La vitrine de diffusion des mémoires et thèses de l'ÉTS
RECHERCHER

Clay-containing polyolefin blends and nanocomposites for high voltage applications

Téléchargements

Téléchargements par mois depuis la dernière année

Plus de statistiques...

Eesaee, Mostafa (2019). Clay-containing polyolefin blends and nanocomposites for high voltage applications. Thèse de doctorat électronique, Montréal, École de technologie supérieure.

[img]
Prévisualisation
PDF
Télécharger (8MB) | Prévisualisation
[img]
Prévisualisation
PDF
Télécharger (1MB) | Prévisualisation

Résumé

This thesis presents attempts made to prepare novel insulating materials based on polyolefin tuned through blending and nanotechnology for high voltage applications, mainly the insulating materials in high voltage power cables. An organically modified natural clay, montmorillonite, was used in different loadings as the nanoreinforcement to be dispersed in low-density polyethylene (LDPE) and polypropylene (PP). Furthermore, polystyrene-bpoly(ethylene-co-butylene)-b-polystyrene (SEBS) triblock copolymer was used as the secondary polymer to form an immiscible blend with the polyolefin to selectively accommodate and disperse the nanofiller.

A high degree of dispersion of clay platelets was observed when clay was incorporated into either LDPE or PP. Clay incorporation has led to a solid-like rheological behavior with a shoulder in storage modulus in low frequencies. The neat blends of polyolefin with SEBS were observed to have a co-continuous morphology. The addition of clay to those blends resulted in a decrease of the dispersed domains.

Dielectric spectra of nanocomposites clearly showed two main relaxation processes representing Maxwell-Wagner-Sillars (MWS) interfacial polarization process at low frequency and dipolar relaxation at high frequency. A new relaxation peak was observed for blend nanocomposites that was hypothesized to be related to the elastomer phase. The 3D network of clay in nanocomposites facilitates the charge carriers flow when subjected to high electric fields resulting in a higher DC conductivity comparing to polyolefin homopolymers. This was shown to enable the nanocomposites to prevent the accumulation of space charge by persistently allowing the temporary stored charges to flow across the material. However, at elevated temperatures the current flow exceeds a threshold above which high amount of charges are injected and as a result the electric field is heavily distorted. All nanocomposites showed significant improvement in the AC breakdown strength comparing to the neat polyolefin. The intercalated/exfoliated clay layers create a tortuous path for charge carriers to flow and thus distribute the electric stress and prolong the breakdown time. However, LDPE nanocomposites showed diminished DC breakdown strength most probably due to the thermal instability brought by clay.

Titre traduit

Mélanges et nanocomposites de polyoléfines contenant de l’argile pour des application à haute tension

Résumé traduit

Cette thèse présente les efforts faites pour préparer de nouveaux matériaux isolants à base de mélanges de polyoléfines au sein desquels sont insérées des nanoparticules pour des applications haute tension, principalement matériaux isolants dans les câbles haute tension. Une argile naturelle organiquement modifiée, la montmorillonite, a été ajoutée en différentes quantités dans le polyéthylène basse densité (LDPE) et le polypropylène (PP). En outre, un copolymère tribloc de polystyrène-b-poly (éthylène-co-butylène) -b-polystyrène (SEBS) a été utilisé comme polymère secondaire pour former un mélange non miscible avec la polyoléfine pour loger et disperser sélectivement la nanoparticule.

Un degré élevé de dispersion des plaquettes d'argile a été observé lorsque l'argile était incorporée dans du LDPE ou du PP. Ceci s’est traduit par une augmentation du module de stockage aux basses fréquences lorsque les matériaux ont été soumis à un cisaillement à petites amplitudes. Il a été observé que les mélanges de polyoléfines et de SEBS avaient une morphologie co-continue. L’ajout d’argile à ces mélanges a diminué la taille des domaines.

Les spectres diélectriques des nanocomposites ont montré de façon claire deux processus de relaxation principaux représentant le processus de polarisation interfaciale ou Maxwell-Wagner-Sillars (MWS) à basse fréquence et la relaxation dipolaire à plus haute fréquence. Un nouveau pic de relaxation a été observé pour les nanocomposites mixtes pour lequel l’origine a été assignée à la phase thermoplastique. Le réseau 3D de l'argile dans les nanocomposites facilite le flux des porteurs de charge lorsqu'ils sont soumis à des champs électriques élevés, ce qui se traduit par une conductivité DC plus élevée par rapport aux homopolymères de polyoléfine. Il a été démontré que cela permettait aux nanocomposites d'empêcher l'accumulation de charges d’espace en permettant aux charges stockées temporairement de circuler librement à travers le matériau. Cependant, à des températures élevées, le courant dépasse un seuil au-dessus duquel une quantité élevée de charges est injectée et le champ électrique résultant est fortement déformé. Tous les nanocomposites ont montré une amélioration significative de la résistance au claquage par rapport aux polyoléfines pures. Les couches d'argile intercalées / exfoliées créent un chemin tortueux limitant la mobilité des porteurs de charge et ainsi répartissent la contrainte électrique ce qui a pour effet d’augmenter l’endurance diélectrique. Cependant, les nanocomposites de à base de PEBD ont montré une diminution de la force de rupture en courant continu, probablement due à l'instabilité thermique apportée par l'argile.

Type de document: Mémoire ou thèse (Thèse de doctorat électronique)
Renseignements supplémentaires: "Manuscript-based thesis presented to École de technologie supérieure in partial fulfillment for the degree of doctor of philosophy". Comprend des références bibliographiques (pages 129-150).
Mots-clés libres: isolation haute tension, nanodiélectrique, mélange de polymères, intercalation / exfoliation, propriétés diélectriques, résistance à la rupture, accumulation de charge d'espace
Directeur de mémoire/thèse:
Directeur de mémoire/thèse
David, Éric
Codirecteur:
Codirecteur
Demarquette, Nicole R.
Programme: Doctorat en génie > Génie
Date de dépôt: 24 avr. 2019 17:47
Dernière modification: 24 avr. 2019 17:47
URI: http://espace.etsmtl.ca/id/eprint/2292

Actions (Identification requise)

Dernière vérification avant le dépôt Dernière vérification avant le dépôt