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RÉSUMÉ 

 
Le but de ce projet est de développer une nouvelle classe de matériaux d'implants 
orthopédiques, qui combinerait une excellente biocompatibilité du titane pur avec une 
compatibilité biomécanique exceptionnelle d'alliages à mémoire de forme Ti-Ni. Les 
candidats les plus appropriés pour un tel rôle sont les alliages à mémoire de forme Ti-Nb-Zr 
et Ti-Nb-Ta de type beta métastable. Cette classe de matériaux a été développée tout 
récemment et l'influence du traitement thermomécanique sur leur structure et leurs propriétés 
fonctionnelles ne faisaient pas encore objet d'aucune étude approfondie. Par conséquent, ce 
projet est axé sur les relations entre la composition, la microstructure et les propriétés 
fonctionnelles des alliages superélastiques Ti-Nb-Zr et Ti-Nb-Ta pour applications 
biomédicales. L'objectif principal est d'améliorer les propriétés fonctionnelles de ces alliages, 
plus particulièrement les propriétés superélastiques et la résistance à la fatigue, grâce à 
l'optimisation de la composition des alliages et de leur traitement thermomécanique. 
 
Premièrement, cette thèse prouve que la structure et les propriétés fonctionnelles des alliages 
à mémoire de forme à base de Ti-Nb peuvent être efficacement contrôlées par un traitement 
thermomécanique, y compris par la déformation à froid suivie de traitement thermique de 
recuit et de vieillissement. Il est également démontré que la formation d’une structure nano-
sous-granulaire mène à une amélioration significative de la superélasticité et de la résistance 
à la fatigue de ces alliages. L'influence du vieillissement sur la cinétique de précipitation de 
la phase ω et, par conséquent, sur les propriétés fonctionnelles des alliages Ti-Nb-Zr et 
Ti-Nb-Ta est également observée. 
 
Basant sur les résultats obtenus, les régimes du traitement thermomécanique optimisé 
résultant en une meilleure combinaison des propriétés fonctionnelles sont recommandés pour 
chaque alliage, d’un point de vue de matériau pour implants orthopédiques. 
 
Deuxièmement, un dispositif de traction miniature pour une étude in situ à basse température 
dans la chambre d’un diffractomètre à rayons X a été développé et utilisé. Une étude 
comparative sur les caractéristiques des transformations et de l'évolution du réseau cristallin 
dans des conditions du contrôle de déformation et de balayage en température entre -150 et 
+100oC a été réalisée in situ. Les paramètres de la maille cristalline des phases β et α” ont été 
calculés dans une plage de température étudiée, ce que nous a permis de conclure que plus la 
température est élevée, plus la déformation qui accompagne la transformation des phases 
α”→β est faible. On a également constaté que le chargement à basse température mène à la 
formation additionnelle et la réorientation de la phase α”, tandis que l'application de la charge 
lors du chauffage modifie la séquence des transformations. L’élargissement et le 
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rétrécissement réversible des pics de la phase β qui sont observées lors du balayage en 
température sont le résultat direct de l’apparition et de la disparition des micro-contraintes 
causées par la transformation martensitique thermoélastique réversible. 
 
Mots-clés: alliages à mémoire de forme, alliages de titane, biomatériaux, traitement 
thermomécanique, laminage, traitement thermique, propriétés mécaniques, structure, 
nanostructures, microscopie électronique, diffraction rayons X, dispositif de traction in situ. 
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ABSTRACT 

 
The aim of this project is to develop a new class of orthopaedic implant materials that 
combine the excellent biocompatibility of pure titanium with the outstanding biomechanical 
compatibility of Ti-Ni-based shape memory alloys. The most suitable candidates for such a 
role are Ti-Nb-Zr and Ti-Nb-Ta near-beta shape memory alloys. Since this class of materials 
was developed quite recently, the influence of thermomechanical treatment on their structure 
and functional properties has not as yet been the subject of any comprehensive study. 
Consequently, this project is focused on the interrelations between the composition, the 
microstructure and the functional properties of superelastic Ti-Nb-Zr and Ti-Nb-Ta alloys for 
biomedical application. The principal objective is to improve the functional properties of 
these alloys, more specifically their superelastic properties and fatigue resistance, through 
optimization of the alloys’ composition and thermomechanical processing. 
 
It is shown in this thesis that the structure and functional properties of Ti-Nb-based shape 
memory alloys can be effectively controlled by thermomechanical processing including cold 
deformation with post-deformation annealing and ageing. It is also shown that the formation 
of nanosubgrain substructure leads to a significant improvement of superelasticity and 
fatigue resistance in these alloys. The influence of ageing on the ω-phase precipitation 
kinetics and, consequently, on the functional properties of Ti-Nb-Zr and Ti-Nb-Ta alloys is 
also observed.  
 
Based on the results obtained, optimized regimes of thermomechanical treatment resulting in 
a best combination of functional properties are recommended for each alloy, from the 
orthopaedic implant materials standpoint. 
 
An original tensile stage for a low-temperature chamber of an X-ray diffractometer is 
developed and used in this project. A unique low-temperature (-150...+100oC) comparative in 
situ X-ray study of the transformations’ features and crystal lattice evolution is performed 
under strain-controlled conditions. The lattice parameters of β- and α”-phases calculated 
across the whole testing temperature range allow us to conclude that the higher the 
temperature, the lower the α”→β transformation strain. It is found also that loading at low 
temperatures results in α”-phase formation and reorientation, while application of the load 
during heating changes the transformation sequences. The observed reversible β-phase X-ray 
line widening and narrowing during temperature scanning are the direct result of appearance 
and disappearance of microstresses caused by reversible thermoelastic martensitic 
transformation. 
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X-ray diffraction analysis, in situ tensile stage. 
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INTRODUCTION 

 

Nowadays conventional metallic materials for orthopaedic implants have some limitations: 

pure Ti and conventional Ti-alloys demonstrate limited biomechanical compatibility (elastic 

behaviour with rather high Young’s modulus), while Ti-Ni-based superelastic alloys are 

handicapped by their questionable biochemical compatibility related to the presence of toxic 

nickel in their composition. Thus the search for a new generation of metallic implant 

materials which would combine biochemical and biomechanical compatibility is still of 

interest. The most suitable candidates for the role of these new-generation metallic 

biomaterials are Ti-Nb-based shape memory alloys, especially Ti-Nb-Zr and Ti-Nb-Ta 

alloys. These alloys contain only biocompatible elements and they manifest superelastic 

(pseudoelastic) behaviour mimicking that of bone tissue.  

 

In the literature review (Chapter 1), it can be seen from the example of the well-studied Ti-Ni 

shape memory alloys, that the functional properties of Ti-based shape memory alloys are 

structure-sensitive, and that their structure and properties can effectively be controlled by 

thermomechanical treatment. It is also shown that information related to the 

thermomechanical treatment of Ti-Nb-based shape memory alloys is definitely lacking. 

Therefore the main objective of this project is to study the interrelations between the 

composition, the microstructure and the functional properties of superelastic Ti-Nb-Zr(Ta) 

alloys; and to maximize their functional properties, more specifically the reversible 

(superelastic) strain and fatigue resistance, through optimization of the alloys’ composition 

and thermomechanical processing. 

 

The influence of the thermomechanical treatment conditions (including cold rolling, post-

deformation annealing and ageing) on the structure of Ti-Nb-based shape memory alloys 

and, consequently, on their functional properties is investigated in-depth (the first and second 

articles: Chapters 2, 3). An original tensile stage developed for this project (working 

principle is described in detail in the Annex) makes it possible to carry out low-temperature 

in situ X-ray study under strain and temperature-controlled conditions. Such a study brings us 
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an improved understanding of the phase transformation features of this new family of 

metallic biomaterials (the third article: Chapter 4). Results obtained are summarized in the 

Conclusions, and Recommendations are given at the end. 



 

CHAPTER 1 
 
 

GENERAL INTRODUCTION 

1.1 Requirements of metallic implant materials 

Metals are widely used as orthopaedic implant materials (parts of hip, knee, ankle, etc. 

implants), dental fillings, for craniofacial restoration, and in cardiovascular applications. 

However, not all metals and metallic alloys can be used in medicine because of the special 

requirements of medical device materials, such as biocompatibility [1],[2]. Generally, 

metallic implant materials must:  

 

- Be inert in the human body environment (non-toxic, chemically stable and corrosion-

resistant) or, in other words, be biocompatible; 

 

- Have mechanical behaviour similar to that of human body tissues and be stable (in 

some range) during cycling (for example: hip implant should sustain more than 108 of 

loading/unloading cycles during a lifetime [3]); 

 

- Be straightforward to manufacture; 

 

- Be suitably sterilizable. 

 

1.1.1 Biocompatibility 

As mentioned above, biocompatibility implies multiple criteria, the main significance of 

which can be described by the imperative "do not harm the human body". This means that 

the implant should be biocompatible at the interface with the human body tissues. This can 

be realized in three major ways: (1) creation of protective coatings on the implant surfaces 

(often polymeric), (2) creation of oxide films with a higher biocompatibility than that of the 
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bulk material, and (3) creation of implants from an originally biocompatible compound. The 

last way is the simplest and the most suitable, since even in the case of surface film damage 

or when the surface area of the implant is large (the case of porous implants), the implant 

material will not harm the human body. Figure 1.1 compares the biocompatibility of some 

metals and metallic alloys. As seen, some alloys have higher biocompatibility than their 

individual components, which can be attributed to the protective properties of oxide films 

(stainless steel, for example). 

 

 

Figure 1.1 The relationship between the polarization 
resistance and biocompatibility of pure metals, Co-Cr, and 

stainless steels [4] 

 

1.1.2 Mechanical behaviour 

In the case of bone replacement implants, their mechanical behaviour should be similar to 

that of human bones (Table 1.1). Mechanical behaviour characteristics include static and 

dynamic or cycling-depending (fatigue) properties. Static properties can be described by the 

following parameters: Young’s modulus (E), yield stress (Sy), ultimate tensile strength 

(UTS), elongation (δ) and toughness (KI). Fatigue properties are: fatigue threshold (ΔKth), 

endurance limit (Se) and notch sensitivity (q). 



5 

Table 1.1 Mechanical properties of bones [3],[5]-[12] 

Property* Value 

E, GPa 1 – 30 

Sy, MPa 15 – 70 

UTS, MPa 25 – 150 

δ, % 0 – 8 

KI, MPa m  2 – 12 

* Mechanical properties of bone tissues are not constant because bones consist of 

different tissues and have self-accommodated structure under external stress conditions.   

 

The static properties are easily determined for an implant material. They present a first step 

in the selection procedure of a particular implant material. The second step is the fatigue 

properties. Standard fatigue tests of materials involve load or displacement-controlled 

cycling.  

 

Mechanical properties are very important criteria for selecting an orthopaedic implant 

material. For example, the mismatch between the mechanical behaviour of an implant and 

bone results in “stress shielding” phenomena, bone damage and, consequently, implant 

loosening [13]. 

 

1.1.3 Other requirements 

Given the high stability of metallic materials, such requirements as sterilizability (sterilizable 

by steam, ethylene oxide and gamma rays, for example), and manufacturability to intricate 

shapes and sizes do not generally require any special precautions. However, in the case of 

some exotic alloys, there are problems with getting a sufficient quantity of homogeneous 

material for industrial use. 
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1.2 Types of metallic implant materials 

Metallic materials used for implants can be classified as follows: stainless steels, Co-Cr-

based alloys, Ti and titanium alloys, Ag-Sn-Cu (dental amalgams) and pure metals such as 

Au, Pt, Ta, Zr, etc. [2]. Let us consider the advantages and limitations of the most commonly 

used orthopaedic implant materials. The major mechanical characteristics of these materials 

are shown in Table 1.2 and Figure 1.2. 

 

Table 1.2 Mechanical properties of metallic implant materials compared with bones 

Material 

Property 

E, GPa Sy, MPa UTS, MPa δ, % KI, MPa m  

Stainless steels (austenitic 

316L stainless steels) [5]  210 240 – 800 600 – 1000 55 – 20 ~100 

Co-Cr-based alloys [5]  225 525 735 10 ~100 

Pure Ta [1],[14]  186 – 191 140 250 20 – 30 –  

Pure α-Ti, grade 4 [15]  103 480 550 15 – 

Ti-based alloys: 

α+β alloys [1],[16]  100 – 110 585 – 860 690 – 930 6 – 15 ~80 

β alloys [1],[16] 78 – 84 655 – 908 795 – 137 10 – 22 – 

Metastable β alloys [1],[16] 55 – 88 736 – 1060 827 – 1100 10 – 22 – 

Cortical bone [3],[5]-[12]  1 – 30 30 – 70 50 – 150 0 – 8 2 – 12 
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Figure 1.2 Comparison of mechanical properties of 
metallic implant materials and bone (from [1],[3],[5],[14]-

[16]) 

 

1.2.1 Stainless steel 

These ferrous alloys were the first metallic materials used for implant manufacturing. 

Distinctive features of this class of metallic implant materials are low cost and availability, 

whereas disadvantages are insufficient corrosion resistance for long-term use and mechanical 

behaviour, which is far from the behaviour of bone (Figure 1.2). Stainless steels are most 

frequently used as temporary fixation devices, such as bone plates, intramedullary nails, rods 

etc. [1]. 

 

1.2.2 Co and Co-Cr-based alloys 

Cobalt and cobalt alloys were originally used as dental alloys. These alloys have higher 

corrosion resistance than stainless steel (Figure 1.1), but, according to some literature data, 

their biocompatibility is still not good enough [16]. The mechanical properties of Co alloys 
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are similar to the properties of stainless steel and distant from those of bones (Figure 1.2), 

which complicates their use as bone tissue replacement. Nevertheless, Co-based alloys are 

widely used as load-bearing components of orthopaedic implants. 

 

1.2.3 Commercially pure Ta 

Figure 1.1 shows that Ta is a vital metal. Due to the fact that Ta is inert to the human body, 

this material is widely used in surgery and neurosurgery as suture wires for skin closure, 

tendon and nerve repair; as foils and sheets for nerve anastomosis; clips for vessel ligation; 

and staples for abdominal surgery. Also, due to their low tensile yield stress (Table 1.2), Ta is 

successfully used as material for cranioplasty plates and reconstructive surgery and for 

spongy bone tissue replacement [1]. However, this metal has two significant drawbacks: high 

Young’s modulus (Figure 1.2) and high density (about 16.6 g/cm3, whereas the density of 

steel is 7.99 g/cm3). 

 

1.2.4 Commercially pure Zr 

This metal has excellent resistance to corrosion due a self-healing oxide film formed 

spontaneously in the air or in the water at ambient temperature. Zr is the most biocompatible 

of the metals (Figure 1.1), but it is not used in pure form, or as a principal alloying element 

for orthopaedic implants. This may be due to the high cost of the metal itself and its 

processing, as well as because of the high anisotropy of its properties [17], although the exact 

answer to this question is not fully clear. At the moment, this metal is used in the 

implantology as a component of Ti-based implant alloys or "zirconia" ceramics (zirconium 

oxide) [1]. 

 

1.2.5 Ti and Ti alloys 

Titanium is the second best biocompatible metal after zirconium (Figure 1.1). Ti and titanium 

alloys have low Young’s modulus (about 100 MPa), which is much closer to that of bone 
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tissue than other metallic implant materials (Figure 1.2). All that makes titanium the 

benchmark material for orthopaedic implants. Ti-based alloys have even better properties 

than pure titanium: Young’s modulus of metastable Ti-based alloys can be two times less 

than that of pure Ti (Table 1.2).  

 

Titanium has two modifications: α (hcp) below 882oC, and β (bcc) above 882oC [18]. 

Accordingly, titanium alloys may be classified as α, α+β or β depending on their 

microstructure at test temperature. Their microstructure depends on the type and amount of 

alloying elements (Figure 1.3). The alloying elements can be divided into three groups: α-

stabilizers such as Al, O, N, C; β-stabilizers such as Mo, V, Nb, Ta, (isomorphous), Fe, W, 

Cr, Si, Ni , Co, Mn, H (eutectoid), and neutral, such as Zr or Hf [1],[16]. Also, properties of 

titanium alloys depend strongly on their phase structure and composition (Table 1.3). 

 

 

Figure 1.3 Pseudo-binary phase diagram of Ti-β stabilizer [16]: βc – the minimal 
content of β-stabilizer for β alloy, βs – the minimal content of β-stabilizer for stable 

β alloy 
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Table 1.3 Orthopaedic alloys and their mechanical properties [16] 

Alloy designation    Microstructure E, GPa Sy, MPa UTS, MPa 

cpTi  Α 105 692 785 

Ti-6Al-4V  α+β 110 850 – 900  960 – 970 

Ti-6Al-7Nb (protasul-100)  α+β 105 921 1024 

Ti-5Al-2.5Fe  α+β 110 914 1033 

Ti-0/20Zr-0/20Sn-4/8Nb-2/4Ta+(Pd,N,O) α+β N/A  726 – 990  750 – 1200 

Ti-13Nb-13Zr α'+β 79 900 1030 

Ti-Zr  Cast α'+β  N/A  N/A  900 

Ti-12Mo-6Zr-2Fe (TMZF)  Metastable β  74 – 85 1000 – 1060 1060 – 1100

Ti-15Mo-5Zr-3Al 

Metastable β 75 870 – 968  882 – 975 

Aged α+β 88 – 113 1087 – 1284 1099 – 1312

Ti-15Mo-2.8Nb-3Al  

Metastable β 82 771 812 

Aged α+β 100 1215 1310 

Ti-15Mo-3Nb-0.3O (21SRx)  

Metastable β  

+ silicides 82 1020 1020 

Ti-35Nb-5Ta-7Zr (TNZT) Metastable β  55 530 590 

Ti-35Nb-5Ta-7Zr-0.4O (TNZTO)  Metastable β 66 976 1010 

Co-Cr-Mo  

Austenite(fcc)+ 

hcp  

200 – 

230 275 – 1585  600 – 1795 

Stainless Steel 316 L  Austenite 200 170 – 750  465 – 950 

Cortical bone [3],[5]-[12]  

Viscoelast. 

composite  7 – 30 30 – 70 50 – 150 

 

1.2.5.1 α and near-α titanium alloys 

As the name implies, these alloys do not contain β-stabilizers or their quantity is so small 

(near-α alloys) that the alloys do not leave the α-phase range. The most common alloying 

elements of α alloys are Al, Sn, and sometimes Zr. These alloys are generally more resistant 



11 

to creep at high temperatures than other titanium alloys. Some of these alloys, such as extra-

low interstitial α-alloys (ELI grades, Ti-5Al-2.5Sn-ELI, for example [1]) also preserve their 

toughness at cryogenic temperatures. Thermomechanical processing does not allow 

strengthening of these alloys, in contrast to α+β and β alloys, so α-alloys are most often used 

in the annealed or recrystallized conditions (to remove residual stresses induced by cold 

working) [1]. 

 

Near-α alloys, containing a small amount of β-stabilizers (Ti-8Al-1Mo-1V, Ti-6Al-2Nb-1Ta-

0.8Mo, for example [1]) are, properly speaking, α+β alloys, but the amount of β phase is so 

small that it does not influence the alloys’ properties. 

 

Currently, α and near-α titanium alloys are not used as metallic implant materials due to their 

low strength [1],[16]. In cases where non-load-bearing corrosion-resistant material must be 

used, commercially pure titanium is preferred to α and near-α alloys [1], because of its higher 

biocompatibility. 

 

1.2.5.2 α+β titanium alloys 

This class of alloys contains both α and β-stabilizers. Furthermore, since the quantity of β-

phase is greater in these alloys, α+β alloys exhibit higher strength than α, near-α alloys and 

commercially pure Ti (Table 1.3). The properties of α+β alloys depend on the composition 

and relative proportions of the α and β phases [16]. 

 

A two-phase structure of these alloys makes it possible to control their properties by 

thermomechanical treatment. Alloys are often strengthened by solution treatment and ageing 

[1]. Solution treatment is usually performed at a high temperature corresponding to the two-

phase state and followed by quenching in water. As a result, β-phase at the solution treatment 

temperature may be partially or completely transformed during cooling, due to martensitic 

transformation. Then, the alloy is aged in a 280 to 650oC temperature range to initiate α-

phase precipitation. Ageing produces a fine mixture of α and β phases as a replacement of the 
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β phase remaining after solution treatment. Such a heat treatment can increase the strength of 

α+β alloys by 30 or 50% [1]. These alloys are widely used for total joint replacement, hip 

stems, fracture fixation plates, nails, rods, wire, etc. 

 

1.2.5.3 β titanium alloys 

As the amount of alloying elements increases, titanium alloys modify their phase structure 

from α+β to β (after βc, Figure 1.3), i.e. β-phase dominates in the structure after quenching in 

water or air cooling. 

 

In turn, β alloys can be divided into metastable β alloys (composition lies between βc and βs, 

Figure 1.3) and stable β-alloys (composition above βs). The difference is that stable alloys do 

not change their phase composition during thermomechanical treatment, whereas in 

metastable alloys, phase transformation is possible (precipitation of α-phase or other 

transformations). Virtually all commercial β alloys are metastable, due to the possibility of 

phase transformation under external load or temperature variation [1]. 

 

Thermomechanical treatment of metastable β alloys implies solution treatment and ageing at 

450 – 650oC for the partial transformation of β phase into α phase. The α phase is formed in 

the initial β-phase as fine particles, which can raise the strength of these alloys to the level of 

α+β alloys. β alloys have several drawbacks: lower creep strength than that of the α+β alloys 

and lower ductility in aged conditions. However, despite the low plasticity of β alloys, their 

fracture toughness is generally higher than that of α+β alloys with the same yield stress [1]. 

Furthermore, β alloys, before ageing (i.e. when they are composed of only β-phase), have 

excellent ductility combined with a low yield strength, which provides outstanding 

formability [1],[16]. From the metallic implant materials standpoint, β alloys possess a 

unique combination of high corrosion resistance and low Young’s modulus with sufficient 

ductility (Figure 1.4). 
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Figure 1.4 Comparison of (a) Young’s modulus and (b) elongation of pure titanium 
and Ti-based alloys with those of bone (from [1],[3],[5],[15],[16]) 

 

1.3 Ti-based shape memory alloys 

Among metastable titanium β alloys, a special group of these alloys exhibits a shape memory 

effect (SME) (see Figure 1.5). Generally speaking, shape memory alloys (SMA) are 

materials that recover their shape due to thermoelastic martensitic phase transformation. This 

transformation takes place under the influence of external load and/or temperature changes. 

There are different manifestations of SME: one-way shape memory effect (shape recovery 

upon heating), two-way shape memory effect (the alloy remembers two shapes, i.e., recovers 

the shape during both the heating and cooling) and superelasticity (transformation occurs 

during the alloy deformation at a constant temperature, thereby increasing the range of 

reversible (quasi-elastic) behaviour. In addition to Ti-based SMA, there are also shape 

memory alloys based on other metals (Cu, for example) [17],[19]. 

 

The following specific parameters are used to describe SMA behaviour: direct martensitic 

transformation start (Ms) and finish (Mf) temperatures, reverse martensitic transformation 

start (As) and finish (Af) temperatures (Figure 1.5), as well as the so-called functional 

properties: the value of recoverable strain and recovery stress, generated by the material upon 



14 

heating (shape memory effect) or strain recovery during isothermal loading/unloading cycle 

(superelasticity). 

 

In fact, for bone tissue replacement material, not only the proximity of the basic mechanical 

characteristics (E, Sy, UTS, δ) to those of bone is important (see Table 1.1 and Figure 1.2), 

but also the highly desirable similarity between their behaviour during deformation. As 

shown in Figure 1.6, in contrast to the majority of metals and metallic alloys, bones have 

nonlinear elastic behaviour. The behaviour of the superelastic alloy is very different from that 

of other metallic implant materials being closer to that of bone tissue due to superelasticity 

and premartensitic lattice softening [20]. 

 

 

Figure 1.5 Typical transformation versus temperature 
curve for a shape memory alloy specimen under constant 

load (stress) as it is cooled and heated [1] 
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Figure 1.6 Comparison of the stress-strain 
diagrams of austenitic 316L stainless steel [5], 

Co-Cr-based alloy [5], pure α-Ti (grade 4) [15], 
Ti-Ni-based SMA [21] and trabecular bone [22] 

 

Titanium is a very reactive element, so these alloys are melted in vacuum or inert 

atmosphere. The most frequently used melting methods are plasma-arc, electron-beam and 

vacuum-induction melting. After melting, an oxide film forms on the alloy surface and it may 

be subjected to conventional heat treatment [1],[17]. 

 

Among all the shape memory alloys, the most common are Ti-Ni-based [1],[19], but these 

alloys contain toxic nickel, which makes them less suitable for biomedical purposes than the 

other promising group of SMA – Ni-free Ti-Nb-based alloys. Both groups of alloys will be 

described in detail in the following section in a comparative manner since they are 

concurrently contemplated for medical use. 

 



16 

1.3.1 Phase transformation in Ti-based SMA 

1.3.1.1 Phase transformation in Ti-Ni-based SMA 

Most of the Ti-Ni-based shape memory alloys are binary near-equiatomic alloys (containing 

49 – 51at.% Ni) (Figure 1.7), representing the intermetallic compound TiNi. This 

intermetallic compound is unusual because it has a limited range of solubility of Ti or Ni 

(Figure 1.7) and a greater ductility than the majority of conventional alloys. The most 

common alloying is the addition of nickel in the range of 1% in respect of 50at.% Ni.  

 

In addition to the Ti-Ni binary composition, there are many ternary and quaternary 

Ti-Ni-based alloys. Ternary and quaternary alloys are obtained on the base of Ti-Ni 

equiatomic alloy, where a part of one component is replaced by the third alloying element or 

a group of Cu, Al, Fe etc. [24]. Despite the variety of Ti-Ni-based shape memory alloys, only 

binary alloys are mainly commercially available and widely used [1],[17]. 

 

 

Figure 1.7 Phase diagram of a Ti–Ni alloy, to which the phase 
equilibrium between the B2 and Ti3Ni4 phases is added [24] 



17 

Ti-Ni alloys manifest martensitic transformations like all the SMA and, accordingly, have at 

least two phases: high-temperature phase and low-temperature phase. The high-temperature 

phase (austenite) is a B2 (CsCl) type ordered structure [25], and the low-temperature phase 

(martensite) has a monoclinic lattice (B19') [24]. In addition, martensite may have an 

orthorhombic lattice B19 in the case of alloying by a third element [26]. There is a possibility 

of martensitic transformation through an intermediate R-phase with the trigonal lattice 

structure in the case of nickel supersaturated solid solution [24]. Also, a precipitation of 

Ti3Ni4, Ti2Ni3 and TiNi3 dispersed particles is possible during ageing (insertion in Figure 

1.7). The different types of phase allow martensitic transformation routes (B2→B19', 

B2→R→B19' and B2→B19→B19' transformations) [24]. The maximum theoretical lattice 

strain during martensitic transformation is about 11% [19],[27]. Consequently, the maximum 

recoverable strain is around 8...10%, due to grain misorientation in polycrystalline samples. 

 

1.3.1.2 Phase transformation in Ti-Nb-based SMA 

Historically, the minimum concentration of niobium in the Ti-Nb-based SMA is not below 

22at.% [28]-[34]. This can be explained by the fact that these alloys are designed primarily as 

implant materials, where the temperature of the martensitic transformation should be kept 

around body temperature. 

 

In addition to the binary shape-memory Ti-Nb alloys, there are also ternary and quaternary 

Ti-Nb-based alloys. As alloying elements, Zr, Ta, Mo, Au, Pd, Pt, Al, Ga, Ge and O are used 

[35]. Currently, the most promising for medical applications are ternary and quaternary Ti-

Nb-Zr, Ti-Nb-Ta and Ti-Nb-Zr-Ta alloys [28]-[31],[35]-[38]. 

 

In Ti-Nb alloys, two stable solid-state phases can be observed: high-temperature β-phase 

(body-centred cubic) and low-temperature α-phase (hexagonal close-packed), as can be seen 

from the Ti-Nb phase diagram, shown in Figure 1.8 [36]. In this case, the occurrence of 

martensitic transformation is possible, and high-temperature β phase can be transformed into 

either α'-martensite (hexagonal) or α"-martensite (orthorhombic) [24]. The maximum lattice 
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strain during martensitic transformation is about 4% for alloys with niobium content near 22 

at.% [39], which is two times lower than that of Ti-Ni alloy. 

 

Besides, low-temperature α-phase can be transformed into ω-phase (hexagonal) [28],[39]. 

Two types of ω-phase are differentiated: athermal ω-phase (formed during quenching) and 

isothermal ω-phase (formed during ageing). The interval of the ω-phase formation is 

approximately 200 – 600oC [39]. The shape memory effect in these alloys is determined by 

the difference in the lattice parameters of α" and β phases involved in the martensitic 

transformation [40]. 

 

 

Figure 1.8 Calculated Ti-Nb equilibrium phase 
diagram [36] 

 

1.3.1.3 Effect of the Ni and Nb contents on the functional properties of Ti-based 

SMA 

In Ti-Ni based SMA, increasing the nickel concentration decreases significantly the 

martensitic transformation start temperature (Ms) (Figure 1.9) and increases the austenite 
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yield stress [17],[24]. Consequently, changing the Ni content by 0.1at.% can shift the 

transformation temperature by 10 – 20 оС [19]. Alloy composition variations affect the alloy 

properties by changing the phase structure (for example, precipitation of dispersed Ti3Ni4 

from the initial austenite [24],[41],[43]) and martensitic transformation sequence. 

 

 

Figure 1.9 Ms temperature as a function 
of Ni content for binary Ti-Ni alloys [24] 

 

For Ti-Nb-based SMA, the start temperature of martensitic transformation and maximum 

lattice strain during martensitic transformation increase with decreasing niobium content in 

the range of 15 to 35at.%. (Figure 1.10) [39]. 
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Figure 1.10 Effect of Nb content on the transformation strain (a) and martensitic 
transformation start temperature (b) [39] 

 

Third elements such as Ta, Zr and O decrease the martensitic transformation temperatures, as 

shown in Figure 1.11, which should be considered when designing an alloy for medical use. 

In contrast to the martensitic transformation temperature, the effect of alloying elements on 

the yield stress and the recoverable strain is not linear, and it is possible to increase the 

recoverable strain through alloying (for example, Ta in Figure 1.12, [35]). 

 

 

Figure 1.11 Effect of Ta, Zr and O addition 
on Ms temperature of Ti-22at.%Nb alloy 

(modified [35]) 
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Figure 1.12 Influence of Ta content on (a) critical stress for slip (σs) and 
apparent yield stress and (b) maximum recovery strain of Ti-22at.%Nb alloy 

(modified [35]) 

 

It should be noted that niobium and tantalum are potent β-stabilizers and effectively decrease 

the Young’s modulus of Ti alloys [43]-[45]. Zirconium has a similar effect in combination 

with Nb or Ta [44]; Zr taken alone is not a strong β-stabilizer [1],[16]. 

 

Based on [35],[39],[46]-[48], the three main alloy compositions which are the most 

promising in terms of body-temperature superelasticity can be selected: Ti-22Nb, 

Ti-22Nb-6Ta and Ti-22Nb-6Zr (Table 1.4). 

 

Table 1.4 Lattice strains (η1, η2 and η3) of 
Ti-27Nb, Ti-22Nb-6Zr and Ti-22Nb-6Ta (at.%) 

alloys [35] 

Alloy, at.% η1 (%) η2 (%) η3 (%) 

Ti-22Nb  -4.06 4.24 -0.08 

Ti-27Nb  -2.04 2.55 -0.39 

Ti-22Nb-6Ta  -2.08 2.46 -0.44 

Ti-22Nb-6Zr  -2.61 3.37 -0.48 
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1.3.2 Processing of the Ti-based SMA 

The functional properties, as well as the transformation temperature range, not only depend 

on the chemical composition of the alloy, but are structure-sensitive, which makes it possible 

to control them by thermomechanical processing (a combination of deformation and heat 

treatment). The choice of the thermomechanical processing for Ti-based SMA and its 

parameters may be different depending on the required level of functional properties. 

 

1.3.2.1 Heat treatment 

Quenching 

 

Quenching is the heating of an alloy up to the temperature of the austenite recrystallization 

(700 – 900oC) and subsequent cooling at a sufficient rate to conserve the high-temperature 

phase at temperatures higher than the martensitic transformation start temperature. This type 

of treatment is used for alloy softening, for residual stress relaxation, for recovery, 

homogenization and to prevent diffusion-related transformation during cooling [19].  

 

B2-austenite grains in Ti-Ni do not manifest rapid growth since, when it is heated to 1000oC, 

the grain size of B2-austenite is less than 50 μm. However, the grain size affects the recovery 

strain and transformation temperature range. In the case of coarse-grained structures, the 

resource of recovery strain and transformation temperature range is higher than in the case of 

fine-grained structures [19]. 

 

At the moment, quenching is the most common heat treatment of the Ti-Nb-based SMA. 

Quenching is generally the reference heat treatment. Thus, most samples are subjected to 

plastic deformation up to 95%, to post-deformation annealing in the 800 – 1000oC range 

followed by water-quenching [28]-[31],[33],[39]. After such treatment, despite the high 

degree of initial strain, recrystallized structure is formed [29]-[31],[33],[49].  
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Fast cooling is very important in the case of Ti-based SMA because, in these alloys, there 

may be precipitation of the secondary phase particles (Ti3Ni4 in TiNi or ω- and α-phases in 

Ti-Nb alloys) at temperatures below 600oC. 

 

Ageing  

 

Ti-Ni-based SMA are aged in the 250 – 600oC temperature range. Precipitation of the 

coherent Ti3Ni4 particles is a result of ageing – these particles are oval in shape and their size 

is 10 – 100 nm [19]. Precipitation of Ti3Ni4 leads to a change in the composition and 

hardening of the initial austenite, which, in turn, affects the functional properties and 

martensitic transformation temperatures. 

 

Ageing at 250 – 300oC decreases the temperature range of the martensitic transformation, 

and ageing in the range 300 – 600oC increases the martensitic transformation temperatures 

[50]-[54]. The initial decrease of TRMT can be explained by accumulation of lattice 

distortions in the solid solution structure and relaxation of quenching stresses. Ageing at 

higher temperatures leads to the reduction of nickel concentration in the initial austenite, 

which increases TRMT (Figure 1.9) [19]. 

 

As already mentioned, ageing leads to hardening of the parent phase, i.e. increases the 

"dislocation yield stress", which leads to enlargement of the difference between the 

dislocation and the phase yield stresses. Consequently, martensitic transformation can be 

realized more fully, thereby increasing the value of recoverable strain. The yield stress and 

ultimate tensile strength of B2-austenite, as well as the consequent maximum recovery stress 

increase by 5 – 10%, as compared to quenching after ageing of the Ti-50.7at.% Ni alloy at 

temperatures near 450oC [55]. Ageing in combination with thermomechanical processing can 

improve the recovery stress and recovery strain [56]. 

 

In [30],[34],[37],[39], ageing of quenched Ti-Nb-based SMA in the 200 – 600oC temperature 

range is performed. With such a heat treatment, dispersed metastable thermal ω-phase and 
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stable α-phase precipitate. As shown in Figure 1.13, precipitation of these phases strengthens 

the alloy and increases the UTS and Young’s modulus [57]. 

 

 

Figure 1.13 Variations of the Young’s 
modulus and ultimate tensile strength of 

Ti-24Nb-4Zr-7.9Sn (wt.%) alloy as a function of 
time of ageing at 500oC [57] 

 

From the superelasticity standpoint, ageing may be an effective way to acquire almost perfect 

superelasticity at RT of Ti-Nb alloys (Figure 1.14) [39]. 
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Figure 1.14 Stress-strain curves obtained at RT by cyclic 
loading-unloading tensile tests for the Ti-26at.%Nb alloy 

specimen annealed at 873 K for 0.6 ks (intermediate-
temperature annealing, ITA) and the specimen aged at 

573 K for 3.6 ks after annealing treatment (intermediate-
temperature annealing + ageing, ITA+AG) [39] 

 

Thermal cycling 

 

Thermal cycling is carried out through the interval of the martensitic transformation, i.e. 

direct and reverse martensitic transformations repeatedly occur in the alloy. Thermal cycling 

may be performed both in stress-free conditions and under applied external stress. Stress-free 

thermal cycling leads to the strengthening of the initial austenite due to multiple 

transformation-induced phase hardening [58], while thermal cycling under load creates 

oriented dislocation substructure and oriented stress fields in the Ti-based SMA [59]-[62]. 

Both these treatments are commonly used for stabilization of the functional properties and 

the martensitic transformation temperatures prior to their practical use [19],[63]-[66].  
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1.3.2.2 Thermomechanical treatment 

Thermomechanical treatment involves deformation and thermal treatment which can be 

carried out simultaneously or sequentially. Historically, thermomechanical treatments have 

been divided into two types: high-temperature thermomechanical treatments (HTMT) and 

low-temperature thermomechanical treatments (LTMT). The line between these two types of 

thermomechanical treatment is conditional and corresponds to 0.5 of the melting point 

temperature (in Kelvin). 

 

High-temperature thermomechanical treatment  

 

High-temperature heat treatment (HTMT) of Ti-Ni-based shape memory alloys is conducted 

in the 500 – 1000oC temperature range [19]. Processes of deformation strengthening and 

softening develop simultaneously during this type of treatment [67]. Consequently, a wide 

range of structures can be created: from so-called "hot-worked" substructure with a high 

density of dislocations (more than 1010 cm-2) to fully recrystallized structure [68],[69]. 

However, HTMT is mostly used for the shaping of materials without causing significant 

changes in their crystalline structure and functional properties.  

 

For Ti-Nb SMA, in some works [38],[57], HTMT at 800oC is used as a preparation technique 

prior to the main thermomechanical treatment. 

 

Low-temperature thermomechanical treatment  

 

Low-temperature thermomechanical treatment (LTMT) consists of the alloy’s deformation at 

temperatures below the beginning of the recrystallization of the parent phase. It should be 

noted that the deformation may take place in the temperature range corresponding to 

martensite, or martensite can be induced and deformed during deformation [19],[70],[71]. 
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LTMT can stabilize and significantly improve SMA properties, such as recovery stress and 

recovery strain, through the creation of a wide range of dislocation substructures and grain 

structures [19]. 

 

Ti-Ni-based SMA 

 

LTMT is the best studied thermomechanical treatment for TiNi SMA, due to its capacity to 

regulate the functional properties and temperatures of the martensitic transformation of this 

material. 

 

Plastic deformation by cold rolling (CR) with e = 0.3 – 2 is most common for Ti-Ni-based 

SMA, because deformation lower than e = 0.3 is not enough to induce significant structural 

changes [72],[73], and deformation higher than e =2 can lead to destruction of samples [19]. 

Let us consider next the impact of different degrees of deformation on the structure and 

properties of the alloy: the moderate (e≈0.3) and severe (e≈2) deformations. 

 

Moderate plastic deformation (e=0.3) leads to the formation of a well-developed dislocation 

substructure in martensite (Figure 1.15a). The post-deformation annealing of the cold-worked 

material causes the reverse martensitic transformation and material softening. When the 

annealing temperature increases, static recovery and polygonization (formation of subgrain 

boundaries) occur (Figure 1.15b-e) [74],[75]. With a further increase of annealing 

temperature, the process of recrystallization and subsequent grain growth will take place. The 

growth of subgrains is observed in the 200 – 400oC temperature range. Consequently, after 

300oC, there is polygonized nanosubstructure, whereas after 400oC, the subgrain size is about 

300 – 500 nm [74]. 

 

After severe plastic deformation (e=2), mixed nanocrystalline and amorphous structures are 

formed; the size of the nanograins is about 2 – 8 nm (Figure 1.16a) [74]. Annealing at 300oC 

forms nanostructure with 5 – 20 nm grain size (Figure 1.16b) [74]. Temperature increase 

leads to the subsequent grain growth (Figure 1.16c, d). It is impossible to notice any 
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difference in the structure regardless of the degree of the initial strain, after annealing at 

700oC [19],[74]. 

 

 

Figure 1.15 Transmission electron microscopy of Ti-50.0at.% Ni alloy subjected to (a) 
cold-rolling (e=0.30) and cold rolling with post-deformation annealing at (b) 200oC,  (c) 

300oC, (d) 350oC and (e) 400oC [74] 
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Figure 1.16 Transmission electron microscopy of Ti-50.0at.% Ni alloy 
subjected to (a) cold-rolling (e=1.9) and cold rolling with post-deformation 

annealing at (b) 250oC,  (c) 300oC and (d) 400oC [74] 

 

As shown in Figure 1.17 and Figure 1.18, thermomechanical treatments significantly affect 

the functional properties of Ti-Ni SMA. The temperature of martensitic transformation 

decreases with an increase in the density of defects (Figure 1.17). Additionally, 

nanocrystalline and amorphous structures lead to a significant reduction in the temperature of 

martensitic transformation (Figure 1.17c) compared with the polygonization substructure 

(Figure 1.17a). It should be noted that grain refinement less than a certain size (25 nm) makes 

the martensitic transformation impossible, according to [76]. With a refining of the structure 

or substructure in the nanoscale region, the improvement of functional properties is obtained 

(Figure 1.18). In the case of the nanocrystalline structure, there is a maximum of functional 

properties: reversible strain is 8%, and recovery stress reaches 1400 MPa, which is 3 – 4 

times higher than for the quenched sample [19],[74],[77]. 
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Figure 1.17 Transformation temperatures as functions of the PDA temperature 
for three levels of cold work (a) e=0.30; (b) e=0.88 and (c) e=1.9 [74] 

 

 

Figure 1.18 Maxima of recovery stress σr (●) and completely recoverable strain εr,1 (0.2% 
offset) (×) measured as functions of the PDA temperature after different cold works: (a) 

e=0.30; (b) e=0.88 and (c) e=1.9 [74] 
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Ti-Nb-based SMA 

 

The influence of cold and warm deformation on the basic mechanical properties of Ti-Nb-

based SMA was exclusively studied [32]. Cold deformation of Ti-Nb-based alloys leads to 

the formation of nanocrystalline structure and the precipitation of a large number of α"-phase 

in the β-phase particles and results in alloy brittleness [32]. Warm deformation at 200oC 

allows the α"-phase precipitation phenomenon and reduction of the alloy’s brittleness to be 

avoided, as shown in Figure 1.19 [32]. Regardless of the deformation temperature, increasing 

the degree of deformation increases the strength and decreases the plasticity and the 

recoverable strain. The positive effect of this treatment is the decrease of Young’s modulus 

(Figure 1.19a). 

 

 

Figure 1.19 Young’s modulus and strength 
(a) and plastic elongation and reduction in 

area (b) of cold- (solid symbols) and warm- 
(open symbols) rolled sheets of Ti-24Nb-

4Zr-7.9Sn (wt.%) alloy [32] 
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As seen from the literature analysis, knowledge of the Ti-Nb-based SMA thermomechanical 

treatment was quite limited at the time of the beginning of the current work. For example, we 

were not able to find any comprehensive information about the influence of LTMT on the 

crystalline and phase structure, lattice parameters and functional properties of Ti-Nb-based 

SMA.  

 

1.4 Research objectives  

Despite having lower recovery strain than compared to Ti-Ni SMA, Ti-Nb-based SMA have 

a very important advantage from the medical applications standpoint. They are Ni-free and 

may consist of non-toxic alloying elements only. It is known from the literary sources that 

the functional properties of these alloys are structure-sensitive. Consequently, their functional 

properties can be controlled by thermomechanical treatment. However, there is not enough 

information about the effects that thermomechanical treatment has on the functional 

properties of these alloys. The objectives of my Ph.D. project are therefore: 

 

• To study the interrelations between the composition, microstructure and functional 

properties of superelastic Ti-Nb-Zr(Ta) alloys;  

 

• To maximize the functional properties of Ti-Nb-Zr(Ta) alloys, more specifically 

superelastic strain and fatigue resistance, through optimization of their composition and 

thermomechanical processing conditions. 

 

1.5 Methodology 

The methodology used in this work is presented in detail in each article (Chapters 2-5). 

However, a brief overview of the materials, thermomechanical treatments and 

characterization techniques used in this work is presented below for better understanding.  
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1.5.1 Materials 

Ti-Nb-based alloys with compositions close to the target (Ti-22Nb-6Zr and Ti-22Nb-6Ta, 

at.%) are as follows: Ti-Nb-Ta small-weight ingots (about 250 g) cast in GIREDMET 

(Russia), while Ti-Nb-Ta and Ti-Nb-Zr large-weight ingots (about 7 kg) produced in 

TSNIICHERMET (Russia) and Flowserve Corp. (USA) correspondingly. Then the ingots are 

EDM-cut into samples and subjected to thermomechanical treatment. It should be noted that 

such large-weight ingots of the experimental Ti-Nb-Ta and Ti-Nb-Zr SMA have been 

obtained for the first time in this work. 

 

1.5.2 Thermomechanical treatment 

Based on the literature data, thermomechanical treatment consisted of cold rolling and 

subsequent thermal treatment such as annealing or/and ageing.  

 

Cold rolling is performed on a FENN four-high rolling mill at room temperature with the  

e=0.3 – 2 deformation range. There are no significant changes in the alloy’s structure below 

this range of deformation; above this range, the material fractures. 

 

Annealing is conducted in a PYRADIA laboratory furnace in air. The annealing temperature is 

varied in the 450 – 900oC range. There are active processes of ω- and α-phase precipitation at 

temperatures below this range, which is not suitable. The structure is fully recrystallized after 

annealing at 900oC, and further temperature increase serves no purpose. The alloy is 

quenched in water after annealing, to prevent precipitation of the isothermal brittle ω-phase. 

 

Ageing is carried out in the 300oC temperature range using the same annealing furnace.  
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1.5.3 Characterization  

Interrelations between the alloys’ composition, microstructure and functional properties 

should be studied at the microstructural and macrostructural levels. 

 

Microstructural analysis consists of the following:  

 

• Optical microscopy is a classical tool of crystalline structure analysis. Metallovert, 

LEITZ metallographic microscopes are used with resolution 50×...500×. However, in the case 

of nanostructured materials, resolution of light microscopy is not enough, and conventional 

transmission electronic microscopy should be used. 

 

• Transmission electronic microscopy (TEM) is a powerful method of a local material 

characterization. In the current work, JEM 2100 and JEM 2100CX, JEOL transmission 

electron microscopes are used to study the alloys’ crystalline and phase structures: grains and 

subgrains identification, phase identification, structural elements and phase size measurement 

and characterization. TEM study was carried out at NUST “MISiS”, Moscow, Russia. 

 

• X-ray diffractometry is used as the main method for integral phase analysis. It was 

performed with CuKα-rays using PANalytical X’Pert Pro and Ultima IV Rigaku 

diffractometers. A thermal chamber TTK450 attached to the first diffractometer allows us to 

investigate phase transformations in situ in the -150...+100oC range and under external 

temperature and load variations (using a custom tensile stage fitted within the thermal 

chamber).  

 

Macrostructural characterization consists of the following: 

 

• Microhardness testing is used for express preliminary analysis of the 

thermomechanical treatment’s influence on the mechanical properties of materials. Testing is 
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performed with an INSTRON Wilson Tukon 2100 microhardness tester and Nano-Hardness 

Tester CSM;  

 

• Static and cycling tensile testing evaluates the mechanical and functional properties 

of the studied alloys. MTS’ MiniBionix with a thermal chamber is used for testing in the 

-35...+60oC temperature range.  

 

• Thermomechanical testing consists of stress-free shape recovery and recovery stress 

generation under load during heating from -150oC to +150oC. The recovery stress testing is 

performed using the custom laboratory tensile stage with the thermal chamber elaborated 

LAMSI. Thermomechanical testing shows the values of recovery strain and temperature range 

of reverse martensitic transformation, which are important functional properties of SMA. 

 

1.6 Thesis organization 

The main results of the research are presented in three journal articles in Chapters 2, 3, 5 and 

one conference article – Chapter 4. The latter is a detailed description of a custom-made 

tensile loading stage for a diffractometer’s thermal chamber and its working principle. 

 

• The first article: “Structure formation during thermomechanical processing of Ti-

Nb-(Zr, Ta) alloys and the manifestation of the shape-memory effect” by S.M. 

Dubinskiy, S.D. Prokoshkin, V. Brailovski, K.E. Inaekyan, A.V. Korotitskiy, M.R. 

Filonov and M.I. Petrzhik was published in The Physics of Metals and 

Metallography, 2011, Vol. 112, No. 5, pp. 503-516. The main objective of this article 

was to study opportunities to improve the structure formation and functional 

properties of Ti-Nb-based SMA by means of thermomechanical treatment. The most 

important results are: 

 



36 

o Cold plastic deformation with subsequent post-deformation annealing can 

create a wide range of structure, from developed dislocation substructure to 

fully recrystallized structure; 

 

o Thermomechanical treatment in a studied range does not affect a 

crystallographic resource of recoverable strain; 

 

o The best combination of functional properties in the studied alloys is obtained 

in the case of a mainly polygonized substructure of the β-phase with nano- 

and submicron-sized structural elements. 

 

• The second article with title: “Structure and properties of Ti-19.7Nb-5.8Ta shape 

memory alloy subjected to thermomechanical processing including aging” by S. 

Dubinskiy, V. Brailovski, S. Prokoshkin, V. Pushin, K. Inaekyan, V. Sheremetyev, 

M. Petrzhik and M. Filonov was published in the Journal of Materials Engineering 

and Performance, 2013, Vol. 22, No. 9, pp.2656-2664. The aim of this article was to 

study the influence of thermomechanical treatment, including ageing, on the structure 

and functional properties of Ti-Nb-Ta SMA. The most important results are:  

 

o Low-temperature ageing of the β-phase nanosubgrained structure is 

accompanied by the ω-phase precipitation phenomena; 

 

o Depending on the annealing temperature, the studied alloy manifests either 

mainly superelastic or mainly shape memory behaviour at RT;  

 

o As compared to an unaged alloy, an “optimum” ω-phase precipitation 

hardening increases cyclic life;  

 

• The third article with title: “In situ X-ray diffraction strain-controlled study of Ti-

Nb-Zr and Ti-Nb-Ta SMA: crystal lattice and transformation features” by S. 
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Dubinskiy, S. Prokoshkin, V. Brailovski, K. Inaekyan, A. Korotitskiy was submitted 

to the Materials Characterization journal in August 2013. The objective of this article 

was the investigation of the crystal lattice and transformation features in Ti-Nb-Zr 

and Ti-Nb-Ta SMA in the -150...+100oC temperature range with or without external 

mechanical counteraction. The most important results are: 

 

o Upon heating to Ms the lattice parameters of α”-phase change in the direction 

of the corresponding “genetically-linked” lattice parameters of β-phase; 

 

o The crystallographic resource of recovery strain in Ti-Nb-Zr at RT is almost 

double that in Ti-Nb-Ta SMA with the same concentration of alloying 

elements, and it decreases with heating; 

 

o Application of external load results in certain additional β→α” transformation; 

 

o Application of external load during heating leads to a two-step transformation 

sequence: ω→β + β→α” (or (β+ω)→α”) transformations precede α”→β 

transformation in Ti-Nb-Zr SMA; 

 

o The observed reversible β-phase X-ray line widening and narrowing during 

temperature scanning are the direct result of appearance and disappearance of 

microstresses caused by reversible thermoelastic martensitic transformation. 

 

 





 

CHAPTER 2 
 
 

ARTICLE #1:  
STRUCTURE FORMATION DURING THERMOMECHANICAL PROCESSING OF 
Ti-Nb-(Zr, Ta) ALLOYS AND THE MANIFESTATION OF THE SHAPE-MEMORY 

EFFECT 

 

2.1 Summary 

This paper studies the interrelation between the structure and the functional properties of 

Ti-Nb-Zr and Ti-Nb-Ta SMAs for biomedical applications subjected to cold rolling (e = 0.28 

– 2.0) and post-deformation annealing (T = 450 – 900oC). As a preliminary evaluation of the 

microstructure and properties of the thermomechanically-treated alloys, light microscopy and 

microhardness testing are used. To study in more depth the structure evolution and functional 

behaviour of these alloys, X-ray diffraction and transmission electronic microscopy analyses 

and tensile testing are carried out.  

 

Moderate cold deformation (e≈0.3) forms a developed dislocation substructure in the parent 

β-phase, while severe deformation (e≈2) results in a local formation of nanocrystalline 

structure without traces of amorphization. Post-deformation annealing (1h) with temperature 

above 450oC starts a polygonization process: nanosubgrained substructure is created at 

500°C, which grows to reach submicron size level at 600°C. In the case of severe plastic 

deformation (e≈2), mixed substructure and crystalline structure is observed in the same range 

of annealing temperatures. The recrystallization develops at temperatures above 600oC. 

Traces of ω-phase are visible after annealing at temperatures of up to 550oC. The lattice 

parameters of the strain-induced α”-martensite are constant in the 600 to 900oC range of 

annealing temperatures. The most perfect superelasticity is obtained after initial moderate 

deformation and annealing at temperatures around 600oC, which corresponds to nano- and 

submicron-sized structural elements and a small amount of the ω-phase. The article was 

originally written in Russian, then officially translated and published by The Physics of 

Metals and Metallography in both Russian and English in 2011.  
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STRUCTURE FORMATION DURING THERMOMECHANICAL PROCESSING OF 

Ti-Nb-(Zr, Ta) ALLOYS AND THE MANIFESTATION OF THE SHAPE-MEMORY 

EFFECT 

S. M. Dubinskiya, b, S. D. Prokoshkina, V. Brailovskib, K. E. Inaekyanb, 

A. V. Korotitskiya, M. R. Filonova, and M. I. Petrzhika 
aNational Research and Technology University “MISiS,” Leninskii pr. 4, 119049 Moscow 

bEcole de Technologie Superieure, 1100, rue Notre-Dame Ouest, Montreal, H3C 1K3, 

Canada 

 

2.2 Abstract  

The formation of structure during thermomechanical processing by the regime of cold plastic 

deformation by rolling and postdeformation annealing (PDA) and its influence on the 

mechanical properties of Ti-Nb-(Zr, Ta) shape-memory alloys (SMAs) have been 

investigated. A moderate strain (e ≈ 0.3) leads to the formation of a developed dislocation 

substructure in the β phase. With going to severe plastic deformation (e ≈ 2), a 

nanocrystalline structure can locally be formed without the amorphization of the structure. 

There are also present α”-, α-, ω phases in the deformed alloys. When the PDA (1 h) is 

performed below 450°C, the structure of the β phase changes only slightly. Above 450°C, a 

polygonized substructure is formed in the β phase, which is nanosubgrained at an annealing 

temperature of 500°C and transforms completely into a submicron one at 600°C. In the case 

of severe plastic deformation to e ≈ 2, in this range of annealing temperatures, high-angle 

misorientations of blocks are also observed. The recrystallization of the β phase in the Ti-Nb-

(Zr, Ta) SMAs develops at temperatures above 600°C. The presence of the ω phase is 

detected at temperatures of up to 550°C. The lattice parameters of the strain-induced α” 

martensite formed in the Ti-Nb-Ta alloy are independent of the PDA temperature in the 

range from 600 to 900°C, where the polygonized substructure transforms into the 

recrystallized structure of the β phase. The range of PDA temperatures that are most 

favorable for the manifestation of the effect of superelasticity in the Ti-Nb-(Zr, Ta) alloys is 

in the vicinity of 600°C. 
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Keywords: shape-memory alloys, titanium alloys, thermomechanical treatment, structure, 

mechanical properties 

 

2.3 Introduction 

One of the main disadvantages of metallic implants used in orthopedics is a significant 

difference in their mechanical behavior as compared to the bone tissue. The metallic implants 

have a higher modulus of elasticity as compared to bone tissue, which results in the loss of 

the mechanical connection between the implant and bone upon cyclic loading [1]. The shape-

memory alloys (SMAs), for example, nearly equiatomic Ti-Ni alloys, exhibit a superelastic 

behaviour close to that of bone and dental biological tissues, which leads to their wide 

application in medicine [2–4]. However, their further medical usage is limited by the 

carcinogenic properties of nickel [5]. 

 

The need for metal implants which combine super-elasticity and a low modulus of elasticity, 

i.e., ensure biomechanical compatibility, resulted in developing the research in the field of 

binary and multicomponent nickel-free superelastic alloys based on titanium, such as Ti-Nb, 

Ti-Nb-Ta, Ti-Nb-Zr [6–10]. The shape-memory effect is observed in the titanium alloys in 

which the alloying elements play the role of β stabilizers and so impede the occurrence of the 

β → α” phase transformation and lower the temperature of the direct martensitic 

transformation upon quenching. In titanium alloys, the β stabilizers can be divided into three 

groups [11, 12]. 

 

(1) Elements isomorphic to β-Ti and forming solid solutions with a limited solubility in the α 

phase (Ta, Nb, V, and Mo). 

 

(2) Elements isomorphic to β-Ti and forming solid solutions with an unlimited solubility in 

the α- and β-Ti (Zr and Hf). 
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(3) Elements with a limited solubility in the α- and β-Ti and forming intermetallic 

compounds, i.e., Mn, Cr, Fe, Cu, Ni, Si, and Co. 

 

The alloying of titanium alloys with niobium and tantalum leads to the formation (upon 

quenching) of the α” phase by the martensitic mechanism, while an increase in their 

concentration stabilizes the β phase at room temperature. In the vicinity of the α” + β/β 

boundary in quenched alloys, Young’s modulus decreases and the shape-memory effect 

related to the reversible β → α” martensitic transformation appears [13]. The alloying of Ti-

(Nb, Ta) alloys with zirconium favors solid-solution strengthening and reduces the 

probability of the formation of a brittle ω phase [14], thereby improving the functional 

properties of the nickel-free shape-memory alloys [8, 10–12, 14, 15]. 

 

It is known that the functional properties of Ti-Ni SMAs can efficiently be controlled by a 

thermomechanical treatment (TMT) [16–19]. For instance, in shape-memory Ti-Ni alloys 

upon the transition from a recrystallized structure to a polygonized nanosubgrained 

substructure of the B2 austenite as a result of TMT there is observed an enhancement of the 

complex of functional properties (the maximum values of the reactive stress and completely 

reversible strain, the expansion of the temperature range of the superelastic behavior). The 

extremely high values of the functional properties are achieved upon the formation of the 

nanocrystalline structure of the initial austenite [20–22]. The improvement in the properties 

in this case is due to an increase in the difference between the so-called “dislocation” and 

“phase” yield stresses [21, 23, 24], which accounts for the delay of the switching on of the 

mechanism of irreversible plastic deformation. 

 

The polygonized nanosubgrained substructure (NSS) or nanocrystalline structure (NCS) of 

austenite is formed in the case of a PDA of moderately (upon the true strain by rolling to e = 

0.3–0.5) or severely (e from 1.5 to 2) strain-hardened Ti-Ni alloys, respectively [20–22, 24, 

25]. The TMT scheme of moderate cold or warm deformation by rolling or drawing is widely 

used in practice [19, 20, 22, 26]. The common nature of the structural processes underlying 

the formation of the functional properties of SMAs of the Ti-Ni and Ti-Nb-(Ta, Zr) systems 
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suggests the possibility of using similar modes of cold plastic deformation and PDA of these 

alloys to control their structure. Although the different crystal structure of the main phases 

(ordered B2 in the Ti-Ni SMAs and the β solid solution in the Ti-Nb-(Zr, Ta) SMAs), the 

different phase composition, and the different diffusion mobility of atoms must certainly 

make their contributions. 

 

In this paper we have investigated the possibility of forming a nanocrystalline structure and 

polygonized nanosubgrained substructure of β austenite by the methods of thermomechanical 

treatment in the Ti-Nb-(Ta, Zr) SMAs, as well as the impact of such a structure on the 

mechanical properties of these alloys. 

 

2.4 Experimental 

Alloys of the Ti-Nb-Ta and Ti-Nb-Zr systems (Table 2.1) have been investigated. 

 

Table 2.1 Chemical composition of the Ti-Nb-Ta and Ti-Nb-Zr alloys (at %)* 

Alloy Concentration of basic elements, at % 

Ti Nb Ta Zr 

Alloys of the Ti-Nb-Ta system 

TNT1 74.0 19.5 6.5 – 

TNT2 73.0 20.2 6.8 – 

TNT3 72.0 21.0 7.0 – 

Alloys of the Ti-Nb-Zr system 

TNZ1 76.6 18.3 – 5.1 

TNZ2 73.2 21.2 – 5.6 

TNZ3 73.4 20.9 – 5.7 

* The chemical composition of the Ti-Nb-Ta alloys is given according to the synthesis data. 

 

The alloys of the Ti-Nb-Ta (TNT1, TNT2, and TNT3) system were smelted by vacuum 

electric-arc melting from pure charge materials in the form of lentil-shaped ingots with a 
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diameter of 50 mm and a thickness of 15 mm in the center. The ingots were annealed at 

900°С for 1 h and cooled in water. The alloys of the Ti-Nb-Zr (TNZ1, TNZ2, and TNZ3) 

system were smelted by vacuum induction melting followed by hot pressing at 900°С. After 

pressing, the ingots of the Ti-Nb-Zr alloys looked like cylinders with a diameter of 50 mm 

and a length of 660 mm. It should be noted that in terms of commercial applications, 

obtaining of homogeneous ingots of a large weight, 5–10 kg, is preferable, which indeed was 

achieved in the Ti-Nb-Zr alloys. 

 

The blanks for rolling, with dimensions of 4 × 10 × 50 (Ti-Nb-Ta), 2 × 8 × 20–50, 1.2 × 0.8 

× 100, and 2 × 1.5 × 100 mm (Ti-Nb-Zr), were produced from the ingots by electric-spark 

and abrasive-disk cutting. Then, the alloys were subjected to a TMT, including repeated cold 

rolling, and a PDA, followed by cooling in water according to regimes given in Table 2.2. 

 

Table 2.2 Regimes of thermomechanical treatment of the Ti-Nb-Ta and Ti-Nb-Zr 
alloys 

Alloy Strain upon cold rolling  

(
0

1ln
h

h
e = ) 

PDA temperature, °C 

 

TNT1 

TNT2 

TNT3 

0.28 – 0.3 450, 600, 750 (1 h) 

and 900 (0.5 h) 

TNZ1 

TNZ2 

TNZ3 

0.27 – 0.47, 0.75, 2.75 

0.3, 2.0 

0.37, 2.0 

450, (500, 550 (only 

TNZ2)), 600, 750, 900 (1 h) 

 

The limits for the degree of deformation during cold rolling were chosen from the following 

considerations. The lower limit of the degree of strain is determined by the value of the 

deformation which provides strain hardening that is sufficiently strong to ensure processes of 

polygonization and recrystallization during annealing [23]. The upper value of the degree of 
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deformation is determined by the ability of the material to be deformed upon cold rolling 

without failure. For the alloys similar to those under consideration, it is from 95 to 99% [27]. 

 

The temperature range for PDA (see Table 2.2) was chosen assuming that at a minimum 

annealing temperature (450°С) the processes of recovery begin developing, and after 

annealing at the maximum temperature (900°С) a fully recrystallized structure of the β phase 

is formed. 

 

The samples for metallographic studies were prepared by polishing on a P120–P1200 

abrasive paper and, then, on a felt wheel using an emulsion of aluminum oxide, Al2O3, with a 

particle size of about 1 micron. The microstructure was revealed by etching in 2HF : 1HNO3 

: 17H2O, 1HF : 15HNO3 : 5H2O, and 1HF : 4HNO3 : 5H2O solutions in different sequences, 

depending on the type of the preceding TMT; and was examined using a Metallovert LEITZ 

light microscope. The thin foils for electron microscopic studies using a JEOL 2100 

microscope were produced by electrolytic polishing of plates 0.1 mm thick at -38°С in a 15% 

alcohol solution of HNO3 using a Tenupol-5 apparatus. To determine the phase composition 

and to evaluate the theoretical reserve of the reversible strain, X-ray diffraction studies using 

a Panalytical X’Pert Pro and a Rigaku D/MAX 2500 diffractometers were performed. The 

samples for the X-ray diffraction study were prepared similarly to those for metallographic 

investigation to remove the work-hardened surface layer. 

 

The lattice parameters of the phases and the maximum lattice strain upon the martensitic 

transformation were calculated by the methods similar to those described in [28–30]. The 

theoretical reserve of reversible strain was evaluated for an isotropic polycrystal as well. The 

lattice parameters of the α” martensite were calculated based on its X-ray diffraction lines by 

the least squares procedure. The lattice parameters of martensite were calculated for the cases 

where the number of distinct lines of the α” phase was no less than five ({110}, {020}, 

{021}, {130}, and {131}). The lattice parameters of the β phase used in the calculations were 

determined by extrapolation to θ = 90°. 
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The hardness measurements were performed at room temperature using an Instron Wilson 

Tukon 2100 (500 g, 10 s) and a Nano-Hardness Tester CSM. The isothermal mechanical 

tensile tests were carried out at temperatures of -18, 25, 37, 75 and 200°C employing a 

specially designed testing machine and an MTS MiniBionix unit at -35, -20, 0, 25, 60, and 

100°C. 

 

2.5 Results and discussion 

Light Microscopy 

 

The lightmicroscopy study showed that in its original state, before cold rolling, the grain 

structure of the β phase in the Ti-Nb-Zr and Ti-Nb-Ta alloys was equiaxed, with grain sizes 

from 200 to 500 microns. In the Ti-Nb-Zr alloys, after cold rolling to an intermediate strain e 

= 0.75, elongated grains of the β phase (Figure 2.1a) are observed. After annealing at 450°С, 

this structure is retained almost unchanged (Figure 2.1b, c). After annealing at 600°С, a 

recrystallized structure is observed to start forming; i. e., there appear separate recrystallized 

grains with a size of 10–20 μm within the initial grains and along their boundaries (Figure 

2.1d, e). With a further increase in the annealing temperature, complete recrystallization 

(750°C) and growth of recrystallized grains (900°С) take place (Figure 2.1f–i). Inside the β 

phase grains, individual crystals of the α phase or their groups are observed. 
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Figure 2.1 Structure of the Ti-18.3Nb-5.1Zr (TNZ1) alloy after (a) deformation to e = 
0.75 and postdeformation annealing for 1 h at (b, c) 450, (d, e) 600, (f, g) 750, and (h, i) 

900°C. Light microscopy 

 

Of special note is the effect of “grain boundary heredity” [31], which is clearly observed after 

annealing at 900°С (Figure 2.1i). This effect consists in the retention of traces of the initial 

boundaries of deformed grains against the background of the fine recrystallized structure, 

whose grains as if inherit these boundaries. In fact, there are etched out not the high-angle 

boundaries of large initial grains themselves, but only their “traces” due to an enhanced 

etchability of the border regions of the initial grains that were enriched by impurities at the 

preliminary stage of processing. The smaller structural elements within the “traces” of the 

grains are the really grown recrystallized grains.  

 

In the Ti-Nb-Ta alloys, the boundaries of fine grains are not etched after cold deformation (e 

= 0.3) and PDA at 450 and 600°С, which indicates the absence of recrystallization. The fully 

recrystallized β phase was detected after annealing at 700°С (Figure 2.2a). The parallel 

stripes of different orientations in different grains represent surface deformation-induced 

martensite crystals formed during mechanical polishing of the sample surface. 
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Figure 2.2 Structure of the Ti-19.5Nb-6.5Ta (TNT1) alloy after deformation to e = 0.3 
and postdeformation annealing for 1 h at (a) 700°C (1 h) and (b) 900°C (30 min). Light 

microscopy 

 

X-ray Diffraction Investigation 

 

X-ray diffraction study of the TNZ1 alloy was performed at room temperature in the 

undeformed state, after cold plastic deformation in the range of e = 0.28 to 2, and after PDA 

at temperatures from 450 to 900°C. In the initial state and after any type of deformation, it is 

the β phase that remains main. There are also an additional phase, the α” martensite, formed 

during deformation and further deformed plastically together with the β phase, as well as α- 

and ω phases. After the PDA at all temperatures, the β phase remains basic. 

 

The moderate cold deformation (e = 0.28) leads to a sharp broadening of the X-ray 

diffraction lines of the β phase (Figure 2.3). An increase in the initial strain to e = 2 is 

accompanied by a gradual increase in the width of the X-ray lines (see Figure 2.3) the 

increment of which is much less than that observed in the Ti-Ni alloy under the same 

conditions [32]. Thus, the {110}-line width after deformation to e = 2 in the TNZ1 alloy is 
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0.75° on the 2θ scale (Figure 2.3), while in the Ti-50.26%Ni alloy it reaches 5°, and the Ti-Ni 

alloy becomes nanocrystalline and partly amorphized [32]. Therefore, no significant 

development of the nanocrystalline structure and, especially, of the amorphous one can be 

expected in the Ti-Nb-Zr alloy, in contrast to the Ti-Ni alloys, during SPD to e = 2.  

 

 

Figure 2.3 Dependence of the X-ray diffraction line 
width Bhkl of the β phase on the degree of initial 

deformation in the Ti-18.3Nb-5.1Zr (TNZ1) alloy 

 

The X-ray diffraction lines of the β phase after annealing at 450°С remain strongly 

broadened (Figure 2.4a–c); i.e., the initial strain hardening is largely preserved. The β-phase 

texture changes only a little, which confirms the absence of recrystallization.  
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Figure 2.4 Variation of the width of the X-ray diffraction lines of the β phase of the Ti-
18.3Nb-5.lZr (TNZ1) alloy after deformation to (a) е = 0.28, (b) 0.75, and (c) 2; and (d) the 

Ti-19.5Nb-6.5Ta (TNT1) alloy after deformation to e = 0.26 and postdeformation annealing. 
Horizontal lines indicate the levels of Bhkl for the quenched state (e = 0) (×) 211β, (+) 200β, 

and (●) 110β 

 

After the PDA at 600°С the line widths drop sharply, approaching values typical of the initial 

undeformed state, and after the PDA at 750°С they reach these values, which corresponds to 

the complete recrystallization (Figure 2.4a–c). 

 

After the PDA at 900°С, there is seen some broadening of the lines as compared to 750 °С 

(Figure 2.4b, c), which can be related to the superposition of additional lines, to the 

incomplete etching-off of the surface work-hardened layer, or to the dissolution of Zr atoms, 

which have a larger atomic diameter. The latter factor is supported by a systematic increase 
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in the lattice period of the β phase with increasing annealing temperature to 900°С (Figure 

2.5). 

 

 

Figure 2.5 The lattice parameter of the β 
phase in the Ti-21.2Nb-5.6Zr (TNZ2) alloy after 

different treatments: (×) e = 0 (quenching at 
900°С); (●) e = 0.28; (+) e = 0.75; and (○) e = 

2) 

 

The {101} and {102} lines of the α phase are clearly observed after PDA at all temperatures, 

and the {001} line of the ω phase is detected only below 600°С 

 

Figure 2.4d presents the data on the widths of the X-ray diffraction lines of the β phase in the 

TNT1 alloy taken at room temperature after cold deformation by rolling with a reduction to e 

= 0.26 and PDA at a temperature from 450 to 900°C. This figure shows that the X-ray lines 

of the β phase in the deformed TNT1 alloy become broader as compared to those observed in 

the Ti-Nb-Zr alloy. The behavior of the width of the X-ray lines in the TNT1 alloy after PDA 

is similar to that observed in the Ti-Nb-Zr alloys (Figure 2.4a, d). Under such a deformation 

at e ≈ 0.3 the lines of Ti-Nb-Ta become broader than those in Ti-Nb-Zr. 
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The most important functional property of SMAs is the reversible strain, whose 

crystallographic reserve is determined by the maximum strain of the crystal lattice during 

martensitic transformation [33]. In other words, this reserve is determined by the ratio of the 

lattice parameters of martensite and high-temperature phase (austenite), and it is equal to 3–

4% in such SMAs as Ti-Nb-Ta and Ti-Nb-Zr [8, 9]. Since the lattice parameters of 

martensite in the Ti-Ni SMAs and, hence, the strain during martensitic transformation depend 

on the extent of the defectiveness of the initial phase [21, 28, 29, 34], it was interesting to 

check whether this dependence manifests itself in alloys based on Ti-Nb as well. 

 

The X-ray diffraction patterns of the TNT1 alloy were taken at room temperature. The 

samples after rolling to e = 0.28 were annealed at temperatures of 450, 600, 750, and 900°С 

(with cooling in water) and then subjected to tensile deformation to fracture. From these 

X-ray diffraction patterns, it was only possible to calculate the lattice parameters of the α” 

martensite in the case of annealing at 600°С and higher temperatures. In the case of 

annealing at 450°С, the small amount of martensite prevents obtaining the number of lines 

sufficient for calculations. At the same time, the greatest change in the lattice parameters of 

the martensite should be expected at a lowest PDA temperature of 450°С when, judging from 

the large broadening of the X-ray lines, there is retained a high defectness of the structure 

[34, 35]. The PDA temperature equal to 600°С refers to the region of transition from 

polygonized substructure to the recrystallized structure (according to the residual broadening 

of X-ray lines, see Figure 2.4d); and the retained dislocation density seems to be insufficient 

to affect the lattice parameters of martensite. 

 

Figure 2.6 depicts the calculated parameters of the orthorhombic α”-martensite lattice a, b, 

and c and the volume of the unit cell of the ω TNT1 alloy after deformation to failure at room 

temperature as a function of the PDA temperature. As is shown in the figure, the lattice 

parameters of martensite do not differ after PDA within the measurement error in the 

temperature range from 600 to 900°C. Therefore, the maximum lattice strain upon the 

martensitic transformation calculated from the lattice parameters of the martensite and the  
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β phase turned out to be the same. Its values after the PDA at 600–900°С lie within εmax = 3.0 

± 0.2% (Figure 2.6). 

 

 

Figure 2.6 Lattice parameters of the α” 
martensite and the maximum strain of the 
lattice upon the martensitic transformation 
of the Ti-19.5Nb-6.5Ta (TNT1) alloy after 
rolling to e = 0.28, annealing at different 

temperatures, and deformation to failure at 
room temperature 
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It should be noted that in the Ti-Ni alloys the value of εmax upon the martensite formation 

from austenite with a high concentration of lattice defects is reduced by about 10% as 

compared to the value of εmax of quenched martensite [34, 35]. If this ratio is also valid for 

the Ti-Nb-Ta alloys, the retention of even a very large thermomechanical hardening upon 

PDA of these alloys will lead to only an insignificant difference in the εmax. In addition, the 

calculations indicate that the theoretical reserve of reversible strain in the polycrystalline 

isotropic Ti-Nb-Ta alloy corresponds to 2.74 %, which is by 0.26% less than the maximum 

lattice strain of the single crystal (3%). 

 

As to the Ti-Nb-Zr alloy, it was not possible to calculate the lattice parameters of the α” 

martensite because of the insufficient number of indexed lines. 

 

Transmission Electron Microscopy 

 

Electron micrographs of the structure of the Ti-21.2Nb-5.6Zr (TNZ2) alloy subjected to PDA 

at 450, 500, 550 and 600°С for 1 h after cold rolling with strains e = 0.28 and e = 2 are 

illustrated in Figure 2.7 and Figure 2.8.  
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Figure 2.7 Structure of the Ti-21.2Nb-5.6Zr (TNZ2) alloy subjected to 
moderate cold deformation (e = 0.28) and postdeformation annealing (1 h) at the 

temperatures (a) 450, (b) 500, (c) 550, and (d) 600°C. Diffraction electron 
microscopy: (BF) bright-field images, (DF) dark-field images, and diffraction 

patterns 
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Figure 2.8 The structure of the Ti-21.2Nb-5.6Zr (TNZ2) alloy subjected to 
severe cold plastic deformation (e = 2) and postdeformation annealing at the 
temperatures (a) 450, (b) 500, (c) 550, and (d) 600°C. Diffraction electron 

microscopy: (BF) bright-field images, (DF) dark-field images of the β phase, 
and diffraction patterns 

 

The Ti-Nb-Zr alloys are multiphase; they contain β-, α”-, α-, and ω phases, but the main 

phase is β. Of primary interest is the structure of the β phase, since it determines the 

peculiarities of the martensitic β → α” transformation underlying the shape-memory effect in 
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Ti-Ni-based alloys. Of course, one should keep in mind that the presence of the α- and ω 

phases in excessively large quantities reduces reversible strain. 

 

A moderate cold deformation (е = 0.28) of the Ti-Nb-Zr alloy causes the formation of a 

developed dislocation substructure in the β-phase matrix and in the α(α”)-phase plates; there 

are also seen deformation bands and the ω phase. After PDA at 450°С, there are no 

significant changes in the dislocation substructure of the β and α phases; a high density of 

dislocations is detected as before, the general view of the structure is preserved, but the ω-

phase content increases (Figure 2.7a). Upon PDA at 500°С, after a moderate deformation (е 

= 0.28), a polygonized substructure is formed (“nanosubgrained,” with subgrain sizes from 

20 to 100 nm) (Figure 2.7b). When the PDA temperature rises to 550°С, the subgrains grow 

and reach the limits of the nanometer and submicron range (an average size of about 100 nm) 

(Figure 2.7c, where stitched precipitates of the ω phase are revealed against the background 

of β-phase subgrains); after PDA at 600°С for 1 h, their sizes increase to submicron one 

(200–500 nm) (Figure 2.7d). Judging from the small smearing of diffraction reflections of the 

β phase both after deformation and after PDA to 600°С, there are observed only low-angle 

misorientations on the selected areas. After PDA at 600°С for 1 h, in the structure there are 

also detected some recrystallized β-phase grains a few microns in size. After PDA at 750°С, 

there is already seen a recrystallized structure of the β phase (see Figure 2.1f, g). The α phase 

was found throughout the PDA temperature range from 450 to 600°C, while no ω-phase 

reflections were detected after PDA at 600°С in the diffraction pattern. 

 

In the case of the initial severe deformation (е = 2) of the Ti-Nb-Zr alloy, a high density of 

dislocations is observed in the β- and α phases, and, apparently, a nanocrystalline structure 

(NCS) is locally generated, which is difficult to observe visually, and in the analyzed 

selected-area diffraction patterns no signs of an NCS were found. The amorphization of the 

structure in this case does not take place, in contrast to the Ti-Ni alloys. After PDA at 450°С, 

no substantial changes are revealed in the structure (Figure 2.8a). The PDA at 500°С after 

severe deformation generates a mixed nanosubgrained plus nanocrystalline structure; i.e., 

there is predominantly formed a polygonized nanosubgrained structure (NSS) of the β and α 
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phases, although there are also seen high-angle misorientations in the diffraction pattern 

(Figure 2.8b). The NCS grains could arise as a result of recrystallization in the NSS, 

although, after the PDA at 550°С (Figure 2.8c) and then at 600°С (Figure 2.8d) the structure 

does not change, only the size of grains and subgrains increases, and at 600°С exceeds the 

nanorange.  

 

Effect of Structure on the Mechanical Properties of the Ti-Nb-(Zr, Ta) Alloys 

 

The structures of the Ti-Nb-Ta and Ti-Nb-Zr alloys formed as a result of thermomechanical 

processing, as well as their behaviors during TMT, are close enough. 

 

The alloys investigated were subjected to a thermomechanical treatment consisting of cold 

rolling and postdeformation annealing. Accordingly, the structure can be controlled by 

changing the TMT parameters, such as the degree of deformation and conditions of 

postdeformation annealing. 

 

The structure investigation shows that the effect of the degree of strain (within the ranges 

studied) on the alloy structure is not as pronounced as that of the PDA temperature. 

Therefore, the dependences of the microhardness on the PDA temperature for different 

degrees of strain are close and appear to be similar upon the variation of the alloy 

composition (Figure 2.9a, b) [36]. 
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Figure 2.9 Hardness dependence on the PDA temperature of the alloys: (a) Ti-18.3Nb-
5.1Zr (TNZ1); and (b) Ti-20.9Nb-5.7Zr (TNZ3) 

 

It is known that the metallic materials used as implants should, in the ideal case, imitate the 

mechanical behavior of the bone tissue and, therefore, have a low Young’s modulus and a 

nonlinear mechanical behavior with a hysteresis, that is, to show a superelasticity effect [1]. 

Let us consider how these properties are implemented on the example of the Ti-20.9Nb-5.7Zr 

(TNZ3) alloy after moderate plastic deformation (e = 0.37) and PDA. 

 

As is seen from Figure 2.10, partial superelasticity appears in tensile tests of the Ti-Nb-Zr 

alloy at room temperature already in the first cycle of deformation by loading-unloading and, 

especially, after annealing, which results in the formation of polygonized substructure with 

submicron subgrains and fine recrystallized structure in the β phase (600 and 750°С). In the 

case of the Ti-Nb-Ta alloy, there is observed an analogous regularity in the change in the 

mechanical properties depending on the PDA temperature (Figure 2.11). In the TNZ3 alloy, 

the value of the reversible strain upon unloading (including superelastic and elastic 

deformation) after PDA at 600°С is 1.5% (at an induced deformation of 2.4%). The change 

in the diagram of deformation, i.e., the manifestation of partial superelasticity and the 

character of the variation of the yield stress with temperature of mechanical tests (see inset in 

Figure 2.10), indicates the occurrence of a martensitic transformation under stress. Note that 

the samples annealed at 450°С undergo fracture in a brittle manner, which is caused by the 
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combined effect of a strong total residual strain hardening and precipitation of the embrittling 

ω phase [6]. 

 

 

Figure 2.10 Loading-unloading deformation diagrams of the Ti-20.9Nb-
5.7Zr (TNZ3) alloy annealed in the range from 450 to 900°C after 

moderate plastic deformation (e = 0.37). The inset shows the deformation 
diagrams of loading-unloading tests at various temperatures after e = 0.37 

and PDA at 600°C 
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Figure 2.11 Deformation diagrams of loading-unloading of the 
Ti-19.5Nb-6.5Ta (TNT1) alloy annealed in the range from 450 to 900°C 

after moderate plastic deformation (e = 0.26) 

 

Figure 2.12 compares the variation of the Young’s modulus of the TNZ3 alloy found from 

the deformation diagrams shown in Figure 2.10 and of the microhardness (Figure 2.9b) 

depending on the PDA temperature. As is seen from Figure 2.12, both the microhardness and 

the Young’s modulus exhibit a minimum in the range of PDA temperatures from 600 to 

750°C. 
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Figure 2.12 Variation of the microhardness and 
Young’s modulus of the Ti-20.9Nb-5.7Zr (TNZ3) alloy 
depending on the PDA temperature. The initial strain e 

is 0.37. 

 

The microhardness and the yield stress of SMAs are structure-sensitive properties, which 

depend on the size of grains and subgrains, dislocation density, sizes of precipitate and their 

location, on the phase composition, test temperature relative to the martensitic transformation 

temperature, etc. The decrease in the microhardness and Young’s modulus near 600°C is 

primarily due to the depletion of the β phase of the third alloying element, Zr [37], and 

possibly of Nb, which favors the occurrence of the β → α” transformation upon loading and 

thus a decrease in the “phase” yield stress. As the annealing temperature increases to 600°С, 

the structure imperfection decreases (the width of the X-ray diffraction lines of the β phase 

decreases sharply, see Figure 2.4; polygonization develops; recrystallization starts, see Figure 

2.7, Figure 2.8), which leads to a decrease in the contribution of strain hardening to the 

strengthening of the alloy. A further increase in the annealing temperature is accompanied by 

a strengthening of the β phase caused by the saturation of the sample with oxygen (oxygen 

embrittlement) [36] and by an increase in the concentrations of Zr and Nb in this phase. This 

causes a lowering of the Мs temperature and, hence, reduces the probability of the occurrence 
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of the β → α” transformation upon loading. In the case of annealing at temperatures close to 

900°С, one should take into account strengthening caused by the saturation of the sample 

with oxygen (oxygen embrittlement) [36]. 

 

Thus, the range of PDA temperatures of the Ti-Nb-Ta and Ti-Nb-Zr alloys in which we can 

expect the maximum superelasticity lies in the vicinity of 600°С and corresponds to the 

formation of mainly polygonized substructure of the β phase with submicron structural 

elements (subgrains and grains). 

 

2.6 Conclusions 

(1) Moderate cold plastic deformation (e ≈ 0.3) of the Ti-Nb-Ta and Ti-Nb-Zr shape-memory 

alloys (SMAs) leads to the formation of a developed dislocation substructure in the β phase. 

With going to severe plastic deformation (e ≈ 2), along with the development of a dislocation 

substructure there can be observed local regions of a nanocrystalline structure; no 

amorphization of the structure occurs under these conditions, in contrast to the Ti-Ni SMAs. 

In the deformed alloys, there are also formed α”-, α-, ω phases in limited amounts. 

 

(2) During postdeformation annealing at temperatures below 450°С, the structure of the β 

phase in the Ti-Nb-Zr SMAs varies only slightly. Above 450°С, there is mainly formed a 

polygonized substructure in the β phase, which is nanosubgrained at the annealing 

temperature of 500°С, transition to submicron at 550°С, and submicron at 600°С. In the case 

of the initial severe deformation (e = 2), within the whole range of annealing temperatures 

there are observed highangle misorientations of microstructure blocks. The recrystallization 

of the β phase in the Ti-Nb-Zr and Ti-Nb-Ta SMAs develops above 600°С. The ω phase is 

present up to 550°С. 

 

(3) The lattice parameters of the deformation-induced α” martensite formed in the Ti-Nb-Ta 

alloy are independent of the PDA temperature in the range from 600 to 900°C, in which the 

β-phase transition from polygonized substructure to the recrystallized structure takes place. 
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The crystallographic reserve of reversible strain does not change in this process and is equal 

to εmax = 3.0 ± 0.2% (the reserve of reversible strain in the isotropic-polycrystal 

approximation amounts to 2.7 ± 0.2%). 

 

(4) From the regularities of the Young’s modulus variation and from the loading-unloading 

deformation diagrams, it follows that the range of PDA temperatures that is most favorable 

for the manifestation of the effect of superelasticity in the Ti-Nb-Zr and Ti-Nb-Ta alloys lies 

near 600°С and corresponds to the formation of mainly polygonized substructure of the β 

phase with submicron-sized structural elements and a small amount of the ω phase. 
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CHAPTER 3 
 
 

ARTICLE #2:  
STRUCTURE AND PROPERTIES OF Ti-19.7Nb-5.8Ta SHAPE MEMORY ALLOY 
SUBJECTED TO THERMOMECHANICAL PROCESSING INCLUDING AGING 

 

3.1 Summary 

This article is aimed at studying the influence of a thermomechanical treatment procedure 

consisting of cold rolling (e=0.37), post deformation annealing (400 – 750oC, 1h) and ageing 

(300oC, 10 min…3h) technological steps on the structure and functional properties of 

Ti-Nb-Ta SMA for biomedical applications. Transmission electron microscopy and X-ray 

diffraction analysis are used for evaluation of the structure. Microhardness measurements, 

single- and multi-cycle isothermal tensile testing, constant-strain temperature scanning and 

shape recovery testing are performed for evaluation of the mechanical and functional 

properties.  

 

Post-deformation annealing in the 500 to 600oC temperature range forms a nanosubgrained 

substructure, which transforms to a recrystallized structure of β-phase if the annealing 

temperature continues to increase. Simultaneously, annealing affects the phase composition 

and the β→α” transformation kinetics. After cold rolling and postdeformation annealing, 

Ti-Nb-Ta SMA manifests superelastic and shape memory behaviours. Ageing at 300oC (1h) 

causes precipitation of ω-phase particles, which results in a significant improvement of the 

superelastic cyclic properties. However, ageing at 300oC (3h) changes the ω-precipitates’ 

particle morphology, which negatively affects the alloy’s functional properties and cyclic 

stability. This article was published in the Journal of Materials Engineering and Performance, 

in 2013.  
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S. Dubinskiy1,2, V. Brailovski1, S. Prokoshkin2, V. Pushin3, K. Inaekyan1, V. Sheremetyev2, 

M. Petrzhik2 and M. Filonov2 
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3 Institute of the Metals Physics, Ural Branch of the Russian Academy of Sciences, 18, Sofia 

Kovalevskaya st., Ekaterinburg, 620990, Russian Federation 

 

3.2 Abstract 

In this work, ternary Ti-19.7Nb-5.8Ta (at.%) alloy for biomedical application was studied. 

The ingot was manufactured by vacuum arc melting with consumable electrode and then 

subjected to hot forging. Specimens were cut from the ingot and processed by cold rolling 

with e=0.37 of logarithmic thickness reduction and post-deformation annealing (PDA) 

between 400 and 750oC (1h). Selected samples were subjected to aging at 300oC (10 

min…3h). The influence of the thermomechanical processing on the alloy’s structure, phase 

composition, mechanical and functional properties was studied. It was shown that 

thermomechanical processing leads to the formation of a nanosubgrained structure 

(polygonized with subgrains below 100 nm) in the 500 to 600oC PDA range, which 

transforms to a recrystallized structure of β-phase when PDA temperature increases. 

Simultaneously, the phase composition and the β→α” transformation kinetics vary. It was 

found that after conventional cold-rolling and PDA, Ti-Nb-Ta alloy manifests superelastic 

and shape memory behaviors. During aging at 300oC (1h), an important quantity of randomly 

scattered equiaxed ω-precipitates forms, which results in improved superelastic cyclic 

properties. On the other hand, aging at 300oC (3h) changes the ω-precipitates’ particle 

morphology from equiaxed to elongated and leads to their coarsening, which negatively 

affects the superelastic and shape memory functional properties of Ti-Nb-Ta alloy. 



73 

Keywords: biomaterials, titanium, rolling, heat treating, electron microscopy, mechanical 

testing. 

 

3.3 Introduction 

Ti-based alloys have been recognized for many years as excellent materials for biomedical 

implants mainly because of their low density, high corrosion resistance and biocompatibility 

combined with low Young's modulus [1]-[3]. Based on the formation of stable (α, α+β) and 

metastable (β) phases in these alloys, a wide variety of mechanical properties mimicking 

those of biological tissues (ex. superelasticity) can be obtained. This is the main reason 

behind significant interest to novel titanium metastable alloys containing exclusively 

biocompatible elements, such as Nb, Ta, Zr or Mo [4], [5]. Given that tantalum and niobium 

are considered as the strongest beta-stabilizing biocompatible metals, ternary or quarternary 

Ti-Nb-based shape memory alloys are being widely studied [6]-[8]. The structure and 

properties of these alloys depend on a complex sequence of phase transformations, which are 

influenced by thermomechanical processing conditions, such as severity of plastic 

deformation, post-deformation annealing temperature and cooling rate [9], [10]. In this work, 

Ti-19.7Nb-5.8Ta (at.%) shape memory alloy samples subjected to thermomechanical 

processing including cold rolling (CR), post-deformation annealing (PDA) and aging (AG) 

are characterized by TEM and X-ray diffraction techniques, microhardness, single- and 

multi-cycle isothermal tensile testing, and strain/stress recovery measurement techniques. 

 

3.4 Experimental procedure 

Casting 

 

Ti-Nb-Ta ingots were cast by vacuum arc-melting with consumable electrode in a “VDP-

0.02” furnace. The electrode was made from bars of pure Ti and Nb-Ta masteralloy. Hot 

forging of the 7 kg, 80 mm diameter ingot was carried out at 900 – 950oC in air. As a result, 

the 51 mm diameter cylinder was obtained. The surface layer of the cylinder was removed by 

machining the cylinder to 50 mm diameter. A chemical analysis performed after this 
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treatment across the cylinder cross-section showed that the impurities content (including 

oxygen) corresponded to grade 1, ASTM F67-00 (see Table 3.1). For subsequent study, the 

ingot was cut into 8 mm thick disks, and then into 2 mm thick 30-50 mm long plates. Based 

on the data of Table 3.1, the Ms temperature was estimated as being close to +50oC [7]. 

 

Table 3.1 Ti-Nb-Ta ingot composition 

Element wt% at% 

Ti 55.4 74.5 

Nb 28.4 19.7 

Ta 16.2 5.8 

O 0.039±0.008 - 

N 0.0075±0.0021 - 

H 0.00556±0.00087 - 

C 0.009±0.002 - 

 

Thermomechanical processing  

 

After four-pass cold rolling to logarithmic thickness reduction of e=0.37, Ti-Nb-Ta plates 

were EDM-cut to form 1x1.5x50 (mm) specimens and subjected to post-deformation 

annealing (PDA) at 400, 450, 500, 550, 600, 650, 700 and 750°C (all 1h) followed by water-

quenching to room temperature (RT). After PDA at 500°C (1h), aging at 300°C for various 

times (10 min, 30 min, 1h and 3h) was performed to estimate the effect of ω-phase 

precipitation on the functional properties of the studied alloy. 

 

Experimental methods 

 

The effect of thermomechanical processing on the microstructureand functional (shape 

memory) properties of Ti-Nb-Ta alloy was studied using the following TEM and X-ray 

diffraction analyses, mechanical and thermomechanical testing routines. 
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•TEM analysis of selected samples subjected to CR (e=0.37) + PDA (500, 600, 650 and 

750oC, all 1 h) and CR (e=0.37) + PDA (T=500oC, 1h) + aging at 300oC (1h and 3h) was 

carried out using “JEOL 2100CX” transmission electron microscope. Thin foils for TEM 

were prepared from 0.1 mm-thick platelets by electropolishing at -38 °C using 15% HNO3 

spirit solution and “TENUPOL-5” equipment (Struers, Denmark). 

 

•X-ray diffraction phase analysis of selected samples subjected to CR (e=0.37) + PDA 

(500, 600 and 750°C, all 1h) and CR (e=0.37) + PDA (T=500°C, 1h) + aging at 300°C (1h 

and 3h) was performed using an “Ultima IV Rigaku”diffractometer (monochromatic CuKα-

radiation). The samples for X-ray analysis were mechanically polished and chemically etched 

using an acid solution of the following composition: 2HF:1HNO3:17H2O. 

 

•Microhardness measurements were performed using an “INSTRON Wilson Tukon2100” 

(500 g, 10 sec); five HV measurements were performed for each thermomechanical 

processing condition, and mean and standard deviation values were calculated. 

 

•Single- and multi-cycle isothermal tensile testing was carried out at RT and at 40°C using 

an“MTS MiniBionix”. Single-cycle testing consisted of loading up to 2% of strain and then 

unloading down to zero load with strain rate of 0.002 s-1. During multi-cycle testing, a 

constant strain of εt=2% was applied in each cycle to specimen failure. The number of cycles 

to failure was measured, and the characteristic features of a superelastic loop, such as 

transformation yield stress σtr
A→M, Young’ modulus and accumulated strain were identified. 

 

•Constant-strain temperature scanning was performed on selected samples using a 

LAMSI tensile testing bench. The samples subjected to CR (e=0.37) + PDA (T=450, 500, 

600 and 700°C, all 1h) and CR (e=0.37) + PDA (T=500°C, 1h) + AG at 300°C (1h and 3h) 

were cooled down to -150°C, then stretched to a 2.5% strain, fixed, heated up to 200°C and 

cooled back to -150°C. The recovery stress generation-relaxation diagrams during heating 

and cooling were plotted. 
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•Shape recovery testing was carried out on selected samples after e=0.37 and PDA (T=450, 

500, 600, 700°C, 1h) as well as after CR (e=0.37) + PDA (T=500°C, 1h) + AG at 300°C (1h 

and 3h). The samples were bent at -196°C around cylindrical mandrels of different radii, and 

heated up by hot air to a complete shape recovery. The shape memory (SM) recovery strain εr 

was measured as a function of initial (induced) strain εi, and maximum completely SM-

recoverable strain εr,1
max was then determined with 0.15% tolerance. 

 

3.5 Results 

Structure of thermomechanically treated Ti-Nb-Ta alloy 

 

As seen in Figure 3.1a, the main phase in Ti-Nb-Ta alloy after conventional cold rolling is β-

phase, whereas α”, ω and possibly α phases are present in small quantities. Parallel electron 

microscopy study shows that the β-phase contains high dislocation density. Post-deformation 

annealing initiates recovery, polygonization and recrystallization processes in β-phase, which 

is confirmed by the continuous narrowing of the β-phase X-ray lines as PDA temperature 

increasesup to 750oC (Figure 3.1b, c). This phase composition at RT does not change 

significantly after PDA at 500oC, however, the α”-phase content is distinctly higher than that 

of ω- and α-phases (the presence of the latter is not evident) (Figure 3.1b). PDA at 750oC 

reveals the presence of additional α”- and α -phases and absence of ω-phase (Figure 3.1c).  
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Figure 3.1 X-ray diffractograms of Ti-Nb-Ta alloy 
subjected to CR e=0.37 (a), e=0.37+PDA (T=500°C, 1h) (b), and 

e=0.37+PDA (T=750°C, 1h) (c); ↑ - expected locations of ω-
phase X-ray lines 
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A TEM study after PDA at 500 and 600oC reveals a nanosubgrained (NS) dislocation 

substructure of β-phase (subgrain size below 100 nm) with “imposed” α”-martensite crystals 

(Figure 3.2a, b). The α”-martensite manifests a typical packet-like morphology of pairly-

twinned martensite crystals. The α” crystals inherit the NS structure from the β-phase. Note 

that a significant α”-martensite quantity at RT may be partially caused by additional α” 

formation during low-temperature electropolishing of thin foils. Increasing the PDA 

temperature above 600oC leads to β-phase recrystallization, and PDA at 750oC results in β-

phase grain growth up to 20-30 µm with some quantity of α- and α”-phases but without ω-

phase (Figure 3.1c). 

 

 

Figure 3.2 Structure of Ti-Nb-Ta alloy subjected to CR (e=0.37)+PDA (T=500 (a) and 
600°C (b); 1h); a – bright field image, b – dark field image in a β-phase matrix 

reflection and SAED pattern (<110>β zone axis with two high-angle misorientations) 

 

Even though X-ray diffraction analysis of the aged after 500oC-PDA samples (300oC, 10 

min…3h) does not point to significant variations in the phase composition, TEM makes it 

possible to reveal the following changes in the ω-phase structure. After 300oC (1h)-aging, 

very fine (d=5-10 nm) randomly scattered equiaxed ω-phase particles manifest a weak 

tendency to form elongated rows, as shown on the dark-field image (Figure 3.3a) obtained 

from a group of very weak ω diffuse reflections in positions close to “1/3”<112>β and 

“2/3”<111>β (Figure 3.3b). After 300oC (3h)-aging, the system of ω-reflections becomes 
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more distinct (Figure 3.3d), and the tendency to form elongated rows of coarsened ω particles 

is enhanced (Figure 3.3c). This morphology cannot be attributed to α-phase crystals because 

α-phase reflections are absent in the corresponding SAED pattern (Figure 3.3d). 

 

 

Figure 3.3 Dark-field image in ω-phase reflections of Ti-Nb-Ta alloy after CR 
(e=0.37)+PDA (T=500°C,1h)+AG(T=300°C, 1h (a) and 3h (c)), and corresponding SAED 
pattern, <110>β zone axis (b, d). Doubled arrow indicates an elongated row of ω particles 

 

Table 3.2 resumes the correlation between the thermomechanical treatment and 

microstructure of Ti-Nb-Ta alloy.  
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Table 3.2 Phase constituents and other microstructural features resulted from TMTs 

PDA and AG after 

CR e=0.3 

Structure of β-phase Other phases in presence 

PDA 500°C (1h) 

and 600°C (1h) 

Nanosubgrained (NS) 

dislocation substructure with 

subgrain size less than 100 

nm  

α”-martensite with typical packet-like 

morphology of pairly-twinned 

martensite crystals; α” crystals inherit 

the β-phase NS substructure; ω-phase 

is identified only by TEM. 

PDA 750°C (1h) Recrystallized structure with 

grain size of about 20-30 µm 

Some quantity of α”- and α-phases 

but without ω-phase; α” crystals 

inherit the β-phase NS substructure. 

PDA 500°C (1h) + 

AG 300°C (1h) 

Nanosubgrained (NS) 

dislocation substructure  with 

subgrain size less than 100 

nm  

Very fine (d=5-10 nm) randomly 

scattered equiaxed ω-phase particles  

PDA 500°C (1h) + 

AG 300°C (3h) 

ω-reflections system becomes more 

distinct; formation of elongated rows 

(up to 100-150 nm long − 30 nm wide) 

of coarsened (d=20-30 nm) ω-phase 

particles  

 

Microhardness and single-cycle tensile testing 

 

The results of RT microhardness and tensile testing of Ti-Nb-Ta alloy are presented in Figure 

3.4 and Figure 3.5. As confirmed by microhardness measurements and stress-strain diagrams 

(Figure 3.4), Ti-Nb-Ta alloy subjected to conventional cold-rolling manifests a net softening 

after PDA at 500-550oC (1h). The shape of loading-unloading diagrams after PDA in that 

temperature range is typical for shape memory behavior with a certain contribution of 

superelasticity [11]. In contrast, stress-strain diagrams after PDA at 400-450 and 600oC 

manifest preferentially superelastic behavior. Furthermore, additional aging at 300oC after 

PDA at 500oC (1h) leads to appreciable changes in mechanical behavior: the greater the 
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aging time, the higher the alloy strengthening, and the closer the alloy’s behavior comes to 

perfect superelasticity; the latter is valid up to a certain limit, the best fit corresponding to 1h-

aging (Figure 3.5). To sum up these results, Figure 3.6 illustrates the evolution of Young’s 

modulus (E) and transformation yield stress (σtr) as a function of the annealing temperature 

and aging time.  

 

 

Figure 3.4 Microhardness Vickers measurements and stress-strain diagrams of Ti-Nb-Ta 
alloy subjected to CR (e=0.37)+PDA (1h) at different temperatures 
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Figure 3.5 Microhardness Vickers measurements and stress-strain diagrams of Ti-Nb-Ta 
alloy subjected to CR (e=0.37) + PDA (T=500°C, 1h) + AG at 300°C with different aging 

times (t) 

 

 

Figure 3.6 Transformation yield stress (σtr) and Young’s modulus of Ti-Nb-Ta alloy 
subjected to (a) e=0.37+PDA (1h) at different temperatures, and (b) e=0.37+PDA (T=500°C, 

1h) + AG (300°C, 10 min…3h). Insert: schematic presentation of the transformation yield 
stress and Young’s modulus measurements 
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Multi-cycle tensile testing  

 

In Figure 3.7, multi-cycle stress-strain diagrams obtained after different processing routes are 

collected. A distinct cyclic behavior close to linear superelasticity is observed for low-

temperature annealing: 400 and 450oC (Figure 3.7b, c). The accumulated strain to failure in 

these cases is the lowest – below 3% – as compared to 6.5% after annealing at 700oC (Figure 

3.7g). After aging at 300oC of the sample annealed at 500oC, simultaneous improvement of 

superelastic behavior and cyclic life is observed, the maximum corresponds to 1h aging time 

(Figure 3.7h-j). 

 

Comparative tensile cycling at RT and at 40oC was performed using the specimens subjected 

to annealing at 600oC, 1h (Figure 3.8). It can be observed that, according to the Clausius-

Clapeyron relationship, the higher the testing temperature, the higher the transformation yield 

stress: Δσ/ΔT≈2.5±1.0MPa/oC. This transformation yield stress–temperature slope value is 

close to those observed for similar alloys in [7], [12]. That supports the assertion that we 

truly deal with stress-induced thermoelastic martensitic transformation. 
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Figure 3.7 Stress-strain cycling diagrams of Ti-Nb-Ta alloys after e=0.37+PDA: (a) as-
deformed, e=0.37; deformed and annealed at 400 (b); 450 (c); 500 (d); 550 (e); 600 (f) and 

700°C (g) (all 1h). Aged at 300°C after e=0.37+500°C (1h): 10 min (h); 30 min (i); 1h (j) and 
3h (k) 
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Figure 3.8 Cycling stress-strain diagrams of Ti-Nb-Ta alloys after e=0.37+600°C at (a) 
25°C and (b) 40°C 

 

Thermomechanical testing 

 

Recovery stress testing 

 

The results of the constant-strain temperature scanning experiment presented in Figure 3.9a 

illustrate the influence of the PDA temperature on the recovery stress generation and 

therefore on the reverse martensitic transformation temperature range under stress. The 

maximum recovery stresses σr
max= σAfσ- σAsσ correspond to annealing at 600 and 500oC and 

are equal to 80 and 50 MPa respectively. The effect of the PDA temperature on the 

characteristic stresses of the generation-relaxation curves, σAfσ, σAsσ (Figure 3.10a) is similar 

to the evolution of the transformation yield stress and Young’s modulus shown in Figure 

3.6a. The initial lowering of stress upon heating is due to thermal dilatation of the specimen 

followed by recovery stress generation caused by constrained α”→β martensitic 

transformation. 

 

Stress-temperature diagrams of the samples subjected to aging at 300oC (1h and 3h) after 

CR+500oC (1h) reflect a certain evolution in material microstructure (Figure 3.9b) as 
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compared to the non-aged specimens (Figure 3.9a). After 1h-aging, the stress-temperature 

diagram shows a distinct stress generation, whereas 3h-aging suppresses the martensitic 

transformation and, therefore, stress generation becomes very weak (Figure 3.9b, Figure 

3.10b). 

 

 

Figure 3.9 Constant-strain temperature scanning diagrams for 2.5% strain for Ti-Nb-Ta 
subjected to e=0.37+PDA (T=450, 500, 600 and 700°C) (a) and e=0.37+500°C (1h) + aging 

at 300°C (1 and 3 h) (b) 
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Figure 3.10 Variation of the reverse martensitic transformation temperatures and 
characteristic stresses for Ti-Nb-Ta subjected to e=0.37+PDA (a) and e=0.37+500°C (1h) + 

aging at 300°C (1 and 3 h) (b) 

 

Recovery strain testing 

 

For Ti-19.7Nb-5.8Ta alloy, completely recoverable shape memory strain in bending after 

stress-free heating from -196oC (εr,1
max) reaches its maxima of about 1.5-2% after annealing 

in the 500-700oC range and about 1% after 400-450oC annealing (Figure 3.11a). Aging at 

300oC after e=0.37+PDA (T=500oC,1h) (Figure 3.11b) results in a net decrease (εr,1
max under 

1%) in shape restoration upon heating. 

 

Figure 3.11 presents the recovery strain of shape memory effect (SME) only. This 

experiment was realized in three consecutive steps: deformation at low temperature, 

unloading at low temperature and heating. Induced strain was measured after unloading at 

-196oC, thus elastic + superelastic recovery strains were excluded from consideration. 

Recovery strain due to shape memory effect (SME) was measured upon heating. Intensive 

precipitation hardening during aging was accompanied by an increase in the alloy’s true and 

transformation yield stresses. Thus, to induce SME, it was necessary to apply higher stresses 
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close to the alloy’s true yield stress, which leaded to accumulation of residual strain and, 

therefore to decrease in recoverable strain. 

 

 

Figure 3.11 Recovery strain dependence on induced strain in bending SM testing at -
196°C and subsequent heating above Af of Ti-Nb-Ta alloy subjected to CR+PDA (1h) (a) 

and CR+PDA+AG (300°C, 1h and 3h) (b). To facilitate observation, not all the experimental 
points are presented 

 

3.6 Discussion 

It can be shown that the measured mechanical and functional properties of the studied alloy 

are in direct correlation with the material microstructure. Post-deformation annealing of the 

Ti-Nb-Ta SMA initiates recovery, polygonization and recrystallization processes in β-phase 

(Figure 3.1, Figure 3.2). Low-temperature aging of NS structure at 300oC is accompanied by 

a slow development of the ω-phase precipitation in the nanosubgrained β-phase. The ω-

particles preserve their globular shape, random distribution and very fine size for up to 1h of 

aging (Figure 3.3), thus creating an optimum dispersion hardening for the longest cyclic life. 

During further aging, a transform to elongated coarsened ω-particles develops (Figure 3.3). 

As a result, this “overaging” worsens superelastic cyclic life. 
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Annealing at 500oC corresponds to drastic material softening, which is clearly observed in 

both single-cycle (Figure 3.4) and multi-cycle (Figure 3.7a-d) testing. On one hand, the 

higher the annealing temperature, the lower the dislocation density and therefore the higher 

the alloy’s Ms temperature [9]. On contrary, the higher the annealing temperature, the higher 

the enrichment of β-phase by Nb and Ta β-stabilizers because of the formation of ω- and α”-

phases with higher than β-phase Ti content, and therefore the lower the alloy’s Ms 

temperature [13]. These phenomena concurrently influence the alloy’s mechanical behavior: 

the closer the testing temperature to Ms temperature, the lower the phase transformation 

stress [14]. In the vicinity of 500oC, concurrrence of the above mentioned phenomena is 

superimposed on the low stability of β-phase (β→α” transformation) and therefore results in 

accentuated material softening. When annealing temperature approaches 700oC, material 

recrystallization results in a significant grain refinement of the studied alloy [15], which 

additionally contributes to the material hardening.  

 

The greater the aging time, the higher the transformation yield stress of the material (Figure 

3.5 and Figure 3.7h-k). These observations are explained by two concomitant phenomena: 

the enrichment of the parent phase by Nb and Ta, and the ω-phase precipitation hardening. 

The first assertion is based on the information known from [10], whereas the second 

assertion is supported by a TEM study of the ω-phase precipitation phenomenon presented in 

section “Structure of thermomechanically treated Ti-Nb-Ta alloy” of this paper.  

 

It can be seen that the following processing sequences: route (A), Figure 3.7b,c: e=0.37+ 

PDA (T=400, 450oC,1h), and route (B), Figure 3.7j: e=0.37+PDA (T=500oC, 1h) +AG 

(300oC, 1h), lead to the longest cyclic lives. However, strain accumulated to failure is much 

larger after route (B) than after route (A). The reason for this difference resides in the quite 

different material microstructures resulted from these processing routes: route (A) leads to a 

highly dislocation- and ω precipitation-hardened structure, whereas route (B) leads to an ω-

precipitation-hardened NS structure, the latter being more ductile than the former. Indeed the 

true (“dislocation”) yield stresses σy are about 600 and 450 MPa, respectively, for these two 

cases (Figure 3.7c and f). When aging time increases from 1 to 3 h, ω-phase particles change 
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size, quantity and distribution: they grow, their quantity increases and distribution changes: 

from random distribution of small equiaxed particles, they form now large elongated rows of 

coarsened particles (Table 3.2), which naturally leads to excessive structure hardening and to 

decrease in the crack’s propagation resistance under repetitive loading [13, 16]. Figure 3.12 

12 contains the quantitative analysis of number of cycles to failure after different TMTs. 

 

Given that the main objective of cyclic testing was to determine the most appropriate 

processing conditions from the functional fatigue point of view, the number of cycles to 

failure was by far the most important parameter to be discussed. For example, if we compare 

diagram (d) and diagram (j) of Figure 3.7, failure strain in both cases is about 9%, whereas 

the number of cycles to failure is very different: respectively 13 and 259. Based on these 

observations, the processing conditions leading to diagram (j) are much better suited for 

cyclic application than processing conditions leading to diagram (d). It should be noted that 

Ti-19.7Nb-5.8Ta (at.%) SMA of this study manifests significantly lower fatigue life than 

Ti-21.8Nb-6Zr (at.%), under similar samples’ preparation and testing conditions. For 

example, after e=0.37+PDA (600oC, 30 min), the number of cycles to failure of Ti-Nb-Zr 

alloy is 877 [12], whereas it is only ~260 in Ti-Nb-Ta alloy of this study. Note also that Ti-

50.26at.%Ni SMA outperforms from five to ten times any Ti-Nb-based alloys in this respect: 

the number of superelastic cycles to failure of Ti-Ni samples reaches 2700 (3% strain applied 

in each cycle) when the alloy’s microstructure corresponds to the mixed nanosubgrained and 

nanocrystalline structure of B2-phase [17]. 

 

In Figure 3.12, maximum completely recoverable strain (Figure 3.11) and the number of 

cycles to failure (Figure 7) are plotted as functions of PDA temperature and aging time. It 

can be noted that the higher the annealing temperature, the greater the recovery strain, but the 

lower the number of superelastic cycles to failure: the longest strain-controlled fatigue life is 

observed after PDA at 400oC and 450oC (Figure 3.12a). Furthermore, as previously shown 

(Figure 3.7j), 300oC (1h) aging results in an almost 20-time increase in fatigue life and a 

smaller maximum completely recoverable SM strains as compared to PDA at 500oC without 

aging. Both residual strain-hardening (low-temperature annealing) and ω-phase precipitation 
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(aging) phenomena increase the material yield stress [13]. As a result, in the low-temperature 

annealed and aged samples, at the same testing temperature (RT), the accumulated plastic 

deformation is smaller and superelastic fatigue life is longer. On contrary, strain and 

precipitation-induced hardening decrease the quantity of martensite formed and reoriented at 

-196oC (SM testing strain-inducing temperature) and therefore recovered upon heating of 

deformed samples.  

 

 

Figure 3.12 Maximum completely recoverable strain of shape memory effect (εr
max) and 

number of cycles to failure Nmax after e=0.37+PDA (a) and e=0.37+500°C (1h)+300°C 
(t=var) (b) 

 

3.7 Conclusions 

1. For Ti-19.7Nb-5.8Ta (at.%) alloy, annealing at 500-600oC after moderate cold rolling 

(e=0.37) results in the formation of a nanosubgrained structure in β-phase as a result of 

polygonization of a dislocation substructure. After annealing at 650-750oC, recrystallization 

and grain growth occur. A distinct lamellar contrast in TEM images after annealing at 500oC 

can be attributed to α”-martensite crystals formed during cooling and thin foil preparation at -

38 oC. 
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2. Low-temperature aging (300oC) of the β -phase nanosubgrained structure is accompanied 

by the ω-phase precipitation phenomena. Up to 1h-aging, ω-particles preserve their globular 

shape, random distribution and very fine size. During further aging, elongated rows of 

coarsened ω-particles form. 

 

3. Depending on the annealing temperature, the studied alloy manifests either mainly 

superelastic or mainly shape memory behavior at RT: PDA under 500oC results in mainly 

superelastic behavior, whereas PDA at 500oC and higher, results in mainly shape memory 

behavior; the maximum completely recoverable SM strain is observed after CR (0.37)+PDA 

(600-700oC), and its value is close to 2%.  

 

4. As compared to unaged alloy, an “optimum” ω-phase precipitation hardening caused by 

300oC, 1h aging of the nanosubgrained substructure resulted from CR(e=0.37)+PDA(500oC, 

1h) leads to a more than 20-time longer cyclic life.  

 

5. Both the well-developed dislocation substructure obtained after 

CR(e=0.37)+PDA(400/450oC, 1h), and the precipitation-hardened nanosubgrained 

microstructure obtained after CR(e=0.37)+PDA(500oC, 1h)+aging (300oC, 1h), result in 

similar fatigue lives, but the aged alloy appears to be much more ductile than the simply 

annealed. 
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CHAPTER 4 
 
 

ARTICLE #3:  
IN SITU X-RAY DIFFRACTION STRAIN-CONTROLLED STUDY OF Ti-Nb-Zr 

AND Ti-Nb-Ta SHAPE MEMORY ALLOYS: CRYSTAL LATTICE AND 
TRANSFORMATION FEATURES 

 

4.1 Summary 

The objective of this article is to investigate the crystal lattice and transformation features in 

the biomedical Ti-Nb-Zr and Ti-Nb-Ta SMA in the temperature range of martensitic 

transformations with or without external load. A custom tensile stage fitted within the 

TTK450 thermochamber of a PANalytical X’Pert Pro diffractometer is used in the 

-150...+100оС temperature range. The working principle of tensile stage is described in detail 

in the Annex. 

 

It is observed that upon heating, the martensitic α”-phase lattice parameters undergo a 

constant evolution towards the corresponding parent β-phase lattice parameters, which results 

in reversible shifts of anisotropic α”-martensite X-ray lines. The crystallographic resource of 

recovery strain in Ti-Nb-Zr is almost double that in Ti-Nb-Ta with the same concentration of 

alloying elements: 4.5 versus 2.5% in the framework of the single-crystal calculations. 

Loading at any temperature forms an additional quantity of α”- and ω-phases at negative 

temperatures (ω-phase, in Ti-Nb-Zr only), and subsequent α”-phase reorientation during 

loading or/and heating. Moreover, loading during heating results in a two-step transformation 

sequence: ω→β + β→α” (or (β+ω)→α”) is followed by α”→β transformation. It is 

practically proven that the recovery stress generation phenomenon in the Ti-Nb-based SMA 

are the direct result of the reverse α”→β transformation. The completely reversible β-phase 

X-ray line widening under external loading and temperature scanning is the result of the 

thermoelastic martensitic formation and disappearance. This article was submitted to the 

journal Materials Characterization in August 2013.    
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IN SITU X-RAY DIFFRACTION STRAIN-CONTROLLED STUDY OF Ti-Nb-Zr 

AND Ti-Nb-Ta SHAPE MEMORY ALLOYS: CRYSTAL LATTICE AND 

TRANSFORMATION FEATURES 

S. Dubinskiya,b, S. Prokoshkinb, V. Brailovskia, K. Inaekyana, A. Korotitskiyb 
aÉcole de technologie supérieure, 1100, Notre-Dame Street West, Montreal (Quebec), H3C 

1K3, Canada 
bNational University of Science and Technology “MISIS”, 4, Leninskiy prosp., Moscow 

119049, Russian Federation 

 

4.2 Abstract 

Phase and structure transformations in biomedical Ti-21.8Nb-6.0Zr (TNZ) and Ti-19.7Nb-

5.8Ta (TNT) shape memory alloys (at%) under and without load in the -150 to 100оС 

temperature range are studied in situ using an original tensile module for a low-temperature 

chamber of an X-ray diffractometer. Alpha”- and beta-phase lattice parameters, the 

crystallographic resource of recovery strain, phase and structure transformation sequences, 

and microstress appearance and disappearance are examined, compared and discussed. For 

both alloys, the crystallographic resource of recovery strain decreases with temperature 

increase to become 4.5% for TNZ and 2.5%, for TNT alloy (at RT). Loading at low 

temperatures leads to additional α”-phase formation and reorientation. Heating under load, as 

compared to strain-free heating, affects the reverse transformation sequence of both alloys in 

different ways. For TNZ alloy, strain-free heating results in simultaneous ω→β and α”→β 

transformations, whereas during heating under stress, they are sequential: β+ω→α” precedes 

α”→β. For TNT alloy, strain-free heating results in reverse α”→β transformation, whereas 

during heating under stress, α”→β transformation is preceded by α”-phase reorientation.  

 

Keywords: titanium alloys, biomedical shape memory alloys, in situ X-ray diffraction, 

lattice parameters, transformation lattice strain, recovery strain 
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4.3 Introduction 

Since the beginning of this century, metastable near-β Ti-Nb-based shape memory alloys 

(SMA) have attracted significant attention from biomedical engineers as promising 

substitutes for pure titanium, and for α+β (Ti-Al-V), β (Ti-13Nb-13Zr), and shape memory 

Ti-Ni alloys [1-11]. These alloys combine the exceptionally low Young’s modulus and 

superelasticity of Ti-Ni with the high biocompatibility of pure titanium. In other words, 

metastable near-β Ti-Nb-based SMAs mimic the mechanical behavior of living bone while 

promoting osteogenesis and minimizing the risks of implant loosening.  

 

The superelasticity and shape memory properties of metastable Ti-Nb-based alloys are based 

on a reversible thermoelastic martensitic transformation of their parent BCC β-phase into 

martenstic orthorhombic α”-phase [12, 13]. Initially, the superelasticity of these alloys 

represented virtually the sole property to be practically exploited. However, it was recently 

demonstrated however that these alloys could generate recovery strains as high as 6…8% 

(Ti-Nb-Zr SMA [14, 15]), which could justify their application as “shape memory” alloys. 

The reversible phase and structure transformation features of these alloys under conditions of 

stress-free and constrained shape recovery are thus of significant practical interest. 

 

Since athermal transformations can be induced by both temperature and external load 

variations, phase analysis under variable stress-temperature conditions is necessary for their 

proper understanding. This type of in situ analysis has been used in neutron diffraction 

studies of Ti-Ni SMA transformation features at temperatures above RT [16-21]. Meanwhile, 

in situ X-ray diffraction studies of multiphase Ti-based SMA have been carried out either 

under external load or temperature variations [1, 22-26], but never under variations of both 

state parameters.  

 

Furthermore, it was shown for Ti-Nb-Ta [1] and Ti-Nb [23, 26] alloys that the lattice 

parameters (LP) of both α”- and β- phases vary with temperature variation, and that upon 

heating, the LPs of the martensitic α”-phase strive towards the corresponding LPs of the 
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parent β-phase. This phenomenon, which was also observed in Ti-Ni SMA [19, 27], indicates 

that the crystallographic resource of recovery strain in all SMAs is strongly temperature-

dependent, and therefore merits a dedicated study.  

 

Finally in [28, 29], softening and then recovery stress generation and relaxation processes 

were observed during the heating of constrained samples of Ti-Nb-Zr and Ti-Nb-Ta SMAs 

from -150oC (Figure 4.1). A clear understanding of the stress generation mechanisms was 

complicated by the alloy’s specific phenomena, including athermal ω-phase formation and 

reverse ω→β and α”→β transformations [13, 25]. It is thus of interest to study the phase 

transformation sequences in Ti-Nb-Zr and Ti-Nb-Ta alloys during cooling-heating with and 

without loading.  

 

 

Figure 4.1  Stress-temperature curves obtained during constant-strain heating of the 
thermomechanically-treated Ti-Nb-Ta (a) and Ti-Nb-Zr (b) samples (adapted from [28, 

29]). Shadowed areas indicate the onset temperatures of the reverse α”→β phase 
transformation under stress 

 

For the above-mentioned reasons, the goal of this work is a comparative study of phase and 

structure transformations in Ti-Nb-Zr and Ti-Nb-Ta SMA in the -150…+100oC temperature 

range during cooling-heating, with and without external mechanical loading. 
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4.4 Experimental 

Ti-Nb-Zr (TNZ) and Ti-Nb-Ta (TNT) SMAs were studied (see Table 4.1 for their 

composition). The TNZ alloy is a 50 mm-diameter, 660 mm-long cylindrical ingot produced 

by Induction Skull Melting followed by Hot Isostatic Pressing (HIP, 900oC, 100 MPa, 2h) at 

the Flowserve Corp., USA. The TNT alloy 80 mm-diameter 7 kg ingot was produced by 

Vacuum Arc Melting at the TSNIICHERMET, Russia, then hot forged (900oC) and machined 

to a 51 mm-diameter, 600 mm-long cylindrical bar. 

 

Table 4.1 Chemical compositions of studied alloys 

Alloy Main elements, at.%a Impurities, at.% 

Ti Nb Zr Ta O C N H 

TNZ 72.2 21.8 6.0  0.49 0.05 0.03 0.59 

TNT 74.5 19.7  5.8 0.16 0.05 0.03 0.35 
awithout impurities content 

 

A series of 1.2×0.8×100 mm TNZ specimens were Electro Discharge Machining (EDM)-cut 

from the HIP-processed ingot, then cold-rolled in several passes to an accumulated true strain 

of e=0.37 and annealed at 600oC for 0.5h. A series of 8×2×50 mm TNT bars were diamond-

saw cut from the hot-forged ingot, then cold-rolled in several passes to an accumulated true 

strain of e=0.3, EDM-cut into 1×1×50 mm specimens, and finally annealed at 500oC for 1h. 

Note that for both alloys, the regimes of their thermomechanical processing were selected in 

conformity with [29] and [30]. These processing conditions create specific nanosubgrained 

structures in TNZ and TNT alloys that are well suited for biomedical applications from the 

mechanical properties’ point of view [30].  

 

Finally, the TNZ and TNT specimens were cut in 30 mm length and mechanically polished to 

0.1 – 0.15 mm thickness. All samples were etched in 2HF : 1HNO3 : 17H2O, 1HF : 15HNO3 

: 5H2O, and 1HF : 4HNO3 : 5H2O solutions to remove a damaged surface layer.  
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In this work, in situ X-ray phase analysis was performed using an original tensile module fit 

in a TTK450 low-temperature chamber of a PANalytical X’Pert Pro diffractometer. The 

tensile module is shown in Figure 4.2a. The independent Ti-Ni actuator (1), subjected to 

thermal cycling under constant load (two-way shape memory effect training) before testing, 

was connected through the rotating levers (2) to the specimen (3). The main frame (4) of the 

tensile stage was directly mounted on the control plate of the thermal chamber. When the 

actuator (1) was heated by Joule heating, it shortened and stretched the specimen (3). 

Specimen temperature is measured by the K-type thermocouple (5), welded to one of the 

guiding shafts (6) close to the specimen. The standard thermocouple of a TTK450 

temperature control module is attached to the side of the main frame (4). Since there was a 

significant difference between the measurements provided by these two thermocouples, the 

temperature of the control plate was adjusted manually to get the specimen to the target 

temperature for each testing step. The working principle of the module is described in detail 

in [31]. 
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Figure 4.2 Tensile module for the PANalytical X’Pert Pro diffractometer: a) schematics 
of the working principle; b) schedules of the in situ X-ray diffraction temperature scanning 

experiments: SF – strain-free; SCP – strain-controlled with loading at RT; and SCM – strain-
controlled with loading at -150oC [31] 

 

In situ X-ray diffraction analysis was performed in the -150 … +100oC temperature range 

under CuKα monochromatized radiation. Three in situ X-ray temperature scanning 

experiments were carried out (Figure 4.2b): 

 

• The strain-free (SF) temperature scanning experiment followed a 1→2→3 

path (Figure 4.2b). Point 1 corresponds to X-ray analysis at RT, point 2, at -

150oC, and point 3, at 100oC, with intermediate X-ray recording upon heating. 

In this experiment, β↔α” transformation was temperature-induced. 
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• The strain-controlled temperature scanning experiment (SCP), with loading of 

the parent β-phase (RT), followed a 1→2→3→4→5 path (Figure 4.2b). Points 

1 and 2 correspond to X-ray analysis before and after loading at RT, point 3 

corresponds to analysis of the strained specimen cooled to -150oC, and points 

4 and 5, to analysis at 100oC before and after unloading. Upon heating, a 

series of intermediate X-ray diffractograms are obtained. In this experiment, 

α”-martensite forms and it is reversely transformed to the parent β-phase 

under the combined influence of temperature and stress.  

 

• The strain-controlled temperature scanning experiment (SCM), with loading 

of the mixed parent (β) + thermally-induced martensite (α”) phase (-150oC), 

followed a 1→2→3→4→5 path (Figure 4.2b). Point 1 corresponds to strain-

free X-ray analysis at RT, points 2 and 3 correspond to analysis at -150oC, 

before and after loading, and points 4 and 5 correspond to analysis at 100oC 

before and after unloading. Upon heating, a series of intermediate X-ray 

diffractograms are obtained. In this experiment, α”-martensite forms initially 

during stress-free cooling and then additionally under stress. 

 

The tensile module loading ability was verified by calculating the tensile strain applied to the 

sample during the in situ scanning experiments. Indeed, at each recording temperature, X-ray 

diffractometry allows direct strain measurement in the direction perpendicular to the 

specimen surface (transverse strain ). At each recording temperature, a longitudinal tensile 

strain induced in the sample during SCM or SCP experiments ( ) can therefore be 

calculated from the difference between the transverse strain  and the thermal expansion 

strains : 

 

 , where ,  (4.1)
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where is the directly measured transverse strain,  is the thermal expansion strain 

(directly measured during the SF experiment), dhkl is the hkl-plane strain-free interplanar 

distance, Δdhkl is the strain-induced interplanar distance variation, and µ=0.3 [13] is the 

Poisson’s ratio. 

 

It can be seen that during SCM and SCP experiments in the -150…+100oC temperature 

range, the longitudinal strain ranged from 0.8 to 1.35% for TNT alloy (Figure 4.3a) and from 

0.8 to 1.6% for TNZ alloy (Figure 4.3b). These strains correspond to non-linear parts of the 

tensile stress-strain curves plotted for both alloys at different temperatures, all within the 

temperature range of interest (Figure 4.3c,d). This means that in all cases, the applied strain 

applied led to stress-induced phase transformations. It can also be observed that the overall 

strain fluctuations during SCM and SCP experiments were ±20% (TNT) and ±15% (TNZ). 

These relatively high fluctuations were mainly due to recovery stress generation phenomena 

occurring in the tested specimens combined with the limited stiffness of the testing module 

mainframe. The authors believe however that these fluctuations do not affect the validity of 

the results obtained, given the mainly qualitative and comparative nature of this study. 

 

⊥ε TΔ
⊥ε
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Figure 4.3 Tensile strains measured on heating during SCP and SCM 
experiments for TNT (a) and TNZ (b) alloys, and tensile loading curves at 

various recording temperatures for TNT (c) and TNZ (d) alloys. Stress-strain 
curves (c,d) are obtained in tensile tests similar to [28] 

 

Identification and indexing of the β-, α-, α”- and ω-phases’ X-ray lines was performed using 

a reference diffractogram built in accordance with the available data [1, 13, 20]. The β-phase 

true lattice parameter aβ values extrapolated to a θ=90o angle were calculated for each 

recording temperature from the angular coordinates of 110, 200, 211, 220 and 310 β-phase 

lines using the Nelson-Riley extrapolation function [32]. The calculated aβ values for TNT 

and TNZ alloys are presented as a function of the X-ray diffractogram recording temperature 

in Figure 4.4. 
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Figure 4.4 Beta-phase lattice parameter temperature dependence for SF (a,b), SCM and 
SCP (c,d) experiments for TNT (a,c) and TNZ (b,d) alloys. – – – are the least-squares 

regressions taken from a) to c) and from b) to d) to facilitate comparison 

 

The α”-martensite peak angular coordinates were corrected based on the β-phase peak 

angular coordinates, i.e., each a, b, and c martensite lattice parameter was corrected in 

accordance with the slope of the aβ(θ) extrapolation line. The α”-martensite lattice 

parameters (LPs) were calculated based on the corrected angular coordinates of the most 

unambiguously-determined α”-martensite peaks (at least four peaks) using the least-squares 

method [33]. The Fisher criterion was used for evaluation of the statistical significance of the 

calculated martensite LPs with a P=0.95 confidence probability.  

 

From the available data on Ti-Nb-based SMA, there is no uniqueness in indexing some 

martensite peaks. Thus, 130α” and 211α” lines can be close to each other or coincide [34]. Our 

calculations show that their angular positions change with temperature, and in opposite 

directions. Therefore, martensite peak indexing was cross-verified through the peak position 

recalculation from the initially calculated LPs, considering the X-ray line coordinate 

temperature drifts. As a result for TNT, the martensite peak between 65 and 66o (2θ) was 

indexed as 130α” based on the direction of its angular shift with temperature. For TNZ, the 
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martensite peak between 64 and 65o (2θ) was indexed as 211α”, as the application of other 

indexes (130α”, for example) led to a significant discordance of the peak positions with a real 

X-ray diffractogram.  

 

The maximum martensitic transformation lattice strain (εmax), i.e., a crystallographic resource 

of recovery strain was calculated from the martensite α”- and parent β-phase LPs following 

the methodology of [33, 35, 36]. 

 

4.5 Results 

4.5.1 Structure transformations and crystal lattice changes  

Ti-Nb-Ta  

 

Since the results obtained with the strain-controlled SCM and SCP experiments are similar, 

we limit our presentation to the SCM and SF experiments (see selected diffractograms in 

Figure 4.5). In Figure 4.6, β- and α”-phase X-ray line angular coordinates variations are 

plotted as functions of the diffractograms’ recording temperature.  

 

At RT, β-phase is the main phase constituent in all three experiments. A significant amount 

of α”-martensite and a small quantity of α-phase are observed as well. The presence of ω-

phase is also supposed, however, its quantity is not enough for reliable detection.  

 

Generally speaking, temperature changes are accompanied by reversible X-ray line angular 

shifts, temperature and stress-induced formation of α”-phase upon cooling, and reorientation 

and reverse transformation of α”-phase to β-phase upon heating. 
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Figure 4.5 Selected X-ray diffractograms of TNT from SF (a) and SCM (b) experiments. 
The experimental positions 1-3 from the SF and 1-4 from the SCM experiments in Figure 

4.2b are indicated 
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Figure 4.6 TNT alloy: X-ray line angular coordinates versus diffractogram recording 
temperature from SF (a) and SCM (b) experiments: ● – β-phase, ○ – α”-phase 
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X-ray line angular positions and phase constituents 

 

Under strain-free cooling of TNT samples from RT to -150оС in SF and SCM experiments, 

all β-phase lines shift to higher θ angles due to thermal contraction, whereas α”-phase lines 

shift in different directions (Figure 4.6): 020α”, 021α”, 022α”, 130α” and 131α” shift to lower θ 

angles, while 112α”, 200α”, 220α” and 202α” shift to higher θ angles (see also Figure 4.5). 

Strain-free heating in the -20…+100оС temperature range is accompanied by incomplete 

reverse β→α” transformation and X-ray line shifts of both β- and α”-phases back to their RT 

positions (Figure 4.5a, Figure 4.6a). 

 

Application of an external tensile stress at -150оС leads to shifting of all the β- and α”-phase 

lines towards higher θ angles and to a minor increase and partial reorientation of α”-phase 

(see the enhancement of the 200α” line in Figure 4.5b). Subsequent heating under load from -

150 to +100оС is accompanied by martensite reorientation in the -150…-75oC temperature 

range (200α” growth at the expense of weakening 020α”, 021α”, 022α” and 130α”), reverse 

α”→β transformation in the -50…100оС temperature range and X-ray lines shifts of both β 

and α”-phases back to their RT positions (Figure 4.6b).  

 

Lattice parameters (LPs) 

 

The LPs of parent β- and martensite α”-phases of TNT alloy are presented in Figure 4.7 as 

functions of the recording temperature. The β- and α”-phases unit cell volumes are calculated 

as ωβ = aβ × bβ × cβ (where aβ, bβ and cβ = bβ are the LPs of FCT β-phase) and ωα” = aα” × bα” 

× cα” (where aα”, bα” and cα” = bα” are the LPs of orthorhombic α”-phase).  

 

All the α”-phase LPs were calculated after the α”-phase peak positions were corrected with 

reference to the β-phase peak positions, considering their strain-induced shifts, so that they 

could be compared directly inter se. The maximum transformation lattice strain εmax as a 

function of the testing temperature was calculated from the α”- and β-phase LPs (Figure 4.7). 
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Figure 4.7 TNT alloy: temperature dependence of the α”-phase LPs and εmax in SF (a) 
and in SCM, SCP (b) experiments. The solid lines for aβ, bβ, cβ and ωβ are brought here 

from Figure 4.3 
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Ti-Nb-Zr 

 

Since the results obtained during heating with the strain-controlled SCM and SCP 

experiments are similar, we limit our presentation to the SCM and SF experiments (see 

selected diffractograms in Figure 4.8). In Figure 4.9, the β- and α”-phases’ X-ray line angular 

coordinates variations are plotted as functions of the diffractograms’ recording temperature. 

 

The phase composition of TNZ SMA in a stress-free condition at RT presents as follows: β-

phase is a main constituent; very weak traces of α”-phase can only be detected in some 

diffractograms (Figure 4.8). No distinct lines of α- and ω-phases are visible, except 

(possibly) for a very weak 111ω line. This presentation means that the β→α” transformation 

temperature range of TNZ is lower than that of TNT SMA. 

 

 

Figure 4.8 Selected X-ray diffractograms of TNZ alloy from (a) SF and (b) SCM 
experiments. The numbers of the experimental positions 1-3 from the SF and 1-4 from 

the SCM experiments in Figure 4.2b are indicated 
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Figure 4.9 TNZ alloy: X-ray line angular coordinates versus diffractogram recording 
temperature from SF (a) and SCM (b) experiments: ● – β-phase, ○ – α”-phase, × – ω-

phase 
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X-ray line angular positions and phase constituents 

 

During strain-free cooling from RT to -150оС in SF and SCM experiments, α”- and ω-phase 

lines appear and become stronger, the β-phase and 111ω lines shift to higher θ angles, and the 

020α” line shifts to lower θ angles (Figure 4.8, Figure 4.9), similar to TNT (Figure 4.5, Figure 

4.6). Figure 4.9a shows that under strain-free heating, 020, 211 and 131 α”-phase lines keep 

their angular positions, whereas β- and ω-phases lines shift to lower θ angles. 

 

Under the influence of an external load applied at -150оС (SCM), an additional quantity of 

α”-phase appears (see the enhancement of lines 200α”, 211α” and 220α” in Figure 4.8b), while 

the ω-phase 111ω and 002ω line intensity does not change observably, and the X-ray lines of 

all phases shift to higher θ angles (Figure 4.9b). Under subsequent heating from -150oC, β-

phase, ω-phase and 200α” and 220α” lines shift to lower θ angles, whereas 131α” and 211α” 

lines maintain their positions. 

 

Lattice parameters (LPs) 

 

For the TNZ alloy, the α”-martensite and β-phase LPs and their variations in the SF and SCM 

experiments are shown in Figure 4.10. Their values differ significantly from those of the 

TNT alloy. The aα” parameters of both alloys are approximately the same, while bα”, cα” and 

ωα” = aα” × bα” × cα”, as well as aβ and ωβ are significantly higher in TNZ alloy. The general 

impression is that in the -150…-50oС temperature range, the TNZ α”-phase LPs do not vary. 

Calculations of the α”- and β-phase LPs under loading (SCM and SCP experiments) do not 

change the situation: the large scatter of α”-phase LPs and their broad confidence range do 

not allow for clarification of the statistical calculation results (Figure 4.10a). (Note that for 

better visibility, the experimental points for the SCM and SCP experiments are somewhat 

shifted along the T scale in Figure 4.10a.)  

 

In light of the conditions mentioned above, it was deemed appropriate to calculate the α”-

phase LPs directly from the positions of the corresponding X-ray line peak coordinates, 
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which are determined with high precision. Thus, the LPs of orthorhombic α”-martensite are 

calculated as follows: b – from 020α”, c – from 002α”, and a – from 200α” peak positions. 

After such refining, a general regularity of martensite LP changes with temperature in TNZ 

alloy becomes clearer (Figure 4.10b): aα” increases with temperature growth at a rate higher 

than for aβ, i.e.,  aα” tends to aβ with temperature growth; while bα” and сα” (сα” being 

calculated from the peak position of the 002α” line, located at the foot of the 110β peak and 

therefore reliably determined only in rare cases) are constant within the error limits, and 

since bβ, cβ increase with heating, bβ, cβ come closer to bα”, сα”. 
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Figure 4.10 TNZ alloy: temperature dependence of the α”-phase LPs and εmax from SF, 
SCM and SCP experiments: a) calculated using the least squares method and b) 

calculated directly from the 020α”, 002α” and 200α” line 2θhkl coordinates 
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4.5.2 Phase transformation features 

To estimate phase transformation and reorientation features, α”- and ω-phase X-ray line 

integral intensities were measured, where it was possible with sufficient precision. Their 

temperature dependences for the SF and SCM experiments are shown in Figure 4.11 (TNT) 

and in Figure 4.12 (TNZ).  

 

Under strain-free cooling of TNT from RT to -150оС in SF and SCM experiments, the of α”-

phase content somewhat increases. Loading at -150oC results in a further increase of the α”-

phase content and in its subsequent reorientation during heating. In the SCP experiment (not 

shown), application of external stress at RT leads to insignificant changes in α”-phase 

quantity, followed by its slight increase during cooling. The α”-phase content evolutions 

during heating in the SCP and SCM experiments are similar. 

 

 

Figure 4.11 TNT: Selected X-ray diffraction lines integral intensities versus recording 
temperature from SF (a) and SCM (b) experiments. The shadowed areas indicate the starting 

temperatures of the reverse α”→β transformation 
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Figure 4.12 TNZ: X-ray diffraction line integral intensities versus recording temperature 
from SF (a) and SCM (b) experiments. The shadowed areas indicate starting temperatures of 

the reverse α”→β and ω→β transformations 

 

In all three TNZ alloy experiments, cooling results in the appearance of α”- and ω-phase 

lines. Upon heating in the SF experiment, α”- and ω-phase contents do not change 

significantly for temperatures up to -75оС, and then they rapidly and simultaneously decrease 

to sink into the background at -20оС; i.e., they show an independent and simultaneous 

weakening with temperature increase.  

 

During heating under load in the SCM experiment, the ω-phase quantity decreases 

monotonically, the quantity of β-phase first decreases (up to -75оС) and then increases, while 

the quantity of α”-phase shows a mirror behavior; it augments up to -75оС and then 

diminishes. Note that at -50оС, no ω-phase lines can be observed, while the 200α” and 220α” 

lines are still clearly visible. 
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4.5.3 Reversible inhomogeneous distortions 

Figure 4.13 illustrates the temperature and stress effects on the β-phase X-ray line width 

(Вhkl
β) in TNZ and TNT alloys during SF, SCP and SCM experiments. Since this parameter 

reflects the presence of inhomogeneous microstresses of various origins distributed in an 

alloy, it can also reflect the presence of martensitic transformations in the studied materials. 

As Вhkl
β variations in experiments with the TNZ alloy are much more pronounced than they 

are with the TNT alloy, we will limit our explanations to this material. 

 

 

Figure 4.13 Beta-phase X-ray line width versus recording temperature in SF, SCP and 
SCM experiments for a) TNT and b) TNZ alloys 

 



119 

Under strain-free cooling of TNZ alloy to -150oC (Figure 4.13b), a distinct widening of the 

β-phase X-ray lines accompanies direct β→α” transformation. Under heating up to -100oC, 

the Вhkl
β values remain almost unchanged, but in the -75…-20oС temperature range, they 

decrease down to the initial (before cooling) values due to reverse β→α” transformation. 

From that point (-20oC), they stay constant up to 100oС. 

 

In the SCM experiment, strain-free cooling causes the same X-ray line widening as in the SF 

experiment (Figure 4.13b). Loading at -150oС does not significantly affect the Вhkl
β values of 

the already significantly-widened β-phase lines, thus masking additional martensite 

formation and reorientation under stress. Upon subsequent heating under load, Вhkl
β values 

decrease down to their initial values similarly to their behavior in the SF experiment. Finally 

during the SCP experiment, Вhkl
β values evolve in a similar manner to their behavior in the 

SF and SCM experiments (Figure 4.13b). 

 

The β-phase {211} X-ray line profile changes during the SCP and SCM experiments are 

shown in more detail in Figure 4.14. Obvious - doublet splitting is observed at RT 

in both experiments (Figure 4.14a,b). Free cooling to -150oС (SCM) leads to the 

disappearance of the visible doublet splitting due to strong overlapping of the  and 

 singlets, which widen under the effect of martensitic transformation (Figure 4.14a). 

Loading at -150oС does not significantly affect the 211β peak’s shape, whereas heating to -

20oС (end of the reverse martensitic transformation) results in the - doublet 

splitting reappearance. It should be noted that the non-perfect initial α1-α2 doublet splitting is 

due to the existence of a non-recrystallized, nanosubgrained β-phase structure that causes a 

pronounced widening of the α1 and α2 singlets. 

 

Loading at RT (SCP) does not affect - doublet splitting (Figure 4.14b). Martensite 

formation during cooling results in the disappearance of doublet splitting, followed by its 

recovery after completion of the reverse transformation during heating back to +100oС under 

load (Figure 4.14b). 
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Figure 4.14 Sequential changes of the 211β peak profile with temperature and stress in 
TNZ alloy during SCM (a) and SCP (b) experiments 

 

4.6 Discussion  

4.6.1 Structure transformations and crystal lattice changes  

The abovementioned reversible anisotropic X-ray line shifts on heating are consequences of 

the orthorhombic α”-martensite LPs changes towards the “genetically” linked parent β-phase 

LPs. Indeed, putting aside the temperature-related variations of the β-phase LPs, it can be 

observed that the aα” and bα” (α”-phase) tend to aβ and bβ (parent β-phase), whereas the сα” 

and cβ are very close to each other (Figure 4.7a). 

 

From the comparison of Figure 4.7a and Figure 4.7b, it can be seen that (within the limits of 

this study) loading does not affect the α”-phase LPs’s inter se proportions, or the proportions 
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between the LPs of α”- and β-phases. When temperature increases from -150оС to RT, the 

LPs of both phases vary so that the maximum transformation lattice strain εmax (ε2, tension) 

decreases from 3.5 to 2.5%. The εmax value at RT correlates well with the εmax calculated for 

the close composition TNT alloy [1, 36, 37]. For an isotropic TNT polycrystal, the theoretical 

εmax is reduced to 3.2% at -150oC and to 2.3% at RT, in accordance with [38]. 

 

Maximum recoverable strain for TNZ alloy is significantly higher than for TNT alloy, 

despite the identical atomic concentration of the third element in both materials. Even though 

it appeared impossible to assess the temperature dependence of εmax in statistical experiments 

for TNZ alloy (Figure 4.10a), this task became feasible from the 020α” and 110β peak 

positions’ measurements (Figure 4.10b). The following trend was observed: under heating in 

the -150…-75oС temperature range, εmax decrease from 5.73 to 5.26% (from 5.2 to 4.7% for 

an isotropic TNZ polycrystal). 

 

Now compare LPs and their temperature dependences for TNZ (Figure 4.7) and TNT (Figure 

4.10) alloys. On one side, aα” parameters of both alloys are approximately identical. On the 

other side, bα”, cα” and ωα” = aα” × bα” × cα”, as well as aβ and ωβ for TNZ are larger than for 

TNT. Furthermore, considering the slopes of the bβ, cβ temperature dependencies on heating, 

bα” and сα” for both alloys tend to converge to bβ, cβ, but this trend is less pronounced for 

TNZ than for TNT.  

 

4.6.2 Phase transformation features 

Since during strain-free (SF) heating, the α”- and ω-phase X-ray lines weaken independently 

and simultaneously (Figure 4.12), it is reasonable to assume that reverse ω→β and α”→β 

transformations also take place independently.  

 

On the contrary, during heating under stress (SCM), ω→β + β→α”, or β+ω→α”, 

transformations occur in the lower part of the heating range [23, 25, 39], whereas in the 

upper part of this range, the reverse α”→β transformation takes place. Such a two-part 
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partition of the heating range correlates well with the Clausius-Clapeyron relationship which 

establishes a stress-temperature dependence of the critical transformation temperatures. In 

accordance with this relationship, the As-Af range for the martensite formed and reoriented 

under stress is higher than the temperature range of martensite reorientation under stress [40, 

41] (Figure 4.15). The β→α” transformation behavior during heating under stress resembles 

isothermal martensitic transformation kinetics which can be observed in high-carbon steel 

[42] and even in Ti-Ni SMA [43]. A distinct increase in the α”-phase content during heating 

below -75oC may be a consequence of lower transformation yield stress in the range of 

incomplete β→α” martensitic transformation below the Ms temperature (compare σ at Ti1 and 

Ti2, Figure 4.15). 

 

 

Figure 4.15 Schematic representation of the critical temperatures of 
thermoelastic martensitic transformations under stress.  σtr  – 
transformation yield stress, σcr

M – critical stress for martensite 
reorientation, σy – dislocation yield stress. 1 – loading, 2 – heating under 

load 

 

If the Ihkl changes in Figure 4.12b are compared to the corresponding stress (σ) variations 

under constrained (ε=1%) heating from -150oC (adapted from [11]), one can observe that the 

recovery stress generation takes place mainly above -50oC (Figure 4.16). Consequently, the 

recovery stress generation in TNZ alloy is the result of constrained α”→β transformation, 
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and is not caused by ω→β transformation. This is not surprising, as β↔ω transformation 

mechanisms involve the reversible shuffling of atomic planes’, which does not distort the β 

unit cell [13], and therefore does not result in recovery stress generation. 

 

 

Figure 4.16 Integral intensity of the selected X-ray diffraction 
lines versus testing temperature from SCM experiment. For 

comparison, stress as a function of temperature from constant-
strain temperature scanning experiment under εi =1 % induced 

strain [11] is shown. Shadowed areas indicate the onset 
temperatures of the reverse α”→β transformations under stress 
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4.6.3 Reversible inhomogeneous distortions 

An interesting problem that can be solved using the results of this in situ experiment, is the 

determination of a cause of the reversible inhomogeneous crystal lattice distortions during 

SMA loading and unloading described in [25]. It has been supposed that the observed 

reversible β-phase X-ray lines widening during isothermal loading-unloading of Ti-Nb and 

Ti-Nb-Mo SMAs [24, 25] was a result of deformation-induced inhomogeneous microstress 

distribution in differently-oriented grains of the polycrystalline material [25]. Note that the 

reversible X-ray line widening can be observed in [24] for both β-phase and α”-phase X-ray 

lines. 

 

Our previous in-situ X-ray diffraction study [38] indicated that thermoelastic В19'- and R-

martensite formation in Ti-Ni SMA during stress-free cooling was accompanied by 

pronounced В2-austenite, R-phase and B19’-martensite X-ray line widening. This widening 

completely disappeared after completion of the reverse transformation to В2-austenite upon 

heating, with the restoration of the initial B2 X-ray line width. Such recoverable X-ray line 

width change was explained by the accumulation of lattice distortions due to the preservation 

of coherent bonds between initial- and final-phase lattices and their disappearance as a result 

of the reverse transformation of thermoelastic martensite. This suggests that thermoelastic 

α”-martensite formation and reverse transformation during loading-unloading cycle are likely 

causes for the reversible widening of β-phase X-ray lines observed in this study.  

 

Indeed, from the SF experiment (Figure 4.13) where no stress is applied, the reversible X-ray 

line width variations can only be caused by β↔α” thermoelastic martensitic transformation. 

Moreover, loading in a β+α” state and unloading in a β state do not result in Вhkl
β changes; 

the latter only occur in the β↔α” transformation range regardless of the stress application 

conditions. These results are coherent with those for B2↔R↔B19’ thermoelastic 

transformation in Ti-Ni SMA [38]. 
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Under conditions of SF, SCM and SCP experiments, reversible changes in Вhkl
β are similar 

for both alloys, despite the different α”-phase contents and, therefore, different initial Вhkl
β 

(Figure 4.13). Considering the prefect correlation of the 211β doublet splitting (Figure 4.14) 

and the X-ray lines’ width changes with temperature (Figure 4.14), it can definitely be 

concluded that inhomogeneous lattice microstresses related to the direct β→α” (thermally or 

stress-induced) and reverse α”→β transformations represent the only reasons for the 

reversible X-ray line width variations. The coherency of β and α” lattices is a primary cause 

of this phenomenon. 

 

4.7 Conclusions 

1. During the cooling and heating of TNT and TNZ alloys, reversible anisotropic α’’-

phase X-ray line shifts are observed. On heating, α’’-phase LPs strive towards 

corresponding (“genetically” linked) parent β-phase LPs. These variations can be 

observed regardless of the absence or the presence of external stresses, being less 

pronounced for TNZ than for TNT alloys.  

 

2. In the -150оС…RT heating range, crystallographic resource of recovery strain 

decreases from 5.7 to 4.5% (TNZ) and from 3.5 to 2.5% (TNT) following the single-

crystal calculation approach.  

 

3. Under strain-free cooling, an additional quantity of α”-phase forms in TNT, while 

both “athermal” α”- and ω-phases form in TNZ. Cooling under stress of both alloys is 

accompanied by an increase in the quantity and reorientation of α”-phase. Application 

of an external load at -150оС results in a certain growth of α”-phase content, while the 

quantity of ω-phase (TNZ) does not seem to be affected.  

 

4. Strain-free heating of TNT alloy results in reverse α”→β transformation, whereas 

during heating under stress, α”→β transformation is preceded by α”-phase 

reorientation. Strain-free heating of TNZ alloy results in simultaneous α”→β and 
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ω→β transformations, whereas heating under stress results in sequential two-step 

transformation: ω→β + β→α” (or β+ω→α”), followed by α”→β.  

 

5. The appearance and disappearance of inhomogeneous microstresses, either under load 

at constant temperature or during strain-free or constant-strain cooling-heating cycles 

are exclusively related to the formation and disappearance of thermoelastic α’’-

martensite in the parent β-phase.  
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CONCLUSIONS 

 

The objectives of this project were: (1) to study the interrelations between the composition, 

microstructure and functional properties of superelastic Ti-Nb-Zr and Ti-Nb-Ta alloys and 

(2) to maximize their functional properties under cyclic loading. 

 

1. As far as the first objective is concerned, it was shown that moderate cold 

deformation (e≈0.3) of Ti-Nb-Zr and Ti-Nb-Ta alloys forms well-developed 

dislocation substructure in β-phase. On the other hand, severe cold deformation (e≈2) 

results in the formation of a mixed well-developed dislocation substructure and 

nanocrystalline structure in β-phase. Furthermore, post-deformation annealing at 

temperatures under 450oC (1h) does not significantly affect the β-phase structure in 

the two alloys. Annealing at temperatures above 450oC after e≈0.3 leads to a 

successive formation in β-phase of a nanosubgrained substructure (500oC) and a 

submicron-sized structure (600oC). Recrystallization starts in the 600 – 700oC 

temperature range.  

 

2. A miniature custom tensile stage is developed and used for a strain-controlled in situ 

X-ray diffraction study in the -150...+100oC temperature range using the TTK450 

thermal chamber of a PANalytical X’Pert Pro diffractometer. Lattice parameters of β- 

and α”-phases are then calculated with and without load under temperature scanning 

conditions, and the results of this study showed the following:  

 

a) For both alloys, upon heating up to Ms, the lattice parameters of α”-phase evolve 

in the direction of the corresponding “genetically-linked” lattice parameters of the 

parent β-phase, and the higher the testing temperature, the lower the 

crystallographic resource of recoverable strain;  

 

b) The crystallographic resource of recoverable strain of Ti-Nb-Zr alloy is twice as 

large as that of Ti-Nb-Ta alloy at the same temperature;  
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c) Loading in the martensitic state results in additional α”-phase formation and in 

α”-phase reorientation;  

 

d) Upon heating of Ti-Nb-Zr alloy, transformation sequences differ depending on 

the test conditions: (β+ω)→α” transformation precedes α”→β transformation, 

whereas without load, both ω→β and α”→β transformations occur in parallel and 

independently; 

 

e) The observed reversible β-phase X-ray line widening is exclusively caused by 

α”↔β stress and temperature-induced thermoelastic martensitic transformation. 

 

In respect to the second objective of this project, it was shown that the biomechanical 

compatibility of an alloy (low Young’s modulus and superelasticity with small residual strain 

after multi-cycle loading) could be improved if an “optimum” thermomechanical processing 

is applied. For Ti-Nb-Zr alloy, the optimum processing implies cold deformation (e=0.37) 

followed by post-deformation annealing at 600oC, 30 min. For Ti-Nb-Ta alloy, the optimum 

processing implies cold deformation (e=0.37) followed by post-deformation annealing at 

500oC, 1h. These processing conditions result in the formation, in both alloys, of 

nanosubgrained structures with ∼100 nm subgrain size. For Ti-Nb-Ta alloy, further 

improvement can be obtained by means of additional low-temperature ageing (300oC, 1h). 

This last heat treatment results in the precipitation of well-dispersed nanosized (∼10 nm) 

ω-phase coherent particles, leading to significant material hardening, and, therefore, to higher 

multi-cycle mechanical resistance. 

 

 



 

RECOMMENDATIONS 

 

From the authors’ standpoint, the current project can be continued in the following major 

directions: 

 

• Development of Ti-Nb-based SMA with higher resource of recoverable strain 

(≈7.5%) for biomedical and general technical purposes not only as materials with a 

superelasticity effect but also as materials with a shape memory effect; 

 

• Development of quaternary Ti-Nb-Zr-Ta SMA for biomedical application, which will 

take advantage of both Ti-Nb-Zr and Ti-Nb-Ta SMA; 

 

• Development of Ti-Nb-based superelastic porous material, which better mimics living 

bone than the bulk material; 

 

• More in-depth low-temperature in situ X-ray analysis of crystal structure of phases, 

structure and phase transformations under variable strain-temperature conditions in 

nickel-free Ti-based SMA. 

 

However, there are some points to clarify before going on to the next step of research. A 

higher initial cold deformation technique (for example: equal-channel angular pressing) can 

be tried to obtained nanocrystalline material, which will probably additionally increase the 

functional properties. ASTM-like classical fatigue testing is required for more reliable fatigue 

resistance evaluation. Dilatometric analysis should be performed for precise martensitic 

temperature range evaluation and additional study of phase transformation features. In situ 

X-ray diffraction analysis should be optimized: for example, maximum applicable tensile 

strain should be increased to at least 2%, and additional scanning points should be added 

upon temperature scanning and loading steps. 

 

 



 

 



 

ANNEX I 
 
 

ARTICLE: IN-SITU X-RAY STUDY OF PHASE TRANSFORMATIONS IN Ti-Nb-
BASED SMA UNDER VARIABLE STRESS-TEMPERATURE CONDITIONS: 

PRELIMINARY RESULTS 

 

Summary 

The Annex contains a paper which describes the design, working principle and validation of 

a custom-made tensile stage for the TTK450 thermal chamber of a PANalytical X’Pert PRO 

diffractometer. This stage is powered by a Ti-Ni SMA actuator, which makes it possible to fit 

it within a small volume of thermochamber and successfully use it in the -150...+100oC 

temperature range. The maximum applied strain is about 1%, which corresponds to the 

beginning of the superelastic part on the stress-strain curves of the studied Ti-Nb-based 

SMA. Consequently, in situ study of the stress-induced martensitic transformation in these 

alloys becomes feasible.  

 

The following three-mode methodology of the in situ X-ray transformation analysis during 

temperature scanning in the -150 to +100oC temperature range is validated: a) strain-free, b) 

constant-strain after loading in the austenitic state (RT), and c) constant-strain after loading 

in the martensitic state (-150oC). Preliminary results obtained for the biomedical Ti-Nb-Zr 

SMA are presented and analysed. These results received public approval at the European 

Symposium on Martensitic Transformations, ESOMAT 2012 and were published in 

Materials Science Forum in 2013, Vol. 738-739, pp. 87-91. 
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1Ecole de technologie supérieure, 1100, Notre-Dame Str. West, Montreal (Quebec), H3C 
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2National University of Science and Technology “MISIS”, 4, Leninskiy prosp., Moscow 
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Abstract 

The technique and preliminary results of in situ X-ray diffraction analysis of the martensitic 

transformation in the newly developed Ti-Nb-Zr SMA for biomedical application are 

presented. To perform the in situ analysis, an original tensile stage, powered by a Ti-Ni SMA 

actuator and fit within the “TTK450” thermal chamber of a “PANalytical X’Pert Pro” 

diffractometer is designed, manufactured and validated. The tensile stage working principle 

and analysis methodology are described in detail. Preliminary results obtained during in-situ 

X-ray analysis of the phase transformations in Ti-Nb-Zr SMA are also presented. 

 

Keywords: titanium alloys, shape memory alloys, X-ray diffraction analysis, in-situ tensile 

stage. 

 

Introduction   

High elastic modulus and linear stress-strain behaviour with limited reversible strain of 

conventional metallic implant materials’ compromise their biomechanical compatibility. Ti-

Ni shape memory alloys (SMA) are better suited for this role because of their superelasticity 

which closely mimicks bone behaviour [1,2], but their application in medicine is hindered by 

the presence of toxic nickel [3]. A new generation of multicomponent Ni-free Ti-Nb-based 

metastable β-titanium alloys containing only non-toxic elements (Ta, Zr, Mo, O) [4,5] is 

emerging, offering the most promising candidates for the role of metallic implant materials. 
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Shape memory and superelasticity observed in these alloys are due to thermoelastic β↔α” 

martensitic transformation. Since Ti-Nb-based SMA are multiphase alloys, they generally 

contain, in addition to body centered cubic β “austenite” and orthorhombic α”-martensite, 

hexagonal α, α’-martensite and ω-phase. That significantly complicates their microstructural 

analysis and therefore the understanding of the features of low-temperature phase 

transformations in these materials. 

 

This paper is focused on in situ X-ray diffraction study of phase transformations in Ti-Nb-Zr 

SMA under variable stress-strain-temperature conditions. This work addresses the design, 

manufacture and validation of an original tensile stage lodged within the “TTK450” thermal 

chamber of a “PANalytical X’Pert PRO” diffractometer and powered by Ti-Ni SMA 

actuator. Preliminary results obtained during in situ X-ray diffraction analysis of the structure 

and phase changes under stress in Ti-Nb-Zr SMA are also presented. 

 

Experimental 

Ti-Nb-Zr alloy samples are used in this work. A Ti-21.8Nb-6Zr (at.%) cylindrical ingot (50 

mm diameter, 660 mm long) was produced by induction skull melting (“Flowserve Corp.”, 

USA) and subjected to hot isostatic pressing (900oC, 100 MPa, 2 h). For X-ray analysis, 

1.2×0.8×100 mm plates were EDM-cut from the ingot, cold-rolled (logarithmic thickness 

reduction e=0.37) and annealed (600oC, 0.5 h). These processing conditions are based on the 

results obtained in [6]. 

 

After thermomechanical processing, the plates were cut into 30 mm-long samples and 

mechanically grinded, polished and chemically etched to 0.1 mm thickness.  

 

The tensile stage mechanism shown in Figure A.1 is especially designed for use with SMA 

actuators. As a consequence, it can be integrated in a “TTK450” thermal chamber. The SMA 

actuator makes it possible to use the stage in the -196...+150oC temperature range. The 

maximum force which can be applied to the sample is 250 N, maximum elongation is 2 mm, 
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the minimum sample working length is 16.5 mm. and the recommended exposed sample area 

for analysis is 3.5mm x 1.5mm. 

 

Figure A.1 illustrates the tensile stage mechanism. The main frame (1) provides rigidity to 

the stage and holds the pivot axes (2) of the rotating levers (3) transmitting the tensile force 

from the SMA actuator (4) to the specimen (5). The actuator-to-specimen levers length ratio 

can be adjusted from 1:1.5 to 1:2.  

 

To avoid X-ray defocusing during scanning, the guiding shafts (6) maintain the specimen (5) 

in a constant vertical position. To electrically isolate the SMA actuator (4), polymer sleeves 

are used as insulators between the actuator tilting grip system (7) and the levers (3). The 

identical tilting grip system (7) is used for specimen (5) fixation. The glass plate (8) is used 

to avoid X-ray diffraction from the main frame (1). All the parts except the insulator sleeves 

are made of stainless steel. 

 

 

 



141 

 

Figure A.1 Tensile stage mechanism: a) 3D prototype computer model; b) photo of 
the tensile stage mechanism; c) tensile stage inside a TTK450 thermal chamber; d) 

operation principle 

 

The main frame (1) is directly mounted on the thermo-control plate of the thermal chamber, 

and a thin layer of silicone grease is applied to both connected surfaces to improve heat 

transfer from the control plate of the thermal chamber to the specimen; boron nitride powder 

is used as a thermoconductive lubricant for all the rubbing elements. 

 

The operation principle is illustrated in Figure A.1d. Initially the actuator (4) and the 

specimen (5) are connected in their “cold” state. When the actuator is heated, while the 

specimen is not, the first shortens and stretches the second, and the whole system reaches its 

second equilibrium position. When the specimen is heated in its turn, it also starts to generate 

recovery stresses, opposing the actuator, and the third equilibrium position is reached.  
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The SMA actuator represents a 1mm diameter Ti-Ni SMA wire (“SAES GETTERS”) with 

an active length of 16.3 mm. Before installation, the Ti-Ni wire was subjected to 

thermomechanical cycling under constant stress to induce and stabilize a two-way shape 

memory effect in the material. This wire actuator generates either recovery stresses up to 

σr
max = 530 MPa or recovery strains up to εr

max= 3%. These recovery stress-strain 

characteristics of the Ti-Ni active element (4) correspond to the ~415N – 0.5 mm force-

stroke characteristics of the SMA actuator. Considering a 1 : 2 actuator-specimen levers 

length ratio, 208N – 1 mm force - stroke loading can be applied to the sample.  

 

The actuator is heated by direct Joule heating and its temperature is measured by a K-type 

thermocouple (“TT-K-36-SLE(ROHS), Omega”), insulated and fixed to the actuator. For 

thermocouple reading, a USB data acquisition module (“NI USB-6211”, “Nat’l Instr.”) is 

used. Lab-View software with a PID controller (“LabView 9.0”, “Nat’l Instr.”) and a 

programmable power supply (“SPS100-33-KOU2”, “American Reliance”) allow for control 

of the SMA actuator temperature.  

 

The 150oC…+100oC temperature range used in our in situ X-ray structure analysis 

encompasses the major structural changes related to the β↔α” martensitic transformations 

observed in the studied Ti-21.8Nb-6Zr (at.%) alloy [6].The TTK thermal chamber with the 

miniature tensile stage developed for this study is installed in the “PANalytical X’Pert Pro” 

diffractometer with CuKα monochromatized radiation. Three X-ray analysis sequences are 

schematically represented in Figure A.2. The first (reference) sequence (strain-free, SF) of 

temperature scanning (Figure A.2a), implies cooling of the non-stressed sample down to 

-150oC (1-2) followed by heating it up to 100oC (2-3). The second and the third sequences 

both imply temperature scanning under a constant strain. When the specimen is loaded in its 

austenitic state (room temperature), this sequence is called the “constant-strain-from-

austenite, CS(A)” temperature scanning (Figure A.2b). When the specimen is loaded in its 

martensitic state, this sequence is called the “constant-strain-from-martensite, CS(M)” 

temperature scanning (Figure A.2c). The CS(A) and CS(M) X-ray study sequences allow 
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analysis of both the temperature- and the strain-induced direct and reverse martensitic 

transformations and reversible martensite reorientation. 

 

 

Figure A.2 In situ X-ray study sequences: a) strain-free (SF) temperature scanning; 
constant-strain temperature scanning with loading in b) austenitic CS(A) and c) martensitic 

CS(M) states. 

 

Results and Discussion 

This work is limited to the presentation of some preliminary results obtained using SF and 

CS(M) schedules. Figure A.3a shows X-ray diffractograms corresponding to RT, 110oC and 

+100oC temperatures (SF) in a consecutive order. It can be observed that β-austenite lines 

{110}, {200} {211}, {220} and {310} are present at all the X-ray scanning temperatures, 

whereas  α”-martensite lines (020), (111), (012), (102), (200), (130) and (131) appear when 

the specimen is cooled down and  disappear when it is heated again, being accompanied with 

the X-ray lines of “athermal” ω phase appearance and disappearance. From these 

diffractograms, it is also possible to measure thermal expansion/contraction strains (Δd/d)hkl. 

 

In the insert to Figure A.3a, a relative variation of the interplanar distance corresponding to 

the 110β peak (Δd/d)110 is plotted as a function of the temperature: strain-free cooling from 

RT to -150oC (path 1→2, one scan at RT) and strain-free heating from -150 to +100oC (path 

2→3, 8 scans). For the SF sequence, (Δd/d)110 values are equal to the thermal 

contraction/expansion strain, 110)( TΔε  ; and they are calculated from the angular shifts of the 

110β peak position. 
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On heating (path 2→3), a net deviation from the linear behaviour can be observed, starting at 

about -75oC, thus pointing to the onset of α”→β and ω→β phase transformations. 

 

 

Figure A.3 Ti-21.8Nb-6Zr (at.%) alloy: a) SF sequence: X-ray diffraction profiles for 
selected temperatures and relative variation of the 110β interplanar distance as a function of 
temperature (insert); b) CS(M) sequence: 110β X-ray line parameters’ variation as functions 

of the temperature 

 

In Figure A.3b, the 110β line parameters measured during the CS(M) sequence are plotted as 

functions of the temperature. These parameters comprise: the relative variation of the 

interplanar distance (Δd/d)110 obtained from the angular shift of the peak position, the peak 

mid-height width (B110) and the intensity (peak height)  (I110). For the sake of comparison, a 

stress-temperature diagram obtained during previous constant-strain temperature scanning 

experiments is also plotted in Figure A.3b [6]. This last test was realized under 1% constant 

strain using exactly the same CS(M) sequence.  

 

In Figure A.3b, SC(M) sequence, path 1-2 of all the plots corresponds to cooling from RT to 

-150oC, path 2-3 to stretching at -150oC, and path 3-4 to heating under a constant strain. 

Three temperature ranges can be distinguished in the heating path 3-4: the first range, 

-150oC…-50oC, corresponding to stress relaxation caused by thermal expansion, the second 
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interval, -50oC …+75oC, where the recovery stresses generated in course of α”→β 

transformation overcome the stress relaxation caused by thermal expansion, and the third 

range, >75oC, where the stress relaxation due to thermal expansion exceeds the stress 

generated due to constrained reverse martensitic transformation.  

 

Considering that the X-ray strain analysis is based on the measurement of variations of 

interplanar distances in the direction perpendicular to the specimen surface (transverse 

direction), and that these variations contain two components: the first related to thermal 

contraction/expansion and the second related to the applied external loads, the total 

transverse strain measured by X-ray diffraction can be written as ⊥⊥ += εεεΣ ΔT , where TΔε  

is the thermal expansion strain known from the previous SF mode measurements, and ⊥ε  is 

the transverse strain caused by external load, all three corresponding to a given X-ray 

scanning temperature. From the transverse strain caused by external load, it is possible to 

evaluate a longitudinal tensile strain ε  applied to the sample. Figure A.4 illustrates the 

conversion from the measured transverse strain (Figure A.4a) to the longitudinal tensile 

strain applied to the specimen (Figure A.4c). This conversion is made by subtracting the 

thermal expansion strain (Figure A.4b) and dividing the result obtained by the Poisson’s 

ratio. It can be seen from Figure A.4c that the real strain applied to the specimen when heated 

from -150 to +100oC is not constant. It varies between 0.82 to 1.2%, with an average value of 

1%. These variations are caused by a non-uniform temperature distribution in the tensile 

stage and its limited rigidity. 

 

 

Figure A.4 a) Total transverse strain (CS(M) sequence), b) thermal expansion strain, (SF 
sequence), and c) longitudinal tensile strain applied to the specimen (all the measurements 

are made on heating) 
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Summary  

An original tensile stage fitted within the TTK450 thermal chamber of a “PANalytical X’Pert 

PRO” diffractometer and powered by a Ti-Ni SMA actuator is designed, manufactured and 

successfully validated. Three sequences of in situ X-ray martensitic transformation analysis 

are realized: strain-free temperature scanning, constant-strain temperature scanning with 

loading in the austenitic state and constant-strain temperature scanning with loading in the 

martensitic state. Preliminary results obtained for biomedical Ti-Nb-Zr SMA by means of in-

situ X-ray analysis under variable force-temperature conditions are presented and analysed. 
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