0.03) 
1,09(0,04) 

-0.08 (0.04) 

2.40 (0,06) 
2,43 (0,09) 
-0.03 (0,07) 

3.48 (0,06) 
3,.54 (0,06) 
-0,06 (0,06) 

double-fault (6) 
1,01 (0.02) 
1,09(0,05) 

-0.08 (0,03) 
2,46 (0,07) 
2,46 (0,09) 
0.00 (0,08) 

3,49 (0,06) 
3,57 (0,08) 
-0.08 (0,07) 

Dna 

kNN-RSS 

GAe = 7,69 

DT-RSS 
GA e = 4.97 

DT-BAG 
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9.05 (0,00) 
1.56 (0.00) 

7,40(0,16) 
5,17(0,18) 
2,23(0,17) 

5.02(0,11) 
5,00(0,10) 
0,03(0,10) 

8.33(0,21) 
8,00(0,33) 
0,33 (0,27) 

5.01(0,18) 
5,09 (0,20) 
-0,07(0,19) 
5,16(0,10) 
5.08(0,10) 
0,08(0.10) 

7.50 (0,25) 
8,44 (0,30) 
-0.94 (0,30) 

4.50(0,16) 
5.24 (0.22) 
-0,73(0,19) 
4.93 (0,09) 
5.05(0,12) 
-0,12(0,10) 

7.89(0.16) 
7,75 (0.29) 
0,14(0,20) 

4,67(0,10) 
4,91 (0.19) 
-0,24(0,14) 
4,94 (0,07) 
5.01 (0,09) 
-0,07 (0,08) 
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DT-RSS 
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DT-BAG 

GA e = 9,63 
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<vxf) 
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4> 

8,60 (0,09) 
8.55 (0,07) 
0.05 (0,08) 

8.22(0,12) 
8,11 (0,12) 
0,11 (0,12) 

9,61 (0,09) 
9,66(0,15) 
-0,05(0,12) 

8.58(0.11) 
8.60(0,08) 
-0.02 (0.09) 

8.77(0,11) 
8.72(0,11) 
0,05(0,11) 

9.64(0,13) 
9,65(0,13) 
-0,01 (0,13) 

8,64 (0,08) 
8,66(0,12) 
-0.02(0.10) 

8.34 (0,03) 
8,47(0,14) 
-0.10(0,08) 

9.61 (0,09) 
9,66(0,12) 
-0,05(0,10) 

8.62(0,10) 
8.62 (0,09) 
0.00 (0.09) 

8.67(0,11) 
8,71 (0,11) 
-0,04(0,10) 
9,71 (0,11) 
9,70(0.10) 
0,01(0,10) 

using 9  presented the highest négative 0. What this means, in effect, is that guiding 

GV using 9  is better than doing so using e. 
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d. Our results indicate that diversity measures can be effective objective functions for 

selecting high-pert'ormance ensembles of classifiers. 'Fhis is a différent resuit from 

those presented in the previous chapter. 'Fhe main problem is that diversity measures 

are critically affected by ensemble size. Since we hâve fixed quite a large ensemble 

size, i.e. 49 classifiers, diversity measure performances exceeded those of e. 

3.4 Discussion 

This chapter presented the expérimental results of a study comparing three overfitting 

control stratégies adapted to the sélection phase of SOCS, which is performed as an op­

timization problem using single- and multi-objecfive GAs. We showed that the task of 

selecting classifier ensembles may be prone to overfitting, we pointed out Ihe best strat­

egy for controlling overfitting and we presented a global validation strategy GV as a tool 

to measure the relationship between diversity and performance. The following overfitting 

control methods were investigated: (1) Parfial Validation, in which only the last population 

of solutions is validated; (2) Backwarding, which relies on validafing each best solution 

at each génération; and (3) GV, in which ail solutions at each generafion are validated. 

Three initial pools of 100 classifiers were generated: 100 kNN and 100 D'F using RSS, 

and a third pool of 100 DT using BAG. Five différent objecfive functions were applied: 4 

diversity measures and e. 

The experiments were divided into three séries. The three overfitfing control methods were 

compared in two large databases (first séries of experiments) and in three small datasets 

(second séries). The combination error rate e was employed as a single-objective function 

by GA and the four diversity measures were combined with c to make up pairs of objective 

functions to guide NSGA-II. iMnafiy, in the third séries of experiments, the four diversity 

measures were directly applied by GA, and the GV strategy was performed to conlrol 

overfitting. The objective in this third séries of experiments was to show that GV can be a 

tool for idenfifying the diversity measure more closely related to performance. 
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The results show that overfitting can be detected at the sélecfion phase of SOCS, espe­

cially when NSGA-II is employed as the search algorithm. In response to question (1) 

posed in the beginning of this chapter, GV may be deemed to be the best strategy for con­

troUing overfitting. In ail problems where overfitting was detected, in both large and small 

databases, GV outperformed the other overfitting control methods. In response to ques­

tion (2), our results indicate that RSS-based ensembles are more prone to overfitting than 

BAG-based ones, even though the same behavior was not observed in ail databases inves­

tigated. In terms of ensembles generated by RSS, our results globally showed that kNN 

ensembles and DT ensembles are equaUy affected by overfitting. This aspect is totafiy 

problem-dependent. 

Finally, our results outlined a relationship between performance and diversity. Double-

fault 6  and ambiguity 7 were the diversity measures more and less closely related to per­

formance respectively. Moreover, wc show that the difficulty measure 9  can be better than 

e as a single-objective function for selecting high-performance ensembles of classifiers. Il 

is important, however, to realize that quite a large minimum ensemble size (49) was fixed 

for ail diversity measures. Such a size was defined based on the size of the ensembles 

found by G A guided by e. 

Although we were able to increase the generalizafion performance of the baseline initial 

pools of classifiers by employing SOCS in chapter 2 and SOCS with overfitting control in 

this chapter, the sélection of only one candidate ensemble to classify the whole test dataset, 

does not guarantee that the candidate ensemble most likely to be correct for classifying 

each test sample individually is selected. In the next chapter of this thesis we propose 

a dynamic OCS in order to investigate whether or not the gain in performance can be 

increased still further. 



CHAPTER 4 

DYNAMIC OVERPRODUCE-AND-CHOOS E STRATEG Y 

In chapter 2 and chapter 3, we bave considered static overproduce-and-choose strategy 

(SOCS). We bave investigated search criteria and search algorithms to guide the opfimiza­

tion process and how this may be affected by the overfitting problem. We also presented 

methods to control overfitting. The objective was to finding the most accurate subset of 

classifiers during the sélecfion phase, and using it to predict the class of ail the samples in 

the test dataset. In this chapter, wc propose a dynamic overproduce-and-choose strategy, 

which relies on combining optimizafion and dynamic sélection to compose a two-level 

sélection phase. The optimization process is conducted to generate candidate classifier 

ensembles and the dynamic sélection is performed by calculafing a measure of confidence 

to allow the sélection of the most confident subset of classifiers to label each test sample 

individually. 

In our approach, an ensemble création method, such as bagging or the random subspace 

method, is applied to obtain the initial pool of candidate classifiers C  at the overproduction 

phase. 'IFius, the optimization process described in chapter 2 is assumed to be the first 

level of the sélecfion phase. At this first level, a populafion-based search algorithm is 

employed to generate a population C*' -^  {C'i,C'2,..., Cj,}  of highly accurate candidate 

ensembles Cj.  This population is denoted C* to indicate that it was obtained by using the 

validation process described in chapter 3. Assuming C* as the population found using the 

optimization dataset, C* is the altemative population found using the validation dataset 

to avoid overfitfing. At the second level proposed in this chapter, the candidate ensembles 

in C*' are considered for dynamic sélecfion in order to identify, for each test sample x^g, 

the solution C*'  most likely to be correct for classifying it. 
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In fiie introduction of this thesis we mentioned that our objective by proposing a dynamic 

overproduce-and-choose strategy is to overcome the following three drawbacks: Rather 

than selecting only one candidate ensemble found during the optimizafion level, as is done 

in SOCS, the sélection of C*' is based directly on the test patterns. Our assumpfion is that 

the generalization performance will increase, since ail potential high accuracy candidate 

ensembles from the populafion C*' are considered to sélect the most compétent solution 

for each test sample. 'Fhis first point is parficularly important in problems involving Pareto-

based algorithms, because our method allows ail equally compétent solutions over the 

Pareto front to be tested; (2) Instead of using only one local expert to classify each test 

sample, as is done in traditional classifier sélection stratégies (both static and dynamic), 

the sélection of a subset of classifiers may decrease misclassification; and, finally, (3) 

Our dynamic sélection avoids esfimating régions of compétence and distance measures in 

selecting ('*' for each test sample, since it relies on calculating confidence measures rather 

than on performance. 

Therefore, in this chapter, we présent a new method for dynamic sélection of classifier 

ensembles. The proposed method relies on choosing dynamically from the population 

C*' of highly accurate candidate ensembles generated at the opfimization level, the candi­

date ensemble with the largest consensus to predict the test pattern class. We prove both 

theoretically and experimentaUy that this sélecfion permits an increase in the "degree of 

certainty" of the classification [29], increasing the generalization performance as a consé­

quence. We propose in this thesis the use of three différent confidence measures, which 

measure the extent of consensus of candidate ensembles to guide the dynamic sélection 

level of our method. Thèse measures are: (1) Ambiguity;  (2) Margin;  and (3) Strength 

relative to  the closest  class. 

The first measure is based on Ihe definifion of ambiguity shown in Equafion 2.2, which in­

dicates that the solufion with least ambiguity among its members présents high confidence 

level of classification. 'Hie second measure, which is inspired by the définition of margin. 
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measures the différence between the number of votes assigned to the two classes with the 

highest number of voles, indicating the candidate ensemble's level of certainty about the 

majority voting class. Finally, the third measure also measures the différence between the 

number of votes received by the majority voting class and the class with the second highest 

number of votes; however, this différence is divided by the performance achieved by each 

candidate ensemble when assigning the majority vofing class for samples contained in a 

validation dataset. This additional information indicates how often each candidate ensem­

ble made the right décision in assigning the selected class. Différent candidate ensembles 

may hâve différent levels of confidence for the same class [8]. 

Besides thèse three new confidence measures, DCS-LA is also investigated. DCS-LA is 

classical dynamic classifier sélection method [101]. It has been summarized in chapter 

1, more precisely in section 1.2.1. We bave tailored DCS-LA to the sélection of classi­

fier ensembles to be compared to the three confidence-based dynamic sélection methods. 

Following the same expérimental protocol employed in chapter 3, in this chapter, bagging 

and ihe random subspace method are used to generate ensemble members, while DT and 

kNN classifiers are used for the création of homogeneous ensembles at the overproduction 

phase, showing that the validity of our approach does not dépend on the particulars of the 

ensemble génération method. Single- and multi-objective GAs are used to perform the 

optimization of our DOCS, employing the same five objective functions for assessing the 

effectiveness of candidate ensembles. 

This chapter is organized as follows. Our proposed DOCS is introduced in section 4.1. 

Then, sections 4.2 and 4.3 describe the optimization and dynamic sélecfion performed in 

the two-level sélecfion phase by population-based GAs and confidence-based measures 

respecfively. Finally, the parameters employed in the experiments and the results obtained 

are presented in section 4.4. Conclusions are discussed in secfion 4.5. 
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4.1 Th e Proposed Dynamic Overproduce-and-Choose Strategy 

The method proposed in this chapter does not follow the classical définition of DCS (see 

section 1.2.1 in chapter 1), however, and so a partifion génération procédure is not needed 

and the sélection level is not based on accuracy. Instead, our approach is based on the 

définition of OCS, 'fraditionaUy, OCS is divided into two phases: (1) overproduction; and 

(2) sélection. Fhe former is devoted to constructing C.  The latter tests différent combi­

nations of thèse classifiers in order to identify the opfimal solution, C*'. Figure 17 shows 

that, in SOCS, C*' is picked up from the population of candidate ensembles, C*, found 

and analyzed during the sélection phase, and is used to classify ail samples contained in 

G- However, as mentioned in the introduction, there is no guarantee that the C* chosen is 

indeed the solution most likely to be the correct one for classifying each Xĵg individually. 

^t 

) 

Ensemble _ 
Génération • Pool of classifiers 

Method l e = {c,,C2,.. .,c„} 

.First level - Optimizaliun Second level - Dynamic Selectioi^ 

OVERPRODUCTION PHASE SELECTION PHASE 

Figure 17 Overview of the proposed DOCS. The method divides the sélection phase 
into optimization level, which yields a population of ensembles, and dynamic 
sélection level, which chooses the most compétent ensemble for classifying 
each test sample. In SOCS, only one ensemble is selected to classify the 
whole test dataset. 

We propose a dynamic OCS in this chapter, as summarized in Figure 17 and Algorithm 

7. The overproduction phase is performed, as defined in previous chapters, to generate 
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the initial pool of classifiers C.  Thus, the sélection phase is divided into two levels: (1) 

optimization; and (2) dynamic sélection. 'Fhe opfimization is performed by GAs guided 

by both single- and multi-objective functions as was done in ail the experiments presented 

throughout this thesis. According to the global validafion strategy defined in chapter 3 to 

avoid overfitting at this level, the optimization dataset (O)  is used by the search algorithm 

to calculate fitness, and the validation V is used to keep stored, in the auxiliary archive A, 

the population of /? best solutions for the GA or the Parelo front for NSGA-II found before 

overfitting starts to occur. As explained below, in the single-objective GA case, hère we 

keep stored in A  ihe population of n  best solutions rather than only one solution, as was 

done in chapter 3. The population of solutions C* , is further used at the dynamic sélection 

level, which allows the dynamic choice of C*  to classify x,_g, based on the certainty of 

the candidate ensemble's décision. Finally, C*' is combined by majority voting. 

4.1.1 Overproductio n Phas e 

In the overproduction phase, any ensemble génération technique may be used, such as 

varying the classifier type [70], the classifier architecture [78], the leaming parameter ini­

tialization [107], boosting [48], the random subspace method [72], etc. In this chapter, we 

employ bagging  (BAG) and the random subspace  (RSS) method to generate C.  RSS [32] 

works by randomly choosing n  différent subspaces from the original feature space. Each 

random subspace is used to train one individual classifier c,.  BAG is a bootstrap technique 

[5] which builds rz replicate training data sets by randomly sampling, with replacement, 

from T. Thus, each replicated dataset is used to train one c,. 

In the following sections we describe the two levels of the sélection phase of our DOCS. 

Since we hâve considered and described the optimization level in previous chapters, this 

level is briefiy presented. We concentrate hère in our proposed dynamic sélection level. 
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Algorithm 7  Dynamic Overproduce-and-Choose Sfi-ategy (DOCS) 
1 : Design a pool of classifiers C. 
2: Perform the optimization level using a search algorithm to generate a population of 

candidate ensembles C*'. 
3: fo r each test sample x,_g do 
4: i f ail candidate ensembles agrée on the label the n 
5: classify x, ^ assigning it the consensus label. 
6: els e 
7: perform the dynamic sélecfion level calculafing the confidence of solutions in 

8 
9 

10 
11 

13 
14 
15 

if a winner candidate ensemble is identified the n 
sélect the most compétent candidate ensemble C*'  to classify x,_g 

else 
if a majority voting class among ail candidate ensembles with equal compé­
tence is identified the n 

12: assign the majority voting class to X; g 
else 

sélect the second highest compétent candidate ensemble 
if a majority vofing class among ail candidate ensembles with the first and 
the second highest compétence is idenfified the n 

16: assign the majority voting class to x,_g 
17: els e 
18: randomly sélect a candidate ensemble to classify x, g 
19: en d i f 
20: en d i f 
21: en d i f 
22: en d if 
23: en d fo r 

4.2 Optimizatio n Leve l 

In order to clarify the proposed DOCS, we will use a case study obtained in one replication 

using the NIST-letters database (section 3.3.1) throughout this chapter. The inifial pool of 

DT classifiers was generated using RSS. The maximum number of générations is fixed at 

max{g)^ 1,000. 

Figure 18(a) depicts the optimization level conducted as a single-objective problem. Al­

though GA was guided by the minimization of the error rate f as the objeclive function. 
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we show plots of e versus the difficulty measure 9  lo better illustrate the process. Again, 

each point on the plot corresponds to a candidate ensemble, i.e. they represent ail solutions 

evaluated for inax{g).  'fhe population C*' (circles) is composed of the n  best solufions. 

We fixed n —  21 (see secfion 4.4). In Figure 18(c), only the 21 best solutions are shown. 

In SOCS, C*' is assumed to be the solufion with the lowest e (black circle in Figure 18(c)), 

without knowing whether the C*' chosen is indeed the best solution for correctly classify­

ing each x,,g. Hence, the additional dynamic sélection level proposed in this chapter is a 

post-processing strategy which takes advantage of the possibility of dealing with a set of 

high-performance solutions rather than only one. In this way, the whole population C*' 

is picked up at the dynamic sélection level of our method. 'Hie parameter n  should be 

defined experimentally. 

Figure 18(b) shows ail the classifier ensembles evaluated using NSGA-II guided by the 

following pair of objective functions: joinUy minimize 9  and e. Hère, the Pareto front is 

assumed to be C*' (circles in Figures 18(b) and 18(d)). Although the solutions over the 

Pareto front are equally important, the candidate ensemble with the lowest e (black circle 

in Figure 18(d)) is usuafiy chosen to be C*'  in classical SOCS, as was done in [72] and 

[89]. 

Considering this case study. Table XI shows the results calculated using samples from G 

comparing SOCS and the combination of the initial pool of classifiers C.  The sélecfion 

of a subsel of classifiers using SOCS outperformed the combination ofC.  Il is interesting 

to observe that NSGA-11 was slightly superior to GA, and that the sizes of the candidate 

ensembles in C* found using both GAs were smaller than the initial pool size. In addition, 

NSGA-II found a C*'  even smaller than the solution found by GA. Fhe assumption of 

proposing an additional dynamic sélection level is that performance may still be increased 

when selecfing C*'  dynamically for each Xi,g. 
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Ensembles evaluale d C 

O Populatio n o f the n  besl ensembles C 

0.058 0.058 5 0.05 9 0  0595 0  06 0  0605 0.06 1 0.061 5 0.06 2 0.062 5 
Difficully Measur e 

(a) GA - Evalualed solutions 

Ensembles evalualed C 

O Parol e frorfl  c ' 

0 058 0  0585 0  059 0  0595 0  06 0  0605 0  061 0  0616 0  062 0  062 5 
Difficully Measur e 

(b) NSGA-II - Evaluated solutions 

7.55 

750 

745 

7 40 
n 'X_  HJirrM? ^^^^'^ 

0 0584 0  0586 0  0588 0  059 0  0592 0  0594 0.059 6 0  0598 0.0 6 
Difficully Measur e 

(c) GA - nbest solutions 

0 0584 0  0586 0  0588 0  059 0  0592 0  0594 0  0596 0  0598 0.0 6 
Difficulty Measure s 

(d) NSGA-11 - Pareto front 

Figure 18 Ensembles generated using single-objective GA guided by e in Figure 18(a) 
and NSGA-II guided by 9  and r in Figure 18(b). 'Fhe output of the 
optimizafion level obtained as the n  best solufions by GA in Figure 18(c) and 
the Pareto front by NSGA-II in Figure 18(d). Thèse results were calculated 
for samples contained in V.  TTie black circles indicate the solutions with 
lowest e, which are selected when performing SOCS. 

4.3 Dynami c Sélectio n Leve l 

The sélection process in classical DCS approaches is based on the certainty of the classi­

fiers décision for each parficular x^^. Consequently, thèse methods explore the domain of 

expertise of each classifier to measure the degree of certainty of its décision, as described 
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Table XI 

Case study: the results obtained by GA and NSGA-II when performing SOCS are 
compared with the resull achieved by combining ail classifier members of the pool C. 

Optimization Erro r C*  Averag e size 
Level rat e siz e o f Cj e C* 
Combination 
NSGA-11 (f & 0) 
GA (f) 

6.06 
5.86 
5.90 

100 
45 
55 

-
50 (2.50) 
55 (3.89) 

in secfion 1.2.1, chapter 1. The dynamic sélection level proposed in this chapter is also 

based on décision certainty. However, instead calculating the confidence of each individual 

classifier, our method calculâtes the confidence of each candidate ensemble that composes 

C*', when assigning a label for Xjg. We show below that it is possible to calculate the 

certainty of a candidate ensemble décision by measuring the extent of the consensus asso-

ciated with it. Fhe standpoint is that the higher the consensus among classifier members, 

the higher the level of confidence in ihe décision. 

Considering a classification problem with the following set of class labels fi = 

{uj\,ijj2..., cJc}, the confidence level is related to theposteriorprobabilits' P(a;/t|xj_g) that 

X, g comes from class io^-  Hansen et al. [29] hâve observed that P(a'fc|x, g) may be calcu­

lated in the context of an ensemble of classifiers by measuring the extent of the consensus 

of ensembles, as given below: 

Given the candidate ensemble Cj  ^ {ci,C2  , 0} and the output of the v-th classifier 

yj(x,,g), without loss of generalily, we can assume that each classifier produces a class 

label as output. The number of votes v{u!k\^,g)  for class LO^  given x,g is obtained as 

follows: 

•y(c^yt|X,,g) - \{C,  : y,{X^,g)  =~  UJk}\  (4.1 ) 
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Assuming majority voting as the combination function, the consensus décision is: 

i'iv{x,_g) = arg .̂̂ 1 max f (Lc;/,.|x,,g) (4.2) 

Thus, the extent of consensus on sample x,,g is: 

P(...,x,„) = "''""'^fl"-'' (4.3 ) 
\Cj\ 

The extent of consensus measures the number of classifiers in agreement with the ma­

jority voting. Consequenfiy, by maximizing the extent of consensus of an ensemble, the 

degree of certainty that it will make a correct classificafion is increased. Another important 

point to mention is that no information on the correctness of the output is needed. ITiese 

observations allow us to présent three confidence measures that calculate the extent of 

consensus of each candidate ensemble from the populafion C*', to be used at the dynamic 

sélection level of our DOCS: (1) ambiguity, (2) margin, and (3) strength relafive to the 

closest class. The first two measures are directly related to the évaluation of the extent of 

consensus. The third measure also considers the candidate ensembles' performance mea­

sured for each class involved in the classification problem. 'Fhis additional informafion is 

calculated over samples contained in V. In addition, DCS-LA is adapted to the context of 

DOCS to be compared to thèse three confidence-based stratégies. 

4.3.1 Ambiguity-Guide d Dynami c Sélection (ADS ) 

The classification ambiguity proposed by Zenobi and Cunningham [104] attempts to esti­

mate the diversity of opinions among classifier members. lliis diversity measure, which is 

defined in Equation 2.2, chapter 2, appears to be well suited for the dynamic sélecfion level 

we are proposing, since it does not need knowledge on the correctness of the décision. 
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It is important to note in Equation 2.2 that, if we calculate the ambiguity 7 for a particular 

test sample x,,g instead of calculating it for the whole dataset, 7 becomes the complément 

of the extent of consensus in Equation 4.3. Denoting 7 calculated for the given X;g as 7, 

we may assume 7 +  P(c<;fc|x, g) = 1. Thus, Equation 2.2 simplifies to: 

7 = ^ E a , ( x , , g ) (4.4 ) 

Since such a local ambiguity measures the number of classifiers in disagreement with 

the majority voting, the nfinimizalion of 7 leads lo the maximization of the extent of 

consensus. Consequenfiy, the certainty of correct classificafion is increased. In addition, 

although 7 does not take into account the label of the given sample, the minimization 

of 7 also leads to the maximization of the margin in the case of a correct classification. 

The so-called margin is a measure of confidence of classification. 'Hiere are two gênerai 

définitions of margin reported in the literature [27]. The first définition is presented below 

and the second is presented in section 4.3.2. 

The classification margin for sample Xi,g is the following: 

//(x,,g) = v{uJt\x,^g)  -  ^î;(u;fc|x,,g) (4.5) 

where ^, is the true class label of x,,g. Hence, the margin measures the différence between 

the number of votes assigned for the true class label and the number of voles given for 

any other class. Consequently, the certainty of the classification is increased by trying to 

maximize the margin. Based on the standpoints presented in this section, our dynamic 

level guided by 7, denoted ADS, will pick up C*' as the candidate ensemble with lowest 

7. The assumption is that the candidate ensemble with the lowest 7 présents the lowest 

possibifity of making a mistake when classifying x,_g, 
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However, it is important to take into account the différence between 7 (Equation 2.2) and 

7 (Equation 4.4). Fhe former, called global ambiguity in this chapter, is used to guide the 

optimization level, and it is calculated for the whole dataset (O  or V).  Fhe latter, called 

local ambiguity, is used in the dynamic sélection level calculated for each x, g individually. 

Since the global ambiguity is a dissimilarity measure (see II I in chapter 2), it must be 

maximized at the optimization level. 

ADS is summarized in Figure 19. In this example, the output of the optimization level is 

the Pareto front found by MOGA. 7 is calculated for each solution over the Pareto front. 

Thus, the solution ('*' with the lowest 7 is selected and combined to assign the majority 

voting class niv  to the test sample Xĵ g. 

4.3.2 Margin-base d Dynami c Sélection (MDS) 

The second measure proposed for use in guiding dynamic sélection in our approach has 

been inspired by the second définition of the margin. Following this définition, the margin 

of sample x, g is computed as follows: 

//(x,,g) :^  y(^;|x,,g) - max  ky^tuM^i,g)  (4.6) 

This équation calculâtes the différence between the number of votes given to the correct 

class v{LOt\:>c,^g)  and the number of votes given to the incorrect class label with the highest 

number of votes. In our approach, however, f (a;^|x,,g) is unknown, since the dynamic 

sélection is performed for test samples. In order to employ this measure to guide the dy­

namic sélection of our DOCS, we bave tailored the margin measure defined in Equation 

4.6 to our problem. Considering y(m(;|x,_g) as the number of votes assigned to the major­

ity vofing class, we propose to replace î;(u;/|x,,g) by v{mv\yii^g).  In this way, the margin 
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Optimization Level 

X;,,, 

7c,(x,,s)-

ïcMi.g'r 

ïcMi.g)-
7C„(Xi,9h 

argj^i min7c,(x, , j ) 

C] 

Dynamic Sélection Level 

Figure 19 Ambiguity-guided dynamic sélection using a Pareto front as input. The 
classifier ensemble with least ambiguity among its members is selected to 
classify each test sample. 

of sample x,,g for each Cj  from the population C*' may be calculated as follows: 

/^(X«,g) 
j{mv\yii^g) -  max  k^rnvv{(^k\y^i,g) (4.7) 

Hence, our définition of margin measures the différence between the number of votes as­

signed to the majority vofing class and the number of votes assigned to the class with 

second highest resuit. Fhen, the margin value represents the confidence of the classifi-

cafions, since the higher the margin from Equation 4.7, the higher the confidence of the 

ensemble consensus décision. Thus, the dynamic sélection level guided by the margin, 

denoted MDS, will choose as ('*' the candidate ensemble with the highest margin. For 

instance, when //(Xjg) = 1 the majority vofing matches well to just one class, indicating 

the highest level of certainty of correct classification. 
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4.3.3 Clas s Strength-based Dynami c Sélection (CSDS ) 

The définition of margin in Equation 4.6 also inspired this third confidence measure. Hère, 

however, besides calculating Equation 4.7, we also consider the candidate ensemble's con­

fidence with respect to the identity of the majority voting class measured in V.  This is ad­

ditional knowledge related to the performance achieved by each candidate ensemble when 

assigning the chosen class. Our objective is to investigate whether or not performance may 

help a confidence measure, which does not take into account the correctness of the output, 

to increase the candidate ensemble's level of certainty of classification. 

Strength relative to the closest class is presented in [8] as a method for defining weights in 

DCS-LA. It is calculated for each individual classifier c,  to verify whether or not the input 

pattern is closely similar to more than one class. We bave adapted this measure to enable 

us to calculate it for candidate ensembles Cj  in the dynamic sélecfion of our DOCS. 

Assuming Pj{mv) as the performance of Cj  measured over samples contained in V  for the 

majority vofing class, strength relative to the closest class may be calculated for x,,g as 

follows: 

Q. , (t;(mt;|x,,g) - max  k^^.,v{uk\y^,J)/\Cj\ 
'' Pjimv) 

A low value of 0(xj,g) means a low level of certainty of correct classification. In contrast, 

higher 0(x,,g) values lead to an increase in the level of confidence of classification. TTius, 

the dynamic sélection level guided by 0 , called CSDS, will choose as C*'  the candidate 

ensemble with the highest 0(x,,g) to provide a label for x,,g. 

4.3.4 Dynami c Ensembl e Sélection with  Local Accurac y (DCS-LA ) 

As explained in secfion 1.2.1, DCS-LA dynamically sélects the most accurate individual 

classifier from the population C  to predict the label of the test sample x,,g. Local accuracy 
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is measured in the région of compétence composed as the set of k nearest neighbors from T 

surrounding Xjg. Woods et al. [101] compared two stratégies to measure local accuracy: 

(1) overall local accuracy; and (2) local class accuracy. 'Hie overall local accuracy is 

computed as the number of neighbors correctly classitied by each classifier c,. However, 

in this chapter, we use the second strategy, since Woods et al. bave concluded thaï this is 

the strategy that achieves the better results. 

Given the pool C  and the class assigned by the 7-th classifier, tOy,  to the test sample x,,g, 

we dénote Â ^ as the number of neighbors of x, g for which classifier c,  has correctly 

assigned class u)y, and Y2i=i  ^'^ î  ̂ ^e total number of neighbors labeled for c, as class iVy. 

According to the définition provided in [101], local class accuracy estimation is computed 

as follows: 

!\jy 
cvc,(x, ,g)= (4.9) 

Eli '̂̂  

Taking into account that DCS-LA was originally proposed to deal with populations of 

classifiers, as summarized in Equafion 4.9, it cannot be directly employed in problems in­

volving populations of classifier ensembles. Thus, we propose lo change the DCS-LA with 

local class accuracy estimation sfightly in order to allow it to be used to guide dynamic 

sélection in our proposed approach. Given a population C* of candidate ensembles, we 

assume ujy  as the class assigned by the candidate ensemble Cj  (composed of / classifiers) 

to the test pattem x,g. We define as région of compétence the set of k nearest neighbors 

from V  surrounding x,,g. Clearly, DCS-LA can be criticaUy affected by the choice of the 

k parameter. The local candidate ensemble's class accuracy is then estimated as follows: 

acji^i.g) -  TTH (4.10) 
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To summarize, in this chapter, ac- for pattem x,,g is calculated as the sum of the local class 

accuracy (a^)  of each classifier composing Cj,  divided by the size ofCj. The higher ac^, 

the greater the certainty of the décision. 'Fable XII shows a summary of the four différent 

stratégies proposed for use at the dynamic sélection level of our DOCS. 

fable XII 

Summary of the four stratégies employed at the dynamic sélection level. The arrows 
specify whether or not the certainty of the décision is greater if the strategy is lower (J.) or 

greater {]). 

Name 
Ambiguity-Guided Dynamic Sélection 
Margin-based Dynamic Sélection 
Class Strength-based Dynamic Sélection 
Dynamic Ensemble Sélection with Local Accuracy 

Label 
ADS 
MDS 
CSDS 

DCS-LA 

î / i 
(1) 
(î) 
(T) 
(T) 

Using the case study menfioned in section 4.2, we compare, in Table Xni, the results 

obtained in G  using the combination of Ihe inifial pool C,  SOCS and our DOCS employ­

ing the four dynamic stratégies presented in this section. Thèse preliminary results show 

that, except for CSDS, our dynamic method guided by confidence measures outperformed 

SOCS performed by NSGA-II. In terms of the single-objecfive GA, static and dynamic 

sélection methods presented similar results, except for CSDS and DCS-LA. 

Fable XIII 

Case study: comparison among the results achieved by combining ail classifiers in the 
inifial pool C and by performing classifier ensemble sélecfion employing both SOCS and 

DOCS. 

^Optimization Combinatio n SOC S AD S MD S CSD S DCS-L A 
NSGA-U(c&6») 6.06 5.86 5.74 5.7 1 6.01 5.74 
GA(£) 6.06 5.90 5.90 5.88 6.13 5.98 
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Figures 20 and 21 show histograms of the frequency of sélecfion of each candidate en­

semble performed using each dynamic sélection strategy presented in this section. 'Fhe 

histograms in Figure 20 were obtained for the population C*' compo.sed of n  best candi­

date ensembles generated by GA shown in Figure 18(c), while the histograms in Figure 

21 were obtained considering the Pareto front determined by II shown in Figure 18(d). 

Especially noteworthy is the fact that the test set G  used for the case study is composed 

of 12,092 samples (Table VI), even though the dynamic sélection level was conducted 

over only 325 and 436 of test samples for MOGA and GA respectively. Ail candidate 

ensembles in C* agreed on the label for the remaining test samples. 

Il is also important to observe in Figure 21 that ADS, MDS and DCS-LA more often 

selected as C*  the same candidate ensemble selected statically (C'i in Figure 18(d)). In 

contrast, the opposite behavior is shown in Figure 20. TTiese results indicate why DOCS 

did not outperform SOCS for the GA's population of candidate ensembles (see Table XIII). 

In addition, two of the confidence-based dynamic stratégies, namely ADS and MDS, 

more frequently selected the same candidate ensembles as selected by DCS-LA, which 

is an accuracy-oriented strategy. Thèse results support our assumption that selecting the 

candidate ensemble with the largest consensus improves the performance of fiie System. 

Moreover, considering the results obtained by CSDS, we can conclude that measures of 

confidence that do not take into account the correctness of the output provide enough in­

formation about a candidate ensemble's level of certainty of classification. 'Fhe additional 

information calculated by CSDS through measuring the performance of each candidate 

ensemble over samples in V  did not help in finding better performing ensembles. In next 

section, we présent expérimental results lo verify whether or not thèse preliminary results 

are gênerai, considering other databases and ensemble generafion methods. 
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0 1 2 3  4  5 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 6 1 9 20 2 1 
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(a) ADS 
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Classifier Labe l 

(b) MDS 

H 5 0 

Lhdi 
0 1  2  3 4  5  6  7 B  9  1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 

Classrlier Labe l 

(c) CSDS 

•î 3 0 

0 1 2 3  4  5 7 8  9  1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 
Cfassifier Labe l 

(d) DCS-LA 

Figure 20 Case study: histogram of the frequency of sélection of candidate ensembles 
performed by each dynamic sélection strategy. The population C*' is the n 
best solution generated by GA (see Figure 18(c)). 

4.4 Experiment s 

A séries of experiments has been carried out to détermine the best strategy for the dynamic 

sélecfion level proposed in our approach and to show whether or not DOCS is better than 

SOCS. As a conséquence, we also point out the best method for the overproduction phase 

on comparing RSS and BAG, and the best search algorithm and search criteria for the 

opfimization level. We used seven datasets divided into two groups: (1) two large; and (2) 
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Classifier Labe l 
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Classrfier Labe l 

(c) (\SDS 
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Classrfier Labe l 

(d) DCS-LA 

Figure 21 Case study: histogram of the frequency of sélection of candidate ensembles 
performed by each dynamic sélection method. The population C*' is the 
Pareto front generated by NSGA-11 (.see Figure 18(d)). 

five smaU, Tables VI and XIV respectively. TTie datasets from group 1 are the same large 

datasets used in chapter 3. Therefore, they are large enough to be partitioned into the four 

independent datasets, illustrated in Figure 17: T, O,  V  and G  using the classical holdout 

validation strategy for the evaluafion of performance. By contrast, 10-fold cross-validafion 

is applied for the évaluation of performance using small datasets due to the small number 

of samples available for évaluation. 
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Table XIV describes the five small datasets: the Dna, satimage and texture are the same 

small datasets used in chapter 3. We used two addifional small datasets in this chapter: 

feltwell is a multisensor remote-sensing dataset [76] and shi p is a dataset composed of 

forward-looking infra-red (FLIR) ship images [56]. The two new datasets are traditionally 

employed in works dealing with dynamic classifier sélection. 

Table XIV 

Specificafions of the small datasets used in the experiments. 

Dataset 

Dna 
Feltwell 
Satimage 
Ship 
Texture 

Number of 
samples 

3186 
10944 
6435 
2545 
5500 

Number of 
classes 

3 
5 
6 
8 
11 

Number of 
features 

180 
15 
36 
11 
40 

Features 
RSS 
45 
8 
18 
6 
20 

PooIC 
size 
100 
100 
100 
100 
100 

In this chapter we follow the same expérimental protocol employed in chapter 3. To 

summarize, for the overproducfion phase, three différent inifial pools of 100 homogeneous 

classifiers were created: 100 kNN and 100 DT generated by RSS, and 100 DT generated 

by BAG. The sélection phase was divided into two levels: for the optimization level, each 

diversity measure mentioned in section 3.3.1 was employed in combination with e to guide 

NSGA-11, while only e  was used to guide single-objecfive GA. For the dynamic sélection 

level, ail four dynamic stratégies delined in section 4.3 were tested so that they could be 

compared. We set k  ~  10 for experiments wilh DCS-LA, as employed in [84] and [79]. 

The results obtained are given in subséquent sections. 

4.4.1 Compariso n o f Dynamic Sélection Stratégies 

A summary of the expérimental results comparing fiie four dynamic sélection stratégies 

defined in section 4.3 is given in Tables XV, XVI and XVII. The best resuit for each 

dataset is shown in bold. ITiese results indicate that ADS and MDS were the best strate-
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Table XV 

Mean and standard déviation values obtained on 30 replications of the sélection phase of 
our method. The overproduction phase was performed using an initial pool of kNN 

classifiers generated by RSS. The best resuit for each dataset is shown in bold. 

Dataset 

DNA 

Nist-digits 
Testl 

Nist-digits 
Test2 

Nist-
letters 

Satimage 

Ship 

Texture 

Method 

DCS-LA 
ADS 
MDS 
CSDS 
DCS-LA 
ADS 
MDS 
CSDS 
DCS-LA 
ADS 
MDS 
CSDS 
DCS-LA 
ADS 
MDS 
CSDS 
DCS-LA 
ADS 
MDS 
CSDS 
DCS-LA 
ADS 
MDS 
CSDS 
DCS-LA 
ADS 
MDS 
CSDS 
DCS-LA 
ADS 
MDS 
CSDS 

ambiguity 
(1) 

9.33 (0.27) 
10.31 (0.28) 
10.34 (0.30) 
10.56(0.30) 
11.17(0.21) 
10.51 (0.11) 
10.51 (0.11) 
10.57(0.10) 
4.12(0.07) 
3.80 (0.04) 
3.80(0.04) 
5.21 (0.09) 
8.57(0.14) 
8.11 (0.06) 
8.12(0.07) 
9.95(0.11) 
7.63 (0.43) 
7.23(0.17) 
7.16(0.16) 
10.15(0.45) 
8.75 (0.08) 
8.67 (0.08) 
8.68 (0.09) 
8.96(0.13) 
14.24 (0.32) 
13.25(0.24) 
13.37(0.26) 
14.06(0.25) 
1.51 (0.06) 
1.37(0.05) 
1.37(0.05) 
1.37(0.07) 

NSGA-II 
coincident 

(a) 
9.84 (0.28) 
9.72 (0.47) 
9.57(0.41) 
9.89(0.19) 
10.46 (0.25) 
10.34 (0.25) 
10.34 (0.26) 
10.40 (0.25) 
4.59(0.17) 
3.95 (0.05) 
3.94 (0.05) 
7.25 (0.26) 
9.34 (0.28) 
8.55 (0.08) 
8.53 (0.09) 
9.89 (0.33) 
8.22 (0.69) 
8.22(0.12) 
7.07(0.11) 
14.53 (0.63) 
9.60(0.15) 
9.05(0.17) 
9.04(0.18) 
10.13(0.24) 
10.31 (0.29) 
9.60 (0.33) 
9.66(0.31) 
10.17(0.34) 
1.64 (0.08) 
1.23(0.09) 
1.22(0.09) 
1.28(0.10) 

difficulty 
(0) 

7.48 (0.24) 
7.51 (0.22) 
7.47(0.21) 
7.48(0.19) 
9.70(0.14) 
9.82(0.16) 
9.82(0.14) 
9.84(0.14) 
3.72 (0.05) 
3.58 (0.03) 
3.58 (0.02) 
3.80 (0.04) 
8.18(0.11) 
7.97 (0.05) 
7.97 (0.05) 
8.21 (0.08) 
6.48(0.15) 
6.48 (0.07) 
6.27 (0.07) 
6.47 (0.14) 
8.73(0.13) 
8.64(0.13) 
8.65(0.14) 
8.80(0.16) 
9.34 (0.24) 
9.25 (0.20) 
9.24 (0.20) 
9.39(0.21) 
0.97 (0.05) 
0.94 (0.05) 
0.94 (0.05) 
0.94 (0.06) 

double-fault 
(ô) 

9.36(0.30) 
9.30 (0.23) 
9.16(0.28) 
8.36(0.30) 
10..59(0.31) 
10.62(0.28) 
10.59(0.29) 
10.66 (0.32) 
4.43 (0.26) 
7.49 (2.29) 
7.46 (2.32) 
6.67 (0.22) 
9.48 (0.43) 
8.40 (0.48) 
8.36 (0.55) 
9.42 (0.45) 
7.20(0.33) 
6.95(0.12) 
6.88(0.12) 
9.35(0.41) 
9.40(0.13) 
9.16(0.16) 
9.16(0.18) 
9.78(0.19) 
9.24 (0.23) 
9.13(0.21) 
9.15(0.22) 
9.31 (0.29) 
1.02(0.07) 
0.98 (0.07) 
0.98 (0.07) 
0.98 (0.09) 

GA 
error 

(0 
7.47(0.15) 
7.24(0.21) 
7.24(0.15) 
7.25(0.17) 
9.87(0.13) 
9.95(0.17) 
9.95(0.16) 
9.97(0.17) 
3.60 (0.06) 
3.53 (0.05) 
3.53 (0.05) 
3.80 (0.06) 
7.91 (0.10) 
7.78(0.10) 
7.78(0.10) 
8.09(0.10) 
6.55(0.16) 
6.43 (0.06) 
6.41 (0.08) 
6.70 (0.09) 
8.63 (0.07) 
8.61 (0.09) 
8.61 (0.09) 
8.67(0.11) 
10.40(0.20) 
9.81 (0.16) 
9.83(0.13) 
10.23(0.18) 
1.18(0.03) 
1.11 (0.01) 
1.11 (0.02) 
1.11 (0.03) 

gies for performing the dynamic sélecfion level of our approach, considering ail three 

ensemble creafion methods investigated, i.e. (I) ensemble of kNN; (2) ensemble of DT 

generated through RSS (Tables XV and XVI); and (3) ensembles of DT generated by BAG 
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Table XVI 

Mean and standard deviafion values obtained on 30 replications of the sélection phase of 
our method. The overproducfion phase was performed using an initial pool of DT 

classifiers generated by RSS. llie best resuh for each dataset is shown in bold. 

Dataset 

D N A 

Nist-digits 
Testl 

Nist-digits 
Test2 

Nist-
le tiers 

Satimage 

Ship 

Texture 

Method 

DCS-LA 
ADS 
MDS 
CSDS 
DCS-LA 
ADS 
MDS 
CSDS 
DCS-LA 
ADS 
MDS 
CSDS 
DCS-LA 
ADS 
MDS 
CSDS 
DCS-LA 
ADS 
MDS 
CSDS 
DCS-LA 
ADS 
MDS 
CSDS 
DCS-LA 
ADS 
MDS 
CSDS 
DCS-LA 
ADS 
MDS 
CSDS 

ambiguity 
(7) 

7.05(0.21) 
7.94 (0.23) 
7.92 (0.23) 
8.01 (0.24) 
12.68(0.19) 
11.60(0.15) 
11.59(0.14) 
11.66(0.15) 
3.82(0.12) 
3.35 (0.04) 
3.35 (0.04) 
5,63 (0.09) 
8.18(0.18) 
7.38 (0.07) 
7.34 (0.06) 
9.05(0.14) 
7.57 (0.30) 
7.13(0.09) 
7.12(0.09) 
10.65(0.11) 
9.30 (0.09) 
8.73(0.10) 
8.73(0.10) 
9.13(0.13) 
10.65 (0.30) 
8.86(0.25) 
8.94 (0.26) 
9.97 (0.24) 
3.42(0.17) 
2.98 (0.08) 
3.00 (0.08) 
3.01 (0.08) 

NSGA-II 
coincident 

(o) 
7.54 (0.28) 
6.50 (0.29) 
6.54 (0.30) 
6.59 (0.28) 
13.27(0.47) 
12.71 (0.40) 
12.74(0.42) 
12.80(0.43) 
5.37 (0.29) 
4.11 (0.20) 
3.83(0.13) 
5.53(0.12) 
10.06(0.50) 
9.16(0.32) 
8.61 (0.20) 
8.77 (0.54) 
6.12(0.50) 
9.31 (0.29) 
7.69(0.19) 
15.92(0.14) 
10.66(0.19) 
9.22(0.19) 
9.22(0.19) 
11.23(0.24) 
9.16(0.30) 
8.26 (0.34) 
8.26(0.32) 
9.15(0.41) 
3.85(0.14) 
3.02(0.14) 
3.04(0.14) 
3.06(0.15) 

difficulty 
iO) 

4.63(0.15) 
4.59(0.17) 
4.63(0.17) 
4.62(0.17) 
11.65(0.32) 
11.65(0.33) 
11.65(0.32) 
11.65(0.32) 
2.91 (0.04) 
2.77 (0.03) 
2.77 (0.02) 
2.98 (0.06) 
6.79 (0.09) 
6.45 (0.05) 
6.50 (0.05) 
6.50 (0.09) 
6.03 (0.14) 
5.84 (0.06) 
5.84 (0.06) 
5.98 (0.08) 
8.97 (0.09) 
8.64(0.10) 
8.63 (0.09) 
8.94(0.12) 
7.53(0.18) 
7.17(0.15) 
7.18(0.15) 
7.18(0.17) 
2.47 (0.07) 
2.35 (0.06) 
2.35 (0.05) 
2.35 (0.05) 

double-fault 
(6) 

7.23 (0.23) 
6.27 (0.23) 
6.27(0.19) 
6.34 (0.22) 
12.79(0.51) 
12.51 (0.51) 
12.49(0.48) 
12.51 (0.50) 
3.68 (0.20) 
3.59 (0.23) 
3.40(0.12) 
4.47 (0.78) 
8.07 (0.37) 
8.11 (0.40) 
7.80 (0.20) 
8.69 (0.50) 
7.20 (0.39) 
7.12(0.14) 
6.93(0.10) 
10.95 (0.46) 
10.12(0.15) 
9.17(0.15) 
9.16(0.15) 
10.64 (0.26) 
7.93 (0.29) 
7.72 (0.28) 
7.75 (0.29) 
8.03 (0.27) 
3.51 (0.16) 
2.97(0.14) 
2.65(0.16) 
2.96(0.16) 

GA 
error 

(0 
5.14(0.14) 
4.95(0.18) 
4.92(0.19) 
4.93(0.19) 
11.59(0.14) 
11.50(0.17) 
11.53(0.16) 
11.51 (0.16) 
2.89 (0.04) 
2.77 (0.09) 
2.77 (0.04) 
3.12(0.06) 
6.66 (0.08) 
6.45 (0.05) 
6.45 (0.05) 
6.98(0.10) 
6.17(0.14) 
5.96 (0.06) 
5.95 (0.06) 
6.29 (0.09) 
8.96(0.09) 
8.78(0.12) 
8.77(0.13) 
8.86(0.12) 
7.24(0.14) 
6.98(0.14) 
6.95(0.13) 
7.35(0.12) 
2.84 (0.09) 
2.44) (0.05 
2.44 (0.05) 
2.44 (0.06) 

(Table XVII). Thèse two dynamic stratégies presented équivalent performances, which 

confirms the prefiminary results in our ca.se-study problem (see Table XIII). CSDS was 

the worst dynamic sélection strategy for 1 and 3, while DCS-LA was most likely to be the 
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Table XVII 

Mean and standard deviafion values obtained on 30 replications of the sélecfion phase of 
our method. The overproducfion phase was performed using an initial pool of DT 
classifiers generated by Bagging. 'Fhe best resuit for each dataset is shown in bold. 

Dataset 

DNA 

Nist-digits 
Testl 

Nist-digits 
Test2 

Nist-
letters 

Satimage 

Ship 

Texture 

Method 

DCS-LA 
ADS 
MDS 
CSDS 
DCS-LA 
ADS 
MDS 
CSDS 
DCS-LA 
ADS 
MDS 
CSDS 
DCS-LA 
ADS 
MDS 
CSDS 
DCS-LA 
ADS 
MDS 
CSDS 
DCS-LA 
ADS 
MDS 
CSDS 
DCS-LA 
ADS 
MDS 
CSDS 
DCS-LA 
ADS 
MDS 
CSDS 

ambiguity 
(7) 

5.15(0.15) 
5.20(0.16) 
5.17(0.17) 
5.19(0.15) 
12.50(0.36) 
12.70(0.21) 
12.70(0.17) 
12.75(0.19) 
5.74 (0.09) 
5.53 (0.05) 
5.52 (0.05) 
5.87(0.12) 
11.00(0.16) 
10.71 (0.09) 
10.70 (0.09) 
11.18(0.20) 
7.81 (0.17) 
7.61 (0.06) 
7.63 (0.06) 
7.85 (0.07) 
9.70 (0.38) 
9.34 (0.43) 
9.21 (0.37) 
9.78(0.17) 
7.79(0.19) 
8.14(0.20) 
8.16(0.20) 
8.46 (0.23) 
3.69 (0.09) 
3.57 (0.09) 
3.56 (0.09) 
3.63(0.10) 

NSGA-II 
coincident 

(a) 
5.20(0.18) 
5.20(0.16) 
5.20(0.18) 
5.22(0.17) 
12.47(0.28) 
12.28(0.34) 
12.28(0.35) 
12.38(0.33) 
6.72 (0.36) 
5.79(0.11) 
5.69(0.10) 
6.86 (0.56) 
11.60(0.55) 
10.81 (0.25) 
11.02(0.24) 
12.76(0.91) 
9.13(0.62) 
8.36(0.15) 
8.30(0.10) 
10.16(0.94) 
11.35(0.57) 
10.36(0.60) 
10.44(0.58) 
12.08(0.22) 
8.32 (0.29) 
8.70 (0.29) 
8.71 (0.29) 
9.04 (0.32) 
4.40 (0.43) 
4.02 (0.56) 
3.93 (0.63) 
4.01 (0.18) 

difficulty 
(0) 

4.75(0.15) 
4.86(0.11) 
4.86(0.10) 
4.86(0.11) 
12.00(0.22) 
12.04(0.18) 
12.03(0.18) 
12.04(0.19) 
5.67 (0.09) 
5.51 (0.05) 
5.51 (0.05) 
5.64 (0.09) 
10.98(0.15) 
10.71 (0.09) 
10.70(0.10) 
10.88(0.12) 
7.64(0.12) 
7.50 (0.06) 
7.50 (0.05) 
7.60 (0.08) 
9.81 (0.11) 
9.62 (0.09) 
9.63 (0.07) 
9.78(0.11) 
7.81 (0.29) 
8.36(0.19) 
8.38(0.17) 
8.53(0.21) 
3.44 (0.09) 

3.41 (0.008) 
3.42 (0.08) 
3.43(0.11) 

double-fault 
(S) 

5.30(0.15) 
5.32(0.21) 
5.31 (0.23) 
5.36 (0.25) 
12.40(0.32) 
12.24(0.31) 
12.24(0.29) 
12.34(0.32) 
6.04(0.21) 
5.47(0.10) 
5.44 (0.09) 
6.72(0.41) 
10.64(0.37) 
10.59(0.18) 
10.54(0.12) 
11.68(0.61) 
8.45 (0.44) 
8.06(0.17) 
8.02(0.14) 
9.84 (0.54) 
10.99(0.22) 
10.25(0.13) 
10.22(0.11) 
11.82(0.28) 
8.58 (0.29) 
8.83 (0.27) 
8.84 (0.28) 
9.12(0.27) 
4.17(0.13) 
4.03(0.15) 
4.04(0.15) 
3.43(0.11) 

GA 
error 

(e) 
4.88 (0.09) 
4.95 (0.06) 
4.95 (0.06) 
4.97 (0.07) 
11.69(0.20) 
11.95(0.14) 
11.94(0.14) 
11.98(0.15) 
5.23 (0.06) 
5.14 (0.06) 
5.14(0.05) 
5.44 (0.06) 
10.21 (0.12) 
10.06(0.11) 
10.06(0.10) 
10.41 (0.11) 
7.79(0.12) 
7.64 (0.07) 
7.64 (0.07) 
7.78(0.01) 
9.74 (0.09) 
9.61 (0.11) 
9.61 (0.12) 
9.68(0.12) 
7.72(0.13) 
8.07 (0.09 
8.05 (0.09) 
8.15(0.16) 
3.66(0.07) 
3.60(0.06) 
3.60(0.06) 
3.58 (0.08) 

worst dynamic sélection strategy for ensembles of DT generated by RSS. In terms of the 

optimization level, single-objective GA and NSGA-II presented équivalent performances 

for ensembles of kNN generated by RSS and ensembles of DT generated by BAG, while 



109 

NSGA-II found the best results for populations of ensembles of DT generated by RSS. 9 

was clearly the besl diversity measure for composing, with e,  a pair of objective functions 

to guide NSGA-11, while 7 and o  were the worst diversity mea.sures. 

Il is important to noie that DCS-LA was better than the oUier dynamic sélection stratégies 

in 3 of the 8 datasets in problems involving DT generated by BAG. The reason for this 

behavior is thaï BAG provides the complète représentation of the problem to each classifier 

member, whereas RSS provides only a partial representafion. TTius, DCS-LA calculâtes 

the local accuracy of each classifier more accurately when BAG is used as the ensemble 

création method. Also important is the fact that CSDS was less effecfive in problems 

involving a large number of classes, such as NIST-letters , because it takes into account 

the performance of the candidate ensembles for each class involved in the classification 

problem, in addition to the extent of consensus of the ensembles. Moreover, for the same 

reason, CSDS is much more crifically affected by the quality of the population of candidate 

ensembles found at the opfimization level. For instance, since 7 and o  were the worst 

objective functions when guiding the optimization level, CSDS was much worse than 

the other three stratégies when used to perform the dynamic sélection on populations of 

candidate ensembles found by Ihese two diversity measures. 

4.4.2 Compariso n betwee n DOC S and Several Method s 

In this section, we summarize the best results obtained by our DOCS for each dataset, in 

order lo show that the proposed approach outperforms other related methods. Table XVIII 

reports the results attained by the following methods: 

• Fusion of the initial pool of classifiers C  by majority voting; 

• Sélection of the best individual classifier from the initial pool C; 

• Individual kNNs and DTs trained using ail available features; 
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• DOCS using the best dynamic sélecfion strategy; 

• Oracle for each initial pool of candidate classifiers. 

Oracle is a lower bound of sélection stratégies, because it correctly classifies the test sam­

ple if any of the classifier members predicts the correct label for the sample. Values are 

shown in bold for the best resuit obtained for each dataset considering each ensemble 

génération method, and are shown underlined for the best overall resuit obtained for each 

dataset, whatever the ensemble création method used. From this table, some observations 

can be made: 

Table XVIII 

Error rates attained by several methods. NSGA-II (X), GA (Y), I (DCS-LA), II (ADS), III 
(MDS), IV (CSDS). Values in bold and underlined indicate the best resuit in each dataset 
for each overproduction method and the best overall resuit for each dataset respectively. 

Method 

Bagging D T 
Initial Pool 
Besl Classifier 
Oracle (C) 
Best DOCS 
RSSDT 
Initial Pool 
Best Classifier 
DT ail features 
Oracle (C) 
Best DOCS 
RSS kN N 
Initial Pool 
Best Classifier 
kNN ail features 
Oracle (C) 
Best DOCS 

Dna 

X-10 
5.02 
5.87 
0.38 
4.75 

x-ne 
5.05 
11.33 
6.85 
0.03 
4.59 
Y-llf 
6.87 
23.10 
26.30 
0.03 
7.24 

Feltwell 

Y-l€ 
12.80 
10.59 
2.57 
11.69 
Y-IIe 
11.86 
11.86 
16.81 
0.60 
11.50 
X-10 
10.44 
9.46 
12.35 
0.67 
9.70 

NIST 
Testl 
Y-lIe 
5.65 
9.70 
0.24 
5.14 

Y-II^ 
2.92 
11.07 
10.3 
0.01 
2.77 
Y-lle 
3.72 
7.52 
6.66 
0.05 
3.53 

•digits 
Tesl2 
Y-lIe 
10.99 
16.62 
0.63 
10.06 
x-n0 
6.67 
19.18 
18.2 
0.04 
6.45 
Y-IW 
8.10 
13.99 
9.76 
0.17 
7.78 

NIST-letters 

X-IIé» 
7.63 
14.31 
0.29 
7.50 

X-n0 
6.06 
17.13 
13.5 
0.04 
5.84 

X-111 6» 
6.60 
14.47 
7.82 
0.18 
6.27 

Satimage 

X-111 7 
9.59 
12.77 
0.11 
9.21 

X-III 0 
8.64 
11.83 
14.17 
0.22 
8.63 
Y-Ilf 
8.59 
8.95 
9.84 
0.36 
8.61 

Ship 

Y-le 
8.09 
9.08 
035 
7.72 

Y-III e 
6.80 
10.45 
10.92 
0.24 
6.95 

X-11 S 
9.94 
10.26 
11.24 
0.28 
9.13 

Texture 

X-U0 
3.60 
6.64 
0.02 
3.41 

X-Hé» 
2.56 
6.07 
7.56 
0.02 
2.35 

X-U0 
1.11 
0.62 
1.13 
0.04 
0.94 
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• Analyzing the results obtained for ensembles of DT generated using BAG, our 

DOCS outperformed the other methods, except for feltwell . Fhe same scénario 

was observed for ensembles of DT generated using RSS, but the excepfion was the 

ship dataset. For ensembles of kNN generated using RSS, however, the proposed 

method outperformed the other methods in only 4 of the 8 cases. For the remaining 

4 datasets, our DOCS was the second best method. 'Fhe combinafion of the initial 

pool C was the best method for dna and satimage while the individual best classifier 

from C  was the best method for feltwel l and texture . 

• Confidence-based dynamic stratégies were better than DCS-LA for performing the 

dynamic sélection of the sélection phase. Even though ADS and MDS presented 

similar behavior, we show in Table XVlll values obtained using ADS to perform 

Ihe comparison in next section. 

• The search algorithms presented équivalent performances. The best results found 

using DOCS were obtained in populations of candidate ensembles optimized by 

NSGA-II in 13 cases and by single-objective GA in 11 cases out of a total of 24 

cases investigated. 

• 9  was the best diversity measure for combining with e to guide NSGA-II. 

• RSS was better than BAG for use during the overproduction phase. Results obtained 

using ensembles generated by RSS were both better than those obtained using en­

sembles generated by BAG. 

• DT was the best classifier model to be used as a base classifier during the overpro­

duction phase. Five of the best overall results were obtained with ensembles of DT, 

whereas in the remaining three datasets they were obtained with ensembles of kNN. 

Both ensembles were generated by RSS. 
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Table XIX présents some of the results reported in the literature dealing with the sélection 

of classifiers, except for références [32] and [66], on the databases used in this chapter. In 

this way, it is possible to gain an overview of the results obtained in the literature, even 

though the method of partition of the data used in some of thèse works was nol the same 

as that used in this chapter. 

Table XIX 

The error rates obtained, the data partifion and Ihe sélection method employed in works 
which used the databases investigated in this chapter (FSS: feature subset sélection). 

Database 

Dna 
Feltwell 
NIST-digits Testl 
NIST-letters 
Satimage 
Ship 
Texture 

Référence 
Number 

[32] 
[15] 
[89] 
[61] 
[15] 
[66] 
[101] 

Ensemble 
Création 

RSS 
Het 
RSS 
FSS 
Het 
Het 
DT 

Classifiers 
Members 

DT 
Het 

kNN 
MLP 
Het 
Het 
Het 

Partition 
Strategy 
Holdout 
Cross-validation 
Holdout 
Holdout 
Cross-validation 
Holdout 
Holdout 

Sélection 
Type 

Fusion 
DCS-LA 

SOCS 
SOCS 

DCS-LA 
Fusion 

DCS-LA 

Error 
(%) 
9.19 
13.62 
3.65 
4.02 
10.82 
5.68 
0.75 

To verify whether or not our DOCS is better that the classical SOCS, in the next section, 

we concentrate our analysis on the methods that attained the best results in this section, 

i.e. DT ensembles generated by RSS, ADS as dynamic strategy; MOGA guided by 9  in 

combination with e; and GA guided by e. 

4.4.3 Compariso n o f DOCS and SOCS Result s 

The static sélection results were obtained by picking up the candidate ensemble presenting 

the lowest e value of ail the solutions composing the n  best solution (for single-objective 

G A) or the Pareto front (for NSGA-11). Thèse ensembles are represented in Figures 18(c) 

and 18(d) by black circles. It is important to mention that the results were tested on mul­

tiple comparisons using the Kruskal-Wallis nonparametric statistical and the confidence 

level was 95% (Q =  0.05), as was done in previous chapters. 
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Table XX summarizes the mean and the standard déviation of the error rates obtained on 

aU eight databases comparing the stafic and dynamic OCS. 'Fhese results indicate, without 

exception, that our DOCS was better ihan the traditional SOCS. In two spécifie situations 

(feltwell and NIST-letters), the différences between the two methods were not significant. 

It is important to note that the results achieved using NSGA-II guided by both 9  and e 

outperformed the results found using GA guided by e the single-objective function. This 

is a différent resuit from those presented in [72] and [89]. It appears that performing 

dynamic sélection in the sélection phase resulted in exploiting ail possible potenfials of 

the population of candidate ensembles over the Pareto front, leading lo more benefits for 

NSGA-II with Uie new level. However, only with the texture database was GA better Ihan 

NSGA-II in SOCS, whereas in DOCS the opposite is true. 

Table XX 

Mean and standard déviation values of the error rates obtained on 30 replications 
comparing DOCS and SOCS with no rejection. Values in bold indicate the lowest error 

rate and underlined when a method is significantly better than Ihe others. 

Dataset 

Dna 
Feltwell 
NIST-digits Testl 
NIST-digits Test2 
NlSt-letters 
Satimage 
Ship 
Texture 

SOCS 
NSGA-11 (0 & f) 

4.77(0.17) 
12.02(0.38) 
2.82 (0.06) 
6.59 (0.09) 
5.89 (0.07) 
8.76(0.13) 
7.35(0.17) 
2.41 (0.09) 

GAe 
4.97(0.16) 
11.86 (0.06) 
2.84 (0.06) 
6.53 (0.09) 
6.02 (0.09) 
8.82(0.12) 
7.14(0.23) 
2.51 (0.09) 

DOCS 
N.SGA-11 (0 & e) 

4.59(0.17) 
11.65(0.33) 
2.77 (0.03) 
6.45 (0.05) 
5.84 (0.06) 
8.64(0.10) 
7.17(0.15) 
2.35 (0.06) 

GAe 
4.95(0.19) 
11.50(0.17) 
2.77 (0.03) 
6.45 (0.05) 
5.96 (0.06) 
8.78(0.12) 
6.98 (0.14) 
2.44 (0.05) 

Ail thèse results were obtained wilh a zéro reject rate. However, as advocated by Hansen 

et al. [29], the reject mechanism for an ensemble of classifiers is based on the extent of 

consensus among its members. This means that the décision to reject a pattem is related 

to the confidence level of the ensemble, l'hey assume that it is better to reject the pattem 

if the ensemble présents a low confidence level to take a décision. Such a confidence level 
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is clearly related to 7 (Equation 4.4), which is used to guide ADS. Thus, since 7 is the 

criterion used to perform the reject mechanism, we might assume that the différence be­

tween SOCS and DOCS will increase as the rejection rate increases. We analyze such an 

assumption in Figure 22 taking into account the case study problem investigated through­

out this chapter. 'This prefiminary resuit does not confirm this assumpfion. Both the stafic 

and the dynamic OCS presented similar error-reject curves for ensembles generated by 

GA 22(a) and NSGA-11 22(b). 

? 3 -

- SOC S 
[xx :s • socs 

DOCS 

Reied 
20% 25 % 30 % 35 % 40 % 45 % 50 % 

Reject 

(a) GA (b) MOGA 

Figure 22 Case Sfiidy: En-or-reject curves for GA (22(a)) and NSGA-11 (22(b)). 

In order to show more gênerai results about the error-reject tradeoff, we fixed four différent 

reject rates: 0.5% and 1.0% (Table XXI), 5.0% and 10.0% (Table XXII), to investigate ail 

the problems dealt with in this chapter. Fhese results confirm that we should not assume 

that DOCS is more effective than SOCS when increasing the rejection rate. 

4.5 Discussio n 

We propose a dynamic overproduce-and-choose strategy which is composed of the tradi­

tional overproduction and sélection phases. The novelty is to divide the sélection phase 

into two levels: optimizafion and dynamic sélection, conducting the second level using 
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Table XXI 

Mean and standard déviation values of the error rates obtained on 30 replications 
comparing DOCS and SOCS with rejection. Values in bold indicate the lowest error rate 

attained and underlined when a method is significantly better than the others. 

Dataset SOCS 
NSGA-11 (0 & e) GAe 

DOCS 
NSGA-II (0  & c) GAe 

Dna 
Feltwell 
NIST-digits Testl 
NIST-digits Test2 
NIST-letters 
Satimage 
Ship 
Texture 

4.50(0.18) 
11.79(0.38) 
2.55 (0.06) 
6.32(0.10) 
5.60(0.09) 
8.52(0.13) 
7.06(0.17) 
2.22(0.10) 

0.5%-rejection 
4.72(0.18) 
11.62(0.24) 
2.55 (0.06) 
6.26 (0.08) 
5.71 (0.11) 
8.58(0.13) 
6.89 (0.24) 
2.26 (0,09) 

4.38(0.19) 
11.42(0.33) 
2.52 (0.04) 
6.25 (0.05) 
5.53 (0.07) 
8.44 (0.09) 
6.88(0.18) 
2.17 (0.06) 

4.78(0.18) 
11.29(0.17) 
2.53 (0.03) 
6.20 (0.06) 
5.67 (0.06) 
8.54(0.12) 
6.87(0.16) 
2.25 (0.06) 

Dna 
Feltwell 
NIST-digits Testl 
NIST-digits Test2 
NIST-letters 
Satimage 
Ship 
Texture 

4.29(0.17) 
11.53(0.37) 
2.30 (0.06) 
6.04(0.10) 
5.27 (0.08) 
8.31 (0.13) 
6.74(0.18) 
2.04 (0.09) 

1.0%-rejection 
4.54 (0.20) 
11.38(0.23) 
2.34 (0.06) 
5.99(0.11) 
5.41(0.11) 
8.38(0.14) 
6.59(0.21) 
2.07 (0.09) 

4.22(0.18) 
11.14(0.33) 
2.31 (0.04) 
6.09 (0.07) 
5.24 (0.06) 
8.24(0.11) 
6.57(0.18) 
2.01 (0.06) 

4.63(0.19) 
11.08(0.17) 
2.34 (0.03) 
5.97 (0.06) 
5.41 (0.07) 
8.34(0.12) 
6.52(0.17) 
2.06 (0.05) 

confidence measures based on the extent of consensus of ensembles. TTie two classical 

ensemble creafion methods, the random subspace method and bagging, were used for the 

overproduction phase, while single- and multi-objective GAs were used at the optimization 

level. The ensemble error rates and diversity measures guided the optimization. Finally, 

three confidence measures were applied at the dynamic sélection level: (1) ambiguity; (2) 

margin; and (3) strength relative to the closest class. In addition, DCS-LA was compared 

to the confidence-based stratégies. 

Experiments conducted using eight datasets demonstrated that the proposed approach out­

performs both static sélecfion and the fusion of the initial pool of classifiers. Ambiguity 

and margin were the best measures to use at the dynamic sélection level, presenting equiva-
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Table XXU 

Mean and standard déviation values of the error rates obtained on 30 replications 
comparing DOCS and SOCS with rejection. Values in bold indicate Ihe lowest error rate 

attained and underlined when a method is significantly better than the others. 

Dataset SOCS 
NSGA-11 (0 & c) GAe 

DOCS 
N.SGA-11 (0 & c) GAe 

Dna 
Feltwell 
NIST-digits Testl 
NIST-digits test2 
NIST-letters 
Satimage 
Ship 
Texture 

5.0%-rejection 
3.13(0.15) 3.37(0.14) 
9.70 (0.-35) 
1.21 (0.05) 
4.38(0.14) 
3.64(0.11) 
6.72(0.13) 
5.05(0.21) 
1.01 (0.05) 

9.46 (0.22) 
1.22(0.04) 
4.34(0.10) 
3.79(0.10) 
6.71 (0.12) 
4.99(0.17) 
1.03(0.05) 

3.18(0.17) 
9.48 (0.36) 
1.24(0.05) 
4.41 (0.10) 
3.64 (0.09) 
6.68(0.12) 
5.05(0.16) 
0.98 (0.07) 

3.54(0.16) 
9.26 (0.20) 
1.29(0.02) 
4.44 (0.08) 
3.83 (0.06) 
6.71(0.11) 
5.16(0.17) 
1.04(0.04) 

Dna 
Feltwell 
NIST-digits Testl 
NIST-digits Test2 
NIST-letters 
Satimage 
Ship 
Texture 

10.0%-rejection 
2.06(0.18) 2.14(0.18) 
7.45 (0.40) 
0.54 (0.03) 
2.83(0.10) 
2.27 (0.07) 
5.05(0.10) 
3.59(0.13) 
0.39 (0.05) 

7.50 (0.20) 
0.56 (0.04) 
2.83(0.10) 
2.30 (0.08) 
5.02 (0.09) 
3.62(0.11) 
0.37 (0.03) 

2.05(0.19) 
7.51 (0.29) 
0.54 (0.03) 
2.89 (0.09) 
2.31 (0.08) 
5.02(0.10) 
3.64(0.14) 
0.37 (0.05) 

2.36(0.13) 
7.39 (0.22) 
0.58 (0.03) 
2.93 (0.09) 
2.42 (0.05) 
4.98 (0.09) 
3.79(0.12) 
0.36 (0.04) 

lent performances. It was shown that NSGA-II guided by the difficulty measure combined 

with the error rate found better ensembles than single-objective GA guided only by the er­

ror rate. In addifion, although not as clearly as one might bave hoped, our results indicate 

that our method is especially valuable for tasks using NSGA-II, since différences between 

the results found using NSGA-II and GA are greater in the dynamic than in the static 

overproduce-and-choose strategy. Ideally, wc should exploit ail the potential of the pop­

ulation of candidate ensembles over a Pareto front using the proposed dynamic sélection 

level. 

However, the quality of the population of candidate ensembles found al the optimization 

level critically affects the performance of our approach. We can confirm this observation 
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taking into account the concept of oracle. As mentioned before, the so-called oracle is a 

lower bound of sélection stratégies. 'Fable XXIIl shows resuhs attained by the fusion of the 

initial pool of classifiers C  and its oracle for the same case study investigated throughout 

this chapter. Only NSGA-II guided by 9  combined with t  is considered in this example. 

Table XXIII 

Case study: comparing oracle results. 

Fusion of Oracle of 
initial pool C initial pool C 

SOCS DOCS Oracle of population 
of ensembles C* 

6.06 0.04 5.86 5.71 4.81 

It is important to mention that, instead of C, the Pareto front (population of ensembles C* ) 

is the input to our dynamic sélection level. Hence, we should consider the oracle of the 

population C* as the lower bound for our DOCS. Thus, it is assumed thaï oracle correctly 

classifies the test sample if any of candidate ensembles in C* predicts the correct label for 

the sample. In Table XXIII, it is shown that our DOCS may not achieve an error rate lower 

than 4.81. 'Fhe large différence between the results of the C  and C*' oracles leads us to 

conclude that there is a major loss of oracle power at the optimizafion level. Populations 

of candidate ensembles with oracle error rates doser to those obtained using C  wUl bring 

about an effective improvement in the performances attained by our method. 



CONCLUSION 

The focus of this thesis was the sélection of classifier ensembles. Our efforts were concen-

trated towards the overproduction-and-choose strategy. We hâve seen fiiat this strategy is 

classically composed of the overproduction and sélection phases. While the overproduc­

tion phase may be pert'ormed using any ensemble construction strategy and base classifier 

model, the sélecfion phase is the main challenge in the overproduction-and-choose strat­

egy, since it focuses on finding the best performing subset of classifiers. We bave called 

this approach static overproduction-and-choose strategy due to the fact that the candidate 

ensemble selected as the best performing subset of classifiers is used to classify the whole 

test dataset. 

In our first investigation we analyzed the search criterion, which is one of the two main as­

pects that should be analyzed when the sélecfion phase performs an opfimization process 

conducted by non-exhaustive search algorithms. Single- and mulfi-objective opfimiza­

tion processes were conducted using GAs. NSGA-II was the multi-objective GA used (in 

appendix 1 we show expérimental results which support our choice). Fourteen différent 

objective functions were applied: 12 diversity measures, the error rate and ensemble size, 

while an ensemble of 100 kNN classifiers generated using the random subspace method 

was used as the initial pool of classifiers created at the overproduction phase. The re­

sults of our experiments bave shown that diversity alone cannot be better than Ihe error 

rate al finding the most accurate classifier ensembles. However, when both the error rate 

and diversity are combined in a multi-objective approach, wc observed that the perfor­

mance of the solutions found using diversity is much higher than the performance of the 

solufions found using diversity in a single-objective optimizafion approach. Finafiy, we 

showed that it can be established an analogy between feature subset sélection and static 

overproduction-and-choose strategy by combining ensemble size and the error rate in a 

pair of objective functions. However, we observed that the réduction in the number of 

classifiers is a conséquence of the sélecfion process, then, it is not necessary to include 
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explicitly ensemble size in the optimization process. Moreover, our experiments showed 

that ensemble size and diversity are not conflicfing objecfive funcfions, and should not 

be used combined to guide the optimization process in a multi-objective approach. 'Fhis 

observation, which is also confirmed in appendix 3, leads to the conclusion that the results 

obtained using single-objective GA in our experiments may be différent if the minimum 

number of classifiers is fixed and larger than we bave defined in chapter 2. 

We then proceeded to investigate the problem of overfitting detected at the opfimization 

process of the sélection phase. We presented three overfitting control methods: (1) partial 

validation; (2) backwarding; and (3) global vafidation. 'Fhree initial pools of 100 classifiers 

were generated: 100 kNN and 100 Décision Trees using the random subspace method, and 

a third pool of 100 Décision Trees using bagging. Five différent objective functions were 

applied: four diversity measures and the error rate were used to guide both single- and 

multi-objective GAs. We confirmed that overfitting can be detected at the sélection phase, 

especially when NSGA-11 is employed as the search algorithm. Global validation out­

performed the other overfitting control methods, while random subspace-based ensembles 

were more prone to overfitting than bagging-based ones. We also proposed to use global 

validation as a tool for identifying Ihe diversity measure most closely related to perfor­

mance. Our results indicated that double-fault was the diversity measure more closely 

related to performance. In addition, we showed that the difficulty measure can be better 

than the error rate as a single-objective function for selecting high-performance ensem­

bles of classifiers. However, taking into account our previous expérimental results, which 

show that the minimum number of classifiers is achieved when using most of the diversity 

measures in single-objective optimization, quile a large minimum ensemble size was fixed 

in our experiments. Therefore, thèse results are still dépendent of the minimum ensemble 

size defined. 

Lastly, we bave proposed a dynamic overproduce-and-choose strategy which combines 

optimization and dynamic sélection in a two-level sélection phase to allow the sélection of 
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the most confident subsel of classifiers to label each test sample individually. In this way, 

instead of choosing only one solution to classify the whole test dataset, afi potential high 

accuracy candidate ensembles from the population generated by the search algorithms, 

are considered to sélect the most compétent solution for each test sample. Moreover, we 

proposed lo conduct our dynamic sélection level using confidence measures based on the 

extent of consensus of candidate ensembles. Thèse measures lead to the sélection of the 

solution with the highest level of confidence among its members, allowing an increase 

in the "degree of certainty" of the classification. The same three initial pools of classi­

fiers, generated by the random subspace method and bagging, were used as output of the 

overproduction phase. Single- and multi-objecfive GAs guided by the same five objective 

functions, i.e. four diversity measures and the error rate, were used at the opfimization 

level. Finally, three différent confidence measures were proposed lo be used at the dy­

namic sélection level. 

Our experiments, which were carried oui on eight real classification problems in­

cluding handwritten digits and letters, texture, mulfisensor remote-sensing images and 

forward-looking infra-red ship images, demonstrated that our method outperforms static 

overproduce-and-choose strategy, a classical dynamic classifier sélection method and the 

combination of the décisions of the classifiers in the initial pools. In despile of thèse per­

formance improvements, we observed fiiat the quality of the population of candidate en­

sembles found at the optimization level critically affects the performance of our approach. 

Still more interesting is the observed major loss of oracle power at the optimization level. 

Taking into account that oracle is Ihe lower bound of sélection stratégies, the optimiza­

tion level of our method increases the lower bound, consequently avoiding the dynamic 

sélection level to attain more effective improvement in the performances. 
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Future Work s 

Even though this thesis successfully investigated the static overproduce-and-choose strat­

egy and proposed a dynamic overproduce-and-choose strategy, some issues were not ad­

dressed owing to time. The following future directions are possible and worthy of investi­

gation: 

• Détermine stratégies to improve Ihe quality of the population of ensembles. We 

believe that the opfimization level can be improved in order lo decrease the lower 

bound oracle for our dynamic overproduce-and-choose strategy. 

• Invesfigate différent stratégies for the génération of the population of classifier en­

sembles, which is the input of the dynamic sélecfion level of our method. 

• Develop new confidence measures focusing on increasing the confidence of the dé­

cisions. 

• Invesfigate the impact of our dynamic overproduce-and-choose strategy in problems 

involving missing features. 



APPENDIX 1 

Comparison of IVlulti-Objective Genetic Algorithms 
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Genefic Algorithms are the population-based search algorithms investigated in this thesis. 

In chapter 2 we mentioned thaï single- and multi-objective GAs are two possible options 

when dealing with GAs. 'ITiree MOGAs were investigated in order to allow us to define 

the best option to be used in ail the experiments conducted in this thesis. The following 

three MOGAs were investigated: (I) Non-dominated sorting G A (NSGA) [11]; (2) Fast 

efitist non-dominated sorting GA (NSGA-II) [13]; and (3) controlled efifist NSGA [14]. 

The gênerai G A parameters presented in Table V, chapter 2, are used for ail three MOGAs. 

However, NSGA and controlled elitist NSGA need some parameters to be set. In the first 

case, a niche distance parameter must be defined. This parameter, which indicates the 

maximum distance allowed between any two solutions to participate into a niche, is used 

to control the number of solutions allowed to be concentrated over small régions (niches) 

over the Pareto front. In the case of controUed elifist NSGA, Ihe portion of the population 

thaï is allowed to keep the besl non-dominated solutions must be set, which controls the 

extent of elifism. 

The same initial pool of candidate classifiers generated at the overproduction phase in 

chapter 2 is used hère. 'Fhis is a pool of 100 kNN classifiers (k=l) created using the ran­

dom subspace method. Moreover, the same NIST SD19 database is invesfigated. How­

ever, only data-testl is concemed hère. In Table IV, ail thèse parameters are summarized. 

The three main search criteria, i.e. combination performance, ensemble size and diversity 

measures are employed in the experiments shown in this appendix. However, only ambi­

guity (as defined in Equafion 2.1) is used as the diversity measure. 'Fhus, the following 

two pairs of objective functions are used to guide the three MOGAs: the maximization 

of ambiguity combined with the minimization of the error rate; and the minimization of 

ensemble size combined with the minimizafion of the error rate. 

The level of elifism defined is equal to 50% for conlrofied elitist NSGA. In terms of 

NSGA's parameters, we set the besl niche distance values defined by Tremblay in [88]. 
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In his work an extensive expérimental study was conducted in order to détermine the best 

parameters considering the same two pairs of objective funcfions investigated in this ap­

pendix. Taking into account his results, we set the niche distance values as defined bellow. 

The level of elifism for controlled elifist NSGA is also mentioned. 

• NSGA guided by ambiguity and the error rate: niche distance=0.025; 

• NSGA guided by ensemble size and the error rate: niche distance=0.05; 

• Controlled elitist NSGA elifism level: 50%. 

1.1 Performanc e Evaluation 

Figure 23 shows the comparison results of 30 replications on data-testl obtained using 

the first pair of objective funcfions. Thèse results show that conlrofied efifism NSGA and 

NSGA2 presented équivalent performances, while NSGA was slighfiy worse. 

NSGA 

96 

^ h - - - - " i 

- - - - - 1 

96 2  9 6 3  9 6 4 
Récognition rate 

96 5 

Figure 23 Results of 30 replications using NSGA, NSGA-II and controlled elifist 
NSGA. The search was guided using ambiguity and the error rate. 
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The results obtained by combining ensemble size and the error rate in a pair of objective 

functions to guide the three MOGAs are shown in Figure 24. Using this second pair of 

objective functions we observe that controlled elifism NSGA and NSGA presented équiv­

alent performances. Thus, unlike the previous pair of objective results, NSGA2 was the 

worst search algorithm. However, it is important to note that the variance of the récogni­

tion rates achieved by each algorithm is small (from 96.1% to 96,6%). 

Figure 24 

< NSGA-I I 

NSGA 

96 1 96 3 9 6 4 
Récognition rate 

Results of 30 replications using NSGA, NSGA-II and controlled elitist 
NSGA. The search was guided using ensemble size and the error rate. 

Therefore, our results globally showed that the three MOGAs investigated in this appendix 

are equally compétent to guide the opfimization process involved at the sélection phase of 

SOCS. Since no search algorithm can be claimed to be the best, NSGA-11 is the MOGA 

applied in the experiments presented throughout this thesis. This choice is specially due 

lo the fact that NSGA-II does not need any parameter to be sel. 



APPENDIX 2 

Overfitting Analysis for NIST-digits 



127 

In this appendix we carried oui a comparative study using only two overfitting control 

stratégies described in chapter 3: (1) partial validation PV; and (2) global validation GV. 

The objeclive is to verify whether or not overfitting is detected in opfimizafion process 

using both GA and NSGA-11, guided by ail the objeclive functions and combinations of 

objective functions discussed in chapter 2. Hence, we show hère the overfiUing analysis 

for the three séries of experiments carried oui in chapter 2: single-objective functions, 

diversity measures combined wilh the error rate e and diversity measures combined wilh 

ensemble size (^. 'Fhe minimum number of classifiers allowed by the search algorithms 

was 5 and the pool of 100 kNN classifiers generated with the random subspace method 

was used in this experiments. 

Table XXIV summarizes the average results on data-testl, and Table XXV summarizes the 

results on dala-lesl2. The results are shown in bold when GV decreased the generalization 

error rate significantly, according to the Kruskal-WaUis stafisfical lest. The results are 

shown underlined when GV increased the generalizafion error rate. The results wilh no 

overfitting control NV are also included in thèse tables. 

Table XXIV 

Comparing overfitting conlrol methods on data-testl. Values are shown in bold when GV 
decreased the error rates significantly, and are shown underlined when it increased the 

error rates. 

Vletliod 
NV 
PV 
GV 

NV 
PV 
GV 

NV 
PV 
GV 

GA -  Single objective function s 
e 

3.60 
3.60 
3.SS 

7 
4.70 
4.70 
4.63 

a 
6.36 
6.35 
5.92 

P 
5.34 
5.61 
5.15 

0 
3.76 
3.76 
3.67 

1 
6.32 
6.32 
5.81 

S 
4.80 
480 
4.53 

Ç 
6.11 
6.12 
5.86 

A 
6.00 
6.00 
6.32 

T 

4.76 
4.84 
4.72 

K 

5.17 
5.16 
4.96 

«/' 
4.28 
4.28 
4.25 

* 
5.73 
5.73 
5.43 

NSGA-U -  Pairs of objective function wit h the error rate ( 

-
3.66 
3.70 
3.63 

3.67 
3.68 
3.62 

3.60 
3.59 
3.59 

3.64 
3.63 
3.60 

3.66 
3.69 
3.64 

3.63 
3.64 
3.60 

3.66 
3.67 
3.63 

3.69 
3.70 
3.65 

3.65 
3.63 
3.61 

3.62 
3.60 
3.59 

3.67 
3.67 
3.63 

3.65 
3.63 
3.60 

NSGA-II -  Pairs of objective function wit h ensemble size C 
3.66 
3.67 
3.65 

4.70 
4.70 
5.20 

6.28 
6.28 
6.27 

5.50 
5.50 
5.72 

3.76 
3.83 
3.71 

6.39 
6.39 
6.47 

4.80 
4,80 
4.85 

6.35 
6.35 
6.45 

6.34 
6.34 
6.63 

4.85 
4.85 
4.97 

5.18 
5.18 
5.33 

4.31 
4.31 
4.49 

5.84 
5.84 
6.08 
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Table XXV 

Comparing overfitting control methods on dala-tesl2. Values are shown in bold when GV 
decreased the error rates significantly, and are shown underlined when it increased the 

error rates. 

Method 
NV 
PV 
GV 

NV 
PV 
GV 

NV 
PV 
GV 

GA -  Single objective function s 
e 

7.89 
7.91 
7.80 

7 
9.42 
9.42 
9.31 

a 
11.79 
11,79 
11.02 

P 
10.42 
10.64 
10.01 

e 
8.43 
8.44 
8.11 

f; 

11.70 
11.70 
10.92 

<5 
10.45 
10.45 
9.85 

i. 
11.30 
11.33 
10.82 

A 
11.39 
11.39 
11.92 

T 

10.29 
9.98 
9.64 

K 

10.24 
10.21 
10.01 

i> 
8.89 
8.89 
8.81 

* 
10.97 
10.97 
10.37 

NSGA-II -  Pairs of objective function v ît h the error rat e t 
7.90 
7.97 
7.87 

8.09 
8.11 
7.94 

7,91 
7,90 
7,84 

8.12 
8.11 
7.93 

7.99 
8,01 
7.88 

8.12 
8.14 
7.93 

7.96 
7.98 
7.87 

8.02 
8.01 
7.90 

8.08 
8,00 
7.92 

7.96 
7,92 
7.84 

7.96 
7.97 
7.89 

7.98 
7.94 
7.84 

NSGA-II -  Pairs of objective function wit h ensemble siz e (," 
8.08 
8.08 
7.98 

9.42 
9.42 
10.27 

11.61 
11.61 
11.58 

10.63 
10.63 
10.76 

8.44 
8.49 
8.25 

11.83 
11.83 
11.80 

10.45 
10.45 
10.42 

11.77 
11.77 
11.79 

12.11 
12.11 
12.54 

10.00 
10.00 
10.06 

10.22 
10.22 
10.37 

8.91 
8.91 
9.20 

11.08 
11.08 
11.21 

Thèse experiments show that: 

a. The overfitting phenomenon was detected and controlled in afi the multi-objective 

optimization results when diversity measures were combined wilh c. The GV pro­

cédure allowed us lo find classifier ensembles with a higher power of generalization, 

whatever pair of objective functions was used lo guide the NSGA-II search. 

b. Except for fault majority A, the GV procédure helped to find classifier ensembles 

with higher récognition rates in afi the single-objective optimization problems stud­

ied in this paper. ITius, overfitting was detected even when diversity was used as the 

objective funclion. 

c. The overfiUing phenomenon was nol detected on multi-objective opfimization when 

diversity measures were combined with C,.  'Fhus, other than when C is combined 

with e, the difficulty measure 9  or coincident failure a,  GV leads to a decrease in the 

generalization performances. We can explain this apparent discrepancy by the fact 

that the combination of C and diversity is not related lo performance. 
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The relationship between diversity and error rate is illustrated in Figures 25 and 26. For 

each diversity measure employed in the single-objective optimization experiments de­

scribed in section 2.2.1, we bave measured the uncontrolled overfitfing (j)  —  ^Ç^X']) — 

e(y, C*  ) . TTiese figures show 0 based on 30 replications on data-testl (Figure 25) and on 

dala-test2 (Figure 26) for each diversity measure. According lo thèse results, 9  was the 

diversity measure that was more closely related lo the error rate, while A was the diver­

sity measure that was less closely related to the error rate, since a stronger relationship 

between diversity and error rate leads to a lower 0. 

3.0 

2.5 

2.0 
O) 
c 
i 1.5 
> 
D 

1.0 

0.5 

0 

-1 1  1 1  1 1  1 1 1  1  1  r 

1 

I 
J. 

X 
i . 

L 

T) 6  ^  X 
Objective Functio n 

4-

K \| / <I > 

Figure 25 Uncontrolled overfitting 0 based on 30 replicafions using GA with diversity 
measures as the objecfive function. The performances were calculated on 
the data-testl. Fhe relationship between diversity and error rate becomes 
stronger as 0 decreases. 
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I 
i 

1 
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Objective Functio n 
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Figure 26 Uncontrolled overfiUing 0 based on 30 replicafions using GA wilh diversity 
measures as the objecfive function. 'ITie performances were calculated on 
the data-lesl2. The relationship between diversity and error rate becomes 
stronger as 0 decreases. 

However, the results related to the relationship between diversity measures and the error 

rate may be différent if the minimum number of classifiers is fixed and larger than we bave 

defined in this work, i.e. 5 classifiers. We investigate this aspect in chapter 3. 



APPENDIX 3 

Pareto Analysis 
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3.1 Introductio n 

Based on Uie results obtained in appendix 2 we observed fiiat fiie performance of fiie so­

lutions found in both single- and multi-objecfive optimization processes was increased by 

applying the global validation GV method to reduce overfitting. However, when ensemble 

size C and diversity were combined lo make up pairs of objective functions lo guide the 

optimization and the validation processes, the results were very différent. GV increased 

the generalization error rates. We explained ihis behavior in appendix 2 by the fofiowing 

assumption: the combination of C and diversity is not related lo the performance. First, 

in despite of the fact that good results were obtained using GV guided by diversity in the 

single-objective optimization approach, our experiments outlined thaï, although reduced, 

overfitting was nol lolally controlled. Second, even if we can establish an analogy between 

feature subsel sélection and SOCS, we cannot increase performance by selecting classifier 

ensembles wilh the minimum (, specially because we need lo deal wilh a large initial pool 

of classifiers. Tlierefore, we cannot decrease the generalization error rate by combining 

this pair of objecfive functions. 

In this appendix, we présent further évidence on Pareto front analysis to show why diver­

sity and C are nol strongly related to the performance 

3.2 Paret o Analysi s 

Objective functions in multi-objecfive optimization problems are often confiicting. Since 

différent tradeoffs are established over the Pareto front, when one solution is better ac­

cording lo one objeclive, il is often worse according to Ihe remaining objective functions. 

Indeed, Deb [12] points oui that, for instance in a two confiicting objecfive problem, if 

a ranking of nondominated solutions is carried out in an ascending order according lo 

one objective function, a ranking in a descending order is obtained according to the other 

objective funclion. 
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Thèse observations are illustrated in Figure 27. NSGA-U was employed as the search 

algorithm. In Figure 27(a) the search was guided by the nfinimizalion of the error rate e 

and the difficully measure 9.  The Pareto front solutions are shown in an ascending order of 

e, consequently, in a descending order of Ihe 9. Figure 27(b) shows the Parelo front found 

using the following pair of objeclive functions: jointly nfinimize e and Q.  Once again, the 

solutions were ordered according to e, and in a descending order of C- In Figure 27(c) 

the pair of objeclive functions employed was the minimization of Ç  and 9.  The Pareto 

solutions are shown in an ascending order of 9  (descending order of Q.  However, the 

same behavior cannot be detected in Figure 27(d) where it is shown an example of the 

évolution of the optimization process after 1,000 générations which was generated using 

the following pair of objective functions: jointly minimize C and the interrater agreement 

K. Il can be seen that only one solution was found over the Parelo front. 

The first two figures show that either 9 or Ç combined with e are confiicting objectives. In 

Figure 27(c) il is shown that 9 and C are also confiicting objectives. In contrast, K  and C, are 

not confiicting objectives. In order to show whether or nol the pairs of objective functions 

applied in chapter 2 are confiicting objecfive funcfions we apply hère two quality melrics 

based on calculating the overall Parelo spread and k*^  objective Pareto spread introduced 

by Wu and Azarm [103]. Given a multi-objective problem with m  objective functions 

fi, f2i  •  •  •,  fm^ we show how to calculate the two measures of spread taking into account, 

without loss of generalily, ail objective funcfions lo be minimized and equally important. 

Given ŝ ,, be the possible worst solufion and Sb  be the possible besl solufion, the objective 

space should be scaled by the following équation: 

hM = % r i^ (3-' ) 
1} 1J 
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(d) 

Figure 27 Pareto front after 1000 générations found using NSGA-II and the pairs of 
objeclive functions: jointly minimize the error rate and the difficulty measure 
(a), jointly minimize the error rate and ensemble size (b), jointly minimize 
ensemble size and the difficully measure (c) and jointly minimize ensemble 
size and the interrater agreement (d). 

In a two-objeclive problem, the scaled objeclive space is a hyper-rectangle, as shown in 

Figure 28 defined by the scaled worst (1,1) and best (0,0) solufions. The overall Pareto 

spread is defined as: 
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Figure 28 Scaled objective space of a two-objeclive problem used lo calculate the 
overall Parelo spread and the /c"" objeclive Pareto spread. 

OPS - UT=i np 

maxX iiPk)i min np l{Pk)i\ 

U.T=l\iPw)^- {Pb)i\ 
(3.2) 

or 

OPS n inu.i np i\M-'-k)] iniii np \f,M] (3.3) 

where np  is the total number of Pareto solutions. When we are dealing wilh no confiicting 

objective functions OPS  is equal to 0. Hence, a wider spread leads to more diversity over 

the Pareto front which is a desired Pareto property. However, OPS  does nol measure the 

individual objective spread. For example, if instead of having 7 solutions over the Pareto 

front as shown in Figure 28, we had only two solutions, for instance (fimin-hmax)  and 

ifimax, f2min),  thc samc OPS valuc would be obtained but the diversity over a Parelo with 

only two solutions is much smaller than the diversity over a Parelo with 7 solutions. In 

order to overcome this problem, the k*^^ Objective Pareto Spread (IPS),  also proposed by 

Wu and Azarm[103], is appfied. The IPSk  is calculated as: 
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rpo \maxXl{{p^)k)  -  minX^{{p,)k)\ 
I^^k ~  r, —^; } —r-, (3.4) 

\{Pw)k -  {Pb)k\ 

or 

IPSk |ma.r;'f,(/,(:r,)) - in>n:',{f,{x,))\  (3.5) 

In the two-objeclive problem shown in Figure 28, the k'^  objective Parelo Spread and the 

overaU Parelo spread are respectively: 

IPSfj^ —  \flmax  —  flminl (3.6) 

-^• '̂5/2 ^ l/2mQX ~ /2min I (3.7) 

OPS^ IPSfJPSf,  (3.8) 

The k^^  objeclive Parelo Spread is important lo measure the diversity over the Pareto 

front and lo show whether or not spread is wider for one objeclive funclion than for the 

others. We try to identify if there is more variation in one objective function or if the 

objective functions are equally diverse. Table XXVI présents the A"' objecfive Pareto 

Spread and the overall Pareto spread calculated for each Parelo front shown in Figure 27. 

file:///flmax
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The difficulty measure 9  and the error rate e are confiicting objeclive functions but there 

is much more variation among e values than among 9  values. Ensemble size (  and c  are 

confiicting objeclive functions and there is more variation in (  values than in e values. In 

addition, 9  and (" are confiicting objective functions but once again, there is less variation 

among 9  values. Il is important note that there is more variation among 9  values when 

this diversity measure is combined with (  than when it is combined wilh e. Finafiy, the 

interrater agreement K  and (  are not confiicting objective functions. 

Table XXVI 

Worst and best points, minima and maxima points, the k*^ objective Parelo spread values 
and overall Parelo spread values for each Parelo front. 

Objective 
Functions 

Difficulty (?( / i ) 
Error rate e (/2) 
Ensemble size C ( / i ) 
Error rate t (/2) 
Ensemble size C ( / l ) 
Difficulty 0 ( / 2 ) 
Ensemble size c; (f\) 
Interrater K  ( / O ) 

Original value s 
Sw 

1 
100 
100 
100 
100 

1 
100 

1 

« 6 

0 
0 
0 
0 
0 
0 
0 
0 

min 
0.0359 
3.2800 

5 
3.2900 

21 
0.0415 

5 
0.2752 

max 
0.0362 
3.5600 

17 
4.7000 

5 
0.0356 

5 
0.2752 

Scaled value s 
Su,. •56 

0 
0 
0 
0 
0 
0 
0 
0 

min 
0.0359 
0.0328 
0.0500 
0.0329 
0.0500 
0.0356 
0.0500 
0.2752 

max 
0.0362 
0.0356 
0.1700 
0.0470 
0.2100 
0.0415 
0.0500 
0.2752 

IPS 
0.0003 
0.0028 
0.1200 
0.0141 
0.1600 
0.0059 
0.0000 
0.0000 

OPS 

0.1 X 10-^ 

0.17 X 10-2 

0.9 X 10-3 

0.0000 

We bave calculated both quality measures in order to show which measures are confiicting 

or nol. The same pairs of objeclive functions investigated in appendix 2 were used hère: 

diversity measures combined wilh e; diversity measures combined wilh (  and e combined 

with C- Table XXVII shows the average results from 30 replications for each pair of 

objeclive functions. 'Fhis table shows the values of the A"' objective Parelo spread and the 

overall Parelo spread, as well as the différence between the A"* objeclive Pareto spreads. 

This différence indicates the variation among objective functions values. 

Thèse results show that afi diversity measures are confiicting objective functions when 

combined with e. Except Kohavi-Wolpert ip,  9 and ambiguity 7, there is more variation 

among diversity values than among e values. Ensemble size Ç  and e are also confiicting 
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objeclive functions and there is more variation among ( values. However, there are only 

three diversity measures which are confiicting objeclive functions when combined with 

ensemble size, the same 0, 9  and 7. 

The literature has shown that the pairwise diversity measures and ( are not confiicting 

objective functions. Aksela and Eaaksonen [1] observe that pairwise diversity measures 

always try lo find the two most diverse classifiers which leads to the minimizafion of the 

number of classifiers during the optimization process. Our resulls confirm this observation 

since ail pairwise measures (see Chapter 2, section 2.2.1 employed in our experiments are 

not confiicting objective functions when combined with Q.  However, our results show 

that some of the nonpairwise measures lead also lo the minimizafion of C,.  TTiree of the 

nonpairwise measures employed: 7, 9  and 0, do nol minimize C,. 

Table XXVII 

The average A-"' objective Parelo spread values and the average overall Parelo spread 
values for each pair of objeclive function. 

Diversity 

7 
a 
P 
0 
n 
ô 
ç 
A 
T 

K 

4> 
* 

Error rate 
IPS, 
0.0187 
0.0134 
0.0213 
0.0025 
0.0330 
0.0159 
0.0249 
0.0192 
0.0150 
0.0159 
0.0119 
0.0265 

IPSd.,. 
0.0254 
0.0368 
0.0442 
0.0006 
0.0428 
0.0068 
0.0659 
0.0460 
0.0357 
0.0447 
0.0113 
0.0927 

IPS, 
0.0119 

IPS,i,,. -IPS, 
0.0067 
0.0234 
0.0229 
-0.0019 
0.0098 
-0.0091 
0.0410 
0.0268 
0.0207 
0.0288 
-0.0006 
0.0662 

OPS 
0.5x10-^ 
0 .5x10-3 
0.9 X 10-3 
0 . 2 x 1 0 - ^ 

0.14 X 10-2 
0.1 X 10-3 

0.17 X  10-2 
0,9 X 10-3 
0 5 X 10-3 
0.7 X 10-3 
0.1 X 10-3 

0.25 X 10-2 
Ensemble size (̂  a n 

IPSc^ 
0.2163 

Ensemble size 
IPSc^ 
0.0503 
0.0000 
0.0000 
0.1733 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.1000 
0.0000 

d Error rs 
IPSç 

^ ^ • 5 d n i 

0.0030 
0.0000 
0.0000 
0.0058 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0079 
0.0000 

itC E 

- IPS, 
0.2045 

IPS^ -  IPSdtv 
-0.0474 
0.0000 
0.0000 
-0.1675 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
-0.0921 
0.0000 

OPS 
0,0001 
0.0000 
0.0000 
0.0010 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0008 
0.0000 

OPS 
0.0025 

According to Whitaker and Kuncheva [99] nonpairwise measures are calculated by using 

either entropy or corrélation between individual outputs and Ihe ensemble's output or dis­

tribution of "difficully" of the data samples. Among the three diversity measures, which 
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are confiicting objeclive functions when combined with (,  Iwo measures are based on 

Ihe variance over Ihe dataset (9  and </') and 7 is based on the variance among ensemble's 

members. Thus, our observation is that, besides ihe pairwise diversity measures pointed 

out by Aksela and Laaksonen [1], ail non-pairwise diversity measures based on entropy or 

corrélation between individual outputs are also nol able to find the best ensemble's size, 

i.e. they minimize (  during the optimizafion process. 

Moreover, there is no guarantee of finding the besl ensemble's size using one of the three 

diversity measures based on variance, specially ambiguity, which générâtes the less diverse 

Pareto front (Table XXVll and Figure 29(a)) and the smallest classifier ensembles (Figure 

29(a)). Flowever, thèse three measures bave such a property that makes them able lo 

générale larger classifier ensembles, which is useful in OCS methods since we deal wilh 

a large initial pool of classifiers. TTie two diversity measures based on the variance over 

the dataset found more diverse Pareto front and larger classifier ensembles than ambiguity 

(based on the variance of the classifiers' output). The difficully measure 9  was better than 

Kohavi-Wolpert if'  in thèse two aspects, as il can seen in Figure 29(b) for 4'  and in Figure 

27(c) for 9,  as well as in 'fable XXVII. 
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Figure 29 Pareto front after 1000 générations found using NSGA-11 and the pairs of 
objective funcfions: minimize ensemble size and maximize ambiguity (a) 
and minimize ensemble size and maximize Kohavi-Wolpert (b). 



APPENDIX 4 

Illustration of overfitting in single- and mulfi-objective GA 
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In this appendix we show the Figures 13 and 14, which ifiustrated the overfitfing problem 

in single- and mulfi-objective GA in chapter 3, in larger versions. 
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Figure 30 Optimizafion using GA guided by e. Hère, we follow the evolufion of Cj{g) 
(diamonds) for ^ = 1 (Figure 30(a)) on the opfimization dataset O,  as well 
as on the validation dataset V (Figure 30(b)). Solutions nol yet evalualed are 
in grey and the best performing solutions are highlighted by arrows. 
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Figure 31 Optimization using GA guided by e. Hère, we follow the évolution of Cj{g) 
(diamonds) for g — 52  (Figure 31 (a)) on the opfimization dataset O,  as well 
as on the validation dataset V  (Figure 31(b)). TTie minimal error is reached 
slightly after g  = 52 on V, and overfitting is measured by comparing it to the 
minimal error reached on O. Solutions nol yet evaluated are in grey and the 
best performing solutions are highlighted by arrows. 
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Figure 32 Opfimization using GA guided by f. Hère, we follow the évolution of Cj{g) 
(diamonds) for max{g) (Figure 32(a)) on the optimization dataset O, as well 
as on the validafion dataset V (Figure 32(b)). ITie overfiUing is measured as 
the différence in error between C'*' (circles) and C* (Figure 32(b)). 'Fhere is 
a 0.30% overfit in this example. Solutions not yet evaluated are in grey and 
the best performing solutions are highlighted by arrows. 
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Figure 33 Optimizafion using NSGA-II and the pair of objective functions: difficulty 
measure and e. We follow the evolufion of Ck{g) (diamonds) for ̂  = 1 
(Figure 33(a)) on the optimization dataset O,  as well as on the validation 
dataset V (Figure 33(b)). Solutions not yet evaluated are in grey. 
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Figure 34 Opfimizafion using NSGA-11 and the pair of objeclive functions: difficully 
measure and e. We follow the evolufion of Ck{g) (diamonds) for ^ = 15 
(Figure 34(a)) on the optimization dataset O,  as well as on the validation 
dataset V (Figure 34(b)). The minimal error is reached slightly after ^ = 15 
on V, and overfitting is measured by comparing it to the minimal error 
reached on O. Solutions not yet evaluated are in grey. 
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Figure 35 Opfimizafion using NSGA-II and the pair of objective funcfions: difficulty 
measure and e. We follow the évolution of Ck{g)  (diamonds) for max{g) 
(Figure 35(a)) on the optimization dataset O,  as well as on the validation 
dataset V  (Figure 35(b)). The overfitting is measured as the différence in 
error between the most accurate solution in C^' (circles) and in Cl  (Figure 
35(b)). There is a 0.20% overfit in this example. Solutions not yet evaluated 
are in grey. 



APPENDIX 5 

Comparison between Particle Swarm Optimization and Genetic Algorithm taking 

into account overfitting 
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The objective of this appendix is to présent the results of a short comparative study be­

tween Particle Swarm Optimization (PSO) [34] and GA in order lo show which algorithm 

is more prone lo overfitfing. 'Fhese experiments were conducted using only the error rate 

e as the objecfive function. 'Fhe comparative study is focused on detecting and controlling 

overfitting in both GA and PSO search algorithms at the optimization process, by applying 

the global vafidation strategy GV. 

5.1 Particl e Swarm Optimizatio n 

PSO simulâtes the behaviors of bird fiocking or Osh schooling. Each individual of the pop­

ulation is called particles. Ail particles bave fitness values which are evaluated during the 

optimization process of the sélection phase of SOCS. Algorithm 8 summarizes the variant 

of the PSO algorithm used in this appendix. ITiis variant is called global  neighborhood 

[57] in the literature. 

Al 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

gorithm 8  PSO 
for each particle d o 

Inilialize particle 
end fo r 
while maximum itérations or stop criteria are not attained d o 

for each particle d o 
Compute fitness value 
if fitness value is better than the best fitness (pBesl)  in hislory the n 

Sel current value as the new pBest 
end if 

end fo r 
Choose the particle wilh the best fitness as the gBest 
for each particle d o 

Compute its velocity 
Update its position 

end fo r 
end whil e 
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The solution gBest  dénotes the best particle in Ihe whole population. In PSO the popu­

lation is called swarm. LeUing C{g)  dénote the swarm in itération g  and e represent the 

objective funclion, the complète GV algorithm for PSO is described in Algorithm 9. 

Algorithm 9  Global Validation for PSO 
1 
2 

3 
4 

5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

Créâtes initial swarm 

Validate ail solutions in C(l ) over samples contained in V 
Find ( ' / ( l ) from C(l ) 

S e i r ; ' : = c ; ' ( i ) 
for each itération g  ^  { 1 , . . . , max{g)}  d o 

run PSO and generate C{g  +  1) 
validate ail solutions in C(^ -|- 1) 
findC;'(^+l) 

i f c ( V , C ; ' ) ( 5 + l ) < e ( V , 6 ' ; ' ) t h e n 

setc;':=c;'(^+i) 
update A  by storing in il the new C*' 

end if 
end fo r 
return ( '*' stored in A 

5.2 Experiment s 

In order lo develop our experiments we use the two large datasets described in chapter 

3, Table VI: NlS'l'-digils and NlS'F-lelters. The same initial pool of 100 kNN classifiers 

generated by applying the Random Subspace method is investigated hère. 

Table XXVIII shows the average results from 30 replications obtained using NlS'F-digits 

dataset. Values are shown in bold when GV decreased the generalization error signif­

icantly, according lo the Kruskal-Wallis stafistical test, llie results with no overfiUing 

conlrol NV are also included in this table. Thèse initial results show that although both 

search algorithms are prone lo overfitting, GA appears lo be more affected. Il is important 

to note that this behavior confirms Reunamen's work [65]. Ile pointed oui that the degree 

of overfitting increases as the intensily of search increases. Figure 36(a) shows that GA 
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needs more générations to find the besl solufion during the optimization process than PSO. 

On fiie other hand, the best solution C*'  stored in A is found much earlier using G A than 

PSO (Figure 36(b)). This resuit can be explained by the fact that, since during the opfi­

mization process PSO keeps searching by solutions even worse than gBest, it is possible 

lo generate solutions that are beUer in generalization after finding gBest. 

Table XXVni 

Comparing GA and PSO in terms of overfitting conlrol on NIST-digits dataset. Values 
are shown in bold when GV decreased the error rates significantly. The results were 

calculated using data-testl and data-lesl2. 

Validation Metlio d 

NV 
GV 

GA 
data-testl 

3.60 
3.55 

data-test2 
7.91 
7.80 

PSO 
data-testl 

3.62 
3.61 

data-test2 
8.02 
7.88 

Search Algonthm 

(a) (b) 

Figure 36 NIS'F-digils: the convergence points of GA and PSO. The generafion when 
the besl solution was found on oplinfizafion (36(a)) and on vafidafion (36(b)). 

However, the experiments with NIST-letters did not confirm our first observations. The 

average resulls from 30 replicafions obtained using NIST-letters dataset are reported in 

Table XXFX. Thèse results show that GV only slighfiy decreased the generalization error 
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rate for NlS'f-letters. In despile of this, the results obtained using NIST-letters dataset 

afiow us to confirm that GA performs a more intense search process. Figure 37(a) shows 

that GA needs more générations to find the best solufion during the optimization process 

than PSO also on NIS'F-lellers dataset. Again, GA finds C*' much eariier than PSO (Figure 

37(b)). Moreover, the performance of the solutions found by GA were slighfiy better 

using both NIST-digits (Figure 38) and NIST-letters (Figure 39(a)) datasets. However, 

the classifier ensembles found employing GA were larger than those found using PSO, as 

illustrated in Figure 40 for NIST-digits and in Figure 39(b) for NIST-letters. 

Table XXIX 

Comparing GA and PSO in terms of overfitting control on NIS'F-letter dataset. 

Data set 

NIST-letters 

No validation 
GA 
6.49 

PSO 
6,54 

Global validation 
GA 
6.44 

PSO 
6,49 
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Figure 37 NIST-letters: the convergence points of GA and PSO. The génération when 
the besl solution was found on optimization (37(a)) and on validafion (37(b)). 
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Figure 38 NIST-digits: error rates of the solufions found on 30 replications using G A 
and PSO. The performances were calculated on the data-testl (38(a)) and on 
the data-test2 (38(b)). 
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NIST-letters: error rates of the solufions found on 30 replications using G A 
and PSO (39(a)). Size of the ensembles found using both GA and PSO search 
algorithms (39(b)). 
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Figure 40 NIST-digits: Size of the ensembles found using both GA and PSO search 
algorithms. 
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