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ABSTRACT

Facial captures are widely used in many access control applications to authenticate individuals,

and grant access to protected information and locations. For instance, in passport or smart card

applications, facial images must be secured during the enrollment process, prior to exchange

and storage. Digital watermarking may be used to assure integrity and authenticity of these

facial images against unauthorized manipulations, through fragile and robust watermarking,

respectively. It can also combine other biometric traits to be embedded as invisible watermarks

in these facial captures to improve individual verification.

Evolutionary Computation (EC) techniques have been proposed to optimize watermark em-

bedding parameters in Intelligent Watermarking (IW) literature. The goal of such optimization

problem is to find the trade-off between conflicting objectives of watermark quality and robust-

ness. Securing streams of high-resolution biometric facial captures results in a large number of

optimization problems of high dimension search space.

For homogeneous image streams, the optimal solutions for one image block can be utilized for

other image blocks having the same texture features. Therefore, the computational complexity

for handling a stream of high-resolution facial captures is significantly reduced by recalling

such solutions from an associative memory instead of re-optimizing the whole facial capture

image. In this thesis, an associative memory is proposed to store the previously calculated so-

lutions for different categories of texture using the optimization results of the whole image for

few training facial images. A multi-hypothesis approach is adopted to store in the associative

memory the solutions for different clustering resolutions (number of blocks clusters based on

texture features), and finally select the optimal clustering resolution based on the watermarking

metrics for each facial image during generalization. This approach was verified using streams

of facial captures from PUT database (Kasinski et al., 2008). It was compared against a base-

line system representing traditional IW methods with full optimization for all stream images.

Both proposed and baseline systems are compared with respect to quality of solution produced

and the computational complexity measured in fitness evaluations. The proposed approach

resulted in a decrease of 95.5% in computational burden with little impact in watermarking

performance for a stream of 198 facial images. The proposed framework Blockwise Multi-

Resolution Clustering (BMRC) has been published in Machine Vision and Applications (Rabil

et al., 2013a)

Although the stream of high dimensionality optimization problems are replaced by few train-

ing optimizations, and then recalls from an associative memory storing the training artifacts.

Optimization problems with high dimensionality search space are challenging, complex, and

can reach up to dimensionality of 49k variables represented using 293k bits for high-resolution
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facial images. In this thesis, this large dimensionality problem is decomposed into smaller

problems representing image blocks which resolves convergence problems with handling the

larger problem. Local watermarking metrics are used in cooperative coevolution on block level

to reach the overall solution. The elitism mechanism is modified such that the blocks of higher

local watermarking metrics are fetched across all candidate solutions for each position, and

concatenated together to form the elite candidate solutions. This proposed approach resulted

in resolving premature convergence for traditional EC methods, and thus 17% improvement on

the watermarking fitness is accomplished for facial images of resolution 2048×1536. This im-

proved fitness is achieved using few iterations implying optimization speedup. The proposed

algorithm Blockwise Coevolutionary Genetic Algorithm (BCGA) has been published in Expert

Systems with Applications (Rabil et al., 2013c).

The concepts and frameworks presented in this thesis can be generalized on any stream of op-

timization problems with large search space, where the candidate solutions consist of smaller

granularity problems solutions that affect the overall solution. The challenge for applying this

approach is finding the significant feature for this smaller granularity that affects the overall

optimization problem. In this thesis the texture features of smaller granularity blocks repre-

sented in the candidate solutions are affecting the watermarking fitness optimization of the

whole image. Also the local metrics of these smaller granularity problems are indicating the

fitness produced for the larger problem.

Another proposed application for this thesis is to embed offline signature features as invisible

watermark embedded in facial captures in passports to be used for individual verification during

border crossing. The offline signature is captured from forms signed at borders and verified

against the embedded features. The individual verification relies on one physical biometric trait

represented by facial captures and another behavioral trait represented by offline signature.

Keywords: Digital Watermarking, Image Processing, Intelligent Watermarking, Evolution-

ary Computing, Coevolution, Clustering, Biometrics, Face Recognition
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RÉSUMÉ

Les photographies de visage sont grandement utilisées dans de nombreux postes de contrôle

d’accès dans le but d’authentifier des individus, et donner l’accès à des lieux ou informations

protégées. Par exemple, pour des passeports ou cartes d’accès intelligentes, de nombreuses

photographies de visage doivent être sécurisées pendant la phase d’enregistrement, avant le

stockage et la diffusion. Le tatouage numérique peut-être utilisé pour assurer l’intégrité et

l’authenticité de ces images vis à vis de manipulations non autorisées, en utilisant des tech-

niques de tatouage respectivement fragiles et robustes. D’autres traits biométriques peuvent

aussi y être combinés à ces images, sous la forme de filigranes invisibles, pour améliorer la

sécurité des vérifications d’identité.

Les techniques de calcul évolutionnaire ont été proposées pour optimiser les paramètres de

tatouage dans la littérature. Le but d’un tel problème d’optimisation est de trouver un compro-

mis entre des objectifs antagonistes de qualité et de robustesse de ces filigranes. Sécuriser des

flux d’images de visage de haute résolution engendre de nombreux problèmes d’optimisation

dans un espace de recherche à haute dimension.

Dans un flux d’image homogènes, les solutions optimales pour un bloc d’image peuvent être

réutilisées pour d’autres blocs avec les mêmes caractéristiques de texture. La réutilisation de

ces solutions stockées dans une mémoire associative à la place d’une optimisation systéma-

tique permet de significativement réduire la complexité de calcul du traitement d’un tel flux

de photographies de haute résolution. Dans cette thèse, l’utilisation d’une mémoire associa-

tive est proposée pour stocker les solutions précédemment obtenues pour différents types de

texture, utilisant les résultats d’optimisation pour toute une image et ce pour un petit nombre

d’images d’entrainement. Une approche multi-hypothèse est proposée pour stocker les solu-

tions de différentes résolution de groupage (nombre de groupes basés sur les caractéristiques de

texture) dans la mémoire associative, dans le but de choisir la résolutions de groupage optimale

en fonction de métriques de filigranage pour chaque image de visage durant la généralisation.

Cette approche a été évaluée en utilisant des flux d’images de visage provenant de la base de

donnée PUT (Kasinski et al., 2008). Elle a été comparée avec un système de référence util-

isant des méthodes de filigranage traditionnelles avec une optimisation complète pour chaque

image. Le système proposé et celui de référence ont été comparés en terme de qualité de la

solution produite, ainsi que de coût computationnel mesuré lors de son évaluation. L’approche

proposée présente une diminution de 95.5% du coût computationnel avec un faible impact sur

les performance de filigranage d’un flux de 198 images. Le système proposé Blockwise Multi-

Resolution Clustering (BMRC) a été publié dans Machine Vision and Applications (Rabil et al.,
2013a).
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Bien que les flux de problèmes d’optimisation de haute dimentionnalité soient remplacés par

quelques optimisation d’apprentissage, et que les résultats soient récupérés d’une mémoire as-

sociative stockant les anomalies d’apprentissage, les problèmes d’optimisation dans un espace

de recherche à haute dimension sont des problèmes difficiles et complexes, d’une dimention-

nalité pouvant atteindre 49k variables représentées à l’aide de 293k bits pour des photographies

de visage de haute résolution. Dans cette thèse, ce problème de haute résolution est décomposé

en plusieurs plus petits problèmes représentant des blocs d’image, ce qui résout le problème de

convergence rencontré avec de plus gros problèmes. Les mesures de filigranage local sont util-

isées dans le cadre d’une co-évolution coopérative au niveau du bloc pour atteindre la solution

complète. Le mécanisme d’élitisme est modifié afin que les blocs ayant la meilleure mesure de

filigranage soient sélectionnés parmi chaque solution potentielle pour chaque position, et com-

binés ensemble pour former les meilleures solutions potentielles. L’approche proposée permet

de résoudre le problème de convergence prématurée des méthodes de calcul évolutionnaires

traditionnelles, et une amélioration de 17% sur la mesure de qualité de filigranage est obtenue

pour des photographies de visage de résolution de 2048×1536 pixels. Cette amélioration est

atteinte après quelques itérations impliquant une accélération de l’optimisation. L’algorithme

proposé Blockwise Coevolutionary Genetic Algorithm (BCGA) a été publié dans Expert Sys-

tems with Applications (Rabil et al., 2013c).

Les concepts et structures de systèmes présentés dans cette thèse peuvent être généralisés sur

n’importe quel flux de problèmes d’optimisation dans un espace de haute dimentionnalité, où

chaque solution potentielle est composée de plus petits problèmes granulaires affectant la so-

lution complète. Le défi principal de cette approche est de trouver la caractéristique pertinente

pour ce découpage granulaire. Dans cette thèse, les caractéristiques de texture utilisées dans

les plus petits blocs granulaires représentés dans les solutions potentielles affectent la mesure

de qualité du filigranage de l’image complète. Les mesures locales de ces plus petits problèmes

granulaires indiquent aussi la mesure de qualité pour le problème plus large.

L’intégration hors ligne de signature en tant que filigranes invisibles sur des images de visage

de passeports, utilisées pour la vérification d’identité lors du passage de frontière, est une

autre application proposée pour cette thèse. La signature hors ligne est enregistrée à partir

des formulaires signés aux frontières, est comparée avec les caractéristiques intégrées dans

l’image. La vérification individuelle repose donc sur un trait biométrique, le visage, et un autre

trait comportemental, la signature.

Mot-clés : Tatouage numérique, traitement d’image, tatouage intelligent, algorithmes évo-

lutionnaires, coévolution, groupage, biométrie, reconnaissance des visages
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INTRODUCTION

Given the advances in face recognition, high-resolution face images have been used exten-

sively in access control applications to verify individuals. For instance, in passport or smart

card applications, authorized individuals are granted access to locations and information after

verifying them using their facial captures. Large number of these high resolution facial cap-

tures must be secured during enrollment, prior to exchange and storage. Digital watermarking

has been used to secure high-resolution facial captures by embedding invisible watermarks into

these images to ensure integrity and authenticity. It can be used also to combine more biometric

traits as invisible watermarks embedded in these captures.

Digital watermarking is characterized by the amount of distortion introduced by embedding

watermark bit defined as watermark quality, and the ability to recover the watermark after

manipulating the watermarked image defined as watermark robustness. Evolutionary Com-

putation (EC) optimization methods have been widely used to find the watermark embedding

parameters that satisfies the trade-off between both watermark quality and robustness in Intel-

ligent Watermarking (IW) literature. Most of EC methods rely on a population of candidate

solutions that evolves in the search space till the optimal solution is reached.

In IW literature, different EC techniques have been proposed to find optimal embedding param-

eters. Authors have proposed using EC optimization techniques like Genetic Algorithms (GA)

(Shieh et al., 2004), Particle Swarm Optimization (PSO) (Wang et al., 2007), and combina-

tions of GA and PSO (Lee et al., 2008) to find embedding parameters that maximize the fitness

for both quality and robustness (Vellasques et al., 2010). Most of these traditional methods are

based on representing all cover image 8 × 8 pixels blocks in candidate solutions according to

their positional order, and iteratively improve the fitness until convergence is reached (Shieh

et al., 2004). These methods use single aggregated objective (Shieh et al., 2004; Vellasques

et al., 2012). To date, few authors have proposed mutli-objective formulation (Diaz and Ro-

may, 2005; Rabil et al., 2010), where the two objectives are optimized simultaneously and

multiple non-dominated solutions are located forming a Pareto front.
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Problem Statement

Finding watermark embedding parameters to satisfy the trade-off between watermark quality

and robustness is considered an optimization problem. The dimension of this problem is de-

pendent on the resolution of the cover image. For high-resolution face images, the dimension

of the optimization problem is high and thus increases its complexity. All blocks of the face

image have to be represented in the search space and the candidate solutions to find optimal

embedding parameters for all blocks. EC methods suffer from premature convergence for such

large search space.

Handling a stream of grayscale high-resolution face images results in a stream of complex op-

timization problems with large search space. This stream of complex optimization problems

is very expensive computationally even with using parallel fitness evaluations using Graphical

Processing Units (GPU). Normally access control applications have large streams of high-

resolution facial images captures, and thus using IW methods for such application is not feasi-

ble unless the computational complexity can be afforded by modest resources.

To tackle this stream of complex optimization problems, the strategy is to divide this into two

main challenges. The first challenge is the stream of recurrent optimization problems, and the

second challenge is to handle a single optimization problem with high dimension search space.

The first challenge can be addressed by replacing optimizations with memory recalls from an

associative memory. This associative memory is populated using previous optimization results

for few face images during a training phase. This approach utilizes the previous optimization

results, and avoids expensive re-optimizations. The main research questions for this challenge

are: What is the granularity of solutions to be stored in the associative memory? How to

handle shifting of face pixels inside the face image without re-optimizations? How to calculate

embedding capacities such that more textured blocks hold more watermark bits? What is the

impact of using GPU for parallel fitness evaluations?

For the first challenge, the quality of solutions produced is dependent on the optimization re-

sults during training phase. Thus the second challenge boosts the quality of solutions produced
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by the watermarking system. To avoid premature convergence, coevolution can be utilized to

improve the exploration capabilities of traditional EC methods to find optimal embedding pa-

rameters. The main research questions for this challenge: What is the information exchanged

during coevolution? What is the granularity of coevolution between candidate solutions? How

to modify EC operators to improve the exploration capabilities of EC methods?

Objective and Contributions

The main objective of this thesis is to reduce the computational complexity of IW for streams

of grayscale high-resolution facial images. The baseline system considered in this thesis is

proposed by Shieh et al. (Shieh et al., 2004), where GA is used to find optimal embedding

parameters for grayscale images based on Discrete Cosine Transform (DCT). To date, the

authors in IW literature did not pay attention to high-resolution grayscale images nor streams

of grayscale images.

The main contribution in this research is a novel framework to handle streams of optimiza-

tion problems with high dimension search spaces using modest computational resources. The

proposed framework was experimented with optimization problems corresponding to water-

mark embedding parameters optimization for high resolution facial captures. This framework

is characterized by a training phase where optimization is performed on few face images. The

result of training phase is stored in associative memory. During generalization phase, sub-

solutions are recalled from associative memory to be used for unseen stream of face images.

The optimization in the training phase is improved using coevolution on block level to improve

the exploration capabilities of EC methods.

The first contribution (see Chapter 2) is introducing Blockwise Multi-Resolution Clustering

(BMRC) framework. During training phase, few face images are optimized and the sub-

solutions for blocks are stored in associative memory. The sub-solutions are stored for all

blocks belonging to the same cluster of blocks using their texture features. These sub-solutions

are stored for different number of blocks clusters in the associative memory. During gener-

alization phase, the face image blocks are clustered using different number of clusters. The
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sub-solutions are recalled for the different number of clusters and watermark fitness is calcu-

lated. The optimal number of blocks clusters is decided at the end of the generalization phase

using the fitness produced for different number of clusters. This implements multi-hypothesis

approach, where sub-solutions corresponding to different number of clusters are calculated,

and the decision is postponed till the end of the generalization. A novel grayscale texture mea-

sure is proposed for clusters of blocks called Robustness Scores (RS), such that the clusters of

blocks of higher RS are utilized for higher embedding capacities.

The second contribution (see Chapter 3) is introducing Blockwise Coevolutionary Genetic Al-

gorithm (BCGA) to address the premature convergence issues of traditional EC methods in

high dimension search space. This algorithm is utilizing coevolution on block level using local

metrics called Block Watermarking Metrics (BWM). A novel elitism mechanism is proposed

to improve the exploration capabilities, where the blocks of higher BWM are assumed to have

high global watermarking fitness for the whole face image when concatenated together. The

crossover and mutation operators are modified such that they are performed on block level.

This contribution improves the quality of solutions produced by BMRC framework by improv-

ing the optimization in training phase. Experimental results indicates significant improvement

in the watermark fitness produced compared to other traditional EC methods.

An access control application is proposed for the contributions in this thesis (see Annex II). Of-

fline signature features are proposed to be discretized and embedded as invisible watermarks in

facial captures used in passports. The individuals crossing borders are verified using their fa-

cial captures and offline signatures captured from signed forms. The verification of individuals

is significantly improved using both physical and behavioral biometric traits.

Organization of this Thesis

This thesis is organized into three main chapters. The overall framework described in the thesis

is shown in Figure 0-1, it shows the contributions in the chapters of this thesis mapped to the

overall framework. The overall framework BMRC presented in Chapter II consists of training

phase where face images are optimized and then solutions are stored in an associative memory
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Chapter 2: BMRC

. . . . . .

Full Optimization
Chapter 3: BCGA

Training Generalization

Store multi-resolut-
ion solutions based
on texture features

Block Cluster Memory
(BCM)

Multi-resolution
solutions for blocks
clusters based on
texture features

Recall solutions
for different
resolutions

Rank solutions cor-
responding to res-
olutions to find opt-

imal resolution

. . .

Optimal
embedding
paramters

Optimally watermarked stream of facial images

Training stream of facial images Generalization stream of facial images

Blockwise Multi-Resolution Clustering

Figure-A 0-1 Proposed BMRC framework including BCGA for full optimization for

streams of high-resolution facial images watermarking.

called BCM for different clustering resolutions, and generalization phase using memory recalls

then solutions corresponding to clustering resolutions are ranked according to watermarking

fitness. The first training step of BMRC invloves full optimization of high resolution facial

images, this corresponds to high dimensionality optimization problem which is addressed in

Chapter III, where BCGA algorithm is proposed to utilize coevolution to resolve premature

convergence in such high dimension search space.

Chapter I introduces the main concepts of intelligent watermarking including the watermark-

ing metrics, embedding and extraction algorithm, and data flow for optimization problem cor-

responding to IW. This chapter also includes literature survey for key aspects on this research

and its applications. Chapter II describes BMRC framework, the experimental methodology,

and results to evaluate this framework. Finally Chapter III focuses on BCGA, the experimental

methodology and results to evaluate this algorithm.
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Chapter II focuses more on the BMRC framework to handle streams of grayscale high-resolution

face images. This contribution is published in Machine Vision and Applications (Rabil et al.,

2013a), and WIPRA 2013 (Rabil et al., 2013b). The comparison between different formula-

tions of the optimization problem corresponding to IW is published at IIH-MSP 2010 (Rabil

et al., 2010). Formulating the stream of optimizations as single dynamic optimization problem

is experimented and published at MDA 2011 (Rabil et al., 2011b). Evaluation of the impact of

using GPU in watermark embedding and extraction is published at CIINTI 2012 (García-Cano

et al., 2012).

Chapter III describes BCGA to address the optimization problem corresponding to IW of

grayscale high-resolution face image with large search space. BCGA performance is com-

pared against traditional GA as a baseline, and PBIL considered in Chapter II. The texture

metric Robustness Scores (RS) (Rabil et al., 2013a) is compared with common texture metrics

used for selecting the most textured blocks for embedding. This contribution is published in

Expert Systems with Applications (Rabil et al., 2013c).

Annex I lists complementary experimentation for different texture metrics used for selecting

textured blocks for embedding. Different metrics are evaluated using the produced fitness

using mid range embedding DCT coefficient. The fitness produced is evaluated for different

watermark lengths, and embedding capacities. This helps to determine the suitable metric to

be used for different watermark lengths and capacities given the priority of different quality

and robustness objectives. The fitness considered in this annex is an initial solution to be fed

into BCGA for iterative fitness improvement.

Annex II describes an experimental study on embedding offline signature features instead of

embedding logo images in facial images. The impact of watermarking attacks on the signature

verification system is evaluated. The impact of different attack intensities, and bits used for

quantization of features are considered in the experimentation. This contribution is published in

CIBIM 2011 (Rabil et al., 2011a). This annex represents a proposed application for this thesis

in border crossing, where offline signature features are proposed to be embedded as invisible

watermarks in passport high resolution facial image. On crossing borders, individuals are
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verified using the facial image and comparing the extracted signature features with signatures

captured from border crossing forms. Using two different biometric traits including a physical

trait and a behavioral trait improves individual verification rates.





CHAPTER 1

INTELLIGENT WATERMARKING OF GRAYSCALE IMAGES

Digital watermarking is deployed in many domains to assure integrity and authenticity of the

original signal via fragile and robust watermarking respectively (Vellasques et al., 2010). A

fragile watermark is a type of watermark to ensure integrity, but it is broken if the watermarked

image is manipulated or altered, while the robust watermark ensures authenticity and can be

extracted after manipulating the watermarked image. Semi-fragile watermark considered in

this thesis is satisfying a trade-off between both the distortion introduced by the watermark

and the watermark resistance to manipulations.

Most digital watermarking techniques proposed for grayscale images use different transform

domains to embed a watermark that minimizes the visual impact, and to deal with the uncor-

related coefficients in the transform domain. The most commonly used transform domains

in watermarking literature are Discrete Cosine Transform (DCT) (Shieh et al., 2004) and Dis-

crete Wavelet Transform (DWT) (Lee et al., 2008). Using DCT transform inheriting robustness

against JPEG compression which is based on DCT transform as well, the host image is divided

into small blocks of pixels (8×8 pixels), transformed to frequency domain, and watermark bits

are distributed among these blocks by changing frequency bands coefficients of these blocks

according to the value of the watermark bit to be embedded. Few authors have considered

other transforms based on Discrete Fourier Transform (DFT) (Licks and Jordan, 2005) to im-

prove robustness against geometric attacks like image scaling, rotation, and cropping. DFT

transforms are more resistant to geometric manipulations to images.

1.1 Watermarking Metrics

Digital watermarking system can be characterized using three main aspects: watermark quality,

watermark robustness, and watermark capacity. Watermark quality measures the distortion re-

sulting from watermark embedding, there are limits defined in literature (Voloshynovskiy et al.,

1999), where the human vision cannot recognize the distortion resulting from the embedding.
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Watermark robustness measures the resistance to different manipulations and processing on the

watermarked image, this is measured by the correlation between the extracted watermark after

the manipulations and the original watermark. Watermark capacity measures the number of

embedded bits per block given thresholds for watermark quality and/or watermark robustness.

1.1.1 Watermark Quality

The visual impact of a watermark can be evaluated by two different approaches - fidelity and

quality. Fidelity is a measure of similarity between two signals (from a digital watermarking

standpoint, the cover and watermarked signals, or more specifically, images). However, due to

some particularities of the human visual system (HVS), the fidelity of a given image does not

necessarily relates with the perceived quality by a human viewer.

Peak Signal-To-Noise Ratio (PSNR) is calculated between original image Xc(w,h) and water-

marked image Xcw(w,h) of resolution Mc×Nc using the Mean Squared Error (MSE), where w,

and h represents the index of pixels for width and height respectively:

MSEc =
1

Mc.Nc

Mc∑
w=1

Nc∑
h=1

(
Xc(w,h) −Xcw(w,h)

)2

PSNRc = 10log10

(
2552

MSEc

)
[dB]

(1.1)

Weighted PSNR uses an additional parameter called Noise Visibility Function (NVF) which

is a texture masking function defined by Voloshynovskiy et al. (Voloshynovskiy et al., 1999).

NVF arbitrarily uses a Gaussian model to estimate how much texture exists in any area of an

image. For flat and smooth areas, NVF is equal to 1, and thus wPSNR has the same value

of PSNR. For any other textured areas, wPSNR is slightly higher than PSNR to reflect the

fact that human eye will have less sensitivity to modifications in textured areas than smooth

areas. Weighted PSNR shown in Equation 1.2 is proposed in the latest benchmarking for
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watermarking systems introduced by Pereira et al. (Pereira et al., 2001).

wPSNRc = 10log10

(
2552

MSEc ×NV F

)
[dB] (1.2)

Universal Quality Index (UQI) is another universal measure (Wang and Bovik, 2002) which

is independent on the images being tested, the viewing conditions or the individual observers.

This metric is composed of components to measure linear correlation, mean luminance, and

contrasts of the images. This metric is subset of another more generic metric called Structural

SIMilarity (SSIM) (Wang and Bovik, 2004) which takes into consideration luminance, con-

trast and structure. These quality metrics are more accurate than other metrics, but they are

computationally expensive to be used in intelligent watermarking with huge number of fitness

evaluations for quality fitness.

1.1.2 Watermark Robustness

Voloshynovskiy et al (Voloshynovskiy et al., 2001) have proposed a classification for different

types of watermark attacks into four categories of attacks: removal attacks, geometric attacks,

cryptographic attacks, and protocol attacks. Figure 1.1 shows the classification for different

types of attacks. Removal attacks aim at the complete removal of the watermark information

from the watermarked data without cracking the security of the watermarking algorithm, in

other words without the key used for watermark embedding. Geometric attacks do not actually

remove the embedded watermark itself, but intend to distort the watermark detector synchro-

nization with the embedded information. The detector could recover the embedded watermark

information when perfect synchronization is regained. Cryptographic attacks aim at cracking

the security methods in watermarking schemes and thus finding a way to remove the embedded

watermark information or to embed misleading watermarks. Protocol attacks aim at attacking

the entire concept of the watermarking application. One type of protocol attack is based on

the concept of invertible watermarks. The idea behind inversion is that the attacker subtracts

his own watermark from the watermarked data and claims to be the owner of the watermarked

data.
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In intelligent watermarking literature, only removal attacks are considered for watermark ro-

bustness. The most common attacks from this category is the JPEG compression due to the

popularity of JPEG in exchanging information via Internet, low pass filtering, and median fil-

tering. These attacks are considered in the experimentation of this thesis. The watermark

robustness metrics measure the similarity between the original watermark and the extracted

watermark from the attacked image. The following metrics have been considered in literature:

Figure 1.1 Classification for watermark attacks

(Voloshynovskiy et al., 2001).

The Normalized Correlation (NC) is calculated between embedded watermark W(w,h) of reso-

lution MW×NW where w and h represents the index of pixels for width and height respectively

and the extracted watermark from the attacked image W ′
(w,h) using Equation 1.3.

NC =

∑MW

w=1

∑NW

h=1

[
W(w,h) ×W ′

(w,h)]∑MW

w=1

∑NW

h=1

[
W(w,h)

]2 (1.3)
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Wang et al (Wang et al., 2007) have proposed using Accuracy Ratio (AR) to represent the

robustness objective, which is the ratio between the number of bits correctly extracted (CB),

and the number of bits of the original watermark (NB). Also Areef et al (Areef et al., 2005)

have proposed using Bit Correct Rate (BCR) as robustness metric as shown in equation 1.4,

where
⊕

is bitwise addition operator.

BCR(W,W ′) = (1−
∑MW×NW

i=1 (Wi

⊕
W ′

i )

MW ×NW

)× 100% (1.4)

Checkmark watermarking benchmark (Pereira et al., 2001) have all these classes of attacks

implemented. The attacks are grouped into different types of application domains, like copy-

right protection which takes into consideration all categories of attacks, and non-geometric

application which takes into consideration removal attacks only.

1.1.3 Watermark Capacity

Watermark capacity represents the amount of information to be embedded as watermark. Many

authors have addressed the issue of calculating the amount of information to be embedded as

watermark bits. Cox et al (Cox et al., 1999) and Moulin et al (Moulin et al., 2000) have

modeled the watermarking as information channel between transmitter and receiver. The re-

quirement that the fidelity of the media content must not be impaired implies that the magnitude

of the watermark signal must be very small in comparison to the content signal, analogous to

a stringent power constraint in traditional communications. Barni et al (Barni et al., 1999)

have proposed a method based on DCT coefficients values to estimate the number of bits to

be embedded in DCT domain. The amount of modification each coefficient undergoes is pro-

portional to the magnitude of the coefficient itself. The watermark-channel is modeled such

that the watermark is the signal and the image coefficients are the noise introduced by the

channel. Voloshynovskiy et al (Voloshynovskiy et al., 1999) introduced Noise Visibility Func-

tion (NVF) which estimates the allowable invisible distortion in each pixel according to its

neighbors values.
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Most recently Zhang et al (Zhang et al., 2007) have proposed heuristic methods to determine

adaptively the watermark capacity. The watermarking system is analyzed based on the channel

capacity and error rate of the communication system, and the relation between the detection er-

ror rate with the capacity and payload capacity is derived. The error rate rises with the increase

of watermarking capacity. Authors have introduced Maximum Watermark Image (MWI) in

which the amplitude (value) of each pixel is the maximum allowable distortion calculated by

NVF (Voloshynovskiy et al., 1999). Yaghmaee et al (Yaghmaee and Jamzad, 2010) have pro-

posed methods based on the image complexity, where authors have studied different image

complexity metrics and its relation to watermark capacity.

In this thesis, watermark quality and robustness are measured using wPSNR and NC respec-

tively. These metrics are the most commonly used metrics in IW literature and the most recent

watermarking benchmark Checkmark. This helps to compare the experimental results with

other contributions in literature. These metrics also have low computational complexity which

fits the intelligent watermarking with extensive fitness evaluations for candidate solutions. Wa-

termark capacity is measured using number of bits per 8×8 pixels block.

1.2 Embedding and Extracting Watermarks

The watermark embedding/extracting algorithm considered in this thesis is an algorithm pro-

posed by Shieh et al (Shieh et al., 2004), where the original cover image is not required during

extraction of the watermark, this reduces the required space needed to store the original cover

images. Using this algorithm, the cover image Xc to be watermarked of size McxNc is divided

into 8× 8 blocks, and then transformed into DCT domain. The resultant matrix Y(mc,nc)(a) for

each image block at row mc and column nc of cover image blocks has the upper left corner

as DC coefficient and the rest of matrix are the AC coefficients, where the DCT coefficients

index a ranging from 0 to 63 for 8×8 blocks are placed in zigzag order. The DCT transformed

image Y(mc,nc)(a) is then used to get the ratio between DC and AC coefficients R(a) for all AC
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coefficients a using:

R (a) =

Mc/8∑
mc=1

Nc/8∑
nc=1

(
Ymc,nc (0)

Ymc,nc (a)

)
, a ∈ [1, 2, ..., 63] (1.5)

Then polarities P are calculated using the Equation 1.6.

P(mc,nc)(a) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if (Y(mc,nc)(a).R(a)) ≥ Y(mc,nc)(0)

a ∈ {ebi}, i = (nc − 1)× (Mc/8) +mc

0 otherwise

(1.6)

Next, the watermarked DCT coefficient Y ′ is obtained using the Equation 1.7. The index of

DCT coefficients modified belonging to {ebi} referred to as embedding bands for block bi with

i equals to mc × (Mc/8) + nc. The embedding capacity for block bi is defined as Ci in bits per

block, and the watermark bits allocated for block at mc row and nc column W(mc,nc)(e), where

e represents the index of set of embedding bands and finally the watermarked image Xcw is

obtained using the inverse DCT for Y ′.

Y ′
(mc,nc)(a) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Y(mc,nc)(a) if P(mc,nc)(a) = W(mc,nc)(e)

a ∈ {ebi}, i = (nc − 1)× (Mc/8) +mc

(Y(mc,nc)(0)/R(a)) + 1 if P(mc,nc)(a) = 0

W(mc,nc)(e) = 1

a ∈ {ebi}, i = (nc − 1)× (Mc/8) +mc

(Y(mc,nc)(0)/R(a))− 1 otherwise

(1.7)
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1.3 Embedding Parameters Optimization

Modifications in certain frequency bands are less perceptible than others, and modifications in

other frequency coefficients are more robust against manipulations. Many authors have there-

fore proposed using different evolutionary optimization techniques to find optimal frequency

bands for embedding the watermark bits to maximize the fitness for both watermark quality

and robustness objectives. The embedding parameters for frequency domain watermark em-

bedding and extraction algorithms are represented using frequency coefficients altered due to

watermark bits embedding which are commonly called embedding bands in literature.

EC methods like GA and PSO have attracted authors attention due to simplicity of these tech-

niques and the ease in adapting them to many different types of watermarking systems. More-

over EC does not assume a distribution of the parameters space represented by selected fre-

quency bands for embedding (Shieh et al., 2004).

EC methods, inspired by biological evolution, are generally characterized by having candidate

solutions which evolves iteratively to reach the target of optimization based on the guidance of

objectives fitness evaluation. These candidate solutions are referred to as chromosome in GA,

and more generally individuals of the population of candidate solutions.

In these traditional methods, all cover image blocks are represented in optimization candidate

solutions, and the selected embedding bands are altered along optimization iteratively to max-

imize both the watermark quality fitness (QF) and robustness fitness (RF) simultaneously. All

cover image blocks have to be represented in the optimization candidate solutions as shown in

Figure 1.2 to allow distribution of watermark bits among cover image blocks. Each candidate

solution consists of the set of embedding bands for all blocks of the cover image Xc. This

is defined as EBXcc = eb1, eb2, ..., ebB, where ebi represents the embedding bands of block

i which ranges from 1 to total number of blocks B. The size of the ebi is dependent on the

embedding capacity, for example in Figure 1.2 the size of ebi equals to 4 which represents the

embedding capacity measured in bits per block.
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Figure 1.2 Optimization candidate solutions representation in traditional methods

(Shieh et al., 2004) with embedding capacity equals to 4 bits per block.

The traditional optimization formulation (Shieh et al., 2004) for IW problem implies that em-

bedding capacity are equal for all blocks of the cover image and at least 1 bit per block is

embedded. In watermarking literature, this is referred to as even embedding scheme where
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the embedding capacities are equal for all cover image blocks. From watermarking perspec-

tive (Wu, 2001), uneven embedding scheme is more suitable for better watermarking fitness

where higher textured blocks are utilized for more bits to embed and smooth textured blocks

are avoided for embedding.

Many authors have proposed aggregating both quality and robustness fitness into one objective

for simplicity utilizing different aggregation weights for the objectives to resolve the issue

of different scaling of these different types of objectives, and to favor one objective over the

others using these weights. Shieh et al (Shieh et al., 2004) have used Genetic Algorithm for

optimizing the aggregated fitness for both quality and robustness, while Wang et al (Wang

et al., 2007) have used Particle Swarm Optimization for optimization. Other authors (Lee

et al., 2008) have proposed combining both GA and PSO for optimizing the aggregated fitness

for quality and robustness.

Different formulations for watermark embedding optimization have been evaluated and com-

pared in literature (Rabil et al., 2010). Multi-objective formulation corresponds to the trade-off

among different quality and robustness objectives. It provides multiple optimal non-dominated

solutions (Pareto front) which gives a system operator the ability to choose among multiple

solutions to tune the watermarking system (Rabil et al., 2010) resolving the challenge of oper-

ating flexibility pointed out in (Haouzia and Noumeir, 2008).

1.3.1 Single Objective Optimization Problem (SOOP)

In traditional methods to optimize watermark embedding (Shieh et al., 2004), all cover im-

age blocks are represented in optimization candidate solutions, and the selected embedding

bands are altered iteratively during optimization to maximize the aggregated fitness gf(EBXc).

This aggregated fitness includes watermark Quality Fitness (QF ) and Robustness Fitness (RF )

against different attacks. All cover image blocks have to be represented as optimization can-

didate solutions to allow distribution of watermark bits among cover image blocks. The opti-

mization problem can be formalized as the following maximization problem:
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max
EBXc

{gf(EBXc)}

EBXc = {eb1, eb2, ..., ebi, ..., ebNB}, where NB = (Mc/8)× (Nc/8)

ebi = {a1, a2, ..., ae, ..., aCi
}, where ae ∈ [0, 1, ..., 63]

s.t. ae �= 0, where 1 < e < Ci ,and 1 < i < NB

ae1 �= ae2, where 1 < e1, e2 < Ci

(1.8)

where bi represents the 8× 8 block in cover image of resolution Mc ×Nc, the total number of

blocks equals to NB, ae represents the eth embedding band for block bi , and the embedding

capacity for block bi is Ci. The first constraint considered ensures avoiding DC coefficient ae

for embedding, and the second constraint considered ensures avoiding using the same embed-

ding bands for the same image block.

g f (EBXc)

Reached stop
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Figure 1.3 Data flow diagram depicting the single objective formulation for watermark

embedding optimization to find optimal embedding bands EBXc for cover image Xc.

The flow chart of the IW optimization is shown in Figure 1.3. Assume that watermark bits

W are embedded in face image Xc using the embedding bands EBXc to produce the water-

marked image Xcw. The quality fitness QF (EBXc) between the original face image Xc, and
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the watermarked image Xcw is assessed. Then different attacks are applied to Xcw, then water-

mark bits are extracted W ′
1, W

′
2, and W ′

3 after applying the watermark attacks. The extracted

watermark W ′
1, W ′

2, and W ′
3 are compared against original watermark W to calculate robust-

ness fitness RF1(EBXc), RF2(EBXc), and RF3(EBXc) respectively against different attacks.

In this formulation quality fitness QF (EBXc) and different robustness fitness RF1(EBXc),

RF2(EBXc), and RF3(EBXc) are optimized as a single objective optimization using aggrega-

tion. The aggregated fitness is improved iteratively till a stopping criterion is reached, and the

sets of optimal embedding bands ebi for all blocks bi are concluded EBXc for face image Xc.

1.3.2 Multi-Objective Optimization Problem (MOOP)

The optimization problem using multi-objective formulation can be formalized as shown in

equation 1.9, where bi represents the 8 × 8 block in cover image of resolution Mc × Nc, the

total number of blocks equals to NB, ae represents the eth embedding band for block bi , and

the embedding capacity for block bi is Ci. The same constraints described in 1.3.1 applies to

the multi-objective formulation.

max
EBXc

{QF (EBXc), RF (EBXc)}

EBXc = {eb1, eb2, ..., ebi, ..., ebNB}, where NB = (Mc/8)× (Nc/8)

ebi = {a1, a2, ..., ae, ..., aCi
}, where ae is 6-bit binary representation

for embedding bands index for block bi with ae ∈ [0, 1, ..., 63]

s.t. ae �= 0, where 1 < e < Ci ,and 1 < i < NB

ae1 �= ae2, where 1 < e1, e2 < Ci

(1.9)

The data flow of the multi-objective formulation is shown in Figure 1.4, where this formulation

deals efficiently with conflicting objectives like watermark quality and robustness against dif-

ferent attacks. In this formulation quality fitness QF (EBXc) and robustness fitness RF (EBXc)

are optimized simultaneously without favoring any objective over the other using aggregation
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Figure 1.4 Data flow diagram depicting the multi-objective formulation for watermark

embedding optimization to find optimal embedding bands EBXc for cover image Xc.

weights. The fitness for both objectives are improved iteratively till stop criterion is reached,

and optimal embedding bands ebi for all blocks bi are concluded from a single non-dominated

solution belonging to the resulting Pareto front.

In the case of multiobjective optimization, there is no single optimal solution, instead there is

a set of non-dominated solutions representing Pareto Optimal Front (POF) as shown in figure

1.5. A solution vector x is said to dominate the other solution vector y if the following two

conditions are true: The solution x is no worse than y in all objectives; and the solution x is

strictly better than y in at least one objective.

The taxonomy of optimization approaches proposed in watermarking literature is shown in Ta-

ble 1.1, where these approaches can be categorized into Single Objective Optimization Problem

(SOOP), and Multi-Objective Optimization Problem (MOOP). Genetic Algorithms (GA), Par-

ticle Swarm Optimization (PSO), and Hybrid of GA and PSO have been proposed as single

objective optimization techniques where single objective is optimized where it can be only

quality objective or aggregated objective with both quality and robustness combined together
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Figure 1.5 Pareto Optimal Front (POF) and non-dominated solutions for

multi-population optimization

(Li and Engelbrecht, 2007).

Table 1.1 Survey for different EC-based methods for watermarking grayscale images.

Problem Method Formulation Metrics Vars. Contribution

SOOP

GA

Single

PSNR DCT (Chen and Lin, 2007)

PSNR LSB (Wang et al., 2001)

PSNR LSB (Ji et al., 2006)

PSNR DCT (Shih and Wu, 2005)

NC DCT (Wei et al., 2006)

PSNR DCT (Wu and Shih, 2006)

Aggregated

PSNR+BCR DWT (Areef et al., 2005)

PSNR+NC DCT (Shieh et al., 2004)

PSNR+NC DCT (Huang et al., 2007)

UQI+DIF DMT (Kumsawat et al., 2005)

PSO

Single
PSNR DCT (Aslantas et al., 2008)

PSNR DCT (Li and Wang, 2007)

Aggregated
PSNR+AR DMT (Wang et al., 2007)

PSNR+NC DCT (Zhu and Liu, 2009)

GA+PSO Aggregated PSNR+NC DWT (Lee et al., 2008)

MOOP MOGA Multi-Objective
PSNR+NC DCT (Diaz and Romay, 2005)

PSNR+NC DCT (Sal et al., 2006)

into one objective. Only GA was proposed for multi-objective optimization technique for dig-

ital watermarking domain.
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1.3.3 Dynamic Optimization

Intelligent watermarking a stream of bi-tonal documents have been addressed recently (Vel-

lasques et al., 2011). The authors formulated the stream of similar optimization problems as

a single dynamic optimization problem, where the new image fed into the system is consid-

ered a change in the optimization environment as shown in Figure 1.6. During a change in

optimization environment of SOOP, the optimum can suffer a variation either in the parameter

(type I), fitness (type II) or both spaces (type III) (Nickabadi et al., 2008). A change is subject

to severity in space and time. For minor environment changes, memory recalls is sufficient to

find solutions of satisfactory fitness. The dynamic optimization problem is characterized by

having a changing maximum value and location. For bi-tonal images considered (Vellasques

et al., 2011), the embedding parameters to be optimized are global parameters for the whole

document image.

Figure 1.6 Intelligent watermarking for stream of images as single dynamic

optimization problem

(Rabil et al., 2011b),(Vellasques et al., 2011).

As shown in Figure 1.6, the traditional formulation for a stream of static optimization prob-

lems is compared to dynamic optimization formulation. The traditional formulation results in
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recurrent static optimization problems corresponding to watermarking the stream of images.

For the dynamic optimization formulation, watermarking a stream of images is considered a

single optimization problem in a dynamic environment. For homogeneous streams of images,

the optimization environment for one image can be utilized for the next image in the stream.

Depending on the similarity between images in the stream, the previous optimization can be

recalled on solutions level or optimization landscape level. Whenever a different image in the

stream, this is considered as a change in optimization problem, and thus full optimization is

required for such image. This results in significant complexity reduction for watermarking

optimally stream of images.

In an earlier work (Rabil et al., 2011b) by the authors, this approach was applied to stream

of high-resolution grayscale facial images as dynamic multi-objective optimization problem.

Farina et al (Farina et al., 2004) have categorized the multi-objective problems in dynamic

environments into four types depending on changes in both parameter space and objective

space. The parameter space includes decision variables to be tuned for optimization, and the

objective space includes the optimal objective values representing the Pareto front of non-

dominated solutions. As shown in Figure 1.7, these four types of dynamic multi-objective

optimization problems are described as follows:

• Type I: Optimal decision variables change with time, whereas the optimal objective val-

ues do not change.

• Type II: Both optimal decision variables and optimal objective values are changing.

• Type III: Optimal decision variables do not change with time, whereas the optimal ob-

jective values change.

• Type IV: Neither optimal decision variables nor optimal objective values change.

The multi-objective optimization of digital watermarking of grayscale images can be consid-

ered of Type II where both optimal decision variables and optimal objective values change

when a new image is fed into the system.
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Figure 1.7 Different types of Dynamic MultiObjective Optimization Problems

(DMOOP)

(Farina et al., 2004).

Using multi-objective optimization with dynamic environment is adding one more challenge to

previous challenges for optimization mechanisms in dynamic environment optimization which

is the change detection mechanism to detect changes in the environment. Most of literature in

dynamic optimization for single objective was based on sentry particles/individuals as change

detection mechanism where some particles/individuals are chosen and their fitness is compared

to the stored fitness values, and if the fitness is varying, then a change has occurred like the

method proposed by Hu and Eberhart (Hu and Eberhart, 2002). In multi-objective optimization

in a dynamic environment, sentry particles becomes in-adequate in case of problems where the

Pareto front in decision space is changing like problems of Type III and IV, while this can be

applied to dynamic multi-objective optimization of Type I and II as proposed by Zheng (Zheng,

2007) and also Greeff and Engelbrecht (Greeff and Engelbrecht, 2010).

For Dynamic Multi-Objective Optimization Problems (DMOOP) of Type III and IV, some

authors have considered other change detection with regards to changes in the Pareto set using

some proposed metrics for the Pareto set like hypervolume and generational distance like the

approaches proposed by Camara et al (Camara et al., 2009) and Li et al (Li et al., 2007)

respectively. Table 1.2 summarizes different proposed mechanisms for change detection in

dynamic optimization environment.
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Table 1.2 Survey for different change detection mechanisms in dynamic environments

proposed in literature.

Optimization Type of Method Contribution

Problem Problem Proposed

SOOP
Type Sentry Particles (Hu and Eberhart, 2002)

I,II,III

MOOP

Type Sentry Particles (Zheng, 2007)

I, II Sentry Particles (Greeff and Engelbrecht, 2010)

Type Generational Distance (Li et al., 2007)

III,IV HyperVolume (Camara et al., 2009)

For DMOOP two groups of performance metrics exist, namely performance metrics where the

true POF is known and performance metrics where the true POF is unknown. The conver-

gence, measured by the generational distance proposed by Van Veldhuizen (Veldhuizen and

Lamont, 2000), and spread or distribution of the solutions are often used to measure an al-

gorithm performance when the POF is known (Goh and Tan, 2007; Zeng et al., 2006). The

reversed generational distance and the collective mean error were proposed as performance

metrics by Branke et al (Li et al., 2007). Another metric, the HV R(t) metric, represents the

ratio of the hypervolume of the solutions and the hypervolume of the known POF at a specific

time (Li et al., 2007; Veldhuizen and Lamont, 2000). Li et al (Li et al., 2007) proposed a metric

of spacing that can be used when the true POF is unknown. Measures of accuracy, stability and

reaction capacity of an algorithm proposed by Camara et al (Camara et al., 2007).

This approach reduced the computational complexity for the stream of optimization problem

for streams of minimal changes in face pixels from one face in the stream to the other. This

approach is sensitive to changes in location of face pixels inside the image due to the positional

representation of face image blocks in the optimization candidate solutions

1.4 Large-Scale Global Optimization Problems

Many real-world applications correspond to large scale global optimization (LSGO) problems

to find optimal decision variable values in large search space. Authors in many domains
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have explored different strategies to handle such challenging optimization problems (Shan and

Wang, 2010). Screening strategy involves removing noises and insignificant variables from

the large problem by exploring the nature of the optimization problem. Mapping strategy re-

duces the search space by removing correlated variables and thus reducing the complexity of

the large problem. And the most commonly used strategy used by authors is decomposing

the large problem into smaller sub-problems, different decomposition and interaction methods

have been proposed to be used among these sub-problems. In this thesis, decomposing and

screening strategies are considered for handling optimization problem corresponding to IW

of high-resolution facial images. These two strategies are more suitable for the nature of IW

problem.

EC methods are not efficient for large scale problems, this attracted the attention of authors

in EC literature to improve the capabilities of these methods for large dimension of search

space. In recent years, there has been a growing interest in methods that learn the structure of

a problem on the fly and use this information to ensure an adequate evolution of the different

variables of the problem. One approach is based on probabilistic modeling of promising solu-

tions to guide the exploration of the search space instead of using crossover and mutation, as

in the case of simple GA (Pelikan et al., 2002).

In the Population Based Incremental Learning algorithm (PBIL) (Baluja, 1994), solutions are

represented by binary strings of fixed length. The population of solutions is replaced by a prob-

ability vector which is initially set to the same probability 0.5 for all positions. After generating

a number of solutions, the best solutions are selected, and the probability vector is shifted to

the chosen solutions. The probability vector of PBIL evolves throughout generations using the

previously calculated fitness. Also the probability vector is considered a good representation

for optimization landscape that can be recalled to reproduce the landscape without the need

to go through complex iterations. Bureerat and Sriworamas (Bureerat and Sriworamas, 2007)

proposed changes to PBIL algorithm to handle multi-objective optimization problems. In this

algorithm the probability vector is replaced with probability matrix, where each row in this

matrix represents the probability vector to create sub-population individuals.
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The Compact Genetic Algorithm (CGA) (Harik et al., 1999) replaces the population with a

unique probability vector similar to PBIL. However, unlike the PBIL, it modifies the probability

vector so that there is a direct correspondence between the population that is represented by

the vector of probabilities and the probability vector itself. Each component of the vector is

updated by replacing its value by the contribution of a single individual in the total frequency

assuming a particular population size. Using this update rule, the theory of simple genetic

algorithms can be used directly to estimate the parameters and behavior of the compact genetic

algorithm.

Previous methods based on learning the structure of the problem are not efficient for problems

of high dimension search space like the IW problem for high-resolution face images. Thus such

problems would involve other strategy for decomposing this large problem into smaller sub-

components interacting together to find optimal overall solutions. Recently authors adopted

coevolution strategy for handling such optimization problems.

In biology, coevolution is defined as a change of a biological object triggered by the change of

a related object. In bio-inspired EC techniques this concept is adopted either this coevolution is

cooperative or competitive. In cooperative coevolution algorithms (Potter and DeJong, 2000),

the goal is to find individuals from which solutions can be better. The adaptability of the in-

dividual depends on its ability to cooperate with individuals of other species to solve a given

problem. On the other side for competitive coevolution (Rosin and Belew, 1997), the adapt-

ability of the individual depends on the competition with other individuals of other species,

where each of these species compete with the rest of species.

The basic model for coevolution is shown in Figure 1.8, each species is evolved in its own

population and adapts to the environment through the repeated application of an Evolutionary

Algorithm (EA). The species interact with one another within a shared domain model and have

a cooperative relationship (Potter and DeJong, 2000).

Cooperative Coevolution (CC) adopts natural divide-and-conquer strategy, recently this ap-

proach is considered a promising solution for handling high-dimensional optimization prob-
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Figure 1.8 Coevolutionary model of three species shown from the perspective of each in

turn

(Potter and DeJong, 2000).

lems. The main idea of cooperative coevolution based algorithms is to identify which decision

variables, i.e, dimensions, of the search space interact. Non-interacting variables can be op-

timized as separate problems of lower dimensionality. Interacting variables must be grouped

together and optimized jointly (Chen et al., 2010). By cooperatively coevolving multiple EA

subpopulations (each dealing with a subproblem of a lower dimensionality), we can obtain an
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overall solution derived from combinations of subsolutions, which are evolved from individual

subpopulations.

Based on this principle, Potter et al. (Potter and DeJong, 2000) proposed a Cooperative Coevo-

lutionary Genetic Algorithm (CCGA), which shares the search space by dividing the solution

vector into smaller vectors. Potter et al. (Potter and DeJong, 2000) proved that CCGA has

a significant performance improvement over traditional genetic algorithms for optimization

problems of 30 variables. Subsequently, Sofge et al. (Sofge et al., 2002) extended the model

of Potter et al. (Potter and DeJong, 2000) to algorithms of evolution strategy (CCES).

Van den Bergh and Engelbrecht (Bergh and Engelbrecht, 2004) adopted the cooperative co-

evolution concept with PSO (CCPSO), this cooperative model was tested on functions of up

to 30 variables (Bergh and Engelbrecht, 2004) and 190 variables (Bergh, 2002). All previous

algorithms based on cooperative co-evolution adopted two simple strategies for problem de-

composition. The first strategy decomposes a high-dimensional vector into single variables,

this means an n-dimensional problem would be decomposed into n one-dimensional prob-

lems. This strategy is simple but it did not consider interdependencies among variables for

non separable problems. The second strategy is splitting-in-half which decomposes a high-

dimensional vector into two equal halves and thus reducing an n dimensional problem into two

n
2
-dimensional problems. This can be extended to recursively decompose into halves for larger

dimension problems.

Yang et al. (Yang et al., 2008) proposed grouping strategy and adaptive weighting for bet-

ter capturing of the variable interdependencies for non separable problems. Li and Yao (Li

and Yao, 2012) presented a new Cooperative Coevolving PSO (CCPSO) using random vari-

able grouping technique. This proved efficiency with problems with dimensions up to 2000

real valued variables using the benchmarking functions provided in Congress on Evolutionary

Computation (CEC’10) (Tang et al., 2009).

For optimization problems corresponding to IW of high-resolution facial images considered

in this thesis, the number of variables is equal to 49k variables. These embedding variables
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for different blocks affect the overall watermarking fitness for the facial image, however the

local watermarking metrics of these blocks can guide the search in such large search space.

Such dimension of optimization problems was not considered before in literature, and thus

an application specific algorithm is proposed in this thesis to handle such problem using the

characteristics of the IW problem.

1.5 Texture Features and Metrics of Grayscale Images

This section describes briefly the common methods to extract texture features from grayscale

images. These features are used to cluster blocks based on their texture features. Also it

describes different grayscale texture metrics used to select the most textured blocks for embed-

ding, this assures no bits are embedded in smooth textured areas.

1.5.1 Extract Grayscale Texture Features

Texture features are extracted from the grayscale images using 8 × 8 pixels blocks granular-

ity. The most commonly used texture features can be classified into spatial features like Gray

Level Covariance Matrix (GLCM), and other domains features like Discrete Cosine Transform

(DCT), and Gabor Wavelet Transform. Taking the computational complexity into considera-

tion, using spatial features would have lower complexity compared to other domains features

like DCT domain.

Gray Level Covariance Matrix (GLCM) features use the minimum and maximum intensity dis-

covered in the image as the limits of grayscale intensity to calculate how often a pixel of certain

grayscale intensity occurs horizontally adjacent to a pixel with another intensity value. How-

ever the watermark embedding and extraction methods based on spatial domain would have

lower robustness against different image alterations, and lower watermark embedding capac-

ity. In literature, many authors have considered DCT for extracting texture features of grayscale

images. Yu et al. (Yu et al., 2010) have proposed zoning method using the most significant

39 coefficients. Sorwar and Abraham (Sorwar and Abraham, 2004) have proposed selecting

two different texture features based on lower coefficients, and directional edges coefficients,
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where the coefficients of the most upper and left regions represent vertical and horizontal edge

information respectively.

In this research, the computational complexity is the main challenge addressed for IW of

streams of grayscale high-resolution images. The watermark embedding and extracting al-

gorithm described in Section 1.2 is based on DCT transform which inherits better robustness

against JPEG compression, and thus the DCT coefficient are already extracted during embed-

ding or extracting the watermark. Using DCT coefficients for texture features extraction does

not add any computational complexity, however using other texture representation would in-

volve adding more complexity to the system even if this representation is based on spatial

features with no transforms involved.

In even embedding scheme of watermarking, all cover image blocks have equal embedding

capacities. Even embedding results in embedding watermark bits in smooth textured blocks

which results in degradation of watermark quality and robustness fitness. This scheme can be

useful for images whose blocks are all textured. For facial images considered in this thesis,

there is smooth textured blocks which should be avoided to be used for embedding watermark

bits.

Uneven embedding scheme is more suitable for facial images considered. It can be used with

simple embedding capacity calculation algorithm, where the most textured blocks are used

for embedding, and the watermark bits are distributed equally among these textured blocks.

Another advanced algorithm for embedding capacity is proposed in this thesis in Chapter 2 to

distribute watermark bits among textured blocks, such that the blocks of highest texture holds

the maximum embedding capacity and the capacity decreases for lower textured blocks until

all watermark bits are embedded. This scheme requires clustering blocks according to their

texture to calculate the embedding capacity based on their texture features.

1.5.2 Grayscale Texture Metrics

Adaptive watermarking systems proposed in literature model the human vision system to mea-

sure the level of tolerable distortion in an image. Accordingly the insertion of the mark is
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adjusted to these levels of distortion in an image to maximize robustness and quality. These

systems involve ranking cover image blocks according to texture. The most textured blocks

are used for embedding the watermark, thus the embedding parameters and regions are adap-

tive to the image content. Perceptual masks are proposed to perform the selection of textured

blocks for embedding. Table 1.3 shows the different categories of perceptual masks proposed

in literature. In this thesis lower complexity masks are considered in the experimentation due

to dealing with high-resolution cover images.

Table 1.3 Perceptual masks literature survey.

Spatial

Texturization

Texture (Kim and Suthaharan, 2004)

Measure (Kamble et al., 2010)

Texture (Yuan and Zhang, 2006)

Model

Distortion (Yixin et al., 2009)

Estimation (Voloshynovskiy et al., 1999)

Frequency
(Li et al., 2008)

(Gao et al., 2006)

Most of authors proposed spatial perceptual masks due to their modest computational com-

plexity. Kim and Suthaharan (Kim and Suthaharan, 2004) proposed using entropy as a texture

measure to identify more textured regions which are more suitable for embedding the water-

mark. Another texture measure is proposed by Kamble et al. (Kamble et al., 2010) which is

based on gray level covariance matrix. Yuan and Zhang (Yuan and Zhang, 2006) proposed us-

ing Gaussian Mixture Model (GMM) to model the texture and identify highly textured blocks

for embedding. Yixin et al. (Yixin et al., 2009) employed Just Noticed Distortion (JND)

concept to identify the blocks which can be used for embedding without significant distortion

compared to other blocks. Voloshynovsky et al. (Voloshynovskiy et al., 1999) introduced

Noise Visibility Function (NVF) which is based in Gaussian mixture model of texture based

on HVS. Few authors to date have proposed using frequency based perceptual masks, where

Li et al. (Li et al., 2008) and Gao et al. (Gao et al., 2006) proposed exploiting a modified Wat-

son’s visual model and Discrete Cosine Transform (DCT) for texture masking. The following

paragraphs describe the masks considered in this thesis:
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Texturization Masks

Entropy is a scalar value of grayscale image Xc of resolution Mc×Nc representing the energy

of this image. Entropy is a statistical measure of randomness that can be used to characterize

the texture of the whole image or blocks. For 8x8 blocks, the image Xc is divided into Mc

8
× Nc

8

blocks whose row and column indices defined as mc, and nc respectively. The entropy of a

block bi is defined as Ebi :

Ebi =
∑

w,h∈bi
SP(w,h).log2SP(w,h) (1.10)

where SP(w,h) is the normalized spectrum of 8× 8 pixels blocks with w and h representing the

index of pixels for width and height respectively. Blocks of higher entropy value Ebi represents

more textured blocks, smooth textured blocks have lower entropy Ebi value. Entropy considers

only one aspect of the human visual system, and does not exploit other features such as contrast

and structure elements of the image.

Distortion Estimation (HVS) Masks

Noise Visibility Function (NVF) uses a general concept inspired by denoising. Voloshynovskiy

et al. (Voloshynovskiy et al., 1999) have proposed different functions for the definition of NVF

based on the function of the image denoising and the statistical properties of the image. In the

field of image processing, the variance is used to gain information about the local activity in

the image. Its small values indicate smooth regions, and its large values indicate the presence

of edges or highly textured regions. Using the local variance of pixels in block σ2
x, NVF can be

defined as:

NV F =
1

1 + σ2
x

(1.11)

Visual models derived in compression techniques are perfectly adapted to the problem of wa-

termarking. A common paradigm for perceptual masking is derived from the calculation of an

image mask which depends on JND used in compression applications. Such a model can be
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directly extended to digital watermarking applications by supplying information on the ability

of inserting a block of the image with respect to another, this ability is related to the degree

of noise that can undergo this block that ensures transparency while providing a robust water-

marking. The combination of sensitivity, luminance, edges, and corners information are used

to estimate a mask that defines the weight assigned to each block of the cover image. This

weight provides a classification of blocks of the cover image to identify the more receptive

blocks for embedding in terms of robustness and imperceptibility.

In this research the masks with lower complexity are considered in experimentation. The en-

tropy mask is considered as an example of texturization masks, also NVF and JND masks are

considered as an example of distortion estimation masks. The frequency based masks are not

considered in this research to avoid computationally complex transforms for these masks.

In an earlier work by the authors (Rabil et al., 2013a), Robustness Scores (RS) was proposed as

an adaptive texture metric for grayscale images. RS is well suited for full uneven embedding

scheme, where it groups image blocks according to their texture features and use different

embedding capacity for each group of blocks. RS is calculated for different number of blocks

groups using robustness fitness against JPEG. It is calculated for embedding 1 bit-per-block in

all blocks belonging to the same group measured using NC defined in Section 1.1.

1.6 Bio-watermarking

Biometrics are the means to recognize individuals using intrinsic physical or behavioral char-

acteristics. Many countries have become strong advocates of biometrics with the increase in

fear of terrorism since September 11, 2001. Recently biometrics is synergistically merged into

the digital watermarking technology to secure biometric captures against tampering, manipula-

tion and attacks to ensure their authenticity and integrity, also to hide biometric traits invisibly

inside other biometric images.

Offline signature based bio-watermarking systems have been studied by few authors in litera-

ture. Low et al (Low et al., 2009) have used offline signature extracted features discretized as

binary watermark to study the impact of watermarking attacks on watermark quality and ro-
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bustness fitness only, while Bhattacharyya et al (Bhattacharyya et al., 2007) have used offline

signature images as watermarks to improve robustness against watermark removal attacks. The

impact of watermarking attacks on the biometric verification system have been considered by

Dong and Tan (Dong and Tan, 2008) for iris template images, and Huang et al (Huang et al.,

2008) for 3D face model authentication images. Also Dong and Tan (Dong and Tan, 2008) have

considered the impact of watermarking attacks when embedding iris templates as watermarks.

None of these bio-watermarking systems was based on computational intelligence techniques

to optimize watermark embedding to maximize fitness of watermark quality and robustness.

In face recognition techniques, the recognition is performed using extracted features from fa-

cial captures, however the facial captures are stored for later feature extractions and improve

classifiers to improve recognition rates. In some applications these captures are stored for the

same individual at different ages to perform individual recognition across ages. These stored

captures are vulnerable to manipulations, and thus it is essential to secure these facial captures

to ensure their integrity and authenticity.

The main bio-watermarking application considered in this thesis is securing facial captures

stored during enrollment using binary logo watermarks to ensure their authenticity and in-

tegrity. However there is another access control bio-watermarking application introduced in

Annex II to embed another biometric trait inside the high-resolution facial captures in the

passports to verify individuals crossing boards using two different biometric traits. Preferably

combine a physical trait of facial captures with another behavioral biometric trait like offline

signature. Offline signature can be captured from different customs forms during border cross-

ing. This would improve significantly the individual verification for people crossing borders.

1.7 Discussion

The previous sections described the main aspects of intelligent watermarking for grayscale

high-resolution images, and a literature survey on contributions proposed. Most of contribu-

tions proposed in literature rely on representing all cover image blocks in optimization can-

didate solutions in different EC methods. Watermark quality and robustness fitness are either
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aggregated to be optimized as SOOP, or optimized simultaneously as MOOP. The embedding

parameters to be optimized are dependent on the watermark embedding and extracting algo-

rithm. In this thesis DCT-based algorithm (Shieh et al., 2004) is used, and thus the embedding

parameters maps to the selection of DCT coefficients to be modified to embed the watermark.

Authors in intelligent watermarking literature did not pay attention to using high-resolution

grayscale images, and instead they tested their methods against low resolution test images

(resolutions 512×512 and 256×256). The dimension of the search space of EC methods cor-

responding to optimizing embedding parameters of such low resolution images is limited. For

high-resolution facial captures of resolution 2048×1536 pixels, the dimension of search space

is equal to 49k variables represented by 300k bits using binary representation. Most of EC

methods suffer from premature convergence in such dimension. This challenge is addressed in

Chapter 3, where a specialized algorithm based on cooperative coevolution is proposed.

Also in intelligent watermarking literature, authors verified their methods using few test im-

ages, and did not consider handling streams of homogeneous grayscale images. For such ho-

mogeneous streams, the optimization problems corresponding to different images in this stream

are similar. The optimization results of one image or sub-image can be reused for another im-

age or sub-image in the stream of similar content. This challenge is addressed in Chapter 2,

where optimization problems are proposed to be replaced by associative memory recalls. This

associative memory is populated with optimization results for clusters of blocks according to

their texture features.





CHAPTER 2

RAPID BLOCKWISE MULTI-RESOLUTION CLUSTERING (BMRC)

Population-based evolutionary computation (EC) is widely used to optimize embedding param-

eters in intelligent watermarking systems. Candidate solutions generated with these techniques

allow finding optimal embedding parameters of all blocks of a cover image. However, us-

ing EC techniques for full optimization of a stream of high-resolution grayscale face images

is very costly. In this chapter, a blockwise multi-resolution clustering (BMRC) framework is

proposed to reduce this cost. During training phase, solutions obtained from multi-objective

optimization of reference face images are stored in an associative memory. During general-

ization operations, embedding parameters of an input image are determined by searching for

previously stored solutions of similar sub-problems in memory, thereby eliminating the need

for full optimization for the whole face image. Solutions for sub-problems correspond to the

most common embedding parameters for a cluster of blocks of similar texture features. BMRC

identifies candidate block clusters used for embedding watermark bits using the robustness

score metric. It measures the texture complexity of image block clusters and can thereby han-

dle watermarks of different lengths. The proposed framework implements a multi-hypothesis

approach by storing the optimization solutions according to different clustering resolutions and

selecting the optimal resolution at the end of the watermarking process. Experimental results

on the PUT face image database show a significant reduction in complexity up to 95.5% reduc-

tion in fitness evaluations compared with reference methods for a stream of 198 face images.

The content of this chapter is published in Machine Vision and Applications (Rabil et al.,

2013a) and International Workshop on Intelligent Pattern Recognition and Applications, WIPRA

2013 (Rabil et al., 2013b).

2.1 System Overview

The proposed technique is capable of finding blocks used for embedding and specify their em-

bedding parameters in a computationally efficient manner. It also can handle watermarks of
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different lengths using proposed Robustness Score (RS) metric for block clusters. This pro-

posed metric is used also to identify the suitable embedding clusters of blocks. BMRC is based

on a multi-objective formulation which satisfies the trade-off between watermark quality and

robustness, and thus allows adaptability for different application domains, where the objectives

priority vary, without the need for costly re-optimizations.

During the training phase, the multi-objective optimization results, obtained on training im-

ages, are stored in an associative Block Cluster Memory (BCM). After the full optimization

results are obtained, the optimal solution is selected from the resulting Pareto front based on the

application domain priorities. This optimal solution represents optimal embedding parameters

for all training image 8 × 8 pixels blocks, it is used to collect the most frequent embedding

parameters for all image blocks having the same texture. This information is stored for multi-

resolution clustering of face image blocks based on their texture features, where clustering res-

olution represents the number of clusters. The order of embedding for these multi-resolution

block clusterings is determined using the proposed RS metric. BMRC uses an incremental

learning scheme in training phase, such that the multi-resolution clusterings and their corre-

sponding most frequent embedding parameters are calculated for the first training images and

get updated for subsequent training images.

During generalization phase, texture features are extracted from 8 × 8 pixels blocks of the

unseen stream of images, then these blocks are categorized using the recalled multi-resolution

clustering prototypes from BCM. The order of utilizing blocks categories for embedding is

identified using RS, which is also used to calculate the empirical embedding capacity for these

categories. The empirical embedding capacity is dependent on the watermark length and RS

of block clusters identified in the image such that the block cluster of highest RS has the

maximum embedding capacity, and it gets decremented until a threshold α of RS is reached.

The watermark fitness is calculated for different resolutions stored in BCM, and then solutions

are ranked to choose the optimal clustering resolution for each face in the stream.

Proof of concept simulations are performed using the PUT database (Kasinski et al., 2008) of

high-resolution face images, and compared against reference method in terms of complexity
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and quality of solutions. Simulation results demonstrate that BMRC results in a significant

reduction of the computational cost for IW by replacing costly optimization operations with

associative memory recalls. The resulting solutions have nearly the same quality and robustness

as those obtained with full optimization of each face image. The performance of BMRC is

evaluated for different watermark length, and the robustness objective is considered of higher

priority to reach up to 99.9% of bits restored after manipulating the watermarked face image. A

sensitivity analysis is performed on BMRC tunable parameters to evaluate the impact of these

parameters on both the framework performance and the associative memory size. Parallel

implementation using Graphics Processing Units (GPU) is employed for the most complex

functionalities of BMRC to evaluate its impact on the overall performance.

BMRC shown in Figure 2.1 finds optimal embedding bands in textured blocks for a stream of

high-resolution face images using modest computational complexity. This is accomplished by

replacing computational expensive full optimization with memory recalls from an associative

memory representing prior optimization knowledge. Face images blocks are clustered accord-

ing to their texture, and then optimal embedding bands for all of blocks of same texture are

selected together using prior knowledge stored in associative Block Cluster Memory (BCM).

Solutions recalled from BCM, representing different number of clusters, are proposed to be

ranked using watermark fitness to find number of blocks clusters for each face image. The

number of clusters is referred to as clustering resolution in this chapter. This implements

multi-hypothesis approach where all alternative solutions are stored and the hard decision to

choose among these solutions is postponed.

The training set D consists of training face images defined as D = {TI1, T I2, ..., T Id, ..., T IN},

where TId represents face image of index d from the training set D of resolution Mc×Nc. The

number of face images in the training set is equal to N . For each training face image TId, the

image is divided into 8× 8 pixels blocks Bd = {bi}, where i = (nc − 1)× (Mc/8) +mc with

mc, and nc defines the row and column index of 8× 8 blocks respectively. The total number of

blocks NB = (Mc/8)× (Nc/8), and thus i = [1, 2, ..., NB].
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Figure 2.1 General overview of BMRC architecture and processing steps for training

and generalization phases. BCM is organized based on clustering resolution k ranging

from Kmin to Kmax.

Training face image blocks Bd are transformed into DCT domain DCTd = {dcti}, where

dcti = {ac0, ac1, ..., aca, ..., ac63} with ac0 defines the DC coefficient of the 8 × 8 block bi,

and aca defines the ath DCT coefficient of the same block bi. The texture features TFd are

extracted from DCTd, where TFd defines the most significant DCT coefficients from DCTd

for training face image TId. The texture feature vectors are defined as TFd = {tfi}, where

tfi defines the texture feature vector of block bi. This feature vector is defined as tfi = {aca},

where a ∈ [0, 1, ..., 63], and a = {a1, a2, ..., at, ..., aT}. The number of coefficients used to

extract features is equal to T , and t is the index of texture feature in the feature vector tfi.

After the full optimization process for face image TId, the optimal embedding bands EBd are

concluded for face image TId, where EBd = {ebi} with ebi representing the optimal embed-

ding bands for block bi. The embedding bands defines the index of DCT coefficients which are
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modified during embedding the watermark. It can be defined as ebi = {a1, a2, ..., ae, ..., aCi
}

with e is the index of the embedding bands in ebi, and Ci is the number of embedding bands

for block bi representing the embedding capacity for bi.

The generalization set of unseen face image G is defined as G = {SI1, SI2, ..., SIg, ..., SIM},

where the size of generalization set equals to M . The subscript g is used instead of d for the

data structures used in generalization phase. Thus Bg, DCTg, and TFg defines the 8×8 blocks,

the DCT transformed blocks, and the texture features of the face image SIg respectively.

Algorithm 1 describes the main steps of the proposed framework, where the training phase

(lines 1-7) is performed on training set face image TId, and the generalization phase (lines

8-14) is triggered using generalization face image SIg. BCM associative memory is populated

(lines 1-7) with prior knowledge during two steps training phase, where the first step finds the

multi-resolution clusterings for face image blocks (line 5), and the second step calculates the

most frequent embedding bands associated with each and every cluster prototype defined in

the first step (line 6). Prior knowledge are recalled for different resolutions k (lines 10-13) and

fitness is calculated for these resolutions (line 12), and finally solutions are ranked (line 14) to

take the hard decision at the end of the process.

Algorithm 1 Main steps of the BMRC framework.

Input: Either training face image TId, or unseen face stream SIg

1: #TId is fed into the system and the training phase is called.

2: Full optimization for all image blocks Bd represented positionally to find optimal embedding bands

EBd.

3: Extract texture features TFd from 8× 8 pixels blocks Bd.

4: for k = Kmin → Kmax do
5: Store/update multi-resolution clustering SCk prototypes using TFd.

6: Store/update most frequent embedding bands MFBk for candidate clusters whose robustness

scores (rs(k,j)) equals or larger than α.

7: end for
8: # SIg is fed into the system and the generalization phase is called.

9: Extract texture features TFg from 8× 8 pixels blocks Bg.

10: for k = Kmin → Kmax do
11: Find clusters for face SIg blocks using prototypes p(k,j) in SCk.

12: Recall most frequent bands MFBk and calculate fitness.

13: end for
14: Rank solutions representing k values and select optimal k value.
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The prior knowledge is represented by blockwise multi-resolution clustering of face image

blocks bi for different number of clusters k using texture feature vectors tfi of these blocks bi.

The set of clusterings SC:{SCKmin
, SCKmin+1, ..., SCk, ..., SCKmax} are stored in associative

memory. Each clustering SCk consists of cluster prototypes p(k,j) with j = 1, 2, ..., k repre-

senting jth cluster for clustering resolution k, where SCk:{p(k,1), p(k,2), ..., p(k,j), ..., p(k,k)}.

This set of clusterings SC are updated along training phase to update prototypes based on face

images in the training dataset D.

The Most Frequent embedding Bands (MFBk) for all blocks belonging to the same blocks

cluster are calculated for training set D using previous optimization results. These results are

represented by optimal embedding bands ebi for all blocks bi of training face image TId. For

each clustering SCk there is MFBk set, where MFBk = {mfb(k,1),mfb(k,2), ...,mfb(k,j), ...,

mfb(k,k)}. mfb(k,j) is associated with cluster prototype p(k,j) representing most frequent em-

bedding bands using clustering resolution k for jth cluster. The set of most frequent bands

is defined as mfb(k,j) = {fb(k,j)(1), fb(k,j)(2), ..., fb(k,j)(f), ..., fb(k,j)(β)} and fb(k,j)(f) ∈
[1, 2, ..., 63]. mfb(k,j) is ordered descendingly with respect to the frequency of occurrence of

embedding bands, where fb(k,j)(1) is the index of the most frequent embedding band for jth

cluster using resolution k represented by prototype p(k,j), and fb(k,j)(β) is the index of the least

frequent band. The parameter β is tunable for the proposed system defining the size of mfb(k,j)

representing the maximum number of frequent bands stored in BCM.

Robustness Scores is proposed as a texture metric for a cluster of blocks having similar texture

features. This metric is calculated for a cluster of blocks using robustness fitness against JPEG

compression with quality factor 80% measured using NC when embedding a watermark of

length equal to the number of blocks in the cluster nb(k,j). The watermark bits are embedded

only in blocks belonging to the cluster with capacity equals to 1 bit-per-block. Higher values

of RS indicates higher texture clusters of blocks which are good candidates for embedding wa-

termark bits. Blocks clusters of lower RS represent smooth textured clusters which should be

avoided for embedding to improve both watermark qulaity and robustness. RS is calculated for

all clustering SCk for different clustering resolutions k during the training phase. Whenever
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SCk are updated during the training phase for subsequent training face image, RS is recalcu-

lated for the updated prototypes defined in SCk.

RS are used to identify the order of embedding for different watermark length, and the em-

bedding capacity of different blocks Ci. For each clustering SCk there is a set RSk where

RSk:{rs(k,1), rs(k,2), ..., rs(k,j), ..., rs(k,k)} with j = 1, 2, ..., k representing the scores for jth

cluster using clustering resolution k. The clusters of blocks whose rs(k,jc) is equal or higher

than α threshold are considered candidate embedding clusters CLk for resolution k, where

CLk = {j1, j2, ..., jc, ..., jclk} and jc defines the index of the clusters and the number of candi-

date embedding clusters equals to clk.

Even embedding would be a special mode of operation for the proposed system, where ranking

clusters based on robustness scores rs(k,j) would not be needed during training phase. During

generalization phase, the empirical embedding capacity calculation Ci would not be needed as

well. The two phases now are presented in more details in the following sections.

2.2 Training

The processing steps included in training phase are described in the following sections and

shown in Algorithm 2. Full optimization of training face image TId is performed (line 2),

where all face image TId blocks bi are represented positionally as ebi in optimization candidate

solution to find optimal embedding bands EBd for all blocks of TId. After this optimization

process, the prior optimization knowledge is concluded and stored in BCM. Texture features

are extracted from face image TId blocks (line 3), then the prior knowledge is represented by

most frequent embedding bands for all blocks having the same texture features (lines 5-7). This

knowledge is stored for first training face image and gets updated with following training face

images.

BCM holds this prior knowledge for different resolutions k ranging from Kmin to Kmax to

decide the optimal number of clusters at the end of generalization phase of each face image

based on the watermarking fitness. BCM is organized based on the value of clustering resolu-
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Algorithm 2 Proposed BMRC training phase.

Input: Training dataset face images D, and empty BCM.

1: for d = 1 → N do
2: Perform mutli-objective optimization for all face TId blocks bi where all blocks are represented

positionally in the optimization candidate solution to find optimal embedding bands EBd.

3: Extract texture features TFd from face image TId
4: for k = Kmin → Kmax do
5: Store/update clustering SCk including clusters prototypes (centroids) for clustering resolution

k in BCM.

6: For each cluster j = 1, 2, ..., k of blocks store/update most frequent embedding bands MFBk

using maximum training capacity β.

7: Calculate robustness scores RSk for the clusters, and identify candidate clusters CLk for

embedding as shown in Algorithm 3.

8: end for
9: end for

Output: Clustering SCk with associated prototypes p(k,j), most frequent embedding bands MFBk,

robustness scores RSk, and CLk candidate embedding clusters stored in BCM.

tion k, where for each value of k the associated clusters prototypes p(k,j) are stored along with

most frequent embedding bands mfb(k,j), and robustness scores rs(k,j) using prior knowledge

of optimization process results.

2.2.1 Full Optimization

Each face image TId from the training set D is fed into multi-objective optimizer (Bureerat

and Sriworamas, 2007). Multi-objective optimization is performed to find optimal embedding

bands EBd for all individual face image blocks satisfying the trade-off between the conflicting

objectives of watermark quality and robustness. All individual face image blocks bi are encoded

positionally in the optimization candidate solutions such that all blocks of face image TId has

one bit per block to be embedded. This full optimization process is computationally complex

because of large dimension of the optimization search space due to representing all face image

blocks in the optimization problem.

Multi-objective optimization results in multiple optimal solutions called non-dominated solu-

tions, where improving one objective fitness results in suffering for other objective considered.

Choosing the optimal solution among these solutions is based on the priority of objectives in
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the application domain. This feature ensures the adaptability of the proposed system in differ-

ent application domains without computationally expensive re-optimizations.

For example, quality is the most important issue with medical imaging applications where the

watermarked image still goes through feature extraction process, on the other hand robustness

is the most important issue with biometrics application where the embedded watermark rep-

resents biometric traits which are used for recognition after watermark bits extraction. In this

research, we employ a fixed trade-off between robustness and quality by fixing quality require-

ments for optimal solution weighted PSNR at 42 dB (Voloshynovskiy et al., 1999) which is

considered acceptable from a Human Vision System (HVS) standpoint as shown in Figure 2.2

for training set face images TI1, T I2, and TI3.

Figure 2.2 Selecting solution among Pareto front for training set face images TId from

PUT database (Kasinski et al., 2008) based on application domain objectives priorities,

where embedding capacity is 8 bits per block.

2.2.2 Find Set of Clusterings SC

The first step of training phase involves extracting texture features from face TId blocks and

cluster the blocks in texture feature space. The clustering technique is multi-resolution clus-

tering approach where the clustering is performed using different number of clusters k ranging

from Kmin to Kmax. The first training steps results in a set of clusterings SC including clus-
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tering SCk for each resolution k.

Extract texture features: After the full optimization process is over, optimization results

obtained for all blocks with similar texture properties will provide the prior knowledge to de-

crease computational burden. Texture features can be extracted from spatial domain or trans-

form domain for grayscale images. Although extracting texture features from spatial domain

is less complex, in the proposed approach the transform domain texture features are already

available for embedding and extracting the watermark. Texture feature vectors are extracted

from the DCT transformed 8× 8 blocks DCTd of training face TId, where the most significant

DCT coefficients are employed as texture features vectors tfi for each block bi. Using zoning

approach proposed by Yu et al. (Yu et al., 2010), texture feature vector for block bi defined as

tfi = {aca} where a = {a1, a2, ..., at, ..., aT} with T = 39 as shown in Figure 2.3.

ac0 ac1 ac5 ac6 ac14 ac15 ac27 ac28

ac2 ac4 ac7 ac13 ac16 ac26 ac29 ac42

ac3 ac8 ac12 ac17 ac25 ac30 ac41 ac43

ac9 ac11 ac18 ac24 ac31 ac40 ac44 ac53

ac35 ac36 ac48 ac49 ac57 ac58 ac62 ac63

ac21 ac34 ac37 ac49 ac50 ac56 ac59 ac61

ac20 ac22 ac33 ac38 ac46 ac51 ac55 ac60

ac10 ac19 ac23 ac32 ac39 ac45 ac52 ac54

T Id

Bd

DCTd

dcti

bi

Divide into
8x8 Blocks

DCT
Transform

Figure 2.3 Zoning method to select the most significant DCT coefficients to extract

texture features tfi for block bi (Yu et al., 2010), tfi = {aca}, where

a = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 33, 34, 35, 36,

37, 41, 42, 43, 48}

Store/update multi-resolution clustering SCk: The blocks bi of the training face image TId

are clustered based on their texture feature vectors tfi. The clustering is performed using multi-
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resolution for different values of k. In this approach k different partitions of the texture space,

ranging from Kmin to Kmax are computed. One of the least complexity category of clustering

algorithms is k-means, this attracted lots of attention for authors in the large data clustering

literature where it has time complexity of O(nkm), and space complexity of O(k) (Jain et al.,

1999), where k is the number of clusters, n is the number of patterns to be clustered, and m

is the number of iterations. K-means is widely used in Content Based Image Retrieval (CBIR)

(Yang et al., 2010) with large data. K-means results in the prototypes of clusters represented

by centroids in texture feature space.

The resulting centroids for the multi-resolution clustering represents the set of clusterings

SC = {SCk} which are stored in BCM for the first training face image TI1, and the sub-

sequent training images use these centroids as initial clustering and get updated along training

for different SCk. The optimal embedding clusters of blocks are those clusters whose rs(k,j) are

higher than the threshold α, however some of these clusters can be ignored during embedding

for watermarks of small lengths WL, and thus these are referred to as candidate embedding

clusters. The order of embedding is utilizing robustness scores rs(k,j) , where the clusters of

higher rs(k,j) are used first for embedding until all watermark bits are embedded.

2.2.3 Find Most Frequent Bands for Candidate Clusters

The second step of training phase involves collecting embedding bands statistics for the set of

clusterings SC using the full optimization results EBd for all training face TId blocks. These

embedding bands represent the AC coefficients in DCT domain 8×8 blocks that are altered to

embed the watermark bits in these blocks. The most frequent bands mfb(k,j) for each cluster j

of blocks represented by the prototype p(k,j) using clustering resolution k are stored in BCM.

Then robustness scores rs(k,j) for these clusters are calculated to identify order of embedding,

and candidate embedding clusters based on robustness threshold α. The optimal embedding

clusters of blocks are those clusters whose rs(k,j) are higher than the threshold α, however some

of these clusters can be ignored during embedding for watermarks of small lengths WL, and

thus these are referred to as candidate embedding clusters. The order of embedding is utilizing
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robustness scores rs(k,j), where the clusters of higher rs(k,j) are used first for embedding until

all watermark bits are embedded.

Store/update most frequent embedding bands MFBk: For each clustering level k, the op-

timal embedding bands obtained from full optimization EBd are collected for all blocks be-

longing to the same blocks’ cluster. The most frequent embedding bands MFBk for each

candidate cluster of blocks are stored in BCM for TI1 face image, and then for subsequent

training images TId the most frequent embedding bands get updated.

Find candidate embedding clusters: After storing/updating multi-resolution clusterings SC,

Robustness Scores rs(k,j) are evaluated using watermark robustness fitness of JPEG compres-

sion attack of quality factor 80% when only embedding 1 bit per block for all blocks belonging

this cluster j. Robustness scores are calculated for all clustering separately such that rs(k,j) is

calculated for jth cluster using clustering resolution k at a time using a random watermark Wr.

The length WL of this random watermark equals to the number of blocks nb(k,j) belonging to

the cluster represented by the prototype p(k,j) in the training image TId.

Algorithm 3 Identifying candidate embedding clusters.

Input: Clustering SCk with cluster prototypes p(k,j), most frequent embedding bands mfb(k,j), and

robustness scores threshold α.

1: for k = Kmin → Kmax do
2: Recall k cluster prototypes from clustering SCk in BCM.

3: for j = 1 → k do
4: Count the number of blocks nb(k,j) belonging to cluster represented by prototype p(k,j), where

NBk = {nb(k,1), nb(k,2), ..., nb(k,j), ..., nb(k,k)}.

5: Generate random binary watermark Wr with length WL = nb(k,j)
6: Embed Wr in blocks of face image TId belonging to cluster represented by p(k,j) using re-

called fb(k,j)(1) from mfb(k,j) yielding to 1 bit-per-block.

7: Calculate rs(k,j) using robustness fitness represented by NC.

8: Store/Update robustness fitness as rs(k,j) associated with prototype p(k,j) and create CLk with

indices jc of clusters having rs(k,jc) ≥ α descendingly.

9: end for
10: end for
Output: Robustness scores rs(k,j) associated with cluster prototypes p(k,j), and ordered list of the

indices of the candidate embedding clusters CLk
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The detailed algorithm to identify candidate embedding clusters is shown in Algorithm 3. Ro-

bustness scores evaluation starts with generating random binary watermark Wr of length nb(k,j)

for jth cluster using resolution k (lines 4-5). The watermark Wr bits are embedded in the blocks

belonging to the cluster identified by prototype p(k,j) (line 6), and watermark robustness fitness

against JPEG compression with quality factor 80% is calculated using NC to represent robust-

ness score rs(k,j) for this cluster and stored in BCM (line 7). The indices for those clusters of

scores higher than or equal to α in CLk (line 8). This process is performed on the first training

face image TI1 and gets updated for following training face images TId.

Clusters of rs(k,jc) equals or higher than α are considered candidate clusters CLk for embed-

ding using resolution k. CLk includes the indices of these clusters CLk = {j1, j2, ..., jc, ..., jclk},

with clk equals to the number of candidate embedding clusters. The order of embedding water-

mark bits is dependent on the value of rs(k,jc) for blocks, such that the cluster of highest rs(k,jc)

is used first for embedding and then clusters of lower scores follow descendingly.

Figure 2.4 shows an example using resolution k = 4, where 4 random watermarks Wr are gen-

erated of lengths WL = {nb(4,1), nb(4,2), nb(4,3), nb(4,4)} and embedded one at a time in blocks

belonging to cluster j using recalled most frequent band fb(4,j)(1) from mfb(4,j). Watermark

robustness against JPEG compression is measured using NC for all clusters j to calculate

rs(4,j). The scores calculated show that the highest scores are found for edges textured blocks

0.99 and the lowest 0.65 for background smooth textured blocks. Using the robustness score

threshold α ensures embedding in textured blocks and avoiding smooth background blocks.

Within the textured blocks the clusters of blocks are ranked based on rs(k,j) to use the highest

rs first for embedding, and descendingly use the clusters of lower rs. Thus CL4 would contain

indices of clusters 1, 2, 4 ordered for embedding.

Figure 2.5 shows the order of embedding for different message length for resolutions k =11

and 13, where the white pixels represents the embedding blocks belonging to candidate em-

bedding clusters CLk for watermarks of length WL equals to 1.6k, 5k, 7k, and 10k. The

embedding blocks are chosen based on the rs(k,j) of the cluster to which the block belongs to.
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nb(4,3) = 40k

nb(4,2) = 3.4k

nb(4,4) = 5k
nb(4,1) = 1.6k

p(4,3)p(4,1) p(4,4)p(4,2)

rs(4,3) = 0.65

rs(4,2) = 0.96

rs(4,4) = 0.90
rs(4,1) = 0.99

p(4,3)p(4,1) p(4,4)p(4,2)

Figure 2.4 Robustness scores rs(k,j) calculation example for k = 4, where

SC4 = {p(4,1), p(4,2), p(4,3), p(4,1)}, NB4 = {1.6k, 3.4k, 40k, 5k},

RS4 = {0.99, 0.96, 0.65, 0.90}, and CL4 = {1, 2, 4}

Figure 2.5 Embedding blocks belonging to CLk of clustering resolutions k=11,16 for

different WL on face image from PUT database (Kasinski et al., 2008).

For shorter WL only edges clusters of blocks are used for embedding, meanwhile less textured

clusters are used for longer WL until all bits are allocated.

By the end of the training phase, the associative memory BCM is populated with prior opti-

mization knowledge. The prior knowledge should cover all clustering resolutions k, because

it is infeasible to predict the number of clusters discovered in face images in the stream with

different light conditions and different textured clothes, nor the number of blocks belonging

to each texture cluster. The proposed associative memory holds the knowledge for different

number of clusters k, and the decision of the optimal number of clusters k is postponed to gen-

eralization phase. The associative memory is organized based on value of k, where for each
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value of k the relevant cluster prototypes p(k,j) are stored along with most frequent embedding

bands mfb(k,j) for the candidate embedding clusters whose indices are included CLk.

Algorithm 4 Proposed BMRC generalization phase.

Input: Clustering SCk with cluster prototypes p(k,j), most frequent embedding bands mfb(k,j), and

ordered candidate embedding clusters CLk

1: for g = 1 → M do
2: Extract texture features TFg from stream face image SIg.

3: for k = Kmin → Kmax do
4: Find SIg blocks clusters in texture feature space TFg using clusterings prototypes SCk from

BCM.

5: if Uneven embedding is used then
6: Identify face image SIg blocks belonging to CLk.

7: Calculate embedding capacity C for SIg blocks using Algorithm 5.

8: end if
9: Recall mfb(k,j) from BCM for clusters in face image SIg and calculate watermark quality and

robustness fitness for value of k.

10: if Solutions are good enough with respect to application domain then
11: Break and find optimal embedding bands using the current value of k.

12: end if
13: end for
14: Rank solutions representing different k values and select the suitable value for k using threshold

based on human vision as shown in Section 2.2.1

15: end for
Output: Optimal embedding bands EBg and capacity C for stream images SIg

2.3 Generalization

The generalization phase processing steps are shown in Algorithm 4. Unseen set of face im-

ages G={ SI1, SI2, ..., SIg, ..., SIM} utilize the prior knowledge stored in BCM to find optimal

embedding blocks and bands. Blocks bi of SIg image are compared against clusterings proto-

types based on texture feature vectors tfi for different resolutions k using recalled clustering

SCk from BCM (line 2-4). The blocks bi belonging to candidate embedding clusters CLk are

identified and empirical capacity Ci is calculated for these blocks using recalled rs(k,j) and

CLk from BCM (line 6-7), these steps (lines 6-7) are not required in even embedding scheme

with equal embedding capacity in all cover image blocks.
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Based on the capacity, the most frequent embedding bands mfb(k,j) are recalled from BCM,

then used for embedding to calculate watermarking fitness for quality and robustness (line 9).

If an acceptable solution is reached using resolution k, there would be no need to calculate

fitness for rest of resolutions (line 10-12) to reduce the complexity of fitness evaluations. For

example, if robustness of NC = 1 is reached in application domains with high priority for

robustness, then the fitness evaluations corresponding to other resolutions k are not required.

Finally solutions are ranked using watermark fitness and the optimal resolution k for each face

is concluded (line 14).

2.3.1 Extract Texture Features

Texture features are extracted from all face image blocks to be able to group these blocks

based on their texture, where the face image SIg is divided into 8 × 8 pixels blocks Bg, then

the blocks are transformed into DCT domain DCTg and the most significant DCT coefficients

of each block bi are used as feature vectors tfi for the face image blocks.

2.3.2 Find Image Blocks Clusters for Different k Values

After extracting texture features, face image SIg blocks are compared against cluster centroids

recalled from BCM for different resolutions k. Each block bi is associated with the nearest

centroid for each value of k in texture space. As shown in Figure 2.6, the block is compared to

the recalled centroids for multi-resolution clustering k in texture feature space. In this example,

the face image block bi is associated with clusters 1, 3, 2, and 6 for number of clusters k equals

to 3, 4, 5, and 6 respectively in texture feature space.

2.3.3 Calculate Embedding Capacity for Different Blocks Ci

For uneven embedding scheme, candidate embedding clusters based on Robustness Scores

RSk are recalled from BCM. These candidate clusters are ordered such that the cluster with

highest rs(k,j) is used first and then less robustness scores clusters are used next for embedding.

Classifying face image blocks into foreground and background is not efficient, as some of the

foreground blocks have better robustness than others. These can be utilized for larger embed-

ding capacities and other foreground blocks should be avoided during embedding as shown
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Figure 2.6 Classifying block bi for different k values in texture feature space.

in Figure 2.5 for smaller watermarks. Ordering candidate embedding clusters also ensures

adaptability for different lengths watermarks.

The proposed algorithm to calculate the embedding capacity C for different blocks C={C1, C2,

..., Ci, ..., CNB} using the ordered list of indices of candidate embedding clusters CLk={j1,j2,

..., jc, ..., jclk} is demonstrated in Algorithm 5. In this algorithm the bits are allocated without

real embedding, such that the bits allocated to each cluster of blocks are equal representing

empirical embedding capacity for all blocks belonging to the same cluster. CLk is ordered

such that the first candidate cluster c = 1 is the cluster with highest robustness score rs(k,j), and

clk is the number of clusters whose rs(k,j) is equal to α or higher using resolution k. Initially

maximum embedding capacity CMax(g) for face image SIg equals to 1 (line 1). The maximum

capacity CMax(g) is incremented (line 16) until all watermark bits WL are distributed among

blocks bi belonging to the top candidate clusters (line 2), such that the embedding capacity for

the first candidate cluster in list holds the maximum embedding capacity, and this capacity is

decremented for the second candidate and the third descendingly (line 7).



56

Algorithm 5 Calculating watermark capacity for different blocks.

Input: Ordered list of candidate embedding clusters CLk of size clk, watermark length WL, and face

image SIg with NB blocks.

1: CMax(g) = 1
2: while sum(C) < WL do
3: for i=1 to B do
4: for c=1 to clk do
5: if Block bi belongs to cluster jc of CLk then
6: if CMax(g)− c+ 1 > 0 then
7: Ci = CMax(g)− c+ 1
8: else
9: Ci = 0

10: end if
11: else
12: Ci = 0
13: end if
14: end for
15: end for
16: CMax(g) = CMax(g) + 1
17: end while
Output: C identifying embedding capacities for face image SIg blocks, and CMax(g) representing

the maximum embedding capacity for this face image.

2.3.4 Recall MFBk for Clusters Found and Calculate Fitness

The most frequent embedding bands mfb(k,j) associated with prototypes p(k,j) of clusters found

in face image SIg are recalled from BCM. These most frequent embedding bands are used as

optimal embedding bands for all face image blocks belonging to the same cluster of blocks

based on their texture features. This recall is performed for different resolutions k to find

optimal embedding bands for all blocks, then watermark quality and robustness fitness are

calculated using these bands.

As shown in Figure 2.7 for k = 3, each block bi is classified using the distance to the prototypes

p(k,j) of defined blocks clusters in texture feature space, then mfb(k,j) associated with p(k,j) are

recalled. The embedding capacity Ci of bi decides how many embedding bands fb(k,j)(f) are

selected from mfb(k,j) to be used for embedding the watermark, such that if the capacity is

equal to 1 bit-per-block, only the embedding band fb(k,j)(1) is selected for embedding, on the
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k = 3
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Figure 2.7 Classifying block bi in texture feature space and recall mfb(k,j) associated

with prototypes p(k,j) for k = 3, where SC3 = {p(3,1), p(3,2), p(3,3)},and

MFB3 = {mfb(3,1),mfb(3,2),mfb(3,3)}

other hand if the capacity is equal to 3 bits-per-block, then the bands fb(k,j)(1), fb(k,j)(2), and

fb(k,j)(3) are selected.

2.3.5 Rank Solutions According to Fitness to Find Value of k

Using the watermark fitness calculated for different values of k, solutions are proposed to be

ranked to find the optimal number of cluster k to accomplish maximum watermark fitness.

Ranking solutions based on two conflicting objectives like watermark quality and robustness

would involve decision based on the priorities of the application domain. In this research we

employ the same criteria of selecting solutions from full optimization module in training phase

at Section 2.2.1. Thus, the number of clusters is determined using application specific metrics

rather than traditional clustering metrics like cluster accuracy (ACC) (Nie et al., 2011).
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2.4 Experimental Methodology

The database for face images used in experiments is proposed to be PUT (Kasinski et al., 2008)

face database which consists of 100 individuals with 100 poses for each individual. Color face

images of resolution 2048×1536 are converted to grayscale level. Using the first pose of each

individual (face images of name pattern IIII1001.JPG where IIII is the individual number in 4

digits), the first 40 face images are used for verification, the next 10 individuals face images

for training with full optimization to populate associative memory, and finally the last 40 face

images is used as small testing set. Another larger testing set which consists of 100 for the

last poses is used for extended testing for the proposed system (face images of name pattern

IIII4001.JPG and IIII4002.JPG where IIII is the individual number in 4 digits). This large

testing set consists of 198 face images using the poses 4001 and 4002.

The training set and verification set is used for system design and parameters tuning, and both

testing sets are used to test the proposed system. It is not feasible computationally to run the

baseline system on the larger testing set due to the huge complexity of the baseline system

with full optimization for all positional blocks. Assuming 40 optimization iterations, the base-

line system would take years to handle stream of 100 face images using higher embedding

capacities.

Figure 2.8 BancTec binary logo used as watermark to be embedded in face images.

The watermark to be embedded is BancTec binary logo with different resolutions shown in

Figure 2.8. The watermark embedding/extracting algorithm used in experiments is an algo-
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rithm proposed by Shieh et al (Shieh et al., 2004) as illustrated in Section 1.2. The metrics

used in experimentation for measuring watermark quality and robustness are wPSNR and NC

respectively as defined in Section 1.1. Only robustness against JPEG compression of quality

factor 80% is considered in experimentation, the impact of attack intensity has been addressed

before (Rabil et al., 2011a).

The complexity reduction achieved using the proposed BMRC is measured using the number

of fitness evaluations, where the fitness evaluation represents the most complex process for

EC based optimization. This complexity measure is more accurate than using traditional CPU

time to avoid effects resulting from server load and memory usage. The complexity reduction

is measured for a stream of high-resolution facial images to assess the overall reduction for the

whole IW process of this stream

The first experiment compares the proposed system with the baseline system representing tra-

ditional methods with full optimization for all face image blocks. The optimization for baseline

system is based on multi-objective PBIL proposed by Bureerat and Sriwaramas (Bureerat and

Sriworamas, 2007), with maximum iterations set to 40 iterations, and population size equals

to 24. The size of external archive is set to 20. The performance of the baseline system us-

ing mutli-objective PBIL is compared to traditional Multi-Objective Genetic Algorithm (Deb,

2001) (MOGA) using the same settings for both except for initialization. In multi-objective

PBIL probability vectors are all initialized to 0.5 for all bits, while for MOGA initial bands are

set to random embedding bands ebi ∈ [1, 63]. Out of the resultant Pareto front, one solution

is selected based on HVS criteria. Using this criteria, the solution of highest robustness with

quality fitness equals to 42 dB measured using wPSNR metric is selected as described in Sec-

tion 2.2.1. In this experiment, the minimum number of clusters Kmin is set to 3 and maximum

number Kmax is set to 40. The maximum training capacity β is set to 20 bits-per-block, and

the threshold for RS α is set to 89%.

The second experiment evaluates the performance of the proposed system on validation set

with uneven and even embedding as special mode of operation for the proposed system. In

even embedding, embedding capacity calculation is not needed, nor ranking clusters of blocks
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using robustness scores. The quality of solutions produced using even and uneven embedding

are compared against baseline system, and the time complexity is compared in both cases to

evaluate the computational complexity reduction using the proposed system. The watermark

length is 48.8 k-bits yielding to embedding capacity equals to 1 bit per block for even em-

bedding scheme. The performance of BMRC with uneven scheme is analyzed on sample face

images with different fitness levels.

In the third experiment, the performance of the proposed system for watermarks of different

lengths is evaluated starting of the smallest logo whose resolution is 30×30 yielding to around

0.9 k-bits up to largest logo of resolution 221×221 yielding to 48.8 k-bits which is compared

against the baseline system using Shieh method (Shieh et al., 2004) using even embedding

with equal embedding capacity equals to 1 bit per block. The training set for this experiment

consists of one face image N = 1. From this experiment the optimal watermark length for

using biometric traits to be embedded is concluded. Sensitivity analysis is performed for tun-

able parameters α and β for the proposed system. The functionalities of highest complexity

are migrated into parallel implementation using GPU to evaluate its impact on the resulting

complexity reduction.

All previous experiments were using training set of size N = 1. The fourth experiment focuses

on the impact of training set size to populate the associative memory BCM on the quality of

solutions produced and the training time for the associative memory. Training set of sizes 1, 2,

3 and 7 face images are used to populate the BCM associative memory for different embedding

capacities 1, 2, 4, and 8 bits per block for the training set. One face image represents training

set of 49,152 blocks of different textures and their relevant optimal bands.

All previous groups of experiments are performed on the verification set for system develop-

ment, the fifth experiment uses two different testing sets to measure the performance of the

proposed system on unseen face images. The first testing set is smaller set which consists of

40 face images, and the second larger testing set consists of 198 face images to measure the

performance of the proposed system on larger dataset.
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The experiments are executed on gentoo linux based server of 24 GB memory size and 8 cores

Intel Xeon CPU E5520 of speed 2.27GHz. And for GPU implementation, experiments are

executed using 8 NVIDIA Tesla C2050/C2070 GPU cards installed on gentoo linux based

server of 24 GB memory size as well.

2.5 Experimental Results

Table 2.1 Computational complexity of the proposed system using even and uneven

scheme for a stream of 40 face images using training set size N = 1, measured in total

CPU time for the stream.

Training in k sec. Generalization in k sec.
CPU Time Toptim TSC+ TRS Tclassify Tcapacity Tfitness

TMFB

Even Scheme 1160 4 N/A 10 N/A 570

Uneven Scheme 1160 4 1 10 1 570

Table 2.1 shows the complexity of the proposed system with even and uneven embedding

scheme. Time complexity is measured using CPU k-sec, where in the training phase Toptim

represents the full optimization for one training face image N = 1, TSC represents total time

to find SCk for k ranging from Kmin to Kmax, TMFB represents total time to find most fre-

quent bands MFBk, and TRS represents the total time to calculate robustness scores RSk. In

the generalization phase, time complexity is measured for a stream of 40 face images, where

Tclassify represents total time to classify face images blocks into k clusters using recalled SCk

from BCM. Tcapacity represents the total time to calculate the embedding capacity C based on

RSk and watermark length, and Tfitness represents the time to calculate both quality and ro-

bustness fitness for range of k values. The time complexity of watermarking one face image

is 1160 k sec for the baseline with full optimization, compared to an average of 14.5 k sec for

the proposed BMRC during generalization for a stream of 40 face images. Also results show

minimal impact of using uneven embedding scheme on the proposed system complexity.

Table 2.2 shows the complexity reduction measured by number of fitness evaluation, where

results show significant reduction of 93.5% when considering the training fitness evaluations
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Table 2.2 Computational complexity reduction of the proposed BMRC system

compared to baseline system and MOGA (Deb, 2001) for a stream of 40 face images

using training set size N = 1, measured in number of fitness evaluations for the stream.

Fitness Evaluation Baseline & MOGA (Deb, 2001) Proposed BMRC
Training N/A 960

Generalization 38400 1520

Complexity Reduction
Generalization only 96.0%

Overall Reduction 93.5%

Figure 2.9 Fitness comparison of the proposed system with even and uneven scheme

compared to baseline system.

with generalization for a stream of 40 face images. This complexity reduction is increased up

to 95.5% for larger streams of 198 face images. The fitness evaluations of the baseline and

MOGA represent the fitness evaluations during the full optimization. The fitness evaluations

for the proposed BMRC represent the fitness evaluations of the optimization during the train-

ing phase, and fitness evaluations for different number of clusters k to select the optimal value

of k during the generalization phase. The fitness comparison of the development set of face

images is shown in Figure 2.9. The fitness for both watermark quality and robustness of the
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Table 2.3 Mean fitness for validation set of face images for MOGA (Deb, 2001) and

baseline system compared to proposed system with even and uneven scheme using

watermark of length WL = 48.8k.

Mean Fitness Quality Robustness
MOGA(Deb, 2001) 58.41±3.35 0.9393±0.0061

Baseline 57.93±2.71 0.9589±0.0240

Even scheme 56.79±3.76 0.9617±0.0171

Uneven scheme 55.31±2.24 0.9651±0.0087

proposed BMRC are comparable to the baseline system with full optimization for the devel-

opment stream of face images. Then the proposed BMRC with even embedding scheme is

compared against uneven embedding scheme for the same development set of face images.

Table 2.3 shows mean fitness for validation set where there is improvement in robustness fit-

ness and slight degradation in quality fitness within the acceptable quality according to HVS

using highly reduced computational resources. The baseline system based on PBIL has bet-

ter robustness fitness than using MOGA, because of the intrinsic property of PBIL of having

probability vectors. This helps to improve the convergence properties compared to traditional

GA. The complexity of MOGA is equal to the complexity of multi-objective PBIL as shown in

Table 2.2, where the fitness evaluations of both methods are equal for the same population size

and number of generations.

The proposed BMRC is based on guided search technique, compared to global search in tra-

ditional methods with large search space. The guided search in BMRC finds blocks of similar

texture and find their optimal embedding bands for them together. The main complexity reduc-

tion for the proposed BMRC is resulting from the similarity between training face images and

the generalization face images. This similarity is a local similarity on block level rather than

global similarity between face images. Two face images are considered similar if they include

blocks of the same texture, and thus the optimal embedding bands can be reused for these sim-

ilar images. For homogeneous streams of face images considered in this chapter, the clusters

of blocks are expected to be of similar texture. Choosing the optimal number of clusters in
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Figure 2.10 The impact of variations of the number of blocks belonging to similarly

textured clusters on the proposed BMRC performance using uneven scheme.

BMRC using ranking solutions ensures the adaptability of the system to reach the maximum

similarity among clusters of blocks.

Figure 2.10 shows two face images with different fitness levels, due to varying number of

blocks belonging to similarly textured clusters. A histogram of the number of blocks belong-
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ing to each cluster, and their relevant robustness scores RS for these two face images are shown

in the figure. The robustness scores threshold is set to α = 0.89, such that clusters of RS < α

are excluded from embedding. Empirical embedding capacities C are calculated using Algo-

rithm 5. The maximum empirical capacity CMax of a blocks cluster is incremented until all

watermark bits are distributed among the blocks belonging to the same cluster.

For face image 5, the number of blocks belonging to textured clusters is small. The smooth

textured blocks represent around 90% of blocks of this face image shown by cluster 3 of blocks

whose robustness score is less than α. The watermark bits are distributed among the few blocks

belonging to textured clusters with larger empirical embedding capacities. The maximum ca-

pacity for blocks cluster is equal to 16 bits-per-block. This degrades the resulting fitness for

both quality and robustness. On the other face image 30, the blocks belonging to textured clus-

ters are large, and thus the empirical embedding capacities is equal to 7 bits-per-block. The

lower embedding capacities result in better fitness. This concludes that BMRC performance is

more sensitive to variations of number of blocks belonging to similarly textured clusters, rather

than similarity between these clusters of blocks.

Table 2.4 Proposed system performance using uneven scheme with different watermark

length.

WL Quality Robustness k CMax(g) Max(CMax(g))
0.9 k 65.12±3.23 0.9997±0.0013 8±3.35 2±0.40 3

1.6 k 63.46±3.94 0.9985±0.0035 9±5.18 2±0.83 7

2.5 k 62.51±3.11 0.9964±0.0040 12±8.10 3±1.29 8

3.6 k 61.08±3.01 0.9931±0.0056 9±7.16 3±0.91 5

6.4 k 60.75±3.47 0.9885±0.0078 11±8.85 4±1.54 7

10.0 k 59.05±2.41 0.9844±0.0074 14±9.40 5±2.48 13

14.4 k 57.98±2.51 0.9796±0.0077 11±7.86 5±2.80 18

22.5 k 57.71±2.08 0.9735±0.0072 9±6.74 6±2.22 16

32.4 k 56.64±2.24 0.9702±0.0074 13±8.70 7±2.92 18

48.8 k 55.43±2.24 0.9651±0.0087 11±7.87 8±3.14 16

Baseline 57.93±2.71 0.9589±0.0240 N/A N/A N/A

MOGA 58.41±3.35 0.9393±0.0061 N/A N/A N/A

(Deb, 2001)
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Table 2.4 shows the performance of the proposed system for different length of the watermark

WL. The performance is represented using mean values of quality and robustness fitness for

validation set of face images along with the maximum embedding capacity CMax(g) for face

image SIg, and optimal number of clusters k as shown in Figure 2.12. Traditional approaches

represented by baseline system, and MOGA are shown for watermark length WL = 48.8k only

due to the formulation of these traditional methods. The extracted watermarks for different WL

using the proposed system are shown in Figure 2.11. The watermark fitness including quality

and robustness is improved with watermarks of smaller lengths WL.

Figure 2.11 Extracted watermarks of different length WL using the proposed system

with uneven scheme.

Figure 2.12 shows that the optimal message length for the best robustness is 1.6 k bits, where

the average robustness for a stream of 40 face images is over 99.9%. This message length

ensures the highest robustness for such high-resolution grayscale face images. Also in Figure

2.12, the number of clusters k is fluctuating reflecting the variance of k along the stream of

validation set of face images. The time complexity for fitness evaluation Tfitness is 190 k

seconds for 506 fitness evaluations compared to 570 k seconds for 1520 fitness evaluations as

shown on Tables 2.1 and 2.2, where the fitness evaluation is not needed once a robustness fitness
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Figure 2.12 Proposed system performance with uneven scheme for different watermark

lengths WL.

for k of 1 is reached, yielding to additional 67% complexity reduction. The performance of the

proposed system using watermarks of different lengths up to 48.8 k-bits is compared against

the baseline system performance for the same length.

Table 2.5 Impact of β on the total memory size of BCM MemBCM in k-bits, where

Repfloat = 32-bits as per IEEE 754 and Repint = 6-bits to represent index of

embedding coefficients a ∈ [0, 1, ..., 63].

β MemSC MemRS MemMFB MemBCM

30 1019 26 147 1192

20 1019 26 98 1143

10 1019 26 49 1094

Table 2.5 shows the impact of the tunable parameter β on the size of associative memory re-

quired for BCM MemBCM . The total memory MemBCM consists of memory required to store

set of clusterings SC, robustness scores RS, and most frequent embedding bands MFB de-

fined as MemSC , MemRS , and MemMFB respectively. The memory size is dependent on the

binary representation of float and integers defined as Repfloat and Repint respectively, where
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MemSC equals to Repfloat × 39 × ∑Kmax

k=Kmin
k, MemRS equals to Repfloat ×

∑Kmax

k=Kmin
k,

and MemMFB equals to Repint × β × ∑Kmax

k=Kmin
k. As shown in Table 2.4, the maximum

capacity for the stream Max(CMax(g)) shows that β could be reduced to 10 instead of 20 for

watermarks of length 6.4k. However changing β has minimal impact on the memory size spe-

cially the memory size is around only 1 Mega bits which can be afforded easily with ordinary

computers.

Table 2.6 Impact of robustness scores threshold α on the proposed system performance

for watermarks of different lengths WL for stream of 40 face images.

WL α Quality Robustness K CMax(g) Max(CMax(g))

1.6k

0.89 63.46±3.94 0.9985±0.0035 9±5.18 2±0.83 7

0.92 63.53±3.94 0.9988±0.0031 8±4.93 2±0.45 4

0.94 63.53±3.94 0.9988±0.0031 8±4.93 2±0.45 4

6.4k

0.89 60.75±3.47 0.9885±0.0078 11±8.85 4±1.54 7

0.92 60.46±3.25 0.9899±0.0072 11±3.68 4±1.68 9

0.94 60.39±3.24 0.9901±0.0071 10±7.63 4±1.76 9

22.5k

0.89 57.71±2.08 0.9735±0.0072 9 ±6.74 6±2.22 16

0.92 56.75±2.43 0.9768±0.0082 9 ±5.08 7±3.52 17

0.94 56.75±2.25 0.9771±0.0090 9 ±5.07 7±3.35 16

Table 2.6 shows the impact of the robustness scores threshold α to identify candidate embed-

ding clusters on the proposed system with watermarks of different lengths WL. For small

watermarks of length 1.6k, the quality and robustness fitness are not affected because the mean

maximum capacity CMax(g) is 2 bits-per-block. This implies that only the two highest robust-

ness scores clusters are used for embedding, and thus increasing the threshold up to 94% would

not affect the fitness nor the clusters used for embedding. For medium watermarks of length

6.4k, the quality fitness is decreased slightly and robustness fitness is increased slightly when

increasing α. This can be explained by the maximum embedding capacity used for the stream

of the 40 face images Max(CMax(g)) of 9 bits-per-block, compared to 7 bits-per-block for α

equals to 0.89. This implies that increasing α for this watermark length WL would exclude

some embedding clusters and increase the capacity of other clusters. For large watermarks of

length 22.5k, the impact is similar to medium watermark however it is more significant increase
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in mean robustness fitness, decrease in mean quality fitness, and increase in mean maximum

capacity CMax(g).

Table 2.7 shows the complexity comparison between the fitness evaluation for both watermark

quality and robustness using matlab, and migrating DCT transform to GPU implementation

and the watermark embedding/extraction to C. The results show minimal Root Mean Square

Error 0.1496, and 0.0054 for quality and robustness fitness respectively due to different rep-

resentation for numeric formats between GPUs and matlab data structures. The experiment

shows huge computational complexity reduction of cpu time for fitness evaluation of 40 face

images stream, where GPU implementation is more than 100 times faster than CPU implemen-

tation. Time complexity is measured using the time to compute fitness of watermark quality

TQF and robustness TRF for one face image. Watermark quality and robustness fitness eval-

uation for one face image involves 3 DCT transforms, and 2 inverse DCT transforms for the

high-resolution face image.

Table 2.7 Impact of using GPU to perform DCT transform, and C for watermark

embedding/extraction on fitness evaluation complexity TQF + TRF , accuracy for 40 face

images, and optimization iteration complexity TIteration in traditional approaches (Shieh

et al., 2004).

GPU CPU
Mean (TQF + TRF )[sec] 2.03±0.84 245.52±1.66

Stream (TQF + TRF )[sec] 81.10 9820.77

Quality RMSE 0.1496

Robustness RMSE 0.0054

TIteration × 103[sec] 29±1.63 34±2.12

However still the optimization iteration computation TIteration in traditional methods is highly

complex due to the constraints handling to avoid embedding on DC coefficient and embedding

multiple bits in the same coefficient of the 8 × 8 block as shown in equation 1.8. And thus

the proposed framework is well suited for GPU implementation more than traditional methods.

This yields to a watermarking system throughput of 12 high-resolution face images per hour
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compared to 0.0667 images per hour for traditional methods, with migrating only DCT costly

transform into GPU implementation.

Table 2.8 Proposed system performance with different training set size N and

embedding capacity C.

N Quality Robustness k CMax(g)
Capacity=1-Bit per Block, TIteration=1361±13.98

1 66.56±8.72 0.9734±0.0139 17±9.19 3±0.62

2 80.29±2.73 0.9673±0.0176 19±10.35 3±0.90

3 80.03±2.85 0.9663±0.0192 18±8.66 3±0.73

7 78.05±3.39 0.9641±0.0172 18±9.84 3±1.26

Capacity=2-Bit per Block,TIteration= 3524±8.10

1 80.14±2.10 0.9675±0.0164 21±9.82 3±1.17

2 80.67±1.76 0.9687±0.0176 23±11.26 3±1.07

3 81.08±1.57 0.9645±0.0211 19±8.04 2±0.68

7 78.73±2.99 0.9637±0.0169 19±9.83 3±1.10

Capacity=4-Bit per Block, TIteration= 6513±573.76

1 69.32±3.57 0.9982±0.0031 14±8.70 3±0.90

2 80.37±2.35 0.9677±0.0202 21±9.58 3±0.78

3 79.80±2.49 0.9668±0.0215 17±9.67 3±0.87

7 77.92±2.65 0.9685±0.0166 24±10.72 3±1.08

Capacity=8-Bit per Block, TIteration= 28978±1628.56

1 63.46±3.94 0.9985±0.0035 9±5.18 2±0.83

2 63.48±4.99 0.9988±0.0026 9±3.78 2±0.60

3 64.08±4.81 0.9993±0.0016 10±7.29 2±0.62
7 66.70±3.34 0.9978±0.0038 13±6.64 3±0.98

Table 2.8 shows the impact of increasing training set size from 1 training face image to 2, 3,

and 7 face images using different embedding capacities 1, 2, 4, 8 bits per block for training

face images. The optimal performance is accomplished using 3 face images for training with

capacity 8 bits per block with mean robustness equals to 0.9993, using more training face

images would result in over-training. The cpu time for single iteration TIteration for the full

optimization step of the training is shown in the table as well. Figure 2.13 shows the impact of

increasing training set size N and embedding capacity on the watermarking fitness produced

by the proposed system.
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Figure 2.13 Impact of increasing training set size N on the proposed system

performance.

Table 2.9 shows the performance of the proposed system using training set of size N = 3 and

watermark length WL = 1.6k concluded from previous experiments for two different testing

sets. The stream of face images size is M =40 , and 198 faces respectively for the two testing

sets. The quality of solutions are almost the same for training set face images, where the mean

quality is slighted degraded from 64.08 dB to 63.96 dB for larger testing set, and the mean

robustness fitness is still around the robustness fitness threshold of 99.9% for both sets.

Table 2.9 Proposed system performance with two different testing sets of size M equals

to 40 and 198 face images respectively using training set size N equals to 3 face images.

M Quality Robustness k CMax(g)
40 63.71±4.59 0.9987±0.0027 10 ±7.03 2±0.59

198 63.96±4.05 0.9987±0.0028 11 ±8.68 2±0.72

2.6 Conclusions and Future Directions

Intelligent watermarking for streams of high-resolution grayscale face images using evolu-

tionary optimization is a very costly process, it has large dimension of search space due to

representing all image blocks in the population of candidate solutions. The positional repre-

sentation of these blocks in traditional methods for grayscale face images results in expensive

re-optimizations when shifting face image pixels inside the image. Also the application domain
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priorities variations result in costly re-optimizations for single objective optimization formula-

tion to adjust the aggregation according to the priorities change.

In this chapter, we presented BMRC framework which replaces stream of similar optimization

problems with BCM associative memory recalls. This BCM memory holds optimization so-

lutions statistics for 8 × 8 pixels blocks grouped according to their texture, such that the most

frequent embedding parameters for all blocks of the same texture are selected together during

generalization phase. The training phase of BMRC is based on multi-objective optimization to

populate BCM, such that the selected solution from Pareto front based on objectives priorities

is used. If the objectives priorities vary, no costly re-optimizations are needed because only

another solution from the Pareto front will be selected to populate BCM. The proposed BCM

holds the optimization solutions for different clustering resolutions in texture feature space and

postpone the hard decision for the optimal clustering resolution till the end of the watermarking

process. A metric RS is proposed to rank block clusters for embedding and enable handling

watermarks of different lengths. This metric identifies the optimal embedding blocks grouped

according to their texture.

Simulation results show a significant complexity reduction measured in number of fitness eval-

uations including the training phase of BMRC. This complexity reduction is 93.5% for a stream

of 40 face images, and it is increased up to 95.5% for a stream of 198 face images. The qual-

ity of solution produced by the proposed framework are almost of the same accuracy of full

optimization. Sensitivity analysis shows the optimal message length of 1.6k when considering

robustness fitness of 99.9% threshold, and evaluates the impact of other tunable parameters on

framework performance and associative memory size.

The concept presented in this chapter can be generalized on any stream of optimization prob-

lems with large search space, where the candidate solutions consists of smaller granularity

problems that affect the overall solution. The challenge for applying this approach is to find

the significant feature for this smaller granularity that affects the overall optimization problem.

In this chapter the texture features of smaller granularity blocks represented in the candidate

solutions are affecting the watermarking fitness optimization of the whole image.
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In a future work, the performance of the proposed method will be measured for heterogeneous

streams of face images with various poses and backgrounds. Such heterogeneous streams will

pose additional challenges for the proposed framework with more variations of textured areas

and locations of face pixels inside the face image. The key challenge of this future work is the

change detection mechanism. This mechanism should be capable of detecting different types of

changes in the heterogeneous stream. The expected changes ranges from minor change in face

pixels location till major change in the content or the topic of the image. In the case of major

changes, the knowledge stored in the BCM associative memory could be insufficient for the

current image, and thus full optimization is launched for this image and add the knowledge of

optimizing this image to the associative BCM memory. Minor changes can be ignored if they

are not highly affecting the resultant fitness. Migrating more functionalities of the proposed

system to GPU implementation would be useful to increase the throughput to be more close to

high speed reality applications with large streams.

2.7 Discussion

This chapter addressed the challenge of the similar optimization problems corresponding to

intelligent watermarking of homogeneous streams of high-resolution facial images. BMRC re-

lies on optimizing few facial images during training phase, and storing the results in associative

memory. The embedding parameters optimization for high-resolution facial images is charac-

terized by high dimension search space and computationally expensive fitness evaluations.

This optimization problem suffers from premature convergence due to the large dimension

of the search space of EC methods. Resolving the premature convergence during training

phase improves significantly the quality of solutions produced by BMRC. Chapter 3 describes a

specialized algorithm to resolve this premature convergence based on cooperative coevolution,

and speed up the optimization required during training phase.





CHAPTER 3

BLOCKWISE COEVOLUTIONARY GENETIC ALGORITHM (BCGA)

In biometric systems, reference facial images captured during enrollment are commonly se-

cured using watermarking, where invisible watermark bits are embedded into these images.

Evolutionary Computation (EC) is widely used to optimize embedding parameters in intelli-

gent watermarking (IW) systems. Traditional IW methods represent all blocks of a cover image

as candidate embedding solutions of EC algorithms, and suffer from premature convergence

when dealing with high-resolution grayscale facial images. For instance, the dimensionality

of the optimization problem to process a 2048×1536 pixel grayscale facial image that em-

beds 1 bit per 8×8 pixel block involves 49k variables represented with 293k binary bits. Such

Large-Scale Global Optimization (LSGO) problems cannot be decomposed into smaller inde-

pendent ones because watermarking metrics are calculated for the entire image. In this chapter,

a Blockwise Coevolutionary Genetic Algorithm (BCGA) is proposed for high dimensional IW

optimization of embedding parameters of high-resolution images. BCGA is based on the coop-

erative coevolution between different candidate solutions at the block level, using a local Block

Watermarking Metric (BWM). It is characterized by a novel elitism mechanism that is driven

by local blockwise metrics, where the blocks with higher BWM values are selected to form

higher global fitness candidate solutions. The crossover and mutation operators of BCGA

are performed on block level. Experimental results on PUT face image database indicate a

17% improvement of fitness produced by BCGA compared to classical GA. Due to improved

exploration capabilities, BCGA convergence is reached in fewer generations indicating an op-

timization speedup.

The content of this chapter is published in Expert Systems with Applications (Rabil et al.,

2013c).
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3.1 System Overview

In an earlier work, Blockwise Multi-Resolution Clustering was proposed by the authors (Rabil

et al., 2013a) for rapid IW for streams of facial images. During the training phase of this frame-

work, a limited number of face images are optimized, and the optimization results are stored

in associative memory according to texture features. During generalization, streams of facial

images are watermarked using the recalled optimal solutions from this associative memory.

This framework provided a significant reduction of complexity up to 95.5% fitness evaluations

compared to full optimization of all images in a homogeneous stream of high-resolution facial

images (Kasinski et al., 2008). However the quality of solutions are dependent on the full

optimization performed on images during training. Efficient optimization for high dimension

problems would improve the quality of solutions produced by this proposed framework.

In this chapter, specialized algorithm based on GA is proposed for LSGO applied on the op-

timization of embedding parameters in IW of high-resolution images. To avoid embedding

bits in smooth background that have low embedding capacity, only the textured blocks are

considered as optimization candidate solution. The watermarking metrics are calculated glob-

ally on the whole image, however the local watermarking metrics for blocks can be used to

guide the search through solutions. BCGA utilizes the cooperative coevolution between dif-

ferent solutions at the block level using the local watermarking metrics of these blocks. The

embedding parameters of each block corresponding to higher local metrics are selected from

different candidate solutions to construct new elite candidate solutions to be kept for next opti-

mization generation. The crossover and mutation operators of BCGA are performed on block

level rather than the entire candidate solution.

Proof of concept simulations are performed using the PUT database (Kasinski et al., 2008)

of high-resolution face images. This dataset provides homogeneous high-resolution face im-

ages with smooth backgrounds. Reduced resolutions face images are experimented to identify

the premature convergence limitation for traditional GA with higher resolution images. Then

the original resolution of face images are used to evaluate the performance of the proposed

approach. BCGA performance is compared against traditional GA and PBIL in terms of qual-
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ity of solutions, and fitness evolution. Different fitness aggregating methods are evaluated to

avoid anomalies with Pareto front for conflicting objectives of watermark quality and robust-

ness. User-defined parameters of the proposed BCGA are tuned in the experimentation, and

the impact of these parameters on BCGA fitness evolution is analyzed.

The optimization of embedding parameters for high-resolution images shown in Figure 3.1 has

high dimension of search space. It starts with representing only textured blocks TB in the

candidate solution using perceptual texture masks, then an application specific GA algorithm

called BCGA is used for embedding parameters optimization. It utilizes cooperative coevolu-

tion for local watermarking metrics of blocks, and performs GA operators crossover and mu-

tation on block level. This coevolution on the block level improves GA algorithm capabilities

for large optimization problems using cooperation of smaller problems.

face image Xcw

Face Cover
Image (Xc)

Watermark (W )

3.2. Perceptual Texture Mask

Watermark
Length (WL)

Emperical
Embedding
Capacity (C)

Mapping to candidate solution

optimization representation

3.3. Blockwise Coevolutionary
Genetic Algorithm (BCGA)

3.3.1. Initialization
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Figure 3.1 Block diagram for the proposed watermarking system for high-resolution

face images.

The perceptual texture mask produces the mask for embedding MEXc for the face image Xc,

where MEXc = {me1,me2, ...,mei, ...,meNB}, and mei ∈ {0, 1}. All face image Xc blocks
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bi are represented in the mask for embedding, where mei = 1 indicates that the block bi is

selected for embedding based on texture criteria defined by the perceptual texture mask. And

thus the total number of blocks whose mei = 1 is equal to the number of textured blocks

selected for embedding TB, where TB =
∑NB

i=1 mei. Only the blocks of mei equals to 1

are represented in the candidate solution for optimization, this mapping ensures optimizing

the embedding parameters in textured blocks only. For even embedding scheme with equal

embedding capacity for all blocks, all blocks are represented in the candidate solutions for

embedding. The proposed chromosome representation is shown in Figure 3.2.

eb2 eb3 . . . ebT B
Candidate solution Sp
chromosome representation

EBSp = {eb1,eb2,eb3, ...,ebT B}

9 10 11 12

Emperical Embedding
Capacity C = 4 bpb, e.g.
eb1 = {9,10,11,12}

0 0 1 0 0 1
6-bit binary representation
for embedding bands

eb1

Figure 3.2 Chromosome representation of the proposed BCGA.

Using EC methods, the optimization process relies on a population of candidate solutions

traversing search space to find the optimal solution. The population of candidate solutions Sp

consists of pop solutions. Each candidate solution Sp consists of the sets of embedding bands

for different blocks bi, where i ranges from 1 to TB, and thus EBSp = {eb1, eb2, eb3, ..., ebTB}.

The size of the set ebi equals to empirical embedding capacity C. And thus the dimension of

the optimization problem to find the optimal embedding bands equals to TB × C × 6 bits,

where TB is the number of textured blocks selected by perceptual texture mask, C is the em-

pirical embedding capacity, and 6-bits are used to represent embedding bands ranging from 0

to 63 for blocks of size 8× 8 pixels. The candidate solution of the best global fitness EBSp is
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selected as the optimal solution EBXc for face image Xc, representing the optimal embedding

bands for this face image such that gf(EBXc) = maxp=1→popgf(EBSp).

The global fitness to be optimized gf(EBXc) is the aggregated fitness for the whole face image

Xc using both watermark quality and robustness against different attacks. For each candidate

solution EBSp , block watermarking metric bwmi are calculated for each block bi using the em-

bedding bands ebi defined in EBSp . This bwmi metric is a local aggregated fitness for metrics

representing both watermark quality and robustness against different attacks using weighted

sum aggregation. It is utilized in cooperative coevolution on block level for GA, where the

blocks of higher bwmi are assumed to form better candidate solutions EBSp having better

global fitness gf(EBSp). The set of BWM for candidate solution Sp is defined as BWMSp ,

where BWMSp = {bwm1, bwm2, ..., bwmTB}

3.2 Perceptual Texture Masks

Biometric high-resolution face images are characterized by having areas of smooth textures

representing the background, and the face image for individuals with more textured areas.

Embedding watermarks in smooth textured areas results in degradation for watermark fitness

(Wu, 2001). Traditional IW methods (Shieh et al., 2004) relies on embedding bits in all cover

image blocks, and thus these are not efficient with high-resolution face images with smooth

backgrounds. Using these traditional methods, handling watermarks of small lengths would

involve padding these watermarks bits to represent all cover images in candidate solutions.

And thus the minimum search space for these methods is equal to the number of cover image

blocks.

The perceptual texture mask component selects the most textured blocks as blocks of interest

for embedding the watermark. It utilizes texture metrics to find the most textured blocks TB.

In this chapter, the number of textured blocks TB is calculated based on the watermark length

WL, and the empirical embedding capacity C. The embedding capacity is assumed to be equal

for all textured blocks, and thus the number of textured blocks equals to WL/C.
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3.3 Blockwise Coevolutionary Genetic Algorithm (BCGA)

The proposed BCGA is an application specific optimization algorithm derived from GA. It

utilizes cooperative coevolution for subcomponents represented by 8 × 8 pixels blocks. Lo-

cal watermarking metrics are used for these blocks to conclude the best fitness optimization

candidate solutions using the best fitness subcomponent. The BWM of block bi is defined as

bwmi(ebi), where ebi are the embedding bands of block bi, and the global fitness of the whole

face image using embedding bands defined in candidate solution Sp is defined as gf(EBSp),

where EBSp are the embedding bands of all blocks of Xc for this solution. The global fitness

gf(EBSp) is the aggregated fitness for watermark quality fitness and watermark robustness

fitness against different attacks.

All the candidate solutions in the population are used to find Elite solutions, the number

of these elite solutions is defined as EL. These Elite solutions are defined as Elite =

{EBSp1 , EBSp2 , ..., EBSpEL
}, where Elite(el) refers to the elite candidate solution of index

el in the elite set. This set of solutions Elite is used in elitism algorithm on the block level

using bwmi, where the embedding bands for blocks corresponding to the highest bwmi are

concatenated to generate the blockwise elite solutions. Crossover is performed on the selected

parents of highest gf(EBSp) on the block level using two-points crossover with probability

Pcrossover, then mutation is applied on block level as well by changing random bits of proba-

bility Pmutation. The fitness of the new offspring generated is calculated, where the candidate

solutions of least fitness are replaced with the most fit new offspring.

The objectives are proposed to be aggregated using Chebyshev weighted aggregation (Vel-

lasques et al., 2012). This aggregation method is more robust to anomalies in the trade-off

between the various fitness functions in a multi-objective optimization problem. In the Cheby-

shev approach, fitness values are aggregated according to their distances from reference points,

under which the values of these fitness are considered good (Collette and Siarry, 2008) as

shown in Equation 3.1.
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gf(EBXc) = maxl=1,2,3,4{(1− w1)(γ.QF (EBXc)− r1),

(1− w2)(RF1(EBXc)− r2),

(1− w3)(RF2(EBXc)− r3),

(1− w4)(RF3(EBXc)− r4)}

(3.1)

where (1− wl) is the weight of the lth objective with (1− wl) =
1
4
∀l, rl is the reference point

of objective l, and γ is a scaling weight for quality fitness QF (EBXc)

The proposed local watermarking metrics are Peak Signal To Noise Ratio (PSNR) and Bit

Correct Rate (BCR), where these metrics are the least complex metrics applicable to block

level. The aggregated weighted sum bwmi(ebi) for block bi is defined in Equation 3.2, where

PSNRi(ebi) is the peak signal to noise ratio for block bi, BCRi1(ebi) is the bit correct ratio

for first attack on block bi, BCRi2(ebi) is the bit correct ratio for second attack on block bi,

and BCRi3(ebi) is the bit correct ratio for third attack on block bi.

bwmi(ebi) = PSNRi(ebi) + λ(BCRi1(ebi) + BCRi2(ebi) + BCRi3(ebi)) (3.2)

where PSNR is defined in equation 1.1 and BCR measures the ratio of correctly extracted bits

to total embedded bits as shown in Equation 3.3, where BCi represents the number of correctly

extracted watermark bits from block bi, and Ci is the total number of watermark bits embedded

in this block representing the empirical embedding capacity in bits per block.

BCRi = BCi/Ci (3.3)

Figure 3.3 shows the data flow for BCGA to find optimal embedding bands EBXc for face

image Xc, where the processing steps of Algorithm 6 are mapped to the data flow.
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Figure 3.3 Data flow diagram for the BCGA to find optimal embedding bands EBXc for

image Xc.

Algorithm 6 shows the main algorithm of BCGA to find optimal embedding bands EBXc for

face image Xc. The population of candidate solutions is initialized (line 1) using Algorithm 7.

Then the global fitness, and BWM are calculated for all candidate solution in the population

(line 3). Using bwmi, the blocks are sorted (line 4) as shown in Algorithm 8, where the blocks

of higher local fitness from different candidate solutions are concatenated to generate new

candidate solutions. The parent candidate solutions used for reproduction are selected using

stochastic roulette scheme (line 5). Crossover and mutation operators use masks on block level

to perform these operations to breed new candidate solutions (line 6) as shown in Algorithm 9.

The global fitness of the new offspring is calculated (line 6), and the candidate solutions of least

fitness from the population are replaced with the new offspring, then elite solutions Elite(el)

are inserted in the population (line 7). Until stopping criteria is reached (line 2), global fitness

is improving iteratively along generations.
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Algorithm 6 Finding optimal embedding bands EBXc for face image Xc using BCGA.

Input: Face image Xc blocks bi, crossover probability Pcrossover, mutation probability Pmutation, and

number of elite solutions in population EL.

1: Initialize population of candidate solutions of size pop. The dimension of each candidate solution

in this population equals to TB×C×6 bits. Algorithm 7 shows the details of initialization process.

2: while Stopping criteria is not reached do
3: Evaluate global fitness gf(EBSp) for the whole candidate solution Sp for all solutions in the

population, and BWM for blocks BWMSp .

4: The blocks are sorted using the metric bwmi(ebi) as shown in Algorithm 8. The embedding

bands corresponding to highest bwmi are assumed to have good global fitness gf(EBSp) when

concatenated to form new elite solution Elite(el).
5: Select best fitness individuals for reproduction using stochastic roulette wheel bias method.

6: Breed new candidate solutions through crossover and mutation on the block level with probabil-

ities Pcrossover, and Pmutation respectively to give birth to offspring candidate solutions.

7: Evaluate the global fitness of new offspring candidate solutions and replace the least fitness can-

didate solutions of the population with the best fitness offspring, then insert EL elite solutions

from step 4 in the population.

8: end while
Output: Optimal embedding bands EBXc for face image Xc

3.3.1 Initialization

Algorithm 7 shows the initialization process for the population of candidate solutions. The

embedding bands for all blocks in the same candidate solution Sp are the same at initialization

time. For the first method (lines 1-7) applied on the first portion of the population of candidate

solutions, the initial bands are chosen based on the index of candidate solution p, index of

embedding bands j, and embedding capacity C. The embedding bands set is initialized to an

empty set (line 2), then it is concatenated with different initial embedding bands (line 3-5) until

the embedding capacity C is reached. This set of embedding bands ebi is replicated TB times

(line 6) to form the initial candidate solution Sp. For the second method (lines 9-16) applied on

the second portion of the population, the initial bands are chosen using random integers ranging

from 1 to 63-C, and index of embedding bands j. For populations of smaller size, only the first

method of initialization is used. For example when using embedding capacity C = 4 for a

population of size pop = 24, the first method of initialization is applied on candidate solutions

Sp, where p = 1, 2, ..., 14, and the second method is applied on p = 15, 16, ..., 24. This

initialization algorithm ensures high diversity in the initial population of candidate solutions.
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Algorithm 7 Initialization of the proposed BCGA, where repeat(V, r) is a function that con-

struct a vector by replicating r times the vector V .

Input: Candidate solution index p, population size pop, number of textured blocks for embedding

TB, index of embedding bands j in embedding bands set ebi for block bi, and embedding capacity

C

1: for p=1 to (64/C)-1 do
2: Initialize empty set for embedding bands ebi={}.

3: for j=1 to C do
4: ebi= { ebi (p-1)*C+j} #uniform empirical embedding bands based on p, and C for block bi.
5: end for
6: EBSp=repeat(ebi, TB);
7: end for
8: if pop > (64/C)− 1 then
9: for p = (64/C)− 1 to pop do

10: Generate random variable rand of integer value between [1 63-C]

11: Initialize empty set for embedding bands ebi={}.

12: for j=1 to C do
13: ebi= { ebi rand+ j} #random consecutive embedding bands initialization for block bi.
14: end for
15: EBSp=repeat(ebi, TB);
16: end for
17: end if
Output: Population of initial candidate solutions EBSp , where p = 1, 2, .., pop

3.3.2 Elitism

As shown in Figure 3.4, the sets BWMSp are calculated for all candidate solutions in the

optimization population of size pop. For each block bi, the corresponding bwmi are sorted de-

scendingly. The blocks of highest bwmi are concatenated together to generate the elite solution

Elite(1), and the second best blocks are concatenated together to generate the second elite so-

lution Elite(2). Thus candidate solutions cooperatively exchange the information on the block

level for improved exploration capabilities for the large dimension of the search space.

Algorithm 8 shows the proposed algorithm of elitism. The metric bwmi is calculated for the

blocks of all candidate solutions (line 1-5), where this metric represents a measure to rank

blocks based on watermarking fitness. For each block bi, the values of bwmi are sorted to find

the indices p of top values of bwmi (line 6-8). The embedding bands corresponding to the top

values of bwmi are concatenated together to generate elite individuals Elite(el) (line 9-11),
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Figure 3.4 Proposed elitism on block level with EL = 4 using block watermarking

metric bwmi.

such that the embedding bands corresponding to the best values are used to generate Elite(1),

and the second best values used to generate Elite(2).

3.3.3 Selection for Mating, Crossover and Mutation

The proposed selection for BCGA to find candidate solutions for crossover and mating is based

on roulette wheel method. The global fitness of candidate solutions EBSp is normalized, then

the cumulative normalized fitness values are stored in an array where the last fitness in this

array is equal to 1. This method is used to select the parent candidate solutions EBSp11 , and

EBSp22 for crossover and mutation to generate the new offspring.

As shown in Figure 3.5, the crossover is performed on block level using 2-point crossover. The

embedding capacity C = 4 bits-per-block, yielding to a size of 24 binary bits for embedding

bands for each block ebi. The embedding bands are reperested using 6 bits for AC coefficients

in 8×8 blocks. For the example shown in the figure the 2-point crossover results in 3 equal
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Algorithm 8 Elitism based on local fitness of BCGA.

Input: Candidate solutions Sp, where p is the index of candidate solution, BWMSp set of BWM

for candidate solution Sp, where it consists of bwmi for block bi, textured blocks TB, index of elite

candidate solution el, and number of elite solutions EL.

1: for p=1 to pop do
2: for i=1 to TB do
3: Calculate BWMSp of candidate solution Sp of index p, where each BWMSp consists of

bwmi for all blocks bi.
4: end for
5: end for
6: for i=1 to TB do
7: Sort the blocks descendingly for each block bi to find the indices p of the top values of bwmi in

BWMSp .

8: end for
9: for el=1 to EL do

10: Concatenate the embedding bands ebi of all blocks corresponding to the top values bwmi from

BWMSp of different candidate solutions Sp to generate elite candidate solutions Elite(el) using

the indices in Step 7.

11: end for
Output: EL elite candidate solutions of index el defined as Elite(el).

portions of 8 bits to be crossovered. A mask for crossover of each block cmi is generated to

be concatenated to form the crossover mask for the whole solution CM . The whole crossover

mask is applied on the whole solution to obtain the crossovered solutions. Then mutation is

applied similarly on block level to obtain mutated crossovered solutions, where random bits

are altered with probability Pmutation for bits representing the embedding bands for block ebi.

Algorithm 9 shows the crossover and mutation operators used to generate new offspring candi-

date solutions using selected parent solutions EBSp11 , and EBSp22 . The crossover is performed

on block level (line 1-5), where the crossover mask cmi is generated for blocks (line 1-3) using

the number of crossover points cp with probability Pcrossover. The block crossover masks cmi

are concatenated to form the whole candidate solution crossover mask CM (line 4). This mask

CM is applied to the selected parents to obtain crossovered solutions EBSp21 , and EBSp12

(line 5). Also mutation is performed on block level (line 6-10), where this starts with generat-

ing mutation masks for blocks mmi (line 6-8) with probability Pmutation to change bit values.

These block masks are concatenated to generate the whole candidate solution mask MM (line
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Figure 3.5 Proposed crossover on block level with cp = 2, embedding capacity C = 4,

and 6-bit representation for embedding bands.

9). This mask MM is applied to crossovered solutions to obtain the mutated crossovered

solutions EBSp21m , and EBSp12m (line 10).

Algorithm 9 Proposed crossover and mutation operators on the block level of BCGA.

Input: Candidate solution indices p11 and p22 for selected parents, number of textured blocks for

embedding TB, embedding capacity C, probabilities of crossover and mutation defined as Pcrossover

and Pmutation respectively, and number of crossover points cp.

1: for i=1 to TB do
2: Generate crossover mask cmi for block bi for selected parents candidate solutions EBSp11 , and

EBSp22 with probability Pcrossover based on cp.

3: end for
4: Concatenate block masks cmi to obtain candidate solution crossover mask CM
5: Apply crossover mask CM on the parent candidate solutions EbSp11 , and EBSp22 to obtain

crossovered solutions Sp21, and Sp12

6: for i=1 to TB do
7: Generate mutation mask mmi for block bi for the crossovered solutions EBSp21 , and EBSp12

with probability Pmutation.

8: end for
9: Concatenate block masks mmi to obtain candidate solution mutation mask MM

10: Apply mutation mask MM on the crossovered solutions EBSp21 , and EBSp12 to obtain mutated

crossovered solutions of indices p12m, and p21m.

Output: New offspring candidate solutions of indices p12m, and p21m
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3.4 Experimental Methodology

The database for face images used in experiments is the PUT (Kasinski et al., 2008) face

database which consists of 100 individuals where images feature 100 poses for each individ-

ual. Sample face images of the first pose of individuals are shown in Figure 3.6. The face

images of this database are characterized by a smooth background for all individuals, and dif-

ferent light conditions and clothes. The percentage of background and foreground blocks are

nearly the same for each individual, where the different poses represent head rotation and facial

expression changes only. This ensures texture homogenity for facial images to be used as cover

images in watermarking application. Color face images of resolution 2048x1536 are converted

to grayscale level. The first pose of all individual has the name pattern IIII1001.JPG where IIII

is the individual number in 4 digits. Face images of this pose are used for proposed system

development. The tuning set of face images consists of the first pose of the individuals starting

from 0001 till 0040. This set is used for developing and tuning user-defined parameters of the

proposed BCGA.

Figure 3.6 Sample face images from first pose of the PUT database (Kasinski et al.,
2008), where grayscale images have a resolution 2048×1536 pixels.

The watermark to be embedded is BancTec binary logo with different resolutions shown in

Figure 2.8. The watermark embedding/extracting algorithm used in experiments is proposed by

Shieh et al (Shieh et al., 2004) as illustrated in Section 1.2. The metrics used in experimentation

for measuring watermark quality and robustness for the whole face image to find optimal bands
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are wPSNR and NC respectively as defined in Section 1.1. BWM utilizes weighted sum of

BCR and PSNR defined in Section 3.3. The attacks considered in the experimentation are

JPEG compression with quality factor equals to 80%, median filtering, and low pass filtering.

Entropy is used to select the most textured blocks.

The experiments are executed on gentoo linux based server of 24 GB memory size and 8 cores

Intel Xeon CPU X5650 of speed 2.67GHz. The implementation utilizes Graphical Processing

Units (GPU) for DCT transform using 8 NVIDIA Tesla C2050/C2070 GPU cards. The pro-

posed methodology consists of experiments to compare BCGA to baseline system, then tuning

aggregation weights, and finally sensitivity analysis on the key algorithm parameters.

Traditional GA is evaluated for different watermark lengths WL embedded in different reso-

lutions facial images to study the convergence properties for different search space size. The

default watermark length is 48.8 k, and the empirical embedding capacity for both BCGA and

baseline is set to 1 bit-per-block. The weight λ used in aggregating bwmi is equal to 30. The

population size pop equals to 24, and the number of elite individuals EL equals to 6. The

probabilities for crossover and mutation is set to 0.9 and 0.04 respectively.

The first experiment uses only the first face image to evaluate the convergence properties of the

traditional GA. The embedding capacity is fixed to 1 bit per block, and the face image is resized

to different reduced resolutions. The first face image is reduced to 20%, 40%, 60%, and 80% to

characterize the evolution using different dimensions of the search space. Then the evolution of

traditional GA is compared to the proposed BCGA evolution using the original size of the first

face image which is 2048×1536. In this experiment both GA and BCGA uses simple weighted

sum aggregation with λ = 20, where gf = QF +20(RF1+RF2+RF3). Using traditional GA

with weighted sum aggregation represents the baseline system proposed by Shieh et al. (Shieh

et al., 2004). Two methods of crossover are experimented with the baseline GA to measure

the impact of increasing crossover points on the performance of baseline GA. Single point

crossover is compared to scattered crossover which uses random number of crossover points

using randomly generated crossover masks. The baseline GA with the two crossover methods
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are compared to PBIL and the proposed BCGA using the same population size of candidate

solutions and the same weighted sum aggregation.

The next experiment use 40 face images to develop and tune different parameters of the pro-

posed BCGA, where the watermark bits are embedded in the most textured 25% of the blocks

using 4 bits-per-block. The second experiment is a sensitivity analysis for different aggregation

methods. The aggregation methods evaluated are the simple weighted sum, and Chebyshev ag-

gregation. The baseline GA fitness are considered reference fitness levels used in Chebyshev

aggregation. These Chebyshev reference fitness values represents the minimum fitness values

which are considered acceptable for decision maker.

The third experiment utilizes the tuned weights from the previous experiments to measure

the impact of user defined parameters on the aggregated fitness evolution using Chebyshev

aggregation. The evolution of fitness is measured for the first image for the most important

parameters of BCGA. These parameters include the probability of both crossover and mutation

defined as Pcrossover and Pmutation respectively. Also the number of elite candidate solutions

defined as EL is considered in this sensitivity analysis.

The fourth experiment evaluates the impact of using different texture metrics for grayscale im-

ages on the aggregated fitness evolution using Chebyshev aggregation. The fitness evolution

is measured for the first image using Entropy, JND, NVF, and RS. These metrics represent

different classes of grayscale texture measures defined in Section 1.5.2 in addition to the pro-

posed RS in Chapter 2. These texture metrics are used to select the most textured blocks for

embedding. The embedding capacity considered in this experiment is 4 bits-per-block, where

the most textured 25% of the blocks are used for embedding 4 bits-per-block. For RS texture

metric, the number of blocks groups is determined such that the number of blocks belonging

to the most textured groups equals or slightly exceeding to 25% of the cover image blocks.

3.5 Results and Discussion

Table 3.1 shows the fitness produced, and the generation where convergence is assumed using

traditional GA and PBIL compared to proposed BCGA for the first face image using its original
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size. The fitness produced by BCGA is significantly higher robustness compared to GA. The

evolution of fitness for methods is shown in Figure 3.7, where traditional GA is suffering from

a premature convergence at a low fitness starting the generation 43. Using scattered crossover

improves the baseline performance using single point crossover, however the traditional GA

still suffers from premature convergence. This evolution of the baseline system shows that the

GA parameters tuning would not improve the convergence properties in such high dimension

of search space.

PBIL provides faster convergence than baseline GA with the two crossover methods. For

PBIL, the intrinsic probability vector is evolving rather than candidate solutions. The best

fitness candidate solution is used to update the evolving probability vector. This explains the

fluctuation of the fitness of the global fitness gf using weighted sum aggregation for PBIL.

The average time complexity of BCGA generation is equal to 322 CPU seconds for original

size of face image using GPU implementation for watermark fitness evaluations. BCGA has

increasing fitness until the generation 20 on a weighted sum fitness which is 17% better com-

pared to GA. The proposed elitism mechanism searches for the best embedding parameters

for the same block across the population of candidate solutions, and thus it provides better

exploration capabilities for BCGA. This indicates that few generations would be sufficient to

produce fitness of satisfactory level.

Also Table 3.1 shows the fitness produced for different dimensions of the search space using

BCGA compared to the baseline GA with scattered crossover points. The fitness produced is

degrading for dimensions larger than 47k bits. The generation where convergence is assumed

to decline as image dimension grows. This concludes the efficiency of the baseline system pro-

posed by Shieh et al. (Shieh et al., 2004) for dimension 47k bits or less. Optimization problem

for IW of biometric facial capture images of resolution higher than 608×816 representing 40%

reduction of PUT face images is suffering from premature convergence as shown in Figure

3.8. For cover images of lower resolution represented by 20% reduction of PUT face image

original size, BCGA outperforms also traditional GA. However for such lower resolutions the

traditional GA is not suffering from premature convergence. This proves the efficiency of the
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Table 3.1 Optimization of embedding 1 bit-per-block in reduced size of face image

0001 from PUT database (Kasinski et al., 2008) using baseline method proposed by Shieh

et. al (Shieh et al., 2004), PBIL and BCGA with gf = QF + 20(RF1 +RF2 +RF3).

Resize %- Optimization wPSNR NC1 NC2 NC3 Conv.
Dimension Method [dB] (JPEG (Median (LPF) Gen.

QF=80) Filtering)

20%-12k
GA-scattered 57.8835 0.9292 0.7250 0.7875 90

BCGA 63.0753 0.9340 0.9303 0.9830 26

40%-47k
GA-scattered 57.7174 0.9184 0.6133 0.7585 87

BCGA 62.3770 0.9287 0.9212 0.9761 26

60%-106k
GA-scattered 56.9713 0.9042 0.5582 0.7075 77

BCGA 61.0249 0.9546 0.9593 0.9862 12

80%-187k
GA-scattered 57.0923 0.9068 0.5472 0.6859 78

BCGA 62.2147 0.9509 0.9192 0.9756 48

100%-293k

GA-single 56.9532 0.9023 0.5411 0.6949 10

GA-scattered 57.3236 0.9138 0.5337 0.6947 43

PBIL 62.2491 0.9167 0.5535 0.7196 89

BCGA 59.0047 0.9721 0.9269 0.9749 20

Figure 3.7 Evolution of baseline system using GA with two crossover methods, and

PBIL compared to the proposed BCGA using embedding capacity of 1 bits-per-block for

face image 0001.
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Figure 3.8 Evolution of reduced size face image 0001 using baseline system using GA

proposed by Shieh et. al (Shieh et al., 2004) with embedding capacity 1 bit-per-block

using different sized watermarks.

baseline system proposed by Shieh et al. (Shieh et al., 2004) only for low resolution grayscale

images with no smooth textured areas. For lower resolution images used for experimentation

of the baseline system, the traditional GA can converge for such dimension of search space as

shown in Figure 3.8-a with 20% reduction of the high resolution face image.

Table 3.2 BCGA quality of solutions compared to traditional GA (Shieh et al., 2004)

using weighted sum aggregation for tuning set of 40 facial images.

Optim. wPSNR NC1 (JPEG NC2 (Median NC3 (LPF)
Method [dB] QF=80) Filtering)
Baseline GA 57.27±1.59 0.9184±0.0063 0.5285±0.0085 0.6640±0.0325

Proposed BCGA 57.40±1.82 0.9472±0.0139 0.9223±0.0087 0.9691±0.0030
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Table 3.2 shows the performance of both the baseline GA compared to the proposed BCGA

for tuning set of face images including 40 face images. Both baseline GA and the proposed

BCGA use weighted sum aggregation for quality and robustness fitness. The mean fitness

for the baseline GA method is used in the next experiments as reference fitness values for

Chebyshev aggregation defined as r1, r2, r3, and r4 in equation 3.1.

Table 3.3 shows the performance of the proposed BCGA using Chebyshev aggregation with

different weights for quality fitness γ as shown in equation 3.1. The resulting robustness fitness

against different attacks are improved with decreasing the value of γ, on the other side quality

fitness produced is degrading. Starting at the value of γ = 1/200, the robustness fitness against

LPF and MF is no more improved, while the robustness against JPEG is slightly improved.

The minimum quality fitness is over 42 dB which is considered acceptable level of watermark

quality.

Table 3.3 Chebyshev aggregation using different quality fitness weights γ for

embedding optimization using BCGA with embedding capacity equals to 4 bits-per-block

for tuning set of 40 face images.

Weight wPSNR NC1 (JPEG NC2 (Median NC3 (LPF)
γ [dB] QF=80) Filtering)

1/20 68.81±1.48 0.6286±0.0399 0.5020±0.0042 0.4789±0.0105

1/70 57.38±1.88 0.9452±0.0153 0.9265±0.0070 0.9694±0.0018

1/120 57.31±1.81 0.9475±0.0125 0.9271±0.0066 0.9698±0.0021

1/200 57.19±1.78 0.9525±0.0130 0.9270±0.0071 0.9698±0.0022

The next experiments deal with sensitivity analysis of different parameters on the BCGA evo-

lution, where only the face image 0001 is used in these experiments. Figure 3.9 shows the

fitness evolution in log scale of BCGA using Chebyshev aggregation shown in Equation 3.1

for different number of elite solutions EL. Table 3.4 shows the optimal fitness after 100 gen-

erations. The best fitness corresponds to using number of elite candidate solutions equals to 4

solutions. This value for EL is used in subsequent sensitivity experiments.
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Table 3.4 Impact of the number of elite individuals EL on BCGA performance using

Chebyshev aggregation for gf as shown in equation 3.1.

EL wPSNR NC1 (JPEG NC2 (Median NC3 (LPF) gf
[dB] QF=80) Filtering)

2 57.3322 0.9328 0.9172 0.9730 0.0968

4 57.3123 0.9367 0.9270 0.9722 0.0993

6 57.1159 0.9419 0.9202 0.9685 0.0975

8 57.4569 0.9369 0.9181 0.9673 0.0970

Figure 3.9 shows the fitness evolution in log scale of BCGA using Chebyshev aggregation for

different probabilities of crossover on block level Pcrossover. Table 3.5 shows the optimal fitness

after 100 generations. The best fitness corresponds to using the probability Pcrossover equals to

90%. For probabilities less than this till 0.1% the evolution is nearly the same. The values of

EL and Pcrossover producing the best aggregated fitness gf are used in subsequent sensitivity

experiment. This shows minimal impact of Pcrossover and EL on the fitness evolution of BCGA.

Table 3.5 Impact of the probability of crossover Pcrossover on BCGA performance

using Chebyshev aggregation for gf as shown in equation 3.1.

Pcrossover wPSNR NC1 (JPEG NC2 (Median NC3 (LPF) gf
[dB] QF=80) Filtering)

0.9 57.3123 0.9367 0.9270 0.9722 0.0993

0.1 57.3711 0.9497 0.9232 0.9711 0.0983

0.01 57.2814 0.9482 0.9231 0.9712 0.0983

0.001 57.2814 0.9482 0.9231 0.9712 0.0983

Figure 3.10 shows the evolution of BCGA using Chebyshev aggregation for different probabil-

ities of mutation on block level Pmutation. Table 3.6 shows the optimal fitness after 100 gener-

ations. The best fitness corresponds to using the probability Pmutation equals to 4% which cor-

responds to (1/gene length). BCGA evolution is sensitive to probability of mutation Pmutation

more than EL and Pcrossover tunable parameters.

Figure 3.11 shows the evolution of BCGA using Chebyshev aggregation for different percep-

tual texture masks. Table 3.7 shows the optimal fitness produced after 100 generations. The
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Figure 3.9 Impact of user-defined parameters of BCGA on fitness evolution using

Chebyshev aggregation for gf as shown in equation 3.1. Log scale is used for gf due to

the high similarity of fitness evolution for EL and Pcrossover.

Table 3.6 Impact of the probability of mutation Pmutation on BCGA performance using

Chebyshev aggregation for gf as shown in equation 3.1.

Pmutation wPSNR NC1 (JPEG NC2 (Median NC3 (LPF) gf
[dB] QF=80) Filtering)

0.1 57.3989 0.9438 0.9238 0.9674 0.0985

0.04 57.3123 0.9367 0.9270 0.9722 0.0993

0.01 57.3031 0.9284 0.9133 0.9637 0.0958

0.001 55.5735 0.9216 0.8525 0.9186 0.0806

best global fitness is produced using entropy masks. Both JND and RS (Rabil et al., 2013a)

texture metrics are next to entropy, and finally NVF has the least global fitness however it pro-

duces the best quality fitness. The quality fitness measured in wPSNR of values over 42 dB

is considered acceptable. All texture metrics produce acceptable quality fitness. The texture

metric RS (Rabil et al., 2013a) is well suited for full uneven embedding scheme, where it clas-

sifies blocks into different clusters and assign different embedding capacity for each cluster of

blocks. However for simple uneven embedding scheme used in this chapter, it produces similar

evolution to JND.

3.6 Conclusions and Future Work

Using traditional IW methods to secure facial captures, all the cover image blocks have to be

represented in the population of candidate solutions. For high-resolution facial captures, these
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Figure 3.10 Impact of Pmutation on BCGA evolution using Chebyshev aggregation for

gf as shown in equation 3.1.

Table 3.7 Impact of the perceptual texture mask on BCGA performance using

Chebyshev aggregation for gf as shown in equation 3.1.

Texture wPSNR NC1 (JPEG NC2 (Median NC3 (LPF) gf
Metric [dB] QF=80) Filtering)
Entropy 57.3123 0.9367 0.9270 0.9722 0.0993

JND 57.5036 0.9569 0.9060 0.9659 0.0940

RS (Rabil et al., 2013a) 57.2707 0.9538 0.9018 0.9636 0.0930

NVF 63.2379 0.9546 0.8859 0.9643 0.0890

methods involves handling an optimization problem with huge search space. This huge search

space results in premature convergence for traditional EC algorithms.

In this chapter, an approach is presented to handle optimizing watermark embedding parame-

ters for high-resolution facial captures. Perceptual texture masks are used to select only tex-

tured blocks to be represented in EC candidate solutions. Then an application specific GA

algorithm based on co-evolution called BCGA is proposed to address this high dimensional-

ity optimization problem. BCGA utilizes local watermarking metric BWM on block level to

improve the convergence properties of GA. It performs the traditional GA operators on block
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Figure 3.11 Impact of using different grayscale texture metrics as perceptual masks on

BCGA evolution using Chebyshev aggregation for gf as shown in equation 3.1.

level rather than the whole candidate solutions. The proposed elitism mechanism assumes that

embedding parameters of blocks corresponding to higher local metric are assumed to have

better global fitness for the whole image when concatenated.

Simulation results on PUT face images database (Kasinski et al., 2008) suggest that the pro-

posed BCGA provides solutions (embedding parameters) with 17% better fitness compared to

that of traditional GA. Indeed, BCGA avoids the premature convergence issues of traditional

GA. The convergence for BCGA is assumed in fewer iterations, and thus speeds up the opti-

mization. Chebyshev aggregation provides better quality of solutions compared to weighted

sum aggregation. Sensitivity analysis is performed for user defined parameters of BCGA, and

different texture metrics used in perceptual texture masks. BCGA evolution is more sensitive to

probability of mutation and the texture metrics used for selecting embedding blocks compared

to other user-defined parameters.

The approach presented in this chapter can be generalized on high dimensional optimization

problems, where local metrics of subcomponents of this high dimension problem is affect-

ing the overall optimization problem. BCGA elitism algorithm can be reused in optimization
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algorithms to provide better exploration capabilities for search space, where it implements

cooperative coevolution approach at subcomponent level. This can decrease the number of

generations required to reach convergence even for lower dimensional problems.

In a future work, standard LSGO algorithms which are tested against optimization problems

of 2k variables will be experimented on the IW of facial images using different resolutions.

This identifies the search space size limitation for these methods for IW optimization problem.

Also more detailed sensitivity analysis will be performed for the impact of BCGA user-defined

parameters on the quality of solutions produced using long streams of high-resolution facial

image captures.

3.7 Discussion

The proposed algorithm BCGA in this chapter is introducing better quality of solutions by

resolving the premature convergence for this large dimension search space. It results in signif-

icant speed up for the optimization due to the improved search space exploration capabilities

using the proposed elitism mechanism. BCGA is well suited for training phase of the proposed

BMRC framework in Chapter 2. The performance of BMRC is boosted from both quality of

solutions and computational complexity when using BCGA for full optimization during train-

ing phase.

In Chapter 3, the embedding capacity is equal for all textured blocks selected for embedding,

and thus the common texture metrics like JND, NVF, and Entropy are used to rank blocks

according to their texture metric. In Chapter 2, Robustness Scores (RS) metric is proposed

as a grayscale texture metric for full uneven embedding. The blocks of higher texture have

higher embedding capacities, and the embedding capacities decrease gradually for lower tex-

ture blocks using Algorithm 5.

The proposed RS metric is measured for clusters of blocks rather than individual blocks like

standard texture metrics. The blocks of the cover image are clustered using their texture fea-

tures extracted from the most significant DCT coefficients. The metric RS is calculated for

each cluster of blocks by measuring the robustness fitness using NC when embedding 1 bit-per-
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block in blocks belonging to this cluster. A threshold α for RS is chosen to avoid embedding

in clusters of blocks of RS lower than this threshold. The sensitivity analysis for this threshold

α is described in Section 2.5.

The sensitivity analysis for using standard grayscale texture metrics compared to RS on the

evolution of BCGA is described in Section 3.5. The evolution of BCGA using RS metric to

select embedding blocks is comparable to using JND. The proposed RS is more suitable for full

uneven embedding where the texture metrics are calculated for clusters of blocks rather than

individual blocks. Annex I complements the experimentation by evaluating standard grayscale

metrics for selecting blocks for embedding. Watermark quality and robustness fitness are used

for evaluation when using fixed embedding bands for all blocks. The fitness produced in this

annex experimentation can be considered as initial solution for optimizing embedding param-

eters using BCGA for different watermark lengths and embedding capacities. As shown in

Figure 3.11, the initial solutions using different metrics are similar using Chebyshev aggrega-

tion for watermark quality and robustness.

In Chapter 2 texture features are proposed to be extracted using DCT coefficients which are

already available during watermark embedding and extraction. This ensures minimal com-

putational complexity for this operation which is used during generalization phase of BMRC

framework. The generalization phase is characterized by low complexity compared to train-

ing phase which involves complex optimization problem with huge search space. Using other

standard texture metrics for grayscale texture feature extraction would add more complexity

which is significant during generalization phase.

During training phase, the proposed BCGA algorithm for optimization use standard grayscale

metrics to rank blocks based on their texture. The blocks of higher texture are selected for

embedding watermark bits. The complexity introduced to rank blocks based on texture metrics

is not significant compared to the complex optimization for embedding parameters for high

resolution facial images, where the fitness evaluation is computationally complex.



CONCLUSION

In this thesis intelligent watermarking of streams of grayscale high-resolution facial images

was investigated. The main objective of the research conducted was to reduce the computa-

tional cost of intelligent watermarking in such scenario. The objective was achieved by tackling

first the complexity of the stream of similar optimization problems corresponding to intelligent

watermarking of the stream. This is accomplished by optimizing few facial images, and storing

optimization results in associative memory for later recall during generalization. Then the com-

plexity of optimizing training facial images is addressed by resolving premature convergence

and speeding up optimization.

The first contribution (Chapter 2) introduces BMRC framework which implements multi-

hypothesis. The solutions produced using full optimization during training phase are clus-

tered based on their texture features, and stored in associative memory for different number

of clusters. During generalization phase, blocks are clustered and solutions are recalled from

associative memory for different number of clusters. Solutions produced are ranked based on

watermarking fitness, and the optimal number of clusters are selected at the end of general-

ization. In this chapter also, a new grayscale metric Robustness Scores (RS) is proposed for

clusters of blocks. This metric is suitable for full uneven embedding where the embedding

capacity is higher for blocks clusters of higher RS, and it decreases gradually for clusters of

lower RS. Experimental results on PUT database (Kasinski et al., 2008) indicate significant

computational complexity reduction up to 95.5% measured in fitness evaluations.

The second contribution (Chapter 3) introduces a specialized algorithm BCGA to address high

dimension optimization problem of intelligent watermarking for high-resolution facial images.

This algorithm is based on coevolution on the block level using local watermarking metrics.

Experimental results on PUT database (Kasinski et al., 2008) prove that BCGA resolves the

premature convergence due to the high dimensionality, and speeds up the optimization by

reaching 17% better aggregated fitness in less iterations.
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Future research directions:

The following three direction are proposed for future research:

Analysis for over training behavior for BMRC: This behavior is noticed with number of training

face images more than three face images. This should be avoided by using a change detection

mechanism for the training information stored in associative memory. Such mechanism decides

if the system needs further training face images based on the fitness produced by the system.

Improve the clustering algorithm used in clustering face image blocks: This can achieved by

adopting incremental clustering when dealing with multiple training face images. K-Means

is sensitive to the selection of the initial partition and may converge to a local minimum of

the criterion function value if the initial partition is not properly chosen (Jain et al., 1999).

Another clustering algorithms other than K-Means is proposed to be evaluated and compared

to K-Means used in BMRC, leader clustering (Jain et al., 1999) is proposed to be evaluated for

its lower complexity.

Extend the concept presented in BCGA to multi-objective optimization: This will add more

challenges to the coevolution and elitism proposed in BCGA. Diversity of solutions shall be

preserved for efficiently producing Pareto front of non-dominated solutions. Pareto based fit-

ness assignment proved efficiency with dealing with intelligent watermarking using Multi-

Objective PBIL described in Annex II. An external archive is proposed to be used to preserve

elite solutions beside the candidate solutions population.



ANNEX I

PERCEPTUAL TEXTURE MASKS EVALUATION

This annex describes some additional experimentation on perceptual texture masks evaluation.

The texture masks considered in this experimentation are entropy, NVF and JND. Different

grayscale texture metrics considered in this thesis are discussed in Section 1.5. The exper-

imentation includes different watermarks lengths and embedding capacities for these texture

masks. These masks are used to select the embedding blocks which are the most textured

blocks of the cover image. This experimentation can be used to determine the suitable tex-

ture metric to be used for embedding blocks selection based on the watermark quality and

robustness priorities. Entropy was used in Chapter 3 for embedding blocks selection because it

produces better fitness and evolution compared to other metrics for the watermark length and

capacity considered.

The experimentation performed in this annex uses fixed mid-range embedding bands for all

blocks for 60 face images, the fitness produced is considered as initial solutions provided to the

BCGA optimizer to improve this fitness. As shown in Figure 3.11, where the whole evolution

using BCGA is compared for standard metrics with DCT based RS metric, the initial solutions

are very similar for all metrics when using Chebyshev aggregation. However the evolution vary

for the different metrics. Also Figure 3.11 shows that fitness has been improved significantly

in the first few iterations for all metrics, which implies that the produced fitness is less sensitive

to initial solutions which can vary slightly from one metric to the other.

Regarding the computational complexity, using standard metrics with additional complexity

introduced during the training phase described in Section 2.2 which is characterized by high

complexity is not considerable. The full optimization for high resolution facial images takes

few hours of processing. On the other size the DCT coefficients are already extracted during

watermark embedding and extraction and thus it does not add more complexity to extract the

features. This can be more significant during the generalization phase described in Section

2.3 where the unseen facial images go through: feature extraction, associative memory recall
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for sub-solutions with minimal complexity, and then fitness evaluations which can be reduced

using parallel implementation (GPU). And thus using DCT for feature extraction with no ad-

ditional complexity would be more computationally efficient specially during generalization.

There is a difference between standard metrics and the proposed RS based on DCT as described

in Section 2.2. The standard metrics fit more into ranking the blocks to select the most textured

blocks for embedding. This can be suitable in the uneven embedding scheme with smooth

areas with no bits embedded and the textured blocks having equal capacity C bits-per-block. It

is hard to define thresholds for different embedding capacities based on the texture features. On

the other hand RS is calculated for clusters of blocks whose texture features are similar. So it

ranks clusters of blocks rather than individual blocks. This makes it easier to have full uneven

embedding scheme, where highest textured blocks have maximum embedding capacity CMax,

and the capacity decreases for lower textured blocks. Also RS is computationally efficient

because it is based on DCT coefficients which are already extracted for watermark embedding

and extraction.

1 Experimental Methodology

The database for face images used in experiments is the PUT (Kasinski et al., 2008) face

database which consists of 100 individuals with 100 poses for each individual. Sample face

images of the first pose of individuals are shown in Figure 3.6. The face images of this database

are characterized by having smooth background for all individuals, and different light condi-

tions and clothes. The percentage of background and foreground blocks are nearly the same for

each individual, where the different poses represent head rotation and facial expression changes

only. This ensures texture homogenity for facial images to be used as cover images in water-

marking application. Color face images of resolution 2048x1536 are converted to grayscale

level. The first pose of all individual has the name pattern IIII1001.JPG where IIII is the indi-

vidual number in 4 digits. Face images of this pose are used for proposed system development,

where the individuals starting from 0041 till 0100 are used for perceptual masks evaluation and

tuning embedding and extraction algorithm using these 60 face images.
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The watermark to be embedded is BancTec binary logo with different resolutions shown in

Figure 2.8. The watermark embedding/extracting algorithm used in experiments is a modified

algorithm of the one proposed by Shieh et al (Shieh et al., 2004) as illustrated in Section 1.2.

The metrics used in experimentation for measuring watermark quality and robustness for the

whole face image to find optimal bands are wPSNR and NC respectively as defined in Section

1.1. The attacks considered in the experimentation are JPEG compression with quality factor

equals to 80%, median filtering, and low pass filtering.

The experiments are executed on gentoo linux based server of 24 GB memory size and 8 cores

Intel Xeon CPU X5650 of speed 2.67GHz. The implementation utilizes Graphical Processing

Units (GPU) for DCT transform using 8 NVIDIA Tesla C2050/C2070 GPU cards. The pro-

posed methodology consists of two phases to evaluate different components of the proposed

system. The experiments evaluates and tunes the perceptual mask component.

During experiments, a set of 60 face images are used to evaluate different perceptual masks

and tune watermark embedding and extraction algorithm. The evaluation of perceptual masks

to find the most textured blocks TB for embedding is performed in isolation to finding optimal

embedding bands for these blocks. Fixed embedding bands are used for embedding the water-

mark in the most textured blocks, where ebi ∈ [6, 16] depending on the embedding capacity.

The first experiment uses entropy texture mask to find the blocks of highest entropy for em-

bedding, and use fixed bands for embedding the same watermark using different embedding

capacities. For the same watermark of length WL = 48k using TB = 48k, 24k, 12k, 6k,

this yields to embedding capacities of C = 1, 2, 4, 8 bits-per-block. The first case represents

the traditional methods where watermark bits are embedded in all face image blocks without

avoiding smooth textured blocks for embedding. This experiment concludes the efficiency of

using only textured blocks for embedding for different embedding capacities.

The second experiment evaluates different masks for different watermark lengths WL. The

masks considered in this annex are entropy, NVF, and JND. The embedding capacity is fixed

to 1 bit-per-block for all masks, and number of textured blocks TB = 48k, 24k, 12k, 6k, 1.6k.
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This experiment concludes the most efficient mask to find the most textured blocks for embed-

ding for different watermark lengths WL.

During the evaluation of different grayscale metrics, there are number of trade-offs where the

decision maker should prioritize the objectives. In this annex, an acceptable level of quality is

assumed for wPSNR of value 42 dB and higher. The robustness against JPEG is given higher

priority compared to other attacks due to the popularity of JPEG compression in many domains.

2 Results and Discussion

Table I-1 shows the impact of using only textured blocks for embedding on the watermark

fitness produced. The watermark quality and robustness fitness is measured using different

number of textured blocks TB and subsequently the embedding capacity C, where the water-

mark length is fixed at WL = 48 k-bits. The minimum embedding capacity C is equal to 1

bit-per-block and thus all face image blocks are used for embedding, and the maximum em-

bedding capacity C is equal to 10 bits-per-block and thus only the most textured 10% of the

face image blocks are used for embedding. The TB textured blocks are selected using entropy

mask.

The watermark quality measured using wPSNR is degrading with increasing embedding ca-

pacity. The minimum quality accomplished using 10 bits-per-block measured using wPSNR is

more than 42 dB, which is considered acceptable quality. The best robustness fitness against

JPEG is produced using embedding capacity 8 bits-per-block, the best robustness fitness against

median filtering is produced using 2 bits-per-block, and finally the best robustness fitness

against low pass filter is produced using 1 bit-per-block.

Figures I-1 shows the trend of watermark fitness using different empirical embedding capacities

C. The degradation of watermark quality and improvement in robustness against JPEG are

shown in Figure I-1. There is a turn point values for both quality and robustness against JPEG

at embedding capacity 4 bits-per-block. The slope continues slightly till embedding capacity

8 bits-per-block till saturation. The quality fitness for all embedding capacities is over 42 dB

which is considered acceptable quality. For robustness against MF shown in Figure I-1. There
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Tableau-A I-1 Embedding a watermark of length WL = 48.8k using different number

of textured blocks TB selected using entropy mask.

TB C wPSNR NC1 (JPEG NC2 (Median NC3 (LPF)
[dB] QF=80) Filtering)

48k 1 54.53±1.04 0.8880±0.0331 0.5080±0.0035 0.7233±0.0083
24k 2 51.59±1.10 0.9456±0.0122 0.5715±0.0044 0.6919±0.0100

12k 4 49.05±1.23 0.9749±0.0059 0.5622±0.0076 0.6419±0.0108

8k 6 48.60±1.24 0.9759±0.0053 0.5323±0.0044 0.6470±0.0063

6k 8 48.10±1.22 0.9773±0.0052 0.5511±0.0043 0.6466±0.0053

4.8k 10 48.04±1.18 0.9767±0.0041 0.5356±0.0042 0.6429±0.0043

Figure-A I-1 Watermark fitness for different embedding capacities C and number of

embedding textured blocks TB.

is a degradation trend of robustness fitness starting 2 till 6 bits-per-block, and then this trend

continues after 8 bits-per-block. And finally for the robustness against LPF shown in Figure

I-1, there is degradation trend till 4 bits-block, and then almost saturation after 4 bits-per-block.

Table I-2 shows the watermark fitness produced when using different texture masks for select-

ing the most textured blocks for embedding. The embedding capacity C is fixed at 4 bits-per-
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block, and the watermark length WL is varying. The best robustness fitness against JPEG is

accomplished when using entropy mask for selecting the most textured blocks for embedding

for watermarks of different lengths. The least complexity mask is JND and the mask of the

most complexity is entropy mask, however the time complexity of the masks considered are

within the same range.

Tableau-A I-2 Embedding 4 bits-per-block for different watermark length WL.

Mask wPSNR NC1 (JPEG NC2 (Median NC3 (LPF)
[dB] QF=80) Filtering)

WL = 48k, TB = 12k
Entropy 49.05±1.23 0.9749±0.0059 0.5622±0.0076 0.6419±0.0108

NVF 55.10±1.95 0.9199±0.0167 0.5982±0.0039 0.7263±0.0106

JND 50.86±1.47 0.9617±0.0069 0.5721±0.0059 0.6651±0.0101

WL = 24k, TB = 6k
Entropy 49.96±1.29 0.9841±0.0037 0.5554±0.0071 0.6241±0.0081

NVF 54.39±1.96 0.9561±0.0098 0.5860±0.0093 0.6848±0.0162

JND 53.60±1.68 0.9687±0.0056 0.5736±0.0069 0.6581±0.0109

WL = 12k, TB = 3k
Entropy 51.40±1.36 0.9882±0.0031 0.5475±0.0080 0.6134±0.0077

NVF 54.60±1.71 0.9802±0.0044 0.5598±0.0083 0.6379±0.0073

JND 56.08±1.81 0.9717±0.0060 0.5755±0.0086 0.6554±0.0125

WL = 6k, TB = 1.5k
Entropy 53.23±1.41 0.9905±0.0022 0.5395±0.0101 0.6035±0.0097

NVF 55.96±1.79 0.9864±0.0033 0.5478±0.0093 0.6232±0.0086

JND 58.76±1.86 0.9739±0.0066 0.5762±0.0103 0.6524±0.0137

Figure I-2 shows the best fitness produced using different texture masks for watermarks of

different lengths WL using embedding capacity C equals to 4 bits-per-block. Figure I-2 shows

the best fitness for watermark quality using JND mask for watermarks of length WL less than

24 k-bits, and NVF mask for watermarks of length more than 24 k-bits. The robustness against

MF shown in Figure I-2 has the best fitness using JND mask for watermarks of length WL less

than 24 k-bit, and using NVF for larger watermark lengths. And finally Figure I-2 shows the

best robustness fitness against LPF using JND mask for watermarks of length WL less than 24

k-bit, and using NVF for larger watermark lengths.
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Figure-A I-2 Watermark fitness for different watermark lengths using different texture

masks.

Figure I-3 shows the most textured blocks used for embedding using different texture masks.

The selected blocks for NVF and entropy masks are similar specially for larger number of

textured blocks TB, however NVF mask is more accurate in detecting the edges and the most

textured blocks specially for TB = 1.6k. JND mask for smaller number of TB is able to detect

the blocks where the changes are not introducing significant distortion rather than the edges of

the face image.

Table I-3 shows the watermark fitness produced for different texture masks for a watermark of

fixed length WL = 24k using different embedding capacities C. The best watermark quality

fitness is produced using NVF mask for all embedding capacities ranging from 2 till 8 bits-

per-block. Also the best robustness against MF and LPF is produced using NVF mask for

different embedding capacities C. Still the best fitness for robustness against JPEG is produced

using entropy mask for all embedding capacities. Figure I-4 shows the watermark quality and

robustness fitness produced using different masks with different embedding capacities. The

time complexity of JND and NVF is comparable with entropy, however using entropy results
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Figure-A I-3 Blocks selected for embedding using Entropy for 12k blocks

in better robustness against JPEG which is the most common attack while exchanging the

information via Internet.
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Tableau-A I-3 Embedding watermark of 24k using different embedding capacities C

bits-per-block.

Mask wPSNR NC1 (JPEG NC2 (Median NC3 (LPF)
[dB] QF=80) Filtering)

C = 2, TB = 12k
Entropy 52.07±1.19 0.9726±0.0082 0.5648±0.0053 0.6569±0.0106

NVF 54.62±1.54 0.9479±0.0147 0.5787±0.0054 0.6930±0.0111

JND 54.03±1.55 0.9557±0.0103 0.5701±0.0061 0.6795±0.0105

C = 4, TB = 6k
Entropy 49.96±1.29 0.9841±0.0037 0.5554±0.0071 0.6241±0.0081

NVF 54.39±1.96 0.9561±0.0098 0.5860±0.0093 0.6848±0.0162

JND 53.61±1.68 0.9687±0.0056 0.5736±0.0069 0.6581±0.0109

C = 6, TB = 4k
Entropy 49.91±1.31 0.9831±0.0038 0.5308±0.0055 0.6374±0.0051

NVF 54.97±2.15 0.9507±0.0104 0.5452±0.0064 0.6869±0.0142

JND 53.99±1.66 0.9656±0.0062 0.5418±0.0067 0.6644±0.0096

C = 8, TB = 3k
Entropy 49.61±1.30 0.9833±0.0039 0.5453±0.0051 0.6385±0.0048

NVF 55.54±2.46 0.9458±0.0119 0.5636±0.0059 0.6861±0.0141

JND 54.10±1.66 0.9640±0.0064 0.5645±0.0058 0.6629±0.0082

Figure-A I-4 Watermark fitness for different texture masks using different embedding

capacities C for watermark of length WL = 24k.





ANNEX II

BIO-WATERMARKING SYSTEMS USING OFFLINE SIGNATURE FEATURES

This annex introduces a proposed application for access control domain to verify individu-

als crossing borders using their facial captures and the offline signature captured from signed

forms. The offline signature features are discretized and embedded as binary watermarks in

passport facial captures. This approach significantly improves verification rates by combining

physical and behavioral biometric traits.

The impact of watermarking attacks on biometric verification system is important specially if

the watermark represents biometric trait where the performance of the overall system is affected

when integrating biometric verification system with bio-watermarking framework. There is a

trade-off between quality and robustness fitness, and the performance of the verification system

because adding more bits improving the accuracy of discretization or increasing the size of

feature vectors improves the performance of the biometric verification system, however this

degrades the fitness for both quality and robustness due to increasing the embedding capacity.

In this annex, we present a study for the impact of watermarking attacks on biometric offline

signature verification systems and its relation with the impact on the quality and robustness

fitness of the watermark. Offline signature feature vectors are discretized into binary stream,

and embedded as binary watermarks into grayscale face images of high-resolution which have

high embedding capacity and better face recognition verification rates. Watermark embedding

is optimized using computational intelligence optimization method which is Population Based

Incremental Learning (PBIL) for faster convergence as it employs previous optimization ex-

perience in subsequent generations. The impact of quantization and watermarking attack of

different intensities is considered. Also the impact of using only region of interest (ROI) of

higher texture for embedding watermarks rather than other smooth texture areas is studied for

this class of face grayscale images. Also recommendations for proposed research directions to

improve the overall intelligent bio-watermarking system for offline signature are described at

the end of this annex.
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The proposed intelligent bio-watermarking system for offline signature can be used to ver-

ify individuals crossing borders using their face images with their offline signatures features

embedded as invisible watermarks, and verified from border filled forms. Also the proposed

system can be used to protect biometric templates for both cover images representing face

images, and the offline signature features which is embedded as invisible watermark where in-

truders are not aware of existing embedded features given good watermark embedding quality

with minimal visual distortion.

1 Intelligent Bio-Watermarking with Multi-Objective Population Based Incremental
Learning Using Offline Signature Feature Vectors

Biometric watermarking was first proposed by Jain in 2002, where Jain and Uludag (Jain

and Uludag, 2003) suggested an amplitude modulation-based biometric watermarking. Bio-

watermarking systems can be categorized into the following categories (Low et al., 2009):

a. Watermarked biometrics: For watermarked biometrics the host is a biometrics, whereas

the watermark can either be a biometrics, or other proprietary notice. Intruders might not

be aware of invisibly embedded traits.

b. Biometric watermarking: For biometric watermarking the biometrics are employed as

the watermark, whereas the host can be any copyrighted documents.

In this annex, the proposed bio-watermarking is considered of the first category where the

cover image is representing biometric face template, and the watermark is extracted features of

another biometric trait which is offline signature.

Bureerat and Sriworamas (Bureerat and Sriworamas, 2007) proposed changes to PBIL algo-

rithm to handle multi-objective optimization problems. In this algorithm the probability vector

is replaced with probability matrix, where each row in this matrix represents the probability

vector to create sub-population of individuals. An external archive is proposed to be used to

store the non-dominated solutions found throughout iterations. The detailed algorithm is de-

scribed in Algorithm 10. An external archive is proposed to be used to store the non-dominated
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solutions found throughout iterations. While updating each row of the probability matrix, m

weighting factors are generated randomly where the sum of weights equals to ’1’, the binary

solution from union set of current population and external Pareto set which gives the minimum

weighted sum using the m weights is chosen to update the row probability vector.

Algorithm 10 Multi-objective PBIL adapted from (Bureerat and Sriworamas, 2007).

1: Initialize empty external Pareto set, and probability matrix whose elements are equal to ’0.5’

2: while Iteration < Max Iteration do
3: Generate a sub population with each row in probability matrix.

4: while Sub-population < Max number of sub-populations do
5: Evaluate the corresponding objective values to the generated populations.

6: Take non-dominated members sorted from the union set of the current population and the old

external Pareto set as new external Pareto set, if the external Pareto set is full, remove some

solutions using adaptive grid algorithm where members in most crowded solution regions is

removed iteratively.

7: In updating each row of the probability matrix, generate m weighting factors randomly where

the sum of weights equals to ’1’, the binary solution from union set of current population and

external Pareto set which gives the minimum weighted sum using the m weights is chosen to

update the row probability vector

8: end while
9: The probability matrix and external Pareto set are improved iteratively until stopping criteria is

reached.

10: end while

The multi-objective PBIL component of the proposed bio-watermarking system for offline sig-

nature is shown in Figure 1.4, where quality objective and robustness against different attacks

objectives are optimized simultaneously without favoring one objective over the other. This

proposed mechanism provides multiple non-dominated solutions (Pareto front), which helps

the operator to tune the watermarking system to be robust against certain attacks without com-

putationally expensive re-optimization. This can be easily accomplished by choosing the best

solution with regards to robustness against certain attack to be the optimal embedding to be

used for the digitized document images.

The most significant advantage of handwritten offline signature over other biometric attributes

is that it has traditionally been used for authenticating official documents and thus it is socially

accepted and widely used in many domains. Extended Shadow Code (ESC) (Sabourin, 1997)

is a global shape factor for offline signature which is used in the signature verification problem



116

because it permits the local projection of the handwriting without losing the knowledge of the

location of measurements in the 2D space as shown in Figure II-1. That is why ESC seems

to be a good compromise between global features related to the general aspect of the signa-

ture, and local features related to measurements taken on specific parts of the signature without

requiring the low-level segmentation of the handwriting into primitives. ESC resolution rep-

resents number of row cells and column cells respectively used for projection, for example in

Figure II-1 ESC resolution is 3x3.

Extended Shadow Codes (ESC) consists in the superposition of bar mask array over the binary

image of a handwritten signature as depicted by Figure II-2. Each bar is assumed to be a

light detector related to a spatially constrained area of the 2D signal. A shadow projection is

defined as the simultaneous projection of each black pixel into its closest horizontal, vertical

and diagonal bars. A projected shadow turns on a set of bits distributed uniformly along the

bars. After all the pixels of a signature are projected, the number of on bits in each bar is

counted and normalized to the range of [0, 1] before features are extracted. Given a virtual grid

composed of I rows by J columns, the cardinality of the ESC feature vector is calculated using

equation A II-1. For example resolution 2x3 which is considered in this paper corresponds to

cardinality equals to 29.

Cardinality = 4IJ + I + J (A II-1)

Figure-A II-1 Projection definition in Extended Shadow Code

(Sabourin, 1997).
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Figure-A II-2 Extended Shadow Code (ESC) for offline signature binary image

(Bertolini et al., 2010).

Extended Shadow Code (ESC) features are discretized to be converted to binary stream to be

embedded as binary watermarks. The more bits used for discretization, the more accuracy is

achieved for biometric verification, on the other hand this degrades the fitness for watermark

quality and robustness by adding more bits to be embedded in the payload increasing the wa-

termark capacity. Other authors (Haouzia and Noumeir, 2008) described using cryptographic

digital signature as watermarks. Digital signatures aims to sign a document in its electronic

form, such that the signature can be transmitted electronically with the signed documents. One

of the methods to add the digital signature to the digitized document is discretizing the sig-

nature into binary watermarks to be embedded in original documents to be signed. However

in this paper, the main focus will be on offline signature rather than digital signature and use

extracted features as binary watermarks.

2 Experimental Methodology

The bio-watermarking system used in experiments is shown in Figure II-3, where the em-

bedding optimization module is using multi-objective PBIL algorithm proposed by Bureerat

and Sriworamas (Bureerat and Sriworamas, 2007) and the offline signature verification system

proposed by Bertolini et al (Bertolini et al., 2010). The databases used are PUT face database
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Figure-A II-3 Block diagram for bio-watermarking system with integrated verification

system used in experiments

(Low et al., 2009; Kasinski et al., 2008; Bertolini et al., 2010).

(Kasinski et al., 2008), and offline signature database proposed by Bertolini et al (Bertolini

et al., 2010).

The offline signature verification system proposed by Bertolini et al (Bertolini et al., 2010)

deploys multi-modal verification and decision fusion for the biometric trait achieving better

performance than uni-modal verification systems. It also addresses the challenges of offline

signature verification systems which are: the large number of users, the large number of fea-

tures, the limited number of reference signatures for training, the high intrapersonal variability

of the signatures and the unavailability of forgeries as counterexamples.

Binary representation is used to encode individuals, where each individual have binary repre-

sentation of embedding frequency bands per image 8x8 block multiplied by number of blocks

in the host image. Each frequency band is represented by 6-bits to identify the AC frequency

coefficient (0-63) to embed the watermark in. The optimization problem to maximize quality

and robustness fitness has high dimension as the metrics of both quality and robustness are
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calculated for the whole image while being dependent on the selection of embedding bands in

each and every image block which have to be represented in each optimization individual. The

best non-dominated solution from Pareto front with regards to robustness fitness is chosen as

the optimal solution representing the optimal embedding bands for the host image.

Figure-A II-4 Face images used in experiments as host grayscale images (Kasinski

et al., 2008) of resolution 2048x1536.

Figure-A II-5 Signatures used in experiments whose feature vectors are embedded as

watermarks

(Bertolini et al., 2010).

In the experiments the face images used as host images are converted to grayscale, and then

downsized 50% to resolution 1024x768. The offline signatures feature vectors used in ex-

periments as watermarks are Extended Shadow Code (ESC) features extracted by the system

proposed by Bertolini et al (Bertolini et al., 2010). ESC feature vectors of resolution 2x3 pro-

ducing feature vectors of size 29 features are discretized using different number of bits to be

used as binary watermarks with different accuracy levels.
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The face images and signatures used in experiments are shown in Figures II-4 and II-5. The first

10 writers signatures feature vectors from the signatures database are embedded as watermarks

in the first 10 persons face images from face images database respectively. The verification for

the signature is performed against 39 signatures of the same writer as genuine samples and 39

signatures of random forgeries from other writers as negative samples for simplicity. Then the

Genuine Accept Rate (GAR) and False Accept Rate (FAR) are calculated as metrics to measure

the performance of the biometric verification system along with Equal Error Rate (EER), and

Area Under Curve (AUC) at FAR equals to 0.05 to consider the system performance with

maximum 5% falsely accepted samples. Receiver Operating Characteristics (ROC) curve is

used to represent these metrics graphically.

First experiment shows the impact of discretization of ESC feature vectors on the biometric

verification system, where different accuracy levels are experimented for discretizing feature

vectors into binary string to be embedded as binary watermark into grayscale face images. In

this experiment, the impact on the biometric verification system represented graphically using

DET (Detection Error Trade-off) curve is studied for discretization using 6, 8, 10, and 12 bits.

From this experiment, the best number of bits needed for discretization to be used in subsequent

experiments is concluded. In this experiment, neither watermarking nor attacks is involved to

isolate the impact of the quantization only.

Second experiment shows the impact of JPEG compression attack with different quality fac-

tors 100%, 80% and 60% on the biometric verification system along with the impact on the

watermark fitness for both quality and robustness.

In this application domain, the embedded features bits could be less than the number of image

blocks, and consequently the embedding algorithm has to take into consideration the choice

of suitable image blocks for embedding. And thus, the third experiment shows the impact of

JPEG compression attack of quality factor 80% on the verification system when embedding

the watermark in the foreground which is the profile of the face image rather than the smooth

background to maximize the watermark fitness. A simple region of interest used for embedding

the watermark at the bottom of the foreground as shown in Figure II-6.
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Figure-A II-6 Region Of Interest (ROI) used for experiments for face grayscale images.

3 Results and Analysis

Figure II-7 shows graphically the impact of quantization on the biometric verification system

performance for ESC of resolution 2x3 feature vectors using 6, 8, 10, and 12 bits. The results

show minimal impact for quantization on the biometric verification system performance, also

the results show that using 10 bits have the most similar DET curve to that of using no quan-

tization. Using more than 10 bits have nearly identical DET curve of using 10 bits. The area

under the curve for ROC curves when FAR=0.05 equals to 0.0481, 0.0479, 0.0480, 0.0480, and

0.0480 for no quantization, 6, 8, 10, and 12-bits quantization respectively.

Table II-1 shows the impact of watermark attack of different intensities on the quality and

robustness fitness and verification system performance, when embedding ESC feature vectors

of resolution 2x3 using 10 bits for discretization. The impact on the biometric verification

system efficiency is graphically represented using ROC curve in Figure II-8, where the area

under the curve for ROC curves when FAR=0.05 equals to 0.0451, 0.0433, and 0.0424 for

quality factors 100%, 80%, and 60% respectively. The results show that the fitness changes for

quality and robustness are minimal, while the impact on the verification system performance

represented by AUC and EER is more significant. This proves the importance of this study.
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Figure-A II-7 DET curve for quantization of ESC 2x3 feature vectors using 6, 8, 10, and

12 bits representing the impact on the biometric verification system for different accuracy

levels.

Figure-A II-8 ROC curve for JPEG compression attack impact with different quality

factors when embedding 2x3 feature vectors using 10 bits for discretization.
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Tableau-A II-1 JPEG compression attack impact with different quality factors when

embedding ESC 2x3 feature vectors using 10 bits for discretization.

Q.F. 100% 80% 60%
Fitness PSNR NC PSNR NC PSNR NC
/User

1 86.1 0.99 84.1 1.0 82.8 0.99

2 84.5 1.0 84.3 1.0 84.7 1.0

3 83.9 1.0 82.3 1.0 80.8 1.0

4 83.5 1.0 83.4 1.0 83.8 1.0

5 85.1 0.96 86.9 0.96 85.9 0.95

6 82.8 1.0 85.5 1.0 81.8 1.0

7 82.6 1.0 82.0 1.0 82.3 1.0

8 84.9 1.0 87.4 0.99 85.6 1.0

9 83.9 1.0 84.0 1.0 86.3 0.98

10 83.2 1.0 83.7 1.0 82.6 1.0

Mean 84.1 1.0 84.3 1.0 83.7 0.99
EER 0.0436 0.0577 0.0526

AUC_0.05 0.0451 0.0433 0.0424
No Quantization + No Attack

EER=0.0282 and AUC_0.05=0.0481

Table II-2 shows the impact of using region of interest to embed the watermark on the qual-

ity and robustness fitness and verification system performance, when embedding ESC feature

vectors of resolution 2x3 using 10 bits for discretization. The impact on the biometric ver-

ification system efficiency is graphically represented using ROC curve in Figure II-9, where

the area under the curve for ROC curves when FAR=0.05 equals to 0.0433, and 0.0450 for

embedding the watermark in random region, and embedding in ROI respectively. The results

show slight improvement in the fitness for both quality and robustness and significant improve-

ment for verification system performance represented by AUC and EER. Also the results show

that the extracted watermark is affected by the watermarking attack for few users, meanwhile

the impact of the attack is significant on the verification system performance compared to the

effect of the discretization process, this means that the affected bits of the watermark were to-

wards the Most Significant Bits (MSB), and thus the impact was severe on the values of feature

vectors which degrades the verification system performance as Normalized Correlation (NC)

representing the robustness is concerned with only the percentage of correct bits.
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Figure-A II-9 ROC curve for the impact of JPEG compression attack with quality factor

80 while embedding the watermark in region of interest of higher texture when

embedding ESC 2x3 feature vectors using 10 bits for discretization.

4 Conclusions and Recommendations

This annex presented a study for watermarking attacks on biometric offline signatures veri-

fication in intelligent bio-watermarking systems. Experiments clarified that using watermark

fitness metrics is not sufficient to measure the overall performance of the bio-watermarking

system. Also experiments showed minimal impact of quantization process on the biometric of-

fline signature verification system, and the optimal quantization is achieved using 10 bits. The

impact of watermark attack JPEG compression of different quality factors on the watermark

fitness and the biometric verification system has been studied and the least impact on offline

signature verification system is noticed for quality factor 100% and the most for 60%. Using

region of interest of face images for embedding the watermark has proved better performance

for the biometric offline signature verification system.

To improve the efficiency of the proposed intelligent bio-watermarking system using offline

signature as embedded biometric trait, the following directions are proposed:
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Tableau-A II-2 Impact of JPEG compression attack with quality factor 80% while

embedding the watermark in Region Of Interest when embedding ESC 2x3 feature

vectors using 10 bits for discretization.

ROI No Yes
Fitness PSNR NC PSNR NC
/User

1 84.1 1.0 82.0 1.0

2 84.3 1.0 85.2 1.0

3 82.3 1.0 85.3 1.0

4 83.4 1.0 84.7 1.0

5 86.9 0.96 86.6 0.96

6 85.5 1.0 83.5 1.0

7 82.0 1.0 82.6 1.0

8 87.4 0.99 85.3 1.0

9 84.0 1.0 84.4 1.0

10 83.7 1.0 85.4 1.0

Mean 84.3 1.0 84.5 1.0
EER 0.0577 0.0397

AUC_0.05 0.0433 0.0450
No Quantization + No Attack

EER=0.0282 and AUC_0.05=0.0481

a. More robust signature verification : In the experiments, simplified experimental proto-

col for signature verification is used as a proof of concept. More robust results can be

achieved when considering other types of forgeries like simple and skilled forgeries, use

selected features from multiple ESC resolutions for more discriminant extracted features,

consider the impact of the watermarking on all genuine signatures for writer instead of

only one genuine reference signature, and finally increasing the number of writers for

better generalization.

b. Embed more than one reference signature into face images: In the experiments only one

reference feature vectors per writer has been embedded in grayscale high-resolution face

images. The performance of the verification system could be dramatically improved if

more than reference signature for the same writer are embedded in the same face image.

For better verification results with more discriminant features accomplished by several
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hundreds of features (Bertolini et al., 2010), high-resolution grayscale face images would

be sufficient for around 4 reference signatures. Confidence level fusion can be used with

these multiple reference signatures.

c. Use efficient Region-Of-Interest identification technique: In the experiments a simple

region of interest is chosen to ensure belonging to the foreground of the face grayscale

image. More efficient region of interest mechanisms could be used to identify the suitable

image blocks to embed the watermark, and also identify the suitable image blocks for in-

creasing watermark embedding capacity. Local Binary Patterns have been proposed for

face detection (Ahonen et al., 2006), it would improve the performance of the proposed

system to use such efficient technique for detecting region of interest of face grayscale

images. Another simple thresholding (Sezgin and Sankur, 2003) mechanisms can be

used in the case of grayscale images like Otsu method which can be used to identify

the silhouette of face images, this method assumes that the image contains two classes

of pixels foreground and background, then it calculates the optimum threshold separat-

ing those two classes so that their combined spread representing intra-class variance is

minimal.

Figure-A II-10 Proposed optimization formulation compared to traditional formulation

(Shieh et al., 2004).
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d. Better formulation for watermark embedding optimization problem: In the experiments

it was clearly demonstrated that in most of the cases the watermark fitness including

PSNR and NC, and biometric verification system performance are conflicting objectives

which makes it hard to find a compromise between them.

The traditional formulation is not considering the impact on the biometric verification

system during the embedding optimization phase, and this degrades the verification rate

because NC is representing only the percentage of correct bits in the extracted water-

mark representing feature vectors of the biometric trait. The verification system is more

sensitive to the position of the correct bits in the extracted watermark rather than the

percentage. For example, the affected LSB will have minimal impact on the verification

system, and vice versa with MSB. In the case of other encoding scheme like Gray code

encoding, the sensitivity of the verification system is towards discriminant features bits.

To resolve this issue, it is proposed to add verification system fitness to the optimization

process beside quality and robustness objectives as shown in Figure II-10. The fitness

could be represented by the confidence value/score of the verification system. In this

proposed formulation robustness fitness and verification fitness will complement each

other as the robustness fitness minimizes the number of affected bits and meanwhile the

verification fitness optimizes the position of affected bits (if any).
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