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CARBON-PROFIT-AWARE JOB SCHEDULING AND LOAD BALANCING IN
GEOGRAPHICALLY DISTRIBUTED CLOUD FOR HPC AND WEB

APPLICATIONS

Fereydoun FARRAHI MOGHADDAM

ABSTRACT

This thesis introduces two carbon-profit-aware control mechanisms that can be used to improve

performance of job scheduling and load balancing in an interconnected system of geographi-

cally distributed data centers for HPC1 and web applications. These control mechanisms con-

sist of three primary components that perform: 1) measurement and modeling, 2) job planning,

and 3) plan execution. The measurement and modeling component provide information on

energy consumption and carbon footprint as well as utilization, weather, and pricing informa-

tion. The job planning component uses this information to suggest the best arrangement of

applications as a possible configuration to the plan execution component to perform it on the

system.

For reporting and decision making purposes, some metrics need to be modeled based on di-

rectly measured inputs. There are two challenges in accurately modeling of these necessary

metrics: 1) feature selection and 2) curve fitting (regression). First, to improve the accuracy of

power consumption models of the underutilized servers, advanced fitting methodologies were

used on the selected server features. The resulting model is then evaluated on real servers and

is used as part of load balancing mechanism for web applications. We also provide an inclusive

model for cooling system in data centers to optimize the power consumption of cooling system,

which in turn is used by the planning component. Furthermore, we introduce another model to

calculate the profit of the system based on the price of electricity, carbon tax, operational costs,

sales tax, and corporation taxes. This model is used for optimized scheduling of HPC jobs.

For position allocation of web applications, a new heuristic algorithm is introduced for load

balancing of virtual machines in a geographically distributed system in order to improve its

carbon awareness. This new heuristic algorithm is based on genetic algorithm and is specifi-

cally tailored for optimization problems of interconnected system of distributed data centers.

A simple version of this heuristic algorithm has been implemented in the GSN project,2 as a

carbon-aware controller.

Similarly, for scheduling of HPC jobs on servers, two new metrics are introduced: 1) profit-

per-core-hour-GHz and 2) virtual carbon tax. In the HPC job scheduler, these new metrics

are used to maximize profit and minimize the carbon footprint of the system, respectively.

Once the application execution plan is determined, plan execution component will attempt to

implement it on the system. Plan execution component immediately uses the hypervisors on

1Refer to Appendix I.1 for more details.
2Refer to Appendix III for more details.
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physical servers to create, remove, and migrate virtual machines. It also executes and controls

the HPC jobs or web applications on the virtual machines.

For validating systems designed using the proposed modeling and planning components, a sim-

ulation platform using real system data was developed, and new methodologies were compared

with the state-of-the-art methods considering various scenarios. The experimental results show

improvement in power modeling of servers, significant carbon reduction in load balancing of

web applications, and significant profit-carbon improvement in HPC job scheduling.

Keywords: Carbon-Profit-Aware, HPC, Job Scheduling, Web Application, Load Balancing,

Geographically Distributed Data Centers, Geographically Distributed Cloud,

Carbon Tax, Virtual Carbon Tax, Multi-Level Grouping Genetic Algorithm,

Server Power Metering, Cooling System Power Modeling, Profit-per-Core-

Hour-GHz



ORDONNANCEMENT DE TÂCHES INFORMATIQUES ET RÉPARTITION DE
CHARGE EN FONCTION DES PROFITS ET DES ÉMISSIONS DE CARBONE

DANS DES NUAGES RÉPARTIS GÉOGRAPHIQUEMENT POUR LES
APPLICATIONS HPC ET WEB

Fereydoun FARRAHI MOGHADDAM

RÉSUMÉ

Cette thèse présente deux mécanismes de contrôle en fonction des profits et des émissions

de carbone, pour améliorer les performances d’ordonnancement de tâches et de répartition

de charge, dans un système interconnecté de centres de données réparti géographiquement

pour les applications HPC3 et web. Ces mécanismes de contrôle sont constitués de trois

composants primaires qui effectuent: 1) la mesure et la modélisation, 2) la planification de

tâches, et 3) l’exécution du plan. La partie de mesure et modélisation fournissent des informa-

tions sur la consommation d’énergie et l’empreinte carbone ainsi que l’information concernant

l’utilisation, coût, et de donnée météorologique. La partie de planification de tâches utilise ces

informations pour proposer la meilleure disposition des applications à la partie d’exécution du

plan, afin de l’exécuter sur le système.

Pour des fins de rapports et décision, certaines métriques doivent être modélisées en fonc-

tion de données mesurées directement. Il existe deux défis à la modélisation fidèle de ces

métriques essentielles: 1) la sélection de caractéristiques et 2) l’ajustement des courbes (ré-

gression). Tout d’abord, afin d’améliorer la précision des modèles de consommation d’énergie

des serveurs sous-utilisés, les méthodes d’ajustement des courbes avancées ont été utilisées sur

les caractéristiques sélectionnées de serveur. Le modèle qui en résulte est ensuite évalué sur

des serveurs réels et est utilisé par le mécanisme de répartition de charge pour les applications

web. Nous fournissons également un modèle inclusif pour le système de refroidissement des

centres de données afin d’optimiser sa consommation d’énergie, qui à son tour est utilisé par la

partie de planification de tâches. De plus, nous introduisons un autre modèle pour calculer le

bénéfice du système, basé sur le prix de l’électricité, taxe carbone, les coûts opérationnels, la

taxe de vente et l’impôt des sociétés. Ce modèle est utilisé pour la planification optimisée des

tâches HPC.

Pour l’allocation de position d’applications web, un nouvel algorithme heuristique est introduit

pour la répartition de charge des machines virtuelles dans un système réparti géographiquement

afin de diminuer l’empreinte carbone. Ce nouvel algorithme heuristique est basée sur un algo-

rithme génétique spécialement conçu pour les problèmes d’optimisation de système intercon-

necté de centres de données répartie géographiquement. Une version simple de cet algorithme

heuristique est mis en œuvre dans le projet GreenStar,4 en tant que contrôleur de carbone.

3Voir l’annexe I.1 pour plus de détails.
4Voir l’annexe III pour plus de détails.
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De même, pour l’ordonnancement des tâches HPC sur les serveurs, deux nouvelles métriques

sont introduites: 1) Bénéfice-par-cœur-heure-GHz et 2) la taxe carbone virtuel. Dans l’ordonnanceur

de tâches HPC, ces nouvelles métriques sont utilisées pour maximiser les profits et minimiser

l’empreinte carbone du système. Une fois le plan d’exécution d’application est déterminé, la

partie d’exécution du plan va tenter de mettre en œuvre le système. La partie d’exécution du

plan utilise directement les hyperviseurs sur des serveurs physiques pour créer, supprimer, et

migrer les machines virtuelles. Il exécute et contrôle également les tâches HPC ou des applica-

tions web sur les machines virtuelles. Pour valider le système conçu, utilisant la modélisation

proposée et la planification de tâches, une plateforme de simulation utilisant les données du

système réel a été développée, et nos méthodes originales ont été comparées avec les méthodes

de la littérature, sous plusieurs scénarios différents. Les résultats expérimentaux montrent une

amélioration dans la modélisation de la puissance des serveurs, une réduction importante de

carbone lors de la répartition de charge des applications Web, et l’amélioration significative de

profits et de carbone de l’ordonnancement de tâches HPC.

Mot-clés : Dépendance aux profits et émissions de carbone, HPC, Ordonnancement de

tâches, Application web, répartition de charge, Centres de données répartie géo-

graphiquement, Nuage répartie géographiquement, Taxe carbone, Taxe carbone

virtuelle, Algorithme génétique par regroupement multi-niveau, Modélisation de

la puissance de serveurs, Modélisation de la puissance de système de refroidisse-

ment, Bénéfice-par-cœur-heure-GHz
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INTRODUCTION

This research mainly deals with environmental impacts of geographically distributed data cen-

ters. In the rest of this chapter the context of known problems regarding this topic are firstly

presented. Next, in order to address those problems or improve their currently available solu-

tions, the objectives of this research are defined. Last, the outline of the research is presented.

0.1 Context

With the introduction of semiconductor, transistor, and integrated circuit technologies in mid-

twentieth century, a new phase of achievements has started in the history of humankind, which

rapidly improved his quality and style of life. Laptops, Internet, and smart phones are good

examples of such improvements. All these new technologies put us in the middle of a new age

of information and communications technology (ICT), which is changing the whole dynamic

of social life, economy, and even politics. Accessing data is becoming a daily need for people

as well as many sectors of industry. The new ICT technologies are usually based on data

transfer and information processing, which highly depend on data centers. With more need for

new ICT technologies, more data centers are required, which consequently causes more energy

consumption in this sector.

However, this is not the whole story. There are known negative impacts and wastes related to

any of these new technologies and any kind of energy production such as greenhouse gases

(GhG) emissions. These negative impacts and wastes are destroying our ecosystem with the

same speed as new technologies are improving our style and quality of life. Earth surface per

capita is only 0.07 Km2 right now, and it is decreasing. There is no far and safe place in the

earth to release the wastes without negative impacts on our life. The relevant question here is

that how long the oceans, the atmosphere and the land can sustain these adverse impacts.

Global warming and its impacts on our life are among the twenty-first century’s biggest chal-

lenges for human societies. Greenhouse gases (GhG), especially carbon emissions, are the

main man-made contributors to the global warming, an issue that is becoming a major concern
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for many governments and NGOs. Although CO2 emission is the main concern to be addressed

in this research, but it is only one of the items in the long list of environment impacts of manu-

facturing and energy consumption of IT equipment. Considering possible correlation between

CO2 emissions and some of the other environmental impacts (Laurent et al., 2012), by decreas-

ing the CO2 emissions, this research could indirectly contribute to a more environment-friendly

solution with less overall environment impacts. For a detailed measure of impacts, a full Life

Cycle Assessment (LCA) analysis is needed to be done which is out of scope of this research.

There is a trade-off between profit and environmental impacts. In the lack of proper environ-

mental regulations, the current final cost of a product is not showing its real cost, therefore

profit-profit-profit objective of many corporations does not consider the environmental impacts

thoroughly. ICT sector is only one of contributors of CO2 emissions, but this sector is grow-

ing fast. The contribution of the ICT sector currently represents no more than 2% of global

GhG emissions (GeSI, 2008; McKinsey, 2007). However, considering the ICT enabling ef-

fect (GeSI, 2008), which pushes to increase the use of ICT and smart solutions to reduce the

emissions of other sectors, the current rapid growth of ICT is expected to accelerate in the

coming decades. This means that this sector will face an enormous challenge to reduce its

own GhG emissions, which are a direct consequence of its higher energy consumption. Other

contributing parameters are population growth, increase in percentage of the population who

have access to ICT solutions, and shift of needs towards ICT solutions such as using Facebook

which was not a daily need a decade ago. To address this issue, some states have already placed

some regulations for carbon footprint, but many states do not have any regulations. A clear and

accurate provisioning of carbon footprint in different granularities will help governments and

also public to see and understand the scale of impact, and define the responsibility share of

service providers and consumers in this important topic. Then, practical, fair and efficient

regulation can be put in place.

Considering all above mentioned concerns, it is important for the ICT sector to improve its

solutions to be more environment-friendly. It is not always easy to create environment-friendly

solutions because of the trade off between higher performance and, for example, lower energy
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consumption. Therefore, it is necessary that accurate and smart solutions be implemented in

the major applications of ICT sector, especially in the hot spots of their power consumption, i.e.

data centers. However, regarding this topic, not all type of ICT applications can be approached

in a similar way because of their different characteristics and requirements. For example, web

applications such as web services are usually run for a long time and the CPU demand of this

type of application is variable. On the other hand, High Performance Computing (HPC) type

of jobs are highly CPU demanding and the life time of these type of applications are short.

Web applications may need high speed network connections, but this is not the case in most

HPC jobs. This is the reason that in this research the focus for HPC jobs is on the initial

scheduling, because it is unlikely that the HPC jobs, which have short life time, are moved

to another location after initial placement. In contrast, the focus for web applications are on

load balancing. There are other type of ICT applications such as telecommunication class

of applications in which constraints are on the quality of service of calls, such as maximum

acceptable response time to a call request. This class is out of scope of this research. Based

on these characteristics and requirements, the solution need to be specifically designed and

adapted to fulfill the main objectives of the system.

0.2 Problem Statement

As it was indicated in the above discussion, CO2 emission is one of the main concerns of

humankind in this century. There are many solutions which already proposed to address this

issue in the ICT sector. Here, performance and coverage of these solutions with respect to their

objectives and also type of applications will be discussed.

For an ICT service provider, the common practice for energy efficiency is to move their services

from physical servers to virtual servers (virtual machines) as a server consolidation strategy.

In theory, the services can be run on completely isolated containers with only a small increase

in overhead processing caused by the hypervisors. There are security and reliability concerns

related to this strategy which need to be thoroughly addressed, but is out of scope of this

research. By server consolidation, a smaller number of servers with higher computing capa-

bilities replace a larger number of underutilized servers. The direct result of this strategy is a
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reduction in power consumption, which might lead to less GhG emissions. Even though energy

efficiency is usually associated with less cost and less carbon footprint, but loss of profit, en-

ergy consumption, and carbon footprint are not necessary correlated in all the time. Therefore,

less energy consumption is not always the best possible case for the businesses.

There may be different reasons for businesses to have several data centers in geographically

distributed regions such as best pricing, resource management, hypervisor benefits, geograph-

ical advantages, redundancy, and security (Hwang et al., 2013). These distributed data centers

can be used to execute different type of tasks and services. Comparing two data centers, first,

from a profit prospect, if the energy price in one data center is much less than the other one,

it maybe more profitable to run services on the first data center than the other data center with

higher energy price even if the power consumption in the first data center is a little bit more.

Second, from a carbon footprint point of view, it makes sense to run the services on a data cen-

ter with lower carbon emission rate than other data centers with higher carbon emission rates,

even if the power consumption is higher in this data center compare to the other ones. To be

able to answer accurately to this question that which data center is more suitable for running

the services, one must consider all the parameter of the system such as type of service, price of

energy, energy mix, profit, environment temperature, and cooling system.

There are three major phases in these kind of scenarios: data collection and modeling, plan-

ning, and execution. Modeling is an important part in the whole system because of three points:

1) measurement devices are not necessary cheap investment, and besides that they need instal-

lation and continuous maintenance, 2) some components of the system are not reachable for

direct measurements such as memory power consumption or CPU power consumption, and 3)

It is not possible to measure a component’s future state. The modeling can have an estimated

answer for all of these situations. Next phase is the planning, which is responsible for deciding

for jobs and services execution time and place. Finally, a component is needed in the system

to execute the generated plan.

To have a better result in the system, more accurate and complete models should be developed

and used for the almost all the important components and sub components of the system. There
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are a few state-of-the-art models for energy metering of a physical server, but they can be

improved for more accuracy.

Cooling play a big role in the power consumption of a data center. Therefore, having an accu-

rate model for its power consumption is essential. Because of the high number of components

in a complete cooling system, the complexity of its models are very high, as well. Therefore,

there are not many researches in the literature to consider all the parameters of a complete

cooling system. Another parameter, which is important for businesses active in this area, is

the modeling of the possible profit. Because there are many parameters which they affect the

profit of such system, up to our best knowledge, there is no research done which is considering

most of these parameters such as energy price, carbon tax, and sales and corporation tax. It is

worth noting that, in some states and provinces, instead of the carbon tax, carbon credit is used

in a carbon credit exchange market or emission trading system in order to control the carbon

footprint of businesses. Carbon credit is out of scope of this research.

Having proper models to measure and estimate different metrics of the systems, different sce-

narios of network of interconnected geographically distributed data centers can be optimized

based on the goals of the system. Goals of the system can be profit, energy efficiency, carbon

footprint reduction, quality of service, or a combination of any of these goals. However, as it

was mentioned in the context discussion, the solutions vary from one type to another type of

applications. In this research we will discuss two main type of applications: HPC jobs and web

applications.

For HPC jobs, one scenario is to have several data centers in different regions, and use a

scheduler to choose the best data center for coming jobs to ensure the maximum profit. The

simplest schedulers for this type of solution are greedy ones (for example Min-Min completion

time (Braun et al., 2001)). Figure 0.1 illustrate a sample job schedule for a few HPC jobs with

different length (expected time to finish) and height (number of needed CPU cores).

There are some strategies for energy efficiency and carbon footprint reduction such as server

consolidation and Dynamic Voltage and Frequency Scaling (DVFS) (Zhang et al., 2010).
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Figure 0.1 Sample schedule of HPC jobs

Server consolidation solution seeks for scheduling and moving the jobs and pack them on

fewer servers. Therefore, other servers could be turned off or put in standby mode for energy

efficiency and subsequently for carbon emission reduction. DVFS mainly seek for reducing

the frequency of CPUs in the gaps between scheduled jobs or bringing the CPU frequencies to

a pre-calculated optimum frequency for minimum energy consumption, and selecting the host

servers based on their carbon emissions or profit (Garg et al., 2011).

Nevertheless none of the above strategies can individually guarantee a very good performance

under different circumstances of the system. Each strategy may have advantages in some

circumstances. For example, if the job trace load is not 100%, server consolidation can be

a solution. Yet, it is not logical to invest in an under-used system, unless this under utilization

is based on accurate calculations and based on trade-off between performance of the system

and its energy consumption. Also, when the strategy is to reduce the frequency for energy

efficiency, if the CPU frequency is preoptimized and the load of the system is 100%, then the

number of executed jobs will be less than when the frequency is maximum, therefore again the
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system is underutilized and the performance of the system is compromised. In carbon-aware

systems, the strategy of selective servers is useless when the load of the system is 100%. No

matter which server is picked first, there are other jobs, which need to be placed on the other

remaining servers.

For web applications, one scenario is having different data centers powered by different power

mix. The data centers host some web applications and web applications are able to migrate be-

tween these data centers to achieve carbon footprint reduction or energy efficiency. Traditional

server consolidation cannot be used on this type of systems because it simply does not consider

the different energy profiles in each data center. Many state-of-the-art work are only for local

data centers, and there is no heuristic method designed for distributed systems.

In order to test the new algorithms and schedulers, real systems would be required, but it is

often too costly and unavailable. Therefore, the existence of a good simulation environment

is vital for validating such system. The problem with simulation platform is that, for each

newly proposed algorithm, there are new metrics and measures which may not already exist

in previously used simulation platforms. For this reason, those metrics and algorithms need to

be added to the existing simulation platform. Occasionally, a new simulation environment that

is built from scratch makes more sense than modifying an existing simulator if the number of

metrics is high. The other problem with the current simulation environments is their inability

to loop through any given number of parameters within a range for comparison purposes. It

is often necessary to execute multiple scenarios with different values of given parameters.

Furthermore, each execution needs to be repeated until a proper result is obtained. In some

cases, it is extremely time-consuming to execute these simulations one by one and execute

them individually several times.

0.3 Objectives

The main objectives of this research are defined as follows:
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• Obj #1: Designing a network of data centers system for HPC jobs and web applications

with profit and environmental impact awareness.

As mentioned in the problem statement (Section 0.2), there are a number of strategies

which are adopted for job scheduling in a network of data centers environment such as

performance-aware, energy-aware, profit-aware, and QoS-aware type of strategies. Each

of them has its own metrics to measure and algorithms to schedule the jobs in the best

position based on the defined objectives, separately. A performance-aware algorithm

may maximize the amount of executed workload, but while the complexity of the system

increases, there is no guarantee that doing so maximize the profit of the system. There is

a similar argument about other strategies. In this research, one of main objectives is to

consider most of these objectives together and create a comprehensive algorithm to find

the best solution with the best results in terms of maximizing total profit and minimizing

total environmental impacts with a clear control on their trade-off.

• Obj #2: Improving cooling system and server modeling.

Modeling of servers is especially important when there is no measurement device present.

In practice, not all the devices are connected to a measuring PDU. Even if they are, the

modeling is still important for predicting the energy consumption of future situations or

subsystems. For services, there is no measurement device and therefore predicting mod-

els are unavoidable. These models should also be accurate because of possible usage in

financial calculation. Finally, they are necessary for simulation purposes when the sys-

tem does not exist yet. It is also very important to see if the new models work correctly

on real systems in small size.

• Obj #3: Designing a new scheduler to maximize profit and minimize the environmental

impacts of an Network of Data Centers (NDC) simultaneously.

As mentioned in the previous objectives, in the new design, all of the parameters are

important and needed to be considered in the scheduler in order to have an efficient and

realistic scheduler. In order to do so, these guidelines are adopted: i) Calculation of the

amount of profit based on the best available information instead of assumption of corre-
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lation between performance and profit, ii) Consideration of the current existing carbon

regulations for carbon footprint reduction and introduction of new tools for intensifying

the carbon emission reduction in absent of sufficient regulations. As mentioned earlier,

not all states have a carbon policy to force businesses to reduce their carbon footprints.

Therefore, in this research, one of objectives is to introduce an entity that acts as an inter-

mediate factor to force the schedulers to consider more carbon reduction without major

changes in the structure and objectives of the scheduler.

• Obj #4: Introduction of new heuristic algorithms for load balancing and consolidation.

Distributed structures can give good benefits by adding diversity and choice to the sys-

tem. Therefore, NDCs have new potential capabilities for achieving objectives of the

system, but the complexity and topology of the systems can be also highly variable. In

this research, one of objectives is to present a new heuristic algorithm tailored specially

for NDCs consolidation problem.

• Obj #5: Developing a Simulation Platform.

It is important to have simulation platform where energy, carbon, cost, and QoS can be

integrated all together. Each structure may have different outcome under different cir-

cumstances. Therefore, it is important to test the new structures under various conditions

such as diverse type of energy sources, workload, and system size.

0.4 Thesis Outline

The rest of the thesis is organized in 7 chapters. First, a complete literature review on state-of-

the-art researches is provided in the Chapter 1. In Chapter 2, a general view of current network

of data centers and a newly proposed system are presented. New models are introduced in

Chapter 3 for energy metering of servers and cooling systems. In addition, a new model is

also introduced for calculation of profit of a data center. Then, in the next chapter (Chapter 4),

the main idea and mechanisms of the proposed scheduler are presented. In Chapter 5, a new

genetic algorithm is introduced for load balancing and data center consolidation. Next, the

experimental results and validations are reported in the Chapter 6. In this chapter, the essence
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of the simulation platforms used in this research is also described. Last, a general conclusion

is presented which will summarized the achievements of this research. The focus of research

in this thesis is presented in Figure 0.2.

Figure 0.2 Research focus areas of this thesis



CHAPTER 1

LITERATURE REVIEW

As mentioned in the introduction, for different type of applications such as HPC and web, there

are open research problems in data center measurement, modeling and optimization. In order

to design a more efficient system to address these issues or improve their current solutions,

existing state-of-the-art systems, methods, and models need to be discussed thoroughly.

In this chapter, first, currently implemented geographically-distributed-cloud structures and

several type of job scheduler are presented in the Section 1.1. Next, server consolidation and

load balancing solutions are presented in Section 1.2. Then, discussions on energy modeling

are provided in Sections 1.3 and 1.4, and finally simulation platforms associated with network

of data centers are discussed in Section 1.5.

1.1 Network of Distributed Data Centers with Cloud Capabilities

Network of distributed data centers (NDC) with cloud capabilities refers to several data centers

which are positioned in geographically diverse locations and support compatible virtualization

technologies. These data centers are well connected, and live VM migration is possible among

them. Generally, a global scheduler is responsible to dispatch and manage the applications on

these data centers. The type of this scheduler usually defines the type of the NDC. Therefore,

the operation of an NDC can be imagined as a job scheduling problem. However, scheduling of

jobs on computing resources cannot be always expressed as a single and unique problem state-

ment. This is mainly because of high level of diversity in the possible compute configurations

and also types, structures, and goals of computing jobs. That means that there is a spectrum

of concepts that we may encounter when analyzing a specific configuration. In (Xhafa and

Abraham, 2010), some of those concepts are described and discussed, and we just list them

to show some of complexity of subject matter: heterogeneity of resource, heterogeneity of

jobs, local schedulers, meta-scheduler, batch mode scheduling, resource-oriented schedulers,

application-oriented schedulers, heuristic and metaheuristic methods for scheduling, local poli-
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cies for resource sharing, job-resource requirements, and security. In particular, schedulers can

be divided in three main categories: i) Local/Host Schedulers: The scheduler has the complete

picture of its resources (free time slots, etc). In the case of super scheduler, see below, local

schedulers also exist but they only follow the reserved slots determined by the super scheduler,

ii) Meta Schedulers (Brokers): A meta scheduler distributes incoming jobs among a few local

schedulers. Therefore, meta scheduler does not determine of the actual time slot assigned to

a job. Instead, it uses the statistics of free resources reported by local schedulers to distribute

the jobs, and iii) Super Schedulers: A super scheduler merges both local and meta scheduling

strategies. Local schedulers first report actual free time slots to the super scheduler, and it

then assigns jobs to them. This is the most efficient scheduler. However, it requires constant

communication between schedulers, and solving the assignment problem could be very time

consuming and ineffective especially in the case of high number of resources. In the following

sections, several actual schedulers with goal functions toward performance, energy, carbon,

profit, and QoS targets are presented.

1.1.1 Performance-Aware Scheduler

Scheduling of jobs on a distributed computing system, such as a network of data centers, is an

old and well studied problem. For example, in Braun et al. (2001), several heuristic scheduling

algorithms based on the makespan matrix, such as Opportunistic Load Balancing (OLB) and

Minimum Completion Time (MCT), were introduced. It is worth noting that these algorithms

consider assignment of jobs to machines, not to the processors. Therefore, their approach

should be considered as a global scheduler. A global scheduler is not necessarily always a

distributed scheduler. For example, a scheduler that works within a data center can work in

a global manner, while it obviously is not a distributed scheduler. They also considered GA

as one of their schedulers. For simulations, Expected Time to Compute (ETC) matrix were

used. Also, proper synthesizd ETC matrices were used in order to simulate a heterogeneous

computing environment.

Another milestone in the scheduling of computing resources is Freund et al. (1998), which

introduced MaxMin and MinMin heuristic schedulers. Similar to Braun et al. (2001), only
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performance in terms of completion time was considered, and there was no account for the

energy consumption or carbon footprint of the operations. They performed their calculations

using a simulated environment, called SmartNet.

In Maheswaran et al. (1999), the k-Percent Best (KBP) and Switching Algorithm (SA) sched-

ulers were introduced along with the Minimum Execution Time (MET), Minimum Completion

Time (MCT), Suffrage, and Opportunistic Load Balancing (OLB) heuristic schedulers. The k-

percent best (KPB) scheduler considers only a subset of machines while mapping a job. The

subset is formed by picking the (k/100)m best machines based on their execution time of that

job, where 100/m ≤ k ≤ 100 and m is the number of machines. The job is assigned to a

machine that provides the earliest completion time in the subset. The main idea behind KBP is

not to map a job on the best machine, but it is to avoid mapping a job on a machine that could

be a better choice for a yet-to-arrive job. If k = 100, then the KPB heuristic is actually reduced

to the MCT heuristic. For the case k = 100/m, the KPB heuristic is equivalent to the MET

heuristic.

The SA scheduler uses the MCT and MET schedulers in a cyclic fashion depending on the

load distribution across the machines. In this way, the SA tries to make benefit of the desirable

properties of both MCT and MET. The MET heuristic can potentially create load imbalance

across machines by assigning many more jobs to some machines than to others, whereas the

MCT heuristic tries to balance the load by assigning jobs for earliest completion time. If the

jobs are arriving in a random mix, it is possible to use the MET at the expense of load balance

until it reaches a given threshold, and then use the MCT to smooth the load across the machines.

In Kim et al. (2003), in addition to MaxMin and MaxMax algorithms, the Percent Best sched-

uler was considered. The Percent best scheduler, which is a variation of the aforementioned

k-Percent Best scheduler (KBP) (Maheswaran et al., 1999), tries to map jobs onto the machine

with the minimum execution time while considering the completion times on the machines.

The idea behind this scheduler is to pick the top m machines with the best execution time for a

job, so that the job can be mapped onto one of its best execution time machines. However, lim-

iting the number of machines to which a job can be mapped, may cause the system to become
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unbalanced. Therefore, the completion times are also considered in selecting the machine to

map the job. The scheduler clusters the jobs based on their priority. Then, starting from the

high priority group, for every job in this group, it finds the top m(=3) machines that give the

best execution time for that job. Then, For each job, it finds the minimum completion time

machine from the intersection of the m-machine list and the machines that are idle. For jobs

with no tie, the mapping is performed immediately. For those jobs that are in a tie with some

other jobs, that job that has earliest primary deadline is mapped first. The process is continued

until all jobs in the high priority group are mapped. Then, the same procedure is applied to

the jobs of other lower priority groups. They considered an increase in m when the priority of

group decreases. In addition to the Percent Best scheduler, they introduced the Queuing Table,

the Relative Cost, the Slack Suffrage, the Switching Algorithm, and the Tight Upper Bound

(TUB) schedulers. The Queuing Table scheduler, which considers urgency in its mapping pro-

cess, uses the Relative Speed of Execution (RSE), which is the ratio of the average execution

time of a job across all machines to the overall average job execution time for all tasks across

all machines, and a threshold to divide jobs into two categories of fast and slow. Using this

categorization, and also estimating the nearness of the jobs deadline, the scheduler first maps

those jobs that are in higher “urgency”. The Slack Suffrage scheduler, which is a variation of

the Suffrage scheduler Maheswaran et al. (1999), uses a positive measure of percentage slack

of all jobs on all machines with various deadline percentages, and then maps those jobs with

tighter deadline (higher deadline factor that was estimated for that job when enforcing posi-

tivity of the percentage slack measure). Please note that the Relative Cost scheduler does not

have any direct relation with profit, and in fact the cost was defined based on the completion

time. Cases of high and low heterogeneity and also tight and loose deadlines were also con-

sidered. It was observed that the Max-Max works the best in the high heterogeneity and loose

deadlines cases, while the Slack Suffrage heuristic was the best in the low heterogeneity and

loose deadlines cases. In those cases with tight deadlines, all schedulers showed low perfor-

mance. Relatively, in the highly heterogeneous and tight deadlines cases, Max-Max and Slack

Suffrage were better, while Queueing Table performed better in the low heterogeneity and tight

deadlines cases.
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1.1.2 Energy-Aware Scheduler

Global move toward ICT enabling effect, which pushes ICT to replace or dematerialize other

sectors within upcoming decades, targets reducing human footprint and their impact on the

environment (Liu et al., 2011). At the same time, concepts, such as smart city and other smart

initiatives, try to use artificial intelligence in order to reduce the cost and time of services while

improving the quality of experience (QoE) of the users (Wright, 2012). All these moves depend

highly on Compute as a Service and in particular High Performance Computing as a Service

(HPCaaS) to handle spontaneous ICT requirements of service providers without forcing them

to invest in capital. In this way, many service providers could spin off without the fear and

limitations associated with capital expenditures of HPC computing facilities. Distributed data

centers and in particular clouds could be a good approach to deliver HPCaaS at minimal cost

and minimal environmental impact. However, ability to deliver HPC services on demand at an

acceptable quality of service could be challenging. In addition, optimization of profit, expendi-

tures, resource consumption, and environmental impact of such a solutions should be analyzed

and verified.

Various work have been done to shed light on energy awareness in distributed data centers. For

example, in Garg et al. (2011), a two-level broker to schedule jobs in a network of distributed

data centers was proposed. They focused only on the HPC workload, and ignored constant-load

web workloads. In their scenarios, they considered a set of data centers at different locations,

and for each location they considered the average electricity grid mix carbon footprint and also

the average electricity price. In addition, they assumed that dynamic voltage and frequency

scaling (DVFS)-enabled processors used for the servers while having different minimum and

maximum CPU frequencies at each data center. In terms of policy regarding the QoS, the jobs

that could not be finished within the required deadline are dropped. Several greedy algorithms

were included to reduce carbon footprint and increase the profit while meeting the required

QoS. They concluded that carbon footprint can be reduced with negligible fall in the profit.

Although the work is interesting, it suffers from various drawbacks. First of all, the electricity

grid mix footprint and price are approximated with their average values, while in reality, these
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footprint and price are highly variable and change even in an hourly scale. The assumption

of average footprint and price prevented their algorithm to observe the electricity peak con-

sumption phenomenon of the electricity grid. Peak hour management is a critical aspect to

be considered in the design and management of any high-consumption facility. Moreover, in

their DVFS-related optimization of the processors frequency, they obtained a constant optimal

frequency for each type of CPU core which minimize the energy consumption of each individ-

ual job. However, this unpenalized DVFS-based approach could result in low performance in

terms of HPC requirements and QoS. In other words, the optimal frequency is defined inde-

pendent from the pricing and quality objectives, and it could not adapt to extreme cases when

the footprint should be compromised in favor of quality of service or profit in order to ensure

sustainability of the system operation.

Heuristic optimization has been also considered in many work for managing and scheduling

HPC jobs and applications. For example, Kessaci et al. (2011) used a multiobjective approach

using a GA algorithm to the scheduling of real HPC job traces on a distributed cloud. The so-

lution was profit driven, and the cooling system was simply approximated using the Coefficient

of Performance (COP) indicator. Similar to Garg et al. (2011), average values for electricity

price and footprint, taken from EIA reports1 were used. Also, the job deadlines were syn-

thetically generated using the method proposed in (Venugopal et al., 2008). They compared

their results with those of maximum resource utilization heuristic. The main drawback of the

GA optimizers, and any other heuristic optimizer used in the job scheduling, is that they cannot

consider the complex and dynamic configurations of free slots in their formalism, and therefore

usually end up to schedule only at the global level to the DCs. This condition highly simplifies

the scheduling problem, and avoid maximum utilization of the detailed resources.

Consolidation of VMs on servers, or in general, any other type of application on servers, has

been considered as a key action to reduce energy consumption and footprint of computing

systems. With consolidation, the unused servers could be shutdown (to be more precise, the

servers usually divided into three pools, the hot pool for those which are fully running, the

warm pool for those servers which are reserved and are ready to join the hot pool in the case

1http://www.eia.doe.gov/cneaf/electricity/epm/table56a.html
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of increase in the computing demand, and the cold pool that represents those servers that are

completely shutdown). With shutting down those not-required-to-run-at-the-moment servers,

all their associated idle energy consumption will be avoided, and also the lifespan of the servers

would increase because they do not burn out in idle state. However, with recent progresses in

manufacturing of more environment-friendly servers with very low idle consumption ratings,

and also with price breakdown of the high performance processors, the idea of keeping all

servers in the warm pool is getting more popular. This not only avoids many software orig-

inated faults that could be triggered in the shutdown and then cold start of the servers in the

consolidation approach, it could also increase the lifespan of the server because of less physi-

cal/thermal stress being imposed on them. On top of this, ability to control the temporal per-

formance of processors by adjusting the control voltage, which is usually referred to as DVFS,

bring another dimension to the environment-friendly operation of the data centers. With DVFS,

the servers consumption, which is mostly CPU consumption, could be adjusted and lowered

by choosing lower operating frequencies, when the price or dirtiness of the electricity mix

is high and the SLA and QoS do not impose very tight deadlines. In Feng et al. (2008), it

was shown that by operating a supercomputer with low power processors and low power, not

only the reliability of the system increases considerably with less down time (scheduled to re-

place dead processors), it also increases the relative performance to the space by three orders

of magnitude. It was also shown that with applying a constraint on the maximum achievable

performance of processors, performed by lowering the maximum performance by an epsilon

(5% in that work), not only the energy consumption is reduced by a higher factor (20%), the

processors were guaranteed that would not reach high temperatures, and therefore there were

no processor failure because of high temperature breakdown.

DVFS approach has been considered in many other work as an alternative to shutdown and con-

solidation approach toward energy efficiency and reducing energy consumption. DVFS-based

consumption reducing approaches rely on the nonlinear (usually cubic) relation between the

control variable (frequency) and power consumption. A similar behavior based on nonlinear

relations can be seen in many other components of a typical data center. For example, the fans

used in the Computer Room Air Conditioner (CRAC) and Cooling Tower (CT) of the cool-
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ing system also show a nonlinear polynomial relation between their control variable (relative

performance compared to maximal achievable performance) and their energy consumption.

In all these components, in analogy with the CPU processors, the energy consumption poly-

nomially increases when the components operating state approaches its maximum nominal

operating capacity. Although this can be compromised in some high-demanding applications

where maximal operation capacity is always required, working in an intermediate state with

relatively less consumption, cost, and footprint is a more practical choice for most of the use

cases. In addition, even use cases that require higher capacities could be handled by increasing

the number of operating components while operating them at a less-intensive state. It has been

observed that this approach not only would give better performance in terms of consumption of

the operation phase (ignoring the two other phases of life cycle: manufacturing and end of life),

it is even more economical compared to high-intense solutions considering their extra capital

expenditures associated with high rate of component replacements in intense solutions Feng

et al. (2008). In other words, operating components at their maximum nominal rating requires

frequent replacement of components that would result in an overhead capital cost distributed

over the operating phase. Also, the inhomogeneity of the distribution of the surviving compo-

nents along the time and also availability requirements of the solution would be much lower

when components are operated at an intermediate rating because of less number of failures

and in turn less number of replacement events. In addition, the requirement to operate at the

near maximum operating rate forces only those components that have passed extreme “burn-

in” tests to be used to reduce the number of replacements that in turn implicitly implies all

those components that have failed and discarded during the burn-in tests should be considered

in the calculations of the overall cost and footprint of the solution. That means that a solution

designed at an intermediate-intense rating of components operation would be more available

(reliable), less energy consuming, and therefore with less footprint.

Zhang et al. (2010) used DVFS to optimize the frequency of the running jobs to minimize

the energy consumption of a system of heterogeneous cloud servers. However, they did not

consider any other parameter which may play a role in the system energy consumption, per-

formance, and profit. In another work, Rizvandi et al. (2010) argued that a time slack will be
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produced after an optimal frequency is rounded up to the next possible CPU frequency of the

DVFS scheme. Therefore, they breakdown the free slot in two pieces where the job will be run

with two frequencies (maximum and minimum) instead of optimum frequency. However, they

used a theorem2 in their approach which is not in consistency with the Garg et al. (2011) claim

of having an optimum frequency for a given job with minimum energy consumption.

Although manufactures and brands of CPUs and processors are usually ignored in the energy

consumption studies, and instead a generic models is used, there are some studies that show

proper choice of the CPU could lead to considerable savings. For example, in Nesmachnow

et al. (2013), consumption, frequencies, operations, and also operations/watt of various CPUs

are provided. In their model, they used four parameters to characterize a CPU: i) the comput-

ing power of a machine, i.e., the number of operations that its processor is able to compute;

ii) the number of processing cores that the processor integrates (cores); iii) the energy con-

sumption when the processor is in idle state (EIDLE); and iv) the energy consumption when

the processor is fully loaded (EMAX). However, they did not consider the DVFS capability

of the processors. For scheduling, they used various algorithms, such as Shortest Job Fastest

Resource (SJFR) Abraham et al. (2000), Longest Job Fastest Resource (LJFR) Abraham et al.

(2000), Opportunistic Load Balancing (OLB) Braun et al. (2001), Minimum Completion Time

(MCT) Braun et al. (2001), Minimum Execution Time (MET), MinMin, MaxMin, and Suf-

frage that all focus on the makespan matrix and execution time of the jobs. In addition, they

considered other algorithms, such as MINMIN, that perform similar logic to MinMin but with

the energy consumption as the goal. Also, hybrid schedulers, such as MINMin, MINSuff, and

MinMIN, were considered. In MINMin, the jobs and machines are first paired in such a way

that the minimum completion time (MCT) is minimized. Then, in the second phase, those pairs

are selected that minimize the energy consumption.

In Lawson and Smirni (2005), a power-aware scheduler was introduced. They observed a high

degree of variability in the job arrival intensity across time (in week intervals) in various real

workload traces. They also observed a high degree of variability in the jobs demand. These

variabilities would result in variation in the utilization of the resources, especially existence of

2If fa and fb(> fa) execute a task in ta and tb, respectively. Then, E(ta) < E(tb).
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periods of time with very low utilization that would question the sustainability of the computing

systems in terms of profit and costs. In Lawson and Smirni (2005), they used an indicator called

the jobs bounded slowdown, defined as 1+ d/(max(10, v)), where d is the queuing delay time

and v is the actual service time of a job. The 10 seconds in the denominator is for the sake of

stability with respect to short jobs. They introduce a two-level policy that reduce the number of

active processors to a lower value when the number of currently running processors goes lower

than a switching threshold value, and bring back all processors to active state if the processing

power required to handle incoming jobs goes higher than the same threshold value. They did

not discuss the possible hysteresis side effect of having the same threshold for both actions.

They chose their switching threshold value between 0.60 to 0.85 of the total active processors.

The performance of the system was evaluated using the aggregated slowdown indicator. They

observed that with their two-level policy, the aggregated slowdown was reduced by almost a

factor of two, while 80% utilization of the computing systems and 10% saving was achieved.

Therefore, this policy could provide 10% saving at 80% utilization if the user allows a twofold

increase slowdown.

1.1.3 Profit-Aware Scheduler

In the real world of services and transactions, a computing service provider could survive and

guarantee its sustainable operation if it has proper goals and strategies toward monetization

and profitability of their solution (Sankaranarayanan et al., 2011; Rao et al., 2010), and also

toward sustainable relations and good reputation with respect to their users (who are in turn

service providers to the end users). Therefore, Profitability index (PI), also known as profit

investment ratio (PIR) and value investment ratio (VIR), Quality of Service (QoS), and Quality

of Experience (QoE) and other similar measures could play a critical role in management of

such a solution which usually depends on its scheduler.

In (Toporkov et al., 2011), several free slot selection algorithms, such as Algorithm based on

Maximal job Price (AMP) and Algorithm based on Local Price of slots (ALP), were considered

in connection with a profit goal. However, the proposed scheduler, which runs on a synthesized
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simulator, does not consider the energy consumption or the carbon footprint associated with

the operation of the NDC.

In Qureshi et al. (2009), a cost-aware request routing policy for Internet scale computing sys-

tems was introduced. The policy, which considers the variation of electricity price over time

and location, preferentially maps the requests to those data centers that are cheaper. Because

of Internet-scale nature of workloads considered in that work, the bandwidth price was also

considered but in an abstract and indirect way by imposing a limit on the routing volume to

keep it less than 95 percentile bandwidth of any location. To model the cooling system, they

simply used a constant PUE value. Also, the idle power consumption was assumed to be a

percentage (65%) of maximum power consumption. They showed that saving in electricity

price is achievable if the electricity contracts are based on the actual power consumed not the

provisioned power ratings.

1.1.4 Other type of Schedulers

Workflow scheduling is another type of scheduling that handles highly complex jobs (work-

flows). In Wu et al. (2013), scheduling of the workflows was considered using Directed Acyclic

Graphs (DAG) modeling and also QoS constraints. In a DAG, each node represents a workflow

task and directed links indicate task dependencies. To facilitate cloud workflow scheduling,

each task node in a DAG is also associated with its QoS constraints. In that work, the exe-

cution time and execution cost were considered as the QoS constraints. The analyses were

performed in a simulated environment, called Swinburne Decentralized Workflow for Cloud

(SwinDeW-C), with 10 servers and 10 PCs. Several heuristic algorithms, such as GA, ACO,

and PSO, were considered in different configurations. In the first configuration, only makespan

was considered, and it was observed that when the number of tasks in the workflow is more

than 200, ACO yields a better performance. This implies that the ACO is more effective in

solving large size discrete multiple constraints optimization problem. One of the possible rea-

sons for that could be because ACO constructs the valid solutions task by task while PSO and

GA search for valid solutions randomly in the searching space. In a second configuration, both

makespan and cost were considered, and it was noticed that each individual in ACO has its
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social role for either makespan optimization or cost optimization. In GA and PSO, individuals

are evolving to achieve higher fitness value but without any difference in social roles. It is well-

known that time overhead of metaheuristics algorithm is their main concern. They observed

that ACO CPU-time increases steadily with the growth of workflow size because it constructs

and optimizes the solutions task by task. They also observed that most time consuming step of

PSO is its update step. They also faced a premature problem with the GA algorithm for large

workflows that prevents this algorithm from achieving the best score.

In Le et al. (2010), another scheduling of Internet-based workload was proposed. For the In-

ternet scale applications that handle the Internet users’ requests, the distributors usually send

every request to two or more data centers at the same time as a mirroring technique in order

to guarantee availability and performance. The request distribution policy was designed to

prevent data center overloads, and also to monitor their response times, and adjust the request

distribution to correct any performance or availability problems. In the modeling, they used

a two-term cost representing the cost associated with the requests (SLA) and cost associated

with green and brown energies. For the brown energy, they considered a cap limit below that

they do not consider the market cost of offsetting the base energy of a data center. They used a

Simulated Annealing (SA)- and a Cost-Aware (CA)-heuristic schedulers. Also, an Autoregres-

sive integrated moving average (ARIMA) model was used to predict the upcoming load. They

observed that diversity in parameters such as workload and electricity price, helps the system

manager to achieve more savings.

A realistic approach to HPC scheduling should consider both profit and QoS indicators in its

methodology in order to ensure sustainable operation of the NDC. For example, Goiri et al.

(2012) proposed a profit-driven virtualized data center in which SLA and its associated penal-

ties were implemented. In addition, they considered VM performance degradation. The pro-

posed scheduler was a global scheduler for the VMs that considers VM consolidation as its

approach to energy efficiency. Various scheduling policies, such as backfilling, random, and

cost-driven were considered. They simulated the solution on a simulator built based on OM-

Net++ using real measurements. The simulator was validated in (Berral et al., 2010; F. Julià,
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2010). For the job trace, they considered one week excerpt of Grid5000 trace. In that one week,

jobs had various duration: short (less than 600 seconds), medium, and long (more than 20,000

seconds). The jobs were distributed among time in such a way that a mean of 35 and a maxi-

mum of 204 tasks are running concurrently. Also, they considered the effect of different types

of servers, such as Xeon, Atom, and their heterogeneous combination, and showed that the het-

erogeneous approach, which reduces the power consumption using the Atom power-efficiency

and gets reasonable SLA fulfillment thanks to the Xeon nodes, results in higher savings.

In general, the GA-based approaches to scheduling are powerful in exploring the full space

in their scope. However, their scope is very limited because of their intrinsic restrictions on

definition of chromosomes (Goiri et al., 2012; Kołodziej et al., 2012). While in an actual

scheduling, the free time slots could dynamically move across the servers and datacenters, the

genes in the GA chromosome, and other similar approaches, require a persistent definition,

and therefore, could not be modified during the scheduling operation. This has forced many of

the GA-based scheduling work to adapt a global level and only consider scheduling down to

the level of datacenters, and leave the actual scheduling of the jobs at the server level to local

schedulers. This limitation reduces the opportunistic ability of these schedulers because they

could not observe local opportunities and work only at the global picture of the NDC.

Another example of a GA-based approach to scheduling is Kołodziej et al. (2012). In this work,

a detailed DVFS is considered for the processors’ power consumption. In addition, various

scheduling scenarios against various schedulers, such as GA and island GA, were considered.

The scheduling was based on the makespan matrix. They used the HyperSim-G software for

their simulations.

In Table 1.1, features of the state-of-the-art schedulers described in this section are summa-

rized. The acronyms M.S., S.S., H.S., E.P., E.M., E.V., E., C.E., C.T., P., Pr., Q., C., D., Di.,

and Co. stand for Meta Scheduler, Super Scheduler, Heuristic Scheduler, Electricity Price,

Electricity Mix, Electricity Variations, Energy, Carbon Emissions, Carbon Tax, Profit, Predic-

tion, QoS, Consolidation, DVFS, Distributed system, and Cooling system, respectively.
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Table 1.1 The comparison table among state-of-the-art approaches.

Paper Scheduler Electricity E. Carbon P. Pr. Q. CPU Power Di. Co.

M.S. S.S. H.S. E.P. E.M. E.V. C.E. C.T. C. D.

Wu et al. (2013) � � �

Braun et al. (2001) � �

Kessaci et al. (2011) � � � � � � � � �

Garg et al. (2011) � � � � � � � �

Goiri et al. (2012) � � � � �

Maheswaran et al. (1999) �

Kim et al. (2003) �

Freund et al. (1998) �

Nesmachnow et al. (2013) � � �

Toporkov et al. (2011) � � �

Kołodziej et al. (2012) � � � �

Le et al. (2010) � � � �

Guzek et al. (2012) � �

Lawson and Smirni (2005) �

Qureshi et al. (2009) � � �

Feng et al. (2008) � �

Our research � � � � � � � � � � � � � �

1.2 Server Consolidation and Load Balancing in Cloud Computing

Energy efficiency and carbon footprint reduction are two main concerns in the design and

development of computing systems (Beloglazov et al., 2010). Energy efficiency is, in fact, im-

perative, with the increasing cost of energy and the need to reduce GhG emissions (Berl et al.,

2010). There are several ways to achieve energy efficiency in data centers, such as dynamic

CPU speed management, energy aware job scheduling, and server consolidation (Zhang et al.,

2008; Srikantaiah et al., 2008).

Server consolidation has been studied using various approaches in data centers. Bianca Pop

et al. introduced swarm-based consolidation for data centers in (Pop et al., 2012). Their

approach was inspired by the V formation that birds adopt when flying to achieve maximum

energy efficiency. In another method, a “gossip”-based methodology is used, which is rooted

in a communication and negotiation technique among neighboring servers (Marzolla et al.,

2011).

With technological advances in virtualization technology, it is possible to run different servers

with different platforms on a single physical machine in a completely isolated environment.

This will reduce the number of hardware needed in a data center which will directly lead to
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energy efficiency, carbon footprint reduction, and operational cost reduction. Server consoli-

dation can be seen as a bin packing problem, where servers are the bins (Si, i = 1, 2, ...,m)

with different capacities in CPU (Scpu), memory (Smem), network (Snet), and storage (Shdd).

VMs represent the items (Vi, j = 1, 2, ..., n) which need to be fit in the bins with their required

capacities in CPU (V cpu), memory (V mem), network (V net), and storage (V hdd). When each

VM is assigned to a server, the objective is to minimize the number of servers (bins), where

following conditions are satisfied:

minimize |S| ,∑
Vk∈Si

V cpu
k ≤ Scpu

i , Si ∈ S

∑
Vk∈Si

V mem
k ≤ Smem

i , Si ∈ S

∑
Vk∈Si

V net
k ≤ Snet

i , Si ∈ S (1.1)

∑
Vk∈Si

V hdd
k ≤ Shdd

i , Si ∈ S

⋃
i

Si = {V1, V2, ..., Vn}, Si ∈ S

where S is the set of all active servers, and |S| is the cardinality of that set (which is also

equivalent to the number of active servers).

In general, a simple bin packing problem can be described as follows:

minimize |B| ,∑
Ik∈Bj

ik ≤ bj, Bj ∈ B (1.2)

⋃
j

Bj = {I1, I2, ..., In}, Bj ∈ B
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where B is the set of all active bins. In addition, I and i represent an item and its corresponding

sizes, B and b represent a bin and its corresponding sizes, and n represent the number of items

respectively.

The server consolidation can be performed with First Fit (FF) algorithm or any of its many

variations built to solve energy efficiency problems (Beloglazov et al., 2010), which are ba-

sic bin packing solutions such as a potential hardware cost savings model in (Speitkamp and

Bichler, 2010), the vector packing model in (Gupta et al., 2008), and a model for the Mixed

Integer Program (MIP) in (Petrucci et al., 2009). Most of these models define server consol-

idation problem as a form of the bin packing problem, and attempt to maximize the use of

servers with intuitive algorithms and methods, such as the Best Fit and First Fit Decreasing

(FFD) algorithms. There are two main categories for server consolidation: static and dynamic.

In static server consolidation, a VM location is decided prior to its creation, and after VM

creation, the VM will be hosted on the same hardware until its removal. On the other hand,

in dynamic server consolidation, VM management controllers take advantage of seamless VM

migration technology and move the VMs from one hardware to another without service inter-

ruption. Heuristic algorithms introduced in the following section and our proposed algorithm

are all designed for dynamic server consolidation problems.

From another perspective, GGA is also used for server consolidation problem. GGA, similar

to First Fit Decreasing algorithm, Best Fit algorithm, any many more of their variations try to

solve the server consolidation problem in a data center as a bin packing problem. However,

we are specifically interested in GGA algorithm in this thesis because of its grouping feature.

Since in this research we are mainly working on network of data centers, we describe the DCs

as high-level groups, and servers as low-level groups. In fact, from our perspective, the servers

are observed as subgroups of DC groups. This is achieved, in the Section 5.1, an extension of

GGA is introduced to deal with the NDC consolidation problem.

Here, first, we present some of the work in the area of server consolidation with GGA, and

next, we present the mechanism of grouping in GGA algorithm which later will be used to

introduce the new variation of GGA algorithm for higher levels of grouping.
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1.2.1 Grouping Genetic Algorithm in Server Consolidation

Xu et al. used Grouping Genetic Algorithm (GGA) in (Xu and Fortes, 2010) in order to

achieve multi-objective goals in placement of virtual machines in virtualized data center envi-

ronments. They claimed that original GGA crossover operator is not efficient and they modified

it to achieve better results. They proposed a ranking-crossover instead, and claimed that new

crossover is able to inherit good features from parents more efficiently. They evaluated all

the individuals based on three evaluation functions which they used to represent their three

optimization objectives. These three objectives were resource usage efficiency, power con-

sumption efficiency, and thermal efficiency. They represented some evaluation functions for

each of these objectives. The evaluation results were some numerical values in the interval

of [0,1]. Instead of random selection of crossover points, the selected groups for insertion to

the first chromosome are most likely selected from groups with higher rank in ranking evalua-

tion of three objectives. They claimed that this way, the high quality groups will most probably

remain intact, and therefore the optimizer will reach to a better solutions faster. They also com-

bined GGA with fuzzy concepts in order to achieve the best solution for their several objectives

problem.

Shubham Agrawal et al. used the GGA algorithm for a server consolidation problem in

Agrawal et al. (2009). They modeled the server consolidation problem as a vector packing

problem with conflicts. In their mathematical model, they tried to differentiate between effi-

ciency of bin packing and number of bins which are packed. Their model was designed to

prefer the bin-packing efficiency over bin number optimization. They used the original version

of the GGA in order to solve the optimization problem.

In another work (Wilcox et al., 2011), David Wilcox et al. introduced another type of GGA al-

gorithm known as Reordering Grouping Genetic Algorithm (RGGA). They describe the multi-

capacity bin-packing problem in data center server consolidation as bins (servers) with multiple

capacities (CPU, memory, network, storage, and etc.) and VMs with multiple weights. In their

proposed grouping genetic algorithm, each individual has several representations, and they

claim these multiple representation will lead to better solution in more efficient time frame.
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Parent chromosomes are chosen with a higher probability from those individuals with higher

fit. In their approach, they combined all the bins from both parent chromosomes and sort them

by fitness. The fuller a bin is, it is on top of the list, and therefore less full bins are at the bottom

of the list. From the top of the list, some bins will be selected and the rest of the bins will be

discarded. If there is a bin which contain an individual belongs to already selected bins, that

bin will be discarded as well. For the individuals which are discarded, they will be ordered

by their fitness and first fit descending algorithm will be used in order to reinsert them to the

offspring chromosome.

Because the algorithm always prefers tightly packed bins over other bins, they added a Gaus-

sian noise to the fitness function of the individuals in order to escape the local minimums.

Respectively, in their mutation operator, the mutation take place more on less fit bins than

good bins. This will assure that the structure of good groups does not intact often. They used

three mutation operator. First one is the normal GGA mutation in which some bins will be

randomly removed, and their associated individuals will be reinserted into the other bins. In

the second method, two items in the order list will be swapped, and finally in the third one, one

item will be randomly relocated in the order list.

1.2.2 Grouping Mechanism in Grouping Genetic Algorithm

In Falkenauer and Delchambre (1992), Falkenauer and Delchambre proposed a new version

of genetic algorithm known as grouping genetic algorithm. They argue that normal genetic

crossover and mutation operators are not able to preserve the group features of the parent

chromosomes. In the straightforward encoding scheme, each item (for example, a VM) is

represented by a gene in the chromosome, and its label is its group (for example, a server)

which that item belongs to. For example, the chromosome ADEBFFBC encode a solution for

8 VMs where the first VM is on server A, the second VM is on server D, and so on. Basically,

when there are two parents with good groups defined in their chromosomes, there is no way

for normal genetic crossover operator to create an offspring in which those good groups are

preserved. A part of a child chromosome comes from one parent, and the rest comes from

the other parent. Therefore, well-defined groups in both parents will break in parts, and the
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probability of having an offspring with stronger groups is very low. Therefore, they proposed a

new crossover and mutation operators in their new algorithm, which perform on groups instead

of individual genes.

In their crossover operator, the groups presented in the chromosomes are lined up (keeping

one gene per group), and the crossover will happen on these two group representations of the

parents. For example, for the chromosome ADEBFFBC, the group lineup will be ADEBFC. It

is worth noting that, in the group representation, the chromosomes could be of variable length.

Two crossover points will be randomly selected in each parent group-lineup. And, the groups

in middle part of the second parent group-lineup will be inserted in first parent group-lineup at

the first crossover point. For example, consider a group-lineup of the parents as follows:

P1 : ADE||BFC (ADEBFFBC)

P2 : bd|ca| (bbdcabba)

where the groups with same alphabetic character but with different cases (upper and lower

cases) are same but represent that group in first and second parent, and crossover points are

marked as |. Also, the straightforward encoding of the chromosome is provided in parentheses.

After insertion, the offspring group lineup of the offspring will look like (ADEcaBFC). Because

the groups “c” and “a” are inserted from the second parent, their matched groups in first parent

“C” and “A”, are no longer valid and these two groups and all their assignments to individual

genes will be removed from the offspring; remaining the offspring group lineup as (DEcaBF).

For our example, the straightforward encoding of the offspring will be: (?DEcaFBa). "?"

symbol shows that the first individual gene has no group assigned to it any more because group

A is removed from the chromosome. In a same way, there are some individuals which are in

groups “c” and “a” in second parent while they are in other groups in first parent. The group of

these individuals will be replaced with inserting groups from second chromosome. The groups

of replaced individuals need to be removed with all assignment to individual genes which are

groups “B” and “F” in the first parent.
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For our example, the straightforward encoding of the offspring will be: (?DEca??a). Now,

there are some individuals which their group assignments are removed from chromosome in

previous actions which needs to be reinserted in the offspring chromosome. First Fit Descend-

ing algorithm (Garey and Johnson, 1979) is used in order to reinsert the removed individuals

into the chromosome. The priority is with the groups which are almost full.

In Figure 1.1, another example is illustrated with larger variety of groups. Each individual

gene is represented by a number. Groups are represented by circles and they are labeled by

alphabetic characters. Circles with same color are in a higher level group.

Figure 1.1 GGA representation for parent chromosomes.

The crossover operation in progress is illustrated in Figure 1.2. The arrows indicate the new

position of the genes in the offspring (child) chromosome. Red arrows represent the genes

coming from replaced groups. Black arrows represent the genes from removed groups, and

blue arrows represent the genes from other groups.

Some genes are removed from the chromosome which are indicated by a cross sign. The black

cross sign indicate the removed genes in a removed group. Red cross sign indicate the removed

genes in a replaced group, and blue cross sign indicate the removed genes in other group with at



31

Figure 1.2 GGA crossover in progress.

least one gene in inserted groups from second parent chromosome. The final child chromosome

is illustrated in Figure 1.3.

In mutation operator of grouping genetic algorithm, the lineup of groups will be created in

a similar way of the crossover operation. Then, some groups will be chosen by random and

those groups with their containing individuals will be removed from the chromosome. Then,

there are some individuals, which have been removed in previous action, and are needed to be

reinserted into the chromosome. A similar action as that of the crossover operator will be taken

here in order to reinsert the removed individuals into the chromosome.

Figure 1.3 GGA crossover final result.
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1.3 Server Energy Metering

Although higher server utilization is one of the possible motivations for server consolidation,

data centers have other important objectives, such as energy efficiency and carbon footprint

reduction, which should be considered. This requires accurate models for provisioning the

energy consumption or carbon footprint of the servers.

The basic model for the energy metering of a physical server was introduced in Kansal et al.

(2010):

Esys = αcpuμcpu + αmemμmem + αioμdisk + γ (1.3)

in which the total energy consumed by a physical machine Esys is calculated based on the rate

of use of various elements of that physical machine, namely: CPU (μcpu), memory (μmem),

and disk usage (μdisk). αcpu, αmem, αio, and γ were the equation constants. In this work,

the authors claimed that the model has a small margin for error and low processing overhead.

However, they assumed that it is suitable for a virtualization environment without validation

(Bertran et al., 2010a).

Bertran et al. then introduced a model to measure the power consumption of the CPU and

memory of a server based on performance monitoring counters (Bertran et al., 2010b):

Ptotal =
cores∑
j=1

{(
comps∑
i=1

ARij × Pi

)
+ Pstatic

}
(1.4)

where Ptotal is the total power consumption of the CPU and the system’s memory components

in a multicore server, ARij represents the Performance Monitoring Counter (PMC)-based for-

mula accounting for the activity ratio, and Pi are the formula constants. These constants can be

calculated through linear regression techniques for each type of server from experimental data.

In that work, the same model was used and validated for virtualized environments (Bertran

et al., 2010a). Despite the accuracy of the model, in order to arrive at the total energy con-
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sumption of a virtual machine, a server, or the whole cloud, components other than the CPU

and the memory in a hardware machine, such as network, storage, and utilities, need to be

taken into consideration.

In Liu et al. (2009), the energy consumption of a cloud is divided into a number of terms:

Etotal = Emigration + Eservers + Eutilization (1.5)

where Etotal is the total energy consumption of the data center, Emigration is the energy con-

sumption corresponding to migration of the virtual machines (VMs), Eservers represents the

energy consumption of the servers, and Eutilization represents the energy consumption of other

utilities. Note that the energy consumption of VMs is normally included in the energy con-

sumption of the physical machines. However, the migration cost reflects the extra energy

consumption of physical machines, like servers and routers, required to migrate a VM from a

source server to a destination server.

If the frequency of the CPU cores of a server is adjustable between a minimum and a max-

imum value, the power consumption of the CPU varies significantly with variations of CPU

frequency. The power consumption of CPU can be presented as a function of frequency (Wang

and Lu, 2008; Chen et al., 2005):

Pcpu = βcpu + αcpuf
3
cpu (1.6)

In summary, Equations (1.3) and (1.4) provide two ways for calculating the power consump-

tion of servers. These two models are compared in the experimental results section with our

proposed model. Our proposed model for server power metering is used to calculate the power

consumption of servers in the simulation platform. Equation (1.5) considers an extra term for

power consumption of data centers that represents the power consumption of the migration
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actions which are used in our load balancing experiments. Last, Equation (1.6) is used for cal-

culating the energy consumption of fully-utilized servers in the HPC job scheduling scenarios.

1.4 Cooling System Power Modeling

The main part of supporting facilities in any data center is its cooling system. Traditionally,

the cooling system was used to consume as much energy as the main IT equipments. However,

with the general move toward efficiency and lowering costs and also environmental footprint

of data centers, the cooling systems are also becoming smarter and more efficient (Wright,

2013). It worth noting that, even at hypothetically zero-footprint operation, i.e., being carbon

neural, the issue of wasted heat generated by the cooling systems (and in general the whole

data center) will be becoming a critical factor in the design of next generation of data centers.

This is a result of the IT industry move toward a more environmentally responsible operation

in alignment with the ICT enabling effect. In this section, we review the cooling systems and

also their modeling.

Because of complexity of the energy consumption in data centers, which is heterogeneously

distributed among various components at different levels and scales, a reliable operation of

data center highly depends on identification, reduction, and handling of the heat generated

across the whole spectrum of components involved: from chips, blades, racks, and computer

rooms (CRs) to the cooling system itself. Although heat handling at the chip level is usually

unnoticed, it has been observed that almost 30% of the cooling power consumption is related to

this level of cooling to feed semiconductor fridges and also fans in order to extract the heat from

the chips (Patel et al., 2006). It worth noting that this portion of cooling system consumption

is somehow hidden to the analyzers and does not counted in the actual analysis of the data

centers, such as in the Power usage effectiveness (PUE) analysis. The PUE is defined as the

ratio of the total power consumption of the data center facility to that of the IT equipments
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(Haas et al., 2009):

PUE =
Total power consumtion

IT power consumption

=
Support facilities consumption + IT consumption

IT consumption
(1.7)

where Support facilities power consumption is the total power consumption of the support fa-

cility equipments, such as cooling system, power distribution system, and lighting system. A

recommended practice for measuring the PUE is the weekly-averaged PUE using data points

gathered continuously with a Level 2 (at the PDU level) meter placement, and with the pe-

riod of measurement and assessment of a year (Haas et al., 2009; Tipley, 2012). The annual

condition helps to avoid seasonal variations in the assessment.

It is worth noting that the cooling systems are usually designed with oversized capacities. The

designers are required to consider oversized cooling systems in order to guarantee redundancy

and also allow future additional installation of new IT equipment. In general, oversizing helps

to avoid frequent downtime with preventing: 1) condensation, 2) temperature-related failure,

and 3) cold installation of additional IT equipment.

In this study, we will use with an air-cooled, raised-floor, bricks-and-mortar (is often used

to refer to a company that possesses a building for operations) datacenter architecture with

a chiller cooling plant. In this section, a review on the elements and also related models is

presented. A cooling system can be divided into three major parts: 1) the computer room

AC (CRAC), 2) the chiller facility, and 3) the cooling tower. Air/liquid/air systems has the

advantage of ability to rapidly extract the heat from the facility; one kilogram of water can

store about four times as much thermal energy as the same mass of air, while its volume is

much smaller.

The energy consumption of the cooling system of a typical datacenter is a very complex pro-

cess because many heterogeneous and completely different components play essential roles in

a tight collaboration. From the chip scale to the cooling tower scale, energy consumption and

also heat handling are very critical and at the same time they rely highly on the performance
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at other scales. To be precise, we assume that there are 6 scales in a data center: 1) chip, 2)

blade, 3) rack, 4) computer room (CR) (also, we may unofficially call it data center), 5) CR +

chiller units (CH), 6) CR + CH + cooling tower (CT). The components used at each scale and

also the physics that governs its related phenomena are completely different. As our study is

more focused on the management of a distributed cloud comprised of a few data centers, we

assume that the same best practice has been used for heat handling at the chip, blade and rack

level in all data centers. Therefore, we will ignore the impact of heat handling at these scales in

our models. However, we want to point out these scales play a critical role in the total cooling

performance of a datacenter. For example, as mentioned before, fans and thermoelectric cool-

ers at the chip level can consume as high as equivalent of 10% to 30% of the power of the chip

itself (Patel et al., 2006). Also, the design of the air flow inside and around a rack (for example,

using snorkels) can impact the severity of hot spots and temperature distribution within racks,

which in turn impacts the amount of cooling power or the inlet temperature required (Das et al.,

2010).

The high-level schematic of the datacenter in terms of power consumption and also heat han-

dling is shown in Figure 1.4. The heat generated by the IT equipments, the lighting, and also the

CRAC’s fans themselves is removed from the CR by the CRAC units via an air loop. The warm

air collected by CRAC units is passed through heat exchangers coupled with the chilled water

loop of the chiller plant. The warm water is passed to the chiller units where, in a mechan-

ical refrigeration cycle, the heat is transfered to another water loop connected to the cooling

towers. In the chillers part, several pumps condense the water in the cooling tower loop, and

some other secondary pumps move the chilled water in the chilled water loop connected to

the CRAC units. In the cooling towers, some fans create a vaporization cycle of outdoor air

to extract heat from the warm water. In the following sections, energy consumption and heat

handling of each component of the cooling system are separately presented.

In the following sections, we follow the same path as that of Figure 1.4 to analysis the compo-

nents of a data center.
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Figure 1.4 The chiller plant (cooling system) overview.

1.4.1 Computer room (CR)

In a computer room, there are 4 components that consume energy: 1) IT equipments. 2)

lighting, 3) humidity controller, and 4) CRAC fans.

IT equipments, Lighting and Humidity Control

The power consumption of IT equipments are discussed in the previous section (refered here

by PIT), and although lighting and humidity control can considerably contribute to energy

consumption and also heat generation, we assume that their power consumption and heat gen-

eration are zero:

PLighting;Humidity = 0, QLighting;Humidity = 0 (1.8)
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CRAC units

The main component of a CRAC is its fan(s) that moves cold air toward racks and collects the

warm air. We assume all fans are equipped with variable-frequency drives (VFD) that allow

real-time control of fans speed. The power consumption of CRAC fans can be modeled as an

almost cubic (power of 2.75) relation (Das et al., 2010):

PCRAC = PCRAC,fan = PCRAC,fan,maxθ
2.75
CRAC (1.9)

where θCRAC is the utilization ratio of the CRAC (between 0 and 1). A typical value for

PCRAC,fan,max is 6.32 kW. Usually, more than one CRAC is installed in a CR. However, we

did not explicitly put the number of CRAC units nCRAC in the above equation to emphasize on

the possibility of running each CRAC at a different utilization ratio. However, from here on

and for the purpose of simplicity, we assume that all CRAC units in a CR are working at the

same utilization ratio.

The air flow generated by the fans is also affected by the value of θCRAC:

φCRAC = φCRAC,maxθCRAC (1.10)

This equation will be used later in calculating the heat handling capacity of the CRAC units in

the next section. A typical value for φCRAC,max is 5.85 m3/s (Das et al., 2010).3

1.4.2 Chillers

The total energy consumed by the chiller plant, PCH, is equal to:

PCH = Pchillers + PChPumps + PSecPumps (1.11)

31 m3/s = 2119 cfm where cfm stands for cubic feet per minute.
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where PChPumps and PSecPumps are the power consumption of chiller’s pumps and chiller’s sec-

ondary pumps respectively, and

Pchillers = PChComp + PChCondFan (1.12)

where PChComp is the power consumption of chiller’s compressors and PChCondFan is the power

consumption of chiller’s condensation fans. We will only use Pchillers in our modeling from here

on.

If we define Pchillers as chiller power consumption at a specific θChiller value (the utilization ratio

of the Chiller), we have (Lee and Lee, 2007):

Pchillers = Pchiller,maxnChiller

(
AChillerθChiller +BChillerθ

2
Chiller

)
(1.13)

where AChiller and BChiller are the chiller’s parameters. We use the following typical values in

this study (Lee and Lee, 2007): AChiller = 0.3799 and BChiller = 0.6194. nChiller is the number

of chillers planned in the chiller plant. Having more than one chiller not only allows to save

more energy, it can reduce the failure risk because of higher redundancy. For example, for

θChiller = 75% = 0.75, we have Pchiller = 0.6333nChillerPchiller,max.

Chiller pumps

Usually, because of high level of design dependency, a pump-chiller ratio (PCR) is considered

to relate the pump power consumption to the chiller power consumption in chiller units. Based

on typical systems in the market, the PCR is around 0.3 (Energy Design Resources, 2010).

In cases where there are more than one chiller (with one pump per chiller), the total power

consumption of the pumps is:

PChPumps = PCRPchiller,maxnChPumps ×(
AChPump(θChPump) + BChPump(θChPump)

2 − CChPump(θChPump)
3
)

(1.14)
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where nChPumps = nChiller is the number of pumps. θChPump is the utilization ratio of a chiller

pump. Assuming the same number of pumps as the number of chillers:

θChPump � θChiller. (1.15)

AChPump = 0.338249, BChPump = 0.972488, and CChPump = 0.291451 for a typical system (Lee

and Lee, 2007).

The mass flow of water in the loops is assumed to be a function of pump utilization:

(dm/dt)CHW = (dm/dt)CHW,maxθChPump (1.16)

(dm/dt)CW = (dm/dt)CW,maxθChPump (1.17)

where (dm/dt)CHW and (dm/dt)CW are the water mass flow in the chiller-water loop and cool-

ing tower-water loop, respectively.4 The (dm/dt)CHW,max will be calculated in the next section.

1.4.3 Cooling tower (CT)

A cooling-tower chiller ratio (CCR) is considered to relate the cooling tower power consump-

tion to the chiller power consumption in a chiller plant. Based on typical systems in the market,

we assume a CCR of 0.12 (Energy Design Resources, 2010). The CT fans follow a simi-

lar governing equation as that of the CRAC units with different parameter values (assuming

variable-frequency drive (VFD) fans):

PCT = CCR Pchiller,maxnChillerθ
2.75
CT = PCT,maxθ

2.75
CT (1.18)

where θCT is the utilization ratio of the CT. A typical value for PCT,max will be 0.12× 80× 5 =

48kW.

4CHW and CW stand for chiller-water and cooling tower-water respectively.
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The air flow of the CT fans is also affected by the θCT:

φCT = φCT,maxθCT (1.19)

A typical value for φCT,max is calculated as:

φCT,max =
φCRAC,max

PCRAC,fan,max

CCR Pchiller,maxnChiller (1.20)

=
5.85

6.32
0.12× 80× 5 = 44.42 m3/s (1.21)

1.4.4 Heat Handling Capacity in a Datacenter

CRAC units

The cooling power, or heat handling capacity, of the CRAC units can be expressed as follows:

Pcooling,CRAC = ACRAC,coolingφCRACnCRAC (TCR − TCHWS) (1.22)

where TCR is the ceiling temperature in the CR, and TCHWS is the chiller water source temper-

ature. nCRAC is the number of the CRAC units. The specific heat capacity of air ACRAC,cooling

is 1/(0.8634) = 1.1582 in (kW/ (m3/s C◦)) and 1/3293 in (kW / (cfm F◦)). In this study, we

assume TCR = 40◦ and TCHWS = 7◦. This comes to 227 kW cooling power for a typical CRAC

unit when working at its maximum capacity. In this study, for a typical 1MW CR, we need 5

CRAC units of 227 kW cooling capacity.

At the same time, Pcooling,CRAC should also be equal to the heat generated in the CR:

Pcooling,CRAC = QIT + PCRAC (1.23)

To be safe, we assume QIT = PIT from here on.
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In this way, the coefficient of performance (COP) of the CRAC units will be:

COPCRAC =
Pcooling, CRAC

PCRAC

(1.24)

which will get to 227kW/6.32kW = 36 for our typical example in this study.

There is a discussion that if we keep the ΔT high (avoid mixing cold and hot air by isolating

their paths or by any other means) the efficiency of the CRACs will increase considerably

because of reduction in the required air flow. However, there is a trick here. The sources of

heat are usually inside the chassis, and it is highly possible that some hot spots could develop

when the air flow is low. Therefore, management of the air flow at local and small scales is

very important before any attempt at bigger scales. However, this is out of the scope this study

and will be considered in future.

Chillers

The cooling power, or heat handling capacity, of a chiller plant can be expressed as follows:

Pcooling,CH = (dm/dt)CHWCpnChillers (TCHWR − TCHWS) (1.25)

where TCHWR is the returning water to chillers temperature (return: 14 Celsius degree) and

TCHWS is the chiller water source temperature (supply: 7 Celsius degree). The number of

chiller units is denoted nChillers. Cp is 4169 at 25◦C in (kW/ (m3/s C◦)) and 1/6.817 in (kW

/ (cfm F◦)). The mass flow (dm/dt)CHW,max can be then calculated as: 1200/(4169 × 7) =

0.041m3/s = 41kg/s.

Also, Pcooling,CH is equal to the heat generated up to the CRAC boundary:

Pcooling,CH = PIT + PCRAC (1.26)
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Pcooling,CH has a degradation relation with utilization ratio

Pcooling,CH =
Pcooling,CH,max

Pchillers,max

Pchillers

(
1− Bcooling,CH(1− θChiller)

2
)

This is why having multiple but smaller chillers is recommended that also decreases the risk of

failure. For the purpose of simplicity, we assume Bcooling,CH = 0.

Pcooling,CH = Pcooling,CH,maxnChiller

(
AChillerθChiller +BChillerθ

2
Chiller

)
(1.27)

COPchiller is the coefficient of performance of a chiller unit: COPchiller = Pcooling,CH/Pchillers. In

market, the COPchiller is assumed to be around 5.0 to 3.9 for chiller units (equivalent to 0.7-0.9

kWh/ton). One ton of cooling is equivalent to 12,000 Btu = 3.51685 kWh.

Cooling tower (CT)

The governing equation at the CT are as follows. The heat handling of the water loop is equal

to the cooling capacity of the CT:

(dm/dt)CW =
Pcooling, CT

Cp(TCWR − TCWS)
(1.28)

This water mass flow is also related to the utilization ratio of the chiller pumps:

(dm/dt)CW = (dm/dt)CW,maxθChPumps (1.29)

Note, we assumed θChPumps = θChiller in this study. The maximum mas flow (dm/dt)CW,max can

be also calculated: 1200MW/(4169× 6) = 0.048m3/s = 48kg/s.

At the same time, Pcooling,CT is also equal to the heat generated up to the chiller units’ boundary:

Pcooling,CT = PIT + PCRAC + PCH (1.30)
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The cooling capacity of the CT is related to amount of water evaporated:

Pcooling,CT =
dm

dt CT
Lp (1.31)

where Lp = 2405kJ/kg is the latent heat of water evaporation.

For a CT designed to handle 1.2MW heat load (from our typical example of 1MW CR), and a

range of 6◦ and an approach of 5◦, we can calculate its performance as follows; its heat capacity

is equivalent to a flow of water in the loop with a flow rate of:

(dm/dt)CW,max =
1.2MW

4169 J/kg C◦ × 6
= 47.97kg/s (1.32)

The amount of water required to be evaporated at the CT peak power can be calculated as

follows:
dm

dt CT,max
=

1.2MW

2405 kJ/kg
= 0.5kg/s (1.33)

This is equal to 0.5 × 3600 × 24 = 43.11 m3/day water footprint. In this study, the water

footprint is not a target. However, we wanted to point out that the environmental footprint of a

datacenter is not limited just to its GhG emissions.

The partial COP of the CT can be estimated as follows:

COPCT =
Pcooling,CT

PCT

(1.34)

which will get to 1200kW/48kW = 25 for our typical example in this study.

Finally, it is important to note that the performance of an air-based cooling system is affected

by the altitude of a data center (Fumo et al., 2011)5. Considering the geographically-distributed

nature of an NDC, the differences in the altitude of the participating data centers would have a

big impact on their performance and also consumption.

5The altitude affects the Twb, which in turn affects the performance of the cooling system.
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1.5 Simulation Platforms for Energy Efficeiny and GhG Footprint in Cloud Computing

In the following sections, several existing simulation platforms are discussed and their main

features are presented.

1.5.1 CloudSim

CloudSim is the most famous multi-platform cloud simulation platform, which is developed

at the University of Melbourn (Buyya et al., 2009).6 The mission of the project associated to

this simulator is to provide a generalized, and extensible simulation framework that enables

seamless modeling, simulation, and experimentation of emerging Cloud computing infrastruc-

tures and application services. To be more specific, it supports features such as large scale

Cloud computing, virtualized server hosts, energy-aware computational resources, specifica-

tion of data center network topologies and message-passing applications, federated clouds,

dynamic insertion of simulation elements, stop and resume of a simulation, user-defined poli-

cies for allocation of hosts to virtual machines and policies for allocation of host resources to

virtual machines, economic aspects of the cloud market, and dynamic workloads. At the same

time, it suffers from the limitations such as absence of GUI, lack of support for geographically-

distributed data center configurations, lack of support for geographically distributed user work-

loads, lack of validation of data and models, and lack of support for variations in network delay

due to high demand or equipment failure. Its latest release was CloudSim 3.0.3 on May 2nd,

2013.

In addition to CloudSim, CloudSimEx is a side project to develop extensions for the main

CloudSim simulator. For example, MapReduce simulations is available as a feature of CloudSimEx.

Furthermore, Cloud Analyst is a tool developed at the University of Melbourne whose goal is

to support evaluation of social networks tools according to geographic distribution of users

and data centers. This tool characterizes location-aware social-network communities of users

and data centers. It calculates parameters such as user experience while using the social net-

work application and also load on the data center. This simulator can be used to perform

6http://www.cloudbus.org/cloudsim/
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some geographically-distributed scenarios. Its main features are easy to use GUI, ability to

define a simulation with a high degree of configurability and flexibility, repeatability of exper-

iments, graphical outputs, and use of consolidated technology and ease of Extension (using

Java Swing).

1.5.2 GreenCloud

The lack of detailed simulators on the market was the motivation for University of Luxembourg

to develop this Linux-based green cloud simulator that aims at the cloud performance indicators

(Kliazovich et al., 2012).7 GreenCloud is an energy-aware packet-level simulator of cloud

computing data centers. It has been elaborated in the context of the GreenIT project with a

focus on the communications within a cloud at the packet level.

1.5.3 iCanCloud

iCanCloud is another multi-platform initiative (Núñez et al., 2012),8 developed at Universidad

Carlos III de Madrid, Spain toward simulation of cloud computing data centers. It is written in

C++ on the top of SIMCAN Simulation platform which in turn is built on top of OMNeT++

and INET frameworks. SIMCAN was originally developed for simulating HPC systems. The

benefit of this architecture is that models of real hardware components were used to construct

the underlying core models of iCanCloud. It also provides a GUI and API to generate the

distributed models. The main objective of iCanCloud is to predict the trade-offs between cost

and performance of a given set of applications executed in a specific hardware, and then pro-

vide to users useful information about such costs. In iCanCloud, simulating instance types

are provided by Amazon, and therefore their models are included in the simulation frame-

work. Its main features are ability to model and simulate both existing and non-existing cloud

computing architectures, providing flexible cloud hypervisor module, providing customizable

VMs to quickly simulate uni-core/multi-core systems, providing a user-friendly GUI to ease

the generation and customization of large distributed models, providing a POSIX-based API

7http://greencloud.gforge.uni.lu/index.html
8http://icancloudsim.org/
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and an adapted MPI library for modeling and simulating applications, and ability to add new

components to the repository of iCanCloud to increase its functionality.

However, it should be noted that in practice it is limited to three virtual machine prototypes.

These VMs are Customizable but of fixed resource. For example, the small VM prototype has 1

CPU, 1 disk and 1 GB RAM. Since the iCanCloud simulator is intended to model the Amazon

EC2, it was straightforward for its developers to validate it against the actual hardware. An

application simulating orbital trajectories of the Mar’s moon Phobos was run on both EC2 and

iCanCloud. Results for the Cost per Performance benchmark closely matched runs executed

on the EC2. Current limitations of iCanCloud are: i) only the Cost per Performance modeling

has been validate, and ii) only the EC2 environment has been implemented or tested.

1.5.4 MDCSim

MDCSim is an event driven simulator, integrated on the commercial CSIM (Lim et al., 2009).

It works similar to to CloudSim. Below, in Table 1.2, a comparison of these popular cloud

simulators is provided. As can be seen from the table, although each one provides some in-

teresting features, none of them are comprehensive in terms of covering both job scheduling

on a distributed cloud, and also i) detailed, real-time modeling of the power consumption, ii)

real-time inclusion of power mix of the electricity grid, and also iii) detailed modeling of the

cooling system are totally absent. These three factors, as we will show in the following chap-

ters, are critical in ecofriendly and green operation of any distributed data center network, and

by ignoring them a large margin of error will be imposed on the performance of the system.

Feature GreenCloud CloudSim MDCSim iCanCloud

Platform Ns2 Simlava CSIM OMNeT/MPI

Language/Script C++/OTcl Java C++/Java C++

Availability Open source Open source Commercial Open source

Simulation time Tens of minutes Seconds Seconds Seconds

Graphical support
Limited (Network animator
Nam)

Limited (CloudAnalyst) None Yes

Application models
Computation, Data transfer,
and Exec. deadline

Computation, Data transfer Computation Computation, Data transfer

Communication models Full Limited Limited INET

Support of TCP/IP Full None None Full

Physical models Available using plug in None None Amazon

Energy models Precise (servers + network) None Rough (servers only) None (Work-in-Progress)

Power saving modes DVFS, DNS, and both None None None

Table 1.2 Comparison of cloud computing simulators
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1.6 Chapter Summary

There is a long history of works on the network of data centers, but they are mainly focused

on performance aspects of the system. However, there are some works which are focused

on energy topics, but they are not inclusive in regards to some important considerations such

as carbon regulations, energy mix variations, energy price variations, temperature variations,

global optimization, profit parameters, workload intensity variations, and cooling system vari-

ations and optimization.

Some works use DVFS as a tool for energy efficiency. They calculate an optimum frequency

for each job which the energy consumption is minimum, but the question remains that how

these local optimums can guarantee the global optimum.

The cooling model used in many of these works is simple. However, there are some works on

different components of cooling systems, but there is no general model which can be applied

to data center with high details. Furthermore, having this detailed model on hand, the cooling

system can be optimized for energy efficiency. Also, current models for server metering and

server consolidation are not totally accurate, which they can be improved to a higher level of

accuracy.

In regards to the web application load balancing, up to our best knowledge there is no study

which include data center consolidation in contrast with server consolidation. In addition, a

full energy diversity investigation is not conducted on a geographically distributed cloud.



CHAPTER 2

CARBON-PROFIT-AWARE GEO-DISTRIBUTED CLOUD

In the literature review (Chapter 1), a global picture of researches related to energy modeling

and efficiency in data centers was provided. As it was summarized in Section 1.6, there are

several issues associated with current practical and theoretical solutions which are related to

the lack of considerations of carbon regulations, energy mix variations, energy price variations,

temperature variations, global optimization, profit parameters, workload intensity variations,

and cooling system variations and optimization.

This chapter describes the main idea of this research which is the attempt to fulfill Obj #1 of

this thesis. First, it provides details about a state-of-the-art architecture of a Geo-DisC system

(baseline). Then, it provides details about improvements to this baseline architecture in many

aspects of the system such as objectives, modeling, and algorithms. As is shown in Table 1.1,

researchers are considering a variety of different parameters, and it is difficult or infeasible to

compare their results individually with other researchers results. Therefore, here, an inclusive

architecture is described as the baseline of this research which includes the best practices from

various state-of-the-art studies. For example, if research “A” considers the energy price and

research “B” considers the energy mix, this baseline considers both energy price and energy

mix. Last, result of our proposed architecture will be compared with the result of state-of-the-

art algorithms implemented in this baseline architecture.

The first section of this chapter describes the baseline architecture, and the second one ad-

dresses the issues discussed in the literature review by suggesting improvement in baseline

components or introducing new components such as a new Carbon-Profit-Aware (CPA) sched-

uler.

2.1 State-of-the-Art Geo-DisC Architecture (Baseline Design)

With the advantage of using cloud computing for resource consolidation and other purposes

such as high availability, scalability, and system maintenance, virtual machines are often shuffle
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and move to different physical servers to increase energy efficiency. In an organization, this is a

common practice nowadays to move applications from underutilized servers to highly utilized

servers. Therefore, management of the consolidation of resources is very important in such

systems, especially when the servers are geographically distributed. For example, a system

like Amazon web applications, has data centers in different locations, and it is possible to

run applications in any of these locations with different prices. In Figure 2.1, the schematic

of a geographically distributed system is illustrated. As it is shown, in a distributed cloud

Figure 2.1 Geo-DisC baseline schema

environment, there are several well connected data centers forming one cloud. In fact, Geo-

DisC is a big uniform cloud which operate on top of several geographically distributed data

centers. As a practice in previous researches, multiple data centers are located at geographically

distributed locations to ensure redundancy for business continuity.

These data centers generally consist of computer rooms with many racks of servers. In many

larger data centers, there are multiple computer rooms to accommodate large quantities of

server racks. To avoid overheat, cooling systems are often required in each data center. By

using virtualization technology, as is shown in Figure 2.1, multiple virtual machines can re-

side in a physical server. These VMs run different type of applications (jobs) in an isolated
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environment. A VM can be paused, stopped, saved, resumed, and snapshotted, which are very

important in terms of high availability concepts. If a server which is running a job breaks down,

that aborted job can be restored in another server with minimum loss of data and service.

Depending on the type of the application (HPC or web), each job needs a certain amount of

time and a number of CPU cores to be completed. It is assumed that an HPC application is an

application which mainly utilizes CPU core, and the usage of network and disk are negligible.

On the other hand, web applications are less CPU demanding, but they may run for longer

periods with higher network usage. When a client requests to execute a job, the job scheduler

that is located outside of the cloud determines which data center/server and what time inter-

val are best options to handle the job before it dispatches it to the local manager of a specific

data center. The job scheduler will determine this suitability based on the job’s resource re-

quirements, current workload of each data center, cost of energy source, and greenness of data

centers. Once the request reaches the local manager of a specific data center, the manager is

responsible to provision the suitable VM on the determined server in the determined time slot.

As each data center may be located at different city, region, or even country, they are bound to a

different type of energy suppliers. For instance, a data center residing in Ontario would mainly

use nuclear power versus a data center residing in Quebec that would mainly use hydro source.

Given that scenario, the type and cost of energy vary for each data center. Besides that, power

suppliers often charge a different rate for different time of the day (which also shifted because

of their different time zones). These polices includes billing a higher price per kWh during

peak hours versus non-peak hours. Moreover, some countries apply carbon tax on fossil-based

fuels; such as coal, petroleum, and natural gas to reduce carbon dioxide (CO2) emissions, the

primary cause of global warming.

The main aspects of a Geo-DisC which are data centers, job scheduler, and job trace were

described here. More detail on components of this design is provided in the following subsec-

tions.
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2.1.1 Energy Model

In the previous subsection, a general view of a typical Geo-DisC was presented. In order that

job scheduler creates an optimum job schedule, it needs to have access to an accurate estimate

of energy consumption of the jobs. Therefore, having accurate energy models are necessary. In

previous sections, the energy consumption was mentioned several time. The energy consump-

tion of the system can be achieved in two ways: direct measurement and energy models. Direct

measurement is not always possible, and it costs. Specific devices with supported features need

to be used in the system in different levels, in order to measure the energy consumption of the

components directly. The other problem with direct measuring of the energy is that it is not

possible to directly measure the energy consumption of subsystems. In addition, when sched-

ulers and optimizers are producing job plans for the future, they need to estimate the energy

consumption of each situation occurring in the future.

For the energy consumption of HPC jobs, the frequency model is used. Which, the power

consumption has a relation with the cube of the frequency of the CPU. Bringing down the

frequency of CPU will decrease the energy consumption of the server significantly, but the

downside is that by doing so, the completion time of the jobs will increase. As mentioned in

the literature review, in Garg et al. (2011), an optimum frequency for energy consumption is

calculated which may not be optimum for the profit of the system. For web applications, the

energy model, which is used, is different with HPC jobs and is based on the utilization of the

CPUs and servers.

Servers are not the only energy consumers of the system. Cooling systems consume a signifi-

cant amount of energy which need to be considered in a realistic model. As mentioned in the

literature review, a common method for considering the energy consumption of support in a

data center including the cooling system is to use the COP or PUE factors (Equations 2.1, 2.2,

2.3, and 2.4).

Etotal = EIT + Esupport (2.1)
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PUE =
Etotal

EIT

(2.2)

COP =
EIT

Esupport

(2.3)

COP =
1

PUE− 1
(2.4)

Here, a global description of energy models is described. These energy models will be used

in the following subsection in order to calculate the carbon footprint of the system. A more

detailed description of the models is provided in the modeling chapter.

2.1.2 Carbon Footprint and Pricing

In the previous subsection, models were described to measure the energy consumption of sys-

tems, but not all the energy sources are similar in terms of being environment-friendly. The

goal of this subsection is to describe why calculating the carbon footprint is essential, what

parameters are included and how to calculate it.

The role of GhG in global warming and climate change is not hidden for many people, and one

of main contributors to GhG is CO2 (carbon dioxide). Regarding catastrophic phenomenon

related to global warming such as sea level rise, it is absolutely necessary to measure and

control these dangerous substances.1

In this research, the focus is on the carbon footprint, but nevertheless all the non-environment-

friendly side-effects of human development are important and need to be considered in more

general researches such as Life Cycle Assessment (LCA) studies which is out of scope of this

research. Although there is no consistent correlation between the CO2 footprint and all the

other environmental impacts (Laurent et al., 2012), it is safe to assume that some of other

negative impacts of a system are also indirectly decreased when the carbon footprint of the

system is controlled.

1The record holder for the Global Warming Potential (GWP) is Perfluorotributylamine (PFTBA) with a GWP

of 7,100 for a 100-year timeframe (Hong et al., 2013). CO2 is the reference with GWP = 1.
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When the amount of consumed energy and the type of energy source is known, it is easy to

calculate the carbon footprint of the consumed energy by using the carbon emission factor of

that particular source of energy. However in the real life, electricity of a grid comes from a

mixture of various energy sources, for which an aggregated carbon rate needs to be calculated

based on the participating energy sources and the amount of energy they are contributing in the

grid.

In this subsection, the main aspects of carbon footprint of a Geo-DisC is discussed which are

its contribution to global warming, carbon rate, and energy mix. Models described here are

used to calculate the energy consumption and carbon footprint of a typical Geo-DisC, but in

order to calculate the total profit of the system, a model should be used to estimate the total

cost of the system based on its consumed energy and carbon footprint. In most work, a flat rate

is used to calculate the cost of energy. In the following subsections, the scheduling component

will be described.

2.1.3 Scheduler Features

Some metrics were described in the previous sections as the parameters of the system. A

scheduler can use this information to schedule a trace of jobs on a Geo-DisC system. The

main goal of a scheduler is to shovel around the jobs in order to reach its defined goal(s) while

respecting jobs restrictions. The goal of a scheduler can be to minimize the completion time

of jobs or minimize the number of failed jobs or minimize the energy consumption or carbon

footprint of the jobs or maximize the profit or achieve some of these goals all together.

Usually schedulers use a greedy approach for achieving one goal and multi-level approaches

for multi-objective scenarios. For example if the goals of a scheduler are to minimize the

carbon footprint and maximize the profit, it may sort the possible actions based on one goal

and sort the result of the first sort based on the other goal in order to satisfy both goals.

The traditional scheduling is done by schedulers such as Min-Min Completion Time, and the

newer environment-friendly ones use schedulers such as MIN-Min Carbon Emission in order

to minimize the carbon while maximizing the profit, but it has some problems as mentioned
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in the literature review. If the utilization is 100%, the algorithms do not work as they should

work. This claim is proven in the experimental results section.

The schedulers may also control the frequency of CPUs which are running the jobs in order

to achieve their goals. Usually this is done by calculating an optimum frequency for the jobs

which has the lowest energy consumption.

The main aspects of a scheduler are having accurate measures related to the goals of the sched-

uler, an algorithm which is able to achieve multiple goals at the same time, and a strategy for

adjusting the frequency of the CPUs. In the following subsection, another aspect of a Geo-DisC

will be discussed which is workload features.

2.1.4 HPC Workload Features

In the previous subsections, most of the components of a Geo-DisC were described. In this

subsection, the main features of the workload of such system will be explained. In order

to have realistic results, HPC traces are used from recorded real systems. For special use

cases, HPC traces are filtered to represent a workload with a specific feature or features. It is

very important to recognize the amount of load of jobs which is utilizing the system. Some

algorithms are good with certain utilization percentage of the system, and may not perform

well when the system is 100% utilized.

Based on the entry time of the jobs, their length and deadline of the jobs, number of needed

CPU cores, and also the type of scheduling algorithm, some jobs being scheduled, and some

failed which have a direct effect on the quality of service of the system.

In summary, based on the type of jobs and amount of utilization of the system, performance of

scheduling algorithms may differ which needs to be considered in the comparison of different

algorithms.



56

2.1.5 Summary

In this section, the common practice architecture of state-of-the-art research on HPC job schedul-

ing is presented which is a network of data centers forming a uniform cloud. Also, models to

calculate the energy consumption of a typical system is described. Based on the energy con-

sumption and energy mix of the region, it is possible to calculate the carbon footprint of the

system. With having the energy consumption, carbon footprint, and operational cost of the

system, the total cost of the system can be calculated, therefore, the profit of the system is

measureable.

A scheduler will act on the measures like energy consumption, carbon footprint, profit, and job

features to achieve its multiple goals such as maximizing the profit or minimizing the carbon

footprint or increasing the Quality of Service or Quality of Experience of the customers. The

whole system is a uniform cloud to take advantage of cloud features such as server consol-

idation and high availability. Job features such as system utilization percentage has a direct

effect on the performance of the schedulers which need to be considered in the experimental

comparisons. A system design able to address issues related to the baseline will be described

in the following section.

2.2 Carbon-Profit-Aware Geo-DisC Architecture (Our Proposed Design)

In the previous section, a baseline for a network of data centers is defined to process HPC

jobs based on the state-of-the-art researches. In the introduction, literature review and the

previous section (Section 2.1), the issues related to components of such system are mentioned

and discussed. Here, to address those issues, a new system, which is a series of improvements

to the baseline system, is introduced as a whole and its components are described. More details

on each component are provided in the following sections. By adding new components to the

baseline model, the new design should have better performance in reducing the cost and carbon

footprint of the system at the same time. It is expected that the new design be more realistic

than the baseline design since some components like cooling system are modeled with a high

degree of details. The schema of the new system is presented in the Figure 2.2.
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Figure 2.2 Carbon-Profit-Aware Geo-DisC schema

In this new design, several well-connected data centers, which are all supporting virtualization

technology, are considered while seamless VM migration between them is available. In each

data center, a power unit powers the servers and the cooling system. The cooling system is

controlled and optimized by a local optimizer. The local cooling system optimizer gets infor-

mation from servers and local weather station. These information provide the local optimizer

with how much heat is produced in the data center and how much is the outside temperature.

With these information, the local optimizer can adjust the performance of the cooling system

efficiently. All the information regarding the servers and cooling system is transferred to the

Network of Date Centers (NDC) manager through the DC managers. In the NDC manager,

there are models for every piece of the information in the system. The job allocator uses these

models and information for scheduling or load balancing of the jobs are being received in the

job buffer. The jobs in the job buffer are coming from various clients with different require-

ments. The job allocator uses the DC managers to schedule and load balance the jobs on the

end servers.
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In the following subsections, first the modeling of the new design will be discussed, then a

full description of the new scheduler will be provided. Then the concept of load balancer will

be discussed, and finally the role of different managers and controllers in the system will be

discussed.

2.2.1 Component Modeling

Modeling plays an extremely prominent role in this research. Without accurate and complete

information, producing a good decision seems impossible.

The performance of CPA scheduler is directly related to the accuracy of the governing models.

In this research, a detailed model for energy consumption of data centers is provided including

servers and cooling systems.

In addition to the calculation of energy and carbon footprint of the system which are described

in the previous section, a new measure is introduced in this research as greenness of the system

for modules or actions, which is a number between 0 to 1, which shows how much a data center

or an NDC or a server is green compare to the dirtiest available source of energy (Equation 3.4).

In addition, to have a realistic measure of energy consumption of the data centers, a very

detailed model for energy consumption of cooling systems is introduced in this research.

In most work, a flat rate is used to calculate the cost of energy for services. However, in many

places of the world, there are different rates for energy consumption in different hours of a day

and different seasons. Accessing to the price chart of a region, enable the scheduler to estimate

the price of energy in the future while making schedules for coming hours. In some places, it

is possible to buy the energy from an energy market with possibly lower rates, but considering

those energy markets are out of scope of this research.

In addition to the price of energy in some states, there is already a carbon tax in place which

will add another cost for carbon footprint to the total cost of the service. There is also other

related operational costs such as building rental, personnel, hardware/software investment, and
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network which need to be added to the total cost of the services. In addition, corporation tax

needs to be considered in order to calculate the net profit of the services.

With considering the energy (IT plus support, i.e. cooling) cost, carbon tax, operational cost,

and corporation tax, it is possible to estimate the total cost of the whole system or a single

service. The profit of the system can be calculated easily by subtracting the total cost from the

revenue. In the next subsection, the main elements of CPA scheduler will be discussed.

2.2.2 Carbon-Profit-Aware Scheduler

In the previous section, new modeled metrics of the new design were described. A new sched-

uler can use these new metrics to achieve new goals. Carbon-Profit-Aware scheduler is a sched-

uler which is aware of many parameters of the system.

In CPA scheduler, the frequency of CPUs are calculated in such a way that the objective of the

system is satisfied. There are many parameters which may contribute in lower profit of a Geo-

DisC such as increase in electricity price, increase in environment temperature, and decrease

in greenness of the energy mix. A good scheduler is aware of all these parameters, and because

the scheduler assigns the jobs to the core-time slots ahead of the time, it is highly important for

a CPA scheduler to have access to the future changes of the rates or predict the weather related

parameters.

The main module of the new scheduler is the optimum frequency calculator. The scheduler

uses this component to optimum the Geo-DisC towards its goals. This component is described

in the Section 4.3.1.

2.2.3 MLGGA Load Balancer for Web Applications

Previous section describes the job scheduler for HPC jobs, however, for web applications,

another type of controller needs to be used. Since main job scheduler estimates the efficiency

of a job based on energy prices and energy mix, its performance will be low if the length

of a job is beyond planned scope of the scheduler. For this type of job, which are mainly
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web applications, another component is required to dynamically migrate the jobs for efficient

utilization and GhG emissions reduction of system. In the Chapter 5 details, description of

MLGGA algorithm are explained.

2.2.4 Managers and Controllers

There are several controllers and managers in this design, which together enable the system to

achieve its goals. In Figure 2.3, different modules of the system are represented in a stacked

graph. As it is shown, the job controller module, schedule the jobs on VMs. It simply receives

the job schedule from CPA job scheduler, and it is able to create/delete VMs from servers

through hypervisors. Higher level modules such as NDC monitor and manager have access

to a wider range of data from their underlying modules, and they are able to control those

modules.

Figure 2.3 Carbon-profit-aware Geo-DisC stacked graph

NDC Manager is on top of the whole system, and any other subsystem is managed directly

or indirectly by this component. This component is responsible for running the whole system
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and achieving its goals. A DC manager acts like the NDC manager but in smaller scale. It

changes the energy and cooling system parameter of a data center by using the energy and

cooling system controller modules.

Figure 2.4 shows the flow of actions between managers and controllers. First, NDC manager

receives the requests from clients and updates the Jobs list. Next, CPA scheduler create a sched-

ule for the requested jobs on the available servers. It receives the necessary information about

the servers, energy and cooling system from job controller and NDC manager, respectively.

Then, the job controller execute the job schedule plan on the servers through the hypervisors.

It also has control on the servers through server controller such as the capability to turn on/off,

to put on standby, and to adjust the CPU frequency. Server monitor report the status of the

server to the job controller such as utilization and PMC metrics. On the other hand, NDC

manager controls the cooling system and energy parameters of the system through the DC

managers, and energy and cooling controller.

Figure 2.4 Carbon-profit-aware Geo-DisC control cycle
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2.2.5 Summary

In this section, components of an improved design for Carbon-Profit-Aware Geo-Distributed

Cloud are described. This design can be used for HPC jobs by using a CPA scheduler or

web applications by using an MLGGA load balancer. The goal is to increase profit while

minimizing the carbon footprint of the whole system. In order to have a realistic profit model,

several components are modeled which have a direct impact on the cost of the whole system

such as cooling systems, energy price, and tax.

2.3 Chapter Summary

In this chapter, a baseline system for Carbon-Profit-Aware Geo-Distributed Cloud is introduced

based on best practices from state-of-the-art studies. Main components of such system are a

multi-objective scheduler and energy and carbon models. Also, description of a new CPA

Geo-DisC is described with new models and new scheduler and load balancer.

Components of the new design are described in details in the following chapters, and the new

design is compared with the baseline by carrying out several experiments, and comparison

results are provided in the final chapter.



CHAPTER 3

GEOGRAPHICALLY DISTRIBUTED CLOUD MODELING

As it was mentioned in the introduction chapter, to have accurate results, accurate models are

needed such as energy consumption model of cooling systems. In this chapter newly intro-

duced models for cooling system, server, and profit-per-service are presented. Some models

are used in the HPC job scheduler, and some are used in the web application load balancer

which are explained in the following chapters. There are two main elements in a data center

which are responsible for the power consumption of a data center: the IT equipments and the

cooling system. In the following sections, first, a model is presented to estimate the power

consumption of the servers in Section 3.1.2, and then a model is presented and optimized for

power consumption of the cooling system in Section 3.2. Having the power consumption of the

servers and cooling system, it is possible to calculate the total power consumption of the data

center. If the power mix of the region is known, it is easy to calculate the carbon footprint of

the system based on the power consumption of the data center. Considering other parameters

of a data center such as electricity price, carbon tax, sales rate, and other taxes, it is possible to

calculate the profit of the data center (Section 3.1.1). Last, in order to evaluate the greenness

of the data centers some new meterics are defined in the Section 3.1.3

3.1 IT Equipment Modeling

In this section, several models will be introduced for calculating the necessary measurements

in a data center. Since in this research, our main objective is maximizing the profit of data

centers, in Section 3.1.1 a model is presented for calculating the profit of a load unit of the data

center. Later, this model will be used for calculating the total profit of the data centers in the

definition of the optimization problem, and it will be also used in the scheduler as a guide. In

order to calculate the carbon footprint of the data centers, it is necessary to calculate the energy

consumption of them. Therefore, in Section 3.1.2, a model is presented to calculate the power

consumption of the underutilized servers. As mentioned before, the servers are not the only

power consumers of the data centers and cooling system has a significant power consumption
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which needs to be considered in the calculation of the power consumption of the data centers.

Hence, in Section 3.2, a model is introduced to calculate and optimize the power consumption

of the cooling system.

3.1.1 Profit per Core-Hour-GHz

In Chapter 4, a new measure will be introduced as Profit Per Core-Hour-GHz (PpCHG) which

represent the amount of profit of the system associated with running an HPC job on one CPU

core for one hour while the CPU frequency is f . PpCHG is the main characteristics of the CPA

algorithm. In Equation 3.1, a formula for PpCHG is presented, where TAXRcorpregion,effective
(%)

represent the effective corporation tax rate of the business in the previous year in the region

where the business files the tax, SRcore,hour,gig (USD) represents the sales price for a CPU core

running for an hour with CPU frequency of 1 GHz, fcpu represents the frequency of the CPU,

βcpu and αcpu represent the energy model parameters of CPU, EPregion (USD) represents the

energy price rate of the region, gd(t) (%) represents the greenness of the data center, ρmax

represents the energy-carbon conversion rate (emission factor, kgCO2 per kWh) for the dirtiest

source of energy (coal), CTRregion (USD per kgCO2) represents the carbon tax rate of the region,

Ecoolingcore-houraverage
(kWh) represents the energy consumption of the cooling system in one hour

divided per number of CPU cores in the system, OPEXcore,hour (USD) represents the operational

cost of the data center associated with the running a core of CPU for an hour, and TAXRsalesregion

(%) represents the sales tax rate of the region. In this research the working frequency of the

CPU will be the variable of the equation and the other parameters are assumed to be known or

if they are not known it is assumed that they are predicted with the best knowledge available.
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PpCHG = (1− TAXRcorpregion,effective
)

(
SRcore,hour,gig ∗ fcpu

− (βcpu + αcpuf
3
cpu) ∗ EPregion

− (1− gd(t)) ∗ ρmax ∗ (βcpu + αcpuf
3
cpu) ∗ CTRregion

− Ecoolingcore-houraverage
∗ EPregion

− (1− gd(t)) ∗ ρmax ∗ Ecoolingcore-houraverage
∗ CTRregion

− SRcore,hour,Gig ∗ fcpu ∗ TAXRsalesregion
− OPEXcore,hour

)
(3.1)

The first term of the equation represents the corporation tax and amount of money produced by

the sales rate. The second term of the equation represents the energy cost of energy consumed

in the servers. The third term of the equation represents the carbon cost of emission produced

in the servers. Similarly, forth and fifth terms of the equation represent the energy and carbon

cost associated with the cooling system. The sixth term of the equation represents the cost of

sales tax and the last term of the equation represents the operational costs of the running a core

of CPU for one hour.

Since in this thesis, we only consider the cooling system as the main energy consumer of sup-

port system, then Ecooling = Esupport. According to Equations (2.3) and (2.4), the Esupport can be

rewritten in the form of Esupport = (PUE−1)EIT. Therefore in this equation the Ecoolingcore-houraverage

can be substitute with EITcore-hour
∗ (PUEaverage− 1), where EITcore-hour

= (βcpu +αcpuf
3
cpu). Consid-

ering the Ecoolingcore-houraverage
= (βcpu+αcpuf

3
cpu)∗ (PUEaverage−1), Equation (3.1) can be rewritten

as Equation (3.2).

PpCHG = (1− TAXRcorpregion,effective
)

(
SRcore,hour,gig ∗ fcpu

− (βcpu + αcpuf
3
cpu) ∗ PUEaverage ∗ EPregion

− (1− gd(t)) ∗ ρmax ∗ (βcpu + αcpuf
3
cpu) ∗ PUEaverage ∗ CTRregion

− SRcore,hour,Gig ∗ fcpu ∗ TAXRsalesregion
− OPEXcore,hour

)
(3.2)
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3.1.2 Power Metering Model for Servers

In Farrahi Moghaddam et al. (2011), we combine the models mentioned in literature review

(Section 1.3) in order to include all the types of energy consumption involved in a distributed

cloud. We also introduce what we call a “greenness” factor for each data center, which enables

conversion from energy consumption to carbon footprint in a data center, as follows:

Cpd(t) = ρd(t)Pd(t) (3.3)

ρd(t) = (1− gd(t))ρmax (3.4)

where Cpd(t) represents the carbon footprint per unit time of a data center, Pd(t) represents

the power consumption of a data center, and ρd(t) represents the carbon emission factor for

that particular data center. ρmax represents the carbon emission factor for the dirtiest source of

energy (0.9 kg per kWh Lenzen (2010)), gd(t) represents the greenness factor of the data center

(gd(t) = 0 means 0% clean data center, and gd(t) = 1 means 100% clean and green data center

at time t).

An improved version of the initial model for the carbon footprint per unit time is introduced in

(Farrahi Moghaddam et al., 2012b), as follows:

C(t,Δt) = C(S)(t,Δt) + C(N)(t,Δt)

+ C(R)(t,Δt) + C(M)(t,Δt)

+ C(U)(t,Δt) + C(O)(t,Δt)

(3.5)

where C(t,Δt) is the total carbon footprint of the distributed cloud from time t to t+Δt:

C(S)(t,Δt), C(N)(t,Δt), C(R)(t,Δt), C(M)(t,Δt), C(U)(t,Δt), and C(O)(t,Δt) represent the

portion of the carbon footprint related to the servers, network devices, storage devices, mi-

gration of VMs among servers, cooling, Power Distribution Unit (PDU), and lighting utilities,

and turning servers and other electrical devices on or off in the data centers, respectively. For
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calculating the carbon footprint of migrations (C(M)(t,Δt)), the following equation is used:

C(M)(t,Δt) =
∑

m∈MΔt
ρmax

{
rdam (tm)

{
Δp

(S)
am (tm)+∑

j∈Ndam
O

(N)
j Δp

(N)
j (tm)

}
+rdbm (tm)

{
Δp

(S)
bm

(tm)+∑
j∈Ndbm

O
(N)
j Δp

(N)
j (tm)

}
}
Δmt

(3.6)

where MΔt represent the set of migrations which happen in Δt. am and bm represent migration

source and destination servers. tm is the time when the migration m took place. Δp
(S)
am (tm)

represent extra power consumption of server am during the migration time Δmt. Δp
(N)
j (tm)

represent extra power consumption of network elements. These models need to be improved

and validated.

In this section, we introduce a new metering model to integrate and to improve the previous

models. In Kansal et al. (2010), a linear function was fitted on server resource usage. In

parallel, in Bertran et al. (2010b), a linear function was fitted on server PMC counters, and in

Farrahi Moghaddam et al. (2012b), a linear function was fitted on both server resource usage

and PMC counters. Here, we propose that a Piecewise-Linear Regression (PLR) on both server

resource usage and PMC counters can more accurately provision the energy consumption of a

server, as follows:

p(t) = r(pmc1, pmc2, · · · , pmcn, c, d, n,m) (3.7)

where p(t) represents the consumed energy of a server per hour. pmci, c, d, n, and m represent

ith PMC counter, CPU, disk, network, and memory utilization, respectively. r represent the

PLR function.

We use the Adaptive Regression Splines (ARESLab) toolbox (Jekabsons, 2011) in order to per-

form piecewise-linear regression of the server energy consumption using CPU, memory, disk,

and network usage and PMC counters as independent variables. A 10-fold cross validation is

used to calculate the accuracy of the model. This model then is used to estimate the energy
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consumption of the servers, processes if their PMC counters and resource usage are known. In

section 6.3, the proposed model is evaluated on real servers and the energy prediction results

are compared with results obtained using other models from Kansal et al. (2010), Bertran et al.

(2010b), and Farrahi Moghaddam et al. (2012b).

3.1.3 NDC Carbon-Related Metrics

Sensitivity to Intermittent Sources of Energy of Network of Data Centers

As mentioned in the introduction, it is important to know how robust the design is and how

weather condition fluctuations can affect the performance of the system. Therefore, we ex-

amine our design under different weather conditions and analyze the results to provision the

sensitivity of our design and our consolidation algorithm to weather conditions.

To calculate the sensitivity of a design to any weather conditions, a plane, y = b− ass− aww,

is fitted to the carbon measurements under different weather conditions (using Matlab least

squares linear regression), where y is the measured carbon footprint, s is the percentage of

solar energy, and w is the percentage of wind energy; and as and aw represent the sensitivity of

each scenario to the solar energy percentage and wind energy percentage in kilograms of CO2

(kgC) respectively.

Sensitivity to the solar or wind energy percentage refers to how much additional carbon foot-

print will be added to the total carbon footprint if the solar or wind energy percentage decreases

from 100% to 0%. Smaller sensitivity values for a scenario show more stability, and less risk

of consuming greater amounts of non green energy in bad weather conditions.

Greenness Factor of Network of Data Centers

In this section, we introduce another metric for the evaluation of a design which is the “CAD-

Cloud greenness factor,” G, which is calculated for each time period as G = 1 − C/C0(E),

where C represents the carbon footprint, and C0(E) represents the carbon footprint equivalent

to the total consumed energy of the scenario produced by the dirtiest source of energy (coal),
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(Farrahi Moghaddam et al., 2011). A CADCloud greenness factor of G = 100% represents

a zero carbon CADCloud. Note that the G factor is different from the factor gd(t) used in

Equation (3.4), which is the greenness factor of a data center. In contrast, G is the greenness

factor of the whole CADCloud, which is powered by various sources of energy.

3.2 Cooling System Modeling

3.2.1 The Temperature Altitude Aware Model (TAAM)

We assume that the cooling system of the data center is the traditional air/liquid/air cooling

system. As shown in Figure 1.4, the CRAC units provide a cycle of cold/hot air inside the

data center that goes through the chassis and racks. The cold air absorbs the heat generated

by IT equipments (and also other sources of heat, such as i) the lighting, ii) solar heat (if

there is a window), iii) humidifiers (using evaporative methods), iv) CRACs themselves (the

electrical energy used in their fans will be converted into heat when the moving air slows

down)). It is usually assumed that %98 of the IT consumed power is converted into heat

(Sawyer, 2004): Qin = 0.98PIT. However, in this work, we assume all the IT consumed power

is converted into heat. This heat introduces a ΔT = TCR − TCHWS increase in the temperature

of circulating air in the computer room.1 In CRACs’ cooling coils, the heat is transferred to the

cooling liquid (water) in a similar way. The cold water is provided by the chillers, and the heat

exchange introduces an increase in the water temperature. Finally, cooling tower allows heat

exchange with the outside air. Usually, because of bigger mass of the outside air compared to

the cooling liquid mass, a micro-canonical assumption can be made, and it can be assumed that

the temperature of atmosphere stays constant.

The majority of governing equations and models of each sub-part of the cooling system, i.e., the

CRAC, the chiller plant, and the cooling tower, have been discussed and presented in section

1.4. These models cover both aspects of power consumption and also the cooling capacity of

these sub-parts.

1CHW stands for Chiller-water, and CHWS denotes source chiller-water that enters CRAC.
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In addition, a coefficient of performance (COP) is defined for the chiller plant and also for the

cooling tower. The COP of chiller units is defined as the ratio of heat handled by them divided

by their energy consumption:

COPCH =
Pcooling,CH

PCH

(3.8)

Therefore, this value has a inverse relation with the PUE value: COP = 1/(PUE− 1), where

PUE is the partial (ignoring the rest of support equipments) PUE of the chiller. A typical value

of the COP for a chiller plant is around 4; the typical cooling cost (electricity consumption

per ton of cooling) of a chiller system is around 0.7 Kw/ton to 0.9 Kw/ton, where one ton of

cooling is defined as 12,000 Btu = 3.51685 kW (Energy Design Resources, 2010). Therefore,

the partial (ignoring the rest of support equipments) PUE of chiller units can be estimated as:

PUE = (0.8 + 3.51685)/(3.51685) = 1.23, for 0.8 kW/ton, which in turn results in a COP

of 4.35(= 1/(PUE − 1)). We choose Pchiller,max = 80kW for each chiller assuming a chiller

coefficient of performance (COP) of 4 with nChiller = 5 for a 1MW CR in this study.

Furthermore, for a chiller plant, the range is defined as the difference in temperature between

entering and exiting water in/from chiller condensers in the CRAC water loop that is TCHWR −
TCHWS,2 and the approach is defined as the difference in temperature between exiting water of

CRAC loop and entering water of CT loop: TCHWS − TCWS.3 In our typical datancenter, we

choose a chiller range of 7◦ and a chiller approach of 6◦.

For our typical example of nChiller = 5 and with assuming θChPump = 0.5, we have

PChPumps = 0.3×80kW×5×(0.338249× 0.5 + 0.972488× (0.5)2 − 0.291451× (0.5)3
)
= 45kW

as the power consumption of all 5 pumps. The power consumption of secondary pumps that

move the cold water in the CRAC-chiller loop are assumed to be included in the chillers’ pumps

consumption for the purpose of simplicity.

The same notation is used for the cooling tower; for a CT, the range is defined as the difference

in temperature between entering and exiting water in/from CT in the water loop that is TCWR−
2CHWR stands for return chiller-water that exits CRAC.
3CW stands for cooling tower-water, and CWS denotes source cooling tower-water that enters chillers.
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TCWS,4 and the approach is defined as the difference in temperature between exiting water and

wet blub temperature of outdoor air: TCWS − Twb. In our typical datancenter, we choose a CT

range of 6◦ and a CT approach of 5◦. The effectiveness of a CT is defined as:

μCT =
TCWR − TCWS

TCWS − Twb

(3.9)

It is assumed that μCT is design-dependent, and only changes with θCT:

μCT = μCT,maxθCT (3.10)

For our typical example, μCT,max = 6/5 = 1.2.

These relations along with those presented in section 1.4 form our model of the cooling system

as is discussed in the next section.

3.2.2 Set of Equations of the Cooling System Model

In terms of the cooling system, there are 25 (=22+3) variables in the picture:

• Three of these variables are taken from measured weather information: outdoor (dry

bulb) temperature T , relative humidity ϕ and outdoor air pressure p.

• One variable is a direct function of the above three variables: wet-bulb temperature of

outdoor air Twb (Fumo et al., 2011).

• One variable is the target temperature in the CR: TCR. We assume this temperature is

fixed in all datacenters and fixed to a goal value of 25◦C.

• (before CRAC boundary): Four variables are related to CRAC units: θCRAC, PCRAC,

Pcooling,CRAC, and φCRAC. We assumed that all CRAC units in a specific datacenter work

at the same utilization ratio for purpose of simplicity.

4CWR stands for return cooling tower-water that exits chillers.
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• (before Chiller units boundary): Nine variables are related to chiller plants: TCHWS,

TCHWR, (dm/dt)CHW, θCH, Pcooling,CH, PCH, PChillers, PChPumps, and θChPumps.

• (before CT boundary): Finally, seven variables are related to the CT: TCWS, TCWR, (dm/dt)CW,

μCT, θCT, Pcooling,CT, and PCT.

In parallel, we have 17 governing equations (in sections 3.2.1 and 1.4). The equations are as

follows:

• One equation to calculate Twb (Fumo et al., 2011).

• There are four equations at CRAC units: (1.9), (1.10), (1.22), and (1.23).

• There are seven equations at chiller units: (1.25), (1.26), (1.11), (1.13), (1.14), (1.15),

and (1.27).

• There are five equations at cooling tower: (1.28), (1.30), (3.9), (3.10), and (1.18).

The system of equations are summarized in the Equation 3.13.
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Twb (Fumo et al., 2011),

PCRAC = PCRAC,fan = PCRAC,fan,maxθ
2.75
CRAC,

φCRAC = φCRAC,maxθCRAC,

Pcooling,CRAC = ACRAC,coolingφCRACnCRAC (TCR − TCHWS) ,

Pcooling,CRAC = QIT + PCRAC,

PCH = Pchillers + PChPumps + PSecPumps,

Pchillers = Pchiller,maxnChiller (AChillerθChiller +BChillerθ
2
Chiller) ,

PChPumps = PCRPchiller,maxnChPumps×
(AChPump(θChPump) + BChPump(θChPump)

2 − CChPump(θChPump)
3) ,

θChPump � θChiller,

Pcooling,CH = (dm/dt)CHWCpnChillers (TCHWR − TCHWS) ,

Pcooling,CH = PIT + PCRAC,

Pcooling,CH =
Pcooling,CH,max

Pchillers,max
Pchillers (1− Bcooling,CH(1− θChiller)

2) ,

PCT = CCR Pchiller,maxnChillerθ
2.75
CT = PCT,maxθ

2.75
CT ,

(dm/dt)CW =
Pcooling, CT

Cp(TCWR−TCWS)
,

Pcooling,CT = PIT + PCRAC + PCH,

μCT = TCWR−TCWS

TCWS−Twb
,

μCT = μCT,maxθCT.

(3.11)

These equations can implicitly summarized as a function PCS. Note that three variables (T ,

ϕ and p) are coming from weather information, and also TCR is set to 25◦C. Therefore, we

have 25− 17− 3− 1 = 4 variables to be set by design or by the management mechanism and

controller. We choose to fix the value of one of these variables: TCWS = 30◦C which is the

temperature of cold water coming from CT to chiller units. Three control variables remain that

will be determined by the optimization process: θCRAC, θCH, and θCT. Therefore, the function

PCS can be expressed as

PCS = PCS (PIT, θCRAC, θCH, θCT) (3.12)

where PIT is the IT equipment’s consumption as defined before.
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As it was mentioned before, the cooling system is locally optimized in the design of this re-

search. At each moment, the cooling system optimizer of each data center receives the PIT

from the server models which provide the amount of heat produced in that data center, and also

receives the weather information from the weather stations which provides the outdoor (dry

bulb) temperature T , relative humidity ϕ and outdoor air pressure p, summarized as the Twb for

the system of equations. The optimization problem of the cooling system of a data center can

be formulated as follow:

Pcooling system = PCS (PIT, θCRAC, θCH, θCT)

subject to

0 ≤ θCRAC, θCH, θCT ≤ 1

(3.13)

Any nonlinear numerical method can be used to implicitly solve the system of equation and

locally optimize the resulting function in each data center. Matlab optimization toolbox is

used in this research to solve this optimization problem. The result of each local optimizer is

the energy consumption of the cooling system in each period of time, which will be in turn

reflected by the PUE measure in the experimental results.

3.2.3 Summary

In this section, a complete model for cooling system of a data center is presented. It is also

identified what parameters should be adjusted in order to minimize the energy consumption of

the cooling system, and also how these adjustments should be performed.

3.3 Chapter Summary

In this chapter, three important models for energy consumption and carbon footprint of data

centers are presented. These models are associated with cooling system, server, and profit-per-

service. The cooling system and profit-per-service models are used in the simulation platform

for HPC job scheduling, and server model is used in the simulation platform of web application

load balancing.



CHAPTER 4

CARBON-PROFIT-AWARE JOB SCHEDULER

In Chapter 2, main concept of a new design for CPA Geo-DisC system was introduced. The

most important module of such system is its job scheduler. The system objectives will be

reflected through this module, and if this module works efficiently, then the system can achieve

its goal(s) thoroughly.

In the following sections, first, scheduling metrics will be defined. Next, the scheduling algo-

rithm will be proposed, and last, foreseeable outcomes of the scheduler will be described.

4.1 Scheduling Metrics

Before describing the CPA scheduler, it is important to recognize its metrics. In the following,

the metrics which are used in the CPA scheduler are listed and explained:

• Minimum Completion Time (MCT): The absolute time, which a job is scheduled to

finish. The purpose of this metric is to maximize the system’s performance by scheduling

the jobs, as much as possible.

• Minimum Carbon Emission (MCE): This metric is based on the greenness of the data

centers, and it is used to schedule the jobs on the available servers with minimum carbon

emissions.

• Energy Price: This metric measures the energy price of each data center as a decision

factor.

• Deadline: The deadline of jobs.

In the following subsections, various topics related to predicting the behaviour of the system in

its near future (24 hours ahead) in terms of several metrics, impact of imposing a carbon tax,

and introducing a new metric designed for profit optimization purposes will be detailed.
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4.1.1 Energy and Carbon

Energy consumption and carbon footprint metering of the entire system, servers, and jobs are

very important topics. If the definitions of power and energy1 are not accurate, it can lead the

system to the wrong directions by bad decisions. In addition to the energy consumption and

carbon footprint of the IT equipments, the support system has a significant contribution to the

energy consumption and carbon footprint of the whole system such as a cooling system, which

is one of the biggest elements of an IT infrastructure’s supply system. To lower the energy

consumption and carbon footprint of the cooling system, they must be accurately modeled and

optimized.

4.1.2 Carbon Tax

In some states such as Australia and California, there are already some regulations in place

by governments in order to control and reduce the carbon emissions. According to the system

models, it is possible to calculate the carbon footprint of the entire system, but this total car-

bon footprint is the result of several data centers contributions which are located in different

states with different carbon regulations, presumably. Therefore, the share of carbon footprint

associated to each region of NDC with different carbon regulations need to be calculated sep-

arately, and then the related carbon regulations be applied to each part. In the experimental

result chapter, a flat carbon tax rate is considered for the data centers located in regions with

carbon regulations.

4.1.3 Profit per Core-Hour-GHz

When all above discussed metrics are available, it is possible to calculate a new metric, Profit

per Core-Hour-GHz (PpCHG), which was defined in the modeling section (Section 3.1.1). As it

was stated before, PpCHG(f) shows how much profit is obtained by deducting the operational

cost from the amount of sale associated with running a core of CPU with adjusted frequency

(f) for an hour.

1refer to Appendix I.3 for details.
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This metric can be determined for any time of the day and any of the servers in the cloud.

If real values of parameters are not present and predicted values are used for calculation of

PpCHG, its value will also be a prediction for that particular time and core of the server, which

can be used in the CPA scheduler algorithm. Nevertheless, the outcomes of the scheduler may

degrade based on the error margin of the predictions.

Unlike MCT, MCE and other metrics used in job scheduling algorithms, in a geographically

distributed cloud, PpCHG directly calculate the profit per core-hour of a server which can be

optimized when the profit is one of the objectives of the system. In fact, the PpCHG draw a

guiding map for the scheduler for all the cores and times of the system and not for jobs as it

is a common practice in other algorithms. In Figure 4.1, a sample map is illustrated which

shows the maximum profit achievable in each core at any time within a time window. As it

is shown in the figure, some areas are darker then other areas which indicate a lower possible

profit in those areas that should be avoided by the scheduler or, if avoiding is not possible, by

reducing the frequency of the CPUs in those areas. It is also shown that there are some dark

areas following by brighter areas and following by dark areas. Those dark areas represent the

time of day that the energy price is high and therefore the profit of the system is low in those

regions. Some cores are generally darker than other cores which indicate that the region that

they are placed in either has a high energy price or the carbon tax is high and the energy mix is

not so green.

The map uses a color code to indicate the relevance of optimum frequency and its associated

profit. The color code is defined in Figure 4.2, where both frequency and profit are normalized,

blue indicates maximum profit with minimum frequency, red indicates minimum profit with

maximum frequency, magenta indicates maximum profit with maximum frequency, and no-

color indicates minimum profit with minimum frequency. All other intermediate colors show

a linear relation with maximum profit and frequency. The black dots on the color map shows a

typical CPA scheduler actual states which are around the green line which is the optimal value

of frequency. More details are provided in Section 4.3.1.
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Figure 4.1 Geo-DisC maximum profit per core-hour

Figure 4.2 Profit per core-hour color code

4.1.4 Summary

In this section, the main metrics of Geo-DisC schedulers were described which includes MCT,

MCE, energy price, jobs deadline, energy consumption, carbon footprint, cooling system en-

ergy consumption, carbon tax, and profit per core-hour-ghz. In a scheduler, some or all of

these metrics might be used to decide the position of the job trace. Each metric might have a

significant impact on the result of the system which these impacts are explored in the section 6.
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In the next section, the basis of the CPA scheduler is described which will use all the metrics

defined in this section as part of its decision factors.

4.2 Optimization Problem

With having the PpCHG metric which is the profit of the system for running a core of CPU for

an hour, it is possible to calculate the whole profit of the system by making summation on all

the cores and hours. In the following, the optimization problem is defined based on maximizing

this summation.

max
X

∑
c∈C

∑
h∈H PpCHGxc,h

(4.1)

subject to

h(yj,h′
j ,c

′
j
) = h(yj,h′

j+1,c′j) + 1, ∀h′j = 1, ..., h′j
max − 1; c′j = 1, ..., c′j

max

c(yj,h′
j ,c

′
j
) = c(yj,h′

j+1,c′j), ∀h′j = 1, ..., h′j
max − 1; c′j = 1, ..., c′j

max

s(c(yj,h′
j ,c

′
j
)) = s(c(yj,h”j ,c”j)), ∀h′j, h”j = 1, ..., h′j

max − 1; c′j, c”j = 1, ..., c′j
max

h(yj,h′
j

max,.) ≤ ej;h(yj,1,.) ≥ bj, ∀j = 1, ..., jmax

(4.2)

where X = {xc,h|c ∈ C, h ∈ H}, xc,h ∈ Y × F (Z∗3
N), C = {1, ..., Cmax}, H =

{1, ..., Hmax}, F = {fmin, ..., fmax}, Y = {(j, h′
j, c

′
j)|j = 1, ..., jmax;h

′
j = 1, ..., h′

j
max; c′j =

1, ..., c′j
max}, and h(y) returns the associated hour of the y, c(y) returns the associated core of

the y, and s(y) returns the associated server of the y. The last constraint is limiting the jobs to

be scheduled before their entry time (bj) and after their deadline (ej). The rest of the constraints

are for keeping the pieces of a job (yj,h′
j ,c

′
j
) together. Worth noting that X represent the whole

core-hour space of the system and Y represents the same space for each job. The scheduler job

is to assign the Y and F to X while maximizing the summation of the profit.
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4.3 CPA Scheduler Algorithm

In the previous section, some metrics of HPC job scheduling were presented. In this section, an

algorithm is introduced in order to use those metrics for the optimization of the Geo-DisC sys-

tem. The main design behind this Carbon-Profit-Aware scheduler is to optimize the frequency

of the running CPUs to a value which the profit is maximized. As discussed in the literature

review section, some existing algorithms calculate an optimum frequency with the lowest en-

ergy consumption, but as it will be shown in the experimental result section, optimizing the

frequency to minimize the energy consumption of jobs separately will not necessary lead the

scheduler towards the best profit and lowest carbon footprint. This is simply because of the

presence of a large number of parameters and metrics in the decision process which makes

the system very complex, and greedy actions like optimizing the energy consumption of jobs

individually cannot ensure a global optimization.

Considering the requested job trace, it is consisted of a number of jobs with different number

of cores, various default lengths, different entry times, and various deadlines. If a server is

considered, for each distinct time in the future, it has a certain amount of energy consumption,

various energy mixes, various energy prices, and a certain amount of support system energy

consumption which may or may not be known to the scheduler at the moment. There are also

some parameters which are most likely fixed during the operation of the scheduler such as

carbon tax, sales tax, and corporation tax. The CPA scheduler need to have access to all these

information in order to work properly. If the value of any of these parameters is not known to

the scheduler, it will use its own predictors to estimate that value.

As mentioned above, the main idea behind proposed scheduler is to optimize the PpCHG where

the variable is the frequency of the CPU. This variable can vary between minimum possible

frequency and maximum possible frequency of that CPU model. This calculated optimum

frequency for each cell of core-hour will be used to schedule the jobs. As it is impossible to

estimate this frequency for all times in the future, a time window is selected (for example 24

hours) for the scheduler in which the scheduler will calculate the best frequency of the servers

cores. The related calculation of optimum frequency is provided in the next section. As the op-



81

timization is to maximize the profit, it might seem that the scheduler only assure the maximum

profit, but not the minimum carbon footprint. In fact, the carbon footprint minimization ob-

jective is considered in the profit per Core-Hour-GHz metric by the introduction of the carbon

tax. When the carbon tax is higher, then the profit will decrease, when the server greenness

is low. Therefore, the frequency of the server will be adjusted in a way which guarantee the

maximum profit and minimum carbon footprint. As not all the states in the world practice the

carbon footprint regulations, forcing the scheduler to minimize the carbon footprint in these

states might be difficult. Consequently, in this research another parameter will be introduced

as Virtual Carbon Tax (VCT) which will virtually force the scheduler to minimize the carbon

footprint without affecting the normal operation of the system. Full details of the virtual carbon

tax and its impact on the CPA scheduler are provided in the following sections.

The following pseudo code describe the main module of the scheduler in an abstract level.

1: repeat

2: calculate optimum PpCHG and f_opt for all free slots.

3: for job_i do

4: find all compatible_free_slots with job_i.

5: sort (job_i,compatible_free_slot) pairs.

6: select the best pair based on PpCHG,MCE,MCT(f_opt).

7: insert the best pair to the best_pair_list.

8: end for

9: sort best_pair_list.

10: select the best pair based on PpCHG,MCE,MCT(f_opt).

11: schedule the best best_pair.

12: remove the scheduled job from the job_list.

13: update the free_slots.

14: until (no more job) OR (no more suitable free slots)

As it is described in this pseudo code, first, the list of compatible jobs and free slots will be

extracted. Then, the optimum frequency will be calculated for each free slot. Next, pairs of

each job and its compatible slots will be sorted based on MCE, MCT, and PpCHG. Worth
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noting that the MCT metric changes based on the value of the optimum frequency. Then, the

best pair will be added to list. This process will be done for all the jobs. Next, the list of best

pairs will be sorted again based on the similar metrics. Then, the best pair of this list will be

selected to be scheduled. A VM will be scheduled to be created and run the associated job with

the number of requested core and the optimum frequency. The whole process will be repeated

until there is no more unscheduled job left or there is no compatible slot left.

4.3.1 Optimum Frequency Calculation

As it was mentioned in the previous section, in this scheduler, a new metric is used to maximize

the profit of the system, PpCHG. Here, we discuss how to use this metric to obtain the optimum

working frequency for each CPU core in the system. Equation 3.2 could be rewritten in a

polynomial form in respect to the fcpu as Equation (4.3).

PpCHG = (1− TAXRcorpregion,effective
) ∗ PUEaverage ∗

(
− βcpuEPregion

− (1− gd(t)) ∗ ρmax ∗ βcpuCTRregion

)

− (1− TAXRcorpregion,effective
) ∗ OPEXcore,hour

+ (1− TAXRcorpregion,effective
)

(
SRcore,hour,gig

− SRcore,hour,Gig ∗ TAXRsalesregion

)
∗ fcpu

+ (1− TAXRcorpregion,effective
) ∗ PUEaverage ∗

(
− αcpuEPregion

− (1− gd(t)) ∗ ρmax ∗ αcpu ∗ CTRregion

)
∗ f 3

cpu

(4.3)

Because the coefficient of fcpu is a positive value and coefficient of f 3
cpu is a negative value,

the graph of PpCHG(fcpu) have one maximum for fcpu > 0 as it is illustrated in the Fig-

ure 4.3. To calculate this maximum point, it is sufficient to calculate its positive root from
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PpCHG′(fcpu) = 0 as it is shown in Equation (4.4), where its optimum frequency can be cal-

culated from Equation (4.5) and (4.6).

Figure 4.3 Profit per CPU frequency graph

(1− TAXRcorpregion,effective
)

(
SRcore,hour,gig

− SRcore,hour,Gig ∗ TAXRsalesregion

)

+ 3 ∗ (1− TAXRcorpregion,effective
) ∗ PUEaverage ∗

(
− αcpuEPregion

− (1− gd(t)) ∗ ρmax ∗ αcpu ∗ CTRregion

)
∗ f 2

cpu = 0

(4.4)

fcpu =

√
SRcore,hour,gig(1−TAXRsalesregion

)

3∗PUEaverage∗αcpu∗(EPregion+(1−gd(t))∗ρmax∗CTRregion)
(4.5)
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fcpuoptimum
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

fmin if fcpu ≤ fmin

fcpu if fmin < fcpu < fmax

fmax if fcpu ≥ fmax

(4.6)

As Equation (4.5) shows, the optimum frequency of the CPU is based on several parameters of

the system such as SRcore,hour,gig, TAXRsalesregion
, PUEaverage, αcpu, EPregion, gd(t), and CTRregion,

which shows the dependency of the optimum frequency and market price for HPC jobs, sales

tax of the region, weather and temperature variations in the region, model of CPU, energy price

in the region, and carbon regulations in the region, respectively. These relations will be exam-

ined in detail later in the experimental results chapter (Chapter 6). There was another parameter

in the equations which did not show in the optimum frequency equation, TAXRcorpregion,effective
. It

seams that optimum frequency is not affected by the corporation tax. However, this parameter

besides other parameters have an effect on the absolute value of the profit, which can be posi-

tive or negative. Therefore, this parameter could be part of a trigger for the scheduler algorithm

to refuse to schedule a job in a time slot.

Here, the relation between the optimum frequency parameters and the optimum frequency will

be studied in order to provide enough knowledge for better understanding of its behavior in the

experimental environment. In the following Figures, the optimum value for CPU frequency is

calculated based on optimization of PpCHG. Since, there are many parameters in the PpCHG,

a color code is used to cover some of these parameters as it is illustrated in Figure 4.4. The

color codes are presented for different energy price, CPU frequency, and server greenness.The

same color code is also used to illustrate the schedule of jobs in the experimental result section.

The frequency of CPUs is illustrated by the red element of color. The CPUs with the minimum

frequency have no red color and those with the maximum frequency are full red. The frequen-

cies in between the minimum and maximum are shown with a radian of red. The blue and green

elements of the color are representing the price of energy and greenness of the server. Full blue

means lowest energy price and no blue means highest energy price in the region which server
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Figure 4.4 Color code of scheduled jobs

is located. No green means that the server is running on the dirtiest type of energy and full

green means the server is running on completely renewable type of energy. The color codes

are selected in a way that brighter colors are more near to the objective of the system and darker

colors are far from it, in general. For example, a full green, red, and blue color has the ideal

condition for job scheduling, because the job is running at the maximum frequency which is

good for the performance of the system, and it is running on a completely green energy source

which has no carbon footprint, and the energy price is at its lowest which helps to maximize

the profit. With similar reasons, no-color has the worst condition for job scheduling.

As it is shown in the color code, each color in the color space has a meaning for the scheduled

job. For example, a scheduled job with purple color means that the job is running on a com-

pletely non-green server, but the price of electricity is low and the job is scheduled to work on

CPUs with maximum frequency. The Table 4.1 present the main features of main colors, and

their impacts on scheduler metrics.

Based on this table, white is the ideal color, and no-color, red, blue, and yellow are not fit with

the objectives of the system. Magenta and green are to some extent acceptable, but cyan is not

acceptable because in the cyan case, the frequency of the server can be adjusted to maximum
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color meaning energy carbon profit
code impact impact impact

No-color Job is running on non-green servers with minimum frequency and energy price is
high

low increase low increase decrease

White Job is running on green servers with maximum frequency and energy price is low increase no increase increase

Red Job is running on non-green servers with maximum frequency and energy price is
high

increase increase decrease

Blue Job is running on non-green servers with minimum frequency and energy price is
low

low increase low increase low increase/decrease

Green Job is running on green servers with minimum frequency and energy price is high low increase no increase low increase/decrease

Magenta Job is running on non-green servers with maximum frequency and energy price is
low

increase increase low increase

Yellow Job is running on green servers with maximum frequency and energy price is high increase no increase low increase/decrease

Cyan Job is running on green servers with minimum frequency and energy price is low low increase no increase low increase

Table 4.1 A color code describing the status of the scheduled jobs

and increase the profit without worrying about the carbon footprint and energy price. To have

a better understanding of the optimum points, a typical system is optimized for maximum

profit and the optimum frequencies are illustrated with white color in the Figure 4.5. As it

is shown, the optimum value for frequency of the CPUs is variable based on energy price

and greenness of the servers. In general, in non-green servers (the lowest part of the figure),

when the energy price is low, the optimum point stands on high frequency (bright magenta),

and with the rise of the energy price, the optimum point stands on lower frequencies (darker

magenta). The optimum point is far from both side of high frequency-high energy price and

low frequency-low energy price. Same conclusion is correct for other parts of the figure with

greater greenness. For example, in the section with the highest greenness (the highest part of

the figure), the optimum frequency happens far from yellow and cyan colors and remain near

green to white color. The only obvious difference between the lowest greenness and highest

greenness part is that the optimum frequency occurs in the higher values when the system is

greener.

In the Figures 4.6, 4.7, and 4.8, the optimum frequency is achieved for a typical system under

variation of three parameters, energy price (EP), carbon tax (CT), and sales rate for a core-hour

(SR). As it is illustrated, when the EP and CT increase the optimum frequency decrease, and

when the SR increase the optimum frequency increase. As it is shown in the Figure 4.8, if the

SR is high enough it will cover for the EP and CT and the optimum frequency lean to maximum

frequency, but businesses cannot increase the SR arbitrarily if the competitiveness exist in the

market.
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Figure 4.5 Optimum frequency for maximum profit

4.3.2 Virtual Carbon Tax

In the previous section, it was shown how to find the optimum frequency of the CPUs in order

to maximize profit. In that case, carbon tax is considered as a parameter which automatically

minimize the carbon footprint of the system in effect of minimizing the cost and maximizing

the profit, but in many states the carbon tax is not implemented yet or is very little. Therefore,

in these states the pressure of the carbon tax for minimizing the carbon footprint of the system

does not exist.

Because the carbon footprint is a high profile and sensitive matter in societies, even though

the carbon tax may not exist, businesses may choose to reduce their carbon footprint voluntary

for a good public figure (i.e. consumers’ beliefs have a direct impact on corporations share

price). Therefore, in this subsection, a method is introduced to create a multi-objective system

for maximizing the profit while considering the carbon footprint of the system voluntary. The

main idea of this method is based on the introduction of a virtual carbon tax.

Virtual carbon tax is a particularly similar concept to the carbon tax. Based on the carbon

footprint of the system, a tax rate will be applied to the amount of carbon producing by the

system. From outside of the business, this money is part of the profit and is taxable, so in the
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EP = 5¢/kWh, CT = 3¢/kgCO2 EP = 10¢/kWh, CT = 3¢/kgCO2 EP = 15¢/kWh, CT = 3¢/kgCO2

EP = 5¢/kWh, CT = 6¢/kgCO2 EP = 10¢/kWh, CT = 6¢/kgCO2 EP = 15¢/kWh, CT = 6¢/kgCO2

EP = 5¢/kWh, CT = 9¢/kgCO2 EP = 10¢/kWh, CT = 9¢/kgCO2 EP = 15¢/kWh, CT = 9¢/kgCO2

Figure 4.6 Optimum CPU frequency with sale rate = 2¢ per core-hour

calculations, corporation tax will apply to this amount. In fact, when the virtual tax serves its

purpose in the scheduler, the amount of virtual carbon tax plus the profit of the system will

create the real profit of the corporation. The only thing that virtual carbon tax is doing is to

create a virtual need for carbon reduction in the cover of cost reduction. If the algorithm is

not carbon sensitive, the introduction of virtual carbon tax has no effect. The VCT work as

a catalyst2, and has no real world existence, but it forces the carbon sensitive algorithms to

2In chemistry, catalyst is a substance which increase the rate of reaction, but remain unchanged at the end of

the reaction. Similarly, VCT acts as a carbon tax to decrease the carbon footprint of the system, but at the end it

is part of the profit.
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EP = 5¢/kWh, CT = 3¢/kgCO2 EP = 10¢/kWh, CT = 3¢/kgCO2 EP = 15¢/kWh, CT = 3¢/kgCO2

EP = 5¢/kWh, CT = 6¢/kgCO2 EP = 10¢/kWh, CT = 6¢/kgCO2 EP = 15¢/kWh, CT = 6¢/kgCO2

EP = 5¢/kWh, CT = 9¢/kgCO2 EP = 10¢/kWh, CT = 9¢/kgCO2 EP = 15¢/kWh, CT = 9¢/kgCO2

Figure 4.7 Optimum CPU frequency with sale rate = 4¢ per core-hour

consider more carbon reduction while those algorithms maximizing the profit. Last, the VCT

will be combined with the net profit. Some corporations may choose to allocate part of VCT

money for environment-friendly projects, which may bring them some tax breaks, as well.

In Figure 4.9-a, the cost breakdown of a typical system is presented. In the following, Figures

4.9-b and 4.9-c show that same system with the same specifications with application of virtual

carbon tax. These figures are the same except for the position of VCT in the graph. Figure

4.9-b shows how introduction of VCT increases the volume of total carbon tax (CT plus VCT),

which will put pressure on carbon sensitive algorithms. The effect of VCT on CPA algorithm
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EP = 5¢/kWh, CT = 3¢/kgCO2 EP = 10¢/kWh, CT = 3¢/kgCO2 EP = 15¢/kWh, CT = 3¢/kgCO2

EP = 5¢/kWh, CT = 6¢/kgCO2 EP = 10¢/kWh, CT = 6¢/kgCO2 EP = 15¢/kWh, CT = 6¢/kgCO2

EP = 5¢/kWh, CT = 9¢/kgCO2 EP = 10¢/kWh, CT = 9¢/kgCO2 EP = 15¢/kWh, CT = 9¢/kgCO2

Figure 4.8 Optimum CPU frequency with sale rate = 6¢ per core-hour

is examined in the experimental result chapter. Figure 4.9-c shows how combination of VCT

and system profit create the real profit of the system (need to be compared with Figure 4.9-a).

4.3.3 Summary

The basis of the CPA scheduler is introduced in this section. The CPA scheduler work based on

a new metric: profit per Core-Hour-GHz. This metric is optimized ahead of the time with real

and predicted values for a time window in the future. Then, the scheduler will use a greedy
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Figure 4.9 Cost breakdown of a typical system

approach to schedule the jobs which fit the best with this metric and other metrics such as

MCE. Next section will describe the expected outcomes of the proposed scheduler.

4.4 Expected Outcome

Based on the description of the scheduler provided in the previous section, certain behaviours

are expected to be observed by this scheduler under certain circumstances. This section will

describe those events and their expected outcomes. Then expected results will be validated in

the experimental results chapter.

4.4.1 Performance

Since the CPA scheduler adjust the frequency of the CPUs to achieve its goals, it is expected

that the total amount of jobs done by the CPA scheduler to be less than amount of jobs done by

a performance scheduler. However, when the profit or the carbon footprint of the algorithms

are being compared, it is expected that the CPA scheduler have a better results.
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4.4.2 Virtual Carbon Tax

Based on the definition of the Virtual Carbon Tax, it is a cost which is calculated based on the

carbon footprint of the system, and aggregated at the end with the profit of the system. If the

VCT is used in a non-carbon sensitive algorithm, then there will be no effect on the results

of the algorithm. However, if the algorithm is carbon-cost sensitive, then the VCT forces the

system towards less carbon footprint direction. Because the VCT cost will be added to the

profit of the system at the end of the process, it is expected that the VCT does not affect the

profit of the system in a similar way as the carbon footprint of the system.

4.5 Chapter Summary

In this chapter, the main characteristic of CPA scheduler is described. From a concept point

of view, there are some concepts related to data collection and some to decision making. For

the data collection, common and new metrics used in the CPA scheduler are described, and

then they are used in the CPA scheduler which decides for the position of the jobs in the job

scheduling part of the system.



CHAPTER 5

CARBON-AWARE LOAD BALANCER

In introduction, it was mentioned that one goal of this thesis is to introduce a mechanism

for load balancing of web applications. The web applications are hosted on virtual machines

and those virtual machines are able to seamlessly migrate between servers and data centers.

Before introduction of the mentioned mechanism, first, in the Section 5.1, we introduce a new

heuristic algorithm which will be used for load balancing of the web applications. Next, in

Section 5.2, we introduce the load balancing mechanism for web applications which are aware

of environmental impacts of data centers.

5.1 Multi-Level Grouping Genetic Algorithm

In the GGA, a new crossover and mutation operators were introduced in order to save the

group relations between individual genes. In a similar way, here, the MLGGA crossover and

MLGGA mutation operators are introduced in order to preserve the relations between groups.

These operators substitute the normal GA crossover and mutation operators and work along

with the other GA operators as shown in lines 6 and 7 of the following MLGGA pseudocode:

1: Choose initial population.

2: Evaluate each individual’s fitness.

3: repeat

4: Select individuals to reproduce.

5: Mate pairs at random.

6: Apply MLGGA crossover operator.

7: Apply MLGGA mutation operator.

8: Evaluate each individual’s fitness.

9: until terminating condition
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5.1.1 MLGGA Crossover

In the virtual cloud problems, the positions of VMs are the variables of the problem. In these

problems, grouped variables, such as server consolidation, lower the cost function. However,

normal GA crossover break the existing groups in the parents chromosomes, and probability

of preserving the good grouping features presented in parent genes is very low. Although the

GGA crossover provides a way to preserve the grouping features in parent genes, there are

relations between groups that the GGA crossover is not able to preserve, and most probably it

breaks these relations. In the network of data centers, the GGA is good to consolidate VMs on

servers, but it is not able to identify that there are benefits in choosing servers from only one

data center. For example, the GGA may consolidate VMs on different servers which allow us to

turn off some of the servers and save energy, but it is not aware that if it consolidate all servers

on less number of data centers as well, it may save a lot more by turning off an intermittent

data center. For example, assuming parent genes P1 and P2 and their groups are as follow:

P1 : ACDEGIJB

(ACDEGAIJDCBACDEAGIA)

P2 : bcghieda

(bcghieddaccccehigha)

If each group is assigned to a higher level group (a bigger bin) as follows:

W = {A}, X = {B,C}, Y = {D,E, F},
Z = {G,H, I, J}
w = {a}, x = {b, c}, y = {d, e, f}, z = {g, h, i, j}

The genes group lineup can be rewritten as their higher level groups as follows by replacing

the group representations (for example, ACDEGIJB for P1) by their higher level group labels:



95

P1 : WXYYZZZX ← ACDEGIJB

P2 : xxzzzyyw ← bcghieda

As it is shown above, some higher level groups are repeated in the group lineup. Here, we

create a higher level group lineup (level 2 group lineup), and we keep only one gene per higher

level group similar to what we did in group lineup in lower level. Now, the chromosome could

be written as below:

P1 : WXYZ WXYYZZZX

(ACDEGAIJDCBACDEAGIA)

P2 : xzyw xxzzzyyw

(bcghieddaccccehigha)

where the first column is the new level 2 group lineup representation of the chromosomes. The

crossover will be done on the level 2 group lineup representation of the genes: (WXYZ) and

(xzyw). Like the GGA, two crossover point will be chosen randomly on each gene:

P1 : WX|Y|Z WXYYZZZX

(ACDEGAIJDCBACDEAGIA)

P2 : x|zy|w xxzzzyyw

(bcghieddaccccehigha)

and the middle part of first gene will be replaced with middle part of the second gene, and

replaced higher groups in first gene with their assigned groups and containing individuals will

be removed from the gene. In addition, for inserted higher groups from second parent, their

matching higher groups in first gene will be removed in a same way.

Offspring : WX|zy|Z



96

As it is shown in above, higher level group (Y) in the first parent is replaced with higher level

groups (z) and (y) from second parent. This means that their matching higher level groups

(Z) and (Y) are not any more valid and their containing groups (D,E,F,G,H,I,J) and their con-

taining individuals should be removed from the chromosome; which remains the offspring

chromosome as below:

Offspring : WXzy (ACghiedd?CBACehighA)

Genes number 3-8, and 14-18 in second parent (P2) are belongs to groups (d,e,f,g,h,i,j) which

are belongs to higher groups (y,z) and they are transferred directly from second chromosome

to the first chromosome. Gene number 9 is in group (D) in first parent which belongs to higher

level group (Y) which needs to be removed as mentioned above.

For the genes in first parent, which are replaced with genes from second parents, there are

some individuals which are belongs to some groups and higher level groups which are not

yet removed from the chromosome. For our example, genes number 6 and 16 are belong to

group (A) in first parent chromosome which are replaced with (e) and (i) from the second

parent chromosome. These individuals with their co-group and co-higher-group individuals

need to be removed from the chromosome as well. Co-group individuals of an individual are

those genes which are in the same group, and co-higher-group individuals of and individual

are those genes which are in the same higher group. For our example, all individuals in higher

level group (W) which is higher level group of (A) need to be removed from the offspring

chromosome. The offspring chromosome will be like this:

Offspring : Xzy (?Cghiedd?CB?Cehigh?)

As it is shown in above, higher level groups (X) from first parent, and (z) and (y) from the sec-

ond parent are preserved in the offspring chromosome intact which is the goal of the crossover

operator.
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At the end, there are some individuals which are not assigned to any group and higher level

group. These individuals will fit in the chromosome by using the First Fit Descending algo-

rithm or more advanced fitting techniques. Higher level groups which are fuller will chosen

first, and also fuller groups are in more priority for first fit algorithm.

A graphical representation of GGA was presented in previous sections. For the same parent

chromosomes, MLGGA crossover and its graphical representation is illustrated in Figure 5.1,

5.2, and 5.3. There is a new color code for cross signs, which indicate the individuals belong

to groups with at least one removed co-group. These individuals are identified with pink cross

signs.

Figure 5.1 MLGGA representation for parent chromosomes.

5.1.2 MLGGA Mutation

The MLGGA mutation is very similar to the MLGGA crossover concept. From a selected

chromosome:
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P1 : WXYZ WXYYZZZX

(ACDEGAIJDCBACDEAGIA)

Some higher level groups will be randomly chosen, and all co-group and co-higher-group in-

dividual genes will be removed from the chromosome. For our example, if higher level group

(Z) is selected to be removed, the remaining chromosome will be as below:

P1 : WXY WXYY???X

(ACDE?A??DCBACDEA??A)

Then, the First Fit algorithm will be used to reinsert them to the chromosome as described in

crossover operator section.

Figure 5.2 MLGGA crossover in progress.

5.1.3 Extensions of the MLGGA Crossover and Mutation

In the GGA, the concept of group of individual genes is introduced. In previous section, we

described a situation where there are some relations between groups of groups in a problem.
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Figure 5.3 MLGGA crossover final result.

We can extend this solution for cases in which there are several level of grouping involved. For

example, if, in a problem, individuals are grouped by some criteria, the problem has grouping

relations at level 1. If the groups of level 1 are grouped by some other criteria, there will then

be a grouping of level 2. And similarly, we can have grouping of level n for a problem.

For a problem with the grouping of level n, a level n MLGGA crossover and mutation should

be used. The concept of the level-n MLGGA crossover and mutation is similar to what we

described in previous subsections which was a level-2 MLGGA crossover and mutation. For

the level-n MLGGA crossover, individual genes will be represent by their level 1, level 2, ...,

level n groups. Two crossover point will be selected randomly in parents level-n groups repre-

sentation, and the middle part of second chromosome will be inserted to the first chromosome

to occupy the place of middle part of first chromosome. Their matching level-n groups in first

chromosome with all their individuals will be removed from the offspring chromosome. For

those individual genes in first parent which are replaced with transferring genes from second

parent, all their co-level-n-group individual genes will be removed as well. Co-level-n-group

individuals of an individual are those genes which are in the same level n group. At the end,

all removed individuals will be inserted to the chromosome with using an First Fit algorithm or

more advanced algorithms as described in previous subsections. According to this definition,

the GGA algorithm is a level-1 MLGGA.

Level-n mutation operator will be defined in a very similar way with randomly selecting some

level-n groups and removing their individuals and reinserting them.
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5.2 Carbon-Aware Load Balancing Concept

A solution to the weaknesses of clean energy sources, such as intermittency and lack of avail-

ability, is “to follow the available clean energy” using a distributed ICT infrastructure. In this

section, the components of such an infrastructure, which we call a Carbon-Aware Distributed

Cloud, are discussed.

A CADCloud is a distributed cloud, in which the VM locations on its geographically-distributed

servers are optimized based on the carbon footprint of the entire CADCloud. Like other dis-

tributed clouds, a CADCloud consists of a set of reliably connected data centers, which may be

powered by different sources of energy, and forms an uniform environment in which seamless

VM migration can be easily achieved. These sources constitute a combination of renewable

and non renewable energy. Specifically, a cleanness ratio is assigned to each type of energy

source. However, it is worth noting that this ratio is highly variable, even among renewable

sources of energy (as well as non clean sources). Another aspect of the CADCloud is its dy-

namic nature. The fact that most of the renewable energy sources are intermittent makes these

distributed clouds highly dynamic systems from the energy and carbon point of view.

As shown in Figure 5.4, which depicts the schema of a CADCloud, the data collector com-

ponent asynchronously collects energy production, energy consumption, and resource usage

statistics of each data center. This component uses different energy and carbon footprint mod-

els to create the carbon footprint cost function of the optimizer component. The controller

component uses the optimizer component output, which is a new location suggested for each

VM, and will instruct the distributed cloud manager to relocate VMs to their new, optimized

positions, if possible.

The GreenStar Network (GSN1), which is an existing distributed cloud structure, is a real

example of the CADCloud Concept. In the GSN, various sites are connected with high speed

lightpath connections. Servers at those sites form a uniform cloud entity on the top of the

1http://greenstarnetwork.com
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Figure 5.4 CADCloud Schema.

infrastructure. Nodes are connected to various power sources, such as hydro, solar, and wind

sources.

In CADCloud, the optimizer is responsible for finding new locations for the VMs and report-

ing them to the controller, and it performs this task simply by using a heuristic algorithm that

minimizes the cost function of the cloud. This cost function is based on the carbon footprint

and energy model of individual resources in the cloud. Heuristic methods are widely used in

energy efficiency solutions in cloud computing environments, and some of them are discussed

in section 1.2. Since many of the algorithms currently used in the literature are mostly devel-

oped for local clouds and are not generally suitable for distributed clouds, a new algorithm is

used in this work for this purpose.
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An improved version of the GGA is used for a more complicated type of server consolidation in

a distributed cloud that uses a diversity of energy sources (Farrahi Moghaddam et al., 2012a).

In that research, we introduce the Multi-Level Grouping Genetic Algorithm (MLGGA) to opti-

mize the carbon footprint of a distributed cloud, which is formulated as a multilevel bin packing

problem. In this problem, cloud servers are distributed among several data centers powered by

different renewable sources of energy. Each distributed data center represents a higher level

bin which includes servers. Each server represents a bin that includes VMs.

The GGA is a good candidate for one level bin packing problems (Xu and Fortes, 2010);

however, for higher level bin packing problems, it is not efficient enough (Farrahi Moghaddam

et al., 2012a). This is because simple bin packing cannot discern higher level relations between

the carbon footprint and type of energy source in data center VMs, and may not offer good

solutions.

As mentioned above, there are several levels of bins in the MLGGA, and each lower level bin

(server) is located in a higher level bin (data center). The MLGGA is defined by its crossover

and mutation operators. The constraints for the optimization problem are adopted from (Farrahi

Moghaddam et al., 2011, 2012a) where server consolidation is seen as a bin packing problem.

The MLGGA performance was only compared with GGA in Farrahi Moghaddam et al. (2012a).

In this work, it will be compared with other approaches using improved carbon and energy

models. In the following sections, the MLGGA approach is used for an energy diversity study

of distributed clouds.

The controller module defines the mission of the geographically-distributed cloud manager. In

the GSN, the mission was to follow the sun and follow the wind, using the green energy that

is available. In the CADCloud, the mission is to reduce the carbon footprint of the distributed

cloud. To achieve this mission, the controller simply asks the optimizer to find new locations

for VMs which yield the smallest carbon footprint. Then, the controller instructs the distributed

cloud manager to move the VMs to their new locations. It is critical that the controller be able

to command the hypervisors used in the distributed cloud.
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5.3 Chapter Summary

In this chapter, a new genetic algorithm suitable for multi-level consolidation problems was

introduced. Then, a system was introduced which uses this new algorithm and move around

virtual machines to reduce the carbon footprint of the system.





CHAPTER 6

EXPERIMENTAL RESULTS AND VALIDATION

In the literature review chapter, the state-of-the-are methodologies are discussed, and the area

of coverage of each research plus its pros and cons are explained. To improve those method-

ologies, a series of improvements are suggested in the Chapters 2, 3, 4, and 5, which they need

to be evaluated and validated as a whole system.

In this chapter, the proposed methodologies in the previous chapters will be implemented in

a simulation environment and compared with the baseline system, which is defined in Section

2.1. The goal of this chapter is to establish a simulation environment suitable for the context

of this thesis (Obj#5) and determine the performance of the new methodologies in comparison

with the state-of-the-art methodologies.

In the following sections, first, the simulation environment will be explained, and then different

case studies will be investigated under the simulation environment in the subsequent sections.

6.1 Simulation Environment

This section will explain the details of the simulation environment which is used for evaluation

and comparison of different designs and methods presented in the previous chapters. The

scenario generator will manually or automatically alter different parameters of the system and

create the simulator parameters set. Then, the simulator will execute each individual simulator

parameter set separately. Each component in the system has its own running variables plus its

initial parameters. The models described in the previous chapter will be used to calculate the

running variables of the system in each time interval.

6.1.1 Batch Simulation

One of the issues in this research is the high number of simulations. Configuring the simu-

lator manually for each simulation is very time consuming. Therefore, an automated batch
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simulation strategy is needed to speedup the process of simulations. In the following, the main

features of such strategy is described.

A simulation-job-generator is developed in this research, which is configurable to produce

multiple simulation jobs at a time. For example, the simulation-job-generator will produce

several jobs for a scenario which need to be simulated under different optimization algorithms.

Each job is configured to run with one of the optimization algorithms.

When jobs are created, they are in a queue and will be scheduled to be executed on a sever

with multiple cores by another module, simulation-job-scheduler. Simulation-job-scheduler

will select simulation-jobs from the queue and will assign them to actual simulator modules.

At the end, the results of simulation-jobs will be processed for production of figures and tables

by two other modules, plot-generator and table-generator, respectively.

6.1.2 Caching

Models’ heavy calculations are issues which slowdown the process of simulations. Based on

the parameters of the system, for a model to be calculated, several intermediate parameters

need to be calculated, which are very time consuming. For example, for the cooling models

introduced in section 3.2, a system of 17 equations need to be solved in each iteration which

may take a long time. Therefore, pre-calculated models can speedup the process of simulations.

In the development of the simulation, a dynamic approach is considered for pre-calculation of

models and intermediate parameters. In this approach, the simulator will start with an empty

cache, and slowly will fill it with calculated models and parameters as it goes forward. The

simulator will search for pre-calculated values in the cache with a reasonable distance in the

search space. If the near-enough point exist, it will use the value instantly, and if it does not

exist, it will calculate the value of model for that point and will save it in the cache for future

use.
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6.1.3 Summary

Here, the basic concept of the test environment is explained. In the following sections, re-

sults conducted in several scenarios of this thesis will be discussed to see if they achieved

their objectives. More specific simulation details related to each experiment is provided in the

following sections.

6.2 Green HPC Job Scheduling Scenarios

In this section, the new Carbon-Profit-Aware HPC job scheduler which is part of the new design

is tested under different scenarios. In the following sections, a number of studies are carried

out on the new algorithm for the job scheduler in order to test its robustness and performance.

These situations include performance, cooling system, and carbon tax studies.

6.2.1 Experimental Setup

There are various sources of the HPC-related workload traces publicly available on the Internet.

A brief list of some of these sources are provided in Table 6.1. Also, some of the most cited

traces are listed in Table 6.2. In this study, we use the Grid’5000 trace as a guide for our HPC

trace in the experiments. This trace includes almost one million jobs. We have chosen one

week of this trace to generate our HPC trace in this simulation platform, which is illustrated in

Figures 6.1-a and 6.1-b, which represent the total amount of cores requested by new jobs and

their average default length, respectively. As it is indicated in the figures, the HPC traces used

for all of the algorithms are identical. The workload is randomly generated based on features

extracted from real HPC workloads to cover fully-utilized and under-utilized situations. The

workload is generated in a way that the system is fully-utilized for the first three working days

of the week in the one week test scenarios and is under-utilized for the last two working days

of the week.

Ten cities are selected to host the data centers in this simulation scenarios. These cities are

Los Angeles, Toronto, Sao Paulo, Humburg, Cape town, Mumbai, Singapore, Guangzhou,
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Source Name Abbreviation Link

1 Parallel Workloads Archive PWA http://www.cs.huji.ac.il/labs/parallel/workload/logs.html

2 Grid Workloads Archive GWA http://datamob.org/datasets/show/grid-workloads-archive

3 Grid Observatory GOB http://www.grid-observatory.org/

4 LANL Trace Data LANL http://institute.lanl.gov/data/tdata/

5 The Failure Trace Archive FTA http://fta.scem.uws.edu.au/index.php?n=Main.DataSets

6 Maui Scheduler Traces MST http://docs.adaptivecomputing.com/maui/16.1simulationoverview.php

7 NPACI JOBLOG Repository NJP http://www.cs.huji.ac.il/labs/parallel/workload/l_sdsc_sp2/

8 The computer failure data repository CDFR https://www.usenix.org/cfdr

9 The Internet Traffic Archive (Internet) ITA http://ita.ee.lbl.gov/index.html

10 The RIPE Data Repository (Internet) RDR https://labs.ripe.net/datarepository/data-sets

Table 6.1 Various archives and source of real traces of HPC jobs.

Trace Name Source Length (Months) CPUs # Jobs % Utilization

1 SDSC BLUE (Wang and Chu, 2009; de Assuncao et al., 2009) PWA 32 1,152 243,314 % 76.8

2 LLNL Thunder (Garg et al., 2011; Etinski et al., 2010) PWA 5 4,008 121,039 % 86.7

3 Grid5000 (Iosup and Epema, 2011; Wu et al., 2010) GWA 30 2,500 951,000 % 10.4

4 EGEE Grid Trace (Rodero et al., 2010; Lingrand et al., 2010) GOB 18 140,000 400,000/m NA

5 NorduGrid (Caron et al., 2010; Molfetas et al., 2011) GWA 21 2,000 781,000 % 69.8

6 GLOW (Rodero et al., 2010; Iosup and Epema, 2011) GWA 4 1,400 216,000 % 11.8

Table 6.2 Some of the most cited HPC traced in the literature.

Fukushima, and Sydney. The associated data centers will be referred as DC1 to DC10, respec-

tively.

Since the data centers are located in different regions, therefore their energy mix, energy price,

and temperature are different from each other. The energy (electricity) mix data is produced

based on real data collected from publicly available power mix data of Ontario province1. For

the other states, having their power mix percentages, the actual power mix data is generated

1http://reports.ieso.ca/public/
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Figure 6.1 HPC workload features
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based on data of power plants in the Ontario to match their overall emission factors. The

electricity mix for various regions across the world are listed in Table 6.3, and the electricity

price is provided in Table 6.4. The information for these tables are collected from sources

listed in Table 6.5. A simple peak hour pattern similar to the Ontario state is used for the states

with electricity peak hours. In the Figures 6.2-a, greenness of these areas are presented, and in

Figure 6.2-b, their electricity price peaks are illustrated.

City Nuclear Cole Gas Hydro Wind Other Oil

(%) (%) (%) (%) (%) (%) (%)

Los Angeles 11 52 26 6 0 5 0

Sao Paulo 3 3 6 80 0 4 4

Humburg 24 46 15 5 7 1 2

Cape town 2 67 2 1 0 9 19

Mumbai 2 69 10 14 2 0 3

Singapore 0 0 78 0 0 4 18

Guangzhou 2 79 1 17 0 0 1

Fukushima 23 27 26 8 0 3 13

Sydney 0 77 15 5 1 1 1

Table 6.3 Energy mix data

City Electricity price

(US dollars cents per kWh)

Los Angeles 19

Sao Paulo 34

Humburg 34

Cape town 8 - 16

Mumbai 8 - 12

Singapore 20

Guangzhou 7 - 11

Fukushima 20 - 24

Sydney 22 - 46

Table 6.4 Energy price data

Region Link

Los Angeles http://www.bls.gov/ro9/cpilosa_energy.htm

Los Angeles http://en.wikipedia.org/wiki/Los_Angeles_Department_of_Water_and_Power

Torronto http://reports.ieso.ca/public/

Sao Paulo http://en.wikipedia.org/wiki/Electricity_generation

Humburg http://en.wikipedia.org/wiki/Electricity_pricing

Cape town http://en.wikipedia.org/wiki/Energy_in_South_Africa

Singapore http://www.ema.gov.sg/media/files/publications/EMA_SES_2012_Final.pdf

India http://www.powerexindia.com/PXIL/

Others International Energy Agency - Key World Energy Statistics (2009) http://www.iea.org/stats

Others http://en.wikipedia.org/wiki/Electricity_generation

Others http://en.wikipedia.org/wiki/Electricity_pricing

Table 6.5 Energy mix and price data sources

The carbon taxes are selected based on the information listed in the Table 6.6. It has been

shown that the CO2 taxation needs to be quite severe in order to influence toward more local

sourcing (Global Commerce Initiative and Capgemini, 2008). Therefore, a virtual carbon tax

of 30 US dollar cents per Kg of CO2 is used in the virtual carbon tax scenarios.
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Study Carbon Tax Industry Country (region)

$ / tCO2 The currency of the study/ tCO2

Adamou et al. (2012) 42.58 31.04 e/ tCO2
(a) Car Greece

Braathen (2012) 16.16 166.67 ZAR / tCO2
(b) Car South Africa

Chen (2013) 5.60 34 CNY / tCO2
(c) Aggregated industry China

Wang and Neumann (2009) 3.29-32.94 20-200 CNY / tCO2
(d) Aggregated industry China

Chua and Nakano (2013) 796.4 1000 SGD / tCO2
(e) Car Singapore

Gagoa et al. (2013) 253.8 185 e/ tCO2
(f) Electricity (Residential) Spain

Gagoa et al. (2013) 34.30 25 e/ tCO2
(f) Electricity (Industry) Spain

Gagoa et al. (2013) 480.2 350 e/ tCO2
(f) Transport (Gasoline) Spain

Gemechu et al. (2013) 27.44 20 e/ tCO2 Permit price EU

Lundgren and Marklund (2012) 11.25 74 SEK / tCO2 Mining Sweden

Lundgren and Marklund (2012) 22.03 145 SEK / tCO2 Food Sweden

Lundgren and Marklund (2012) 19.00 125 SEK / tCO2 Pulp/paper Sweden

Medina (2013) 55.76 345 NOK / tCO2 Aggregated industry Norway

Pereira and Pereira (2013) 23.32 17 e/ tCO2 Aggregated industry Portugal

Xianqiang et al. (2013) 49.41 300 CNY / tCO2 Transport (Gasoline) China

Zimmermannová (2013) 20.58 15 e/ tCO2 Energy EU

CORNWELL and CREEDY (1996) 90.4 113 AUD / tCO2 Aggregated industry Australia

NERA Economic Consulting (2013) 20 20 $ / tCO2
(g) Aggregated industry USA (California)

Table 6.6 Some carbon tax rates considered in the literature in various industries across

the world.
(a) Assuming an emission rate of 145 gCO2/Km, 15 etax for every 1 gCO2emission rate

above than 100 gCO2, a working range of 150, 000 Km. (b) Assuming an emission rate of

180 gCO2/Km, 75 ZAR (South African currency) tax for every 1 gCO2emission rate

above than 120 gCO2, a working range of 150, 000 Km. (e) Targeting to reach an

Electrical Vehicle (EV) share of %10 in Singapore by 2020. (f) Implicit tax on carbon

emissions of energy consumption. (g) 20$ has been marked as both fixed carbon tax and

also the carbon tax that is required to have a %80 reduction in emissions in 2013.

The weather information regarding any of these locations are obtained from National Oceanic

and Atmospheric Administration2 databases. In Figure 6.2-c, the environment temperature is

presented.

For the CPU specifications, similar to Garg et al. (2011) work, the parameters of the power

consumption model (Equation (1.6)) are set to α = 0.004 (kWh/f 3) and β = 0.05 (kWh).

The minimum and maximum frequency of the CPUs are considered to be 1.5 and 3 GHz. The

sales rate of the system is set to 6 cents per a core-hour @3GHz which is obtained based on

the avarage sales rate of Amazon EC2.

All the experiments are done for one week period of time from 2nd January 2010 to 9th January

2010, and all the associated data regarding emission factors, electricity prices, and weather

2http://www.noaa.gov
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temperatures are collected from this period of time. The “hour number”3 indicated on the time

axes of the graphs is referring to the same period of time. All the simulation is done in Matlab

environment.
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Figure 6.2 Data centers greenness, electricity price rates, and environment temperature

6.2.1.1 Comparing Algorithms

In Table 6.7, a list of algorithms with proper reference and a short description are presented

which are used in this experiment to be compared with each other.

For the CPAS algorithm, it uses the Equation (4.3) as the profit model to calculate the total

profit of the system. At the same time, it uses the Equation (4.5) to calculate the optimum

frequency of the CPUs for each core-hour of the system variable space. It also uses this op-

timum frequency to calculate the maximum profit achievable in each core-hour and uses this

information as a metric to guide the CPAS scheduler algorithm. A Pseudo code in Section 4.3

describe the functionality of the CPAS scheduler step by step.

3Please refer to Appendix I for definition.
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Table 6.7 The comparison table among schedulers used in experimental setup.

Code name Algorithm name Main references Description

PERF Performance-based scheduler Kim et al. (2003), Freund

et al. (1998)

It uses a Percent Best MinMin scheduler to

minimize the MCT metric.

ENER Energy-based scheduler Zhang et al. (2010) It optimizes total system energy consump-

tion to obtain the best frequencies for CPU

cores.

CARB Carbon-based scheduler Garg et al. (2011) It uses an optimal frequency for each type

of CPU to minimize the energy consumption

of jobs. It also uses MINMin scheduler to

chose the best green servers.

PROF Profit-based scheduler Qureshi et al. (2009) It uses a cost-aware request routing policy

which is aware of variation of electricity

price over time and location to minimize the

cost.

CPAS Carbon-Profit-Aware scheduler This thesis It optimizes the PpCHG metric to obtain the

best frequencies for CPU cores. It also uses

VCT to intensify the carbon footprint reduc-

tion.

6.2.2 CPA Scheduler Performance Study

This section will investigate the performance of the CPAS algorithm and will compare it with

other state-of-the-art algorithms of the job schedulers. In Figure 6.3, profit of the system is

presented for several algorithms. As shown in the figure, the CPAS algorithm has a better

performance than other algorithms in terms of affording gain. The PERF algorithm has a better

performance than the CARB algorithm when the system is fully utilized which is from hour

zero to 120 in the Figure 6.3, and it has lower performance when the system is underutilized

which is from hour 120 to 168. As it was illustrated in the Figure 6.1-a the amount of entered

jobs reduces in hour 96 which switches the system from fully utilized to underutilized. The

difference between hour 96 and hour 120 is due to the average deadline of the jobs which is

24 hours. The scheduler has in average 24 hours to schedule a job or it will fail. Therefore,

even though the amount of jobs reduces in hour 96, they will remain in the system memory

to be scheduled or failed until they reach their deadline. As it was projected in introduction

and Section 2.1.3, the CARB algorithm works better in underutilized situations which is shown

here.

In Figures 6.4 and 6.5 the energy consumption and average PUE of the system is presented.

The energy consumption includes energy consumption of the IT equipments as well as support

system. The average PUE shows the relation between energy consumption of the IT equip-
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Figure 6.3 Geo-DisC profit

ments and support system which is represented by energy consumption of the cooling system.

As it is shown in the Figure 6.4, the energy consumption of PERF algorithm is the highest due

to its maximum CPU frequency, and energy consumption of CARB is the lowest due to its

optimum CPU frequency. However, as it was shown in the Figure 6.3, even though the energy

consumption of CPAS is higher than CARB algorithm, its profit is also higher which confirms

the complex correlation relation between metrics of the system. Since the PERF algorithm uses

the maximum frequency of the CPUs and fully utilizes the system, its sale and therefore profit

is higher when there are enough jobs to fully utilize the system, but when the number of jobs

reduces, it will loose the advantage of higher sale and profit. In addition, as it is shown in the

Figure 6.5, the average PUE of PERF and CARB are in the same range and higher than CPAS

algorithm. The reason for this observation is due to the fact that PERF and CARB algorithms

do not have any mechanism in their decision process to consider the variations of the cooling

system. On the other hand, CPAS algorithm has a mechanism to consider the cooling system

indirectly. When the PUE is higher than its average value, the associated energy consumption

and carbon footprint of the cooling system are also higher than their average value. Therefore,

this situation lowers the profit of the system and since CPAS algorithm is a profit based algo-

rithm it will avoid this situation by avoiding servers in areas with high PUE or by lowering the

CPU frequency.
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Figure 6.4 Geo-DisC energy consumption
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Figure 6.5 Geo-DisC average PUE

In Figures 6.6, the carbon footprint of the system is illustrated. This graph and profit graph

together can show the success of the algorithms in terms of achieving both objectives of the

this research: high profit and low carbon footprint. However, in the Figure 6.7, the greenness

of CPAS is not at the top of the algorithms, even though it is comparable. As mentioned in

the description of the CPAS algorithm, to boost the carbon reduction of this algorithm, virtual

carbon tax needs to be considered. In the following sections, it is shown how virtual carbon

tax can improve the greenness of CPAS with a small compromise in profit.



115

0 20 40 60 80 100 120 140 160

0.6

0.8

1

1.2

1.4

1.6

x 104

Time (Hour number) (offset=17619360)

C
ar

bo
n 

(k
C

O
2)

Distributed Cloud Carbon Footprint

PERF    .
ENER    .
CARB    .
PROF    .
CPAS    .

Figure 6.6 Geo-DisC carbon footprint
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Figure 6.7 Geo-DisC greenness

As it was mentioned in the literature review and section 2.1.3, PERF and PROF algorithms

use the maximum frequency of the CPUs while CARB calculates an optimum frequency for

minimum energy consumption of the jobs. On the other hand, the CPAS algorithm chooses the

optimum frequency of each job based on carbon tax, energy price, and sales rate parameters

of the system. Moreover, the ENER algorithm uses a DVFS technique to adjust the frequency

of jobs. Figure 6.8 present the variation of average frequency of the CPUs in CPAS algorithm.
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As shown in the figure, the average frequency of CARB and PERF algorithm is predetermined

and constant.
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Figure 6.8 Geo-DisC average frequency

In the Figures 6.9, 6.10, and 6.11, a color coded sample of scheduled jobs on the servers is

presented. The color code which is used here is fully described in Section 4.3.1. In this repre-

sentation, each job is represented with a rectangular with a face color. Since there are 160000

CPU cores in this experiment, it is impossible to illustrate all of the cores in the schedule of

jobs map, therefore, a pool of 160 cores (10 server) from each data center is selected to repre-

sent different data centers in this map. There are total of 1600 CPU cores presented in this map

which are stacked from 1 to 1600 and are representing data center 1 to 10. The lowest cores are

associated with the first data center and highest cores are associated with the last data center.

Each scheduled job has a start time and a duration. The jobs with higher number of cores are

thicker than the jobs with lower number of the cores.

These schedules need to be compared with the optimum profit map, which is defined in Section

4.1.3. The optimum profit map is illustrated in the Figure 6.12, and the associated color-code

map is presented in Figure 6.13.
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Figure 6.9 Scheduled jobs plot by PERF algorithm

Figure 6.10 Scheduled jobs plot by CARB algorithm

The black dots in the color code illustrate the actual state of data centers in profit-frequency

space. As it is shown, these points are around the optimum values (green dots), but they are

not exactly on the optimum value. This is due to the fact that CPAS algorithm chooses one

optimum frequency for each job regardless of the length of the job. Therefore a job which is

optimum for profit in this hour may not be completely optimum in the coming hours. The other
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Figure 6.11 Scheduled jobs plot by CPAS algorithm

Figure 6.12 Optimum profit map

reason is the error margin of the predictions which is made for the parameters of the system.

However, as shown in Figures 6.14, the state of CPAS is much better than the state of other

algorithms.

From all above mentioned graphs, an average value is calculated for each operation hour of

the system and the results are presented in the Table 6.8. As it is reported in this table, the
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Figure 6.13 Profit per frequency for CPAS algorithms

CPAS algorithm has the best performance in profit than other algorithms. In addition, the

CPAS algorithm has a better PUE factor than the other algorithms. However the greenness

of the CPAS algorithm is not better than the other algorithms. The reason for these results is

shown in the Sankey diagram of the cost and profit of the system in Figure 6.15. The carbon

tax amount is so small that it cannot have an impact on the final results of the CPAS algorithm.

Since carbon reduction is one of the goals of this thesis, to achieve both goals of this research,

CPAS algorithm must be used with virtual carbon tax metric to guarantee achievement of both

objectives of the thesis. The correspondent results are reported in Section 6.2.5.
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(a) PERF (b) CARB

(c) ENER (d) PROF

Figure 6.14 Profit per frequency for different algorithms

Table 6.8 The comparison table for performance study

Metric PERF ENER CARB PROF CPAS

Virtual Carbon Cost ($) 0 0 0 0 0
Energy Consumption (kWh) 23473.18 20876.9081 12196.6722 23031.2002 19726.5915

Carbon Footprint (kgCO2) 14140.9784 12401.146 7276.2217 14010.2001 12270.0918

Greenness 0.32276 0.34013 0.33637 0.31685 0.30478

Total Cost ($) 6242.8024 5426.5465 3810.1204 5833.8086 4868.6053

Sale ($) 7394.4852 6864.7731 4820.8713 7206.8521 6706.4404

Profit ($) 1151.6828 1438.2266 1010.7509 1373.0435 1837.8351
Profit plus VCT ($) 1151.6828 1438.2266 1010.7509 1373.0435 1837.8351
Average Freq (Ghz) 3 2.7871 1.842 3 2.678

Scheduled Job (CHG) 370010.0592 346693.4911 248304.142 363928.4024 333789.9408

Failed Job (CHG) 36237.8698 59554.4379 153434.9112 42319.5266 72457.9882

PUE 1.1429 1.1403 1.1431 1.1438 1.1386
Running Jobs (CHG) 369724.2604 343238.655 241043.5651 360342.6036 335322.0196

Slacks (Cores) 36758.5799 37084.0237 29141.4201 39885.7988 33484.0237

Execution Time (sec) 64.5068 541.2964 64.3541 477.8096 764.1728
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Figure 6.15 Sankey diagram of the cost and profit of the system

6.2.3 Seasonal Energy-Variations Study

The goal of this study is to show how energy variations in four different seasons affect the

performance of the algorithms. In this study, two algorithms are tested on the same network for

an interval of one week. In Figure 6.16-a carbon footprint of a typical Geo-DisC is presented.

As it is shown, the carbon footprint of system is higher in January and July which is correct due

to higher energy demand in summer and winter, which has a direct effect on the power mix.

Respectively, in Figures 6.16-b, 6.16-c, and 6.16-d, energy consumption, profit, and greenness

of the system is presented. The results of this experiment are summarized in Table 6.9.

For the similar system in Figure 6.17, the energy consumption is presented under the CPAS

scheduler. Comparing Figures 6.17 and 6.16-b, it shows that carbon sensitive algorithms will

respond to energy mix variations over the time and the scheduling is different in each different

month, but for the non-sensitive algorithms to carbon and energy price, the energy consump-

tion of IT equipments in different seasons is not impacted. The small variation of the total

energy consumption in Figures 6.16-b is due to variations of cooling system power consump-
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Figure 6.16 Geo-DisC in different seasons under PERF algorithm

Table 6.9 The comparison table for seasonal study of PERF algorithm

Metric PERF-JAN PERF-APR PERF-JUL PERF-OCT

Virtual Carbon Cost ($) 0 0 0 0
Energy Consumption (kWh) 23473.18 23458.7961 24399.7472 23969.3682

Carbon Footprint (kgCO2) 14140.9784 6053.3711 14270.8855 6525.0794

Greenness 0.32276 0.69204 0.34423 0.70078
Total Cost ($) 6242.8024 6067.6499 6336.215 6197.7281

Sale ($) 7394.4852 7394.4852 7394.4852 7394.4852
Profit ($) 1151.6828 1326.8353 1058.2702 1196.7571

Profit plus VCT ($) 1151.6828 1326.8353 1058.2702 1196.7571

Average Freq (Ghz) 3 3 3 3
Scheduled Job (CHG) 370010.0592 370010.0592 370010.0592 370010.0592
Failed Job (CHG) 36237.8698 36237.8698 36237.8698 36237.8698
PUE 1.1429 1.142 1.187 1.1659

Running Jobs (CHG) 369724.2604 369724.2604 369724.2604 369724.2604
Slacks (Cores) 36758.5799 36758.5799 36758.5799 36758.5799
Execution Time (sec) 65.0973 64.6909 65.1331 65.0861

tion caused by variations of temperature in different seasons. The results of this experiment are

summarized in Table 6.10.
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Figure 6.17 Geo-DisC energy consumption in different seasons under CPAS algorithm

Table 6.10 The comparison table for seasonal study of CPAS algorithm

Metric CPAS-JAN CPAS-APR CPAS-JUL CPAS-OCT

Virtual Carbon Cost ($) 0 0 0 0
Energy Consumption (kWh) 19726.5915 20214.9937 20577.1211 20479.3243

Carbon Footprint (kgCO2) 12270.0918 5435.5851 12355.229 5597.8182

Greenness 0.30478 0.68841 0.32981 0.69866
Total Cost ($) 4868.6053 4869.2903 4933.2713 4926.6047

Sale ($) 6706.4404 6782.7954 6679.1385 6762.1583

Profit ($) 1837.8351 1913.505 1745.8672 1835.5535

Profit plus VCT ($) 1837.8351 1913.505 1745.8672 1835.5535

Average Freq (Ghz) 2.678 2.7105 2.6616 2.6889

Scheduled Job (CHG) 333789.9408 337732.5444 332501.1834 336363.9053

Failed Job (CHG) 72457.9882 68515.3846 73746.7456 69884.0237

PUE 1.1386 1.1471 1.1947 1.1742

Running Jobs (CHG) 335322.0196 339139.7684 333956.9257 338107.9132

Slacks (Cores) 33484.0237 33563.9053 33162.1302 32936.0947
Execution Time (sec) 757.6114 758.1474 792.7486 781.4408

6.2.4 Cooling System Study

Figure 6.18 compares the carbon footprint of the NDC when electricity consumption related to

the cooling system is included to that which ignores it. As can be seen, ignoring the cooling-

related consumption introduces a big error in the footprint calculations that may misguide

the NDC manager/controller in its decisions to displace the load and jobs flow to different

data centers in order to reduce the overall footprint. In particular, the difference in carbon

footprint is as high as 4000 kgCO2 per hour at some moments. Furthermore, it is obvious from

the figure that when the NDC manager takes into account the cooling-related consumption

and also consider optimizing the placement in order to reduce the overall footprint, there is a
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considerable reduction compared to the case without any optimization. To be precise, there

is up to 2000 kgCO2 per hour (almost half of the error if cooling system is ignored). This

shows not only considering the dynamic behaviour of the cooling system in the calculations is

essential in any modeling and management of an NDC, a cooling-aware manager can achieve

considerable footprint reduction by choosing proper data centers at each moment of operation.
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Figure 6.18 Geo-DisC carbon footprint (cooling system study)

A similar behaviour can be seen from energy consumption of the whole system, shown in

Figure 6.19-a, with bigger impact of optimization on reduction of energy consumption. It can

be seen that the consumption of the optimized operation almost reaches that of the NDC with

ignored cooling system. This is reflected directly in the profit profiles, shown in Figure 6.19-b,

where the optimized operation considerably achieves higher profit compared to not-optimized

operation. The black curve, which corresponds to the case where the cooling system is ignored,

is not realistic because the cooling system consumption should be considered before calculating

the profit.

Finally, the average frequency of CPUs/cores is shown in Figure 6.19-c. The average-per-hour

values of the metrics in this experiment are summarized in Table 6.11.
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Figure 6.19 Geo-DisC under CPAS algorithm with different cooling strategies

Table 6.11 The comparison table for cooling study

Metric NO-COOL COOL-NO-OPT COOL-OPT

Virtual Carbon Cost ($) 0 0 0
Energy Consumption (kWh) 18066.5576 23353.6504 19726.5915
Carbon Footprint (kgCO2) 11060.4425 14266.0074 12270.0918
Greenness 0.31691 0.31823 0.30478

Total Cost ($) 4703.366 5414.6661 4868.6053
Sale ($) 6851.2894 6415.4221 6706.4404
Profit ($) 2147.9234 1000.756 1837.8351
Profit plus VCT ($) 2147.9234 1000.756 1837.8351
Average Freq (Ghz) 2.7573 2.5538 2.678
Scheduled Job (CHG) 341105.3254 319874.5562 333789.9408
Failed Job (CHG) 65142.6036 86373.3728 72457.9882
PUE 1 1.4543 1.1386
Running Jobs (CHG) 342564.4716 320771.1062 335322.0196
Slacks (Cores) 34475.1479 33232.5444 33484.0237

Execution Time (sec) 755.8809 728.375 747.0297

6.2.5 Virtual Carbon Tax Study

In Section 6.2.2, it was shown how CPAS algorithm has the highest profit. although CPAS

is also carbon sensitive, but in many states there is no carbon tax in place right now and the

CPAS algorithm in these states act as a pure profit maximizing algorithm. In order to reduce

the environmental impacts of the system in these states voluntarily, the VCT was defined in

previous chapters. Here, the effect of the VCT on the CPAS algorithm and other algorithms
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are evaluated. The rate of the VCT used here is 30 cents per kilogram carbon emissions and is

the same for all the data centers.

In Figures 6.20-a, 6.20-b, 6.20-c, 6.20-d, 6.20-e, and 6.20-f, Geo-DisC profit, real profit, car-

bon footprint, energy consumption, greenness, and virtual carbon tax cost are presented, re-

spectively.
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Figure 6.20 Geo-DisC under different algorithm with utilization of virtual carbon tax

As it is shown in the Figure 6.20-a the system is not profitable under high rate of the VCT, but

as it is mentioned before, the real profit of the system is the combination of profit and cost of

the VCT which is reported in the Figure 6.20-b which is totally profitable. The scenario with

CPSA algorithm and high VCT is not only profitable, but also it has the greenest values among

all other algorithms with different carbon rates. Area view of costs, profit, and sales of system
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is presented in Figures 6.21, and the average-per-hour values of metrics in this experiment are

summarized in Table 6.12.
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Figure 6.21 Geo-DisC sale, costs, and profit for high virtual-carbon-tax scenario and

scheduled by CPAS

Table 6.12 The comparison table for virtual carbon tax study

Metric PERF ENER CARB PROF CPAS

Virtual Carbon Cost ($) 4242.2935 3720.3438 2182.8665 4203.06 2362.6167

Energy Consumption (kWh) 23473.18 20876.9081 12196.6722 23031.2002 14060.338

Carbon Footprint (kgCO2) 14140.9784 12401.146 7276.2217 14010.2001 7875.3891

Greenness 0.32276 0.34013 0.33637 0.31685 0.37558
Total Cost ($) 10485.0959 9146.8903 5992.9869 10036.8686 6280.9617

Sale ($) 7394.4852 6864.7731 4820.8713 7206.8521 5388.1931

Profit ($) -3090.6107 -2282.1172 -1172.1156 -2830.0166 -892.7686
Profit plus VCT ($) 1151.6828 1438.2266 1010.7509 1373.0435 1469.8481
Average Freq (Ghz) 3 2.7871 1.842 3 2.0528

Scheduled Job (CHG) 370010.0592 346693.4911 248304.142 363928.4024 270482.8402

Failed Job (CHG) 36237.8698 59554.4379 153434.9112 42319.5266 134460.355

PUE 1.1429 1.1403 1.1431 1.1438 1.1295
Running Jobs (CHG) 369724.2604 343238.655 241043.5651 360342.6036 269409.653

Slacks (Cores) 36758.5799 37084.0237 29141.4201 39885.7988 28280.4734
Execution Time (sec) 64.5961 529.1303 64.1783 486.7963 680.0952

Similar to Sankey diagram presented in the performance study of the CPAS algorithm, a Sankey

diagram of the cost and profit of the system is presented in Figure 6.22. As shown in the figure,

the total amount of carbon tax plus virtual carbon tax is significant and the CPAS algorithm is

forced to reduce the carbon footprint of the system in order to maximize the profit. However,

as it is shown in the diagram, the amount of VCT is aggregated with profit of the system and

create the real profit of the system. Therefore, it is expected from the introduction of large
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amounts of VCT to the system to decrease the carbon footprint, but it is not expected that VCT

has the same impact on the real profit of the system. As it was observed in the performance

study and here, the VCT reduces the carbon footprint of the system but also reduces the profit

of the system. As it was mentioned before this is the trade-off between these two objectives of

the system. Here the question remains that what is the best balance for these two objectives.

Next section will investigate this question.

Figure 6.22 Sankey diagram of the cost and profit of the system with VCT

6.2.5.1 Carbon-Profit Trade-Off in CPAS with VCT

In the previous section, the effect of VCT was studied in different algorithms. Here, the effect

of VCT will be studied on CPAS algorithm with different rates of VCT. In Figures 6.23-a, 6.23-

b the profit and profit+VCT are depicted. As is shown, with introduction of carbon tax to the

system, profit decreases a bit. However, the decrease in profit is much higher with introduction

of VCT to the system. While the profit is significantly decreases after application of VCT on

the system, the real profit of the system (profit+VCT) is in a closer range than profit.
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Figure 6.23 Geo-DisC under CPAS algorithm with different virtual carbon taxes

Although the real profit of system is decreasing with an increase in VCT, its impact on energy

consumption and carbon footprint is significant as it is shown in Figures 6.23-d, 6.23-c. Not

only the VCT reduces both energy consumption and carbon footprint of the system, its impact

on carbon is relatively higher than energy as it is shown in Figure 6.23-e with a higher green-

ness. The effect of VCT is not limitless and with increase of VCT its effect decreases. As it

is shown in the energy consumption and carbon footprint figures, with heavy VCT rates, the

decrease in profit is significant while the decrease in carbon is not as much as moderated VCT

rates. Therefore, heavy VCT rates may not be justifiable and moderate rates need to be used.

The real tradeoff in a system with moderate VCT is between profit and carbon reduction. The

system under moderate VCT rates looses some profit, but the reduction in carbon is relatively

higher than this reduction in profit.
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In figure 6.24 the areas of cost and profit and VCT are depicted in different scenarios, and the

average-per-hour values of metrics in this experiment are summarized in Table 6.13.
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Figure 6.24 Geo-DisC sale, costs, and profit (scheduled by CPAS)

Table 6.13 The comparison table for virtual carbon tax study of CPAS algorithm

Metric NO-CT CT CT-and-VCT CT-and-HVCT

Virtual Carbon Cost ($) 0 0 2362.6167 3861.8998
Energy Consumption (kWh) 20055.6944 19726.5915 14060.338 12035.4644
Carbon Footprint (kgCO2) 12496.3835 12270.0918 7875.3891 6436.4997
Greenness 0.30392 0.30478 0.37558 0.40344
Total Cost ($) 4862.9008 4868.6053 6280.9617 7337.3007

Sale ($) 6789.5656 6706.4404 5388.1931 4390.629

Profit ($) 1926.6649 1837.8351 -892.7686 -2946.6718

Profit plus VCT ($) 1926.6649 1837.8351 1469.8481 915.228

Average Freq (Ghz) 2.7116 2.678 2.0528 1.7889

Scheduled Job (CHG) 337997.0414 333789.9408 270482.8402 222578.6982

Failed Job (CHG) 68250.8876 72457.9882 134460.355 176652.071

PUE 1.1376 1.1386 1.1295 1.1258
Running Jobs (CHG) 339478.2817 335322.0196 269409.653 219531.4478

Slacks (Cores) 33479.2899 33484.0237 28280.4734 36345.5621

Execution Time (sec) 748.0394 756.8532 668.0682 584.9671

To have a full picture of the the trade-off between carbon and profit, the experiment is done for

a range of the VCT values, and the results are provided in the Figure 6.25. As shown in the

figure and it was also mentioned earlier, with introduction of smaller amount of the VCT to

the system, the profit does not reduced as much as carbon. It is almost like a flat line for small

VCT amount. However, with increase in the amount of the VCT, the profit decrease with a

much higher rate. This graph gives the business owners a clear picture of the trade-off between
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profit and carbon, and it will be their decision to choose one of the many solutions provided

here. According to this research, all these solutions are valid, but for example introduction of

15 cents of VCT per kilogram of carbon emissions results in not much decrease in profit with

about two tones of carbon reduction in carbon footprint per hour. This results can be used as

a self-motivating approach for business owners to take more carbon reduction measures while

keeping their level of profit untouched or with a minimum impact. If this amount of carbon

reduction was the result of real carbon tax, the businesses cannot survive (refer to the profit

row of the Table 6.13).

Figure 6.25 Carbon-profit trade-off per hour (ct represent the amount of VCT applied)

6.2.5.2 Study of CPA Scheduler based on Virtual GHG-INT Equivalent Carbon Tax

In previous section, it was observed that how introduction of virtual carbon tax can direct the

scheduler towards lower carbon emissions. The same technique can be used for other metrics of
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interest. According to the GHG intensity (GHGINT) indicator,4 carbon emissions in different

regions should not be evaluated only based on the amount of the emissions, but the amount of

production achieved should be also considered. The GHGINT is not supported by all regions.

To be precise, there are three major indicators proposed in this direction, and we will consider

them in this thesis:

a. The GHG intensity (GHGINT) indicator (Jotzo and Pezzey, 2005):

GHGINT = GHGtotal

GDP
(6.1)

where GDP stands for Purchasing Power Parity GDP (GDP (PPP)) (Farrahi Moghaddam

et al., 2013; The World Bank Group, 2011).

b. The GHG emissions per capita (GHGpCapita) indicator:

GHGpCapita = GHGtotal

Population
(6.2)

where Population is the population in 1990 as the global baseline year of GHG emission

reduction efforts (as proposed in Farrahi Moghaddam et al. (2013)).

c. The modified GHG intensity (MGHGINT) indicator (Farrahi Moghaddam et al., 2013):

MGHGINT = GHGtotal

IHDIGDP
(6.3)

where IHDIGDP is the IHDI-adjusted GDP (Farrahi Moghaddam et al., 2013), and IHDI

is inequality-adjusted human development index (Alkire and Foster, 2010).

The GHG emissions in a region with a high GDP is less intense (has a less GHGINT indicator)

compared to a region with a lower GDP value. In contrast, the same amount of emissions

would have a higher GHGpCapita indicator in a region with a lower population compared to

a region with a higher population. These two indicators can be very much in contradiction,

4Refer to Appendix II for more details.
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and this has been the main reason for lack of global agreement on a universal and unique

indicator, and justifies the necessity of the third indicator, i.e., the MGHGINT indicator, which

provides a fair and universal assessment of GHG emissions of all regions. Regardless of which

indicator is chosen, the virtual carbon tax can be used to minimize it. In the following, the

Geo-DisC system is tested considering all these three indicators. For example, in Equation 6.4,

an “equivalent carbon emission” metric is introduced in order to measure the carbon footprint

of the system with respect to the GHGINT indicator.

Ceq = C ∗ GHGINTlocal

GHGINTmean
(6.4)

where GHGINTlocal represents the GHGINT of the region in which the data center is located.

GHGINTmean represents the average value for the GHGINT of all regions that support that

Geo-DisC system. It is worth noting that GHGINTlocal

GHGINTmean
is greater than one if the GHGINTlocal >

GHGINTmean that makes the Ceq greater than the actual carbon emission of that data center.

The “equivalent carbon emission” is needed to be separately calculated at the granularity of

data centers, and then the results can be aggregated as the “equivalent carbon emission” of the

whole system. Figures 6.26 report the carbon emission and “equivalent carbon emission” of a

Geo-DisC system under any of these virtual taxes compared with no virtual tax scenarios.

6.2.6 Summary

In this section, the new proposed algorithm was compared with other algorithms under different

scenarios. The results show that the new algorithm can minimize the carbon footprint when

it is maximizing the profit with considering the trade-off between profit and carbon. A higher

carbon tax can significantly reduce the carbon footprint, but it also reduces the profit of the

system. In the states and provinces which the carbon tax is not in place introduction of a

virtual carbon tax can force the algorithm to reduce the carbon footprint while these virtual

carbon taxes will be added to the profit at the end.
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Figure 6.26 Geo-DisC under CPAS algorithm with different virtual “GHG indicator”

taxes

6.3 Server Power Metering Validation

In the previous sections, an improved model for energy and carbon metering of a distributed

cloud have been presented. In this section, first, the proposed model in Equation (3.7), which is

the main formula for all the power measurements, is validated on real servers. Then, the VMs

live migration power consumption, Equation (3.6), is validated based on the real data.

It is worth noting that since energy consumption of the whole distributed cloud is the summa-

tion of energy consumption of individual servers and other equipments (as defined in Equation

(3.5), by validating the building blocks of that formulation, the whole formula will be validated.
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As mentioned in the related work section, in most of existing power prediction models it is

shown that energy consumption has a linear relation with resource usage. In our model, we try

to consider as many as possible parameters that may have an effect on energy consumption.

Therefore, we expect that our proposed piecewise-linear model works in the same manner with

a higher accuracy.

6.3.1 Experimental Setup

In order to evaluate the proposed energy model on a real server, following steps are taken. To

calibrate each server, first, a set of different stress tests are run on that specific server, and for

each test execution, PMC counters, resource utilization, and energy consumption of the server

are measured and logged in a dataset table. Then, models in Kansal et al. (2010), Bertran et al.

(2010b), Farrahi Moghaddam et al. (2012b), and our piecewise-linear model are built using

linear and piecewise-linear regression techniques. To determine the prediction error rate of

each model, a 10-fold cross validation is used; the dataset is divided in 10 random subsets, and

the model is trained (regression techniques) using 90% of the dataset (9 subsets) and is tested

on the remaining 10% (the other subset). This process is repeated for all the subsets in a total

of 100 times. The final error rate is the average of all 100 validation errors.

A custom made stress test application is written in C++ language in order to load different parts

of a server with different degree of utilization. This stress process is able to simultaneously load

the CPU (arithmetic and/or memory instructions), network, and hard disk with different loads

by using multiple threads. A total number of 512 stress test with random generated degree of

load in CPU, memory, network, and disk is run on each server.

For collecting the PMCs, we used the Linux kernel profiling tool (“perf”) to collect the task

clock msecs, context switches, CPU migrations, page faults, CPU cycles, instructions, cache

references, cache misses, L1 dcache loads, L1 dcache stores, L1 dcache prefetches, L1 icache

loads, L1 icache prefetches, Last Level Cache (LLC) loads, LLC stores, and LLC prefetch

counters. For collecting the network, disk, memory, and CPU use information, we used the
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Linux performance analysis tool (“dstat”) to measure the amount of disk read/write activity

(MB/s) and the amount of network send/receive activity (MB/s).

6.3.1.1 Server Power Metering Setup

For the tests, GSN servers (Dell PowerEdge R710, 16x Intel Xeon E5530 @2.40GHz, 48GB

RAM) are selected to perform energy consumption analysis. The energy consumption of the

servers is measured by a Raritan PDU device (PX DPXR8A-20L6) and a backup power source

(ServerTech Sentry Switched Cabinet power Distribution Unit (CDU) Version 6.0h). These

two servers are connected through gigabit Ethernets.

Each test is carried out for around 100 seconds, and, during the test, the measured power

consumption of the server is recorded by the PDU and CDU.

6.3.1.2 VM migration Power Metering Setup

For the VM migration energy consumption test, a VM is created on the source server using

KVM hypervisor and then a process is run on that VM (in our case, we used a video streaming

process). During the whole test, the process will be active and will be streaming to a client.

While the migration process is initiated and is in process, both servers energy consumption will

be measured in addition to the PMC counters and resource utilization. Theses recorded values

plus the validated model will be used in the following section in order to validate the migration

energy consumption model.

6.3.2 Server Power Metering Validation Results

Matlab linear regression and the ARESLab piecewise-linear regression is used to build the

Kansal et al. (2010), Bertran et al. (2010b), and Farrahi Moghaddam et al. (2012b) models and

our model from collected data5 on two GSN servers under different loads, and the following

5The data is publicly available to community for research purposes in http://www.synchromedia.ca/cadcloud
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regressions emerge:

p
(s)
Kan(t) = 225.41 + 1.47d+ 4.85n+ 75.88c+ 49.02m (6.5)

p
(s)
Ber(t) = 259.02 + 16.12cm + 21.04chm + 2.38br + 43.98L1dl + 56.35mb (6.6)

p
(s)
Far(t) = 185.33 + 2.85d− 0.76n+ 6.85c+ 21.58cm + 1.47chm + 51.15br

+65.13L1dl + 77.05mb

(6.7)

p
(s)
CADCloud(t) = 349 + 458
c− 0.154� − 651
0.154− c� − 367
mb − 0.967�

−64.8
0.967−mb� − 946
0.0032− cm� − 45.2
0.32− c�
−83.4
0.0656− n� − 408
c− 0.0425� − 340
mb − 0.929�
−25.2
L1dl − 0.771� − 6.85
0.771− L1dl�+ 253
mb − 0.886�

(6.8)

where 
 � denotes that the enclosed quantity is equal to itself when its value is positive, and

zero otherwise. The parameters d, n, c, m, cm, chm, br, L1dl, and mb represent normalized

disk, network, CPUs, memory, CPU-migrations, cache-misses, branches, L1-dcache-loads,

and memory-buff utilization, respectively. All other parameters with high correlation with one

of these parameters are not participating in the models.

Based on 10-fold cross validation, our piecewise-linear model can predict the power consump-

tion of these particular servers with a 2.1% error (std=.018%). In comparison, the error rate of

the models proposed in Kansal et al. (2010), Bertran et al. (2010b), and Farrahi Moghaddam

et al. (2012b) are 4.2%, 3.8%, and 3.5% with standard deviation of .006%, .010%, and .192%,

respectively.

By customizing the degree of complexity of piecewise-linear model simpler and more com-

plex model can be achieved based on application needs. In Figure 6.27, the simplest power

prediction model is illustrated based on CPU usage:

p(s) = 296.8 + 3.36
c− 2.42� − 25.01
2.42− c�
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where p(s) represent the power consumption of the server, c represents the number of utilized

CPU (not normalized), and circles represent the collected data under different loads. Circles

colour represent the I/O relative load of the server (Green: network and Red: disk). Power

(VoltAmp) represent the average energy consumption of the server within 100 second test pe-

riod. The colour code shows that green samples are slightly above red samples which indicates

the higher power consumption of network over disk.

Figure 6.27 Power prediction model

6.3.3 VM Migration Power Metering Validation Results

To validate the VM migration power metering equation, a set of migrations from server A to

server B is performed, and the PMCs and resource utilization of the two servers are recorded.

By subtracting these measures from measures from servers without any migrations, Δpmci,

Δc, Δd, Δn, and Δm are calculated. These values can be used to calculate Δp. Then, Equa-

tion (3.6) is calculated based on Δps. In Figure 6.28, the actual power consumption readings

are compared with predicted values during VM migration. “Server A (Actual)” and “Server
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B (Actual)” are the actual readings of server A and server B; “Server A+B (Actual)” repre-

sents the summation of the actual power readings; “A without mig (Model)”, “B without mig

(Model)”, and “Migration (Model)” are the predicted server A and server B power consump-

tion, and the migration power consumption respectively; and “A+B+Mig (Model)” represents

the summation of all the predicted power values. As can be seen from the figure, the model

can predict the migration power consumption within the accuracy our model.

Figure 6.28 VM migration power prediction

6.4 Low-Carbon Web Application Load Balancing

In order to examine the performance of new algorithm on energy efficiency and carbon foot-

print reduction, we test it on a Matlab simulation platform6. A Distributed Cloud (DisC)

(Van der Merwe et al., 2010; Wood et al., 2010; Farrahi Moghaddam et al., 2011) is simulated

and tested under state-of-the-art methodologies and the proposed MLGGA, namely Carbon-

Aware Distributed Cloud (CADCloud). Different conditions are considered to test the pro-

6http://www.greenservices.info/2011/10/simulation-environment.html
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posed algorithm. In the following, first, the experimental setup is explained, and next, the

performance study and energy diversity study of the new algorithm are presented in large scale

in a fictitious network to test the algorithm under certain conditions where only some type of

energy sources such as solar are considered rather than grid mix. Last, the algorithm is tested

in a simulation environment which uses real data from energy mixes to weather temperatures

and carbon regulations.

6.4.1 Experimental Setup

The simulation platform is set up in the Matlab environment, which is suitable for experi-

mental simulations, including optimization. On this platform, data centers can be created in

geographically distributed locations around the globe.

These data centers are reliably connected by high speed links, which enables seamless VM

migration7 among them. The feasibility of the proposed network structure is based on real VM

migration tests performed in the GSN8 project and in CloudNet Wood et al. (2010).

At each data center, the power consumption for utilities, servers, VM migration, and on/off

status changes for servers and data centers is simulated. The server specifications used in the

simulation experiments are selected so that they are identical to the server specifications used

in GSN project servers used for model validation in section 6.3.

In order to correlate the simulation and real server results, performance monitoring counters,

disk and network utilization rate, and renewable power generation data are recorded on real

systems (GreenStar Network project), and these data are played back during data generation

for the simulation experiments.

Several servers can be considered at each data center, which is connected to a primary renew-

able source of energy with a “greenness factor” g. This source of energy can be intermittent,

such as solar or wind, or permanent, such as hydroelectric or geothermal.

7Please refer to Equation (3.5) and Equation (3.6) for more information on carbon footprint calculation.
8http://greenstarnetwork.com
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In each simulation, in order to put the cloud under stress, a set of VMs is created and launched.

All the data centers are connected to a secondary and permanent non clean source of energy,

which will be used when the primary source of energy is not available. At each data center, a

battery bank is considered to store unused energy at peak clean energy production. This stored

energy is for use when not enough clean energy is being produced. In each server, the CPU,

memory, network, and storage usage of the operating system and VMs are simulated. The

batteries are empty at the beginning of each experiment, and they charge during the simulation.

There are 60 data centers containing 3000 physical servers in this evaluation test, located in 24

cities, around the globe. Each data center is powered by two randomly selected primary and

secondary sources of energy.

Snapshots of simulation environment for cities are illustrated in Figure 6.29. As it is depicted,

each data center is illustrated with a red or green filled circle. Red circle means that data center

is using a source of energy with a g factor less than 0.5, and green circle means that data center

is using a source of energy with g factor greater than 0.5. The type of source of energy for each

data center is illustrated as an icon in the middle of the circle. Available source of energies in

this simulation are solar, wind, hydro, nuclear, and grid (natural gas-based). As it is shown,

hydro and nuclear source of energies are always green, and grid source of energy is always red.

For solar and wind source of energies, it depends on existence of sun and wind, and also on the

amount of energy stored in the batteries.

6.4.1.1 Optimization Problem

To evaluate the efficiency of the proposed algorithm, the MLGGA algorithm is compared with

the GGA and FFD algorithm which are used in other works for energy efficiency in virtualized

data center environments. Carbon footprint and energy consumption of the network are also

measured when there is no optimization (NO-CONS) in order to have a baseline in the com-

parison of the results of these algorithms. This baseline show how much energy and carbon

is saved in each algorithm. As shown in the literature review section, there are things which

can be done to improve the result of the GGA in energy efficiency in virtualized data center
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Figure 6.29 Distributed cloud in 11 cities.

environment. Here, we use the same improvements for both GGA and MLGGA as described

in previous works. The only differences between the two algorithms implementation are the

crossover and mutation operators, and the rest of the algorithms are exactly the same, and both

algorithms benefit from the enhancements.

For MLGGA, two algorithm is developed: carbon-aware MLGGA (MLGGA-CA) and energy-

aware MLGGA (MLGGA-EA). MLGGA-CA is used to optimized the carbon footprint of the

DisC when carbon reduction is the objective, and MLGGA-EA is used when energy efficiency

is the objective of the problem. For these two algorithms, the only difference is in the cost

function.

For GA-family algorithms, the chromosome is formed from integer numbers, which each num-

ber indicate a server. The number of genes is equal to number of VMs. In a table, each server

is assigned to a data center, and in another table each data center is assigned to a city and is

assigned to a source of energy as its primary source of energy. Therefore each chromosome

defines the state of VMs and the source of energy which they are powered with.

For all the algorithms which are compared in this experimental setup bin packing conditions

explained in Equation (1.1) are respected.
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6.4.2 MLGGA Performance Analysis on Large Scale CADCloud

In this section, the energy consumption model validated in the previous section is used in a

simulation environment. The goal is to show that advanced multi-level bin packing optimizers

are more efficient for the CADCloud type of problem. Below, we compare the results of the

various server consolidation techniques on a CADCloud.

To evaluate the efficiency of the MLGGA, we compare it with the traditional server consolida-

tion techniques applied at data centers. Specifically, in a typical scenario, the results of carbon

footprint reduction using the MLGGA and the GGA, the First Fit Decreasing algorithm, and

Swarm-based server consolidation are compared with the No Consolidation (NO-CONS) op-

tion. In the NO-CONS situation, there is no energy efficiency or carbon footprint reduction

optimizer running.

6.4.2.1 MLGGA Comparison Results

Simulation was carried out for 168 hours (7 days) for each method, and total carbon footprint

and energy consumption were recorded.

As shown in Figure 6.30 and Figure 6.31, carbon is significantly reduced by the MLGGA-

CA in the CADCloud simulation (The offset value located in top of the figures need to be

added to figure values in order to achieve the actual energy and carbon values). For the energy

consumption, the MLGGA-EA is slightly better than the MLGGA-CA.

As shown in Table 6.14, in each set of loads, the G factor for the energy aware methods are in

the same range, and the G9 factor of the MLGGA-CA is higher than that of all the energy aware

consolidation methods. With an increase in load, this advantage will decrease from 27.88 to

17.32 when the load increases from 25% to 75%. The carbon footprint is significantly lower

with the MLGGA-CA than it is in the others, and the MLGGA-EA ranks second. The carbon

footprint of GGA, Swarm, and FFD are in the same range. The carbon footprint increases with

an increase in load. Energy consumption is lower with the MLGGA-EA relative to that of

9Refer to Section Section 3.1.3 for more information
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Figure 6.30 Comparison of various methods with respect to carbon footprint. (50%

load)

Figure 6.31 Comparison of various methods with respect to energy consumption. (50%

load)

the others, followed by the MLGGA-CA. The energy consumption for the GGA, Swarm, and

FFD are in the same range. The energy consumption increases with an increase in load for all

algorithms.

According to Table 6.14, the MLGGAs are less sensitive to sun and wind, since they are able

to switch from solar and wind power to another source of renewable energy. This sensitivity

will increase with an increase in load for the MLGGA, since with a higher load there are fewer
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options for switching VMs to low carbon servers. The carbon footprint of the cloud with

respect to weather conditions is presented in Table 6.15.

Table 6.14 MLGGA performance study: 24-hour carbon and energy measurements
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25% MLGGA-CA 347.7 6243 93.812 244.6 82.2
25% MLGGA-EA 1881 6134 65.929 798.6 1605.7

25% GGA 2403.3 7430 64.059 1160.1 1100.8

25% Swarm 2405.3 7434.8 64.054 1201.9 1094.2

25% FFD 2415.7 7468.3 64.061 1175.2 1128

25% NO-CONS 5501 17006.7 64.059 2655.2 2519.7

50% MLGGA-CA 895.1 12968.3 92.331 1402.6 1707

50% MLGGA-EA 4060.8 12743.3 64.592 2264.8 1557.6
50% GGA 4068.8 13607.3 66.775 2142.7 2726.8

50% Swarm 4076.2 13628.3 66.676 2151.2 2743.8

50% FFD 4098.2 13719 66.808 2137 2769.2

50% NO-CONS 5952.7 19906.7 66.775 3134.7 3989.2

75% MLGGA-CA 3412 19105 80.157 3713.5 3150.8

75% MLGGA-EA 6602.7 18876.7 61.137 3145.7 2409.5
75% GGA 6459.3 19310 62.832 3031.5 2627

75% Swarm 6474.2 19346.7 62.819 3009.7 2568

75% FFD 6508.5 19465 62.849 3087.2 2564

75% NO-CONS 7555.2 22585 62.832 3545.8 3072.7

6.4.3 Energy Diversity Study

In this section, the results of the carbon footprint optimization of a CADCloud are compared,

considering diverse sources of energy. To build a complete set of experiments on the CAD-

Cloud, we considered several scenarios. Different combinations of energy type were used with

the same number of data centers powered by each type of energy.

We compare the carbon footprint reduction performance of the CADCloud in these scenar-

ios. Also, the sensitivity of each scenario to intermittent sources of energy is measured by a

sensitivity factor.

To measure the sensitivity of each scenario to the percentage of power usage of data centers,

each scenario was tested under various loads. To obtain a comprehensive view of the load

sensitivity of the various scenarios, we selected a range of loads, from 10% to 90%.
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Table 6.15 MLGGA performance study: 24-hour carbon measurement with weather

change
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25% MLGGA-CA 347.69 384.59 400.96 469.07 506.21 525.4

25% MLGGA-EA 1881 2665.3 2942.5 2278.5 3050.2 3357.9

25% GGA 2403.4 2889.7 3122.5 2974 3458.9 3722.8

25% Swarm 2405.3 2893.8 3126.9 2997.7 3496 3735

25% FFD 2415.6 2914.8 3140.7 2976 3502.6 3755.2

25% NO-CONS 5501 6614 7146.8 6807 7916.7 8520.9

50% MLGGA-CA 895.14 1279.1 1759.2 1271.5 2082.3 2683.5

50% MLGGA-EA 4060.9 4355.8 5098 5281.7 5309 6321.4

50% GGA 4068.9 5143.7 5877.2 5141.1 6194.2 6968.5

50% Swarm 4076.2 5155.1 5887.7 5138.6 6221.5 6985.5

50% FFD 4098.2 5194.5 5933.8 5161.6 6252.3 7018.1

50% NO-CONS 5952.7 7525.2 8598.3 7521.4 9062 10195

75% MLGGA-CA 3412 4745.7 5282.6 5025 6630.2 7355.4

75% MLGGA-EA 6602.7 8028.2 8291.1 8265.4 9585.5 9789.7

75% GGA 6459.3 7751.9 8195.2 7990.5 9205.8 9757.3

75% Swarm 6474.2 7777.8 8210.2 8007.6 9273.6 9695.6

75% FFD 6508.5 7820.2 8261.8 8120.1 9315.8 9785.3

75% NO-CONS 7555.1 9067 9585.6 9346.2 10768 11413

The other sensitivity measure of the CADCloud is the sensitivity of intermittent sources of

energy to weather conditions. To cover all the important parameters of the CADCloud in all

the scenarios, the simulator was run several times on the simulation platform. These results

are reported in section 6.4.3.1. Each scenario was run for 168 hours (7 days) in a simulation

environment under different weather and load conditions.

As mentioned previously, different sources of energy are used in different scenarios. The

percentage of use of each source of energy in each scenario is listed in Table 6.16.

6.4.3.1 Results

The carbon footprint was measured as shown in Figure 6.32 for the set of scenarios.

As expected for the scenarios, the carbon footprint is larger for higher loads. The carbon

footprint is lowest in Scenario 3, followed by Scenarios 8, 6, and 11, and then by Scenarios 14,

13, 15, and 2. The highest carbon footprint was measured in Scenario 4. The scenarios with
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Table 6.16 Energy diversity study: ration of sources of energy in different scenarios
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1 100% 0% 0% 0%

2 0% 100% 0% 0%

3 0% 0% 100% 0%

4 0% 0% 0% 100%

5 50% 50% 0% 0%

6 50% 0% 50% 0%

7 50% 0% 0% 50%

8 0% 50% 50% 0%

9 0% 50% 0% 50%

10 0% 0% 50% 50%

11 33.33% 33.33% 33.33% 0%

12 33.33% 33.33% 0% 33.33%

13 33.33% 0% 33.33% 33.33%

14 0% 33.33% 33.33% 33.33%

15 25% 25% 25% 25%

Figure 6.32 CADCloud Carbon measurement

permanent clean energies like (hydroelectric power) are at the cleanest, followed by scenarios

with intermittent clean energies (solar and wind), and permanent semi clean energies (gas).

For the sensitivity calculations, the scenarios were tested under cloudy conditions (50% of solar

power plant capacity) and less windy conditions (33% and 66% of wind power plant capacity)
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to obtain the sensitivity of the scenarios to solar and wind energy sources. The sensitivity of

the scenarios to solar and wind are depicted in Figures 6.33 and 6.34.

Figure 6.33 CADCloud Sun sensitivity

As expected, the scenarios with mostly solar power are the most sensitive to sun (Scenario

1 100% solar). The least sensitive scenarios are those using the most permanent clean and

permanent semi clean energies.

As another CADCloud measure, the G factors of scenarios are depicted in Figures 6.35. It is

worth noting that any two of the following parameters are sufficient to represent the carbon

reduction performance of a CADCloud: energy consumption, carbon footprint, and greenness

factor. As shown in Figure 6.35, the greenness factors of Scenarios 3 and 4 are constant. This

is because no intermittent source of energy was considered in these scenarios. The greenness

factor for each energy type was taken from the Current State of Development of Electricity-

Generating Technologies table in Lenzen (2010).
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Figure 6.34 CADCloud wind sensitivity

Figure 6.35 The G factors of various scenarios
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6.4.4 MLGGA Performance Study on Real Data

In previous sections, the performance of MLGGA algorithm was compared with other algo-

rithms in a simulated environment which the scenarios are based on future promises. For

example in today total energy production, solar energy play a very small role, but in future this

role will be changed significantly. Therefore, the scenarios with lots of solar energy as their

power source maybe more realistic in future cases. To have a realistic analysis on MLGGA

algorithm, we examine it under a simulation platform working with real data similar to what

we used in HPC experimental setup section. The differences here are that instead of HPC jobs,

web applications are deployed here which they have less processing requirements and they run

for a longer period of time in compare with HPC jobs. The associated results are presented in

Figure 6.36.

0 20 40 60 80 100 120 140 160

4000

6000

8000

10000

12000

Time (Hour number) (offset=17619360)

C
ar

bo
n 

(k
C

O
2)

Distributed Cloud Carbon Footprint

MLGGA    .
GGA    .
SWARM    .
FFD    .
NO−LB    .

0 20 40 60 80 100 120 140 160

0.4

0.45

0.5

0.55

0.6

0.65

Time (Hour number) (offset=17619360)

g

Distributed Cloud Greenness

MLGGA    .
GGA    .
SWARM    .
FFD    .
NO−LB    .

(a) Carbon emission (b) Greenness

Figure 6.36 Geo-DisC under load balancing algorithms

As it can be seen in the Figure 6.36-a the carbon footprint of the system is decreased with use of

MLGGA algorithm, and in the Figure 6.36-b, the greenness of the whole system is improved.

6.4.5 MLGGA Convergence Time

In our implementation in Matlab, in average, MLGGA takes about 45 minutes to complete

maximum one million iterations, and in average, it can reach to a convergence point in one

third of this max iterations (15 minutes). However, with introduction of a bias population

pool to the algorithm this time can be significantly reduced. The bias population pool can be

achieved by using one of greedy algorithms.



CONCLUSION

This thesis focuses on network of data centers (NDCs) with cloud capabilities, and models their

operation and environmental impacts toward proposing design and management solutions in

order to reduce NDCs’ negative footprint while keeping their profitability in a reasonable range.

The study includes, first, designing a new management and control system, and then comparing

its performance with that of the state-of-the-art methodologies. The main objective of the

proposed system is to optimize the profit and carbon footprint of a distributed cloud together

while considering the trade-off between them. In this research, two types of loads, HPC and

web applications, were considered for the distributed clouds, and for each type of application,

specific solutions were provided based on their specific characteristics and requirements.

In chapter 2, first, a baseline system was introduced based on existing approaches in the state-

of-the-art literature. This baseline includes models and methods for a network of data centers

to calculate the energy consumption, carbon footprint and profit of the system and ultimately

optimize these metrics based on particular goals such as maximum profit and minimum carbon

footprint. Then, in Section 2.2, the description of a new system was presented to improve the

baseline system in achieving its goals. This new system includes new metrics, new models,

and new methods such as new cooling model, new heuristic algorithm for load balancing, new

HPC scheduler, new server power metering model, and new metrics for HPC scheduler. In

addition, the design of the new system shows the connectivity between several active modules

working as managers and controllers in the system and their relation to each other.

To fulfil the modeling objective of this thesis, first, a model is introduced in Section 3.1.1 to

calculate the profit of an NDC in a CPU core during an hour, namely PpCHG. This metric is

used to optimize the profit of the NDC. A 2D illustration of PpCHG in an NDC shows the

best position of jobs in the core-time space. This information is then used by the scheduler

to optimize the profit of the whole NDC. The experimental results show the effectiveness of

the new metric and new methods in various cases. Next, in Section 3.1.2, the power metering

models of servers are improved. The model has been calibrated and validated using measured

data from experiments on two servers from the GSN network at the server and also migration
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levels. The model coefficients have been obtained using a piecewise-linear regression on the

measured data. According to the validation results, the proposed model is able to predict the

energy consumption and carbon footprint of a CADCloud with accuracy of higher than 97%.

Then, a model for cooling system of data centers is presented which is a complete and generic

model for the cooling system (chiller-based with cooling tower). This model help with having

an accurate calculation on the energy consumption of the support system as well as optimizing

this energy consumption. This model also helps with calculation of PUE of the system.

In chapter 4, a new scheduler is introduced which works based on DVFS. This scheduler works

based on PpCHG metric which was mentioned above. The scheduler will optimize the fre-

quency of the CPU cores in order to maximize the PpCHG metric. Then, it will use the optimal

frequency to schedule the new jobs to the servers. In addition, a new metric is introduced acting

as an intermediate force for carbon footprint reduction, namely virtual carbon tax. This virtual

carbon tax acts as a carbon tax during the action of scheduler to force it to reduce the carbon

footprint in fear of higher costs and consequently lower profit. However, at the end, the virtual

carbon tax is part of the profit of the system and will be aggregated to that.

In addition, in chapter 5, a new heuristic algorithm is introduced for use in distributed clouds.

This algorithm which is an extension of GGA algorithm can be used with different objec-

tives such as energy efficiency and carbon footprint reduction (MLGGA-EA and MLGGA-

CA). A simulated environment in Matlab is used to prepare a test platform for comparison of

the new algorithm with the state-of-the-art methodologies. Real data collected from real dis-

tributed clouds is used to emulate the platform measurements. Comparison of results shows

that MLGGA-CA is an over all better solution for distributed clouds. It is tested under dif-

ferent level of loads, and in all cases MLGGA-CA was able to provide an optimum solution

for carbon footprint reduction problem. However, for energy efficiency, the MLGGA-EA has

slightly better results. Therefore, usage of MLGGA-EA is not recommended due to its much

higher carbon footprint. In addition, it has been verified that in a CADCloud, energy efficiency

and carbon footprint reduction are not necessary correlated.
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To evaluate the proposed models and methods, a simulation platform is designed and im-

plemented. In this platform, computing components as well as support components, energy

sources, and weather are simulated. For accuracy in many areas, real data is used to model the

behaviour of the components. In addition, a batch processing is implemented in the simulation

platform for scenarios with a high number of cases. Also, a caching mechanism is considered

in the system to speed up the process of simulations.

For HPC applications, the performance study shows that the new scheduler has a better profit

performance than state-of-the-art schedulers. However, its carbon footprint may not be mini-

mum among all the algorithms. In virtual carbon tax study, it was observed that with the help

of VCT this higher performance can be tuned towards the higher carbon footprint reduction

accordingly. The scheduler was also tested under different seasonal data, and it was shown that

different seasons can significantly change the results of the scheduler under the same load of

jobs. In another study, the importance of accurate cooling system modeling was tested based on

real weather information, and it was observed that without accurate cooling system modeling,

the error margin for the results is high.

According to the simulation results, the performance of MLGGA-CA reduces with an increase

in load of the DisC, because of lower green options in the DisC for algorithms to move the

VMs. In addition, an energy diversity study has been also performed using the simulation en-

vironment, and it has been observed that scenarios that include permanently-available green

energy sources are the most robust and valuable scenarios. These scenarios have both a smaller

carbon footprint and a lower sensitivity to changes in the weather conditions. However, per-

manent green energy sources are not available everywhere. The second choice for low carbon

footprint sources of energy is intermittently-available green energy. However, because of their

high sensitivity to weather conditions, scenarios with intermittent green energy sources alone

are not recommended. A scenario with a proportion of intermittently-available green energy

sources and permanently-available semi-clean energy sources is a less green, but it is a more re-

liable compromised choice. Overall, it is observed that the best practice scenario and approach

for real world application is using clean and renewable sources of energy in combination of the
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MLGGA-CA method for VM management. Using only clean but intermittent sources of en-

ergy is not recommended without the availability of clean permanent sources. If clean sources

of energy are limited, using semi-clean sources of energy, such as natural gas, in combination

with clean sources is highly recommended.

Here, specific contributions related to objectives of this thesis are listed:

• System design (Obj #1):

– Defining the data structure of the system.

As mentioned earlier, in this objective, most of the metrics used in the state-of-the-

art researches and new metrics are used in the models. Therefore, a comprehensive

data structure is needed to be defined in order to hold the necessary data required

by algorithms.

– Defining the module structure of the system.

In addition to have the data model, it is important to identify the modules and their

means of communication with other modules.

– Considering the profit-carbon-performance aware strategies all together.

For satisfying this objective of the research, it is necessary to design and implement

a new comprehensive scheduler which is able to deliver the goals of this objective

which are considering total profit and total carbon emission based on energy mix

data, carbon tax, energy price, weather, etc.

• Modeling (Obj #2):

– Profit-per-Core-Hour-GHz.

In this research a new metric is introduced to estimate the profit associated with

running a CPU core for an hour with the frequency of f . This metric is then used

to optimize the profit of each core-hour unit of the system by choosing the most

suitable frequency.
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– Cooling power modeling and optimization.

The amount of power consumed by the supply system accounts for a big portion of

total energy consumption of the system and is comparable with IT energy consump-

tion. The cooling system can be very complicated system to model and optimize.

In this research a model for cooling system of a typical data center is presented and

optimized.

– Server power metering.

In this research a power model for individual servers are presented based on their

resource utilization and PMC counters.

– Introduction of greenness factor.

It is a normalized version of the emission factor of energy mix, which is also intro-

duced for NDC.

– Introduction of sensitivity to intermittent source of energies.

This is a measure to show how much the system will be impacted if there is a

sudden change in the weather.

• HPC scheduler (Obj #3):

– Introduction of Carbon Virtual Tax.

This is a measure which does not exist in real world, and each business need to

consider it based on their own goals. In definition, it is acting exactly like the

carbon tax, but the amount of calculated carbon tax considered as profit at the end.

– Introduction of MGhGint to scheduler.

This is a study for reduction of GhGint factor instead of net carbon emissions.

– Introduction of Profit-per-Core-Hour-GHz metric.

This metric is calculated based on many other metrics which are already used in

other researches. But, this metric provide a very accurate information for decision

making of position of jobs based on total profit of the system.

• Web applications load balancer (Obj #4):
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– A new genetic algorithm is introduced, namely Multi-Level Grouping Genetic Al-

gorithm.

– MLGGA video presentation.

A video representation shows the status of the NDC, status of renewable energies,

etc, and how the scheduler works.

– Developing GSN controller.

A simple controller was developed to load balance the VMs in GSN project.

• Simulation platform (Obj #5):

– Implementation of cache.

The optimization and model calculations could be very time consuming. Since

some of them are repeating, a cache can really speed up the process.

– Simulation job generator.

Since the algorithms need to be tested under different variation of parameters, in

this research a simulation job generator is developed which is able to create number

of simulation jobs which they vary in different parameters such as size, load, energy,

type, price, etc. And then, the simulation job scheduler can assign the jobs to be

executed by the simulator, and collect the final results and create comparative plots.

Below is the list of publications related to the research conducted in this thesis:

• Farrahi Moghaddam, Fereydoun, and Cheriet, Mohamed, “Designing a Carbon-Profit-

Aware Scheduler Based on Virtual Carbon Tax in Geo-Distributed Clouds,” submitted to

Sustainable Computing Informatics and Systems, 2013.

• Farrahi Moghaddam, Fereydoun, Reza, Farrahi Moghaddam, and Cheriet, Mohamed,

“Carbon-Aware Distributed Cloud: Multi-Level Grouping Genetic Algorithm,” (under

revision) Springer Cluster Computing, 2013.



157

• Farrahi Moghaddam, Fereydoun, Reza, Farrahi Moghaddam, and Cheriet, Mohamed,
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5th International Conference on Cloud Computing (CLOUD), IEEE, 2012, Pages 758-
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• Farrahi Moghaddam, Fereydoun, Reza, Farrahi Moghaddam, and Cheriet, Mohamed,
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ANNEX I

DEFINITIONS

1 HPC Job

HPC jobs are type of applications which mainly consume nodes’ CPU compute power, while

their memory, network, and disk utilization are minimum. Weather simulation, genetic se-

quencing, animation rendering, and market modeling are all examples of HPC jobs.

2 “Day Number” and “Hour Number”

When dealing with different time zones, different years, months, and days, to have a continuous

measure of time, “day number” is often used as the indicator for time instead of human readable

calendar dates. The day number is a number which counts each day from the beginning of

Gregorian calendar, where its decimal fraction shows the hour, minute, second, and millisecond

of that day.

Hour number is defined exactly with the same concept, but it counts the hours since the begin-

ning of Gregorian calendar instead. The Hour number can be calculated by multiplication of

the day number to 24.

3 Energy, Power, Carbon, and Carbon-per-Hour

There is usually a bit of confusion between power and energy concepts. The power is the rate

of generation or consumption of energy, and its measurement unit could be kilo-watt (kW) or

any other energy-per-unit-time unit. While, the unit of energy is usually kilo-watt-hour (kWh).

If the power is variable along the time, the amount of energy is calculated by integrating the

area under the power curve. There is a separate amount of carbon footprint associated with

any of these metrics. For example, Kilograms-CO2 is a well-known unit of footprint associated

with the amount of energy consumed in an interval of time. On the other hand, Kilograms-CO2

-per-hour is the unit to measure the rate of carbon footprint emissions associated with the power
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consumption at a particular instance of time. These metrics are convertible to each other: The

footprint associated to an interval of time (measured in Kilograms-CO2) can be calculated by

integrating the area under the power footprint curve (measured in Kilograms-CO2-per-hour).

4 Server Consolidation

Server consolidation is a strategy for energy efficiency in data centers. The main idea behind

server consolidation is to take advantage of virtualization technology to consolidate more than

one under-utilized virtual machine (virtual server) on a physical server. This can be done by

live seamless migrations, live migrations, or even offline migrations of VMs. In live seamless

migration, there is no or minimum interrupt in the virtual machine operation. On the other

hand, there is a down-time in operation of the VM without change in its state in live migration,

while the state of VM need to be changed to shutdown or hibernate before migration take place

in offline migration. With consolidation strategy, physical servers with no virtual machine

hosted on them will be shutdown or put on stand by mode to save energy.

5 DVFS

Some CPUs/cores allow hot modification of their frequency without interrupting their opera-

tion. This is referred to dynamic voltage and frequency scaling (DVFS) or dynamic voltage

scaling (DVS) in literature. This is of great interest because there is a non-linear (usually near

cubic) relation between power consumption of a CPU/core and its working frequency. This

feature is used in some strategies for energy efficiency purposes in place or along with con-

solidation. It is worth noting that a few discrete values of frequency are usually accessible in

practice (Gandhi et al., 2009).

6 Metrics for Schedulers

Depending on the type of load and also goals of an HPC compute provider, different metrics

may be used. Below, a list of popular metrics is provided:



161

• Execution Time (ET) (Maheswaran et al., 1999): The amount of time a resource spends

to finish a task given that resource does not have any other load when that task is assigned:

ET(ti, rj), where ti is the task and rj is the resource.

• Expected Time to Compute (ETC) (Maheswaran et al., 1999): it is defined as the time

required to complete a specific job on a specific resource, which could be modeled as the

ratio of the job load (in millions of instructions per second (MIPS) or in Operations per

second (Ops)) to the capacity of the resource. In ideal setting, ET and ETC should be the

same. However, in practice ET could be higher than ETC.

• Expected Completion Time (ECT) (Maheswaran et al., 1999): The wall-clock time at

which a task is finished on a resource (after finishing its previously assigned tasks) as-

suming that task is assigned to that resource: ECT(ti, rj,Tj,i = tk), where tk are other

tasks assigned to rj before ti. Please note that the ECT is not a time period.

• Arrival Time (AT) (Maheswaran et al., 1999): The wall-clock time when a task arrives

to the scheduler queue. In other words, the scheduler is not aware of the task ti before

AT(ti).

• Begin-to-Execute Time (BET) (Maheswaran et al., 1999): The wall-clock time a task

begins its execution on an assigned resource. The following relations always hold:

ECT(ti) ≥ BET(ti) ≥ AT(ti) and ECT(ti) = BET(ti) + ET(ti).

• Completion Time (CT) (Maheswaran et al., 1999): The completion time of a task is the

ECT of that task on the resource that the task is assigned to it. CT(ti) = ECT(ti, rĵ) ,

where rĵ is the actual resource that the task ti is assigned to.





ANNEX II

A MODIFIED GHG INTENSITY INDICATOR: TOWARD A SUSTAINABLE

GLOBAL ECONOMY BASED ON A CARBON BORDER TAX AND EMISSIONS

TRADING

It will be difficult to gain an agreement of all the actors (countries) on any proposal for climate

change management, if universality and fairness are not considered. To address this gap, in

this work, a universal measure and indicator of emissions to be applied at the international

level is proposed. This indicator is based on a modification of the Greenhouse Gas Intensity

(GHGINT) measure. It is hoped that the generality and low administrative cost of this measure,

which we call the Modified Greenhouse Gas Intensity measure (MGHGINT) (Farrahi Moghad-

dam et al., 2013), will eliminate any need to classify nations. Classification of countries, for

example in the Kyoto Protocol, has been a source of disagreement and also failure because of

shift of GHG emissions to developing countries. The core of the MGHGINT is what we call the

IHDI-adjusted Gross Domestic Product (IDHIGDP), based on the Inequality-adjusted Human

Development Index (IHDI). The IDHIGDP makes it possible to propose universal measures,

such as the MGHGINT. We also propose a carbon border tax applicable at national borders,

based on MGHGINT and IDHIGDP. This carbon border tax is supported by a proposed global

Emissions Trading System (ETS). The proposed carbon tax is analyzed in a short-term sce-

nario, where it is shown that it can result in a significant reduction in global emissions while

keeping the economy growing at a positive rate. In addition to single-year GHG emissions, the

MGHGINT is generalized to consider the cumulative GHG emissions over two decades, which

had almost the same results of the single-year MGHGINT.

1 The benefits of a universal indicator

As mentioned above, there will be no global agreement without an universal indicator at hand.

Actually, the past performance of partial agreements that have went into action, such as that of

Kyoto Protocol Accord, suffer from several drawbacks including but not limited to:
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a. Deindustrialization

b. High volumes of imported emissions

Although other factors, such as high level of inequality and its consequence of highly low

wages, have played a critical role in outsourcing of industry to those countries, strong commit-

ment of European Union to its goals of reducing GHG emissions’ of the union by 20% to 30%

compared to those of 1990 has implicitly driven many heavy industries, such as steel industry,

to moved to China. This could result in higher level of global emissions because of exclusion of

these regions from the accord and therefore possible use of old and high-footprint technologies

in production. At the same time, a large portion of these products with high-level of carbon

content will exported back to the union region, and therefore the overall GHG footprint would

be even higher than that of business as usual in absence of Kyoto Protocol.

In addition, a universal indicator would enable and justify unilateral actions even in absence of

a global agreement. In other words, even if a global agreement does not reached, individual

countries could impose a border adjustment or tax to impose mechanisms that implicitly impact

the GHG emissions of other regions. An universal indicator enables this move and homogenize

the unilateral effort of different regions toward easier acceptance and justification with respect

to the world trade organization (WTO) regulations.

2 Lack of a Universal Indicator

There are two major indicators for the GHG emissions of regions:

a. The GHG Intensity indicator (GHGINT)

b. The GHG emissions per Capita (GHGpCapita)

As can be seen from Figure II-1, these two indicators do not behave homogeneously across the

nations, and each one highly penalizes a group of counties, while it praises another group. The

scale of this divergent behavior, which roots in the fundamental differences between developed
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and developing countries, is so high that none of these two indicators has been accepted by

all countries. This can actually be seen as the origin of partial coverage and exclusion of

developing countries in agreements such as Kyoto Protocol. Although these indicators may be

patched in order to make them more adaptive to a group of countries, the scale of changes in

status of every country, and especially the high pace of these changes, would require revising

these patches every few year. On the other hand, a universal indicator that covers all the regions

in a fair and uniform approach would gain global acceptance and also would help avoiding

continuous negotiations and changes in the policies. Here, we propose a universal indicator

called Modified GHG Intensity (MGHGINT).

(a) (b)

Figure-A II-1 a) GHG Emission intensity (GHGINT) in 2009 (in GtCO2e/$B). b) GHG

emissions per capita in the same year (in GtCO2e/Million Capita). Data Sources: US

Energy Information Administration, World Bank, United Nations Statistics and Research

Database, International Monetary Fund, and United Nations Development Programme.

3 The Potentials of an Universal Indicator

The proposed universal indicator MGHGINT is an indicator of production performance of

different regions in terms of the GHG emissions. However, it can be used as a base to define

and propose other indicators. For example, in Figure II-2, a pyramid stack of indicators are built

on top of the MGHGINT. As can be seen from the figure, on top of the pyramid a carbon border

tax is defined that can be used to impose penalties based on the footprint of nations calculated

according to their MGHGINT indicator. However, it should be noted that the possibilities are
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not just limited to the case shown in Figure II-2, and many other combinations and designs

could be considered.

Figure-A II-2 The proposed framework which is based on a universal indicator and

consists of several layers.

4 The Design of an Universal Indicator

The MGHGINT indicator is designed based on well-accepted concepts. In particular, two

well-known indicators, namely the Purchasing Power Parity GDP (GDP(PPP)) and Inequality-

adjusted Human Development Index (IHDI) compromise the foundation of the MGHGINT

indicator. These high-level variables ensure that the calculations associated to this indicator

are simple, and therefore validating the results can be easily performed by any person without

facing any black box or hidden models. The MGHGINT is designed to converge two diver-

gent aspects of nations across the globe, i.e., the population and production. This has been

performed by considering “hidden” and “internal” activities associated with population that

may not directly accounted for in the GDP. These internal activities are calculated based on

the IHDI in order to avoid over counting a population that may implicitly promote increase

in the population. Increase in population is a threat to the global sustainability and stability

by itself. At the same time, the inclusion of IHDI in the definition of the MGHGINT brings

the inequality aspects of nations to the picture and their performance, and therefore it would

implicitly guide their policy makers to develop policies that work toward reducing inequality

in the population.
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5 The MGHG-INT Picture of the World in 2009

The nations MGHGINTs in 2009 are shown in Figure II-3. The normalized picture to the

MGHGINT of China is also presented in order to have a better understanding with respect to

big economies. It can be easily observed that all major polluters have a comparable scale of the

MGHGINT, and therefore can be addressed using a same mechanism of carbon border tax or

adjustment. Also, it is worth nothing that the European region is mainly green because that this

study does not consider imported pollution. In future, we will use multi-region input output

(MRIO) models to include the imported emissions and also have a more accurate picture of

GHG footprint across the globe.

(a) (b)

Figure-A II-3 a) The MGHGINT distribution over the world in 2009 (in GtCO2e/$B). b)

The same as (a), but with the maximum value of China’s MGHGINT, in order to provide

a clearer picture.

6 IHDI-adjusted Gross Domestic Product (IHDIGDP) and Modified GHG Emission

Intensity (MGHG-INT) Formulism

The GHG-INT of a country is defined as the ratio of its emissions to its GDP:1

GHGINTi,y =
EMi,y

GDPi,y

(A II-1)

1We use the GDP at Purchasing Power Parity exchange rates: GDP (PPP).
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where GHGINTi,y is the GHG-INT of country i in year y, and EMi,y is the total emissions

of that country in the same year (excluding land-use emissions). This measure provides the

GHG footprint of countries based on their economic output. However, countries like China

with a large population prefer to use a different measure, which is a ratio of emissions to the

population (GHGpCapita):

GHGpCapitai,y =
EMi,y

Capitai,y
(A II-2)

where GHGpCapitai,y is the GHGpCapita of country i in year y, and Capitai,y is its population.

To arrive at a universal GHG emissions measure which is robust with respect to variations in

GDP and population, but works for all countries, we modify the GHG-INT, and redefine it as

the ratio of emissions to “activities”:

MGHGINTi,y =
EMi,y

“activities”i,y
(A II-3)

where MGHGINTi,y is the modified GHG intensity measure of country i in year y (defined

above), and “activities”i,y is the activity of that country (explained below) during the same

period. Here, “activities” replaces GDP in Equation (A II-1). We model them as an IHDI-

adjusted version of GDP (IHDIGDP), which not only includes the production of a country (its

GDP), but also considers the internal activity of its population.

Using the IHDIGDP, we redefine MGHG-INT as follows:

MGHGINTi,y =
EMi,y

IHDIGDPi,y

(A II-4)

where EMi,y represents the total GHG emissions of that country, except for the land-use CO2

emissions.

Let us start first with IHDIxCapita. The IHDIxCapita is defined as the product of the UN

Development Programme’s IHDI and the population snapshot:

IHDIxCapitai,y = IHDIi,yCapitai,1990 (A II-5)
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where IHDIi,y is the IHDI of country i in year y, Capitai,1990 is population snapshot of country

i (taken in 1990), and IHDIxCapitai,y is the IHDIxCapita of the same country in year y. The

balanced IHDIxCapita is defined as the IHDIxCapita normalized to the maximum IHDIxCapita

in the same year, scaled to the maximum GDP (PPP) of the same year:

IHDIxCapitaBAL
i,y = GDP(PPP)MAX

y

IHDIxCapitai,y

IHDIxCapitaMAX
y

(A II-6)

where IHDIxCapitai,y is the IHDIxCapita of country i in year y, and IHDIxCapitaMAX
y and

GDP (PPP)MAX
y are the maximum of the IHDIxCapita and the maximum of GDP (PPP) of all

countries in year y respectively. The balanced GDP, GDPBAL
i,y , is the ratio of the GDP (PPP) to

the GDP (PPP) of the country with the IHDI of IHDIxCapitaMAX
y , scaled to the maximum GDP

of the same year:

GDPBAL
i,y = GDP(PPP)MAX

y

GDP (PPP)i,y

GDP (PPP)IHDI
y

(A II-7)

where GDP (PPP)IHDI
y is the GDP (PPP) of the country with the IHDI of IHDIxCapitaMAX

y .

With this definition, if we calculate the balanced GDP of the country with the maximum IHDIx-

Capita, we obtain the GDP (PPP) of the country with the maximum GDP. Also, the balanced

IHDIxCapita of a country with the maximum IHDIxCapita is again the GDP (PPP) of the coun-

try with the maximum GDP. In this way, both the balanced GDP and the balanced IHDIxCapita

are normalized to the same level, and therefore it is possible to average them and calculate the

IHDIGDP. The IHDIGDP is defined as follows:

IHDIGDPi,y = Z
GDPBAL

i,y + IHDIxCapitaBAL
i,y

2
(A II-8)

where IHDIGDPi,y is the IHDIGDP of country i in year y, and IHDIxCapitaBAL
i,y and GDPBAL

i,y

are the balanced IHDIxCapita and the balanced GDP of that country in year y respectively. The

normalization parameter Z is selected is such a way that the world IHDIGDP in 1990 is equal

to the world GDP (PPP) in the same year.

7 The use case of China and the USA



170

Figure II-4 shows a comparison of the trend in the MGHGINT and also other indicators for

China and the USA along a period of two decades. It can be easily seen that both countries

show an overall increasing behavior in terms of the MGHGINT indicator. Interestingly, the

IHDIGDP indicator of both countries have converged to the same level in 2009 that can mainly

be attributed to increase in the China’s GDP. At the same time, the GHGINT indicator has an

overall decreasing behavior regardless of activities. We have noticed the same behavior for

other regions, and therefore we can conclude that the GHGINT is not a good direct indicator.

Finally, the GHG per Capita indicator is still highly divergent between the two regions even in

2009 that prevent using this indicator as a universal indicator in policy making.

(a) (b)

Figure-A II-4 a) A comparison between the GHG-INT, GHGpCapita, and MGHG-INT

of China and the United States over two decades. b) The same comparison as in (a), but

with respect to GDP, IHDIGDP, GHG-INT, and MGHG-INT.

8 Carbon Border Adjustments and two fictional tax Scenarios (2010-2020)

In order to evaluate the possible impact of the proposed carbon border tax mechanism, two

fictional scenarios are considered. The first scenario is the business as usual (BAU) and is

called the NC scenario. In this scenario no carbon border tax is considered. In the second

scenario, called the CT scenario, a carbon border tax of one hundredth of the RED%2 of each

country is assumed starting from 2010. Figure II-5 shows both scenarios in terms of economic

growth and also GHG footprint at the global scale. As can be seen, the CT scenario not only

2Please refer to (Farrahi Moghaddam et al., 2013) for details.
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helped to contain the GHG emissions at the level of 2010, it has not put a strong hurdle in front

of the global economic growth.

(a) (b)

(c)

Figure-A II-5 a) The impact of the proposed BCT on global emissions in the short term.

In the CT scenario, the tax is implemented, and in the NC scenario, it is business as usual.

b) The impact on global economic growth. c) The impact on China’s economy and

emissions.

Also, Figure II-5(c) provides the China’s picture with respect to NC and CT scenarios. Again,

it can be easily observed that the CT scenario maintains the China’s economic growth while

keeping its emissions almost at the level of 2009.

9 The Next Steps

The main drawback of the proposed MGHGINT indicator is its insensitivity to the imported

GHG emissions. It seems that these emissions will play a great role in future and therefore

should be considered in models and indicator. We plan to generalize the MGHGINT toward an
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indicator that also considers imported emissions using databases such as the GTAP databases

and a multi-region input output (MRIO) model. In addition, the IHDI indicator of human

development can be improved and modified in order to make it more aware of the regional

variations in terms of GHG emissions; it is probable that to perform the same level of activity

in two different region in the world a totally different amount of GHG emissions would be

produced even if the same technology is use. This could be mainly because of differences in

terms of climate and temperature. In order to avoid misuse of the IHDI indicator, an extension

of this indicator is required that is emission-neural. Finally, as well known, the GHG emissions

are not the only critical factors in the global sustainability. We will work to include other vital

resources, such as water, energy and low temperature, in our models and indicators in order to

have a better picture, and then better policies toward a sustainable world.



ANNEX III

GREENSTAR NETWORK PROJECT

GSN is a project which its aim was to create a zero carbon footprint network based on follow

the sun/follow the wind methodology. The main idea behind follow the sun/follow the wind

methodology is to have several interconnected data centers which are supplied with intermit-

tent renewable sources of energy, and migrate virtual machines from locations where the green

source of energy is not available at the moment to places where it is available. The resources

will be brought back to this location when the renewable energy is available again. To create

such a network, several components need to be designed and developed including infrastruc-

ture, middleware, and controller. Figure III-1 shows the map of GSN project. In the following

section the controller of GSN project is discussed.

1 Controller

After successful experiments that confirmed that it is possible to manually live migrate (Far-

rahi Moghaddam and Cheriet, 2010) VMs from one location to another using the hypervisors

and middleware used in the GSN system, there was a need to develop a controller that au-

tomatically performs this task toward achieving the goal of the GSN system which was zero

carbon-footprint operation. However, zero carbon footprint is not achievable by 100%, since

every renewable source of energy has a small portion of carbon footprint. Therefore, the goal

of system is rather to minimize the carbon footprint. The controller needs to take into consid-

eration the current active VMs and their resource usage, available servers, available renewable

energy in each location, and also greenness of energy in each location. Two controllers were

designed for GSN project. A greedy optimizer and a heuristic one. The greedy optimizer works

based on estimation of operating hour in each location. The operating hour refers to how many

hour a data center can be operational based on energy stored in the batteries. Based on this

metric, locations divided to move-from and move-to groups and a greedy algorithm was used

to make a plan for placement of move-from VMs on move-to servers. On the other hand, the

heuristic algorithm was a primary version of MLGGA which was described in chapter 5 (Far-
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Figure-A III-1 GreenStar Network map

rahi Moghaddam et al., 2012a). Result of experiments on a simulation platform reveals that in

small scale networks, the greedy and heuristic algorithm has almost similar results, but in large

scale networks the heuristic algorithm has better results. The heuristic algorithm is slower than

the greedy algorithm in all cases.



BIBLIOGRAPHY

Abraham, Ajith, Rajkumar Buyya, and Baikunth Nath. 2000. “ Nature’s heuristics for schedul-

ing jobs on computational grids ”. In ADCOM’00. p. 45–52.

Adamou, Adamos, Sofronis Clerides, and Theodoros Zachariadis. August 2012. “ Trade-offs

in CO2-oriented vehicle tax reforms: A case study of Greece ”. Transportation Research
Part D: Transport and Environment, vol. 17, n◦ 6, p. 451–456.

Agrawal, Shubham, Sumit Kumar Bose, and Srikanth Sundarrajan. 2009. “ Grouping Genetic

Algorithm for Solving the Serverconsolidation Problem with Conflicts ”. In Proceedings
of the first ACM/SIGEVO Summit on Genetic and Evolutionary Computation. (Shanghai,

China 2009), p. 1–8. ACM.

Alkire, Sabina and James Foster. 2010. Designing the inequality-adjusted human development
index (IHDI). Technical Report Human Development Research Paper 2010/28. United

Nations Development Programme.

Beloglazov, Anton, Rajkumar Buyya, Choon Lee, Young, and Albert Zomaya. June 30 2010. A
Taxonomy and Survey of Energy-Efficient Data centers and Cloud Computing Systems.

Technical report. University of Melbourne, Australia : CLOUDS-TR-2010-3. Cloud

Computing and Distributed Systems Laboratory.

Berl, Andreas, Erol Gelenbe, Marco Di Girolamo, Giovanni Giuliani, Hermann De Meer,

Minh Q. Dang, and Kostas Pentikousis. 2010. “ Energy-Efficient Cloud Computing ”.

The Computer Journal, vol. 53, n◦ 7, p. 1045-1051.

Berral, Josep Ll., Í nigo Goiri, Ramón Nou, Ferran Julià, Jordi Guitart, Ricard Gavaldà, and

Jordi Torres. 2010. “ Towards energy-aware scheduling in data centers using machine

learning ”. In e-Energy’10. (Passau, Germany 2010), p. 215–224. ACM.

Bertran, R., Y. Becerra, D. Carrera, V. Beltran, M. Gonzalez, X. Martorell, J. Torres, and

E. Ayguade. 2010a. “ Accurate Energy Accounting for Shared Virtualized Environments

Using PMC-Based Power Modeling Techniques ”. In Grid Computing (GRID), 2010
11th IEEE/ACM International Conference on. p. 1–8.

Bertran, Ramon, Marc Gonzalez, Xavier Martorell, Nacho Navarro, and Eduard Ayguade.

2010b. “ Decomposable and Responsive Power Models for Multicore Processors Us-

ing Performance Counters ”. In Proceedings of the 24th ACM International Conference
on Supercomputing. (New York, NY, USA 2010), p. 147–158. ACM.

Braathen, NilsAxel. 2012. CO2-based taxation of motor vehicles. Zachariadis, T. I., ed-

itor, Cars and Carbon, chapter 8, p. 181–200. Springer Netherlands. doi: 10.1007/

978-94-007-2123-4_8.



176

Braun, Tracy D, Howard Jay Siegel, Noah Beck, Ladislau L Bölöni, Muthucumaru Mah-

eswaran, Albert I Reuther, James P Robertson, Mitchell D Theys, Bin Yao, Debra Hens-

gen, and Richard F Freund. June 2001. “ A Comparison of Eleven Static Heuristics

for Mapping a Class of Independent Tasks onto Heterogeneous Distributed Computing

Systems ”. Journal of Parallel and Distributed Computing, vol. 61, n◦ 6, p. 810–837.

Buyya, R., R. Ranjan, and R.N. Calheiros. 2009. “ Modeling and simulation of scalable Cloud

computing environments and the CloudSim toolkit: Challenges and opportunities ”. In

HPCS ’09. p. 1–11.

Caron, E., F. Desprez, and A. Muresan. Nov 30-Dec 3 2010. “ Forecasting for Grid and Cloud

Computing On-Demand Resources Based on Pattern Matching ”. In CloudCom’10. (In-

dianapolis, IN, USA 2010), p. 456–463.

Chen, Shiyi. September 2013. “ What is the potential impact of a taxation system reform on

carbon abatement and industrial growth in China? ”. Economic Systems, vol. 37, n◦ 3, p.

369–386.

Chen, Yiyu, Amitayu Das, Wubi Qin, Anand Sivasubramaniam, Qian Wang, and Natarajan

Gautam. 2005. “ Managing server energy and operational costs in hosting centers ”. In

ACM SIGMETRICS Performance Evaluation Review. p. 303–314. ACM.

Chua, Seng Tat and Masaru Nakano. 2013. Design of a taxation system to promote electric

vehicles in Singapore. Emmanouilidis, C., Marco Taisch, and Dimitris Kiritsis, editors,

IFIP Advances in Information and Communication Technology, volume 397, p. 359–

367. Springer. doi: 10.1007/978-3-642-40352-1_45.

CORNWELL, ANTONIA and JOHN CREEDY. August 1996. “ Carbon Taxation, Prices and

Inequality in Australia ”. Fiscal Studies, vol. 17, n◦ 3, p. 21–38.

Das, Rajarshi, Jeffrey O Kephart, Jonathan Lenchner, and Hendrik Hamann. July 7–11 2010.

“ Utility-function-driven energy-efficient cooling in data centers ”. In ICAC’10. (Wash-

ington, DC, USA 2010), p. 61–70. ACM.

de Assuncao, Marcos Dias, Alexandre di Costanzo, and Rajkumar Buyya. JUne 11-13 2009.

“ Evaluating the cost-benefit of using cloud computing to extend the capacity of clus-

ters ”. In HPDC’09. (Garching, Germany 2009), p. 141–150. ACM.

Energy Design Resources. June 2010. “ Design Brief: Chiller Plant Efficiency ”.

<http://www.energydesignresources.com/resources/publications/design-briefs/

design-brief-chiller-plant-efficiency.aspx>. Latest accessed on April 20th, 2013.

Etinski, Maja, Julita Corbalan, Jesus Labarta, and Mateo Valero. 2010. “ Utilization driven

power-aware parallel job scheduling ”. Computer Science - Research and Development,
vol. 25, n◦ 3-4, p. 207–216.

F. Julià,J. Roldàn, R. Nou O. Fitó Vaquè Í Goiri J. Berral. 2010. EEFSim: energy efficency
simulator. Technical Report UPC-DAC-RR-2010-19. Spain : Universitat Politècnica de

Catalunya.



177

Falkenauer, E. and A. Delchambre. 1992. “ A Genetic Algorithm for Bin Packing and Line

Balancing ”. In IEEE International Conference on Robotics and Automation. p. 1186–

1192 vol.2.

Farrahi Moghaddam, F. and M. Cheriet. 2010. “ Decreasing Live Virtual Machine Migration

Down-Time Using a Memory Page Selection Based on Memory Change PDF ”. In

Networking, Sensing and Control (ICNSC), 2010 International Conference on. p. 355–

359.

Farrahi Moghaddam, Fereydoun, M. Cheriet, and Kim Khoa Nguyen. July 4-9 2011. “ Low

Carbon Virtual Private Clouds ”. In IEEE International Conference on Cloud Computing
(CLOUD’ 11). (Washington, DC, USA 2011), p. 259–266.

Farrahi Moghaddam, Fereydoun, Reza Farrahi Moghaddam, and Mohamed Cheriet. April 18-

21 2012a. “ Multi-Level Grouping Genetic Algorithm for Low Carbon Virtual Private

Clouds ”. In 2nd International Conference on Cloud Computing and Services Science
(CLOSER’12). (Porto, Portugal 2012), p. 315–324.

Farrahi Moghaddam, Fereydoun, Reza Farrahi Moghaddam, and Mohamed Cheriet. June

2012b. “ Carbon Metering and Effective Tax Cost Modeling for Virtual Machines ”.

In IEEE Fifth International Conference on Cloud Computing. (Honolulu, Hawaii, USA

2012), p. 758-763.

Farrahi Moghaddam, Reza, Fereydoun Farrahi Moghaddam, and Mohamed Cheriet. 2013. “ A

modified GHG intensity indicator: Toward a sustainable global economy based on a

carbon border tax and emissions trading ”. Energy Policy, vol. 57, n◦ 0, p. 363–380.

Feng, Wu-chun, Xizhou Feng, and Rong Ce. 2008. “ Green Supercomputing Comes of Age ”.

IT Professional, vol. 10, n◦ 1, p. 17–23.

Freund, R.F., Michael Gherrity, S. Ambrosius, M. Campbell, M. Halderman, D. Hensgen,

E. Keith, T. Kidd, M. Kussow, J.D. Lima, F. Mirabile, L. Moore, B. Rust, and H.J. Siegel.

1998. “ Scheduling resources in multi-user, heterogeneous, computing environments

with SmartNet ”. In HCW’98. p. 184–199.

Fumo, Nelson, Pedro J. Mago, and Kenneth Jacobs. February 2011. “ Design considerations

for combined cooling, heating, and power systems at altitude ”. Energy Conversion and
Management, vol. 52, n◦ 2, p. 1459–1469.

Gagoa, Alberto, Xavier Labandeira, and Xiral López-Otero. 2013. “ A Panorama on Energy

Taxes and Green Tax Reforms ”. Ecomonics for Energy, vol. WP 08/2013, p. 1-45.

Gandhi, Anshul, Mor Harchol-Balter, Rajarshi Das, and Charles Lefurgy. 2009. “ Optimal

power allocation in server farms ”. SIGMETRICS Perform. Eval. Rev., vol. 37, n◦ 1, p.

157–168.

Garey, Michael R. and David S. Johnson. 1979. A Guide to The Theory of NP-Completeness.

Technical report. San Francisco : W.H.Freeman Co.



178

Garg, Saurabh Kumar, Chee Shin Yeo, Arun Anandasivam, and Rajkumar Buyya. June 2011.

“ Environment-conscious scheduling of HPC applications on distributed Cloud-oriented

data centers ”. Journal of Parallel and Distributed Computing, vol. 71, n◦ 6, p. 732–749.

Gemechu, Eskinder Demisse, Isabela Butnar, Maria Llop, and Francesc Castells. May 2013.

“ Economic and environmental effects of CO2 taxation: an input-output analysis for

Spain ”. Journal of Environmental Planning and Management, vol. Online First, p. 1–

18.

GeSI. 2008. “ Smart 2020: Enabling the Low Carbon Economy in the Information Age ”.

<smart2020.org/_assets/files/02_Smart2020Report.pdf>.

Global Commerce Initiative and Capgemini. 2008. “ Future supply chain 2016 ”. See http://
www.capgemini.com/ insights-and-resources/bypublication/ future_supply_chain_2016.

Goiri, Íñigo, Josep Ll Berral, J Oriol Fitó, Ferran Julià, Ramon Nou, Jordi Guitart, Ricard

Gavaldà, and Jordi Torres. 2012. “ Energy-efficient and multifaceted resource manage-

ment for profit-driven virtualized data centers ”. Future Generation Computer Systems,

vol. 28, n◦ 5, p. 718–731.

Gupta, R., S.K. Bose, S. Sundarrajan, M. Chebiyam, and A. Chakrabarti. july 2008. “ A Two

Stage Heuristic Algorithm for Solving the Server Consolidation Problem with Item-

Item and Bin-Item Incompatibility Constraints ”. In Services Computing, 2008. SCC
’08. IEEE International Conference on. p. 39 -46.

Guzek, Mateusz, CesarO. Diaz, JohnatanE. Pecero, Pascal Bouvry, and AlbertY. Zomaya.

2012. Impact of voltage levels number for energy-aware bi-objective DAG schedul-

ing for multi-processors systems. Papasratorn, B., Nipon Charoenkitkarn, Kittichai La-

vangnananda, Wichian Chutimaskul, and Vajirasak Vanijja, editors, Communications in
Computer and Information Science, volume 344, p. 70-80–. Springer Berlin Heidelberg.

doi: 10.1007/978-3-642-35076-4_7.

Haas, J, JAMIE Froedge, J Pflueger, and D Azevedo. 2009. Usage and public reporting
guidelines for the green grid’s infrastructure metrics (PUE/DCiE). The Green Grid’s

White Paper 22. The Green Grid.

Hong, Angela C., Cora J. Young, Michael D. Hurley, Timothy J. Wallington, and Scott A.

Mabury. 2013. “ Perfluorotributylamine: A novel long-lived greenhouse gas ”. Geophys.
Res. Lett., vol. 40, n◦ 22, p. 6010–6015.

Hwang, Jinho, Sai Zeng, Timothy Wood, et al. 2013. “ Benefits and challenges of manag-

ing heterogeneous data centers ”. In Integrated Network Management (IM 2013), 2013
IFIP/IEEE International Symposium on. p. 1060–1065. IEEE.

Iosup, A. and D. Epema. 2011. “ Grid Computing Workloads ”. IEEE Internet Computing,

vol. 15, n◦ 2, p. 19–26.



179

Jekabsons, G. 2011. “ ARESLab: Adaptive Regression Splines toolbox for Matlab/Octave ”.

available at http://www.cs.rtu.lv/jekabsons/ [accessed on Oct 25th, 2012].

Jotzo, Frank and John Pezzey. June 2005. Optimal intensity targets for emissions trading
under uncertainty. Economics and Environment Network Working Paper EEN0504.

Australian National University.

Kansal, Aman, Feng Zhao, Jie Liu, Nupur Kothari, and Arka A. Bhattacharya. 2010. “ Virtual

Machine Power Metering and Provisioning ”. In Proceedings of the 1st ACM symposium
on Cloud computing. (Indianapolis, Indiana, USA 2010), p. 39–50. ACM.

Kessaci, Y., N. Melab, and E. Talbi. 2011. “ A pareto-based GA for scheduling HPC applica-

tions on distributed cloud infrastructures ”. In HPCS’11. p. 456–462.

Kim, Jong-Kook, S. Shivle, H.J. Siegel, A.A. Maciejewski, T.D. Braun, M. Schneider, S. Tide-

man, R. Chitta, R.B. Dilmaghani, R. Joshi, A. Kaul, A. Sharma, S. Sripada, P. Vangari,

and S.S. Yellampalli. 22-26 April 2003. “ Dynamic mapping in a heterogeneous en-

vironment with tasks having priorities and multiple deadlines ”. In IPDPS’03. (Nice,

France 2003), p. 15 pp.

Kliazovich, Dzmitry, Pascal Bouvry, and SameeUllah Khan. 2012. “ GreenCloud: a packet-

level simulator of energy-aware cloud computing data centers ”. The Journal of Super-
computing, vol. 62, n◦ 3, p. 1263–1283.

Kołodziej, Joanna, SameeUllah Khan, Lizhe Wang, Aleksander Byrski, Nasro Min-Allah, and

SajjadAhmad Madani. August 2012. “ Hierarchical genetic-based grid scheduling with

energy optimization ”. Cluster Computing, p. 1–19.

Laurent, Alexis, Stig I. Olsen, and Michael Z. Hauschild. March 2012. “ Limitations of Carbon

Footprint as Indicator of Environmental Sustainability ”. Environ. Sci. Technol., vol. 46,

n◦ 7, p. 4100–4108.

Lawson, Barry and Evgenia Smirni. 2005. “ Power-aware resource allocation in high-end

systems via online simulation ”. In ICS’05. (Cambridge, Massachusetts, USA 2005), p.

229–238. ACM.

Le, Kien, R. Bianchini, T.D. Nguyen, O. Bilgir, and M. Martonosi. August 15-18 2010.

“ Capping the brown energy consumption of Internet services at low cost ”. In Green
Computing Conference, 2010 International. (Chicago, IL, USA 2010), p. 3–14.

Lee, W.L. and S.H. Lee. March 2007. “ Developing a simplified model for evaluating chiller-

system configurations ”. Applied Energy, vol. 84, n◦ 3, p. 290–306.

Lenzen, Manfred. 2010. “ Current State of Development of Electricity-Generating Technolo-

gies: A Literature Review ”. Energies, vol. 3, p. 462-591.

Lim, Seung-Hwan, B. Sharma, Gunwoo Nam, Eun Kyoung Kim, and C.R. Das. 2009.

“ MDCSim: A multi-tier data center simulation, platform ”. In CLUSTER ’09. p. 1–

9.



180

Lingrand, Diane, Johan Montagnat, Janusz Martyniak, and David Colling. 2010.

“ Optimization of Jobs Submission on the EGEE Production Grid: Modeling Faults Us-

ing Workload ”. Journal of Grid Computing, vol. 8, n◦ 2, p. 305–321.

Liu, Liang, Hao Wang, Xue Liu, Xing Jin, Wen Bo He, Qing Bo Wang, and Ying Chen. 2009.

“ GreenCloud: A New Architecture for Green Data Center ”. In Proceedings of the 6th
international conference industry session on Autonomic computing and communications
industry session. (Barcelona, Spain 2009), p. 29–38. ACM.

Liu, Zhenhua, Minghong Lin, Adam Wierman, Steven H Low, and Lachlan LH Andrew. 2011.

“ Greening geographical load balancing ”. In Proceedings of the ACM SIGMETRICS
joint international conference on Measurement and modeling of computer systems. p.

233–244. ACM.

Lundgren, Tommy and Per-Olov Marklund. February 17 2012. “ Environmental Performance

and Profits ”. CERE Working Paper, , p. 1–18.

Maheswaran, Muthucumaru, Shoukat Ali, Howard Jay Siegel, Debra Hensgen, and Richard F.

Freund. November 1999. “ Dynamic Mapping of a Class of Independent Tasks onto

Heterogeneous Computing Systems ”. Journal of Parallel and Distributed Computing,

vol. 59, n◦ 2, p. 107–131.

Marzolla, M., O. Babaoglu, and F. Panzieri. 2011. “ Server consolidation in Clouds through

gossiping ”. In World of Wireless, Mobile and Multimedia Networks (WoWMoM), 2011
IEEE International Symposium on a. p. 1 -6.

McKinsey. November 2007. The Impact of ICT on Global Emissions. Technical report. tech.

rep., on behalf of the Global eSustainability Initiative (GeSI).

Medina, Pamela Elena Gardea. June 2013. “ Climate change mitigation, a carbon tax or an

emissions trading scheme?: an analysis of the Norwegian perspective ”. Master’s thesis,

NHH - the Norwegian School of Economics, Bergen, Norway.

Molfetas, Angelos, Fernando Barreiro Megino, Andrii Tykhonov, Mario Lassnig, Vincent

Garonne, Martin Barisits, Simone Campana, Gancho Dimitrov, Stephane Jezequel, Ikuo

Ueda, and Florbela Tique Aires Viegas. 2011. “ Popularity framework to process dataset

traces and its application on dynamic replica reduction in the ATLAS experiment ”. Jour-
nal of Physics: Conference Series, vol. 331, n◦ 6, p. 062018(1-6).

NERA Economic Consulting. Februrary 26 2013. Economic outcomes of a U.S. carbon tax.

Technical report. Washington, DC, USA : National Association of Manufacturers.

Nesmachnow, Sergio, Bernabé Dorronsoro, JohnatanE. Pecero, and Pascal Bouvry. May 2013.

“ Energy-Aware Scheduling on Multicore Heterogeneous Grid Computing Systems ”.

Journal of Grid Computing, vol. Online First.

Núñez, Alberto, Jose L. Vázquez-Poletti, Agustin C. Caminero, Gabriel G. Castañé, Jesus

Carretero, and Ignacio M. Llorente. 2012. “ iCanCloud: A Flexible and Scalable Cloud

Infrastructure Simulator ”. Journal of Grid Computing, vol. 10, n◦ 1, p. 185–209.



181

Patel, Chandrakant D, Ratnesh K Sharma, Cullen E Bash, and Monem Beitelmal. March 2006.

“ Energy flow in the information technology stack: coefficient of performance of the

ensemble and its impact on the total cost of ownership ”. HP Labs External Technical
Report, HPL-2006-55.

Pereira, Alfredo Marvão and Rui M. Pereira. May 2013. “ Government behavior, endogenous

growth and the economic and budgetary impact of CO2 taxation in Portugal ”. Working
Paper Number 105, College of William and Mary, Department of Economics, p. 1–23.

Petrucci, Vinicius, Orlando Loques, and Daniel Moss. 2009. “ A Dynamic Configuration

Model for Power-Efficient Virtualized Server Clusters ”. In 11th Brazilian Workshop on
Real-Time and Embedded Systems.

Pop, Cristina Bianca, Ionut Anghel, Tudor Cioara, Ioan Salomie, and Iulia Vartic. 2012. “ A

swarm-inspired data center consolidation methodology ”. In Proceedings of the 2nd
International Conference on Web Intelligence, Mining and Semantics. (New York, NY,

USA 2012), p. 41:1–41:7.

Qureshi, Asfandyar, Rick Weber, Hari Balakrishnan, John Guttag, and Bruce Maggs. 2009.

“ Cutting the electric bill for internet-scale systems ”. SIGCOMM Comput. Commun.
Rev., vol. 39, n◦ 4, p. 123–134.

Rao, Lei, Xue Liu, Le Xie, and Wenyu Liu. 2010. “ Minimizing electricity cost: optimiza-

tion of distributed internet data centers in a multi-electricity-market environment ”. In

INFOCOM, 2010 Proceedings IEEE. p. 1–9. IEEE.

Rizvandi, Nikzad Babaii, Javid Taheri, Albert Y Zomaya, and Young Choon Lee. 2010.

“ Linear combinations of dvfs-enabled processor frequencies to modify the energy-

aware scheduling algorithms ”. In Cluster, Cloud and Grid Computing (CCGrid), 2010
10th IEEE/ACM International Conference on. p. 388–397. IEEE.

Rodero, I., J. Jaramillo, A. Quiroz, M. Parashar, F. Guim, and S. Poole. Aug 15-18 2010.

“ Energy-efficient application-aware online provisioning for virtualized clouds and data

centers ”. In 2010 International Green Computing Conference. (Chicago, IL, USA

2010), p. 31–45.

Sankaranarayanan, Ananth Narayan, Somsubhra Sharangi, and Alexandra Fedorova. 2011.

“ Global cost diversity aware dispatch algorithm for heterogeneous data centers ”. In

ACM SIGSOFT Software Engineering Notes. p. 289–294. ACM.

Sawyer, Richard. 2004. Calculating total power requirements for data centers. White Paper 3.

American Power Conversion.

Speitkamp, B. and M. Bichler. 2010. “ A Mathematical Programming Approach for Server

Consolidation Problems in Virtualized Data Centers ”. Services Computing, IEEE Trans-
actions on, vol. 3, p. 266 -278.



182

Srikantaiah, Shekhar, Aman Kansal, and Feng Zhao. 2008. “ Energy Aware Consolidation for

Cloud Computing ”. In Proceedings of the 2008 conference on Power aware computing
and systems. (San Diego, California 2008), p. 10–10. USENIX Association.

The World Bank Group. 2011. “ World Development Indicators Database ”. http://publications.

worldbank.org/WDI/indicators, [Accessed on August 24, 2011].

Tipley, Roger. 2012. PUE: A comprehensive examination of the metric. The Green Grid’s

White Paper 49. The Green Grid, – p.

Toporkov, Victor, Anna Toporkova, Alexander Bobchenkov, and Dmitry Yemelyanov. 2011.

“ Resource Selection Algorithms for Economic Scheduling in Distributed Systems ”.

Procedia Computer Science, vol. 4, n◦ 0, p. 2267–2276.

Van der Merwe, J., K. K. Ramakrishnan, M. Fairchild, A. Flavel, J. Houle, H. A. Lagar-Cavilla,

and J. Mulligan. May 5-7 2010. “ Towards a ubiquitous cloud computing infrastructure ”.

In 17th IEEE Workshop on Local and Metropolitan Area Networks (LANMAN). p. 1-6.

Venugopal, S., Xingchen Chu, and R. Buyya. 2008. “ A Negotiation Mechanism for Advance

Resource Reservations Using the Alternate Offers Protocol ”. In IWQoS’08. p. 40–49.

Wang, Leping and Ying Lu. 2008. “ Efficient power management of heterogeneous soft real-

time clusters ”. In Real-Time Systems Symposium, 2008. p. 323–332. IEEE.

Wang, Lu and U. Neumann. 20-25 June 2009. “ A robust approach for automatic registration

of aerial images with untextured aerial LiDAR data ”. In CVP’09. (Miami, FL, USA

2009), p. 2623–2630.

Wang, Min and Rong Chu. 2009. “ A novel white blood cell detection method based on

boundary support vectors ”. In SMC’09. p. 2595–2598.

Wilcox, D., A. McNabb, and K. Seppi. 2011. “ Solving Virtual Machine Packing with A

Reordering Grouping Genetic Algorithm ”. In Evolutionary Computation (CEC), 2011
IEEE Congress on. p. 362–369.

Wood, T., K. Ramakrishnan, J. van der Merwe, and P. Shenoy. January 2010. CloudNet: A
Platform for Optimized WAN Migration of Virtual Machines. Technical report. Univer-

sity of Massachusetts Technical Report TR-2010-002.

Wright, David. 2012. “ Evolution of Standards for Smart Grid Communications ”. Interna-
tional Journal of Interdisciplinary Telecommunications and Networking (IJITN), vol. 4,

n◦ 1, p. 47–55.

Wright, D.J. Summer 2013. “ Taming our virtual smokestacks ”. , Research Perspectives,

vol. 15, n◦ 1, p. 16–17.

Wu, Yongwei, Kai Hwang, Yulai Yuan, and Weimin Zheng. 2010. “ Adaptive Workload Pre-

diction of Grid Performance in Confidence Windows ”. IEEE Transactions on Parallel
and Distributed Systems, vol. 21, n◦ 7, p. 925–938.



183

Wu, Zhangjun, Xiao Liu, Zhiwei Ni, Dong Yuan, and Yun Yang. 2013. “ A market-oriented

hierarchical scheduling strategy in cloud workflow systems ”. The Journal of Supercom-
puting, vol. 63, n◦ 1, p. 256–293.

Xhafa, Fatos and Ajith Abraham. April 2010. “ Computational models and heuristic methods

for Grid scheduling problems ”. Future Generation Computer Systems, vol. 26, n◦ 4, p.

608–621.

Xianqiang, Mao, Yang Shuqian, and Liu Qin. March 2013. The way to CO2 emission reduc-
tion and the co-benefits of local air pollution control in China’s transportation sector:
A policy and economic analysis. Technical Report rr2013036. Laguna, Philippines :

Economy and Environment Program for Southeast Asia (EEPSEA), – p.

Xu, J. and J.A.B. Fortes. December 2010. “ Multi-Objective Virtual Machine Placement in

Virtualized Data Center Environments ”. In In proceedings of the 2010 IEEE/ACM Inter.
Conference on Green Computing and Communications & Inter. Conference on Cyber,
Physical and Social Computing. (Hangshou, PR of China 2010).

Zhang, Luna Mingyi, Keqin Li, and Yan-Qing Zhang. 2010. “ Green task scheduling al-

gorithms with speeds optimization on heterogeneous cloud servers ”. In Proceedings
of the 2010 IEEE/ACM Int’l Conference on Green Computing and Communications &
Int’l Conference on Cyber, Physical and Social Computing. p. 76–80. IEEE Computer

Society.

Zhang, Qi, Lu Cheng, and Raouf Boutaba. 2008. “ Cloud Computing: State-of-The-Art and

Research Challenges ”. Journal of Internet Services and Applications, vol. 1, n◦ 1, p.

7-18.

Zimmermannová, Jarmila. 2013. “ Current and Proposed CO2 Taxation in the European Union

Member States in the Energy Sector ”. Acta Oeconomica Pragensia, vol. 2013, n◦ 2, p.

40–54.


