
ECOLE DE TECHNOLOGIE SUPERIEURE
UNIVERSITE DU QUEBEC

THESIS PRESENTED TO
ECOLE DE TECHNOLOGIE SUPERIEURE

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR
THE DEGREE OF DOCTOR OF PHILOSOPHY

Ph.D.

BY
TALEB, Mohamed

A PATTERN-ORIENTED AND MODEL-DRIVEN ARCHITECTURE FOR
INTERACTIVE SYSTEMS

MONTREAL, DECEMBER 11, 2008

© Mohame(d Taleb, 2008

THIS THESIS HAS BEEN EVALUATED

BY THE FOLLOWING BOARD OF EXAMINERS

Mr. Alain Abran, Thesis Director
Software Engineering & Information Technology Department
Ecole de technologic superieure

Mr. Ahmed Seffah, Thesis Co-director
Computer Science Department, Concordia University

Me. Veronique Francois, President of the Board of Examiners
Electrical Engineering Department, Ecole de technologic superieure

Mr. Hakim Lounis
Computer Science Department, Universite du Quebec A Montreal

Mr. Eric Lefebvre
Software Engineering & Information Technology Department
Ecole de technologic superieure

THIS THESIS WAS PRESENTED AND DEFENDED

BEFORE A BOARD OF EXAMINERS AND PUBLIC

DECEMBER 15,2008

AT ECOLE DE TECHNOLOGIE SUPERIEURE

ACKNOWLEDGEMENTS

I want to thank, first of all, my research co-supervisors. Dr. Alain Abran and Ahmed Seffah.

Thanks to Dr. Abran for accepting me as a Ph.D. student and, more importantly, trusted me

to complete this thesis. I remember very well our first meeting. Immediately, it took on a

very friendly and harmonious tone. Alain Abran is a very accessible and cordial person. I

thank him a thousand times for his invaluable advice, his collaboration and his rapid,

efficient and expert intervention that allowed me to improve my research skills.

To Dr. Seffah , I thank him so much for his help, for his guidance and for his contribution

my work on his research team on software engineering at Concordia University. Our

relation took a harmonious, friendly and solid path quickly and it has been such a pleasure

to evolve in a climate of confidence and motivation where what can be often considered as

drudgery, was transformed into a pleasant and satisfying experience within a good research

environment. Thanks to him, I could learn and understand what research is. I admit that it

was not easy and it was really necessary to have a great deal of patience.

I also extend special thanks to Olivier Alnet who participated in the development of the

POMA architecture example.

Very special thanks as well to my mother, my father, my brother and his family and to all

other members of my family who have endured and supported me during all of these years

of study and especially to have encouraged me morally and financially. I owe them all my

gratitude and I thank you all again. I dedicate to them this thesis as a proof of my

appreciation and love.

UNE ARCHITECTURE ORIENTE E PATTER N E T DIRIGEE PA R DES MODELE S
POUR LES SYSTEMES INTERACTIF S

TALEB, Mohamed

RESUME

La pratique quotidienne montre qu'il ne suffit pas d'aborder une conception equipe de
directives et de guides conceptuels. Les developpeurs logiciels se doivent d'etre en mesure
d'appliquer des solutions eprouvees extraites des meilleures pratiques de conception. Sans
cela, le concepteur ne pent appliquer correctement les directives ni tirer pleinement profit de
la puissance de la technologic et cela sans compromettre la qualite du produit final :
performance, evolutivite, utilisabilite ou facilite d'utilisation. De plus, le concepteur ne pent
« reinventer la roue » a chaque fois qu'il implemente une solution de conception dans un
projet ou contexte particulier.

La reutilisation de solutions eprouvees permet de resoudre un certain nombre de problemes
de conception tels que : (1) le decouplage des divers aspects des systemes interactifs (par
exemple, 1'architecture de la logique de sujet, de I'interface utilisateur, de la navigation et de
I'information; et (2) la separation des aspects specifiques lies aux plates-formes des
caracteristiques communes a tous les systemes interactifs.

Cette these identifie une liste de patterns et differents modeles visant a foumir, sous forme
d'une architecture orientee patterns et dirigee par des modeles, une solution globale et
integrative. Les modeles de patterns couvrent plusieurs niveaux d'abstraction, tels que:
domaine, tache, dialogue, presentation, et layout. L'architecture montre comment plusieurs
modeles peuvent etre combines a differents niveaux d'abstraction dans des structures
heterogenes, qui peuvent alors etre utilises comme elements de base dans le developpement
des systemes interactifs.

Ce document est divise en six chapitres. Le premier chapitre presente I'etat de Part sur les
« Pattems » en general et sur les differentes architectures de developpement pour les
systemes interactifs telles que «les architectures N-tiers», «Pattern-Oriented Design
(POD)», «Pattern-Supported Approach (PSA)», et «Model-Driven Architecture (MDA)».
Le deuxieme chapitre introduit la problematique de la recherche avec ses objectifs, ses
limites, la methodologie de la recherche et ses etapes de la recherche. Le troisieme chapitre
decrit principalement les parties les plus importantes de la recherche qui est de developper
une nouvelle architecture appelee architecture orientee pattern et dirigee par des modeles
{POMA) pour faciliter le developpement des systemes interactifs incluant ses fondements et
ses concepts cles, sa vue d'ensemble, ses justifications versus les architectures N-tiers, POD,
PSA, MDA, et ses specifications. Le quatrieme chapitre decrit les niveaux architecturaux et
les categories de patterns utilises dans POMA. Le cinquieme chapitre decrit les categories

V

de modeles utilises dans POMA. Le sixieme chapitre presente une etude de cas exploratoire
appliquee a I'architecture proposee dans cette recherche. Le demier chapitre presente une
conclusion sur les travaux de recherche et son evolution dans le futur.

Mots-cles: Pattern-Oriented and Model-driven Architecture (POMA), Pattem, Model,
Interactive System, Software Engineering, Usability, MDA, POD, PSA, N-
tiers.

PATTERN-ORIENTED AND MODEL-DRIVEN ARCHITECTURE FOR
INTERACTIVE SYSTEMS

TALEB, Mohamed

ABSTRACT

Day-to-day experiences suggest that it is not enough to approach a complex design
equipped with design tips, guidelines, and hints. Developers must also be able to use proven
solutions emerging from the best design practices to solve new design challenges. Without
these, the designer is unable to properly apply guidelines or take full advantage of the power
of technology, resulting therefore in poor performance, poor scalability, and poor usability.
Furthermore, the designer might "reinvent the wheel" when attempting to implement a
design solution.

A number of design problems continue to arise, such as: (1) decoupling the various aspects
of interactive systems (for example, business logic, the UI, navigation, and information
architecture) and (2) isolating platform specifics from the concerns common to all
interactive systems.

In the context of a proposal for a Pattern-Oriented and Model-driven Architecture (POMA)
for interactive systems, this thesis identifies an extensive list of pattem categories and types
of models aimed at providing a pool of proven solutions to these problems. The models of
pattems span several levels of abstraction, such as domain, task, dialog, presentation and
layout. The proposed POMA architecture illustrates how several individual models can be
combined at different levels of abstraction into heterogeneous stmctures which can then be
used as building blocks in the development of interactive systems.

This document is divided into six chapters: the first chapter presents a background and
related work on "Pattems" in general and on various architectures for interactive systems
development such as "N-tiers architectures", "Pattern-Oriented Design" (POD), "Pattern-
Supported Approach" (PSA), and "Model-Driven Architecture" (MDA). The second chapter
introduces the research topic with its objectives, its limhs, the research methodology, and
research steps. The third chapter describes primarily the most important parts of the research
which is the development of a new architecture called Pattern-Oriented and Model-Driven
Architecture, facilitating the development of interactive systems including fundamentals and
key concepts, an overview, justifications versus N-tiers, POD, PSA, and MDA architectures
and specifications. The fourth chapter describes architectural levels and categories of
patterns used in POMA. The fifth chapter describes the categories of models used in
POMA. The sixth chapter presents an exploratory case study applied to the architecture
proposed in this research. The last chapter presents a conclusion on this research work and
its expected evolution in the future.

VII

Key words: Pattern-Oriented and Model-driven Architecture (POMA), Pattern, Model,
Interactive System, Software Engineering, Usability, MDA, POD, PSA, N-
tier.

TABLE OF CONTENTS

Page

INTRODUCTION 1

CHAPTER 1 BACKGROUND AND RELATED WORK 12
1.1 Patterns 13

1.1.1 Definition 16
1.2 Models 20
1.3 Architectures 21

1.3.1 N-tiers 21
1.3.2 Pattern-Oriented Design (POD) 29

1.3.2.1 Overview 29
1.3.2.2 Composition techniques 30
1.3.2.3 Other techniques 33

1.3.3 Pattem Supported Approach (PSA) 34
1.3.4 Model-Driven Architecture (MDA) 36

1.4 Why Combine Pattems and Models? 43
1.5 Summary of chapter 45

CHAPTER 2 RESEARCH ISSUES 47
2.1 Research Goal and Objectives 47
2.2 Research Scope 48
2.3 Research Methodology 49
2.4 Summary of chapter 51

CHAPTER 3 POMA: PATTERN-ORIENTED AND MODEL-DRIVEN
ARCHITECTURE 50

3.1 Key concepts of POMA 50
3.2 POMA Overview 56
3.3 POMA justifications 58
3.4 POMA specifications and representation 58

3.4.1 The extensible Markup Language (XML) notation 58
3.4.2 The Unified Modeling Language (UML) notation 60

IX

CHAPTER 4 PATTERNS IN POMA 63
4.1 Patterns and Pattern-Oriented Architecture 63

4.1.1 Architectural Levels and categories of pattems 63
4.1.1.1 Information pattems 65
4.1.1.2 Interoperability pattems 66
4.1.1.3 Visualization patterns 67
4.1.1.4 Navigation patterns 68
4.1.1.5 Interaction patterns 69
4.1.1.6 Presentation patterns 71

4.1.2 Patterns Composition 72
4.1.3 Pattern mapping 79

4.2 Summary of chapter 84

CHAPTER 5 MODELS IN POMA 85
5.1 Model Categorizations 85

5.1.1 Domain model 86
5.1.2 Task model 87
5.1.3 Dialog model 88
5.1.4 Presentation model 89
5.1.5 Layout model 90

5.2 Model Transformation 91
5.3 Source code generation 92
5.4 Summary of chapter 92

CHAPTER 6 CASE STUDY 91
6.1 Overview 91
6.2 Defining the Domain Model 96
6.3 Defining the Task Model 103
6.4 Defining the Dialog Model 113
6.5 Defining the Presentation and Layout Models 119

CONCLUSION 131

APPENDIX 1 GLOSSARY OF TERMS 140

X

APPENDIX II TECHNICAL REPORT OF INTERACTIVE SYSTEM DEVELOPMENT
TOOLS: TRENDS AND CHALLENGES IN INTERACTIVE SYSTEM
DEVELOPMENT TOOLS: REQUIREMENTS FOR PATTERN-
ORIENTED AND MODEL-BASED ARCHITECTURE 14645

1. Introduction
14645

2. Content Management System (CMS) 149
2.1 Example of tools for CMS 151

2.1.1 Zope: Tools available for accessing Zope 151
2.1.2 PhPNuk 153

2.2 List of Tools in a Content Management Systems 154
3. Tools for Model-Based Approach and for Patterns 158
3.1 Definitions and Advantages of Model-Based UI Development 158

3.1.1 Definition of Model-Based UI Development 158
3.1.2 Advantages of Model-Based UI Development 159
3.1.3 Different models 159

3.2 Different tools for Model-Based Approach 160
3.3 Pattern-Oriented Tools 163
4. Formalisms and notations for patterns, architectures and models specifications... 164
4.1 Different formalisms and languages 164
4.2 Examples of different languages and notations 165

4.2.1 User Interface Markup Language (UIML) 165
4.2.2 extensible User Interface Language (XUL) 166
4.2.3 extensible Interface Markup Language (XIML) 166
4.2.4 Existing Model-Based Framework 168

5. References 168

APPENDIX III EXAMPLE OF XML SOURCE CODE FOR POMAML STRUCTURAL
NOTATION 174

LIST OF APPENDICES 178

BIBLIOGRAPHY 179

LIST OF TABLES

Page

Table 1.1 Descripfion of architectural levels of pattems 24

Table 1.2 Pattern-Oriented generic classification schema for POMA Architecture 28

Table 1.3 Summary of architectures (N-tiers, POD, PSA, MDA) and their
characteristics assessment 46

Table 4.1 Architectural levels, categories of patterns and examples 63

Table 6.1 Pattern Summary 95

Table 6.2 Example of pattern mapping of the Domain model for laptop and PDA
platforms 97

Table 6.3 Example of pattem mapping of Task model for laptop and PDA
platforms 108

Table 6.4 Example of pattem mapping of Dialog model for laptop and PDA
platforms 115

Table 6.5 Example of pattem mapping of the Presentation model for laptop and PDA
platforms 122

Table 6.6 Example of pattern mapping of the Layout model for laptop and PDA
platforms 128

LIST OF FIGURES

Page

Figure 1.1 Example of an Alexander pattern 15

Figure 1.2 Main elements of a pattern 17

Figure 1.3 Class Diagram of Model-View-Controller architectural pattern 22

Figure 1.4 Core J2EE 5-tier architectural level of pattems 23

Figure 1.5 UML Class Diagram of Core J2EE Patterns Architecture 25

Figure 1.6 Patterns-Oriented Design architecture 31

Figure 1.7 The PSA architecture with the relationships between PSA pattems 35

Figure 1.8 Transformations of MDA architecture 38

Figure 1.9 PIM, PSM and Implementation 40

Figure 1.10 Foundational Concepts of the MDA 41

Figure 2.1 Methodology Research 50

Figure 3.1 Key concepts of POMA 54

XIII

Page

Figure 3.2 POMA architecture for interactive systems development 57

Figure 4.1 Examples of Information Patterns 66

Figure 4.2 Adapter pattern 67

Figure 4.3 The Navigation Spaces Map pattern implemented using Tree Hyperbolic, a
sophisticated visualization technique 68

Figure 4,4 Breadcrumb Pattern 69

Figure 4,5 Stepping pattern 70

Figure 4.6 An example of a grid 71

Figure 4.7 Example of structural patterns: Executive Summary Pattem 72

Figure 4.8 Similar Pattem 73

Figure 4.9 Two Competitor Pattem 74

Figure 4.10 A Home Page Design Pattern using others patterns 74

Figure 4.11 UML Class Diagram of Architectural Level and Categories of Pattems for
Interactive System 76

Figure 4.12 Class structure of POMA's Models and Patterns 77

Figure 4.13 Pattern structure of the POMAML Markup Language 78

XIV

Page

Figure 4.14 The Web Convenient Toolbar pattern implementations and Look and Feels
for different platforms 80

Figure 4.15 Examples of patterns 82

Figure 4.16 Migration of the CBC site to a PDA Platform using Pattern Mapping 83

Figure 4.17 Pattern-Oriented Composition and Mapping Design Architecture 83

Figure 6.1 Graphical representation of the pattem 96

Figure 6.2 UML class diagram of the PIM Domain model 96

Figure 6.3 UML class diagram of the PSM Domain model for a laptop platform 98

Figure 6.4 UML class diagram of the PSM Domain model for PDA platform 99

Figure 6.5 The Login pattem on the laptop platform 100

Figure 6.6 The Login pattern on the PDA platform 100

Figure 6.7 Login view of the interactive system on the laptop platform 101

Figure 6.8 Login view of the interactive system on the PDA platform 101

Figure 6.9 Task model of the environmental management interactive
system 105

Figure 6.10 UML class diagram of the PIM Task model 107

XV

Page

Figure 6.11 UML class diagram of the PSM Task model mapped for a laptop
platform 109

Figure 6.12 UML class diagram of the PSM Task model mapped for a PDA platform 110

Figure 6.13 UML class diagram of a PIM Dialog Model 114

Figure 6.14 Graph structure suggested by the Wizard pattern 114

Figure 6.15 UML class diagram of the PSM Dialog model for a laptop platform 116

Figure 6.16 UML class diagram of the PSM Dialog model for a PDA platform 117

Figure 6.17 Dialog Graph of the environmental management interactive system for laptop
and PDA platforms 118

Figure 6.18 UML class diagram of a PIM Presentation model 121

Figure 6.19 UML class diagram of the PSM Presentation model for a laptop platform. 123

Figure 6.20 UML class diagram of the PSM Presentation model for a laptop platform. 124

Figure 6.21 UML class diagram of a PIM Layout model 127

Figure 6.22 UML diagram of PSM Layout Model for a Laptop platform 129

Figure 6.23 UML diagram of PSM Layout Model for a PDA platform 130

Figure 6.24 Screenshot of the Environmental Management Interactive System for a
Laptop platform 131

LIST OF ABREVIATIONS AND ACRONYM S

CIM Computation Independent Model

CIV Computation Independent Viewpoint

GUI Graphical User Interface

HCI Human Computer Interaction

HTML Hypertext Markup Language

IEEE Institute of Electrical and Electronics Engineers, Inc

ISML Interface Specification Meta-Language

JDBC Java Databases Connectivity

JDK Java Development Kit

JFC Java Foundation Classes

MDA Model-Driven Architecture

MPML Model Pattern Markup Language

MVC Model - View - Controller

PIM Platform Independent Model

PIV Platform Independent Viewpoint

POA Pattern-Oriented Architecture

XVII

POD Pattem-Oriented Design

POMA Pattem-Oriented and Model-driven Architecture

POMAML Pattern-Oriented and Model-driven Architecture Markup Language

PSA

PSM

PSV

SEI

TCP/IP

UI

UCD

UML

XML

WAP

WSDL

Pattern-Supported Approach

Platform Specific Model

Platform Specific Viewpoint

Software Engineering Institute

Transfer Control Protocol / Intemet Protocol

User Interface

User Centered Design

Unified Modeling Language

extensible Markup Language

Wireless Access Protocol

Web Service Definition Language

INTRODUCTION

A. Interactive system s

In Software Engineering, an "Interactive System" is a system accessed by interfaces over a

network such as the Internet, intranet, extranet or by a traditional medium.

Interactive systems are popular due to the ubiquity of the browser for the client, sometimes

called a thin client. The ability to update and maintain interactive systems without

distributing and installing systems on potentially thousands of client computers is a key

reason for their popularity. Interactive systems are used to implement, for example,

Webmail, online retail sales, online auctions, wikis, discussion boards, Weblogs,

MMORPGs and a number of other functions. The scope of this research project is therefore

limited to interactive systems.

In short, an interactive system is a program with which the user engages in conversation

(dialog) in order to accomplish tasks. An interactive system consists of two parts: the

software part, which is referred to as the interactive application; and the hardware part

which supports the execution of the software. The software can, in turn, be divided into

two sub-parts: the user interface, and the algorithmic, which is the semantics of the

interactive application. The hardware in an interactive system consists of input and output

devices and various managers (drivers of devices) that provide the physical support to the

execution of the interactive application.

At the same time, a user interface (UI) can be seen as a means by which the user and the

machine can exchange data. For example, the screen on which data are displayed is a

medium for user-machine interaction and for feedback in response to the user's actions.

Therefore, a UI is part of an interactive application which:

• Presents the output to the user;

• Collects the user's inputs and transmits them to interactive systems which treat them;

• Handles the sequence of dialogs.

Over the past two decades, research on interactive systems and user interfaces (UI)

engineering has resulted in several architectural models which constitute a major

contribution not only to facilitate the development and maintenance of interactive systems,

but also to promote the standardization, portability and ergonomic "usability" (ease of use)

of the interactive systems being developed. Such architectures provide:

• A precise definition of the UI aimed at: (i) presenting the output to the user; (ii)

gathering user entries to transmit them to the interactive system procedures that will

treat them; (iii) handling the dialog sequence;

• The separation of concerns, especially the decoupling of the UI from the system

semantics;

• The definition of reusable and standardized UI components;

• The decentralization of the dialog management, help, and errors across the various

components of an interactive system;

• Programming driven by events.

B. Architectures overvie w

Buschmann et al. (1996) define architectural models as: ''the structure of the subsystems

and components of a system and the relationships between them typically represented in

different views to show the relevant functional and non functional properties.'" This

definition introduces the main architectural components (for instance, subsystems,

components and connectors) and covers methods to represent them, including both

functional and non-functional requirements, by means of a set of views.

Bass et al. (2003) define the software architecture as: ''The software architecture of a

program or computing system is the structure or structures of the system, which comprise

software components, the externally visible properties of those components, and the

relationships among them". The architecture defines the components (such as modules,

objects, processes, subsystems, compilation units) and the relevant relations (such as

"calls", "sends data to", "synchronizes with", "uses", "depends on", "instantiates"). The

architecture is the result of early design decisions that are necessary before a group of

people can collaboratively build a software system (Bass et al., 2003).

A number of architectures specific to interactive systems have been proposed, e.g.,

Seeheim model (Pfaff, 1985) and (Green, 1985), Model-View-Controller (MVC)

(Goldberg, 1984), Agent Multi-Faceted (AMF) (Ouadou, 1994) which is an extension of

MVC, Arch/Slinky (Gram and Cockton, 1996), Presentation Abstraction Control (PAC)

Coutaz, 1987) and (Coutaz, 1990), PAC-Amadeus and Model-View-Presenter (MVP)

(Bass et al., 2003). Most of these architectures consist of three main elements: (1)

abstraction or model, (2) control or dialog and (3) presentation. Their goal is to improve

and facilitate the design of interactive systems. However, even though the principle of

separating an interactive system into components has its design merits, it can also be a

source of serious adaptability and usability problems in systems which provide fast,

frequent, and intensive semantic feedback: the communication between the view and the

model makes the interactive system highly coupled and complex.

Among the weaknesses of these architectures, one can mention:

• No guidance is provided to encourage the designer to cope with the different aspects of

the dialog such as assistance or error-handling;

• Lack of provisions to deal with the constraints for the design and description of the

interface, when these constraints are of great importance to the designer (Myers, 1989a),

(Myers, 1989b), (Myers, 1989c), (Myers, 1990), (Myers et al., 1990) and (Darses,

1990);

• The architectural models are poorly located in relation to the life cycle of the UI, which

can lead, in particular, to difficulties conceming the passage of the problem analysis

(analysis of user needs), expressed generally in terms of tasks and interaction sequences,

and to the concepts put forward by these architectures (agents, presentation components,

dialog components).

C. About Pattern s

Patterns have been proposed to alleviate some of these weaknesses, and indeed were

introduced based on the observation given by Alexander et al. (1979) in section 1.1.1. Such

a pattern provides, on a single level, a pool of proven solutions to many of the recurring

weaknesses listed above.

The Pattem-Oriented Software Architecture (Schmidt et al., 2000) is an example of a new

approach which combines individual pattems into heterogeneous structures and, as such,

can be used to facilitate a constructive instantiation of a system architecture.

Pattems have proven their utility in different fields of application. Design pattems (Gamma

et al., 1995) or architectural patterns (Buschmann et al., 1996) are well known uses of

successful patterns in computing.

Patterns provide various benefits, such as:

• Well-established solutions to architectural problems;

• Help in documenting architectural design decisions;

• Facilitation of communication between users through a common vocabulary;

• A common interlingua (or lingua franca) (Erickson, 2000);

• Documentation of problems and their corresponding best solutions.

However, one notes that the emergence of pattems in the architectural development of

interactive systems has not solved some of the problems associated with this development.

Among the challenging problems addressed in this thesis are the following:

(a) Decoupling of the various aspects of interactive systems such as business logic, user

interface, navigation, and information architecture,

(b) Isolation of the platform-specific problems from the concems common to all interactive

systems.

D. About Model s

In 2001, the Object Management Group introduced the Model-Driven Architecture (MDA)

initiative as an architecture to interactive system specification and interoperability based on

the use of formal models (i.e. defined and formalized models). The main idea behind MDA

is to specify business logic in the form of abstract models. These models are then mapped

(partly automatically) to different platforms according to a set of transformation rules. The

models are usually described in UML in a formalized manner, which can be used as input

for tools to perform the transformation process.

Indeed, a model is a formal description of some key aspects of an interactive system, from

a specific viewpoint. As such, a model always presents an abstraction of the "real" thing,

by ignoring or deliberately suppressing those aspects that would not be of interest to a user

of that model. In other words, a model is the main element of the system. Different

modeling constructs focus attention by ignoring certain things (D'Souza, 2001). For

example, an architectural model of a complex interactive system might focus on its

concurrency aspects, while a financial model of a business might focus on projected

revenues. Model syntax includes graphical or tabular notations and text.

D'Souza (2001) has identified key opportunities and modeling challenges and he has

illustrated how "Model" and "Architecture" could be used to enable large-scale model-

driven integration. The advantages of the models are as follows:

• Validation of the correctness of a model is made easier;

• Production implementations on multiple platforms is easier;

• Integration / interoperability across platforms is better defined;

• Generic mappings / pattems can be shared by many designs;

• Models constitute an interactive system of tool-supported solutions.

However, one notes that model-driven architecture has some weaknesses as well:

• MDA does not provide a standard for the specification of mappings: different

implementations of mappings can generate very different codes and models which can

create dependencies between the interactive system and the mapping solution used;

• Designers must take into account a diversity of platforms which exhibit drastically

different capabilities. For example. Personal Digital Assistants (PDAs) use a pen-

based input mechanism and have an average screen size in the range of 3 inches;

• The architectural models must be located and compared to the life cycle of the UI, in

particular, difficulties may arise related to the problem analysis (analyzing user needs).

expressed generally in terms of tasks and interaction sequences, and to the concepts

proposed by these architectures (agents, presentation components, and dialog

components).

Models should be precise enough to at least enable unambiguous communication analysis

and abstract enough to focus attention and provide insights. A model is simpler to

understand than the thing it represents; well-structured models can make complex

interactive systems understandable. Modeling helps users achieve consensus about what

exists or can be built, since it provides a focus on which to agree or disagree. A good

model does not have to be executable, but it must be readily validated against examples.

Models are commonly used to represent the flexibly of complex interactive systems.

Models can be viewed at many levels of abstraction, and complementary model views can

be combined to give a more intelligible and accurate view of a system than a single model

alone. Meservy and Fenstemacher (2005) claim that many software development experts

have long advocated using models to understand the problem that a system seeks to

address; yet development teams commonly employ models only in the early stages of

modeling. Often, once construction begins, the teams leave these models behind and never

update them to reflect their design changes during the project.

Most software developers would agree that modeling should play a role in every project

(Meservy and Fenstemacher, 2005). However, there is no clear consensus on what that role

should be, how developers should integrate modeling into other development activities and

who should participate in the modeling process (Meservy and Fenstemacher, 2005).

E. New generation o f platforms i n interactive system s

In recent years, interactive systems have matured from offering simple interface

functionality to providing intricate processes such as end-to-end financial transactions.

Users have been given more sophisticated techniques to interact with available services

and information using different types of computers. Different kinds of computers and

devices (including, but not limited to, traditional office desktops, laptops, palmtops, PDAs

with and without keyboards, mobile telephones, and interactive televisions) are used for

interacting with such systems. One of the major characteristics of such cross-platform

interactive systems is that they allow a user to interact with the server-side services and

contents in various ways. Interactive systems for small and mobile devices are resource

constrained and cannot support a full range of interactive system features and interacttvity

because of the lack of screen space or low bandwidth.

The mosaic of interactive systems and multiple platforms has led to the emergence of

interactive systems as a sub-discipline of software engineering with some specific

challenges. One important question is how to develop and deploy the same system for

different platforms - without "architecturing" and specifically writing code for each

platform, for learning different languages and the many interactive systems design

guidelines that are available for each platform.

The key motivations for this research project are:

• The need to adapt: (1) pattems and some of development pattern-oriented architectures

such as POD, PSA, and (2) Model-Driven Architecture to address some of the

challenges of designing and developing cross-platform interactive systems;

• The need to support both novices and experts in interactive systems development.

Our research goal can be stated as follows: "Define a new architecture to facilitate the

development and migration of interactive systems while improving their usability and

quality."

To pursue this goal, it is necessary to define an architecture, supported by a CASE tool, to

glue pattems together. In this thesis, some of the fundamentals of such architectures are

identified and an architecture called Pattem-Oriented and Model-driven Architecture

(POMA) is presented (Figure 3.2). Presented also is an evaluation of the feasibility of

some phases of this architecture, such as composition and mapping pattems and

fransformation models to create platform-independent models (PIM) and platform-specific

models (PSM). The following figure summarizes the architectural pattems and models that

were combined to obtain the POMA architecture.

N-Tier
Architecture:

Seeheim, Arch/
Slinky, MVC,
MVP, PAC,

PAC-Amodeus

1- Pattern -
Oriented
Design
(POD).

2- Pattern -
Supported
Approach

(PSA)

Models Model-
Driven

Architecture
(MDA)

X

The
Proposed

Architecture:

Pattern-
Oriented an d
Model-driven
Architecture

(POMA)

Architectural Patterns and Models.

According to the presented figure above, the proposed POMA architecture must rely

primarily on the concepts of N-tier architectures, the Pattem-Oriented architectures such as

POD and PSA and the Model-Driven Architecture (MDA).

This thesis proposes an architectural model that combines two key approaches: model-

driven and pattem-oriented. Firstly, fundamentals, key concepts, an overview,

justifications, and specifications of the proposed architecture, called POMA are presented,

which constitute a development architecture. Secondly, architectural levels and categories

10

of pattems are described as well as the various relationships between patterns. These

relationships are used next to combine and map several categories of patterns to create a

pattem-oriented design for an interactive system, and to show how to generate specific

implementations suitable for different platforms from the same pattem-oriented design.

Thirdly, five categories of models (Domain model, Task model, Dialog model.

Presentation model, and Layout model) are proposed which address problems such as: (a)

decoupling the various aspects of interactive systems, such as business logic, UI,

navigation, and information architecture; and (b) isolating platform-specific problems from

the concerns common to all interactive systems. Fourthly, the proposed Pattern-Oriented

and Model-driven Architecture (POMA) illustrates how the individual models mentioned

above can be combined at different levels of abstraction into heterogeneous structures to be

used as building blocks in the development of interactive systems. Fifthly, a case study to

illustrate the new architecture and its practical relevance is presented. Finally, a conclusion

on the research carried out and comments on future evolution is presented.

F. Organization o f this Thesis

The organization of the remainder of this thesis is as follows:

In chapter 1, background and related work is discussed. In particular, one reviews patterns,

models, and existing architectures such as N-tiers, Pattem-Oriented Design (POD), Pattern-

Supported Approach and Model-Driven Architecture (MDA).

In chapter 2, research issues are introduced that lead to the research statement, the research

objectives including the research steps, the research scope and the research methodology.

In chapter 3, the results of this research project are presented, describing primarily the most

important parts of the research which are: the development of a new architecture called

Pattern-Oriented and Model-Driven Architecture {POMA) to facilitate the development of

11

interactive systems including its fundamentals and key concepts; its overview; its

justifications versus N-tiers, POD, PSA, and MDA architectures; its specifications.

In chapter 4, a detailed description of patterns included in POMA is presented. This POMA

employs architectural levels and categories of patterns, pattem composition mles (i.e., the

relationships between pattems considered in this architecture) and the pattern mapping

mles that enable one to obtain the final model of the proposed architecture.

In chapter 5, a detailed description of the models included in POMA is presented. This

POMA applies the types of models and the model transformation mles, which are applied

for each type of model [POMA.PIM] or [POMA.PSM]. These transformation rules enable

one to build relations between the models of each category, i.e. the models [POMA.PIM]

and [POMA.PSM] of the proposed architecture.

In chapter 6, a case study of a multi-platform interactive system is presented to illustrate

and clarify the core ideas of POMA architecture and its practical relevance.

Finally, this work summarizes the key contributions, the implications for software

engineering, the practical implications, the limitations and strengths and future avenues for

research.

CHAPTER 1

BACKGROUND AND RELATED WOR K

This chapter presents the literature review of existing N-tier architectures, the Pattern-

Oriented Design (POD), the Pattern-Supported Approach (PSA) and the Model-Driven

Architecture (MDA).

The first section introduces the concepts of patterns, and related terminologies. The second

section introduces the concepts of models. The third section defines and investigates the

concepts of various architectures such as N-tier architectures (MVC, J2EE, and Zachman),

Pattern-Oriented Design (POD) architecture, Pattems Supported Approach (PSA), and the

basic foundation of the Model-Driven Architecture (MDA) proposed by the (OMG Group,

2008). The fourth section discusses the combining of pattems and models. The fifth section

presents an assessment of these development architectures and identifies the differences in

these architectures and related research issues.

13

1.1 Pattern s

Christopher Alexander, in the late 1970's, in his two books, A Pattern Language

(Alexander et al., 1977) and A Timeless Way of Building (Alexander, 1979) discusses the

capture and use of design knowledge in the format of pattems, and presents a large

collection of pattem examples to help architects and engineers in the design of buildings,

towns, and other urban entities.

As an illustration, Alexander proposed an architectural pattern called Wings of Light

(Alexander et al., 1977), where the problem statement is:

"Modem buildings are often shaped with no concern for natural light -
they depend almost entirely on artificial light. But, buildings which
displace natural light as the major source of illumination are not fit places
to spend the day." (Alexander et al., 1977).

In addition to other information such as design rationale, examples, and links to related

patterns, the solution statement is:

"Arrange each building so that it breaks down into wings which
correspond, approximately, to the most important natural social groups
within the building. Make each wing long and as narrow as you can -
never more than 25 feet wide." (Alexander et al., 1977).

Introduced by (Alexander et al., 1977), design patterns can be viewed as building blocks

that may be composed of several components to create designs. A single pattern describes

a problem that appears constantly in the environment with a corresponding solution to this

problem expressed in a way that allows designers to reuse this solution for different

platforms. For cross-platform interactive systems, patterns are interesting for following

three reasons. Refer to (Buschmann, 1996) for a more general discussion on patterns and

their benefits:

14

• They come from experiments on established experiences and were not created

artificially;

• They are a means of documenting architectures;

• In the case of cross-platform development, they provide for the possibility for a team to

have a common vision and language.

Alexander's idea stemmed from the premise that there was something fundamentally

incorrect with the approach taken by twentieth century architectural design methods and

practices. He introduced patterns as a three-part rule to help architects and engineers with

the design of buildings and towns. His definition of a pattem is as follows: "Each pattem is

a three-part rule, which expresses a relation between a certain context, a problem, and a

solution" (Alexander, 1979). The underlying objective of Alexander's patterns was to

tackle architectural-related problems that occurred over and over again in a particular

environment, by providing commonly accepted solutions. Figure 1.1 illustrates an example

of one of Alexander's patterns adapted from (Erickson, 2000). The numbers in parenthesis

are identifiers for the patterns.

15

Street Cafe (88)

[Picture omitted]

...Neighbourhoods are defined by Identifiable Neighbourhood (14); their natural points of focus are
given by Activity Nodes (30) and Small Public Squares (61). This pattem, and the ones which follow
it, give the neighbourhood and its points of focus, their identity.

The street cafe provides a unique setting, special to cities: a place where people can sit lazily,
legitimately, be on view, and watch the world go by.

The most humane cities are always full of street cafes. Let us try to understand the experience, which
makes these places so attractive. We know that people enjoy mixing in public, in parks, squares,
along promenades and avenues, in street cafes. The preconditions seem to be: the setting gives you
the right to be there, by custom; there are a few things to do that are part of the scene, almost ritual:
reading the newspaper, strolling, nursing a beer, playing capture; and people feel safe enough to
relax, nod at each other, perhaps even meet. A good cafe terrace meets these conditions. But it has in
addition, special qualities of its own: a person may sit there for...

[Nine paragraphs of rationale omitted]

Therefore:

Encourage local cafes to spring up in each neighbourhood. Make them intimate places, with several
rooms, open to a busy path, where people can sit with coffee or a drink and watch the world go by.
Build the front of the cafe so that a set of tables stretch out of the cafe, right into the street.

[Diagram omitted]

Build a wide, substantial opening between the terrace and indoors-OPENlNG TO THE STREET
(165); make the terrace double as A PLACE TO WAIT (150) for nearby bus stops and offices; both
indoors and on the terrace use a great variety of different kinds of chairs and tables-DIFFERENT
CHAIRS (251); and give the terrace some low definifion at the street edge if it is in danger of being
interrupted by street action-STAIR SEATS (125), SITTING WALL (243), perhaps a CANVAS
ROOF (244).

[Text omitted]...

Figure 1.1 Exampl e of an Alexander pattern .
(Extracted from (Alexander, 1979) and (Javahery, 2003))

Alexander's patterns are written in narrative form. Even if they do not have clearly defined

attributes per se, they are all structured in a specific way with a description of the problem,

solution, and context. The idea of using Alexandrian-type pattems as a design tool has

been quite influential in a variety of domains in the last decade, including software

engineering. In recent years, the Human-Computer Interaction (HCI) community has

adopted the idea of patterns for interactive system design (Javahery, 2003).

16

Patterns have been introduced as a tool to capture and disseminate proven design

knowledge, and to facilitate the design of more usable interactive systems. Pattems capture

and communicate the best practices for user interface design with a focus on the user's

experience and on the context of use. As a result, pattems are attractive tools for User

Centered Design (UCD), with interesting ramifications for designing across a variety of

contexts (Coram and Lee, 1998) and (Erickson, 2000).

1.1.1 Definition

Pattems are all around us. Pattems can be found in nature, such as bubbles and waves, in

buildings and in their windows. Patterns can also be found in software. The term "pattern"

is adopted in software engineering from the work of the architect Christopher Alexander,

who explored patterns in architecture. Thus, in an attempt to define a pattem, a starting

point would be a definition of a pattem given by (Alexander, 1979):

"Each pattem describes a problem which occurs over and over again in
our environment, and then describes the core of the solution to that
problem, in such a way that you can use this solution a million times
over, without ever doing it the same way twice" (Alexander, 1979).

Coplien (1998) gives a similar generic definition of a software pattern, as

"... The thing and the instructions for making the thing".

Other suggested definitions include:

• "The term pattern defines both one thing and how to achieve i f (Coad, 1992).

• "A pattern describes a problem to be solved, a solufion, and the context in which this

solution is considered. A pattern appoints a technique and describes its costs and

benefits, allowing a team to set a common vocabulary to describe models" (Johnson,

1997).

• "The patterns capture the knowledge that experts apply to solve recurring problems"

(Rising, 1996).

17

• "A pattem is an idea that was used in a practical context and which will probably be

used by others" (Fowler, 1997).

• "A solution to a problem in a context" (Lea, 1997).

A pattem can be viewed in a prose format for recording solutions, such as, design

information, which has worked well in the past and can be applied again in similar

situations in the future (Beck et al., 1996). The need for the infroduction of pattems in

software describes the model needed for an engineering discipline to mattire, and like a

mature engineering discipline, to provide handbooks for describing successful solutions to

known problems.

Every pattem has three main elements: a context, a problem, and a solution (Figure 1.2).

The context describes a set of recurring situations in which the pattem can be applied. The

problem refers to a set of forces, i.e., goals and constraints, which occur in the context.

Generally, the problem indicates when to apply the pattem. The solution refers to a design

model or a design mle that can be applied to resolve these problem forces. The solution

describes the elements that constitute a pattem, the relationships among these elements, as

well as responsibilities and collaboration.

A design model or
design rule that can be
applied to resolve
these forces.

Pattern

A set of recurring
situations in
which the pattem
can be applied.

Figure 1.2 Main elements of a pattem.

18

The following example from Alexander et al. (1977) illustrates the main elements of a

pattern and their relationship.

'Window plac e Consider one simple problem that can appear in the architecture. Let it be

assumed that a person wants to be comfortable in a room, implying that the person needs to

sit down to really feel comfortable. Additionally, the sunlight may be an issue, since the

person is most likely to prefer to sit near the light. Thus, the forces of pattern in this

example are:

(i) The desire to sit down;

(ii) The desire to be near the light.

The solution to this problem might be that in every room, the architect should make a

window into a window place.

Not every pattern can be considered to be a good pattem. There is a set of criteria that a

pattern must meet in order to be good:

• a solution (but not obvious);

• a proven concept;

• relationships;

• the human component.

A pattern encapsulating these criteria is considered to be a good pattern (Gamma et al.,

1995), (Alexander et al., 1977) and (Coplien, 2001). Thus, (Gamma et al., 1995),

(Alexander et al., 1977) and (Coplien, 2001) claim, according to the criteria quoted above,

that a good pattern should solve a problem, i.e., pattems should capture solutions, not just

abstract principles or strategies. A good pattern should be a proven concept, i.e., patterns

should capture concrete solutions, not theories or speculation. A good pattern should not

provide an obvious solution, i.e., many problem-solving techniques (such as software

design paradigms or methods) try to derive solutions from first principles. The best

19

patterns generate a solution to a problem indirectly, which is a necessary approach for the

most difficult problems of design. A pattem also describes a relationship, not just modules,

but describes deeper system structures and mechanisms. Additionally, a good pattern

should contain a significant human component (minimize human intervention). Many

softwares serve human comfort or quality of life; the best pattems explicitly appeal to

aesthetics and utility.

Similar to the entire software engineering community, interactive system engineers and the

user interface design community have a fomm for discussions on pattern languages for

user interface design and usability.

The goals of patterns are:

1. To share successful user interface design solutions among HCI professionals;

2. To provide a common ground for anyone involved in design, development, usability

testing;

3. To provide any user a highly interactive system including different types of

applications.

A number of pattern languages have been suggested. For example. Van Duyne's (2003)

"The Design of Sites", Welie's (1999) Interaction Design Pattems, and Tidwell's (1997)

UI Patterns and Techniques play an important role. In addition, specific languages such as

Laakso's (2003) User Interface Design Pattems and the UPADE Language (Engelberg and

Seffah, 2002) have been proposed as well. Different pattem collections have been

published including patterns for Web page layout design (Tidwell, 1997) and (Coram and

Lee, 1998) for navigation in large information architectures, as well as for visualizing and

presenting information.

The idea of using patterns in interactive system design and engineering is not new. It has

its roots in the popular Gang of Four book (Gamma et al., 1995). Different collections of

patterns include pattems for user interface design (Tidwell, 1997), (Coram and Lee, 1998)

20

and (Welie, 1999) for navigation in large information architectures as well as for

visualizing and presenting information. More recently, the concept of usability pattems has

been introduced and discussed as a tool for assuring the usability of the developed systems

(CHI, 1999), (INTERACT, 1999) and (UPA, 2001). A usability pattern is a proven

solution for a User Centered Design (UCD) problem that recurs in different contexts. The

primary goal of usability patterns in general is to create an inventory of solutions to help

user interface designers tackle user interface (UI) development problems that are common,

difficult and frequently encountered (Loureiro and Plummer, 1999).

1.2 Model s

As the complexity of interactive systems grows, the role of models is becoming essential

for dealing with the numerous aspects involved in their development and maintenance

processes. Models allow the relevant aspects of an interactive system to be captured from a

given perspective and at a specific level of abstraction. In a model-driven UI design

approach, various models are used to describe the relevant aspects of the UI. Many facets

exist, as well as related models. Design is an assembly of parts that realizes a specification.

A model of an interactive system is a specification of that system and its environment for

certain purposes. Models consist of a set of elements with a graphical and/or textual

representation (Koch and Fast, 2006). The idea behind model-driven design is to create

different models of an interactive system at different levels of abstraction, and to use

transformations of the models to produce the implementation of an interactive system.

Thus, one can define a model as follows:

1. In the MDA, a model is a representation of a part of the function, structure and/or

behavior of a system.

2. A model of an interactive system is a description or specification of that interactive

system and its environment for certain purposes. A model is often presented as a

combination of drawings and text. The text may be in a modeling language or in a

natural language.

21

A number of distinct models have been suggested, for example:

• The OMG's Model-Driven Architecture (Tidwell, 1997), (Coram and Lee, 1998),

(Welie, 1999), (Horton, 1994), and (Nielsen, 1999);

• Si Alhir's (2003) Understanding the Model Driven Architecture (MDA), Methods &

Tools';

• Paterno's (2000) Model-Based Design and Evaluation of Interactive Systems;

• Souchon's et al. (2002) Task Modeling in Multiple Contexts of Use;

• Msheik's (2004) Compositional Structured Components Model: Handling Selective

Functional Composition;

• Puerta's (1993) Modeling Tasks with Mechanisms.

1.3 Architecture s

Software architecture has emerged as an important sub-discipline in software engineering,

particularly in large system development. To clarify the notion of architecture in this

research project, the adopted definition given by Bass et al. is as follows: "The software

architecture of a program or computing system is the structure or structures of the system,

which comprise software components, the externally visible properties of those

components, and the relationships among them" (Bass et al., 2003).

1.3.1 N-tier s

POMA is to be based on the specification of software architecture for interactive systems,

where software architecture means: "the description of the subsystems and components of a

software system and the relationships between them, typically represented in different

views to show the relevant functional and non functional properties" (Buschmann et al ,

1996). This definition introduces both the main architecture elements (subsystems,

components, connectors), how to represent them (by means of a set of different views) and

what they actually reflect (both functional and non functional requirements).

22

The basic architecture that is considered as a starting point is MVC (Goldberg, 1984) pattem

implementation in Java language. Such an implementation exploits the Observer Interface

and Observable classes. The MVC is a 3-tier architecture with a classic design pattem often

used by an interactive systems architecture that needs the ability to maintain multiple views

of the same data. The MVC pattem depends on a clean separation of objects into one of

three components or levels as follows:

• Model : for maintaining data;

• View: for displaying all or a portion of the data;

• Controller : for handling events that affect the model or view(s).

This MVC (Goldberg, 1984) pattem is illustrated in the UML class diagram in Figure 1.3.

Compose
1 ClassView(Go(dbeng . 1984) i . 1:Request

A - ^

Controllerl

Compose

\
3:Use infomation transmitted

yr

2:lntonnation Access

Viewl
• s ^

4:Requesl Controllers

6:Use information transmitted S Infomation Access

Models

J.lnformation Acc6ss 8:Use infomiatidniransmitted

Compose

\i n

Modell

Views SRequesI Oor*nMBl2

ItUse infomiatipn transmitted
10:lnfoimation Access

ModeC

Contranert View2

Figure 1.3 Class Diagram of Model-View-Confroller architectural pattem.

The Java programming language provides support for the Model-View-ConttoUer

architecture with two classes. Such implementation exploits the Observer Interface and the

Observable classes.

23

The main advantage is the decoupling between the views and the models. However, the

views are tightly coupled. The Command Action pattem is suggested by (Gamma et al.,

1995) to ensure the separation between the views and the confroUer.

The Java Sun team proposes a five-tier architecture to model Core J2EE Pattems

Architecture (Sim Microsystems, 2002a) (Java Based Architecture) illusfrated on the UML

class diagram (see Figure 1.5). This architecture is divided into five levels of pattems

(Browser, Presentation, Business logic, Midleware, and Persistence) in Figure 1.4.

Figure 1.4 Core J2EE 5-tier architectural level of patterns.

24

Table 1.1 gives a description of each of the architectural levels of patterns of (Sun

Microsystems, 2002a).

Table 1. 1

Description of architectural level s of patterns

Level of
^ ^ Pattern s

Browser

Presentation

Business Logic

Middleware

Persistence

Description (Sun Microsystems, 2002a)

This level is very often non-representative of an architecture that
contains an applicative part commonly called "Tests of first level".
The test of first level consists mainly in the verification of the
contents of the capture forms. The tests of first level make it possible
to assure that the whole of the mandatory fields were indeed
indicated. However, this series of tests MUST form part of the level
of presentation. Indeed, it is not excluded that the end-user may
decide to deactivate the JavaScript functionalities of his browser.
Another use of this level is the representation of the dynamic pages,
among others, with a DHTML format.

This level deals with the logic of navigation and often implements
JSP/Servlets technologies.

Implemented in the form of Java Beans or EJB, this level contains
the whole of the treatments of an application.

This level of the architecture covers cormections with the other
patterns of the same level or the composed pattems of different levels
of patterns.

This level is often composed of one or several patterns.

25

An example of a UML class diagram of J2EE Pattems is presented m Figure 1.5.

0..n InterceplingFilterPaltem (Sun Microsystems, 2002b) J

Cenlrali2e\Conlml

I FrontControllerPattem I

Dispatch tOf target uew

Dispach to view and Delegate to Helper

ViewHelpeiPattem ^

CompesWeViowPattem

Compose viewfmm Sub-Views

tXspalch to View y

Usi«s^

FrontControllerPattem2 I

Uglttweight Control Piocessing

OispatcherViewPattem

Delegate Processing to Helper

FrDntCorrtrollerPattetnS

Access Business Services
Control Processing

Access Business Services

SeniceToWoiKerPattem llugJ

Access Business Sen/ices
Access Business Service s

BusinessDeleflalePanem

^

I Locale Services
Mediate Business Processing

SessionFacadePattem '•'«a' e Services ^ ServiceLocatoiPatteni

Model Coarse-grained Business Component

Obtain Composite Value Objects
Access Business Ust

Encapsulate Data

TianferObjectAssemblerPattem Encapsulate Data ValueListHandlerPatte m

Accesis Data Source

ConpositeEntityPattem

Dispatch to asynchronous Pmcessing

ServiceActivatorPattem

Encapsulate Data

TransferObjeclPaltem

Encapsulate Data

Access Dita Sourc e

Access Data Source MaAccessObjectPatlein

Invoke Business Pnxissing

Figure 1.5 UML Class Diagram of Core J2EE Pattems Architecture.

Each pattem of this architecture is described below.

26

A description for each pattern of Core J2EE (Sun Microsystems, 2002c) pattern-oriented

interactive system architecture is as follows:

• Busines s Delegat e reduces coupling between interactive system and Enterprise

JavaBeans;

• Composit e Entity models a network of related business entities;

• Composit e Vie w separately manages the layout and content of multiple composed

views;

• Dat a Access Object (DAO) abstracts and encapsulates data access mechanisms;

• Fas t Lane Reader improves read performance of tabular data;

• Fron t Controller centralizes application request processing;

• Interceptin g Filter treats pre- and post-process application requests;

• Model-View-Controlle r decouples data representation, application behaviour, and

presentation;

• Servic e Locator simplifies client access to enterprise business services;

• Sessio n Facade coordinates operations among multiple business objects in a workflow;

• Transfe r Objec t transfers business data between tiers;

• Valu e List Handler efficiently iterates a virtual list;

• Vie w Helper simplifies access to model state and data access logic.

Each pattern in Figure 1.5 is composed of a set of classes represented within a UML
diagram such as class and sequence diagrams.

27

However, an MVC pattern has certain weaknesses including:

1. This pattern does not encourage the designer to consider other aspects of the dialogue

which are very important for the user, such as the help with or the management of

errors;

2. This pattern does not facilitate the use of the constraints for the design and the

description of the interface, whereas they are of great importance to the designer (Booch

et al., 1999), (Myers, 1986), (Myers, 1989a), (Myers, 1989b), (Myers, 1989c) and

(Meyer, 1990);

3. The models of architectures are poorly located compared to the life cycle of the user

interface. In particular, the difficulties relate to the passage of the analysis of the

problem (analyzes users' needs), expressed generally in terms of tasks and sequences of

interaction with the concepts proposed by these architectures (agents, components of

presentation, and components of dialogue).

Thus, the proposed architecture is designed to be generic and comprised of six levels of

pattems. This is based on the Zachman (1987) framework, which also has six categories of

patterns. Zachman (1987) and Sowa et al. (1992) proposed a Multi-tiered architecture.

Zachman (1987) proposed an Enterprise Architecture schema in which he depicted two

distinct dimensions in a matrix:

1. The column classifies answers to the interrogatives: What (Data), How

(Function), Where (Network), Who (People), When (Time) and Why

(Motivation);

2. The rows classify the audience perspectives of the scope, owner, designers,

builder, trades and functioning enterprise. This gives 36 cells which uniquely

classify portions of the enterprise.

The columns in the Zachman (1987) framework and Sowa et al. (1992) represent different

areas of interest for each perspective. The columns describe the dimensions of the systems

development effort. The column descriptions of the Zachman (1987) framework are as

follows:

28

• WHA T (Data): Each of the rows in this column address understanding of and

dealing with an enterprise's data;

• HO W (Funcfion): The rows in the function column describe the process of

translating the mission of the enterprise into successively more detailed

definitions of its operations;

• WHERE (Network): This column is concemed with the geographical distribution

of the enterprise's activities;

• WH O (People): This column describes who is involved in the business and in the

introduction of new technology;

• WHEN (Time): This column describes the effects of fime on the enterprise;

• WH Y (Motivation): As described by Mr. Zachman, this column is concerned with

the translation of business goals and strategies into specific ends and means.

Considering this Zachman (1987) framework, a pattem-oriented interactive system six-tier

architecture is proposed for POMA. The matrix classificatton of Zachman is on the columns

interrogatives; and the rows are the six architectural levels and categories of pattems defined

in Table 1.2.

Table 1. 2

Pattern-Oriented generi c classiflcation schema for POMA Architectur e

Architectural
level and

categories of
pattems

Information
Interoperability
Visualization
Navigation
Interaction

Presentation

WHAT
(Data)

Y

V
Y
y
•/

HOW
(Fimction)

-/
V
y
-/
-/
y

WHERE
(Network)

•/
y

WHO
(People)

y

/
V
/
y

WHEN
(Time)

V
Y

WHY
(Motivation)

/

y
/
/
/

29

1.3.2 Pattern-Oriente d Design (POD)

1.3.2.1 Overview

As the complexity of software systems increases, the software engineering research

community looks for new approaches to facilitate the development of software

applications. Design patterns and development architectures are among these promising

approaches. Design reuse has emerged with the premise that coding is not the most

difficult part of building software. The design patterns allow the reuse benefits early in the

development lifecycle. To reap the benefits of deploying these proven design solutions,

Pattern-Oriented Design (POD) needs to define design composition techniques to constmct

applications using patterns. Design models should be developed to support these

techniques. Several catalogues of design pattems (Yacoub and Ammar, 2003) have

emerged with design pattems that can be used in the design of various application domains

from real-time embedded systems applications to large distributed systems.

The medium (e.g. natural language or narrative text) generally used to document patterns,

coupled with a lack of tool support, compromises the potential use of patterns. These

preliminary observations motivated the research community to investigate a systematic

approach for incorporating patterns to achieve design solutions (Javahery and Seffah,

2002). The research results support a pattern-based development among software

developers who are unfamiliar with HCI design and usability engineering techniques. POD

involves transferring the knowledge gained by experts to software engineers through a

systematic approach facilitated by tool support. POD motivation helps novice designers

apply patterns correctly and efficiently. A tool to support the pattem-oriented design

should enhance the pattem user's understandability, decrease the complexity of a pattern

and eliminate terminological ambiguity. At the same time, the pattern language should be

put into practice in a real context of use, which is difficult when making pattern languages

a cost-effective vehicle for gathering and disseminating the best design practices among

software and engineering teams.

30

POD can help with decoupling the different aspects of interactive system architectures and

isolate platform specifics from remaining concerns that are common to all platforms.

As with other multi-tiered architectures such as client-server architectures, POD proposes a

common information repository (Yacoub and Ammar, 2003), (Zachman, 1987), and (Sowa

et al., 1992) which is at the core of multi-layer architectures. Services should be accessed

strictly through an adaptable presentation layer, which provides decoupling of the data

from the device-specific interfaces. In this way, developers need only worry about the

standardized middleware interface (middleware is software which supports communication

between the tier components of an interactive system, two or several interactive systems

and shared services) rather than having to worry about the multitude of toolkits put forth by

database repository manufacturers. Segmenting the architecture and reducing coupling to

stringent specifications allow designers to quickly understand how changes made to a

particular component affect the remaining interactive system (Yacoub and Ammar, 2003),

(Zachman, 1987), and (Sowa et al., 1992).

1.3.2.2 Composition technique s

However, the development of interactive systems using design patterns as design

components requires a carefial look at composition techniques. Several techniques have

been proposed for composition. For example, Yacoub and Ammar (2003) proposed two

composition techniques categorized and illustrated in Figure 1.6 as:

• Behaviora l compositio n technique s that are based on object interaction
specifications to show how instantiations of patterns can be composed.

• Structura l compositio n technique s which are based on the static architectural
specifications of composed instantiated patterns using class diagrams.

31

Figure 1.6 Patterns-Oriented Design architecture.

A hybrid technique showing both stmctural composition and behavioral composition may

evolve as a more comprehensive approach for specifying how instantiated pattems can be

composed.

The POD composition techniques describe how pattem instances can be composed

together as building blocks to develop composite pattems, OO applications, or OO
architectures, relating to the difficulty of composing interactive system at the design level.

Understanding the relationships between individual pattems is a good practice but does not

solve the issues related to pattem composition.

32

A. Behavioral Compositio n Technique s

Behavioural composition techniques are concerned with object interaction specifications as

elements that play multiple roles, where each role is part of a separate pattern. These

techniques are also known in the 00 literature as interaction-oriented or responsibility-

driven composition (Wirfs-Brock and Wilkerson, 1989). Although the POD composition

technique uses notation and composition techniques that are based on the pattem structure

(i.e., its class model), (Yacoub and Ammar, 2003) find it useful to be familiar with existing

composition techniques that utilize the pattern's behavior model.

Behavioural techniques make up the instantiations of pattems, with both advantages and

disadvantages. Formalizing the behavior specification of individual pattems is important

for the purpose of clarifying their semantics and facilitating their utilization by any pattern

composition technique. Several authors have proposed various techniques, such as:

1. The technique presented by (Henderson-Sellers et al., 1996) on role modeling and

synthesis using the 00 role analysis method;

2. The works of Dirk Riehle (1997) presented at the OOPSLA conference in 1997. This

technique in (Henderson-Sellers et al., 1996) and (Riehle, 1997) applies the concepts of

role models suggested by Reenskaug to pattem composition;

3. The technique called "the superimposition" proposed by Jan Bosch (1998), which uses

design patterns and frameworks as architectural fragments and merges roles and

components to produce applications;

4. Another technique, a three-layer "role/type/class", is proposed and developed by Lauder

and Kent (1998), which takes a visual specification technique to describe design

patterns.

33

B. Structural Composition Technique s

Structural composition techniques build a design by gluing together pattern structures that

are modeled as class diagrams using static architectural specifications. Structural

composition focuses more on the actual realization of the design rather than abstraction,

using different types of models, such as role models. Behavioral composition techniques,

such as roles (Henderson-Sellers et al., 1996), (Riehle, 1997) and (Kristensen and

Osterbye, 1996) leaving several choices to the designer with fewer insights on how to

continue to the class design phase.

Techniques that consider both structural and behavioral views could be complex and

difficult to use. Therefore, the POD architecture advocates a structural composition

technique with pattem class diagrams (Henderson-Sellers et al., 1996), (Riehle, 1997) and

(Kristensen and Osterbye, 1996). Constructional design patterns in which a pattern

interface can be clearly specified lend themselves to a structural composition technique

(Henderson-Sellers et al., 1996), (Riehle, 1997) and (Kristensen and Osterbye, 1996).

(Yacoub and Ammar, 2003) discuss several structural composition techniques and contrast

these techniques with a proposed POD architecture. One approach for pattem-oriented

design is proposed by Ram, Anantha, and Gumprasad (1997). In contrast to the top-down

approach, this approach describes a bottom-up process to design software using design

patterns. This approach shows how related pattems can be selected but does not clearly

show how patterns can be composed. Nevertheless, this is an example of previous attempts

in the literature to develop a systematic process for pattern-oriented software development.

1.3.2.3 Other technique s

A number of other techniques have been suggested. Keller and Schauer's (1998) "Design

Components: Towards Software Composition at the Design Level", Wills and D'Souza's

(1996) "Component and Framework-based Development", Msheik, Abran and Lefebvre's

34

(2004) "Compositional Structured Components Model: Handling Selective Functional",

Clarke and Walker's (2001) "Composition Patterns. An Approach to Designing Reusable

Aspects" and Clark's (2000) "Composing Design Models: An Extension to the UML", and

Larsen's (1999) "Designing Component-Based framework Using Patterns in the UML".

1.3.3 Pattern Supported Approac h (PSA)

The "Pattem Supported Approach" (PSA) addresses pattems not only during the design

phase, but also during the entire software development process. PSA (Granlund et al.,

2001) aims to support early system definition and conceptual design through the use of

patterns. In particular, patterns have been used to describe business domains, processes,

and tasks to aid early system definition and conceptual design. The main idea of PSA is

that patterns can be documented according to the development lifecycle. During system

definition and task analysis, depending on the context of use, one can decide which

patterns are appropriate for the design phase. In contrast to POD, the concept of linking

patterns together to result in a design is not tackled in this architecture (Sinnig, 2004).

The Pattem-Supported Approach (PSA) to the user interface design process suggests a

wider scope for the use of pattems by looking at the overall design process. Since the

usability of a system emerges as the product of the user, the task and the context of use,

PSA integrates this knowledge into most of its patterns, dividing the forces in the pattern

description correspondingly (i.e., describing Task and Subtask, User, and Context forces).

PSA provides a double-linked chain of patterns (parts of an emerging pattern language)

that support each step of the design process (Granlund et al., 2001).

PSA proposed architecture highlights another important aspect of Pattem-Oriented Design,

that of pattern combinations. By combining different patterns, developers can use pattern

relationships, combining them, in order to produce an effective design solution (Sinnig,

2004). Most of the work on patterns has focused on screen design issues. PSA addresses

patterns not only at the design phase, but also before design (Figure 1.7).

35

For example, task pattems point to Structure and Navigation Patterns, which in mm point

to GUI Design Patterns, and vice-versa. These pattems offer a way to capture and

commimicate knowledge from previous designs (including the knowledge from system

definition, task/user analysis and stmcture & navigation design). Given a mature language

of pattems belongmg to the described classes, the PSA approach provides an entry point to

this pattem language and suggests (vdthout restricting the pattem usage) a chain of

appropriate pattems at different levels of analysis and design (Granlimd et al., 2001).

3S

O

s

S t r u c t u r e < &
P^avigation D e s i g n

P a t t e r n

I I
G U I D e s i g n

P a t t e r n I

S y s t e m
Def in i t ion 1
X a s k / U s e r

A.naiysis

U s e r
I n t e r f a c e

A r c i i i t e c t u r e

D e s i g n

Figure 1.7 The PSA architecture with the relationships between PSA patterns.

36

1.3.4 Model-Drive n Architectur e (MDA)

Models are commonly used to represent flexible complex systems. The models can be

viewed at many levels of abstraction and complementary model views can be combined to

give a view of a system better than a single model alone. Meservy and Fenstemacher

(2005) claim that many software development experts have long advocated using models

to understand the problem that an interactive system seeks to address; yet development

teams commonly employ models only in the early stages of modeling. Often, once

construction begins, the teams leave these models behind and never update them to reflect

their changes in a project.

Most software developers would agree that modeling should play a role in every project

(Meservy and Fenstemacher, 2005). However, there is no clear consensus on what that role

should be, how developers should integrate modeling with other development activities,

and who should participate in the modeling process (Meservy and Fenstemacher, 2005).

In 2001, the Object Management Group introduced Model-Driven Architecture (MDA) as

an approach to system specification and interoperability based on the use of formal models

(i.e., definite and formalized models) (Sinnig, 2004), (OMG group, 2005), (D'Souza,

2001), (Soley and OMG group, 2000), (Mukerji, 2001) and (Miller and Mukerji, 2003).

The main idea of MDA is to specify business logic in the form of abstract models. These

models are then mapped (partly automatically) according to a set of transformation rules to

different platforms. The models are usually described by UML in a formalized manner

which can be used as inputs for tools which perform the transformation process.

The main benefit of MDA is the clear separation of the fundamental logic behind a

specification from the specifics of the particular middleware that implements it. The MDA

approach distinguishes between the specifications of the operation of a system and the

details of the way that the system uses the capabilities of its platform. This architectural

separation of concerns constitutes the basic foundation of MDA in order to reach three

37

main goals: portability, interoperability and reusability (Sinnig, 2004), (OMG group,

2005), (Soley and OMG group, 2000) and (Miller and Mukerji, 2003).

The MDA architecture is comprised of three main steps:

• Specifying the system independently from the platform that supports it;

• Specifying target platforms;

• Transforming the system specification into a specification for a particular platform.

Specifying th e system:

In this step, a platform independent model (PIM) is established. Usually a formalized UML

notation is used to specify the PIM which describes the system, but does not show details

of its use or its platform. A PIM exhibits a specified type of platform independence to be

suitable for use with a number of different platforms of similar type.

Specifying th e platform:

In this step, a platform model provides a set of technical concepts representing the different

kinds of parts that make up a platform and the services provided by that platform. A

platform model also provides, for use in a platform specific model (PSM), concepts

representing the different kinds of elements needed in specifying the use of the platform by

an interactive system. The architect will then choose a platform (or several) that enables

implementation of the interactive system with the desired architectural qualities.

Transforming th e system specification int o a specification fo r a particular platform :

In this step, the platform independent model (PIM) will be transformed into a platform

specific model (PSM) according to various mapping rules. In particular, MDA mapping

provides specifications for the transformation of a PIM into a PSM for a particular

platform. The platform model will determine the nature of the mapping. A mapping may

also include templates, which are parameterized models that specify particular kinds of

transformations. These templates are like design pattems but may include much more

38

detailed specifications to guide the fransformation. Templates can be used in mles for

transforming a pattem of model elements to model-type mapping into another pattem of

model elements.

A platform specific model is a view of an interactive system from the platform specific

viewpoint. A PSM combines the specifications in the PIM with details that specify how

that system uses a particular type of platform. A PSM may provide more or fewer details,

depending on their purpose. Eventually, if the PSM provides all the information needed to

construct a system and to put it into operation, it may be used for the implementation of the

interactive system.

Transform

Transform

Figure 1.8 Transformations of MDA architecture.

Figure 1.8 represents a fransformation from a PIM to a PSM and eventually to the
implementation code of the interactive system.

39

Briefly, MDA makes a sharp distinction:

• The business model (the Computation-Independent Model, or CIM), sometimes called a

domain model;

• The domain model in a specific technology context (PIM);

• A model that is tied to the domain and uses a platform-specific code (PSM).

There are two other steps that can be integrated into MDA process development:

• Capturin g requirement s i n a CIM. The Computation-Independent Model captures the

domain without reference to a particular system implementation or technology. The

CIM would remain the same even if the systems were implemented mechanically rather

than in computer software, for example.

• Deployin g th e syste m i n a specifi c environment . Here, the goal is to deploy the

system in several specific platforms and environments.

Interoperability had been based mostly on CORBA standards and services. Heterogeneous

interactive systems inter-operate at the level of standard component interfaces. The MDA

process, on the other hand, places formal system models (i.e. defined and formalized

system) at the core of the interoperability problem. What is most significant in this

approach is the independence of the system specifications from the implementation

technology or platform. As illustrated in Figure 1.9, the PIM exists independently from any

implementation of the model and has mappings to many possible platform infrastructures

such as CORBA PSM, EJB JAVA PSM, and SOAP PSM. After establishing the PSM, this

model must be implemented on the specific target platform (Siimig, 2004), (D'Souza,

2001) and (Miller and Mukerji, 2003).

40

Platform Independen t Model (PIM)
(Desmond DSouza, 2001),

(Jishnu Mukerji, 2001) and (Sinnig,
2004)

Figure 1.9 PIM, PSM and Implementation.

41

Foundation

Figure 1.10 shows the foundational concepts that generally constitute an MDA:

• The MDA's Model-Driven Approach corresponds to problem solving;

• A platform corresponds to an environment;

• A system and its applications correspond to a solution;

• An implementation corresponds to an implementation of the models.

Model-Driven Approach

: PI V P S V :

Requiremenis
Gathering

represents'

1
CIM

I Analysi s

PIM

/DesignJ
/ 1

PSM

Implementation j

1
Implementation represents

Figure 1.10 Foundationa l Concept s of the MDA.
(Extracted from architecture of (Si Alhir, 2003))

42

Figure 1.10 shows the following viewpoints:

• A computation independent viewpoint (CIV) focuses on the requirements of a system

and its environment. The CIV corresponds to the conceptualization perspective;

• A platform independent viewpoint (PIV) focuses on the operation of a system

independent from any platform and does not change from one platform to another. The

PIV corresponds to the specification of analysis activities and model;

• A platform specific viewpoint (PSV) focuses on the operation of a system based on a

specific platform and changes form one platform to another. The PSV corresponds to

the specification of design activities and models.

Figure 1.10 shows the following models:

• A computation independent model (CIM) of a system, from the CIV, describes the

domain and requirements of the system. A CIM might consist of a model from the

informational viewpoint, which captures information about the data of a system. The

CIM corresponds to the conceptualization of requirements models;

• A platform independent model (PIM) of a system, from the PIV, describes the operation

of that system independent from any platform. A PIM might consist of a model from the

informational viewpoint, which captures information about the data of a system, and a

model from the computational viewpoint, which captures information about the

processing of a system, independent of any platform. A platform independent model is

one that is independent of the features from any specific platform. To achieve platform

independence, a model may target a technology-neutral virtual machine. A virtual

machine is a collection of parts and services that are independent from any specific

platform and may be realized on multiple specific platforms, but the virtual machine

remains independent and unaffected by any underlying platform. The PIM corresponds

to the specification of an analysis model;

43

• A platform specific model (PSM) of a system, from the PSV, describes the operation of

the system as it uses one or more specific platforms. A PSM might consist of a model

from the informational viewpoint, which captures information about the data of a

system, and a model from the computational viewpoint, which captures information

about the processing of a system, based on a specific platform. As a PSM targets a

specific platform, it uses the features of the specific platform specified by a platform

model. The PSM corresponds to the specification of a design model.

1.4 Why Combine Patterns and Models?

In an attempt to segment the different aspects of interactive system architecture and isolate

specific platforms from remaining issues, the industry of interactive systems has adopted a

layered approach. As with other multi-tiered architectures such as client-server

architecture, a common information repository is at the core of the architecture. The

repository is accessed strictly through this layer, which in addition to the functions listed,

also provides decoupling of the data from the device specific interfaces. In this way, device

interactive system developers need only worry about the standardized middleware interface

rather than having to concern themselves with the multitude of APIs put forth by database

repository manufacturers.

Segmenting the architecture and reducing coupling to stringent specifications allows

designers to understand quickly how changes made to a particular component affect the

remaining interactive system since achieving these goals requires a consistent approach in

applying both cognitive and social factors to user interface design, and requires

independent developers to coordinate their activities.

Interactive systems can also be much more efficient at managing heterogeneous

environments. This latter point is critical as more and more systems will need to interact

with very different platforms and devices. This diversity results in computing devices that

exhibit drastically different capabilities. For example. Personal Digital Assistants (PDAs)

44

use a pen based input mechanism and have average screen sizes in the range of 3 inches.

On the other hand, the typical PC uses a full size keyboard, a mouse and has an average

screen size of 17 inches. Coping with such drastic variations implies much more than mere

layout changes. Pen based input mechanisms are slower than traditional keyboards and are

inappropriate for systems such as word processing that require intensive user input.

Similarly, the small screens available on many PDAs provide only coarse graphic

capabilities and would be ill-suited for photo editing applications.

Another challenge is the heterogeneity in computing platforms ranging from traditional

desktop to mobile phone via PDA. This source is a further complication for systems

engineering. Certain form factors are better suited to particular contexts. For example,

while walking down the street, a user may use his mobile telephone's Internet browser to

view a stock quote. However, it is highly unlikely that this same user will review the latest

changes made to a document using the same device. Rather, it would seem more logical

and definitely more practical to use a full size computer for this task. It would therefore

seem that the context of use is determined by a combination of internal and external

factors. The internal factors primarily relate to the user's attention while performing a task.

In some cases, the user may be focused entirely while, at other times, greatly distracted by

other concurrent tasks. As an example of this latter point, a user, while driving a car,

operates a PDA to reference a telephone number. Extemal factors are determined to a large

extent by the device's physical characteristics. It is not possible to make use of a traditional

PC as one walks down the street - a practice quite common with a mobile telephone. The

challenge for a system architect is therefore to match the design of a particular device's

user interface with the set of constraints imposed by the corresponding context of use.

Finally, many system manufacturers and researchers have issued design guidelines to

applications designers (Buschmann et al., 1996). Recently, Palm Inc. has put forth design

guidelines to address navigation issues, widget selection, and use of specialized input

mechanisms such as handwriting recognition. Macintosh (1992), Microsoft (1995), Sun

Microsystems (2001), and IBM (2007) have also published their own usability guidelines

45

to assist developers with programming applications targeted at the Pocket PC/Windows CE

platform.

However, these guidelines are different from one platform or device to another. When

designing a multi-device application, this can be a source of a number of inconsistencies.

The Java "look-and-feel" developed by Sun Microsystems (2001) is a set of cross-platform

guidelines that can correct such problems. However, cross-platform guidelines do not take

into account the particularities of a specific device, especially platform constraints and

capabilities. This can be a source of problems for a user requiring different types of devices

to interact with the server side services and information of a system. Furthermore, for a

novice designer or a software engineer who is not familiar with this mosaic of guidelines, it

is difficult to remember all the design guidelines and their effective use. It is sometimes

difficult to make trade-offs among these principles when they come into conflict. The best

solution is often made by guessing, or by resorting to other means.

1.5 Summary o f chapter

This chapter has provided an overview of the related work. In current practice, there are

various architectures based on models and pattems that allow for the design and

development of interactive systems. These architectures include:

1. N-Tiers architectures based mainly on architectural levels;

2. Pattem-Oriented Design based (POD) mainly on composition techniques of pattems;

3. Pattern-Supported Approach (PSA) based mainly on categories of patterns;

4. Model-Driven Architecture (MDA) based mainly on PIM and PSM models and on

transformation and mapping models.

46

This chapter has presented various architectures and their characteristics and criteria

relevant to this research project (Table 1.3). These architectures are:

• N-tiers architectures such as: MVC 3-tiers, J2EE 5-tiers, and Zachman multi-tiers;

• Pattem-Oriented such as: Pattem-Oriented Design (POD) and Pattem-Supported

Approach (PSA);

• Model-Driven such as: Model-Driven Architecture (MDA).

The characteristics and criteria of these architectures quoted above are architectural level,

solution, proven concept, relationship, human component, structural technique, behavioral

technique, tasks and subtasks and models. Table 1.3 summarizes an assessment of

architectures presented in Chapter 1 according to the established characteristics and criteria

for defining the research project issues.

Table 1. 3

Summary o f architectures (N-tiers , POD, PSA, MDA) and their characteristic s
assessment

Patterns and

Architectures

Patterns (i s not
an architecture)

N-tiers

POD

PSA

1 MD A

Characteristics an d criteria

A
rc

hi
te

ct
ur

al

Le
ve

l

No

Fully

No

No

Yes

So
lu

tio
n

Yes

Partially

Partially

Partially

Partially

Pr
ov

en

co
nc

ep
t

Yes

Yes

Yes

Yes

Yes

R
el

at
io

ns
hi

p

Yes

No

No

No

No

H
um

an

co
m

po
ne

nt

Yes

No

No

No

No

St
ru

ct
ur

al

te
ch

ni
qu

e

No

Yes

Fully

No

No

B
eh

av
io

ra
l

te
ch

ni
qu

e

No

Yes

Fully

No

No

T
as

ks
 a

nd

Su
bt

as
ks

No

No

No

Fully

No

M
od

el
s

No

Yes

No

No

Fully

In chapter 2, research issues are introduced that lead to the research statement, the research

goal and objectives including the research steps, the research scope and the research

methodology.

CHAPTER 2

RESEARCH ISSUE S

This chapter describes the methodological aspects of this research. The first section

presents the research goals and objectives. The second section deals with the research

scope. The third section describes the exploratory research methodology applied to

evaluate a Pattem-Oriented and Model-Driven Architecture, called POMA that is based on

architectural levels and categories of pattems and on model categorization.

The majority of the architectures studied in chapter 1 such as POD , PSA and MDA are

incomplete in the sense where each does not integrate the important concepts of another for

the development of interactive systems; see the detail in Table 1.3 presented in section 1.5.

For example:

• MDA doesn't take into account the concept of pattems;

• POD and PSA do not take account the concept of models.

In addition, the composition and mapping rules of the patterns and the model

transformation rules are not existed.

2.1 Research Goa l and Objective s

The goal is to:

"Define a new architecture to facilitate the development and migration of

interactive systems while improving their usability and overall quality".

To pursue to this goal, the research objective is to develop a new architecture which is

called, Pattem-Oriented and Model-Driven Architecture (POMA) . POMA will be based

on the concepts of N-tiers architectures (MVC, J2EE, Zachman), Pattern-Oriented Design

(POD), the Pattem-Supported Approach (PSA), and Model-Driven Architecture (MDA).

48

2.2 Research Scop e

The following delimits the scope of the proposed architecture:

• The source code generation of interactive systems is not taken into account;

• The architecture is driven by conceptual models;

• Patterns are building blocks in the construction and the transformation of the models;

• A pattem composition is a process of combining architectural levels and categories of

pattems to create a platform independent model (PIM) using composition rules that are

described in the "Pattern Composition" section of chapter 4;

• Pattem mapping is the process of creating a design of specific models (PSM) for each

platform from independent models (PIM) using the mapping rules that are described in

the "Patterns Mapping" section of chapter 4;

• A transformation of models is the process of converting one or more models - called

source models - to an output model - the target model - of the same system using the

transformation rules as described in the "Models Transformation" section of chapter 5.

49

2.3 Research Methodolog y

The research methodology (Figure 2.1) designed to attain the research objectives includes

the following research steps:

1. Elaborate the background and related work on pattems, models, architectures such as N-

tiers architectures, Pattern-Oriented Design (POD), Pattem-Supported Architecture

(PSA), and Model-Driven Archhecture (MDA) (details in chapter 1);

2. Define the research objectives (details in chapter 2);

3. Propose the POMA architecture (details in chapter 3);

4. Describe the architectural levels and categories of pattems (Navigation patterns.

Interaction patterns. Visualization pattems. Presentation patterns, Interoperability

pattems, and Information pattems) as well as different relationships between pattems to

be used in the POMA architecture. Their relationships are used to combine and to map

these categories of patterns to create a pattem-oriented design for interactive systems,

and to generate specific implementations suitable to different platforms from the same

pattern-oriented design (details in chapter 4);

5. Propose the five categories of models (O Domain model, © Task model, © Dialog

model, O Presentation model and © Layout model) that resolve some of the

challenging problems such as: (a) decoupling the various aspects of interactive systems

including business logic, user interface, navigation, and information architecture; (b)

isolating platform-specific problems from the concerns common to all interactive

systems for architecture, supported by the drafting of an article on these different

obtained models (details in the chapter 5);

6. Build an illustrative case study to illustrate and clarify the core ideas of POMA

architecture and its practical relevance to interactive systems (details in chapter 6).

50

Figure 2.1 summarizes the key research methodology steps.

Inputs Phases Outputs Outcomes
Patterns

Models

Architectures

Elaboration of
background and

related work
(Chapter 1)

Background and Related
Work elaborate d about
Patterns, Models, N-tier
architecture, POD, PSA,

MDA

Definition of Research
Issues

(Chapter 2)

Research Issues
defined

Design of new
architecture
(Chapter 3)

POMA architectur e

Presentation of the
detailed description of

architectural levels
and categories of
pattems in POMA

(Chapter 4)

Architectural levels and
categories of patterns in POMA

presented and described

Patterns Composition Rules ru Patterns Mapping Rules I i ^

Presentation of the
detailed description of
categories of models

in POMA
(Chapter 5)

Categories of models in POMA
presented and described

Analysis and
Construction of

exploratory case
study of POMA for
Interactive System

(Chapter 6)

Exploratory Case Study
Analyzed

1- Identification of
constraints and items to

improve
2- Identification of
research avenues

Figure 2.1 Methodology Research.

51

2.4 Summary of chapter

The proposed architecture presents and describes its constituent components, their

responsibilities and relationships, and the ways in which several categories of patterns are

combined. The architecture seeks to:

1. Facilitate the use of patterns for experts as well as for beginners;

2. Support the automation of approaches to design oriented by patterns and driven by

models;

3. Ensure the quality of the produced applications, since pattern-oriented architectures will

also have to enable one to encapsulate the quality of attributes and facilitate prediction;

4. Support the communication and reuse of individual expertise regarding good practices

of design.

Pattern-Oriented and Model-driven Architecture (POMA) provides on a single level a pool

of proven solutions to many recurring design problems which include:

• Decouple the different aspects of an interactive system such as a business logic, the user

interface, the navigation and information architecture;

• Isolate platform specifics from remaining concems.

On another level, POMA illustrates how to combine several individual patterns of different

categories into heterogeneous structures and, as such, can be used to facilitate a

constructive development of the interactive system architecture. As an example, the

patterns that can be used span several levels of abstraction, from information architectural

pattems and design patterns for interoperability to navigation, interaction and visualization,

presentation and information design pattems.

52

The originality of the research is to propose a new architecture to integrate all concepts of

architectures (N-tiers, POD, PSA and MDA) described in Chapter 2. More importantly, to

define composition and mapping rules of patterns and transformation rules of models.

Chapter 3 presents and describes the fundamentals and key concepts, an overview,

justifications, and specifications of Pattern-Oriented and Model-driven Architecture

(POMA).

CHAPTER 3

POMA: PATTERN-ORIENTED AN D MODEL-DRIVEN ARCHITECTUR E

This chapter presents the key concepts, an overview, justifications, and specifications of

the proposed POMA architecture, which constitutes the development architecture of

interactive systems. The first section describes the key concepts. The second gives an

overview of POMA. The third section introduces justifications of POMA versus N-tiers

architectures, POD, PSA, and MDA. The last section presents specifications for POMA

architecture.

3.1 Key concepts of POMA

The five key concepts of POMA are:

• Architectural levels and categories of Patterns (details in chapter 4);

• Models ([POMA.PIM and [POMA.PSM]) (details in chapter 5);

• Pattern composition rules (details in chapter 4);

• Pattem mapping rules: PIM to PSM (details in chapter 4);

• Model transformation rules: PIM to PIM and/or PSM to PSM (details in chapter 5);

• Code generation rules (this level of POMA is not included in this research project).

54

Figure 3.1 shows the five concepts of POMA and their relationships.

Architectural levels
and categories of

Patterns

\ Pattems
1̂ Composition Rui |

\J

This level of POMA
is not included in this

research projec t

/ Interactive System \
V Source Code J

PIM Models

Patterns Mapping
Rules

PSM Models

Code Generation
Rules

Figure 3.1 Key concepts of POMA.

At this stage, it is interesting to remind some important definitions of each concept used in

POMA architecmre which is given below.

55

Architecture

"The software architecture of a program or computing system is the structure or structures

of the system, which comprise software components, the extemally visible properties of

those components, and the relationships among them" (Bass et al., 2003).

Pattern

"Each pattern describes a problem that occurs constantly in the environment, and describes

the heart of the solution to the problem in such a way that this solution may be used

millions of times, but never do it twice the same way" (Christopher Alexander, 1977).

Model

A model is a formal description of key aspects of an interactive system from a specific

viewpoint.

Composition

Composition refers to the process and rules for creating design platform independent

models (PIM) by combining pattems using composition mles.

Mapping

Mapping is the process of creating a design specific model for each platform (PSM) from

PIM while using rules for mapping (only PIM to PSM).

Transformation

The transformation of models is the process of creating a model from another model using

transformation rules (only PIM to PIM and/or PSM to PSM).

56

3.2 POMA Overvie w

The proposed POMA architecture (Figure 3.2) for interactive systems development is an

architecture comprising five architectural levels of models using six categories of pattems of

software architecture.

The POMA architecture (Figure 3.2) includes:

• Six architectural levels and categories of pattems;

• Ten models, five of which are [POMA.PIM] and five others [POMA.PSM];

• Four types of relations used in POMA architecture, which are:

1. Composition: used to combine different pattems to produce a [POMA.PIM] by

applying the composition rules;

2. Mappinz: used to build a [POMA.PIM] which becomes a [POMA.PSM] by

applying the mapping rules ([POMA.PIM] •=> [POMA.PSM]);

3. Transformation: used to establish the relationship between two models

([POMA.PIM] ^ [POMA.PIM]) and / or ([POMA.PSM] ^ [POMA.PSM]) by

applying the transformation rules;

4. Generation: used to generate the source code of the whole interactive system by

applying the generation code rules. This phase is not taken into account in this

research project.

The direction in which to read the POMA architecture in Figure 3.2 is as follows:

• Vertically, concerns the composition of the patterns to produce ten PI M and PSM

models;

• Horizontally, concerns the composhion and mapping of the patterns to produce five

PIM and five PSM models, and the generation of the source code for the whole

interactive system (not included in this research).

57

Figure 3.2 POMA architecture for interactive systems development.

58

3.3 POMA justification s

The justifications for POMA are as follows:

1. The N-tiers architectures such as MVC which is 3-tiers architecture, J2EE which is a 5-

tier architecture, and Zachman which is a multi-tiered architecture allow POMA

architecture to inherit the concept of architectural levels;

2. The POD architecture based on composition techniques such as behavioral and

structural techniques of pattems allows POMA architecture to inherit the concept of

these composition techniques;

3. The PSA architecture based on the categories of patterns allows POMA architecture to

inherit the concept of this categorization of patterns;

4. The MDA architecture based on types of models such as PIM and PSM, and their

transformation and mapping, allows POMA architecture to inherit the concept of

models (PIM and PSM) and the concepts of model transformation and mapping.

3.4 POMA specifications an d representatio n

In this research project, two notations have been adopted: extensible Markup Language

(XML) and Unified Markup Language (UML) for representing the POMA architecture.

3.4.1 The extensible Marku p Language (XML) notatio n

XML notation is used to specify and formalize the language for POMA called POMAML

(Pattern-Oriented Modeling Architecture Markup Language) (see Appendix III for XML

source code of POMAML structural notation) for modeling patterns and models of the

proposed POMA architecture.

59

Indeed, there has been a surge recentiy in initiatives toward modeling and engineering

interactive systems based on model-driven architecture (MDA) using XML.

XML is a meta-language that provides directions for expressing the syntax of Markup

languages. Instances of these Markup languages are hierarchically stmctured documents

that typically consist of a content encapsulated within Markup and grammatical

instructions on how to process it. The term "documenf has a special meaning in XML. A

document is a standalone object of representation that acts as a container for processable

information. An XML document could, for example, be a physical file on a hard disk or a

stream of bytes over a network. Elements and attributes form the most commonly used

constructs of an XML document. A given document can conform to the XML

Specification in two ways. It can be well formed by allowing further constraints. There are

a number of ancillary technologies that strengthen the XML framework. XML Infoset is a

description of the information available in a (well-formed) XML document. XML DTD

and XML Schema are languages that provide a grammar for structural and data type

constraints on the syntax and content of the elements and attributes in XML documents.

This allows for verification of formalism or validity in a given document. Namespaces in

XML are a mechanism for uniquely identifying elements and attributes of XML documents

specific to a markup language, making it possible to create heterogeneous documents that

unambiguously mix elements and attributes from multiple different XML documents.

Xlink provides the bi-directional linking capabilities necessary for hypertext. XSLT is a

style sheet language for transforming XML documents into other formats.

All models are expressed in some notation language. The evolution of notation languages

for modeling interactive systems in the last decade has taken place in three orthogonal

directions: abstraction; partition (of concems); standardization. Abstraction has made it

possible to define models without getting into the details of implementation or the

underlying computing environment. Partition (of concems) permits describing and dealing

with semantically different aspects of the interaction in a changing environment.

Standardization has brought some order to the growing complexity of isolated notations

60

that do not always communicate with one another and thereby threaten interoperability

among systems. Standardization has also encouraged industry involvement. After

embracing a variety of notations and languages over the years for modeling interactive

systems, XML has become a popular language in the research community and among

practitioners.

3.4.2 The Unified Modelin g Language (UML) notation

During the development of interactive systems, the specification of the interactive system

and the interaction design are often performed in parallel and therefore must be

coordinated. A common notation that can be used and understood by both developers and

interface designers would foster integration. This is of particular importance since the

interface must eventually be integrated into the rest of the interactive system. UML is a

standard language for specifying, visualizing, constructing, and documenting the

components of the different types of systems, in particular, interactive systems.

Since its beginnings in 1998, UML has gradually evolved to become an industry standard.

UML notation according to (Gamma et al., 1995) and (Muller and Gartner, 2000):

• Is visual modeling which uses the standard graphical notation of patterns;

• Is a communication tool for various patterns;

• Manages the complexity of composed patterns;

• Defines a software architecture;

• Enables and supports reuse;

• Improves the pace at which interactive systems are developed;

• Eases the integration of interfaces with pre-existing modules;

• Decreases interactive system development costs.

61

UML consists of a set of notations developed to specify and design object-oriented

software. UML is made up of a family of notations and models. Among them, class and

object diagrams for static domain modeling and use cases and sequence diagrams and

activity diagrams, are used for documenting functional requirements. In addition, the

system's behavior can be specified using sequence, collaboration, state and activity

diagrams.

In summary, this research project uses the UML notation to structure and clarify the

proposed POMA architecture.

CHAPTER 4

PATTERNS IN POMA

This chapter presents a detailed description of architectural levels and categories of

patterns used in the proposed POMA architecture. The first section presents architectural

levels and categories of pattems. The second section describes pattem composition rules

(i.e., the relationships between pattem considered in this architecture). The third section

describes the pattern mapping rules that enable one to obtain the final models of the

proposed architecture.

4.1 Patterns and Pattern-Oriented Architectur e

4.1.1 Architectural Levels and categories of patterns

This section presents how the existing categories of patterns can be used as building blocks

in the context of the proposed six architectural levels.

This research project has identified at least six architectural levels and six categories of

patterns that can be used to create a pattern-oriented interactive system architecture. Table

4.1 illustrates these six levels of POMA architecture for an interactive system, including

the corresponding categories of pattems, and gives examples of pattems in each category.

63

Table 4.1

Architectural levels , categories of patterns and example s

Architectural Leve l and Category o f Patterns
Information
This category of patterns describes different conceptual
models and architectures for organizing the underlying
content across multiple pages, servers, and computers.
Such patterns provide solutions to questions such as
which information can or should be presented on which
device. This category of pattems is described in (Jeffrey
and Maneesh, 2006).

Interoperability
This category of patterns describes decoupling the layers
of an interactive system, in particular, between the
content, the dialog, and the views or presentation layers.
These pattems are generally extensions of the Gamma
design patterns, such as MVC (Model, View, and
Controller) observer and command action pattems.
Communication and interoperability pattems are useful
for facilitating the mapping of a design between
platforms.

Visualization
This category of patterns describes different visual
representations and metaphors for grouping and
displaying information in cognitively accessible chunks.
They mainly define the format and content of the
visualization, i.e. the graphical scene, and as such, relate
primarily to data and mapping transforms.

Examples of patterns
- Reference Model pattern
- Data Column pattern
- Cascaded Table pattem
- Relational Graph pattern
- Proxy Tuple pattern
- Expression pattern
- Schudler pattem
- Operator pattem
- Renderer pattem
- Production Rule pattern
- Camera pattem
- Linear Pattern
- Hierarchical Pattern
- Circular Pattern
- Composite Pattern
- Adapter pattern
- Bridge pattern
- Builder pattem
- Decorator pattern
- Fa9ade pattern
- Factory pattem
- Method pattem
- Mediator pattem
- Memento pattem
- Prototype pattern
- Proxy pattern
- Singleton pattem
- State pattern
- Strategy pattern
- Visitor pattern
- Favorite Collection pattem
- Bookmark pattem
- Frequently Visited Page

pattern
- Navigation Space Map

pattern

64

Table 4.1

Architectural levels, categories of patterns and examples (Continued)

Architectural Level and Category of Patterns
Navigation
This category of patterns describes proven techniques for navigating
within and/or between a set of pages and chunks of information. This
list of pattems is far from exhaustive, but helps to communicate the
flavor and abstraction level of design pattems for navigation.

Interaction
This category of patterns describes the interaction mechanisms that
can be used to achieve tasks and the visual effects they have on the
scene; as such, they relate primarily to graphical and rendering
transforms.

Presentation
This category of patterns describes solutions for how the contents or
the related services are visually organized into working surfaces, the
effective layout of multiple information spaces, and the relationship
between them. These patterns define the physical and logical layout
suitable for specific interactive systems.

Examples of patterns
- Shortcut pattem
- Breadcrumb pattem
- Index Browsing pattern
- Contextual (temporary)
horizontal menu at top pattem

- Contextual (temporary) vertical
menu at right pattem

- Information portal pattem
- Permanent horizontal menu at
top pattem

- Permanent vertical menu at left
pattern

- Progressive filtering pattern
- Shallow menus pattern
- Simple universal pattem
- Split navigation pattem
- Sub-sites pattern
- User-driven pattem
- Alphabetical index pattern
- Key-word search pattem
- Intelligent agents pattem
- Container navigation pattem
- Deeply embedded menus pattem
- Hybrid approach pattem
- Refreshed shallow vertical
menus pattem

- Search pattern
- Executive Summary pattem
- Action Button pattem
- Guided Tour pattem
- Paging pattern
- Pull-down Button pattern
- Slideshow pattem
- Stepping pattem
- Wizard pattern
- Carrousel pattern
- Table Filter pattem
- Detail On Demand pattem
- Collector pattem
- In place Replacement pattern
- List Builder pattern
- List Entry View pattern
- Overview by Detail pattern
- Part Selector pattern
- Tabs pattem
- Table Sorter pattem
- Thumbnail pattern
- View

65

Each of these six categories of patterns is discussed hereunder, and examples are provided.

4.1.1.1 Informatio n pattern s

An information pattern, also called an information architectural pattern (Figure 4.1),

expresses a fundamental structural organization or schema of information. It provides a set

of predefined subsystems (information spaces or chunks), specifies their responsibilities,

and includes rules and guidelines for organizing the relationships between them.

An information pattem is everything that happens in a single information space or chunk.

With another pattern, the content of a system is organized in a sequence in which all the

information spaces or chunks are arranged as peers, and every space or chunk is accessible

by all the others. This is very common on simple sites where there are only a few standard

topics, such as: Home, About Us, Contact Us, and Products. Information which naturally

flows as a narrative, a time line, or in a logical order is ideal for sequential treatment. An

index structure is like the flat structure, with an additional list of contents. An index is

often organized in such a way as to make its content easier to find. For example, a list of

files in a Web directory (the index page), an index of people's names ordered by last name.

Dictionaries and phone books are both very large indices.

The Hub-and-Spoke pattern is useful for multiple distinct linear workflows. A good

example would be an email system where the user returns to his inbox from several points,

e.g. after reading a message, after sending a message, or after adding a new contact. A

multi-dimensional hierarchy is one in which there are many ways to browse the same

content. In a way, several hierarchies may coexist, overlaid on the same content. The

structure of the content can appear to be different, depending on the user's task (search,

browse). A typical example would be a site like Amazon, which lets one browse books by

genre or by title, and also allows search by keyword. Each of these hierarchies corresponds

to a property of the content, and each can be useful, depending on the user's situation. A

66

strict hierarchy is a specialization of a multi-dimensional hierarchy, and describes a system

where a lower-level page can only be accessed via its parent.

1 1 1 1
Linear Pattern 0 0 0 0 0 0 0

I H j _] Home Page
Hierarchical Pattem i "^

,—L_, ,-JL_̂ f—1—, _ i _ ! _ ' _ pJ_ , Major Submenus or • • • • • • • - Content Pages

Circular Pattem

•"•"f^hziizi Composite Pattem

• • • • • • • • •
Figure 4.1 Examples of Information Patterns.

4.1.1.2 Interoperability patterns

Interoperability pattems are useful for decoupling the organization of these different

categories of pattems, for the way information is presented to the user, and for the user

who interacts with the information content. Pattems in this category generally describe the

capability of different programs to exchange data, via a common set of exchange formats,

to read and write under the same file formats, and to use the same protocols.

Gamma et al. (1995) offer a large catalog of pattems for dealing with such problems.

Examples of pattems applicable to interactive systems include: Adapter, Bridge, Builder,

Decorator, Factory Method, Mediator, Memento, Prototype, Proxy, Singleton, State,

Strategy, and Visitor (Gamma et al., 1995).

67

The Adapter pattem is very common, not only to remote client/server programming, but to

any situation in which there is one class and it is desirable to reuse that class, but where the

system interface does not match the class interface. Figure 4.2 illustrates how an adapter

works. In this figure, the Client wants to invoke the method RequestQ in the Target

interface. Since the Adaptec class has no RequestQ method, it is the job of the Adapter to

convert the request to an available matching method. Here, the Adapter converts the

method RequestQ call into the Adaptec method specificRequestQ call. The Adapter

performs this conversion for each method that needs adapting. This is also known as

Wrappering.

Client Adapter

• R e q u e s t Q

Target

• R e q u e s t O

\
Adaptee

Adaptee

•••Specific RequestQ

Figure 4.2 Adapter pattern.

4.1.1.3 Visualization patterns

Information visualization pattems allow users to browse information spaces and focus

quickly on items of interest. Visualization pattems can help to avoid an information

overload, a fimdamental issue to tackle, especially for large databases, Web sites, and

portals, as they can access millions of docimients. The designer must consider how best to

map the contents into a visual representation which conveys information to the user while

facilitating exploration of the content. In addition, the designer must undertake dynamic

actions to limit the amount of information the user receives, while at the same time keeping

the user informed about the content as a whole. Several information visualization pattems

generally combine in such a way that the imderlying content can be organized mto distinct

conceptual spaces or working surfaces which are semantically linked to one another.

68

For example, depending on the purpose of the site, users can access several kinds of

"pages", such as articles, URLs and products. They typically collect several of these items

for a specific task, such as comparing, buying, going to a page, sending a page to others.

Users must be able to visualize their "collection".

The following are some of the information visualization pattems for displaying such

collections: Favorite, Bookmark, Frequently Visited Page, Preferences, and Navigable

Spaces Map. This category of pattems provides a map to a large amount of content which

can be too large to be presented reasonably in a single view. The content can be organized

into distinct conceptual spaces or working surfaces which are semantically linked, so that it

is natural and meaningful to go fi-om one to another. The map in Figure 4.3 is an example

of this category of pattems.

Figure 4.3 The Navigation Spaces Map pattem implemented using Tree Hyperbolic, a
sophisticated visualization technique.

4.1.1.4 Navigation pattems

Navigation pattems help the user move easily and in a straightforward maimer between

information chunks and their representations. They can obviously reduce the user's

memory load (Nielsen, 1999) and (Lynch and Horton, 1999). See (Tidwell, 1997), (Welie,

69

1999), (Engelberg and Seffah, 2002) and (Garrido et al., 1997) for an exhaustive list of

navigation pattems.

The Linear Navigation pattem is suitable when a user wants a simple way to navigate fi"om

one page to the next in a linear fashion, i.e. move through a sequence of pages.

The Index Browsing pattem is similar to the Linear Navigation pattem and allows a user to

navigate directly fi"om one item to the next and back. The ordering can be based on a

ranking. For every item presented to the user, a navigation widget allows the user to choose

the next or previous item in the list. The ordering criterion should be visible (and be user-

configurable). To support orientation, the current item mmiber and total nimiber of items

should be clearly visible. A breadcrumb (Figure 4.4) is a widely used pattem which helps

users to know where they are in a hierarchical stmcture and to navigate back up to higher

levels m the hierarchy. It shows the hierarchical path fi-om the top level to the cim-ent page

and makes each step clickable.

Mmorom»dl» Flmmh M X
Product Ovarvlaw

- For Laptop platform, the
Breadcrumbs pattem is

implemented in this manner.

- For PDA platform, the
Breadcrumbs pattem can be
implemented in two small

pattems (Shorter Bread Crumb
Trial, and Drop-down "History"

menu)

Figure 4.4 Breadcrumb Pattem.
(Extracted from Swish Zone Website)

4.1.1.5 Interaction pattems

This category of interaction pattems provides basic information on interaction style,

mainly on how to use controls such as buttons, lists of items, menus and dialog boxes. This

category of pattems is employed whenever users need to take an important action that is

70

relevant in the cturent context of the page being viewed. Users must be made aware of the

importance of the action in relation to other actions on the page or site.

To view/act on a linear-ordered set of items, the Stepping pattem (Figure 4.5) allows users

to go to the next and previous task or object by clicking on the TSfext' or 'Previous' links.

The 'next' link takes the users to the next item in the sequence, while the 'previous' link

takes them a step back. It is recommended that a 'next' or 'previous' link be placed close to

the object to which it belongs, preferably above the object so that users do not have to

scroll to it. One must sure the next/previous links are always placed in the same location,

so that users clicking through a list do not have to move the mouse pointer. The

convention, at least in western cultures, is to place the 'Previous' link on the left and the

'Next' link on the right.

Jhe; Boone Collec11on
Image Gal lery : Japanes e Paintin g

For PDA platform , the
Stepping Patte m ca n
be implemented usin g

a Combo Bo x

lt>tro<-|uv I i - .
Umtj;r.i()t>y

• Image Call t

In .U- i rm l i ip

Figure 4.5 Stepping pattern.
(Extracted from Field Museum Website)

71

4.1.1.6 Presentation pattems

The authors of technical dociunents discovered long before interactive systems were

invented that users appreciate short "chunks" of information (Horton, 1994). Pattems in

this category, called Presentation pattems, also suggest different ways for displaying

chimks of information and ways for grouping them in pages. Presentation pattems also

defme the look and feel of interactive systems, while at the same time defining the physical

and logical layout suitable for specific systems, such as home pages, lists, and tables. For

example, how long does it take to determine whether or not a document contains relevant

mformation? This question is a critical design issue, in particular for resource-constrained

(small) devices.

Pattems in this category use a grid, which is a technique taken fi-om print design, but which

is easily applicable to interactive system design as well. In its strictest form, a grid is

literally a grid of X by Y pixels. The elements on the page are then placed on the cell

borderlines and aligned overall on horizontal and vertical lines. A grid is a consistent

system m which to place objects. In the literature on print design, there are many variations

of grids, most of them based on modular and colunm grids. Often, a mix of both types of

grids will be used. An example of a grid in Figure 4.6 is used to create several dialog box

patterns.

L a i g e muKite-> * la x I >i«4d

T w 0 -le V e I H ie r a r c h y
• i n d e n t a t i o n
• c on tr a s t

:TTTTTYTTTrTn7T::T:Ti;

A l i g n m e n t c o n n e c t s
V is u a I e l e m e n ts i n a
s e q u e n c e

L o g i c o f o r g a n l z a t i o n a l
flo w

S a n d t o

N

E M M I

I
I n s t r u c t i o n s

T»ps

S a ^ Groenfckaf O

xauK^cpsc uc«lo*c> > c a
1 1 1

H I Sax J
L*ts o« * togothv i lo r k^tch .

N o m a l m^ l

7 Inckfdt t auaol •Mimcnf

Carbon cop y

Ap(4< {

J=J

C/Mcel 1

G r e u p In g
by w h li e

s p a c e

Figure 4.6 An example of a grid.

72

An example of these types of pattems is the Executive Summary pattem. The Executive

Summary pattem gives users a preview of the underlying information before they spend

time dowtiloading, browsing, and reading large amoimts of information (Figure 4.7).

PRNtHMRMr* J u n Z I . I IJZt AM EST
3 lyjrjg e Svjpr«nrn ? Cour t Gyt' S M.crogof t

Associated Pr«S£ Ju n Z^. O-l . ti A M EST
4 Oal l Throw* tt * Wi iyh t Sahin d R« d Hat LinuK

NsiMteytes J u n 2 i . a i . - «] A M EST
& P^fojec l Sggk ? Invi-î ibl g Computgr' s

A»ociJt«(l Pi«a i _)u n 2 1. 11.0 1 A M EST
6 MOwauke e Base d Microchi p Maka r Sua e Tw o Mnr e Firm s

in Paignt Cgs a
KniQM RIdriMtfTtlbunv Buslnws H«m Ju n 21, -11.20 AM CST

7 Compa q Compute r Corp . t o Allow User s t o Customiz e

KniahlRlddv^TiibHn* 8 u Jun 2-t , &4 i a / ' ES T

jj^i^BBBI^SDmB
MilwuMkee Base d Oilier octwp
MaKer Sue s I wro More Mrm s
Pattern Cas e

i l iu i« inr • • ' j i r g n ta r v ns fn^ j i r i iA c fa r
n ^ j (t i t c .aori k l a turn I t i a i i r i ^ 'opa x - j s * 3

<Titci«erit»S
• S'̂ aiA' f O f Sip*-:4d-Pl^v£iO£ clO£* 4

T^josov J19S 7 87 0 <i p »Q.I2 a
' T o s«c rTtoi « c f ttie M i v*j«^«e J- o jinoi

Sot tnel . •> ' io 5«jt>sc » ^« l o 1K«
-ieM«p«p*r. Qo to
ftttp J'/ninm/vsniinr ear n fcjVtxAi .
&«•(«•«»*»• Jawtn^l 3*n1inB l

ns in L

For Laptop and PDA
platforms, the Executive

Summary pattem is
implemented in the same

manner

Jtjf 2 1 .
11:20 A M
201 «̂ »o'<J5

Figure 4.7 Example of structural pattems: Executive Summary Pattern.
(Extt-acted from CBC Website)

4.1.2 Pattern Composition

A platform-independent pattem-oriented design exploits several relationships between

pattems. Gamma et al. (1995) emphasize that defining the list of related pattems as part of

the description of a pattem is a key notion in the composition of pattems and their uses.

Zimmer (1994) implements this idea by dividing the relations between the pattems of the

Ganuna catalog into three types: "X is similar to Y", "X uses Y", and "Variants of X use

Y". These types are, in practice, relationships between pattems in a specific context; in

other words, they are relationships between instances of pattems. Based on Zimmer's

(1994) definitions, five types of relationships between pattems are defined.

1. Simila r Pattem

Two pattems (X, Y) are similar, or equivalent, if, and only if, X and Y can be

replaced by each other in a certain composition. This means that X and Y are

pattems of the same category and they provide different solutions to the same

problem in the same context. As illustrated in Figure 4.8, the Index Browsing and

73

Menu Bar pattems are similar. They both provide navigational support in the

context of a medium-sized interactive system.

OKJECT M A M A C t J W I H I G « O U »

« F-T-r

• ur- L -

• fORBJrf - rnii.^t 1
• B P r,nii.«i J
• T*lecftnr t C^inei T

• ̂ •̂ : M ̂»viauit
• fetJ?. j.>JULriai t

^

^ : ^

Rii>\v»ihi2 rii<l<»x P i i l ten i

C W I v t «..ci,..iui« . -.i"

-••T f I . . . - . . ^o . . - . * . t ..;- - I f . ^ r>--..'lll ' f . " / r l

M e n u Bil l P i i t le i l i

Figure 4.8 Similar Pattem.
(Extracted from OMG Website)

2. Competito r Pattem
Two pattems (X, Y) are competitors if X and Y carmot be used at the same time for

designing the same artifact relationship that applies to two pattems of the same

pattem category. Two pattems are competitors if, and only if, they are similar and

interchangeable. For example, the Web pattems Convenient Toolbar and Index
Browsing are competitors (Figure 4.9). The Index Browsing pattem can be used as a

shortcut toolbar that allows a user to directly access a set of common services from

any interactive system. The Convenient Toolbar, which provides the same solution,

is generally considered more appropriate.

74

CiiNSnuM]

KM

PRODUCTS* SWVICES

.IPnXATiaNNEmDIMIIG
SERVCtS

''ii";(.-.)iii;.,>rn,;,venf;0W(HVn;̂

Add Application int«oig»nc e te Neivr c

Menu bar
or

Convenient toolbar

Figure 4.9 Two Competitor Pattem.
(Extracted from Cisco Systems Website)

3. Super-ordinat e Pattem
A pattem X is a super-ordinate of pattem Y, which means that pattem Y is used as

a building block to create pattem X. An example is the Home Page pattem, which

is generally composed of several other pattems (Figure 4.10).

Home Pag e

TangUn

About Convenient toolba r
Go Safe Plac e Seatch Site ma p

Qoick Searc h

Index Browsin g

Executive Sommai y

Executive Summai y

Executive Summai y

Frequently
Visited Page s

Maintainer Inf o
Diaclaimcf

Figure 4.10 A Home Page Design Pattern using others pattems.

75

4. Sub-ordinat e Patter n

(X, Y) are sub-ordinate if, and only if, X is embeddable in Y. Y is also called a

super-ordinate of X. This relationship is important in the process of mapping

pattern-oriented design from one platform to another. For example, the Convenient

Toolbar pattern (Figure 4.10) is a sub-ordinate of the Home Page pattem for either

a PDA or desktop interactive system. Implementations of this pattern are different

for different devices.

5. Neighborin g Patter n

Two pattems (X, Y) are neighboring if X and Y belong to the same pattem

category. For example, the Sequential and Hierarchical patterns are neighboring

because they belong to the same category of patterns, and neighboring pattems may

include the set of patterns for designing a specific page such as a home page (Figure

4.10).

This research project investigates how these categories of proven design patterns are

"composed" and "mapped" into reliable, robust large-scale interactive systems.

Figure 4.10 in previous page illustrates the details of the six architectural levels and

categories of patterns of POMA architecture in relationships as defined and described at

section 4.1.1. Each pattern of Figure 4.10 can have two representations: Structural

representation and POMA Markup Language (POMAML) structure representation. The

structural representation is illustrated by UML class diagrams in the Figure 4.11, Figure

4.12 and Figure 4.13. The pattern structure of the POMAML schema representation is

illustrated by a notation given in Figure 4.13.

76

Navigation
NelgAio/Ing and/or Confielitor and ArS/oi/sr

0 \^
0

Intendioii

ov.

SlioitculPattem
' ' BreadCrutnbPalte m IndexSrowangPatte m

ExeculiveSumntaiy Pattern

/

!

\ '"
PnsnlatioD

^ [y^
n
\ i i

1 1 " 1 ' -- -

NeijIiboiiiiginil/DrOurfelitorini/trSmlir
J,
n

\ («
Vlsaliation

/ •^,
HomePagePattem LiSPalte m , TablePattem

— i ! ̂ i
ColleclionFavoiilePattem NavigableSpacesMapPatle m

BoolmaikPaltem frequentlyVialedPagePatte m

NeigWonng a/id/OfSupefonfmal e
NeJg/itonng md/oiSujiei-criinitt

' FadoryPaite m

/
MettiodPaSem MedialofPatte m

Neiihboiing mihiSaptniitliiiitt inil/orSiilHtriinile

nj
J Inftmnalion

A

KeaichyPaUam

SequencePatlem GridPattem

MementoPaHcm

PmtotiipePaltam

Figure 4.11 UML Class Diagram of architectural level and categories of Patterns of
POMA for Interactive System.

77

The class diagram in Figure 4.12 represents the class stmcture of the five models and the

pattem stmcture that represent POMA components. Figure 4.12 shows the basic class

stmcture of the POMAML stmcture notation (see Appendix III for XML source code). For

the sake of simplicity, only concrete classes and their public attributes and methods are

displayed.

d^tDottA_Tvp

•o«tDolV/l_TV p«i_\/tow<>
PM_Typ»_Sty l«

l-ayoutMcadl
^LM_1Vpa_Styl«

! •* l j»tPM_TVp«_Slyt*<)
•» * r tP M_TVP«_Sty l«0

hma 1
"x/

Stylos
^^S__TVptt
^^S_D«acriptton

• B ^ S _ T V P « 0
•»»ts_ivp*o

hma^

*^>«tl_M_Typ«_atyl»0
•3»tLM_TVpe_styl«<>

C^Partt«m_ld
^ ^ P _ N a m a
4^P_Cant«xt
fli^P__P robi« m
^^P_Solution
^P_R« l«1 lonah lp

• o ^ P *
•(»OtP_
* W ^ P -
• o r t P _
• o ^ p
•*iO»tP
•*^»tP
• s w t P
• » o t p '
• *»»tP
• s e t P

itt«m_ld()
.NamaO
Cont«xtO
.ProblorrtO
.SoluttonO
R«l atjonship<>
.rOamoO
.ContsxtO
.Probl«m<)
SolutlonO
.R«letlonst)lp<>

\AfvM»a
L l . . n

TaslcPattam
^ T V P «

*t>-t_TypM)
^ A d a p l P anamO

compoamtl /

^Tkak_Jct

^ ' T ^ R a l a t Ions hip

^BetT"ask_kl<)
•oa lX_Nam«<)
*^atT_Ordort)
*^otX_Rolation»hlp<)
••*atX_NarT>«()
••satT_OrtJar<>
^satT_Ralatlenshlp<>

r Subtas k
' 4^SubTask_lci
' ^ 8 T _ V a n a b l « D wr
<^ST_OMlar
^ST_Ra la t tona l i lp

«i)at 3u bTaak_M< >
• o « t ST_VartablaDaf_lcl O
^Oal ST_C>rctar< >
^ g at S~r_Rel at I on a h 1 p<)
•*»at ST_Ortiart >
^^e t ST_Re I atl o n 9 h I p()

VaiiabtaOaf
I ^Var iableD«f_ lcl
J ^»>\/D_Nam«
I ^^VD_Dascript ion

'«9at\/anablaDar_l(iO
•••oat V D^MamaO
•*aatV D_Das cripllonO
•aatVD_IMamoO
^»atVD_D«scr1ptlonO

Figure 4.12 Class structure of POMA's Models and Pattems.

78

POMAML is an acronym for Pattern-Oriented and Model-driven Architecture Markup

Language and is graphically XML structure displayed in Figure 4.13 described in the

Figure 4.11 and Figure 4.12 . In other words. Figure 4.13 is a form or structure of XML

notation that is used to represent pattems used in Figure 4.11 and Figure 4.12. POMAML

XML notation for tasks and feature patterns were developed (see Appendix III for the

XML source code of POMAML structural notation).

rPonsm 6 ~ ^ ^ ^ B ~

—pN.ms 1

—^Da.criplian 1

—pEjanipId 1

- - 1 Rslalio n i

a.-

H Bod r 0-(-"»-5-

H Ta. k

L-| Ta.k

^->

r^:o 1

^.... 1
-To* . | j
- - f i l . l i .n Ji

L-| SubTadi * ^ ^ - ^ ^

a..'

r i T" " ^ — :

L-| SubTa* . ^ - (— ^

- ^ , 0 1

- J
I..

/ari^l»D»l ^ - (- - ^
Q ^ '— 1 Daecrpliof i |

<—1 Ham * ^

—f"Of{fct 1

--rr"

Lr

ernplai» ^ - T ̂ &-

r^- 1

•-I ViH.bbD« l ^ - (— » - ^

—fOrAr 1

H-N"~ 1
'—|~C6«<tipliofi 1

T»>l 1

VariabU |

^ H T«l , ^ - f ^
i.ki..k. ^ r ^ p _ Q j

^ •^-V ' l_ j SubT^k . ^ — 0

•-'Rftblion [l

0....

H SuHi.k . rt-' ^"B-
• - o : ^ "

H T - ^ ^ >

^ GubT.d<> | ^

-H',0 1
—|"Hjrr» 1

0...

^1«k I ^ H F ^
U sobT..k . ^ r^^B-P-^—^^^—^

' ^ •--•^•' L | s„|,T..k . ^ —)

)

Figure 4.13 Pattern structure o f the POMAML Markup Language .

79

The POMAML Schema (Figure 4.13) consists of the classic elements of patterns like

Name, Problem, Context, Solution and Rational. However, these attributes are primarily

used only to select an appropriate pattern. The implementation of the pattern has been

formalized in the "Body". At this point, one should distinguish between Task and

TaskTemplates. Tasks are further decomposed into SubTasks and contain no variable parts.

Thus they can be adopted 1:1 without further adaptation. On the contrary, TaskTemplates

are hierarchically structured as well, but also contain variable definitions and variables and

must therefore be adapted first.

4.1.3 Pattern mappin g

Another component in POMA architecture is the concept of pattern mapping (section 3.1

for the definition). Using a desktop system as a starting point, it is possible to redesign

PSM model for other platforms. The original set of patterns used in the system is mapped

or replaced in order to redesign and re-implement the system and, in particular, the UI for

mobile or Personal Digital Assistant (PDA) systems. Since patterns hold information about

design solutions and context of use, platform capabilities and constraints are implicitly

addressed in the transformed pattems.

Figure 4.14 illustrates different mappings of the Quick Access pattern for three different

platforms. This navigation design pattem helps the user reach specific pages, which reflect

important interactive system content, from any location on the site. For a news interactive

system, direct and quick access to central interfaces such as Top Stories, News. Sports, and

Business can be provided. A web browser, for example, on a desktop, is implemented as an

index browsing toolbar. For a PDA, the Quick Access pattem can be implemented as a

combo box. For a mobile phone, the Quick Access pattern is implemented as a selection

(Welie, 1999). Pattern descriptions should provide advice to pattern users for selecting the

most suitable implementation for a given platform.

80

Fcf i PDA , the
OuitlAtCcu

rmf.iemenced usjrKj
J lOintH.' Ixii

f a J ..ub tf 3 *̂ŝ f based
usei inlertdie cfit
•Quicit .fttcf̂ pdtlem can
tiy irripkrrrtrikMJ uilny U>;
^axept cl a toclbat

Fvi :-.fni;t.<l<'pti;iiie.frie
Ojick i i f .»ii (Mtlwii i all

I b e mplsmenled usnq
asekcDcn

Figure 4.14 The Web Convenient Toolbar pattern implementations an d Look and
Feels for different platforms .

(Extracted from the CNN Website)

To illustrate pattern mapping, a description is given here of the effect of screen size on

selection and use of pattems. Different platforms use different screen sizes, and these

different screen sizes afford different types and variants of pattems. The problem to resolve

when mapping a pattem-oriented design (POD) is how the change in screen size between

two platforms affects redesign at the pattem level. The amount of information that can be

displayed on a given platform screen is determined by a combination of area and the

number of pixels. The total difference in information capacity between platforms will be

somewhere between these two measures: 20 times the area and 10 times the pixels.

To map the desktop display architecture to the PDA display architecture, the options are as

follows:

1. Reduce the size of the architecture; it is necessary to reduce significantly both the

number of pages and the quantity of information per page;

2. Hold the architecture size constant (i.e. topics or pages); it is necessary to significantly

reduce the quantity of information per page (by a factor of about 10 to 20);

3. Retain all the information in the desktop architecture; it is necessary to significantly

increase the size of the architecture, since the PDA can hold less information per page.

The mapping choice will depend on the size of the architecture and the value of the

information:

- For small desktop architectures, the design strategy can be weighted either toward

reducing information, if the information is not important, or toward increasing the

number of pages if the information is important;

- For medium and large desktop architectures, it is necessary to weight the design strategy

heavily toward reducing the quantity of information, otherwise the architecture size and

number of levels would rapidly explode out of control.

Finally, one can consider mapping pattems and graphical objects in the context of the

amount of change that must be applied to the desktop design or architecture to fit it into a

PDA format. The following is the list of suggested mapping mles:

1. Identical : No change to the original design. For example, drop-down menus can usually

be copied from a desktop to a PDA without any design changes;

2. Scalable : Changes to the size of the original design or to the number of items in the

original design. For example, a long horizontal menu can be adapted to a PDA by

reducing the number of menu elements;

3. Multiple : Repeating the original design, either simultaneously or sequentially. For

example, a single long menu can be transformed into a series of shorter menus;

4. Fundamental : Change the nature of the original design. For example, permanent left-

hand vertical menus are useful on desktop displays, but are not practical on most PDAs.

In mapping to a PDA, left-hand menus normally need to be replaced with an altemative

such as a drop-down menu.

These mapping rules can be used by designers in the selection of pattems, especially when

different patterns apply for one platform but not for another, when the cost of adapting or

82

purchasing a pattem is high, or when the applicability of a pattem (knowing how and when

to apply a pattem) is questionable.

This list of four mapping mles is especially relevant to the automation of cross-platform

design mapping, since the designs that are easiest to map are those that require the least

mapping. The category of pattems therefore identifies where human intervention will be

needed for design decisions in the mapping process. In addition, when building a desktop

design for which a PDA version is also planned, the category of pattems indicates which

pattems to use m the desktop design to allow easy mapping to the PDA design.

Figure 4.15 illustrates some of the navigation design pattems used in the home page of a

desktop-based system. Once these pattems are identified in the desktop-based system, they

can be mapped or replaced by others in a PDA version.

P S : P a r m a o e o t h o r i z o n t a l
m e n u a t t o p

cbcca-iit-

decision
:-r-»iL,-»llv ' I I r r t i ^ r i m ^ v r " e f » J s e
r ^ j i f m c r r t t , c o u r - t r-i_ile^ s
a c a s e r a m i n i s c a n t o f t h e Mollvv^ooc J m o v i e t
KJtfTuI f^ln<3. l:hi a SuE>ram e COurr ; at C a n a d a I n
ad Ct-i«t ; » r n s n t a l l y il l o h y s l o s a a n i u s ^ a s t i t B

r i g n t C O r a f u s a c r a a c m a r i t f o r n i s c o n d i t i o n .

> Cnnrrnnr r» l l f « > i a t w n N a v C a p j i d ^ , « i r
cQnrrc.t l»r< it* l m e i a a « » «

> J u n a S a a c h ' •"^" 'or^a l ^ • d i c a t a d t m C a n a d i a n

• D a m o n A l l a n I r a d i n n frn /U-nn^ - rBQort :

r a f cllfTita c T o 7 , e P T e»nt :

P S : P e r m a n e n t h o r i z o n t a l

P 5 : P e r m a n e n t
h o r i z o n t a l rr ien u

P 3 : T««»>porar y
v e r t i c a l m e n u a t
r igh t I n c o n t e n t

P 4 : In fo rmat io n P o r t a l o f th e CB C Sit e

Figure 4.15 Examples of pattems.
(Extracted from the CBC News Website)

Figure 4.16 demonstrates tlie redesigned interface of the CBC site for migrating to a PDA

platform. The permanent horizontal menu pattem at the top (P5) in the original desktop UI

were repositioned to a shorter horizontal menu pattem (P5s). In order to accommodate this

83

change on the small PDA screen, the three different horizontal menus had to be shortened,

and otily important navigation items were used. The keyword search pattem (PI3) remains

as a keyword search. The permanent vertical menu on the left (P6) was redesigned to a

drop-down menu (PI5). The drop-down menu in the PDA design also includes the menu

headings, "What's on today?"" and ''Online features" fi"om the temporary vertical menu

(P3) in the original desktop design. Finally, the information portal (P4), which is the first

item that captures the user's attention, was redesigned as a smaller information portal

(P4s).
P 5 r e d e s i g n e d t o s h o r t e r
h o r i z o n t a l m e n u

/
, ^ 7 ^ * I n t e r n e t E x p l o r e r 1^ 1 0 : 0 7 ^ ^

P 6 r e d e s i g n e d l o
d r o p - d o w m m e n u
(i n c l u d e s m e n u
h e a d i n g s f r o m P 3)

Uodsied: 12:3 1 P M t T F f idsy, Ju n 6 . ZOOS
N E W S

M « n t * l l y i l l m ^ n
1 - . - ; - ; -»,- * • " • • y r « f « s * » r « * t -

C l C t ^ ^ - . I * . » I l gn^nt, c o u r t r u l e s
I n . » <as« r«mintsc«n t o F th « H o l l y w o o d n i o v i « A
S^iS<^f^/t MfTKf, th e S u p r e m e Cour t o f C a n a d a ha s
ruled tha t a m e n t a l l y il l phyxic s geniu x ha s th e righ t t o
refuse t r e a t m e n t Fo r hi s condi t ion . . . F H I t S T O i t v
* Contrac t t altii b e t i ^ e e n Mâ ^ r C^n-^^r * •*< ' •TQr.trotler ^

at tn-ipas.i< >
* lucna . K^ Ach, me£QQnal.jcl.&di.cAtfcAjtfl—CjaaAduj>..:>^.«5.
• Ur s nuclea r inspector s rsr̂ utT > t o][«-a q to <rac k stole n

S P O R T S
• S o s a suspertde d »igh t qanr><> ^
a r>f\fil'. h^ttf-r OMctcz ir . <^am< - * ^

V i e w T o o l s ^ - Q ^ \Lyi 3 ^ »h

P I 3 s t a y s a s K e y w o r d
s e a r c h

>
P 4 r e d e s i g n e d t o
s m a l l e r I n f o r m a t i o n
p o r t a l

Figure 4.16 Migration of the CBC site to a PDA Platform using Pattem Mapping.
(Extracted from the CBC News Website)

What has just been illustrated in this section and the examples in Figure 4.14, Figiu-e 4.15

and Figure 4.16 can be characterized in the form of composed and mapped pattem-oriented

design architecture (Figure 4.17).

A p t a t f o r m
I n d e p e n d a n t
p a t t e r n -
o r l e n t e d d e s i g n
c o m p o s e d o f a
s e t o f p a t t e r n s
f r o m d t f f e r e n t
p a t t e r n s
c a t e g o r i e s

A p l a t f o r m
d e p e n d a n t
p a t t e r n -
o r i e n t e d d e s i g n
f o r P D A

A p l a t f o r m
d e p e n d a n t e p e n I

a t t e r n
o r i e n t e d d e s i g n
f o r M o b i l e
P h o n e

A p l a t f o r m
d e p e n d a n t
p a t t e r n -
o r i e n t e d d e s i g n
f o r I n t e r a c t i v e
T V

Figure 4.17 Pattem-Oriented Composition and Mapping Design Architecture.

84

4.2 Summary o f chapter

This chapter has focused on an architectural level and categories of patterns that combine

one key approach: pattern-oriented. Architectural levels and categories of pattems have

been described (Navigation patterns, Interaction pattems. Visualization patterns,

Presentation pattems. Interoperability patterns, and Information patterns) as well as the

different relationships between pattems. Their relationships are used to combine using the

composition rules described in section 4.1.2 such as similar, competitor, super-ordinate,

sub-ordinate and neighbouring to create a platform independent model (PIM) and to map

several types of patterns to create a platform specific model (PSM) design using mapping

rules described in section 4.1.3 such as identical, scalable, multiple and fundamental for

interactive systems, as well as to generate specific implementations suitable to different

platforms from the same pattern-oriented design.

In chapter 5 which follows, model categories used in POMA architecture are presented.

CHAPTER 5

MODELS IN POMA

This chapter presents a detailed description of five levels and categories of models used by

POMA. The first section describes model categorization. The second section defines model

transformation rules which apply for each type of model, [POMA.PIM] or [POMA.PSM].

These rules enable one to build a relationship between models of each category, i.e.,

models [POMA.PIM] and [POMA.PSM]. The last section explains the scope of the source

code generation phase in POMA.

5.1 Model Categorization s

A categorization of models is proposed here. Examples of models are also presented to

illustrate the need to map and/or to transform several types of models to provide solutions

to problems on the six architectural levels. This section describes how these models can be

used at six levels of the proposed POMA architecture to create a model-driven architecture

for interactive systems.

The focus is on a subset of the proposed models by this research project and consists of:

• A domain model;

• A task model;

• A dialog model;

• A presentation model;

• A layout model.

86

5.1.1 Domai n mode l

The Domain model is sometimes called a business model. It encapsulates the important

entities of a system domain along with their attributes, methods, and relationships

(Schlungbaum, 1996) and (Sinnig, 2004). Within the scope of user interface (UI)

development, it defines the objects and functionalities accessed by the user via the

interface. Such a model is generally developed using the information collected during the

business and functional requirements stage. The information defines the list of data and

features or operations to be performed in various ways, i.e. by different users on different

platforms.

The first Model-based approaches use a Domain model to drive the UI at mntime. In this

context, the Domain model would describe the interactive system in general, and include

some specific information for the UI. For example, the Domain model (Schlungbaum,

1996) would include:

• A class hierarchy of objects which exist in the interactive system;

• Properties of the objects;

• Actions which can be performed on the objects;

• Units of information (parameters) required by the actions;

• Pre- and post-conditions for the actions.

Consequently, the only real way to integrate UI and system development is the

simultaneous use of the data model. This is why recent model-based approaches include a

Domain model known from the system engineering methods. Four other models: Task,

Dialog, Presentation, and Layout, have the Domain model as an input.

87

5.1.2 Task mode l

The Task model makes it possible to describe how tasks can be performed to reach the

user's goals when using an interactive system (Patemo, 2000). Using this model, designers

can develop integrated descriptions of the system from a functional and interactive point of

view. Task models are typically tasks and subtasks hierarchically decomposed into atomic

actions (Souchon et al., 2002)]. In other words, the task model is the set of tasks that users

need to perform with the interactive system. In addition, the relationships between tasks are

described with the execution order or dependencies between peer tasks. The tasks may

contain attributes about their importance, their duration of execution, and their frequency

of use.

For purposes here, the following definition is applied:

A task is a goal, along with the ordered set of subtasks and actions that would

satisfy it in the appropriate context (Schlungbaum, 1996).

This definition highlights the intertwining nature of tasks and goals. Actions are required to

satisfy goals. Furthermore, the definition allows the decomposition of tasks into sub-tasks,

with some ordering among the sub-tasks and actions. In order to support this definition,

one needs to add the definitions for goal, action, and artefact:

A goal is an intention to perform the task which is the state of an artefact based on

(Schlungbaum, 1996);

An action is any act which has the effect of changing or maintaining the state of an

artefact based on (Schlungbaum, 1996);

An artefact is an object which is essential for a task. Without this object, the task

cannot be performed; the state of this artefact is usually changed in the course of the

performance of a task. Artefacts are real things which exist in the context of task

88

performance. In business, artefacts are modeled as objects and represented in the

business model. This implies a close relationship between the Task model and the

business model.

These definitions derive the information that needs to be represented in a Task model.

According to (Schlungbaum, 1996), the description of a task includes:

• A goal;

• A non-empty set of actions or other tasks which are necessary to achieve the goal;

• A plan of how to select actions or tasks;

• A model of an artifact, which is influenced by the task.

Consequently, the development of the Task model and the Domain model is interrelated.

One of the goals of model-based approaches is to support user-centered interface design.

Therefore, they must enable the UI designer to create the various Task models. Three other

models (Dialog, Presentation, and Layout) have the Domain and Task models as inputs.

5.1.3 Dialog mode l

Dialog model enables one to provide dialog styles to perform tasks and to provide proven

techniques for the dialog. The Dialog model defines the navigational stmcture of the UI. It

is a more specific model and can be derived mostly from the more abstract Task, and

Domain models.

A dialog model is used to describe the human-computer interaction. It specifies when the

end-user can invoke commands, functions, and interaction media, when the end-user can

select or specify inputs, and when the computer can query the end-user and present

information (Puerta, 1997) and (Sinnig, 2004). The Dialog model describes the sequencing

of input tokens, output tokens, and the way in which they are interleaved. It describes the

syntactical structure of human-computer interaction. The input and output tokens are

lexical elements. Therefore, and in particular, this model specifies the user commands,

89

interaction techniques, interface responses, and command sequences permitted by the

interface during user sessions. Two other models. Presentation and Layout, have the

Domain, Task, and Dialog models as inputs.

5.1.4 Presentation mode l

The Presentation Model describes the visual appearance of the UI (Schlungbaum, 1996).

This model exists at two levels of abstraction: the abstract and the concrete. In practice,

they define the appearance and the form of presentation of a system within an interactive

system providing solutions on how the contents or related services can be visually

organized into working surfaces, the effective layout of multiple information spaces and

the relationship between them. Moreover, they define the physical and logical layout

suitable for specific interactive systems such as home pages, lists, and tables.

A Presentation model describes the constructs that can appear on an end-user's display,

their layout characteristics, and the visual dependencies among them. The displays of most

systems consist of a static part and a dynamic part. The static part includes the presentation

of the standard widgets like buttons, menus, and list boxes. Typically, the static part

remains fixed during the runtime of the interactive system, except for state changes like

enable/disable, visible/invisible. The dynamic part displays system-dependent data, which

typically change during runtime (e.g. the system generates output information, while the

end-user constructs system-specific data).

The former provides an abstract view of a generic interface, which represents

corresponding Task and Dialog models. Another model. Layout, has the Domain, Task,

Dialog, and Presentation models as inputs.

90

5.1.5 Layout mode l

A Layout model constitutes a concrete instance for an interface. It consists of a series of UI

components which defines the visual layout of a UI and the detailed dialogs for a specific

platform and context of use. There may be many concrete instances of a Layout model

which can be derived from Presentation and Dialog models.

The layout model makes it possible to provide conceptual models and architectures for

organizing the underlying content across multiple pages, servers, databases, and

computers. It is concerned with the look and feel of interactive systems and with the

construction of a general drawing area (e.g. a canvas widget); and all the outputs inside a

canvas must be programmed using a general-purpose programming language and a low-

level graphical library.

91

5.2 Model Transformatio n

Model transformation is the process of converting one or more models - called source

models - to an output model - the target model - of the same system. Transformations may

combine elements of different source models in order to build a target model.

Transformation rules apply to all the types of models listed above.

The following steps make up the list of transformation rules suggested in (INTERACT,

1999) and are considered as part of POMA architecture:

1. Maintain tracking structures of all class instances where needed;

2. Maintain tracking structures for association populations where needed;

3. Support state machine semantics;

4. Enforce Event ordering;

5. Preserve Action atomicity;

6. Provide a transformation for all analysis elements, including:

• Domain, Domain Service;

• Class, Attribute, Association, Inheritance, Associative Class, Class Service;

• State, Event, Transition, Superstate, Substate;

• All action-modeling elements.

The transformations between models (Si Alhir, 2003) provide a path which enables the

automated implementation of a system to be derived from the various models defined for

it.

92

5.3 Source code generatio n

Source code generation is not taken into account in this research project. However, the

generation phase in POMA must define the source code generation mles, which will be

used to generate the source code for the whole interactive system in various languages for

various specific platforms.

5.4 Summary o f chapter

This chapter has focused on an architectural model that combines two key approaches:

model-driven and pattern-oriented. The research project has proposed five categories of

models (Domain model. Task model. Dialog model. Presentation model and Layout

model) to address some of the challenging problems such as: (a) decoupling the various

aspects of interactive systems such as business logic, user interface, navigation, and

information architecture; (b) isolating platform-specific problems from the concerns

common to all interactive systems.

In chapter 6, an exploratory case study is presented to illustrate and clarify the core ideas of

POMA architecture and of its practical relevance.

CHAPTER 6

CASE STUDY

6.1 Overview

This section presents a case study that describes the design of a functional user interface

simplified prototype of an 'Environmental Management Interactive System' (IFEN),

illustrating and clarifying the core ideas of the POMA approach and its practical relevance.

This environmental management interactive system permits requirements analysis of the

environment, its evolution and its economic and social dimensions, and proposes indicators

of performance. The main objectives of environmental management are the treatment and

distribution of water, improving air quality, monitoring noise, the treatment of waste, the

health of fauna and flora, land use, preserving coastal and marine environments, and

managing natural and technological risks (IFEN).

A simplified prototype of the 'Environmental Management Interactive System' is

developed here. The interactive system and corresponding models will not be tailored to

different platforms. This prototype illustrates how patterns are used to establish the various

models, as well as the transformation of one model into another while respecting the

pattern composition rules described in section 4.1.2, the pattern mapping rules described in

section 4.1.3 and the transformation rules described in section 5.2.

This case study presents a general overview of the PIM and PSM models of the

'Environmental Management Interactive System' by applying pattern composition steps

and mapping rules, as well as transformation rules for the five models. The details of

94

this illustrative case study are presented in this chapter in which the five models

representing the same interactive system are illustrated on a laptop platform and on a PDA

platform. The five models include the Domain model. Task model. Dialog model.

Presentation model and Layout model of POMA architecture. Table 6.1 lists the patterns

that will be used by the interactive system.

A prototype of a multi-platform interactive system for POMA architecture is implemented.

A prototype is implemented in Java language using the Eclipse tool. There is a screenshot

of the final layout of the 'Environmental Management Interactive System' illustrated in

Figure 6.24. The key features of the current version of this interactive system prototype are

the following:

• Support for well-arranged graphical specifications of hierarchy of POMA networks.

This is achieved by the notion of a so-called tree explorer, in which the hierarchy of

networks can be easily viewed and managed;

• Support for checking the correctness of network dependencies at the syntactic level. The

editor contains a list of inputs and an output port for each network in the hierarchy and

gives the user help to bind the right subsystem ports to the higher ports in the network

hierarchy;

• Together with architectural compatibility checking, the prototype will allow one to

easily define new POMA models by composing and mapping patterns which have

already been defined and formalized.

95

Table 6.1

Pattern Summary

m- Patter n Nam e 1
Login

Multi-Value Input
Form (Seffah and

Gaffar, 2006)
Submit

Feedback
Close

Find (Search,
Browse, Executive
Summary) (Seffah
and Gaffar, 2006)
Path (Breadcrumb)

Index Browsing

Adapter

Builder

List
Table
Map

Graph
Home Page

Wizard
(Welie, 2004) and

(Sinnig, 2004)
Recursive Activation
(Seffah and Gaffar,

2006)
Unambiguous Format

(Seffah and Gaffar,
2006)
Form

(Seffah and Gaffar,
2006)

House (Seffah and
Gaffar, 2006)

Model
Type

Domain

Domain

Domain

Domain
Domain

Task

Task

Task

Task

Task

Task
Task
Task
Task
Task

Dialog

Dialog

Presentation

Presentation

Layout

Problem

The user's identity needs to be authenticated in order to be allowed
access to protected data and/or to perform authorized operations.
The user needs to enter a number of related values. These values
can be of different datatypes, such as "date", "string", or "real".

The user needs to submit coordinates to the authentication process
to access the system.
The user needs help concerning the use of the Login Form.
The need to close the system from the Login form.
The need to find indicators related to the task concerned, to find
environmental patterns related to the indicators, and to find a
presentation tool to display the results of the indicators and the
environmental patterns.
The need to construct and display the path that combines the data
source, task, and/or subtask.
The need to display all indicators listed as index browsing to
navigate and select the desired ones.
The need to convert the interface of a class into another interface
that clients expect; an adapter lets classes work together which
could not otherwise do so because of interface incompatibility.
The need to separate the construction of a complex object from its
representation, so that the same construction process can create
different representations.
The need to display the information using forms.
The need to display the information in tables.
The need to display the information in geographic maps.
The need to display the information in graphs.
The need to define the layout of an interactive system home page,
which is important because the home page is the interactive system
interface with the world and the starting point for most user visits.
The user wants to achieve a single goal, but several decisions and
actions need to be taken consecutively before the goal can be
achieved.
The user wants to activate and manipulate several instances of a
dialog view.

The user needs to enter data, but may be unfamiliar with the
structure of the information and/or its syntax.

The user must provide structural textual information to the system.
The data to be provided are logically related.
Usually, the system consists of several pages/windows. The user
should have the impression that it all "hangs together" and looks
like one entity.

96

Figure 6.1 shows the graphical representation of the pattem which is used to exemplify the

pattem in this case study.

Figure 6.1 Graphical representation of the pattern.

6.2 Defining the Domain Model

Acting in the horizontal line of the POMA architecture (Figure 3.2), this model is

composed of two types of sub-models, [POMA.PlMJ-independent Domain sub-model and

[POMA.PSM]-specific Domain sub-model.

The [POMA.PlMj-independent Domain sub-model (Figure 6.2) is obtamed by composing

pattems and applying the composition mles.

<<Features>=-
Login

•ShowLoginPromptQ

Coordinates

.f Neighboring „

,' 1

«Fea tures>->
Close

•CloseFormO

Super-fDrdinate
.| Input Flele/s Coordinates

<< Features >>
Multi-Valuelnput

t ^ U s e r N a m e : Character Se t
€^Chain : Character Se t
fi^PassWord : Character Se t

•ShowFormQ
• input ValuesQ

Super

Neigtib oring <<Features>=-
Feedback

•GetFeedbackQ

Neighb oring

Ordinate
\/n

1

<<Features>>
Submit

•SubmitActionO

Neighb oring

Authenticate Fields Coordinates
Usef1_ist

^>Usemame : Character Se t
^I^Chain : Character Se t
Q^Password : Characte r Se t

•ver i fy CoordinatesOO

Figure 6.2 UML class diagram of the PIM Domain model.

97

The following example shows the composhion of a "Close" pattem in XML language:

/*XML
<!xmlversion="1.0">
<d-class name="Close"

Compose-to="xml.Jbutton"

</d-cIass>
</xml>

>

The [POMA.PSMJ-specific Domain sub-model (Figure 6.3 and Figure 6.4) is obtained by

mapping composed pattems and applying the mapping mles (Table 6.2). This latter model

would be used to generate the interactive system's source code by taking into account the

generation code rules for a Microsoft platform.

Table 6.2 shows the mapping rules for the Domain model patterns for a laptop and PDA

platforms.

Table 6.2

Example of pattern mapping of the Domain mode l for laptop and PDA platform s

Patterns of
Microsoft
Platform

PI. Login

P2. Multi-value
Input
P3. Submit

P4. Feedback

P5. Close

Type of Mapping

Identical, Scalable, or
Fundamental
Identical

Scalable or
fundamental
Scalable or
Fundamental

Identical

Replacement
patterns fo r

Laptop platfor m
PI. Login

P2. Multi-value
Input
P3. Submit

P4. Feedback

P5. Close

m
Replacement ^

patterns for PDA
platform

Pl.s Login (small
interface)
P2. Muhi-value Input

P3.S Submit (Smaller
button)
P4. Feedback (Less
items per page)
P4.1.Next
P4.2. Previous
P5. Close

98

Therefore, the mapped domain model is obtained. An example of the mapping of a "Close"
pattem in Java language follows:

/* Java

<d-class name="Close"

Maps-to="j avax. swing. Jbutton">

</d-class>

After the mapping, the PSM Domain model is obtained for a laptop platform - Figure 6.3

and for a PDA platform - Figure 6.4.

<<Fea tu res>>
Login

•ShowLoginPromptO

0^^ '

_4^
<<Fea tu res>>

Mul t i -Valuelnput
Q^Use rName : Str in g
' ^ C h a i n : Str in g
^ ^ P a s s W o r d : Strin g

• S h o w F o r m O
• inputValuesO

1

H^. ^
<<Fea tu res>>

Submi t

•SubmitAct ionQ

< < F e a t u r e s > >
Close

•C loseFormO

- ^
<<Features>>

Feedback

• G e t F eed bac k 0

Userl-ist
* ^ U s e m a m e : St r in g
' ^ C h a i n : Str in g
' ^ P a s s w o r d : Strin g

•ver i fy CoordinatesO O

Figure 6.3 UML class diagram of the PSM Domain model for a laptop platform.

99

<<Features>>
Login

•ShowLoginPromptQ
A l

1 n

<<Features>>
Close

•c loseFormQ

. ^ 1
<<Features>>

Multi-Valuelnput
^^UserName : Strin g
tS^Chain : Strin g
i ^ P a s s W o r d : Strin g

•ShowFormO
• input ValuesQ

<<Features>>
Feedback

•GatFeedbackQ

A
Pre\^ous Next

UserList
i ^ U s e m a m e : Strin g
i^Chain : Strin g
i^(.Password : Strin g

^Verify Coordinates 0 0

Figure 6.4 UML class diagram of the PSM Domain model for PDA platform.

To obtain feedback on the PDA platform, we need to insert "Next " and "Previous "

pattems to obtain information in a nimiber smaller portal displays. The "Next " pattem

enables one to access the next feedback information available, and the "Previous" pattem

allows a retum to the previous feedback information.

Figure 6.5 and Figure 6.6 represent a stmcture of the "Login " pattem, which enables the

user to identify himself or herself in order to access secure or protected data and/or to

perform authorized operations.

Figure 6.7 and Figure 6.8 represent an implementation of the "Login" pattem.

100

;^—0 — G
npt Provid e Feedback Ente r Co irdinjtes

I f c .f * £ • !
Shorn 10 for Usemame | Show 10 for Chair)'] Sho w 10 for Password

Close Application

Entet^sehame
[EnWrCJiSinT Ept<fPas>«yd

R—"—P P-"- P P—"— P
[Type UsemameT I Modify UsemameT [Type Chain "1 | Modify Chain T | Type Password"] [Modif y Pasword")

Feedback

Figure 6.5 The Login pattern on the laptop platform.

ShqyttagiViPTwoBt Provid e Feedback Ente r Coordinates Close Application

Show 10 for Usemame (Stiow 10 for Ctiain *] Show 10 for Password

EiTjsrOselTiame
[Ep««fCft«nT EfiJeTPasSwiir d Previou s

[TVpe Usemame*] [Modif y Usernamel [TypeChain*] [Modify Chain T [Typ e Password T [Modil y Password 1

Ned

Figure 6.6 The Login pattem on the PDA platform.

Figure 6.7 is an example of implementation of the "Login" Pattem.

101

-:- POMA Logi n \

i Input Coordinates i Clos e Application Feedbac k

Username :

Chain :

Password :

1 Submi t Feedbac k

- - - - . . - ..

Figure 6.7 Login view of the interactive system on the laptop platform .

Figure 6.8 is an example of implementation of the "Login" pattem.

n P,- Login - [Preview]
Login] Clos e | ? |

Username I

Chain I

Password j

s

R-Login - [Preview]
Login Clos e | ? |

Close the application?

Yes J _No J

P, Logi n - [Preview]

Login in I Clos e ? |

_?Jx|

Previous Next
—WM

Figure 6.8 Login view of the interactive system on the PDA platform .

102

The following is an example of the XML source code of the Domain Model for the Laptop

platform of an "Environmental Management Interactive System":

<?xmlversion="1.0"?>
<xsd:schemaxmlns:xsd="http://www.w3.org/2007/XMLSchema">
<xsd:group name="Login">

<xsd:sequence>
<xsd:element name="ShowLoginPrompt"/>

<xsd:sequence>
<xsd:element name="EnterCoordinates">

<xsd:complexType>
<xsd:all>

<xsd:element name="Multi-ValueInpuf'>
<xsd:complexType>

<xsd:all>
<xsd:element name="ShowForm"/>
<xsd:element name="EnterValues">

xsd:complexType>
<xsd:attribute name="Usemame"/>
<xsd: attribute name="Password"/>

</xsd: complexType>
</xsd:element>
<xsd;element name="Submit"/>
<xsd:element name="Feedback"/>

</xsd:all>
</xsd:complexType>

</xsd:element>
<xsd:elementname="CloseApplication"/>

<xsd:element name="FeedbackForLoginForm"/>
</xsd:all>

</xsd:complexType>
</xsd:element>

</xsd:sequence>
</xsd:sequence>

</xsd:group>

http://www.w3.org/2007/XMLSchema

103

6,3 Defining th e Task Model

After establishing the Domain model for the system in this case study, the Task model can

be interactively defined. Figure 6.9 depicts the task model structure of the "Environmental

Management Interactive System". Only high-level tasks and their relationships are

portrayed. The overall structure and behavior of the interactive system is given. The

structure provided is relatively unique for an environmental management interactive

system; the concrete "realization" of high-level tasks has been omitted.

A large part of many interactive systems can be developed from a fixed set of reusable

components. In the case of the Task model, the more those high-level tasks are

decomposed, the easier it is to use the reusable task structures that have been gained or

captured from other projects or systems. In this case study, these reusable task structures

are documented in the form of patterns. This approach ensures an even greater degree of

reuse, since each pattem can be adapted to the current use context.

The main characteristics of the environmental management system, modeled by the task

structure in Figure 6.9 can be outlined as follows:

The interactive system's main fiinctionality is accessed by logging into the system (the

login task enables the management task). The key features are "adding a guest", which is

accomplished by entering the guest's personal information and by "selecting an

environment task or subtask" for a specific guest. The two tasks can be performed in any

order. The selection process consists of four consecutively performed tasks (related

through "Enabling with Information Exchange" operators):

104

1. Selecting Data Source to use;

2. Selecting Task or Subtask;

a. Data management,

b. Indicator management,

c. Presentation tool management,

d. Environmental pattern management.

Acting in the horizontal direction of the POMA architecture (Figure 3.2), this model is

composed of two types of sub-model, which are: [POMA.PlMJ-independent Task sub­

model, and [POMA.PSM]-specific Task sub-model.

[POMA.PlMJ-independent Task sub-models (Figure 6.10) are obtained by composing

pattems and applying the composition rules described in the section 4.1.2.

[POMA.PSMJ-specific Task sub-models (Figure 6.11) and (Figure 6.12) are obtained by

mapping composed patterns and applying the mapping mles (Table 6.3). This latter model

would be used to generate the system's source code by taking into account the code

generation rules.

105

Ljf»P*fit' nwJU/^Aitii^ttvt -n
-&_

Mar** E-»3i Pinnn

iitfci i»^-|i*: * Tai t
1^' -O-

..SMitfuT—- -,_ _
V ']

TWfHn£MiTBnir«l4i»9BiTM«:
jaEtrUCMlTaa*'*

' ^ — - " j ^ ^^ - - ^ ^ X - - • - • "" ' " ^

i i * \

fc.-^"
.•Fti Prf.tn Cnwtt r^m n <'>«-l» Md P*Ir» « em:^nr^iMr,

0 m m " 0 [»- w , ; ..••.I I ;-<-r««-»*. .ttT;.t .

getSdtectedSublask

ShowDataPslhsWrthPalhPatlemgetDatapathSulJtask SelecteDstaPathSubtask Flndlndrcator s getDataPathlndSubtask DisplaylndSubtas K Sete ^

Apphr RB«eEnab^rr«a!lems DisptaylndToolSubtas k ShowlndResuKsGubtas k

% % % ^
Ust Pattem Tabl e Patlem Ma o Pattern Graohoatte m

c F i n d E n v P a t t e r n s U p c l a t e E n v P a t L i s t P o s s i b l e S u b t a s l <

D t s p l a y E n v P a t T o o l s S u b t a sk S h o w E n v P a t R e s u l t s S u b t a s l <

Figure 6.9 Task model of the environmental management interactive system.

106

Figure 6.9 presents a stmcture of the Task model of the "Environmental Management

Interactive System". As shown in Figure 6.9, the Login, Multi-Value Input Form and Find

patterns can be used in order to complete the Task model at lower levels.

Figure 6.10 represents a UML class diagram of the PIM Task model, which is composed of

several patterns by applying, manually by the designers, the composition rules described in

section 4.1.2. This model underwent mapping by applying the mapping rules (Table 6.3) to

obtain another model, which is called a PSM Task model (Figure 6.11 for a laptop platform

and Figure 6.12 for a PDA platform).

107

1

«Features»
Login

Coordinates

•ShowLoginPromptO
Neighboring

«Features»
Close

•CloseFormO
Super-Ordinate / Neighboring Y

Super-Ordinate
1 Input Fields Coordinates

«Features»
I Multi-Valuelnpu t
^UserName : Character Set
S^Chain : Character Set
S^PassWord : Character Set

•ShowFomiO
ÎnputValuesQ

Neighboring
->

«Features»
Feedback

•GetFeedbackO

Neighboring

SuperrOrdinate

«Features>>
Submit

•SubnnitActionO

1

Neighboring
1 n

Authenticate Fields Coordinates
UserList

^Usemame : Character Se t
I^Chain : Character Set
fi^Password : Character Set

•Verify CoordinatesO

Navigation Jieighboring / Compititor/ Similar Interaction

" . /
Path Pattem IndexBrowsin g

! ! Patter n

Neighboring / Super-Ordinate

Find Pattems

Neighboring I Super-Ordinate

/

Search Pattem

\=

J
Browse Pattem Executiv e Summary

Pattem

InterDperability

Neighboring/Super-Ordinate/Sub-Oniinate Adapte^PA**? ^ Builder Pattem

List Pattern Tabl e Pattem Ma p Pattem | Grap h Pattem HomePage Pattem

Figure 6.10 UML class diagram of the PIM Task model.

108

Table 6.3 shows the mapping rules of the Task model patterns for a laptop and PDA

platforms.

Table 6.3

Example of pattern mapping of Task model for laptop and PDA platform s

Patterns of
Microsoft
Platform

PI. Login

P2. Multi-value
Input

P3. Submit

P4. Feedback

P5. Close

P6. Find
(Search, Browse,
Executive
Summary)

P7. Path
(Breadcrumb)

PS. Index
Browsing

P9. Adapter

PIO. Builder

PI 1. List

PI2. Table

P13.Map

PI4. Graph

PI5. Home Page

Type of Mapping

Identical

Identical, Scalable,
Fundamental

Scalable or
Fundamental

Identical,
Fundamental

Identical

Identical, Scalable

-Identical, Scalable
(Laptop)

-Scalable or
fundamental (PDA)

Identical

Identical

Identical

Identical

Identical

Identical

Identical

Identical

Replacement
patterns for Laptop

platform

PI. Login

P2. Muhi-value Input

P3. Submit

P4. Feedback

P5. Close

P6. Find (Search,
Browse, Executive
Summary

P7. Path (Breadcrumb)

P8. Index Browsing

P9. Adapter

PIO. Builder

PI 1. List

PI2. Table

PI3. Map

PI4. Graph

PI5. Home Page

Replacement
patterns for PDA

platform

P1. Login

P2. Multi-value Input

P3.S Submit (Smaller
button)

P4. Feedback

P4.1. Previous

P4.2. Next

P5. Close

P6. Find (Search,
Browse, Executive
Summary)

-P7.1s Shorter Bread
Crumb Trial

- P7.2 Drop-down
"History" menu

P8. Drop-down menu

P9. Adapter

PIO. Builder

PI I. List

PI2. Table

P13.Map

PI4. Graph

PI5. Home Page

109

After the mapping, the PSM Task model is obtained for a laptop platform - Figure 6.11.

<<Features>>
Login

•ShowLoginPromptO

0

Navigation

« F e a t u r e s »
Close

•CloseFormO

/ I
«Features>>

Multi-Valuelnput
<^UserName : String
QlK^hain : String
^Password : String

•ShowFormO
•inputValuesO

1

1
• "

«Features>>
Submit

•SubmitActionO

1 r

x''

/^

1 T V

«Features>>
Feedback

•GetFeedbackO

UserList
^Usemame : String
fl^hain Strin g
4t^assword : String

•Verity CoordinatesO

TIT"

Find Pattem s

Interaction

^ -
Search Patte m Browse Patter n Executive Summar y

Pattem

n .:^ "
Interoperability

" ' V

List Patte m

^

/ - • '

Presentation

/ n

^w^w^C^ v \--. ~
Table Patte m Map Patte m

Adapter Patte m Builder Patte m

Graph Patte m HomePage Patte m

Figure 6.11 UML class diagram of the PSM Task model mapped for a laptop
platform.

110

After the mapping, the PSM Task model is obtained for a PDA platform - Figure 6.12.

<<Features>>
Login

•StiowLoglnPromptO

N|/1
«Features>>

Multi-Valuelnput
^UserName : String
^ C h a i n : Strin g
^ P a s s w o r d : String

•ShowFormO
•inputValuesO

M/"
« F e a t u r e s »

Submit

•SubmitActionO

Navigation

«Features»
Close

•CloseFormO

-5>

« F e a t u r e s »
Feedback

/

•GetFeedbackO

Previous Next

UserList
I^Usemame : String
I^Chain : Strin g
^Password : Strin g

•Verily CoordinatesO

Executive Summar y
Pattem

List Pattem I I TablePatte m I I Ma p Pattem I I Grap h Pattem I HomePag e Patte m

Figure 6.12 UML class diagram of the PSM Task model mapped for a PDA platform.

I l l

The following is an example of the XML source code portion of the Task Model for a

Laptop platform of the "Environmental Management Interactive System":

<?xmlversion='1.0'?>
<!DOCTYPE TaskModel PUBLIC "http://giove.cnuce.cnr.it/CTTDTD.dtd"
"..\..\..\..\Teresa\CTT\CTTDTD.dtd">
<TaskModel
NameTaskModelID="C:\Momo\PhD\These\Prototype\Environmental_Management_CTT.
xmr'>
<Task Identifier="Environmental Management" Category="abstraction" Iterative="false"
Optional="false" PartOfCooperation="false" Frequency="nuH">

<Name> null </Name>
<Type> null </Type>
<Description> null </Description>
<Precondition> null </Precondition>
<TimePerformance>
<Max> null </Max>
<Min> null </Min>
<Average> null </Average>

</TimePerformance>
<Object name="nuH" class="nuU" type="nuH" access_mode="nuH" cardinality="nuH">
<Platform> null </Platform>
<InputAction Description="nuH" From="nuH"/>
<OutputAction Description="nuH" To="nuU"/>
</Object>
<SubTask>

<Task Identifier="Login Pattem" Category="application" Iterative="false"
Optional="false" PartOfCooperation="false" Frequency="nuH">

<Name> null </Name>
<Type> null </Type>
<Description> null </Description>
<Precondition> null </Precondition>
<TemporalOperator name="SequentialEnabling"/>
<TimePerformance>
<Max> null </Max>
<Min> null </Min>
<Average> null </Average>

</TimePerformance>
<Parent name="Environmental Management"/>
<SiblingRight name="Run Main Application"/>
<Object name="nuH" class="nuH" type="nuU" access_mode="nuH" cardinality="nuH">
<Platform> null </Platform>
<InputAction Description="null" From="nuU"/>
<OutputAction Description="nuH" To="nuir'/>
</Object>

http://giove.cnuce.cnr.it/CTTDTD.dtd

112

</Task>

<SubTask>
<TaskIdentifier="ShowDataPathsWithPathPattern"Category="interaction"
Iterative="false" Optional="false" PartOfCooperation="false" Frequency="null">

<Name> null </Name>
<Type> null </Type>
<Description> null </Description>
<Precondition> null </Precondition>
<TemporalOperator name="SequentialEnabling"/>
<TimePerformance>
<Max> null </Max>
<Min> null </Min>
<Average> null </Average>

</TimePerformance>
<Parent name="Data Management"/>
<SiblingRightname="getDataPathTasks"/>
<Object name="nuH" class="nuH" type="nuH" access_mode="nuH" cardinality="nuH">
<Platform> null </Platform>
<InputAction Description="nuU" From="nuH"/>
<OutputAction Description="null" To="nuH"/>
</Object>
</Task>

</SubTask>
</Task>

</TaskModel>

113

6.4 Defining th e Dialog Model

Acting in the horizontal line of the POMA architecture (Figure 3.2), the Dialog model is

composed of two types of sub-model, [POMA.PlMJ-independent Dialog sub-model, and

[POMA.PSMJ-specific Dialog sub-model.

[POMA.PlMJ-independent dialog sub-model (Figure 6.13) is obtained by composing

patterns and applying, manually by the designers, the composition rules described in

section 4.1.2.

The Wizard dialog pattern emerges as the best choice for implementation. It suggests a

dialog structure where a set of dialog views is arranged sequentially and the "last" task of

each dialog view initiates the transition to the subsequent dialog view. Figure 6.14 depicts

the Wizard dialog pattern's suggested graph stmcture.

[POMA.PSMJ-specific Dialog sub-model (Figure 6.15) is obtained by mapping composed

patterns and applying the mapping rules (Table 6.4). This [POMA.PSMJ model is used to

generate the interactive system's source code by taking into account the code generation

rules.

Figure 6.13 represents a UML class diagram of the PIM Dialog model, which is composed

of several patterns. This model underwent mapping by applying the mapping rules (Table

6.4) to obtain another model, which is called PSM Dialog model (Figure 6.15 for a laptop

platform and Figure 6.16 for a PDA platform).

However, the sequential structure of the subtask process must be slightly modified in order

to enable the user to view the details of multiple subtasks at the same time. Specifically,

this behavior should be modeled using the Recursive Activation dialog pattern. This

pattern is used when the user wishes to activate and manipulate several instances of a

dialog view.

114

«FeaturBS>>
Login

^ShowCoglnPrompt()

CoonUnmtmm

^ Neighborirtg i

<:<Feature»»
Close

•closoFormO

S uper-Onii nat&
. Input Fl»l<im

<<Featuros>>
MuUi-Valuelnput

C^UserName . Character Se t
fl^Chain Characte r Se t
I^PassWord : Character Se t

• s h owF orm ()
^InputValuesO

CoortHnatmm

Nmighboring
1 n

1 ,

<<Featuras»
Feedback

^GetFeedbackO

Noighboring
S uper-Onlinato

«FeatunBS»
Submit

^SubmitActionQ

AuthmnHcmtm Ftmttim Coortf/nafee
^ Usert-is t
<^Usemame Characte r Se t

Nmighboring i^Chal n : Character Se t
' (^Password : Character Se t

•ver i fy CoordinatesO
Super-Ordinate / Neighboring

Noighboring / Compititor/ Similar Interaction

Path Patte m IndexBrowsing
Pattern

Neighboring / Super-Ordinate

Neighboring / Super-Ordinate

Neighb onng

Find Patterns

Browse Patle m Executive Summar y Patter n

IntaroperaMlity

Neighboring / Super-Ordinate / Sub-Ordffiate
" i

Presentation Adapte r Patte m

=̂v.

^T'-v
Builder Patte m

Ust Patte m Tab> a Pattem Ma p Patte m Grap h Patte m Homepage Patte m

et o f Dialog View s
«D ia log>>

VVizafd
NBigborfng

«Dia log>>
Recursive Activatio n

Source Dialo g Vie w
Creator Task s
Target Dialo g View s

Neighboring

Figure 6.13 UML class diagram of a PIM Dialog Model.

••

WogVewX

IwltY

*f OMAtfKv M j

Figure 6.14 Graph structure suggested by the Wizard pattem.

115

Table 6.4 shows the mapping rules of the Dialog model patterns for laptop and PDA

platforms.

Table 6.4

Example o f pattern mapping of Dialog model for laptop and PDA platform s

1 Pattern s of
BMicrosoft Platfor m

PI. Login

P2. Multi-value
Input

P3. Submit

P4. Feedback

P5. Close

P6. Find (Search,
Browse, Executive
Summary)

P7. Path
(Breadcrumb)

P8. Index Browsing

P9. Adapter

PIO. Builder

PI 1. List

PI2. Table

P n . M a p

PI4. Graph

PI5. Home Page

PI6. Wizard

PI7. Recursive
Activation

Type of Mapping

Identical

Identical, Scalable,
Fundamental

Scalable or
fundamental

Identical,
Fundamental

Identical

Identical, Scalable

-Identical, Scalable
(Laptop)

-Scalable or
fundamental (PDA)

Identical

Identical

Identical

Identical

Identical

Identical

Identical

Identical

Identical

Identical

Replacement
patterns for Laptop

platform

PI. Login

P2. Multi-value Input

P3. Submit

P4. Feedback

P5. Close

P6. Find (Search,
Browse, Executive
Summary

P7. Path (Breadcrumb)

P8. Index Browsing

P9. Adapter

PIO. Builder

PI 1. List

PI2. Table

P n . M a p

PI4. Graph

PI5. Home Page

Wizard

Recursive Activation

Replacement pattern s
for PDA platfor m

PI. Login

P2. Multi-value Input

P3.S Submit (Smaller
button)

P4. Feedback

P4.1. Previous

P4.2. Next

P5. Close

P6. Find (Search, Browse,
Executive Summary)

- P7.1s Shorter Bread
Crumb Trial

- P7.2 Drop-down
"History" menu

P8. Drop-down menu

P9. Adapter

PIO. Builder

PI 1. List

PI2. Table

P13.Map

PI4. Graph

P15. Home Page

PI6. Wizard

PI7. Recursive Activation

116

After the mapping, the PSM Dialog model is obtained for a laptop platform - Figure 6.15.

« F e a l u r B s »
Login

^ShowLoginPromptO
1

« F o a t u f B S »
Close

•closeFonmO

«FeatuPBs»
Multi-Valuelnput

<^UserName : Strin g
I^Chain : String
^ P a s s w o r d : String

•ShowFormO
•fnputVaiuesQ

1

1 1
n ^

«Features>>
Submit 1

^SubmitActionQ i

1 n

n

<<Featu res»
Feedback

^GetFeedbackO

UserList
^ U s e m a m e : Strin g
C ^ h a i n : Strin g
^ P a s s w o r d : Strin g

^Verriy CoordinatesO

Naugation

"̂TV .̂
Path Patter n Index BfDwshig

Pattem Find Pattern s

.^^^L
Search Patte m Browse Patter n Executiw Summar y Patte m

=̂ ", Interoperabilit y

"^V

Presentation

^ f \
I Adapter Patte m Builder Patter n

List Patte m Table Patte m Map Patte m Graph Patte m Homepage Patte m i
« O i a l o o »

- ^ Wizar d

n \ ,
«Dia lcg>>

Recursive Activatio n

Figure 6.15 UML class diagram of the PSM Dialog model for a laptop platform.

117

After the mapping, the PSM Dialog model is obtained for a PDA platform - Figure 6.16.

« F e a t u r e s »
Login

^howLoginPromptO
1 —

I <<Featu res »
Close

^CloseFormO

«FeaturBS>>
Multi-Valuelnput

^ U s e f N a m e Strin g
d ^ h a i n : Strin g
^ P a s s w o r d : Strin g

•ShowFonmO
^InputValuesO

«Features>>
Feedback

^GetFeedbackO I

«Features>>
Submit

7̂
Previous

'v<_

Next

UserList
j^Usemame : Strin g

JfS^Chain : Strin g
iS^Password ; Strin g

^VerifyCoofdtnatesO

Find Pattem s

V^ T
Search Patte m Browse Patte m

Builder Patte m

Graph Pattem HomePag e Patte m g

Executive Summai y Patte m

Figure 6.16 UML class diagram of the PSM Dialog model for a PDA platform.

118

Figure 6.17 depicts the various dialog view interactions of the ""Environmental

Management Interactive System's" suggested dialog graph structure for laptop and PDA

platforms.

Data Source

(jetDataProvide r J

TgetDalaBrokerj

(gitDaUUse r)

- • - > •

(getOoucleCliciiTasli)

(Selec t Subtask ')

(Oat a Management j

^Hndicators Management)

(Presentatio n Tools J

r Environmen t Patterns]

Data Management

(ShowDalaPathWithPathPattern)

(getDalaPatl i)

(^electDataPath)

- * - * •

Indicators
Management

(Searc h)

(Brows e J

fActivate Agent)

(Eiecubve Summary)

-

Presentation
Tools

Environment
Patterns

('•""'"^" ') (fin d Env Patterns)

(Tablepatter n) ~^(up„^EnvPatUstPossible)

(Ma p Pattern) / \
^ ' I DisplayEnvPatTool s j
(Grap h Pattem) , ,

I ShowEnvPatResult e j

(DisplaylndTool s J

C ShowlndResult s)

Figure 6.17 Dialo g Graph of the environmental managemen t interactiv e system fo r
laptop and PDA platforms .

119

6.5 Defining th e Presentation an d Layout Models

In order to defme the Presentation model for this case study, the grouped tasks of each

dialog view are associated with a set of interaction elements, including forms, buttons and

lists. Style attributes, such as size, font, and colour, remain unset and will be defined by the

layout model.

A significant part of the user tasks of the system revolves around providing structured

textual information. This information can usually be split into logically related data

chunks.

At this point, the Form Presentation pattern, which handles this precise issue, can be

applied using a form for each related data chunk, populated with the elements needed to

enter the data. Moreover, the pattern refers to the Unambiguous Format pattern which can

be employed. The purpose of this pattern is to prevent the user from entering syntactically

incorrect data, and is achieved in the following way: Depending on the domain of the

object to be entered, the instance of the pattern provides the most suitable input interaction

elements by drawing on information from the business object model.

Acting in the horizontal line of the POMA architecture (Figure 3.2), the model is

composed of two types of sub-model, [POMA.PlMJ-independent Presentation sub-model,

and [POMA.PSMJ-specific Presentation sub-model.

The [POMA.PlMJ-independent Presentation sub-model (Figure 6.18) is obtained by

composing pattems and applying the composition rules.

120

The [POMA.PSMJ-specific Presentation sub-model (Figure 6.19 and Figure 6.20) is

obtained by mapping composed patterns and applying the mapping rules (Table 6.5). This

model is used to generate the system's source code by taking into account the code

generation rules.

Figure 6.18 represents a UML diagram of the PIM Presentation model, which is composed

of several patterns. This model underwent mapping by applying the mapping rules (Table

6.5) to obtain another model, which is called the PSM Presentation model (Figure 6.19 for

a laptop platform and Figure 6.20 for a PDA platform).

121

m «Features>>
Login

•ShowLoginPromptO
— 1

Coord/nmfm

^ Neighboring ^

« F e a t u r e s »
Close

•CloseFormO

Super-Onilinate
1 Input Flmtd9 Coordlnmtmm

<<Features>>
Multi-Valuelnput

<<Foa tu res» "^UserName : Character Se t Neighboring p^IalTak
^»Chain ; Character Se t * * : Feedbac K
<S^PassWord : Character Se t

•ShowFonnO
•tnputValuesO

,i •GetFeeddbackO

S uper-Ordinmte |/ Neighboring
Super- OnUnete

<<FeaturBS>>
Submit

•SubmltActionO

Neighboring

^^ Authmntleeie Fi^de Coordlnm
j Usert-is t
l i ^Usemame : Character Se t

J^elghboring ^ l ^Cha l n : Character Se t
: l^Password : Character Se t

•Veri ty CoordinatesO

Navigation Neighboring / Compititor/ Simitar Inteiaotion

TT^.. T
Neighboring / Super-Ordinate

Path Patte m IndexBrowsing
Pattem

Neighb aiiriffit SuperOjdinate

Neighboring

Neighboring

l ^ t Patte m Table Patte m Map Patte m Graph Patte m HomePage Patte m

Set o f Dialo g View s
« D i a l o g »

Wizard

Neigt oring

<<Dialog>>
Recursive Activatio n

Source Dialo g Vie w
Creator Task s
Target Dialo g View s

Neigboring
^ p ''^P" * Field s

« P r e s e n t a t i o n »
Form

Datatype : » Datatype(lnpu t Field)
<<Presentatton»

Unambiguous Formcr t

Figure 6.18 UML class diagram of a PIM Presentation model.

122

Table 6.5 shows the mapping rules of the pattems of the Presentation model for laptop and

PDA platforms.

Table 6.5

Example of pattern mapping of the Presentation mode l for laptop and PDA platform s

Patterns of
Microsoft Platfor m

PI. Login
P2. Multi-value Input

P3. Submit

P4. Feedback

P5. Close
P6. Find (Search,
Browse, Executive
Summary)
P7. Path
(Breadcrumb)

P8. Index Browsing
P9. Adapter
PIO. Builder
PI 1. List
PI2. Table
PI3.Map
PI4. Graph
PI5. Home Page
PI6. Wizard
PI7. Recursive
Activation
PI8. Unambiguous
Format
Form

Type of
Mapping

Identical
Identical,
Scalable,
Fundamental
Scalable or
fundamental
Identical,
Fundamental

Identical
Identical,
Scalable

-Identical,
Scalable
(Laptop)
-Scalable or
fundamental
(PDA)
Identical
Identical
Identical
Identical
Identical
Identical
Identical
Identical
Identical
Identical

Identical

Identical

Replacement
patterns for Laptop

platform
PI. Login
P2. Muhi-value
Input

P3. Submit

P4. Feedback

P5. Close
P6. Find (Search,
Browse, Executive
Summary
P7. Path
(Breadcrumb)

P8. Index Browsing
P9. Adapter
PIO. Builder
PI 1. List
PI2. Table
P13.Map
PI4. Graph
PI5. Home Page
PI6. Wizard
PI7. Recursive
Activation
PI8. Unambiguous
Format
Form

Replacement patterns—
for PDA platform ^

PI. Login
P2. Multi-value Input

P3.S. Submit (Smaller
button)
P4. Feedback
P4.1. Previous
P4.2. Next
P5. Close
P6. Find (Search,
Browse, Executive
Summary)
-P7.1s. Shorter Bread

Crumb Trial
- P7.2. Drop-down
"History" menu

P8. Drop-down menu
P9. Adapter
PIO. Builder
PI 1. List
PI2. Table
P13.Map
PI4. Graph
PI5. Home Page
PI6. Wizard
PI7. Recursive
Activation
PI8. Unambiguous
Format
Form

123

After the mapping, the PSM Presentation model is obtained for a laptop platform - Figure

6.19.

RecursiMB Acllvation

___ . n
< < P resen tatlon> >

Form

«PresentBtlon>>
Unanribiguous Forma t

Figure 6.19 UML class diagram of the PSM Presentation model for a laptop platform.

124

After the mapping, the PSM Presentation model is obtained for a PDA platform - Figure

6.20.

<< Features >>
Login

^Showl-oglnPromptO

«Features>:9
Close

•CloseFormO

<< Features >>
Multi-Valuelnput

^^UserName : Character Se t
t^rChain : Character Se t
^PassNA/ord : Character Se t

•ShowFormO
^ n p u t Values 0

<Features>>
Submit

•SubmitActlonO

I Usert-is t
t ^Usemame r Character Se t
(^Chain : Character Se t

id^Password : Character Se t

•VerfiyCoordlnatesO

Navigation Interaction

Find Pattern s

Search Patle m Browse Pattet n

_... ,
Executive Summar y Patte m

List Patte m Table Patte m Map Patte m Graph Patle m HomePage Patte m

<:<Dialoo>>
Wizard

« Dialo g »
Racutsive Activation

«Presentallon>>
Form

<< Presentation >>
Unambiguous Forma t

Figure 6.20 UML class diagram of the PSM Presentation model for a PDA platform.

125

In the Layout model, the style attributes, that have not yet been defined, are set in keeping

with the standards set for the "Environmental Management Interactive System". According

to the House Style pattern (which is applicable here), colours, fonts, and layouts should be

chosen to give the user the impression that all the system windows share a consistent

presentation and appear to belong together. Cascading style sheets have been used to

control the visual appearance of the interface. In addition, to assist the user when working

with the system, meaningful labels have been provided. The Labeling Layout pattem

suggests the adding of labels for each interaction element. Using the grid format, the labels

are aligned to the left of the interaction element.

The Layout model determines how the loosely connected XUL (Appendix III) fragments

are aggregated according to an overall floor plan. In this case study, the task is fairly

straightforward since the UI is not nested and consists of a single container. After

establishing the Layout model, the aggregated XUL code can be rendered, along with the

corresponding XUL skins, as the final UI. All interfaces are shown in the final UI rendered

on the Windows XP platform.

Acting in the horizontal direction of the POMA architecture (Figure 3.2), this model is

composed of two types of sub-model, [POMA.PlMJ-independent Layout sub-model, and

[POMA.PSMJ-specific Layout sub-model.

[POMA.PlMJ-independent Layout sub-model (Figure 6.21) is obtained by composing

patterns and applying the composition rules.

[POMA.PSMJ-specific Layout sub-model (Figure 6.22 and Figure 6.23) is obtained by

mapping composed patterns and applying the mapping rules (Table 6.6). This

[POMA.PSMJ model is used to generate the system's source code by taking into account

the code generation rules (not included in this research).

126

Figure 6.21 represents a UML class diagram of the PIM Layout model which is composed

of several patterns. This model underwent mapping by applying the mapping rules (Table

6.6) to obtain another model, which is called the PSM Layout model (Figure 6.22 for a

laptop platform and Figure 6.23 for a PDA platform).

127

<<Features>>
Login

•ShowLoginPrompIO

Coord/nmtmm I <<Feerture8»
Close

i~ Neighboring •* ^
^ j •CloseForm O

Super-iOrd/nate
. Input Flmldm Coontlnrntmrn

<<Features>>
Multj-Valuelnput

I^UserName : Character Se t
l^i^hain : Character Se t
^ P a s s w o r d : Character Se t

•ShowFormO
InputValuesO

Neighb oring
<<Features>>

Feedback

1 •GetFeedbackO

Super-Ordinate / Neighboring S uper^Ordlnetm
Neighboring

AuVimntlcmtm Flelt/m Coordlnmtmm

< Features »
Submit Nmighb oring

Navigation

•SubmitActJonO

Neighboring / Compititor/ Similar

I UserLis t
I^Usemame : Character Se t
jQ^hain : Character Se t
iS^Password : Character Se t

•Verify CoordinatesO

Interaction

Neighboring / Super-Oniinate

atri Pattem IndexBrowsin g
— Patte m

Neighboring / Super-Oniinate

Find Pattem s

Search Patter n Browse Patte m Executive Summar y Patter n

Neighboring Interoperability

Neighboring / Super-Ordinate / Subordinate
n

Presentation

"TV Neighb onng

Adapter Patte m Builder Patte m

' ' ' ^
List Patte m Table Patte m Map Patte m Graph Patle m j Homepag e Patte m

Set^of Dialog View s
«Dialog>>

<<Dialog>>
Recursive Activatio n

Source Dialo g Vie w
Creator Task s
Target Dialo g View s

Neigt oring

Input Field s
< < Prssentetion> >

Form

Datatype : » Datatype(lnpu t Field)
«Prosentalion>>

Unambiguous Forma t

Choose colors , font s
<<Layout>>
House Styl e

Figure 6.21 UML class diagram of a PIM Layout model.

128

Table 6.6 shows the mapping rules for the patterns of the Layout model for laptop and

PDA platforms.

Table 6.6

Example o f pattern mapping of the Layout model for laptop and PDA platform s

Patterns of
Microsoft
Platform

PI. Login
P2. Multi-value
Input
P3. Submit

P4. Feedback

P5. Close
P6. Find (Search,
Browse,
Executive
Summary)
P7. Path
(Breadcrumb)

P8. Index
Browsing
P9. Adapter
PIO. Builder
PH. List
P12. Table
P13.Map
PI4. Graph
PI5. Home Page
PI6. Wizard
PI7. Recursive
Activation
P18.
Unambiguous
Format
PI9. Form
P20. House Style

Type of Mapping

Identical
Identical, Scalable,
Fundamental
Scalable or
fundamental
Identical,
Fundamental

Identical
Identical, Scalable

-Identical, Scalable
(Laptop)
-Scalable or
fundamental (PDA)
Identical

Identical
Identical
Identical
Identical
Identical
Identical
Identical
Identical
Identical

Identical

Identical
Identical

Replacement
patterns for

Laptop platform
PI. Login
P2. Multi-value
Input
P3. Submit

P4. Feedback

P5. Close
P6. Find (Search,
Browse, Executive
Summary

P7. Path
(Breadcrumb)

P8. Index Browsing

P9. Adapter
PIO. Builder
PI 1. List
PI2. Table
P13.Map
PI4. Graph
P15. Home Page
PI6. Wizard
PI7. Recursive
Activation
PI 8. Unambiguous
Format

PI9. Form
P20. House Style

Replacement patterns
for PDA platform

PI. Login
P2. Multi-value Input

P3.S. Submit (Smaller
button)
P4. Feedback
P4.1. Previous
P4.2. Next
P5. Close
P6. Find (Search,
Browse, Executive
Summary)

- P7.1s. Shorter Bread
Crumb Trial
- P7.2. Drop-down
"History" menu
P8. Drop-down menu

P9. Adapter
PIO. Builder
PI 1. List
P12. Table
P13.Map
PI4. Graph
PI5. Home Page
PI6. Wizard
PI7. Recursive
Activation
PI8. Unambiguous
Format

PI9. Form
P20. House Style

129

After the mapping, the PSM Layout model is obtamed for a laptop platform - Figtu-e 6.22.

Figure 6.22 UML diagram of PSM Layout Model for a Laptop platform.

130

After the mapping, the PSM Layout model is obtained for a PDA platform - Figure 6.23.

« F a a t u r e s »
Login

•ShowLoglnPromptO

<:<Features>>
Close

•CloseFormO

«•= Features'->
Multi-Valuelnput

l ^UserName : Character Se t
(^Chalr> : Character Se t
^'PassNA/ord : Character Se t
• S h owF orm ()
^InputValuesO

•<Feature8>':
Feedback

^ : K
\ i * i_

« F e a t u r a s »
Submit

^SubmltActlonO

Usert-ist
4MJsemame : Character Se t
^i^Ohain : Character Se t
Q^Pass^wo^d : Characte r Se t

^Vartiy CoordinatesO

^ ^
interaction

Path Patte m IndexBrowsing
Pattern Find Pattern s

Search Patte m Browse Patter n Executive Summar y Patter n

Interoperability

"̂ =v.
Adapter Patter n BuRdar Pattern

Ust Pette m Ttebia Pattern Map Patte m Grapti Patte m HomePaofl Patte m

•«Olalog»:
\/Vlzard

'« :D ia log»
Recursive Activatio n

<< Present at(on>>
Form

«Presentatlon>'>
Unambiguous Forma t

<<:Layout»
House Styl e

Figure 6.23 UML diagram of PSM Layout Model for a PDA platform.

131

Figure 6.24 is the final layout of the "Environmental Management Interactive System".

•ffla!
VWzad O o M Apptcalto n f « « * s c h

Source: VOi

VlHialzaUoii ENKUt iwSunnia y

in(bcBior(») vtsuabnUon

U Ea u So l Blodb«rftil « Risqu M Tei r lo t e DeclHt i Presto n dM dctMte s hwnahes Econom w Soclet *

Seiectedpath Frequentl y vtted Bootashj ^

CiMfOTl Se*ecl«l P*(N«i

2 (FEN>Eau>ln&tniment s de la poWqu...
3. IFEN>Eau>0e6tKm de {-tM

r B M r o r a s M i P a i w n f t) V l a a l z a U M -

Edwion Q t e y ^ M Q ue

A12ACE

AISACE

AtSACE

ALSACE

AL5ACE

AISACX

A L S A a

AL5ACE

ALSACE

ALSACE

A L S A S

ALSACE

A L S A a

ALSACE

M S A C l

ALSACE

A I S A C I

A L S A a

A I W F

SMe
01 Dioxyde de Kxire
01 DtQxyde de scuire
01 DtoxYde de »ufre
01 DIoxyde de saJre
01 Dnryde de Miire
01 Dioxyde de M(#re
01 Otovyde de 5ot/re
01 Dnxyde de sotine
08 Mpft aode tot^
oeOepftaOdetotd
Oe Dep6t aods toU
08Mp6tKidetot<<
08Mp6taodetDtd
oeiMpotaadetoU
Oeo^pfitacxJetDUl
08 Mpaaode total
03 Oxyde (f azote
03 Oxyde (fvote
IH_fttwl6.rfaiotB _ _

UrttA
mo/mZ
mg/mZ
mo/in2
mg/mZ
fnaTinZ
n^mZ
tno/mZ
mg/mZ
aeq/toZ
aeq/mZ
aeq/mZ
aeq/ntZ
aeq/mZ
aeq/mZ
aeq/n2
aeq/tnZ
nq/mZ
rog/mZ
moftn?

Araife
1993
t9»1
1995
1996
1996
1999
BDOO

ani
1993
199*
1996
1996
1991
1999
3D0D

EOOl

1993

I 9M
IVE

V d u e

M24
1293

^ 9
Ms
919
m
BD

7 S
! 1 7 9

JZUB
16»
1746
1912
1S7B
I72B
I63«
1124
1127
715 H

-OeMgn Pat ler iw -

-mt>EMPft0«saijic.seneiKi ^
1. fFEN>Eau*Ressourc«s fn eau- res
2. IFEN.Eau.Ressources en eau- fBa
3. iB<>eau>AMso(ic«s en Ma • rni
4. IFEN>Eau - ini]tcCles20a7_eBU

'.;«igM»' « j

Figure 6.24 Screenshot of the Environmental Management Interactive System for a
Laptop platform.

The results of this experimentation of POMA architecture are as follows:

POMA integrates easily pattems and models together to design interactive systems for

different platforms;

POMA uses easily the pattem composition, pattem mapping and model transformation

rules to implement interactive systems for different platforms.

CONCLUSION

A. Summary o f investigation s

In this thesis, a novel architecture is introduced for interactive systems engineering. This

architecture combines patterns and models t o facilitate the engineering of multi-platform

appUcations including traditional computer, PDA, mobile phone, interactive television,

laptop and palmtop.

To achieve this objective, a literature review was conducted on existing interactive system

architectures such as N-tier architectures (MVC, J2EE, and Zackman), pattem-oriented

design (POD), pattem-supported approach (PSA) and architecture based on models such as

model-driven architecture (MDA). The foundations, shapes or forms, strengths and

weaknesses of existing architectures were reviewed.

Subsequently, the different components of the proposed architecture (POMA) were

detailed including:

1. The different categories of patterns;

2. The PIM and PSM models;

3. The pattern composition rules to select and compose pattems corresponding to each

type of PIM model;

4. The pattern mapping rules to map the pattems and PIM models to produce PSM models

for multiple platforms;

5. The transformation rules for transforming PIM to PIM models and PSM to PSM

models.

A prototype of this case study was developed for an environmental management interactive

system. This prototype was developed in Java Eclipse tool. In this case study, patterns were

identified and applied for each of the models that were used during development.

133

The main purpose of the prototype of this case study is to show that model-driven

architecture development consists of model transformation and that mapping mles from the

abstract to the concrete models are specified and - more importantly - automatically

supported by tools.

In the case study, UML notation was used to design the five models (Domain, Task,

Dialog, Presentation and Layout). XML notation was also used to describe the five models

and the different types of pattems proposed by the POMA architecture. UML and XML

allow one to communicate the modeling semantics between the different models, helping

tailor the application and corresponding models to different platform and user roles.

B. Key Contributions

This research created a practical multi-platform architecture for interactive systems

engineering. The main contributions are:

1. The creation of six architectural levels and categories of pattems (Navigation patterns,

Interaction pattems. Visualization patterns. Presentation pattems, Interoperability

patterns, and Information patterns) (Taleb et al., 2006), (Taleb et al., 2007a) and (Taleb

et al., 2007c);

2. The creation of different relationships between pattems which are used to create a

pattern-oriented design using composition rules and mapping rules and to generate

specific implementations suitable for different platforms from the same pattem-

oriented design (Taleb et al., 2006) and (Taleb et al., 2007c);

3. The use of Five categories of models: Domain model. Task model. Dialog model,

Presentation model and Layout model (Taleb et al., 2007b) and (Taleb et al., 2008c);

4. The creation of different model transformation rules to transform only the PIM and

PSM models between them such as: PIM to PIM, PIM to PSM, and PSM to PSM

(Taleb et al., 2008c);

134

5. Development of the "Environmental Management Interactive System" case study. The

case study illustrates and clarifies the core ideas of this research approach and its

applicability and relevance to multi-platform development (Taleb et al., 2008d).

Various contributions documented in this thesis have been published at conferences and in

journals. The list follows:

Conference Papers

Published

1. M. Taleb, H. Javahery, A. Seffah, 2006, 'Pattem-Oriented Design Composition and

Mapping for Cross-Platform Web Applications', the XIII Intemational Workshop,

DSVIS 2006, July 26-28 2006, Trinity College Dublin Ireland, DOI 10.1007/978-3-540-

69554-7, ISBN 978-3-540-69553-0, Vol. 4323/2007, Publisher Springer-Verlag Berlin

Heidelberg, Germany.

2. M. Taleb, A. Seffah, A. Abran, 2007, 'Pattem-Oriented Architecture for Web

Applications', 3rd International Conference on Web Information Systems and

Technologies (WEBIST), March 3-6, 2007, ISBN 978-972-8865-78-8, pp. 117-121,

Barcelona, Spain.

3. M. Taleb, A. Seffah, and A. Abran, 2007, 'Model-Driven Design Architecture for Web

Applications', The 12th International Conference on Human Centered Interaction

International (FIC-HCII), July 22-27, 2007, Beijing International Convention Center,

Beijing, P.R. China, Vol. 4550/2007, pages 1198-1205, Publisher Springer-Verlag

Berlin Heidelberg, Germany

4. M. Taleb, A. Seffah, and A. Abran, 2007, 'Patterns-Oriented Design for Cross-Platform

Web-based Information Systems', The 2007 IEEE Intemational Conference on

Information Reuse and Integration (IEEE IRI-07), August 13-15, 2007, pages 122-127,

Las Vegas, USA.

135

Submitted

1. M. Taleb, A. Seffah and A. Abran. 2008b. Patterns + Personas = A Human-Centric

Infrastructure for Web Applications Design. 9"̂ Intemational Conference on Web

Engineering (ICWE), June 24-26, 2009, San Sebastian, Spain.

Journal Paper s

Accepted

1. M. Taleb, A. Seffah and A. Abran, 2008, 'Reconciling Usability and Interactive System

Architecture Using Patterns', Joumal of Systems and Software, to be published in 2008.

(Accepted on April 10'^ 2008).

Submitted

1. M. Taleb, A. Seffah and A. Abran, 2008, "Investigating Model-Driven Architecture for

Web-based Interactive Systems", Joumal of eMinds.

2. M. Taleb, A. Seffah and A. Abran, 2008, 'POMA: A Pattem-Oriented and Model-

Driven Architecture', Journal of Software - Practice and Experience.

3. A. Seffah and M. Taleb, 2009, 'Tracing the Evolution of Patterns as a Design Tool',

Joumal of Innovations in Systems and Software Engineering.

136

Chapters in a book

1. H. Javahery, A. Deichman, A. Seffah, and M. Taleb, 2007, 'A User-Centered

Framework for deriving a conceptual design from user experiences. Leveraging

personas and patterns to create usable designs'. In A. Seffah, J. GuUiksen, and M.

Desmarais, (eds), Human-Centered Software Engineering, Volume II. Software

Engineering Models, Patterns and Architectures for HCI, Chapter 4, May 28'^ 2007,

Wiley, New York, USA.

2. M. Taleb, A. Seffah, and D. Engelberg, 2007, 'From User Interface Usability to the

Overall Usability of Interactive Systems: Adding Usability in System Architecture', In

A. Seffah, J. Gulliksen, and M. Desmarais, eds, Human-Centered Software Engineering,

Volume II, Software Engineering Models, Patterns and Architectures for HCI, Chapter

9, May 28"̂ 2007, Wiley, New York, USA.

In addition to these main contributions, this research has developed an architecture that

facilitates usability (Taleb et al., 2007d).

C. Implications fo r software engineerin g theory

This architecture opens a new research avenue to the use of models and pattems together in

the design process. Compared to existing architectures, this research introduced:

1. Novel architecture called Pattem-Oriented and Model-driven Architecture (POMA) for

interactive systems (section 3.2);

2. Novel pattem selection and composition rules (section 4.1.2);

3. Novel pattern mapping rules (section 4.1.3);

4. Novel model transformation rules (section 5.2).

137

D. Practical implication s

The results of this research have practical implications for interactive systems engineering.

The proposed POMA architecture allows the industry to improve and to facilitate the

development of interactive systems using patterns and models in order to obtain the user

interfaces that are more convivial and easy to use.

The application of different types of pattems provides a better understanding of interrelated

and viewed data on different screens and to structure information for a better visualization.

The use of various models offers the industry a flexibility framework to understand design

problems raised by research and / or by the industry itself

Moreover, the results of this research can increase mutual understanding between software

engineers and HCI experts to address the problem mentioned by (Jerome and Kazman,

2007) and (Donyaee, 2008):

"Software engineers and HCI practitioners tend to interact with each

other late in the software life cycle" (Jerome and Kazman, 2007) and

(Donyaee, 2008).

E. Limitations an d strength s

The Model-View-Controller (MVC), Model-View-Presenter (MVP), Presentation-

Abstraction-Control (PAC), Seeheim, Arch/Slinky, PAC-Amadeus, and POMA

architectures are similar in a number of ways, but each has evolved to address a slightly

different concern. By becoming familiar with these architectures and other related

architecture models, developers and architects will be better equipped to choose

appropriate solutions in their design endeavors, or possibly in the creation of future

pattern-oriented and model-driven architectures.

138

Current limitations of POMA include the following:

• There is a need to define measures to assess objectively the applicability of the patterns

that could be used in POMA;

• The pattems do not provide sufficient provisions for dealing with the platform-

independent specification of interfaces, the platform-specific form of those interfaces,

nor the eventual implementation of those interfaces;

• POMA does not encourage the designer to consider other aspects of the dialog which

are very important to the user (help function or error-handling);

• POMA does not facilitate the use of design constraints or descriptions of the interface

which are of great importance to the designer (Booch et al., 1999), (Myers, 1986),

(Myers and Buxton, 1986) and Myers, 1990);

• Patterns show weakness signs in their programming languages;

• Finding and applying the appropriate architectural patterns in practice still remains

largely an ad hoc and unsystematic process, e.g. there is a lack of consensus in the

community with respect to the "philosophy" and granularity of architectural pattems

and a lack of a mature pattem language;

• The need for affordable educational opportunities that focus on the style guidelines and

patterns for both the design and use of Interface Specification Meta-Language

(ISMLs);

• Limited use of the ISO/IEC 9126-1 (2001) Standard and other quality attributes, such

as communicability, learnability, maintainability, and usability.

Further research is required to address these limitations, one by one.

139

The strengths of POMA architecture include the following:

• POMA facilitates the use of pattems by beginners as well as experts;

• POMA supports the automation of both the pattern-driven and model-driven

approaches to design;

• POMA supports the communication and reuse of individual expertise regarding good

design practices;

• POMA can integrate all the various new technologies including, but not limited to,

traditional office desktops, laptops, palmtops, PDAs with or without keyboards, mobile

telephones, and interactive televisions.

F. Further research

Among the next steps required to develop POMA are:

• Standardization of POMA architecture to all types of systems, not only to multi-

platform interactive systems;

• Description of a process for the generation of a source code from the five POMA PSM

models;

• Development of a tool that automates the POMA architecture-based engineering

process;

• Quality Assurance of the applications produced, since a pattem-oriented architecture

will also have to permit the encapsulation of quality attributes and to facilitate

prediction;

• Validation of the migration, the usability and overall quality of POMA architecture for

interactive systems using different existing methods ;

• Evaluation of the effectiveness and learning time of POMA architecture for novices and

experts users.

APPENDIX 1

GLOSSARY O F TERMS

API Server

Architecture

BGI

CGI

Component

Computation
Independent
Model (CIM)

Derived from BGI, the NSAPI, ISAPI, WSAPI and other API servers
are functional equivalents of BGI and generally incompatible.

1. The architecture of a system is a specification of the parts and
cormectors of that system and the mles for the interactions of the
parts using connectors (Shaw and Garlan, 1996).

2. "The software architecture of a program or computing system is
the structure or structures of the system, which comprise software
components, the externally visible properties of those
components, and the relationships among them" (Bass et al.,
2003).

Model-Driven Architecture prescribes certain kinds of models to be
used, how those models may be prepared and the relationships
between the different kinds of models.

BGI is an interface used by the server to communicate with internal
applications. This gateway to communication exchanges information
with functions belonging to a library of dynamic links (.dll).

CGI is an interface used by the server to communicate with extemal
applications. This gateway to communication exchanges information
with scripts, programs and software.

A component is a set of the objects combined together to form a unit.

A computation independent model is a view of a system from the
computation independent viewpoint. A CIM does not show details of
the structure of systems. A CIM is sometimes called a domain
model; a vocabulary that is familiar to the practitioners of the domain
in question is used in its specification.

Computation The computation independent viewpoint focuses on the environment
Independent of the system, and the requirements for the system; the details of the
Viewpoint (CIV) structure and processing of the system are hidden or as yet

undetermined.

141

CORBA

HTML

Implementation

Java

JDBC

Middleware

Model

Model
Transformation

Model-Driven

Model-Driven
Architecture
(MDA)

CORBA is a standard for architectures of the distributed objects
intended for small to large applications.

Static language of programming of documents on the Intemet
describing the structure and not the appearance of a document.

An implementation is a specification which provides all the
information needed to construct a system and to put it into operation.

Java is the most powerful language of the Internet. It is used for the
Client/Server applications of average to great scale, as much for the
user interface as for the server.

JDBC is a programming interface which allows communication
between Java programs, more particularly the user interfaces of the
client, with a database.

A middleware is software, which supports communication between
the tier components of an interactive system, two or several
interactive systems and interactive systems and shared services.

1. A model of a system is a description or specification of that
system and its environment for a specific purpose, which may be
represented graphically or textually (Si Alhir, 2003).

2. In MDA, a model is a representation of a part of the function,
structure and/or behavior of a system.

Model transformation is the process of converting one model to
another model of the same system.

1. In MDA, a model-driven provides a means for using models to
direct the course of understanding, for design, construction,
deployment, operation, maintenance and modification.

2. A model-driven approach focuses on models to work with
systems, including: understanding, designing, constructing,
deploying, operating, maintaining, and modifying them (Si Alhir,
2003).

1. MDA is a software design architecture.

2. An approach to IT system specification that separates the
specification of functionality from the specification of the
implementation of that functionality on a specific technology
platform.

142

Pattern
Mappings

Pervasive
Services

Platform

1. Pattern mapping is the process of creating a design of specific
models for each platform called platform-specific model (PSM) -
from PIM and mapping rules.

2. A mapping is a specification (or transformation specification),
including rules and other information, for transforming a PIM
model to produce PSM for a specific platform (Si Alhir, 2003).

Pervasive services are services available in a wide range of
platforms.

A platform is a set of subsystems and technologies that provide
coherent sets of functionality through interfaces and specified usage
pattems, which any application supported by that platform can use
without concern for the details of how the functionality provided by
the platform is implemented.

Platform independence is a quality that a model may exhibit,
independent of the features of a platform of any particular type.

A platform independent model is a view of a system from the
platform independent viewpoint. A PIM exhibits a specified degree
of platform independence to be suitable for use with a number of
different platforms of similar type.

The platform independent viewpoint focuses on the operation of a
system while hiding the details necessary for a particular platform. A
platform independent view shows that part of the complete
specification that does not change from one platform to another.

A platform independent view may use a general purpose modeling
language or a language specific to the area in which the system will
be used.

A platform model provides a set of technical concepts representing
the different parts that make up a platform and the services provided
by that platform and provides, for use in a platform specific model,
concepts representing the different elements to be used in specifying
the use of the platform by an application.

Platform Specifi c A platform specific model is a view of a system from the platform
Model (PSM) specific viewpoint. A PSM combines the specifications in the PIM

with the details that specify how that system uses a particular type of
platform.

Platform
Independent

Platform
Independent
Model (PIM)

Platform
Independent
Viewpoint (PIV)

Platform Mode l

143

Platform Specifi c The platform specific viewpoint combines the platform independent
Viewpoint (PSV) viewpoint with an addittonal focus on the detail of the use of a

specific platform by a system.

RMI

Servlet

System

View

Viewpoint

Web Application

RMI is API allowing the invocation of methods on distributed objects
intended for the applications of small and average size.

Servlet is an alternative to the .dll used for the BGI. Servlets are
written in Java and are generally portable from one platform to
another. The server must however support them.

1. A set of assembled elements, which interact in a manner
consistent or predictable in an environment and in pre-defined or
observed conditions.

2. MDA concepts are presented here in terms of existing or planned
systems. That system may include anything: a program, a single
computer system, a combination of parts of different systems, a
federation of systems, each under separate control.

3. A system (or physical system) is a collection of elements
organized together for a specific purpose (Si Alhir, 2003).

A view or viewpoint model of a system is a representation of that
system from the perspective of a chosen viewpoint (IEEE, 2000).

A viewpoint on a system is a technique for abstraction using a
selected set of architectural concepts and structuring rules, in order to
focus on particular concerns within that system. Here 'abstraction' is
used as the process of suppressing selected details to establish a
simplified model. The concepts and rules may be considered to form
a viewpoint language.

A web application is a computer program that users invoke by using
a web browser to contact a web server via the Intemet. Users and
browsers are typically unaware of the difference between contacting
a web server which fronts for a statically built website and a web
server which fronts for a web application. But unlike a static website,
a web application creates its "pages" dynamically. A website that is
dynamically constructed uses a computer program to provide the
dynamism. These types of dynamic applications can be written in
any number of computer languages.

144

Workflow A workflow is coordinated set of actions or operations which are
related, in series or in parallel, in order to achieve a common goal:

• Actions are the activities executed by humans;
• Operations are the activities executed and controlled

automatically by a system management process.

APPENDIX I I

TECHNICAL REPOR T OF INTERACTIVE SYSTE M DEVELOPMEN T TOOLS:
TRENDS AND CHALLENGES I N INTERACTIVE SYSTE M DEVELOPMEN T

TOOLS: REQUIREMENTS FO R PATTERN-ORIENTED AN D MODEL-BASE D
ARCHITECTURE

1. Introduction

In Software Engineering, "Interactive System" is a system accessed by interfaces over a

network such as the Internet, intranet, extranet or a by traditional medium (Wikipedia).

Interactive systems are popular due to the ubiquity of the browser as a client, sometimes

called a thin client. The ability to update and maintain interactive systems without

distributing and installing systems on potentially thousands of client computers is a key

reason for their popularity. Interactive systems are used to implement for example :

Webmail, online retail sales, online auctions, wikis, discussion boards, Weblogs,

MMORPGs and many other functions (Wikipedia).

In earlier types of client-server computing, each system had its own client program which

served as its user interface and had to be separately installed on each user's personal

computer. An upgrade to the server part of the system would typically require an upgrade

to each user workstation, adding to the support cost and to decreasing productivity

(Wikipedia).

In contrast, interactive systems dynamically generate a series of documents in a standard

format supported by common interfaces such as HTML/XHTML. Client-side scripting in a

standard language such as JavaScript is commonly included to add dynamic elements to

the user interface. Generally, each individual interface is delivered to the client as a static

document, but the sequence of pages can provide an experience, as user input is retumed

through form elements embedded in the interface markup. During the session, the

146

interactive system interprets and displays the interfaces and acts as the universal client for

any system (Wikipedia).

The interface places very few limits on client functionality. Through Java, JavaScript,

Flash and other technologies, system-specific methods such as drawing on the screen,

playing audio, and access to the keyboard and mouse are all possible. General-purpose

techniques such as drag and drop are also supported by Java, though this may be simpler

with current JavaScript libraries. Developers often use client-side scripting to add

functionality, especially to create an interactive experience that does not require page

reloading (which many users find disruptive). Recently, technologies have been developed

to coordinate client-side scripting with server-side technologies such as PHP. Ajax, a

development technique using a combination of various technologies, is an example of a

technology which creates a more interactive experience (Wikipedia).

A significant advantage in building interactive systems to support standard browser

features is that they should perform as specified regardless of the operating system or OS

version installed on a given computer. Rather than creating clients for MS Windows, Mac

OS X, GNU/Linux, and other operating systems, this system can be written once and

deployed almost anywhere. However, inconsistent implementations of the HTML, CSS,

DOM and other browser specifications can cause problems in interactive system

development and support. Additionally, the ability of users to customize many of the

display settings of their browser (such as selecting different font sizes, colors, and

typefaces, or disabling scripting support) can interfere with consistent implementation of

an interactive system (Wikipedia).

Another (less common) approach is to use Macromedia Flash or Java applets to provide

some or all of the user interface. Since most, for example, Web browsers include support

for these technologies (usually through plug-ins). Flash- or Java-based systems can be

implemented with much of the same ease of deployment. Because they allow the

programmer greater control over the interface, these systems bypass many browser-

147

configuration issues, although incompabilities between Java or Flash implementations on

the computer can introduce different complications. Because of their architectural

similarities to traditional client-server systems, with a somewhat "thick" client, there is

some dispute over whether to call systems of this sort "interactive systems" (Wikipedia).

Though many variations are possible, an interactive system is commonly stmctured as a

three-tiered system. In its most common form, an interface is the first tier, an engine using

some dynamic content technology (e.g., CGI, PHP, Java Servlets or Active Server Pages

(ASP)) is the middle tier, and a database is the third tier. The interface sends requests to the

middle tier, which services them by making queries and updates against the database to

generate a user interface (Wikipedia).

Interfaces have increasingly replaced what have previously been thought of as traditional,

single-user systems. For example, Microsoft HTML Help replaced Windows Help as the

primary help system in Microsoft Windows. Like their networked brethren, such systems

generate web documents as their user interface and send them (sometimes via an embedded

HTTP server) to a local Web browser component, which then renders the pages for the

user and retums user input to the system. Interactive systems powered by embedded

servers have also become commonplace as user interfaces for configuring network

components such as servers, switches, routers, and gateways (Wikipedia).

An emerging strategy for application system companies is to provide access to systems

previously distributed as local systems. Depending on the type of system, the development

of an entirely different interface may be required, or merely adapting an existing system to

use a different presentation technology. These programs allow the user to pay a monthly or

yearly fee for use of a software system without having to install it on a local hard drive. A

company which follows this strategy is known as a system service provider (ASP). ASPs

are currently attracting a great deal of attention in the software industry (Wikipedia).

148

While many interactive systems are written directly in PHP or mod_perI, there are many

interactive system architectures which automate the process by allowing the programmer to

define a higher level description of the program. In addition, there is potential for the

development of systems on Intemet Operating Systems, although there are not many viable

platforms that currently fit this model (Wikipedia).

The use of interactive system architectures can often reduce the number of errors in a

program, both by making the code more simple, and by allowing one team to concentrate

uniquely on the architecture. In systems which are exposed to constant hacking attempts

via the Internet, security-related problems caused by errors in the program are a main issue

(Wikipedia).

As of 2006, Java remains one of the most common programming languages for writing

interactive systems. This is especially true for enterprise systems (usually referred to as

enterprise interactive systems). J2EE (a Java programming platform) provides several

useful components (JavaServer Pages, servlets, client-side applets, Enterprise Java Beans,

JDBC and several service technologies) for writing enterprise interactive systems. As of

2006, J2EE remains the standard in this area (Wikipedia).

The Web Application Security Consortium (WASC), CGI Security, and OWASP are

projects developed with the intention of documenting how to avoid security problems in

interactive systems (Wikipedia).

This appendix specifies and describes the whole of existing tools for interactive system

development and gives the attributes of a good description of software. The principal

objectives of this appendix are (Wikipedia):

• Clarify the different existing tools for interactive system development;

• Distinguish between the tools which are oriented pattern and others;

149

• Describe the different existing formalisms and notations suggested by specialists in the

field for patterns, architectures and models.

The first section describes the system generator tools such as Content Management System

(CMS). The second section will identify the different tools for Model-based Approach and

Pattems. The last section presents the existing formalisms and notations to support the

specification of patterns, architectures and models (Wikipedia).

2. Content Management Syste m (CMS)

A Conten t Managemen t Syste m is a computer software system used for organizing and

facilitating collaborative creation of documents and other content. A content management

system is often an interactive system used for creating and managing interfaces and their

contents. Alternatively, content management systems can also be used for storing and

publishing documentation such as operating manuals, technical manuals and sales guides.

There are many open-source and proprietary CMS solutions available, which is in fact true

for most systems of any kind. The market for content management systems is quite

fragmented (Wikipedia).

A content management system is essentially a way of separating visual presentation from

actual content, whether that content includes photos, text or product catalogs. This

separation allows one to accomplish several key tasks, including:

• Automate d Templating : Create standard visual templates that can be automatically

applied to new and existing content, creating one central place to change caracteristics

across the content on a site;

• Easil y Editabl e Content : Once the content is separate from the visual presentation of a

site, editing usually becomes much easier and quicker to manipulate. Most CMS

software includes WYSIWYG editing tools allowing non-technically trained individuals

to easily create and edit content;

150

• Scalabl e Featur e Sets : Most CMS have plug-ins or modules that can be easily installed

to extend on existing site's functionality. For example, if one wanted to add a product

catalog or chat functionally on a website, one could easily install a module/plug-in to

add that functionality rather than hiring a developer to hard code that new functionality;

• We b Standard s Upgrades : Active CMS solutions usually receive regular updates that

include new feature sets to keep the system up to current web standards. These updates

are usually designed for easy installation over/on-top of an existing website;

• Communit y Support : Most active CMS solutions have developer support forums.

Since CMS users/developers are beginning from a common base, developers are more

likely to encounter the same development challenges and can address those challenges

as a community;

• Lowe r Cos t Maintenance : CMS hosted sites are often easier and cheaper to maintain.

Since any CMS powered website would have a community familiar with the tools of

that specific CMS, it would be quite easy for a new developer to make updates or do

maintenance;

• Workflo w management : Workflow is the process of creating cycles of sequential and

parallel tasks that must be accomplished in a CMS. For example, a user posts a story but

it is not published on the website until the editor approves it.

An interactive system content management system runs on the system's server. Most

systems provide controlled access for various ranks of users such as administrators, editors

and ordinary content creators.

The content and all other information related to the site are usually stored in a server-based

database system such as MySQL. The pages created by the content management system

can be viewed by visitors to the site. Intemally, many interactive system content

management systems are written in the PHP programming language.

15]

The following terms are often used in relation to interactive system content management

systems but they may be neither standard nor universal:

• Bloc k - A block is a link to a section of an interactive system. Blocks can usually be

specified to appear on all interfaces of the system (for example in a left-hand navigation

panel) or only on the home page;

• Modul e - A content module is a section of the interactive system, for example a

collection of news articles or an FAQ section. Some content management systems may

also have other special types of modules such as administration and system modules;

• Them e - A theme specifies the cosmetic appearance of every interface of an interactive

system, controlling properties such as the colors and the fonts.

2.1 Example of tools for CMS

2.1.1 Zope : Tools available for accessing Zope

• Zope (Zope, 2008) is an architecture that allows developers of varying skill levels to

build interactive systems;

• Zope is an open source tool for sophisticated interactive systems development;

• Zope allows for a combination of objects and creates a template (example: payment

interface, reservation interface);

• Zope separates the content from presentation and interaction;

• All objects or components for user interfaces are the high level patterns;

• Zope resolves some problems in a Java development envirorunent (example Eclipse

tool);

• The user can create new objects and add them to the Zope environment.

152

Zope tool can generate:

• An interactive system;

• A portal;

• Different interfaces of an interactive system (www, welie.com or Design Patterns);

• Different types of interactive systems as the objects;

• A user's own system directly (e-commerce);

• Support for a Pattern-Oriented Approach;

• An extension to the HTTP Server.

Limitations o f Zope tools according to the article (Grundv and Zou, 2004)

• Adaptation is difficult to achieve from one platform to another;

• There are rendering device problems. Such tools work reasonably well but do not

support user and task adaptation well and require complex transformation scripts that

have limited ability to produce good user interfaces across all possible rendering

devices.

153

2.1.2 PhPNu k

PHP-Nuke (PhPNuk, 2006) is an interactive system-based automated news publishing and

content management system (a 'nuke') based on PHP and MySQL. The system is fully

controlled by a user interface. PHP-Nuke was originally a fork of the Thatware news portal

system.

The main purpose of PHP-Nuke is to allow a developer to create a community-based portal

(similar to that used by Slashdot) with an automated interactive system that allows users

and editors to post news items (user-submitted news items are selected by editors). Users

can comment on these articles using the "comments system".

Modules may be added to the PHP-Nuke system, allowing the developer to add more

features (such as an Internet forum or calendar) to their PHP-Nuke installation in addition

to the core modules such as News, FAQ and Private Messaging. The whole system is

maintained by administrators using the web-based "admin section".

PHP-Nuke is able to support many languages, including English, French, Portuguese and

Thai. Its look and feel can also be customized (to an extent), using the Themes system,

although some people have found it difficult to make the site look any different to the

standard column layout (as used by the program's official website).

PHP-Nuke has, in the past, been criticized for containing many security holes. SQL

injection is one of the most widely-known flaws in PHP-Nuke's security, although other

methods of gaining access to the admin panel of a site running PHP-Nuke have been

found. In February, 2005, the Webmail module of PHP-Nuke was removed from all

versions, due to security problems, at the request ofEVIServers.net, phpnuke.org's web

hosting service. Since it contains a port of phpBB2, it also inherits phpBB's security flaws

(Wikipedia).

http://ofEVIServers.net

154

2.2 List of Tools in a Content Management Systems

The following table is a list of notable Conten t Managemen t Systems (CMS) that are

used to organize and facilitate collaborative content creation. Many of CMS are built on

top of separate content management frameworks (Wikipedia).

Free and open source software

Other interactive system development tools are also represented on the table below.

CMS Tools

DreamWeaver
Web Drive
MS Office
FrontPage
Extemal Editor

Cadaver

Goliath
Zope
Management
Interface
PhPNuk
Aegir
(previously
Aegir CMS)
Alfresco

Platform

Windows
Windows
Windows
Windows

Windows /
Unix / Linux

Unix / Linux /
MacOS X

MacOS X

All platforms

All platforms

Midgard add­
on

Java

Content
Creation

Yes
Yes
Yes
No

No

Yes

Yes

Yes

Yes

Yes

Yes

Content
Management

Yes
Yes
Yes
No

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Access
Control

No
No
No
No

No

No

No

Yes

Yes

Yes

Yes

Other
Requirements

Web Drive

Web Drive

Extemal
Editor Client
File editor(s)
ofyour
choosing (VI,
Notepad,
PhotoShop,
etc.)
Console
Editor of
Choosing

Web Browser

Web Browser

Web Browser

Web Browser

155

Apache Lenya

Ariadne
b2evolution
Bblog
Blockstar
BLOG:CMS
blosxom

Bricolage

Caravel CMS
Chlorine
Boards
CivicSpace
CMScout
CMSimple
Community
Server

Daisy (CMS)

DBHcms
DotNetNuke
DragonflyCMS
Dmpal
el07
eGroupWare
Epiware
eZ publish
Fedora
Geeklog

Jahia

Java, XML,
built on top of
Apache
Cocoon

PHP
PHP + Smarty
Java
PHP
Perl
Perl on mod
perl
PHP

PHP

PHP
PHP
PHP

ASP.NET

Java, XML,
built on top of
Apache
Cocoon
PHP
VB.NET
PHP
PHP4-5
PHP
PHP
PHP
PHP
Java
PHP
Java on
Windows NT,
Linux, or
Solaris

Yes

Yes
Yes
Yes
Yes
Yes
Yes

Yes

Yes

Yes

Yes
Yes
Yes

Yes

Yes

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

Yes

Yes

Yes
Yes
Yes
Yes
Yes
Yes

Yes

Yes

Yes

Yes
Yes
Yes

Yes

Yes

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

Yes

Yes

Yes
Yes
Yes
Yes
Yes
Yes

Yes

Yes

Yes

Yes
Yes
Yes

Yes

Yes

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

Yes

Web Browser

Web Browser
Web Browser
Web Browser
Web Browser
Web Browser
Web Browser

Web Browser

Web Browser

Web Browser

Web Browser
Web Browser
Web Browser

Web Browser

Web Browser

Web Browser
Web Browser
Web Browser
Web Browser
Web Browser
Web Browser
Web Browser
Web Browser
Web Browser
Web Browser

Web Browser

http://ASP.NET
http://VB.NET

156

jAPS -Java
Agile Portal
System
Joomla!
Kwiki
Lyceum
Magnolia
Mambo
MediaWiki

Midgard CMS

Mkportal
MMBase
MODx
Content
Management
System
NitroTech
Nucleus CMS
Nuke-
Evolution
Nuxeo CPS

OpenACS

OpenCms
OpenPHPNuke
PHP-Fusion
PHP-Nuke
phpWCMS
Dhn Website
ohpSlash
DhnCMS
PhpWiki
Pivot
Plone
PmWiki
PostNuke

PuzzIeApps

Scoop

Slash

Java, XML on
Windows or
Linux
PHP
Perl
PHP
Java
PHP
PHP
PHP (Midgard
framework)
PHP
Java

PHP 4/5

PHP
PHP

PHP

Zope product
TCL
AOLserver
Java
PHP
PHP
PHP
PHP
PHP
PHP
PHP
PHP
PHP
Zope, Python
PHP
PHP
PHP, XML,
XSLT
Perl on mod
perl
Perl on mod
perl

Yes

Yes
Yes
Yes
Yes
Yes
Yes

Yes

Yes
Yes

Yes

Yes
Yes

Yes

Yes

Yes

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

Yes

Yes

Yes

Yes

Yes
Yes
Yes
Yes
Yes
Yes

Yes

Yes
Yes

Yes

Yes
Yes

Yes

Yes

Yes

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

Yes

Yes

Yes

Yes

Yes
Yes
Yes
Yes
Yes
Yes

Yes

Yes
Yes

Yes

Yes
Yes

Yes

Yes

Yes

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

Yes

Yes

Yes

Web Browser

Web Browser
Web Browser
Web Browser
Web Browser
Web Browser
Web Browser

Web Browser

Web Browser
Web Browser

Web Browser

Web Browser
Web Browser

Web Browser

Web Browser

Web Browser

Web Browser
Web Browser
Web Browser
Web Browser
Web Browser
Web Browser
Web Browser
Web Browser
Web Browser
Web Browser
Web Browser
Web Browser
Web Browser

Web Browser

Web Browser

Web Browser

157

Textpattem
TikiWiki
Twiki
Typo
TYP03
UNITED-
NUKE

WebGUI

WordPress

Xaraya

XOOPS
Zentri
Modulo

PHP
PHP
Perl
Ruby on Rails
PHP
PHP

Perl on mod
perl
PHP
PHP 4/5 with
XHTML/XML
/XSLT output
PHP
PHP
PHP

Yes
Yes
Yes
Yes
Yes

Yes

Yes

Yes

Yes

Yes
Yes
Yes

Yes
Yes
Yes
Yes
Yes

Yes

Yes

Yes

Yes

Yes
Yes
Yes

Yes
Yes
Yes
Yes
Yes

Yes

Yes

Yes

Yes

Yes
Yes
Yes

Web Browser
Web Browser
Web Browser
Web Browser
Web Browser

Web Browser

Web Browser

Web Browser

Web Browser

Web Browser
Web Browser
Web Browser

All of these tools have some limitations:

• Fiee ^ d open source software;

• The code is not stmctured and not reused;

• These tools are not oriented pattems;

• The code generated by one specific platform is not used directly on another specific

platform (Mobile phone platform to PDA platform).

158

3. Tools for Model-Based Approac h and for Patterns

3.1 Definitions an d Advantages o f Model-Based U I Development

The model-based approach was introduced to support the specification and design of

interactive systems at a semantic, conceptual and abstract level as an alternative to dealing

with low-level implementation issues earlier on in the development lifecycle (Seffah and

Gaffar, 2006).

The model-based approach uses a central knowledge base to store a description of all

aspects of an interface design.

The main function of a model-based approach is to identify useful abstractions and

highlight the main aspects that should be considered when designing interactive systems

(Sinnig, 2004) and (Marucci et al., 2003). Several models are created and combined to

characterize a domain of interest from different perspectives (Sinnig, 2004) and (Forbrig et

al., 2003a).

3.1.1 Definition o f Model-Based U I Development

That all aspects of a user interface design are represented using declarative models is

central to all model-based approaches. The central component is the Interface Model,

which includes different declarative models (Sinnig, 2004) and (Schlungbaum, 1996). A

series of declarative models, such as user-task, dialog, and presentation, are interrelated to

provide a formal representation of an interface design (Sinnig, 2004) and (Puerta, 1997).

In a model-based approach, the UI design is the process of creating and refining the user

interface models (Sirmig, 2004) and (Da Silva, 2000). Model-based design focuses on

finding the mapping between the various models (Sinnig, 2004) and (Vanderdonckt et al.,

2003b). Eventually, User Interfaces are generated automatically or semi-automatically

from their model descriptions.

159

3.1.2 Advantages o f Model-Based U I Development

Initially, it may seem that following a model-based approach for the design of interactive

systems may complicate and slow down the development process. However, the benefits to

be gained are considerable. In essence, model-based UI development has two major

advantages (Sinnig, 2004):

Design decisions are made at conceptual levels (i.e. designing the envisioned task model).

Designers can specify and analyze interactive systems from a more semantic-oriented level

rather than starting immediately to address the implementation level;

• Following a systematic and repeatable development approach to the reconstmction

process is easier and affords better comprehension of the system for later maintenance.

3.1.3 Different model s

Many facets, as well as related models, exist to describe a User Interface. Until now, there

is no agreement on which set of models is best for describing UIs in a declarative manner

(Sinnig, 2004) and (Da Silva, 2000). Different model-based approaches use different

declarative models (Sinnig, 2004), (Schlungbaum and Elwert, 1996), (Puerta, 1997) and

(Vanderdonckt et al., 2003a) (Schlungbaum and Elwert, 1996), (Puerta, 1997) and

(Vanderdonckt et al., 2003a). In what follows, the most frequently used models will be

defined: user task, user, domain, environment, platform, dialog, and presentation models.

These models have different names in different architectures. One should note that some

models overlap (as illustrated in Figure 1).

160

Figure 1: Different Model-Based Approaches.
(Extracted fi-om (Sinnig, 2004))

3.2 Different tools for Model-Based Approach

The tool was originally written as a prototype plug-in to the existing LTSA-WS tool suite

(Beard et al., 1996), providing the groimdwork for a Java implementation that collaborated

in other extensions to the suite, such as the Message Sequence Chart editor and graphical

LTS Draw llinctions, and which could contribute to future extensions. LTSA uses FSP to

specify behavior models. From the FSP description, the tool generates an LTS model. The

user can animate the LTS by stepping through the sequences of actions it models, and

model-check the LTS for various properties, including deadlock freedom, safety and

progress properties. The MSC extension builds by introducing a graphical editor for MSCs

and by generating an FSP specification from a scenario description (Vanderdonckt et al..

161

2003a). An FSP code is generated for the architecture, trace and constraint models

described previously. LTSA model checking capabilities (for safety and liveness checks)

are then used to detect implied scenarios. The LTSAWS Eclipse plug-in architecture

(Figure 2) leverages the previous work and utilizes the model-view-controller pattern. The

service implementation model is the BPEL4WS XML source code, and is managed by

editing in the form of a standard XML editor. The model is also parsed to provide useful

editor functions such as content outline and syntax highlighting. Parsing is also performed

on restore or save actions, whereby the translation function is called to view activities

specified in the composition.

CRITIQUE (Patemo, 2005) is a tool that creates KLM/GOMS models from the analysis

of the logs of user interactions with graphical interfaces implemented with a research tool.

The model is created following two types of rules: the types of KLM operators are

identified according to the type of event, and new levels in the hierarchical structure are

built when users begin working with a new object or when they change the input to the

current object (for example, switching from clicking to typing in a text box). In this

approach, the limitation is that the task model only reflects the past use of the system and

not other potential uses. These rules for building GOMS models, including mental

operators, have then been used in another tool (Paterno, 2005) that analyzes logs of

interactions with interfaces. The authors reported that this approach was tested with two

users (one was an author) and the models obtained were more accurate than previously

published models.

U-Tel (Paterno, 2005) analyses textual descriptions of the activities to support and then to

automatically associate tasks with verbs and objects with nouns. CTTE (Paterno, 2005)

provides the possibility for loading an informal textual description of a scenario or a use

case and interactively selecting the information of interest for the modeling work. In this

way, the designer can first identify tasks, then create a logical hierarchical structure and

finally complete the task model.

162

The developers of ISOD E (Paterno, 2005) have considered the success of UML and

provide some support to import Use Cases created by Rationa l Ros e in their tool for task

modeling. This environment also includes TAMOT , a tool for modeling tasks specified

with the DIANE+ notation.

A simulator for task models can be useful to better analyze the dynamic behavior of task

models, including those for cooperative systems. This feature is particularly meaningful

when the notation used to represent the model allows the specification of many temporal

relationships among tasks in addition to sequential tasks (such as disabling tasks,

concurrent tasks, suspending tasks). VTM B (Patemo, 2005) and CTT E are supports that

only a few tools provide. Also, in the case of tools for UML, this feature is usually missing.

Java Development Envirormient Tools (Eclipse , Rationa l Rose) allow one to generate the

skeleton of the source code, which is often a badly structured code and sometimes

anarchistic. Making it difficult to understand and to reuse.

Eclipse and Rational Rose:

• Plug-Ins (development new tools);

• Beans;

• Pluggable Look & Feel offer a mechanism to move from one model to another. How?

By virtual machine to generate a system and to present the system for a specific

independent platform (Lunix, Windows, X-Windows);

• Generic development code. Translation from one language to another. There are some

problems with this as: I) the code is not stmctured like the user wants it, requiring one

to decouple the interface and the model, 2) Usability issues since the code generated for

a mobile phone platform is not used directly by a PDA platform.

In summary, various solutions are possible for analysis tools based on task modeling.

CTTE represents a useful contribution to understanding the possibilities in terms of the

163

analyses that can be performed. One sees that CTTE is also able to compare two models

with respect to a set of metrics. Euterp e also supports the calculation of some metrics to

analyze a specification, and to help find inconsistencies or problems. The ability to predict

task performance is usually supported by tools for GOMS such as QDGOMS (Beard et al.,

1996). Overall, one important feature is the possibility of interactively simulating the task

model's dynamic behavior (Paterno, 2004).

This following table summarizes the weaknesses of these tools on the level of the

interactive system's development based pattems.

"~—-----^Oiteria
Tools — —
LTSA-WS
CRITIQUE
U-TEL
CTTE
ISODE
TAMOT
DIANE
VTMB
ECLIPSE
RATIONAL
ROSE
TIDE 2

Analyzing
Models

Yes
Yes
Yes
Yes
Yes
Yes
Yes
No
Yes
Yes

No

Designing
Models

Yes
Yes
Yes
No
Yes
Yes
Yes
Yes
Yes
Yes

Yes

Generation
code
Yes
Yes
Yes
No
Yes
Yes
Yes
Yes
Yes
Yes

Yes

Open
source

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
No

Yes

Pattern-
Oriented

No
No
No
No
No
No
No
No
No
No

Partially

Model-
Based

No
No
No
No
No
No
No
No

Partially
Yes

Yes

3.3 Pattern-Oriented Tool s

A tool support for pattem-oriented design should enhance the pattern user's

understandability, decrease the complexity of a pattem, and eliminate terminological

ambiguity. At the same time, the pattem language should be put into practice in a real

context of use, which is a critical issue for making pattern languages a cost-effective

vehicle for the gathering and disseminating of the best design practices among system and

usability engineering teams.

164

4. Formalisms an d notations for patterns, architectures an d models specification s

4.1 Different formalism s an d language s

The majority o f the languages are:

• Inappropriate;

• Difficult to use in an industrial context;

• Focused on an aspect of coordination of activities and interoperability;

• Temporal synchronization, resource sharing, collaboration between individuals;

• Focused on a component of the software (resource, activity, tool, and person).

In the majority o f the architectures studied :

• POD, PSA, MDA architectures are incomplete in the sense that each one of these

architectures does not take into account the important concepts of the other for the

development of system;

• There are no use patterns in interactive systems;

• Relationships between the patterns do not exist.

The languages and formalisms o f existing patterns:

1. I n the case of implementation :

• Allow one to model software architectures under specific aspects;

• Are not easily usable in a real context;

• Make it possible to describe only very specific software;

• Adaptation is very difficult.

2. I n the case of Design :

• No formalism or language is offered;

• These tools are not easy to use by nonprogrammers;

165

• These tools do not support a dynamic approach (Dawayne, 1993);

• These tools do not provide an interactive and graphic interface (Carr et al., 1995).

A number of pattern languages have been suggested. For example. Van Duyne's (2003)

"The Design of Sites", Welie's (1999) Interaction Design Patterns, and Tidwell's (1997)

UI Patterns and Techniques play an important role and Roberts's et al. (2001) Designing

for the User with OVID: Bridging User Interface Design and Software Engineering,

graphical and visual notation and method Design Approach. In addition, specific languages

such as Laakso's (2003) User Interface Design Pattems and the UPADE Language

(Engelberg and Seffah, 2002) have been proposed as well.

4.2 Examples of different language s and notations

4.2.1 Use r Interface Markup Language (UIML)

UIML is a meta-language that allows the developer to describe the user interface (UI) in

generic terms and to use style descriptions to map the UI to various target platforms. UIML

was developed to address the need for a uniform UI description language for building

multi-platform systems.

A UIML document contains three different parts: a UI description, a peers section that

defines mappings from the UIML document to external entities (rendering to the target

platform and system logic), and finally a template section that allows the reuse of written

elements. The UI description specifies a set of interface elements with which the end user

interacts. For each element, a presentation style is defined (e.g. position, font, color) along

with its content, possible user input events, and resulting actions.

Eventually, a UI description can be rendered to the corresponding target platform, resulting

in a functional UIML that provides a uniform language to describe user interfaces for

different target platforms. However, the creation of user interfaces for different target

166

platforms from a single specification is not possible. There is still a need to design separate

user interfaces for each device (Sirmig, 2004).

4.2.2 extensible Use r Interface Languag e (XUL)

XUL (Sinnig, 2004), (XUL, 2004a) and (XUL, 2004b) is an official Mozilla initiative, and

provides an XML-based language for describing window layout. The goal of XUL is to

build cross platform systems, which are easily portable to all of the operating systems on

which Mozilla runs. XUL provides a clear separation between the user interface definition

(the various widgets that determine the UI) and its visual appearance (the layout and the

"look and feel"). A UI is described as a set of stmctured interface elements along with a set

of predefined attributes. Event handlers and scripts can be defined in order to allow

interaction with the user. In order to extend XUL, the XBL (extensible Bindings

Language) (Sinnig, 2004) and (XBL, 2004) can be used to define new elements and XUL

widgets. In addition, it is possible to integrate extemal libraries (i.e. written in C/C++ or

JavaScript) using the XPCOM / XPConnect interfaces.

However, XUL has its focus on window-based user interfaces. This focus has a limitation.

At the moment, XUL specifications cannot be rendered to multiple user interfaces,

including small mobile devices (Sinnig, 2004) and (Souchon and Vanderdonckt, 2003).

4.2.3 extensible Interfac e Marku p Language (XIML)

XIML is the follower of MIMIC (Sinnig, 2004) and (Puerta and Maulsby, 1997) and

provides a way to describe the UI without worrying about its implementation. The goal of

XIML is to describe the various abstract (domain, task, and user) and concrete

(presentation and dialog) aspects of the UI throughout the development lifecycle. In

addition, XIML supports the definition of mapping from abstract to concrete elements

(Sinnig, 2004) and (Puerta and Eisenstein, 1999).

167

Figure 2 illustrates the basic stmctm-e of XIML. Practically, it is a hierarchical organized

set of interface elements that are distributed to one or more interface components. One

should note that XIML uses the term 'component' instead of 'model'. XIML predefines

five basic interface components:

• Tas k component : Captures the business process and/or user tasks that the interface

supports;

• Domai n component: Comprises a set of all objects and classes used;

• Use r component: Captures the characteristics of the users of the system;

• Dialo g component: Specifies the UI interaction;

• Presentatio n component : Defines a hierarchy of concrete interaction objects.

However, the language does not limit the mmiber and types of components and elements.

XIML can be extended in order to accommodate customized or new interface components.

In addition to the interface components, a XIML (Sinnig, 2004) and (XIML, 2003)

description consists also of attributes and relations. On one hand, an attribute is a feature or

property that has a value and belongs to an element. On the other hand, a relation is used in

order to Imk one or more elements together within the same component or across several

components.

XIML

(XIML, 2003)

Attributes

Relations

Components

Definitions

Statements I
Elements J

Figure 2: The Basic Structure of XIML.

168

XIML (Sinnig, 2004) has been introduced mainly to standardize the representation of

different models in order to act as a universal exchange format and to foster the

interoperability of systems. However, there are currently only a few tools such as Vaquita

(Bouillon and Vanderdonckt, 2002), XIML-Task-Simulator (Forbrig et al., 2003b), and

Dialog-Graph-Editor (Forbrig et al., 2003b) which use XIML. Therefore, there are no tools

presently available which are capable of rendering a XIML description to a user interface.

In addition, the extensibility of XIML also has its limitations. By defining new XIML

Components, the interoperability cannot be ensured. If portability is needed, XIML

Components may need to be limited to boundaries that are predefined.

4.2.4 Existing Model-Based Framewor k

Model-based UI development (Sinnig, 2004) has been investigated for more than a decade.

Many groups and individuals have devoted themselves to the development of model-based

frameworks. This section gives an overview of the most current and influential approaches.

One should note that instead of automation, JANUS (Balzert, 1996), AME (Martin, 1996),

"modern" model-based systems MOBI- D (1999), TERES A (2004) provide tools that

allow developers to interactively define mappings between the various models.

5. Reference s

Balzert, H. 1996. From OOA to GUIs: The JANUS System. Journal of Object-Oriented
Programming. (February, 1996). pp. 43-47.

Beard, D., D. Smith, K. Denelsbeck. 1996. Quick and Dirty GOMS: A Case Study of
Computed Tomography. Human-Computer Interaction. V.l 1, N.2, pp.157-180.

Bouillon, L. and J. Vanderdonckt. 2002. Retargeting of Web Pages to Other Computing
Platforms with VAQUITA. In Proceedings of WCRE'02. October 2002.
Richmond (Virginia).

169

Carr, David C. and Ashok Dandekar and Perry E. Dawayne. 1995. Experiments in
Process Interface Description, Visualizations and Analyses, Software Process,
Technology. Fourth European Workshop - EWSPT'95. Springer-Verlag.

Da Silva, P. 2000. User Interface Declarative Models and Development Environments:
A Survey. In Proceedings of DSV-IS'2000. pp. 207-226: Springer.

Duyne, D. K., van J. A. Landay and J. I. Hong. 2003. The Design of Sites: Patterns,
Principles and Processes for Crafting a Customer-Centered Web Experience.
Addison Wesley.

Engelberg, D., and A. Seffah. 2002. A. Design Patterns for the Navigation of Large
Information Architectures. 11' Annual Usability Professional Association
Conference. Orlando: (FL). USA

Forbrig, Peter, A. Dittmar and A. Mueller. 2003a. Adaptive Task Modelling: From
Formal Models to XML Representations. Multiple User Interfaces: Cross-Platform
Applications and Context-A ware Interfaces, pp. 171-192. London. Welie.

Forbrig, Peter, A. Dittmar, D. Reichart and D. Sinnig. 2003b. User-Centred Design and
Abstract Prototypes. In Proceedings of BIR 2003. pp. 132 - 145. SHAKER. Berlin
(Germany).

Grundy, John and Wenjing Zou. 2004. AUIT: Adaptable User Interface Technology,
with extended Java Server pages'. Multiple User Interfaces: Cross-Platform
Applications and Context-Aware Interfaces. London. Wiley.

Roberts, Dave, Dick Berry, Scott Isensee, and John Mullaly. 2001. Designing for the
User with OVID: Bridging User Interface Design and Software Engineering.
Published by Prentice Hall 2001,400 pages. ISBN 013092377X.

Laakso, Sari A. 2003. Collection of User Interface Design Patterns. University of
Helsinki, Dept. of Computer Science.

Martin, C. 1996. Software Life Cycle Automation for Interactive Applications: The
AME Design Environment. In Proceedings of CADUI'Qd. June 1996. pp. 57-76.
Namur (Belgium): Namur University Press.

Marucci, L., F. Paterno and C. Santoro. 2003. Supporting Interactions with Multiple
Platforms Through User and Task Models. Multiple User Interfaces, Cross-
Platform Applications and Context-Aware Interfaces, pp. 217-238. London.
Wiley.

170

MOBI-D. 1999. The MOBI-D Interface Development Environment. Online. <http://smi-
web.stanford.edu/proiects/mecano/mobi-d.htm>. Accessed on December 8' 2006.

Paterno, Fabio. 2004. Model-based Tools for Pervasive Usability. ENC 2004: 6.

Paterno, Fabio. 2005. Model-Based Tools for Pervasive Usability. Interacting with
Computers 17(3). Pages 291-315.

PhPNuk. 2006. Online, <http://phpnuke.org/>. Accessed on September 20'" 2006.

Puerta, A. 1997. A Model-Based Interface Development Environment. IEEE Software
0740 - 7459 / 97, Vol. 14, pp. 41-47. Online.
<http://www.arpuerta.com/pdf/ieee97.pdf>. Accessed on October 23'̂ '' 2005.

Puerta, A. and D. Maulsby. 1997. Management of Interface Design Knowledge with
MODI-D. In Proceedings of IUr97. January 1997. pp. 249-252. Orlando (FL).

Puerta, A. and J. Eisenstein. 1999. Towards a General Computational Framework for
Model-Based Interface Development Systems. In Proceedings of IUr99. 5-8
January 1999. pp. 171-178. Redondo Beach (CA): ACM Press. New York (USA).

Schlungbaum, E. 1996. Model-Based User Interface Software Tools - Current State of
Declarative Models. Technical Report 96-30. Graphics, Visualization and
Usability Center Georgia Institute of Technology.

Schlungbaum, E. and T. Elwert. 1996. Automatic User Interface Generation from
Declarafive Models. In Proceedings of CADUI 96. pp. 3-18. Namur (Belgium):
Namur University Press.

Seffah, Ahmed and Gaffar, Ashraf 2006. Model-based user interface engineering with
design pattems. Joumal of Systems and Software, doi:10.I016/j.jss.2006.10.037,
15 pages.

Sinnig, Daniel. 2004. The complicity of patterns and Model-Based UI Development.
Master of Computer Science, Montreal, Concordia University, 161 p.

Souchon, N. and J. Vanderdonckt. 2003. A Review of XML-compliant User Interface
Description Languages. In Proceedings of DSV-IS 2003. pp. 377-391. Funchal
(Portugal).

TERESA. 2004. Transformation Environment for Interactive Systems Representations.
Online. <http://Riove.cnuce.cnr.it/teresa.html>. Accessed on December 15'*" 2006.

http://smiweb.stanford.edu/proiects/mecano/mobi-d.htm
http://smiweb.stanford.edu/proiects/mecano/mobi-d.htm
http://phpnuke.org/
http://www.arpuerta.com/pdf/ieee97.pdf
http://Riove.cnuce.cnr.it/teresa.html

171

Tidwell, J. Common Ground. 1997. A Pattern Language for Human-Computer Interface
Design. Online. <http ://www.mit.edu/~itidwell/common_ground.html>. Accessed
on October 5"̂ 2005.

Vanderdonckt, J., E. Furtado, J. Furtado and Q. Limbourg. 2003a. Multi-Model and
Multi-Level Development of User Interfaces. Multiple User Interfaces, Cross-
Platform Applications and Context-Aware Interfaces, pp. 193-216. London.
Wiley.

Vanderdonckt, J., Q. Limbourg and M. Florins. 2003b. Deriving the Navigational
Structure of a User Interface. In Proceedings of INTERACT 2003. September
2003. lOS. pp. 455-462. Zurich (Switzerland).

Vanderdonckt, J., E. Furtado, J. Furtado and Q. Limbourg. 2003a. Multi-Model and
Multi-Level Development of User Interfaces. Multiple User Interfaces, Cross-
Platform Applications and Context-Aware Interfaces, pp. 193-216. London.
Wiley.

Welie, M.V. The Amsterdam. 1999. Collection of Pattems in User Interface Design.
Online, <http://www.cs.vu.nl/~martijn/patterns/index.html>. Accessed on October
2"*̂ 2005.

Wikipedia. The free encyclopedia. Content Management System. Online.
<http://en.wikipedia.org/wiki/Content manaeement_system>. Accessed on Mars
15"'2006.

XBL. 2004. The extensible Binding Language 1.0. Online.
<http://developer.mozilla.0rg/en/docs/XBL:XBL 1.0 Reference>. Accessed on
November 14'*̂ 2006

XIML. 2003. extensible Interface Markup Language. Online, <http://www.ximl.org/
documents/XimlWhitePaper.pdf>. Accessed on November 15"̂ 2006.

XUL. 2004a. The XML User Interface Language. Online, <http://www.xulplanet.com/>.
Accessed on November 28"̂ 2006.

XUL. 2004b. XUL Tutorial. Online, <http://www.xulplanet.com/tutorials/xultii/>.
Accessed on December 2"*̂ 2006.

Zope. 2008. Online, <http://www.zope.org>. Accessed on January lO"' 2008.

http://www.mit.edu/~itidwell/common_ground.html
http://www.cs.vu.nl/~martijn/patterns/index.html
http://en.wikipedia.org/wiki/Content%20manaeement_system
http://developer.mozilla.0rg/en/docs/XBL:XBL%201.0%20Reference
http://www.ximl.org/documents/XimlWhitePaper.pdf
http://www.ximl.org/documents/XimlWhitePaper.pdf
http://www.xulplanet.com/
http://www.xulplanet.com/tutorials/xultii/
http://www.zope.org

APPENDIX III

EXAMPLE O F XML SOURCE CODE FOR POMAML STRUCTURA L
NOTATION

<?xml version="1.0" encoding="UTF-8"?>
<!-- edited with XMLSpy v2005 rel. 3 U (http://www.altova.com) by cordier (none) ~>
<xs:schemaxmlns:xs="http://www. w3.org/2001/XMLSchema"
elementFormDefault="qualified" attributeFormDefault="unqualified">

<xs:element name="POMAML">
<xs:complexType>

<xs:choice>
<xs:element name="Patterns">
<xs: complexType>

<xs:sequence maxOccurs="6">
<xs:armotation>

<xs:documentation>Pattems Composition Rules</xs:documentation>
</xs:annotation>

<xs:element name="NavigationPatterns" type="TaskPatternType"/>
<xs:element name="InteractionPattems" type="TaskPattemType"/>
<xs:element name="PresentationPattern" type="TaskPatternType"/>
<xs:element name="VisualizationPattems" type="TaskPattemType"/>
<xs:element name="InteroperabilityPattems" type="TaskPattemType"/>
<xs:element name="InformationPatterns" type="TaskPattemType"/>
<xs:element name="PIMModels">
<xs:complexType>

<xs:sequence maxOccurs="5">
<xs:armotation>

<xs:documentation>Models Transformation
Rules</xs:documentation>

</xs:annotation>
<xs:elementname="PIMDomainModer'

type=" PIMDomainModelType "/>
<xs:element name="PIMTaskModer' type="PIMTaskModelType"/>
<xs:element name="PIMDialogModer'type="PIMDialogModelType"/>
<xs: element

name="PIMPresentationModer'type="PIMPresentationModelType"/>
<xs:element name="PIMLayoutModer'

type="PIMLayoutModelType"/>
<xs:sequence>
<xs:annotation>

<xs:documentation>Patterns Mapping Rules</xs:documentation>
</xs:armotation>

http://www.altova.com
http://www
http://w3.org/2001/XMLSchema

173

<xs:element name="PSMModels">

<xs: complexType>
<xs:sequence>

<xs:annotation>
<xs:documentation>Models Transformation

Rules</xs:documentation>
</xs:annotation>

<xs:element name="PSMDomainModer'
type="PSMDomainModelType"/>

<xs:element name="PSMTaskModel" type="PSMTaskModelType"/>
<xs:element name="PSMDialogModel" type="PSMDialogModelType"/>

<xs:element name="PSMPresentationModer'
type="PSMPresentationModelType"/>

<xs:element name="PSMLayoutModel" type="PSMLayoutModelType"/>
<xs:sequence>

<xs:annotation>
<xs:documentation>Source Code Generation FRuIes</xs:documentation>
</xs:annotation>

<xs:element name="ApplicationGenaration"
type="ApplicationGenarationType"/>

</xs:sequence>
</xs:sequence>

</xs:complexType>

</xs:element>
</xs:sequence>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:sequence>

</xs: complexType>
</xs:element>

</xs:choice>
</xs:compIexType>

</xs:element>
<xs:complexType name="TaskType">

<xs:sequence>
<xs:element name="ID" type="xs:string"/>
<xs:element name="Name" type="xs:string"/>
<xs:element name="Order" type="xs:string"/>
<xs:element name="Relation" type="xs:string" minOccurs="0"

maxOccurs="unbounded"/>
<xs:element name="SubTasks" minOccurs="0">

174

<xs: complexType>
<xs:choice minOccurs="0" maxOccurs="unbounded">

<xs:element name="Task">
<xs:complexType>

<xs:complexContent>
<xs:extension

base="TaskType"/>
</xs:complexContent>

</xs:complexType>
</xs:element>
<xs:element name="SubTasks"

type="TaskTemplateType"/>
</xs:choice>

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>
<xs:complexType name="TaskTemplateType">

<xs:sequence>
<xs:element name="ID" type="xs:string"/>
<xs:element name="VariableDef' minOccurs="0" maxOccurs="unbounded">

<xs: compIexType>
<xs:sequence>

<xs:element name="Name" type="xs:string"/>
<xs:element name="Description" type="xs:string"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="Name" minOccurs="0">

<xs:complexType>
<xs:choice minOccurs="0" maxOccurs="unbounded">

<xs:element name="Text" type="xs:string"/>
<xs:element name="Variable" type="xs:string"/>

</xs:choice>
</xs: complex Type>

</xs:element>
<xs:element name="Order" type="xs:string"/>
<xs:element name="Relation" minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="SubTasks" minOccurs="0">

<xs: complexType>
<xs:choice minOccurs="0" maxOccurs="unbounded">

<xs:element name="Task" type="TaskType"/>
<xs:element name="Subtasks"

type="TaskTemplateType "/>
</xs:choice>

</xs:complexType>

175

</xs:element>
</xs:sequence>

</xs:complexType>
<xs:complexType name="TaskPatternType">

<xs:sequence minOccurs="0" maxOccurs="unbounded">
<xs:element name="Name" type="xs:string"/>
<xs:element name="ProbIem" type="xs:string"/>
<xs:element name="Context" type="xs:string"/>
<xs:element name="Solution" type="xs:string"/>
<xs:element name="Rationar' type="xs:string"/>
<xs:element name="Body">

<xs:complexType>
<xs:choice>

<xs:element name="Task" type="TaskType"/>
<xs:element name="TaskTemplate"

type="TaskTemplateType"/>
</xs:choice>

</xs: complexType>
</xs:element>

</xs:sequence>
</xs:complexType>
<xs:complexType name="ApplicationGenarationType">

<xs:choice>
<xs:element name="Language">

<xs:complexType>
<xs:sequence/>

</xs:complexType>
</xs:eIement>

</xs:choice>
</xs: complexType>
<xs:complexType name="PSMDomainModelType">

<xs:sequence>
<xs:element name="Name"/>
<xs:element name="Descrikption"/>
<xs:element name="Example"/>
<xs:element name="Relation" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
</xs: complex Type>
<xs:complexType name="PSMTaskModelType">

<xs:sequence>
<xs:element name="Name"/>
<xs:element name="Description"/>
<xs: element name=" Example "/>
<xs:element name="Relation" iTiinOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

176

</xs:complexType>
<xs:complexType name="PSMDialogModelType">

<xs:sequence>
<xs:element name="Name"/>
<xs:element name="Description"/>
<xs:element name="Example"/>
<xs:element name="Relation" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>
<xs:complexType name="PSMPresentationModelType">

<xs:sequence>
<xs:element name="Name"/>
<xs:element name="Description"/>
<xs:element name="Example"/>
<xs:element name="Relation" minOccurs="0" maxOccurs="unbounded7>

</xs:sequence>
</xs: complexType>
<xs:complexType name="PSMLayoutModelType">

<xs:sequence>
<xs:element name="Name"/>
<xs:element name="Description"/>
<xs:element name="Example"/>

</xs:sequence>
</xs:complexType>
<xs:complexTypename="PIMDomainModelType">

<xs:sequence>
<xs:element name="Name" type="xs:string"/>
<xs:element name="Description" type="xs:string"/>
<xs:element name="Example" type="xs:string"/>
<xs:eleinent name="Relation" minOccurs="0" niaxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>
<xs:complexType name="PIMTaskModelType">

<xs:complexContent>
<xs:extension base="TaskModelType">

<xs:sequence>
<xs;element name="Name"/>
<xs:element name="Description"/>
<xs:element name="Example"/>
<xs:element name="Relation" minOccurs="0"

maxOccurs=" unbounded "/>
</xs:sequence>

</xs:extension>
</xs:complexContent>

</xs:complexType>

.77

<xs:complexType name="PIMDialogModelType">
<xs:complexContent>

<xs:extension base="DialogModelType">
<xs:sequence>

<xs:element name="Name"/>
<xs:element name="Description"/>
<xs:element name="Example"/>
<xs:element name="Relation" minOccurs="0"

maxOccurs="unbounded"/>
</xs:sequence>

</xs:extension>
</xs: complexContent>

</xs: complexType>
<xs:complexType name="PIMPresentationModelType">

<xs: complexContent>
<xs:extension base="PresentationModelType">

<xs:sequence>
<xs:element name="Name"/>
<xs:element name="Description"/>
<xs:element name="Example"/>
<xs:element name="Relation" minOccurs="0"

maxOccurs=" unbounded "/>
</xs:sequence>

</xs:extension>
</xs:complexContent>

</xs: complexType>
<xs:complexType name="PIMLayoutModelType">

<xs:complexContent>
<xs:extension base="LayoutModelType">

<xs:sequence>
<xs:element name="Name"/>
<xs:element name="Description"/>
<xs:element name="Example"/>
<xs:element name="Relation" minOccurs="0"

maxOccurs=" unbounded"/>
</xs:sequence>

</xs:extension>
</xs:complexContent>

</xs:complexType>
</xs:schema>

LIST OF APPENDICES

Page

APPENDIX I GLOSSARY OF TERMS 151

APPENDIX 11 TECHNICAL REPORT OF INTERACTIVE SYSTEM
DEVELOPMENT TOOLS: TRENDS AND CHALLENGES IN
INTERACTIVE SYSTEM DEVELOPMENT TOOLS:
REQUIREMENTS FOR PATTERN-ORIENTED AND MODEL-
BASED ARCHITECTURE 145

APPENDIX III EXAMPLE OF XML SOURCE CODE FOR POMAML
STRUCTURAL NOTATION .172

BIBLIOGRAPHY

Alexander, Christopher. 1979. The Timeless Way of Building. Oxford University Press.
New York: (NY). USA.

Alexander, Christopher, S. Ishikawa, M. Silverstein, M. Jacobson, I. Fiskdahl-King and S.
Angel. 1977. A Pattern Language. Oxford University Press. New York. USA.

Bass, Len, Paul Clements and Rick Kazman. 2003. Software Architecture in Practice.
Second Edition. Addison-Wesley Boston: (MA).USA.

Beck, K., J. O. Coplien, R. Crocker, L. Dominick, G. Meszaros, F. Paulisch, and J.
Vlissides. 1996. Industrial experience with design pattems. In Proceedings of the 18''̂
Intemational Conference on Software Engineering. Pages 103-114. IEEE Computer
Society Press.

Booch, Grady, James Rumbaugh and Ivar Jacobson. 1999. The Unified Modeling Language
User Guide. Addison-Wesley.

Buschmann, F. 1996. What is a pattem? Object Expert. Vol. 1(3). PPI7-18.

Buschmann, F., R. Meunier, Rohnert H., P. Sommerlad and M. Stal. 1996. Pattern-
Oriented Software Architecture: A System of Patterns. John Wiley & Sons Ltd.

Carr, David C. and Ashok Dandekar and Perry E. Dawayne. 1995. Experiments in Process
Interface Description, Visualizations and Analyses, Software Process, Technology.
Fourth European Workshop - EWSPT'95. Springer-Verlag.

CHI. 1999. Human Factors in Compufing Systems. Proceedings of the SIGCHI conference
on Human factors in computing systems: the CHI is the limit. Online.
<http://portal.acm.org/toc.cfm?id=302979&coll=ACM&dl=ACM&tvpe=proceeding
&idx=SERIES260&part=Proceedings&WantTvpe=Proceedings&title=Conference%
20on%20Human%20Factors%2Qin%20Computing%20Svstems&CFID=78433578&
CFTOKEN=67946859>. Pittsburgh: (Pennsylvania). USA. Accessed on January s""
2007.

Clarke, S. 2000. Composing Design Models: An Extension to the UML. UML 2000 -
Intemational conference on the unified modeling language N°3. York. Royaume-Uni.
(02/10/2000) 2000. Vol. 1939. Pages 338-352. [Note(s): XIV, 572 p.,] (9
ref). ISB N 3-540-41133-X.

http://portal.acm.org/toc.cfm?id=302979&coll=ACM&dl=ACM&tvpe=proceeding&idx=SERIES260&part=Proceedings&WantTvpe=Proceedings&title=Conference%20on%20Human%20Factors%252Qin%20Computing%20Svstems&CFID=78433578&CFTOKEN=67946859
http://portal.acm.org/toc.cfm?id=302979&coll=ACM&dl=ACM&tvpe=proceeding&idx=SERIES260&part=Proceedings&WantTvpe=Proceedings&title=Conference%20on%20Human%20Factors%252Qin%20Computing%20Svstems&CFID=78433578&CFTOKEN=67946859
http://portal.acm.org/toc.cfm?id=302979&coll=ACM&dl=ACM&tvpe=proceeding&idx=SERIES260&part=Proceedings&WantTvpe=Proceedings&title=Conference%20on%20Human%20Factors%252Qin%20Computing%20Svstems&CFID=78433578&CFTOKEN=67946859
http://portal.acm.org/toc.cfm?id=302979&coll=ACM&dl=ACM&tvpe=proceeding&idx=SERIES260&part=Proceedings&WantTvpe=Proceedings&title=Conference%20on%20Human%20Factors%252Qin%20Computing%20Svstems&CFID=78433578&CFTOKEN=67946859

180

Clarke, S. and R. Walker. 2001. Composition Patterns. An Approach to Designing
Reusable Aspects. To appear in Proc. ICSE.

Coad, Peter. 1992. Object Oriented Patterns. Communications of the ACM. Vol. 35. No: 9.

Coplien, J. O. 1998. The Patterns Handbook: Techniques, Strategies, and Applications,
chapter Software Design Pattems: Common Questions and Answers. Pages 311-320.
Cambridge University Press. New York: (NY). USA.

Coram, T. and J. Lee. 1998. A Pattem Language for User Interface Design. Online.
<http://www.maplefish.com/todd/papers/experiences>. Accessed on October P'
2005.

Coutaz, J. 1987. PAC, an implementation Model for dialog Design. Interact'87. pp. 431-
436. Stuttgart. Germany.

Coutaz, J. 1990. Architecture Models for interactive software: Failures and trends. In
Engineering for Human-Computer Interaction. Cockton G. Ed. Elsevier Science
Publication, pp 137-153.

Da Silva, P. P. 2000. User Interface Declarative Models and Development Environments:
A Survey. Proceedings of Seventh Intemational Workshop on Design. Specification
and Verification of Interactive Systems (DSVIS 2000). Limerick. Ireland.

Darses, F. 1990. Constraints in design: towards a methodology of psychological analysis
based on Al formalisms. In Proceedings of conference on Human-Computer
Interaction. INTERACT'90. pp 135-138. Diaper et al. D. (Eds). Elsevier Science
Publishers B. V. North Holland.

Dawayne, Perry E., 1993. Human in the Process: Architectural Implications. Proceeding of
the 8"̂ International Software Process Workshop. Schloss Dagstuhl. Germany.

Donyaee, Mohammad K. 2008. Investigating the Correlation of Usability Measures and
User Tests: A Roadmap for a Predictive Model. PhD of Computer Science and
Software Engineering, Montreal, Concordia University, 201 p.

D'Souza, Desmond. 2001. Model-Driven Architecture and Integration Opportunities and
Challenges. OMG Group. Online, <ftp://ftp.omg.org/pub/docs/ab/01-03-02.pdf>.
Accessed on September 7' 2005.

Duyne, D. K. van, J. A. Landay, and J. I. Hong. 2003. The Design of Sites: Patterns,
Principles and Processes for Crafting a Customer-Centered Web Experience.
Addison Wesley.

http://www.maplefish.com/todd/papers/experiences
http://ftp.omg.org/pub/docs/ab/01-03-02.pdf

181

Engelberg, D. and A. Seffah. 2002. A Design Patterns for the Navigation of Large
Informafion Architectures, ll"^ Annual Usability Professional Association
Conference. Orlando (Florida).US A.

Erickson, T. 2000. Lingua Franca for Design: Sacred Places and Pattem Language. In
Proceedings of Designing Interactive Systems. ACM Press. New York: (NY). USA.

Fowler, Martin. 1997. Analysis Patterns, reusable objects models. Addison-Wesley.

Gamma, E., R. Helm, R. Johnson and J. Vlissides. 1995. Design Patterns: Elements of
Reusable Object-Oriented SoftH'are. Addison Wesley.

Garrido, A., G. Rossi and D. Schwabe. 1997. Pattem Systems for Hypermedia. Pattern
Language of Programming Conference.

Garrigos, Irene. Jaime Gomez and Cristina Cachero. 2003a. Modelling Adaptive Web
Applications. ICWI 2003. pp 813-816.

Garrigos, Irene, Jaime Gomez and Cristina. Cachero. 2003b. Modelling Dynamic
Personalization in Web Applications. ICWI 2003. pp 813-816.

Goldberg, A. 1984. Smaltalk-80: The Interactive Programming Environment. Addison-
Wesley Publication.

Gram, C. and G. Cockton (eds). 1996. Design Principles for Interactive Software.
Chapman & Hall.

Granlund, Asa, Daniel Lafreniere and David A. Carr. 2001. A Pattern-Supported Approach
to the User Interface Design Process. Proceedings of HCI International 2001 9'*̂
International Conference on Human-Computer Interaction. August 5-10, 2001. New
Orleans. USA.

Green, M. 1985. User Interface Management System. ACM. Volume 19. No.3. The
University of Alberta. Alberta. Canada.

Henderson-Sellers, Brian, Ian M. Graham, P. Swatman, Russel L. Winder and Trygve
Reenskaug. 1996. Using Object-Oriented Techniques to Model the Lifecycle for 0 0
Software Development. OOIS 1996: 211.

Horton, W. K. 1994. Designing and Writing Online Documentation. 2" edition. Wiley.
New York: (NY). USA.

IBM. 2007. Design Principles Checkhst. Online. <https://www-
306.ibm.com/software/ucd/designconcepts/designbasics.html>. Accessed on January
15"̂ 2008.

https://www306.ibm.com/software/ucd/designconcepts/designbasics.html
https://www306.ibm.com/software/ucd/designconcepts/designbasics.html

182

IEEE. 2000. Recommended Practice for Architectural Description of Software-Intensive
Systems IEEE Standard 1471-2000.

IFEN. Institut Fran9ais de I'ENvironnement. Ministere de I'Ecologie, de I'Energie, du
Developpement durable et de I'Amenagement du territoire. Online.
<http://www.ifen.fr/acces-thematique/>. France. Accessed on January 15'̂ 2007.

fNTERACT. 1999. Technology and Persons with Disabilhies. Proceedings of the Center on
Disabilities. Online, <http://vyww.csun.edu/cod/conf/1999/proceedings/csun99.htm>.
Edinburgh: (Glasgow). UK. Accessed on February lO"̂ 2006.

ISO/IEC 9126-1:2001. 2001. Software Engineering - Product Quality - Part 1: Quality
Model. ISO.

Javahery, H., A. Deichman, A. Seffah, and M. Taleb. 2007. A User-Centered Framework
for Deriving a conceptual design from user experiences. Leveraging personas and
patterns to create usable design. In A. Seffah, J. Gulliksen, and M. Desmarais, eds,
Human-Centered Software Engineering, Volume II, Software Engineering Models,
Patterns and Architectures for HCI, Chapter 4, May 28"" 2007, John Wiley & Sons,
New York, USA.

Javahery, H. and A. Seffah. 2002. A Model for Usability Pattern-Oriented Design. In
Proceedings ofTAMODIA 2002. Bucharest. Romania, pp. 104-110.

Javahery, H. 2003. Pattern-Oriented Design for Interactive Systems. Master of Computer
Science and Software Engineering, Montreal, Concordia University, 104 p.

Jerome, Bill, Rick Kazman. 2007. Two Studies: Human Computer Interaction and Software
Engineering, a chapter in Human-Centered in Software Engineering - Integrating
Usability in the Software Development Lifecycle. Edited by Seffah, A., Gulliksen, J,
Desmarais, M, Springer, ISBN: 978-1-4020-4027-6.

Johnson, R.E. 1997. Frameworks = Components + Patterns. Communication of the ACM.
Vol. 40. Nolo, pp 39-42.

Keller, Rudolf K. and Reinhard Schauer. 1998. Design Components: Towards Software
Composifion at the Design Level. ICSE 1998. pp 302-311.

Koch, Nora and Andreas Kraus. 2003. Towards a Common Metamodel for the
Development of Web Applications. ICWE 2003. pp 497-50.

Koch, Nora and GmbH Fast. 2006. Transformation Techniques in the Model-Driven
Development Process of UWE. ICWE'06 Workshops. Palo Alto: (CA). USA.

http://www.ifen.fr/acces-thematique/
http://vyww.csun.edu/cod/conf/1999/proceedings/csun99.htm

183

Kristensen, Bent Bruun and Kasper Osterbye. 1996. A Conceptual Perspective on the
Comparison of Object-Oriented Programming Languages. SIGPLAN Notices 31(2).
pp 42-54.

Laakso, Sari A. 2003. Collecfion of User Interface Design Pattems. University of Helsinki,
Dept. of Computer Science.

Larsen, G. 1999. Designing Component-Based framework Using Patterns in the UML.
Communicafion of the ACM. Vol. 42. No 10. pp 38-45.

Lauder, Anthony and Stuart Kent. 1998. Precise Visual Specification of Design Pattems.
ECOOP 1998. pp 114-134.

Lea, D. 1997. Patterns Discussion FAQ. Online.
<http://g.oswego.edu/dl/pd-FAQ/pd-FAQ.html>. Accessed on October 5"" 2005.

Loureiro, K. and D. AD. Plummer. 1999. Pattems: Beyond Objects and Components.
Research Note # COM-08-0111. Gartner Group.

Lynch, P.J. and S. Horton. 1999. Web Style Guide: Basic Design Principles for Creating
Web Sites. New Haven and London. Yale University Press.

Macintosh. 1992. Human Interface Guidelines. Apple Computer Company. Publisher
Addison Wesley Professional. Cupertino: (CA). USA. Online.
<http://interface.free.fr/Archives/Apple_HIGuidelines.pdf>. Accessed on Febmary
3'" 2007.

Meservy, Thomas O. and Kurt D. Fenstemacher. 2005. Transforming Software
Development: An MDA Road Map. IEEE Computer. Vol. 38. No. 8. pp. 52-58.

Meyer, Bertrand. 1990. Conception et programmation par objets pour du logiciel de
qualite. Informatique intelligence artificielle ISSN 0297-5416. Source [Note(s) :
[622 p.]] ISBN 2-7296-0272-0. Inter-Editions. Paris. France.

Microsoft. 1995. The Windows Interface Guidelines for Software Design. Microsoft Press.
Redmond: (WA). USA. Online.
<http://www.ics.uci.edu/~kobsa/courses/ICS104/course-
notes/Microsoft WindowsGuidelines.pdf>. Accessed on February 4 2007.

Miller, J., J. Mukerji. 2003. MDA Guide Version 1.0.1. OMG doc.omg/2003-06-01.
Online, <http://www.omg.org/docs/omg/03-06-01.pdf>. Accessed on September 7*
2005.

http://g.oswego.edu/dl/pd-FAQ/pd-FAQ.html
http://interface.free.fr/Archives/Apple_HIGuidelines.pdf
http://www.ics.uci.edu/~kobsa/courses/ICS104/coursenotes/Microsoft%20WindowsGuidelines.pdf
http://www.ics.uci.edu/~kobsa/courses/ICS104/coursenotes/Microsoft%20WindowsGuidelines.pdf
http://www.omg.org/docs/omg/03-06-01.pdf

184

Msheik, Hamdan, Alain Abran and Eric Lefebvre. 2004. Compositional Structured
Component Model: Handling Selective Functional Composition. IEEE 30"̂
EUROMICRO Conference, pp 74-81.

Mukerji, Jishnu. 2001. Model Driven Architecture (MDA) - Technical Perspective.
Document number ormsc/2001-07-01. Architecture Board. ORMSC, 2001. OMG
Group. Online, <http://www.omg.0rg/docs/omg/01 -07-01 .pdf>. Accessed on
September f^ 2005.

Muller, Pierre-Alain and Gartner Nathalie. 2000. Modelisation Objet avec UML. Editions
Eyrolles. Paris. France.

Myers, B. A. 1986. Visual programming, programming by example, and program
visualization: A taxomany. In Proceedings of the ACM CHI'86 Conference on
Human Factors in Computing Systems. ACM New York, pp 271-278.

Myers, B. A. and B W. Buxton. 1986. "Creating highly-interactive and graphical UIs by
demonstration". Proceedings of the 13th annual International Conference on
Computer Graphics and Interactive Techniques, pp. 249-258.

Myers, B. A. 1989a. User Interface Tools: Introduction and Survey. IEEE Software.

Myers, B. A. 1989b. The sate of the art in visual programming. In Kilgour A. & Eamsnaw
R. (Ed) Graphics Tools for Software Engineers. Cambridge University Press.

Myers B. A. 1989c. Encapsulating interactive behaviours. Proceedings of the conference on
human factors in computing system (SIGCHI 89). pp 319-324.

Myers, B. A. 1990. Taxonomies of visual Programming and Program Visualization.
Journal of Visual Languages and Computing. 1 (I).

Myers, B. A., D.A. Guise, R. B. Dannenberg, B. V. Zanden, D. S. Kosbie, E. P. Mickish,
A. P. Marchal, and N. Garnet. 1990. Comprehensive Support for Graphical. Highly
Interactive User Interfaces. IEEE Computer. 23(11).

Nielsen, J. 1999. Designing Web Usability. The Pracfice of Simplicity. New Riders.

OMG Group. 2008. Model-Driven Architecture Home Page. Online.
<http://vyww.omg.org/mda/index.htm>. Accessed on September 1̂ ' 2005.

ORMSC White Paper. Ormsc/05-04-01. 2005. A Proposal for an MDA Foundation Model.
VOO-02. OMG Group. Online, <http://www.omg.org/docs/ormsc/05-04-01 .pdf>
Accessed on September 7' 2005.

http://www.omg.0rg/docs/omg/01%20-07-01%20.pdf
http://vyww.omg.org/mda/index.htm
http://www.omg.org/docs/ormsc/05-04-01%20.pdf

185

Ouadou, K. E. 1994. AMF : un modele d'architecture multi-Agents Muhi-Facettes pour
interfaces homme-machine et les outils associes. These de doctorat. Ecole Centrale
de Lyon. France.

Paterno, F. 2000. Model-Based Design and Evaluation of Interactive Applications. 208
pages. ISBN 1-85233-155-0. Springer.

Pfaff, G. 1985. User Interface Management System. Seeheim Workshop. Springer-Verlag.
Berlin. Germany.

Ram, Janaki D., Raman K. N. Anantha and K. N. Gumprasad. 1997. A Pattern Oriented
Technique for Software Design. ACM SIGSOFT. Software Engineering Notes. Vol.
22. No 4. Page 70.

Riehle, Dirk. 1997. Composite Design Pattems. OOPSLA 1997: 218-228.

Rising, L. 1996. Reuse at AG Communication Systems = Pattems. MultiUse Express. Vol.
4. No3.

Rossi, Gustavo, Fernando Lyardet and Daniel Schwabe. 1999a. Developing hypermedia
applications with methods and pattems. ACM Computer. Survey. 31(4es): 8.

Rossi, Gustavo, Daniel Schwabe and Femando Lyardet. 1999b. Designing Hypermedia
Applications with Objects and Pattems. International Journal of Software
Engineering and Knowledge Engineering. 9(6). pp 745-766.

Rossi, Gustavo, Daniel Schwabe and Fernando Lyardet. 1999c. Improving Web
Information Systems with Navigational Patterns. Computer Networks 31(11-16). pp
1667-1678.

Schlungbaum, Edberg. 1996. Model-Based User Interface Software Tools - Current State
of Declarative Models. Technical Report 96-30. Graphics, Visualization and
Usability Center Georgia Institute of Technology. (Georgia). USA.

Schmidt Douglas C , Stal Michael, Rohnert Hans and Buschmaim Frank. 2000. Pattern-
Oriented Software Architecture: Patterns for Concurrent and Networked Objects.
Wiley & Sons. ISBN 0-471-60695-2.

Seffah, Ahmed and Gaffar, Ashraf 2006. Model-based user interface engineering with
design pattems. Journal of Systems and Software, doi:10.1016/j.jss.2006.10.037, 15
pages.

Shaw, Mary and David Garlan. 1996. Software Architecture. Prentice Hall, ISBN 0-13-
182957-2.

186

Si Alhir, Sinan. 2003. Understanding the Model-Driven Architecture (MDA). Methods &
Tools, Vol. 11. No.3. pp. 17-24. Online.
<http://vyww.methodsandtools.com/PDF/Dmt0303.pdf>. Accessed on September f^
2005.

Sinnig, Daniel. 2004. The complicity of patterns and Model-Based UI Development.
Master of Computer Science, Montreal, Concordia University, 148 p.

Soley, Richard and the OMG Staff Strategy Group. 2000. Model-Driven Architecture.
OMG Group. Online, <ftp://ftp.omg.org/pub/docs/omg/00-11 -05 .pdf>. Accessed on
September 7"'2005.

Souchon, Nathalie, Quentin Limbourg and Jean Vanderdonckt. 2002. Task Modelling in
Multiple Contexts of Use. In Proceedings of DSV-IS 2002. pp. 77-95. Rostock.
Germany.

Sowa, J.F. and John A. Zachman. 1992. Extending and Formalizing the Framework for
Information Systems Architecture. IBM Systems Journal. Vol. 31. No. 3. IBM
Publication. G321-5488.

Sun Microsystems. 2001. Java Look and Feel Design Guidelines. Publisher Addison
Wesley Professional. Online, <http://iava.sun.com/products/ilf/ed2/book/>. Accessed
on February 5"" 2007.

Sun Microsystems. 2002a. Architecture muhi-tiers. Online.
<http://iava.developpez.com/archi multi-tiers.pdf>. Accessed on April 10'*̂ 2006.

Sun Microsystems. 2002b. Core J2EE Pattems Architecture. Online.
<http://iava.sun.com/blueprints/corei2eepattems/Patterns/index.html >. Accessed on
September lO"" 2005.

Sun Microsystems. 2002c. J2EE Patterns Catalog. Online.
<http://iava.sun.com/blueprints/pattems/catalog.html>. Accessed on September 10'̂
2005.

Taleb, M., H. Javahery and A. Seffah. 2006. Pattern-Oriented Design Composition and
Mapping for Cross-Platform Web Applications. The XIII Intemational Workshop.
DSVIS 2006. July 26-28 2006. Trinity College Dublin Ireland. DOI 10.1007/978-3-
540-69554-7. ISBN 978-3-540-69553-0. Vol. 4323/2007. Publisher Springer-Verlag
Berlin Heidelberg. Germany.

http://vyww.methodsandtools.com/PDF/Dmt0303.pdf
http://ftp.omg.org/pub/docs/omg/00-11%20-05%20.pdf
http://iava.sun.com/products/ilf/ed2/book/
http://iava.developpez.com/archi%20multi-tiers.pdf
http://iava.sun.com/blueprints/corei2eepattems/Patterns/index.html
http://iava.sun.com/blueprints/pattems/catalog.html

187

Taleb, M., A. Seffah and A. Abran. 2007a. Pattem-Oriented Architecture for Web
Applications. 3rd International Conference on Web Information Systems and
Technologies (WEBIST). March 3-6, 2007. ISBN 978-972-8865-78-8. pp. 117-121.
Barcelona. Spain.

Taleb, M., A. Seffah and A. Abran. 2007b. Model-Driven Design Architecture for Web
Applications. The 12th International Conference on Human Centered Interaction
Intemafional (FIC-HCII). July 22-27, 2007. Beijing Intemational Convenfion Center.
Beijing. P.R. China. Vol. 4550/2007. pages 1198-1205. Publisher Springer-Verlag
Berlin Heidelberg. Germany.

Taleb, M., A. Seffah and A. Abran. 2007c. Patterns-Oriented Design for Cross-Platform
Web-based Information Systems. The 2007 IEEE International Conference on
Information Reuse and Integration (IEEE IRI-07). August 13-15, 2007. pages 122-
127. Las Vegas. USA.

Taleb, M., A. Seffah and D. Engelberg. 2007d. From User Interface Usability to the
Overall Usability of Interactive Systems: Adding Usability in System Architecture. In
A. Seffah, J. Gulliksen and M. Desmarais. (Eds). Human-Centered Software
Engineering. Volume II. Software Engineering Models. Pattems and Architectures
for HCI. Chapter 9. May 28"̂ 2007. John Wiley & Sons. New York. USA.

Taleb, M., A. Seffah and A. Abran. 2008a. On the suitability of XML and its quality
framework of languages based on models for representing interactive systems. The
6th Intemational Workshop on XML Technology Applications (XMLTech08). The
2008 World Congress in Computer Science. Computer Engineering and Applied
Computing (WORLDCOMP'08). July 14-17, 2008. Las Vegas. Nevada. USA.

Taleb, M., A. Seffah and A. Abran. 2008b. Reconciling Usability and Interactive System
Architecture Using Patterns. Journal of Software and Systems.

Taleb, M., A. Seffah and A. Abran. 2008c. Investigating Model-Driven Architecture for
Web-based Interactive Systems. Journal of eMinds. (Submitted)

Taleb, M., A. Seffah and A. Abran, 2008d. POMA: A Pattem-Oriented and Model-Driven
Architecture. Journal of Software - Practice and Experience. (Submitted)

Taleb, M. and A. Seffah. 2008e. Tracing the Evolution of Patterns as a Design Tool.
Joumal of Pattern Analysis and Applications. (Submitted)

Taleb M., A. Seffah and A. Abran. 2008e. Pattems + Personas = A Human-Centric
Infrastructure for Web Applications Design. The International World Wide Web
Conferences (WWW2009), April 20-24, 2009, Madrid, Spain. (Submitted)

188

Tidwell, J. Common Ground. 1997. A Pattern Language for Human-Computer Interface
Design. Online. <http ://www.i'nit.edu/~itidwell/common ground.html>. Accessed on
September 24"̂ 2005.

UPA. 2001. Usability- a Winning Experience. Online.
<http://www.usabilitvprofessionals.org/conference/1997-2002overview.html>. Lake.
Las Vegas: (Nevada). USA. Accessed on March 13'*" 2007.

Welie, M.V. 1999. 'The Amsterdam Collection of Patterns in User Interface Design.
Online. <http://www.welie.com/pattems/>. Accessed on September 16'̂ 2005.

Wills, Alan C. and Desmond D'Souza. 1996. Component and Framework-based
Development. OOIS 1996. Pages 413.

Wirfs-Brock, Rebecca and Brian Wilkerson. 1989. Object-Oriented Design: A
Responsibility-Driven Approach. OOPSLA 1989: 71-75.

Yacoub, Sherif and Hany Ammar. 2003. Composition of Design Patterns. Addison Wesley
Professional. ISBN 0-201-77640-5. 416 pages. Germany.

Zachman, John A. 1987. A Framework for Information Systems Architecture. IBM
Systems Journal. Vol. 26. No. 3. IBM Publication. G321-5298.

Zimmer, W. 1994. Relationships Between Design Patterns. In Pattems Languages of
Program Design. Addison-Wesley.

http://www.i'nit.edu/~itidwell/common
http://www.usabilitvprofessionals.org/conference/1997-2002overview.html
http://www.welie.com/pattems/

