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EXPERIMENTAL INVESTIGATION OF FLAME STRUCTURE OF CO2-DILUTED 
SYNGAS AND BIOGAS MIXTURES BY LASER DIAGNOSTICS 

 
REHEL, Brendan 

 
ABSTRACT 

 
The primary objective of this research project is to experimentally investigate the laminar 
flame structure of syngas and biogas mixtures through Raman laser spectroscopy. The 
gaseous fuel mixtures have been predetermined by an industrial partner and are composed of 
varying concentrations of H2, CO and CH4 with CO2 dilution. The laminar flame structure 
was characterized through measurements of flame temperature as well as major species 
concentration (H2, CO, H2O, CO2, O2, N2 and CH4 where applicable) at standard temperature 
and pressure conditions. The target operating conditions were set at an equivalence ratio of 3 
and a Reynolds number of 1400. In total, four different groups of fuel mixtures are 
represented in this study: 1) one biogas fuel with 40% CO2 dilution; 2) four syngas fuels with 
CO2 dilution; 3) three syngas fuels with 5% CH4 and 20% CO2 dilution; 4) two syngas-
methane mixtures with CO2 dilution. The analysis of the experimental results is divided into 
four sections, each one corresponding to a fuel group. Concerning the biogas with 40% CO2 
dilution, it was seen that CH4 depletion occured at a radial distance which corresponds to the 
the maximum concentration of H2O and the minimum concentration of O2. The maximum 
temperature was located at the flame’s reaction boundary whereas much of the central axis of 
the flame was occupied by unburned reactants. The syngas mixtures with 25% CO2 dilution 
demonstrated that a decrease in H2/CO ratio causes a decrease in flame temperature due to an 
increase in radiative heat loss stemming from the additional CO2 production. An increase in 
flame cone length, or a decrease in laminar burning velocity, was noted in conjunction with 
decreasing H2/CO ratio. Conversely, increasing H2/CO ratios coincide with higher levels of 
H2O production and shorter flame cones. CO2 addition causes a decrease in flame size as 
well as a decrease in flame temperature. Regarding syngas mixtures with 5% CH4 and 20% 
CO2 dilution, the experimental results suggest that the CH4 reacts and/or dissociates early, 
within the first 10% of the flame’s visible height. It was shown that the height of flame cones 
decreased in conjunction with increasing H2/CO ratio, suggesting an increase in laminar 
burning velocity. The flames of methane-syngas mixtures with CO2 dilution provided 
evidence of CH4 dissociation early in the flame’s development since measured H2 and CO 
concentrations increased slightly. It was noted that the maximum concentration of H2O 
occurred at the same radial location as the maximum temperature. In general, reaction 
boundaries of laminar, partially premixed flames of all syngas and biogas mixtures could be 
identified by a decrease in the concentrations of the unburned reactants and an increase in the 
concentrations of H2O and CO2. The reaction boundary is also characterized by an increase 
in O2 and N2 concentrations. The flame temperature reduces to room temperature beyond this 
reaction boundary. 
 
Keywords: Synthesis gas, Flame structure, Laminar flame, Raman spectroscopy, Fuel 
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REHEL, Brendan 

 
RÉSUMÉ 

 
Ce projet de recherche a pour but d’examiner expérimentalement la structure de flamme 
laminaire par spectroscopie Raman et ce, pour différents syngas et biogaz. Les carburants 
gazeux, qui ont été prédéfinis par un partenaire industriel, sont composés d’une combinaison 
de H2, CO et CH4 et de la présence d’un diluant, le CO2. Plus précisément, la structure de 
flamme pour chaque carburant à été défini par des mesures de température de flamme ainsi 
que des mesures des espèces majeures dans la flamme (dont l’H2, CO, H2O, CO2, O2, N2 et 
CH4 où approprié) à une richesse de 3, une nombre de Reynolds de 1400, et une température 
et pression standard. Au total, quatre groupes de carburants ont été considérés dans cette 
étude : 1) un carburant biogaz avec 40% CO2; 2) quatre carburants de syngas avec dilution de 
CO2; 3) trois carburants de syngas avec 5% CH4 et 20% CO2; 4) deux mélanges de méthane-
syngas avec dilution CO2. Ainsi, l’analyse des résultats expérimentaux a été divisée en quatre 
sections, chacune correspondant à un groupe de carburants. En ce qui concerne le biogaz 
avec 40% CO2, les résultats démontrent que la position radiale de la valeur maximale d’H2O 
correspond à la position radiale d’une concentration de CH4 égale à zéro ainsi que la position 
où l’O2 atteint une valeur minimale. La valeur maximale de la température se situait à la 
frontière de la réaction chimique de la flamme. Toutefois, l’axe central de la flamme se 
composait largement de carburant imbrûlé. Les quatre carburants syngas avec dilution de 
25% de CO2 démontrent qu’une diminution du ratio H2/CO entraine une diminution dans la 
température de flamme en raison d’une augmentation des pertes de chaleur par radiation 
causée par la croissance de la production de CO2. La diminution du ratio H2/CO provoque 
aussi une augmentation de la hauteur du cône interne de la flamme, ce qui indique une baisse 
de la vitesse de flamme laminaire. De plus, l’augmentation du ratio H2/CO amène une 
croissance de la production d’H2O et une diminution de la hauteur du cône interne. 
L’addition de CO2 au carburant cause une diminution de la hauteur de flamme ainsi qu’une 
réduction de la température de flamme. Concernant les flammes de syngas avec 5% CH4 et 
20% CO2, les résultats démontrent que le CH4 réagit et/ou se dissocie tôt dans l’évolution de 
la flamme. La hauteur du cône interne de la flamme diminue avec l’augmentation du ratio 
H2/CO, indiquant une augmentation de la vitesse de flamme. L’addition de l’H2 peut 
augmenter la vitesse de flamme grâce aux effets chimiques sans influencer la température de 
flamme adiabatique. Les deux mélanges méthane-syngas avec dilution CO2 démontrent que 
le CH4 dissocie tôt dans le développement de la flamme. La concentration maximale de 
l’H2O s’y trouve à la même distance radiale que la température maximale. Parmi tous les 
carburants, les frontières de réaction pour les flammes laminaires partiellement prémélangée 
sont caractérisées par la diminution de la concentration des réactants, une augmentation des 
produits de combustion, et la diminution de la température de flamme à la valeur ambiante. 
 
Mots clés : Syngas, structure de flamme, flamme laminaire, spectroscopie Raman, carburant 
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INTRODUCTION 

 

The concentrations of most greenhouse gases (GHG) in the atmosphere have been rising 

steadily for over a century, prompting the creation of emission laws and policy which govern 

the amount of pollutants that can be legally released into the environment. Many 

industrialized countries currently find themselves having to demonstrate how their 

adjustments to climate policy have achieved quantifiable decreases in their GHG emission 

levels. In order to abide by the increasingly stringent emission standards, the need for cleaner 

energy sources is more important than ever. Although progress has been made, there is still 

increasing pressure to further reduce emissions. In the pursuit of cleaner energy solutions, 

syngas and biogas are considered to be appealing fuels. 

 

The main combustible syngas constituents are H2 and CO although it generally contains 

varying amounts of CO2, CH4, H2O and N2 as well according to Prathap et al. (2008). The 

many different possible compositions of syngas are due largely to the various gasification 

processes used for a wide range of organic materials. Some examples of syngas production 

include mainly the gasification of coal, waste-to-energy gasification, and steam reforming of 

natural gas or liquid hydrocarbons. On the other hand, biogas is a different type of biofuel 

composed primarily of CH4 (45-70%) and CO2 (25-55%), sometimes with traces of H2S 

and/or N2. Biogas is produced from the biological breakdown of biodegradable materials 

such as biomass, sewage, animal manure and various forms of waste. 

 

Ideally, flexible combustors will be developed in order to treat a wide variety of biofuels. In 

order to properly design and develop these flexible combustors, a full spectrum of syngas and 

biogas flame characteristics need to be properly researched and defined. This study covers a 

portion of a much larger investigation by Rolls Royce Canada into uncovering the potential 

of various mixtures as a cleaner fuel for gas turbine operation. The objective of this study is 

to investigate the combustion characteristics of ten gaseous mixtures, primarily syngas 

including varying concentrations of H2, CO and CH4 with CO2 as diluent. This portion of the 

project covers the investigation of flame structure through Raman laser spectroscopy at 
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standard temperature and pressure. Results will serve to characterize the combustion of these 

fuels particularly at standard temperature and pressure conditions, whereas combustion at gas 

turbine conditions will be treated in a different study. As well, the results from each mixture 

will be compared between similar fuels and, where applicable, compared to literature data. 

 

This report is divided in the following manner: firstly, a literature review chapter will provide 

the reader with the context of the study. This will serve to explain how this study contributes 

to the field of renewable fuel research. In doing so, previous studies will be explored to give 

insight into the various possible approaches and methods to characterizing syngas 

combustion. 

 

The second chapter covers the experimental approach used in this study. This includes the 

methodology and setup leading to the flame length, species concentration and flame 

temperature measurements. Subsequently, the chapter will conclude with an explanation 

regarding the procedure of estimating the experimental uncertainties.  

 

The experimental results from this study are presented in the third chapter. Both qualitative 

observations and quantitative data are presented in this chapter. Experimental data is 

presented as radial profiles of both temperature and major species concentrations. An 

analysis of the results will accompany the experimental data in an attempt to characterize the 

ten flames.  

 

The report ends with general conclusions regarding flame structure. Details concerning the 

problems and limitations encountered in the project will also be discussed as it will 

ultimately help future studies in successfully characterizing the combustion of syngas and 

biogas mixtures. 



CHAPTER 1 
 
 

LITERATURE REVIEW 

Before getting into the details of this particular experiment, it is important to review several 

topics concerning laminar flames and how to characterize them. An overview of syngas and 

biogas combustion will be covered, which includes mixing, flame temperature and flame 

stability. As well, laser spectroscopy measuring procedures will be described in detail since it 

is an integral part of the spectroscopic experimental process. Although it has been removed 

from the project’s scope, a review of laminar flame speed is included since it may contribute 

to the understanding of this study. The chapter concludes with a summary of previous works. 

 

1.1 Combustion of Syngas and Biogas 

There are many important elements to cover when discussing the combustion of syngas and 

biogas. Section 1.1 is designed to provide the background information required for 

understanding the concepts involved in this paper.  

 

1.1.1 Premixed and Nonpremixed Combustion 

In general combustion systems, a fuel and an oxidizer must interact and mix in order to 

guarantee combustion. For this reason, mixing is a key theme in combustion and gives rise to 

the categorization of premixed and nonpremixed combustion. According to Law (2006), 

nonpremixed (or diffusion) flames are produced when the fuel and oxidizer are separated, 

interacting only at the combustion zone. In diffusion flames, the mixing of the fuel and 

oxidizer is controlled by diffusion, hence the name. The fuel and oxidizer mix 

stoichiometrically in this case. On the other hand, Law (2006) states that premixed flames 

occur when the fuel and the oxidizer are thoroughly mixed before the reaction takes place. In 

a premixed flame, the availability of all the reactants results in a thinner, more stable flame. 

Fuel lean mixtures designate mixtures in which there is an excess (more than the 

stoichiometric value) of the oxidizer in the premixed fuel-oxidizer mixture. Conversely, fuel 
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rich mixtures contain an excess of fuel. Fuel rich combustion can share characteristics of 

both premixed and nonpremixed flames. For instance, a fuel rich mixture can react, 

consuming all the available oxidizer, while producing a diffusion flame further downstream 

as the excess fuel draws ambient air to complete the reaction. 

 

1.1.2 Laminar and Turbulent Flames 

Laminar flames acquire their name from the “laminar” flow of the combustible mixture. 

More specifically, it means that the mixture’s flow is characterized by smooth, distinct 

streamlines. Similarly, a turbulent flame is characterized by the turbulent flow of its mixture. 

Law (2006) describes turbulent flow can be described as chaotic in motion, with abrupt 

changes in pressure, velocity and direction. The chaotic nature of turbulent flow makes it 

ideal for mixing, which makes nonpremixed mixtures more prone to turbulence since the 

mixing of reactants is ultimately required. 

 

a)   b)  

Figure 1.1 Schlieren imagery depicting the visible differences  
between a) a typical turbulent flame and (b) a laminar flame 
Taken from Eickhoff (1982) and Bouvet (2011) respectfully 

 

The visible differences between laminar and turbulent flames can be seen in Figure 1.1. On 

the left, the turbulent flame is characterized by its chaotic appearance, whereas the laminar 
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flame on the right of the image is characterized by its smooth appearance. Laminar and 

turbulent flame regions can be referred defined with respect to flow velocity, as well as the 

transition process from laminar to turbulent. According to Law (2006), the transition zone 

can be represented in terms of Reynolds number, a ratio of inertial forces to viscous forces, at 

a value of approximately 2300. The laminar regime falls below this value and the turbulent 

regime lies above it. 

 

1.1.3 Adiabatic Flame Temperature 

Adiabatic flame temperature, represented as ܶௗ, is an important factor in the analysis of 

combustion and flames. In “Combustion Physics” by Law (2006), it is explained as the final 

temperature attained given the combustion of a uniform mixture with an initial temperature 

and pressure, in which the mixture achieves chemical equilibrium through an adiabatic, 

isobaric process. Several factors influence ܶௗ, such as the pressure, the initial temperature 

and the initial composition of the mixture. The equivalence ratio also has a direct influence 

on ܶௗ, generally peaking in value close to stoichiometry. As the mixture becomes leaner or 

richer, the value of ܶௗ will decline mostly due to the losses involved in heating the excess 

reactants.  

 

1.1.4 Flame Stability 

For many reasons, it is desirable to have the ability to keep a flame stationary in space. 

Having the ability to do so implies that a flow of fresh mixture can be delivered to the 

combustion site at the exact same rate at which the fuel is being burned. In industrial 

applications, this typically describes the desired performance within a combustor for 

continuous and predictable operation (for example, a gas turbine or a furnace). Practically 

speaking, a perfect and continuously-balanced flame is impossible to accomplish. 

Furthermore, constant operating conditions can very rarely be guaranteed. According to Law 

(2006), the purpose of flame stabilization is to supply a means by which a flame can be 

flexible enough to adjust its location, orientation and configuration in a non-uniform, 

temporally varying flow field. However, stabilization will not always be possible, and the 
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domain of unstable systems leads to a discussion of concepts such as flashback and blowoff. 

For burner-stabilized flames, flashback is a phenomenon in which the velocity of the 

oncoming mixture has decreased to a level below the burning rate, causing the flame to 

propagate against the flow of the mixture and back into the tube (which can be quite 

dangerous). Blowoff describes more or less the opposite scenario, in which the velocity of 

the unburned fuel mixture increases to a value, lifting the flame off the burner. Initially, as 

the flame is lifted off the burner from the increased flow of the mixture, the burning rate will 

also increase since there is less heat lost to the burner rim, creating a higher temperature and 

faster reaction. However, there is a limit at which point the burning rate cannot be further 

increased and the lifted flame can no longer be sustained. Evidently, the dynamic balance 

between flame speed and velocity is achieved between the points of flashback and blowoff. 

In Figure 1.2, curve 3 represents the state in which flow velocity is higher than the flame 

speed, annihilating the flame at some elevation above the burner rim. 

 

 

Figure 1.2  Representation of flashback and blowoff   
Taken from C.K. Law, Combustion Physics,  

Cambridge press (2006, p. 360) 

 

Curve 2 displays the initial state in which flashback is possible, whereas curve 1 is a stronger 

depiction of the state of flashback, where the velocity of the combustible gas is lower than 

the burning velocity. 
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From Williams (1985), a flammability limit of a combustible mixture refers to the 

composition, temperature or pressure in which the mixture cannot be made to burn. 

Naturally, the flammability limits of a system involve a lower (LFL) and an upper 

flammability limit (UFL). The LFL represents the lean limit condition whereas the UFL 

designates the rich limit condition of the system at a given temperature and pressure. 

Generally, the flammability limits pertain to the combustion of fuel in air.  

 

Table 1.1 Flammability limits in terms of  
equivalence ratio of some common fuel-air mixtures at 1 atm 

Taken from C.K. Law, Combustion Physics, Cambridge press (2006, p. 347) 

Fuel Lower Flammability Limit Upper Flammability Limit 

Hydrogen 

Carbon Monoxide 

Methane 

Propane 

Benzene 

Butane 

0.10 

0.34 

0.50 

0.56 

0.56 

0.57 

7.14 

6.8 

1.67 

2.7 

3.7 

2.8 

 

Flame reattachment is a seldom researched phenomenon that describes the reattachment of a 

lifted flame to the nozzle from which the unburned fuel exits. According to Lee and Chung 

(2001), flame reattachment is due to a nonlinear decrease in a flame’s liftoff height at a 

particular balance between propagation speed and flow velocity. This phenomenon may be a 

function of flow velocity, mass/molar fraction, and nozzle diameter, although the exact 

conditions for flame reattachment require further investigation. Furthermore, there has been 

relatively little research in regards to the stabilization of a flame from reattachment. 

 

Another flame phenomenon worthy of mention is the occurrence of flame flicker. Shepherd 

et al. (2003) describes flame flicker as a buoyancy-driven oscillation, where vortices are 

formed due to the interaction of the hot burned gas and the cold ambient air, as seen in Figure 

1.3. It is also explained that the frequencies of the flame oscillations can be associated to 
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several system parameters. In general, the characteristic frequencies of oscillation are in the 

range of 10 to 20 Hz.  

 

 

Figure 1.3 Density field representation of vortex evolution over time 
Taken from Shepherd et al. (2003) 

 

1.2 Laser Spectroscopy 

Laser spectroscopic measurement techniques are commonly used in combustion studies. 

They provide non-obtrusive methods of measuring combustion characteristics in laminar and 

turbulent flames, such as temperature, density and species concentration. In previous studies, 

such as Ouimette (2012), laser spectroscopic techniques were successfully used for in-flame 

measurements of temperature and species concentration. If desired, laser spectroscopy can 

also be used to measure other characteristics such as velocity flow fields. In this section, the 

various laser spectroscopic measurement techniques will be examined so as to assess their 

potential worth to this study. 

 

1.2.1 Raman Spectroscopy 

When light is scattered from a light source, the majority of the photons are scattered 

elastically. Elastic scattering refers to the situation in which the scattered photons maintain 

the same frequency as the incident photons. However, not all photons are elastically 

scattered. A very small minority of photons undergoes inelastic scatter; a scenario in which 

the frequencies of the scattered photons differ from that of the incident photons. When the 
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scatter is inelastic, it is referred to as Raman scattering since the process is due to the Raman 

effect. The Raman effect simply refers to the alteration in the wavelength/frequency of light 

when a light beam is deflected by molecules. This effect was first witnessed by the Indian 

physicist Sir Chandrasekhara Vankata Raman in 1922.  

 

From Hollas (2004), the frequency (or wavelength) of a photon is related to energy, E, 

through the Planck relation as seen in Equation ( 1.1 ), where ߭ denotes the frequency of the 

photon, ߣ is the wavelength, ܿ represents the speed of light and ℎ refers to Planck’s constant: 

 

ܧ = ℎ߭ = ℎܿߣ  ( 1.1 )

 

This implies that when the frequency or wavelength of a scattered photon differs from that of 

the incident photon, there is a corresponding change in energy. This corresponding change in 

energy has been associated with transitions between different vibrational and rotational 

energy states of the scattering molecule. Typically, Raman applications focus on vibrational 

transitions due to their larger, more observable shifts. The small rotational shifts generally 

are not used except when applied to simple gaseous molecules.  

 

The difference in energy between the incident and scattered photons can be demonstrated 

visually as seen in Figure 1.4: 
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Figure 1.4 Raman scattering energy level diagram 
Taken from The Internet Journal of  

Vibrational Spectroscopy (2004) 

 

The arrows in Figure 1.4 are of different lengths in order to display the difference in energy 

between the incident and scattered photons. On the left, the Stokes shift corresponds to a 

higher final vibrational energy state of the molecule. This means that the scattered photon is 

shifted to a lower frequency in order for the system’s total energy to remain constant. 

Conversely, when the final vibrational energy state of the molecule is lower than the inital 

state, the scattered photon is shifted to a higher frequency. This is illustrated in the right of 

Figure 1.4 and it is referred to as an Anti-Stokes shift. The Raman shift can be calculated 

using Equation ( 1.2 ), where λ is the wavelength given in cm and Δݓ is the Raman shift 

expressed in wave number, given in cm-1 as explained in Hollas (2004): 

 

Δݓ = ௗ௧ߣ1 − ௦௧௧ௗ ( 1.2 )ߣ1

 

A normal mode of vibration is a pattern of motion in which the components of a system 

moving sinusoidically with the same frequency and with a constant phase angle. An object, 

such as a bridge, a building or a pipeline, has a set of normal modes which depend on several 
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factors such as the design of the system as well as the materials used. The system can achieve 

any of its normal modes depending on the conditions set upon it, such as loads, earthquake, 

wind, etc. A similar concept applies to molecules, where the normal modes of vibration 

simply refer to the vibrational states of the molecule which depend on the sinusoidal motion 

of the molecule’s atoms. The molecule can achieve its vibrational states by absorbing or 

emitting energy due to the interaction of incident photons. Linear molecules with N atoms 

possess 3N-5 normal modes, whereas non-linear molecules possess 3N-6 normal modes. The 

vibrational spectrum of a molecule is dependent on its “design”, including the mass and 

arrangement of each of the molecule’s atoms, which is analogous to the “design” of a 

structure in the physical world. The vibrational spectrum is therefore unique to each molecule 

and can be referred to as the “fingerprint”. This implies that if the Raman scattering 

characteristics of a certain species are known, useful properties and information of the 

species can be measured. Vibrational spectra are particularly useful in the study of molecular 

structure. For gases, the combination of rotational and vibrational spectra is useful in the 

study of combustion reactions.  

 

Raman spectroscopy usually involves shining a laser beam onto a sample and collecting the 

incident light with a lens. This collected light is sent to a monochromator in which the elastic 

Rayleigh scattering is filtered out. The remaining Raman spectral response provides 

information about the vibrational modes of the molecules under investigation. This process 

can be applied to most solid and liquid samples. Gases produce less visible Raman effects 

due to their relatively low concentrations of molecules (at normal pressures), so special 

equipment may be required. Typically, a stronger laser is required in order to deliver a more 

intense beam of light in gaseous applications according to Hollas (2004). 

 

Raman spectroscopy can be applied to the study of mixtures. Each species within a mixture 

can be observed simultaneously due to each species’ characteristic Raman spectral response. 

For a given species, the characteristic Raman line pattern will vary in intensity depending on 

the number of scattering molecules in the mixture sample. The relative concentrations of 

each species are directly proportional to the relative intensity of each response, which makes 
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Raman spectroscopy a particularly useful tool in studying species concentrations. Other 

properties such as density and temperature can be derived by measuring these intensities. 

Figure 1.5 illustrates the general Raman spectroscopy experimental arrangement suitable for 

the study of a combustible mixture. A more detailed description of the Raman scattering laser 

diagnostic setup will follow in Chapter 2. 

 

The major disadvantage of Raman spectroscopy is the weakness of the Raman scattering 

signal. The signal strength is relatively weak in comparison to that of elastic scatter. 

 

 

Figure 1.5  An illustration of a Raman spectroscopy experimental setup  
Taken from LaVision website 

 

1.2.2 Rayleigh Scattering 

Rayleigh scattering refers to the elastic scatter encountered during the interaction of an 

incident photon with a particle much smaller than the wavelength of the light. This scenario 

applies to gas phase molecules which makes Rayleigh scattering particularly useful for gas 

applications. The elasticity of the interaction is illustrated in Figure 1.6: 
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Figure 1.6 Rayleigh scattering energy level diagram  
Taken from The Internet Journal of  

Vibrational Spectroscopy (2004) 

 

The combination of particle size and the wavelength of the incident light determines the 

extent of Rayleigh scatter for a given light beam. The intensity of scattered light is related to 

particle size and wavelength in Equation ( 1.3 ). From Hollas (2004): 

 

ܫ = ܫ 1 + cosଶ 2ܴଶߠ ൬2ߣߨ ൰ସ ቆ݊ଶ − 1݊ଶ − 2ቇଶ ൬2݀൰ ( 1.3 )

 

The intensity of scattered light due to a single particle is denoted by I, the initial beam of 

light of wavelength λ is denoted by Io and the scattering angle is θ. The size of the small 

particle is represented by its diameter d and the distance to the particle is given by R, whereas 

n refers to the particle’s refractive index. Equation ( 1.3 ) demonstrates that low-wavelength 

(or high-frequency) light is more susceptible to scattering. The blue sky owes its colour to 

this phenomenon since the shorter blue wavelengths are more intensely scattered than the 

longer red wavelengths. 
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Since Rayleigh scattering lacks the Raman shift “fingerprint”, Rayleigh scattering is not 

useful for determining species concentration. However, if the mole fractions of all major 

species in a sample are known, Rayleigh scattering can be an effective tool for determining 

the properties of the sample. Specifically, planar temperature fields can be derived from 

Rayleigh scattering provided the gas composition is known. The intensity of the Rayleigh 

signal is much stronger than the Raman signal, which makes Rayleigh spectroscopy a more 

suitable procedure for determining temperature fields of gases provided the constituent 

species concentrations are known.  

 

The experimental setup for Rayleigh spectroscopy is usually similar to that of Raman 

spectroscopy (seen in Figure 1.5). Typically, a laser sends a beam of light onto a sample and 

the incident light is collected with a lens. However, in this case the Rayleigh scattering is not 

filtered out from the collected light. Although the similarities in the two experimental 

approaches makes it simple and natural to utilize combined Raman and Rayleigh techniques. 

 

1.2.3 Laser Induced Fluorescence 

Laser induced fluorescence (LIF) involves the excitation of a sample’s molecules to higher 

energy levels through the absorption of photons (typically from a laser beam). Some of these 

molecules fluoresce by de-exciting and emitting photons at a wavelength longer than the 

incident light’s wavelength. The level of fluorescence is dependent on the species 

concentration as well as the temperature and pressure of the sample. The emitted fluorescent 

light is usually captured by a photomultiplier tube. The excitation light can be filtered out 

since it is of a different frequency than the fluoresced light. 

 

LIF imaging usually involves a procedure referred to as planar laser induced fluorescence 

(PLIF). Typically, PLIF uses a pulsed laser beam as a light source. The beam of light from 

the laser is usually fed through an arrangement of lenses and/or mirrors and emerges as a 

sheet of light which illuminates the fluid of interest. The resulting fluorescence is delivered 

through a filter and captured by a camera. If the fluid is not composed of a fluorescent 
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substance, the flow can be seeded with a fluorescent marker or tracer. An advantage of PLIF 

is that many combustion fuel species can be visualized directly without the need of markers 

or tracers. PLIF enables the determination of several flow variables, some of which include 

temperature, density, pressure and velocity. It is also known to have a high sensitivity in 

comparison to Rayleigh and Raman techniques, having the ability to detect species at the 

ppm level. Figure 1.7 illustrates a typical PLIF experimental setup. 

 

 

Figure 1.7  An illustration of a typical planar laser induced fluorescence  
experimental setup. Taken from the LaVision website 

 

1.3 Laminar Flame Speed 

The design of combustion engines cannot be accomplished without a thorough grasp of the 

laminar flame speeds of combustible gases.  Laminar flame speed describes the propagation 

speed of an unstretched laminar flame. The term is often used interchangeably with “laminar 

burning velocity”, although they differ slightly in meaning; laminar burning velocity refers 
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specifically to the property of a combustible mixture that describes the velocity of the 

combustion reaction relative to the unburned gas. Although there still remain several 

questions surrounding the structure of propagating laminar flames, equations do exist for use 

in theoretical analyses. 

 

When Mallard and le Chatelier initially studied deflagration, it was believed that heat loss 

was the central factor affecting the propagation of laminar flames. The rates of chemical 

reactions were thought to affect these speeds to a lesser extent. According to Williams 

(1985), it was Mikhel’son who demonstrated that the burning velocity is proportional to the 

square root of the reaction rate as well as the square root of the ratio of the thermal 

conductivity to the specific heat at constant pressure. More recently, the development of 

asymptotic concepts within the scope of laminar flame theory has helped improve the 

accuracy with which burning velocity is calculated. 

 

The influence of initial pressure on laminar flame speed is a topic of interest in combustion 

research. As initial pressures increase, it has been shown that laminar burning velocities 

decrease. This phenomenon is evident in Hu et al. (2009) as demonstrated both 

experimentally and numerically with hydrogen-air mixture. However, it was also 

demonstrated that an increase in initial pressure induces cellular instability and ultimately 

leads to an increase in flame instability. Tse et al. (2000) conducted a separate study to 

further examine the effects of pressures up to 60 atm on hydrogen flame propagation. Using 

the combustion bomb method (see Section 1.3.2), Law witnessed the flame instability at high 

initial pressures lead to the onset of heavy wrinkling on the flame surface at as low as 5 atm. 

This observation has particular significance because it reveals how the assumption of a 

smooth flame can be very misleading. The flame may appear to decrease in propagation rate 

as initial pressure increase. However, the heavy wrinkling increases the surface area over 

which the chemical reactions are taking place, resulting in a faster burning rate than had been 

originally observed. Law suggests that the flame may simply be trying to respond to the 

increase in pressure by creating wrinkles to maintain a higher burning rate. Note that this 

fundamental discovery in no way states that an increase in initial pressure results in an 
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increase in flame speed, but it opens the door to new research objectives. As well, this is yet 

another example of why it is important to visually record the deflagration. 

 

Conversely, initial temperature conditions have shown little effect on flame stability. 

Nevertheless, an increase in initial temperature has shown to produce an increase in 

unstretched flame propagation as well as unstretched laminar burning velocity in Tang et al. 

(2008). 

 

The influence of equivalence ratio on laminar flame speed can be partially investigated by 

analyzing its effect on flame temperature, although this does not apply to very rich mixtures 

in which case flame speed becomes increasingly limited by the rate of diffusion. Due to the 

heat of combustion and heat capacity of reaction products, it is a well-known phenomenon 

that maximum flame temperatures are found at slightly rich equivalence ratios, as stated by 

Tse et al. (2000). Consequently, the maximum flame temperature generally corresponds to 

the maximum laminar flame speed for combustible gases. Over a range of different 

equivalence ratios, one could expect a bell-curve-shaped graph in which the maximum lies 

slightly above ߮ = 1. An example of the typical relationship between laminar flame speed 

and equivalence ratio can be seen in Figure 1.8, which has been lifted from Appendix IV. It 

is worthwhile to note that the opposite relationship describes the laminar flame thickness 

with respect to equivalence ratio. As demonstrated by Tang et al. (2008) for a propane-

hydrogen-air mixture, the relationship produced a U-shaped curve in which the minimum 

flame thickness was found around stoichiometry. Once again, this relationship does not apply 

to very rich mixtures. 
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Figure 1.8 Example of the typical relationship between laminar flame speed  
and equivalence ratio at varying pressure 

 

Another important consideration in laminar flame speed experimentation is the fuel type. 

Alkanes (such as methane, ethane and propane) are generally known for having lower 

laminar flame speeds. Alkenes (such as ethylene) generally have slightly faster burning 

velocities and reach higher flame temperatures at laminar flame speed, whereas alkynes burn 

faster still. The simplest of all fuels, hydrogen, is known for being reactive and possessing a 

very high burning velocity. Based on the findings of Tang et al. (2008), it can be expected 

that an increase in hydrogen percentage will render the mixture more reactive and thus 

increase the laminar flame speed. This explains hydrogen’s presence in so many combustible 

gas mixtures. Not only does hydrogen have high thermal and mass diffusivity, but it also 

lacks the reaction of carbon monoxide to carbon dioxide present in hydrocarbon reactions. 

Monteiro et al. (2010) presents a comprehensive account of laminar burning velocities for 

various syngas mixtures. 
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Researchers have developed several different methods of experimentally measuring laminar 

flame speed, each method with its own level of uncertainty. The main techniques and their 

derivatives as observed in the literature will be described. The three main approaches to be 

discussed here are the Bunsen flame method, the combustion bomb method, and the 

stagnation flame method. 

 

1.3.1 Bunsen Flame Method 

The Bunsen flame method is a popular approach to determining laminar flame speed. 

Typically, this approach involves a premixed mixture flowing with a velocity v through a 

cylinder of diameter d. The air-fuel mixture produces a conical, fuel-rich inner flame 

surrounded by a diffusion flame. When the flame is stable, both the premixed and diffusion 

flames remain stationary. Although it has been shown by Echekki and Mungal (1991) that 

the flame speed is not constant over the entire flame surface, the Bunsen flame technique 

remains a popular method of determining laminar flame speed due to the simplicity of the 

experimental procedure. Perhaps the most significant drawback of this method is that it 

overlooks the influence of stretch on the flame speed measurements. Although the accuracy 

of the Bunsen flame method has been questioned, critical analyses have shown that it can 

produce results of sufficient accuracy.  

 

As the gaseous mixture exits the burner, the normal of unburned gas velocity is equivalent to 

the flame speed for perfectly stationary flames. This is the principle behind the flame angle 

method. As seen in Figure 1.9, by measuring the angle ∝ between the premixed flame edge 

and the direction of the unburned gas velocity vu, the flame speed S is equal to the normalized 

unburned gas velocity, ݒ௨,, and can be easily calculated according to Equation ( 1.4 ): 

 ܵ = ௨,ݒ = ௨ݒ sin ∝ ( 1.4 ) 
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Figure 1.9 Bunsen burner apparatus depicting the angle  
between the premixed flame edge and the unburned gas velocity  

Taken from C.K. Law, Combustion Physics, Cambridge press (2006, p. 264) 

 

In this approach, burners with contoured nozzles are generally favoured since they attempt to 

neutralize boundary layer effects. These boundary layer effects cause straight cylindrical 

burners to produce parabolic exit velocity profiles, which in turn causes premixed flames to 

be parabolic in shape as well. Contoured nozzles result in stabilized flames that are more 

conical in shape. This provides straighter edges with which to measure the flame’s half cone 

angle α, but it does not guarantee straight edges. In Bouvet et al. (2011), contoured nozzle 

burners were utilized in determining the laminar flame speeds of a range of syngas mixtures 

composed of H2/CO/Air. Despite the varying gas flow rates, it was observed that the 

contoured nozzles failed to produce straight-sided conical flames under each of the scenarios 

examined. The data from the flame angle method was used to compare with results obtained 

from another popular Bunsen flame approach called the flame area method, also under 

investigation by Bouvet et al. (2011) in the same study. In the flame area method, the 
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average laminar flame speed is calculated by dividing the gas flow rate by the surface area of 

the flame. If ݉௨ሶ  and ܳ௨ሶ  are respectively the mass and volume flow rates of the unburned gas, ߩ௨ is the unburned gas density and ܣis the flame surface areas, then the conservation of 

mass states in Equation ( 1.5 ): 

 ݉௨ሶ =  ( 1.5 )ܣ௨ܵߩ

ܵ = ሶ ೠఘೠ = ܳ௨ሶܣ  ( 1.6 )

 

Since Equation ( 1.6 ) divides the gas flow rate over the surface area of the flame, there is an 

inherent assumption that the flame speed is constant over the entire surface area of the flame. 

As stated earlier, the flame speed is not constant over the surface area of the flame, meaning 

the flame area method does not calculate the true laminar flame speed ܵ. Equation ( 1.6 ) 

solves for an averaged flame speed S that can closely approximate ܵ when utilized carefully.  

 

It is common for direct imaging techniques to successfully capture the flame edges. Schlieren 

or shadow photography tend to produce flame images with enhanced flame edge clarity. 

Traditionally, the inner edge of shadowgraph imagery has provided the best results due to its 

proximity to the unburned flame surface. Another valid technique involves tracing the flame 

edge by recording the maximum OH* chemiluminescence emission. In Bouvet et al. (2011), 

the OH* chemiluminescence methodology was even preferred over Schlieren diagnostics 

since it provided results comparable to the literature without the use of complex tracking 

techniques. 

 

Although the flame angle and flame area approach appear quite straightforward due to the 

simplicity of Equations ( 1.5 ) and ( 1.6 ), they encounter complications in other areas. Due to 

the large difference in temperature between the flame and the burner rim, there is always a 

heat loss to the rim which reduces the flame speed. As well, with smaller diameter burners, 

the calculated flame speed increases approaching the flame tip when using Equation ( 1.4 ). 

This is due to the flame’s curvature at the apex of the cone. As the flame edge approaches the 
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centerline, α approaches 90° and in turn, S approaches ݒ௨. Since the flame surface does not 

produce a perfect cone, surface identification is difficult and stretch effects often go 

unaccounted for. This inconvenience can be eluded by using a flat-flame burner, reducing the 

2-dimensional Bunsen flame to a 1-dimensional flat flame. This planar flame is normal to the 

unburned gas flow direction. The surface area of the flame is easily and accurately defined 

which reduces the potential for error. Applying Equation ( 1.6 ) produces the laminar flame 

speed. However, the flat-flame burner is non-adiabatic. The flat, porous burner has a cooled 

surface on which the flat flame is stabilized. Although this method eliminates the problem of 

stretch due to curvature, it yields a burning velocity lower than the true unstretched burning 

velocity (ܵ) due to heat loss at the burner surface. In spite of this, measurements can be 

corrected for heat loss by varying the gas flow and tracking the corresponding cooling rate, 

then extrapolating the cooling rate to zero as explained in Law (2006).  

 

1.3.2 Combustion Bomb Method 

This method involves measuring a spherically expanding flame kernel in a combustion bomb 

ignited at the center of the combustion chamber. Rallis and Garforth (1980) concluded in 

their study that the spherical constant-volume combustion bomb method is the most versatile 

and accurate for experimentally determining the laminar flame speed. Typically, combustion 

chambers for this purpose are spherical in order to complement the flame’s assumed 

spherical shape. The flame’s spherical shape should nonetheless be verified visually upon 

experimentation if this method is to be used. 

 

The flame propagates outward at the combustible mixture’s laminar flame speed, thus the 

point of ignition is purposely located at the center of the chamber to allow for maximum 

propagation before disturbance from the chamber walls. As the deflagration wave spreads, 

the total amount of products from the reaction increases and the chamber pressure increases 

accordingly. Furthermore, the unburned gas upstream of the propagating flame is 

compressed, which in turns heats the unburned gas. As the unburned gas is subjected to 

higher pressures and temperatures, the initial state no longer applies within the confines of 
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the chamber. The combustion bomb experiment must therefore take this into account by 

measuring the pressure and temperature of the unburned gas over the course of the 

deflagration. Another option is to limit data acquisition to the time period in which the flame 

size is relatively small. In doing so, the pressure and temperature upstream of the flame 

should approximate the initial state to the point where the difference can be discounted. 

However, by limiting the data acquisition period to a smaller time window, the need for 

strong acquisition tools becomes more significant. Luckily, thanks to the increased use of 

better data acquisition systems, many of the problems inherent to the combustion bomb 

method have been overcome over the years or have been proven to be insignificant, 

according to Rallis and Garforth (1980). 

 

The best option in laminar flame experimentation is to record the deflagration with a high 

speed photography system. This is the most direct way of documenting the history of the 

flame’s spherical expansion. The rate of change of this radius is thus the flame propagation 

rate. This procedure requires optical windows within the chamber to record the flame 

progression. Commonly, the windows on such chambers are diametrically opposed and made 

of quartz, which can withstand high pressures and temperatures. It is best to include pressure 

and temperature sensors to monitor the state of the unburned combustible mixture. According 

to Gu et al. (2000), once significant pressure variation has commenced within the chamber, a 

pressure-time curve can be used to calculate the laminar flame speed. This makes it possible 

to cross-reference the calculated flame speed values with the observed values from the 

photography, as originally done by Manton et al. (1953). As well, if a high speed 

photography system cannot be obtained, the pressure history can serve as the single 

experimental input. The cube-root-law has been the most recognized model applied to a 

pressure-time curve in order to estimate the burning velocity and flame thickness.  

 

The calculation of laminar flame speed from the pressure-time curve does come with its 

drawbacks. Since the pressure variations are more significant once the flame is relatively 

large, more time has passed for other outside factors to affect the deflagration, such as 

buoyancy. The deflagration is not homogeneous, meaning the reaction does not occur 
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uniformly throughout the vessel. Instead, the quantity of hot products increases and the 

quantity of cold reactants decreases as the flame propagates. This presence of hot products 

and cold reactants causes the spherical shape of the flame to adjust to more of a mushroom 

shape, according to Dahoe and de Goey (2003). Naturally, at lower burning speeds, 

buoyancy will be expected to introduce a greater degree of error. Evidently, it is risky to rely 

solely on the pressure-time curve as experimental input. The experiment can always be 

limited to the early portion of the pressure-time curve where it is safer to assume that the 

flame is spherical in shape, but pressure variations are less significant over this period so it 

can be problematic trying to determine which segment of data to use. A high-speed 

photography apparatus should be included within the experimental setup at least to verify the 

validity of the flame’s spherical shape over time. At worst, if the spherical propagation of the 

flame tends to lose its shape, approximate corrections can be introduced as was done by 

Rallis and Garforth (1980). 

 

The assumption is often made that there is no heat loss or gain from the burned or unburned 

regions. However, heat transfer is possible in several manners. For instance, heat may be 

transferred from the burned gas to the unburned gas, from the unburned gas to the walls of 

the chamber and also from the burned gas to the centrally positioned ignition system 

(particularly during the initial propagation phase). Heat transfer by radiation is also possible 

from the burned or unburned gases to the chamber walls, according to Rallis and Garforth 

(1980), who was able to show that heat transfer does occur but its effect is minimal. 

Generally, it is important to note that heat losses that reduce the flame temperature will also 

reduce the flame speed. 

 

Since the pressure and temperature values change simultaneously within the chamber, 

correlations are required to account for their influence. These correlations offer an approach 

to circumventing the assumption that downstream pressure and temperature states at any 

instant are uniform throughout the unburned gas. Many correlations have been proposed over 

the years, many of which account for the temperature gradient downstream of the flame. This 

section will not cover the various correlations. Instead, it is simply important to note that 
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there exist correlations covering the influence of a wide range of unburned gas conditions. 

Parameters such as pressure, temperature and equivalence ratio can be simultaneously related 

to laminar flame speed for different fuel types. Each correlation comes with a certain degree 

of error and should only be used over the specified range.  

 

1.3.3 Stagnation Flame Method 

The stagnation flame method, sometimes referred to as the counterflow or twin flame 

method, involves the projection of two identical gas flows upon each other. This creates a 

“stagnation plane” at the location of collision. Igniting the system produces two symmetrical 

flat flames, each one located equidistantly on either side of the stagnation plane. Figure 1.10 

depicts the stagnation plane and twin flame arrangement. 

 

 

Figure 1.10 Depiction of the twin flames in the stagnation flame method  
Taken from C.K. Law, Combustion Physics, Cambridge press (2006, p. 272) 
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In order to utilize this phenomenon for measurement purposes, it is necessary to understand 

the behaviour of the normal velocity component v with respect to the distance from the 

stagnation plane. As the gas flow approaches the stagnation plane prior to the preheat zone, 

the normal velocity decreases linearly according to Equation ( 1.7 ), where ܽ is the velocity 

gradient as well as the stretch rate (s-1) which is calculated in Equation ( 1.8 ): ݒ = ( 1.7 ) ݕܽ

ܽ = ( 1.8 ) ݕ݀ݒ݀

 

Entering the preheat zone, the increase in heat causes v to increase. In Figure 1.11, this 

decreasing trend is illustrated until ݒ, after which point ݒ increases linearly. At ݒ௫, the 

increasing trend is once again reversed as the heat release is terminating and ݒ approaches 

the stagnation flame. The ݒ and ݒ௫ represent reference flame speeds at the upstream 

boundary of the preheat zone and the downstream boundary of the reaction zone respectively. 

In order to eliminate the stretch effect, ݒ  can be plotted against ܽ and extrapolated to ܽ = 0. The laminar burning velocity is simply equal to ݒ at this intercept. Since ݒ is 

used as the reference flame speed, the calculated laminar burning velocity represents ݏ௨ 

assessed at the upstream boundary. According to Law (2006), ݏ௨ is typically evaluated at the 

upstream boundary because heat loss and flow nonuniformity effects are minimized.  
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Figure 1.11 Axial profile illustrating the normal velocity of  
the gas flow with respect to the distance from the stagnation plane  

Taken from C.K. Law, Combustion Physics, Cambridge press (2006, p. 272) 

 

1.4 Previous Works 

This section contains a review of the studies conducted by other researchers that are similar 

in execution and/or subject matter to this project. At the time of this writing, there appears to 

be no available documentation of studies involving laser diagnostic techniques as a means to 

investigate flame structure of partially premixed laminar flames of H2/CO/CO2 or 

H2/CO/CH4/CO2 mixtures. The majority of research conducted on partially premixed laminar 

flames of such mixtures concerns the measurement of laminar flame speed. 

 

1.4.1 Flame Structure 

Fernández et al (2006) studied lean, premixed CH4/air laminar flames using Bunsen burner to 

stabilize the flames. The concentrations of the major species present in the flame as well as 

the flame temperature were measured using Raman spectroscopy. The objective of this study 

was to validate that Raman spectroscopy is an unobtrusive measurement technique that can 

be used to measure local properties in stationary flames. Experimental results from this study 

compared quite favourably with the literature. 
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Rabenstein and Leipertz (1998) used Raman spectroscopy to measure the major species 

concentrations (CH4, H2, H2O, CO2, N2 and O2) and temperatures of rich, partially premixed 

CH4/air flames. The experimental measurements were obtained at various elevations above 

the exit of a dual flow burner, upon which the flame was stabilized. The results of the 

investigation concluded that the reaction zone can by identified by a region in which the 

unburned, premixed gas constituents decrease in concentration. This observation was coupled 

with an increase in molar fraction of the CO2 and H2O, which in this case represented the 

products of combustion. It was further shown that the boundary of the reaction zone is 

characterized by the diffusion of ambient air into the flame, which appeared in the Raman 

results as an increase in concentration of O2 and N2. This boundary was also represented in 

the temperature measurements, seeing as the temperature gradually reduced to ambient value 

towards the flame’s periphery. As the elevation of the measurement increased with respect to 

the flame’s height, this reaction zone boundary visibly shifted in the radial direction from the 

flame’s central axis. The conclusion of this study was thus that Raman spectroscopy 

adequately provides a means of quantifying flame structure. 

 

Han et al. (2006) studied the structure of low-stretch methane nonpremixed flames both 

experimentally and numerically. The objective of the study was to analyse the effects of 

flame radiation on flame response and extinction limits. The experimental setup involved 

generating a CH4/N2 flame using a porous, spherically symmetric burner with a large radius 

of curvature. Gas and flame temperatures were measure by Raman scattering while the 

temperature of the burner surface was measured by IR imaging. Furthermore, the reaction 

zone boundaries were illustrated through OH-PLIF and chemiluminescence imaging. The 

numerical investigation simulated low-stretch flame structure by accounting for detailed 

chemistry, thermodynamic/transport properties as well as radiative aspects. The study 

concluded with an agreement between the numerical results and the experimental 

observations. 

 

Cheng et al. (2011) undertook an experimental and numerical investigation to characterize 

laminar premixed H2/CO/CH4/air flames at atmospheric conditions. The objective of the 
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study was to determine the effects of varying the fuel composition on the resulting flame 

characteristics at fixed stoichiometry. The experimental measurements were performed using 

an opposed-jet burner technique, which is described in Section 1.3.3 (stagnation flame 

method). The temperature and flame front position are measured and compared to results 

obtained from EQUIL and PREMIX numerical flame simulations. Flame structure was 

simulated using the OPPDIF package with the GRI Mech 3.0 mechanism. Cheng et al. 

(2011) concluded that the experimental measurements of flame front position and 

temperature were closely predicted by the simulations from the CHEMKIN codes. 

Furthermore, the chemical kinetic structures indicated that the increase in laminar flame 

speed associated with H2 addition is probably owing to chemical effects as opposed to 

thermal effects. 

 

1.4.2 CO2 Dilution 

Natarajan et al. (2007) studied the effect of CO2 dilution on laminar flame speed on lean 

H2/CO mixtures. The study covered a range of fuel compositions and CO2 dilution levels and 

used a Bunsen flame approach, measuring the flame speed from images of the reaction zone 

area. The experimental results were compared to numerically simulated results; experimental 

data was compared to the GRI Mech 3.0  and Davis H2/CO mechanisms, of which the Davis 

mechanism compared more favourably, particularly at higher H2 concentrations. The study 

reports that flame speed decreases with increased CO2 dilution due to the capability of CO2 

to lower the flame temperature by way of radiative heat transfer. More specifically, the CO2 

in the unburned fuel absorbs radiative energy from the hot products such as CO2 and H2O. 

The study concludes that the prediction models accurately predict the flame temperature and 

chemical effects related to CO2 dilution. 

 

Park et al. (2008) conducted a numerical study of H2/CO syngas diffusion flames diluted 

with CO2. The objective of the study was to gain further insight into the influence of fuel 

composition and flame radiation on flame structure and the oxidation process. The numerical 

results were compared to the models of Sun et al. and David et al., seeing as these models 
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were considered leaders in H2/CO flame modelling. The investigation shows that losses in 

flame temperature are due to radiation increase as CO and CO2 mole fractions increase. It 

was also demonstrated that H2 and CO oxidation reaction pathways are sensitive to H2/CO 

composition as well as the addition of CO2. 

 

An investigation of laminar burning velocities and flame stability was conducted by Burbano 

et al. (2011) for equimolar H2/CO mixtures with dilution of two separate inert gases, CO2 

and N2, at ambient conditions. Premixed laminar flames were produced using a contoured, 

slot-type burner and the angle method was used to calculate laminar flame speed from 

Schlieren imagery. The experimental measurements were compared to numerically computed 

results from three reaction mechanisms: Frassoldati et al., Davis et al., and the H2/CO/O2 

reactions of Li et al. The study concluded that N2 and CO2 dilution lowers the laminar 

burning velocity of the mixture due to the decrease in heat release and the increase in heat 

capacity. Between the two diluents, the effect was larger in the case of the CO2 diluent due to 

its dissociation during combustion as well as its greater heat capacity. Burbano et al. 

observed flame instabilities at lean conditions and that H2 has the tendency to destabilize the 

flame. On the other hand, CO has a stabilizing effect on the flame by decreasing 

hydrodynamic and thermal-diffusive instabilities. In the end, the destabilizing effect of H2 is 

more dominant. When either of the two diluents is added to the mixture, instabilities were 

observed over a wider range of equivalence ratios, although stable flames are more likely to 

be obtained at rich equivalent ratios. 

 

1.4.3 Biogas with CO2 Dilution 

An experimental study conducted by Cohe et al. (2009) investigated laminar and turbulent 

lean premixed CH4/CO2/air flames at various pressures using Bunsen flame. The 

investigation involved the analysis of flame propagation speed, flame surface density as well 

as wrinkling parameters of the flame front. The experimental data and PREMIX 

computations both revealed that CO2 addition decreases the laminar flame speed. 
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1.5 Conclusion 

The summary of previous works reveals how little research has been conducted into the 

flame structure of syngas and biogas structures with CO2 dilution, particularly involving 

Raman scattering laser diagnostic techniques. Nonetheless, important material can be derived 

from the literature review. In summary, Raman spectroscopy can successfully be used to 

unobtrusively measure local properties in stationary flames. Although experimental results 

for the desired fuels do not exist in the literature, it was illustrated with similar mixtures that 

the reaction boundary of a laminar, premixed flame can be identified by a decrease in the 

unburned reactant concentrations as well as an increase in CO2 and H2O concentrations. 

Furthermore, the reaction boundary is characterized by the diffusion of ambient air into the 

flame, resulting in an increase of O2 and N2 concentrations. This also coincides with a 

decrease in flame temperature to room temperature. In H2/CO flames, the radial position of 

the maximum temperature coincides with the maximum concentrations of H2O and CO2. The 

addition of H2 generates an increase in flame temperature and it also increases the laminar 

burning velocity of the mixture due to chemical effects as opposed to thermal effects. On the 

other hand, the addition of CO lowers the flame temperature due to increased production of 

CO2, which increases the radiative heat loss. This also has the effect of lowering the 

mixture’s laminar burning velocity. 

 

The main objective of this study is to measure the flame temperature and the concentration of 

the major species (H2, CO, CH4, H2O, CO2, O2, N2) via laser diagnostics for various syngas 

and biogas flames with CO2 dilution. In addition to this main objective are the following sub-

objectives: 

1. Measure each mixture’s visible flame height; 
2. Qualitatively describe the characteristics of the each mixture’s visible flame; 
3. Study the effects of H2/CO ratio on flame structure for the CO2-diluted syngas and 

biogas mixtures; 
4. Study the influence of CO2 addition on flame structure for syngas and biogas 

mixtures. 
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This project is being conducted with an industrial partner and the results will permit the 

validation of chemical kinetics in computational fluid dynamics applications. The unique list 

of fuels to be tested has been predetermined by Rolls Royce Canada and there is no existing 

experimental data available in the literature for these mixtures. Furthermore, there is scarcely 

any data concerning flame temperature and major species concentration for partially 

premixed syngas flames. In order to study the effects of H2/CO ratio or CO2 addition on 

flame structure, experimental data from this study will need to be cross-compared between 

fuels to establish trends whenever a unique variable can properly parametrized. Thus, the 

experimental data should successfully allow for the characterization of each test fuel’s flame 

structure as well as establish the possible effects H2/CO ratio and CO2 addition on these 

flames. 

 

The following chapter will discuss the experimental setup used in this study. The methods 

and techniques will be introduced along with the descriptions of the mixtures, equipment and 

target conditions. 



CHAPTER 2 
 
 

EXPERIMENTAL APPROACH 

This chapter introduces the experimental approach used in measuring the laminar partially 

premixed flame characteristics. This includes the experimental setups used to measure flame 

length, species concentration and flame temperature measurements. The investigation of 

laminar flame speed was removed from the project’s scope. 

 

2.1 Experimental Setup 

Species concentrations and temperature are measured at pre-determined test heights. These 

test heights, represented by 
௭ு, are calculated as 10%, 20%, 40% and 60% of the given 

flame’s length. Therefore an accurate measurement of flame length is required for each of the 

ten flames. Next, at each specified test height, Raman spectroscopy is used to measure 

species concentrations. Temperature measurements are recorded separately since they require 

a different measurement technique. For simplicity, 
௭ு may be referred to plainly as z*. 

 

Table 2.1 Compositions of mixtures 

Mixture CO (% Vol) H2 (% Vol) CH4 (% Vol) CO2 (% Vol) H2/CO Ratio

B1 0 0 60 40 - 

S1 50 25 0 25 0.5 

S2 37.5 37.5 0 25 1 

S3 25 50 0 25 2 

S4 50 25 5 20 0.5 

S5 37.5 37.5 5 20 1 

S6 25 50 5 20 2 

S14 42.5 42.5 0 15 1 

S5M50 18.75 18.75 52.5 10 1 

S5M25 28.125 28.125 28.75 15 1 
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Table 2.1 presents the compositions of the ten gaseous mixtures under investigation. The fuel 

compositions were predetermined by the industrial partner. There is no available literature 

data with which to compare the results for the ten gaseous mixtures. Therefore, in order to 

validate the experimental method, a CH4/air flame is measured first since there is existing 

literature data with which it can be compared. 

 

The experimental setup is centered around the 10 Hz Spectra-Physics Nd:YAG laser. This 

laser generates the 1064 nm laser beam, which emits UV light of 266 nm, which passes 

through the electric LaVision shutter. The shutter serves to interrupt the laser beam’s passage 

to the polarizer, also provided by LaVision. Polarization is an optical technique necessary to 

the experimental methodology due to its ability to alter the intensity of the laser beam. The 

polarizer is thus responsible for managing the beam into weak intensity (polarization P) and 

high intensity (polarization S). A two-mirror arrangement redirects the beam to a higher 

elevation more conducive to taking measurements. As the beam emerges from the optical 

arrangement, it passes through a 50.8 mm diameter lens which concentrates the 10 mm 

diameter beam into roughly 1 mm diameter. This concentrated beam passes over the burner 

through the center of the flame under examination. The burner sits on a stand of adjustable 

height, making it easy to take measurements at all necessary test heights.  

 

Since the gaseous fuels do not come pre-prepared, they are mixed from their separated 

components. Five high pressure cylinders each contain one of H2, CO, CH4, CO2 and air, all 

in their gaseous states. Silicon tubes carry the required gases from their cylinders to 

controlled Omega FMA5423 flow meters. A Labview program provides the control of the 

flow meters, regulating the flow of each gas in order to provide the desired percentages of 

each gas as well as the required equivalence ratio. Upon exiting the flowmeters, silicon tubes 

are branch connected so that the gases are mixed in line. To ensure an adequate level of 

mixing, the in-line mixing zone length exceeds 150 times the diameter of the burner as with 

Hariharan et al. (2007).  
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The 3.175 mm inner-diameter burner, depicted in Figure 2.1, is used in this experiment since 

it is readily available and ideally sized for producing laminar flames close to the desired 

equivalence ratio of 3. In order to prevent flashback, the 3.175 mm I.D. channel reduces to 1 

mm I.D. in order to extinguish any potential return of the flame into the equipment. With a 

total length of 18.75 cm, the ratio of burner length to diameter exceeds 50, as recommended 

by Natarajan et al. (2007). This ensures a fully developed laminar exit flow. For instances in 

which a flame cannot be achieved, the 3.175 mm can be substituted for a 10 mm burner 

which is also available in the lab. 

 

 

Figure 2.1 Dimensions of 3.175 mm inner diameter burner 

 

Table 2.2 summarizes the target operating conditions for this experiment where the ambient 

temperature and pressure correspond to the room conditions in the lab. The target 

equivalence ratio has been set at 3 in order to correspond to the average equivalence ratio of 

annular gas turbine combustors. Mohammad et al. (2010) shows the local equivalence ratio 

imposed on flow field velocity vectors. The results give insight into the stability 
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characteristics of the gas turbine combustion system and thereby validate the equivalence 

ratio used in this study. The Reynolds number of 1 400 is a target value which corresponds to 

the general industry norm, falling well within the laminar regime. 

 

Table 2.2 Target Operating Conditions 

Ambient Temperature 295 K 

Ambient Pressure 1 atm 

Equivalence Ratio 3.0 

Reynolds Number 1 400 

 

2.2 Flame Length 

The measurement of visible flame length (also called flame height) involves filming of the 

steadied flame with a digital camera. In this case, a Canon PowerShot A430 records a video 

of the flame in a darkened room with still air and the data is transferred to computer. Using 

the GIMP graphics editing software, the dimension tool allows the measurement in number 

of pixels of the visible flame as well as the measurement of a reference length (in this case, 

the burner height). Knowing the true length of the burner, a simple cross multiplication of 

these three variables yields the visible flame length. 

 

An averaging technique is used to attain the most accurate measurement of flame height as 

possible. A video of each flame is divided into a series of images at equally spaced time 

intervals by using the VirtualDub software. The flame length is measured in a selection of 30 

images for each flame and then averaged to produce the final result. Lyle et al. (1999) 

concluded (using methane-air flames) that 30 images is an adequate number over which to 

take the average. It was demonstrated that the average flame height did not change more than 

5% when more than 30 images were used.  

 

Since the B1 and S5M25 did not ignite with the 3.175 mm burner, the 10 mm burner is used 

for these two fuels. The S4 fuel did not ignite with the 3.175 mm and continuous flame 
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reattachment (see Section 1.1.4) was experienced on the 10 mm burner. The S4 fuel was 

dropped from the study since all stabilization attempts were not successful. Table 2.3 

summarizes the operating conditions and flame height established for each mixture’s flame. 

Some flexibility was permitted on the equivalence ratio and Reynolds number values in order 

to accommodate the flowmeters’ inability to regulate the lower ranges of the H2 and CH4 

flow requirements (for the S1, S4, S5, S6 and S5M50 fuels in particular). 

 

Table 2.3 Summary of operating conditions and flame height for each gaseous mixture 

  Burner Fuel Visible Flame 

Mixture Diameter [mm] φ Re Length [cm] Std Dev [cm] 

B1 10 3.12 1144 7.23 0.81 

S1 3.175 3.28 1753 5.75 0.21 

S2 3.175 3.38 1671 5.43 0.19 

S3 3.175 3.44 1590 5.08 0.20 

S5 3.175 3.41 1566 5.52 0.24 

S6 3.175 3.26 1535 4.86 0.17 

S14 3.175 3.42 1574 6.17 0.31 

S5M50 10 3.17 1059 12.4 0.92 

S5M25 3.175 3.37 1533 4.32 0.19 

 

2.3 Species Concentration 

This section of the study examines flame species concentrations using Raman spectroscopy 

(described in Section 1.2.1). With this methodology, the test flame is illuminated with the 

laser beam and light from the illuminated point is collected with lenses and concentrated into 

the SpectraPro 2300i spectrograph from Acton Research. The wavelengths from the elastic 

Rayleigh scattering are filtered out by a filter installed in front of the lenses. The SpectraPro 

is centered at 280 nm which permits the measurement of important species (O2, N2, H2, H20, 

CO and CO2). The experimental setup is displayed in Figure 2.2. 
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At each polarisation angle, 700 photos are captured at a 10 Hz frequency using a LaVision 

camera (1 376 x 1 040 pixels where each pixel measures 6.45 x 6.45 μm) connected to a 

signal intensifier. An averaging technique is used to yield a sing image from the 700 photos. 

 

 

Figure 2.2 Experimental setup for the measurement of species concentration 

 

The S and P polarisation angles represent the two light intensity directions emitted by the 

photons once a molecule is excited by the laser. The S angle corresponds to the vertical 

direction with respect to the scattering plane and it also coincides with the maximum light 

intensity emission. Conversely, horizontal polarisation angle P, which is parallel to the 

scattering plane, corresponds to the minimum light intensity emission. Hayashida et al.  

(2006)  used a polariser in order to polarise the laser beam according to the polarisation 

angle. As a result, the Raman spectrum can be obtained by separating the Raman scattering 
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(Polarisation S) from the emission background noise (Polarisation P). The species 

concentrations can then be calculated based on the difference between S and P. 

 

Since this study follows that of Ouimette, the S and P polarisation angles have already been 

established. The S and P angles were determined by measuring the intensity between 0 and 

360 degrees in 10-degree intervals with no test flame (laser passing through ambient air). The 

maximum registered intensity corresponds to the S polarisation and the P polarisation 

corresponds to the minimum intensity.  

 

2.4 Flame Temperature 

The flame temperature measurement follows a similar experimental arrangement with slight 

modifications to that seen in Figure 2.2. The Rayleigh filter has been removed and the 

polarisation angle has been set to 250 degrees in order to increase the intensity of the laser 

passing through the flame. In an effort to eliminate chemoluminescence, the opening period 

of the intensifier has been reduced to its minimum possible value of 210 ns as seen in Lafay 

et al. (2008). The measurement technique involves setting the burner to the appropriate test 

height and then generating three separate images, each of which represent one of the 

following: one image of the background noise with no laser, one reference image of the laser 

in ambient air, and one image of the laser flame measurement. Each image is created by 

using an averaging technique similar to that of Section 2.3, however only 200 images are 

averaged in this portion of the experiment as recommended by Lafay et al. (2008).  Ouimette 

(2012) explored the effects of increasing the number of averaged images to 700, however 

there was no increase in precision generated from this adjustment. 

 

In order to obtain a useable reference and flame image, the background noise image is 

subtracted from the reference and flame images. Subsequently, the new reference image is 

subtracted from the new flame image in order to obtain useable flame intensity data. From 

this data, the flame temperature can be calculated using the Equations ( 2.1 ) and ( 2.2 ) in 

Lafay et al. (2008): 
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,ݎ)ܶ (ݖ = ܶ(ݎ, (ݖ ,ݎ)ܫ ,ݎ)ܫ(ݖ (ݖ ோே ( 2.1 )ߪ

ோேߪ = Σ ܺ(ݎ, Σߪ(ݖ ܺ(ݎ,  ( 2.2 )ߪ(ݖ

 

The temperature in degrees K is represented by ܶ(ݎ,  and the intensity of the Rayleigh (ݖ

signal is represented by ݎ)ܫ,  ோ isߪ The ߯ value is the molar fraction of a given species and .(ݖ

the Rayleigh scattering cross section in m2, whereas the normalized Rayleigh scattering cross 

section is represented by ߪோே . In order to differentiate between the property of a given 

species in ambient air as opposed to its flame property, the subscripts i and j are used (the i 

subscript being the ambient air indicator and the j subscript being the flame indicator). 

Furthermore, the subscript 0 is used to indicate when temperature and intensity correspond to 

their ambient air values. The absence of subscript 0 for ܶ(ݎ, ,ݎ)ܫ and (ݖ  indicates that they (ݖ

are flame measurements of temperature and intensity respectively.  

 

Each test height corresponds to a fixed value of z*, which specifically is equivalent to 10%, 

20%, 40% or 60% of the visible flame length for each fuel. At a specified, constant value of 

z*, spectroscopy measurements return values of species concentration along the flame’s 

radius r. These values of species concentration correspond to the molar fraction ߯, which is 

required to calculate the normalized Rayleigh scattering cross section in Equation ( 2.2 ). 

According to Lafay et al. (2008), ߪோಿ  depends on gas composition; however it can be 

assumed as independent of temperature. There exists published relative differential Rayleigh 

scattering cross sections, measured relative to nitrogen at 295 K, which allows for ߪே to be 

calculated according to Sutton and Driscoll (2004). The following table contains the relative 

cross sections for the species of interest: 
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Table 2.4 Relative cross sections of main species 

Species Relative Rayleigh Scattering Cross Section 

N2 1.00 

O2 0.97 

H2 0.24 

CO 1.36 

H2O 0.86 

CH4 2.28 

CO2 2.50 

 

2.5 Experimental Uncertainty 

There is an overall uncertainty associated to each single experimental measurement and these 

uncertainties are used to calculate the overall uncertainty. Ouimette (2012) employs a 

technique from Moffat (1988) that makes it possible to quantifiably describe a system’s 

overall uncertainty. This approach describes the quality of the experiment much better than 

merely reporting the precision of each measurement. The objective of this section is to 

determine the overall uncertainty of the experimental measurements and results. This will 

establish the uncertainty associated with the flame length, equivalence ratio, and flame 

temperature of each mixture. 

 

2.5.1 Overall Uncertainty of a Single Measurement 

From Moffat (1988), for a variable, X, the overall uncertainty of a single measurement, U0.95, 

can be calculated using Equation ( 2.3 ): 

 

ܷ.ଽହ = ቄ൫ܤ൯ଶ + ൫ݐ௩,.ଽହܵത൯ଶቅଵ ଶൗ
 ( 2.3 )
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The symbol ݐ௩  represents the Student’s t multiplier for v degrees of freedoms. For 95% 

confidence, ݐ௩,.ଽହ  can be looked up in any T-distribution table or graph found in most 

statistics textbooks. The overall bias limit of the measurement, ܤ, and the precision index, ܵത, can be calculated from Equation ( 2.4 ) and Equation ( 2.5 ) respectfully. 

 

ܤ = ܤଶெ
ୀଵ ൩ଵ ଶൗ

 ( 2.4 )

ܵത = ඥ்ܰ ( 2.5 )ߪ

 

From Equation ( 2.4 ), it is shown that ܤis the root-sum-square combination of the fixed 

error components, ܤ. In Equation ( 2.5 ), ߪ represents the standard deviation as measured 

during the experimental measurements whereas ்ܰ corresponds to the number of performed 

measurements. The values of ܤ for this project’s experimental measurements are outlined in 

Table 2.5 along with the overall bias limit of the measurement. Table 2.6 summarizes the 

overall measurement uncertainty for the flame height and equivalence ratio of each 

measurement. 

 

Table 2.5 Summary of the overall bias limits and  
fixed error components for each measurement instrument 

Measurement Instrument Source of Uncertainty ࢄ 
Equivalence Ratio Flowmeter 

Precision ± 1.5% full scale 
1.6% 

Repeatability ± 0.5% full scale 

Flame Height 
Ruler Precision 0.1 cm 

0.12 cm 
Camera Pixel size 0.07 cm 
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Table 2.6 Estimation of the overall measurement uncertainties  
for each mixture’s flame height and equivalence ratio 

Mixture 
Flame Length 

(cm) 

Uncertainty 

(%) 

Equivalence 

Ratio 

Uncertainty (%) 

B1 7.23 5.49 3.12 4.18 

S1 5.75 3.81 3.28 4.01 

S2 5.43 3.73 3.38 3.91 

S3 5.08 4.86 3.44 3.85 

S5 5.52 3.71 3.41 3.89 

S6 4.86 4.95 3.26 4.03 

S14 6.17 2.53 3.42 3.87 

S5M50 12.4 5.02 3.17 4.13 

S5M25 4.3 3.22 3.37 3.92 

 

2.5.2 Overall Uncertainty of the Experimental Results 

At this stage, the uncertainties calculated in section 2.5.1 can be combined to calculate the 

overall uncertainty of the experimental results. Ouimette (2012) uses a method from Lee 

(2008) of calculating the overall uncertainty of the experimental results, which is 

summarized by Equation ( 2.6 ): 

 

൫ܷ௬൯௫ = ඩ൬݀ ଵ݂݀ݔ ܷ൰ଶ
ୀଵ  ( 2.6 )

 

The symbol ൫ܷ௬൯௫  denotes the final overall uncertainty of the variable y, where y is 

calculated by a function, f1, of a measured variable, xi. The partial derivative of function f1 

can be closely approximated through a simple spreadsheet calculation in which a delta is 

incorporated into a fundamental principle of calculus. From Stewart (1991), Equation ( 2.7 ) 

states: 
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݀ ଵ݂݀ݔ = ଵ݂ݔଶ − ଵ݂ݔଵݔଶ − ଵݔ  ( 2.7 )

 

Following the same procedure as Ouimette (2012), x2 = x1 + 0.0000001 and x1 represents the 

known variable and the delta is equal to 0.0000001. Essentially, the partial derivative is 

calculated by substitution over an infinitesimally small change in the measured variable xi. 

This method avoids the need to solve complicated equations. A summary of the calculated 

uncertainty results can be seen in Table 2.7 while the uncertainty associated to each 

measurement can be found in APPENDIX II. The overall uncertainty associated with the 

calculated flame temperature is below 10%, which is the typical uncertainty for the Rayleigh 

method according to Ouimette (2011). 

 

Table 2.7 Overall uncertainty of the calculated corrected temperature 

 Temperature Uncertainty (ࢀࢁ)࢞ࢇ 

Mixture Minumum Maximum 

B1 2.75% 4.04% 

S1 6.06% 7.51% 

S2 6.10% 7.24% 

S3 5.99% 7.12% 

S5 6.65% 7.63% 

S6 8.35% 9.14% 

S14 4.26% 5.30% 

S5M50 4.77% 5.35% 

S5M25 8.33% 8.57% 

 



CHAPTER 3 
 
 

RESULTS AND DISCUSSION 

The experimental results and discussion are provided in this section. Flame chemical 

structures for each fuel are represented graphically as functions of species concentration and 

flame temperature against flame radius at each of four test heights (z* values of 10%, 20%, 

40% and 60%). Results are presented for the major species: H2, CO, CO2, N2, O2 and H2O (as 

well as CH4 for methane-containing fuels). The flame height measurements will be 

incorporated in this chapter, as will qualitative and quantitative observations for each flame. 

In order to facilitate the analysis, Table 3.1 and Table 3.2 have been included in this section 

in order to present, respectfully, the concentrations of major species exiting the burner rim 

and the concentrations of the products of combustion at stoichiometry. Where appropriate, 

measured data from several mixtures will be consolidated and compared in order to analyse 

the effects of CO2 dilution or H2/CO ratio. 

 

Table 3.1 Theoretical species concentrations at burner exit with equivalence ratio of 3 

Mixture 
CO 

(%vol) 
H2 

(%vol) 
CH4 

(%vol) 
CO2 

(%vol) 
N2 

(%vol) 
O2 

(%vol) 

B1 0.00 0.00 20.66 13.77 51.79 13.77 

S1 31.35 15.67 0.00 15.67 29.47 7.84 

S2 23.51 23.51 0.00 15.67 29.47 7.84 

S3 15.67 31.35 0.00 15.67 29.47 7.84 

S5 21.38 21.38 2.85 11.40 33.95 9.03 

S6 14.26 28.51 2.85 11.40 33.95 9.03 

S14 25.38 25.38 0.00 8.96 31.81 8.46 

S5M50 6.33 6.33 17.72 3.37 52.34 13.92 

S5M25 11.92 11.92 12.19 6.36 45.50 12.10 
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Table 3.2 Stoichiometric products of combustion 

Mixture H20 (%vol) CO2 (%vol) N2 (%vol) 

B1 17.88 14.90 67.22 

S1 10.37 31.12 58.51 

S2 15.56 25.93 58.51 

S3 20.75 20.75 58.51 

S4 N/A N/A N/A 

S5 16.46 21.66 61.88 

S6 20.79 17.33 61.88 

S14 16.36 22.13 61.51 

S5M50 18.46 12.12 69.42 

S5M25 17.86 14.99 67.15 

 

3.1 Biofuel Mixture B1 – 60CH4/40CO2 

The B1 mixture is the only biofuel under examination in this study. The mixture is composed 

of CH4 diluted with 40% volume of CO2. Its composition differs more significantly from the 

other test fuels and therefore its behaviour cannot be directly compared to that of the other 

test fuels. The B1 results are, therefore, analysed on their own. 

 

3.1.1 Qualitative Observations 

Ignition difficulties were experienced when using the 3.175 mm burner. A sustained flame 

could be achieved only with the help of an external flame source, which resulted in a blue 

flame with a flame cone clearly visible above the burner exit. Since the flame could not be 

sustained, no measurements could be taken with this burner arrangement. Instead, the 10 mm 

burner was used and only then was a sustained flame achievable on its own. At a Reynolds 

Number of 1400, the flame was rather unstable as flicker was clearly evident. In an attempt 

to stabilize the flame for improved measurements, the Reynolds Number was reduced to 

1000 in order to be even more on the laminar end of the spectrum. The stability of the flame 

improved slightly, although flicker was still present. The stability of the flame was 
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satisfactory closer to the burner exit, therefore measurements were taken only at 10% and 

20% of the flame heights; measurements at 40% and 60% were unsatisfactory due to the 

effects of flicker. 

 

 

Figure 3.1 Photograph of the B1 flame  
at Re=1000 (B1: 60CH4/40CO2) 

 

As seen in Figure 3.1, the B1 flame is a blue flame with a high level of transparency. Under 

the given conditions, no flame cone could be distinguished. The flame itself is relatively 

conical in shape, with the widest part of the flame apparently located at the very base of the 

flame. The height and width of the flame fluctuated quite often and several measurements 

had to be taken due to the instability.  

 

3.1.2 Quantitative Results and Analysis 

The quantitative results provide insight only into the behaviour of the flame. Of note, the 

temperature remains close to ambient within 2 mm of the central axis of the flame. The weak 

temperature could be an indication that there has not yet been a sufficient level of premixing 

with ambient air. The temperature begins to increase towards the central axis as z/HT 

increases to 20%, however the maximum temperature value has decreased. The early 

decrease in temperature could be caused by the production of CO2, due to the reaction of 
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CH4, which increases the radiation heat loss. The position of Tmax has shifted slightly inwards 

in relation to the radial distance. At z*=10%, Tmax is radially located at roughly 6 mm and 

decreases to roughly 5 mm at z*=20%. This indicates the width of the flame at each test 

height and supports the observation that the flame is conic and widest at its base. 

 

 

Figure 3.2 Radial profiles of temperature and species concentrations of the B1 flame at 
z*=10% and 20% (×=H2, ∆=CO, +=H2O, ∇=CO2, □=N2, ○=O2, ∗=Temp) 
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The concentration of CH4 decreases gradually in relation to the radial distance from the 

flame’s central axis. At the higher z* elevation, the CH4 concentration decreases at a faster 

rate. At both measurement heights, the concentration of CH4 reaches a value close to zero at 

the same approximate location where H2O reaches its maximum value and O2 reaches its 

minimum value. This is a good indication that the CH4 has been entirely consumed in the 

radial direction and stoichiometry has been achieved. Along the flame’s central axis, the 

measured concentration of CH4 has decreased from roughly 22% to 15% as z* increased 

from 10% to 20%. This suggests that there is a fair amount of CH4 which has yet to react or 

dissociate. 

 

Along the central axis, the concentration of CO2 is lower than its stoichiometric for both 

measurement heights, meaning the maximum concentration level has likely not yet been 

achieved. The maximum CO2 level must be achieved at a higher measurement height, 

presumably when more CH4 has reacted. 

 

3.2 Synthesis Gas with CO2 Dilution 

The S1, S2 and S3 syngas mixtures are each composed of H2, CO and CO2. They each 

contain equivalent concentrations of diluent, specifically 25% of CO2. Since they contain no 

CH4 and only the concentrations of H2 and CO differ between the three syngas mixtures, it is 

particularly favourable for investigating the effects of H2/CO ratio on syngas flames with 

25% CO2 diluent. 

 

The S14 synthesis gas mixture contains a H2/CO ratio of 1 with 15% CO2 diluent. Since the 

S2 fuel also has an H2/CO ratio of 1, their results can be compared along with results from 

Ouimette (2012) to investigate the effects of CO2 dilution. Results from Ouimette (2012) are 

from equimolar H2/CO flames. These results were selected due to the identical operating 

conditions in both studies as well as the similarites in the experimental approach, setup and 

equipment. 
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3.2.1 Qualitative Observations 

 

Figure 3.3 Photograph of H2/CO syngas flames  
with CO2 dilution 

 

S1 – 50CO/25H2/25CO2 

The S1 mixture experienced some ignition difficulties but was still able on occasion to 

achieve a sustained flame for several minutes with the 3.175 mm burner. The flame would 

regularly blow off when the hydrogen flow was either too low or fluctuated too much. In 

order to achieve ignition, the hydrogen flow was increased to beyond the required level. 

After ignition, the hydrogen flow was decreased to match the target hydrogen concentration 

for the S2 mixture. The flame stabilized often enough to successfully take measurements at 

the target operating conditions.  

 

Visually, the S1 flame is distinguished by a light blue colour which fades to light orange at 

its apex. The flame cone is clearly visible at the burner exit with a distinctively triangular 

shape. The peak of the flame cone is very slightly rounded. The S1 flame burns rather bright, 

emitting more white light than the other fuels under investigation in this section. 

 

S2 – 37.5CO/37.5H2/25CO2 

The S2 flame is predominantly blue and assumes an orange colour towards the tip of the 

flame. It does not emit as much light as the S1 flame. The flame is noticeably shorter than the 
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S1 flame and appears to be of a slightly deeper blue, although more transparent. The S2 

flame cone also appears to be visibly shorter than that of S1.  

 

S3 – 25CO/50H2/25CO2 

The S3 flame is very similar to S1 and S2 in reference to its colour, although S3 has an 

evidently higher level of transparency. The majority of the flame is a deep blue whereas the 

flame tip gradually assumes an orange tint. The flame cone is very obviously smaller than 

that of the other fuels, at just a fraction of their size. However the width of the flame appears 

visibly larger than that of the S1 and S2 flames as seen in Figure 3.3. 

 

At times, it appeared the S3 flame was unstable. The instability arose due to the flowmeter’s 

difficulty in regulating the very minuscule hydrogen molecules. Measurements were 

therefore taken after letting the flame burn for at least two minutes in order to allow the 

flowmeter to regulate the hydrogen flow. 

 

S14 – 42.5CO/42.5H2/15CO2 

Visually, the S14 flame has a noticeably higher flame length than the other fuels of section 

3.2 and appears to be roughly the same width as the S3 flame. The relatively small flame 

cone is clearly visible to the naked eye and an orange tint is evident over a large portion of 

the flame’s upper half in particular. The lower region of the flame is deep blue, surrounding 

the bright flame cone which shines a light blue. The transparency of the flame appears 

similar to that of the S2 fuel. 

 

The greater flame height likely made the S14 flame more vulnerable to drafts of air as it was 

quite difficult to steady the flame in a vertical position. The S14 flame appeared otherwise 

quite stable and there were no problems with ignition. There appeared to be some fluctuation 

in the flowmeter’s regulation of the hydrogen, but this fluctuation did not have a discernible 

effect on the flame’s behaviour.   
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3.2.2 Quantitative Results and Analysis 

3.2.2.1 The Effects of H2/CO Ratio on Flame Structure 

The effects of H2/CO ratio on flame structure are illustrated in Figure 3.4 and Figure 3.5, 

which highlight the flame temperature and concentrations of main species (H2, CO, CO2, 

H2O, O2 and N2) respectfully. This section studies partially premixed flames of syngas 

mixtures of varying H2/CO ratio (0.5, 1 and 2) and 25% CO2 dilution. 

 

From Ouimette (2012), it is established that flame temperatures of H2/CO mixtures will 

decrease in conjunction with CO addition. This is worthy of explanation because CO has the 

higher adiabatic flame temperature of the two species at 2400 K, which is slightly higher than 

that of H2 (2350 K). This decrease in flame temperature can be explained by an increased 

presence of CO2 within the flame generated by the reaction of CO. This increase in CO in 

turn increases the heat losses due to radiation. In Figure 3.4, it is evident that the fuels under 

investigation support this observation. Measurements suggest that there are no significant 

changes in temperature profiles at heights greater than or equal to 40% of the flame heights. 

At 10% flame height, it is apparent that higher concentrations of CO can be linked to longer 

flame cones, which is visually represented by the sharp decreases in flame temperature along 

the central axis of the S2 and S3 flames. The z*=10% elevation thus lies within the height of 

the flame cone. This means that the measurements were taken within the cone and therefore 

reflect the nature of the unburned reactants at that elevation. Hydrogen rich fuels, such as S3, 

react faster due to hydrogen’s elevated laminar burning velocity, thereby resulting in flame 

cones of shorter length. Ouimette (2012) supports this finding as it was observed that higher 

concentrations of CO result in longer flame cones due to the slower laminar burning velocity. 
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Figure 3.4 Temperature profiles of S1, S2 and S3 flames at various flame  
elevations (• = S1: 25H2/50CO/25CO2, ○ = S2: 37.5H2/37.5CO/25CO2, 

 □ = S3: 50H2/25CO/25CO2) 

 

Figure 3.5 illustrates the variation in species concentration of all the major species in relation 

to the change in H2/CO ratio. Data is plotted from measurements taken at z*=20%, as in 

Ouimette (2012), in order capture the state of the flame relatively early in the combustion 

process. The literature states that a decrease in H2 concentration should be observed along the 

central axis as the H2/CO ratio decreases. This notion is loosely supported by Figure 3.5, 
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although H2 concentrations have already evened out amongst the three fuels at this elevation. 

It is made clear that, for each fuel, much of the H2 reacts very quickly. Since only small 

amounts of H2 remain, differences in H2 levels between each fuel are less apparent. Figure 

3.6 has been included to provide clarity to the H2 concentration in the early stages of the 

flames. 

 

The CO and H2 graphs essentially offer an idea of how much of the fuel has already reacted 

at the specified elevation. Since it has been established that H2 reacts quickly, it is expected 

to observe a corresponding early increase in H2O along the central axis. Figure 3.5 suggests 

that mixtures higher in H2 will experience higher levels of H2O concentration about the 

flame’s central axis. Furthermore, the experimental H2O concentrations for each fuel are 

either equal to or slightly lower than their stoichiometric values. The S3 fuel’s H2O 

concentration is equivalent to the stoichiometric value, whereas S2 and S3 both indicate 

lower levels than stoichiometry. This likely means that the maximum H2O concentration for 

S2 and S3 has not yet been reached.  

 

An opposite trend is observed in conjunction with the increase in CO: Figure 3.5 indicates 

that increasing CO concentration within the fuel results in lower H2O production and an 

increase in CO2 production. For each fuel, the CO2 concentrations along the flame’s central 

axis register close to their stoichiometric values. Since the fuels are each equally diluted by 

CO2, the effects of the CO2 dilution are investigated later in this study using an approach 

more conducive to investigating the effects of CO2 dilution (see Section 3.2.2.2).  
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Figure 3.5 Radial profiles of species concentrations for S1, S2 and S3  
fuels, measured at 20% of flame height (• = S1: 25H2/50CO/25CO2,  

○ = S2: 37.5H2/37.5CO/25CO2, □ = S3: 50H2/25CO/25CO2) 

 

Figure 3.5 offers little evidence that H2/CO ratio has an effect on N2 and O2 production. 

However, these two species indicate where the boundary between the fuel and the ambient 

air is located (in the radial direction). The proportions of the visible flames can thus be 

verified to a certain degree. In this case, both N2 and O2 return to ambient air values at the 

farthest radial distance from the flame’s central axis. Thus, the observation that S3 is the 
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widest of the three flames is corroborated by the experimental data. When taking into 

account the experimental measurements from z*=60%, it also supports that S3 is the shortest 

of the three flames since the highest values of O2 and N2 along the central axis belong to the 

S3 fuel. This differs from the concept suggested in Ouimette (2012), where it was proposed 

that increases in a fuel’s CO concentration resulted in a slight decrease in flame size due to 

the increased production of CO2. However, this assertion from Ouimette pertains to H2/CO 

mixtures without CO2 dilution. Globally, Ouimette (2012) states that CO2 dilution has a 

greater effect on flame height than the H2/CO ratio and effects become apparent above 

equivalence ratios of 3. An experimental investigation into the effects of H2/CO ratio under 

varying levels of CO2 dilution could be of interest in the future. 

 

 

Figure 3.6 Radial profile of H2 for S1, S2 and S3 fuels  
(• = S1: 25H2/50CO/25CO2, ○ = S2: 37.5H2/37.5CO/25CO2,  

□ = S3: 50H2/25CO/25CO2) 
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3.2.2.2 Effects of CO2 Dilution 

The influence of CO2 dilution on flame structure has not been widely studied, but useful 

information pertaining to this field can be extracted from the likes of Natarajan et al. (2007) 

and Burbano et al. (2011), both of whom studied laminar flame speeds of H2/CO mixtures 

with CO2 dilution using Bunsen burners. These works reveal that increases in CO2 dilution 

significantly decrease the laminar burning velocities of these mixtures. Higher levels of CO2 

concentration within the fuel result in a decrease in heat release and an increase in heat 

capacity of the flame. The resulting decrease in temperature is associated with the reduction 

in the rates of reaction of H2 and CO. The temperature profile in Figure 3.7 supports this 

assertion as it displays a decrease in central axis temperature in conjunction with increasing 

CO2 concentration in the fuel. Furthermore, the temperature profiles over all of the 

measurement elevations suggest that an increase in CO2 composition in the fuel results in a 

shorter, thinner flame. This is evidenced by the S2 flame’s tendency to return to ambient 

temperature at the lowest elevation and nearest radial distance of the three samples. Further 

corroboration is available in Figure 3.7, where it is evident that fuels with higher CO2 

concentration produce O2 profiles that return to ambient air values earlier along the radial 

axis, implying thinner flames.  Burnabo et al. (2011) also reports an association between 

higher CO2 concentrations and increased levels of flame instability over an increased range 

of equivalence ratios.  

 

Natarajan et al. (2007) explains that the presence of CO2 in the reactant fuel influences the 

flame chemistry and the radiative heat transfer. It absorbs radiative energy from the hot 

products and thereby affects the flame’s behaviour. The CO2 radial profile in Figure 3.7 

provides further insight into the behaviour of CO2 in the combustion process. According to 

the experimental results, it is shown that measured CO2 quantities increases in accordance 

with increasing levels of CO2 dilution along the central axis, as would be expected. However, 

the data suggests that the CO2 levels decrease at a faster rate for fuels with higher CO2 

dilution. Furthermore, the equimolar H2/CO mixtures with higher levels of dilution exhaust 

their CO2 sooner than mixtures with lower dilution levels. Due to the lack of research in this 
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particular area, these assertions cannot be readily supported by outside literature, although it 

does provide more evidence that a higher concentration of CO2 in the fuel results in thinner 

flame. 

 

The H2 and CO profiles give insight into the rates at which the fuels` combustible 

constituents are reacting. The CO curves present the most obvious indication of reaction 

trends, further supporting the notion that CO reaction rates decrease with increasing levels of 

CO2 dilution. Along the central axis, CO concentration is higher for mixtures with more CO2 

dilution, as expected. Trends are not as easily identifiable from the H2 radial profile, although 

it would appear that rates of H2 reaction are slower for higher levels of CO2 dilution.  
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Figure 3.7 Comparison of species concentrations and temperature for S2, S14  
fuels and experimental data from Ouimette (2012) measured at z/HT=20% (○ = S2: 

37.5H2/37.5CO/25CO2, ◊ = S14: 42.5H2/42.5CO/15CO2, + = Ouimette: 50H2/50CO) 

 

3.3 Synthesis Gas with 5% CH4 Addition and 20% CO2 Dilution 

The S4, S5 and S6 mixtures each contain 5% CH4 and 20% CO2 dilution in addition to 

varying concentrations of H2 and CO. No data was obtained for the S4 mixture, therefore 
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only the S5 and S6 fuels could be used to investigate the flame structures of syngas flames 

with 5% CH4 and 20% CO2 dilution. 

 

3.3.1 Qualitative Observations 

 

Figure 3.8 Photograph of syngas flames  
with 5% CH4 and 20% CO2 dilution 

 

S4 – 50CO/25H2/5CH4/20CO2 

The S4 syngas mixture failed to ignite with the 3.175 mm burner as well as the 10 mm 

burner. In order to achieve ignition, the Reynolds number was reduced to 1000 and again the 

mixture failed to ignite with the 3.175 burner. With the 10 mm burner, the reattachment 

phenomenon was experienced. Ignition was attempted with a 15 mm burner and reattachment 

was again observed. In the end, it was impossible to obtain any qualitative data for the S4 

syngas mixture.  

 

It is noteworthy that the S1 mixture, with a similar composition to S4, was capable of 

achieving ignition despite its higher concentration of CO2. The H2 and CO levels of 

concentration are identical between the two mixtures, meaning their H2/CO ratios are 

equivalent.  
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S5 – 37.5CO/37.5H2/5CH4/20CO2 

There is no discernible difference in appearance between the S5 and S2 flames, meaning the 

5% addition of CH4 (and 5% reduction of CO2 diluent) contributed very little to the flame’s 

visual appearance and behaviour. Although there does appear to be a very slight reduction in 

size of the S5 flame cone when compared to the S2 flame cone, which suggests that the 5% 

increase in CH4 has increased the burning velocity from that of S2. The degree of 

transparency appears to be equivalent to that of the S2 flame. 

 

S6 – 25CO/50H2/5CH4/20CO2 

The difference in composition between S6 and S3 did not translate into any noticeable 

differences in flame appearance or behaviour between the two samples. The S6 flame 

exhibits the same blue colour with orange tint at the apex of the flame and a high degree of 

transparency as seen in Figure 3.8. The flame cone is also quite small and the dimensions of 

the flame appear quite similar to that of S3, with perhaps only a slight decrease in size in the 

S6 dimensions. Again, this makes sense since replacing 5% of an inert gas constituent with 

5% of a combustible gas should increase the burning velocity of the mixture. 

 

3.3.2 Quantitative Results and Analysis 

The S5 and S6 fuels are similar in composition, differing only in H2/CO ratio. Due to this 

similarity, the juxtaposition of the two fuels can provide some insight into the effects of 

H2/CO ratio on the flame structure of such fuels. Figure 3.9 displays the radial profiles for 

temperature (K) and molar fraction of major species (% volume) at a measurement height of 

z*=20%. The temperature profile indicates that the S5 and S6 flames reach almost equivalent 

maximum temperatures, registering slightly under 2000 K. The S6 fuel, with the slightly 

higher maximum of 1994 K, reaches its peak temperature along the flame’s central at 

z*=20%. On the other hand, the S5 fuel, which peaks closer to 1976 K, reaches its maximum 

temperature at a radial distance of approximately 2 to 3 mm. Moving inwards towards the 

center from Tmax-S5, the temperature of the S5 flame lowers slightly to roughly 1863 K at the 

central axis. The low central axis temperature is even more apparent at z*=10%, where the 
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S5 central axis temperature is measured at approximately 467 K, whereas the S6 flame’s 

temperature does not display a high variance between the central axis temperature and Tmax-

S6. In this case, since H2 reacts first for both fuels, the difference in temperature at z*=10% 

can be explained by the higher amount of H2 present in the S6 mixture. All this means is that, 

as seen in Ouimette (2012), a higher H2/CO ratio results in a faster burning rate and therefore 

the S5 fuel produces a longer flame cone, which explains the lower central axis temperature 

at z*=10%. However, the distinction should be made clear that the higher level of H2 coupled 

with the higher rate of reaction seen in the S6 mixture does not necessarily equate to a higher 

adiabatic flame temperature. As shown by Cheng et al. (2011), H2 addition can increase the 

laminar flame speed of a H2/CO/CH4 mixture through chemical effects without necessarily 

increasing the adiabatic flame temperature. In regards to the oxidation of hydrogen, the H2 

radial profiles indicate that the majority of the species has reacted prior to reaching the 

z*=10% elevation, with only a molar fraction of roughly 4% in each flame. The 

concentration of H2 continues to decrease thereafter in conjunction with increasing z*. The 

H2O profile compliments the H2 measurements at z*=10%. At this elevation, the 

concentration of H2O has almost attained the stoichiometric value, with still some amounts of 

H2 yet to react. The maximum concentration of H2O is not located along the S5 flame’s 

central axis, but rather at a radial distance of approximately 4 mm. Again, this is a strong 

indication that the z*=10% measurement intersects the S5 flame cone. The S6 flame displays 

very little discrepency between the maximum H2O concentration (located at a radial distance 

of 3 mm) and the concentration along the central axis. So far, the S6 data suggests that the tip 

of the flame cone is located at or close to the z*=10% elevation. At z*=20%, the maximum 

concentration of H2O is located along the central axis for both the S5 and S6 flames, as seen 

in Figure 3.9, which suggests that the flame cone is located entirely below this elevation.  
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Figure 3.9 Comparison of species concentrations and temperature for S5 and S6 fuel 
measured at z/HT=20% (• = S5: 37.5H2/37.5CO/5CH4/25CO2, 

 × = S6: 50H2/25CO/5CH4/20CO2) 

 

At z*=10%, the concentration of CO for both fuels suggests that there has not been 

significant oxidation of CO prior to this stage. The S5 flame registers a concentration of CO 

nearly equivalent to the initial concentration at the burner exit (19% at z*=10% compared to 

21% at burner exit). On the other hand, although significant levels of CO remain for the S6 

flame (9% compared to 14% at burner exit), the S6 flame appears to be further along in the 
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process of oxidizing CO. This makes sense when considering the faster burning rate of 

mixtures with higher H2/CO ratios. At this stage, the combustion process has been dominated 

by the reaction of H2 and the higher initial concentration of H2 for S6 evidently generates the 

faster burning rate. At this point, both fuels have experienced a similar level of CH4 

dissociation and/or oxidation so its effect will be discounted for now. However, by z*=20%, 

the divide in CO concentration has drastically reduced between the two flames, measuring 

approximately 8% and 7.5% for S5 and S6 respectively along the central axis. In other 

words, after nearly complete oxidation of H2, the S5 fuel burns its CO at an apparently faster 

rate than the S6 flame. Further illustrating this point is the amount of remaining CO at 

z*=60%: the S5 fuel registers less CO (approximately 1.5%) compared to the S6 fuel 

(approximately 3%). The CO2 profiles support much of the previously stated assertions, 

although it is rather difficult to trace the origins of CO2 data since it could have originated 

from the reaction of CO or CH4. It could also still be present in the mixture simply as 

originally introduced diluent. What can be stated for certain is that the S5 mixture would be 

expected to produce more CO2 than the S6 mixture, which is validated by the data. 

 

The O2 and N2 radial profiles do not offer a great deal of further insight into the S5 and S6 

flame structures. At z*=10%, the concentration of O2 along the central axis of the S5 flame 

once again supports the notion that this first measurement lies within the flame cone. At this 

point, the O2 concentration is almost equivalent to the initial concentration at the burner exit. 

In Figure 3.9, the O2 curves of each fuel differ only in terms of where the concentration 

returns to ambient air values. Evidently, the measurements suggest that the S6 fuel produces 

a thinner flame since the reaction boundary is located radially closer to the flame’s central 

axis. 

 

The presence of CH4 among the reactants complicates the analysis. Furthermore, since CH4 

only accounts for 2.85% of the partially premixed mixture, its effect on the combustion of the 

system may not be apparent enough for proper examination. In this case, it appears as though 

the minimal concentration of CH4 begins oxidation prior to z*=10% and essentially reacts in 

its entirety prior to the z*=20%. Its contribution to the combustion of the system is largely 
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inconclusive, although recorded laminar flame lengths indicate that replacing 5% of CO2 

diluent with CH4 has increased the overall mixture’s burning rate. The effect of added CH4 to 

syngas mixtures with CO2 dilution should be further investigated in a future study by 

parametrizing the addition of CH4.  

 

3.4 Methane-Syngas Mixtures with CO2 Dilution 

Gaseous mixtures of methane and synthesis gas with carbon dioxide dilution are not 

uncommon and this section investigates two such mixtures. The S5M50 fuel is a mixture 

consisting primarily of methane (52.5%) with equivalent concentrations of CO and H2 

(18.75% each). The remaining 10% consists of CO2 diluent. The second gaseous mixture, 

S5M25, is composed of similar concentrations of CO (28.125%), H2 (28.125%) and CH4 

(28.75%). The remaining 15% consists of CO2 diluent. 

 

The S5M50 flame could not be sustained under the desired operating conditions therefore it 

was necessary to use the 10 mm burner in place of the 3.175 mm burner and reduce the 

Reynolds number from 1400 to 1000. This change in operating conditions permitted a 

sustainable flame for the S5M50 fuel, although only the measurements at z*=10% and 20% 

were retained due to instabilities present in the upper portion of the flame’s height. As such, 

the conditions do not allow for a straightforward comparison between the two fuels. 

Furthermore, the compositions of each fuel do not lead to favourable comparison. For these 

reasons, the S5M50 and S5M25 fuel results are analysed separately.  

 

3.4.1 S5M50 – 18.75CO/18.75H2/52.5CH4/10CO2 

The analysis of the S5M50 flame includes the presentation of both qualitative and 

quantitative results. The qualitative observations section discusses the appearance and 

behaviour of the visible flame as witnessed during experimentation. The quantitative results 

lead to the discussion of the chemical and thermal structure of the flame based on the profiles 

of flame temperature and major species concentration. 
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3.4.1.1 Qualitative Observations 

With the 3.175 mm burner and a Reynolds number of 1400, a S5M50 flame could be 

observed only with a constant external flame source keeping the fuel ignited. The flame 

could be described in colour as transparent blue with a faint, lighter blue flame cone within it. 

To the naked eye, the thin-walled flame cone appeared quite long and occupied a significant 

portion of the overall flame’s apparent volume. 

 

The 10 mm burner allowed for an easily ignitable flame, although the Reynolds number was 

reduced to 1000 in order to reduce instabilities as the flame was susceptible to flicker. 

Measurements were taken at 10% and 20% of the flame’s height as the stability of the lower 

region of the flame was the most satisfactory. 

 

Under the new operating conditions, the flame’s colour is unchanged (again, a transparent 

blue). However, there is no visible evidence of a flame cone in this scenario. The length and 

girth of the flame fluctuates often under these conditions; measurements were repeated 

several times before the flame remained relatively still over the time required to take the 

measurements. 

 

3.4.1.2 Quantitative Results and Analysis 

The temperature profile clearly indicates that, at low z* values, the flame’s central axis is 

composed of unburned fuel close to ambient temperature. At z*=10%, this occurs within 3 

mm of the flame’s central axis before the temperature begins to increase with increasing 

radial distance, as seen in Figure 3.10. At z*=20%, the unburned gas region is narrower, 

occupying roughly a 1 mm radius before the temperature clearly increases as the radial 

distance from the center increases. In both cases, the maximum temperature is attained 

between 6 and 7 mm in radial distance from the flame’s center.  

 

With relatively low amounts of H2 in the S5M50 gaseous mixture, it follows suit that only 

trace levels of H2 were measured by z*=10%. This indicates that hydrogen reacts early in the 
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combustion process and is almost untraceable beyond the first 10% of the flame’s height. 

The data suggests that hydrogen reacts before the carbon monoxide since, at z*=10%, there 

still remains almost half of the initial CO concentration and virtually no H2, despite both 

molecules having equivalent initial concentrations. In both scenarios (H2 and CO), it appears 

as though there is a very slight increase in concentration from z*=10% to 20%. Although the 

generally expected trend is for these species to decrease in concentration as the z* increases, 

it should be considered that both of these species are present in the steps of the CH4 

combustion process. Thus, through the dissociation of CH4, it is possible that increases in H2 

and CO concentration can be measured. However, it cannot be proven that these slight 

increases in concentration are due to anything other than measurement inaccuracies since the 

CH4 concentration at z/HT=10% matches its initial value at burner exit (roughly 18%). This 

suggests that CH4 has not started to react. The reaction of CH4 appears to begin somewhere 

between z*=10% and z*=20% since its concentration decreases along the central axis. This 

happens to coincide with the very slight increases in concentration of H2 and CO. 

 

At z*=10% and 20%, high levels of H2O are measured along the flame’s central axis, which 

is expected given the degree in which H2 has already reacted. However, the experimental 

concentration of H2O at z*=10% is already approximately equal to its stoichiometric value 

and remains more or less the same at z*=20%, despite the fact that there remains significant 

amounts of methane in the unburned fuel. The dissociation of methane cannot account for 

these higher than expected concentrations of H2O since CH4 does not appear to even begin 

reacting yet at z*=10%. Therefore, the high level of H2O is likely attributable to inaccuracies. 

The maximum concentration of H2O does not occur along the flame’s central axis, but rather 

at an approximate 5 mm radius, which coincides with the radial location of maximum 

temperature. 

 

The concentration of CO2 increases, as expected, with increasing z*. However, the 

stoichiometric value is not attained at either z*=10% or 20%, suggesting that it is attained at 

a higher elevation. This is supported by the significant quantities of CO and CH4 remaining 

in the unburned fuel mixture at the two test heights. At z*=10%, the concentration of CO2 
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along the flame’s central axis does not exceed its initial concentration (at the burner exit), 

which offers further evidence that the CO and CH4 reactions have not initiated. As z* 

increases to 20%, the concentration of CO2 increases both at the central axis and at the 

location of maximum concentration. The maximum concentration occurs at a radius of 

approximately 4 mm for both test heights. This is more or less consistent with the flame 

boundaries that can be loosely determined from the N2 and O2 radial profiles.  

 

 

Figure 3.10 Radial profile of species concentration and flame temperature of S5M50 flame 
(×=H2, ∆=CO, ◊=CH4, +=H2O, ∇=CO2, □=N2, ○=O2, ∗=Temp) 
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3.4.2 S5M25 – 28.125CO/28.125H2/28.75CH4/15CO2 

3.4.2.1 Qualitative Observations 

The S5M25 flame is very similar in colour but less transparent than the S5M50 flame. It has 

a slight colour gradient whereby the apex of the flame transitions from the blue body of the 

flame to a faint orange colour. There is a large flame cone (almost half the height of the 

overall flame) with thin, light blue edges located at the exit of the burner. The flame cone is 

quite noticeably rounded at its peak. 

 

There were difficulties stabilizing the flame but the reasons for which are unclear from a 

visual standpoint. The flowmeters did not indicate that there were any difficulties in 

regulating the flows of the reactants, nor were there any difficulties with fuel ignition. Extra 

care was also taken to ensure that the flame was isolated from possible air flow variations in 

the room. However, the dimensions (particularly the length) of the flame fluctuated 

considerably. After several minutes, the flame generally appeared to stabilize. Therefore 

measurements were taken after a waiting period of roughly 3 minutes after flame ignition.  

 

3.4.2.2 Quantitative Results and Analysis 

The first S5M25 temperature profile displays a region along the flame’s central axis where 

unburned fuel is measured at close to ambient temperature. This region corresponds to the 

inner volume of the flame cone described in section 3.4.2.1, and is consistent with the 

observation that the flame cone occupies the lower, inner portion of the flame’s volume. 

Based on the measurements, it is suggested that the flame cone height is approximately equal 

to 40% of the flame’s visible height since the temperature profile at z*=40% reveals a very 

slight decrease in temperature radially inward toward the flame’s central axis. As expected, 

the tendency along the central axis is for the temperature to increase as z* increases. As well, 

the maximum temperature at each test height is located at the same approximate radial 

distance (between 3 and 4 mm). This provides insight into where the reaction boundary is 

located spatially. The location of this boundary is further supported in the CO and CH4 
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profiles, where species concentrations decrease toward zero at an approximate radial distance 

of 4 to 5 mm. This signals the return to ambient air following the reaction of the fuel as the 

observer moves radially outward from the flame’s central axis. In the case of CH4, the 

concentration along the central axis at z*=10% indicates a 3% decrease from its initial value 

at the burner exit. This suggests that CH4 has begun the oxidation process and by z*=20%, 

only a very small quantity remains. The dissociation of CH4 can be a reason for this 

observation and it is supported by the CO and H2 profiles. The concentration of CO at 

z*=10% is superior to the initial value at burner exit and the z*=20% concentration is 

equivalent to the initial value at burner exit, which suggests that there is an apparent 

“production” of CO early in the combustion process. A similar scenario is observed with 

hydrogen. At z*=10%, it appears that the majority of hydrogen has already reacted, reaching 

less than 1% molar fraction (down from roughly 12% initially at the burner exit). The 

concentration increases thereafter as z* increases, likely due to the dissociation of CH4. The 

chemical kinetics of CH4 combustion reveals that H2 and CO are both integral components in 

the steps of reaction.  
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Figure 3.11 Radial profile of species concentration and flame temperature of S5M25 flame 
(×=H2, ∆=CO, ◊=CH4, +=H2O, ∇=CO2, □=N2, ○=O2, ∗=Temp) 

 

The early oxidation of H2 should in theory be complemented by an early increase in H2O. 

Figure 3.11 reflects this exact notion at z*=10%, displaying a concentration of almost nil 

along the central axis and a rise in H2O concentration moving radially outward. The 

maximum H2O concentration is located at a radial distance of approximately 4 mm, which is 

consistent with the measured reaction boundary previously discussed. At this elevation, the 

maximum H2O concentration does not coincide with the theoretical stoichiometric value, 

which is expected due to the remaining CH4 yet to be oxidized. The H2O concentration never 

quite reaches the stoichiometric value, even at higher elevations. It is likely that this occurs 

somewhere between z*=10% and z*=20%, where the maximum concentration remains the 

same but the concentration along the central axis has risen considerably. Somewhere between 

these two elevations is where both H2 and CH4 concentrations are close to zero, and therefore 
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it can be assumed that H2O concentration will be closest to the stoichiometric value. 

However, the presence of several different reacting species combined with their varying 

burning rates makes it quite difficult to predict or pinpoint where stoichiometric products of 

combustion will be observed. In the case of CO2, which is both a diluent and a product of 

combustion for CO and CH4, it is particularly difficult to categorize its behaviour and origin 

in the combustion process. At low elevations (z*=10% and 20%), there is clearly an increase 

in CO2 concentration from its initial value at the burner exit. The concentration increases 

along the central axis with increasing z* while the maximum concentration is located at a 

radial distance of 3 mm. Above z*=20%, the mixture appears to be dominated by the inert 

gases N2 and CO2. This might explain the apparent inability of the remaining reactants to 

fully oxidize (referring to the remaining concentrations of CO and H2 at z*=40% and 60%). 

 

In Figure 3.11, the O2 profile indicates that the oxidation largely takes place at the reaction 

boundary. This is evidenced by the higher concentration of O2 along the flame’s central axis 

at z*=10%, which is close to the initial concentration at the burner exit. Moving radially 

outward from the central axis, the concentration of O2 decreases and reaches a minimum 

between 3 and 4 mm, which coincides with the reaction boundary. Beyond this boundary, the 

O2 concentration increases, gradually returning to ambient air conditions. At z*=20% and 

above, the concentration along the central axis is closer to zero and increases slowly as z* 

increases. However, at z*=20% and 40%, the concentration decreases slightly from the 

central axis and reaches a minimum at a radial distance of 3 mm. This further corroborates 

the notion that the flame cone height slightly surpasses 40% of the visible flame height. 

 

3.5 Conclusion 

In summary, the main objective of this study was to measure the flame temperature and the 

major species concentrations (H2, CO, CH4, H2O, CO2, O2, N2) via Raman laser spectroscopy 

for a collection of flames of syngas and biogas mixtures with CO2 dilution. In addition to this 

main objective are several sub-objectives, which include an analysis of the effects of H2/CO 

ratio as well as the effects of CO2 addition on the flame structure of syngas flames with CO2 
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dilution. Furthermore, the scope included an examination of the visible characteristics of 

each flame. The aim was to achieve flame ignition at target operating conditions of φ=3 and 

Re=1400 with a 3.175 diameter Bunsen burner at room temperature and pressure. 

 

The B1 biogas mixture’s flame was measured with a 10 mm Bunsen burner at Re=1000 in 

order to improve stability. It was discovered that the radial location at which CH4 reaches 

zero corresponds to the radial location where H2O reaches its maximum concentration. This 

also coincides with the minimum concentration of O2. The maximum flame temperature is 

achieved before reaching z*=20% and is located along the flame’s reaction boundary. 

However, at this elevation, the temperature of the unburned gas along the central axis 

remains ambient. 

 

Syngas with 25% CO2 dilution produced flames that allowed for an analysis of the effects of 

H2/CO ratio and CO2 addition on flame structure. It was shown that a decrease in H2/CO 

ratio causes a decrease in flame temperature due to a rise in radiative heat loss from the 

increase in CO2 production. A decrease in H2/CO ratio can also be linked to longer flame 

cones stemming from a decrease in laminar burning velocity. On the other hand, higher 

H2/CO ratios produce higher levels of H2O and faster laminar burning rates. The analysis of 

CO2 addition demonstrated that central axis temperature decreases in conjunction with CO2 

addition. The maximum flame temperature and laminar burning velocity also decrease with 

higher CO2 dilution levels. CO2 dilution caused a decrease in flame size as well. 

 

The scope of the study included an investigation of syngas mixtures with 5% CH4 and 20% 

CO2 dilution. It was shown that the 5% of CH4 reacts and/or dissociates early, within 10% of 

the flame’s visible height. Higher H2/CO ratios resulted in shorter flame cones, suggesting 

faster laminar burning velocities. This finding was supported by the predisposition of the 

central axis temperature to increase with z* at a faster rate than for lower H2/CO ratios. 

However, H2 addition can increase laminar burning velocities of such mixtures through 

chemical effects without necessarily increasing the adiabatic flame temperature. 
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The methane-syngas mixtures with CO2 dilution exhibited relatively high flame cones, 

sometimes occupying nearly half of the visible flame’s height. The species concentration 

results provided evidence of CH4 dissociation, which was apparent as “increases” in 

measured concentrations of H2 and CO species. Increases in H2 and CO concentrations were 

recorded at lower values of z*. The maximum concentration of H2O occurred at the same 

radial location as the maximum temperature. 

 

It was generally witnessed amongst all flames that the reaction boundaries of laminar, 

partially premixed flames of syngas and biogas mixtures could be identified by a decrease in 

the concentrations of the unburned reactants and an increase in the concentrations of H2O and 

CO2. The reaction boundary is also characterized by an increase in O2 and N2 concentrations, 

which represents the diffusion of ambient air into the flame. The flame temperature reduces 

to room temperature beyond this reaction boundary as well. 

 



CONCLUSION 

 

The main objective of this study was to characterize the flames of several gaseous syngas and 

biofuel mixtures through experimental means. The gaseous mixtures are comprised of some 

or all of H2, CO, CH4 and CO2 and the experiment consists of measuring the flame 

temperatures and concentrations of major species at various elevations of the flame through 

laser diagnostic techniques as well as visible flame length by direct digital photography. 

 

First, the experimental method was validated with measurements of a partially premixed CH4 

flame that was successfully compared to the literature. The uncertainty analysis has shown 

that the flame height, equivalence ratio and flame temperature all have ranges of uncertainty 

below 10%, which is favourable and under the typical Rayleigh method value of 10%. 

 

Both qualitative and quantitative results are provided for all biofuel, syngas and methane-

syngas partially premixed flames. The qualitative results describe the visual characteristics of 

each flame, from which the following can be observed: an increase of the H2/CO ratio or the 

addition of CO2 or CH4 increases flame length. Quantitative results portray temperature and 

species concentration profiles at 10%, 20%, 40% and 60% of each flame’s visible height. 

The experimental results provide the opportunity to analyse the effects of H2/CO ratio on 

flame structure as well as the effects of CO2 dilution. In summary, increasing the H2/CO ratio 

increases the production of H2O and decreases the production of CO2. It also has the effect of 

increasing the flame temperature particularly along the central axis. The addition of CO2 has 

the effect of decreasing the flame temperature and decreasing the production of H2O.  

Although the effects of CH4 addition were largely inconclusive, results suggest that CH4 has 

a tendency to react or dissociate at early stages of combustion. 





RECOMMENDATIONS 

 

Despite the fact that this project involved the research of a particular collection of fuels, 

future studies can highly benefit from a more controlled selection of test fuels. The purpose 

of this would be to establish a range of mixtures that would allow the experimental data to 

isolate the effect of each constituent. This would simplify the analysis by emphasizing the 

effect of the variable under investigation. For instance, future studies could improve the 

understanding of CH4 addition to H2/CO mixtures by studying a collection of fuels with 

varying concentrations of CH4 at fixed H2/CO ratios. By parametrizing the variable of 

interest, the experimental results provide a clearer illustration of the variable’s effects. 

Furthermore, in the process of selecting the test fuels, it is worthwhile to invest some time in 

making sure that each fuel can be ignited with adequate stability at the same operating 

conditions. This would improve the analysis of the experimental results simply by allowing 

more flames to be compared. 

 

Although the effects of H2/CO ratio with CO2 dilution have been investigated in this study, 

the analysis covered a very slim range of H2/CO ratios and CO2 dilution levels. In future 

studies, the effects of H2/CO ratio could be studied under varying levels of CO2 dilution. As 

well, the study could cover a broader range of H2/CO ratios in order to characterize a wider 

variety of syngas flames. Such a study could be performed in the existing laboratory and 

results could then be compared to numerical simulations in order to validate various CFD 

models. 

 

A nice addition to this study would be to include an experimental analysis of the laminar 

flame speed of each test flame. Such an endeavor could be performed with very little 

modification to the existing laboratory. A simple chemiluminescence filter or Schieren 

camera could effectively capture the flame cone edge with sufficient accuracy to calculate 

the laminar flame speed. The results could then be compared to numerical simulations to 

determine whether the combustion mechanisms satisfactorily approximate the true flame 

speeds.





APPENDIX I 
 
 

RADIAL PROFILES OF SPECIES CONCENTRATION AND FLAME 
TEMPERATURE COMPLIMENTARY TO CHAPTER 3 

 

Figure-A I-1 Radial profile of B1 flame 
(×=H2, ∆=CO, +=H2O, ∇=CO2, □=N2, ○=O2, ∗=Temp) 
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Figure-A I-2 Radial profile of S1 flame 
(×=H2, ∆=CO, +=H2O, ∇=CO2, □=N2, ○=O2, ∗=Temp)  
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Figure-A I-3 Radial profile of S2 flame 
(×=H2, ∆=CO, +=H2O, ∇=CO2, □=N2, ○=O2, ∗=Temp) 
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Figure-A I-4 Radial profile of S3 flame 
(×=H2, ∆=CO, +=H2O, ∇=CO2, □=N2, ○=O2, ∗=Temp)  
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Figure-A I-5 Radial profile of S14 flame 
(×=H2, ∆=CO, +=H2O, ∇=CO2, □=N2, ○=O2, ∗=Temp) 
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Figure-A I-6 Radial profile of S5 flame 
(×=H2, ∆=CO, ◊=CH4, +=H2O, ∇=CO2, □=N2, ○=O2, ∗=Temp)  
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Figure-A I-7 Radial profile of S6 flame 
(×=H2, ∆=CO, ◊=CH4, +=H2O, ∇=CO2, □=N2, ○=O2, ∗=Temp) 
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Figure-A I-8 Radial profile of S5M50 flame  
(×=H2, ∆=CO, ◊=CH4, +=H2O, ∇=CO2, □=N2, ○=O2, ∗=Temp) 
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Figure-A I-9 Radial profile of S5M25 flame 
(×=H2, ∆=CO, ◊=CH4, +=H2O, ∇=CO2, □=N2, ○=O2, ∗=Temp)





APPENDIX II 
 
 

UNCERTAINTY ANALYSIS 

Table-A II-1 Uncertainty estimation of the  
B1 temperature measurements 

z* = 10% z* = 20% 

Radial  
Distance [mm] 

T [K] U [%] T [K] U [%] 

0 322 4.01 310 3.30 

1 325 4.01 313 3.30 

2 325 4.01 374 3.24 

3 379 3.96 573 3.10 

4 717 3.74 1151 2.86 

5 1425 3.51 1611 2.75 

6 1909 3.42 1624 2.75 

7 1685 3.46 1439 2.79 

8 1203 3.57 1114 2.87 

9 741 3.73 756 3.00 

10 455 3.90 484 3.15 

11 343 3.99 359 3.25 

12 309 4.03 315 3.30 

13 303 4.03 303 3.31 

14 298 4.04 301 3.31 

15 297 4.04 298 3.32 
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Table-A II-2 Uncertainty estimation of the S1 temperature measurements 

z* = 10% z* = 20% z* = 40% z* = 60% 

Radial  
Distance [mm] 

T [K] U [%] T [K] U [%] T [K] U [%] T [K] U [%] 

0 346 7.46 1304 6.36 1359 6.14 1502 6.07 

1 1206 7.03 1373 6.34 1499 6.10 1554 6.06 

2 1472 6.96 1326 6.35 1434 6.12 1514 6.07 

3 1427 6.97 1435 6.33 1394 6.13 1450 6.09 

4 1125 7.05 1323 6.35 1377 6.13 1372 6.10 

5 630 7.26 1022 6.44 1218 6.17 1056 6.19 

6 367 7.44 639 6.61 846 6.30 753 6.31 

7 318 7.49 378 6.79 533 6.46 561 6.40 

8 307 7.50 306 6.86 374 6.58 431 6.49 

9 306 7.51 289 6.88 325 6.63 346 6.57 

10 309 7.50 288 6.88 312 6.64 319 6.59 

11 307 7.50 282 6.89 303 6.65 305 6.61 

12 307 7.50 288 6.88 295 6.66 299 6.62 

13 305 7.51 287 6.88 298 6.66 297 6.62 

14 307 7.50 285 6.88 298 6.66 296 6.62 

 

Table-A II-3 Uncertainty estimation of the S2 temperature measurements 

z* = 10% z* = 20% z* = 40% z* = 60% 

Radial  
Distance [mm] 

T [K] U [%] T [K] U [%] T [K] U [%] T [K] U [%] 

0 393 6.96 1365 6.33 1405 6.21 1685 6.10 

1 1459 6.19 1465 6.28 1375 6.22 1585 6.14 

2 1443 6.19 1416 6.30 1393 6.21 1484 6.18 

3 1338 6.24 1366 6.33 1416 6.20 1413 6.21 

4 1234 6.29 1380 6.32 1395 6.21 1260 6.27 

5 770 6.56 1085 6.46 1058 6.38 1033 6.39 

6 421 6.92 700 6.72 877 6.49 833 6.52 

7 315 7.09 405 7.04 575 6.74 640 6.67 

8 299 7.12 315 7.19 392 6.96 470 6.86 

9 297 7.13 296 7.23 318 7.08 370 7.00 

10 293 7.13 290 7.24 298 7.12 331 7.06 

11 293 7.13 294 7.23 295 7.13 310 7.10 

12 292 7.14 288 7.24 293 7.13 300 7.12 

13 294 7.13 295 7.23 296 7.13 293 7.13 

14 289 7.14 293 7.23 296 7.13 296 7.13 
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Table-A II-4 Uncertainty estimation of the S3 temperature measurements 

z* = 10% z* = 20% z* = 40% z* = 60% 

Radial  
Distance [mm] 

T [K] U [%] T [K] U [%] T [K] U [%] T [K] U [%] 

0 1425 6.11 1802 6.68 1439 6.01 1556 5.99 

1 1525 6.06 1754 6.69 1511 6.00 1561 5.99 

2 1491 6.08 1735 6.69 1445 6.01 1523 6.00 

3 1547 6.06 1676 6.70 1495 6.00 1476 6.00 

4 1354 6.14 1375 6.75 1385 6.02 1362 6.02 

5 772 6.48 949 6.84 1089 6.06 1069 6.07 

6 390 6.89 530 6.98 794 6.13 770 6.14 

7 308 7.03 342 7.08 544 6.21 538 6.21 

8 300 7.05 306 7.11 402 6.27 408 6.26 

9 296 7.05 303 7.11 333 6.31 342 6.30 

10 297 7.05 300 7.11 311 6.32 317 6.32 

11 295 7.06 298 7.12 298 6.33 304 6.32 

12 295 7.06 301 7.11 293 6.33 299 6.33 

13 293 7.06 300 7.11 295 6.33 298 6.33 

14 293 7.06 300 7.11 295 6.33 298 6.33 

 

Table-A II-5 Uncertainty estimation of the S14 temperature measurements 

z* = 10% z* = 20% z* = 40% z* = 60% 

Radial  
Distance [mm] 

T [K] U [%] T [K] U [%] T [K] U [%] T [K] U [%] 

0 1497 4.64 1470 4.45 1770 4.28 1819 4.26 

1 1610 4.61 1517 4.44 1669 4.30 1741 4.28 

2 1667 4.59 1517 4.44 1621 4.31 1722 4.29 

3 1666 4.59 1523 4.44 1634 4.31 1553 4.33 

4 1559 4.62 1547 4.43 1694 4.29 1416 4.37 

5 995 4.81 1338 4.49 1431 4.36 1135 4.46 

6 491 5.10 877 4.67 985 4.52 833 4.59 

7 335 5.26 492 4.90 650 4.69 623 4.71 

8 307 5.29 337 5.06 431 4.86 488 4.81 

9 304 5.30 305 5.10 343 4.95 412 4.88 

10 301 5.30 295 5.12 310 5.00 363 4.93 

11 305 5.30 291 5.12 302 5.01 336 4.96 

12 303 5.30 295 5.12 300 5.01 321 4.98 

13 305 5.30 290 5.12 300 5.01 317 4.99 

14 302 5.30 295 5.12 300 5.01 310 5.00 
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Table-A II-6 Uncertainty estimation of the S5 temperature measurements 

z* = 10% z* = 20% z* = 40% z* = 60% 

Radial  
Distance [mm] 

T [K] U [%] T [K] U [%] T [K] U [%] T [K] U [%] 

0 467 7.33 1863 6.70 1893 6.70 1661 6.76 

1 1564 6.71 1976 6.67 1869 6.70 1626 6.77 

2 1775 6.65 1980 6.67 1694 6.75 1533 6.80 

3 1621 6.69 1861 6.70 1677 6.76 1327 6.87 

4 1324 6.80 1685 6.75 1422 6.84 1155 6.94 

5 711 7.12 1153 6.95 1171 6.94 917 7.06 

6 369 7.45 616 7.26 797 7.13 701 7.19 

7 309 7.54 380 7.50 552 7.31 512 7.35 

8 298 7.56 327 7.58 408 7.47 405 7.47 

9 295 7.57 303 7.62 347 7.55 346 7.55 

10 296 7.57 299 7.62 326 7.58 315 7.60 

11 294 7.57 298 7.63 312 7.60 304 7.61 

12 296 7.57 295 7.63 310 7.61 298 7.62 

13 294 7.57 295 7.63 312 7.60 294 7.63 

14 295 7.57 295 7.63 305 7.61 295 7.63 

 

Table-A II-7 Uncertainty estimation of the S6 temperature measurements 

z* = 10% z* = 20% z* = 40% z* = 60% 

Radial  
Distance [mm] 

T [K] U [%] T [K] U [%] T [K] U [%] T [K] U [%] 

0 1730 8.41 1994 8.35 1793 8.39 1930 8.36 

1 1678 8.42 1961 8.35 1765 8.40 1915 8.36 

2 1760 8.40 1928 8.36 1592 8.44 1727 8.41 

3 1677 8.42 1799 8.39 1649 8.42 1597 8.44 

4 1432 8.48 1418 8.49 1424 8.49 1353 8.51 

5 690 8.78 860 8.69 1253 8.54 1101 8.59 

6 337 9.08 427 8.98 859 8.69 772 8.74 

7 302 9.13 320 9.10 557 8.87 539 8.89 

8 299 9.13 298 9.13 385 9.03 403 9.01 

9 299 9.13 294 9.14 316 9.11 339 9.08 

10 299 9.13 295 9.14 301 9.13 317 9.11 

11 300 9.13 296 9.13 297 9.13 303 9.12 

12 297 9.13 293 9.14 299 9.13 302 9.13 

13 297 9.13 294 9.14 297 9.13 297 9.13 

14 296 9.13 295 9.14 298 9.13 298 9.13 
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Table-A II-8 Uncertainty estimation of the  
S5M50 temperature measurements 

z* = 10% z* = 20% 

Radial  
Distance [mm] 

T [K] U [%] T [K] U [%] 

0 328 5.32 345 5.30 

1 318 5.33 362 5.29 

2 313 5.34 410 5.24 

3 341 5.31 592 5.12 

4 561 5.14 947 4.96 

5 1071 4.92 1319 4.85 

6 1591 4.79 1579 4.79 

7 1676 4.77 1663 4.77 

8 1528 4.80 1440 4.82 

9 1129 4.90 1062 4.93 

10 688 5.07 774 5.03 

11 446 5.22 555 5.14 

12 341 5.31 446 5.22 

13 308 5.34 391 5.26 

14 300 5.35 341 5.31 

15 296 5.35 330 5.32 
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Table-A II-9 Uncertainty estimation of the  
S5M25 temperature measurements 

z* = 10% z* = 20% z* = 40% z* = 60% 

Radial  
Distance [mm] 

T [K] U [%] T [K] U [%] T [K] U [%] T [K] U [%] 

0 350 8.54 311 8.56 1936 8.33 1718 8.35 

1 401 8.53 715 8.45 1843 8.34 1883 8.34 

2 1806 8.34 1755 8.34 1929 8.33 1849 8.34 

3 1916 8.33 1830 8.34 1771 8.34 2004 8.33 

4 1338 8.38 1580 8.36 1623 8.35 1788 8.34 

5 601 8.48 1059 8.41 1311 8.38 1451 8.37 

6 363 8.54 598 8.48 819 8.44 903 8.43 

7 313 8.56 360 8.54 479 8.50 552 8.49 

8 300 8.56 307 8.56 357 8.54 409 8.52 

9 299 8.56 294 8.56 316 8.56 341 8.55 

10 296 8.56 295 8.56 310 8.56 315 8.56 

11 297 8.56 291 8.57 303 8.56 306 8.56 

12 294 8.56 291 8.57 303 8.56 306 8.56 

13 296 8.56 290 8.57 304 8.56 304 8.56 

14 295 8.56 295 8.56 303 8.56 303 8.56 

 

 

 



APPENDIX III 
 
 

SPECIES CONCENTRATION STANDARD DEVIATION 

The following tables include the standard deviation readings for each of the species 

concentration measurements. Standard deviations were calculated using tools in the Davis 

7.2 software (LaVision, 2007). 

 

Table-A III-1 Standard deviation of species concentration measurements  
for the B1 flame 

  z* = 10% z* = 20% 

Distance 
[mm] 

CO 
[%] 

CO2 

[%] 
H2 

[%] 
H2O
[%] 

O2 

[%] 
N2 

[%] 
CO
[%] 

CO2

[%] 
H2 

[%] 
H2O 
[%] 

O2 

[%] 
N2 

[%] 

0 0.01 0.34 0.09 0.00 0.23 1.02 0.11 0.42 0.10 0.03 0.31 1.03 

1 0.02 0.67 0.11 0.00 0.33 0.96 0.11 0.95 0.20 0.07 0.34 1.02 

2 0.01 0.61 0.07 0.00 0.30 0.82 0.07 0.92 0.08 0.15 0.27 0.99 

3 0.01 0.48 0.13 0.01 0.22 0.97 0.15 0.70 0.14 0.36 0.25 1.22 

4 0.04 0.50 0.06 0.11 0.23 0.86 0.13 0.77 0.08 0.44 0.30 0.95 

5 0.05 0.66 0.07 0.20 0.20 0.92 0.15 0.95 0.06 0.60 0.21 1.15 

6 0.09 0.61 0.19 0.46 0.14 0.99 0.09 1.08 0.17 0.62 0.22 1.19 

7 0.07 0.39 0.18 0.87 0.07 1.18 0.09 0.42 0.22 0.53 0.19 1.08 

8 0.19 0.24 0.11 1.37 0.19 1.15 0.08 0.26 0.17 0.49 0.24 1.05 

9 0.13 0.20 0.12 1.15 0.13 1.00 0.13 0.23 0.23 0.34 0.16 1.42 

10 0.11 0.15 0.07 0.88 0.17 1.01 0.06 0.20 0.06 0.22 0.21 1.45 

11 0.03 0.07 0.18 0.42 0.16 1.30 0.07 0.07 0.28 0.18 0.31 1.44 

12 0.03 0.03 0.16 0.22 0.25 1.07 0.04 0.06 0.24 0.11 0.28 1.25 

13 0.01 0.03 0.12 0.14 0.21 1.01 0.06 0.04 0.15 0.12 0.27 1.45 

14 0.01 0.01 0.14 0.17 0.31 1.00 0.04 0.01 0.20 0.21 0.29 1.77 

15 0.02 0.01 0.09 0.11 0.21 1.44 0.04 0.01 0.11 0.15 0.21 1.39 
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Table-A III-2 Standard deviation of species concentration measurements  
for the S1 flame 

z* = 10% z* = 20% 

Distance 
[mm] 

CO 
[%] 

CO2 

[%] 
H2 

[%] 
H2O 
[%] 

O2 

[%] 
N2 

[%] 
CO
[%] 

CO2

[%] 
H2 

[%] 
H2O
[%] 

O2 

[%] 
N2 

[%] 

0 0.80 0.52 0.03 0.43 0.49 0.57 0.59 0.33 0.21 0.33 0.18 0.70 

1 0.66 0.57 0.06 0.34 0.42 0.86 0.40 0.62 0.17 0.24 0.34 0.76 

2 0.44 0.74 0.16 0.25 0.43 1.00 0.39 0.56 0.09 0.31 0.23 0.94 

3 0.34 0.44 0.23 0.35 0.48 0.95 0.23 0.88 0.10 0.23 0.41 0.85 

4 0.23 0.43 0.05 0.26 0.41 1.26 0.33 0.43 0.04 0.13 0.62 1.16 

5 0.14 0.39 0.09 0.08 0.63 1.17 0.21 0.64 0.01 0.10 0.78 0.92 

6 0.07 0.25 0.03 0.10 0.97 1.41 0.13 0.29 0.04 0.34 0.52 1.02 

7 0.11 0.11 0.04 0.04 0.76 0.99 0.10 0.30 0.03 0.06 0.57 1.00 

8 0.08 0.12 0.03 0.04 0.80 1.42 0.11 0.20 0.03 0.08 0.88 1.17 

9 0.08 0.11 0.03 0.07 1.10 1.31 0.12 0.12 0.04 0.20 1.26 1.09 

10 0.12 0.14 0.02 0.04 0.64 1.03 0.14 0.15 0.02 0.06 0.63 0.95 

11 0.10 0.11 0.01 0.13 0.73 1.20 0.10 0.08 0.02 0.09 0.84 1.23 

12 0.10 0.11 0.02 0.03 1.21 0.99 0.09 0.12 0.02 0.07 0.69 1.41 

13 0.07 0.17 0.04 0.04 1.00 1.01 0.14 0.07 0.02 0.04 0.73 1.15 

14 0.11 0.11 0.03 0.05 0.78 0.88 0.15 0.08 0.01 0.11 0.85 1.02 

z* = 40% z* = 60% 

Distance 
[mm] 

CO 
[%] 

CO2 

[%] 
H2 

[%] 
H2O 
[%] 

O2 

[%] 
N2 

[%] 
CO
[%] 

CO2

[%] 
H2 

[%] 
H2O
[%] 

O2 

[%] 
N2 

[%] 

0 0.29 0.21 0.10 1.24 0.26 0.72 0.18 0.88 0.16 1.00 1.12 0.99 
1 0.25 0.20 0.31 0.31 0.29 0.82 0.23 0.99 0.20 0.52 0.70 1.23 
2 0.28 0.21 0.09 0.35 0.31 0.91 0.41 0.42 0.44 0.76 0.62 0.97 
3 0.30 0.30 0.20 0.41 0.36 1.01 0.30 0.71 0.21 0.72 0.55 0.87 
4 0.18 0.16 0.23 0.72 0.44 0.87 0.36 0.59 0.05 0.37 0.61 1.02 
5 0.26 0.27 0.32 0.31 0.54 0.88 0.23 0.74 0.27 0.66 0.34 1.07 
6 0.18 0.18 0.08 0.78 0.41 0.86 0.15 0.67 0.41 0.79 0.60 0.94 
7 0.15 0.35 0.09 0.27 0.70 1.08 0.16 0.20 0.30 0.40 0.41 1.09 
8 0.19 0.32 0.11 0.56 0.97 1.11 0.26 0.33 0.10 0.37 0.29 1.19 
9 0.15 0.23 0.10 0.16 0.57 1.14 0.17 0.28 0.04 0.14 0.46 0.94 

10 0.09 0.21 0.11 0.37 0.89 1.12 0.15 0.18 0.14 0.28 0.41 1.36 
11 0.14 0.23 0.09 0.68 0.90 1.34 0.08 0.15 0.15 0.10 0.34 1.10 
12 0.13 0.11 0.07 0.17 0.76 1.06 0.10 0.09 0.06 0.18 0.31 1.12 
13 0.09 0.16 0.09 0.19 0.94 0.97 0.07 0.12 0.04 0.05 0.26 1.23 
14 0.10 0.07 0.04 0.12 0.75 1.12 0.09 0.16 0.03 0.12 0.39 1.14 
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Table-A III-3 Standard deviation of species concentration measurements  
for the S2 flame 

  z* = 10% z* = 20% 

Distance 
[mm] 

CO 
[%] 

CO2 

[%] 
H2 

[%] 
H2O
[%] 

O2 

[%] 
N2 

[%] 
CO
[%] 

CO2

[%] 
H2 

[%] 
H2O 
[%] 

O2 

[%] 
N2 

[%] 

0 0.96 0.54 0.67 0.04 0.82 0.90 0.51 0.41 0.59 0.62 0.34 0.87 

1 1.25 0.59 0.59 0.27 0.63 0.59 0.59 0.54 0.25 0.47 0.47 0.85 

2 1.35 0.46 0.77 0.30 0.22 0.55 0.47 0.73 0.21 0.86 0.75 1.42 

3 0.82 0.69 0.58 0.30 0.33 1.00 0.29 0.72 0.45 0.76 0.32 1.25 

4 1.38 0.91 0.67 0.98 0.30 1.62 0.19 0.84 0.32 0.34 0.46 0.98 

5 0.23 0.36 0.44 0.58 0.34 0.92 0.18 0.67 0.27 0.21 0.64 1.15 

6 0.33 0.58 0.15 0.39 0.82 1.03 0.19 0.24 0.17 0.11 0.74 0.76 

7 0.17 0.40 0.15 0.41 1.09 1.49 0.19 0.19 0.16 0.22 0.89 1.62 

8 0.13 0.29 0.22 0.14 0.65 1.08 0.26 0.11 0.13 0.16 1.61 1.75 

9 0.14 0.13 0.14 0.10 0.86 1.35 0.27 0.23 0.08 0.22 0.91 0.75 

10 0.09 0.20 0.12 0.15 1.29 1.46 0.11 0.21 0.26 0.29 1.17 1.60 

11 0.14 0.20 0.05 0.15 0.97 1.48 0.22 0.12 0.13 0.25 0.75 1.38 

12 0.11 0.22 0.09 0.27 0.81 0.88 0.14 0.10 0.11 0.12 0.66 1.17 

13 0.07 0.07 0.14 0.24 1.04 1.22 0.17 0.12 0.17 0.23 0.96 1.70 

14 0.18 0.13 0.10 0.17 0.67 1.54 0.17 0.20 0.16 0.10 1.00 1.33 

z* = 40% z* = 60% 

Distance 
[mm] 

CO 
[%] 

CO2 

[%] 
H2 

[%] 
H2O
[%] 

O2 

[%] 
N2 

[%] 
CO
[%] 

CO2

[%] 
H2 

[%] 
H2O 
[%] 

O2 

[%] 
N2 

[%] 

0 0.46 0.73 0.63 0.33 0.31 1.63 0.11 0.84 0.33 0.75 0.11 1.77 
1 0.25 0.33 0.24 0.21 0.38 1.31 0.41 0.35 0.54 0.27 0.30 1.38 
2 0.48 0.74 0.43 0.40 0.47 0.76 0.30 0.34 0.15 0.45 0.24 1.02 
3 0.29 0.58 0.78 0.72 0.31 0.76 0.66 0.50 0.15 0.83 0.41 1.65 
4 0.53 0.72 0.16 0.63 0.42 1.03 0.22 0.85 0.22 0.39 0.46 1.11 
5 0.16 0.45 0.47 0.77 0.37 1.62 0.20 0.45 0.05 0.65 0.51 1.23 
6 0.30 0.40 0.20 0.20 0.56 2.02 0.29 0.37 0.09 0.29 0.76 2.15 
7 0.19 0.28 0.24 0.42 0.63 1.04 0.22 0.45 0.05 0.31 1.09 0.87 
8 0.13 0.35 0.13 0.35 0.96 1.98 0.12 0.18 0.03 0.15 0.73 1.23 
9 0.16 0.26 0.20 0.20 0.97 1.81 0.29 0.10 0.07 0.18 0.80 1.55 

10 0.12 0.14 0.13 0.19 0.76 1.23 0.10 0.15 0.06 0.17 0.46 1.00 
11 0.27 0.15 0.14 0.18 0.77 1.57 0.09 0.19 0.04 0.23 0.52 0.94 
12 0.10 0.08 0.18 0.23 1.25 1.45 0.16 0.20 0.04 0.13 0.69 1.15 
13 0.32 0.11 0.10 0.14 1.04 0.86 0.15 0.24 0.01 0.11 1.22 1.27 
14 0.11 0.04 0.06 0.11 0.89 1.53 0.21 0.09 0.03 0.24 0.81 1.39 
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Table-A III-4 Standard deviation of species concentration measurements  
for the S3 flame 

  z* = 10% z* = 20% 

Distance 
[mm] 

CO 
[%] 

CO2 

[%] 
H2 

[%] 
H2O 
[%] 

O2 

[%] 
N2 

[%] 
CO
[%] 

CO2

[%] 
H2 

[%] 
H2O
[%] 

O2 

[%] 
N2 

[%] 

0 0.63 1.02 0.82 0.79 0.08 0.85 0.65 0.56 0.44 0.71 0.12 1.12 

1 0.60 0.68 1.20 0.77 0.17 1.13 0.40 0.58 0.66 1.13 0.08 1.24 

2 0.84 1.10 1.13 0.73 0.10 0.51 1.54 0.76 0.62 0.98 0.12 0.70 

3 0.58 1.13 0.36 0.89 0.18 0.70 1.15 1.03 0.36 0.77 0.10 1.33 

4 0.52 1.04 0.30 1.02 0.29 0.81 1.33 1.18 0.30 1.43 0.29 1.41 

5 0.16 0.80 0.23 0.48 0.39 1.64 0.33 1.37 0.23 1.24 0.70 1.28 

6 0.20 0.54 0.02 0.84 0.99 1.04 0.44 1.03 0.02 0.56 1.04 1.24 

7 0.23 0.29 0.09 0.24 1.44 1.06 0.26 0.75 0.09 0.49 0.64 1.19 

8 0.13 0.35 0.04 0.20 1.24 1.51 0.10 0.19 0.04 0.25 1.04 0.93 

9 0.16 0.08 0.01 0.22 0.78 0.97 0.21 0.09 0.01 0.24 1.17 1.36 

10 0.10 0.20 0.02 0.17 0.77 0.90 0.10 0.13 0.02 0.19 1.12 1.93 

11 0.10 0.15 0.02 0.31 1.23 1.41 0.19 0.25 0.02 0.13 1.10 1.36 

12 0.11 0.17 0.04 0.29 0.64 1.10 0.18 0.11 0.04 0.30 1.07 1.24 

13 0.24 0.12 0.03 0.16 0.86 1.22 0.27 0.06 0.03 0.19 1.02 1.49 

14 0.20 0.15 0.01 0.21 1.09 1.97 0.11 0.11 0.01 0.13 0.86 1.49 

z* = 40% z* = 60% 

Distance 
[mm] 

CO 
[%] 

CO2 

[%] 
H2 

[%] 
H2O 
[%] 

O2 

[%] 
N2 

[%] 
CO
[%] 

CO2

[%] 
H2 

[%] 
H2O
[%] 

O2 

[%] 
N2 

[%] 

0 0.61 0.41 0.95 0.51 0.19 0.97 0.33 0.34 0.21 0.65 0.26 1.13 
1 0.92 0.72 1.10 0.44 0.14 0.83 0.34 0.81 0.57 0.26 0.12 1.34 
2 0.40 0.74 0.48 0.33 0.12 1.17 0.22 1.14 0.11 0.48 0.27 1.07 
3 0.58 0.80 0.36 0.85 0.21 1.10 0.31 0.83 0.02 0.28 0.42 1.29 
4 0.15 0.88 0.30 0.44 0.34 1.37 0.34 1.11 0.05 0.24 0.30 1.62 
5 0.39 0.56 0.23 0.46 0.57 1.72 0.28 0.31 0.07 0.48 0.44 1.75 
6 0.11 0.23 0.02 0.55 0.77 1.03 0.17 0.55 0.05 0.21 0.67 1.05 
7 0.04 0.27 0.03 0.37 0.74 1.35 0.37 0.53 0.04 0.26 0.92 1.11 
8 0.35 0.31 0.01 0.15 0.99 0.82 0.13 0.25 0.06 0.34 0.70 0.97 
9 0.29 0.09 0.02 0.46 1.03 1.70 0.29 0.14 0.03 0.15 0.78 1.68 

10 0.21 0.03 0.01 0.51 1.09 1.29 0.09 0.08 0.06 0.24 0.52 0.91 
11 0.15 0.05 0.02 0.45 0.68 1.53 0.14 0.13 0.04 0.22 0.86 0.98 
12 0.12 0.05 0.00 0.40 1.44 1.30 0.07 0.18 0.01 0.15 0.77 1.52 
13 0.11 0.04 0.01 0.12 0.75 1.33 0.12 0.16 0.01 0.40 0.60 0.97 
14 0.07 0.08 0.01 0.12 0.73 0.85 0.14 0.04 0.01 0.17 0.64 1.03 
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Table-A III-5 Standard deviation of species concentration measurements  
for the S14 flame 

  z* = 10% z* = 20% 

Distance 
[mm] 

CO 
[%] 

CO2 

[%] 
H2 

[%] 
H2O
[%] 

O2 

[%] 
N2 

[%] 
CO
[%] 

CO2

[%] 
H2 

[%] 
H2O 
[%] 

O2 

[%] 
N2 

[%] 

0 0.54 0.41 0.41 0.31 0.23 0.90 0.62 0.65 0.32 0.49 0.22 1.03 

1 0.57 0.45 0.22 0.37 0.22 1.02 0.72 0.56 0.29 0.19 0.19 0.73 

2 0.64 0.49 0.42 0.32 0.24 0.87 0.34 0.57 0.45 0.35 0.53 1.12 

3 0.40 0.72 0.61 0.38 0.22 1.43 0.86 0.28 0.35 0.19 0.21 1.06 

4 0.20 0.42 0.40 0.27 0.34 0.81 0.24 1.04 0.12 0.65 0.31 2.11 

5 0.33 0.43 0.37 0.36 0.75 1.62 0.82 0.51 0.22 0.35 0.55 1.20 

6 0.34 0.49 0.11 0.19 1.08 0.91 0.54 0.50 0.45 0.59 0.37 1.13 

7 0.40 0.48 0.07 0.24 0.70 1.77 0.10 0.69 0.04 0.23 0.67 0.97 

8 0.16 0.18 0.11 0.27 0.64 1.03 0.10 0.26 0.13 0.26 0.64 1.45 

9 0.18 0.19 0.08 0.21 0.73 1.05 0.13 0.26 0.11 0.14 0.90 1.18 

10 0.09 0.21 0.04 0.14 1.02 0.73 0.10 0.14 0.04 0.24 0.75 1.18 

11 0.07 0.23 0.04 0.09 0.67 0.81 0.12 0.24 0.08 0.19 1.04 1.41 

12 0.21 0.15 0.03 0.18 1.00 2.20 0.08 0.20 0.04 0.22 0.93 1.35 

13 0.08 0.18 0.07 0.15 1.07 1.40 0.11 0.15 0.05 0.09 1.38 1.99 

14 0.06 0.16 0.10 0.14 0.66 1.05 0.28 0.15 0.16 0.20 0.78 1.13 

z* = 40% z* = 60% 

Distance 
[mm] 

CO 
[%] 

CO2 

[%] 
H2 

[%] 
H2O
[%] 

O2 

[%] 
N2 

[%] 
CO
[%] 

CO2

[%] 
H2 

[%] 
H2O 
[%] 

O2 

[%] 
N2 

[%] 

0 0.61 0.55 0.21 0.24 0.26 1.10 0.39 0.61 0.10 0.24 0.26 1.21 
1 0.11 0.41 0.21 0.19 0.28 1.00 0.21 0.33 0.19 0.35 0.17 1.22 
2 0.44 0.41 0.48 0.19 0.44 1.06 0.31 0.43 0.07 0.37 0.26 1.04 
3 0.22 0.71 0.30 0.29 0.33 1.27 0.41 0.60 0.04 0.52 0.39 0.96 
4 0.23 0.63 0.15 0.30 0.37 0.71 0.69 0.91 0.05 0.46 0.62 1.43 
5 0.26 0.30 0.09 0.41 0.54 1.17 0.37 1.68 0.08 0.32 0.59 1.52 
6 0.37 0.52 0.13 0.42 0.82 1.11 0.55 0.75 0.03 0.36 1.06 0.82 
7 0.46 0.69 0.15 0.29 0.86 1.04 0.21 0.27 0.03 0.33 1.25 1.28 
8 0.26 0.17 0.23 0.15 0.90 1.03 0.10 0.13 0.04 0.30 1.10 0.89 
9 0.06 0.12 0.09 0.34 1.38 1.79 0.11 0.31 0.02 0.18 0.78 1.09 

10 0.08 0.14 0.06 0.18 0.84 1.04 0.18 0.10 0.03 0.19 0.89 1.29 
11 0.23 0.13 0.08 0.33 0.49 0.97 0.16 0.13 0.01 0.19 1.14 1.70 
12 0.12 0.29 0.06 0.21 0.62 1.63 0.13 0.16 0.01 0.15 0.82 0.83 
13 0.08 0.12 0.14 0.24 0.89 1.18 0.08 0.23 0.03 0.16 1.03 1.21 
14 0.25 0.19 0.11 0.21 0.67 1.74 0.17 0.21 0.05 0.17 0.86 1.53 
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Table-A III-6 Standard deviation of species concentration measurements  
for the S5 flame 

  z* = 10% z* = 20% 

Distance 
[mm] 

CO 
[%] 

CO2 

[%] 
CH4 

[%] 
H2 

[%] 
H2O 
[%] 

O2 

[%] 
N2 

[%] 
CO
[%] 

CO2

[%] 
CH4

[%] 
H2 

[%] 
H2O 
[%] 

O2 

[%] 
N2 

[%] 

0 0.63 0.57 0.04 0.15 0.13 0.82 0.82 0.67 0.47 0.08 0.40 0.43 0.45 0.54 

1 0.41 0.22 0.23 0.17 0.17 0.53 1.00 0.45 0.54 0.14 0.31 0.55 0.22 1.18 

2 0.49 0.72 0.05 0.45 0.23 0.39 0.91 0.40 0.43 0.11 0.53 0.20 0.18 0.63 

3 0.74 0.87 0.31 0.13 0.24 0.29 0.96 0.74 0.73 0.15 0.36 0.23 0.17 1.42 

4 0.62 0.89 0.12 0.28 0.64 0.49 0.82 0.30 1.18 0.26 0.24 0.22 0.10 1.18 

5 0.38 0.43 0.05 0.10 0.25 0.48 0.89 0.37 0.82 0.14 0.12 0.42 0.29 1.78 

6 0.22 0.22 0.04 0.09 0.24 0.94 1.26 0.54 0.45 0.20 0.13 0.15 0.36 1.97 

7 0.14 0.27 0.07 0.07 0.33 0.81 1.64 0.23 1.11 0.19 0.13 0.45 0.46 1.25 

8 0.12 0.25 0.02 0.07 0.28 0.59 0.91 0.22 0.36 0.13 0.12 0.37 0.45 0.92 

9 0.15 0.13 0.04 0.01 0.30 0.95 1.08 0.32 0.37 0.03 0.02 0.33 0.48 1.38 

10 0.11 0.21 0.03 0.07 0.25 1.57 1.36 0.07 0.32 0.04 0.02 0.22 0.89 1.32 

11 0.20 0.20 0.03 0.05 0.17 0.66 1.60 0.09 0.37 0.09 0.03 0.13 0.98 1.58 

12 0.11 0.12 0.02 0.09 0.20 1.13 0.90 0.12 0.20 0.03 0.04 0.15 1.26 1.47 

13 0.14 0.17 0.05 0.07 0.08 1.07 1.32 0.36 0.32 0.04 0.03 0.21 0.77 1.32 

14 0.14 0.16 0.02 0.04 0.19 1.00 1.02 0.08 0.16 0.01 0.02 0.07 1.00 1.93 

z* = 40% z* = 60% 

Distance 
[mm] 

CO 
[%] 

CO2 

[%] 
CH4 

[%] 
H2 

[%] 
H2O 
[%] 

O2 

[%] 
N2 

[%] 
CO
[%] 

CO2

[%] 
CH4

[%] 
H2 

[%] 
H2O 
[%] 

O2 

[%] 
N2 

[%] 

0 0.70 0.40 0.09 0.05 0.41 0.29 0.83 0.19 0.06 0.03 0.08 0.19 0.39 1.33 
1 0.28 0.79 0.09 0.07 0.17 0.30 1.11 0.20 0.46 0.09 0.14 0.27 0.29 0.86 
2 0.32 0.50 0.13 0.05 0.34 0.49 1.03 0.46 0.55 0.03 0.11 0.18 0.51 0.83 
3 0.51 0.68 0.10 0.14 0.46 0.45 0.83 0.50 0.31 0.18 0.23 0.25 0.48 1.86 
4 0.33 0.62 0.05 0.05 0.54 0.41 0.91 0.23 0.52 0.07 0.06 0.21 0.35 1.16 
5 0.47 0.83 0.04 0.20 0.22 0.28 1.66 0.23 0.21 0.15 0.06 0.37 0.89 1.43 
6 0.40 0.61 0.06 0.06 0.31 0.55 0.89 0.06 0.35 0.07 0.02 0.29 0.56 1.59 
7 0.14 0.52 0.06 0.10 0.18 0.89 1.30 0.26 0.26 0.08 0.05 0.26 0.38 1.44 
8 0.18 0.21 0.03 0.08 0.28 1.76 1.80 0.25 0.22 0.07 0.05 0.27 0.56 0.99 
9 0.19 0.13 0.01 0.10 0.20 0.67 0.93 0.07 0.27 0.01 0.04 0.21 1.17 1.48 

10 0.27 0.23 0.05 0.08 0.24 0.91 1.12 0.26 0.43 0.02 0.04 0.09 1.33 1.17 
11 0.14 0.09 0.04 0.02 0.10 1.06 0.99 0.18 0.10 0.01 0.05 0.19 0.67 1.23 
12 0.11 0.28 0.06 0.10 0.11 0.81 1.95 0.12 0.22 0.05 0.02 0.08 0.61 1.22 
13 0.09 0.19 0.03 0.05 0.13 0.67 1.45 0.19 0.18 0.01 0.08 0.20 0.78 1.68 
14 0.15 0.18 0.01 0.09 0.24 0.76 1.11 0.16 0.13 0.03 0.06 0.17 1.35 1.25 
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Table-A III-7 Standard deviation of species concentration measurements  
for the S6 flame 

  z* = 10% z* = 20% 

Distance 
[mm] 

CO 
[%] 

CO2 

[%] 
CH4 

[%] 
H2 

[%] 
H2O
[%] 

O2 

[%] 
N2 

[%] 
CO
[%] 

CO2

[%] 
CH4 

[%] 
H2 

[%] 
H2O
[%] 

O2 

[%] 
N2 

[%] 

0 0.86 0.71 0.02 0.16 0.18 0.63 0.72 0.76 0.88 0.10 0.35 0.44 0.12 1.61 

1 0.61 0.58 0.10 0.34 0.40 0.24 0.71 1.63 0.44 0.18 0.06 0.55 0.10 0.79 

2 1.03 1.16 0.17 0.29 0.40 0.33 0.92 0.58 0.55 0.18 0.25 0.19 0.18 0.83 

3 0.51 0.77 0.11 0.32 0.43 0.39 1.08 0.20 0.79 0.18 0.11 0.62 0.19 0.93 

4 0.26 0.33 0.06 0.20 0.45 0.60 1.25 0.45 0.82 0.19 0.10 0.79 0.21 1.87 

5 0.18 0.85 0.06 0.06 0.48 0.89 1.41 0.29 0.73 0.20 0.10 0.38 0.86 0.68 

6 0.23 0.43 0.05 0.12 0.34 0.78 1.45 0.50 0.26 0.15 0.03 0.27 0.98 1.42 

7 0.27 0.40 0.04 0.07 0.15 1.02 1.05 0.12 0.35 0.12 0.07 0.45 0.64 1.15 

8 0.08 0.12 0.06 0.02 0.13 0.64 1.46 0.27 0.22 0.06 0.06 0.38 0.94 1.74 

9 0.12 0.10 0.02 0.01 0.16 1.15 1.12 0.11 0.37 0.06 0.03 0.18 1.39 1.38 

10 0.09 0.14 0.06 0.02 0.12 1.76 1.02 0.06 0.19 0.03 0.05 0.37 1.20 1.09 

11 0.14 0.10 0.01 0.02 0.23 1.01 1.15 0.12 0.31 0.03 0.05 0.18 0.93 1.75 

12 0.12 0.12 0.06 0.01 0.22 0.95 1.35 0.28 0.11 0.02 0.03 0.26 0.70 1.65 

13 0.18 0.27 0.05 0.04 0.12 1.35 1.05 0.12 0.15 0.02 0.04 0.21 1.17 1.27 

14 0.17 0.20 0.02 0.02 0.22 0.74 1.28 0.09 0.26 0.01 0.04 0.15 0.53 1.26 

z* = 40% z* = 60% 

Distance 
[mm] 

CO 
[%] 

CO2 

[%] 
CH4 

[%] 
H2 

[%] 
H2O
[%] 

O2 

[%] 
N2 

[%] 
CO
[%] 

CO2

[%] 
CH4 

[%] 
H2 

[%] 
H2O
[%] 

O2 

[%] 
N2 

[%] 

0 0.55 0.67 0.13 0.07 0.21 0.22 0.83 0.58 0.55 0.12 0.36 0.27 0.27 0.99 
1 0.29 0.77 0.07 0.06 0.36 0.23 1.42 0.67 0.51 0.08 0.31 0.23 0.36 0.90 
2 0.39 0.75 0.02 0.06 0.23 0.28 1.05 0.48 0.46 0.15 0.09 0.33 0.18 0.53 
3 0.38 0.92 0.12 0.26 0.59 0.15 1.23 0.48 1.07 0.14 0.20 0.35 0.12 0.61 
4 0.28 0.44 0.24 0.18 0.70 0.34 1.35 0.20 0.76 0.15 0.05 0.36 0.50 0.46 
5 0.22 0.75 0.16 0.10 0.34 0.82 1.01 0.64 0.55 0.16 0.21 0.39 0.65 0.80 
6 0.34 0.38 0.06 0.06 0.26 0.95 1.17 0.25 0.47 0.06 0.12 0.43 0.43 1.27 
7 0.17 0.33 0.04 0.21 0.30 0.81 0.98 0.35 0.21 0.12 0.04 0.49 0.55 0.80 
8 0.26 0.20 0.06 0.11 0.26 1.15 0.86 0.07 0.23 0.04 0.07 0.42 1.05 1.22 
9 0.17 0.22 0.01 0.08 0.28 0.86 1.41 0.16 0.28 0.02 0.03 0.13 0.84 1.47 

10 0.13 0.18 0.02 0.11 0.18 1.03 0.94 0.21 0.31 0.02 0.04 0.13 0.74 0.79 
11 0.28 0.22 0.07 0.06 0.33 1.25 1.25 0.27 0.23 0.04 0.03 0.22 0.62 0.52 
12 0.21 0.26 0.03 0.05 0.13 0.54 0.88 0.14 0.22 0.02 0.01 0.23 0.72 1.50 
13 0.10 0.11 0.03 0.05 0.31 1.59 1.15 0.08 0.10 0.03 0.03 0.17 0.72 0.96 
14 0.19 0.19 0.03 0.05 0.19 0.67 0.78 0.32 0.17 0.01 0.06 0.17 0.88 1.71 
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Table-A III-8 Standard deviation of species concentration measurements  
for the S5M50 flame 

  z* = 10% z* = 20% 

Distance 
[mm] 

CO 
[%] 

CO2 

[%] 
CH4

[%] 
H2 

[%] 
H2O 
[%] 

O2 

[%] 
N2 

[%] 
CO
[%] 

CO2

[%] 
CH4

[%] 
H2 

[%] 
H2O 
[%] 

O2 

[%] 
N2 

[%] 

0 0.20 0.06 0.26 0.15 0.04 0.85 0.55 0.23 0.16 0.08 0.11 0.04 0.41 0.86 

1 0.30 0.18 0.16 0.22 0.07 0.80 0.48 0.51 0.20 0.55 0.15 0.07 0.50 0.95 

2 0.33 0.25 0.84 0.33 0.19 0.47 0.91 0.64 0.16 0.12 0.35 0.16 0.89 0.76 

3 0.53 0.48 0.91 0.11 0.32 0.24 0.83 0.77 0.18 0.50 0.06 0.10 0.59 0.82 

4 0.69 0.22 0.20 0.05 0.38 0.06 0.55 0.91 0.33 0.16 0.25 0.17 0.19 0.54 

5 0.15 0.21 0.04 0.01 0.29 0.09 0.77 0.83 0.40 0.23 0.07 0.31 0.22 0.98 

6 0.31 0.45 0.02 0.04 0.54 0.11 0.60 0.25 0.51 0.24 0.08 0.60 0.12 0.90 

7 0.08 0.34 0.01 0.04 0.25 0.38 1.03 0.61 0.27 0.13 0.12 0.61 0.16 0.88 

8 0.11 0.11 0.01 0.02 0.64 0.45 1.05 0.58 0.54 0.07 0.16 0.24 0.41 0.49 

9 0.11 0.20 0.01 0.01 0.34 0.46 0.93 0.56 0.51 0.05 0.25 0.41 0.42 0.82 

10 0.03 0.04 0.01 0.01 0.28 0.67 1.09 0.20 0.19 0.02 0.04 0.16 0.33 1.15 

11 0.02 0.07 0.01 0.03 0.19 0.65 1.02 0.27 0.21 0.02 0.13 0.14 0.86 1.36 

12 0.05 0.06 0.00 0.01 0.21 0.64 1.26 0.59 0.19 0.01 0.04 0.25 0.91 1.01 

13 0.02 0.05 0.00 0.01 0.12 0.60 0.74 0.24 0.16 0.02 0.01 0.14 0.59 1.05 

14 0.03 0.05 0.00 0.01 0.11 0.50 0.62 0.16 0.14 0.02 0.04 0.28 0.65 1.00 

15 0.02 0.04 0.01 0.02 0.27 0.77 0.53 0.06 0.03 0.01 0.02 0.11 0.33 0.81 
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Table-A III-9 Standard deviation of species concentration measurements  
for the S5M25 flame 

  z* = 10% z* = 20% 

Distance 
[mm] 

CO 
[%] 

CO2 

[%] 
CH4 

[%] 
H2 

[%] 
H2O
[%] 

O2 

[%] 
N2 

[%] 
CO
[%] 

CO2

[%] 
CH4 

[%] 
H2 

[%] 
H2O
[%] 

O2 

[%] 
N2 

[%] 

0 0.61 0.61 0.46 0.13 0.02 0.69 0.44 0.56 0.32 0.07 0.25 0.28 0.13 0.67 

1 0.87 0.47 0.38 0.12 0.08 0.62 0.60 0.60 0.52 0.18 0.17 0.49 0.07 0.96 

2 0.56 0.80 0.52 0.18 0.10 0.90 0.37 0.96 0.66 0.24 0.10 0.39 0.07 0.86 

3 0.62 1.09 0.49 0.44 0.46 0.13 0.54 0.62 0.66 0.13 0.09 0.30 0.05 0.60 

4 0.68 0.72 0.33 0.17 0.38 0.12 1.26 0.65 0.33 0.08 0.04 0.21 0.10 1.09 

5 0.48 0.70 0.03 0.26 0.49 0.71 1.04 0.40 0.12 0.04 0.03 0.74 0.26 0.73 

6 0.49 0.86 0.16 0.08 0.26 0.85 0.72 0.17 0.64 0.01 0.02 0.61 0.42 1.16 

7 0.23 0.53 0.03 0.05 0.32 0.76 0.73 0.23 0.38 0.01 0.08 0.16 0.41 0.79 

8 0.17 0.19 0.09 0.08 0.22 0.56 1.71 0.15 0.57 0.02 0.11 0.23 0.62 0.81 

9 0.14 0.13 0.02 0.04 0.18 0.62 1.06 0.09 0.26 0.03 0.02 0.28 0.78 0.95 

10 0.16 0.12 0.02 0.03 0.20 0.77 1.11 0.13 0.16 0.01 0.03 0.14 0.54 0.86 

11 0.11 0.10 0.02 0.02 0.14 0.35 1.14 0.13 0.32 0.01 0.03 0.18 0.83 0.46 

12 0.09 0.09 0.01 0.02 0.20 0.52 0.76 0.16 0.12 0.02 0.04 0.24 0.55 0.65 

13 0.17 0.10 0.02 0.03 0.12 0.22 1.26 0.09 0.10 0.02 0.02 0.20 0.49 0.55 

14 0.19 0.15 0.02 0.01 0.19 0.80 1.39 0.07 0.17 0.01 0.02 0.14 0.57 0.76 

z* = 40% z* = 60% 

Distance 
[mm] 

CO 
[%] 

CO2 

[%] 
CH4 

[%] 
H2 

[%] 
H2O
[%] 

O2 

[%] 
N2 

[%] 
CO
[%] 

CO2

[%] 
CH4 

[%] 
H2 

[%] 
H2O
[%] 

O2 

[%] 
N2 

[%] 

0 0.51 0.56 0.10 0.19 0.54 0.16 0.53 0.35 0.34 0.04 0.11 0.31 0.36 1.20 
1 0.38 0.53 0.06 0.26 0.27 0.09 0.97 0.28 0.77 0.10 0.04 0.30 0.22 0.64 
2 0.34 0.37 0.08 0.22 0.18 0.09 1.05 0.31 0.24 0.13 0.22 0.48 0.23 0.68 
3 0.16 0.80 0.17 0.23 0.45 0.09 0.56 0.15 0.53 0.18 0.18 0.51 0.34 0.79 
4 0.15 0.64 0.19 0.23 0.42 0.15 0.96 0.30 0.33 0.08 0.22 0.38 0.27 1.07 
5 0.24 0.59 0.04 0.13 0.27 0.43 1.19 0.41 1.01 0.03 0.19 0.70 0.26 0.80 
6 0.30 0.36 0.09 0.11 0.45 0.42 1.14 0.16 0.67 0.06 0.10 0.28 0.60 1.15 
7 0.14 0.41 0.02 0.09 0.22 0.61 1.02 0.38 0.38 0.05 0.10 0.29 0.86 1.33 
8 0.21 0.30 0.03 0.03 0.17 0.68 1.22 0.11 0.40 0.03 0.05 0.22 0.63 0.79 
9 0.11 0.31 0.04 0.02 0.24 0.69 1.10 0.24 0.09 0.01 0.05 0.23 0.83 1.26 

10 0.17 0.20 0.01 0.08 0.39 0.61 1.25 0.16 0.19 0.02 0.03 0.29 0.69 1.06 
11 0.12 0.26 0.02 0.05 0.21 0.75 1.37 0.14 0.16 0.05 0.04 0.21 0.45 0.64 
12 0.07 0.17 0.02 0.04 0.40 0.48 0.83 0.12 0.13 0.01 0.01 0.16 0.56 0.96 
13 0.15 0.28 0.01 0.03 0.14 0.78 0.75 0.14 0.26 0.04 0.02 0.19 0.43 0.88 
14 0.08 0.19 0.04 0.01 0.18 0.73 0.84 0.09 0.13 0.03 0.03 0.25 0.39 0.56 

 





APPENDIX IV 

LAMINAR FLAME SPEED SIMULATION 

The following is a collection of data concerning laminar flame speed from the project’s 

original scope. The numerical and experimental investigation of laminar flame speed of the 

ten fuels was dropped from the study after these results were obtained. Numerical 

combustion simulations were conducted with CHEMKIN III, a software that solves complex 

chemical kinetics by using mechanisms of elementary chemical reactions and rate constant 

expressions. The Gri-MECH 3.0 mechanism, the H2-CO mechanism, and the Rolls Royce 

Canada in-house mechanism were used to solve the chemical kinetics problems. The H2-CO 

mechanism was used for syngas mixtures without CH4 addition, whereas the Gri-MECH 3.0 

mixture was used for all mixtures containing CH4. 

 

 

Figure-A IV- 1 Laminar flame speed with respect to equivalence ratio of B1 flame 
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Figure-A IV- 2 Laminar flame speed with respect to equivalence ratio of S1 flame 
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Figure-A IV- 3 Laminar flame speed with respect to equivalence ratio of S2 flame 
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Figure-A IV- 4 Laminar flame speed with respect to equivalence ratio of S3 flame 
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Figure-A IV- 5 Laminar flame speed with respect to equivalence ratio of S14 flame 

 

 

  



110 

 

Figure-A IV- 6 Laminar flame speed with respect to equivalence ratio of S4 flame 
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Figure-A IV- 7 Laminar flame speed with respect to equivalence ratio of S5 flame 
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Figure-A IV- 8 Laminar flame speed with respect to equivalence ratio of S6 flame 
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Figure-A IV- 9 Laminar flame speed with respect to equivalence ratio of S5M25 flame 
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Figure-A IV- 10 Laminar flame speed with respect to equivalence ratio of S5M50 flame 
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