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RÉSOLUTION DE RÉSEAUX ÉLECTRIQUES DÉSÉQUILIBRÉS COMPRENANT
LA RÉGULATION DE PUISSANCE ET DE FRÉQUENCE

Samuel AUBERT

RÉSUMÉ

L’analyse par écoulement de puissance constitue une approche efficace de résolution de sys-

tèmes de réseaux électriques en régime permanent. Elle joue un rôle fondamental dans les

études et la conception de tels systèmes. Ce travail revisite un modèle de barre d’équilibre

distribuée, l’adapte à la résolution de réseaux triphasés (déséquilibrés) par la méthode de New-

ton et finalement l’implémente dans un programme informatique. Le modèle tient compte

de transactions économiques effectuées entre des réseaux interconnectés et de la variation de

fréquence occasionnée par des perturbations de charge et de puissance générée. À titre d’étude

préliminaire, un modèle de barre d’équilibre unique considérant la fréquence comme étant fixe

est également décrit et implémenté. Plusieurs matrices d’admittance de composants de réseaux

électriques sont développées à des fins de polyvalence. Des composants monophasés sont aussi

mis en place de façon à faciliter le traitement de charges déséquilibrées et à permettre l’analyse

de systèmes de transmission et de distribution électrique. Par ailleurs, la régulation de tension

au moyen de transformateurs triphasés et monophasés à changement de prise est aussi possible.

Le fonctionnement et la logique du programme informatique sont expliqués en détail. Grâce

à des procédures vectorielles, entre autres mesures, une grande vitesse de calcul fut réalisée.

Plusieurs exemples numériques sont présentés, parmi lesquels figure celui d’un grand réseau

de 3000 barres triphasées (9000 noeuds). Comme il se doit, dans chacun des cas les conditions

imposées sont remplies et le bilan des puissances est respecté à chacune des barres.

Mots clés: Écoulement de puissance triphasé, charge déséquilibrée, génération de puissance

distribuée, régulation de puissance, régulation de fréquence, méthode de New-

ton, Newton-Raphson





UNBALANCED POWER SYSTEMS RESOLUTION INCLUDING POWER AND
FREQUENCY REGULATION

Samuel AUBERT

ABSTRACT

Power flow analyses constitute an effective tool in determining the steady state solution of

power systems. Hence they play a fundamental role in the investigation and design of such

systems. The present work revisits a distributed slack bus model, adapts it to the resolution

of three-phase (unbalanced) power systems by Newton’s method, and implements it in a com-

puter program. The model takes into consideration economic power transactions between areas

of a network, as well as the variation in network frequency resulting from load versus gener-

ated power perturbations and ensuing control operations. As an initial investigation, a single

slack bus model that assumes a constant frequency is also described and implemented. Vari-

ous component admittance matrices are derived explicitly. Single-phase components are also

implemented in order to facilitate the treatment of unbalanced loads, and to permit the study

of systems that comprise both transmission and distribution elements. In addition, the voltages

at specified buses can be regulated through the operation of tap changers installed on three-

phase and single-phase transformers. The implementation code is discussed in detail. High

computation speeds could be reached by devising several array-based procedures, among other

measures. A number of numerical examples are presented, among which is a large network

containing 3000 three-phase buses (9000 nodes). As it should, in every case the imposed con-

ditions are met, and the balance in power is respected at every bus.

Keywords: Three-phase power flow, unbalanced load, distributed generation, power regula-

tion, frequency regulation, Newton’s method, Newton-Raphson
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INTRODUCTION

Power flow studies represent a valuable tool in determining the steady state solutions of large

and complex power systems. For given load conditions and network information, such as the

topology and impedance characteristics, they yield the voltages, currents, powers, and in some

cases other key variables of the system. As a result, power flow studies are of great use in the

planning, designing, and maintaining of power networks.

The present thesis revisits a distributed slack bus model, adapts it to three-phase (unbalanced)

systems, and discusses its implementation in a computer program. The model is referred to

as the transferred power and frequency regulation model. As its name indicates, it takes into

consideration the effects of economic power transactions between areas of a network, as well

as variations in frequency resulting from network perturbations and ensuing control opera-

tions. Additionally, single-phase network components are implemented. Doing so facilitates

the treatment of unbalanced loads, and it allows to solve systems akin to combined transmis-

sion and distribution power systems. Besides, the voltage regulation by tap changers installed

on both three-phase and single-phase transformers is realized. For comparative purposes, a

second model which assumes a single slack bus and no frequency variation is also examined

and implemented in the same framework. Such model is referred to as the classic model.

The present project was motivated by the need of Hydro-Québec to perform multiple par-

allel analyses of large networks comprising both transmission and distribution systems. In

particular, the development of smart grids, the growing involvement of homes in energy pro-

duction, and their increasing capability for energy self-management and process automation

call for detailed investigations of the impact of combining distribution networks with trans-

mission networks. The resolution of such systems is a challenging task given the necessity

to reach solutions in a short time; efficient algorithms and procedures must be devised to that

effect. Moreover, the differing characteristics of those types of network present a difficulty; for
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instance, their dissimilar R/X ratios (low in transmission systems versus high in distribution

systems) can lead to ill-conditioned power flow problems.

The above-mentioned assignment was realized through the use of Newton’s method (also

known as the Newton-Raphson method). Though it exhibits a good convergence rate and

robustness, it is still inferior in those regards to the Levenberg-Marquardt mehod, as discussed

in Lagacé (2012). Nevertheless, Newton’s method remains widely used in power flow analy-

ses, and it is generally reliable given reasonable initial conditions. Hence it represents a good

foundational tool to tackle the problem of solving unbalanced complex power systems. Fur-

thermore, the program developed may be modified with relative ease to rely on the Levenberg-

Marquardt method if its robustness is eventually shown to be insufficient in face of certain

ill-conditioned problems. Another limitation of the work is its disregard for generator power

limits. In other words, no change from a generator bus to a load bus is operated when a gener-

ator reaches its physical power limits. Such functionality adds complexity to the program, and

it was judged unnecessary for the current needs of the project.

The thesis is divided into four main parts. The first chapter provides the backdrop for the

investigation by reviewing relevant papers from the literature. The second chapter first presents

theoretical concepts necessary to set up the power flow problem. Then it derives the admittance

matrices for various network components, and describes how to combine them to obtain the bus

admittance matrix. Next, the classic model and the power and frequency regulation model are

formulated. The third chapter describes the procedures devised to implement the two power

flow models in a computer program. A flow chart is also provided to better understand the

interactions of those constituent parts of the program. The fourth chapter contains a set of

numerical problems that illustrate the main functionalities of the program. Those problems

also contribute to its validation process. Unless otherwise stated, derivations and computations
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are made in the per-unit system. Finally, additional supporting information can be found in the

appendices. In particular, a detailed program instruction manual is included in Appendix III.





CHAPTER 1

BACKGROUND

Power flow studies of large networks have long been performed by applying Newton’s method

to a system of mismatch equations at different nodes (or buses) categorized as generator nodes

or load nodes, and where a so-called slack bus is defined additionally to compensate without

constraint the difference between the scheduled power generation and the load throughout the

network. This approach was put forward by van Ness and Griffin (1961), and adapted by Tin-

ney and Hart (1967), among others, to extended systems through the use of optimally ordered

Gaussian elimination combined with programming techniques to work around contemporary

computer limitations.

In spite of its success at providing solutions to large power systems in a relatively robust way,

the above-mentioned framework is limited in that it does not reflect significant physical aspects

of electrical networks, such as the variation in frequency resulting from load and generation

disturbances. Furthermore, it assumes unrealistically an ideal bus capable of making up supply

versus demand unbalances at will. Thus Okamura et al. (1975) proposed a more general model,

which also relies on Newton’s method, but which differs from its predecessors in that it takes

into account load and generator characteristics, as well as control schemes in effect to respond

to changes in a network. Though it considers control factors, the model focuses on providing a

steady-state solution based on a set of boundary conditions. As required, the model frequency

is allowed to vary in such a way as to obtain an equilibrium between the power generated,

the load, and the losses across the system. As opposed to using a single slack bus, the model

allows for the distribution of the compensation of the unbalance between supply and demand

among all generators. Such principles are referred to as automatic load frequency control.

Furthermore, the load is allowed to vary in accordance with variations in frequency and voltage

levels. Similarly, an expression for the generated power that incorporates the effect of system

variables, in particular the network frequency, is introduced.
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A paper published by Saadat (1979) revisits the load flow problem as formulated by Okamura

et al. (1975), though by employing a power-perturbation technique to determine iteratively the

solution. The proposed algorithm’s convergence rate was observed to be similar to the one of

the conventional Newton-Raphson method. Yet the approach is more or less flexible, in part

due to its necessity to specify the real and reactive powers for all buses (except the reference

bus).

In like manner, Ćalović and Strezoski (1981) developed a steady-state load flow model based

on Newton’s method, which takes into account the effect of frequency deviation, control oper-

ations of generators, as well as the load dependence on frequency and voltage. No slack bus is

used. The corresponding bus is treated as a regular system bus with equations that express the

balance in active and reactive power. As a result, two additional unknowns are contributed to

the system, typically the magnitude and the phase of the voltage at the bus in question. Primary

control (prime mover response) and secondary control (automatic generation control, or AGC)

are conducted at distinct buses. If a bus i is involved with primary control (p), then the gener-

ated active power is expressed as PGi = PG0i + kp
i Δ f , where kp

i reflects the speed-droop setting

on the turbine governor of the generator system, and Δ f stands for the steady-state frequency

deviation. Likewise, if it is involved with secondary control (s), then PGi = PG0i+ks
i ΔG, where

ks
i is the participation factor of the generator in the overall control activity, and ΔG is the static

area control error (a linear combination of the steady-state frequency deviation and the tie line

power deviation). In both cases, PG0i represents the base load on the generator at the bus. If

a bus does participate in neither primary nor secondary control, then PGi simply reduces to

PG0i. Per iteration, either Δ f or ΔG is treated as an additional unknown variable. Depending

on the limitations of the power plants and the load conditions, the model thus requires a switch

between the scheme taking into account the effect of AGC (with ΔG as an unknown) and the

one that takes into account the primary control (with Δ f as an unknown). Such switching

mechanism complicates the implementation of the model into a program. With regard to volt-

age regulation, it is performed in two ways: by a change of reactive injection at the relevant

bus(es), in which case the reactive injection Qi takes the place of the voltage magnitude in the
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set of unknowns, or by on-load tap changers whose action is reproduced by the introduction

of a turn-ratio variable, which similarly replaces the respective voltage magnitude in the set of

unknowns. In the latter case, a limitation is encountered as the turn-ratio variable takes part in

the calculations as a continuous variable. Additional operations are thus needed to account for

its actual discrete nature.

Thus far the determination of the power generation in the distributed slack bus methods was

generally made in consideration of the characteristics of turbines at generator buses and their

control scheme. A different view is taken by Zobian and Ilić (1997), who extend the work of

Ćalović and Strezoski (1981), but who assume a constant network frequency, and perform an

economic dispatch of the net power imbalance to generating units through participation factors

determined on the basis of combined cost and reliability criteria. The paper seeks to clarify

the impact of simultaneous economic transactions of power flows in interconnected power

networks, and to calculate the contribution of the generating units that participate in balancing

the system in response to transactions.

According to Tong and Miu (2005), the models discussed so far may not be suitable to describe

distribution systems, for example due to the fact that generally the main source of a distribution

system is the substation, which does not exhibit characteristics peculiar to turbines. Moreover,

the high R/X ratios typical of distribution systems demand for a consideration of the allocation

of loss among the generating units. Consequently, based on Kirschen et al. (1997) and Strbac

et al. (1998), the authors use the concept of generator domains to compute the participation

factors iteratively. More concretely, therein the participation factor Ki associated with generator

i is obtained as the ratio of the loss associated with the generator and the total real power loss

in the system (Ki = Ploss
Gi /PLoss). In this way, the active power generation at bus i is defined by

PGi = Pload
Gi +KiPLoss, where PLoss is taken as an additional system unknown to be determined

(along with the other unknowns) by Newton’s method. Thus the definition of the generator

domains takes into consideration the locations of generators, the network topology, as well

as the load distribution. Interestingly, the model is defined in a three-phase framework, thus
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allowing for the specification of unbalanced network conditions. However, no consideration of

network frequency is explicitly made.

In heavily unbalanced network conditions, in particular as seen in distribution networks, neu-

tral currents may be significant, and therefore may not be ignored in power flow analyses.

Besides, neutral point voltages may also deviate notably from zero. In such circumstances,

a reformulation of the power flow problem is necessary to include explicitly the effect of the

neutral conductors and grounding in the system mismatch equations. Penido et al. (2008) pro-

pose such a methodology, where Newton’s method is used to solve a set of nonlinear equations

derived from the net current injections at all nodes of an n bus system. The system is then

composed of 8n equations, where the unknowns are (basically) taken to be the real and imagi-

nary parts of the voltages (in rectangular form) at all three phases and at the neutral point. The

introduction of the neutral nodes adds complexity to the analysis, and requires modifications

to the more common component models.

With the focus on large-scale distribution systems of arbitrary topologies, Kocar et al. (2014)

examine three load-flow algorithms based on the modified augmented nodal analysis (MANA).

The algorithms are characterized respectively by the use of fixed-point iterations, Newton’s

method, and the so-called dishonest Newton method, which does not require the calculation

of the Jacobian matrix at every iteration. MANA permits the treatment of multi-phase and

unbalanced networks, and it is flexible in accommodating load flow constraints. Regulator tap

controls are also implemented. A relatively large network is used to compare the performance

of the three approaches. The one using Newton’s method is the most robust, and it requires

the least number of iterations. However, in the particular case examined, its solution time is

slightly longer than with the other methods. The fixed-point iterations procedure generally

shows poorer convergence, and it requires more iterations to reach the solution. Yet in certain

conditions it can still outperform Newton’s method. As regards the Dishonest Newton method,

it presents a compromise between the other two approaches in terms of calculation time, though

its ability to converge depends on the chosen Jacobian matrix update frequency. On the whole,



9

the authors present avenues worth considering to improve a program’s ability to solve complex

distribution systems.

In a first stage, the present work consists in the implementation of a single slack bus model

(referred to as the classic model) in a three-phase framework. The classic model is helpful

in providing basic solutions to (unbalanced) power systems with moderate computing efforts.

In a second stage, a distributed slack bus model (referred to as the transferred power and fre-

quency regulation model) is implemented based on the ideas of Okamura et al. (1975), yet

in the three-phase framework, to accept unbalanced network conditions. This second model

incorporates important features of physical network behaviour, such as the effects of primary

and secondary control. The program is designed in such a way as to accept further function-

alities, e.g. specific to distribution networks, without the necessity of a full overhaul. Various

algebraic expressions for admittance matrices of components have also been derived, and the

tap changer functionality has been implemented.





CHAPTER 2

NETWORK MODELLING

2.1 Power-flow analysis based on Newton’s method

The power-flow analysis is a well-known approach to compute the steady-state voltages at all

buses of an electrical network, and indirectly to calculate the power through the components

of the network. Moreover, it can be used to determine the value of other variables such as

the network frequency. Wood and Wollenberg (1996) offer an informative presentation of the

method.

The analysis consists in driving key quantities, referred to as the mismatches, to zero, by vary-

ing a set of variables through an iterative process. The mismatches are stored in a vector ε(x),

and the variables in the vector x. The notation ε(x) implies that each entry of ε(x) is dependent

on the unknowns contained in x. The derivation of the mismatches relies on the fact that a

balance must be reached in the active power and in the reactive power leaving every node i of

the network, to wit

εPi(x)≡ PY i(x)+PLi(x)−PGi(x) = 0 (2.1)

εQi(x)≡ QY i(x)+QLi(x)−QGi(x) = 0 (2.2)

where the subscript Y indicates the power that enters the Ybus components, L the load, and G

the power generation. Depending on the types of bus present in the network, a subset of the

εPi and εQi quantities is kept to form the vector ε(x), and node voltage moduli and phases are

selected to build the vector of unknowns x.

The above procedure results in a nonsingular system, which may be solved by Newton’s

method. Referring to the Appendix I (where g is replaced by ε), a solution for x is found by

carrying out iteratively the computations contained in algorithm 2.1. As its name indicates, the



12

parameter max iteration represents the maximum number of iterations allowed, and tolerance

stands for the maximum permissible mismatch value to assess convergence.

Algorithm 2.1 Basic implementation of Newton’s method

Input : x0 (initial values of the unknowns)

Output : x (solved values of the unknowns), ε(x) (mismatch values)

1 x = x0 # initialization of the unknowns

2 ε0 = ε(x) # initial mismatch values

3 for i = 1 to max iteration do
4 if max{ε(x)} ≤ tolerance then break

5 ∇ε(x) # Jacobian matrix

6 Δx =−[∇ε(x)]−1ε(x) # adjustment terms

7 x = x+Δx # adjustments of the unknowns

8 ε(x) # updated mismatch values

9 end

The derivation of the power flow equations will be presented in greater details in the remainder

of the chapter. In particular, two power flow models will be described, namely (i) the classic

model and (ii) the power and frequency regulation model. In the latter, additional relations and

variables will be introduced to take into consideration variations in the network frequency as

well as constraints imposed on the power distribution. The specific programming procedures

developed to implement Newton’s method are explained in Chapter 3.

2.2 Power entering the bus

As seen in several texts on power systems1, the voltages at the N nodes of a network can be

related to the currents entering the network at those nodes via an admittance matrix Y :

Ii =
N

∑
k=1

YikVk

1 See, for instance, p. 100 of Wood and Wollenberg (1996).
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where the subscripts i and k label the nodes. Thus the power entering every node i can be

expressed as follows:

SY i = PY i + jQY i

=ViI∗i

=Vi

N

∑
k=1

Y ∗
ikV

∗
k (2.3)

By breaking down Yik into its real and imaginary parts, and Vi and Vk into their respective

moduli and phases, i.e.

Yik = Gik + jBik

Vi = |Vi|e jθi

Vk = |Vk|e jθk

the active and reactive power in (2.3) can be rewritten as

PY i =
N

∑
k=1

|Vi| |Vk|(Gik cosθik +Bik sinθik) (2.4)

QY i =
N

∑
k=1

|Vi| |Vk|(Gik sinθik −Bik cosθik) (2.5)

where θik is a shorthand for θi −θk.

2.3 The bus admittance matrix

2.3.1 Construction of the bus admittance matrix

The admittance matrix introduced in sec. 2.2 is commonly known as the bus admittance ma-

trix. As displayed in (2.4) and (2.5), it determines the power flowing through the buses of

the network. Thus its knowledge is essential to perform power flow calculations. Herein is
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described how the matrix (also denoted Ybus) is obtained from a combination of the admittance

matrices of its constituent branches (Ybr) and shunt components. Later in the chapter, the ex-

plicit Ybr matrices of several types of branches and the admittance matrix of the zigzag earthing

transformer will be derived.

Given a circuit component (e.g. power line, transformer, shunt element), based on Kirchhoff’s

laws the vector of the voltages at its nodes (Vx) can be related to the vector of the currents

injected at those nodes (Ix) by a matrix Yx, i.e. Ix = YxVx. For example, in the simplest case a

shunt element Ysh = 0.5 pu connected to a node at V = 1 pu implies a current injected in the

element of I = YshV = 0.5 pu (in this one-dimensional case, the admittance matrix is in fact a

scalar).

The same applies when several circuit components are connected to a common set of nodes.

Each component will be traversed by current as determined by its admittance matrix and node

voltages. The total current injected in the network at a given node will merely be the sum of

the currents entering the network components connected to that node. Hence, if the admittance

matrices of the branches and shunt components of a network are known, then their combined

effect can also be obtained simply by adding them systematically into a wider matrix that

reflects the impedance characteristics of the network.

The combination of the admittance elements is achieved by associating each node with a unique

index, corresponding to a row and a column of Ybus. Admittance values of uncoupled shunt

elements are added to the diagonal of Ybus, because each such element is connected between a

node and the ground. The zigzag earthing transformer, which also connects a bus to the ground,

requires the addition of diagonal as well as off-diagonal admittance elements, because of its

coupling among the phases of the bus. As to the branches, they link nodes in various ways

that depend on the topology of the network. As a result, the row and column indices of Ybr

associate with the ones of Ybus in various ways. Nevertheless, by knowing the buses to which

the branches connect, it is possible to add the elements of the Ybr matrices to the appropriate

Ybus entries. Note that a three-phase branch will require the addition of 36 elements (3 primary
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nodes connected to 3 secondary nodes, which leads to a 6×6 matrix), whereas a single-phase

branch will require the addition of 4 elements (1 primary node connected to 1 secondary node,

which leads to a 2×2 matrix). Detailed information regarding the Ybus construction procedure

is provided in sec. 3.3.

2.3.2 Derivation method of network component admittance matrices

The derivation of the admittance matrices of individual network components consists in the

following steps:

a. Specify an adequate circuit to model the component;

b. Apply Kirchhoff’s laws to the nodes and meshes of the circuit specified in step a.;

c. If the component is a transformer, then determine the per unit winding ratio such that

phase or line voltages have respectively the same per unit magnitude on both sides of the

transformer;

d. Rearrange the equations resulting from steps b. (and c.) so as to obtain a system of the

form M1I = M2V . Since I = YV , the admittance matrix can be evaluated simply, that is

Y = M−1
1 M2.

In the last step, I represents the vector of the currents entering the component, and V the vector

of voltages at the corresponding junctions of the component.

Note that circuit quantities such as transformer coil impedances and the magnetizing admit-

tance are treated in the per unit system.

2.3.3 Notation

Before delving into the derivation of the admittance matrices of the network components, it is

worthwhile to lay basic notation so as to improve the manageability of three-phase equations.
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The first two items below, namely the vector of propagation constants, and the vectors of

characteristic impedances and admittances, are used to obtain the admittance matrix of the

three-phase power line. The following items mainly help to simplify the transformer-related

equations.

Vector of propagation constants The propagation constants corresponding to the zero, pos-

itive and negative sequences are gathered into a single vector

γ012 =

⎡
⎢⎢⎢⎢⎣

γ0

γ1

γ2

⎤
⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎣

√
z0y0

√
z1y1

√
z2y2

⎤
⎥⎥⎥⎥⎦

where yi and zi, i ∈ {0,1,2}, are the admittance and impedance per unit length in the three

modes.

Vectors of characteristic impedances and admittances Likewise, the characteristic impedances

corresponding to the zero, positive and negative sequences are gathered into the single vector

Zc012 =

⎡
⎢⎢⎢⎢⎣

Zc0

Zc1

Zc2

⎤
⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎣

√
z0/y0√
z1/y1√
z2/y2

⎤
⎥⎥⎥⎥⎦

The vector of characteristic admittances Yc012 is the element-wise inverse of Zc012.

Phase subscripts Capital letters are used to indicate phases on the primary side of a compo-

nent, and lower case letters to indicate phases on the secondary side. For example, IA and Ia are

respectively the phase A currents on the primary and secondary sides of a given component.
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Voltage and current vectors Vxyz denotes the 3×1 vector containing the voltages at the nodes

x, y and z of the same three-phase bus, e.g.

VABC =

⎡
⎢⎢⎢⎢⎣

VA

VB

VC

⎤
⎥⎥⎥⎥⎦

For simplicity, the vector of voltages at phases labelled by a prime, e.g. x′, y′, and z′, may be

written as V ′
xyz. The same notation applies to the current vector Ixyz.

Furthermore, the phase voltages and currents on the primary and secondary sides of a trans-

former may be combined into the single 6×1 vectors:

V =

⎡
⎢⎣VABC

Vabc

⎤
⎥⎦ and I =

⎡
⎢⎣IABC

Iabc

⎤
⎥⎦

Identity matrices The m×m identity matrix is denoted by Im.

Unit matrices The m×n unit matrix is denoted by Jm×n, or by Jm if m = n.

Zero matrices The m×n zero matrix is denoted by 0m×n, or by 0m if m = n.

Permutation matrices P(123) denotes the third order matrix that permutes the elements of a

3×1 vector as follows:

⎡
⎢⎢⎢⎢⎣

x3

x1

x2

⎤
⎥⎥⎥⎥⎦= P(123)

⎡
⎢⎢⎢⎢⎣

x1

x2

x3

⎤
⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎣

0 0 1

1 0 0

0 1 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

x1

x2

x3

⎤
⎥⎥⎥⎥⎦
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The inverse of P(123) is denoted by P(132), and takes the form

P(132) =

⎡
⎢⎢⎢⎢⎣

0 1 0

0 0 1

1 0 0

⎤
⎥⎥⎥⎥⎦

2.3.4 Power lines

2.3.4.1 Single-phase line

V1
Y
2

Y
2

Z

V2

I1 I2

Figure 2.1 Equivalent π-circuit of a single-phase

power line

By modelling the single-phase power line as a π circuit, as shown in fig. 2.1, and by applying

Kirchhoff’s laws, it is straightforward to determine the corresponding admittance matrix Y�1φ :

Y�1φ =

⎡
⎢⎣

Y
2 +

1
Z − 1

Z

− 1
Z

Y
2 +

1
Z

⎤
⎥⎦ (2.6)

In the general case (e.g. including lines longer than 250 km), it can be shown that

Y
2
=

tanh(γ�/2)

Zc
(2.7)
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Z = Zc sinh(γ�) (2.8)

where γ =√
zy, Zc =

√
z/y, z is the impedance per unit length, y the admittance per unit length,

and � the length of the line. A detailed derivation of (2.7) and (2.8) can be found in Glover

et al. (2012).

2.3.4.2 Three-phase line

As a first approximation, the three-phase line may be treated as three decoupled π circuits of

the form shown in fig. 2.1. As a consequence, the admittance matrix is constructed as follows:

Y ′
�3φ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y
2 +

1
Z 0 0 − 1

Z 0 0

0 Y
2 +

1
Z 0 0 − 1

Z 0

0 0 Y
2 +

1
Z 0 0 − 1

Z

− 1
Z 0 0 Y

2 +
1
Z 0 0

0 − 1
Z 0 0 Y

2 +
1
Z 0

0 0 − 1
Z 0 0 Y

2 +
1
Z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.9)

A more refined model should incorporate the effect of electromagnetic coupling between the

phases. In addition, values for the impedance and shunt admittance could be obtained using

a similar approach as in the case of the single-phase long line model. Thus, let us model the

three-phase line as a combination of line segments such as the one shown in fig. 2.2, where the

impedance and admittance values per unit length are gathered in the matrices

Zabc =

⎡
⎢⎢⎢⎢⎣

zaa zab zac

zab zbb zbc

zac zbc zcc

⎤
⎥⎥⎥⎥⎦ Yabc =

⎡
⎢⎢⎢⎢⎣

yaa yab yac

yab ybb ybc

yac ybc ycc

⎤
⎥⎥⎥⎥⎦ (2.10)

Note that due to the bilateral symmetry of the phase-to-phase links, the matrices Zabc and Yabc

are symmetric.
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zca

zbczabzbb

zaa

zcc

Va (x+�x)

Vb (x+�x)

Vc (x+�x)

Va (x)

Vb (x)

Vc (x)

Ia (x)

Ib (x)

Ic (x)

Ia (x+�x)

Ic (x+�x)

Ib (x+�x)

Zabc
yaa ybbycc
yca

ybc

yabYabc

Figure 2.2 Equivalent circuit of a segment of a three-phase power line

Based on fig. 2.2,

Vabc(x+Δx)−Vabc(x) = Zabc ΔxIabc(x)

Iabc(x+Δx)− Iabc(x) = Yabc ΔxVabc(x+Δx)

Dividing both sides by Δx, and taking the limit as Δx → 0 gives the differential equations

dVabc(x)
dx

= Zabc Iabc(x)

dIabc(x)
dx

= YabcVabc(x)

which may be differentiated and combined to yield

d2Vabc(x)
dx2

= ZabcYabc Vabc(x) (2.11)

d2Iabc(x)
dx2

= Yabc Zabc Iabc(x) (2.12)
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analogously to the single-phase case. A solution to the system formed by (2.11) and (2.12) can

be found easily by diagonalizing ZabcYabc and Yabc Zabc.

In a way similar to Kersting (2002), for completely transposed lines, the matrices of impedance

and admittance per unit length are expressed in the simple forms

Zabc =

⎡
⎢⎢⎢⎢⎣

zs zm zm

zm zs zm

zm zm zs

⎤
⎥⎥⎥⎥⎦ Yabc =

⎡
⎢⎢⎢⎢⎣

ys ym ym

ym ys ym

ym ym ys

⎤
⎥⎥⎥⎥⎦

where the diagonal and off-diagonal elements of the impedance matrix in (2.10) are averaged

to give the self and mutual impedances, i.e. zs = (zaa+zbb+zcc)/3 and zm = (zab+zac+zbc)/3,

and similarly for the self and mutual admittances, which are given by ys = (yaa + ybb + ycc)/3

and ym = (yab+yac+ybc)/3. In such case, the diagonalizing process can be achieved by means

of the Fortescue matrix (a = e j2π/3)

A =

⎡
⎢⎢⎢⎢⎣

1 1 1

1 a2 a

1 a a2

⎤
⎥⎥⎥⎥⎦

that is

d2V012(x)
dx2

= (A−1 ZabcYabc A)V012(x)

d2I012(x)
dx2

= (A−1Yabc Zabc A) I012(x)

Note that the diagonal matrices A−1 ZabcYabc A and A−1Yabc Zabc A are equal; in particular

Z012 = A−1Zabc A =

⎡
⎢⎢⎢⎢⎣

z0 0 0

0 z1 0

0 0 z1

⎤
⎥⎥⎥⎥⎦
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Y012 = A−1Yabc A =

⎡
⎢⎢⎢⎢⎣

y0 0 0

0 y1 0

0 0 y1

⎤
⎥⎥⎥⎥⎦

where z0 = zs +2zm and z1 = zs − zm (similarly for y0 and y1).

Hence, by expressing the voltage and current vectors in the basis of the symmetrical compo-

nents, i.e. Vabc = AV012 and Iabc = AI012, the equations (2.11) and (2.12) become decoupled,

and the solution for each mode can be solved as in the single-phase case. Taking x = � and

x = 0 at the left and right ends of the line respectively, in compact form it follows that

⎡
⎢⎣V012(�)

I012(�)

⎤
⎥⎦=

⎡
⎢⎣ diag(cosh(γ012�)) diag(Zc012 sinh(γ012�))

diag(Yc012 sinh(γ012�)) diag(cosh(γ012�))

⎤
⎥⎦
⎡
⎢⎣V012(0)

I012(0)

⎤
⎥⎦

Converting back to the abc basis yields

⎡
⎢⎣Vabc(�)

Iabc(�)

⎤
⎥⎦=

⎡
⎢⎣A3 B3

C3 A3

⎤
⎥⎦
⎡
⎢⎣Vabc(0)

Iabc(0)

⎤
⎥⎦ (2.13)

where

A3 = A diag(cosh(γ012�))A−1

B3 = A diag(Zc012 sinh(γ012�))A−1

C3 = A diag(Yc012 sinh(γ012�))A−1

By rearranging (2.13), and using I′abc ≡−Iabc, the standard form I = Y�3φ V can be obtained:

⎡
⎢⎣Iabc(�)

I′abc(0)

⎤
⎥⎦=

⎡
⎢⎣A3 B−1

3 C3 −A3 B−1
3 A3

−B−1
3 A3 B−1

3

⎤
⎥⎦
⎡
⎢⎣Vabc(�)

Vabc(0)

⎤
⎥⎦
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Using the hyperbolic identity 1− coth2 x = −csch2x, the off-diagonal block matrices −B−1
3

and C3 −A3 B−1
3 A3 can be shown to be equal. Therefore, the square matrix simplifies to give

Y�3φ =

⎡
⎢⎣Ya Yb

Yb Ya

⎤
⎥⎦ (2.14)

where

Ya = A diag(Yc012 coth(γ012�))A−1

Yb =−A diag(Yc012 csch(γ012�))A−1

By performing the matrix multiplications explicitly, and noting that Yc1 =Yc2 and γ1 = γ2 (since

z1 = z2 and y1 = y2), the expressions for the elements of Ya and Yb are obtained:

Ya =

⎡
⎢⎢⎢⎢⎣

Ya1 Ya2 Ya2

Ya2 Ya1 Ya2

Ya2 Ya2 Ya1

⎤
⎥⎥⎥⎥⎦

Ya1 =
1

3

(
Yc0 coth(γ0�)+2Yc1 coth(γ1�)

)

Ya2 =
1

3

(
Yc0 coth(γ0�)−Yc1 coth(γ1�)

)

Yb =

⎡
⎢⎢⎢⎢⎣

Yb1 Yb2 Yb2

Yb2 Yb1 Yb2

Yb2 Yb2 Yb1

⎤
⎥⎥⎥⎥⎦

Yb1 =−1

3

(
Yc0 csch(γ0�)+2Yc1 csch(γ1�)

)

Yb2 =−1

3

(
Yc0 csch(γ0�)−Yc1 csch(γ1�)

)

An analogous derivation applying to the case where the matrices ZabcYabc and YabcZabc cannot

be diagonalized by the Fortescue matrix (e.g. the case of non-transposed lines) can be found in

Acha and Usaola (2009).
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V2I1
V1

Z1

Y

Z2

E1
I1’ I2

E2

V1’

Figure 2.3 Equivalent circuit of the single-phase

transformer

2.3.5 Power transformers

2.3.5.1 The single-phase transformer

The circuit used to model the single-phase transformer is shown in fig. 2.3. Application of

Kirchhoff’s laws results in the following equations:

V1 = Z1I1 +V1′ (2.15)

V1′ = Z2I1′ +E1 (2.16)

I1 = YV1′ + I1′ (2.17)

Furthermore, in the per unit system

E1 = E2 =V2 (2.18)

I1′ =−I2 (2.19)

Substituting I′1 in (2.17) by −I2, and using the resulting expression to eliminate V ′
1 in equation

(2.15) yields

V1 =
(

Z1 +
1

Y

)
I1 +

I2

Y
(2.20)
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Similarly, E1 and I′1 in (2.16) can be substituted by means of (2.18) and (2.19), and V ′
1 in (2.15)

can be replaced by the resulting expression, thus giving

V1 −V2 = Z1I1 −Z2I2 (2.21)

Finally, (2.20) and (2.21) can be arranged in the matrix form M1I = M2V , where

M1 =

⎡
⎢⎣ Z1 −Z2

Z1 +1/Y 1/Y

⎤
⎥⎦

M2 =

⎡
⎢⎣1 −1

1 0

⎤
⎥⎦

such that

Ytr1φ = M−1
1 M2 =

1

Z1 +Z2 +Y Z1Z2

⎡
⎢⎣1+Y Z2 −1

−1 1+Y Z1

⎤
⎥⎦

2.3.5.2 Three-phase transformer classification

Three-phase transformers come in a variety of types, based on their coil connections. There-

fore, in order to distinguish the ones that are modelled herein unambiguously, the classification

system described below was adopted.

Transformer configurations are identified as in IEC (2011), with two exceptions: first, upper

case letters denote winding connection types connected to the branch primary bus (first bus

specified in the branch input data structure), and lower case letters denote winding connection

types on the side of the secondary bus (second bus specified in the branch input data structure);

second, the neutral point of a star or zigzag winding is always assumed to branch out, and thus

for simplicity no symbol is used to make such distinction. Connections come in three varieties,

namely star, delta, and zigzag, and are denoted respectively by the letters Y, D, and Z (or y,
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d, and z). The displacement between corresponding phases (normally phase a) is expressed

in terms of the numbers 0 to 11 as arranged on an analog clock, each corresponding to a

30◦ increment. The phase voltage on the primary side is placed at position 0 (the reference),

and the secondary phase voltage lies at a position that is dependent on the configuration. By

convention, phasors turn anticlockwise. Thus, numbers on the right hand side of the clock

indicate that the secondary voltage phasor lags the corresponding primary voltage phasor (e.g.

position 1 for a 30◦ lag), and vice versa for the numbers on the other half of the clock. The

classification method is illustrated by the phasor diagrams of sec. 2.3.5.3 to 2.3.5.8.

2.3.5.3 Yy0 transformer

B
VB

a

c
Vc

b

IA

IB

IC

A

C

VA

VC

Y

Z1

Y

Z2

Z1 Z2

Y

Z1 Z2

EA

EB

EC

IA’

IB’

IC’

B’

Ib

Ic

A’

C’

Ea

Eb

Ec

ZN Zn

nN

Ia
Va

Vb

IN In

(a)

EB

EA

EC

0

Eb

Ea

Ec

0

(b)

Figure 2.4 Equivalent circuit (a) and phasor representation (b) of the Yy0 transformer
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The circuit used to model the in-phase star-star transformer is shown in fig. 2.4 (a). Application

of Kirchhoff’s laws results in the following equations:

VABC =V ′
ABC +Z1IABC (2.22)

V ′
ABC −ZNINJ3×1 = Z2I′ABC +EABC (2.23)

IABC = I′ABC +Y (V ′
ABC −ZNINJ3×1) (2.24)

IN = IA + IB + IC (2.25)

Vabc = Eabc +ZnInJ3×1 (2.26)

In = Ia + Ib + Ic (2.27)

Furthermore, in the per unit system, matching voltages and currents on opposite sides of the

transformer demands that EABC = Eabc and I′ABC =−Iabc; fig. 2.4 (b) particularly illustrates the

correspondence between the voltages.

In order to obtain a system of the form M1I = M2V , equation (2.23) is combined with (2.24) so

as to eliminate V ′
ABC:

IABC = (1+Y Z2)I′ABC +Y EABC

or equivalently

IABC =−(1+Y Z2)Iabc +Y Eabc (2.28)

Further substitution of In in (2.26) by equation (2.27), then of Eabc in (2.28) by the resulting

expression leads to the first desired matrix equation, written in terms of the transformer junction

currents and voltages only:

IABC +
(
(1+Y Z2)+Y ZnJ3

)
Iabc = YVabc (2.29)

In similar fashion, the primed components of (2.24) may be eliminated by means of equations

(2.22) and the current correspondence relation I′ABC =−Iabc:

(
(1+Y Z1)+Y ZNJ3

)
IABC + Iabc = YVABC (2.30)
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By combining (2.30) and (2.29) into the single matrix equation

⎡
⎢⎣(1+Y Z1)+Y ZNJ3 I3

I3 (1+Y Z2)+Y ZnJ3

⎤
⎥⎦
⎡
⎢⎣IABC

Iabc

⎤
⎥⎦=

⎡
⎢⎣Y I3 03

03 Y I3

⎤
⎥⎦
⎡
⎢⎣VABC

Vabc

⎤
⎥⎦

the admittance matrix of the transformer can be obtained as described in sec. 2.3.2, that is

YY y0 =

⎡
⎢⎣(1+Y Z1)+Y ZNJ3 I3

I3 (1+Y Z2)+Y ZnJ3

⎤
⎥⎦
−1⎡

⎢⎣Y I3 03

03 Y I3

⎤
⎥⎦

The explicit expressions of the admittance matrix can be worked out directly, and are listed

below. For compactness, the assignment ξ ≡ Z1 +Z2 +Y Z1Z2 is made.

YY y0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a b b c d d

b a b d c d

b b a d d c

c d d e f f

d c d f e f

d d c f f e

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.31)

where

a =
1+Y Z2 +3Y Zn +2

(
ZN +Zn +3Y ZNZn +Y Z2ZN(2+Y Z2 +3Y Zn)

)
/ξ

ξ +3
(

ZN +Zn +3Y ZNZn +Y (Z2ZN +Z1Zn)
)

b =− ZN +Zn +3Y ZNZn +Y Z2ZN(2+Y Z2 +3Y Zn)

ξ
(

ξ +3
(

ZN +Zn +3Y ZNZn +Y (Z2ZN +Z1Zn)
))

c =−
ξ +2

(
ZN +Zn +3Y ZNZn +Y (Z2ZN +Z1Zn)

)

ξ
(

ξ +3
(

ZN +Zn +3Y ZNZn +Y (Z2ZN +Z1Zn)
))
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d =
ZN +Zn +3Y ZNZn +Y (Z2ZN +Z1Zn)

ξ
(

ξ +3
(

ZN +Zn +3Y ZNZn +Y (Z2ZN +Z1Zn)
))

e =
(1+Y Z1)

(
ξ +2(ZN +Zn +3Y ZNZn +Y Z1Zn)

)
+Y ZN(Z1 +3Z2 +3Y Z1Z2)

ξ
(

ξ +3
(

ZN +Zn +3Y ZNZn +Y (Z2ZN +Z1Zn)
))

f =
−(1+Y Z1)(ZN +Zn +3Y ZNZn +Y Z1Zn)+Y Z1ZN

ξ
(

ξ +3
(

ZN +Zn +3Y ZNZn +Y (Z2ZN +Z1Zn)
))

2.3.5.4 Yd1 transformer
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Figure 2.5 Equivalent circuit (a) and phasor representation (b) of the Yd1 transformer
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The circuit used to model the Yd1 transformer is shown in fig. 2.5 (a). By applying Kirchhoff’s

laws, the following equations are obtained:

VABC = Z1IABC +V ′
ABC (2.32)

VABC = Z1IABC +Z2I′ABC +EABC +ZNINJ3×1 (2.33)

IABC = I′ABC +Y (V ′
ABC −ZNINJ3×1) (2.34)

IN = IA + IB + IC (2.35)

(I3 −P(132))Vabc = E ′
abc (2.36)

Iabc = (P(123)− I3)I′abc (2.37)

In addition, the voltage and current correspondence equations take the forms

EABC = m(Vabc −Vbca) = m(I3 −P(132))Vabc (2.38)

I′ABC =
I′abc
m

(2.39)

where m is the per unit transformation ratio.

The value of m can be obtained by seeking a unit ratio between the phase voltage moduli

on both sides of the transformer. By considering the first component relation of (2.38), and

referring to fig. 2.5 (b), one can write

1

m
EA

EA
=

Va −Vb

EA

1

m
= 1∠−30◦ −1∠−150◦

m =
1√
3
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With the above equations at hand, a system of the form M1I = M2V can be laid out. First,

substituting V ′
ABC in (2.34) by (2.32), and multiplying from the left by m(P(123)− I3) result in

m(1+Y Z1)(P(123)− I3)IABC −m(P(123)− I3)I′ABC = mY (P(123)− I3)VABC

which can be rewritten into

m(1+Y Z1)(P(123)− I3)IABC − Iabc = mY (P(123)− I3)VABC (2.40)

using (2.37) and (2.39).

Second, starting with equation (2.33), the vector I′ABC can be eliminated by means of the equa-

tion that results from the combination of (2.32) and (2.34), i.e.

I′ABC = (1+Y Z1)IABC −YVABC +Y ZNINJ3×1

and EABC can be replaced by m(I3 − P(132))Vabc according to (2.38). After rearranging the

terms, it follows that

(
(Z1 +Z2 +Y Z1Z2)+(1+Y Z2)ZNJ3

)
IABC = (1+Y Z2)VABC −m(I3 −P(132))Vabc (2.41)

Analogously as in the previous section, equations (2.41) and (2.40) can be combined into a

single matrix equation of the form M1I = M2V , where

M1 =

⎡
⎢⎣
(
(Z1 +Z2 +Y Z1Z2)I3 +(1+Y Z2)ZNJ3

)
03

m(1+Y Z1)(P(123)− I3) −I3

⎤
⎥⎦

M2 =

⎡
⎢⎣ (1+Y Z2)I3 −m(I3 −P(132))

mY (P(123)− I3) 03

⎤
⎥⎦
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The explicit admittance matrix formulae result from the product YY d1 = M−1
1 M2, and are given

below (with m replaced by 1/
√

3).

YY d1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a b b −c c 0

b a b 0 −c c

b b a c 0 −c

−c 0 c d e e

c −c 0 e d e

0 c −c e e d

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.42)

where

a =
(1+Y Z2)

(
Z1 +Z2 +Y Z1Z2 +2ZN(1+Y Z2)

)

(Z1 +Z2 +Y Z1Z2)
(

Z1 +Z2 +Y Z1Z2 +3ZN(1+Y Z2)
)

b =
−ZN(1+Y Z2)

2

(Z1 +Z2 +Y Z1Z2)
(

Z1 +Z2 +Y Z1Z2 +3ZN(1+Y Z2)
)

c =
1√

3(Z1 +Z2 +Y Z1Z2)

d =
2(1+Y Z1)

3(Z1 +Z2 +Y Z1Z2)

e =
−(1+Y Z1)

3(Z1 +Z2 +Y Z1Z2)

2.3.5.5 Dd0 transformer

The circuit used to model the delta-delta transformer is shown in fig. 2.6 (a). By applying

Kirchhoff’s laws, the following equations can be obtained:

VABC −V ′
ABC = Z1I′′ABC (2.43)

V ′
ABC −P(132)VABC = Z2I′ABC +E ′

ABC (2.44)
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Figure 2.6 Equivalent circuit (a) and phasor representation (b) of the Dd0 transformer

IABC = (I3 −P(123))I
′′
ABC (2.45)

I′′ABC = I′ABC +Y (V ′
ABC −P(132)VABC) (2.46)

(I3 −P(132))Vabc = E ′
abc (2.47)

Iabc = (P(123)− I3)I′abc (2.48)

Using the same reasoning as in the previous sections, it is straightforward to show that E ′
ABC =

E ′
abc and I′ABC = I′abc in the per unit system. In particular, fig. 2.6 (b) shows the relationships

between the voltage phasors on both sides of the ideal transformer.

The first equation of the system of the form M1I = M2V is determined in a few steps. Consid-

ering the equivalences E ′
ABC = E ′

abc and I′ABC = I′abc, substitution of E ′
ABC in (2.44) by (2.47),
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followed by left multiplication of (P(123)− I3) to get rid of I′abc through (2.48), leads to

(P(123)− I3)V ′
ABC − (I3 −P(132))VABC = Z2Iabc +(J3 −3I3)Vabc (2.49)

Moreover, (2.43) and (2.45) can be combined, yielding

(P(123)− I3)V ′
ABC = Z1IABC +(P(123)− I3)VABC (2.50)

which can be used to replace V ′
ABC in (2.49) to give the first significant equation:

Z1IABC −Z2Iabc = (3I3 − J3)VABC +(J3 −3I3)Vabc (2.51)

Next, (2.46) is mutiplied from the left by I3 −P(123), and (2.45), (2.48), and (2.50) are used

to eliminate respectively the doubly and singly primed components. The result is the second

significant equation:

(1+Y Z1)IABC + Iabc = Y (3I3 − J3)VABC (2.52)

The matrices M1 and M2 can be constructed directly through the combination of (2.51) and

(2.52), that is

M1 =

⎡
⎢⎣ Z1I3 −Z2I3

(1+Y Z1)I3 I3

⎤
⎥⎦

M2 =

⎡
⎢⎣ 3I3 − J3 J3 −3I3

Y (3I3 − J3) 03

⎤
⎥⎦
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and the admittance matrix of the branch can be calculated as prescribed in sec. 2.3.2. Its explicit

contents are given below:

YDd0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a b b c d d

b a b d c d

b b a d d c

c d d e f f

d c d f e f

d d c f f e

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.53)

where

a =
2(1+Y Z2)

Z1 +Z2 +Y Z1Z2
d =

1

Z1 +Z2 +Y Z1Z2

b =
−(1+Y Z2)

Z1 +Z2 +Y Z1Z2
e =

2(1+Y Z1)

Z1 +Z2 +Y Z1Z2

c =
−2

Z1 +Z2 +Y Z1Z2
f =

−(1+Y Z1)

Z1 +Z2 +Y Z1Z2

2.3.5.6 Yz11 transformer

The circuit used to model the star-zigzag transformer of the type Yz11 is shown in fig. 2.7 (a).

By applying Kirchhoff’s laws, the following equations can be obtained:

VABC = Z1IABC +V ′
ABC (2.54)

V ′
ABC = Z2I′ABC +EABC +ZNINJ3×1 (2.55)

IABC = I′ABC +Y (V ′
ABC −ZNINJ3×1) (2.56)

IN = IA + IB + IC (2.57)

Vabc = [Eax −Enx,Eby −Eny,Ecz −Enz]
T +ZnInJ3×1 (2.58)

In = Ia + Ib + Ic (2.59)
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Figure 2.7 Equivalent circuit (a) and phasor representation (b) of the Yz11 transformer

In addition, based on basic transformer principles2, the correspondence relations between the

voltages and currents on the primary and secondary sides can be written as follows:

EABC = m

⎡
⎢⎢⎢⎢⎣

Eax

Eby

Ecz

⎤
⎥⎥⎥⎥⎦= m

⎡
⎢⎢⎢⎢⎣

Enz

Enx

Eny

⎤
⎥⎥⎥⎥⎦ (2.60)

I′ABC =
1

m
(Icab − Iabc) =

1

m
(P(123)− I3)Iabc (2.61)

2 See, for instance, pp. 97–101 of Slemon and Straughen (1982).
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where an equal number of turns in each of the secondary windings is assumed. The value of

the per unit transformation ratio m can be obtained with the help of (2.58), and by imposing the

requirement that phase voltages on both sides of the transformer have the same moduli. Thus,

Va

EA
=

Eax −Enx

EA

=
1

m
(1− EB

EA
)

=
1

m
(1−∠−120◦) =

√
3

m
∠30◦

such that m =
√

3.

A sufficient number of equations have now been gathered to proceed to the derivation of the

matrices M1 and M2. First, by substituting V ′
ABC and IN in (2.56) using (2.54) and (2.57) re-

spectively, and by using (2.61) to eliminate I′ABC, one obtains

(
(1+Y Z1)+Y ZNJ3

)
IABC +

1

m
(I3 −P(123))Iabc = YVABC (2.62)

Second, equation (2.58) can be written in a more convenient way using (2.60) and (2.59) in the

form InJ3×1 = J3Iabc, that is

Vabc =
1

m
(I3 −P(132))EABC +ZnJ3Iabc (2.63)

Moreover, substitution of V ′
ABC −ZNINJ3×1 in (2.55) by means of (2.56), followed by the use

of expression (2.61) to get rid of I′ABC, yields

IABC +
1

m
(1+Y Z2)(I3 −P(123))Iabc = Y EABC (2.64)
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Equation (2.64) can then be used to substitute EABC in (2.63) by an expression composed of

IABC and Iabc, resulting in

1

m
(I3 −P(132))IABC +

( 1

m2
(1+Y Z2)(3I3 − J3)+Y ZnJ3

)
Iabc = YVabc (2.65)

Finally, by combining (2.62) and (2.65) into the single matrix equation M1I = M2V , it is

straightforward to extract the matrices M1 and M2:

M1 =

⎡
⎢⎣(1+Y Z1)I3 +Y ZNJ3 (I3 −P(123))/m

(I3 −P(132))/m (1+Y Z2)(3I3 − J3)/m2 +Y ZnJ3

⎤
⎥⎦

M2 =

⎡
⎢⎣Y I3 03

03 Y I3

⎤
⎥⎦

Solving explicitly for YY z11 = M−1
1 M2 with m set to

√
3 yields the following expressions:

YY z11 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a b b −c 0 c

b a b c −c 0

b b a 0 c −c

−c c 0 d e e

0 −c c e d e

c 0 −c e e d

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.66)

where

a =
2+3Y (Z1 +Z2 +Y Z1Z2)+6Y ZN(1+Y Z2)

3(Z1 +Z2 +Y Z1Z2)
(

1+Y (Z1 +3ZN)
) d =

1

9Zn
+

2(1+Y Z1)

3(Z1 +Z2 +Y Z1Z2)

b =− 1+3Y ZN(1+Y Z2)

3(Z1 +Z2 +Y Z1Z2)
(

1+Y (Z1 +3ZN)
) e =

1

9Zn
− 1+Y Z1

3(Z1 +Z2 +Y Z1Z2)

c =
1√

3(Z1 +Z2 +Y Z1Z2)
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2.3.5.7 Dz0 transformer
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Figure 2.8 Equivalent circuit (a) and phasor representation (b) of the Dz0 transformer

The circuit used to model the delta-zigzag transformer of the type Dz0 is shown in fig. 2.8 (a).

The following equations can be obtained through the use of Kirchhoff’s laws:

VABC = Z1I′ABC +V ′
ABC (2.67)

V ′
ABC −P(132)VABC = Z2I′′ABC +EABC (2.68)

IABC = (I3 −P(123))I
′
ABC (2.69)

I′ABC = I′′ABC +Y (V ′
ABC −P(132)VABC) (2.70)

Vabc = [−Exa +Exn,−Eyb +Eyn,−Ezc +Ezn]
T +ZnInJ3×1 (2.71)
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In = Ia + Ib + Ic (2.72)

In addition, as mentioned in the previous section, the correspondence relations between the

voltages and currents on the primary and secondary sides can be deduced from basic trans-

former principles:

EABC = m

⎡
⎢⎢⎢⎢⎣

Eyb

Ezc

Exa

⎤
⎥⎥⎥⎥⎦= m

⎡
⎢⎢⎢⎢⎣

Exn

Eyn

Ezn

⎤
⎥⎥⎥⎥⎦ (2.73)

I′′ABC =
1

m
(Ibca − Iabc) =

1

m
(P(132)− I3)Iabc (2.74)

where an equal number of turns in the secondary windings is assumed. By using (2.71), and

imposing the requirement that line voltages on both sides of the ideal transformer have the

same moduli, the value of m is obtained:

Va −Vb =−Exa +Exn +Eyb −Eyn

=
1

m
(2EA −EB −EC)

Va −Vb

EA
=

1

m
(2−∠−120◦ −∠120◦) =

3

m

m = 3

The threefold relationship expressed by (2.73) is illustrated in fig. 2.8 (b).

The next step is to determine the matrices M1 and M2. Starting with equation (2.70), I′′ABC is

replaced by its equivalent expression in (2.74):

I′ABC =
1

m
(P(132)− I3)Iabc +Y (V ′

ABC −P(132)VABC)
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Then, substitution of V ′
ABC using (2.67) leads to

I′ABC =
1

1+Y Z1

(
1

m
(P(132)− I3)Iabc +Y (I3 −P(132))VABC

)
(2.75)

In order to obtain the first usable equation, there remains to multiply (2.75) from the left by

(I3 −P(123)), and to substitute I′ABC by means of (2.69). Consequently,

IABC +
3I3 − J3

m(1+Y Z1)
Iabc =

Y
1+Y Z1

(3I3 − J3)VABC (2.76)

To complete the system M1I = M2V , (2.71) is simplified by means of the relations described in

(2.73):

Vabc =
1

m
(I3 −P(123))EABC +ZnInJ3×1 (2.77)

Moreover, substitution of I′′ABC in (2.68) by means of (2.74) gives

V ′
ABC −P(132)VABC =

Z2

m
(P(132)− I3)Iabc +EABC (2.78)

Equations (2.78) and (2.77) can be combined to eliminate EABC, that is

Vabc =
1

m
(I3 −P(123))

(
V ′

ABC −P(132)VABC +
Z2

m
(I3 −P(132))Iabc

)
+ZnInJ3×1 (2.79)

In addition, equations (2.67) and (2.69) can be combined to obtain the relation

(I3 −P(123))V
′
ABC = (I3 −P(123))VABC −Z1IABC

which allows to replace V ′
ABC in (2.79) with an expression written in terms of the desired vectors

VABC and IABC only. The second usable equation thus follows:

Z1IABC +

((
Z2

m
−mZn

)
J3 − 3Z2

m
I3

)
Iabc = (3I3 − J3)VABC −mVabc (2.80)
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Based on equations (2.76) and (2.80), the matrices M1 and M2 can be written directly, i.e.

M1 =

⎡
⎢⎣ I3 (3I3 − J3)/(m(1+Y Z1))

Z1 (Z2/m−mZn)J3 −3Z2I3/m

⎤
⎥⎦

M2 =

⎡
⎢⎣Y (3I3 − J3)/(1+Y Z1) 03

3I3 − J3 −mI3

⎤
⎥⎦

and the explicit expressions of YDz0 can be derived as stated in sec. 2.3.2. By letting m = 3,

YDz0 takes the following form:

YDz0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a b b c d d

b a b d c d

b b a d d c

c d d e f f

d c d f e f

d d c f f e

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.81)

where

a =
2(1+Y Z2)

Z1 +Z2 +Y Z1Z2
d =

1

Z1 +Z2 +Y Z1Z2

b =
−(1+Y Z2)

Z1 +Z2 +Y Z1Z2
e =

1

9Zn
+

2(1+Y Z1)

Z1 +Z2 +Y Z1Z2

c =
−2

Z1 +Z2 +Y Z1Z2
f =

1

9Zn
− 1+Y Z1

Z1 +Z2 +Y Z1Z2

2.3.5.8 Dz10 transformer

The circuit used to model the delta-zigzag transformer of the type Dz10 is shown in fig. 2.9.

The equations resulting from Kirchhoff’s laws are the same as with the Dz0 transformer, due to
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Figure 2.9 Equivalent circuit (a) and phasor representation (b) of the Dz10 transformer

the unchanged topology on the primary side, and consistent phase labelling on the secondary

side. Yet, the different coil connections lead to the distinct correspondence equations:

EABC = m

⎡
⎢⎢⎢⎢⎣

Ezc

Exa

Eyb

⎤
⎥⎥⎥⎥⎦= m

⎡
⎢⎢⎢⎢⎣

Exn

Eyn

Ezn

⎤
⎥⎥⎥⎥⎦ (2.82)

I′′ABC =
1

m
(Icab − Iabc) =

1

m
(P(123)− I3)Iabc (2.83)
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The per unit transformation ratio can be determined similarly as with the Dz0 transformer:

Va −Vb =−Exa +Exn +Eyb −Eyn

=
1

m
(EA −2EB +EC)

Va −Vb

EA
=

1

m
(1+2∠60◦+∠120◦) =

3

m
∠60◦

Hence it is straightforward to see that a unit ratio between the secondary and primary line

voltages will be obtained only if m = 3. As in the previous section, fig. 2.9 (b) reflects this

factor of 3 as well as the phase shifts between the various voltages defined in the transformer.

The first equation of the system M1I = M2V can be obtained by following the steps described

in sec. 2.3.5.7 together with the equations (2.82) and (2.83) derived above:

IABC +
J3 −3P(123)

m(1+Y Z1)
Iabc =

Y
1+Y Z1

(3I3 − J3)VABC (2.84)

Likewise, the second equation is obtained as prescribed in sec. 2.3.5.7, except that due to the

different primary versus secondary voltage and current relations, the equation resulting from

the combination of (2.67) and (2.69) needs to be multiplied from the left by −P(132) in order to

proceed to the substitution of V ′
ABC. Hence,

Z1

m
P(132)IABC +

(
3Z2

m2
I3 +

(
Zn − Z2

m2

)
J3

)
Iabc =

1

m
(3P(132)− J3)VABC +Vabc (2.85)

From (2.84) and (2.85), the matrices M1 and M2 can be constructed directly, that is

M1 =

⎡
⎢⎣ I3 (J3 −3P(123))/(m(1+Y Z1))

Z1P(132)/m 3Z2I3/m2 +(Zn −Z2/m2)J3

⎤
⎥⎦

M2 =

⎡
⎢⎣Y (3I3 − J3)/(1+Y Z1) 03

(3P(132)− J3)/m I3

⎤
⎥⎦
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and the explicit expressions of YDz10 can be derived as stated in sec. 2.3.2. By letting m = 3,

YDz10 takes the following form:

YDz10 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a b b c c d

b a b d c c

b b a c d c

c d c e f f

c c d f e f

d c c f f e

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.86)

where

a =
2(1+Y Z2)

Z1 +Z2 +Y Z1Z2
d =

2

Z1 +Z2 +Y Z1Z2

b =
−(1+Y Z2)

Z1 +Z2 +Y Z1Z2
e =

1

9Zn
+

2(1+Y Z1)

Z1 +Z2 +Y Z1Z2

c =
−1

Z1 +Z2 +Y Z1Z2
f =

1

9Zn
− 1+Y Z1

Z1 +Z2 +Y Z1Z2

2.3.6 The tap changer and other transformer generalisations

2.3.6.1 Single-phase transformer

By introducing the transformation ratio a1, as shown in fig. 2.10, the applicability of the single-

phase transformer model can be enlarged to include the effect of a tap changer. Variations in

a1 can thus be effected in order to meet a voltage constraint imposed on either side of the

transformer. As regards the ratio a2, it is fixed, and it is intended to facilitate the treatment of

cases where the secondary voltage differs from its corresponding base voltage.
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Figure 2.10 Approximate representation of a tap changer operating on a

single-phase transformer described by the admittance matrix Ytr1φ

Assuming an actual tap position nx, a total number of taps nt , and limiting transformation ratios

a1min and a1max, the actual transformation ratio follows from the relation

a1(nx) =
nx −1

nt −1
(a1max −a1min)+a1min (2.87)

Moreover, the step in transformation ratio caused by a single tap increase is given by

Δa1 =
a1max −a1min

nt −1
(2.88)

The effect of introducing a1 and a2 on the branch admittance matrix can be investigated as

done before, i.e. by seeking a system of equations of the form I = YV . The additional factors

imply the following relations:

V1 = a1V1′ V2 = a2V2′

I1 =
1

a1
I1′ I2 =

1

a2
I2′
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Furthermore, by definition

I′ = Ytr1φV ′

⎡
⎢⎣a1 0

0 a2

⎤
⎥⎦
⎡
⎢⎣I1

I2

⎤
⎥⎦= Ytr1φ

⎡
⎢⎣1/a1 0

0 1/a2

⎤
⎥⎦
⎡
⎢⎣V1

V2

⎤
⎥⎦

such that

Ybr =

⎡
⎢⎣a1 0

0 a2

⎤
⎥⎦
−1

Ytr1φ

⎡
⎢⎣1/a1 0

0 1/a2

⎤
⎥⎦

=

⎡
⎢⎣

1
a2

1

(Ytr1φ )11
1

a1a2
(Ytr1φ )12

1
a2a1

(Ytr1φ )21
1
a2

2

(Ytr1φ )22

⎤
⎥⎦ (2.89)

The effects of a change in a1 on V1 and V2 depend on the transformer characteristics and

particular surrounding network components and their topology. Nevertheless, by neglecting

the effect of the transformer winding impedances and magnetizing admittance, one can see

that V2 ≈ V1/a1. Thus, given that V2 has to be maintained at its current value, a decrease

(increase) in V1 would demand a corresponding decrease (increase) in a1. Similarly, assuming

that V2 needs to be decreased (increased) for a given V1, then a1 would have to be increased

(decreased) accordingly.

2.3.6.2 Three-phase transformer

As in the single-phase case, the three-phase transformer models are generalised through the

introduction of the transformation ratios a1 and a2 (see fig. 2.11). The inner block represents

a bare three-phase transformer. The tap changer mechanism, for instance implemented on the

transformers of types Yy0 and Yd1, is reflected by changes in a1, where the formulae (2.87)

and (2.88) remain applicable. Changes in a1 also lead to changes in the primary and secondary

voltages in a way similar to the single-phase case. The ratio a2 is fixed, and is intended to
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Figure 2.11 Approximate representation of a tap changer operating

on a three-phase transformer described by the admittance matrix Ytr

facilitate the treatment of the cases where the secondary voltage differs from its corresponding

base voltage.

The effect of the factors a1 and a2 on Ytr can be clarified by seeking a system of equations of

the form M1I = M2V . First, a1 and a2 relate the voltages and currents as follows:

VABC = a1V ′
ABC Vabc = a2V ′

abc

IABC =
1

a1
I′ABC Iabc =

1

a2
I′abc

Second, Ytr is defined in such a way that I′ =YtrV ′, where the vectors I′ and V ′ are constructed

in accordance with sec. 2.3.3. Therefore,

I′ = YtrV ′

⎡
⎢⎣a1I3 03

03 a2I3

⎤
⎥⎦ I = Ytr

⎡
⎢⎣I3/a1 03

03 I3/a2

⎤
⎥⎦V
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from which the overall admittance matrix can be deduced directly, that is

Ybr =

⎡
⎢⎣a1I3 03

03 a2I3

⎤
⎥⎦
−1

Ytr

⎡
⎢⎣I3/a1 03

03 I3/a2

⎤
⎥⎦

=

⎡
⎢⎣

1
(a1)2 (Ytr)KL

1
a1a2

(Ytr)K�

1
a2a1

(Ytr)kL
1

(a2)2 (Ytr)k�

⎤
⎥⎦ (2.90)

where each element shown in the matrix is itself a 3× 3 matrix with K,L ∈ {A,B,C} and

k, � ∈ {a,b,c}.

2.3.7 The zigzag earthing transformer

A

C
VC

B

Y

EA

EB

EC

IB

IC

Ea

Eb

Ec

Zn

n

IA
VA

VB

In

Y

Z ≡ Z1 + Z2

Y

Vn

Ic

Ia

Ib

Z ≡ Z1 + Z2

Z ≡ Z1 + Z2

Figure 2.12 Equivalent circuit of the zigzag

earthing transformer
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The circuit used to model the zigzag earthing transformer is shown in fig. 2.12. The primary

(Z1) and secondary (Z2) coil impedances are in series, and are merged into the single impedance

Z = Z1 + Z2. By applying Kirchhoff’s laws, using the notation of sec. 2.3.3, the following

relations are obtained:

VABC = EABC +ZIABC −P(132)Eabc +ZnInJ3×1 (2.91)

IABC = P(132)Iabc −Y P(132)Eabc (2.92)

In = IA + IB + IC (2.93)

Furthermore, given an equal number of turns in the primary and secondary coils, and taking

into consideration the indicated polarities in fig. 2.12,

EABC = Eabc (2.94)

IABC = Iabc (2.95)

The objective is to rearrange the above equations so as to have a system of the form IABC =

YtrVABC, from which Ytr can be extracted. First, equation (2.94) can be used to simplify (2.91),

that is

VABC = (I3 −P(132))Eabc +(ZI3 +ZnJ3)IABC (2.96)

Second, multiplying (2.92) from the left by −P(123)/Y , and substituting Iabc according to (2.95)

yield

Eabc =
1

Y
(I3 −P(123))IABC (2.97)

Finally, replacing Eabc in (2.96) by the expression (2.97) leads to

VABC =

((
Z +

3

Y

)
I3 +

(
Zn − 1

Y

)
J3

)
IABC

such that

Yzn =

((
Z +

3

Y

)
I3 +

(
Zn − 1

Y

)
J3

)−1
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The explicit computation of the inverse thus results in the following matrix:

Yzn =

⎡
⎢⎢⎢⎢⎣

a b b

b a b

b b a

⎤
⎥⎥⎥⎥⎦ (2.98)

where

a =
1+Y (Z +2Zn)

(3+Y Z)(Z +3Zn)

b =
1−Y Zn

(3+Y Z)(Z +3Zn)

2.4 The classic model

The classic model constitutes a basic approach to perform power flow studies of electrical

networks. It consists in applying Newton’s method to the power flow problem with a single

swing bus, in line with Wood and Wollenberg (1996) among others. Its simplicity arises from

the assumption that the network frequency keeps its nominal value, due the ability of one of its

buses, namely the swing bus (also known as slack bus), to generate or absorb power at will so

as to fulfill the load conditions and power constraints of the network.

2.4.1 Load model

In a way similar to Okamura et al. (1975), the active and reactive load expressions are defined

such as to accommodate the various forms that a physical load may take in an electric power

network:

PLi = (PL0i +PL1i)+PL-I i |Vi|+PL-Z i |Vi|2 +PL-NPi |Vi|NPi (2.99)

QLi = (QL0i +QL1i)+QL-I i |Vi|+QL-Z i |Vi|2 +QL-NQi |Vi|NQi (2.100)
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Focusing on the first expression, the term in round brackets represents the set value for the

load. The reason why two constants are used (instead of one) is purely technical, that is to

a have a common data structure with the power and frequency regulation model (described in

sec. 2.5). The following two terms represent respectively loads of constant current and constant

impedance. The last term, comprising the parameters PL-NPi and NPi, allows to describe a load

with a dependence in voltage raised to the arbitrary NPi-th power. The same applies to the

second expression.

2.4.2 Power generation model

In the classic framework, power generation is modelled by a constant, namely P̃Gi in the three-

phase case, or PGi in the single-phase case.

2.4.3 Types of bus

Since the model admits electrical networks composed of both three-phase and single-phase

elements, from the outset it is helpful to define basic labelling rules for the nodes. Without loss

of generality, it is assumed that all nodes contained in three-phase buses are labelled before (i.e.

have smaller indices than) the ones corresponding to single-phase buses, and that the nodes

within a three-phase bus are labelled by respecting the order abc of the phases. For example,

if i is the index corresponding to the phase-a node of an arbitrary bus, then i+ 1 and i+ 2

correspond respectively to the phase-b and phase-c nodes of the same bus.

2.4.3.1 The swing bus

The swing bus is characterized by a fixed voltage modulus (typically of unit value in the per

unit system) and a phase-a voltage phase of fixed arbitrary value (which is typically zero). The

swing bus characteristic phase acts as a reference for the other voltage phases of the network,

i.e. only their relative values with respect to the characteristic phase enter the calculations.

Hence, in any network under study a bus must be designated as swing bus.
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If the swing bus is three-phase, then its three voltage moduli are equal, and the three phases are

arranged 120◦ apart, where the phase-a angle is set as the reference.

At every node of a swing bus, the apparent power generation is adjusted (without limit) to

balance the power going into the bus admittance components and the load.

2.4.3.2 The PV bus

As its name suggests, the PV bus is characterized by a fixed level of active power generation

and a fixed voltage modulus.

If the PV bus is three-phase (denoted by PV3), then the voltage moduli at its three nodes are

all equal to the characteristic voltage modulus. The corresponding voltage phases are arranged

uniformly 120◦ apart, yet with an unknown global orientation. Normally, the phase-a volt-

age phase, say θi, is selected as the unknown variable based on which the other phases are

expressed, i.e. θi+1 = θi −120◦, θi+2 = θi +120◦.

Still in the three-phase case, the specified active power generation corresponds to the sum of the

active power generated at every phase of the bus, without constraint on its distribution among

the phases.

If the PV bus is single-phase (denoted by PV1), then its voltage modulus takes the characteristic

value, and the lone voltage phase is treated as an unknown.

Lastly, at every node of the PV bus, the generated reactive power is adjusted (without limit) to

balance the reactive power going into the bus admittance components and the load.

2.4.3.3 The PQ bus

At a PQ bus, the generated power is fixed, and the load takes the definite form presented in

sec. 2.4.1.
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The treatment of a PQ bus is the same irrespective of whether the bus is three-phase or single-

phase, because in the former case the powers flowing through the different nodes are decoupled.

Thus, for every node the complex voltages must be solved in order to achieve a balance between

the generated power, the power going into the admittance components, and the load. As a

result, two unknowns are introduced per PQ node: the phase and the modulus of the complex

voltage.

2.4.3.4 Main characteristics of the different bus types

Table 2.1 summarises the differences between the various types of bus in terms of their fixed or

conditioned quantities, the unknowns that they generate, and the quantities that are adjusted in

the course of the iteration process. Of great importance is the number of unknown(s) generated

as per bus type: zero for the swing bus, one for the PV bus, irrespective of whether it is three-

phase or single-phase, six for the three-phase PQ bus, and two for the single-phase PQ bus.

Note that the subscript G denotes the power generated, L the load, and Y the power going into

the branches and shunt elements of the network. In the cases of the swing bus and the PV3 bus,

i represents a phase-a node and i′ ∈ {i, i+1, i+2}. Otherwise, i can label any node.

Table 2.1 Bus types and characteristics in the classic model

Bus type Fixed quantities Unknowns Adjusted quantities

Swing |Vi′ |, θi - PGi′ = PY i′ +PLi′ , QGi′ = QY i′ +QLi′

PV3 |Vi′ |, P̃Gi θi QGi′ = QY i′ +QLi′

PV1 |Vi|, PGi θi QGi = QY i +QLi

PQ PGi, QGi, PLi, QLi |Vi|, θi -

2.4.4 The vector of mismatches

In view of table 2.1, given a network of nPV3 three-phase PV buses, nPV1 single-phase PV

buses, and nPQ PQ nodes, a number nPV3 +nPV1 +2nPQ of unknowns are generated. They can
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be arranged in a single vector x, expressed in the following compact form:

x =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

θPV3a

θPV1

θPQ

|VPQ|

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(2.101)

where θPV3a represents the voltage phases at the phase-a nodes of the PV3 buses, θPV1 the

voltage phases at the PV1 nodes, θPQ the voltage phases at the PQ nodes, and |VPQ| the voltage

moduli at the PQ nodes.

The vector of mismatches is built based on the same bus ordering. Starting with the PV3 buses,

balance in power at every bus demands that the following quantity be brought to zero:

ε̃P(PV3) i(x) =
i+2

∑
p=i

{
PY p(x)+PL p(

∣∣Vp
∣∣)
}
− P̃Gi (2.102)

where P̃Gi and |Vi| = |Vi+1| = |Vi+2| are the set parameters per bus. The tilde is used to de-

note a three-phase quantity, which is labelled by the index of its corresponding phase-a node.

Likewise, the mismatches

εP(PV1) i(x) = PY i(x)+PLi(|Vi|)−PGi (2.103)

at the PV1 nodes need to be brought to zero, where PGi and |Vi| are the set parameters, and i

labels any PV1 node. Lastly, based on the same principle the PQ mismatches

εP(PQ) i(x) = PY i(x)+PLi(|Vi|)−PGi (2.104)

εQ(PQ) i(x) = QY i(x)+QLi(|Vi|)−QGi (2.105)
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in which case i labels any PQ node, must be made to vanish. Gathering the expressions (2.102)–

(2.105) into a single vector yields the vector of mismatches:

ε(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ε̃P(PV3)(x)

εP(PV1)(x)

εP(PQ)(x)

εQ(PQ)(x)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(2.106)

where each entry shown represents a set of mismatches of the indicated type. Obviously, the

notation f (x) is a shorthand to indicate that the function f is dependent on the elements of the

vector x, as opposed to the vector x as a whole.

2.4.5 The Jacobian matrix

As pointed out in sec. 2.1, the computation of the Jacobian matrix is necessary to implement

Newton’s method. Symbolically, the classical Jacobian matrix can be represented as follows:

∇ε(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂ ε̃P(PV3)
∂θPV3a

∂ ε̃P(PV3)
∂θPV1

∂ ε̃P(PV3)
∂θPQ

∂ ε̃P(PV3)
∂ |VPQ|

∂εP(PV1)
∂θPV3a

∂εP(PV1)
∂θPV1

∂εP(PV1)
∂θPQ

∂εP(PV1)
∂ |VPQ|

∂εP(PQ)

∂θPV3a

∂εP(PQ)

∂θPV1

∂εP(PQ)

∂θPQ

∂εP(PQ)

∂ |VPQ|

∂εQ(PQ)

∂θPV3a

∂εQ(PQ)

∂θPV1

∂εQ(PQ)

∂θPQ

∂εQ(PQ)

∂ |VPQ|

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

From the mismatch expressions of the previous section, i.e. (2.4), (2.5), (2.99), (2.100) sub-

stituted in (2.102)–(2.105), the derivatives can be computed directly. To that effect, a couple

of remarks are in order. First, considering that the admittance matrices of the network com-

ponents are all symmetric (refer to sec. 2.3), Ybus can be treated as symmetric. Second, recall

that the voltage phases at the phase-b and phase-c nodes of a PV3 bus depend on the one at the

phase-a node, i.e. θi+1 = θi − 120◦, θi+2 = θi + 120◦. Therefore, the derivatives of mismatch

relations with respect to θi must be properly handled through the use of the chain rule. For
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example, assuming that i and j designate phase-a nodes contained in different PV3 buses, the

derivative of the mismatch ε̃Pi with respect to the phase θ j includes the following terms:

∂ ε̃Pi

∂θ j
=

∂ ε̃Pi

∂θ ′
j

∂θ ′
j

∂θ j
+

∂ ε̃Pi

∂θ j+1

∂θ j+1

∂θ j
+

∂ ε̃Pi

∂θ j+2

∂θ j+2

∂θ j

=
∂ ε̃Pi

∂θ ′
j
+

∂ ε̃Pi

∂θ j+1
+

∂ ε̃Pi

∂θ j+2

where the notation θ ′
j = θ j is used to emphasise the double role played by θ j, i.e. that of a

function and that of a variable .

The resulting Jacobian matrix expressions are shown in table 2.2. The column i specifies the

bus type associated with the mismatch, and column j the bus type associated with the derivative

variable. For convenience, since the treatment of PV1 and PQ nodes are the same with regards

to the phase derivatives, together they are referred to as P1 nodes (single-phase nodes with an

associated phase unknown). Moreover, for simplicity summations over all nodes are written

without bounds.
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Table 2.2 Formulae of the Jacobian matrix elements in the classic model

Jacobian matrix elements iii jjj

∂ ε̃Pi

∂θi
= |Vi|

i+2

∑
p=i

∑
k
|Vk|(−Gpk sinθpk +Bpk cosθpk) PV3a PV3a ( j = i)

+ |Vi|2 (Bi,i+1 +Bi,i+2 +Bi+1,i+2 −Bii −Bi+1,i+1 −Bi+2,i+2)

∂ ε̃Pi

∂θ j
= |Vi|

∣∣Vj
∣∣ i+2

∑
p=i

j+2

∑
q= j

(Gpq sinθpq −Bpq cosθpq) PV3a PV3a ( j �= i)

∂ ε̃Pi

∂θ j
= |Vi|

∣∣Vj
∣∣ i+2

∑
p=i

(Gp j sinθp j −Bp j cosθp j) PV3a P1

∂εPi

∂θ j
= |Vi|

∣∣Vj
∣∣ j+2

∑
q= j

(Giq sinθiq −Biq cosθiq) P1 PV3a

∂εPi

∂θi
= |Vi|∑

k
|Vk|(−Gik sinθik +Bik cosθik)−Bii |Vi|2 P1 P1 ( j = i)

∂εPi

∂θ j
= |Vi|

∣∣Vj
∣∣(Gi j sinθi j −Bi j cosθi j) P1 P1 ( j �= i)

∂εQi

∂θ j
= |Vi|

∣∣Vj
∣∣ j+2

∑
q= j

(−Giq cosθiq −Biq sinθiq) PQ PV3a

∂εQi

∂θ j
= |Vi|

∣∣Vj
∣∣(−Gi j cosθi j −Bi j sinθi j) PQ P1 ( j �= i)

∂εQi

∂θi
= |Vi|∑

k
|Vk|(Gik cosθik +Bik sinθik)−Gii |Vi|2 PQ PQ ( j = i)

∂ ε̃Pi

∂
∣∣Vj

∣∣ = |Vi|
i+2

∑
p=i

(Gp j cosθp j +Bp j sinθp j) PV3a PQ

∂εPi

∂ |Vi| = PL-I i +2PL-Z i |Vi|+NPi PL-NPi |Vi|NPi−1 PQ PQ ( j = i)

+∑
k
|Vk|(Gik cosθik +Bik sinθik)+Gii |Vi|

∂εPi

∂
∣∣Vj

∣∣ = |Vi|(Gi j cosθi j +Bi j sinθi j) P1 PQ ( j �= i)

∂εQi

∂ |Vi| = QL-I i +2QL-Z i |Vi|+NQi QL-NQi |Vi|NQi−1 PQ PQ ( j = i)

+∑
k
|Vk|(Gik sinθik −Bik cosθik)−Bii |Vi|

∂εQi

∂
∣∣Vj

∣∣ = |Vi|(Gi j sinθi j −Bi j cosθi j) PQ PQ ( j �= i)
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2.5 The power and frequency regulation model

In reality, no generator can produce power in an unconstrained fashion independently of its

rotating speed (as is the case with the classic model’s swing bus). Variations in load neces-

sarily lead to variations in generator speed, however small such variations may be. In fact, a

change in speed occurs when the torques acting on the shaft of a rotor do not add up to zero.

For instance, if the mechanical torque that is driving the shaft of a generator is countered by a

greater electrical torque produced by the load, then its rotational speed should decrease. Like-

wise, the power consumption by rotating machines is also affected by their rotational speeds.

Though the generators and other rotating machines connected to a network may operate at var-

ious speeds, due to their differing number of poles, they all share the same frequency, i.e. the

network frequency. The faster they rotate, the higher is the frequency, and vice versa. The

present model thus goes one step further than the classic model in that it incorporates the effect

of network frequency variation in its equations.

In addition, the model takes into consideration contracts that define the power transfer be-

tween different areas of a power grid, and the need to keep the network frequency close to its

scheduled value. The contracts are generally made between balancing authorities that over-

see the load and the power generation within their designated zone of the overall power grid.

The transfer in power is done through one or more lines commonly referred to as tie lines.

Maintaining the network frequency close to its scheduled value is also necessary to avoid a de-

terioration in the quality of the supplied electrical energy as well as equipment damage. As will

be seen in sec. 2.5.4, those constraints are reflected in an additional expression of the vector of

mismatches.

To be concise, in the remainder of this document the power and frequency regulation model

may be referred to as the regulation model.
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2.5.1 Load model

In agreement with Okamura et al. (1975), among others, the expressions for the active and

reactive load, i.e. (2.99) and (2.100), are modified to include the effect of frequency variation:

PLi = PL0 i +(1+KPiΔ f )(PL1 i +PL-I i |Vi|+PL-Z i |Vi|2 +PL-NPi |Vi|NPi) (2.107)

QLi = QL0 i +(1+KQiΔ f )(QL1 i +QL-I i |Vi|+QL-Z i |Vi|2 +QL-NQi |Vi|NQi) (2.108)

where Δ f = f − fsch represents the frequency deviation from the scheduled frequency. As

mentioned in sec. 2.4.1, the above equations are defined so as to accommodate various types

of load.

2.5.2 Power generation model

Considering the interrelation between load changes and power generation, speed governing

mechanisms are used to control the operation of prime movers, so as to stabilize generator

output and speed. As explained in Wood and Wollenberg (1996) and Okamura et al. (1975),

this results in the introduction of the term −Δ f/Ri in the expression of power generation, where

Ri represents the specific speed-droop characteristics of the generator connected to node i.

Furthermore, contractual agreements in power transfer between network areas or a working

frequency range target may necessitate a correction Pr in the total power output (referred to as

the power insufficiency of the generators) at a particular instance of operation. The individual

output of the generators involved in providing such power correction may be set according to

economic and reliability factors. A participation factor βi is thus defined for each generator in

accordance with a specific scheme (e.g. through economic dispatch calculations), such that the

output contribution of the generator at node i is given by βiPr and ∑i βi = 1. By combining the

above-mentioned terms with the set power generation value, the total active power output of

the generator at node i may be expressed as follows:

PGi = PG-set i − Δ f
Ri

+βiPr (2.109)
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2.5.3 Types of bus

Three types of bus are also defined in the present model. They share several similarities with

the classic model’s swing bus, PV bus, and PQ bus. For distinguishing purposes, respectively

they will be referred to as the reference bus, the generator bus, and the load bus.

As in the classic model (see sec. 2.4.3), nodes of three-phase buses are labelled before the ones

of single-phase buses, and the labelling of the nodes of a three-phase bus respects the order abc

of the phases.

2.5.3.1 The reference bus

The reference bus is characterized by a fixed voltage modulus (typically of unit value in the per

unit system) and a phase-a voltage phase of fixed arbitrary value (which is typically zero). The

characteristic phase of the reference bus marks the zero angle position for the other voltage

phases of the network, i.e. only their relative values with respect to the characteristic phase

enter the calculations. Hence in any network under consideration a bus must be designated as

reference bus.

If the reference bus is three-phase, then its three voltage moduli are equal, and the three phases

are arranged 120◦ apart, where the one corresponding to the phase-a is defined as the phase of

reference.

The total active power generation at a reference bus is described by the expression (2.109), and

the generated reactive power is adjusted (without limit) to match the reactive power going into

the bus admittance components and the load. As will be seen in the next section, the reference

bus is a special case of the generator bus.

2.5.3.2 The generator bus

The generator bus differs from the PV bus in its variable generation of active power. Otherwise,

its treatment is essentially the same as the one of the PV bus.
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Thus, at a generator bus the active power is specified according to (2.109). If the bus is three-

phase, then the sum of the active power generated at its constituent nodes is specified, without

constraint on how the power is distributed among the phases.

The generator bus is also characterized by a fixed voltage modulus. If the bus is three-phase,

then the voltage moduli at its three nodes are all equal to the characteristic voltage modulus.

The corresponding voltage phases are arranged uniformly 120◦ apart, yet with an unknown

global orientation. Normally, the phase-a voltage phase is selected as the unknown variable

based on which the other phases are evaluated. If the generator bus is single-phase, then its

voltage modulus takes the characteristic value, and the lone voltage phase is treated as an

unknown.

At every node of the generator bus, the generated reactive power is adjusted (without limit) to

balance the reactive power going into the bus admittance components and the load.

The shorthands Gen3 and Gen1 are used to designate respectively a three-phase and a single-

phase generator bus.

2.5.3.3 The load bus

The load bus is the power and frequency regulation model equivalent of the PQ bus.

Thus, at a load bus the generated power is fixed (represented by P′
Gi and Q′

Gi), and the load takes

the definite form presented in sec. 2.5.1. The treatment of a load bus is the same irrespective

of whether it is three-phase or single-phase, because in the former case the powers flowing

through the different nodes are decoupled. For every node, the complex voltages must be

solved in order to achieve a balance between the generated power, the power going into the

admittance components, and the load. Therefore two unknowns are introduced per node: the

phase and the modulus of the complex voltage.

The shorthand Ld is used to designate concisely a load bus.
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2.5.3.4 Main characteristics of the different types of bus

Table 2.3 summarises the differences between the allowed bus types in terms of their fixed or

conditioned quantities, the unknowns that they generate, and the quantities that are adjusted in

the course of the iteration process. Of great importance is the number of unknowns generated

as per bus type: zero for the reference bus, one for the generator bus, irrespective of whether

it is three-phase or single-phase, six for the three-phase load bus, and two for the single-phase

load bus. The subscript G denotes the power generated, L the load, and Y the power going into

the branches and shunt elements of the network. The expressions P̃Gi and PGi follow from the

power generation model (three-phase and single-phase generation respectively), and PLi and

QLi from the load model. The quantities P′
Gi and Q′

Gi denote constant power generation. In the

cases of the reference bus and the three-phase generator bus, i represents a phase-a node and

i′ ∈ {i, i+1, i+2}. Otherwise, i labels any node.

Table 2.3 Bus types and characteristics in the power and frequency regulation model

Bus type Fixed / Conditioned quantities Unknowns Adjusted quantities

Ref. |Vi′ |, θi, P̃Gi - QGi′ = QY i′ +QLi′

Gen3 |Vi′ |, P̃Gi θi QGi′ = QY i′ +QLi′

Gen1 |Vi|, PGi θi QGi = QY i +QLi

Load P′
Gi, Q′

Gi, PLi, QLi |Vi|, θi -

2.5.4 The vector of mismatches

In view of table 2.3, given a network of nGen3 three-phase generator buses, nGen1 single-phase

generator buses, and nLd load nodes, nGen3 + nGen1 + 2nLd unknowns have to be determined.

Moreover, two additional unknowns were introduced in the power generation and load models:

the power insufficiency variable Pr and the network frequency f . All such variables can be
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grouped into the single vector x:

x =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

θGen3a

θGen1

θLd

|VLd|
Pr

f

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.110)

where θGen3a represents the voltage phases at the phase-a nodes of the three-phase generator

buses, θGen1 the voltage phases at the single-phase generator buses, and θLd and |VLd| respec-

tively the voltage phases and moduli at the load nodes.

The vector of mismatches is built in similar fashion as in the classic model, with the exception

that two equations are added to allow for the resolution of the new variables Pr and f . The

first equation is obtained easily by noting that (unlike the swing bus) the active power is not

adjusted at a reference bus, such that a mismatch equation is set up in order to ensure the

balance in power:

ε̃P(Re f ) i(x) =
i+2

∑
p=i

{
PY p(x)+PL p(

∣∣Vp
∣∣ , f )

}
− P̃Gi(Pr, f ) (2.111)

The term P̃Gi(Pr, f ) = 3(PG-set i − Δ f/Ri + βiPr) is a three-phase quantity composed of the

set power generation 3PG-set i and the parameters Ri and βi. The index i of the three-phase

quantities corresponds to the phase-a of the bus.

The second equation reflects the operation of generators so as to fulfil a given power exchange

agreement between areas of a network, and to maintain the network frequency at (or close to)

its scheduled value. It is built as a linear combination of the gap between the active power

transferred in designated tie line(s) with respect to its scheduled value, i.e. PT −PT sch, as well

as the gap in frequency with respect to its scheduled value, i.e. f − fsch:

εp f = ap(PT −PT sch)+a f ( f − fsch) (2.112)
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The active power transferred from the nodes m in an area M, to the nodes n in another area N,

through Ntb tie branch(es) denoted by the index t, is obtained according to

PT = Re

{ Ntb

∑
t=1

∑
m∈{mt}

Vm ∑
k∈{mt ,nt}

(Yt)
∗
mkV

∗
k

}
(2.113)

= Re

{ Ntb

∑
t=1

∑
m∈{mt}

∑
k∈{mt ,nt}

|Vm| |Vk|(Gt − jBt)mke jθmk

}
(2.114)

=
Ntb

∑
t=1

∑
m∈{mt}

∑
k∈{mt ,nt}

|Vm| |Vk|
{
(Gt)mk cosθmk +(Bt)mk sinθmk

}
(2.115)

where {mt} stands for the set of primary nodes of tie branch t, and {mt ,nt} for the set of

primary and secondary nodes of the same tie branch. Without loss of generality, a primary

tie branch node is defined to be one where the conventional positive apparent power flows

into its associated tie branch(es), and conversely a secondary tie branch node is one where the

conventional positive apparent power flows out of its tie branch(es). The parameters ap and

a f are determined so as to reproduce the control approach in effect. For example, flat tie line

control, where the established power transfer is met, corresponds to the case ap �= 0 and a f = 0.

Similarly, flat frequency control, where the power output of a set of generators is regulated so

as to maintain the network frequency at its scheduled value, corresponds to the case ap = 0

and a f �= 0. If both ap and a f are nonzero, which is referred to as tieline bias control, then the

extent to which ΔPT approaches zero depends on the relative weight of the coefficient ap with

respect to a f (and vice versa for Δ f ).

The remaining elements of the vector of mismatches closely parallel the ones in the classic

model. Starting with the three-phase generator bus, balance in power demands that its corre-

sponding mismatch (at the bus composed of the nodes i, i+1, and i+2)

ε̃P(Gen3) i(x) =
i+2

∑
p=i

{
PY p(x)+PL p(

∣∣Vp
∣∣ , f )

}
− P̃Gi(Pr, f ) (2.116)

be brought to zero, where the active power generation is conditioned according to (2.109),

and the voltage moduli are set at an arbitrary value. It should be apparent that the reference
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bus is a special case of the generator bus, where the voltage moduli are typically set to unity,

and the voltage phase acts as the reference relative to which the other phases of the circuit are

evaluated. Likewise, the mismatch equation at a Gen1 node takes the form

εP(Gen1) i(x) = PY i(x)+PLi(|Vi| , f )−PGi(Pr, f ) (2.117)

where PG-set i and |Vi| are set parameters, and i labels any Gen1 node. Lastly, following the

same reasoning, the load bus mismatches are given by

εP(Ld) i(x) = PY i(x)+PLi(|Vi| , f )−P′
Gi (2.118)

εQ(Ld) i(x) = QY i(x)+QLi(|Vi| , f )−Q′
Gi (2.119)

where i labels any load node. Recall that P′
Gi and Q′

Gi stand for constant power generation, and

may very well be set to zero.

The vector of mismatches is finally obtained by gathering the expressions (2.111)–(2.119) as

follows:

ε(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε̃P(Re f )(x)

ε̃P(Gen3)(x)

εP(Gen1)(x)

εP(Ld)(x)

εQ(Ld)(x)

εp f (x)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.120)

where each entry shown represents the set of mismatches of the type indicated.

2.5.5 The Jacobian matrix

Recall that the computation of the Jacobian matrix is necessary to implement Newton’s method,

and thus to solve for the voltages across the network. Based on the unknowns (2.110) and
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mismatches (2.120), its contents can be represented symbolically as follows:

∇ε(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂ ε̃P(Re f )
∂θGen3a

∂ ε̃P(Re f )
∂θGen1

∂ ε̃P(Re f )
∂θLd

∂ ε̃P(Re f )
∂ |VLd |

∂ ε̃P(Re f )
∂Pr

∂ ε̃P(Re f )
∂ f

∂ ε̃P(Gen3)
∂θGen3a

∂ ε̃P(Gen3)
∂θGen1

∂ ε̃P(Gen3)
∂θLd

∂ ε̃P(Gen3)
∂ |VLd|

∂ ε̃P(Gen3)
∂Pr

∂ ε̃P(Gen3)
∂ f

∂εP(Gen1)
∂θGen3a

∂εP(Gen1)
∂θGen1

∂εP(Gen1)
∂θLd

∂εP(Gen1)
∂ |VLd|

∂εP(Gen1)
∂Pr

∂εP(Gen1)
∂ f

∂εP(Ld)
∂θGen3a

∂εP(Ld)
∂θGen1

∂εP(Ld)
∂θLd

∂εP(Ld)
∂ |VLd|

∂εP(Ld)
∂Pr

∂εP(Ld)
∂ f

∂εQ(Ld)
∂θGen3a

∂εQ(Ld)
∂θGen1

∂εQ(Ld)
∂θLd

∂εQ(Ld)
∂ |VLd|

∂εQ(Ld)
∂Pr

∂εQ(Ld)
∂ f

∂εp f
∂θGen3a

∂εp f
∂θGen1

∂εp f
∂θLd

∂εp f
∂ |VLd|

∂εp f
∂Pr

∂εp f
∂ f

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Such a representation is helpful to visualize the different types of derivatives to be performed.

Let us first examine the phase derivatives of the power mismatches (ε̃P, εP, and εQ). As seen in

sec. 2.5.3, close parallels can be drawn between the generator bus and the PV bus, and between

the load bus and the PQ bus. In particular, their corresponding mismatches exhibit the same

dependence on the phases, since they share the expressions for the power entering the bus (PY

and QY ). Consequently, the results obtained in table 2.2 remain valid in the present model.

Furthermore, because the reference bus is in fact a special case of the generator bus, its phase

derivatives take the same form as ∂ ε̃P(PV 3) i/∂θ j (or ∂εP(PV 1) i/∂θ j, if it is single-phase).

The next step is to determine the derivatives of the power mismatches with respect to the

voltage moduli. Results similar to the classic case can be expected, because the expressions

for the power entering the bus (PY and QY ) are unchanged, and the load model differs from the

classic one merely by the multiplicative factors (1+KPiΔ f ) and (1+KQiΔ f ). Hence only the

derivatives of the mismatches at load buses with respect to their associated voltage moduli are

modified.

The power mismatches exhibit a linear, or no dependence at all, on the power insufficiency or

frequency. Consequently, the corresponding derivatives are straightforward to compute.
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The expressions for all power mismatch derivatives can be found in tables 2.4–2.7, where the

ones coincident with the classic model are repeated for clarity.

Table 2.4 Derivatives of the active power mismatches at the three-phase reference bus

Jacobian matrix elements, iii === iiiRRReeefff jjj

∂ ε̃Pi

∂θ j
= |Vi|

∣∣Vj
∣∣ i+2

∑
p=i

j+2

∑
q= j

(Gpq sinθpq −Bpq cosθpq) Gen3a

∂ ε̃Pi

∂θ j
= |Vi|

∣∣Vj
∣∣ i+2

∑
p=i

(Gp j sinθp j −Bp j cosθp j) P1

∂ ε̃Pi

∂
∣∣Vj

∣∣ = |Vi|
i+2

∑
p=i

(Gp j cosθp j +Bp j sinθp j) Ld

∂ ε̃Pi

∂Pr
= −3βi -

∂ ε̃Pi

∂ f
=

3

Ri
+3KPi(PL1 i +PL-I i |Vi|+PL-Z i |Vi|2 +PL-NPi |Vi|NPi) -

Table 2.5 Derivatives of the active power mismatches at the three-phase generator buses

Jacobian matrix elements, iii === iiiGen3a jjj

∂ ε̃Pi

∂θi
= |Vi|

i+2

∑
p=i

∑
k
|Vk|(−Gpk sinθpk +Bpk cosθpk)+ |Vi|2

( i+2

∑
p,q=i
p<q

Bpq −
i+2

∑
p=i

Bpp

)
Gen3a ( j = i)

∂ ε̃Pi

∂θ j
= |Vi|

∣∣Vj
∣∣ i+2

∑
p=i

j+2

∑
q= j

(Gpq sinθpq −Bpq cosθpq) Gen3a ( j �= i)

∂ ε̃Pi

∂θ j
= |Vi|

∣∣Vj
∣∣ i+2

∑
p=i

(Gp j sinθp j −Bp j cosθp j) P1

∂ ε̃Pi

∂
∣∣Vj

∣∣ = |Vi|
i+2

∑
p=i

(Gp j cosθp j +Bp j sinθp j) Ld

∂ ε̃Pi

∂Pr
= −3βi -

∂ ε̃Pi

∂ f
=

3

Ri
+3KPi(PL1 i +PL-I i |Vi|+PL-Z i |Vi|2 +PL-NPi |Vi|NPi) -
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Table 2.6 Derivatives of the active power mismatches at the single-phase generator

buses and load buses

Jacobian matrix elements, iii === iiiP1 jjj

∂εPi

∂θ j
= |Vi|

∣∣Vj
∣∣ j+2

∑
q= j

(Giq sinθiq −Biq cosθiq) Gen3a

∂εPi

∂θi
= |Vi|∑

k
|Vk|(−Gik sinθik +Bik cosθik)−Bii |Vi|2 P1 ( j = i)

∂εPi

∂θ j
= |Vi|

∣∣Vj
∣∣(Gi j sinθi j −Bi j cosθi j) P1 ( j �= i)

∂εPi

∂
∣∣Vj

∣∣ = |Vi|(Gi j cosθi j +Bi j sinθi j) Ld ( j �= i)

iii === iiiGen1 jjj

∂εPi

∂Pr
= −βi -

∂εPi

∂ f
=

1

Ri
+KPi(PL1 i +PL-I i |Vi|+PL-Z i |Vi|2 +PL-NPi |Vi|NPi) -

iii === iiiLd jjj

∂εPi

∂ |Vi| = (1+KPi Δ f )(PL-I i +2PL-Z i |Vi|+NPi PL-NPi |Vi|NPi−1) Ld ( j = i)

+∑
k
|Vk|(Gik cosθik +Bik sinθik)+Gii |Vi|

∂εPi

∂Pr
= 0 -

∂εPi

∂ f
= KPi(PL1 i +PL-I i |Vi|+PL-Z i |Vi|2 +PL-NPi |Vi|NPi) -
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Table 2.7 Derivatives of the reactive power mismatches at load buses

Jacobian matrix elements, iii === iiiLLLddd jjj

∂εQi

∂θ j
= |Vi|

∣∣Vj
∣∣ j+2

∑
q= j

(−Giq cosθiq −Biq sinθiq) Gen3a

∂εQi

∂θ j
= |Vi|

∣∣Vj
∣∣(−Gi j cosθi j −Bi j sinθi j) P1 ( j �= i)

∂εQi

∂θi
= |Vi|∑

k
|Vk|(Gik cosθik +Bik sinθik)−Gii |Vi|2 Ld ( j = i)

∂εQi

∂ |Vi| = (1+KQi Δ f )(QL-I i +2QL-Z i |Vi|+NQi QL-NQi |Vi|NQi−1) Ld ( j = i)

+∑
k
|Vk|(Gik sinθik −Bik cosθik)−Bii |Vi|

∂εQi

∂
∣∣Vj

∣∣ = |Vi|(Gi j sinθi j −Bi j cosθi j) Ld ( j �= i)

∂εQi

∂Pr
= 0 -

∂εQi

∂ f
= KQi(QL1 i +QL-I i |Vi|+QL-Z i |Vi|2 +QL-NQi |Vi|NQi) -
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To complete the picture, the derivatives of εp f are performed. Starting with the phase deriva-

tives, two distinctions must be made: whether the phase involved in the derivative corresponds

to a primary node or a secondary node of a tie branch, and whether the node is of the type Gen3

or P1 (the set of the PV1 and Ld nodes).

Taking the case of ∂εp f /∂θi, where i represents a primary tie branch node categorised as P1,

its expression is derived as follows:

∂εp f

∂θi

∣∣
i=iP1, tie prim. = ap Re

{
j

Ntb

∑
t=1

(
∑

k∈{mt ,nt}
Vi(Yt)

∗
ikV

∗
k − ∑

m∈{mt}
Vm(Yt)

∗
miV

∗
i

)}

= ap Im
{ Ntb

∑
t=1

(
− ∑

k∈{mt ,nt}
Vi(Yt)

∗
ikV

∗
k + ∑

m∈{mt}
Vm(Yt)

∗
miV

∗
i

)}
(2.121)

= ap

Ntb

∑
t=1

|Vi|
(

∑
k∈{mt ,nt}

|Vk|{−(Gt)ik sinθik +(Bt)ik cosθik}

+ ∑
m∈{mt}

|Vm|{(Gt)mi sinθmi − (Bt)mi cosθmi}
)

(2.122)

Similarly, if i is a secondary tie branch node of the type P1, it follows that

∂εp f

∂θi

∣∣∣
i=iP1, tie sec.

= ap Re
{
− j

Ntb

∑
t=1

∑
m∈{mt}

Vm(Yt)
∗
miV

∗
i

}

= ap Im
{ Ntb

∑
t=1

∑
m∈{mt}

Vm(Yt)
∗
miV

∗
i

}
(2.123)

= ap

Ntb

∑
t=1

|Vi| ∑
m∈{mt}

|Vm|{(Gt)mi sinθmi − (Bt)mi cosθmi} (2.124)

The derivatives of εp f with respect to the Gen3a phases are performed likewise, yet by taking

into consideration the relationship between the three phases of the bus through the application

of the chain rule (refer to sec. 2.4.5).

As to the voltage moduli derivatives, they also take two different forms, depending on whether

they are done with respect to a voltage modulus on the primary side or the secondary side of a
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tie branch. Their expressions can be obtained as follows:

∂εp f

∂ |Vi|
∣∣∣
i=iLd , tie prim.

= ap
∂

∂ |Vi| Re
{ Ntb

∑
t=1

∑
m∈{mt}

∑
k∈{mt ,nt}

Vm(Yt)
∗
mkV

∗
k

}

= ap Re
{ Ntb

∑
t=1

(
∑

k∈{mt ,nt}
e jθi(Yt)

∗
ikV

∗
k + ∑

m∈{mt}
Vm(Yt)

∗
mie

− jθi
)}

= ap Re
{ Ntb

∑
t=1

(
∑

k∈{mt ,nt}
|Vk|e jθik(Yt)

∗
ik + ∑

m∈{mt}
|Vm|(Yt)

∗
mie

jθmi
)}

(2.125)

= ap

Ntb

∑
t=1

(
∑

k∈{mt ,nt}
|Vk|{(Gt)ik cosθik +(Bt)ik sinθik}

+ ∑
m∈{mt}

|Vm|{(Gt)mi cosθmi +(Bt)mi sinθmi}
)

(2.126)

∂εp f

∂ |Vi|
∣∣∣
i=iLd , tie sec.

= ap Re
{ Ntb

∑
t=1

∑
m∈{mt}

Vm(Yt)
∗
mie

− jθi
}

= ap Re
{ Ntb

∑
t=1

∑
m∈{mt}

|Vm|(Yt)
∗
mie

jθmi
}

(2.127)

= ap

Ntb

∑
t=1

∑
m∈{mt}

|Vm|{(Gt)mi cosθmi +(Bt)mi sinθmi} (2.128)

Finally, the derivative with respect to the power insufficiency vanishes, because of the inde-

pendence of εp f on Pr, and the derivative with respect to the frequency is a f , which can be

obtained by inspection.

Table 2.8 contains the expressions of all possible Jacobian derivatives of εp f , where the column

on the right gives the type of the node associated with the derivative variable, as well as its

location with respect to the tie branch.
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Table 2.8 Derivatives of the regulation constraint εp f

Jacobian matrix elements iii / tie branch end

∂εp f

∂θi
= ap

Ntb

∑
t=1

i+2

∑
r=i

|Vr|
(

∑
k∈{mt ,nt}

|Vk|{−(Gt)rk sinθrk +(Bt)rk cosθrk} Gen3a / primary

+ ∑
m∈{mt}

|Vm|{(Gt)mr sinθmr − (Bt)mr cosθmr}
)

∂εp f

∂θi
= ap

Ntb

∑
t=1

i+2

∑
r=i

|Vr| ∑
m∈{mt}

|Vm|{(Gt)mr sinθmr − (Bt)mr cosθmr} Gen3a / secondary

∂εp f

∂θi
= ap

Ntb

∑
t=1

|Vi|
(

∑
k∈{mt ,nt}

|Vk|{−(Gt)ik sinθik +(Bt)ik cosθik} P1 / primary

+ ∑
m∈{mt}

|Vm|{(Gt)mi sinθmi − (Bt)mi cosθmi}
)

∂εp f

∂θi
= ap

Ntb

∑
t=1

|Vi| ∑
m∈{mt}

|Vm|{(Gt)mi sinθmi − (Bt)mi cosθmi} P1 / secondary

∂εp f

∂ |Vi| = ap

Ntb

∑
t=1

(
∑

k∈{mt ,nt}
|Vk|{(Gt)ik cosθik +(Bt)ik sinθik} Ld / primary

+ ∑
m∈{mt}

|Vm|{(Gt)mi cosθmi +(Bt)mi sinθmi}
)

∂εp f

∂ |Vi| = ap

Ntb

∑
t=1

∑
m∈{mt}

|Vm|{(Gt)mi cosθmi +(Bt)mi sinθmi} Ld / secondary

∂εp f

∂Pr
= 0 -

∂εp f

∂ f
= a f -





CHAPTER 3

MODEL IMPLEMENTATION

The present chapter describes the methodology developed to implement the models of ch. 2

into the computer program nr3r. In every routine a strong emphasis is placed on reaching high

computation speed. Information regarding the used programming language and computing

tools can be found in Appendix II.

3.1 Program flowchart

The program flowchart is shown in fig. 3.1. It is applicable to both the classic model and

the power and frequency regulation model. The differences between the two approaches are

clarified in the following sections, which examine the routines in greater details.

To give a few explanatory remarks, tests are contained in boxes with rounded corners. The term

tol. represents the maximum allowed error for each εi element to assess convergence of the

iterative process. Likewise, div. tol. represents the minimum error for the εi elements to assess

divergence of the iterative process. Moreover, k is the iteration variable, and kmax its maximum

allowed value. The contents bounded by braces or in dotted boxes apply only when the tap

changing functionality is activated. In that case, the parameters nad j1, nad j2 and nmis represent

respectively the number of performed tap adjustments per iteration, the number of necessary

tap adjustments per iteration, and the number of passed iteration cycles with unfulfilled tap

adjustments.

3.2 Read and organize the input data

The input data elements and their structures are described in Appendix III. The data are divided

into four main categories: the bus data, the branch data, the zigzag earthing transformer data,

and the transferred power and frequency regulation data. The read process consists in dividing
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Read and organize the input data (sec. 3.2)

Ybus routine (sec. 3.3)

Initialization and other preliminary steps (sec. 3.4)

Tap inspection (sec. 3.9)

Calculation of mismatch vector ε(x) (sec. 3.5)

max(|εi|)< tol. {and nad j2 = 0}

Construction of the Jacobian matrix J = ∇ε(x) (sec. 3.6)

Calculation of correction terms Δx =−J−1ε(x) (sec. 3.7)

Updates x′ = x+Δx and V =V (x′) (sec. 3.8)

Calculation of mismatch vector ε(x′) (sec. 3.5)

Tap changing procedure (sec. 3.9)

nad j1 > 0

Calculation of mismatch vector ε(x′) (sec. 3.5)

max(|εi|)< tol. {and nad j2 = 0}

max(|εi|)< tol. and nmis > 2

max(|εi|)> div. tol.

max(|εi|)> tol. and k > kmax

( Convergence )

( Condition violation )

( Divergence )

( No or poor convergence )

Print basic results to terminal

Power computations (sec. 3.10)

Write and issue report

Print status to terminal

no

yes

yes
no

no

no

no

yes

yes

yes

yes

no

Figure 3.1 Flowchart showing the main routines and procedures of the program nr3r
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and storing those data into arrays of like entries (for example, the array of node numbers from

the bus data) and into program variables so as to perform calculations in later stages efficiently.

The program first reads the bus data. The number of nodes N is obtained from the size nB3 of the

list of three-phase buses and the size nB1 of the list of single-phase buses, i.e. N = 3nB3 +nB1.

The arrays used to store the bus data are then initialized based on N, and are filled according

to the order in which the buses appear in the input file, beginning with the elements of B3,

followed by the ones of B1. In the former case, the program duplicates the provided bus data,

corresponding to the a phases, to also account for the phases b and c. Exceptionally the voltage

phases at the b and c nodes are shifted respectively by −120◦ and +120◦ with respect to the

provided phase a value, and the node numbers are generated by adding − j and + j to their

associated bus number. The procedure results in several node based arrays, the coordinates of

which are referred to as the node indices. It is worth emphasizing that such node indices differ

from the node numbers, which can be fetched by means of node indices, but which are derived

directly from the information provided by the program user. Taking the circuit of fig. 3.2 as an

example, where bus #5 is a phase a single-phase node, the array of node numbers (node_no)

annotated by the node indices reads as follows:

node_no = [1, 1−1 j, 1+1 j, 2, 2−1 j, 2+1 j, 3, 3−1 j, 3+1 j, 4, 4−1 j, 4+1 j, 5]

node index: 0, 1, 2,3, 4, 5,6, 7, 8,9, 10, 11,12

Branch data are stored similarly in the following step, where every branch is associated with a

branch index (as opposed to a node index). Additionally, a tool (named ibran_ ptr) is created

to identify a branch index from a triplet composed of the branch’s primary and secondary bus

numbers, and circuit number ckt. Such tool takes the form of a dictionary, where the keys are

given by the triplets, and the values by the branch indices. If an unknown triplet is provided,

then the value −1 is returned. With ibran_ ptr, it will then be possible to retrieve the admittance

matrix of any branch associated with the provided triplet, and then to calculate the power going

into that branch.
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Figure 3.2 (a) Sample network and (b) corresponding input data

used to illustrate basic program concepts
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Due to their simplicity, zigzag earthing transformer data (contained in the list TrZg) are ex-

tracted directly into separate arrays. As in the cases of the bus and branch data, the values

corresponding to a specific zigzag earthing transformer (e.g. bus number, coil impedance) can

be fetched in those arrays by means of a dedicated index.

As to the transferred power and frequency regulation data (contained in the list reg f PT ), they

are extracted at once from the input file. Problems with regards to the arbitrariness of the num-

ber of tie branches are circumvented by requiring the tie branch data to be specified together

in a regular manner at the end of the list, and by extracting likewise data in steps of four. Fur-

thermore, since the coefficient a f and the scheduled transferred power PT-sch are specified in

three-phase puMW/Hz and puMW, their specified values are multiplied by three in the program.

In fact, the calculations of the unknowns are performed at the single-phase level.

3.3 Ybus routine

from “Read and organize the input data”

Creation of an array that maps node numbers to node indices

Calculation of the component admittance matrices Ybr and Yzg

Ybus construction

to “Preliminary process”

YYY bus routine

Figure 3.3 Steps performed within the Ybus procedure

Recall from sec. 2.3.1 that the bus admittance matrix Ybus is developed by adding the shunt

admittance values of every node, the admittance matrix elements of the branches and zigzag

earthing transformers in such a way that only elements with common node indices are added
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together. The present section aims to describe in greater details how this approach is realised.

The main steps involved in the process are shown in fig. 3.3.

For convenience, let us jump directly to the discussion of the second preliminary step, namely

the calculation of the component admittance matrices Ybr and Yzg; the creation of the map-

ping array from node numbers to node indices will be discussed afterwards. Branch data are

scanned, and one by one their admittance matrices are calculated according to the formulae

of sec. 2.3. Assuming a number Nbr of branches, the results are stored in an array of dimen-

sion Nbr × 36 (denoted by bran_ ymat), where each row corresponds to a branch, and the 36

columns contain the elements of Ybr taken in the row-major order (note that single-phase Ybr

elements only fill the first four columns).

If zigzag earthing transformers are present in the network, their admittance matrix elements are

stored similarly in a Nzg × 9 array (denoted by trzg_ ymat), where Nzg represents the number

of zigzag earthing transformers, and the 9 columns contain the elements of the matrix (2.98)

taken in the row-major order.

In power networks, only a small subset of all branches connect to any given bus. As a con-

sequence, bus admittance matrices are generally filled with zeros.1 In order to save memory

space and increase calculation speed, Ybus is created in the sparse matrix form. This is done

most efficiently by means of three arrays containing respectively row indices, column indices,

and the corresponding values to be added in the matrix. If several values are given identical

row and column entries, then they are summed by default. In compact form, if I and J are the

arrays of row and column indices, and M is the sparse matrix to be created, then the array of

values D satisfies MI(i)J(i) =∑{k|I(k)=I(i),J(k)=J(i)}D(k). The objective is thus to list all values to

be entered in Ybus in an array D, and to carefully store their respective row and column numbers

in the arrays I and J.

1 Refer to p. 97 of Wood and Wollenberg (1996), among other sources, for a brief description of the

rules to follow to construct the network Y matrix.
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Decoupled shunt admittance elements are readily available from the bus data, and are stored

in an array during the read process of the program. Such array can be used easily to form

the part Dsh of the overall array of values D used to construct Ybus. Because the decoupled

shunt components each connect between a node and the ground, their admittance values add

to the diagonal of Ybus. In addition, since those values are specified in the bus data, their array

is ordered in agreement with the bus admittance matrix by construction. As a result, the row

and column values associated with Dsh are given by Ish = Jsh = [0,1,2, . . . ,N − 1], where N

represents the total number of nodes of the network.

Branch admittance values are stored in the two-dimensional array bran_ymat, which can be

ravelled into a one-dimensional array D′ in the row-major order. The corresponding arrays of

row and column coordinates I′ and J′ can be created by examining the index pattern that results

from enumerating the elements of the Ybr matrices in the row-major order. Since Ybus is defined

in terms of node indices, the primary and secondary node numbers specified in all branch data

need to be converted into node indices. This is done by devising a two-dimensional mapping

array such that for any node number (or array of node numbers) x+ jy, the corresponding

node index can be retrieved in row x and column y+ 1 of the array.2 In the program, such

array is referred to as map_nn2i. In the case of three-phase branches, the resulting primary and

secondary node indices correspond by construction to phase a nodes, and their phase b and c

counterparts are identified easily based on the fact that they follow each other in the bus data.

In other words, if ia represents the array of node indices (phase a) obtained from the primary

bus numbers of all three-phase branches, then ib = ia + 1 and ic = ia + 2 contain respectively

the phase b and phase c primary node indices of those branches. Moreover, the same reasoning

applies to the arrays of secondary node indices, denoted by ja, jb = ja +1, and jc = ja +2.

Focusing on the admittance matrix Y k
br of an arbitrary three-phase branch indexed by k, for

which the primary and secondary node indices are known from the specified bus numbers,

2 In reality, the mapping array is constructed in such a way that the node index (or array of node

indices) in question is retrieved at position (x− xmin,y+ 1), where xmin is the smallest node number

of the network, since the smallest specified node number may be large, as it is arbitrarily entered by

the user, and memory space should be spared.
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the enumeration of the matrix elements in the row-major order is described by the following

ordered node index coordinates (the Ybus coordinates):

Ik = [ia[k], . . . , ia[k], ib[k], . . . , ib[k], ic[k], . . . , ic[k], ja[k], . . . , ja[k], jb[k], . . . , jb[k], jc[k], . . . , jc[k]]

Jk = [ia[k], ib[k], ic[k], ja[k], jb[k], jc[k], . . . , ia[k], ib[k], ic[k], ja[k], jb[k], jc[k]]

where each distinct element in Ik, and the series of indices ia[k], ib[k], ic[k], ja[k], jb[k], jc[k] in

Jk have sixfold frequencies. On this basis, the I and J indices of all branches can be laid out in

one go, thus allowing for high computation speed.

In fact, given a network of n three-phase branches, the node indices can be arranged in the

following two-dimensional array:

i j3φ =

[[ ia[1], ia[2], . . . ia[n] ],

[ ib[1], ib[2], . . . ib[n] ],

[ ic[1], ic[2], . . . ic[n] ],

[ ja[1], ja[2], . . . ja[n] ],

[ jb[1], jb[2], . . . jb[n] ],

[ jc[1], jc[2], . . . jc[n] ]]

(3.1)

Then, the array of row indices can be constructed directly by performing the Kronecker product

of i j3φ ravelled in the column-major order and the unit array of size six. Symbolically, this

translates into

I3φ = [ia[1], ib[1], . . . , jc[1], ia[2], ib[2], . . . , jc[2], . . . , ia[n], ib[n] . . . , jc[n]]⊗ [1,1,1,1,1,1]

Likewise, the array of column indices J3φ can be constructed by performing the Kronecker

product of the unit array of dimension 6×1 and i j3φ , and by ravelling the resulting array in the

column-major order.
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The above method can also be applied to the simpler case of the single phase branches, thus

yielding D1φ , I1φ and J1φ . The row and column indices are determined based on the array i j1φ

of the primary and secondary node indices that correspond to the node numbers specified for

the single phase branches, i.e.

i j1φ =
[[ ip[1], ip[2], . . . ip[n′] ],

[ jp[1], jp[2], . . . jp[n′] ]]
(3.2)

where n′ is the number of single phase branches, and p is a dummy index representing the

different phases to which the branches connect.

The case of the zigzag earthing transformers is handled in similar fashion, with the difference

that only one three phase bus is specified per transformer. Thus Dzg is obtained by ravelling the

two-dimensional array trzg_ymat in the row-major order, and Izg and Jzg are inferred as above

based on the array

i jzg =

[[ ia[1], ia[2], . . . ia[Nzg] ],

[ ib[1], ib[2], . . . ib[Nzg] ],

[ ic[1], ic[2], . . . ic[Nzg] ]]

(3.3)

At this point, all the necessary information is available to build the Ybus sparse matrix (of

dimension N ×N). The required arrays of matrix values D, of row indices I, and of column

indices J, can be generated through the concatenations of the previously obtained arrays:

D = [Dsh,D3φ ,D1φ ,Dzg]

I = [Ish, I3φ , I1φ , Izg]

J = [Jsh,J3φ ,J1φ ,Jzg]

Note that no explicit for loop is necessary, which greatly improves the calculation speed.
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from “Ybus procedure”

Classification of node indices into arrays

Creation of arrays that map node indices to Jacobian matrix

coordinates

Determination of the coordinates of the non-zero Ybus elements

Initialization of variables

i. Creation of boolean filter arrays to extract non-zero Ybus element

coordinates based on the node classification, and ii. use of those arrays

to evaluate the number of terms necessary to construct the Jacobian

matrix

Regulation model?

i. Creation of an additional boolean filter array to extract non-zero Ybus
element coordinates associated with the reference bus

ii. Determination of the number of additional terms necessary to

construct the Jacobian matrix

ap �= 0

Construction of an array containing the upper half Ybr elements of all

tie branches, to calculate the power entering the tie branche(s)

i. Additional boolean filter arrays to sort the primary and secondary tie

branch nodes based on their classification, and ii. use of those arrays to

evaluate the number of additional terms necessary to construct the

Jacobian matrix

to “Calculation of mismatches ε(x)”

Init. and preliminary routine

yes

no

yes

no

Figure 3.4 Main steps that enter the initialization and preliminary routine
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3.4 Initialization and other preliminary steps

The initialization and preliminary routine mainly consists in constructing various arrays needed

to perform the calculations of the subsequent routines efficiently. Its main steps are given by

the flow chart of fig. 3.4, and are commented in the remainder of the section. Note that the

activation of the tap changing functionality only effects the initialization of variables.

3.4.1 Classification of node indices

Node indices are classified into distinct arrays based on the categories defined in sec. 2.4

(e.g. PV3a, P1, PQ) and sec. 2.5 (e.g. Gen3a, P1, Ld). Doing so allows to construct the

vector of mismatches, in particular to perform the adjustments of table 2.1 and 2.3. Morever, it

permits to identify which Jacobian matrix expression applies to a given pair of mismatch and

unknown (each defined in terms of such node indices). Obviously, at the end of every iteration,

when the unknowns have been calculated, the identification of a node is also necessary to per-

form the correct updates, e.g. in the classic model, a PV node requires a voltage phase update

only, whereas a PQ node demands an update of both its voltage modulus and phase. In the

case of the circuit of fig. 3.2 (treated in the classic model), for example, the following arrays of

node indices are constructed:

nodei_sw = [0,1,2]

nodei_ pv = [6,7,8,12]

nodei_ pv3 = [6,7,8]

nodei_ p1 = [12,3,4,5,9,10,11]

nodei_ pq = [3,4,5,9,10,11]

They correspond respectively to the swing, all PV, PV3, P1, and PQ nodes. In particular, the

last three are necessary to construct the Jacobian matrix.
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3.4.2 Mapping arrays from node indices to Jacobian matrix coordinates

Assuming that the Jacobian matrix derivatives have been computed (based on the node index

classification), the results have to be inserted in the Jacobian matrix. In order to do so, one

needs to link the node indices previously classified into arrays with their associated positions

in the vector of mismatches ε and in the vector of unknowns x, i.e. the Jacobian matrix coordi-

nates. By construction, knowing where a node index maps into x is sufficient to also deduce its

associated position in ε . For each set of classified node indices, a mapping tool is created in the

form of an array of size N containing the desired coordinates in x at the positions defined by

those indices, while assigning a value of −1 to all the other entries.3 To have a more concrete

understanding of the method, consider once more the case of fig. 3.2. The array that maps the

P1 node indices into the positions of their corresponding θ variables in x is

jacoi_ p1 = [−1,−1,−1,2,3,4,−1,−1,−1,5,6,7,1]

Thus, as an example, the position in x of the phase at the node indexed by 4 (PQ node) can be

fetched as follows: jacoi_ p1[4] = 3. Similarly, the array that maps the PQ node indices into

their corresponding |V | variables is given by

jacoi_q = [−1,−1,−1,8,9,10,−1,−1,−1,11,12,13,−1]

The case of the PV3 nodes is slightly different, in that all three node indices of a given PV3 bus

are related to one coordinate in x, that is the position of the associated phase a voltage phase.

Thus, to complete the present example:

jacoi_ pv3a = [−1,−1,−1,−1,−1,−1, 0,−1,−1,−1,−1,−1,−1]

jacoi_ pv3b = [−1,−1,−1,−1,−1,−1,−1, 0,−1,−1,−1,−1,−1]

jacoi_ pv3c = [−1,−1,−1,−1,−1,−1,−1,−1, 0,−1,−1,−1,−1]

3 In the present context, a mapping essentially implies a correspondence relation, not necessarily one-

to-one, defined by means of an array, between two sets of numbers. As such it differs from its strict

mathematical meaning.
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jacoi_ pv3 = [−1,−1,−1,−1,−1,−1, 0, 0, 0,−1,−1,−1,−1]

The construction of the Jacobian matrix in the regulation model follows more or less the same

logic, except that special care must be taken to offset by one unit the coordinates of the stan-

dard mismatch elements, due to the insertion of the reference bus mismatch ε̃P(Re f ) in the first

position of ε . The row associated with mismatch εp f is also easily identifiable as it is the last

element of ε . Analogously, the columns associated with Pr and f are easily identifiable as those

elements are the penultimate and last ones of x.

3.4.3 Coordinates of the non-zero Ybus elements

Considering the sparse nature of the bus admittance matrix, an important gain in calculation

speed can be reached by restricting the evaluation of the Jacobian matrix expressions only to

those terms that contain non-zero Ybus elements. Consequently the row and column indices

of such non-zero elements are preliminarily extracted in two arrays, referred to as nzi and nzj

respectively.

3.4.4 Initialization of variables

Without going into excessive details, the array of complex voltages at all nodes (node_v) is

constructed from the initial node voltage moduli and phases, and the loop counter i (shown in

algorithm 2.1) is set to zero. In addition, provided that the tap changing function is activated,

various variables used to monitor the tap changing activity are initialized.

3.4.5 Creation of boolean filter arrays based on the node classification

As shown in the tables of sec. 2.4.5 and 2.5.5, the computation of the elements of the Jaco-

bian matrix requires knowning the category of the node associated with the mismatch being

differentiated as well as the category of the node associated with the differentiation variable.

An array that extracts all indices in nzi or nzj of a given category can be created by mapping
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all elements of any of those arrays by means of the arrays introduced in the preceding section,

and then by imposing the condition that the resulting elements be greater than −1. The result

is a boolean array that can be applied to the original array nzi or nzj in order to keep only the

items falling in the desired category.

As an example, consider the array of row indices of all non-zero Ybus elements for the network

shown in fig. 3.2:

nzi = [0,0,1,1,2,2,3,3,3,4,4,4,5,5,5,6,6,6,6,7,7,7,8,8,8,9,9,10,10,11,11,12,12]

The boolean array used to extract all P1 nodes is created as follows:

f_ p1 = jacoi_ p1[nzi]>−1

= [F,F,F,F,F,F,T,T,T,T,T,T,T,T,T,F,F,F,F,F,F,F,F,F,F,T,T,T,T,T,T,T,T ]

where ‘F’ stands for false, and ‘T’ for true. Finally, by applying f_ p1 back on nzi, one can

verify that only the nzi elements of the type P1 are kept:

nzi[f_ p1] = [3,3,3,4,4,4,5,5,5,9,9,10,10,11,11,12,12]

As a reference, a convention is used to name the boolean filter arrays: the part preceding the

underscore indicates whether the filter is defined based on nzi — in which case f is used — or

on nzj — in which case h is used; the part following the underscore indicates which set of node

indices is kept.

The boolean filter arrays also provide the number of instances where nodes of two specific

categories are linked through the Ybus elements. In fact, the element-wise multiplication of a

boolean array applied to nzi with another applied to nzj yields a third boolean array with true

entries only at those positions that satisfy both node criteria. Such true entries can then be easily

counted. For example, in order to count the number of cases where a PV3 node is connected
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to a P1 node, the boolean array that identifies the PV3 entries of nzi is multiplied (element-

wise) by the one that identifies the P1 entries of nzj, and the elements of the resulting array are

summed (knowing that only the true results contribute a unit), i.e. (f_ pv3∗h_ p1).sum(). The

ability to count the number of cases associated with each combination of node index categories

(defined by the Jacobian matrix formulae) is useful to initialize arrays necessary to build the

Jacobian matrix in sparse form.

In the power and frequency regulation model framework, in addition to the above results, the

boolean filter array approach is used to identify the reference node indices in nzi, and the

node indices of the other categories to which they are linked. With regard to the number of

elements resulting from the differentiation of the mismatches with respect to f and Pr, they can

be deduced directly from the known numbers of Ref, Gen3, P1, and Ld nodes in the network.

Given that ap is non-zero, a few preliminary tasks need to be done to calculate εp f and its

derivatives. First, the branch index of every tie branch is obtained from ibran_ ptr and the

triplet composed of the primary bus number, the secondary bus number, and the ckt parameter,

which then allows to retrieve the corresponding Ybr elements from bran_ymat, and to store

them into array ytbr (dimension Ntb × 36). Yet as seen in (2.113), only the upper half tie

branch Ybr matrix elements are necessary to calculate the transferred power. Thus, a useful

array containing only those elements is created from ytbr:

ytbr1 = ytbr[:,0:18].reshape(3∗nT B,6) (3.4)

where the colon selects all rows of ytbr, and 0:18 the first 18 columns, i.e. the upper half Ybr el-

ements. The resulting array is also reshaped into a 3Ntb ×6 array, by respecting the row-major

order of its elements. Second, the primary and secondary node indices of the tie branche(s)

(nodei_tb and nodej_tb) are obtained from the provided primary and secondary bus numbers

and the mapping array map_nn2i. Lastly, the boolean array technique discussed above is ap-

plied to categorize those tie branch nodes, so as to perform the derivatives of table 2.8. Note
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that the program accepts only three-phase power transfers, or equivalently power transferred

between three-phase buses only.

3.5 Computation of mismatches

3.5.1 Mismatches in the classic model

Key arrays containing among others the shunt admittance values, the load parameters, and

the power generation parameters at every node were previously created (sec. 3.2). Here they

can be utilized directly to compute an N-dimensional array eps_n containing the balance in

complex power SY i + SLi − SGi at every node i, and from which the array of mismatches can

be constructed.

Starting with the power into Ybus (SY ), it is computed at once from the array of complex voltages

(node_v) and the bus admittance matrix, based on formula (2.3).

Based on equations (2.99) and (2.100), the arrays of the active load and the reactive load

(SL = PL + jQL) are then computed from the element-wise absolute value of node_v and their

respective node-based arrays of load parameters (see sec. 3.2).

The treatment of the generated power depends on the node type. In particular, the swing bus

definition demands that generated power at every swing node be set equal to the sum of the

Ybus power and the load at those nodes (see table 2.1). Using the array of swing node indices

nodei_sw, the swing bus adjustments are done as follows:

bus_SG[nodei_sw,0] = eps_n[nodei_sw].real

bus_SG[nodei_sw,1] = eps_n[nodei_sw].imag

where bus_SG is the N ×2 array containing the generated active power in its first column, and

the generated reactive power in its second column. It is one of the node based arrays created

in routine read and organize the input data. Similarly, the PV bus definition demands that
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the generated reactive power at every PV node be set equal to the sum of the reactive Ybus

power and the reactive load at those nodes. Using the array of PV node indices nodei_ pv, the

adjustments are done as follows:

bus_SG[nodei_ pv,1] = eps_n[nodei_ pv].imag

Once the adjustments have been completed, the active and reactive parts of the generated power

(respectively the first and second columns of bus_SG) can be subtracted from the sum of the

previously obtained power arrays to obtain eps_n (with a factor of j in front of the reactive

components). Thus, eps_n is created incrementally, first containing only the SY portion, then

SY +SL, and finally SY +SL −SG.

A subset of the elements of eps_n can be selected to build the vector of mismatches (2.106).

The PV3 bus mismatches are obtained by taking the real part of the sum of the complex mis-

matches at the three nodes of the buses, that is

eps_ pv3 = (eps_n[nodei_ pva]+ eps_n[nodei_ pvb]+ eps_n[nodei_ pvc]).real

where the arrays of PV3 node indices were used to extract the mismatches at the phases a,

b, and c of the PV3 buses. The other elements of the vector of mismatches are also fetched

from eps_n by means of their corresponding arrays of node indices (the real part is taken to

select the active mismatches, and the imaginary part to select the reactive mismatches). Their

concatenation with eps_ pv3 then yields the vector of mismatches:

eps = concatenate([eps_ pv3, eps_n[nodei_ p1].real, eps_n[nodei_ pq].imag])

Node based arrays thus allow to compute the vector of mismatches simply, without the use of

loops or other expensive computing methods.
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3.5.2 Mismatches in the power and frequency regulation model

The part of the vector of mismatches involved with the Gen3 buses, the P1 nodes, and the Ld

nodes is determined as in the classic case, yet with additional node based arrays to account

for the specifics of the power and frequency regulation model, i.e. different load and power

generation models. The main differences in the procedure lie in the determination of ε̃P(Re f )

and εp f .

The reference bus possesses essentially the same characteristics as a generator bus. Therefore,

as far as the mismatches are concerned, its treatment is the same as the one of a Gen3 bus (or

Gen1 bus if it is single-phase). As a consequence, only the adjustment in reactive power is

made at the reference nodes:

bus_SG[nodei_sw,1] = eps_n[nodei_sw].imag

For practical purposes, common naming is used for arrays that parallel ones in the classic

model, e.g. nodei_sw is used here to store the node indices of the reference bus. Once the array

eps_n has been calculated, the active power mismatch at the reference bus is obtained simply

through a summation function acting on the reference bus element(s):

eps_re f = eps_n[nodei_sw].sum().real

which is equally applicable whether the reference bus is three-phase or single-phase.

The evaluation of εp f is done in a few steps, by carefully arranging the arrays representing the

elements of PT in (2.113), and taking advantage of the distributive and element-wise multi-

plicative properties of array objects (in the NumPy package). First, the array of voltages at the

primary tie branch nodes, involved in the left-multiplication of (2.113), is set up as a 3Ntb ×1

array:

nu1 = (brw∗node_v[nodei_tb]).reshape(3∗nT B,1) (3.5)
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The array brw is introduced only to give additional flexibility to the program.4 For example, it

allows to define the transferred power as measured on one side (with the corresponding nodes

specified as primary, each with a brw value of +1) or the other (with the corresponding nodes

specified as secondary, each with a brw value of -1) of a tie branch. It is built once as a 3Ntb-

dimensional array, by repeating three times each w value specified per branch.

Second, the right multiplication by the voltages at the primary and secondary tie branch nodes

is effected by using an array consisting of a stack of stacks of three identical arrays of the volt-

ages at the nodes of every tie branch. Given tbr_ij, the array of tie branch node indices where

each row is associated with a distinct tie branch, the first three columns with the primary node

indices, and the last three columns with the secondary indices, the voltage array is obtained as

follows:

nu2 = tile(node_v[tbr_i j],(1,3)).reshape(3∗nT B,6) (3.6)

where the tile function repeats an array according to a specified two-dimensional pattern, and

the reshape operation is done so as to match the array with ytbr1 (array of admittance matrix

elements constructed in the preliminary routine of sec. 3.4).

At this point, all necessary elements to compute εp f are available. The active power transferred

can be computed from the arrays (3.4)–(3.6) as follows:

PT = sum((nu1∗ con j(ytbr1∗nu2)).real)

where the summation function sums all elements of its input array, and conj performs the

complex conjugate of its argument. The quantity εp f thus follows from

eps_ p f = ap∗ (PT −PT sch)+a f ∗ ( f − f sch)

4 Refer to sec. 2.4 of the appendix III for additional information, especially regarding how the reference

direction indices should be specified in the input file.



94

where the frequency f is calculated by Newton’s method (or in the case of the first iteration, it is

assigned an initial value), and the other parameters were stored in the initial routine (sec. 3.2).

As in the classic model framework, the vector of mismatches is obtained by concatenation:5

eps = concatenate([eps_re f , eps_ pv3, eps_n[nodei_ p1].real,

eps_n[nodei_ pq].imag, eps_ p f ])

As already mentioned, for simplicity the program uses common array naming with the classic

model. Nevertheless, due to the similarities between the bus types in both models, it should

be clear that the array of Gen3 mismatches is given by eps_ pv3, and that of the reactive Ld

mismatches is given by eps_n[nodei_ pq].imag.

3.6 Construction of the Jacobian matrix

3.6.1 Insertion of values in the Jacobian matrix

The Jacobian matrix is created by using the same tool as for the bus admittance matrix, that

is the class csr_matrix (from the package SciPy), which builds a sparse matrix based on three

input arrays, namely one (D) containing the results to be added in the matrix, and the others

(M and N) containing respectively their associated row and column indices. As mentioned in

sec. 3.3, values with the same row and column indices are added in the matrix by default. Thus,

the general method to insert elements in the Jacobian matrix consists of a few steps:

a. Identify the node indices i associated with the differentiated mismatches εi by means of

the relevant filter array, e.g. nzi[ f iltre], convert them into their respective row coordinates

m of the Jacobian matrix by using one of the mapping arrays built in the preliminary

routine (sec. 3.4.2), and insert them in the array M;

5 In practice, the first and last elements, which are scalars, must be transformed into one-dimensional

arrays before being concatenated, i.e. array([eps_re f ]) and array([eps_ p f ]).
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b. Identify the node indices j associated with the differentiation variables x j by means of the

filter array used in the previous step, e.g. nz j[ f iltre], convert them into their respective

column coordinates n of the Jacobian matrix by using one of the mapping arrays built in

the preliminary routine (sec. 3.4.2), and insert them in the array N;

c. Insert the associated results, i.e. constituting ∂εm
∂xn

, in the array D.

Prior to the application of the method, the arrays M, N, and D have been initialized by means

of the boolean filter arrays, as pointed out in sec. 3.4.5. A simple subroutine (referred to as

store_results) is used in order to systematically insert values into those arrays.

In the power and frequency regulation model, special attention must be paid to take into account

the additional mismatch contributed by the reference node, which results in shifting the other

mismatches by one unit with respect to the classic model’s Jacobian matrix.

3.6.2 Classic model

The objective is to determine the various expressions of table 2.2 in a way that minimizes

computing time. In particular, loops should be avoided, as they prove to be quite resource

intensive.

The Jacobian matrix expressions generally consist of a linear combination of trigonometric

functions, the coefficients of which contain bus admittance matrix elements. Due to the sparse

nature of that matrix, the extent of the calculations can be significantly reduced by focusing

only on the Ybus elements that are non-zero. This is done by calculating once the arrays of all

basic quantities that form the Jacobian matrix terms, based on the previously determined arrays

nzi and nzj (containing respectively the row and column indices of all non-zero admittance

matrix elements). The calculation of a set of matrix elements can then be carried out merely

by picking the needed elements from those arrays. In more concrete terms, the conductances

and susceptances of the non-zero Ybus elements are first organized in two arrays according to
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nzi and nzj:

nzg = yb[nzi,nz j].A1.real (3.7)

nzb = yb[nzi,nz j].A1.imag (3.8)

The A1 functionality simply returns the matrix elements in a flattened array. Next, the one-

time calculations of the basic quantities used to obtain the Jacobian matrix terms are done as

follows:

V I = absolute(node_v[nzi]) (3.9)

V J = absolute(node_v[nz j]) (3.10)

T hIJ = angle(node_v[nzi])−angle(node_v[nz j]) (3.11)

cT hIJ = cos(T hIJ) (3.12)

sT hIJ = sin(T hIJ) (3.13)

where each operator on the right-hand side acts on an element-wise basis.

A subroutine select_dat is created in order to select elements of those arrays. The selection

is realized by means of a combined filter array, given by the element-wise multiplication of

two of the boolean filter arrays prepared in the preliminary routine (sec. 3.4.5). Which boolean

arrays are to be used depends on the case under consideration (see table 2.2). For example,

let us consider the case of ∂εPi
∂θ j

, where i is a P1 node index, and j a PV3a node index. The

array that selects all combinations of P1 and PV3 node indices with corresponding non-zero

Ybus elements is given by

f iltre = f_ p1∗h_ pv3

With filtre it is then straightforward to pick the quantities needed from (3.7)–(3.10) and (3.12)–

(3.13) to calculate the Jacobian matrix elements of interest. For example, all relevant |Vi|
values are obtained as vi = V I[ f iltre]. The subroutine select_dat uses this principle to return
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all required Gi j, Bi j, |Vi|, |Vj|, cosθi j, and sinθi j basic quantities, given the complete arrays

(3.7)–(3.10), (3.12)–(3.13), and a boolean array of the type filtre as its input.

Once the basic quantities are available, there remains to multiply them as required by table 2.2.

In each case, the result is an array of elementary Jacobian matrix terms. Depending on the form

of the Jacobian matrix expression under consideration, subsets of such elementary terms may

or may not need to be added together. The case of ∂εPi
∂θ j

, where i and j label different P1 nodes,

for example, does not require a summation, such that the corresponding elementary terms can

be directly inserted in the Jacobian matrix. If i and j label the same P1 nodes, however, a

summation is required.

One can identify two different types of summations: the summations over all node indices k

when the mismatch and the differentiation variable have the same node index; the summations

resulting from the three-phase nature of the PV3 bus mismatches, and the fact that such buses

are each associated with a single voltage phase unknown.

The latter case can be treated in a fairly simple way, owing to the nature of the csr sparse matrix

function. In fact, in the process of inserting results into the arrays D, M, and N, a summation

over the three phases of a PV3 bus can be realized by mapping all three node indices to the

same Jacobian matrix coordinate, since the csr_matrix tool sums values (in D) with identical

coordinates (in M and N). This is exactly what the array jacoi_ pv3 does.

The former case is a little more elaborate due to the arbitrariness of network topologies. In

fact, those summations involve an arbitrary number of non-zero terms, depending on how many

corresponding Ybus elements are non-zero. Nevertheless, an examination of the array nzi proves

to be quite informative, allowing for a systematic solution of the problem. Note that nzi lists

all node indices, each having a specific number of occurrences (also referred to as frequency

here). The frequencies of all elements are obtained and stored in an array ifreq by means of a

function called bincount (from the NumPy package), such that the number of occurrences of

the index i in nzi is given by i f req[i]. When constructing a set of Jacobian matrix elements

(associated with a specific category of nodes), an array of elementary terms is obtained, and
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named eldat (for elementary data). Such array is also associated with repeated node indices, the

frequencies of which can be obtained from ifreq by looking at the positions described by those

indices; that sub-array will be referred to as ifreqx. For example, the frequencies of all PQ node

indices are obtained from i f reqx = i f req[nodei_ pq]. The frequencies indicate which subsets

of the array of elementary terms should be added together. In order to be computationally

efficient, the summation results sought will be derived from the array of cumulative sums of

eldat (computed with the function cumsum, from the NumPy package) through the application

of the following procedure:

a. Compute the array of cumulative sums of eldat, i.e. eld_cs = cumsum(eldat);

b. Compute the array of cumulative sums of ifreqx subtracted by 1, i.e.

p1 = cumsum(i f reqx)−1

which corresponds to the end positions of every subset of eldat to be summed together

(defined by a repeated node index i in nzi);

c. Create the array of the begin positions of every subset of eldat to be summed together, by

shifting p1 by one position, i.e.

p0 = concatenate((array([0]), p1[: −1]))

where [: −1] points to all elements except the last one;

d. Derive the summations of elementary terms to be inserted in the Jacobian matrix from

eld_cs using p0 and p1, and store them in an array depsdx, i.e.

depsdx = eld_cs[p1]− eld_cs[p0]

depsdx[0] = eld_cs[p1[0]]
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In the last step, for every set of summed eldat elements, the subtration is performed to nullify

the contribution to the cumulative sum coming from previous elements. The second assignment

is needed since there are no prior elements to the first subset of summed eldat elements. Since

the above steps are applied repeatedly to compute the various Jacobian matrix elements, they

are integrated in the subroutine sorted_sum (taking eldat and ifreqx as input, and returning

depsdx as its output).

Additional remarks need to be made regarding the computation of the extra terms present in the

derivative expressions with i = j. The filter arrays used to extract elements of the same node

category but with i �= j (i.e. f _ pv3∗h_pv3, f _p1∗h_p1, f _ pq∗h_p1) do not in fact exclude

the cases i = j. Nevertheless, this turns out to be favourable, because such cases actually

correspond to the extra terms sought in the derivative expressions with i = j. The mapping

of their node indices to Jacobian matrix coordinates then naturally assigns the results to the

correct entries of the Jacobian matrix, which are then added to their trigonometric complement

by the csr matrix building tool.

Finally, the terms originating from the load expressions in the voltage derivatives can be com-

puted by applying the array of PQ node indices nodei_PQ to the node based arrays built in the

initial routine that reads the input data. Regarding the array of voltages |Vi|, it is obtained from

VI as follows:

vi =V I[p2[nodei_ pq]]

where p2 = cumsum(i f req)− i f req is the array that points to the first elements of all subsets

of nzi defined by a distinct index value (recall that array elements are labelled from 0).

To illustrate the methodology, fig. 3.5 shows the function that yields all derivatives of the PV3

bus mismatches. The parameter k is used to successively enter elements in the arrays M, N,

and D. The parameters nP1 and nPQ give respectively the number of P1 and PQ nodes.6

6 In practice, some of the arrays are used globally, and are attached to a class q. In such case, their

name is preceded by the prefix ‘q.’, which for simplicity is omitted here.
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Figure 3.5 Function that computes all ε̃P(PV3) derivatives (in the classic model)
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3.6.3 Power and frequency regulation model

As far as the mismatch derivatives with respect to voltage phases and moduli are concerned,

a comparison of table 2.2 and tables 2.5–2.7 shows that the regulation model has most of its

Jacobian matrix expressions in common with the classic model. Therefore, the techniques pre-

sented in the previous section can also be applied to construct the Jacobian matrix in the current

framework. One exception relates to ∂εPi
∂ |Vi| and

∂εQi
∂ |Vi| , which exhibit slightly different load related

terms. Nevertheless, the computation approach is unchanged, where the factors KPi and KQi

are both available as node based arrays. Another exception is the presence of the derivatives of

the reference bus mismatch. Their treatment presents no particular hurdle, however, since the

reference bus mismatch has the same characteristics has a Gen3 bus mismatch.

The derivatives with respect to Pr are directly obtainable from the node based array bus_-

beta, by applying the appropriate array of classified node indices, i.e. nodei_sw, nodei_ pva,

or nodei_ pv1 (containing respectively the Ref, the Gen3 phase-a, and the Gen1 node indices).

For technical reasons, in the case of the Gen3 buses the factor of −3 is added directly in the

matrix terms, whereas in the case of the reference bus it is derived from the number of elements

in nodei_sw.

The mismatch derivatives with respect to f share the same structure, constructed in terms

of node based arrays. The expressions can thus be computed at once at the beginning of the

Jacobian matrix procedure, together with the arrays of basic quantities (3.7)–(3.13). Depending

on the derivatives under consideration, the values sought may be selected from the resulting

array by means of the appropriate array of node indices (e.g. nodei_ pv1). Regarding the array

of voltages |Vi| at all nodes, it is obtained from VI as follows:

vi =V I[p2]

where as seen before p2 = cumsum(i f req)− i f req is the array that points to the first elements

of all subsets of nzi defined by a distinct index value.
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The main difficulty lies in computing the last row of the Jacobian matrix, namely the derivatives

of εp f (assuming that ap �= 0). Fortunately, part of the methodology developed to compute the

transferred power can be reused. In particular, the 3Ntb ×6 dimensional array

vyv = nu1∗ con j(ytbr1∗nu2)

composed of elements of the form Vi(Yt)
∗
ikV

∗
k plays a central role in the computations (see

sec. 3.5.2 for details on its construction). In fact, considering that the tie branches are generally

not numerous, the derivatives of the power transferred are implemented in their complex forms,

structured as shown in (2.121), (2.123), (2.125), and (2.127).

Starting with the voltage phase derivatives, the plan is to construct two arrays containing all

basic results
∂εp f
∂θi

, where i is a primary tie branch node in a first instance, and a secondary

tie branch node in a second instance. Once those arrays are available, desired values can be

selected from them, and inserted into the Jacobian matrix by means of boolean arrays that

retain tie branch nodes of a specific category, i.e. Gen3, P1, or Ld. In essence, the approach is

very similar to what is done to obtain the other phase derivatives of the Jacobian.

In order to obtain the derivatives of the form (2.121), reorganise vyv so as to line up horizontally

all blocks associated with a distinct tie branch:

tau1 = concatenate(vsplit(vyv[:,0:3],nT B),axis = 1) (3.14)

where [:,0:3] picks the first three columns, and vsplit breaks vyv along the vertical axis into Ntb

blocks. The axis along which the arrays are joined is determined through the axis parameter:

‘0’ for vertical concatenation, and ‘1’ for horizontal concatenation. The array of the
∂εp f
∂θi

results

(i a primary tie branch node) is thus obtained as follows:

dPdthi = ap∗ (sum(tau1,axis = 0)− sum(vyv,axis = 1)).imag (3.15)
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In a way similar to the concatenation tool, summations on an array can be made along the

‘0’ axis (vertical) or the ‘1’ axis (horizontal).

Next, construct the counterpart of (3.14), which keeps the columns of vyv associated with the

secondary tie branch nodes:

tau2 = concatenate(vsplit(vyv[:,3:],nT B),axis = 1) (3.16)

As suggested by (2.123), summing the elements along the columns yields the array of
∂εp f
∂θi

results, where i is a secondary tie branch node:7

dPdth j = ap∗ sum(tau2,axis = 0).imag (3.17)

In order to illustrate the process of inserting results into the Jacobian matrix, let us consider the

∂εp f
∂θi

elements, where i denotes primary tie branch nodes falling into the category P1. The row

index m (equal to the number of θ and |V | variables +1) is easily determined as the derivatives

of εp f lie in the last row of the matrix. As to the corresponding column numbers, they can

be obtained by converting the primary tie branch node indices of the type P1 by means of the

appropriate mapping array:

n = jacoi_p1[nodei_tb[ f_tbp1]]

The boolean array f_tbp1 is used to extract the P1 node indices from the array of all primary tie

branch node indices nodei_tb. It also serves to get the corresponding derivatives out of dPdthi:

dPdthi[ f_tbp1]

which can directly be input into the Jacobian matrix through the function store_results. As a

remark, the process is very similar in the case of the Gen3 tie branch nodes, except that the

7 In the program, j in dPdthj is used to indicate a secondary tie branch node index.
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contributions from all three phases (in dPdthi) need to be added together due to the chain rule.

Yet, the Jacobian column indices n are obtained by converting only the associated indices of

phase a.

Continuing with the voltage modulus derivatives
∂εp f
∂ |Vi| , the results can be derived from vyv as

well, though voltage moduli must be cancelled out to account for the differentiation process.

Assuming that i labels primary tie branch nodes of the type Ld, as shown in (2.125) the product

rule requires the cancellation of the left-hand side voltage moduli in one summand, and of the

right-hand side voltage moduli in the other summand. The left-hand side cancellation can be

reflected in a fairly simple way as follows:

lyv = (1/absolute(node_v[nodei_tb])).reshape(3∗nT B,1)∗ vyv

where the elements of the left-hand side array are broadcasted across the columns of vyv. The

right-hand side cancellation is operated by means of the modulus version of (3.6), that is

vyl = vyv/tile(absolute(node_v[tbr_i j]),(1,3)).reshape(3∗nT B,6)

where the division is performed on an element-wise basis (like the operator absolute). In a

way that parallels the use of (3.14) and (3.16) to compute the phase derivatives, the following

remodelled sub-arrays of vyl are also necessary to obtain the voltage moduli derivatives:

tau3 = concatenate(vsplit(vyl[:,0:3],nT B),axis = 1)

tau4 = concatenate(vsplit(vyl[:,3:],nT B),axis = 1)

Referring to (2.125), given lyv and tau3, it is possible to obtain the array of
∂εp f
∂ |Vi| results, where

i is a primary tie branch node:

dPdVi = ap∗ (sum(lyv,axis = 1)+ sum(tau3,axis = 0)).real (3.18)
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Similarly, referring to (2.127), from tau4 it is possible to obtain the array of
∂εp f
∂ |Vi| results, where

i is a secondary tie branch node:

dPdVj = ap∗ sum(tau4,axis = 0).real (3.19)

The insertion of the elements of (3.18) and (3.19) into the Jacobian matrix, by making use of

boolean arrays that keep only Ld nodes out of the tie branch nodes, follows the same logic as

explained above. Therefore, such details are omitted here.

In a final step, the lower-right corner element of the Jacobian matrix, i.e. a f , can be inserted

with ease, since the dimension of the matrix is easily obtainable from the program input data.

3.7 Computation of the correction terms of the unknowns

Following Newton’s method (refer to sec. 1 of the appendix I), corrections to the unknowns in

x can be obtained by solving the sytem of linear equations:

− ε = J Δx (3.20)

where J ≡ ∇ε is the Jacobian matrix. Equivalently, the correction terms Δx follow from

Δx =−J−1 ε

The solver scipy.sparse.spsolve (from the SciPy library), which takes J and −ε as its input, is

used to solve (3.20) for Δx. It is efficient even with large sparse matrices. For example, the

computing time to solve (3.20) for a test network composed of 9000 nodes was verified to be

negligible compared to the time required to complete other steps of the program (e.g. reading

and organising the input data, construction of the Jacobian matrix).
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3.8 Variable updates

Once the array for Δx has been computed, it is used to correct its respective voltage phases and

moduli. In the regulation model, additional corrections are also made to the variables Pr and f :

adding the penultimate element of x to Pr, and the last element of x to f .

In order to respect the order of the phase variables in (2.101) or (2.110), and to locate the

corresponding voltages in node_v, the array

nodei_ p = concatenate([nodei_ pva, nodei_pv1, nodei_ pq]) (3.21)

is used. It consists in the concatenation of the ordered sets of node indices for the PV3 phase-a,

PV1, and PQ nodes (equivalently Gen3 phase-a, Gen1, and Ld nodes in the regulation model),

as those nodes each have an associated voltage phase variable. The voltage moduli are similarly

identified with the array of PQ (Ld) node indices, i.e. nodei_ pq.

Hence, the phase updates Vi = |Vi| e j(θi+Δθi), where i points to either a PV (Gen) or PQ (Ld)

node, are implemented as follows:

node_v[nodei_ p] = absolute(node_v[nodei_ p])∗
exp(1 j ∗ (angle(node_v[nodei_ p])+dx[: nT h]))

node_v[nodei_ pvb] = absolute(node_v[nodei_ pva])∗
exp(1 j ∗ (angle(node_v[nodei_ pva])−120∗ pi/180))

node_v[nodei_ pvc] = absolute(node_v[nodei_ pva])∗
exp(1 j ∗ (angle(node_v[nodei_ pva])+120∗ pi/180))

where nTh is the total number of phase variables, and dx[: nT h] is the sub-array of dx that

contains only the phase corrections. The indices of the PV3 (Gen3) phase b and c nodes are

simply shifted from the ones of the phase a nodes, that is nodei_ pvb = nodei_ pva+ 1 and

nodei_ pvc = nodei_ pva+2.
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Similarly, the moduli updates Vi = (|Vi|+Δ |Vi|)e jθi , where i points to a PQ (Ld) node, are

implemented in the following way:

node_v[nodei_ pq] = (absolute(node_v[nodei_ pq])+dx[nT h :nT hV ])∗
exp(1 j ∗angle(node_v[nodei_ pq]))

where nThV is the total number of voltage phase and moduli variables, and dx[nT h :nT hV ] is

the sub-array of dx that contains only the moduli corrections.

3.9 The tap changing procedure

from “Calculation of mismatch vector ε(x′)”

‖ε‖> tap change threshold

Tap inspection

Tap adjustment (or status indication)

to “nad j1 > 0” test

Tap changing procedure

no

yes

Figure 3.6 Subroutines that make up the tap changing procedure

As shown in fig. 3.6, the tap changing procedure consists of two sets of actions, carried out

on the condition that the elements of the mismatch vector are sufficiently small. In fact, a

maximum threshold (10−3) for the norm of the vector of mismatches is imposed so as to operate

the tap changer analysis based on a sufficiently reliable network system solution. In the tap

inspection subroutine, the voltages at the controlled buses and the statuses of the respective
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tap changers are examined, following which action codes are generated. In the tap adjustment

subroutine, actions are taken in response to the action codes.

3.9.1 Tap inspection

The objective of the tap inspection process is to examine and to report the status of each tap

changer, based on which actions can be taken in a subsequent step. The status is expressed

through an action code, constructed by combining bit-like elements, each based on a specific

criterion. The resulting combination is then converted to a number in the decimal system in a

way similar to the conversion of a binary number into a decimal number. This allows to avoid

the use of multiply imbedded if statements in the program.

The action code Cadj is defined as follows:

Cadj =

⎧⎪⎪⎨
⎪⎪⎩

0 if conditions are satisfied under the status quo

1+ψ0 20 +ψ1 21 +ψ2 22 +ψ3 23 otherwise

where each ψ coefficient is associated with a criterion. First, ψ0 expresses the relative value of

the controlled bus voltage Vc with respect to its allowed bounds:

ψ0 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−1 if Vmin ≤Vc ≤Vmax

0 if Vc <Vmin

1 if Vc >Vmax

Second, ψ1 reflects the location of the controlled bus with respect to the transformer branch:

ψ1 =

⎧⎪⎪⎨
⎪⎪⎩

0 if it is the primary bus

1 if it is the secondary bus
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Note that the case where the controlled bus is neither the primary nor the secondary bus is ver-

ified and excluded at the start of the program, i.e. when reading and organizing the input data.

Third, based on sec. 2.3.6.1, the necessary tap increment can be written as dn = (−1)ψ0+ψ1 ,

which is used along with the actual tap position nx to determine whether a tap change is possible

or not. The result is expressed by ψ2:

ψ2 =

⎧⎪⎪⎨
⎪⎪⎩

1 if (dn > 0 and nx ≥ nt) or (dn < 0 and nx ≤ 1) (not possible)

0 otherwise (possible)

where nt is the total number of taps. Lastly, given that two consecutive tap changes of different

directions lead to a unit increment of the oscillation variable Θ, the bit ψ3 indicates whether a

tap changer is in an oscillation state or not:

ψ3 =

⎧⎪⎪⎨
⎪⎪⎩

1 if Θ > 2 (oscillation)

0 if 0 ≤ Θ ≤ 2 (no oscillation)

The threshold of two oscillations is set out of pure choice. Besides, to track the number of

necessary tap changes per iteration, whenever Cadj �= 0 the value of nadj2 is incremented by

one.

Algorithm 3.1 shows how the above method is implemented in the program. A description of

the array variables is given in Table 3.1. The top entries are branch based arrays constructed di-

rectly from the input data; their contents are thus fetched by branch indices. The bottom entries

are based on the sub-array of the branch indices associated with a tap changing functionality

(i.e. ibran_tc). In particular, the array tadj_case is composed of all computed codes Cadj of the

transformers equipped with a tap changer. Table 3.2 contains the scalar variables.

A few remarks are then in order. To begin with, the inspection process is repeated with every

tap changer (correspondingly every branch index of ibran_tc), and the iteration variable k is

used to fetch elements in arrays structured as ibran_tc. For a three-phase controlled bus, vstat
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is determined with the help of array tau:

τ =
[[Vc(i)−Vmin, Vc(i+1)−Vmin, Vc(i+2)−Vmin ],

[Vmax −Vc(i), Vmax −Vc(i+1), Vmax −Vc(i+2) ]]

where Vc(i), Vc(i+1), and Vc(i+2) are the voltage moduli at the controlled bus (grouped in the

array vc3 in the program), and Vmin and Vmax are the specified minimum and maximum voltage

moduli for the controlled bus. The presence of a negative τ element is thus indicative of a

voltage bound violation. The τ construction allows to identify the worst case, by seeking the

smallest (most negative) value. This is achieved through the function unravel_index, which

returns the row (η0) and column (η1) indices of the minimum value. The remainder of the

algorithm is self-explanatory.

3.9.2 Tap adjustment

Algorithm 3.2 shows how the results of the tap inspection process are used to implement or

not tap adjustments. The subroutine’s input consists of the array of Cadj values for all tap

changer branches, the bus admittance matrix, as well as a set of other variables mainly related

to the changing of tap positions, represented by sin for simplicity. Essentially, the subroutine

operates in reaction to the Cadj values, and generates a correction matrix for every required

tap change. Its main output variable is the (modified) Ybus matrix. Yet it also returns other

(modified) parameters denoted by sout , as well as the parameter nadj1 that keeps track of the

number of adjustments actually performed.

The subroutine starts by initializing nadj1 to zero. The correction matrix Yc is also initialized

as an empty sparse matrix of the same size as Ybus. In fact, as shown in line 19, the correction

matrix should be constructed in such a way that its addition to the bus admittance matrix reflects

the effect of all operated tap changes, that is

Y ′
bus = Ybus +Yc (3.22)



111

Here and in the remainder of the section, the prime symbol ( ′ ) is used to denote a new version

of a variable.

Next, the subroutine iterates over the branches with a tap changing functionality, in every

instance deriving its action from the value of Cadj. The various cases that may occur are

commented in the algorithm. Unless the voltage conditions are fulfilled without the need for

a tap adjustment (case Cad j = 0), the subroutine relies on the function adj_routine to perform

the tasks associated with a change (or not) in tap position. Several input elements are thus

required: in order tin, which stands for a set of global variables not listed (for simplicity), br,

k, yc, the required tap increment, and a remark to be printed in the report of results. Upon the

completion of its instructions, adj_routine returns a set of (modified) global variables (denoted

by tout) as well as a new correction matrix that incorporates, as applicable, the effect of a tap

change.

In every iteration, if dn is non-zero, then adj_routine adjusts the tap position (n′x = nx+dn), and

it updates the transformation ratio a1 based on (2.87). As will be seen below, the corresponding

row element of bran_ymat is also updated. Furthermore, the coherence of the tap changing

activity is verified by incrementing up the oscillation variable if the current tap change is done

in a direction opposite to the corresponding tap change of the previous iteration, i.e. Θ′ =Θ+1,

if dn×dn0 =−1, where dn0 represents the preceding tap change.

A variation in the transformation ratio requires a local modification of Ybus, in accordance with

equations (2.89) and (2.90). In particular, the elements of the corresponding branch admittance

matrix, stored in bran_ymat, need to be modified, and reinserted in Ybus. Taking the case of

the three-phase transformer equipped with a tap changer (the case of the single-phase trans-

former is handled similarly), the branch admittance matrix can be divided into four 3×3 block

matrices:

Ybr =

⎡
⎢⎣Y I

br Y II
br

Y III
br Y IV

br

⎤
⎥⎦
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where, referring to (2.90),

Y I
br =

1

(a1)2
(Ytr)KL

Y II
br =

1

a1 a2
(Ytr)K�

Y III
br =

1

a2 a1
(Ytr)kL

Y IV
br =

1

(a2)2
(Ytr)k�

Using the above definition, the correction due to the new transformation ratio a′1 is realized

through the matrix

dYbr =

⎡
⎢⎣(a

2
1/a′21 −1)Y I

br (a1/a′1 −1)Y II
br

(a1/a′1 −1)Y III
br 0

⎤
⎥⎦

which when added to Ybus will result in cancelling the contributions of the old Ybr elements,

and in replacing them with their corrected versions. There remains to locate the elements of

dYbr into dYc, a sparse matrix of the same dimension as Ybus, such that

Y ′
c = Yc +dYc (3.23)

Since the primary and secondary node numbers of the branch in question are known, this is

done easily by identifying their corresponding node indices, and arranging them into row and

column index arrays, in such a way as to match a third array containing the elements of dYbr.
8

In other words, the methodology used to construct the bus admittance matrix can be reused

here to obtain dYc out of dYbr.

The process of adding incremental matrices dYc to an intermediate version of Yc is repeated for

every branch so as to obtain in the end the full correction matrix Yc of (3.22). Note that such

incremental process is possible due to the linear nature of the construction of Ybus from the Ybr

elements.

8 The sparse matrix type csr_matrix is also used to construct dYc.
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3.10 Power computations

At this point, the system of equations (3.20) has been solved, and the voltages at all nodes are

known. Furthermore, the bus admittance matrix has been determined, and perhaps adjusted to

account for tap changes. Consequently, all necessary information is available to compute the

various powers in the system.

The main challenge is to determine efficiently the power that goes into the various branches

or the zigzag earthing transformers of the network. In every case, the computations are based

on an equation of the form (2.3). Furthermore, in order to achieve optimal computation speed,

a vectorial approach is utilized in every case, using a set of common basic principles. In

particular, the method reuses some of the work carried out to obtain the bus admittance matrix.

Due to the similarity of the computations to determine the powers going into the different

types of branches and zigzag earthing transformers, only the approach to obtain the powers

into the three-phase branches will be described explicitly here. From the information provided,

it should be straightforward to obtain the power values entering the other components of the

network.

The array of left-hand side voltages in (2.3), call it vl, is obtained by unravelling the array of

indices i j3φ (3.1) in the column-major order, and by applying the resulting one-dimensional

array of indices to the array of voltages node_v. The branch admittance matrix elements are

readily available from bran_ymat, and can be reshaped into a 6n × 6 dimensional array y,

equivalent to stacking vertically the 6×6 admittance matrices of the branches. The symbol n

represents the number of three-phase branches. As regards the right-hand side voltages, they

are repeated and arranged into another 6n× 6 array vr, so as to be element-wise multipliable

with the array of branch admittance matrix elements. The array of right-hand side voltages is

thus created in a few simple steps:

a. Tile i j3φ vertically six times;

b. Unravel the resulting array in the column-major order;
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c. Reshape the resulting array to obtain a 6n×6 dimensional array of node indices;

d. Apply such array to node_v.

The part ∑n
k=1Y ∗

ikV
∗
k is thus obtained by applying the complex conjugate to the element-wise

product y ∗ vr, and then by summing along the horizontal axis (axis 1). The result is a one-

dimensional array that is mutiplied element-wise with vl to obtain the part of (2.3) that applies

to the three-phase branches.

The powers going into the single-phase branches and zigzag earhting transformers can be ob-

tained in a similar manner by using the arrays (3.2) and (3.3) respectively.

In order to compute the power into the uncoupled shunt elements, the following formula is

used:

(Ssh)i = |Vi|2 (Ysh)
∗
i

= |Vi|2 {(Gsh)i − j(Bsh)i}

where i is a node index. The computation presents no particular difficulty, because the voltages

are known at all nodes, and the shunt conductances and susceptances are readily available from

the input data.

The loads can also be computed from the known voltages (and network frequency), based on

the load model formulae (2.99) and (2.100) in the classic model, and (2.107) and (2.108) in the

power and frequency regulation model. The other parameters characterising the load are also

at hand since the performance of the routine that reads and organizes the input data.

Analogously, the generated active power at the Ref and Gen buses (in the power and frequency

regulation model) is computed from the network frequency and the power insufficiency of the

generators, based on the generator model formula (2.109). The parameters PG-set i, Ri, and βi

are then readily available from the input data. In the classic model, the generated active power

at a PV bus consists only of the specified parameter PG-set i.
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Finally, it should be recalled from sec. 2.4.3.4 and 2.5.3.4 that the generated reactive power at

the PV and Gen buses, as well as the generated apparent power at the swing bus, are adjusted

quantities which are readily available at this stage of the computation.
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Algorithm 3.1 Tap inspection

Input : Elements of table 3.1 (excl. dn0 and tadj_case), node_v, oscillation
Output : nadj2, tadj_case

1 nadj2 = 0

2 tadj_case = zeros(ibran_tc.size) # Default 0: no adj. needed

3 k =−1

4 for br in ibran_tc do
5 k = k+1

# 0. Determination of vstat (Vctrl vs Vmin, Vmax)

6 vstat = 0

7 if bran_type[br] == 1010 : # Single-phase transformer

8 vc = abs(node_v[ctrlj_ ptr[k, 0]])
9 if vc < br_vlim[br, 0] :

10 vstat = 1 # vstat = 1: Vctrl < Vmin

11 vctrl[k] = [vc, ctrlj_ ptr[k, 0]]

12 elif vc > br_vlim[br, 1] :
13 vstat = 2 # vstat = 2: Vctrl > Vmax

14 vctrl[k] = [vc, ctrlj_ ptr[k, 0]]

15 else :
16 vc3 = absolute(node_v[ctrlj_ ptr[k]])
17 tau = vstack((vc3−br_vlim[br, 0], br_vlim[br, 1]− vc3))
18 eta0, eta1 = unravel_index(tau.argmin(), tau.shape)
19 if (tau < 0).any() :
20 vstat = 1+ eta0
21 vctrl[k] = [vc3[eta1], ctrlj_ ptr[k, eta1]]
22 psi0 = vstat −1 # psi0 = -1 when vstat = 0 is inconsequential

# 1. Ctrl bus junction: psi1 = 0, primary; 1, secondary

23 psi1 = 0 if (br_ctrlj[br] == bran_I[br]) else 1

# 2. Tap change availability: psi2 = 0,available; 1,unavailable

24 dn = (−1)∗∗(psi0+psi1) # Necessary tap change (dn = +1 or -1)

25 psi2 = 1 if (dn > 0 and nx[k]≥ br_ntaps[br]) or (dn < 0 and nx[k]≤ 1) else 0

# 3. Tap oscillation

26 psi3 = 1 if oscillation[k]> 2 else 0

27 if vstat == 0 and (1 ≤ nx[k]≤ br_ntaps[br]) and oscillation ≤ 2 :
28 tadj_case[k] = 0 # No adjustment necessary

29 else :
30 tadj_case[k] = 1+psi0+2∗psi1+4∗psi2+8∗psi3
31 nadj2 = nadj2+1

32 end
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Table 3.1 Description of the main array variables used in the tap changing procedure

Array Symbol Definition

bran_I Branch primary node indices (phase a node indices for three-phase

buses)

bran_type Branch type identification codes

br_ctrlj Controlled bus numbers (‘0’ for no voltage control functionality)

br_ntaps nt Numbers of taps (the symbol designates any element of the array)

br_vlim Minimum (first column) and maximum (second column) allowed

voltage moduli at the controlled buses

ctrlj_ ptr Node indices corresponding to the controlled bus numbers (phase a,

b, and c node indices in the first, second, and third columns respec-

tively). The node index for a single-phase controlled bus is stored

in the first column, irrespective of its associated phase.

dn0 Tap changes (+1, −1, or 0) performed during a previous iteration

ibran_tc Branch indices of transformers with a tap changer

nx nx Tap positions (the symbol designates any element of the array)

tadj_case Cadj Action codes (the symbol designates any element of the array)

vctrl Voltage moduli that fail to satisfy the voltage condition (first col-

umn) (value of ‘0’ otherwise), and the corresponding node indices

(second column)

Table 3.2 Definitions of the main scalar variables used in the tap changing procedure

Variable Symbol Definition

misadj nmis Counter to track the number of times that all necessary tap adjust-

ments cannot be performed. A value of 3 or more leads to a status

of condition violation.

nadj1 nadj1 Counter of the adjustments actually performed (per iteration)

nadj2 nadj2 Counter of the necesssary tap adjustments (per iteration)

nnode N Total number of nodes in the network

oscillation Θ Counter of successive tap changes of opposite signs. Once the value

has reached a threshold (e.g. 3), the tap changing process is halted.
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Algorithm 3.2 Tap adjustment and status

Input : sin, yb, tadj_case
Output : sout , yb, nadj1

1 nadj1 = 0

2 yc = csr_matrix((nnode, nnode)) # Ybus correction matrix

3 k =−1

4 for br in ibran_tc do
5 k = k+1

6 if tadj_case[k] == 0 :
7 continue # 0: No adjustment necessary for this branch

8 if tadj_case[k] in (1, 4) :
# 1: Vc < Vmin, Vc on primary side, no oscillation, dn = +1

# 4: Vc > Vmax, Vc on secondary side, no oscillation, dn = +1

9 tout , yc = adj_routine(tin, br, k, yc, 1, ‘dn = +1’)

10 if tadj_case[k] in (2, 3) :
# 2: Vc > Vmax, Vc on primary side, no oscillation, dn = -1

# 3: Vc < Vmax, Vc on secondary side, no oscillation, dn = -1

11 tout , yc = adj_routine(tin, br, k, yc, −1, ‘dn = -1’)

12 if tadj_case[k] in (5, 8) :
# 5: Vc < Vmin, Vc on primary side, no oscillation, dn = 0 (nx = n_max)

# 8: Vc > Vmax, Vc on secondary side, no oscillation, dn = 0 (nx = n_max)

13 tout , yc = adj_routine(tin, br, k, yc, 0, ‘dn = 0, max. tap position reached’)

14 if tadj_case[k] in (6, 7) :
# 6: Vc > Vmax, Vc on primary side, no oscillation, dn = 0 (nx = n_min)

# 7: Vc < Vmin, Vc on secondary side, no oscillation, dn = 0 (nx = n_min)

15 tout , yc = adj_routine(tin, br, k, yc, 0, ‘dn = 0, min. tap position reached’)

16 if tadj_case[k]> 8 :
17 tout , yc = adj_routine(tin, br, k, yc, 0, ‘Oscillating tap, adjustment halted’)

18 end

19 yb = yb+ yc



CHAPTER 4

SAMPLE CASES OF VALIDATION AND DISCUSSION

A large number of test cases were carried out to validate the program nr3r. In this chapter,

some of them are presented to illustrate the primary features of the program, that is the ability

to solve unbalanced network systems comprising both three-phase and single-phase compo-

nents, to solve systems that include transformer tap changers, and to perform the regulation of

transferred power and network frequency. In each case, the balance in power is met at every

node, and the imposed conditions are fulfilled. In addition, a large system composed of 3000

three-phase buses is used to evaluate the computation efficiency of the program. Calculations

are everywhere performed in the per unit system.

4.1 Basic unbalanced network

(1) (2)

(3)

Z12

Z13 Z23

Ysh2

Ysh4
SL3

PG2
|V2|

Tr.1�

(4)b

V1= 1

PG2 = 0.5 pu

|V2|= 1.02 pu

Ysh2 = 0.4 pu

SL3a = 0.10+ j0.01 pu

SL3b = 0.40+ j0.04 pu

SL3c = 0.42+ j0.04 pu

Ysh4 = 0.2 pu

Z12 = j0.2 pu

Z13 = j0.1 pu

Z23 = 0.01+ j0.3 pu

Transformer parameters:

Z1 = Z2 = 0.001+ j0.04

Ym =− j0.006

Figure 4.1 Unbalanced network including a single-phase transformer

Figure 4.1 shows an unbalanced network composed of three three-phase buses and one single-

phase bus. A single-phase transformer links node #3b to the single-phase bus #4. The analysis
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Figure 4.2 Report of results (part one) for the network of fig. 4.1

is conducted in the classic model by taking bus #1 as the swing bus, bus #2 as a PV bus, and

buses #3 and #4 as PQ buses. Furthermore, as will be the case in the remainder of the chapter,

the short and decoupled line approximation is used. By initializing all voltage moduli to one,

the phase a voltage phases to 0◦, and the phase b voltage phase at bus #4 to −120◦ (a detailed

description of the input data structure is given in appendix III), the results shown in fig. 4.2 and

fig. 4.3 are obtained.

The second section of the report displays a rapid convergence of the computations, where

the tolerance threshold of 10−10 for the maximum mismatch amplitude is reached in three

iterations.

The third section shows the voltages across the network; the columns |V0| and th0 contain the

voltage moduli and phases used to initialize the iterative process, whereas the columns |V| and

th. contain the final values. As expected, due to the unbalanced nature of the problem, the

voltages at bus #3 have different magnitudes, and their phases are not evenly distributed. As

regards the voltages at buses #1 and #2, they respect the imposed conditions.
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Figure 4.3 Report of results (part two) for the network of fig. 4.1

The fourth section gives for every node the complex power (in single-phase pu) that enters

every branch connected to the node. The conditions on the active power generation at bus #2

and the load conditions at bus #3 are confirmed to be fulfilled. In addition, the balance in



122

power at every node is provided. All values are seen to vanish, up to residuals that depend

on the imposed convergence threshold and the computing precision. As a final remark, the

generated active power at each of the nodes of bus #2 may differ, and thus does not necessarily

correspond to the printed 0.5 pu values. In fact, for practical reasons, the generated active

power at the node level of a PV bus is intentionally printed to be the third of the total generated

active power at the bus (in single-phase pu). Nevertheless, the sum of the printed generated

active power at the three nodes (here 1.5 single-phase pu, or equivalently 0.5 three-phase pu)

always corresponds to the generated active power at the bus.

4.2 Tap changing operation

(2)(1) (3) (4)

SL4
Ysh3

Z12 Z34

V1 = 1 pu Transformer and tap changer parameters:

Ysh3 = 0.7+ j0.1 pu Z1 = Z2 = j0.05 pu, Ym = 0

SL4 = 0.9+ j0.1 pu |V3min|= 0.93 pu, |V3max|= 1.07 pu

Z12 = 0.01+ j0.1 pu a1min = 0.9, a1 init = 1, a1max = 1.1

Z34 = 0.01+ j0.1 pu nt = 11

Figure 4.4 Network including a tap changing Yd1 transformer controlled based

on the voltage at bus #3

The system of fig. 4.4 is used to demonstrate the implementation of the tap changer mechanism

into nr3r. The network consists of four three-phase buses, connected by two three-phase lines

and one transformer having a Yd1 winding connection. A tap changer is installed on the star

configuration of the transformer. The load, the lines, and the shunt elements are balanced. The

analysis is conducted in the classic model by taking bus #1 as the swing bus, and the other
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Figure 4.5 Sections 2 and 3 of the report of results for the network of fig. 4.4

buses as PQ buses. Furthermore, the computations are initialized by setting all phase a voltage

phasors to unity. The initial transformation ratio is also set to one (corresponding to the initial

tap position nx = 5).

Figure 4.5 shows part of the results of the computations. Convergence is reached after ten

iterations (based on the threshold 10−10 for the maximum mismatch amplitude), where tap

changes are performed at iterations 4 and 6. As explained in sec. 3.9, a precondition for a tap

change is to have a sufficiently small norm of the mismatch vector (here 10−3 is imposed as the

maximum acceptable value), which is why the first tap change is carried out only at the fourth

iteration, and one iteration must elapse before the second one is performed. Referring to the
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Figure 4.6 Section 4 of the report of results for the network of fig. 4.4

adjustment column, the numbers separated by a slash sign are nadj1 on the left hand side, and

nadj2 on the right hand side.

When the tap changing functionality is activated, additional information pertinent to the tap

changing activity is provided (in section 2.2). In particular, the controlled bus number, its

associated voltage limits, its voltage prior to making a change (indicated by the suffix ‘0’), and

the tap positions before and after the change are shown. Remarks may also be added, e.g. in the

present case dn =−1 indicates a one unit decrease in tap position. Such behaviour is expected

because the controlled bus is on the secondary side of the transformer, and its voltage (initially

0.900532 pu) is below the minimum required value (0.93 pu). The third section of the report
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shows, among other things, the final voltage at the controlled bus, i.e. 0.9440 pu, which lies

within the required range.

Lastly, as seen in the latter part of the report (fig. 4.6), the balance in power is reached at every

node, which is an additional indicator of the soundness of the results.

4.3 Regulation of power transferred and frequency on a five-bus network

4.3.1 Constant load

(1) (2)

(3)

Z12

Z13 Z23

SL3

PG4-set
V1 = 1 |V4| (4)

(5)

Z45

Z24

Z35

SL2

A BSL5

PG1-set

PAB

Basic conditions: Regulation conditions:

Z12 = j0.4 pu SL2 = 0.2+ j0.15 pu PG1-set = 1.1 pu

Z13 = j0.2 pu SL3 = 0.8− j0.3 pu R1 = 0.15

Z23 = 0.05+ j0.25 pu SL5 = 0.6+ j0.2 pu β1 = 0.7

Z24 = 0.1+ j0.4 pu PG4-set = 0.4 pu, |V4|= 1 pu

Z35 = 0.05+ j0.3 pu R4 = 0.3

Z45 = j0.2 pu β4 = 0.3

Figure 4.7 Two-zone five-bus network analysed using the classic model and the

power and frequency regulation model

The system of fig. 4.7 is used to exemplify the nr3r computations in the regulation model

framework. The network is composed of five three-phase buses. The loads are balanced. The
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Table 4.1 Results of the five-bus network with constant load in the classic and

regulation models (values are given in pu)

Power and frequency regulation (PPPAAABBBsssccchhh === 000...222 pu, fff sssccchhh === 111 pu)

Classic aaappp === 000, aaa fff === 555 aaappp === 111, aaa fff === 000 aaappp === 111, aaa fff === 555

V2a 0.9858 ∠−7.8253◦ 0.9856 ∠−7.5423◦ 0.9858 ∠−7.8037◦ 0.9856 ∠−7.5587◦

V3a 1.0056 ∠−9.9435◦ 1.0057 ∠−9.7210◦ 1.0056 ∠−9.9265◦ 1.0056 ∠−9.7339◦

V4a 1.0000 ∠−8.2537◦ 1.0000 ∠−7.5786◦ 1.0000 ∠−8.2022◦ 1.0000 ∠−7.6178◦

V5a 0.9708 ∠−13.0866◦ 0.9711 ∠−12.5889◦ 0.9709 ∠−13.0486◦ 0.9711 ∠−12.6178◦

S24 0.0091− j0.0373 −0.0069− j0.0337 0.0079− j0.0370 −0.0059− j0.0339

S35 0.1933+ j0.0891 0.1779+ j0.0902 0.1921+ j0.0892 0.1788+ j0.0901

PG1 1.2037 1.1724 1.2013 1.1743

PG4 0.4000 0.4310 0.4024 0.4292

PAB 0.2024 0.1710 0.2000 0.1729

Pr - 0.3105 2.8985 0.4734

f - 1.0000 1.0862 1.0054

network is also divided into two zones (A and B) linked by two tie lines, i.e. one connecting

the buses #2 and #4, the other the buses #3 and #5. Bus #1 is treated as the reference bus, bus

#4 as a generator bus, and the remaining ones as load buses.

Three variants of the regulation model are examined: frequency regulation alone (ap = 0,

a f �= 0), transferred power regulation alone (ap �= 0, a f = 0), and the regulation of a linear

combination of both transferred power and frequency (ap �= 0, a f �= 0). As a reference, the

network is also solved based on the classic model. The main results are given in table 4.1,

where the powers are given in three-phase pu. Furthermore, the report for the power regulation

analysis is included in figures 4.9 and 4.10 at the end of the chapter, to show in detail the

results provided by the program nr3r (recall that, except for the power transfer value, the nr3r

report gives the powers in single-phase pu). As it should, since the system −ε = J Δx is solved

iteratively to ultimately obtain vanishing ε elements, the scheduled frequency and transferred

power are fulfilled respectively in the first two cases. In the third case, though εp f vanishes,

the individual gaps in frequency f − fsch and transferred power PT −PT sch are non-zero. The

extent of those gaps is determined by the relative weight of a f with respect to ap and vice
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versa. By comparing the flat tie lie control approach (ap = 1, a f = 0) with the classic model

approach, one also notices that the excess active transferred power (0.0024 pu) can be relieved

by transferring an equal share of the generated active power from zone A to zone B.

The validity of the solutions is again supported by the facts that the imposed conditions as well

as the balance in power at all buses are fulfilled. Furthermore, as an extra verification step, the

three regulation cases were solved by the method of constrained optimisation (refer to sec. 2 of

the appendix I) in the MATLAB environment, and the results were verified to coincide with the

ones of nr3r.

4.3.2 Frequency and voltage dependent load

The network of fig. 4.7 is examined once again by replacing the load at bus #5 by a frequency

and voltage dependent load characterized by PL1 = 0.6 pu, QL1 = 0.2 pu, PL-Z = 0.3 pu, QL-Z =

0.1 pu, and KP = KQ = 7 pu. The results are shown in table 4.2.

Table 4.2 Results of the five-bus network with a frequency and voltage

dependent load in the regulation model (values are given in pu)

Power and frequency regulation (PPPAAABBBsssccchhh === 000...222 pu, fff sssccchhh === 111 pu)

aaappp === 000, aaa fff === 555 aaappp === 111, aaa fff === 000 aaappp === 111, aaa fff === 555

V2a 0.9826 ∠−8.9829◦ 0.9850 ∠−7.7364◦ 0.9839 ∠−8.3875◦

V3a 0.9979 ∠−11.3444◦ 1.0042 ∠−9.9775◦ 1.0010 ∠−10.6921◦

V4a 1.0000 ∠−10.1968◦ 1.0000 ∠−7.8685◦ 1.0000 ∠−9.0841◦

V5a 0.9498 ∠−16.8737◦ 0.9669 ∠−13.2948◦ 0.9582 ∠−15.1602◦

S24 0.0391− j0.0519 −0.0033− j0.0360 0.0188− j0.0442

S35 0.3245+ j0.1203 0.2033+ j0.0962 0.2671+ j0.1082

SL5 0.8707+ j0.2902 0.6580+ j0.2193 0.7701+ j0.2567

PG1 1.3650 1.2014 1.2874

PG4 0.5136 0.4607 0.4885

PAB 0.3635 0.2000 0.2860

Pr 1.1357 −0.5965 0.3120

f 1.0000 0.9639 0.9828
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As seen in the previous section, the scheduled frequency and transferred power are fulfilled

in the first two cases respectively; in the combined regulation case, how close they are from

their scheduled values depends on the relative weight of their coefficients in εp f . Due to the

different voltage moduli and frequency gaps between the three regulation cases, the load at bus

#5 takes differing values.

4.4 Power network composed of 3000 three-phase buses

The power system utilised in Lagacé (2012) to study the convergence properties of various

power flow methods is used here to evaluate the computation efficiency of nr3r. As required,

the system is large; specifically it is composed of 3000 three-phase buses (or 9000 nodes)

connected in a meshed and radial way typical of a North American network. The loads are

balanced. The computations are characterized as shown in table 4.3, and performed with an

initial absolute mismatch of the order of 2.6×10−2.

Table 4.3 Significant characteristics of the 3000-bus system

Ybus dimensions 9000×9000

Ybus elements (non-zero) 35,514

Jacobian matrix dimensions 17,494×17,494

Jacobian matrix elements (non-zero) 139,504

A large part of the methodology described in ch. 3 was developed in a series of steps aimed

at improving the computation speed of the program. Among other things, in its original state

nr3r relied on two imbedded for loops to construct the Ybus matrix, and on a series of for

loops (each associated with a type of mismatch) to obtain the Jacobian matrix. Furthermore, a

computationally expensive function to identify the indices of non-zero array elements, namely

NumPy’s nonzero function, was used throughout the program. As a result, the computing time

(including the Ybus construction) to solve the 3000-bus network was around 225s, a duration
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definitely inappropriate in view of the project’s constraints. In fact, in general terms the maxi-

mum computing time should be inferior to 3s.

Three main sets of measures were implemented to increase computation efficiency: the Ybus

procedure was completely vectorized and the Ybus matrix created directly as a sparse matrix

of the type csr (sec. 3.3); the Jacobian matrix procedure was also vectorized, owing to the

identification at once of the non-zero Ybus elements and the use of boolean filter arrays and

mapping arrays, and constructed by a single call of the csr matrix function (sec. 3.6); in several

cases the utilization of the nonzero function was replaced by a mapping array. Consequently,

the computation time could be reduced by more than a six hundredfold to a time of the order

of 0.35s. Added to the calculation time is also the time to read and organize the input data,

measured to be of the order of 0.44s. Therefore, excluding the time needed to construct the

report (which is arbitrary in the sense that it depends on the information sought), the relevant

processing time is around 0.79s.1

For the sake of comparison, it is interesting to note that the calculation time recorded with nr3r

is significantly shorter than the one obtained with the program used to conduct the analyses of

Lagacé (2012), i.e. around 6.5s when employing Newton’s method, even though such program

operates in a unifilar framework with a smaller Ybus matrix (11,838 non-zero elements) and a

smaller Jacobian matrix (46,568 non-zero elements).

As far as the validity of the results is concerned, the imposed conditions as well as the balance

in powers are met. Furthermore, the results were confirmed to agree with the ones yielded by

the program used by Lagacé (2012). In fact, the voltage moduli and phases at all nodes were

verified to agree within 10−8 pu. The distribution of the complex voltages obtained with the

9000 nodes is also shown in fig. 4.8. The moduli are found to lie between 0.9 pu and 1.1 pu.

The spread in phases is relatively large, yet it is a consequence of the network topology and

conditions.

1 It should be noted, however, that such durations are dependent on the processor and memory of

the computer. In the present case, a computer with a 2.5 GHz Intel Core i5 processor and 16 GB

1333 MHz memory was used.
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Complex voltage distribution

  0.5 pu
  1.0 pu

  1.5 pu

30

-150

60

-120

90

-90

120

-60

150

-30

180 0

Phase a
Phase b
Phase c

deg

Figure 4.8 Distribution of complex voltages resulting from the resolution of the

3000 three-phase buses network
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Figure 4.9 Report of results (sec. 1 to 4) of the transferred power regulation model

applied to the system of fig. 4.7
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Figure 4.10 Report of results (sec. 5) of the transferred power regulation model

applied to the system of fig. 4.7



CONCLUSION

The work has focused on formulating and implementing a power flow model that is adapted

to the resolution of three-phase (unbalanced) power systems by taking into account the effects

of network frequency variations as well as economic power transactions between areas of a

network. In addition, single-phase components have been implemented in order to facilitate

the treatment of unbalanced loads, and to allow for the solution of systems that comprise both

transmission and distribution elements. For comparative purposes, a more basic model that

assumes a constant network frequency was similarly formulated and implemented.

The implementation of the power flow models in the program nr3r resulted from a series of

optimization steps aimed at reaching high computation speeds to satisfy the needs of Hydro-

Québec. Several efficient array based procedures were developed. Among other things, such

procedures eliminated the need of for loops in the construction of the bus admittance matrix

from the component level admittance matrices, as well as in the construction of the Jacobian

matrix. A compact yet comprehensible algorithm was also devised to reproduce the operations

of voltage regulation tap changers. A number of numerical examples were presented to illus-

trate the main functionalities of the program. In particular, the program’s computation speed

was tested with a large network composed of 3000 three-phase buses (9000 nodes). In each

case, as shown by the reports generated by nr3r, the imposed conditions were fulfilled, and the

balance in power was met at all buses (up to a specified tolerance).

The program presents certain limitations that could be addressed in future work. As hinted

previously, power constraints at generator buses could be taken into account to respect the

physical limits of generators. This would require the conversion of bus types during the iter-

ative process. Moreover, the treatment of the bus admittance matrix may be modified to take

into consideration neutral currents and voltages, particularly in the power distribution portion

of a network. Besides, the admittance matrix for the untransposed transmission line may be
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derived and included in the program to enhance its versatility. Computation speed may also be

increased by freeing the program code from complex numbers. This could also facilitate the

code migration to a lower level language if need be. Last but not least, the option to use the

Levenberg-Marquardt method should be added to the present power flow analysis tool in order

to widen its region of convergence.

As regards future research avenues, analyses of systems under the effect of phenomena, such as

line tripping, load shedding (e.g. due to a major loss of power generation or tie-line support),

and generation shedding (e.g. after a major loss of load or tie-line export), may be carried

out. Furthermore, the program should be utilized to investigate the behaviour of networks with

respect to load profiles that incorporate customer energy consumption (and/or production) over

time. Specifically large and ill-conditioned systems, representative of combined transmission

and distribution networks, should also be solved and analysed in detail to find new ways to

improve the convergence rate and the region of convergence of the program. In this respect, a

potential approach is to distinguish branches with comparable impedance values, and to break

up the iterative process accordingly.



APPENDIX I

MATHEMATICAL TOOLS

1. Newton’s method

If g(x) is a vector function that is differentiable with respect to the elements xi, then g(x+Δx)
may be approximated by keeping the first two terms of the Taylor series of g about x:

g(x+Δx)≈ g(x)+∇g(x) Δx

Assuming that g(x) needs to be driven to zero, corrections Δx can be sought such that

g(x+Δx) = g(x)+∇g(x) Δx = 0

or equivalently

Δx =−[∇g(x)]−1g(x). (A I-1)

An algorithm based on Newton’s method consists in setting once the initial values x = x0;

computing iteratively g(x), ∇g(x), and Δx by (A I-1); and each time using Δx to correct the

unknowns, i.e. x = x+Δx. At the end of the iterative process, convergence is confirmed by

evaluating g(x). The elements of x0 should be chosen carefully (relatively close to the solution)

in order to prevent divergence of the results.

2. Constrained optimisation

Let f (x) be a function to be minimised or maximised under the constraints p j(x) = 0 ( j =
1,2, . . . ,n), where x is a vector of the independent variables xi (i = 1,2, . . . ,m). Thus a La-
grangian function can be defined as follows:

L (x,λ ) = f (x)+∑
j

λ j p j(x) (A I-2)

where the variables λ j are referred to as the Lagrange multipliers. Naturally, there may be only

one constraint, in which case the sum in (A I-2) reduces to a single term.

The optimum of f (x) under the constraints p j(x) can be realised when f (x) is tangent to the

functions p j(x) (in the multivariate space of x). In that case the gradients of the objective

function f (x) and constraints p j(x) should be non-zero and have the same orientation. Mathe-

matically, there should be a λ such that the following equations hold:

∇x f (x)+∑
j

λ j∇x p j(x) = 0
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Furthermore, we note that differentiating the Lagrangian function with respect to any Lagrange

multiplier yields the corresponding constraint, namely

∂L

∂λ j
= p j(x)

Hence the constrained optimisation problem may be summarised as finding the solution to the

following system of equations:

∂L

∂xi
= 0 (A I-3)

∂L

∂λ j
= 0 (A I-4)



APPENDIX II

PROGRAMMING LANGUAGE

The specifications of the programming language used as well as key programming tools are

given below.

Programming language: Python, version 3.5.2

Scientific computing package: NumPy, version 1.11.1

Sparse matrix package: scipy.sparse, from the SciPy library, version 0.17.1

Key classes: scipy.sparse.csr_ matrix, to create the bus admittance

matrix and the Jacobian matrix

scipy.sparse.spsolve, to solve the linear system resulting

from the application of Newton’s method





APPENDIX III

PROGRAM INSTRUCTION MANUAL

1. Input file

Given a power network to be analysed, the input file is a text file that contains the necessary

data to describe the network and its state. The extension .dat is typically used.

2. Types of data

In the following sections, the typewriter typeface indicates the different data items (and their

syntax) that can be inserted in the input file. In most cases, these items take the form of a list

(in the computing sense), or of a list of lists. The order in which they are entered is irrelevant.

The bus data particularly take the latter form, where each inner list corresponds to a distinct bus

in the network (labelled by the index i). There are no constraints as to the order in which the

inner lists are entered. The ordered elements of each inner list represent different parameters

applicable to the bus. Their descriptions are provided in the following sections, based on

position number. If a parameter designation depends on the calculation model, then the one

that is specific to the classic model is placed in parentheses. The branch data and the zigzag

earthing transformer data are organised similarly.

The regulation of power transferred and/or of network frequency is achieved by means of the

expression εp f = ap(PT −PT-sch)+a f ( f − fsch), which is brought to zero by Newton’s method.

The parameters ap and a f are specified in the input item regfPT described in sec. 2.4 of this

appendix. Among other things, the values ap = 1 and a f = 0 correspond to the case where

power transferred is strongly regulated, commonly known as flat tie line control.

Insertion of the item regfPT in the input file calls the power and frequency regulation model.

Otherwise, the calculations are performed by default in the classic model.

2.1 Bus data

From sec. 2.5, recall the general expressions for the generation of power, i.e.

PGi = PG-set i −Δ f/Ri +βiPr

QGi = QG-set i

and the load, i.e.

PLi = PL0i +(1+KPiΔ f )(PL1i +PL-I i |Vi|+PL-Z i |Vi|2 +PL-NPi |Vi|NPi)

QLi = QL0i +(1+KQiΔ f )(QL1i +QL-I i |Vi|+QL-Z i |Vi|2 +QL-NQi |Vi|NQi)
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where i is a node index. Note that those expressions can also accommodate the classic model,

through the omission of a few terms.

The shunt conductance Gshi and susceptance Bshi enter the construction of the bus admittance

matrix.

2.1.1 Three-phase buses

B3 = [

[x0, x1, x2, . . . , x24, x25],

[y0, y1, y2, . . . , y24, y25]

]

0 : Bus number (a nonnegative integer)

1 : Bus name (a string)

2 : Bus type: ‘1’ for reference (or swing), ‘2’ for generator (or PV), and ‘3’ for load (or PQ)

3 : Voltage base (kV)

4 : Initial voltage modulus (pukV)

5 : Initial voltage phase (degrees)

6 : Shunt conductance Gshi (puS)

7 : Shunt susceptance Bshi (puS)

8 : Set active power generation PG-set i (or PGi) (puMW)

9 : Set reactive power generation QG-set i (or QGi) (puMVar)

10 : Constant active load PL0i (puMW)

11 : Constant reactive load QL0i (puMVar)

12 : Active load with a constant power characteristic PL1i (puMW)

13 : Reactive load with a constant power characteristic QL1i (puMVar)

14 : Coefficient PL-I i of the active load with a constant current characteristic (puMW/kV)

15 : Coefficient QL-I i of the reactive load with a constant current characteristic (puMVar/kV)

16 : Coefficient PL-Z i of the active load with a const. impedance characteristic (puMW/kV2)

17 : Coefficient QL-Z i of the reactive load with a const. imped. characteristic (puMVar/kV2)

18 : Coefficient PL-NPi of the active load with a |Vi|NPi characteristic (puMW/kVNPi )

19 : Coefficient QL-NQi of the reactive load with a |Vi|NQi characteristic (puMVar/kVNQi )

20 : Exponent NPi of the active load exhibiting a |Vi|NPi characteristic

21 : Exponent NQi of the reactive load exhibiting a |Vi|NQi characteristic
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22 : Factor KPi of the frequency dependent load model (pu1/Hz)

23 : Factor KQi of the frequency dependent load model (pu1/Hz)

24 : Constant Ri reflecting the speed droop characteristics of the generator (puHz/puMW)

25 : Participation factor βi of the generator

Remarks:

a. Data 1–21 must be provided. Data 22–25 are only required to perform calculations in the

power and frequency regulation model.

b. The fields 22–25 are allowed but ignored in the classic model, which permits to use the

same data structure independently of the calculation model.

c. An unbalanced three-phase load can be modelled by specifying three single-phase buses

with different load parameters.

d. In the classic model, any PGi or QGi value assigned to a swing bus is ignored. In the power

and frequency regulation model, any value QGi assigned to a reference bus is ignored.

e. Any value QGi assigned to a PV or generator bus is ignored.

2.1.2 Single-phase buses

B1 = [

[x0, x1, x2, . . . , x24, x25],

[y0, y1, y2, . . . , y24, y25]

]

Remarks:

a. The data structure is the same as the one of the three-phase buses, except that the element

in position ‘0’ is a single-phase bus number, i.e. a node number. A node number is written

as a complex number in cartesian form composed of nonnegative integers as the real and

imaginary parts. The imaginary part indicates the phase, where +0j, -1j, +1j correspond to

phases a, b, c respectively. For example, the node number associated with phase-c of bus

120 is written as 120+1j.

b. Power is expressed in single-phase pu.

2.2 Branch data

The branches are always connected between two buses. In particular, a single-phase branch is

bounded by two single-phase buses, or equivalently two nodes. By definition, the bus (or node)

specified in the data position ‘0’ is referred to as the primary bus (node), and the bus (node)

specified in position ‘1’ is referred to as the secondary bus (node).
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2.2.1 Lines

2.2.1.1 Three-phase line – short line model

The short line model of the three-phase line is introduced at the beginning of sec. 2.3.4.2. It

implies representing the three-phase line as three uncoupled π circuits. The line impedance

(Z = R+ jX) and shunt admittance (Y = G+ jB) provided are directly used to build the admit-

tance matrix (2.9).

L3 = [

[x0, x1, x2, x3, x4, x5, x6, x7],

[y0, y1, y2, y3, y4, y5, y6, y7]

]

0 : Primary bus number I (a nonnegative integer)

1 : Secondary bus number J (a nonnegative integer)

2 : Parameter ckt used to differentiate branches connected between the same buses (a non-

negative integer).

3 : Name of the line (a string)

4 : Resistance R (puΩ)

5 : Reactance X (puΩ)

6 : Shunt conductance G (puS)

7 : Shunt susceptance B (puS)

2.2.1.2 Three-phase line – transposed long line model

The long line model is presented in the latter part of sec. 2.3.4.2. The admittance matrix is

given by (2.14), where the zero and direct sequence impedances per unit length are expressed

in terms of their self and mutual counterparts as z0 = zs + 2zm and z1 = zs − zm. Based on

the same reasoning, y0 = ys + 2ym and y1 = ys − ym. In the input data, the self and mutual

impedances and admittances per unit length are broken down into their real and imaginary

components, i.e. zs = rs + jxs, zm = rm + jxm, ys = gs + jbs, and ym = gm + jbm.

L3l = [

[x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12],

[y0, y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12]

]

0 : Primary bus number I (a nonnegative integer)

1 : Secondary bus number J (a nonnegative integer)
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2 : Parameter ckt used to differentiate branches connected between the same buses (a non-

negative integer).

3 : Name of the line (a string)

4 : Self resistance per unit length rs (puΩ/km)

5 : Self reactance per unit length xs (puΩ/km)

6 : Mutual resistance per unit length rm (puΩ/km)

7 : Mutual reactance per unit length xm (puΩ/km)

8 : Self conductance per unit length gs (puS/km)

9 : Self susceptance per unit length bs (puS/km)

10 : Mutual conductance per unit length gm (puS/km)

11 : Mutual susceptance per unit length bm (puS/km)

12 : Length of the line � (km)

2.2.1.3 Single-phase line – short line model

The short single-phase line model is introduced at the beginning of sec. 2.3.4.1. It implies

representing the single-phase line as a π circuit. The line impedance (Z = R+ jX) and shunt

admittance (Y = G+ jB) provided are directly used to build the admittance matrix (2.6).

L1 = [

[x0, x1, x2, x3, x4, x5, x6, x7],

[y0, y1, y2, y3, y4, y5, y6, y7]

]

The data structure is similar to the one of the short three-phase line model, except that positions

‘0’ and ‘1’ refer to node numbers. Information on how node numbers should be specified as

complex numbers can be found in sec. 2.1.2 of this appendix.

2.2.1.4 Single-phase line – long line model

The long line model is described in sec. 2.3.4.1. It consists essentially in substituting Y/2

and Z in (2.6) by (2.7) and (2.8), where the impedance and admittance per unit length can be

decomposed into their real and imaginary parts, i.e. z = r+ jx and y = g+ jb.

L1l = [

[x0, x1, x2, x3, x4, x5, x6, x7, x8],

[y0, y1, y2, y3, y4, y5, y6, y7, y8]

]

0 : Primary node number I (a complex number)



144

1 : Secondary node number J (a complex number)

2 : Parameter ckt used to differentiate branches connected between the same buses (a non-

negative integer)

3 : Name of the line (a string)

4 : Resistance per unit length r (puΩ/km)

5 : Reactance per unit length x (puΩ/km)

6 : Conductance per unit length g (puS/km)

7 : Susceptance per unit length b (puS/km)

8 : Length of the line � (km)

Remark: Refer to sec. 2.1.2 of this appendix regarding how node numbers should be specified

as complex numbers.

2.2.2 Transformers

For compatibility purposes a single data structure is used for all three-phase transformers,

despite their differences in construction and functionality. Wherever a parameter is irrelevant,

it is ignored by the program.

2.2.2.1 Yy0 transformer (star-star connection)

Refer to sec. 2.3.5.3 for details regarding the Yy0 transformer model, and to sec. 2.3.6 for the

generalisation reflecting the tap changer mechanism.

TrYy0 = [

[x0, x1, x2, . . . , x15, x16],

[y0, y1, y2, . . . , y15, y16]

]

0 : Primary bus number I (a nonnegative integer)

1 : Secondary bus number J (a nonnegative integer)

2 : Parameter ckt used to differentiate branches connected between the same buses (a non-

negative integer).

3 : Name of the transformer (a string)

4 : Primary winding impedance Z1 (puΩ)

5 : Secondary winding impedance Z2 (puΩ)

6 : Magnetizing admittance Ym (puS)

7 : Primary side grounding impedance ZN (puΩ)
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8 : Secondary side grounding impedance Zn (puΩ)

9 : Minimum primary transformation ratio a1min

10 : Primary transformation ratio a1 (initial value)

11 : Maximum primary transformation ratio a1max

12 : Secondary transformation ratio a2

13 : Number of taps nt (a nonnegative integer)

14 : Controlled bus number (a nonnegative integer)

15 : Minimum allowed voltage modulus at the controlled bus Vmin (pukV)

16 : Maximum allowed voltage modulus at the controlled bus Vmax (pukV)

Remarks:

a. Assigning a value of ‘0’ to the controlled bus number field specifies that the transformer

does not have a tap changer.

b. In the current version of the program, only the primary or the secondary bus are accepted

as valid controlled buses. The regulation of voltage at distant buses may be implemented in

a future version of the program.

c. The number of taps must be a nonnegative integer. If a positive decimal number is entered,

then only its integer part is kept.

2.2.2.2 Yd1 transformer (star-delta connection)

Refer to sec. 2.3.5.4 for details regarding the Yd1 transformer model, and to sec. 2.3.6 for the

generalisation reflecting the tap changer mechanism.

TrYd1 = [

[x0, x1, x2, . . . , x15, x16],

[y0, y1, y2, . . . , y15, y16]

]

Remarks:

a. The data structure is the same as for the Yy0 transformer.

b. Zn is inapplicable, therefore its value (in position ‘8’) is ignored by the program.

2.2.2.3 Dd0 transformer (delta-delta connection)

Refer to sec. 2.3.5.5 for details regarding the Dd0 transformer model, and to sec. 2.3.6 for the

effect of introducing the transformation ratios a1 and a2.
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TrDd0 = [

[x0, x1, x2, . . . , x15, x16],

[y0, y1, y2, . . . , y15, y16]

]

Remarks:

a. The data structure is the same as for the Yy0 transformer.

b. ZN and Zn are inapplicable, therefore their values (in positions ‘7’ and ‘8’) are ignored by

the program.

c. The parameters concerned with the voltage regulation (in positions ‘9’, ‘11’, ‘13–16’) are

ignored, because tap changing is not implemented with this transformer type.

2.2.2.4 Yz11 transformer

Refer to sec. 2.3.5.6 for details regarding the Yz11 transformer model, and to sec. 2.3.6 for the

effect of introducing the transformation ratios a1 and a2.

TrYz11 = [

[x0, x1, x2, . . . , x15, x16],

[y0, y1, y2, . . . , y15, y16]

]

Remarks:

a. The data structure is the same as for the Yy0 transformer.

b. The parameters concerned with the voltage regulation (in positions ‘9’, ‘11’, ‘13–16’) are

ignored, because tap changing is not implemented with this transformer type.

2.2.2.5 Dz0 transformer

Refer to sec. 2.3.5.7 for details regarding the Dz0 transformer model, and to sec. 2.3.6 for the

effect of introducing the transformation ratios a1 and a2.

TrDz0 = [

[x0, x1, x2, . . . , x15, x16],

[y0, y1, y2, . . . , y15, y16]

]

Remarks:

a. The data structure is the same as for the Yy0 transformer.

b. ZN is inapplicable, therefore its value (in position ‘7’) is ignored by the program.

c. The parameters concerned with the voltage regulation (in positions ‘9’, ‘11’, ‘13–16’) are

ignored, because tap changing is not implemented with this transformer type.
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2.2.2.6 Dz10 transformer

Refer to sec. 2.3.5.8 for details regarding the Dz10 transformer model, and to sec. 2.3.6 for the

effect of introducing the transformation ratios a1 and a2.

TrDz10 = [

[x0, x1, x2, . . . , x15, x16],

[y0, y1, y2, . . . , y15, y16]

]

Remarks: The remarks made for the Dz0 transformer are also applicable to the Dz10 trans-

former.

2.2.2.7 The single-phase transformer

Refer to sec. 2.3.5.1 for details regarding the single-phase transformer model, and to sec. 2.3.6.1

for the generalisation reflecting the tap changer mechanism.

Tr1 = [

[x0, x1, x2, . . . , x13, x14],

[y0, y1, y2, . . . , y13, y14]

]

0 : Primary node number I (a complex number)

1 : Secondary node number J (a complex number)

2 : Parameter ckt used to differentiate branches connected between the same buses (a non-

negative integer).

3 : Name of the transformer (a string)

4 : Primary winding impedance Z1 (puΩ)

5 : Secondary winding impedance Z2 (puΩ)

6 : Magnetizing admittance Ym (puS)

7 : Minimum primary transformation ratio a1min

8 : Primary transformation ratio a1 (initial value)

9 : Maximum primary transformation ratio a1max

10 : Secondary transformation ratio a2

11 : Number of taps nt (a nonnegative integer)

12 : Controlled node number (a complex number)

13 : Minimum allowed voltage modulus at the controlled node Vmin (pukV)

14 : Maximum allowed voltage modulus at the controlled node Vmax (pukV)
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Remarks:

a. Assigning a value of ‘0’ to the controlled node number field specifies that the transformer

does not have a tap changer.

b. In the current version of the program, only the primary or secondary node are accepted as

valid controlled nodes. The regulation of voltage at distant nodes may be implemented in a

future version of the program.

c. Refer to sec. 2.1.2 of this appendix regarding how node numbers should be specified as

complex numbers.

d. The number of taps must be a nonnegative integer. If a positive decimal number is entered,

then only its integer part is kept.

2.3 The zigzag earthing transformer (shunt component)

Refer to sec. 2.3.7 for details regarding the zigzag earthing transformer model.

TrZg = [

[x0, x1, x2, x3, x4, x5],

[y0, y1, y2, y3, y4, y5]

]

0 : Bus number (a nonnegative integer)

1 : Parameter ckt used to differentiate multiple zigzag earthing transformers connected be-

tween the specified bus and the ground (a nonnegative integer)

2 : Name of the transformer (a string)

3 : Winding impedance Z (puΩ)

4 : Magnetizing admittance Ym (puS)

5 : Grounding impedance Zn (puΩ)

2.4 Regulation of transferred power and/or frequency

The following data item provides the necessary parameters to evaluate the regulation equation

εp f = ap(PT −PT sch)+a f ( f − fsch)

presented in sec. 2.5.4.

The power and frequency regulation model is selected by specifying the data item regfPT.

Otherwise, the classic model is assumed.

regfPT = [af, fsch, ap, PTsch, i0, j0, ckt0, w0, . . . , in, jn, cktn, wn]
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af : Coefficient of the gap in frequency (puMW3φ/puHz)

fsch : Scheduled frequency (puHz)

ap : Coefficient of the gap in power transferred. Specifying the null value (ap = 0) implies

a strong regulation in frequency so as to meet the scheduled frequency constraint. In

that case, the following parameters do not need to be specified (they are ignored by

the program).

PTsch : Scheduled transfer of power between two areas of the electric network (puMW3φ )

i : Primary three-phase bus number of a tie branch (a nonnegative integer)

j : Secondary three-phase bus number of a tie branch (a nonnegative integer)

ckt : Parameter used to differentiate tie branches connected between the same buses i and j
(e.g. given two branches that connect between i0 and j0, the first one may be assigned

ckt = 1 and the second one ckt = 2) (a nonnegative integer).

w : Index that reflects the reference direction of power transfer; a value of +1 indicates

that positive power flows from bus i to j, and vice versa for a value of −1.

Remarks:

a. Only three-phase power transfer is accepted. Therefore, i and j label three-phase buses.

Power related units are assumed to be three-phase (denoted by 3φ ).

b. An arbitrary number of tie branches can be specified. In the sample data list above, n tie

branches are implied, with n corresponding sets of i, j, ckt, w parameters.

c. In the power calculations, power is taken to enter a tie branch at its bus i.

d. If several tie branches are specified, w may be used to vary artificially the importance of

its associated branch with respect to the total power transferred. In other words, the total

power transferred is the sum of the products of w and the power transfer per tie branch.

2.5 Initial network frequency

freq = [fi, fbase]

fi : Initial network frequency (Hz) (60Hz by default)

fbase : Base frequency (Hz) (60Hz by default)

This data item is optional.

2.6 Initial value of the power insufficiency distributed amongst the generators

Refer to the generator model presented in sec. 2.5.2.
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Pr = x

x : Initial value of the total active power insufficiency distributed amongst the generators

(puMW1φ ) (by default, Pr = 0)

Remarks:

a. The power insufficiency is expressed in single-phase pu (denoted by 1φ ).

b. This data item is optional.

2.7 Base power

Sbase = x

x : Base power (MW or MVar)

This item is reserved to implement the report of power in MW and MVar in a future version of

the program. Currently, the power is reported in pu.

2.8 A few syntactic remarks

- Comments are preceded by the sharp symbol (#).

- A complex number in cartesian form is written by juxtaposing its imaginary part and the

letter ‘j’ (placed on the right), e.g. 1+2j. The letter ‘i’ cannot be used to that effect.

- The bus data, the branch data, and the zigzag earthing transformer data each take the form

of a list of lists. A list consists of a set of elements separated by commas, and bounded by

square brackets.

3. Launch command

The program can be launched from the command prompt (terminal) using the following syntax:

C:\path_to_nr3r> nr3r filename options

filename : Name of the data file, including or not its path relative to the location of nr3r
(in quotation marks if necessary)

options : t to activate the transformer tap changing functionality;

a to display only the phase-a voltages of the three-phase buses, and all

single-phase bus voltages.

NB Options must be specified in a single term (not separated by spaces).
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Remarks:

a. The program can be called by including or not its extension, i.e. nr3r.exe and nr3r are both

valid.

b. This command structure is also applicable to the Linux package.

Example: C:\Users\saubert\Documents>nr3r test_files\nr3r_test_0.dat ta
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