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OPTIMIZATION OF VERY LOW TIME STEP FPGA-BASED SIMULATIONS
USING A FIXED ADMITTANCE MATRIX APPROACH

Nicolas KAMEL

ABSTRACT

This research is dedicated to the study of the fixed admittance matrix approach presented by

Pejovic and Maksimovic (1994). More specifically, this work has three objectives. First, to

study and quantify the effects of this method on simulation accuracy. Second, to use this

knowledge to develop a method to tune the Gs parameter without relying on a trial and error

process. An algorithm is proposed to automatically optimize the Gs parameter which has been

validated on three topologies: a two level inverter, a three level NPC inverter, and a direct

matrix converter. Third, to explore possible solutions that conserve the advantages of a fixed

admittance matrix approach (small time step, low memory consumption) while mitigating its

drawbacks (loss of simulation accuracy). A method is proposed which offers the accuracy of

a variable admittance matrix approach, but with significantly less memory consumption. This

method has been validated offline, however, it remains to be seen if it is a viable candidate for

real time implementation and more research must be done.

Keywords: Real time simulation, fixed admittance matrix, power electronics, FPGA





OPTIMISATION D’UNE SIMULATION FPGA À PETIT PAS DE CALCUL EN
UTILISANT UNE MATRICE D’ADMITTANCE FIXE

Nicolas KAMEL

RÉSUMÉ

Cette recherche est dédiée à l’étude de la méthode présentée par Pejovic and Maksimovic

(1994). Plus précisément, ce travail a trois objectifs. Premièrement, d’étudier et de quantifier

les effets de cette méthode sur la précision des simulations. Deuxièmement, à partir de cette

information, de développer une méthode pour optimiser le paramètre Gs sans avoir recours à

l’essaie et l’erreur. Un algorithme est donc proposé pour optimiser d’une manière automa-

tique le paramètre Gs. Cette méthode a été validée sur trois topologies différentes, soient un

onduleur deux niveaux, un onduleur trois niveaux NPC et un convertisseur matricielle directe.

Troisièmement, d’explorer des solutions possibles qui conservent les avantages d’utiliser une

matrice d’admittance fixe (petit pas de calcul, faible consommation de mémoire) tout en ré-

duisant ses inconvénients (simulations moins précises). Une méthode est proposée qui offre la

précision d’une matrice d’admittance variable, mais avec un requis de mémoire beaucoup plus

faible. Cette méthode à été validée en temps différé, mais il reste à déterminer si elle peut être

implémenter sur FPGA avec un pas de calcul assez petit.

Mot-clés : Simulation en temps réel, matrice d’admittance fixe, électronique de puissance,

FPGA
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INTRODUCTION

The real time simulation of power electronics is particularly challenging due to the low time

steps that must be reached in order to accurately simulate high frequency phenomena. In order

to achieve such time steps, computationally expensive operations such as matrix inversion must

be avoided. The fixed admittance matrix method proposed by Pejovic and Maksimovic (1994)

(hereby referred to simply as the "Pejovic method") eliminates these expensive operations by

modeling a switch as a capacitor when it is OFF and an inductor when it is ON. Moreover, the

algorithm’s structure allows it to be hardware accelerated with an FPGA implementation. It is

therefore a promising simulation technique for the real time simulation of converters operating

at frequencies of 20kHz and higher and it has been successfully used in commercial applica-

tions. Unfortunately, this method has two main drawbacks which limit its adoption in industry.

First, the value of a parameter named Gs must be chosen when performing simulations. The Gs

parameter controls the value of the capacitance and inductance of the modeled switch. It there-

fore has a critical effect on simulation accuracy, and unfortunately its optimal value depends

on a multitude of variables such as the converter topology, the nature of the load, the value of

the input source, etc. Currently, this parameter must be tuned manually through trial and error

which is a time consuming and sometimes inaccurate process. The second drawback of the

Pejovic method is that even for an optimal value of the parameter, the simulation accuracy may

not be acceptable. This work is dedicated to the study of the Pejovic method, with the goal

of mitigating the drawbacks of the method and increasing its commercial potential. The first

chapter of this thesis is dedicated to a literature review of the various methods used for the real

time simulation of power electronics. In the second chapter, the Pejovic method is explained

in detail and the effect of the Gs parameter on simulation accuracy following a commutation

is studied. In the third chapter, the effect of the Gs parameter on the output load current and

commutation losses is examined. In the fourth chapter, a method to automatically optimize

the Gs parameter is derived and validated for three case studies. Finally, in the fifth chapter, a

hybrid fixed-variable admittance matrix method is proposed. This method lessens the memory

required when precomputing and storing all the possible matrix inverses of a variable admit-
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tance matrix. However, the minimum time step achievable with this method on FPGA has not

yet been assessed and this a potential path for future researchers.



CHAPTER 1

LITERATURE REVIEW

1.1 Fundamentals of circuit simulation

The simulation of electrical circuits is fundamental to the areas of electronic design automa-

tion, power systems, and power electronics where the behavior of circuits is tested and analyzed

prior to manufacturing. (Najm, 2010, p.3) explains how this behavior can be quantified for the

use of circuit simulators: "The behavior of a circuit is captured by a set of equations that

are formulated by combining the element equations and Kirchoff’s Current and Voltage Laws

(KCL and KVL). In general, this results in a set of simultaneous non-linear first-order differ-

ential equations." The first step is to form this system of equations using a systematic method

such as Modified Nodal Analysis (MNA). Then, this system of equations is discretized using

a numerical integration method such as Backward-Euler at a certain time step. As Belanger

et al. (2010) explains, this system is solved at every time step with the output states of a given

time step becoming the input states of the next time step. The required length of the time step

is determined by the bandwidth of the system to be simulated. If the simulator is to accurately

replicate high frequency phenomena, a low time step must be chosen. This poses a problem for

real-time simulation, where the time required to solve the network equations must be less than

or equal to the simulation time step. Furthermore, in hardware-in-the-loop (HIL) simulations

in which a physical controller is connected to the simulator, not only must be the network equa-

tions be solved at every step, but the simulated output must be sent to the controller and the

controller input must be sent to the simulator. Therefore, the time it takes to solve the network

equations in addition to the I/O latency between the simulator and the controller must be less

than or equal to the simulation time step.
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1.2 CPU and GPU based simulation

A commonly followed guideline for power electronics established by Gole et al. (1997) is to

choose a time step equal to 1% of the commutation period. Since high frequency converters

are becoming more and more common, this poses a challenge. If a converter is to be simulated

with a switching frequency of 70 kHz, then a time step of about 143 ns is required. According

to Blanchette et al. (2012), modern CPUs can only achieve time steps around 5μs. Although

CPUs have high clock frequencies, their parallelism is limited, and it takes a significant amount

of time for the simulated output to be sent from the CPU to the controller.

GPUs are becoming popular in the area of scientific computing due to their massively parallel

architecture. Jalili-Marandi and Dinavahi (2009) used GPUs to accelerate the simulation of

large power systems. They reported speed-ups of up to 344.8 over a CPU implementation.

However, it is important to note that despite the speed-up, it did not reach real-time perfor-

mance, and according to Lustig and Martonosi (2013) a main disadvantage of the GPU is the

overhead when transferring data to and from it.

1.3 FPGA based simulation

Another massively parallel device that has become popular in the world of real time simulation

is the FPGA. FPGAs have a very high degree of parallelism that allows certain types of oper-

ations such as matrix multiplication to be significantly accelerated. This principle is explained
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below. Consider the following matrix-vector multiplication:

⎡
⎣A11 A12 A13 A14 A15 A16 A17 A18

A21 A22 A23 A24 A25 A26 A27 A28

⎤
⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1

b2

b3

b4

b5

b6

b7

b8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1.1)

On an FPGA, the dot product between the first row of the matrix A with the vector b and

the dot product between the second row of the matrix A with the vector b can be computed in

parallel. The calculation of the product between the first row of the matrix A and the vector

b is illustrated in figure 1.1. First, each entry of the first row of the matrix must be multiplied

with the corresponding entry of the vector. On an FPGA, these eight multiplications can be

done in parallel, a speed up of eight over a sequential implementation. It is important to note

however, that the speed-up potential of the FPGA is limited by the fact that the results of

these multiplications must be summed together. Since an addition operation can only take

two inputs, multiple sequential layers of addition are required (in this example, 3), which

increases the calculation time. That being said, the speed-up offered by FPGAs for matrix

vector multiplication is still significant. In addition, the latency between the FPGA and the

physical I/Os is very low.

Unfortunately, solving a system of equations is a more complex process than a matrix vector

multiplication, and even on an FPGA, the time it requires often exceeds the allowed time step.

Indeed, for a 5x5 matrix, Dohi et al. (2012) reported latencies of 3.05 and 8.69 microseconds

for solving a system of five equations using Gauss-Jordan elimination and Cramer’s rule, re-

spectively. Mahapatra et al. (2012) reported performing a 4x4 matrix inversion in 290ns, a

relatively small time step. However, in order the solve the system of equations, the inverse
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Figure 1.1 Matrix vector multiplication implemented on an FPGA

would have to be multiplied by the input vector which would increase the time step. Further-

more, 4x4 and 5x5 matrices are small by power electronics standards. For example, the system

matrix of the boost converter formed by Pejovic and Maksimovic (1994) (which contains only

two switches) is 7x7. Therefore, solving the system matrix at every step is not feasible for high

frequency power electronics, regardless of whether a CPU, GPU, or FPGA is used.

1.4 Precomputing the inverses of a variable admittance matrix

A method to quickly solve the network equations is to precompute the inverse of the system

matrix before the start of the simulation as explained by Bachir et al. (2010). Therefore, the

outputs can be obtained at every step by simply multiplying the input vector by the inverse

matrix, a task that can be accomplished very quickly on an FPGA as was previously explained.
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However, the system matrix of a power converter changes every time a commutation occurs.

The approach of precomputing the inverse can still be used as long as the inverses of all possible

system matrices are precomputed and stored in the FPGA’s memory. For a power converter

with n switches, there are 2n possible system matrices. As the number of switches increases,

the amount of memory required on the FPGA grows exponentially. Blanchette et al. (2012)

reported that this approach is only viable for converters limited to 6 or 7 switches. Although

external DDR3 memory can be added to the FPGA, the time required to read from the memory

is too long for real time simulation. Due to these constraints, other techniques have been

proposed to simulate high frequency converters with over seven switches in real-time.

1.5 Incorporating a priori knowledge

One such method is to incorporate a priori knowledge about the converter to be simulated into

the real time simulator. Indeed, the complexity of the converter to simulate can be significantly

reduced if assumptions are made about its modes of operation. This has been used for the

simulation of MMCs. Gregoire et al. (2011) determined a priori the conditions that would

result in a cell of the MMC being ON, OFF, or in high-impedance mode. Then, functions

were elaborated that determined the current through the cell’s inductor and the voltage across

its output capacitor based upon the state of the cell. By doing this, 60 cells composed of

two IGBT/diodes each were simulated on an FPGA with a time step of 250ns. For this large

number of switches, such a low time step would not be achievable if the system of equations

were formed and had to be solved at each step. However, the above method is not generalizable

to other topologies.

Myaing and Dinavahi (2011) simulated a three level voltage source inverter on an FPGA with

a very low time step. The possible switching combinations of the converter were determined

a priori, excluding faulted states. For example, for the four IGBTs in one arm, only five valid

states were considered, instead of the theoretically possible sixteen. At every time step of

the simulation, based on the polarity of the output current and the current switching state of

the converter, the output voltage and input current were calculated. Using this approach a
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time step of 12.5ns was reported. Despite this impressive time step, this method suffers from

the same drawback of the MMC method: lack of generality. If, for example, one wishes to

simulate a faulted state of the converter, then this model is no longer valid. Furthermore, for

more complicated topologies, establishing the flow of converter switching states becomes an

elaborate undertaking. For a general purpose solver, another approach must be used.

1.6 Special switch models

One approach is to use switch models that allow the system matrix to contain certain char-

acteristics. Blanchette et al. (2012) modeled each switch as a resistance in parallel with a

capacitance. When the switch is ON, the value of the resistance is low, and when the switch

is OFF, the value of the resistance is high; therefore the admittance matrix is variable. For

converters with a low number of switches, the capacitance is chosen to match the physical

parasitic capacitance of the switch and the circuit is simulated by precomputing the inverses

of the variable admittance matrix. When this no longer becomes feasible for higher number

of switches, the system equations are solved using an iterative approach. Gauss-Seidel was

used, which, according to the authors, converged in two iterations and they reported a time

step 75ns for a boost converter. However, in order to guarantee convergence, the switch’s par-

asitic capacitance had to be set to a value that ensured that the system matrix was diagonally

dominant. This can affect the simulation accuracy since large capacitances may be required to

ensure diagonal dominance if the time step is large.

Another switch model proposed by Pejovic and Maksimovic (1994) consisted of an inductor

when the switch was ON and a capacitor when the switch was OFF. This representation allows

the system matrix to remain constant, regardless of the switch states. This method will be

explained by detail in the next chapter.
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1.7 Conclusion

It can be seen that the real time simulation of high frequency power converters is limited by

numerous constraints. Indeed, the limited memory on board FPGAs prevents precomputing the

inverses of converters with more than a few number of switches. The computational complexity

of solving a system of equations results in unacceptably high time steps. Making use of a

priori knowledge results in simulators that cannot be easily extend to different cases. Finally,

as will be explored at length in the subsequent chapters, using special switch models reduces

simulation accuracy.





CHAPTER 2

EFFECT OF GS PARAMETER ON SIMULATION ACCURACY FOLLOWING A
COMMUTATION

In this chapter, the nature of the Gs parameter will be explained. Then, the theoretical com-

mutation of a two level inverter will be compared and contrasted to its commutation when it is

simulated with the Pejovic method, and it the effect of the Gs parameter during commutation

will be examined.

2.1 Explanation of the Pejovic method

The method presented by Pejovic and Maksimovic (1994) is popular in the field of real time

simulation because low time steps can be achieved due to the fact that the admittance matrix is

constant for all switch combinations. In this section, this method will be presented in detail.

2.1.1 Switch model

Pejovic and Maksimovic (1994) guaranteed a constant system matrix by modeling each switch

as a conductance (denoted as Gs) in parallel with a current source. This method benefits from

the fact that the discrete companion models of the inductor and the capacitor are both repre-

sented as a conductance in parallel with a current source. The only difference between the two

components is how the value of the current source is determined. With the Pejovic method, a

switch is modeled as an inductor when ON (LON) and a capacitor when OFF (COFF ). This is

illustrated in figure 2.1. On the left side are the switch representations in continuous time, and

on the right side are the discrete companion models. It can also be seen that the value of the

LON and COFF depend on the value of Gs.
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Figure 2.1 The Pejovic switch model. The continuous time

representations of the switches when OFF and ON are shown on the

left, and their equivalent discrete representations are shown on the right

2.1.2 Calculating the value of the memory current source

If Backward-Euler numerical differentiation is used, when the switch is OFF, the current source

im(n) is equal to Gsvsw(n− 1) and when the switch is ON, im(n) is equal to −isw(n− 1). The

benefit of modeling switches in such a manner is that only the value of Gs appears in the system

matrix; the value of the current source appears in the input vector. If a constant value of Gs

is chosen, the matrix is constant for all possible switch combinations and the inverse of the

admittance matrix needs to be computed only once at the beginning of the simulation.

2.1.3 Switch update rules

In order to calculate the value of the memory current source, the states of the switches must be

known. The conditions under which a switch will turn ON or OFF are explained below.

2.1.3.1 Turn ON

An ideal switch turns ON the same step that its gate turns ON. A diode turns ON the step

after the voltage across it becomes positive. With the Pejovic method, a pair consisting of a
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switch and an antiparellel diode can be modelled as one component. This component turns ON

the same step that its gate turns ON or, if the gate is OFF, the step after the voltage across it

becomes negative.

2.1.3.2 Turn OFF

An ideal switch turns OFF the same step that its gate turns OFF. A diode turns OFF the step

after the current through it becomes negative. If its gate is OFF, a switch/diode pair turns OFF

the step after the current through the pair becomes positive.

2.1.4 Drawbacks of the model

In order to maximize the simulation accuracy, the values of LON and COFF should be kept as

small as possible. From figure 2.1 it can be seen that the only way to do so is to reduce the size

of the time step h. However, the minimum time step is limited by the speed at which the FPGA

can multiply the precomputed inverse of the admittance matrix by the input vector. Despite

being able to perform each dot product operation in parallel, for a given dot product, a series

of sequential additions is required which limits the minimum possible time step as shown in

figure 1.1. Belanger et al. (2013) simulated several converters on an FPGA using the Pejovic

method with time steps in the order of 100ns. With a time step of 100ns, and a Gs set to 1,

LON is equal to 100nH and COFF is equal to 100nF, values which are not negligible. The other

parameter that the determines the size of the parasites is the switch conductance, Gs. COFF is

directly proportional to Gs and LON is inversely proportional to Gs, so by varying the value of

Gs, the value of one parasite can be reduced, at the cost in an increase of the magnitude of the

other parasite. The value of Gs therefore has an important effect on simulation accuracy, and

it can be very time consuming empirically choosing its optimal value for a given simulation.

This is the motivation for developing an automatic method to optimize the Gs parameter.
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2.1.5 Pejovic’s error analysis

Pejovic and Maksimovic (1994) analyzed the commutation of two ideal switches from ON-

OFF to OFF-ON. This situation is illustrated in figure 2.2.

Figure 2.2 Pejovic’s analysis of the behaviour of the commutation of one arm

When this scenario was simulated using the Pejovic method, Pejovic and Maksimovic (1994)

observed that there were errors on the switches’ voltage and current due to the parasitic LON

and COFF and they quantified the error as follows:

evsw2
(n) =Vin( f (n)− f (n−1))− Iload

Gs f (n)
(2.1)

eisw1
(n) = Iload( f (n)− f (n−1))+GsVin f (n) (2.2)

where

f (n) =
sin(nπ

4 )

2
n
2

(2.3)
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They observed that these errors eventually decayed towards zero and that the instantaneous

current error was directly proportional to the value of Gs while the instantaneous voltage error

was inversely proportional to Gs. Based on their experiments with DC-DC converters, they

determined that the optimal value of Gs was equal to Iload
Vin

.

As can be seen, this analysis was performed for a circuit consisting of only ideal switches

whose states changed simultaneously. Recall from section 2.1.3 that the state of an ideal switch

changes during the same time step that its gate changes. However, most power electronic cir-

cuits consist of diodes and diode/switch pairs instead of ideal switches. This complicates the

analysis since the states of the diodes and diode/switch pairs depend on the currents and volt-

ages at the previous step. In other words, even if the gates of the two switch/diode pairs are

changed simultaneously, the states of the switch/diode pairs will not necessarily change at the

same time. In section 2.3, the original analysis of Pejovic and Maksimovic (1994) will be

augmented by taking this effect into account. Beforehand, however, the theoretical behavior of

a power electronic circuit undergoing a commutation will be examined. The analysis will be

performed on one arm of the two level inverter shown in figure 2.3. The purpose of this anal-

ysis is to highlight the errors that the Pejovic method introduces when a commutation occurs.

Quantifying these errors with respect to the Gs parameter is an essential step for developing an

algorithm to automatically find the Gs value that minimizes the simulation error.
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Figure 2.3 Schematic of a two level inverter. Note that the AC side of the

converter is grounded. This will cause the load current to always be positive

2.2 Theoretical commutation process

In this section, it will be assumed that no dead time is used and that the gates of the two

switches in the arm change simultaneously. The effect of dead time will be covered in section

2.3.4.2. It will also be assumed the load current varies slowly with respect to the duration of the

commutation. Hence, the inductive load current is approximated by a constant current source

Iload as shown in figure 2.4. The symbols used in the following subsections are also identified

on figure 2.4.

2.2.1 sw1 turn OFF and sw2 turn ON process

At some time step n = 0, the following conditions are assumed: the gate of the top switch sw1

is ON (g1 = 1), the gate of the bottom switch sw2 is OFF (g2 = 0) and the load current Iload

is positive. Since g1 = 1 and Iload > 0, Iload must flow through sw1. Since g2 = 0, no current

flows through sw2 or d2. If at the next step, n = 1, the gate signals are changed such that g1 = 0
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and g2 = 1, no current flows through sw1 or d1 and Iload must flow through d2 (d2 turns ON).

This process is shown in figure 2.4.

Figure 2.4 Theoretical commutation process from ON-OFF to OFF-ON

2.2.2 sw1 turn ON and sw2 turn OFF process

At some time step n = 0, the following conditions are assumed: g1 = 0, g2 = 1 and Iload > 0.

Since g1 = 0, no current flows through sw1 or d1. Since g2 = 1 and Iload > 0, Iload flows

through d2. If at the next step, n = 1, the gate signals are changed such that g1 = 1 and g2 = 0,

Iload flows through sw1 and no current flows through sw2 or d2 (d2 turns OFF). This process is

shown in figure 2.5.
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Figure 2.5 Theoretical commutation process from OFF-ON to ON-OFF

2.3 Commutation process using Pejovic method

It can be observed that in the theoretical case, when a commutation occurs the switches and

diodes changed states the moment the gate signals changed. In the Pejovic method, that is

not the case. It will be shown that there are situations in which the switch/diode pairs update

several steps after the gate signals change.

2.3.1 Notation conventions

Throughout this work, the following conventions will be used: (tkx) marks the moments through-

out a simulation when an OFF-ON to ON-OFF commutation begins; (tky) marks the moments

throughout a simulation when an ON-OFF to OFF-ON commutation begins; (tki) corresponds

to the moments when a switch turns ON; (tk j) corresponds to the moments when a switch turns

OFF.
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2.3.2 Equations for the switch voltage and current

The inverter arm modeled using the Pejovic method is presented in figure 2.6. Each switch/-

diode pair is replaced by a current source in parallel with a resistance. Recall from section 2.1.3

that in order to update the state of a switch/diode pair the pair’s current and voltage at the pre-

vious time step are required. Thus, in order to analyze the commutation process of a two-level

inverter, the equations for the switch/diode pair’s current and voltage will be formulated.

Figure 2.6 Equivalent circuit of one arm of a two-level inverter

modeled using the Pejovic method. Note that Rs is simply 1
Gs

First, KCL is applied at the node where the three current sources meet.

iRs1
(n) = im1

(n)+ iRs2
(n)− im2

(n)+ iload(n) (2.4)

where im1
and im2

are the values of the current sources (memory elements) of the upper and

lower switches, respectively, iRs1
and iRs2

are the values of the current flowing through the par-

allel resistance of the equivalent model of the upper and lower switch/diode pairs, respectively.

iload(n) is the value of the inductive load current.
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Then KVL is applied around the loop composed of Vin, Rs1
, and Rs2

.

Vin = Rs1
iRs1

(n)+Rs2
iRs2

(n) (2.5)

where Rs1
iRs1

(n) is the voltage across the top switch/diode pair and Rs2
iRs2

(n) is the voltage

across the bottom switch/diode pair.

Substituting equation (2.4) into equation (2.5), and rearranging yields:

iRs2
(n) =

Vin −Rs1
(im1

(n)− im2
(n)+ iload(n))

Rs1
+Rs2

(2.6)

Substituting equation (2.6) into equation (2.4), and simplifying yields:

iRs1
(n) =

Vin +Rs2
(imem1

(n)− im2
(n)+ iload(n))

Rs1
+Rs2

(2.7)

The current flowing through switch/diode pairs can be expressed as

isw1
(n) = iRs1

(n)− im1
(n) (2.8)

isw2
(n) = iRs2

(n)− im2
(n) (2.9)

Substituting (2.6) into (2.9) yields:

isw2
(n) =

Vin −Rs1
(im1

(n)− im2
(n)+ iload(n))

Rs1
+Rs2

− im2
(n) (2.10)

Similarly, substituting (2.7) into (2.8) yields:

isw1
(n) =

Vin +Rs2
(im1

(n)− im2
(n)+ iload(n))

Rs1
+Rs2

− im1
(n) (2.11)

The expressions for the voltages across the switch/diode pairs are

vsw1
(n) = Rs1

(isw1
(n)+ im1

(n)) = Rs1

Vin +Rs2
(im1

(n)− im2
(n)+ iload(n))

Rs1
+Rs2

(2.12)
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vsw2
(n) = Rs2

(isw2
(n)+ im2

(n)) = Rs2

Vin −Rs1
(im1

(n)− im2
(n)+ iload(n))

Rs1
+Rs2

(2.13)

Equations 2.10 to 2.13 represent the voltages and currents of the two switches at a given time

step in terms of the values of the current memory sources im1
(n) and im2

(n). This representation

is important since the way in which the memory current sources are calculated depends on the

state of the switches. In the next subsection these expressions will be used to gain a deeper un-

derstanding into the behaviour of the switches voltages and currents following a commutation

and how the Gs parameter affects the accuracy of these quantities.

2.3.3 sw1 turn ON and sw2 turn OFF process

In this subsection, the behavior of the inverter arm will be analyzed for the case when the top

switch turns ON and the bottom switch turns OFF.

2.3.3.1 Interval 1: sw1 is ON and sw2 is ON

Figure 2.7 Gate and switch states during a commutation

from OFF-ON to ON-OFF using the Pejovic method
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Figure 2.8 Switch currents during a commutation

from OFF-ON to ON-OFF using the Pejovic method

Figure 2.9 Switch voltages during a commutation

from OFF-ON to ON-OFF using the Pejovic method
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The behavior of the circuit during a sample OFF-ON to ON-OFF commutation is illustrated

in figures 2.7, 2.8, and 2.9. It is assumed that the value of iload(n) varies little during the

commutation from OFF-ON to ON-OFF. Therefore, iload(n) is approximated by current source

Iload(tkx) whose value is constant during the commutation beginning at moment tkx . At some

time step n = 0, it is assumed that g1 = 0 and the top switch/diode pair is OFF (sw1 = 0). Also,

g2 = 1 and the bottom diode/switch pair is ON (sw2 = 1), conducting a negative current with

the same magnitude as Iload(tkx). This is shown on the left of side of figure 2.10. At the next

step, n = 1, the gate signals are changed such that g1 = 1 and g2 = 0 causing sw1 to turn ON.

Figure 2.10 Continuous time representation of the transition

from OFF-ON to the ON-ON intermediate interval

Since at the previous time step, isw2
was negative, sw2 remains ON. Therefore, both the top and

bottom switches are ON, and since each ON switch is modeled as an inductor, the continuous

time representation of the circuit consists of two inductors in series as shown in the right hand

side of figure 2.10. Referring back to the discretized circuit shown in figure 2.6, during this

interval, im1
(n) =−isw1

(n−1) and im2
(n) =−isw2

(n−1). Substituting the values of im1
(n) and

im2
(n) into (2.10) and simplifying yields:

isw2
(n) =

Vin

Rs1
+Rs2

+ isw2
(n−1) (2.14)
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Equations (2.12) and (2.13) reduce to

vsw1
(n) = Rs1

Vin

Rs1
+Rs2

(2.15)

vsw2
(n) = Rs2

Vin

Rs1
+Rs2

(2.16)

This is simply a voltage divider, and if the two switch resistances are the same (meaning that

the same value of Gs is used for each switch), then the two switch voltages will be equal to

half of the input voltage. These equations are valid as long as both switches in the arm are ON.

Equation (2.14) reveals that every time step during interval 1 (when both switches are ON),

isw2
will increase by a certain value. This can be expressed as:

Δisw2
=

Vin

Rs1
+Rs2

(2.17)

Recall that Rs1
and Rs2

are simply 1
Rs1

and 1
Rs2

respectively. If the same value of Gs is used for

both switches, then 2.17 reduces to:

Δisw2
= 0.5VinGs (2.18)

Eventually, isw2
will become positive (in the example shown in figures 2.7,2.8, and 2.9, this

occurs at the 3rd time step). Since g2 is OFF, the step after isw2
becomes positive, sw2 turns

OFF (in the example case, the 4th step) and the circuit enters the second interval which will be

described in the next section. This behaviour is different from the theoretical case in two ways.

First, instead of sw2 immediately turning OFF and conducting no current when g2 turns OFF,

with the Pejovic method, sw2 remains ON and the value of isw2
will increase over a certain

number of time steps. Second, before sw2 turns OFF, isw2
will become positive for one time

step. This does not occur in the theoretical case because when g2 = 0, isw2
= 0 and id2

can only

conduct negative current. In other words, with the Pejovic method, isw2
will overshoot the zero

value of current. The number of steps during which both switches remain ON is equal to the

number of steps it takes isw2
to become positive. Recalling that the value of isw2

at the beginning
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of the commutation was −Iload(tkx), the duration of the first interval can be expressed as:

ceil(
Iload(tkx)

Δisw2

) (2.19)

where ceil indicates to round up the expression inside the parentheses. The value by which isw2

increased during the ON-ON interval is equal to ceil(
Iload(tkx)

Δisw2
)Δisw2

. The value of the positive

overshoot of isw2
is determined by simply subtracting the value of the load current from the

previous expression. Therefore, if the last step of interval 1 is denoted as int1
end , then the value

of the current error at int1
end is given by:

ei(int1
end) = ceil(

Iload(tkx)

Δisw2

)Δisw2
− Iload(tkx) (2.20)

From equation 2.18 it can be seen that as Gs increases, Δisw2
increases as well. In addition, the

duration of the first interval (the number of steps where sw1 and sw2 are ON simultaneously)

will decrease, but the overshoot at the end of this interval will increase.

2.3.3.2 Interval 2: sw1 is ON and sw2 is OFF

The step after isw2
becomes positive, sw2 turns OFF and the second interval begins. Throughout

the second interval, sw1 is ON and sw2 is OFF. Although the analysis of the first interval was

performed directly on the Pejovic model of the circuit presented in figure 2.6, for the second

interval it will be more straightforward to first consider the continuous time representation of

the circuit and then analyze the effect of backward-Euler discretization. The continuous time

representation of the circuit during the second interval is shown in figure 2.11.

The equations describing the behavior of this circuit can be written in the state-space form:

ẋ(t) = Ax(t)+Bu(t) (2.21)
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Figure 2.11 Continuous time representation of the circuit for the second interval

This representation will be useful in quantifying the oscillating behavior of the circuit during

the second interval. For the inverter arm, equation 2.21 is equivalent to

⎡
⎣ disw1

(t)
dt

dvsw2
(t)

dt

⎤
⎦=

⎡
⎣0 − 1

L
1
C 0

⎤
⎦
⎡
⎣isw1

(t)

vsw2
(t)

⎤
⎦+

⎡
⎣ 0 1

L

− 1
C 0

⎤
⎦
⎡
⎣iload(t)

Vin

⎤
⎦ (2.22)

The next step is to obtain the equivalent discrete time state-space representation of the circuit.

As explained by (Cellier and Kofman, 2006, p.38), the backward-Euler numerical integration

algorithm can be written as

xn+1 = xn +hẋ(n+1) (2.23)

Substituting 2.21 into 2.23, the following expression is obtained:

xn+1 = xn +hAxn+1 +hBu (2.24)

This can be rewritten as:

xn+1 = (I −hA)−1xn +h(I −hA)−1Bu (2.25)
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or

xn+1 = Adxn +Bdu (2.26)

where

Ad = (I −hA)−1 (2.27)

and

Bd = h(I −hA)−1B (2.28)

Substituting the A matrix from 2.22 into 2.27 yields:

Ad =
1

1+ h2

LC

⎡
⎣1 − h

L
h
C 1

⎤
⎦ (2.29)

Recall that with the Pejovic method C = hGs and L = h
Gs

. Equation 2.29 can therefore be

rewritten as:

Ad =
1

2

⎡
⎣ 1 −Gs

1
Gs

1

⎤
⎦ (2.30)

or:

Ad =
1√
2

⎡
⎣ 1√

2
− Gs√

2

1√
2Gs

1√
2

⎤
⎦ (2.31)

This can be rewritten as

Ad =
1√
2

⎡
⎣ cosα −Gs sinα

1
Gs

sinα cosα

⎤
⎦ (2.32)

where α is 45 degrees. Similarly, it can be shown that:

Bd =
1√
2

⎡
⎣ sinα Gs cosα

− 1
Gs

cosα sinα

⎤
⎦ (2.33)
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Inserting 2.32 and 2.33 into 2.26

⎡
⎣isw1

(n+1)

vsw2
(n+1)

⎤
⎦=

1√
2

⎡
⎣ cosα −Gs sinα

1
Gs

sinα cosα

⎤
⎦
⎡
⎣isw1

(n)

vsw2
(n)

⎤
⎦+

⎡
⎣= 1√

2
− sinα Gs cosα

1
Gs

cosα sinα

⎤
⎦
⎡
⎣iload

Vin

⎤
⎦

(2.34)

Equation 2.34 describes how the values of the switches’ voltage and current change from one

step to another. The switches’ voltage and currents k steps after the circuit has entered the

second interval are represented by the following equations:

isw1
(k) = Iload(tkx)+2−

k
2 ((isw1

(0)− Iload(tkx))cos(kα)−Gs(vsw2
(0)−Vin)sin(kα)) (2.35)

vsw2
(k) =Vin −2−

k
2 (
(−isw1

(0)+ Iload(tkx))

Gs
sin(kα)+(−vsw2

(0)+Vin)cos(kα)) (2.36)

where isw1
(0) and vsw2

(0) are the initial values of the LON and COFF , respectively, during the

second interval. The initial value of the LON during the second interval interval is equal to

the current through sw1 at the end of the first interval. Similarly, the initial value of the COFF

during the second interval is equal to the voltage across sw2 at the end of the first interval. This

can be expressed as:

isw1
(0) = isw1

(int1
end) (2.37)

and:

vsw2
(0) = vsw2

(int1
end) (2.38)

The correct value of isw1
is Iload(tkx) and the correct value of vsw2

is Vin. Equations 2.35 and

2.36 show that isw1
is equal to Iload(tkx) plus an erroneous oscillatory term and vsw2

is equal to

Vin minus an erroneous oscillatory term:

isw1
(k) = Iload(tkx)︸ ︷︷ ︸

correct value of isw1

+

2−
k
2︸︷︷︸

damping factor

((isw1
(0)− Iload(tkx))cos(kα)−Gs(vsw2

(0)−Vin)sin(kα))︸ ︷︷ ︸
oscillatory error term
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vsw2
(k) = Vin︸︷︷︸

correct value of vsw2

−

2−
k
2︸︷︷︸

damping factor

(
(−isw1

(0)+ Iload(tkx))

Gs
sin(kα)+(−vsw2

(0)+Vin)cos(kα))︸ ︷︷ ︸
oscillatory error term

The magnitude of the error on isw1
is directly proportional to Gs and the magnitude of the error

on vsw2
is inversely proportional to Gs. Given enough time these oscillations will be damped

to zero. Indeed, at every step, they are damped by
√

2. This damping is purely numeric since

in theory an LC circuit should oscillate forever. If the initial conditions isw1
(0) and vsw2

(0) are

set to zero, then equations 2.35 and 2.36 reduce to equations 2.1 and 2.2 formulated by Pejovic

and Maksimovic (1994). This is logical since they did not consider the LON-LON interval.

2.3.4 sw1 turn OFF and sw2 turn ON process

In this subsection, the behavior of the inverter arm will be analyzed for the case when the top

switch turns OFF and the bottom switch turns ON.

2.3.4.1 Interval 1: sw1 is OFF and sw2 is ON

It is assumed that the value of iload(n) varies little during the commutation from ON-OFF

to OFF-ON. Therefore, iload(n) is approximated by current source Iload(tky) whose value is

constant during the commutation beginning at moment tky . At some time step n = 0, g1 = 1

and g2 = 0. sw2 is OFF, with vsw2
= Vin. sw1 is ON with isw1

= Iload(tky). At the next step,

n= 1, the gate signals are changed such that g1 = 0 and g2 = 1. From the update rules described

in 2.1.3, since g2 = 1, the bottom switch/diode pair turns ON. In addition, since g1 = 0 and

isw1
(n−1)> 0, sw1 turns OFF. The circuit is therefore represented by a COFF in series with an

LON . The behavior is described by the following equations::

isw2
(k) = Iload(tky)+2−

k
2 ((isw2

(0)− Iload(tky))cos(kα)−Gs(vsw1
(0)−Vin)sin(kα)) (2.39)
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vsw1
(k) =Vin −2−

k
2 (
(−isw2

(0)+ Iload(tky))

Gs
sin(kα)+(−vsw1

(0)+Vin)cos(kα)) (2.40)

In this case, the initial values isw2
(0) and vsw1

(0) are set to zero since there is no intermediate

interval.

2.3.4.2 Effect of dead time

Recall, that for the transition from g1 = 0, g2 = 1 to g1 = 1, g2 = 0, there was an intermediate

interval where both switch/diode pairs were ON. This interval is purely an artifact of the simu-

lation algorithm. It can also be observed that for the g1 = 1, g2 = 0 to g1 = 0, g2 = 1 transition,

there is no such intermediate interval. While this is true for the case with no dead time, if a

dead time is added, an artificial intermediate interval will present itself.

2.3.4.2.1 Interval 1: sw1 is OFF and sw2 is OFF

Figure 2.12 Gate and switch states during a commutation

from ON-OFF to OFF-ON using the Pejovic method
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Figure 2.13 Switch currents during a commutation

from ON-OFF to OFF-ON using the Pejovic method

Figure 2.14 Switch voltages during a commutation

from ON-OFF to OFF-ON using the Pejovic method
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The behavior of the circuit during a sample ON-OFF to OFF-ON transition with deadtime is

illustrated in figures 2.12, 2.13, and 2.14. It is assumed that at some time step n = 0, g1 = 1

and g2 = 0. As in the case with no dead time, sw2 is OFF with vsw2
= Vin and sw1 is ON

with isw1
= Iload(tky). At the next step, n = 1, the gate signals are changed such that g1 = 0

and g2 = 0. In theory, when both the gates turn OFF, the bottom diode will turn ON so that the

inductive load current is not interrupted. However, with the Pejovic method, this is not the case.

As in the case with no dead time, sw1 turns OFF. However, instead of turning ON, sw2 will

remain OFF as well. This is due to the fact that at n = 0, the voltage across sw2 was positive.

The continuous time representation of the circuit therefore consists of two COFF in series. As

explained in subsection 2.1.2, im1
(n) =

vsw1
(n−1)

Rs1
and im2

(n) =
vsw2

(n−1)

Rs2
. By inserting these into

equations (2.12) and (2.13), and simplifying, the following expressions are obtained:.

vsw1
(n) = vsw1

(n−1)+Δvsw (2.41)

vsw2
(n) = vsw2

(n−1)−Δvsw (2.42)

Where

Δvsw =
Rs1

Rs2

Rs1
+Rs2

Iload(tky) (2.43)

is the rate of change of the switch voltage. If the values of Rs1
and Rs2

are the same, then:

Δvsw =
Iload(tky)

2Gs
(2.44)

It can be seen that the value Δvsw will vary through the simulation as the value of Iload(tky)

changes. It is also interesting to note that Δvsw is inversely proportional to Gs. Recall that dur-

ing the first interval of the sw1 turn ON and sw2 turn OFF process, Δisw is directly proportional

to Gs. This is consistent with the pattern so far: increasing Gs improves some cases, but causes

a deterioration in others. The switch currents are

isw1
(n) =

Rs2

Rs1
+Rs2

Iload(tky) (2.45)
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isw2
(n) =− Rs1

Rs1
+Rs2

Iload(tky) (2.46)

If the values of Rs1
and Rs2

are the same, then the current through both switches is of the same

magnitude and equal to half of the load the current. Unlike the LON-LON interval, there will

be an overshoot at the end of the COFF -COFF interval only if vsw2
becomes negative before the

deadtime elapsed. If the deadtime elapses first, then there is no overshoot at the end of this

phase. If the last step of the first interval is denoted as int1
end , then the value of the current error

at int1
end (if the dead time hasn’t elapsed) is given by:

ev(int1
end) = ceil(

Vin

ΔVsw
)ΔVsw2

−Vin (2.47)

where: ceil( Vin
ΔVsw

) is the number of steps where both switches are OFF.

sw2 will turn ON and the circuit will enter the second interval the step after vsw2
becomes

negative or the step when the dead time period elapses (when g2 = 1), whichever comes first.

In the example shown in figures 2.12, 2.13, and 2.14, the deadtime elapses by the 3rd step

which is before vsw2
becomes negative. Therefore, on the 3rd step, sw2 turns ON.

2.3.4.2.2 Interval 2: sw1 is OFF and sw2 is ON

The behaviour of the circuit during the second interval is described by equations 2.39 and 2.40,

with the initial values isw2
(0) and vsw1

(0) set to their values at the end of the first interval.

2.4 Conclusion

As seen in the above analysis, the Pejovic method introduces artificial intervals (LON-LON and

COFF -COFF ). At the end of these intervals, there will be an error on the switch waveforms

due to the switch/diode pairs requiring values of the previous time step in order to update. It

was shown that the value of Gs has an effect on this error. For the sw1 turn ON and sw2 turn

OFF transition, the error on the switch current at the end of the LON-LON interval is directly

proportional to Gs. For the sw1 turn OFF and sw2 turn ON transition, the error on the switch
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voltage at the end of the COFF -COFF interval is inversely proportional to Gs (if the deadtime

hasn’t elapsed yet). It is therefore clear that a compromise must be made. It was also shown

that the Pejovic method introduces oscillations during the second interval. During this interval,

the voltage oscillations is inversely proportional to Gs, while the magnitude of the current

oscillations is directly proportional to Gs. Once again, a compromise must be when selecting

the appropriate value of Gs. In the next chapter, the effect of the Gs parameter on the output

current and the commutation losses will be examined.



CHAPTER 3

EFFECT OF GS PARAMETER ON FUNDAMENTAL COMPONENT OF OUTPUT
CURRENT AND ON COMMUTATION LOSSES

In the previous chapter, the error introduced by the Pejovic method during commutations was

analyzed. In this chapter, the error introduced by the Pejovic method on the fundamental

component of the output current (iload1
) and on the commutation losses will be analysed.

3.1 Effect of Gs parameter on iload1

The effect of Gs on iload1
is clearly illustrated by examining extreme values of Gs. For very

low values of Gs, one arm will always be composed of a large inductance (LON = h
Gs

) and

small capacitance (COFF = hGs). The very small COFF will charge very quickly with respect

to the switching frequency and the very large LON will charge very slowly, meaning that both

components can be approximated as open circuits. This approximation is illustrated in figure

3.1.

Figure 3.1 Approximate circuit representation for

a 2 level inverter with a very low value of Gs

It can be seen that there is an open circuit between Vin and the load, and the load current will

therefore be zero. This is clearly different from an actual inverter were the load current is

sinusoidal and its fundamental component assumes a certain non-zero value. For very large
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values of Gs, one arm will always be composed of a small inductance and large capacitance.

The very large COFF will charge very slowly with respect to the switching frequency and the

very small LON will charge very quickly, meaning that both components can be approximated

as short circuits circuits. This approximation is illustrated in figure 3.2.

Figure 3.2 Approximate circuit representation for

a 2 level inverter with a very high value of Gs

It can be seen that the input voltage source is essentially shorted (the only resistance across

it will be two RON , the very small ON resistances of the switches). Hence, sw1 and sw2 will

conduct a large amount of current and the input power drawn from the DC voltage source will

be very high. Since the value of RON is negligible compared to the load impedance, the voltage

across the load will be approximately Vin
2 . Therefore the output current will have the same form

of the current in a series RL circuit driven by a DC voltage source. This means that as time

goes on, it will approach a DC value which is once again significantly different from the case

of the theoretical inverter. This situation is illustrated in figure 3.3.

Once again, a compromise must be made. Selecting too high of a value of Gs will cause the

input power drawn to be enormous. Selecting too low of a value of Gs will cause the output

current and power to be too low.
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Figure 3.3 Waveforms for a 2 level inverter with a very high value of Gs

3.2 Effect of Gs parameter on commutation losses

Whenever a commutation occurs during a simulation using the Pejovic method, energy is lost.

This processes is illustrated in figure 3.4. It is assumed that at some step n the top switch is

OFF (and modeled as a capacitor) and the bottom switch is ON (and modeled as an inductor).

It is also assumed that the top switch has been OFF long enough for the oscillations across it

to have been damped out.
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Hence, isw1
(n) = 0 and vsw1

(n) = Vin. The COFF is therefore storing an energy equal to

0.5Cv2
sw1

(n). 1 Concretely, this stored energy manifests itself in the form of the memory

current source which has a value equal to im1
(n) = GsVsw1

(n−1). At n+1, suppose the gates

change such that g1 = 1 and g2 = 0. As explained previously, the top switch turns ON so that

it is now modelled as an inductor. The value of its current source memory element is equal

to im1
(n) = −isw1

(n− 1). However, since the current at the previous time step was zero, the

magnitude of the current source is zero, meaning that it contains no charge. It can therefore be

seen that a charged COFF is replaced by an uncharged LON , meaning that the energy stored in

the COFF at step n is lost. Similarly, during turn OFF, a charged LON is replaced by a COFF with

an initial memory value of im1
(n) = Gsvsw1

(n−1). As shown in section 2.2.4, vsw1
(n−1) = 0.

Therefore, the COFF is uncharged. 2 Therefore energy is lost every time a commutation occurs.

The total losses for a given switch during turn ON can be represented by:

I

∑
i

0.5CV 2
sw(tki−1

) (3.1)

where tki are the turn ON moments of the switch during the course of the simulation. Similarly,

the total losses during turn OFF are:

J

∑
j

0.5LI2
sw(tk j−1

) (3.2)

where tk j are the turn OFF moments of the switch during the course of the simulation. As was

shown in the previous section, the values of isw and vsw are affected by the value of Gs. The

1This equation is valid for continuous time (it is derived by integrating the power of the capacitor with respect

to time). Since in discrete time integration is approximate, the energy stored in a capacitor or inductor is not

necessarily 0.5Cv(t)2 or 0.5Li(t)2, but empirically this discrepancy did not affect the optimization results.
2It should be noted that the losses of the bottom switches are different from those of the top ones. As was

explained in section 2.2.3, the bottom switch only turns OFF after a LON −LON intermediate interval during which

the voltage across it is Vin
2 and not the zero volts across the top switch prior to OFF. Therefore, during turn OFF,

unlike the case of the top LON which was replaced by an uncharged COFF , the bottom LON is replaced by a COFF
that contains some initial charge (im2

= Gs
Vin
2 ). Hence, the losses for the bottom switches are lower than the losses

of the top switches. For the purpose of this work, this discrepancy will be ignored.
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total energy lost in the switch during the simulation can be expressed as a function of Gs

Eloss(Gs) =
I

∑
i

0.5hGsv2
sw(Gs, tki−1

)+
J

∑
j

0.5
h

Gs
i2sw(Gs, tk j−1

) (3.3)

As mentioned previously, this equation is approximate due to the effect of discretization on

the energy calculation. The extent of this approximation was studied on the two level inverter

with the parameter values listed in table 4.2 with a Gs of 0.0505. The true energy loss was

determined using the following equation:

Eloss =
N

∑
n

isw(n)vsw(n)h (3.4)

where h is the size of the simulation time step and N is the number of steps during the simu-

lation. The energy loss calculated using this equation was 68.29J compared to a loss of only

22.96J calculated by equation 3.3. While this is a significant difference between the two calcu-

lation methods, they are still within an order of magnitude of each other, and, as will be shown

in the final chapter, the approximation is sufficiently adequate for the optimization algorithm

to provide optimal values of Gs. It is also important to point out that the turn ON losses are

directly proportional to Gs and that the turn OFF losses are inversely proportional to Gs. Again,

it is seen that a compromise must be made when choosing a value of Gs.

3.3 Conclusion

In this chapter, the effect of the Gs parameter on the output current was examined. It was found

that selecting too high or too low of a Gs value completely alters the behavior of the circuit.

The effect of the Gs parameter on the commutation losses was also examined. It was shown

that selecting too high or too low of a Gs value results in unacceptable losses. Therefore a

compromise must be made. This is consistent with the analysis of chapter 2, which showed

that too high or too low of a Gs value results in inaccurate switch voltage or current waveforms

following a commutation. This effect of the Gs on multiple aspects of the circuits behaviour

explains why choosing an appropriate value of Gs through trial and error is so difficult. In the
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next chapter, a method to automatically find the optimal value of Gs is proposed and validated

for three case studies.





CHAPTER 4

OPTIMIZATION METHOD AND VALIDATION

In this chapter, a method to automatically optimize the value of the Gs parameter is proposed

and its is performance assessed for three case studies.

4.1 Optimization method

In the previous chapter, the following equation was derived for the commutation losses accrued

during the simulation:

Eloss(Gs) =
I

∑
i

0.5hGsv2
sw(Gs, tki−1

)+
J

∑
j

0.5
h

Gs
i2sw(Gs, tk j−1

) (4.1)

In order to simplify the optimization problem, it will be assumed that near the optimal value of

Gs isw and vsw are independent of Gs. Therefore, equation 4.1 can be rewritten as:

Eloss(Gs) = 0.5hGsVSQ +0.5
h

Gs
ISQ (4.2)

where

ISQ =
J

∑
j

I2
sw(tk j−1

) (4.3)

VSQ =
I

∑
i

V 2
sw(tki−1

) (4.4)

An expression for the value of Gs that minimizes this loss can be obtained by evaluating the

following derivative:
dEloss(Gs)

dGs
= 0 (4.5)

Evaluating this expression yields:

0.5hVSQ −0.5
h

G2
s

ISQ (4.6)
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Rearranging and simplifying yields:

Gs =

√
ISQ

VSQ
(4.7)

4.1.1 Implementation of the algorithm

From equation 4.7, it can be seen that in order to find the optimal Gs, the values of ISQ and

VSQ must be determined. The values will be determined by running a reference SPS simulation

and measuring the switch voltages and currents at the moments tk j−1
and tki−1

. It is important to

note the basis for this algorithm is the assumption of hard switching, that is that at the moments

before the commutation (tk j−1
and tki−1

) the switch voltage/current is non-zero. If that is not the

case, then the proposed algorithm is not applicable and further investigation for this case is

needed. For example, in the case of a boost converter operating in discontinuous conduction

mode (DCM), the diode will turn OFF at a zero crossing of current. In order words, when the

LON is replaced by the COFF , no energy is lost. Therefore, ISQ will be equal to zero, and the Gs

calculated by the script will be zero. Another way of seeing the situation is that the algorithm

chooses a Gs that makes the LON and COFF losses equal to each other. However, since in this

case the LON losses are zero, the algorithm will calculate a Gs of zero.

4.1.2 Analytical expression for the case of the two level inverter

For certain cases, the optimal Gs can be calculated directly from an analytical expression with-

out having to use the proposed optimization algorithm. The grounded two level inverter shown

in figure 4.1 that has been studied in this work is such a case. For this converter, in theory, the

switch current is equal to the load current when it is ON and the switch voltage is equal to the

input voltage when it is OFF. By assuming that the load current varies slowly from one step to

another, ISQ can be rewritten as

ISQ =
J

∑
j

I2
load(tk j) (4.8)
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and VSQ can be rewritten as

VSQ =
I

∑
i

V 2
in (4.9)

The number of turn ON and turn OFF moments are equal (or there will be a difference of at

most 1 between them), so I = J. Therefore, Gs can be expressed as:

Gs =

√√√√ J

∑
j

I2
load(tk j)

V 2
in

(4.10)

This can be rewritten as

Gs =
IloadRMS(tk j)

Vin
(4.11)

If the switching frequency is much higher than the load current frequency, then equation 4.11

can be rewritten as

Gs =
IloadRMS

Vin
(4.12)

It is also crucial to highlight the fact that the optimal value of Gs depends on the ratio between

the load current and the input voltage. This ratio is altered by the value the load resistance,

which means that as the load changes, the optimal value of Gs changes as well. This is espe-

cially problematic for the case of motors connected to the converter, since in this case the load

is dynamic. Indeed, a major limitation of the Pejovic method is that the optimal value of Gs is

only valid for a specific operating point.

4.1.3 Relationship between the proposed algorithm and simulation accuracy following
a commutation

The proposed algorithm is designed to minimize the commutation losses. In this subsection, it

will be shown that it also gives reasonable Gs values with respect to maximizing the simulation

accuracy following a commutation. In the second chapter, it was shown that when a commu-

tation occurred there was an intermediate interval where the two switches were either both ON

or both OFF, followed by an interval where one switch was ON and the other was OFF. It was

also shown that at the end of the intermediate interval there was an error on the switch voltage
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and current. During the second interval, there were oscillations whose magnitudes depended

on the values of −isw0
+ Iload(tk) and −vsw0

+Vin where isw0
and vsw0

are equal to the switch

current and voltage, respectively, at the end of the first interval. If there is no error at the end

of the first interval, then isw0
= Iload(tk) and vsw0

=Vin and the magnitude of the oscillations is

zero. In other words, if the error at the end of the intermediate interval is kept small, then the

error during the second interval will be small as well. The maximum possible voltage error is

ΔVsw which is equal to
Iload(tky)

2Gs
. The maximum possible current error is ΔIsw which is equal to

0.5GsVin. These voltage and current errors are normalized with respect to the input voltage and

load current, respectively. The normalized errors are
Iload(tky)

2VinGs
. and GsVin

2Iload(tkx)
. These errors are

present during every commutation.

ei =
X

∑
x

GsVin

2Iload(tkx)
(4.13)

ev =
Y

∑
y

Iload(tky)

2GsVin
(4.14)

The total error can be minimized by setting these errors equal to each other. Doing so and

simplifying, as well as assuming that the load current varies little between the OFF-ON to ON-

OFF and ON-OFF to OFF-ON transitions (meaning that Iload(tkx) = Iload(tky)) the following

expression is obtained:

Gs =
X

∑
x

Iload(tkx)

Vin
(4.15)

This expression is equivalent to

Gs =
IloadAV G(tkx)

Vin
. (4.16)

This is similar to expression obtained by minimizing the losses which is restated here:

Gs =
IloadRMS(tk j)

Vin
(4.17)

Assuming that the load varies little between tk j and tkx , then the only difference between the

two expressions is the difference between IloadRMS(tk j) and IloadAV G(tk j). For a pure sinusoidal

load current with a DC offset it can be shown that these values are similar. Therefore, for the
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specific case of the grounded two level inverter, the Gs that minimizes the commutation losses

is close the Gs that minimizes the current and voltage errors during commutations.

4.2 Optimization methods validation

In this section, the performance of the automatic optimization method developed in section 4.1

will be examined for three topologies (two level inverter, three level NPC inverter, direct matrix

converter). For each topology, the optimal Gs was determined automatically by performing a

benchmark SPS simulation and using a script to calculate ISQ, VSQ, and the optimal value of

Gs. In order to assess the validity of the Gs value obtained using the automatic method, the

error on Iload1
and commutation losses with the optimal Gs were compared to those for a range

of Gs values. For a range of Gs values between 0.00001 and 1000, a simulation was performed.

For each Gs value, the commutation losses and the Iload1
error were measured. These results

were then traced as a function of Gs. The Iload1
error and commutation losses (as a percentage

of SPS output power) were added together and also traced as a function of Gs.

4.2.1 Summary of results

Table 4.1 Summary of results at optimal Gs

Two level NPC Matrix
Optimal Gs (S) 0.0505 0.0188 0.1905

Losses 326.8 W 324.2 W 256.7 W

Losses as a % of SPS output power 4.740 % 33.78 % 5.674

% error of iload1
-3.20 % -5.80 % - 1.75 %

4.2.2 Two level inverter

The circuit shown in figure 2.3 was tested. It is restated in figure 4.1 for convenience.

After performing a benchmark SPS simulation and running the automatic optimization

algorithm, the following values were calculated: ISQ = 1.3792×106A2. VSQ = 5.4005×108V 2,

Gs = 0.0505S. The optimal Gs obtained automatically is compared to the simulation results
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Figure 4.1 Schematic of two level inverter

Table 4.2 Two level inverter parameter values

Parameters Values
fsw 50 kHz

Vin 300 V

fre f 50 Hz

Ron 1 mΩ
deadtime 500 ns

modulation index 0.40

Rload 10 Ω
Lload 38.1 mH

Ts 210 ns

for various Gs values shown in figures 4.2, 4.3, and 4.4. From figure 4.2 it can be seen that

for the small values of Gs towards the left of the graph, the losses are small and that there is a

large error on iload1
. As explained in section 3.1, this is due to the fact that as the value of Gs

gets smaller, the circuit starts to resemble an open circuit. For large values of Gs, the losses are

very large. It also appears that the error on the fundamental current approaches zero as the Gs

gets larger. However, this is deceiving since for even larger values of Gs (e.g. around 100000),
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Figure 4.2 Losses and error on iload1
for different Gs values for a two level inverter

Figure 4.3 Error on the DC component of the output

current for different Gs values for a two level inverter

the error on iload1
will be large. Indeed, for very large values of Gs, the output of the circuit

will resemble that of an RL circuit. It’s just that the values of Gs shown on the graph didn’t

reach high enough for that effect to begin to become noticeable. However, the increase of



50

losses with increasing Gs is noticeable. Theoretically, this losses will increase without bound

as Gs. In practice, they will be limited by the RON on the switches to some very large value.

It can also be seen that there is a local minimum of losses which occurs very near the value

of Gs determined by the automatic optimization algorithm. The graph can be interpreted in

the following manner. Near the optimal value of Gs, the assumption that Gs has a negligible

effect on the values of the switch current and voltage holds true. Therefore, the commutation

losses increase as the chosen Gs moves away from the optimal Gs. However, the further away

the chosen Gs is from the optimal value of Gs, the less this assumption is valid, and the effects

described in section 3.1 begin to dominate.

In summary, for very low values of Gs the losses are very small, for very high values of Gs the

losses are very large and for values between these two extremes, there is a local minimum of

losses. The Gs that produces this local minimum of losses also produces an accurate output

current waveform (3.2% error).

By adding the (absolute value of) the percent error on iload1
with the percent loss, a concave

curve with a global minimum is once again obtained as seen in figure 4.4. The Gs calculated

using the automatic optimization algorithm occurs very near this minimum.
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Figure 4.4 Sum of % losses and % error on the fundamental

output current for different Gs values for a two level inverter

4.2.2.1 Example analytical calculation of Gs

In section 4.1 it was shown that an analytical expression can be used to calculate the value of

Gs for a two level inverter. This expression is restated here for convenience

Gs =
IloadRMS

Vin
(4.18)

In this section, this expression will be validated by comparing it the output of the optimization

algorithm. For the two level inverter in question, when the SPS baseline simulation was run,

the measured load current was 15.162 A RMS and the input voltage was 300V. By inserting

these values into equation 4.18, a Gs of 0.05054 is obtained, which is essentially identical to

the Gs found using the optimization algorithm.

4.2.2.2 Waveforms at optimal Gs

The waveforms for the simulation with the optimal Gs are presented in figures 4.5 to 4.9. Figure

4.5 shows that the load current with the Pejovic simulation is very close to its SPS counterpart.
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Figures 4.8 and 4.9 show the switch current and voltage waveforms. It can be seen that there is

an overshoot every time a commutation occurs and that the percentage overshoot in the voltage

and current waveforms are close to each other. This is expected as explained in subsection

4.1.3. The inductive load filters out this high frequency noise, explaining the accuracy of

the output current waveform. Similar observations can be made for the waveforms for the

following two cases.

Figure 4.5 Iout waveform
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Figure 4.6 DC side current waveform

Figure 4.7 Vout waveform
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Figure 4.8 vsw1
waveform

Figure 4.9 isw1
waveform
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4.2.3 Three level NPC inverter

Figure 4.10 Schematic of three level NPC inverter

Table 4.3 Three level NPC inverter parameter values

Parameters Values
fsw 50 kHz

Vin 600 V

fre f 50 Hz

Ron 1 mΩ
deadtime 500 ns

modulation index 0.40

Rload 10 Ω
Lload 38.1 mH

Ts 420 ns
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The next converter the automatic optimization algorithm was validated on was the three level

NPC inverter shown in figure 4.10. After performing a benchmark SPS simulation and running

the automatic optimization algorithm, the following values were calculated: ISQ = 9.0210×
106A2. VSQ = 2.5651×108V 2, Gs = 0.0188S. The optimal Gs obtained automatically is com-

pared to the simulation results for various Gs values shown in figures 4.11 and 4.12. In the case

of the three level NPC inverter, like in the case of the two level inverter, the losses approach

zero for a small values of Gs and increase significantly for higher values of Gs. However, unlike

the two level inverter, there is no local minimum of losses as depicted in figure 4.11. However,

by adding the (absolute value of) the percent error on iload1
with the percent loss, a concave

curve with a global minimum is once again obtained as shown in figure 4.12. The Gs calculated

using the automatic optimization algorithm once again occurs very near this minimum.

Figure 4.11 Losses and error on the fundamental current

for different Gs values for a three level NPC inverter
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Figure 4.12 Sum of % losses and % error on the fundamental output

current for different Gs values for a three level NPC inverter

4.2.3.1 Waveforms at optimal Gs

Figure 4.13 Iout waveform
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Figure 4.14 DC side current waveform

Figure 4.15 Vout waveform
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Figure 4.16 vsw1
waveform

Figure 4.17 isw1
waveform
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4.2.4 Direct matrix converter

Figure 4.18 Schematic of matrix converter

Table 4.4 Direct matrix converter parameter values

Parameters Values
fsw 14 kHz

Vinφ 100 Vpk
fgrid 50 Hz

fre f 150 Hz

Ron 1 mΩ
deadtime 500 ns

modulation index 0.86

Rload 2 Ω
Lload 1 mH

Ts 210 ns
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Figure 4.19 Losses and error on the fundamental current

for different Gs values for a direct matrix converter

Figure 4.20 Sum of % losses and % error on the fundamental output

current for different Gs values for a direct matrix converter

The final converter the automatic optimization algorithm was validated on was the direct matrix

converter shown in figure 4.18. After performing a benchmark SPS simulation and running the
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automatic optimization algorithm, the following values were calculated: ISQ = 1.2085×106A2.

VSQ = 3.3285×107V 2, Gs = 0.1905S. The optimal Gs obtained automatically is compared to

the simulation results for various Gs values shown in figures 4.19 and 4.20.

For the case of the direct matrix converter, the general shape of the loss and current error curves

are very similar to those of the two level inverter. For low values of Gs, the losses are small,

for large values of Gs, the losses are large and in between there is a local minimum. By adding

the (absolute value of) the percent error on iload1
with the percent loss, a concave curve with

a global minimum is obtained as shown in figure 4.20. The Gs calculated using the automatic

optimization algorithm once again occurs very near this minimum.

It is encouraging to note that even though the rigorous analysis of the optimization method was

performed for a two level inverter, the performance of the algorithm appears to generalize well

to other converter topologies.

4.2.4.1 Waveforms at optimal Gs

Figure 4.21 Iout waveform
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Figure 4.22 Iin waveform

Figure 4.23 Vout waveform
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Figure 4.24 vsw1
waveform

Figure 4.25 isw1
waveform



65

4.3 Conclusion

In this chapter, a method to automatically find the optimal value of the Gs parameter was

derived. It is based on minimizing the commutation losses, and it was also shown that it is

effective at minimizing the switch voltage and current errors following a commutation. In the

case of the two level inverter, it was shown that the proposed algorithm reduces to an analytical

expression. Finally, the proposed algorithm was validated for three topologies since the Gs

it calculated was very close to the Gs that minimized the sum of the commutation losses and

output current error.





CHAPTER 5

HYBRID FIXED-VARIABLE ADMITTANCE MATRIX METHOD

As the results in the previous chapter indicate, the proposed algorithm is effective in determin-

ing the optimal Gs for a given topology. However, even with an optimal Gs there are still some

major issues with the fixed admittance matrix approach. Overshoots persist, artificial losses

remain present, increasing with the switching frequency, and the optimal Gs varies with the

operating point of the converter. Therefore, depending on the application, the fixed admittance

matrix method may not produce accurate enough simulations and other research paths should

be explored.

In this chapter, a method is proposed to reduce the amount of storage required when precom-

puting the inverses of a variable admittance matrix approach. This method has been validated

offline for a boost and an indirect matrix converter. However, it remains to be seen if the pro-

posed method can be implemented on an FPGA with a small enough time step and further

research is required.

5.1 The Sherman-Morrison-Woodbury identity

Recall, that precomputing the inverses of a variable admittance matrix is not feasible for larger

converter due to the limited on-board FPGA. Indeed, for an indirect matrix converter (having

12 switches) modelled with the method proposed by Blanchette et al. (2012), the size of the

system matrix is 27x27. Therefore 212 = 4096 matrices of size 27x27 must be stored which

is prohibitively large. That being said, whenever a commutation occurs, the entire matrix does

not change. Indeed, if c switches change, then only c columns change as well. The Sherman-

Morrison-Woodbury identity explained by (Gentle, 1998, p.110) can be very useful in this

situation. The identity states that if some change UV T is added to the original matrix A, then

the inverse of this new matrix can be obtained as follows:

(A
′
)−1 = (A+UV T )−1 = A−1 −A−1U(I +V T A−1U)−1V T A−1 (5.1)
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This can be rewritten as:

(A
′
)−1 = (A+UV T )−1 = A−1 −A−1UR−1V T A−1 (5.2)

where:

R = (I +V T A−1U) (5.3)

Therefore, by precomputing the inverse of the original matrix A, if only c columns change with

respect to A matrix during the simulation, then instead of inverting a matrix of dimension A,

the matrix R with a dimension of only c can be inverted instead. Sudha et al. (1993) used this

identity to limit the maximum dimension of the matrix to invert at each time step to the number

switches in the converter. However, real time inversion, even if the dimension of the matrix to

invert is reduced, is not feasible.

5.2 Explanation of the proposed method

In the method proposed in this chapter, online inversion is avoided by inverting the different

possible R−1 matrices offline and storing them on the FPGA. Since the dimension of R−1 is

significantly smaller than A−1 this results in a large reduction in required space. This will

be analyzed in depth further on. All that needs to be done online is to use the appropriate

R−1 matrix to reconstruct the required A−1 matrix corresponding to the current switch state.

This is illustrated in the following example: Consider some initial matrix A, whose inverse is

precomputed:

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 11 17 12

2 3 −4 −3

6 6 7 23

12 34 2 0

⎤
⎥⎥⎥⎥⎥⎥⎦ (5.4)
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Now consider that some change UV T is applied to A such that

A
′
= A+UV T =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 11 17 14

2 4 −4 −1

6 6 7 23

12 34 2 0

⎤
⎥⎥⎥⎥⎥⎥⎦ (5.5)

Columns 2 and 4 have changed. In order to determine the inverse of A
′
, the U and V matrices

must first be formed. This can be done using the following method. For each column j of A
′
,

if column j of A
′

is different from column j of A, then insert the difference between the two

columns in the U matrix and add a column of zeros to V with a non zero entry at row j. In this

example,

U =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 2

1 2

0 0

0 0

⎤
⎥⎥⎥⎥⎥⎥⎦ (5.6)

V =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0

1 0

0 0

0 1

⎤
⎥⎥⎥⎥⎥⎥⎦ (5.7)

The next step is to calculate R−1 by obtaining R using 5.3 and inverting it.

R−1 =

⎡
⎣ 0.5913 −1.0699

−0.3157 0.2132

⎤
⎦ (5.8)

As expected, it is only a 2x2 matrix since only two columns are different between A and A
′

The previous steps can be performed offline for all switch state possibilities and all possible

R−1 matrices can be stored in memory. During the course of the simulation, whenever a com-

mutation occurs, U and V must be formed using the method described previously, and the
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appropriate R−1 matrix must be fetched from memory. Then the (A
′
)−1 matrix correspond-

ing to the current switch state can be reconstructed using equation 5.2. It remains to be seen

whether these steps can be performed in a timely fashion on FPGA. If so, this method is very

promising since it requires much less memory than the traditional approach of precomputing

all the inverses of the variable admittance matrix.

5.3 Required memory calculation

If the inverse of the A matrix when all switches are OFF (denoted as A−1
0 ) and the inverse of

the A matrix when all switches are ON (denoted as A−1
1 ) are precomputed and stored, then

the dimension of the R−1 matrices for all other switch states is significantly reduced. The

dimensions of the matrices to precompute and store and shown in table 5.1.

The maximum dimension of the matrices that must be precomputed (excluding A−1
0 and A−1

1 )

is floor(N
2 ). This is due to the fact that as the number of columns that change with respect to

A−1
0 increases, the number of columns that change with respect to A−1

1 decreases. The required

dimension of the matrix to store is equal to the minimum of those two numbers. For each

matrix dimension from 1 to floor(N
2 ) there will be a certain number of matrices that must be

precomputed. The number of matrices to precomputed for a given dimension d is equal to:

2

(
N
d

)
(5.9)

where
(N

d

)
is the binomial coefficient which can be rewritten as:

N!

d!(N −d)!
(5.10)

Equation 5.9 can be understood by considering an example circuit with 8 switches. There are(
8
1

)
combinations of switch states with only switch ON and

(
8
1

)
combinations of switch states

with only switch OFF. There are therefore 2
(

8
1

)
matrices with only one switch ON or OFF.

Since A−1
0 and A−1

1 are precomputed, there are 2
(

8
1

)
1x1 matrices to precompute. Similarly,

there are 2
(

8
2

)
2x2 matrices and 2

(
8
3

)
3x3 matrices to precompute. However, there are only

(
8
4

)
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Table 5.1 Precomputed matrix dimensions

Switch states Size of matrix Commentssw1 sw2 sw3 sw4 to precompute
0 0 0 0 dim(A) The inverse of the A matrix with all

switches OFF (A−1
0 ) is precomputed

in its entirety.

0 0 0 1 1 Only one column changed with re-

spect to A−1
0

0 0 1 0 1

0 0 1 1 2

0 1 0 0 1

0 1 0 1 2

0 1 1 0 2

0 1 1 1 1 In this case three columns changed

with respect to A−1
0 but only one

changed with respect to A−1
1

1 0 0 0 1

1 0 0 1 2

1 0 1 0 2

1 0 1 1 1

1 1 0 0 2

1 1 0 1 1

1 1 1 0 1

1 1 1 1 dim(A) The inverse of the A matrix with all

switches ON (A−1
1 ) is precomputed

in its entirety.

4x4 matrices, not 2
(

8
4

)
. This is due to the fact the set of combinations where 4 switches are ON

is identical to the set of combinations where 4 switches are OFF since there are 8 switches in

total. More formally, equation 5.9 is valid for dimensions of 1 to floor(N
2 ) if N is odd, but only

for dimensions of 1 to N
2 −1 if N is even. In this case, the number of matrices of dimension N

2

is (
N
N
2

)
. (5.11)
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The number of matrix entries that must be stored is equal to:

2(dim(A))2 +
floor(N

2 )

∑
d

2d2

(
N
d

)
(5.12)

if N is odd or:

2(dim(A))2 +

N
2 −1

∑
d

2d2

(
N
d

)
+(

N
2
)2

(
N
N
2

)
(5.13)

if N is even. The space required to store the precomputed matrices is obtained by simply

multiplying the number of entries obtained using 5.12 or 5.13 by the number of bits required

to store one entry.

An indirect matrix converter formed using the method proposed by Blanchette et al. (2012)

has twelve switches and a system matrix of dimension 27. It is assumed that each matrix entry

occupies 32 bits. By using the proposed hybrid fixed-variable admittance matrix approach,

only 378,696 bytes of storage are required, compared to 11,943,936 bytes using the tradi-

tional precomputed approach. The amount of space required is reduced by a significant 96.8%.

Therefore, a possible research path is to assess whether this method can be implemented on an

FPGA with a small time step.



CONCLUSION

In this work, the accuracy of the fixed admittance matrix approach was studied in detail. The

analysis performed by Pejovic and Maksimovic (1994) was augmented and the transient volt-

age and current errors following commutation was quantified in greater detail. In addition, the

artificial energy losses due to the method were quantified. This analysis was used to develop

an algorithm to automatically find the optimal value of Gs. For the cases studied (two level

inverter, three level NPC inverter, direct matrix converter), it was found that the algorithm cal-

culated the optimal Gs with respect the switching losses and the output current error without

having to resort to a lengthy trial and error process. There is, however, still much work to done

to improve the real time simulation of power converters. A method was proposed to reduced

the space required to store the inverses of a variable admittance matrix method. However, more

research is required to determine whether it is a viable solution for real time simulation. Other

possible research paths could be to attempt to improve the Pejovic method or to explore new

hardware.
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