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STATIC AND DYNAMIC OVERPRODUCTION AND SELECTION OF
CLASSIFIER ENSEMBLES WITH GENETIC ALGORITHMS

MIRANDA DOS SANTOS, Eulanda

ABSTRACT

The overproduce-and-choose strategy is a static classifier ensemble selection approach,
which is divided into overproduction and selection phases. This thesis focuses on the se-
lection phase, which is the challenge in overproduce-and-choose strategy. When this phase
1s implemented as an optimization process, the search criterion and the search algorithm
are the two major topics involved. In this thesis, we concentrate in optimization processes
conducted using genetic algorithms guided by both single- and multi-objective functions.
We first focus on finding the best search criterion. Various search criteria are investigated,
such as diversity, the error rate and ensemble size. Error rate and diversity measures are
directly compared in the single-objective optimization approach. Diversity measures are
combined with the error rate and with ensemble size, in pairs of objective functions, to
guide the multi-optimization approach. Experimental results are presented and discussed.

Thereafter, we show that besides focusing on the characteristics of the decision profiles of
ensemble members, the control of overfitting at the selection phase of overproduce-and-
choose strategy must also be taken into account. We show how overfitting can be detected
at the selection phase and present three strategies to control overfitting. These strategies
are tailored for the classifier ensemble selection problem and compared. This comparison
allows us to show that a global validation strategy should be applied to control overfitting
in optimization processes involving a classifier ensembles selection task. Furthermore, this
study has helped us establish that this global validation strategy can be used as a tool to
measure the relationship between diversity and classification performance when diversity
measures are employed as single-objective functions.

Finally, the main contribution of this thesis is a proposed dynamic overproduce-and-
choose strategy. While the static overproduce-and-choose selection strategy has tradi-
tionally focused on finding the most accurate subset of classifiers during the selection
phase, and using it to predict the class of all the test samples, our dynamic overproduce-
and-choose strategy allows the selection of the most confident subset of classifiers to label
each test sample individually. Our method combines optimization and dynamic selection
in a two-level selection phase. The optimization level is intended to generate a population
of highly accurate classifier ensembles, while the dynamic selection level applies mea-
sures of confidence in order to select the ensemble with the highest degree of confidence
in the current decision. Three different confidence measures are presented and compared.
Our method outperforms classical static and dynamic selection strategies.



SURPRODUCTION ET SELECTION STATIQUE ET DYNAMIQUE DES
ENSEMBLES DE CLASSIFICATEURS AVEC ALGORITHMES GENETIQUES

MIRANDA DOS SANTOS, Iiulanda

RESUME

LLa stratégie de "surproduction et choix" est une approche de sélection statique des ensem-
bles de classificateurs, et elle est divisée en deux étapes: une phase de surproduction et
une phase de sélection. Cette these porte principalement sur I’étude de la phase de sélec-
tion, qui constitue le défi le plus important dans la stratégie de surproduction et choix. La
phase de sélection est considérée ici comme un probléme d’optimisation mono ou multi-
critere. Conséquemment, le choix de la fonction objectif et de I’algorithme de recherche
font I’objet d’une attention particuliere dans cette thése. Les criteres étudiés incluent
les mesures de diversité, le taux d’erreur et la cardinalité de I’ensemble. I optimisation
monocritere permet la comparaison objective des mesures de diversité par rapport a la per-
formance globale des ensembles. De plus, les mesures de diversité sont combinées avec
le taux d’erreur ou la cardinalité¢ de I’ensemble lors de 1’optimisation multicritere. Des
résultats expérimentaux sont présentés et discutés.

Ensuite, on montre expérimentalement que le surapprentissage est potentiellement présent
lors la phase de sélection du meilleur ensemble de classificateurs. Nous proposons
une nouvelle méthode pour détecter la présence de surapprentissage durant le processus
d’optimisation (phase de sélection). Trois stratégies sont ensuite analysées pour tenter de
controler le surapprentissage. L’analyse des résultats révele qu’une stratégie de valida-
tion globale doit étre considérée pour contrdler le surapprentissage pendant le processus
d’optimisation des ensembles de classificateurs. Cette étude a également permis de véri-
fier que la stratégie globale de validation peut étre utilisée comme outil pour mesurer em-
piriquement la relation possible entre la diversité et la performance globale des ensembles
de classificateurs.

Finalement, la plus importante contribution de cette theése est la mise en oeuvre d’une
nouvelle stratégie pour la sélection dynamique des ensembles de classificateurs. Les
approches traditionnelles pour la sélection des ensembles de classificateurs sont essen-
tiellement statiques, c¢’est-a-dire que le choix du meilleur ensemble est définitif et celui-ci
servira pour classer tous les exemples futurs. La stratégie de surproduction et choix dy-
namique proposée dans cette thése permet la sélection, pour chaque exemple a classer, du
sous-ensemble de classificateurs le plus confiant pour décider de la classe d’appartenance.
Notre méthode concilie I'optimisation et la sélection dynamique dans une phase de
sélection a deux niveaux. IL’objectif du premier niveau est de produire une population
d’ensembles de classificateurs candidats qui montrent une grande capacité de généralisa-
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tion, alors que le deuxieme niveau se charge de sélectionner dynamiquement 1’ensemble
qui présente le degré de certitude le plus élevé pour décider de la classe d’appartenance de
"objet a classer. La méthode de sélection dynamique proposée domine les approches con-
ventionnelles (approches statiques) sur les probléemes de reconnaissance de formes étudiés
dans le cadre de cette theése.
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SYNTHESE

Le choix du meilleur classificateur est toujours dépendant de la connaissance a prior1 dé-
finie par la base de données utilisée pour 1’apprentissage. Généralement la capacité de
généraliser sur des nouvelles données n’est pas satisfaisante étant donné que le probléme
de reconnaissance est mal défini. Afin de palier a ce probleme, les ensembles de clas-
sificateurs permettent en général une augmentation de la capacité de généraliser sur de
nouvelles données.

Les méthodes proposées pour la sélection des ensembles de classificateurs sont réparties
en deux catégories : la sé¢lection statique et la sélection dynamique. Dans le premier cas, le
sous-ensemble des classificateurs le plus performant, trouvé pendant la phase d’entraine-
ment, est utilisé pour classer tous les échantillons de la base de test. Dans le second cas, le
choix est fait dynamiquement durant la phase de test, en tenant compte des propriétés de
I’échantillon a classer. [La stratégie de "surproduction et choix" est une approche statique
pour la sélection de classificateurs. Cette stratégie repose sur I’hypothese que plusieurs
classificateurs candidats sont redondants et n’apportent pas de contribution supplémen-
taire lors de la fusion des décisions individuelles.

La stratégie de "surproduction et choix" est divisée en deux €tapes de traitement : la phase
de surproduction et la phase de sélection. [.a phase de surproduction est responsable de
générer un large groupe initial de classificateurs candidats, alors que la phase de sélec-
tion cherche a tester les différents sous-ensembles de classificateurs afin de choisir le
sous-ensemble le plus performant. La phase de surproduction peut étre mise en oeuvre
en utilisant n’importe quelle méthode de génération des ensembles de classificateurs, et
ce indépendamment du choix des classificateurs de base. Cependant, la phase de sélection
est I’aspect fondamental de la stratégie de surproduction et choix. Ceci reste un probléme
non résolu dans la littérature.

[La phase de sélection est formalisée comme un probleme d’optimisation mono ou multi-
critere. Conséquemment, le choix de la fonction objectif et de 1’algorithme de recherche
sont les aspects les plus importants a considérer. Il n’y a pas de consensus actuellement
dans la littérature concernant le choix de la fonction objectif. In termes d’algorithmes de
recherche, plusieurs algorithmes ont été proposées pour la réalisation du processus de sé-
lection. Les algorithmes génétiques sont intéressants parce qu’ils générent les N meilleures
solutions & la fin du processus d’optimisation. En effet, plusieurs solutions sont dispo-
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nibles a la fin du processus ce qui permet éventuellement la conception d’une phase de
post-traitement dans les systemes réels.

L’objectif principal de cette thése est de proposer une alternative a I’approche classique
de type surproduction et choix (approche statique). Cette nouvelle stratégie de surproduc-
tion et choix dynamique, permet la sélection du sous-ensemble des classificateurs le plus
compétent pour décider la classe d’appartenance de chaque échantillon de test a classer.

Le premier chapitre présente 1’état de I’art dans les domaines des ensembles des classifica-
teurs. Premicrement, les méthodes classiques proposées pour la combinaison d’ensemble
de classificateurs sont présentées et analysées. Ensuite, une typologie des méthodes pu-
bliées pour la sélection dynamique de classificateurs est présentée et la stratégie de sur-
production et choix est introduite.

Les criteres de recherche pour guider le processus d’optimisation de la phase de sélection
sont évalués au chapitre deux. Les algorithmes génétiques monocritére et multicritere sont
utilisés pour la mise en oeuvre du processus d’optimisation. Nous avons analysé quatorze
fonctions objectives qui sont proposées dans la littérature pour la sélection des ensembles
de classificateurs : le taux d’erreur, douze mesures de diversité et la cardinalité. Le taux
d’erreur et les mesures de diversité ont ét€ directement comparés en utilisant une approche
d’optimisation monocritere. Cette comparaison permet de vérifier la possibilité de rem-
placer le taux d’erreur par la diversité pour trouver le sous-ensemble des classificateurs
le plus performant. De plus, les mesures de diversité ont été utilisées conjointement avec
le taux d’erreur pour I’étude des approches d’optimisation multicritere. Ces expériences
permettent de vérifier si I’utilisation conjointe de la diversité et du taux d’erreur permet
la sélection des ensembles classificateurs plus performants. Ensuite, nous avons montré
I’analogie qui existe entre la sélection de caractéristiques et la sélection des ensembles des
classificateurs en tenant compte conjointement des mesures de cardinalité des ensembles
avec le taux d’erreur (ou une mesure de diversité). Les résultats expérimentaux ont a été
obtenus sur un probléeme de reconnaissance de chiffres manuscrits.

L¢ chapitre trois constitue une contribution importante de cette these. Nous montrons dans
quelle mesure le processus de sélection des ensembles de classificateurs souffre du pro-
bleme de surapprentissage. Etant donné que les algorithmes génétiques monocritere et
multicritére sont utilisés dans cette these, trois stratégies basées sur un mécanisme d’ar-
chivage des meilleures solutions sont présentées et comparées. Ces stratégies sont : la
validation partielle, ou le mécanisme d’archivage est mis a jour sculement a la fin du
processus d’optimisation ; "backwarding”, ou le mécanisme d’archivage est mis a jour a
chaque génération sur la base de la meilleure solution identifiée pour chaque population
durant I’évolution ; et la validation globale, qui permet la mise a jour de I’archive avec la
meilleure solution identifiée dans la base dc données de validation a chaque génération.
Finalement, la stratégie de validation globale est présentée comme un outil pour mesurer
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le lien entre la diversité d’opinion évaluée entre les membres de ’ensemble et la perfor-
mance globale. Nous avons montré expérimentalement que plusieurs mesures de diversité
ne sont pas reliées avec la performance globale des ensembles, ce qui confirme plusieurs
¢tudes publiées récemment sur ce sujet.

Finalement, la contribution la plus importante de cette these, soit la mise en ocuvre d’une
nouvelle stratégie pour la sélection dynamique des ensembles de classificateurs, fait I’objet
du chapitre quatre. Les approches traditionnelles pour la sélection des ensembles de clas-
sificateurs sont essentiellement statiques, c¢’est-a-dire que le choix du meilleur ensemble
est définitif et celui-ci servira pour classer tous les exemples futurs. La stratégie de sur-
production et choix dynamique proposée dans cette thése permet la sélection, pour chaque
exemple a classer, du sous-ensemble de classificateurs le plus confiant pour décider de la
classe d’appartenance. Notre méthode concilie I’optimisation et la sélection dynamique
dans une phase de sélection a deux niveaux. L.'objectif du premier niveau est de produire
une population d’ensembles de classificateurs candidats qui montrent une grande capacité
de généralisation, alors que le deuxieme niveau se charge de sélectionner dynamiquement
I’ensemble qui présente le degré de certitude le plus €levé pour décider de la classe d’ap-
partenance de I’objet a classer. I.a méthode de sélection dynamique proposée domine les
approches conventionnelles (approches statiques) sur les problémes de reconnaissance de
formes étudiés dans le cadre de cette these.
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INTRODUCTION

The ensemble of classifiers method has become a dominant approach in several different
fields of application such as Machine Learning and Pattern Recognition. Such interest is
motivated by the theoretical [16] and experimental [31; 96] studies, which show that clas-
sifier ensembles may improve traditional single classifiers. Among the various ensemble
generation methods available, the most popular are bagging [5], boosting [21] and the ran-
dom subspace method [32]. Two main approaches for the design of classifier ensembles

are clearly defined in the literature: (1) classifier fusion; and (2) classifier selection.

The most common and most general operation is the combination of all classifiers mem-
bers’ decisions. Majority voting, sum, product, maximum, minimum [35], Bayesian rule
[86] and Dempster-Shafer [68] are examples of functions used to combine ensemble mem-
bers’ decisions. Classifier fusion relies on the assumption that all ensemble members
make independent errors. Thus, pooling the decisions of the ensemble members may lead
to increasing the overall performance of the system. However, it is difficult to impose
independence among ensemble’s component members, especially since the component
classifiers are redundant [78], i.e. they provide responses to the same problem [30]. As
a consequence, there is no guarantee that a particular ensemble combination method will
achieve error independence. When the condition of independence is not verified, it cannot
be guaranteed that the combination of classifier members’ decision will improve the final

classification performance.

Classifier selection is traditionally defined as a strategy which assumes that each ensemble
member is an expert in some local regions of the feature space [107]. The most locally
accurate classifier is selected to estimate the class of each particular test pattern. Two cate-
gories of classifier selection techniques exist: static and dynamic. In the first case, regions
of competence are defined during the training phase, while in the second case, they are

defined during the classification phase taking into account the characteristics of the sam-



ple to be classified. However, there may be a drawback to both selection strategies: when
the local expert does not classify the test pattern correctly, there is no way to avoid the
misclassification [80]. Moreover, these approaches, for instance Dynamic Classifier Se-
lection with Local Accuracy (DCS-LA) [101], often involve high computing complexity,
as a result of estimating regions of competence, and may be critically affected by parame-
ters such as the number of neighbors considered (£ value) for regions defined by k nearest

neighbors and distance functions.

Another definition of static classifier selection can be found in the Neural Network liter-
ature. It is called either the overproduce-and-choose strategy [58] or the test-and-select
methodology [78]. From this different perspective, the overproduction phase involves the
generation of an initial large pool of candidate classifiers, while the selection phase is in-
tended to test different subsets in order to select the best performing subset of classifiers,
which is then used to classify the whole test set. The assumption behind overproduce-and-
choose strategy is that candidate classifiers are redundant as an analogy with the feature
subset selection problem. Thus, finding the most relevant subset of classifiers is better

than combining all the available classifiers.
Problem Statement

In this thesis, the focus is on the overproduce-and-choose strategy, which is traditionally
divided into two phases: (1) overproduction; and (2) selection. The former is devoted to
constructing an initial large pool of classifiers. The latter tests different combinations of
these classifiers in order to identify the optimal candidate ensemble. Clearly, the over-
production phase may be undertaken using any ensemble generation method and base
classifier model. The selection phase, however, is the fundamental issue in overproduce-
and-choose strategy, since it focuses on finding the subset of classifiers with optimal accu-
racy. This remains an open problem in the literature. Although the search for the optimal

subset of classifiers can be exhaustive [78], search algorithms might be used when a large



initial pool of candidate classifiers C is involved due to the exponential complexity of an
exhaustive search, since the size of P(C) is 2", n being the number of classifiers in C and

P(C) the powerset of C defining the population of all possible candidate ensembles.

When dealing with the selection phase using a non-exhaustive search, two important as-
pects should be analyzed: (1) the search criterion; and (2) the search algorithm. The
first aspect has received a great deal of attention in the recent literature, without much
consensus. Ensemble combination performance, ensemble size and diversity measures
are the most frequent search criteria employed in the literature. Performance is the most
obvious of these, since it allows the main objective of pattern recognition, i.e. finding
predictors with a high recognition rate, to be achieved. Ensemble size is interesting due
to the possibility of increasing performance while minimizing the number of classifiers in
order to accomplish requirements of high performance and low ensemble size [62]. Fi-
nally, there is agreement on the important role played by diversity since ensembles can be
more accurate than individual classifiers only when classifier members present diversity
among themselves. Nonetheless, the relationship between diversity measures and accu-
racy is unclear [44]. The combination of performance and diversity as search criteria in a
multi-objective optimization approach offers a better way to overcome such an apparent

dilemma by allowing the simultaneous use of both measures.

In terms of search algorithms, several algorithms have been applied in the literature for
the selection phase, ranging from ranking the n best classifiers [S8] to genetic algorithms
(GAs) [70]. GAs are attractive since they allow the fairly easy implementation of en-
semble classifier selection tasks as optimization processes [82] using both single- and
multi-objective functions. Moreover, population-based GAs are good for classifier selec-
tion problems because of the possibility of dealing with a population of solutions rather
than only one, which can be important in performing a post-processing phase. However it
has been shown that such stochastic search algorithms when used in conjunction to Ma-

chine Learning techniques are prone to overfitting in different application problems like



the distribution estimation algorithms [102], the design of evolutionary multi-objective
learning system [46], multi-objective pattern classification [3], multi-objective optimiza-
tion of Support Vector Machines [87] and wrapper-based feature subset selection [47; 22].
Even though different aspects have been addressed in works that investigate overfitting
in the context of ensemble of classifiers, for instance regularization terms [63] and meth-
ods for tuning classifiers members [59], very few work has been devoted to the control of

overfitting at the selection phase.

Besides search criterion and search algorithm, other difficulties are concerned when per-
forming selection of classifier ensembles. Classical overproduce-and-choose strategy is
subject to two main problems. First, a fixed subset of classifiers defined using a train-
ing/optimization dataset may not be well adapted for the whole test set. This problem is
similar to searching for a universal best individual classifier, i.e. due to differences among
samples, there is no individual classifier that is perfectly adapted for every test sample.
Moreover, as stated by the “No Free Lunch” theorem [10], no algorithm may be assumed

to be better than any other algorithm when averaged over all possible classes of problems.

The second problem occurs when Pareto-based algorithms are used at the selection phase.
These algorithms are efficient tools for overproduce-and-choose strategy due to their ca-
pacity to solve multi-objective optimization problems (MOOPs) such as the simultaneous
use of diversity and classification performance as the objective functions. They use Pareto
dominance to solve MOOPs. Since a Pareto front is a set of nondominated solutions rep-
resenting different tradeoffs with respect to the multiple objective functions, the task of
selecting the best subset of classifiers is more complex. This is a persistent problem in
MOOPs applications. Often, only one objective function is taken into account to perform
the choice. In [89], for example, the solution with the highest classification performance
was picked up to classify the test samples, even though the solutions were optimized re-

garding both diversity and classification performance measures.



Goals of the Research and Contributions

The first goal of this thesis is to determine the best objective function for finding high-
performance classifier ensembles at the selection phase, when this selection is formulated
as an optimization problem performed by both single- and multi-objective GAs. Sev-
eral 1ssues were addressed in order to deal with this problem: (1) the error rate and di-
versity measures were directly compared using a single-objective optimization approach
performed by GA. This direct comparison allowed us to verify the possibility of using di-
versity instead of performance to find high-performance subset of classifiers. (2) diversity
measures were applied in combination with the error rate in pairs of objective functions in
a multi-optimization approach performed by multi-objective GA (MOGA) in order to in-
vestigate whether including both performance and diversity as objective functions leads to
selection of high-performance classifier ensembles. Finally, (3) we investigated the possi-
bility of establishing an analogy between feature subset selection and ensemble classifier
selection by combining ensemble size with the error rate, as well as with the diversity
measures 1n pairs of objective functions in the multi-optimization approach. Part of this

analysis was presented in [72].

The second goal is to show experimentally that an overfitting control strategy must be
conducted during the optimization process, which is performed at the selection phase. In
this study, we used the bagging and random subspace algorithms for ensemble generation
at the overproduction phase. The classification error rate and a set of diversity measures
were applied as search criteria. Since both GA and MOGA search algorithms were exam-
ined, we investigated in this thesis the use of an auxiliary archive to store the best subset
of classifiers (or Pareto front in the MOGA case) obtained in a validation process using
a validation dataset to control overfitting. Three different strategies to update the aux-
iliary archive have been compared and adapted in this thesis to the context of single and
multi-objective selection of classifier ensembles: (1) partial validation where the auxiliary

archive is updated only in the last generation of the optimization process; (2) backward-



ing [67] which rclies on monitoring the optimization process by updating the auxiliary
archive with the best solution from each generation and (3) global validation [62] up-
dating the archive by storing in it the Pareto front (or the best solution in the GA case)

identified on the validation dataset at each generation step.

The global validation strategy is presented as a tool to show the relationship between
diversity and performance, specifically when diversity measures are used to guide GA.
‘The assumption is that if a strong relationship between diversity and performance exists,
the solution obtained by performing global validation solely guided by diversity should be
close or equal to the solution with the highest performance among all solutions evaluated.
This ofters a new possibility to analyze the relationship between diversity and performance
which has received a great deal of attention in the literature. In [75], we present this

overfitting analysis.

Finally, the last goal is to propose a dynamic overproduce-and-choose strategy which com-
bines optimization and dynamic selection in a two-level selection phase to allow selection
of the most confident subset of classifiers to label each test sample individually. Selection
at the optimization level is intended to generate a population of highly accurate candidate
classifier ensembles, while at the dynamic selection level measures of confidence are used
to reveal the candidate ensemble with highest degree of confidence in the current decision.

Three different confidence measures are investigated.

Our objective is to overcome the three drawbacks mentioned above: Rather than select-
ing only one candidate ensemble found during the optimization level, as is done in static
overproduce-and-choose strategy, the selection of the best candidate ensemble is based
directly on the test patterns. Our assumption is that the generalization performance will
increase, since a population of potential high accuracy candidate ensembles are considered
to select the most competent solution for each test sample. This first point is particularly

important in problems involving Pareto-based algorithms, because our method allows all



equally competent solutions over the Pareto front to be tested; (2) Instead of using only
one local expert to classify each test sample, as is done in traditional classifier selec-
tion strategies (both static and dynamic), the selection of a subset of classifiers may de-
crease misclassification; and, finally, (3) Our dynamic selection avoids estimating regions
of competence and distance measures in selecting the best candidate ensemble for each

test sample, since it relies on calculating confidence measures rather than on performance.

Moreover, we prove both theoretically and experimentally that the selection of the solution
with the highest level of confidence among its members permits an increase in the “degree
of certainty" of the classification, increasing the generalization performance as a conse-
quence. These interesting results motivated us to investigate three confidence measures in
this thesis which measure the extent of consensus of candidate ensembles: (1) Ambiguity
measures the number of classifiers in disagreement with the majority voting; (2) Margin,
inspired by the definition of margin, measures the difference between the number of votes
assigned to the two classes with the highest number of votes, indicating the candidate en-
semble’s level of certainty about the majority voting class; and (3) Strength relative to the
closest class [8] also measures the difference between the number of votes received by
the majority voting class and the class with the second highest number of votes; however,
this difference is divided by the performance achieved by each candidate ensemble when
assigning the majority voting class for samples contained in a validation dataset. This ad-
ditional information indicates how often each candidate ensemble made the right decision

in assigning the selected class.

As marginal contributions, we also point out the best method for the overproduction phase
on comparing bagging and the random subspace method. In [73], we first introduced the
idea that choosing the candidate ensemble with the largest consensus, measured using
ambiguity, to predict the test pattern class leads to selecting the solution with greatest
certainty in the current decision. In [74], we present the complete dynamic overproduce-

and-choose strategy.



Organization of the Thesis

This thesis is organized as follows. In Chapter 1, we present a brief overview of the liter-
ature related to ensemble of classifiers in order to be able to introduce all definitions and
research work related to the overproduce-and-choose strategy. Firstly, the combination of
classifier ensemble is presented. Then, the traditional definition of dynamic classifier se-
lection 1s summarized. Iinally, the overproduce-and-choose strategy is explained. In this
chapter we emphasize that the overproduce-and-choose strategy is based on combining
classifier selection and fusion. In addition, it is shown that the overproduce-and-choose

strategies reported in the literature are static selection approaches.

In Chapter 2, we investigate the search algorithm and search criteria at the selection phase,
when this selection is performed as an optimization process. Single- and multi-objective
GAs are used to conduct the optimization process, while fourteen objective functions are
used to guide this optimization. Thus, the experiments and the results are presented and

analyzed.

The overfitting aspect is addressed in Chapter 3. We demonstrate the circumstances under
which the process of classifier ensemble selection results in overfitting. Then, three strate-

gies used to control overfitting are introduced. Finally, experimental results are presented.

In Chapter 4 we present our proposed dynamic overproduce-and-choose strategy. We
describe the optimization and the dynamic selection levels performed in the two-level
selection phase by population-based GAs and confidence-based measures respectively.
Then, the experiments and the results obtained are presented. Finally, our conclusions and

suggestions for future work are discussed.



CHAPTER 1

LITERATURE REVIEW

Learning algorithms are used to solve tasks for which the design of software using tra-
ditional programming techniques is difficult. Machine failures prediction, filter for elec-
tronic mail messages and handwritten digits recognition are examples of these tasks. Sev-
eral different learning algorithms have been proposed in the literature such as Decision
Irees, Neural Networks, k& Nearest Neighbors (kNN), Support Vector Machines (SVM),
etc. Given sample @ and its class label w, with an unknown function wy, = f(z), all these
learning algorithms focus on finding in the hypothesis space /{ the best approximation
function /i, which is a classifier, to the function f(x). Hence, the goal of these learning

algorithms is the design of a robust well-suited single classifier to the problem concerned.

Classifier ensembles attempt to overcome the complex task of designing a robust, well-
suited individual classifier by combining the decisions of relatively simpler classifiers. It
has been shown that significant performance improvements can be obtained by creating
classifier ensembles and combining their classifier members’ outputs instead of using sin-
gle classifiers. Altingay [2] and Tremblay et al. [89] showed that ensemble of kNN is
superior to single kNN; Zhang [105] and Valentini [93] concluded that ensemble of SVM
outperforms single SVM and Ruta and Gabrys [71] demonstrated performance improve-
ments by combining ensemble of Neural Networks, instead of using a single Neural Net-
work. Moreover, the wide applicability of ensemble-of-classifier techniques is important,
since most of the learning techniques available in the literature may be used for generat-
ing classificr ensembles. Besides, ensembles are effective tools to solve difficulty Pattern
Recognition problems such as remote sensing, person recognition, intrusion detection,

medical applications and others [54].
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According to Dietterich [16] there are three main reasons for the improved performance
verified using classifier ensembles: (1) statistical, (2) computational; and (3) representa-
tional. Figure 1 illustrates these reasons. The first aspect is related to the problem that
arises when a learning algorithm finds different hypotheses h;, which appear equally ac-
curate during the training phase, but chooses the less competent hypothesis, when tested
in unknown data. This problem may be avoided by combining all classifiers. The compu-
tational reason refers to the situation when learning algorithms get stuck in local optima,
since the combination of different local minima may lead to better solutions. The last
reason refers to the situation when the hypothesis space H does not contain good approx-
imations to the function f(z). In this case, classifier ensembles allow to expand the space

of functions evaluated, leading to a better approximation of f(x).

Statistical Computational
H

=

Representational

Figure 1 The statistical, computational and representational reasons for combining
classifiers [16].
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However, the literature has shown that diversity is the key issue for employing classifier
ensembles successtully [44]. It is intuitively accepted that ensemble members must be dif-
ferent from each other, exhibiting especially diverse errors [7]. However, highly accurate
and reliable classification is required in practical machine learning and pattern recognition
applications. Thus, ideally, ensemble classifier members must be accurate and different
from each other to ensure performance improvement. Thercfore, the key challenge for
classifier ensemble research is to understand and measure diversity in order to establish

the perfect trade-off between diversity and accuracy [23].

Although the concept of diversity is still considered an ill-defined concept [7], there are
several different measures of diversity reported in the literature from different fields of re-
search. Moreover, the most widely used ensemble creation techniques, bagging, boosting
and the random subspace method are focused on incorporating the concept of diversity
into the construction of effective ensembles. Bagging and the random subspace method
implicitly try to create diverse ensemble members by using random samples or random
features respectively, to train each classifier, while boosting try to explicitly ensure diver-
sity among classifiers. The overproduce-and-choose strategy is another way to explicitly
enforce a measure of diversity during the generation of ensembles. This strategy allows

the selection of accurate and diverse classifier members [69].

This chapter is organized as follows. In section 1.1, itis presented a survey of construction
of classifier ensembles. Ensemble creation methods are described in section 1.1.1, while
the combination functions are discussed in section 1.1.2. In section 1.2 it is presented an
overview of classifier selection. The classical dynamic classifier selection is discussed in
section 1.2.1; the overproduce-and-choose strategy is presented in section 1.2.2; and the
problem of overfitting in overproduce-and-choose strategy is analysed in section 1.2.3.

Finally, section 1.3 presents the dicussion.
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1.1 Construction of classifier ensembles

The construction of classifier ensembles may be performed by adopting different strate-
gies. One possibility is to manipulate the classifier models involved, such as using different
classifier types [70], different classifier architectures [71] and different learning parame-
ters initialization [2]. Another option is varying the data, for instance using different data
sources, different pre-processing methods, different sampling methods, distortion, etc. It
is important to mention that the generation of an ensemble of classifiers involves the de-
sign of the classifiers members and the choice of the fusion function to combine their

decisions. These two aspects are analyzed in this section.
1.1.1 Strategies for generating classifier ensembles

Some authors [77; 7] have proposed to divide the ensemble creation methods into different
categories. Sharkey [77] have shown that the following four aspects can be manipulated
to yield ensembles of Neural Networks: initial conditions, training data, topology of the
networks and the training algorithm. More recently, Brown et. al. [7] proposed that
ensemble creation methods may be divided into three groups according to the aspects
that are manipulated. (1) Starting point in hypothesis space involves varying the start
points of the classifiers, such as the initial random weights of Neural Networks. (2) Ser of
accessible hypothesis is related to varying the topology of the classifiers or the data, used
for training ensemble’s component members. Finally, (3) traversal of hypothesis space is
focused on enlarging the search space in order to evaluate a large amount of hypothesis
using genetic algorithms and penalty methods, for example. We present in this section the
main ensemble creation methods divided into five groups. This categorization takes into
account whether or not one of the following aspects are manipulated: training examples,

input features, output targets, ensemble members and injecting randomness.
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Manipulating the Training Examples

This first group contains methods, which construct classifier ensembles by varying the
training samples in order to generate different datasets for training the ensemble members.

The following ensemble construction methods are examples of this kind of approach.

e Bagging - It is a bootstrap technique proposed by Breiman [5]. Bagging is an
acronym for Bootstrap Aggregation Learning, which builds n replicate training
datasets by randomly sampling, with replacement, from the original training dataset.
Thus, each replicated dataset is used to train one classifier member. The classifiers
outputs are then combined via an appropriate fusion function. It is expected that

63,2% of the original training samples will be included in each replicate [5].

e Boosting - Several variants of boosting have been proposed. We describe here the
Adaboost (short for Adaptive Boosting) algorithm proposed by Freund and Schapire
[21], which appears to be the most popular boosting variant [S4]. This ensemble
creation method is similar to bagging, since it also manipulates the training exam-
ples to generate multiple hypotheses. However, boosting is an iterative algorithm,
which assigns weights to each example contained in the training dataset and gener-
ates classifiers sequentially. At each iteration, the algorithm adjusts the weights of
the misclassified training samples by previous classifiers. Thus, the samples consid-
ered by previous classifiers as difficult for classification, will have higher chances
to be put together to form the training set for future classifiers. The final ensem-
ble composed of all classifiers generated at each iteration is usually combined by

majority voting or weighted voting.

o Ensemble Clustering - It is a method used in unsupervised classification that is moti-
vated for the success of classifier ensembles in the supervised classification context.
The idea is to use a partition generation process to produce different clusters. Af-

terwards, these partitions are combined in order to produce an improved solution.
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Diversity among clusters is also important for the success of this ensemble creation
method and several strategies to provide diversity in cluster algorithms have been

investigated [26].

It 1s important to take into account the distinction between unstable or stable classifiers
[42]. The first group is strongly dependent on the training samples, while the second group
is less sensitive to changes on the training dataset. The literature has shown that unstable
classifiers, such as Decision Trees and Neural Networks, present high variance, which is a
component of the bias-variance decomposition of the error framework [19]. Consequently,
stable classifiers like kNN and Fischer linear discriminant present low variance. Indeed,
one of the advantages of combining individual classifiers to compose one ensemble is
to reduce the variance component of the error [59]. Thus, due to the fact that boosting
1s assumed to reduce both bias and variance [19], this ensemble generation method is
efficient using both stable and unstable classifiers. On the other hand, bagging is mostly

effective with unstable classifiers, since bagging is assumed to reduce variance [94].
Manipulating the Input Features

These methods construct classifier ensembles manipulating the original set of features
available for training. The objective is to provide a partial view of the training dataset to
each ensemble member, leading them to be different from each other. In addition, these
methods try to reduce the number of features to fight the effects of the so-called curse of

dimensionality problem [90)].

o [Feature Subset Selection - The objective of ensemble feature selection is to build sets
of classifiers using small subsets of features whilst keeping high accurate classifiers,
as was done in [51]. An interesting overview about several techniques used to create

ensemble feature selection is presented in [90].
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e The Random Subspace Method - This method introduced by Ho in [32] is considered
to be a feature subset selection approach. It works by randomly choosing n different
subspaces from the original feature space. Each random subspace is used to train
one individual classifier. The n classifiers are usually combined by the majority
voting rule. Although the random subspace method is supposed to reduce variance
[94], it is assumed be an efficient method for building ensembles using both stable

and unstable classifiers.

Manipulating the Output Targets

This group contains methods, which are based on manipulating the labels of the samples
contained in the training dataset. In the error-correcting output coding technique used
by Dietterich and Bakiri [18], a multi-class problem is transformed into a set of binary
problems. At each iteration a new binary division of the training dataset is used to train a
new classifier. Another example is the method proposed by Breiman [6], which introduces

noise to change some class labels of the training samples.
Manipulating the Ensemble Members (Heterogeneous Ensembles)

These methods work by using different classifier types [70], different classifier architec-
tures [69] or different initializations of the learning parameters [107], whilst maintaining
the same training dataset. For instance, Valentini and Dietterich [95] used an ensemble
of SVM with kernel RBF (radial basis functions) in which the classifier members were
trained using different parameters . Ruta and Gabrys [70] employed 15 different learn-
ing algorithms, including Quadratic discriminant, Radial Basis Network, k-NN, Decision

Tree, and others, in order to compose an ensemble of 15 heterogeneous classifiers.
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Injecting randomness

This group contains methods, which inject randomness into the classifier members to pro-
duce different classifiers in order to build ensembles. The random initial weights of Neural
Networks [78] and the random choice of the feature that decides the split at the internal

nodes of Decision Tree [17], are examples of randomness injected into classifier members.
1.1.2 Combination Function

The application of one of the above mentioned ensemble creation methods generates an
initial set of classifiers C, where C = {¢1,¢a,...,¢,}. Figure 2 shows that the ensem-
ble generation method is employed using samples x;; contained in the training dataset
7. Given such a pool of classifiers, the most common operation is the fusion of all n
classifiers. Thus, an effective way of combining the classifier members’ outputs must
be found. Even though some classification techniques, such as Neural Networks [97] and
Polynomial classifiers [20], have been used to combine classifier members, there are many
different classifier fusion functions proposed. In this section we present a brief description

of some of the most widely used fusion functions.

xt,t

Ensemble |
Generation |
Method |l
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C {('lv(‘Qy-H\"n}

Figure 2 Overview of the creation process of classifier ensembles.
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Majority Voting

It is the simplest and most popular method to combine classifiers. The definition presented
in Equation 1.1 is also called Plurality vote [40]. Considering the set of n classifiers, y; as
the class label output of the ¢-th classifier, and a classification problem with the following

set of class labels 2 = {wy,ws ..., w,.}, majority voting for sample x is calculated as:

mu(r) = maxj_, Zy,-‘k (1.1)
i=1

When there is a tie for the number of votes, it may be broken randomly or a rejection strat-
egy must be performed. There are other versions of vote, such as unanimous consensus,

weighted voting, etc [40].
Product Rule

It is a simple combination function that is calculated taking into account outputs of classi-
fiers ¢; provided as class probabilities /?(wy|y; () ), denoting that the class label of sample

x 1s wy 1f classifier ¢; assigns the class label output y;. The product rule is computed as:

pr(z) = max_; | [ Plwslyi(z)) (1.2)

==l

Sum Rule

This function also operates using the class probabilities provided by classifier members ¢;.

The decision is obtained as follows:

sr(z) = maxg_; »  P(wilyi(@)) (13)

il
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Maximum Rule

It 1s possible to approximate the combination functions product (Equation 1.2) and sum
(Equation 1.3) by its upper or lower bounds. If the sum is approximated by the maximum

of the class probabilities, max rule is obtained as:

max(x) = max_ max’_, P(wg|y:(x)) (1.4)

Minimum Rule

This function is obtained through approximating the product rule of class probabilities by

the minimum:

min(x) = maxj_,;min?_; P(wg|y;(x)) (1.5)

Naive Bayes

This method, also called Bayesian combination rule [86], assumes that classifier members
arc mutually independent and operates on the confusion matrix of each classifier member
c;. The objective is to take into account the performance of each classifier ¢;, for each
class involved in the classification problem, over samples contained in dataset 7. Let
P(w;|y:(x) = wi) be an estimated of the probability that the true class label of sample
is wy if classifier ¢, assigns as output the class label w,. The probability P(w,|y,(x) = wy)
is computed as the ratio between the number of training samples assigned by classifier
c; to class wy, whose true class label is wy, and the total number of training samples as-
signed by ¢; to class wy. Thus, Naive Bayes classifies new samples using these estimated

probabilities as follows:

nby(z) = H P(wilyi(z) = wi) (1.6)



Naive Bayes decision rule selects the class with the highest probability computed by the

estimated probabilities in Equation 1.6.
Dempster-Shafer

This combination method is based on belief functions. Given the set of class labels
Q = {w.wy...,w.}, the set © has subsets which are known as propositions. The set
of propositions is denoted as P. Letting A and B denote two arbitrary class sets where
A € Pand B € P, abasic probability assignment (bpa) is assigned to each proposition,
for instance bpa(A) represents the output of the classifier on A. Thus, the basic proba-
bilities assigned to all subsets of A are added in order to calculate a numeric value in the

range |0, 1] that indicates the belief in proposition, as follows:

bel(A) = ) " bpa(A) (1.7)

BCA

Given the sets A and B with two different basic probabilities, bpa;(A) for one classifier
and bpa,(B) for the other classifier, C' indicates the basic probability of their conjunction
C' = AN B, which is proportional to bpa;(A) x bpas(B). Finally, the classifiers are then

combined by using the Dempster-Shafer rule as:

> ans_c bpar(A)bpas(B)

bpa; & bpa,(C') =
pay @ bpay(C') 1 — " 4np_p bpar (A)bpas( B)

(1.8)

The fusion functions described in this section are few examples of the variety of classifier
combination rules reported in the literature. Other approaches to combine ensemble clas-
sifier members include Behavior-Knowledge Space (BKS) [33], Decision Templates [41]
and Wernecke’s method [98].

Classifier fusion assumes error independence among ensemble’s component members.

This means that the classifier members are supposed to misclassify different patterns [43].
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In this way, the combination of classifier members’ decision will improve the final classi-
fication performance. However, when the condition of independence is no verified, there
1s no guarantee that the combination of classifiers will outperform single classifiers [83].
On the one hand, it is difficult to impose independence among ensemble’s component
members. On the other, the selection of classifiers has focused on finding either the most
efficient individual classifier or the best subset of classifiers, rather than combining all
available n classifiers. Therefore, classifier selection techniques avoid the assumption of

independence. Classifier selection is described in the next section.

1.2 Classifier Selection

It was mentioned in the introduction that classifier selection is traditionally defined as a
strategy that assumes each ensemble member as an expert in some regions of competence
[55; 107]. The selection is called dynamic or static whether the regions of competence
are defined during the test or the training phase respectively. However, several methods
reported in the literature as dynamic classifier selection methods define regions of com-
petence during the training phase [107; 81; 79]. These strategies are discussed in section
1.2.1. The overproduce-and-choose strategy, which is the classifier ensemble selection
technique studied in this thesis, is classically assumed to be a static classifier selection
method [69]. In section 1.2.2 we present an overview of the overproduce-and-choose

strategy.

1.2.1 Dynamic Classifier Selection

Classical dynamic classifier selection (DCS) methods are divided into three levels, as illus-
trated in Figure 3. The first level, called classifier generation employs one of the ensemble
creation methods presented in section 1.1.1, using the samples x, , contained in the train-
ing dataset 7', to obtain classifiers to compose the initial pool of classifiers C. However,
rather than combining all available n classifiers using one of the fusion functions men-

tioned in section 1.1.2, the second level called region of competence generation, uses T
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or an independent validation dataset V to produce regions of competence R;. Finally, Dy-
namic Selection chooses a winning partition f2} and the winning classifier ¢}, over samples

contained in 17, to assign the label wy to the sample x; , from the test dataset G.

Theoretically, level 2 and level 3 are performed during the test phase in DCS methods, 1.e.
based on samples x; ,. Due to the high computing complexity of estimating regions of
competence dynamically [40], several DCS methods preestimate regions of competence
during the training phase [107; 81; 79], and perform only the third level during the test
phase. Thus, the term DCS will hereafter be used to refer to approaches, which assign
label wy taking into account the test samples, whatever the phase in which the regions of

competence are generated.

1

Classifier
Generation

2
Region of
Competence
Generation

Dynamic
Selection

~ %
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Figure 3 The classical DCS process: DCS is divided into three levels focusing
on training individual classifiers, generating regions of competence and
selecting the most competent classifier for each region.

The main difference between the various DCS methods is the partition generation strategy
employed. K nearest neighbors [101], clustering [38] and various training datasets [81]
are examples of techniques used. In DCS-LLA (Dynamic Classifier Selection with Local

Accuracy), proposed by Woods [101], the first level generates a population of five het-



22

erogeneous classifiers through feature subset selection. The algorithm defines the local
region R} as the set of k nearest neighbors from 7 surrounding x;,. Thus, at the third
level, the local accuracy of each classifier ¢; is estimated, and the most locally accurate
classifier ¢} is then selected to estimate the true class of x; ,. Giacinto and Roli [24] pro-
posed an approach very similar to Woods” method. The difference is that the local region
used to estimate the individual performances of each ¢; is defined as the nearest neighbors
from V' that have a similarity with x;, that is higher than a threshold. Such a similarity
1s measured by comparing the vector of class labels assigned by each ¢; to x; , and to its

neighbors.

In the clustering and selection method proposed by Kuncheva [38], multilaver perceptrons
(MLPs) with different number of nodes in the hidden layer compose C. Thus, at the second
level, the feature space is partitioned into clusters using K means, and cluster centroids are
computed. At the third level, the region with a cluster center nearest to x; 4 is picked up
as R’ and the ¢; with the highest classification accuracy is nominated to label x; ;. In the
DCS method employed by Sohn and Shin [85], 7 is first divided into n clusters, cluster
centroids are computed and each cluster is used to train one classifier. The base algorithm
was a logistic model. The second level and the third level are conducted as in Kuncheva’s
method [38]. Liu et al. [45] presented a clustering and selection-based method that first
generates three heterogeneous classifiers to compose C. At the second level, 7 is divided
into two groups for each ¢;: (1) correctly classified training samples; and (2) misclassified
training samples. These two groups are further partitioned using a clustering algorithm to
compose regions of competence, i.e. each c; has its own. At the dynamic selection level,
the cluster closest to x, , from each of ¢,’s regions of competence is pointed out and the

most accurate classifier is chosen to assign x; ,’s label.

Singh and Singh [81] described a DC'S method for image region labeling in which the first
level generates C by training each ¢, (kNN classifiers) with n different training datasets

which are obtained through applying n different texture analysis methods. The regions of



competence are defined at the second level as the class centroids of each training dataset.
The selection level measures the distance between x; , and all the class centroids. Then,
the ¢; responsible by the closest region is selected to classify x; 4. In [107], a DCS method
for data stream mining applications is proposed. For the first level, 7 is divided into
n chunks which are further used to train the n DT classifiers that compose C. l.ocal
regions are generated with statistical information on the attribute values of samples from
V. Finally, at the third level, the most accurate classifier in the region sharing the same

statistical information on attribute values with x, , is selected to label it.

It 1s important to mention that all these methods pick up only one candidate classifier
to make the decision. This may lead to a classifier with a low level of confidence in its
decision, or even one with a wrong decision, being chosen. A combination of selection
and fusion has been investigated in the literature as a strategy for avoiding this drawback.
Kuncheva [39] proposed to use statistical tests to switch between selection and fusion.
The classifier ¢}, selected using clustering and selection [38], is employed to label x;
only when it is significantly better than the remaining classifiers. Otherwise, all classifiers
in C are combined through decision templates. Gunes et al. [28] applied a fuzzy clustering
algorithm in combination with ambiguity rejection in order make it possible to deal with
overlapping regions of competence. They switch between classifying x; , using either ¢ or
the combination of the best adapted classifiers whether x; , falls into a single cluster or into
an ambiguous cluster, respectively. The k-nearest-oracles (KNORA) method proposed
by Ko et al. [36] explores the properties of the oracle concept [15] to select the most
suitable classifier ensemble for each test sample. KNORA first finds the set of k nearest
neighbors from V surrounding x;,. Then the algorithm selects each classifier ¢;, which
correctly classifies this set of neighbors, to compose a classifier ensemble. This selected
classifier ensemble is then used for classifying x;,. In the method used by Tsymbal et
al. [92], called Dynamic Voting with Selection (DVS), a weight is determined for each

classifier ¢; according to its local accuracy measured using the set of k nearest neighbors
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from V surrounding x,,. Then, the classifiers with the lowest accuracy are removed,
while the remaining classifiers are combined through weighted voting to assign the class
of x; 4. Finally, Soares et al. [84] have tailored Kuncheva’s method [39] to select candidate

classifiers based on accuracy and diversity.

Table 1 summarizes the DCS methods reported in the literature and mentioned in this
section. It is interesting to note that heterogeneous classifiers at the first level, clustering
at the second level and accuracy as a selection criterion at the third level are most often
applied. An alternative to DCS is the overproduce-and-choose strategy, which allows the
selection of classifier ensembles instead of only one classifier. Hence, this strategy is also

based on combining selection and fusion, as it is explained in the next section.

Table 1

Compilation of some of the results reported in the DCS literature highlighting the type of
base classifiers, the strategy employed for generating regions of competence, and the
phase in which they are generated, the criteria used to perform the selection and whether
or not fusion is also used (Het: heterogeneous classifiers).

Reference Classifier  Regions of Partition Selection Selection
Number Members Competence Phase Criteria /fusion

(107] DT Blocks of samples  Training  Accuracy Selection

[24] Het kNN rule Test Accuracy Selection

[101] Het kNN rule Test Accuracy Selection

[81] kNN Different features  Training  Distance measure Selection

[38] MLP Clustering Training  Distance & accuracy  Selection

[85] Logistic Clustering Training  Distance & accuracy  Selection

[45] Het Clustering Training  Distance & accuracy  Selection

[39] MLP/Het  Clustering Training  Distance & accuracy  Selection or fusion
(28] Bayesian  Clustering Training  Distance measure Selection or fusion
[36] kNN KNN rule Test Oracle Selection & fusion
[92] Het kNN rule Test Accuracy Selection & fusion

(84] Het Clustering Training  Accuracy & diversity — Selection & fusion
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1.2.2  Overproduce-and-Choose Strategy

Given the pool of classifiers C = {cj,co,...,c,} generated using any ensemble creation
method, classifier fusion combines the n classifiers assuming that they are all important
and independent. By contrast, classifier selection, especially DCS, selects one individual
classifier ¢} to assign the label of cach sample contained in the test dataset . A combina-
tion of both approaches is the overproduce-and-choose strategy (OCS). The objective of
OCS is to find the most relevant subset of classifiers, based on the assumption that clas-

sifiers in C are redundant [106]. Once the best subset of classifiers has been selected, the

output of its classifier members must be combined.

Methods based on OCS are divided into two phases: (1) overproduction; and (2) selection.
The first phase is related to the first level of DCS, here however, the overproduction phase
must construct an initial /arge pool of candidate classifiers C, using the training dataset 7 .
The second phase is devoted to identify the best performing subset of classifiers in P(C).
As mentioned in the introduction, P(C) is the powerset of C defining the population of all
possible candidate ensembles C';. The selected ensemble '} is then combined to estimate
the class labels of the samples contained in the test dataset G. Figure 4 illustrates the OCS

phases.

OCS based in heuristic techniques has been proposed in the literature. Margineantu and
Dietterich [48] proposed an OCS to reduce the computational costs of boosting. The
pool C was composed of homogeneous DT generated by boosting. Then, pruning algo-
rithms were applied to select each classifier ¢; used to form ;. The authors pointed
out a diversity-based pruning algorithm, which used Kappa diversity, as the best pruning
method. Partridge and Yates [58] generated the pool C using two types of Neural Net-
works, MLP and Radial Basis Function (RBF). The Neural Networks were trained using
different number of hidden units and weight initialization. They proposed the use of two

heuristics during the selection phase. The first heuristic relies on ranking the candidate
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Figure 4 Overview of the OCS process. OCS is divided into the overproduction
and the selection phases. The overproduction phase creates a large pool of
classifiers, while the selection phase focus on finding the most performing
subset of classifiers.

classifiers by its performance and selecting the k best to compose (7, where k& < n. The
second heuristic, picks the classifier with the highest performance, from each type of clas-
sifier, to compose (7. In the same light, Canuto et al. [9] generated C using heterogeneous
classifiers such as MLLP, RBF, SVM, kNN, and others, and tested different fixed sizes of
classifier ensembles. Their selection phase took into account both performance and diver-
sity of each candidate ensemble generated. Aksela and Laaksonen [1] also generated a
pool C of heterogeneous classifiers at the overproduction phase. Neural Networks, SVM,
etc, are examples of classifiers used. The authors successfully applied an OCS for se-
lecting classifiers focusing on the diversity of errors. The candidate ensembles were also

generated using fixed ensembles’ size.

Although these heuristic-based approaches lead to reduce the complexity of the selection
phase, there is no guarantee that the optimal solution will be found. An alternative to

heuristic-based OCS is to use search algorithms. When performing OCS using search
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algorithms, it is important to choose the best search criterion and the best search algo-
rithm for the classifier ensemble selection problem. Sharkey and Sharkey [78] proposed
an exhaustive search algorithm to find €'} from an initial pool C composed of MLPs. The
classifiers were trained using different number of hidden units and different random initial
conditions. Thus, candidate ensembles’ performances were used to guide the selection
phase. Based on the same idea, Zhou et al. [107] developed equations, which were used
to identify the classifiers that should be eliminated from C in order to keep the combina-
tion with optimal accuracy. Their pool C was composed of different Neural Networks.
Nonetheless, non-exhaustive search algorithms might be used when a large C is available
due to the high computing complexity of an exhaustive search, since the size of P(C) is

27,

Several non-exhaustive search algorithms have been applied in the literature for the selec-
tion of classifier ensembles. Zhou et al. [107] proposed GANSEN (GA-based Selective
Ensemble), which employs GAs to assign random weight to each Neural Network and
evolves these weights by assessing the performance of the combination obtained when
each Neural Network is included in the ensemble. Then, each Neural Network whose
weight is higher than a fixed threshold is used to compose €. Roli et al. [69] compared
forward (FS), backward (BS) and tabu ('TS) search algorithms, guided by accuracy and
the following three diversity measures: generalized diversity (7), Q-statistic [44] (¢) and
double-fault (0), called by the authors compound diversity. Their initial pool C was com-
posed of heterogeneous classifiers such as MLP, kNN and RBE. They concluded that the
search criteria and the search algorithms investigated presented equivalent results. Follow-
ing the idea of identifying the best search criteria and search algorithm, Ruta and Gabrys
[70], used the candidate ensembles’ error rate and 12 diversity measures, including the
same measures investigated by Roli et al. [69], to guide the following 5 single-objective
search algorithms: IS, BS, GA, stochastic hill-climbing (HC) search and population-based

incremental learning (PBIL). They concluded that diversity was not a better measure for



28

finding ensembles that perform well than the candidate ensembles’ error rate. Their ini-
tial pool of candidate classifiers was composed of 15 heterogeneous classifiers, including

MLP, kNN, RBE, Quadratic Bayes, and others.

‘The combination of the error rate and diversity as search criteria allows the simultaneous
use of both measures in OCS. It is not surprising that this idea has already been inves-
tigated in the literature. Opitz and Shavlik [53] applied a GA using a single-objective
function combining both the error rate and ambiguity diversity measure (as defined in
[53]) to search for €' in a population C of Neural Networks. They showed that this OCS
outperformed the combination of all classifiers in C. Zenobi and Cunningham [104] cre-
ated at the overproduction phase a pool C of kNN classifiers by applying a feature subset
selection approach. At the selection phase, ambiguity (as defined in [104]) and the error
rate were used to guide a hill-climbing search method. They showed that their combined
approach outperformed the ensembles selected using the error rate as the only objective
function. Tremblay et al. [89] used a MOGA (a modified version of Non-dominated Sort-
ing GA - NSGA [11]) guided by pairs of objective functions compose of the error rate
with the following four diversity measures: ambiguity [104] (vy), fault majority [70] (),
entropy (§) and Q-statistic (¢) [44]. They generated a pool C of kNN classifiers gener-
ated by the random subspace method at the overproduction phase. They concluded that
MOGA did not find better ensembles than single-objective GA using only the error rate
as the objective function. Finally, in the OCS proposed by Oliveira et al. [51], a feature
subset selection process was applied to generate a population of Neural Networks at the
overproduction phase. The selection phase was also guided by 7 and the error rate as the

objective functions.

It is important to mention that, these previous works on OCS have one characteristic in
common: the solution €'} assumed to be the best candidate ensemble, found and analyzed
during the selection phase, is used to classify all samples contained in G. Due to this char-

acteristic, we call this method static (SOCS). However, as mentioned in the introduction,
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there is no guarantee that the C'; chosen is indeed the solution most likely to be the correct
one for classifying each test sample x, , individually. In Chapter 4, we propose a dynamic

OCS to avoid this drawback.

Table 11 presents some of the results reported in the literature dealing with OCS. It is im-
portant to see that heterogeneous classifiers at the overproduction phase and GA guided
by the error rate at the choice phase, are most often applied. Moreover, the error rate is
the search criterion most frequently pointed out as the best evaluation function for select-
ing (7. These results show that the definition of the best search algorithm and the best
search criterion for the selection phase of OCS is still an open issue. Moreover, much less
work has been devoted to combining different search criteria in a multi-objective selection
phase. These issues are addressed in Chapter 2 of this thesis. In addition, as shown in Table
II, most of the search algorithms employed in OCS are stochastic search algorithms, such
as GA, HC and PBIL. However, taking into account that the problem of selecting classi-
fier ensembles can be assumed as a learning task, the literature has shown that stochastic
search algorithms are prone to overfitting when used in conjunction with Machine Learn-

ing techniques. In next section, the problem of overfitting in OCS is described.

Table 11

Compilation of some of the results reported in the OCS literature (FSS: FFeature Subset
Selection, and RSS: Random Subspace.

Reference  Classifier Ensemble  Search Search Best Search
number Members  Method criterion algorithm criteria
[107] NN NN Het Error rate GA

[58] NN NN Het Error rate N best

[78]) NN NN Het Error rate Exhaustive -

[70] Het Het Error rate and diversity(12)  GA, FS, BS, HC and PBIL  Error rate
(9] Het Het 0 and £ N best No best
[69] Het Het Error rate, 7, € and & FS,BS and TS -

[48] DT Boosting Error rate, Kappa Pruning Kappa
[1] Het Het Diversity (11) N best -

[51] NN FSS A and Error rate NSGA

[89] kNN RSS Error rate, v, A, d and & NSGA Error rate
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1.2.3  Overfitting in Overproduce-and-Choose Strategy

It has been shown in the last section that the research in classifier selection has focused
on the characteristics of the decision profiles of ensemble members in order to optimize
performance. These characteristics are particularly important in the selection of ensemble
members performed in OCS. However, the control of overfitting is a challenge in Machine

Learning, and it is difficult to monitor this when creating classifier ensembles.

Overfitting is a key problem in supervised classification tasks. It is the phenomenon de-
tected when a learning algorithm fits the training set so well that noise and the peculiarities
of the training data are memorized. As a result of this, the learning algorithm’s perfor-
mance drops when it is tested in an unknown dataset. The amount of data used for the
learning process is fundamental in this context. Small datasets are more prone to overfit-
ting than large datasets [37], although, due to the complexity of some learning problems,
even large datasets can be affected by overfitting. In an attempt to tackle this issue, sev-
eral Machine [Learning studies have proposed solutions, such as: regularization methods,
adding noise to the training set, cross-validation and early stopping [64]. Early stopping

is the most common solution for overfitting.

Moreover, overfitting in pattern recognition has attracted considerable attention in opti-
mization applications. Llora et al. [46] suggested the use of optimization constraints to
remove the overfitted solutions over the Pareto front in an evolutionary multi-objective
learning system. Wiegand et al. [100] [62] proposed global validation strategies for the
evolutionary optimization of Neural Network parameters. Loughrey and Cunningham [47]
presented an early-stopping criterion to control overfitting in wrapper-based feature subset
selection using stochastic search algorithms such as GA and Simulated Annealing. Finally,
Robilliard and Fonlupt [67] proposed “backwarding”, a method for preventing overfitting

in Genetic Programming.
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Overfitting control methods applied to pattern recognition problems may be divided into
three categories. The first contains problem-dependent methods, which, as the name sug-
gests, cannot be widely reused [46; 91]. The second contains the early stopping-based
methods [47], which can be directly used in single-objective optimization problems. The
method proposed in [47], for example, relies on determining a stopping generation number
by averaging the best solution from each generation over a set of 10-fold cross-validation
trials. However, defining an early-stopping criterion is more difficult when a Pareto front
(i.e. a set of non-dominated solutions) is involved due to the fact that comparing sets of
equal importance is a very complex task. Finally, the third contains the archive-based
methods [62; 100; 67], which have been shown to be efficient tools for tackling overfitting

[100; 67] and may be widely reused in all optimization problems [62].

We show in the next Chapter that the selection phase of OCS may be formulated as an
optimization problem. Hence, since it has been shown that the optimization process can
generate overfitted solutions [47; 65] and considering that the creation of classifier en-
sembles with a high level of generalization performance is the main objective in learning
problems [53], it is important to take the necessary precautions to avoid overfitting in
OCS. Even though, very few work has been devoted to the control of overfitting in clas-
sifier ensemble selection tasks. Tsymbal et al. [91] suggested that using individual mem-
ber accuracy (instead of ensemble accuracy) together with diversity in a genetic search
can overcome overfitting. Radtke et al. [62] proposed a global validation method for
multi-objective evolutionary optimization including ensemble selection. In Chapter 3 we
show how overfitting can be detected at the selection phase of OCS and investigate three
different archive-based overfitting control method. They are analyzed in the context of

population-based evolutionary algorithms with single- and multi-objective functions.
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1.3 Discussion

In this chapter we have presented a literature review of classifier ensembles related to
our research. It has been observed that classifier fusion and classifier selection are the
two approaches available to designing classificr ensembles. In the context of classifier fu-
sion, different methods for generating classifier ensembles and fusion functions have been
briefly described. In terms of classifier selection, the two main methods for selecting clas-
sifiers have been presented and discussed. These methods are dynamic classifier selection

and overproduce-and-choose strategy.

It has been observed that the overproduce-and-choose strategy is the main topic of this
thesis. We have seen that, even though several important contributions have been made in
this topic, the definition of the best search criterion for finding the best subset of classifiers
is still an open question. Moreover, the control of overfitting in the overproduce-and-
choose strategy is often neglected. Finally, we have observed that the previous works on
overproduce-and-choose strategy define a single classifier ensemble to label all samples
contained in the test dataset. This leads to a drawback since the selected ensemble is not
assured to be the most likely to be correct for classifying ecach test sample individually.
We have called this strategy as static overproduce-and-choose strategy. In the next chapter
we will analyze several search criteria and single- and multi-objective GA as the search

algorithms in the context of static overproduce-and-choose strategy.



CHAPTER 2

STATIC OVERPRODUCE-AND-CHOOSE STRATEGY

In the previous chapter we mentioned that the search for the best subset of classifiers
in SOCS is frequently conducted using search algorithms, when an initial large pool of
classifiers C is involved. Even though there is no guarantee that a particular non-exhaustive
search algorithm will find the optimal subset of classifiers, since the complete powerset
P(C) is not evaluated, search algorithms are employed in order to avoid both problems,
the high complexity of generating the powerset P (C) using an exhaustive enumeration and
the low number of candidate ensembles generated using heuristic-based approaches [69].
It is interesting to note that, when dealing with a non-exhaustive search, the selection
phase required by SOCS can be easily formulated as an optimization problem in which
the search algorithm operates by minimizing/maximizing one objective function or a set

of objective functions.

In Figure S it is shown how the selection phase may be implemented as an optimization
process. In the overproduction phase, 7 is used by any ensemble creation method to
generate C. Then, the selection phase performs an optimization process conducted by the
search algorithm, which calculates the objective function using samples x, , contained in
an optimization dataset O. The objective of the optimization process is to generate and test
different combinations of the initial classifiers ¢; in order to identify the best performing

candidate ensemble.

We may categorize two general strategies for selecting classifier ensembles by performing
an optimization process: (1) selection without validation; and (2) selection with validation.
The first and simplest procedure relies on selecting the best candidate ensemble on the
same dataset as used during the search process. There is no independent validation dataset

here, but rather the optimization process is performed using a dataset for a fixed number
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Figure 5 The overproduction and selection phases of SOCS. The selection phase is
formulated as an optimization process, which generates different candidate
ensembles. This optimization process uses a validation strategy to avoid
overfitting. The best candidate ensemble is then selected to classify the test
samples.

of generations. A population of solutions is generated and analyzed. Then, the same
optimization dataset is used to identify the best performing candidate ensemble C'%. This
procedure was applied in [90] for ensemble feature selection. However, it is well accepted
in the literature that an independent data set must be used to validate selection methods in

order to reduce overfitting and increase the generalization ability [78; 65].

Following this idea, in the second selection strategy when the optimization process is
finished, the best solution C]* obtained on a validation dataset V is picked up to classify
the test samples in G. Tremblay et al. [89] have applied the second procedure in a classifier
ensemble selection problem. As is illustrated in Figure 5, the second strategy is employed

in this thesis. In the next chapter we describe how the validation procedure is conducted.
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In this chapter, our focus is on the two important aspects that must be analyzed when deal-
ing with the optimization process using a non-exhaustive search: (1) the search algorithm;
and (2) the search criterion [70]. Evolutionary algorithms appear to fit well with the se-
lection phase of SOCS in the context of optimization processes [82]. Moreover, Ruta and
Gabrys [70] observe that population-based evolutionary algorithms allow the possibility of
dealing with a population of classifier ensembles rather than one individual best candidate

ensemble. This important property enabled us to propose our dynamic SOCS in chapter 5.

The problem of choosing the most appropriate search criterion is the challenge in the
literature. Although it is widely accepted that diversity is an important criterion, the re-
lationship between diversity and performance is unclear. As mentioned in the previous
chapter, the combination of the classification error rate and diversity as search criteria in
a multi-objective optimization approach, offers the possibility of enforcing both search
criteria at the selection phase of SOCS. Finally, it can be observed that, since SOCS re-
lies on the idea that component classifiers are redundant, an analogy can be established
between feature subset selection and SOCS. Feature subset selection (FSS) approaches
work by selecting the most discriminant features in order to reduce the number of features
and to increase the recognition rate. Following this analogy, the selection phase of SOCS
could focus on discarding redundant classifiers in order to increase performance and re-
duce complexity. Based on these standpoints, our objective in this chapter is to conduct

an experimental study to answer the following questions:

1. Which measure is the best objective function for finding high-performance classifier

ensembles?

2. Can we find better performing ensembles by including both performance and diver-

sity as objective functions in a multi-optimization process?

3. Is it possible to establish an analogy between F'SS and SOCS, i.e. can we reduce the

number of classifiers while at the same time increasing performance?
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In sections 2.1 and 2.2 we describe the details of both the overproduction and the selec-
tion phases. Then, a description of the parameter settings on experiments is presented in
section 2.3.1. Finally, the experiments and the results obtained are presented in section

2.3,
2.1 Overproduction Phase

Random Subspace-based ensembles of kNN are used to perform the overproduction phase
of the experiments carried out in this chapter. The Random Subspace (RSS) method is one
of the most popular ensemble construction methods apart from Bagging and Boosting. As
described in section 1.1.1, each randomly chosen subspace is used to train one individual
classifier. In this way, a small number of features are used, reducing the training-time
process and the so-called curse of dimensionality. Since the RSS method has the advantage
of being capable of dealing with huge feature spaces, kNN appears to be a good candidate
as a learner in a RSS-based ensemble. Indeed, Ho [31] maintains that, by using RSS to
generate ensembles of kNN, we may achieve high generalization rates and avoid the high
dimensionality problem, which is the main problem with kNN classifiers. We use in this
chapter an ensemble of 100 kNN classifiers, which was generated using the RSS method.

We present in section 2.3.1 details related to the set up of the parameters.

2.2 Selection Phase

We discuss in this section the search criteria and the search algorithm, which are the two

main factors analyzed when dealing with the optimization process at the selection phase.
2.2.1 Search Criteria

The previous works on classifier ensemble selection summarized in Table II have one
characteristic in common: performance of solutions was the only criterion used to deter-

mine whether or not one selection criterion was better than the others. Although Ruta



and Gabrys [70] mentioned the necessity of dealing with performance, complexity and
overfitting in selecting classifier ensembles, they did not analyze all three aspects simulta-
neously. According to the authors, using the ensemble performance as the search criterion
meets the requirement for high performance, while using a search algorithm addresses the
complexity aspect and using a post-processing approach, such as the selection and fusion
approach that they propose, may reduce overfitting. However, as mentioned before, com-
plexity in terms of number of classifiers should also be addressed. Moreover, as it will be
detailed in the next chapter, an improvement in generalized performance can be obtained
by controlling overfitting during the optimization process without the need for a selection

fusion method.

Hence, ensemble error rate, ensemble size and diversity measures are the most frequent
search criteria employed in the literature [70]. The first, is the most obvious search cri-
terion. By applying a search on minimizing the error rate (¢), we may accomplish the
main objective in pattern recognition, which is to find high-performance predictors. In
terms of ensemble size, the minimization of the number of classifiers, which is inspired
by FSS methods through which it is possible to increase recognition rates while reducing
the number of features, appears to be a good objective function. The hope is to increase
the recognition rate while minimizing the number of classifiers in order to meet both the
performance and complexity requirements. Finally, the important role played by diversity
is clearly defined in the literature. Liven though, Kuncheva and Whitaker [44] have shown
that diversity and accuracy do not have a strong relationship and concluded that accuracy
estimation cannot be substituted for diversity. These results were confirmed by Ruta and
Gabrys [70] in the context of classifier subset selection. They used diversity measures to
guide the selection of classifier ensembles in order to reduce the generalization error. They
concluded that diversity is not a better measure for finding ensembles that perform well
than ¢. By contrast, Aksela and Laaksonen [1] successfully applied a method for selecting

classifiers focusing on the diversity of errors. Moreover, diversity measures appear to be
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an alternative to perform the optimization process without assuming a given combination
function [69]. Therefore, there is no consensus about how and where to measure diversity

nor which proposed diversity measure is the best one.

Various approaches defining diversity have been proposed. In this section, we describe
the diversity measures used in the optimization process conducted in the experiments pre-
sented in this chapter. In order to simplify the description of the measures, we use the
following notation. Let ('; be the candidate ensemble of classifiers, X the dataset, and /
and n their respective cardinalities. N denotes the number of examples classified in X,
where a, b may assume the value of 1 when the classifier is correct and 0 otherwise. ()
denotes the number of classifiers that correctly classify sample z. It is worth noting that
dissimilariry measures must be maximized, while similarity measures must be minimized
when used as objective functions during the optimization process. The pairwise measures
are calculated for each pair of classifiers ¢; and ¢4, while the non-pairwise measures are

calculated on the whole ensemble (',.

Ambiguity - The classification ambiguity (dissimilarity) measure proposed by Zenobi and

Cunningham [104] is defined as:

0 if y; = wy
ai(7) = s 2.1)
1 otherwise

sth

where a, 1s the ambiguity and y; is the output of the /*" classifier on the observation ', and

w18 the candidate ensemble output. The ambiguity of the ensemble is:

1= Y 22)
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Correlation Coefficient [44] - A pairwise similarity measure calculated as:

NIINOO o NOINIO
\/(NIINIO) +(NOINOO)+(N11NOO) + (NIONOO)

(2.3)

Pik —

Difficulty Measure [44] - Given F calculated from {9, 1,..., 1}, which represents the
number of classifiers in ('; that correctly classify a pattern x, this similarity measure may

be calculated as:

0 = Var(F) (2.4)

Disagreement [44] - A pairwise dissimilarity measure measured as:

NOl I NJO
ik = N 10 0 (2.5)
+ N1 NOU+ NOO

Double-fault [44] - A pairwise similarity measure defined as:

) NOO

Oik = N1T 4 N10 { NOT OO (2.6)
Entropy [44] - A dissimilarity measure which can be calculated as follows:

£ : i : man{r(x;),l — r(x;)} (2.7)

- = T T o) Li)y b —T\Ti .
n <= (I-1[1/2])

Fault Majority - A pairwise dissimilarity measure proposed by Ruta and Gabrys [70]

which selects those classifiers with the highest probability of contributing to the majority
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voting error of the classifier combination:

Lo [/2]

) 8)

j=ltj2)it=1

- Yoyl = yirm(aer) = 0]/n if j=0 2.9)

LY n 11— yiklm(xx) = 0]/n; otherwise

where m(.x;) is the number of classifiers making error on observation x,, m(x;) = [ —

Zi;l yi,;- and where y; ; 1s 1 if correct and 0 otherwise, by classifier j and example :.

Generalized Diversity [44] - A measure also based on the distribution Y defined for the
coincident failure diversity. Letting p(z), p(1), p(2) be the probability that 7, 1 and 2

classifier(s) respectively, fail when classifying a sample v, we calculate:

l .
p(1)=>_ %pi (2.10)

Pi (2.11)

Fe=]— it (2.12)

Coincident Failure Diversity [44] - The result of a modification to Generalized Diver-

sity (Equation 2.12), which is based on the same distribution proposed for the difficulty
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measure. Here, however, Y = 1 denotes the proportion of classifiers that do not cor-

rectly classify a randomly chosen sample . Therefore, Y = 1 — F' (F from the difficulty

measure). It is also a dissimilarity measure, which is defined as follows:

0 po = 1.0

_1 N (g—1),
(1=po) ZC;I:l %([—1)[)(1 po <0

Interrater Agreement [44] - A similarity measure written as:

_A¥h vl ~ rla)

T T el )

where p is the average individual accuracy:

¥
p=— Z()

Kohavi-Wolpert [44] - A dissimilarity measure calculated as:

Q-Statics [44] - A pairwise measure calculated as:

NllNOO o NOINIO
Dip = NI N0  \OI 10

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

Summarizing, fourteen search criteria are used to guide the optimization process of the

selection phase presented in this chapter. As shown in Table IlI, these search criteria com-

prise twelve diversity measures, plus the ensemble’s combined error rate and ensemble

size.



Table 11

List of search criteria used in the optimization process of the SOCS conducted in this
chapter. The type specifies whether the search criterion must be minimized (similarity) or
maximized (dissimilarity)

Name Label | Type

Error rate ¢ Similarity
Ensemble size ¢ Similarity
Ambiguity v [104] | Dissimilarity
Coincident failure diversity | o [44] Dissimilarity
Correlation coefficient p 44] Similarity
Difficulty measure 0 [44] Similarity
Disagreement n [44] Dissimilarity
Double-fault o [44) Similarity
Entropy £ [44] Dissimilarity
Fault majority A [70] Dissimilarity
Generalized diversity T |44] Dissimilarity
Interrater agreement K [44] | Similarity
Kohavi-Wolpert (EER)| Dissimilarity
Q-statistic & [44] | Similarity

2.2.2 Search Algorithms: Single- and Multi-Objective GAs

Single- and multi-objective GA (MOGA) are the two strategies available when dealing
with GAs. Traditionally, when the optimization process is conducted as a single-objective
problem, GA is guided by an objective function during a fixed maximum number of gen-
erations (user defined max(g)). The selection of classifier ensembles is applied in the
context of GA based on binary vectors. Each individual, called chromosome, is repre-
sented by a binary vector with a size n, since the initial pool of classificrs is composed
of n members. Initially, a population with a fixed number of chromosomes is randomly
created, i.e. a random population of candidate classifier ensembles. Thus, at each genera-
tion step g, the algorithm calculates fitness of each candidate ensemble in the population
C(g), which is the population of ensembles found at each generation g. The population is

evolved through the operators of crossover and mutation.
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Figure 6(a) depicts an example of the evolution of the optimization process for maz(g) =
1,000 using GA as the search algorithm and the minimization of the error rate ¢ as the
objective function. Even though we employed ¢ as objective function, we show in Figure
6(a) plots of ¢ versus number of classifiers ¢ to better illustrate the problem. Each point on
the plot corresponds to a candidate ensemble C; taken from P(C) and evaluated during the
optimization process. Indeed, these points represent the complete search space explored
for maxz(g) = 1,000. The number of individuals at any C(g) is 128. It is important to
mention that these candidate ensembles are projected onto the validation dataset in Figure
6(a), since our selection phase is conducted with validation. In SOCS, the solution with
lowest ¢ 1s selected as the best solution CJ* which is further used to classify the test

samples, as shown in Figure 5. Diamond represents C’;' in Figure 6(a).

Ensembles evaluated CI
O  Pareto fromt
O Best solution CJ'

Ensembles evaluated G| |

{ Best solution CI- i

Error rate
Error rate

4 | A .ii!"||||||$|<|Il_llllfll|llllll:lulll‘ilru--------:.w-.--.-:... q l l Imm!ml_l“ll!“lllllllfllmm: , | |
10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 920 100
Ensemble size Ensemble size
(a) GA guided by ¢ (b) NSGA-II guided by € and ¢

Figure 6 Optimization using GA with the error rate e as the objective function in
Figure 6(a). Optimization using NSGA-II and the pair of objective functions:
¢ and ensemble size ¢ in Figure 6(b). The complete search space, the Pareto
front (circles) and the best solution (,,’j*' (diamonds) are projected onto the
validation dataset. The best performing solutions are highlighted by arrows.

MOGAs often constitute solutions to optimization processes guided by multi-objective
functions. Since the combination of € and diversity measures as search criteria has been in-

vestigated in the literature as a strategy to select accurate and diverse candidate ensembles
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[89; 104], MOGASs allow the simultaneous use of both measures to guide the optimization
process of SOCS. These algorithms use Pareto dominance to reproduce the individuals.
A Pareto front is a set of nondominated solutions representing different tradeoffs between
the multi-objective functions. In our classifier ensemble selection application, a candi-
date ensemble solution ('; is said to dominate solution ('}, denoted (', < ('}, if ('} is no
worse than (' on all the objective functions and (; is better than (' in at least one objec-
tive function. Based on this non-domination criterion, solutions over the Pareto front are

considered to be equally important.

Among several Pareto-based evolutionary algorithms proposed in the literature, NSGA-II
(elitist non-dominated sorting genetic algorithm) [11] appears to be interesting because
it has two important characteristics: a full elite-preservation strategy and a diversity-
preserving mechanism using the crowding distance as the distance measure. The crowding
distance does not need any parameter to be set [11]. Elitism is used to provide the means to
keep good solutions among generations, and the diversity-preserving mechanism is used
to allow a better spread among the solutions over the Pareto front. In addition, in appendix
1 we investigated three different MOGAs: (1) NSGA [11]; (2) NSGA-II [13]; and (3)
controlled elitist NSGA [14]. Our results indicated that the three MOGASs investigated

presented equivalent performances when guiding the optimization process.

NSGA-II [11] works as follows. At each generation step g, a parent population C(g) of
size w evolves and an offspring population C9(g), also of size w, is created. These two
populations are combined to create a third population C"(g) of size 2w. The population
C7(g) is sorted according to the nondominance criteria, and different nondominated fronts
are obtained. Then, the new population C(g + 1) is filled by the fronts according to the
Pareto ranking. In this way, the worst fronts are discarded, since the size of C(g + 1) is
w. When the last front allowed to be included in C(g + 1) has more solutions than the

C(g t+ 1) available free space, the crowding distance is measured in order to select the
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most isolated solutions in the objective space in order to increase diversity. Algorithm 1

summarizes NSGA-II.

The optimization process performed by NSGA-II for nax(g) = 1,000 is illustrated in
Figure 6(b). NSGA-II was employed, using the pair of objective functions: jointly mini-
mize the error rate € and the ensemble size (. Circles on the plot represent the Pareto front.
Due to the fact that all solutions over the Pareto front are equally important, the selection
of the best candidate ensemble C’j’ is more complex. Several works reported in the liter-
ature take into account only one objective function to perform the selection. In [89], [S1]
and [62], the candidate ensemble with lowest ¢ was chosen as the best solution ('J*/, even
though the optimization process was guided regarding multi-objective functions. We also
select the solution with lowest € as C';/, to classify the test samples in order to perform
SOCS in this chapter. Diamond indicates the solution C';" in Figure 6(b). In chapter 5 we

propose a dynamics SOCS to select the best candidate ensemble dynamically.

Algorithm 1 NSGA-II
I: Creates initial population C(1) of w chromosomes
2: while g < max(g) do
3:  creates C9(g)

4 set C'(g) = C(g) U C(g)

5: perform a nondominated sorting to C"(g) and identify different fronts Cy, k =
12 cny bt

6:  while |[C(g +1)| +|Cx| < wdo

T set C(g + 1):=C(g + 1) U C,

8: set b=k + 1

9:  end while

10.  perform crowding distance sort to Cy

11: setC(g+1)=C(g+1)UC,[1l: (w—|C(g+1)])]
12:  creates C9(g + 1) from C(g + 1)

13:  setgi=g + 1

14: end while
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2.3 [Experiments

A series of experiments has been carried out to investigate the search criteria and the search
algorithm we proposed to deal with at the beginning of this chapter. Our experiments are
broken down into three main series. In the first series, 13 different objective functions,
including the 12 diversity measures, are applied individually as single-objective functions.
In the second series, the diversity measures are used in pairs of objective functions com-
bined with the error rate in a multi-objective approach. Finally, the third series is per-
formed by applying pairs of objective functions combining either the diversity measures
or the error rate with ensemble size. We begin our analysis taking into account perfor-
mance (section 2.3.2), followed by a ensemble size analysis (section 2.3.3). It is important
to mention that all the experiments were replicated 30 times and the results were tested
on multiple comparisons using the Kruskal-Wallis nonparametric statistical test by testing
the equality between mean values. The confidence level was 95% (o — 0.05), and the
Dunn-Sidak correction was applied to the critical values. First, we present a description

of the parameters settings on experiments.
2.3.1 Parameter Settings on Experiments

The details of the parameters used in our experiments are described here. These details

are related to the database, the ensemble construction method and the search algorithms.
Database

The experiments were carried out using the NIST Special Database 19 (NIST SD19)
which is a popular database used to investigate digit recognition algorithms. It is com-
posed of 10 digit classes extracted from eight handwritten sample form (hsf) series, hsf-
{0,1,2,3,4,6,7,8}. It was originally divided into 3 sets: hsf-{0123}, hsf-7 and hsf-4. The
last two sets are referred here as data-test] (60,089 samples) and data-test2 (58,646 sam-

ples). Data-test2 is well known to be more difficult to use for classification than data-test1
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[25]. On the basis of the results available in the literature, the representation proposed by
Oliveira et al. [52] appears to be well defined and well suited to the NIST SD19 database.
The features are a combination of the concavity, contour and surface of characters. The
final feature vector is composed of 132 components: 78 for concavity, 48 for contour and

6 for surface.
Ensemble Construction Method

As mentioned in section 2.1, RSS is used during the overproduction phase to generate an
initial pool of 100 kNN classifiers. Majority voting was used as the combination func-
tion. This combination function is shown in Equation 1.1, chapter 1. In [89], rigorous
experimental tests were conducted to set up parameters such as: k value and the number
of prototypes (to kNN classifiers), the number of subspace dimensions and the number of
classifier members to RSS, the size of the optimization and the size of the validation data
sets. The best parameters defined in [89] are used in this chapter. Table IV summarizes

the parameter sets used.

Table IV

Experiments parameters related to the classifiers, ensemble generation method and

database.
Number of nearest neighbors (k) 1
Random subspace (number of features) | 32
Training data set (hsf-{0123}) 5,000
Optimization data set size (hsf-{0123}) | 10,000
Validation data set (hsf-{0123}) 10,000
Data-test] (hsf-7) 60,089
Data-test2 (hsf-4) 58.646
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Genetic Algorithms

The population-based evolutionary algorithms used in this work are both single- and multi-
objective GAs. Since we use an initial pool composed of 100 classifiers, each individual is
represented by a binary vector with a size of 100. Experiments were carried out to define
the genetic parameters in [4]. Table V shows the parameter settings employed. The same

parameters were used for both GAs.

Table V

Genetic Algorithms parameters

Population size 128

Number of generations | 1000
Probability of crossover | 0.8
Probability of mutation | 0.01
One-point crossover and bit-flip mutation

2.3.2 Performance Analysis

In order to define the best objective function for our problem, we carried out an experi-
mental investigation focusing on performance (recognition rate). The first question to be
answered is: Which measure is the best objective function for finding high-performance
classifier ensembles? Among the measures featured in section 2.2.1, the error rate ¢
(1 —recognition rate) and the diversity measures are the most obvious candidates. The way
to compare these measures directly is to apply a single-objective optimization approach.
This direct comparison allows us to verify the possibility of using diversity instead ¢ to

find high-performance classifier ensembles.



Experiments with GA

GA-based experiments were conducted to compare 13 different objectives functions: e
and the 12 diversity measures. As explained previously, each experiment was replicated
30 times in order to arrive at a better comparison of the results. llence, each of the 13
objective functions employed generated 30 optimized classifier ensembles. Figure 7 shows

the comparison results of the 30 replications on data-testl (Figure 7(a)) and on data-test2

(Figure 7(b)).
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(a) data-testl

Figure 7 Results of 30 replications using GA and 13 different objective functions. The
performances were calculated on the data-test1 (ligure 7(a)) and on the data-

test2 (Figure 7(b)).

These experiments show that:

a. Diversity measures are not better than the error rate ¢ as an objective function for
generating high-performance classifier ensembles. The Kruskal-Wallis nonparamet-

ric statistical test shows that ¢ found ensembles which are significantly different

from those found by all the diversity measures.

Objective Function

(b) data-test2
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b. The most successful diversity measure was the difficulty measure 0. However, the
performance of the classifier ensembles found using this measure was, on average,
0.12% (data-testl) and 0.31% (data-test2) worse than that of the ensembles found

using e directly.

¢. Fault majority A was the worst objective function. This is a different result from
those presented by Ruta and Gabrys [70]. They observed that measures with better
correlation with majority voting error, i.e. fault majority and double-fault ¢, are bet-
ter objective functions for generating high-performance ensembles than the others.
We found that § was the third best diversity measure and A\ was the worst objective
function, even though there is no significant difference, according to the Kruskal-
Wallis statistical test, between A, coincident failure, disagreement and entropy on

data-testl, and among the three first measures on data-test2.

The results achieved using GA were expected, apart from those for A and ¢. In fact, we
confirmed the results of previous work, e.g. [70] and [44], that diversity alone cannot
substitute for ¢ as an objective function for finding the highest performing classifier en-
sembles. Since diversity alone is no better than ¢, can we find better performing ensembles
by including both objective functions in the optimization process? We try to answer this

question using a multi-objective optimization approach in the next section.
Experiments with NSGA-II

We continue our experimental study using NSGA-II as the search algorithm. The pre-
liminary study with GA suggested that diversity alone is not better than ¢ for generating
the best performing classifier ensemble. This observation led us to use both ¢ and diver-
sity jointly to guide the optimization process with NSGA-II, since we have the option of
combining different objective functions. The hope is that greater diversity between base

classifiers leads to the selection of high-performance classifier ensembles.
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Results of 30 replications using NSGA-II and 13 different pairs of objective
functions. The performances were calculated on data-testl (Figure 8(a)) and
data-test2 (Figure 8(b)). The first value corresponds to GA with the error rate
e as the objective function while the second value corresponds to NSGA-II

guided by € with ensemble size (.

Each diversity measure mentioned in section 2.2.1 was combined with € to make up pairs

of objective functions to guide the optimization process. Again, the optimization process

using each pair of objective functions was replicated 30 times. Figure 8 shows the results

of 30 replications on data-test]l (Figure 8(a)) and data-test2 (Figure 8(b)). It is important

to mention that the first value corresponds to the results using GGA as the search algorithm

and ¢ as the objective function. This means that we can compare the single- and multi-

objective results. The sccond value corresponds to the results using NSGA-II guided by

ensemble size (, with € as the objective functions (discussed in the next section).

Some observations can be made from these results:

a. By including both diversity and ¢ in a multi-objective optimization process, we may

find more high-performance classifier ensembles than by using diversity alone; how-

ever, the performance of these ensembles is still worse than the performance of the

ensembles found using ¢ in the single-objective optimization process.
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b. The best diversity measures are difficulty 0, interrater agreement «, correlation co-
efficient p and double-fault § on data-testl. The Kruskal-Wallis test shows that the
first three measures found classifier ensembles with no significantly different mean
ranks from those found using GA with ¢ as the objective function on data-test]. On
data-test2, almost all the diversity measure results were similar. According to the
Kruskal-Wallis statistical test, except for coincident failure o and 0, all the diversity
measures found classifier ensembles with no significantly different mean ranks on
data-test2. It is important to note that the difference between ensembles found using
diversity (multi-objective optimization) and ensembles found using only ¢ (single-
objective optimization) was dramatically less. The classifier ensembles found using
the three best diversity measures were, on average, 0.05% worse than those found

using only € on data-test]l and 0.13% worse on data-test2.

c¢. Itis interesting to note that € found high-performance classifier ensembles on data-
testl, but, on data-test2, ¢ yielded one of the worst performances. Such behavior

shows that these two data sets are actually very different.

d. The two measures pointed out by Ruta and Gabrys [70] as the best diversity mea-
sures (0 and A) found better classifier ensembles on multi-objective than on single-
objective optimization, as was the case for all the measures. However, especially
on data-testl, A\ was the worst measure, and, once again, was significantly different

from the other measures, as shown by the Kruskal-Wallis test.

As indicated in the beginning of this chapter, besides performance, we have to take into
account ensemble size when selecting classifier ensembles. In the following section, this

aspect is analyzed.
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2.3.3 Ensemble Size Analysis

Our ensemble size analysis relies on the analogy between feature subset selection and
SOCS. In this sense, discarding redundant classifiers could improve performance. Hence,
the minimization of the ensemble size ¢ is the most obvious objective function to use to
achieve such a reduction in the number of classifiers. However, ¢ cannot be used in a
single-objective optimization process, because it might be combined with other measures
in order to increase performance while reducing the number of classifiers. In line with
this idea, we combine ¢ with € and the 12 diversity measures described in section 2.2.1
to make up pairs of objective functions to guide the optimization process using NSGA-
II. Figure 9 presents a graph containing the size of the classifier ensembles found in 30
replications generated by each pair of objective functions, while the performances are
shown in Figure 10 (10(a), data-testl and 10(b), data-test2). The first value corresponds
to the results obtained using GA as the search algorithm and ¢ as the objective function in

order to arrive at a better comparison.
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Figure 9 Size of the classifier ensembles found using 13 different measures combined
with ensemble size ¢ in pairs of objective functions used by NSGA-II.
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We also show the ensemble size of the classifier ensembles found in the first two series

of experiments, i.e., single objective functions and diversity combined with e. This allows

us to better analyze the ensemble size issue. Figure 11 shows the ensemble size of the

classifier ensembles found with GA (Figure 11(a)) and with NSGA-II combining ¢ with

diversity (Figure 11(b)). Based on all these results, we observe that:
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Performance of the classifier ensembles found using NSGA-II with pairs of
objective functions made up of ensemble size ¢ and the 13 different measures.
Performances were calculated on data-test] (Figure 10(a)) and on data-test2
(Figure 10(b)).

a. Diversity combined with ¢ in pairs of objective functions does not find high-

performance classifier ensembles. Taking into account all the results obtained in all

the series of experiments, the performances of the ensembles found using these pairs

of objective functions made up of ¢ and diversity showed the worst performances.

In contrast, those ensembles were the smallest. It is interesting to note that, using

this combination of objective functions, NSGA-II converges to the same solution

at each replication, with the exception of the difficulty measure #. The minimum

number of classifiers allowed by the search algorithms was 5. This fixed minimum

ensemble size was defined to avoid generating too small classifier ensembles.
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Figure 11  Ensemble size of the classifier ensembles found using GA (Figure 11(a)) and

NSGA-II (Figure 11(b)). Each optimization process was performed 30 times.

b. The most successful diversity measure in terms of performance was 6. However, the

performance of the ensembles obtained using ¢ and ¢ are better. According to the

Kruskal-Wallis statistical test, the performances are significantly different.

. The analogy between FSS and SOCS may be established. The performance of our

baseline system, i.e. the pool of 100 kNN (96.28% on data-testl), is 0.07% worse
than the average result using ¢ and ¢ as the objective functions (average of 96.35%
on data-testl (Figure 10), while the averaged ensemble size is 27 classifiers (Figure
40). However, better performing classifier ensembles can be found using GA and
e. The Kruskal-Wallis statistical test showed that the performances are significantly
different. Moreover, the combination of ¢ and e as the objective function did not
establish the best trade-off between these two measures. Interrater agreement x
combined with € generated smaller (24 classifiers on average) and better performing
classifier ensembles (96.41% and 92.16%, on average, on data-testl and on data-

test2 respectively, Figure §).
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d. Ambiguity v combined with ¢, and Kohavi-Wolpert ¢/ combined with ¢, found the
largest classifier ensembles (45 classifiers on average). What is more interesting 1s
that, although we found the best performing classifier ensemble using GA as the
search algorithm and ¢ as the objective function, such single-objective function did

not find the largest solutions.

2.4 Discussion

This chapter presented the experimental results of a study using the single- and multi-
objective optimization processes to perform the selection phase of SOCS. An ensemble
of 100 kNN classifiers generated using the Random Subspace method was used as the
initial pool of classifiers. Fourteen different objective functions were applied: 12 diversity
measures, error rate and ensemble size. The experiments were divided into three series. In
the first, the error rate and the 12 diversity measures were directly compared in a single-
optimization approach. In the second, the 12 diversity measures were combined with the
error rate to make up pairs of objective functions in a multi-optimization approach. Finally,
in the third, the error rate and the 12 diversity measures were combined with ensemble size

in pairs of objective functions, again in a multi-optimization approach.

The first series of experiments was conducted in order to answer the first question (1)
posed in the beginning of this chapter. Our results confirm the observation made in pre-
vious work that diversity alone cannot be better than the error rate at finding the most
accurate classifier ensembles. The difficulty measure was the best diversity measure when
the diversity measures are compared. In our attempt to answer question (2) when both the
error rate and diversity are combined in a multi-objective approach (second series of ex-
periments), we found that the performance of the solutions using diversity is much higher
than the performance of the solutions using diversity in a single-objective optimization
approach. However, the performance of the classifier ensembles found using diversity

measures combined with the error rate to guide the selection were still worse than the per-
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formance of the ensembles found using only the error rate, although the difference was

reduced.

We are now able to establish an analogy between feature subset selection and SOCS, in
response 10 question (3). By combining ensemble size and the error rate in a pair of ob-
Jective functions, we increased the initial pool of classifier performances and decreased
the number of classifiers to 27, instead of 100, from the initial pool. In contrast, diversity
measures achieved the worst performance in the third series of experiments. Moreover,
the combined minimization of ensemble size and error rate was not the best pair of objec-
tive functions to accomplish the trade-off between complexity and performance. In fact,
interrater agreement combined with the error rate established the best trade-off between
performance and ensemble size. We conclude, therefore, that it is not necessary to include
ensemble size in the optimization process. The reduction in the number of classifiers is a
consequence of the selection of classifiers, whatever the objective function used to guide
the search. Some objective functions generate smaller classifier ensembles, while others

generate bigger ones.

It is also important to observe that our experiments showed that ensemble size and di-
versity are not conflicting objective functions (see Figure 9). We observe that we cannot
decrease the generalization error rate by combining this pair of objective functions. In
appendix 3, we present further evidence to show why diversity and ensemble size are not
conflicting objective functions. Moreover, we can see in Table XXIV and Table XXV in
appendix 2, that the results obtained using diversity measures in a single-objective opti-
mization approach are quite similar to the results obtained using diversity combined with
ensemble size in pairs of objective functions in a multi-objective optimization approach.
Hence, the minimum number of classifiers is achieved when using most of the diversity
measures in single-objective optimization (see Figure 11(a)). Thus, the results related to
the first series of our experiments may be different if the minimum number of classifiers

is fixed and larger than we have defined in this chapter, i.e. 5 classifiers.



Moreover, in this chapter, we conducted the optimization processes using, besides the
traditional optimization dataset, a validation dataset in order to avoid overfitting during
the selection phase of SOCS. Despite such apparent overfitting control, we observed that
this strategy fails to address the overfitting phenomenon since, although an independent
dataset was used to validate the solutions, the overfitting phenomenon may still be present.
In the next chapter we show that overfitting can be detected at the selection phase of SOCS

and present strategies to control overfitting.



CHAPTER 3

OVERFITTING-CAUTIOUS SELECTION OF CLASSIFIER ENSEMBLES

We show in this chapter that overfitting can be detected during the selection phase of
SOCS, this selection phase being formulated as an optimization problem. We attempt to
prove experimentally that an overfitting control strategy must be conducted during the
optimization process. In order to pursue our analysis on population-based evolutionary
algorithms, we keep using both single- and multi-objective GA. Taking into account this,
we investigate the use of an auxiliary archive A to store the best performing candidate
ensembles (or Pareto fronts in the MOGA case) obtained in a validation process using the
validation partition V to control overfitting. Three different strategies for update A have
been compared and adapted in this chapter to the context of the single- and multi-objective
selection of classifier ensembles: (1) partial validation where A is updated only in the last
generation of the optimization process; (2) backwarding [67] which relies on monitoring
the optimization process by updating A with the best solution from each generation; and
(3) global validation [62] updating A by storing in it the Pareto front (or the best solution

in the GA case) identified on V at each generation step.

Besides the ensemble of kNN created at the overproduction phase using the RSS method
in the previous chapter, two additional initial pool of classifiers are investigated in this
chapter: (1) a pool of DT created using bagging; and (2) a pool of DT created using the
RSS method. In addition, considering the results related to the analysis of search criteria
obtained previously, we use only four diversity measures (described in section 2.2.1) and ¢
to guide the optimization process presented in this chapter. Diversity measures are applied
by NSGA-II in combination with ¢ in pairs of objective functions. Moreover, ¢, as well
as the diversity measures, are employed as single-objective functions by GA. To avoid
the problem of reaching a too small ensemble size, we defined a large fixed minimum

ensemble size for all diversity measures in our experiments. It is important to mention
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that in appendix 2. we carried out an overfitting analysis using both GA and NSGA-II,
guided by all the objective functions and combinations of objective functions discussed

previously.

In this chapter, the global validation strategy is presented as a tool to show the relationship
between diversity and performance, specifically when diversity measures are used to guide
GA. The assumption is that, if a strong relationship exists between diversity and perfor-
mance, the solution obtained by performing global validation solely guided by diversity
should be close, or equal, to the solution with the highest performance among all solutions
evaluated. This offers a new possibility for analyzing the relationship between diversity

and performance, which has received a great deal of attention in the literature [44; 17; 70].

Our objective in this chapter is to answer the following questions:

1. Which is the best strategy employing an archive A for reducing overfitting at the
selection phase of SOCS when this selection is formulated as an optimization prob-

lem?

2. Are classifier ensembles generated by bagging and RSS equally affected by overfit-

ting in the selection of classifier ensembles?

The following section demonstrates the circumstances under which the process of classi-
fier ensemble selection results in overfitting. In section 3.2, three strategies used to control
overfitting are introduced. The parameters employed for the experiments are described
in section 3.3, where the validation strategies are applied using holdout and A-fold cross-

validation schemes. l'inally, experimental results are presented in section 3.3.
3.1 Overfitting in Selecting Classifier Ensembles

The problem of selecting classifier ensembles, using an optimization dataset O can be for-

mulated as a learning task, since the search algorithm operates by minimizing/maximizing
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the objective function, such as maximizing the classification performance or maximizing
the diversity of the members of a given ensemble ;. Indeed, Radtke et al. [62] showed
that multi-objective evolutionary optimization, such as the selection of classifier ensem-
bles, is prone to overfitting. We may define overfitting in the context of ensemble selection
inspired by the definition provided by Mitchell [49] in the following way. Let ('} and C']*/
be the best performing candidate ensembles found through calculating the error rate ¢ for
cach element of P(C) over samples contained in O and V respectively. Consider the clas-
sification error ¢ of these two candidate ensembles measured using samples from V. We
will denote this classification error by ¢(V, C"7) and €(V, C’j/). In this setting, 7] is said
to overfit on O if an alternative candidate ensemble C ]* € P(C) can be found such that

e(V.C3) > e(V,CY).

The selection process for classifier ensembles in SOCS is illustrated in Figure 12. An en-
semble creation method is employed using 7 to generate the initial pool of classifiers C.
Thus, the search algorithm calculates fitness on O by testing different candidate ensem-
bles. The best candidate ensemble ()’;" is identified in V to prevent overfitting. Finally, the
generalization performance of C;' is measured using the test dataset (G). Hence, SOCS
requires at least these four datasets. It is important to mention that V is different from
the validation dataset typically used to adjust base classifier parameters, such as weights
in MLP, the number of neighbors considered (k value) in kNN classifiers, etc. When
such parameter adjustment is necessary, a fifth dataset must be used, as was done in [62],
to avoid overly optimistic performance assessment. The following sections describe how
overfitting can be detected in single- and multi-objective optimization problems performed

by GAs.
3.1.1 Overfitting in single-objective GA

In Figure 13, ¢ is employed as the objective function to guide GA using the NIST-digits

database as the problem and RSS as the method to generate C as a pool of 100 kNN clas-
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Figure 12 Overview of the process of selection of classifier ensembles and the points of
entry of the four datasets used.

sifiers. These same parameters were investigated in last chapter, section 2.3.1. Although
GA was only guided by €, we show plots of € versus the ensemble’s size to better illustrate

the process.

We denote C(g) as the population of candidate classifier ensembles found at each genera-
tion g and the best candidate ensemble found by evaluating all individuals from C(g) on
O by C%(g). Each point on the plot corresponds to a candidate ensemble ('; taken from
P(C) and evaluated during the optimization process. Indeed, these points represent the
complete search space explored for max(g) = 1,000. The number of individuals at any

C(g) is 128.

Actually, the overfitting phenomenon measured when selecting classifier ensembles
presents a behavior very similar to what is seen in a typical Machine Learning process,
i.e. the chance that the search algorithm will overfit on samples taken from O increases
with the number of generations. This phenomenon can be observed in Figure 13(e), which
shows the evolution of €(O, CJ’-") in the search space. On the one hand, it is clear that the

optimization process could be stopped before overfitting starts to occur in this problem
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Optimization using GA guided by ¢. Here, we follow the evolution of C;(g)

(diamonds) from g = 1 to max(g) (Figures 13(a), 13(c) and 13(e)) on
the optimization dataset O, as well as on the validation dataset V (Figures
13(b), 13(d) and 13(f)). The overfitting is measured as the difference in error
between C'}" (circles) and (7 (13(f)). There is a 0.30% overfit in this example,
where the minimal error is reached slightly after g = 52 on V, and overfitting
is measured by comparing it to the minimal error reached on O. Solutions not
yet evaluated are in grey and the best performing solutions are highlighted by

arrows.
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using GA. On the other, it is difficult to define a stopping criterion to control overfitting in

a multi-objective optimization process, as explained in section 3.1.2.
3.1.2 Overfitting in MOGA

Figure 14 (left) illustrates the optimization process performed for max(g) = 1,000 using
NSGA-II guided by the following pair of objective functions: jointly minimize ¢ and dif-
ficulty measure (section 2.2.1) in the same problem investigated with GA in last section.
The Pareto front from population C(g) found in O is denoted by Cy(g). Thus, C;, (dia-

monds) and C} (circles) represent the final Pareto fronts found in © and V respectively.

Especially noteworthy in Figure 14(f) is that, besides the fact that the solutions over C}
are different from solutions over C}, which was expected considering that } and O are dif-
ferent datasets, the nondominated solutions over C;’ are discarded during the optimization
process (Figure 14(e)). Hence, the definition of a stopping criterion for multi-objective op-
timization problems is difficult for the following reasons: (1) solutions over Cg(g) found
during the optimization process may not be nondominated solutions over V and (2) since
the evolution of Cy(g) must be monitored on V, comparing sets of equally important so-
lutions is a complex task. We show in the next section that the use of an auxiliary archive

A makes it possible to control overfitting taking into account these aspects.

3.2 Overfitting Control Methods

The focus of this chapter is to evaluate strategies that rely on using V to create an archive
A to control overfitting, since these memory-based strategies may be applied in any op-
timization problem. The idea is to use the error rate measured on V as an estimation
of the generalization error. In order to accomplish the objectives of this chapter, we have
adapted two overfitting control strategies to the context of classifier ensemble selection for
both single- and multi-objective optimization problems: (1) backwarding originally pro-

posed in [67] to prevent overfitting in GP; and (2) global validation proposed in [62] and
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solution in C;’ (circles) and in C; (14(f)). There is a 0.20% overfit in this
example, where the minimal error is reached slightly after g = 15 on V, and
overfitting is measured by comparing it to the minimal error reached on O.
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[67] to control overfitting in multi-objective evolutionary optimization problems. Partial
validation, a control strategy traditionally used to avoid overfitting in classifier ensemble
selection problems [89] is also investigated. This is the strategy used in previous chapter.
It is interesting to note that these strategies can be ordered with respect to the cardinality
of the solution set used for overfitting control: partial validation uses only the last popu-
lation of solutions (or Cj, in the MOGA case) and backwarding validates the best solution

(or C;(g)) ateach g, while global validation uses all solutions at each g.

It is important to note that the global validation strategy is employed in [62] in a complex
two-level system which includes feature extraction, feature selection and classifier ensem-
ble selection, all performed by MOGA. In this thesis, we adapt their strategy to single-
objective GA. As mentioned earlier, we use ensembles generated by bagging (BAG) and

RSS.
3.2.1 Partial Validation (PV)

The first and simplest procedure relies on selecting ('J*' at the end of the optimization
process by validating the last population C(max(g)) (for GA) or Cj, (respectively for
MOGA). Consequently, in PV, it is assumed that, (,'J*’ € C(maz(g)) and C';/ e Ci.
Hence, there is only one update on 4, more precisely for max(g). PV is summarized in

Algorithm 2.

Algorithm 2 Partial Validation
1: Creates initial population C(1) of w chromosomes

A=10
for each generation g € {1,...,max(g)} do

perform all genetic operators and generate new population C(g + 1).
end for

validate all solutions from C(maxz(g)) (for GA) or C; (for MOGA)
choose as C';' the solution with highest recognition rate

update A by storing C’;’
return C’;" stored in A

¥ e oYy bY
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3.2.2 Backwarding (BV)

Overfitting remains uncontrolled even when PV is used, because C(mnax(g)) (for GA)
or C; for MOGA are composed of overfitted solutions, as explained in section 3.1. An
alternative to PV is to validate not only C(max(g)) (or Cy), but the C'7(g) (or Cy(g))
found at each generation. The BV method [67] proposed for GP problems is based on this
idea. The authors advocate that GP is prone to overfitting especially on later generations
as in Machine Learning tasks. Motivated by this observation, they proposed BV to control
overfitting by monitoring the optimization process on V to determine the point where GP
starts to overfit O. This approach uses A to store the best solution found before overfitting
starts to occur. Even though € is not the only objective function used to guide GA in this
chapter, we use € to represent the objective function in Algorithm 3, which shows how
BV is employed with GA. However, other objective functions can be used without loss of

generality.

Where multi-objective optimization is concerned, Pareto fronts must be stored in A instead
of individual solutions. Taking into account that BV relies on comparing each new solution
found on O to the solution stored on A4, this fact leads to the following question: How can
Pareto fronts be compared so as to identify whether or not one Pareto front is better than the
others. Because of the various tradeoffs over the Pareto front, the definition of a quality
measure is much more complex in multi-objective than in single-objective optimization
problems. Some quality measures such as the Pareto front spread, the objective functions
spread [103], the epsilon indicator and the coverage function [108] have been proposed. In
order to determine whether or not the Cy(g) found at each gencration is better than the C}
stored in A, we propose to use the Pareto quality measure called the coverage function,
introduced by Zitzler et al. [108]. This measure was used in [61] to define a stopping
criterion for MOGAs.
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Algorithm 3 Backwarding for GA

1: Creates initial population C(1) of w chromosomes
A=10
Find ('} (1) and set (7;’ : s EHLTY
Store ('j*' in A
for cach generation g € {1,...,max(g)} do

perform all genetic operators

generate new population C(g + 1) and find C'; (g + 1) as usual

§:  ife(V.(7)(g+ 1) <e(V.(7) then

Sk wPR

9: set C’J*’ = C5(g+1)

10: update A by storing in it the new ('J*'
11:  endif

12: end for

13: return C']’-" stored on A

The coverage function, measured on V, is based on the weak dominance criteria and indi-
cates the number of candidate ensembles in C(g) that are weakly dominated by at least
one solution in C}. Given two solutions (; € C; and ('; € Cy(g), we may say that (;
covers (', if (', is not worse than ('} in all objective functions. The idea is to verify the

Pareto improvement among generations on .A. Coverage can be denoted as:

cov(Cy , Ck(g)) (3.1)

In this way, the average number of solutions in C} covering the solutions on Cy(g) is
calculated. Thus, cou(C;', Ci(g)) < 1 or cov(Ct,Ci(g)) — 1, whether C} covers the
entire Pareto Cy(g) or not. The Pareto improvement at each generation is then measured

as:

imp(Cy(g), Ci)y=1- CO’U(CZ.,,Ck(g)) (3:2)

Improvement reaches its maximum (irmp — 1) when there is no solution on Cy(g) cov-

ered by solutions on C,j,' and its lowest possible value (¢mp — 0), when all solutions on
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Cy(g) are covered by those on C;'. Consequently, the update of A is dependent on the
improvement obtained between these two Pareto fronts. When imp > 0, A is updated;

otherwise, there is no update. The BV for MOGA is summarized in Algorithm 4.

Algorithm 4 Backwarding for MOGA
1: Creates initial population C(1) of w chromosomes

2 A=

3: Find Ci(1) and set Cj :=C,.(1)

4: Store C} in A

5: for each generation g, g € {1,..., mazx(g)} do
6:  perform all genetic operators;

7. generate C(g + 1) and find Cy(g + 1) as usual
8: ifimp(Ci(g + 1),C}) > 0 then

9: set Ct:=Cy(g + 1)

10: update A by storing in it the new C}’

11:  endif

12: end for

13: return C; stored on A to pick up C’;/.

3.2.3 Global Validation (GV)

There is a problem with BV because, since, at each generation, GA (or MOGA) creates
a population of solutions, (7 (g) (or Ci(g) for MOGA) found on O may not be the best
solution (or Pareto front) on V. An approach avoiding such a limitation is global validation
GV [62; 100], which relies on using A to validate the entire population C(g) from each

generation.

GV works as follows in the context of multi-objective optimization (Algorithm 5): at each
g step, all solutions are validated, and thus the set of non-dominated solutions found on V
is stored in A. When the optimization process is completed, two sets of non-dominated
solutions are available: (1) the traditional C; found on O; and (2) CY, the set of non-
dominated solutions found on V. In Figure 14(f), the solutions composing C; stored in .4
are represented by circles. As can be observed in this figure, the solutions stored in A are

different from the solutions over C;.



70

Algorithm 5 Global Validation for MOGA

I: Creates initial population C(1) of w chromosomes

22 A=10

3: for each generation g € {1,...,max(g)} do

4. perform all genetic operators

5 generate C(g + 1)

6:  validate all solutions in C(g + 1) over samples contained in V
7. perform a nondominated sorting to C(g + 1) U A to find C}
8:  update A by storing in it C}’

9: end for

10: return C} stored in A

We propose to change Radtke et al.’s method [62] slightly to adapt it to single-objective

optimization problems. Since no Pareto frontis involved when using GA, we are interested

in the best solution (';/. In this case, it is sufficient to validate all solutions at ecach new

generation, find the best solution (’;'(g) and compare it to C'j/, which is stored in A. In

this way, we keep the solution CJ’-" found on V stored in A. Letting e represent the objective

function, the complete GV algorithm for GA is described in Algorithm 6.

Algorithm 6 Global Validation for GA

Iz

e e -
QD ESN =3

N B 4 W

Creates initial population C(1) of w chromosomes
A=1
Validate all solutions in C(1) over samples contained in V
Find C¥'(1) from C(1)
Set ("j*'::('j*/(l)
for each generation g € {1,...,max(g)} do
perform all genetic operations and generate C(g + 1)
validate all solutions in C(g + 1)
find C'(g + 1)
if c(V,C)(g+ 1) < e(V,CY) then
set C7 == C7(g+1)
update A by storing in it the new C’j'
end if

. end for
. return (']*' stored in A

An example of the GV strategy for single-objective GA is illustrated in Figure 13(f). This

figure shows overfitting when comparing ¢(V, CJ’-‘/) and €(V, C'7). The ensemble C']’-" prob-
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ably has higher generalization performance than (7 obtained in O. In section 3.3, we

analyze such an assumption experimentally.
3.3 Experiments

The parameters and the experimental protocol employed are described in sections 3.3.1

and 3.3.2 respectively.
3.3.1 Parameter Settings on Experiments

The databases, ensemble construction methods, search algorithms and objective functions

used to conduct the experiments are defined in this section.
Databases

Itis important to note that the databases must be large enough to be partitioned into the four
above-mentioned datasets: 7, O, V and G, to perform experiments using the holdout val-
idation strategy, as was done in the previous chapter. However, very few large databases
containing real classification problems are available in the literature. SOCS is general
enough to be conducted using small datasets by applying k-fold cross-validation. Ac-
cordingly, we performed experiments using both the holdout and 10-fold cross-validation
strategies. Another important aspect taken into account in selecting the databases for our
experiments is that relatively high-dimensional feature spaces are necessary for the RSS

method.

Two databases were used in the holdout validation experiments: (1) NIST Special
Database 19 containing digits (NIST SD19), used in the previous chapter, which we call
NIST-digits here; and (2) NIST SD19 containing handwritten uppercase letters, which we
call NIST-letters here. We use the representation proposed by Oliveira et al. [52] for
both databases. Table VI lists important information about these two databases and the

partitions used to compose the four separate datasets. These same partitions were used
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in [89] for NIST-digits and in [61] for NIST-letters. We used the two test datasets from

NIST-digits, as was done in the previous chapter.

Table VII describes the three databases used in the 10-fold cross-validation experiments:
dna, texture and satimage. The Dna and satimage datasets are provided by Project Statlog
on www.niaad.liacc.up.pt/old/statlog; and texture is available within the UCI machine

[.earning Repository.

Table VI

Specifications of the large datasets used in the experiments in section 3.3.3.

Dataset #of Training Optimization Validation Test Features Pool C
features Set (7) Set (O) Set (V) Set (G) RSS size
NIST-digits 132 5,000 10,000 10,000 test1 60,089 32 100
test2 58,646
NIST-letters 132 43,160 3.980 7,960 12,092 32 100
Table VII

Specifications of the small datasets used in the experiments in section 3.3.4.

Dataset  # of samples # of features Features RSS Pool C size

dna 3186 180 45 100
texture 5500 40 20 100
satimage 6435 36 18 100

Ensemble Construction Methods and Base Classifiers

We chose kNN and DT as the base classifiers in our experiments. The (4.5 algorithm [60]
(Release 8) was used to construct the trees with pruning. In addition, we used k& = 1 for
kNN classifiers in all databases without fine-tuning this parameter in order to avoid addi-
tional experiments. BAG and RSS were applied to generate the initial pools of classifiers

in our experiments. Three initial pools of 100 classifiers were created: (1) 100 DT and (2)


http://www.niaad.liacc.up.pt/old/staUog

100 kNN, which were generated using RSS, and (3) 100 DT, which was generated using
BAG (BAG is mostly effective with unstable classifiers, such as DT). The size of the sub-
sets of features used by RSS is shown in Table VI for large datasets and in Table VII for
small datasets. The same subspaces are used for both kNN and DT classifiers. Majority

voting was used as the combination function.
Objective Functions

In order to reduce redundancy in our experiments, we chose to employ only four diversity
measures: (1) difficulty measure (¢), which was pointed out as the best diversity measure
when the diversity measures were compared in single-objective optimization problems; (2)
double-fault (9), which was one of the best diversity measure used in combination with the
error rate to guide NSGA-II, (3) coincident failure diversity (o), which was chosen due to
the conclusions presented by Kuncheva and Whitaker [44] indicating that this measure is
less correlated to the other measures; (4) ambiguity () as defined in [104], which was not
investigated in [44]. Kuncheva and Whitaker [44] studied ten diversity measures. They
conclude that these diversity measures may be divided into three different groups, taking
into account the correlation among measures: the double-fault alone; coincident failure

diversity (also alone); and the remaining eight diversity measures.

In terms of ensemble size, we have shown in the previous chapter that the reduction in
the number of classifiers is a consequence of the optimization task, whatever the objective
function used to guide the search. Hence, there is no need to explicitly include ensemble

size in the optimization process.
Genetic Algorithms

The same parameters used in the previous chapter is also employed in our experiments in

this chapter.
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3.3.2 Experimental Protocol

Our experiments were broken down into three main series. In the first and second series,
the holdout and 10-fold cross-validation strategies were implemented to verify the impact
of overfitting in large and small databases respectively. The validation control methods
PV, BV and GV were also compared in order to determine the best method for controlling
overfitting. Diversity measures were employed in pairs of objective functions combined
with ¢ by NSGA-II, and only ¢ was used to guide GA in both series of experiments.
Finally, in the third series, diversity measures were applied individually as single-objective
functions. As a result of this last series of experiments, we show that the relationship

between diversity and performance may be measured using the GV strategy.

The selection phase performed for large datasets was also replicated 30 times, as was
done in the previous chapter, owing to the use of stochastic search algorithms. To conduct
the 10-fold cross-validation experiments, the original whole datasets were divided into 10
folds. Each time, one of the 10 folds was used as G, another fold as V, a third as @ and the
other 7 were put together to form 7. Thus, 7, O and V were used at the overproduction
phase to generate the initial pools of classifiers, to perform the optimization process and
to perform the three validation strategies respectively. This process was repeated 10 times,
1.e. the optimization process was repeated for 10 trials. It is also important to mention that
the selection phase was replicated 30 times for each trial. Thus, the mean of the error rates
over 30 replications for each trial were computed and the error rates reported in all tables

of results were obtained as the mean of the error rates across all 10 trials.

Then, in both strategies, the best solution for each run was picked up according to the
overfitting control strategy employed. The solutions were tested on multiple comparisons
using the Kruskal-Wallis nonparametric statistical test by testing the equality between
mean values. The confidence level was 95% (a — 0.05), and the Dunn-Sidak correction

was applied to the critical values.
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3.3.3 Holdout validation results

Table VIII shows the mean error rates obtained using both GA and NSGA-II search al-

gorithms in NIST-digits data-testl and data-test2, and in NIST-letters. The error rates

obtained by combining the initial pool of 100 classifiers are also included in this table as

well as the results with no overfitting control, denoted NV.

These experiments showed the following:

a.

(@)

The results from the literature [37], which conclude that complex learning problems
are more affected by overfitting, are confirmed. There are more problems presenting
overfitting in NIST-digits data-test2 than in data-testl. As we mentioned in section

2.3.1, NIST-digits data-test2 is more difficult to use for classification.

NSGA-II is more prone to overfitting than GA. Even though, in the majority of the
experiments using GA, at least one of the validation methods slightly decreased the
error rates when compared with NV, the differences are not significant. In contrast,
these differences are more likely to be significant in experiments with NSGA-II. Of
36 cases using NSGA-II, an overfitting control decreased the error rates in 30. In 17

of these experiments, the differences were significant.

When overfitting was detected, GV outperformed both PV and BV. The Kruskal-
Wallis test shows that, among 19 cases where overfitting control decreased the error

rates significantly, GV was the best strategy in 18 problems.

In terms of ensemble creation methods, our results indicate an order relation be-
tween the methods investigated for the NIST-digits database. BAG was more prone
to overfitting than RSS. In addition, ensembles of DT were less prone to overfitting
than ensembles of kNN, both generated using RSS. l'or the NIST-letters database,

the results were equivalent.



Table VIII

Mean and standard deviation values of the error rates obtained on 30 replications
comparing selection procedures on large datasets using GA and NSGA-II. Values in bold
indicate that a validation method decreased the error rates significantly, and underlined

values indicate that a validation strategy is significantly better than the others.
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NIST-digits - testl (100kNN = 3.72; 100DT-RSS = 2.92; 100DT-BAG = 5.65)

GA NSGA-II
Method Val error (¢€) ambiguity (y) coincident (¢)  difficulty (¢)  double-fault (9)
NV [ 3.60 (0.06) 3.66 (0.06) 3.67 (0.03) 3.64 (0.05) 3.63 (0.07)
KNN-RSS PV 3.60 (0.06) 3.70 (0.07) 3.68 (0.04) 3.63 (0.05) 3.64 (0.07)
BV | 3.57 (0.07) 3.70 (0.07) 3.65 (0.03) 3.63 (0.07) 3.64 (0.07)
GV | 3.55(0.06) 3.63 (0.06) 3.62 (0.06) 3.60 (0.08) 3.60 (0.09)
NV | 2.82(0.05) 2.96 (0.10) 2.92 (0.07) 2.81 (0.03) 2.81(0.04)
DT-RSS PV | 2.80(0.05) 2.97 (0.10) 2.97 (0.11) 2.83 (0.02) 2.82 (0.05)
BV | 2.83(0.05) 2.97 (0.10) 2.97 (0.11) 2.83 (0.02) 2.82 (0.06)
GV | 2.84 (0.06) 2.94 (0.08) 2.94 (0.09) 2.82 (0.06) 2.84 (0.07)
NV | 5.20(0.07) 5.73 (0.07) 5.87 (0.12) 5.67 (0.06) 5.73 (0.08)
DT-BAG PV | 5.18 (0.07) 5.71 (0.08) 5.86 (0.10) 5.68 (0.05) 5.73 (0.08)
BV | 5.18 (0.05) 5.71 (0.08) 5.85 (0.10) 5.69 (0.05) 5.72 (0.09)
GV | 5.18 (0.06) 5.54 (0.06) 5.56 (0.11) 5.55 (0.09) 5.57 (0.07)
NIST-digits - test2 (100kNN = 8.10; 100DT-RSS = 6.67; 100DT-BAG = 10.99)
NV | 7.91(0.14) 7.90 (0.14) 8.09 (0.16) 8.12 (0.09) 8.12 (0.09)
KNN-RSS PV 7.89 (0.12) 7.97 (0.15) 8.11 (0.18) 8.11 (0.11) 8.14 (0.12)
BV | 7.85(0.17) 7.97 (0.15) 8.10(0.18) 8.11 (0.10) 8.14 (0.14)
GV | 7.80(0.13) 7.87 (0.13) 7.94 (0.15) 7.93 (0.10) 7.93 (0.13)
NV | 6.53(0.08) 6.76 (0.17) 6.77 (0.14) 6.59 (0.11) 6.60 (0.10)
DT-RSS PV | 6.50(0.09) 6.79 (0. 18) 6.88 (0.21) 6.69 (0.06) 6.65 (0.11)
BV | 6.53(0.09) 6.79 (0.18) 6.88 (0.21) 6.69 (0.06) 6.65 (0.12)
GV | 6.53(0.09) 6.73 (0.13) 6.76 (0.12) 6.59 (0.09) 6.63 (0.13)
NV | 10.16(0.15) 10.99 (0.17) 11.28 (0.28) 11.05 (0.08) 11.13 (0.08)
DT-BAG PV | 10.11(0.15) | 10.96(0.17) 11.25(0.23) 11.06 (0.11) 11.12 (0.21)
BV | 10.11(0.13) 10.94 (0.17) 11.24 (0.24) 11.06 (0.10) 11.10 (0.14)
GV | 10.09(0.13) | 10.68 (0.11) 10.76 (0.22)  10.76 (0.15) 10.83 (0.07)
NIST-letter (100kNN = 6.60; 100D'T-RSS = 6.06; 100DT-BAG = 7.63)
NV | 649 (0.11) 6.58 (0.10) 6.73 (0.25) 6.41 (0.09) 6.55(0.13)
KNN-RSS PV | 6.50(0.09) 6.58 (0.11) 6.71 (0.26) 6.43 (0.11) 6.60(0.12)
o BV | 6.47(0.12) 6.58 (0.12) 6.71 (0.26) 6.43(0.11) 6.58 (0.12)
GV | 6.49(0.09) 6.54 (0.14) 6.50 (0.13) 6.33 (0.16) 6.45 (0.12)
NV | 6.03(0.07) 6.24 (0.11) 6.34 (0.19) 5.93 (0.08) 6.10(0.12)
DT-RSS PV | 6.03(0.07) 6.25(0.11) 6.34 (0.19) 5.92 (0.06) 6.11 (0.12)
BV | 6.05(0.09) 6.24 (0.11) 6.34 (0.19) 5.92 (0.07) 6.03 (0.13)
GV | 6.01(0.09) 6.08 (0.09) 6.12 (0.14) 5.89 (0.07) 6.02 (0.10)
NV | 7.71(0.10) 7.68 (0.09) 8.00 (0.14) 7.56 (0.08) 7.78 (0.12)
DT-BAG PV | 7.69 (0.08) 7.64 (0.07) 8.08 (0.18) 7.51 (0.05) 7.78 (0.13)
BV | 7.71(0.10) 7.64 (0.07) 8.03 (0.16) 7.51 (0.05) 7.76 (0.12)
GV | 7.70(0.08) 7.64 (0.07) 7.87 (0.14) 7.54 (0.08) 7.64 (0.12)
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¢. Although this thesis does not focus on comparing ensemble creation methods in
terms of performance, our results indicate that ensembles generated with BAG per-
formed worse than ensembles generated by RSS. Also, DT ensembles performed

better than kNN.

f. The selection of ensembles of classifiers was a better option than combining the
initial pools of classifiers. FFor NIST-digits, GA using ¢ as the objective function,
and for NIST-letters, NSGA-II using ¢ and e as the pair of objective functions,
found solutions better than the baseline composed of 100 classifiers in all three

problems.

3.3.4 Cross-validation results

Table IX summarizes the mean values and the standard deviation values achieved on the
three small datasets presented in Table VII. We also report the error rates obtained on

combining the initial pools of classifiers by majority voting.

Based on these results, it may be observed that:

a. For small databases, NSGA-II was also more prone to overfitting than GA. The
overfitting control strategies significantly decreased the error rates of the solutions
found by GA only in one case (dna with kNN-based ensembles) out of nine, while
they significantly reduced the error rates of the solutions found by NSGA-II in 16

of 36 cases.

b. In 15 cases in which overfitting was detected, the difference between the overfit-
ting control methods was significant. GV was also the best strategy for controlling

overfitting in this series of experiments.

c. Texture is a highly stable database: it has the same class distribution and it can be

casily classified, since the error rates can be lower than 1% (see results obtained



Table IX

Mean and standard deviation values of the error rates obtained on 30 replications
comparing selection procedures on small datasets using GA and NSGA-II. Values in bold
indicate that a validation method decreased the error rates significantly, and underlined

values indicate when a validation strategy is significantly better than the others.
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Texture (100kNN = 1.11; 100DT-RSS = 2.56; 100DT-BAG = 3.60)

GA NSGA-11
Method Val error (¢€) ambiguity (y) coincident (¢) difficulty (¢)  double-fault (9)
NV | 1.09 (0.03) 1.28 (0.03) 1.19 (0.06) 0.87 (0.03) 0.90 (0.05)
KNN-RSS PV | 1.09 (0.04) 1.40 (0.06) 1.21 (0.07) 0.84 (0.03) 0.94 (0.06)
’ BV | 1.08 (0.04) 1.41 (0.06) 1.21 (0.08) 0.88 (0.04) 0.89 (0.06)
GV | 1.11(0.03) 1.26 (0.06) 1.18 (0.08) 0.95 (0.05) 0.98 (0.09)
NV | 2.54 (0.07) 2.94 (0.11) 3.16 (0.15) 2.40 (0.05) 3.00 (0.14)
DT-RSS PV | 2.52(0.09) 3.03 (0.14) 3.41(0.19) 2.41 (0.06) 3.09 (0.11)
BV | 2.55(0.08) 3.04 (0.15) 3.42 (0.15) 2.44 (0.06) 3.10(0.10)
GV | 2.51(0.09) 2.93 (0.15) 3.20(0.21) 2.41 (0.09) 291 (0.18)
NV | 3.58 (0.10) 3.60(0.09) 4.09 (0.15) 3.49 (0.09) 4.02 (0.14)
DT-BAG PV | 3.53(0.08) 3.63 (0.13) 4.18 (0.20) 3.55 (0.08) 4.14 (0.19)
BV | 3.60 (0.08) 3.62(0.11) 4.17 (0.18) 3.46 (0.12) 4.14 (0.20)
GV | 3.58 (0.08) 3.63 (0.10) 4.01 (0.15) 343(0.11) 4.04 (0.22)
DNA (100kNN = 6.87; 100DT-RSS = 5.05; 100DT-BAG = 5.02)
NV | 8.01(0.27) 9.61 (0.36) 10.60 (0.51 8.86 (0.22 9.21 (0.35)
KNN-RSS PV | 8.02(0.2) 9.85 (0.35) 10.85 (0.55) 8.93 (0.20) 9.38 (0.39)
- BV | 7.64 (0.24) 9.82 (0.37) 10.76 (0.52) 8.85(0.21) 9.37 (0.41)
GV | 7.69 (0.23) | 8.60(0.37) 8.75 (0.45) 8.01 (0.33) 8.36 (0.30)
NV | 5.10(0.24) 6.44 (0.25) 7.05 (0.43) 5.15(0.18) 6.20 (0.27)
DRSS PV | 499 (0.18) 6.76 (0.31) 7.30 (0.46) 4.96 (0.12) 6.31(0.30)
BV | 498 (0.25) 6.76 (0.30) 7.30 (0.47) 4.93(0.14) 6.30 (0.30)
GV | 497 (0.16) 5.93 (0.29) 6.36 (0.42) 4.77 (0.17) 5.67 (0.33)
NV | 5.0000.10) 5.35(0.14) 5.51(0.22) 5.13(0.14) 5.55(0.23)
DL-BAG PV | 499 (0.11) 5.50(0.12) 5.69 (0.20) 5.08 (0.12) 5.35(0.14)
BV | 498 (0.15) 5.51(0.11) 5.69 (0.20) 4.99 (0.12) 5.38 (0.15)
GV | 4.99 (0.08) 5.36 (0.20) 5.41(0.21) 4.93(0.13) 5.54 (0.22)
Satimage (100kNN = 8.59; 100DT-RSS = 8.64; 100DT-BAG = 9.59)
NV | 8.64 (0.09) 8.76 (0.12) 9.12 (0.16) 8.81(0.23) 9.15(0.14)
KNN-RSS PV | 8.62(0.07) 8.76 (0.09) 9.25(0.17) 8.88 (0.25) 9.28 (0.13)
BV | 8.57 (0.10) 8.75 (0.09) 9.23 (0.18) 8.88 (0.26) 9.33(0.14)
GV | 8.58(0.11) 8.69 (0.10) 9.05 (0.17) 8.84 (0.18 9.15(0.17)
NV | 8.83(0.11) 8.92 (0.11) 9.44 (0.20) 8.88 (0.10) 9.25(0.19)
DT-RSS PV | 8.80(0.09) 9.00 (0.12) 9.63 (0.22) 8.93(0.12) 9.38 (0.18)
’ BV | 8.81(0.09) 9.00 (0.10) 9.61 (0.23) 8.94 (0.11) 9.39 (0.17)
GV | 8.82(0.12) 8.77 (0.11) 9.19 (0.18) 8.75 (0.13) 9.03 (0.17)
NV | 9.63 (0.09) 9.81 (0.10) 10.40 (0.19) 9.91 (0.13) 10.14 (0.18)
DL-BAG PV | 9.61 (0.07) 9.81(0.12) 10.55 (0.18) 9.89 (0.09) 10.34 (0.17)
BV | 9.65(0.10) 9.82 (0.12) 10.53 (0.17) 9.91 (0.09) 10.35 (0.16)
GV | 9.63 (0.09) 9.65 (0.14) 10.25 (0.22) 9.71 (0.13) 10.10 (0.16)
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using ¢ and ¢ to guide NSGA-II). Hence, it is not surprising that our results do not

show overfitting in this database.

d. For dna, overfitting was detected in the two problems involving ensembles gen-
erated using RSS. For satimage, D'1-based ensembles generated using RSS were
more prone to overfitting than the other two methods. Thus, unlike the NIST-digits

results, BAG was less prone to overfitting than RSS for these two databases.

e. RSS-based ensembles presented lower error rates than BAG-based ensembles in all

three databases.

f. The solutions found by NSGA-II guided by 0 and ¢ were better than the baseline
combination for texture and dna, except for ensembles of kNN for dna. However,

for satimage, selection did not outperform combination.

3.3.5 Relationship between performance and diversity

When GA was guided by diversity measures as single-objective functions, we observed
that a relationship between diversity measures and performance could be measured using
the GV strategy, as illustrated in Figure 15. The same optimization problem investigated
in section 3.1 is shown here. GA was guided by the minimization of 6 as the objective
function. It is important to mention that the optimization was only guided by 0. The
reason for showing plots of € versus € in this figure is to demonstrate the relationship

between this diversity measure and performance.

Figure 15 shows all (; evaluated during the optimization process (points) and €7 (in
terms of ¢ values) found on O. It is interesting to note that Figure 16 confirms that the
overfitting problem is also detected when @ is the objective function used to guide GA,
since €(V,C7) > €(V, C'J’-"). Thus, in this example, there is an overfitting measured by
c(V, C’;") —c(V,C7) = 0.23. The use of GV allows us to keep (C’;") stored in A. However,

Figure 16 also shows that C’;" is not the solution with the smallest ¢ among all candidate
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Figure 15  Optimization using GA with the § as the objective function. all ('; evaluated
during the optimization process (points), % (diamonds), ¢ ’;' (circles) and € j
(stars) in O. Arrows highlight (';.

ensembles evaluated. In fact, the solution denoted ¢ J is the candidate ensemble with

lowest e.

These observations lead us to propose the use of GV as a tool to measure the relationship
between diversity and performance. The assumption is that there is a relationship between
these two measures when the generalization performance is increased by keeping the so-
lution C']*' stored in A (based on diversity values). In addition, the relationship may range
from weak to strong, based on the difference (overfitting) between ¢(V, ('} ")and e(V, ( ;)
For instance, since e(V, ( J) —e(V,( ';-") = 0.05 in Figure 16, a 0.23% overfitting was con-
trolled using GV and a 0.05% overfitting remains uncontrolled. Because this difference is

close to 0, 4 is strongly related to performance in this problem.

Taking into account that the relationship between diversity and performance has been mea-
sured in the literature, using correlation measures [44] and kappa-error diagrams [17] for

example, the use of GV offers a diffcrent strategy for analyzing such a key aspect in the



81

5.0

48F

46+

0.0 0. O

» 0 o - |

44+

4.2

4.0

Error rate

38F

3.6

3.4

32¢F

3.0 L 7 L 5 . f f
0.035 0.036 0.037 0038 00339 004 0041 0042 0.043
Difficulty Measure

Figure 16  Optimization using GA with the 0 as the objective function. All ('; evaluated
during the optimization process (points), C'; (diamonds), C’;." (circles) and C';
(stars) in V. Controlled and uncontrolled overfitting using GV.

ensembles of classifiers literature. However, taking into account the results obtained previ-
ously, there may be a drawback to this strategy: diversity measures are not independent of
ensemble size, 1.e. when diversity measures are employed as single-objective functions, a
minimization of the number of classifiers may result. It is expected that ensembles which
are too small will perform considerably less well than other approaches [1; 50], such as
combining the initial pools of classifiers or selecting the best subset of classifiers using

GA only guided by e or MOGA guided by € combined with diversity.

To avoid the problem of reaching a too small ensemble size, we defined a large fixed mini-
mum ensemble size for all diversity measures in this series of experiments. The minimum
ensemble size was fixed based on the median size of the ensembles obtained using € as
a single-objective function calculated on the three small datasets described in Table VII.

Taking into account these results, we set the minimum ensemble size to 49 classifiers.
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The four diversity measures investigated in this chapter were used in this series of experi-
ments. The objective of the experiments was to verify which measure is the most closely
related to performance. The relationship between the four diversity measures and perfor-
mance i1s measured by calculating the uncontrolled overfitting ¢ = ¢(V, ("J') —€(V, ('}").

The lower ¢, the stronger the relationship.

Table X summarizes the results obtained. We have also included the results achieved using
GA guided only by ¢, so that the solutions found by all five single-objective functions
investigated in this chapter can be compared. These results are the same as those shown

in Table IX.

Our results indicate that the differences among the results obtained with diversity measures
are small, except for dna in RSS-based ensembles. In fact, we confirmed the results of
previous work, e.g. [70] and [44], that diversity measures are highly correlated. However,
our experiments reveal important information about the relationship between performance
and diversity. Taking into account the assumption that the closer to zero the uncontrolled
overfitting, the stronger the relationship between the two measures, we can observe the

following results:

a. The diversity measure o was more closely related to performance. The uncontrolled
overfitting ¢ was either zero or as close as possible to zero in 5 cases out of a total

of 9 cases.

b. The diversity measure v was less closely related to performance. The results ob-

tained using 7y presented the highest ¢ in 6 cases.

c. 0 was highly related to performance and appears to be better than e for guiding the
selection of the ensembles of classifiers. In 8 cases, 6 found solutions better than

those found using ¢ as a single-objective function. In addition, the ensembles found



Table X

Mean and standard deviation values of the error rates obtained on measuring the
uncontrolled overfitting. The relationship between diversity and performance is stronger
as ¢ decreases. The best result for each case is shown in bold.

Texture

Method Strategy | ambiguity (y) coincident (o) difficulty (¢)  double-fault (9)

e(V, (',") 1.20 (0.04) 1.12 (0.03) 1.01 (0.03) 1.01 (0.02)
KNN-RSS | ¢(V.(") 1.12 (0.03) 1.09 (0.04) 1.09 (0.04) 1.09 (0.05)
GAe=1.11] ¢ 0.08 (0.03) 0.03 (0.04) -0.08 (0.04) -0.08 (0.03)

eV, C7 ) | 2.80(0.04) 2.50 (0.08) 2.40 (0.06) 2.46(0.07)
DT-RSS e(V, C;) 2.63 (0.08) 2.50 (0.07) 2.43 (0.09) 2.46 (0.09)
GAe=251| ¢ 0.18 (0.06) 0.00 (0.07) -0.03 (0.07) 0.00 (0.08)

e(V, (‘J") 3.59 (0.09) 3.56 (0.07) 3.48 (0.00) 3.49 (0.06)
DT-BAG e(V, C;) 3.61 (0.09) 3.61 (0.08) 3.54 (0.06) 3.57 (0.08)
GAe=358| ¢ -0.02(0.09) -0.05 (0.08)  -0.06 (0.06) -0.08 (0.07)

Dna

e(V, ('j") 10.6 (0.00) 8.33(0.21) 7.50 (0.25) 7.89 (0.16)
kNN-RSS e(V, (,‘J') 9.05 (0.00) 8.00 (0.33) 8.44 (0.30) 7.75 (0.29)
GAe=7.69 | ¢ 1.56 (0.00) 0.33 (0.27) -0.94 (0.30) 0.14 (0.20)

eV, ) | 7.40(0.16) 5.01(0.18) 4.50 (0.16) 4.67 (0.10)
DT-RSS e(V, C';) 5.17 (0.18) 5.09 (0.20) 5.24 (0.22) 4.91(0.19)
GAe=497 | ¢ 2.23(0.17) -0.07(0.19) -0.73 (0.19) -0.24 (0.14)

e(V,Cr) | 502(0.11) 5.16 (0.10) 4.93 (0.09) 4.94 (0.07)
DT-BAG e(V, CJ'.) 5.00 (0.10) 5.08 (0.10) 5.05 (0.12) 5.01 (0.09)
GA €=4.99 0.03 (0.10) 0.08 (0.10) -0.12 (0.10) -0.07 (0.08)

Satimage

e(V, C;) 8.60 (0.09) 8.58 (0.11) 8.64 (0.08) 8.62 (0.10)
kNN-RSS e(V, ¢ 'J') 8.55(0.07) 8.60 (0.08) 8.66 (0.12) 8.62 (0.09)
GAec=858 | ¢ 0.05 (0.08) -0.02 (0.09)  -0.02 (0.10) 0.00 (0.09)

e(V, (/) 8.22 (0.12) 8.77(0.11) 8.34 (0.03) 8.67 (0.11)
DT-RSS e(V, (‘J/) 8.11(0.12) 8.72 (0.11) 8.47 (0.14) 8.71(0.11)
GA €=8.82 0.11(0.12) 0.05 (0.11) -0.10 (0.08) -0.04 (0.10)

eV, C7) | 9.61(0.09) 9.64 (0.13) 9.61 (0.09) 9.71 (0.11)
DT-BAG e(V, C;) 9.66 (0.15) 9.65 (0.13) 9.66 (0.12) 9.70 (0.10)
GAe=9.63 | ¢ -0.05 (0.12) -0.01(0.13)  -0.05 (0.10) 0.01 (0.10)

using ¢ presented the highest negative ¢. What this means, in effect, is that guiding

GV using 0 is better than doing so using e.
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d. Our results indicate that diversity measures can be effective objective functions for
selecting high-performance ensembles of classifiers. This is a different result from
those presented in the previous chapter. The main problem is that diversity measures
are critically affected by ensemble size. Since we have fixed quite a large ensemble

size, i.e. 49 classifiers, diversity measure performances exceeded those of e.

3.4 Discussion

This chapter presented the experimental results of a study comparing three overfitting
control strategies adapted to the selection phase of SOCS, which is performed as an op-
timization problem using single- and multi-objective GAs. We showed that the task of
selecting classifier ensembles may be prone to overfitting, we pointed out the best strat-
egy for controlling overfitting and we presented a global validation strategy GV as a tool
to measure the relationship between diversity and performance. The following overfitting
control methods were investigated: (1) Partial Validation, in which only the last population
of solutions is validated; (2) Backwarding, which relies on validating each best solution
at each generation; and (3) GV, in which all solutions at each generation are validated.
Three initial pools of 100 classifiers were generated: 100 kNN and 100 DT using RSS,
and a third pool of 100 DT using BAG. Five different objective functions were applied: 4

diversity measures and e.

The experiments were divided into three series. The three overfitting control methods were
compared in two large databases (first series of experiments) and in three small datasets
(second series). The combination error rate ¢ was employed as a single-objective function
by GA and the four diversity measures were combined with ¢ to make up pairs of objective
functions to guide NSGA-IIL. Finally, in the third series of experiments, the four diversity
measures were directly applied by GA, and the GV strategy was performed to control
overfitting. The objective in this third series of experiments was to show that GV can be a

tool for identifying the diversity measure more closely related to performance.
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The results show that overfitting can be detected at the selection phase of SOCS, espe-
cially when NSGA-II is employed as the search algorithm. In response to question (1)
posed in the beginning of this chapter, GV may be deemed to be the best strategy for con-
trolling overfitting. In all problems where overfitting was detected, in both large and small
databases, GV outperformed the other overfitting control methods. In response to ques-
tion (2), our results indicate that RSS-based ensembles are more prone to overfitting than
BAG-based ones, even though the same behavior was not observed in all databases inves-
tigated. In terms of ensembles generated by RSS, our results globally showed that kNN
ensembles and DT ensembles are equally affected by overfitting. This aspect is totally

problem-dependent.

Finally, our results outlined a relationship between performance and diversity. Double-
fault 0 and ambiguity v were the diversity measures more and less closely related to per-
formance respectively. Moreover, we show that the difficulty measure ¢ can be better than
¢ as a single-objective function for selecting high-performance ensembles of classifiers. It
1s important, however, to realize that quite a large minimum ensemble size (49) was fixed
for all diversity measures. Such a size was defined based on the size of the ensembles

found by GA guided by e.

Although we were able to increase the generalization performance of the baseline initial
pools of classifiers by employing SOCS in chapter 2 and SOCS with overfitting control in
this chapter, the selection of only one candidate ensemble to classify the whole test dataset,
does not guarantee that the candidate ensemble most likely to be correct for classifying
each test sample individually is selected. In the next chapter of this thesis we propose
a dynamic OCS in order to investigate whether or not the gain in performance can be

increased still further.



CHAPTER 4

DYNAMIC OVERPRODUCE-AND-CHOOSE STRATEGY

In chapter 2 and chapter 3, we have considered static overproduce-and-choose strategy
(SOCS). We have investigated search criteria and search algorithms to guide the optimiza-
tion process and how this may be affected by the overfitting problem. We also presented
methods to control overfitting. The objective was to finding the most accurate subset of
classifiers during the selection phase, and using it to predict the class of all the samples in
the test dataset. In this chapter, we propose a dynamic overproduce-and-choose strategy,
which relies on combining optimization and dynamic selection to compose a two-level
selection phase. The optimization process is conducted to generate candidate classifier
ensembles and the dynamic selection is performed by calculating a measure of confidence
to allow the selection of the most confident subset of classifiers to label each test sample

individually.

In our approach, an ensemble creation method, such as bagging or the random subspace
method, is applied to obtain the initial pool of candidate classifiers C at the overproduction
phase. Thus, the optimization process described in chapter 2 is assumed to be the first
level of the selection phase. At this first level, a population-based search algorithm is
employed to generate a population C*' = {("}, (5, ... .(',} of highly accurate candidate
ensembles (';. This population is denoted C*' to indicate that it was obtained by using the
validation process described in chapter 3. Assuming C* as the population found using the
optimization dataset, C* is the alternative population found using the validation dataset
to avoid overfitting. At the second level proposed in this chapter, the candidate ensembles
in C*" are considered for dynamic selection in order to identify, for each test sample x; ,,

the solution (’;' most likely to be correct for classifying it.
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In the introduction of this thesis we mentioned that our objective by proposing a dynamic
overproduce-and-choose strategy is to overcome the following three drawbacks: Rather
than selecting only one candidate ensemble found during the optimization level, as is done
in SOCS, the selection of C'J’-" is based directly on the test patterns. Our assumption is that
the generalization performance will increase, since all potential high accuracy candidate
ensembles from the population C*' are considered to select the most competent solution
for each test sample. ‘This first point is particularly important in problems involving Pareto-
based algorithms, because our method allows all equally competent solutions over the
Pareto front to be tested; (2) Instead of using only one local expert to classify each test
sample, as is done in traditional classifier selection strategies (both static and dynamic),
the selection of a subset of classifiers may decrease misclassification; and, finally, (3)
Our dynamic selection avoids estimating regions of competence and distance measures in
selecting ¢ J* for each test sample, since it relies on calculating confidence measures rather

than on performance.

Therefore, in this chapter, we present a new method for dynamic selection of classifier
ensembles. The proposed method relies on choosing dynamically from the population
C*' of highly accurate candidate ensembles generated at the optimization level, the candi-
date ensemble with the largest consensus to predict the test pattern class. We prove both
theoretically and experimentally that this selection permits an increase in the ““degree of
certainty” of the classification [29], increasing the generalization performance as a conse-
quence. We propose in this thesis the use of three different confidence measures, which
measure the extent of consensus of candidate ensembles to guide the dynamic selection
level of our method. These measures are: (1) Ambiguity; (2) Margin; and (3) Strength

relative to the closest class.

The first measure is based on the definition of ambiguity shown in Equation 2.2, which in-
dicates that the solution with least ambiguity among its members presents high confidence

level of classification. The second measure, which is inspired by the definition of margin,
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measures the difference between the number of votes assigned to the two classes with the
highest number of votes, indicating the candidate ensemble’s level of certainty about the
majority voting class. Finally, the third measure also measures the difference between the
number of votes received by the majority voting class and the class with the second highest
number of votes; however, this difference is divided by the performance achieved by each
candidate ensemble when assigning the majority voting class for samples contained in a
validation dataset. This additional information indicates how often each candidate ensem-
ble made the right decision in assigning the selected class. Different candidate ensembles

may have different levels of confidence for the same class [8].

Besides these three new confidence measures, DCS-LA is also investigated. DCS-LA is
classical dynamic classifier selection method [101]. It has been summarized in chapter
1, more precisely in section 1.2.1. We have tailored DCS-LA to the selection of classi-
fier ensembles to be compared to the three confidence-based dynamic selection methods.
Following the same experimental protocol employed in chapter 3, in this chapter, bagging
and the random subspace method are used to generate ensemble members, while DT and
kNN classifiers are used for the creation of homogeneous ensembles at the overproduction
phase, showing that the validity of our approach does not depend on the particulars of the
ensemble generation method. Single- and multi-objective GAs are used to perform the
optimization of our DOCS, employing the same five objective functions for assessing the

effectiveness of candidate ensembles.

This chapter is organized as follows. Our proposed DOCS is introduced in section 4.1.
Then, sections 4.2 and 4.3 describe the optimization and dynamic selection performed in
the two-level selection phase by population-based GAs and confidence-based measures
respectively. Finally, the parameters employed in the experiments and the results obtained

are presented in section 4.4. Conclusions are discussed in section 4.5.
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4.1 The Proposed Dynamic Overproduce-and-Choose Strategy

The method proposed in this chapter does not follow the classical definition of DCS (see

section 1.2.1 in chapter 1), however, and so a partition generation procedure is not needed

and the selection level is not based on accuracy. Instead, our approach is based on the

definition of OCS. Traditionally, OCS is divided into two phases: (1) overproduction; and

(2) selection. The former is devoted to constructing C. The latter tests different combi-

nations of these classifiers in order to identify the optimal solution, C’;'. Figure 17 shows

that, in SOCS, C;' is picked up from the population of candidate ensembles, C*', found

and analyzed during the selection phase, and is used to classify all samples contained in

G. However, as mentioned in the introduction, there is no guarantee that the (7;' chosen is

indeed the solution most likely to be the correct one for classifying each x; 4 individually.
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Figure 17

Overview of the proposed DOCS. The method divides the selection phase
into optimization level, which yields a population of ensembles, and dynamic
selection level, which chooses the most competent ensemble for classifying
each test sample. In SOCS, only one ensemble is selected to classify the
whole test dataset.

We propose a dynamic OCS in this chapter, as summarized in Figure 17 and Algorithm

7. The overproduction phase is performed, as defined in previous chapters, to generate
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the initial pool of classifiers C. Thus, the selection phase is divided into two levels: (1)
optimization; and (2) dynamic selection. The optimization is performed by GAs guided
by both single- and multi-objective functions as was done in all the experiments presented
throughout this thesis. According to the global validation strategy defined in chapter 3 to
avoid overfitting at this level, the optimization dataset (O) is used by the search algorithm
to calculate fitness, and the validation V is used to keep stored, in the auxiliary archive A,
the population of 7 best solutions for the GA or the Pareto front for NSGA-II found before
overfitting starts to occur. As explained below, in the single-objective GA case, here we
keep stored in A the population of n best solutions rather than only one solution, as was
done in chapter 3. The population of solutions C*', is further used at the dynamic selection
level, which allows the dynamic choice of C'j’ to classify x; ,, based on the certainty of

the candidate ensemble’s decision. Finally, C'J’" 1s combined by majority voting.
4.1.1 Overproduction Phase

In the overproduction phase, any ensemble generation technique may be used, such as
varying the classifier type [70], the classifier architecture [78], the learning parameter ini-
tialization [107], boosting [48], the random subspace method [72], etc. In this chapter, we
employ bagging (BAG) and the random subspace (RSS) method to generate C. RSS [32]
works by randomly choosing n different subspaces from the original feature space. Each
random subspace is used to train one individual classifier ¢;. BAG is a bootstrap technique
[S] which builds 7 replicate training data sets by randomly sampling, with replacement,

from 7. Thus, each replicated dataset is used to train one c,.

In the following sections we describe the two levels of the selection phase of our DOCS.
Since we have considered and described the optimization level in previous chapters, this

level is briefly presented. We concentrate here in our proposed dynamic selection level.
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Algorithm 7 Dynamic Overproduce-and-Choose Strategy (DOCS)

I:
¥

L.

# W

= =l

16z
1'7:
18:
19:
20:
21
22:
23:

Design a pool of classifiers C.
Perform the optimization level using a search algorithm to generate a population of
candidate ensembles C*'.
for each test sample x, , do
if all candidate ensembles agree on the label then
classify x, , assigning it the consensus label.
else
perform the dynamic selection level calculating the confidence of solutions in
-
if a winner candidate ensemble is identified then
select the most competent candidate ensemble C’J*' to classify x, ,
else
if a majority voting class among all candidate ensembles with equal compe-
tence is identified then
assign the majority voting class to x; 4
else
select the second highest competent candidate ensemble
if a majority voting class among all candidate ensembles with the first and
the second highest competence is identified then
assign the majority voting class to x; ,
else
randomly select a candidate ensemble to classify x, ,
end if
end if
end if
end if
end for

4.2 Optimization Level

In order to clarify the proposed DOCS, we will use a case study obtained in one replication

using the NIST-letters database (section 3.3.1) throughout this chapter. The initial pool of

DT classifiers was generated using RSS. The maximum number of generations is fixed at

maz(g) = 1,000.

Figure 18(a) depicts the optimization level conducted as a single-objective problem. Al-

though GA was guided by the minimization of the error rate ¢ as the objective function,
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we show plots of ¢ versus the difficulty measure 6 to better illustrate the process. Again,
cach point on the plot corresponds to a candidate ensemble, i.e. they represent all solutions
evaluated for max(g). The population C* (circles) is composed of the n best solutions.

We fixed n = 21 (see section 4.4). In Figure 18(c), only the 21 best solutions are shown.

In SOCS, (]* is assumed to be the solution with the lowest e (black circle in Figure 18(c)),
without knowing whether the CJ* chosen is indeed the best solution for correctly classify-
ing each x; ,. Hence, the additional dynamic selection level proposed in this chapter is a
post-processing strategy which takes advantage of the possibility of dealing with a set of
high-performance solutions rather than only one. In this way, the whole population C*
1s picked up at the dynamic selection level of our method. The parameter n should be

defined experimentally.

Figure 18(b) shows all the classifier ensembles evaluated using NSGA-II guided by the
following pair of objective functions: jointly minimize ¢ and e. Here, the Pareto front is
assumed to be C*' (circles in Figures 18(b) and 18(d)). Although the solutions over the
Pareto front are equally important, the candidate ensemble with the lowest e (black circle
in Figure 18(d)) is usually chosen to be (v;’ in classical SOCS, as was done in [72] and

(89].

Considering this case study, Table XI shows the results calculated using samples from G
comparing SOCS and the combination of the initial pool of classifiers C. The selection
of a subset of classifiers using SOCS outperformed the combination of C. It is interesting
to observe that NSGA-II was slightly superior to GA, and that the sizes of the candidate
ensembles in C*' found using both GAs were smaller than the initial pool size. In addition,
NSGA-II found a C’J’-" even smaller than the solution found by GA. The assumption of
proposing an additional dynamic selection level is that performance may still be increased

when selecting C']*' dynamically for each x, ,.
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Figure 18  Linsembles generated using single-objective GA guided by ¢ in Figure 18(a)
and NSGA-II guided by 6 and ¢ in Figure 18(b). The output of the
optimization level obtained as the n best solutions by GA in Figure 18(c¢) and
the Pareto front by NSGA-II in Figure 18(d). These results were calculated
for samples contained in V. The black circles indicate the solutions with
lowest €, which are selected when performing SOCS.

4.3 Dynamic Selection Level

The selection process in classical DCS approaches is based on the certainty of the classi-
fiers decision for each particular x; ;. Consequently, these methods explore the domain of

expertise of each classifier to measure the degree of certainty of its decision, as described
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Table XI

Case study: the results obtained by GA and NSGA-II when performing SOCS are
compared with the result achieved by combining all classifier members of the pool C.

Optimization Error C]* Average size
Level rate  size of C; € C*
Combination 6.06 100

NSGA-II (e & 0) 586 45 50 (2.50)
GA (o) 590 55 55 (3.89)

in section 1.2.1, chapter 1. The dynamic selection level proposed in this chapter is also
based on decision certainty. However, instead calculating the confidence of each individual
classifier, our method calculates the confidence of each candidate ensemble that composes
C*', when assigning a label for x;,. We show below that it is possible to calculate the
certainty of a candidate ensemble decision by measuring the extent of the consensus asso-
ciated with it. The standpoint is that the higher the consensus among classifier members,

the higher the level of confidence in the decision.

Considering a classification problem with the following set of class labels €2 =
{wi,ws ..., w.}, the confidence level is related to the posterior probability P(wy|x; ,) that
X, o comes from class w,. Hansen et al. [29] have observed that P(wy|x, ,) may be calcu-
lated in the context of an ensemble of classifiers by measuring the extent of the consensus

of ensembles, as given below:

Given the candidate ensemble (', - {c, o, ..., ¢} and the output of the i-th classifier
J p

yi(x,4), without loss of generality, we can assume that each classifier produces a class

label as output. The number of votes v(wy|x; ) for class wy given x,, is obtained as

follows:

v(welXig) = [{ci : yi(Xig) = wi} (4.1)
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Assuming majority voting as the combination function, the consensus decision is:

mv(X;,) = arg, ; max v(wg|x,q) (4.2)

Thus, the extent of consensus on sample x, , is:

'U('m’v(xi,g) |xi,g)

P("dklxi‘g) - |C1|
J

(4.3)

The extent of consensus measures the number of classifiers in agreement with the ma-
jority voting. Consequently, by maximizing the extent of consensus of an ensemble, the
degree of certainty that it will make a correct classification is increased. Another important
point to mention is that no information on the correctness of the output is needed. These
observations allow us to present three confidence measures that calculate the extent of
consensus of each candidate ensemble from the population C*', to be used at the dynamic
selection level of our DOCS: (1) ambiguity, (2) margin, and (3) strength relative to the
closest class. The first two measures are directly related to the evaluation of the extent of
consensus. The third measure also considers the candidate ensembles’ performance mea-
sured for each class involved in the classification problem. This additional information is
calculated over samples contained in V. In addition, DCS-LLA is adapted to the context of

DOCS to be compared to these three confidence-based strategies.
4.3.1 Ambiguity-Guided Dynamic Selection (ADS)

The classification ambiguity proposed by Zenobi and Cunningham [104] attempts to esti-
mate the diversity of opinions among classifier members. This diversity measure, which is
defined in Equation 2.2, chapter 2, appears to be well suited for the dynamic selection level

we are proposing, since it does not need knowledge on the correctness of the decision.
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It is important to note in liquation 2.2 that, if we calculate the ambiguity ~y for a particular
test sample x, , instead of calculating it for the whole dataset, v becomes the complement
of the extent of consensus in Equation 4.3. Denoting 7y calculated for the given x; 4, as 7,

we may assume ¥ + P(wg|x;,) = 1. Thus, Equation 2.2 simplifies to:

1
Y= & Z Bl i 5) (4.4)
J

e’y

Since such a local ambiguity measures the number of classifiers in disagreement with
the majority voting, the minimization of 7 leads to the maximization of the extent of
consensus. Consequently, the certainty of correct classification is increased. In addition,
although % does not take into account the label of the given sample, the minimization
of ~ also leads to the maximization of the margin in the case of a correct classification.
The so-called margin is a measure of confidence of classification. There are two general
definitions of margin reported in the literature [27]. The first definition is presented below

and the second is presented in section 4.3.2.

The classification margin for sample x; 4 is the following:

p(Xig) = 'U(‘Utlxug) - Z v(we|Xig) (4.5)
Py

where w; is the true class label of x; ,. Hence, the margin measures the difference between
the number of votes assigned for the true class label and the number of votes given for
any other class. Consequently, the certainty of the classification is increased by trying to
maximize the margin. Based on the standpoints presented in this section, our dynamic
level guided by 7, denoted ADS, will pick up (.’;' as the candidate ensemble with lowest
~. The assumption is that the candidate ensemble with the lowest 7 presents the lowest

possibility of making a mistake when classifying x; ,.
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However, it is important to take into account the difference between ~ (Equation 2.2) and
7 (Equation 4.4). The former, called global ambiguity in this chapter, is used to guide the
optimization level, and it is calculated for the whole dataset (O or V). 'The latter, called
local ambiguity, is used in the dynamic selection level calculated for each x; , individually.
Since the global ambiguity is a dissimilarity measure (see III in chapter 2), it must be

maximized at the optimization level.

ADS is summarized in Figure 19. In this example, the output of the optimization level is
the Pareto front found by MOGA. 7 is calculated for each solution over the Pareto front.
Thus, the solution (J with the lowest 7 is selected and combined to assign the majority

voting class mwo to the test sample x, 4.
4.3.2 Margin-based Dynamic Selection (MDS)

The second measure proposed for use in guiding dynamic selection in our approach has
been inspired by the second definition of the margin. Following this definition, the margin

of sample x, , is computed as follows:

(X, 4) = v(wh]X,5) — Max e v(wk|X; ) (4.6)

This equation calculates the difference between the number of votes given to the correct
class v(wy|x; ,) and the number of votes given to the incorrect class label with the highest
number of votes. In our approach, however, v(w|x;,) is unknown, since the dynamic
selection is performed for test samples. In order to employ this measure to guide the dy-
namic selection of our DOCS, we have tailored the margin measure defined in Equation
4.6 to our problem. Considering v(mwv|x, ,) as the number of votes assigned to the major-

ity voting class, we propose to replace v(w;|x; ) by v(muv|x;,). In this way, the margin
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Figure 19  Ambiguity-guided dynamic selection using a Pareto front as input. The

classifier ensemble with least ambiguity among its members is selected to
classify each test sample.

of sample x, , for each C'; from the population C*' may be calculated as follows:

V(Mu|X;g) — MAX gzmeU(Wk|Xig)

/L(Xi'g) = |Cv| (47)
J

Hence, our definition of margin measures the difference between the number of votes as-
signed to the majority voting class and the number of votes assigned to the class with
second highest result. Then, the margin value represents the confidence of the classifi-
cations, since the higher the margin from Equation 4.7, the higher the confidence of the
ensemble consensus decision. Thus, the dynamic selection level guided by the margin,
denoted MDS, will choose as ’j’-" the candidate ensemble with the highest margin. For
instance, when u(x;,) = 1 the majority voting matches well to just one class, indicating

the highest level of certainty of correct classification.
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4.3.3 Class Strength-based Dynamic Selection (CSDS)

The definition of margin in Equation 4.6 also inspired this third confidence measure. Here,
however, besides calculating Equation 4.7, we also consider the candidate ensemble’s con-
fidence with respect to the identity of the majority voting class measured in V. This is ad-
ditional knowledge related to the performance achieved by each candidate ensemble when
assigning the chosen class. Our objective is to investigate whether or not performance may
help a confidence measure, which does not take into account the correctness of the output,

to increase the candidate ensemble’s level of certainty of classification.

Strength relative to the closest class is presented in [8] as a method for defining weights in
DCS-LA. It is calculated for each individual classifier ¢, to verify whether or not the input
pattern is closely similar to more than one class. We have adapted this measure to enable

us to calculate it for candidate ensembles C'; in the dynamic selection of our DOCS.

Assuming p,(muv) as the performance of (', measured over samples contained in V for the
majority voting class, strength relative to the closest class may be calculated for x, 4, as

follows:

('U(?TIUU‘XI',Q) — max k#muvv(wklxl,g))/\("j‘
s (mw)

@(Xi,g) = (4.8)

A low value of O(x, ,) means a low level of certainty of correct classification. In contrast,
higher ©(x, ,) values lead to an increase in the level of confidence of classification. Thus,
the dynamic selection level guided by O, called CSDS, will choose as C'J*' the candidate

ensemble with the highest ©(x; ,) to provide a label for x; .

4.3.4 Dynamic Ensemble Selection with Local Accuracy (DCS-LA)

As explained in section 1.2.1, DCS-LLA dynamically selects the most accurate individual

classifier from the population C to predict the label of the test sample x, ,. Local accuracy
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is measured in the region of competence composed as the set of k nearest neighbors from 7°
surrounding x; ,. Woods et al. [101] compared two strategies to measure local accuracy:
(1) overall local accuracy; and (2) local class accuracy. The overall local accuracy is
computed as the number of neighbors correctly classified by each classifier ¢;. However,
in this chapter, we use the second strategy, since Woods et al. have concluded that this is

the strategy that achieves the better results.

Given the pool C and the class assigned by the ¢-th classifier, wy, to the test sample x; 4,
we denote VY as the number of neighbors of x; , for which classifier ¢; has correctly
assigned class w,,, and Zf‘_l N is the total number of neighbors labeled for ¢; as class w,,.
According to the definition provided in [101], local class accuracy estimation is computed

as tollows:

NY

— (4.9)
ST

acl (xlvg) =

Taking into account that DCS-LA was originally proposed to deal with populations of
classifiers, as summarized in Equation 4.9, it cannot be directly employed in problems in-
volving populations of classifier ensembles. Thus, we propose to change the DCS-1LA with
local class accuracy estimation slightly in order to allow it to be used to guide dynamic
selection in our proposed approach. Given a population C*' of candidate ensembles, we
assume w, as the class assigned by the candidate ensemble (', (composed of [ classifiers)
to the test pattern x, ,. We define as region of competence the set of k nearest neighbors
from V surrounding x; ,. Clearly, DCS-LLA can be critically affected by the choice of the

k parameter. The local candidate ensemble’s class accuracy is then estimated as follows:

Zf -1 Qe (Xl\g)
(&

(4.10)

ac,(X.g) =
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‘To summarize, in this chapter, Qg for pattern x, ,, is calculated as the sum of the local class
accuracy (a,) of each classifier composing (', divided by the size of ;. The higher a¢;,
the greater the certainty of the decision. Table XII shows a summary of the four different

strategies proposed for use at the dynamic selection level of our DOCS.

Table XII

Summary of the four strategies employed at the dynamic selection level. The arrows
specify whether or not the certainty of the decision is greater if the strategy is lower (| ) or

greater ().
Name Label 1/1
Ambiguity-Guided Dynamic Selection ADS (1)
Margin-based Dynamic Selection MDS M
Class Strength-based Dynamic Selection CSDS M

Dynamic Ensemble Selection with Local Accuracy DCS-LA M

Using the case study mentioned in section 4.2, we compare, in Table XIII, the results
obtained in G using the combination of the initial pool C, SOCS and our DOCS employ-
ing the four dynamic strategies presented in this section. These preliminary results show
that, except for CSDS, our dynamic method guided by confidence measures outperformed
SOCS performed by NSGA-IL. In terms of the single-objective GA, static and dynamic

selection methods presented similar results, except for CSDS and DCS-LA.
Table XII1
Case study: comparison among the results achieved by combining all classifiers in the

initial pool C and by performing classifier ensemble selection employing both SOCS and
DOCS.

Optimization Combination SOCS ADS MDS CSDS DCS-LA
NSGA-II (¢ & 0) 6.06 586 574 571 6.01 5.74
GA (¢) 6.06 590 590 588 @ 6.13 5.98
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Figures 20 and 21 show histograms of the frequency of selection of each candidate en-
semble performed using each dynamic selection strategy presented in this section. The
histograms in Figure 20 were obtained for the population C* composed of n best candi-
date ensembles generated by GA shown in Figure 18(c), while the histograms in Figure
21 were obtained considering the Pareto front determined by II shown in Figure 18(d).
Especially noteworthy is the fact that the test set G used for the case study is composed
of 12,092 samples (Table VI), even though the dynamic selection level was conducted
over only 325 and 436 of test samples for MOGA and GA respectively. All candidate

ensembles in C*" agreed on the label for the remaining test samples.

It is also important to observe in Figure 21 that ADS, MDS and DCS-LA more often
selected as CJ*' the same candidate ensemble selected statically (C'; in Figure 18(d)). In
contrast, the opposite behavior is shown in Figure 20. These results indicate why DOCS
did not outperform SOCS for the GA’s population of candidate ensembles (see Table XIII).
In addition, two of the confidence-based dynamic strategies, namely ADS and MDS,
more frequently selected the same candidate ensembles as selected by DCS-LA, which
1s an accuracy-oriented strategy. These results support our assumption that selecting the
candidate ensemble with the largest consensus improves the performance of the system.
Moreover, considering the results obtained by CSDS, we can conclude that measures of
confidence that do not take into account the correctness of the output provide enough in-
formation about a candidate ensemble’s level of certainty of classification. The additional
information calculated by CSDS through measuring the performance of each candidate
ensemble over samples in V did not help in finding better performing ensembles. In next
section, we present experimental results to verify whether or not these preliminary results

are general, considering other databases and ensemble generation methods.
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Figure 20  Case study: histogram of the frequency of selection of candidate ensembles
performed by each dynamic selection strategy. The population C* is the n
best solution generated by GA (see Figure 18(c)).

4.4 Experiments

A series of experiments has been carried out to determine the best strategy for the dynamic
selection level proposed in our approach and to show whether or not DOCS is better than
SOCS. As a consequence, we also point out the best method for the overproduction phase
on comparing RSS and BAG, and the best search algorithm and search criteria for the

optimization level. We used seven datasets divided into two groups: (1) two large; and (2)
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Figure 21  Case study: histogram of the frequency of selection of candidate ensembles
performed by each dynamic selection method. The population C* is the
Pareto front generated by NSGA-II (see Figure 18(d)).

five small, Tables VI and XIV respectively. The datasets from group 1 are the same large
datasets used in chapter 3. Therefore, they are large enough to be partitioned into the four
independent datasets, illustrated in Figure 17: 7, O, V and G using the classical holdout
validation strategy for the evaluation of performance. By contrast, 10-fold cross-validation
is applied for the evaluation of performance using small datasets due to the small number

of samples available for evaluation.
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Table XIV describes the five small datasets: the Dna, satimage and texture are the same
small datasets used in chapter 3. We used two additional small datasets in this chapter:
feltwell is a multisensor remote-sensing dataset [76] and ship is a dataset composed of
forward-looking infra-red (FLIR) ship images [56]. The two new datasets are traditionally

employed in works dealing with dynamic classifier selection.

Table XIV

Specifications of the small datasets used in the experiments.

Dataset Number of Number of Number of Features PoolC

samples classes features RSS size
Dna 3186 3 180 45 100
Feltwell 10944 5 15 8 100
Satimage 6435 6 36 18 100
Ship 2545 8 11 6 100
Texture 5500 11 40 20 100

In this chapter we follow the same experimental protocol employed in chapter 3. To
summarize, for the overproduction phase, three different initial pools of 100 homogeneous
classifiers were created: 100 kNN and 100 DT generated by RSS, and 100 DT generated
by BAG. The selection phase was divided into two levels: for the optimization level, each
diversity measure mentioned in section 3.3.1 was employed in combination with € to guide
NSGA-II, while only ¢ was used to guide single-objective GA. For the dynamic selection
level, all four dynamic strategies defined in section 4.3 were tested so that they could be
compared. We set k = 10 for experiments with DCS-LLA, as employed in [84] and [79].

The results obtained are given in subsequent sections.
4.4.1 Comparison of Dynamic Selection Strategies

A summary of the experimental results comparing the four dynamic selection strategies
defined in section 4.3 is given in Tables XV, XVI and XVII. The best result for each

dataset is shown in bold. These results indicate that ADS and MDS were the best strate-
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Table XV

Mean and standard deviation values obtained on 30 replications of the selection phase of

our method. The overproduction phase was performed using an initial pool of kNN
classifiers generated by RSS. The best result for each dataset is shown in bold.

Dataset Method NSGA-II GA
ambiguity  coincident  difficulty  double-fault error
() (o) (0) (%) (€)
DCS-LA  933(0.27) 9.84(0.28) 7.48(0.24) 9.36 (0.30) 7.47 (0.15)
DNA ADS 10.31(0.28) 9.72(047) 7.51(0.22)  9.30(0.23) 7.24 (0.21)
MDS 10.34 (0.30)  9.57(041) 7.47(0.21) 9.16(0.28) 7.24 (0.15)
CSDS 10.56 (0.30)  9.89(0.19) 7.48 (0.19)  8.36(0.30) 7.25(0.17)
DCS-LA  11.17(0.21) 10.46 (0.25) 9.70(0.14) 10.59 (0.31)  9.87 (0.13)
Felwell ADS 10.51 (0.11)  10.34 (0.25) 9.82(0.16) 10.62 (0.28)  9.95(0.17)
MDS 10.51 (0.11)  10.34 (0.26)  9.82 (0.14)  10.59 (0.29)  9.95(0.16)
CSDS 10.57 (0.10)  10.40 (0.25) 9.84(0.14) 10.66 (0.32)  9.97 (0.17)
DCS-LA  4.12(0.07)  4.59(0.17) 3.72(0.05) 4.43(0.26) 3.60 (0.06)
Nist-digits | ADS 3.80(0.04) 3.95(0.05) 3.58(0.03) 7.49(2.29) 3.53(0.05)
Test1 MDS 3.80(0.04) 3.94(0.05) 3.58(0.02) 7.46(2.32) 3.53 (0.05)
CSDS 521(0.09) 7.25(0.26) 3.80(0.04) 6.67 (0.22) 3.80 (0.06)
DCS-LA  857(0.14)  9.34(0.28) 8.18(0.11) 9.48 (0.43) 7.91(0.10)
Nist-digits | ADS 8.11(0.06)  8.55(0.08) 7.97(0.05)  8.40 (0.48) 7.78 (0.10)
Test2 MDS 8.12(0.07)  8.53(0.09) 7.97(0.05) 8.36(0.55) 7.78 (0.10)
CSDS 9.95(0.11)  9.89(0.33) 8.21(0.08) 9.42(0.45) 8.09 (0.10)
DCS-LA  7.63(043) 822(0.69) 6.48(0.15) 7.20(0.33) 6.55 (0.16)
Nist- ADS 7.23(0.17)  822(0.12) 6.48(0.07) 6.95(0.12) 6.43 (0.06)
letters MDS 7.16(0.16)  7.07(0.11) 6.27 (0.07)  6.88 (0.12) 6.41 (0.08)
CSDS 10.15(0.45) 14.53 (0.63) 6.47 (0.14)  9.35(0.41) 6.70 (0.09)
DCS-LA  875(0.08)  9.60(0.15) 8.73(0.13)  9.40(0.13) 8.63 (0.07)
Safimage ADS 8.67 (0.08)  9.05(0.17) 8.64(0.13)  9.16 (0.16) 8.61 (0.09)
MDS 8.68 (0.09)  9.04(0.18) 8.65(0.14)  9.16 (0.18) 8.61 (0.09)
CSDS 8.96(0.13) 10.13 (0.24) 8.80(0.16) 9.78 (0.19) 8.67 (0.11)
DCS-LA  14.24(0.32) 10.31(0.29) 9.34(0.24) 9.24(0.23)  10.40(0.20)
Ship ADS 13.25(0.24)  9.60(0.33)  9.25(0.20)  9.13(0.21) 9.81 (0.16)
; MDS 13.37(0.26)  9.66 (0.31)  9.24(0.20)  9.15(0.22) 9.83(0.13)
CSDS 14.06 (0.25) 10.17 (0.34) 9.39(0.21)  9.31(0.29)  10.23 (0.18)
DCS-LA  1.51(0.06)  1.64(0.08) 0.97(0.05) 1.02(0.07) 1.18 (0.03)
Texture ADS 1.37(0.05)  1.23(0.09) 0.94(0.05) 0.98 (0.07) 1.11 (0.01)
MDS 1.37(0.05)  1.22(0.09) 0.94(0.05) 0.98 (0.07) 1.11 (0.02)
CSDS 1.37.(0.07)  1.28(0.10)  0.94 (0.06)  0.98 (0.09) 1.11 (0.03)

gies for performing the dynamic selection level of our approach, considering all three
ensemble creation methods investigated, i.e. (1) ensemble of kNN; (2) ensemble of DT

generated through RSS (Tables XV and XVI); and (3) ensembles of DT generated by BAG



Table XVI

107

Mean and standard deviation values obtained on 30 replications of the selection phase of
our method. The overproduction phase was performed using an initial pool of DT
classifiers generated by RSS. The best result for each dataset is shown in bold.

Dataset Method NSGA-II GA
ambiguity  coincident difficulty  double-fault error
() (o) (9) (9) (€)
DCS-LA  7.05(0.21)  7.54(0.28) 4.63(0.15) 7.23 (0.23) 5.14 (0.14)
DNA ADS 7.94(0.23)  6.50(0.29) 4.59(0.17) 6.27 (0.23)  4.95(0.18)
MDS 7.92 (0.23) 6.54 (0.30) 4.63(0.17) 6.27 (0.19) 4.92 (0.19)
CSDS 8.01(0.24)  6.59(0.28)  4.62(0.17) 6.34 (0.22)  4.93(0.19)
DCS-LA 1268 (0.19) 13.27(0.47) 11.65(0.32) 12.79(0.51) 11.59 (0.14)
Felwell ADS 11.60 (0.15) 12.71(0.40) 11.65(0.33) 12.51(0.51) 11.50(0.17)
MDS 11.59 (0.14) 12.74 (0.42) 11.65(0.32) 12.49(0.48) 11.53(0.16)
CSDS 11.66 (0.15) 12.80(0.43) 11.65(0.32) 12.51(0.50) 11.51 (0.16)
DCS-LA  3.82(0.12) 5.37(0.29) 2.91(0.04) 3.68 (0.20) 2.89 (0.04)
Nist-digits | ADS 3.35(0.04) 4.11 (0.20) 2.77 (0.03) 3.59 (0.23) 2.77 (0.09)
Testl MDS 3.35(0.04) 3.83(0.13) 2.77 (0.02) 3.40 (0.12) 2.77 (0.04)
CSDS 5.63(0.09) 5.53(0.12) 298(0.06) 4.47(0.78) 3.12 (0.06)
DCS-LA  8.18(0.18)  10.06 (0.50)  6.79 (0.09) 8.07(0.37)  6.66 (0.08)
Nist-digits | ADS 7.38(0.07)  9.16(0.32)  6.45(0.05) 8.11(0.40)  6.45(0.05)
Test2 MDS 7.34(0.06)  8.61(0.20)  6.50(0.05) 7.80(0.20)  6.45(0.05)
CSDS 9.05(0.14)  8.77(0.54)  6.50(0.09) 8.69 (0.50)  6.98 (0.10)
DCS-LA  7.57 (0.30) 6.12 (0.50) 6.03 (0.14) 7.20(0.39) 6.17 (0.14)
Nist- ADS 7.13 (0.09) 9.31 (0.29) 5.84 (0.06) 7.12 (0.14) 5.96 (0.06)
letters MDS 7.12 (0.09) 7.69 (0.19) 5.84 (0.06) 6.93 (0.10) 5.95 (0.06)
CSDS 10.65 (0.11) 1592 (0.14) 598 (0.08) 1095 (0.46)  6.29 (0.09)
DCS-LA  9.30(0.09) 10.66(0.19) 897 (0.09) 10.12(0.15)  8.96 (0.09)
Sutimage ADS 8.73(0.10)  9.22(0.19)  8.64(0.10) 9.17 (0.15) 8.78 (0.12)
MDS 8.73(0.10)  9.22(0.19)  8.63(0.09) 9.16 (0.15) 8.77 (0.13)
CSDS 9.13(0.13) 11.23(0.24) 894 (0.12) 10.64(0.26) 8.86(0.12)
DCS-LA  10.65(0.30) 9.16(0.30)  7.53 (0.18) 7.93 (0.29) 7.24 (0.14)
Shi ADS 8.86 (0.25) 8.26 (0.34) 7.17 (0.15) 7.72 (0.28) 6.98 (0.14)
SHp MDS 8.94 (0.26)  8.26(0.32)  7.18(0.15) 7.75 (0.29) 6.95 (0.13)
CSDS 997 (0.24)  9.15(041)  7.18(0.17) 8.03 (0.27) 7.35(0.12)
DCS-LA  342(0.17)  3.85(0.14) 247 (0.07) 3.51(0.16) 2.84 (0.09)
Texiure ADS 298 (0.08)  3.02(0.14)  2.35(0.06) 2.97(0.14) 2.44) (0.05
MDS 3.00(0.08)  3.04(0.14)  2.35(0.05) 2.65(0.16) 2.44 (0.05)
CSDS 3.01(0.08)  3.06(0.15)  2.35(0.05) 2.96 (0.16) 2.44 (0.06)

(Table XVII). These two dynamic strategies presented equivalent performances, which
confirms the preliminary results in our case-study problem (see Table XIII). CSDS was

the worst dynamic selection strategy for 1 and 3, while DCS-1LA was most likely to be the
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Mean and standard deviation values obtained on 30 replications of the selection phase of
our method. The overproduction phase was performed using an initial pool of DT
classifiers generated by Bagging. The best result for each dataset is shown in bold.

Dataset Method NSGA-II GA
ambiguity  coincident difficulty  double-fault error
() (0) (0) (9) (€)
DCS-LA  5.15(0.15)  5.20(0.18)  4.75(0.15)  5.30(0.15)  4.88(0.09)
DNA ADS 520(0.16)  5.20(0.16) 4.86(0.11)  5.32(0.21)  4.95(0.06)
MDS 5.17(0.17) ~ 5.20(0.18)  4.86(0.10)  5.31(0.23)  4.95(0.06)
CSDS 5.19(0.15)  5.22(0.17)  4.86(0.11) 5.36(0.25)  4.97(0.07)
DCS-LA  12.50(0.36) 12.47(0.28) 12.00(0.22) 12.40(0.32) 11.69 (0.20)
Felwell ADS 12.70 (0.21)  12.28(0.34) 12.04 (0.18) 12.24(0.31)  11.95(0.14)
MDS 1270 (0.17)  12.28 (0.35) 12.03(0.18)  12.24 (0.29) 11.94 (0.14)
CSDS 12.75(0.19)  12.38(0.33) 12.04(0.19) 12.34(0.32) 11.98 (0.15)
DCS-LA 574 (0.09)  6.72(0.36)  5.67 (0.09)  6.04(0.21)  5.23(0.06)
Nist-digits | ADS 5.53(0.05)  5.79(0.11)  551(0.05)  547(0.10)0  5.14 (0.06)
Testl MDS 5.52(0.05)  5.69(0.10)  551(0.05)  5.44(0.09)  5.14(0.05)
CSDS 5.87(0.12)  6.86(0.56) 5.64(0.09) 6.72(0.41)  5.44(0.06)
DCS-LA  11.00 (0.16) 11.60(0.55) 10.98 (0.15) 10.64 (0.37) 10.21 (0.12)
Nist-digits | ADS 10.71 (0.09) 10.81(0.25) 10.71(0.09) 10.59 (0.18) 10.06 (0.11)
Test2 MDS 10.70 (0.09) 11.02(0.24) 10.70(0.10)  10.54 (0.12)  10.06 (0.10)
CSDS 11.18(0.20) 12.76 (0.91) 10.88(0.12) 11.68(0.61) 10.41 (0.11)
DCS-LA  7.81(0.17)  9.13(0.62)  7.64(0.12)  845(0.44)  7.79(0.12)
Nist- ADS 7.61(0.06)  836(0.15) 7.50(0.06) 8.06(0.17)  7.64(0.07)
letters MDS 7.63(0.06)  8.30(0.10)  7.50(0.05)  8.02(0.14) 7.64 (0.07)
CSDS 7.85(0.07)  10.16(0.94) 7.60(0.08)  9.84(0.54)  7.78 (0.01)
DCS-LA 970(0.38) 11.35(0.57) 9.81(0.11) 1099 (0.22)  9.74 (0.09)
Satimage ADS 9.34(0.43) 1036 (0.60)  9.62(0.09) 10.25(0.13)  9.61(0.11)
MDS 9.21(0.37) 1044 (0.58) 9.63(0.07) 10.22(0.11)  9.61(0.12)
CSDS 9.78(0.17)  12.08(0.22)  9.78 (0.11)  11.82(0.28)  9.68 (0.12)
DCS-LA  7.79(0.19)  8.32(0.29)  7.81(0.29) 8.58(0.29)  7.72(0.13)
Ship ADS 8.14(0.20)  8.70(0.29)  8.36(0.19) 8.83(0.27) 8.07 (0.09
MDS 8.16(0.20)  8.71(0.29)  838(0.17)  8.84(0.28)  8.05(0.09)
CSDS 8.46(0.23)  9.04(0.32) 853(0.21) 9.12(0.27)  8.15(0.16)
DCS-LA  3.69(0.09) 4.40(0.43) 3.44(0.09) 4.17(0.13) 3.66 (0.07)
T— ADS 3.57(0.09)  4.02(0.56) 3.41(0.008) 4.03(0.15) 3.60 (0.06)
MDS 3.56(0.09)  393(0.63) 3.42(0.08)  4.04(0.15) 3.60 (0.06)
CSDS 3.63(0.10)  4.01(0.18)  3.43(0.11) 343(0.11)  3.58(0.08)

worst dynamic selection strategy for ensembles of DT generated by RSS. In terms of the
optimization level, single-objective GA and NSGA-II presented equivalent performances

for ensembles of kNN generated by RSS and ensembles of DT generated by BAG, while
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NSGA-II found the best results for populations of ensembles of DT generated by RSS. ¢
was clearly the best diversity measure for composing, with ¢, a pair of objective functions

to guide NSGA-1I, while v and o were the worst diversity measures.

It is important to note that DCS-LLA was better than the other dynamic selection strategies
in 3 of the 8 datasets in problems involving DT generated by BAG. The reason for this
behavior is that BAG provides the complete representation of the problem to each classifier
member, whereas RSS provides only a partial representation. Thus, DCS-LLA calculates
the local accuracy of each classifier more accurately when BAG is used as the ensemble
creation method. Also important is the fact that CSDS was less effective in problems
involving a large number of classes, such as NIST-letters, because it takes into account
the performance of the <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>