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CONSTRUCTION OF NACELLE POWER-CURVE FOLLOWING 

MARKOV'S THEORY 

POULIN, Jonathan 

ABSTRACT 
The standard procedure to constmct a power curve is the lEC standard. However, this model 
contains some flaws. In fact, by averaging the power inside a bin speed the power obtained 
isn't precise, since the power is directly affected by the turbulence intensity of the wind 
speed. Moreover, it requires long time to evaluate the influence of different settings with this 
method. The solution proposed in this thesis is to implement a novel method to construct a 
power curve, which is by following the Markov's theory. This method calculates the 
stationary power with a stochastic approach, which is more precise and should take less time 
than the standard procedure. Nonetheless, the construction of a power curve with the 
meteorological-mast (MM) anemometer isn't always feasible. In addition, the distance 
between the MM and the turbine can reduce the correlation of the wind speed read at the MM 
anemometer and the one which hit the blades of the turbine. Thus, to correct that, the 
construction of the power curve should be implemented on the nacelle anemometer. 

The final objective of this master thesis is to implement a Markov power-curve program, 
which will calculate the stationary power with the nacelle anemometer at each speed bin. 
Furthermore, this thesis will evaluate and optimise the parameters to obtain the best power 
curve following this novel method. Finally, the evaluation of the measurement time required 
to construct this type of power curve will be executed. 

Albeit the power curves obtained following this new method aren't stable, this thesis 
proposes the median to calculate the conditional moment, since the results are less affected 
by the turbulence intensity. Besides, it also proposes to average the wind speed over a period 
of two minutes, when using the nacelle anemometer, to eliminate the fast fluctuations of the 
wind speed due to the blade passage. Moreover, the utilisation of the data averaged over 
different periods of time doesn't change the result of the power curve. However, the time 
required to construct a Markov power-curve isn't affected by the averaging time of the data. 
Nevertheless, this novel method is a little bit faster than the lEC procedure. 

Further improvement should be done in the power-curve program. The software amelioration 
should make the resuUs more stable and more accurate. In addition, the required time to 
construct a Markov power-curve might decrease again. The first recommendation is to verify 
with more data sets the rotor-position filter effect, when using the nacelle anemometer to 
construct a Markov power-curve. The second recommendation could be to correct the second 
minimum problem when calculating the stationary power with the minimal potential. A 
method to correct that will be to optimize the relaxation-time interval to determine the drift. 



CONSTRUCTION O F NACELLE POWER-CURV E FOLLOWIN G 
MARKOV'S THEOR Y 

POULIN, Jonathan 

RESUME 

La procedure standard pour construire une courbe de puissance est la norme lEC. Toutefois, 
ce modele contient quelques faiblesses. Une de ses faiblesses est le fait de moyenner les 
puissances, ce qui engendre des erreurs puisque les puissances obtenues, sur la courbe de 
puissance, sont grandement influencees par I'intensite de turbulence de la vitesse du vent. De 
plus, cette norme pent demander beaucoup de temps pour evaluer 1'influence de divers 
parametres sur une eolienne. La solution proposee dans ce memoire est d'implementer une 
nouvelle methode, en suivant la theorie de Markov, pour calculer les courbes de puissance. 
Cette methode calcule la puissance stationnaire avec une approche stochastique, laquelle est 
plus precise et s'effectue en un plus court laps de temps. II arrive aussi que le calcul d'une 
courbe de puissance puisse etre impossible a effectuer avec I'anemometre a la tour 
meteorologique, il faut done creer une fonction de transfert pour I'implementer a 
I'anemometre a la nacelle de I'eolienne. 

L'objectif final de ce memoire est de creer un programme qui va constmire une courbe de 
puissance, avec I'anemometre a la nacelle, en suivant la theorie de Markov, tout en evaluant 
et opfimisant I'influence de divers parametres. Finalement, un autre objectif est I'analyse du 
temps minimum requis avec ce nouveau modele pour constmire une courbe de puissance. 

Bien que les resultats obtenus ne soient pas stables, ni parfait, ce memoire propose la 
mediane pour calculer le moment conditionnel, puisque les resultats sont moins affectes par 
I'intensite de turbulence. Par la suite, il propose aussi de moyenner les vitesses du vent sur 
une periode de deux minutes, lorsque la vitesse du vent est lue sur I'anemometre a la nacelle, 
afin d'eliminer les fluctuations rapide du vent causees par le passage des pales de I'eolierme. 
Cependant, le temps necessaire a la construction d'une courbe de puissance en suivant la 
theorie de Markov n'est pas affectee par les donnees moyennces a differents intervalles de 
temps. Par contre, cette nouvelle methode pent constmire une courbe de puissance en un 
temps plus rapide que la norme lEC. 

De plus amples ameliorations doivent etre effectue dans le programme qui constmit la courbe 
de puissance avec Markov. En fait, I'amelioration du programme permettrait d'obtenir des 
resultats plus stables, et done plus precis. Par le fait meme, cette amelioration pourrait faire 
en sorte d'effectuer une courbe de puissance en un temps plus court. La premiere 
recommandation est de verifier I'impact du filtrage pour la posifion du rotor, avec un plus 
grand nombre d'eoliennes. La deuxieme recommandation est de corriger I'apparition du 
deuxieme minimum. Une methode pour le corriger est d'optimiser I'intervalle du temps de 
relaxation. 
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INTRODUCTION 

In recent years, new demand for cleaner and renewable energy sources has arrived, since the 

pollution has became a global waming, with his non-desirable effect on the earth, to most of 

the population. Indeed, coal and oil energy, fuel emissions and others sources of pollution 

have a negative impact on globe health. The planet has the advantage to produce natural 

energy, and one of them comes from the wind, which can be found anywhere around the 

world. 

Today, more than 74 GW of wind energy are installed all around the worlds, which represent 

over 100 000 wind turbines in 70 countries [5]. Furthermore, the low cost of wind energy, 

which is less expansive than the coal, oil and nuclear, is a favourable element to continue to 

investigate in this field. In fact, it costs approximately 3,5 to 4 cents per kilowatt hour and 

declining [3]. 

Introduction to wind turbine 

The production of wind energy is done by the exploitation of a wind turbine. Basically, when 

wind hits the blades of the turbine, it creates a rotation of the rotor, and this rotation coupled 

with the torque produce the power. Afterwards, this mechanical power is transformed in 

electrical power by a generator. 

The wind power is a cubic fiinction of the wind speed. However, the turbine isn't working at 

really low wind speed due to the fact it will cost more electricity that it will produce. 

Therefore, the mrbine start-up occurs when the wind speed reaches a point, where there is 

enough energy into it to efficiently use the turbine, which is referred to as the cut-in wind 

speed. Once the turbine has reached the cut-in wind speed, its power will increase with a 

cubic relation of the wind speed, until it attains the rated power. The rated power is the power 

capacity of the turbine. Once it is reached, the power will stay the same, even if the wind 

speed continues to increase. This is a preventive measure, since the turbine stresses would be 



too high if the power would continue to increase. For the same reason, the turbine will stop if 

the wind speed is too high, which is called the cut-off wind speed. 

Objectives an d methodolog y 

Today, the wind-energy companies need to follow the lEC procedure to constmct a power 

curve. A power curve is a curve which expresses the power of the turbine in function of the 

wind speed. However, this standard procedure (lEC) has some flaws, since it can take some 

considerable time in order to constmct power curves. Moreover, by utilising an averaging 

method, like the lEC does, it is not accurate to calculate the power since it is a cubic function 

of the wind speed. Consequently, the measurements of different settings are long and the 

results aren't precise. 

To avoid the seasonal variation when evaluating different settings and to reduce costs, these 

problems should be solved. One of the solutions is to evaluate a new method to constmct a 

power curve. The method analysed in this master thesis is the constmction of a power curve 

following Markov's theory. This method is a stochastic evaluation of the power curve. 

However, a problem occurs when using this method because it requires data averaged over a 

short period, and also because the turbine can be far away from the meteorological mast 

(MM). Thus, the correlation between the MM anemometer and the power output of the 

turbine is reduced or lost. Furthermore, the utilisation of the MM anemometer isn't always 

feasible, because it is too far away of the turbine, or the terrain is highly complex. For all 

these reasons, the analysis should be implemented on the nacelle anemometer. 

This thesis proposes a program which can calculate a power curve with this novel method. In 

addition, it also recommends a transfer function to correlate the wind speed from the MM 

anemometer to the nacelle anemometer, with the respect of Markov's theory. 



Thesis structure 

In order to have a better understanding of the thesis, the objectives, the problems and the 

results; the description of the thesis stmcmre is explained here. 

In Chapter 1, a literature review, of what was made before in this field, is done. The 

standards and the results of the previous research from different contributors are presented. 

Moreover, the lEC flaws are exposed and proved, and a short introduction of the novel 

theory is done to acquire basic knowledge. 

Then, Chapter 2 will demonstrate the mathematical model of a power curve constmcted with 

the Markov's theory. Therefore, the equations will be shown and the method to determine 

different coefficients will be revealed. 

Next, Chapter 3 will introduce the wind turbines analysed in this master thesis. 

Consequently, the location of the wind farms, the operating data and the limitation of the 

analysis on those turbines are described. 

After that. Chapter 4 will analyse the influence of each parameter to constmct a Markov 

power-curve with the MM anemometer. In fact, an optimisation of each parameter is done to 

determine the best power curve for all turbines studied. 

Chapter 5 will optimise the parameters to constmct the best Markov power-curve, but this 

time with the nacelle anemometer. 

Afterwards, Chapter 6 will only validate the best parameters with other sites or turbines. 

Therefore, power curves following Markov's theory will be constmcted with optimised 

parameters of others turbines and data sets, to verify the quality of the power curve for those 

sites or turbines. 



Finally, Chapter 7 will determine the minimal amount of data required to constmct a good 

power curve with the nacelle anemometer and compare this result with the lEC standard. 



CHAPTER I 

LITERATURE REVIE W 

The constmction of a power curve for a specific site is well known and well defined. When 

constmcted, this power curve is used to determine the Annual Energy Production (AEP) of 

the site. However, the constmction of a power curve requires data collection over a certain 

period of time like power, wind speed, air density, wind direction, etc. This chapter presents 

a literature review of the standard procedure to constmct a power curve on wind farms, the 

flaws of the standard procedure and a new method to constmct a power curve. 

LI Internationa l Electrotechnica l Commissio n (lEC ) standar d 

The International Electrotechnical Commission (EC) is a worldwide organization for 

standardization comprising all national electrotechnical committees. The objective of lEC is 

to promote international co-operation on all questions concerning standardization in the 

electrical and electronic fields [9]. This committee is therefore present in wind-energy 

technology, where their standards are applied all around the world. 

The official method to constmct a power curve is explained in one of the lEC standard. 

Wind-farm and wind-mrbine companies are recommended to follow this standard, otherwise 

customers won't have any reference when analysing which companies have the best turbines 

for their projects. 

There are two different lEC standards in the wind-energy industry used to constmct power 

curves. The first one (lEC 61400-12-1) is a standard utilised when the energy calculated at 

the turbine is made with the MM anemometer, while the second one (lEC 61400-12-2) is a 

standard utilised when the energy calculated at the turbine is made with the nacelle 

anemometer, which is normally positioned on the top of the wind turbine. 



1.1.1 Performanc e tes t on a wind turbine 

The performance test is used to verify if the output power giving by the turbine is the same as 

what was defined in the manufacturer-customer contract. This validation requires a few steps. 

Firstly, it is required to find a location for the MM. The second step is to determine the 

measurement sector. Thirdly, the measurements can be done and the wind speed needs to be 

normalized with respect to air density. Then, the power curve, the AEP and the power 

coefficient can be calculated. 

Meteorological-mast location 

When positioning the MM, it should not be installed too close of the wind turbine, because 

the wind speed will be influenced. However, it should neither be installed too far away from 

the mrbine, since the correlation between the wind speed and the electrical power output of 

the wind turbine will be reduced. 

The ideal distance to which the meteorological mast can be installed from the turbine is 2,5 

times the rotor diameter (D)  of the wind turbine. However, it also can be installed at a 

distance between two and four times the rotor diameter, from the wind mrbine. In fact if the 

MM is too close of the turbine, then the wind speed read at the MM anemometer might be 

influenced by the blade passage, while if the MM is too far of the turbine then the correlation 

between the MM and the turbine could be lost. Most of the times, the best meteorological-

mast position will be upwind of the turbine in the direction where the most dominant wind is 

expected to come during the test [9]. 

Measurement sector 

Due to the MM being in the wake of the wind turbine for certain sectors, it is necessary to 

exclude those sectors during the test. Indeed, when the wind passes trough a turbine, it affects 

its speed. Consequently, the wind speed obtained at the MM isn't the real wind speed. Figure 



1.1 shows the sectors which need to be excluded when the turbine is situated at a distance 

from the MM of 2, 2,5 and 4 times the rotor diameter. 
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Figure 1.1 Requirements as  to distance of the meteorological mast and 

maximum allowed  measurement sectors [9]. 

However, those sectors might be insufficient when others turbines or significant obstacles are 

present on the wind farm. In fact, those obstacles affect the wind speed, so the measurement 

sector should be reduced. The distance (Le)  between the obstacle and the meteorological 

mast, the equivalent rotor diameter (De) and the size of the obstacle are the dimensions to be 

taken into account. If the obstacle isn't a wind turbine, then the equivalent rotor diameter 

should be calculated. 

D =.2V . 
h+K 

(1.1) 



Afterwards, with the equivalent diameter and the distance, the disturbed sector of the 

obstacle can be defined. 

2 5D 
a = 1.3arctan(-—^-l-.15)-l-10 (1.2) 

In the equation (1.2), a is the additional sector to be excluded. The additional sector excluded 

also can be found with the graphic of Figure 1.2. 
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Figure 1.2 Sectors to exclude due to wakes of neighbouring and operating wind 
turbines and significant obstacles [9]. 

Data normalization 

In order to execute a performance test following the lEC standard, it is necessary to average 

all variables measured over ten minutes. Therefore, the air density, the pressure, the wind 

speed, the power, and other variables are averaged on a period of ten minutes. However, the 

data collected aren't normalized. In fact, the calculation of the power in function of the wind 

speed is given by [11]: 



In the equation (1.3), the power is in funcfion of the wind speed, but is also depending of the 

air density. The air density is in function of the atmospheric pressure and the outside 

temperature [9]. 

^ ^ -̂ lOmin (1.4) 

•'^O-'lOmin 

Because the air density isn't a constant, it is required to normalize the data to the sea level air 

density (po), which is 1,225 kg/m^ Moreover, GE's wind turbines are with active power-

control. In that case, the normalization should be applied to the wind speed, according to the 

lEC procedure. However, if the turbines are with passive power-control, then the 

normalization should be applied to the power output [9]. 

V =V 
'n " ^ lOmi n 

^Ao ^ 
1/3 

mm 

V A  J 

(1.5) 

Wind-turbine performances 

The turbine performances are characterized by the calculation of the power curve, the AEP 

and the power coefficient. According to the lEC standard, those measures of performance are 

determined by applying the method of bins. The first step in applying the method of bins 

consists of calculating the mean value of the power and the wind speed at each 0,5 m/s bins 

for the normalized data sets [9]. 

1 v.=-!-y'v . (1.6 ) 
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P-—TP-
(1.7) 

Then, it is possible to calculate the annual energy production from the wind turbine. In order 

to do that, a Rayleigh distribution is used as the reference wind speed frequency distribution 

[9]. 

AEP = N,Y^'jF(V,)-F(V,^,)] fP.,+P i - l '  • * / (1.8) 

F(F) = l-exp 
V 

, V 

^2^ (1.9) 

Finally, the power coefficient can be calculated with equation (1.10). At rated power, the 

power coefficient will drop significandy with the respect to equation (1.10), since the wind 

speed is increasing while the power stays constant. 

C . „ = j 
PoAV,' 

(1.10) 

If we want to utilise the nacelle anemometer to constmct a power curve, the correlation 

between the nacelle anemometer and the MM anemometer should be done following the lEC 

61400-12-2 procedure [12]. This correlafion is done because the wind is affected by the blade 

passage. This correlation can be executed by following the bins method. In reality, the real 

wind-speed, from the meteorological-mast anemometer, is in function of the nacelle wind-

speed. Therefore, at each bin speed a linear regression is done between those two wind 

speeds. 



II 

1.2 lE C flaws 

Even though the only standard method to calculate a power curve is the lEC 61400-12-1 

procedure, this method contains some flaws. Indeed, an lEC power curve cannot be 

constmcted before the data base reaches 180 hours [9]. Therefore, the performance test can 

be long, since the wind isn't always in the measurement sector and the turbine might not 

work properly for a certain period of time. 

Moreover, averaging the power and the wind speed gives imprecision because it is not a 

linear function. In fact, the power is a cubic fiinction of the wind speed, as shown in equation 

(1.3). Consequently, the power curve is obtained from those measurements by ensemble 

averages denoted as (y{t))-^(^P(V(t)))  [1]. The nonlinearity of this power curve is also 

spoiled by mrbulent winds at the specific turbine site, which is caused by the obstacles, 

weather, topography etc. The turbulence of the wind is described by the turbulence intensity 

(TI). 

TI = aJU (1.11) 

The mrbulent winds aren't considered in the standard procedure and lead to the following 

inequality: 

p({V(t)))^{P(V(t))) 

Therefore, if we focus on the instantaneous electrical wind-turbine power, instead of the 

ensemble averages we thus obtain [1]: 

P(t) = Pf^(V) + p(t) (1.12) 
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Where Pfix(V)  denotes the stationary power output as fiinction of the wind speed and p(t) 

denotes the respective temporal flucmations around this stationary power output. The 

performance test is utilised to verify if the turbine gives the power it is suppose to give at a 

certain wind speed. Consequently, the power of interest is the stationary power, instead of the 

average power (P(t)),  since this power doesn't include or is less influenced by the wind 

turbulences, pitch-angle changes, shutdown states, or others non-desirable effect, which 

cause the scatter plot to be greater. A method to obtain numerically the stationary power 

curve is to utilise Markov's theory, which is described by a generalised one-dimensional 

Langevin equation. The mathematical model of those equations is demonstrated in the 

Chapter 2. 

1.3 Marko v process 

In order to understand the works explained in this chapter, an introduction of Markov process 

is described here. In fact, GE's and the University of Oldenburg works explain how they 

have constmcted a power curve following Markov's theory. Therefore, a brief explication of 

Markov process is required. 

The Markov process can be applied in different applications, like the physics, the statistics, 

the electrics or the bioinformatics. First, a Markov property is a stochastic process, with also 

the conditional-probability of the distribution of future states of the process, and this 

conditional-probability depends only of the present state and not on any past states [19]. 

Thus, the distribution of fijture states depends only of the present state and not how it occurs 

at the current state. Therefore, the Markov process is a memory-less process [13]. More 

details on this property will be done later in the Chapter 2, and also the equations of this 

process will be explained. 

1.4 GE' s works 

The Wind-Energy division of General electric has developed a software to create simulated 

data. They also made other software to constmct a power curve following Markov's theory. 
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A master thesis has been written on the subject by a student from GE and the title of the 

thesis is: "Characterization  of  the wind  turbine  power  performance  curve  by  stochastic 

modelling" [13]. The creation of simulated data is required to validate the power curve 

obtained with the Markov software. In fact, the simulated-data software will create data 

around a theoretical power-curve. Therefore, to validate the Markov software, the power 

curve obtained must fit with the theoretical one. 

The simulated data were created following the Omstein-Uhlenbeck equations [13]. This 

equation creates the simulated data of the power and the wind speed in function of the 

theoretical power curve, which is demonstrated by the equation (1.13) and (1.14). The 

variable P,h  is the theoretical value of the power in function of the wind speed. Therefore, it 

is the stationary power at which the mrbine would find equilibrium [14]. 

p..^ = p.-r[P„-p,,(K)]  (1.13) 

"„.i = " „ - £ • [ " „ - f ^ ] + # - r „ (1.14) 

Figure 1.3 illustrates the results obtained with their software. The simulated data (red) are 

created around the theoretical power-curve (yellow), which is a cubic function of the wind 

speed until the rated power. 
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Figure 1.3 GE's simulated data created around a  theoretical power-curve [13]. 

However, the creation of simulated data was done by assuming the relaxation parameter as 

constant. Like mentioned in the GE's student thesis, further improvement can be made by 

setting the relaxafion parameter (y),  of the equafion (1.13), in funcdon of the wind speed and 

his fime derivafive [13]. By setting this parameter as a non-constant, it will include another 

parameter which is the dynamic response of a turbine, and the simulated data will be more 

representative of the real behaviour of a turbine. 

After the creation of the simulated data, they made a program to construct a power curve 

following Markov's theory. However, this program didn't give good results with those data 

since the power curves obtained with the simulated data didn't fit with the theoretical power-

curve. Moreover, the power curves obtained for the real data didn't give consistent results. 

Those assertions lead to the conclusion that the Markov and the simulated data software need 

to be improved. Mainly, in this master thesis, Markov power-curve software will be created 

in order to improve the previous software from GE. 
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1.5 Universit y of Oldenburg's contribution 

1.5.1 Simulated-dat a and power-curve programs 

The University of Oldenburg also has made some research in this novel method to constmct 

a power curve. They have created a program to calculate the stationary power curve 

following Markov's theory. To confirm their new power-curve software, they also have 

created their simulated-data software. But at the opposite of GE's simulated-data software, 

they didn't assume the relaxation parameter as constant when creating the simulated data. 

After that, they have constmcted a Markov power-curve around the theoretical one, with 

their new software, like illustrated in Figure 1.4. The results obtained have validated their 

two programs, since the combination of their power curve and their simulated data gives 

acceptable results. With the permission of the University of Oldenburg, we will utilise their 

simulated data to validate and determine the best parameters to constmct a power curve 

following Markov's theory. Thus, we will assume that their simulated data are perfect. 

However, their power-curve software isn't available, which is one of the reasons why a new 

software is created in this master thesis. 
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Figure 1.4 Power curve obtained by the University  of Oldenburg with their 
simulated-data and power-curve programs [6]. 

1.5.2 Article s made by the University of Oldenburg 

The University of Oldenburg also has produced several arficles on the subject. Mainly, those 

articles expose the lEC flaws and propose a solution to correct those flaws, which is to 

constmct the power curves by a stochastic approach [1][2][7]. They demonstrate the 

mathematical model they utilise to construct this power curve and developed a software to 

constmct it with good results for the simulated and the real data. 

They also have proved that the Markov power-curve, which is the red curve in Figure 1.5, 

isn't affected by the turbulence intensity, which is not the case with the lEC standard. Figure 

1.5 shows also that the lEC power curves are affected by the turbulence intensity (0, since 

the rated power is decreasing when the turbulence intensity is increasing. Moreover, in this 

graphic the Markov power-curve does fit exactly the theorefical power curve, which is not 

shown but explained by the authors of [7]. 
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Figure 1.5 Power curves obtained for a simulated data set [7]. 

The explanation of the literature review was necessary in order to introduce the subject 

analysed in this thesis. This chapter explained the standard method, the flaws of this method, 

the introducfion of the Markov's theory, and also some works done by GE and the University 

of Oldenburg. With all these elements, it is now possible to look at the mathemafical model 

of the Markov's theory, by applying Langevin equafion. 



CHAPTER 2 

MATHEMATICAL MODE L 

2.1 Langevi n equatio n fo r Brownian motio n 

In statistical physic, a Langevin equation is a stochastic differential equation describing a 

simple and well known Brownian motion in a potential [18]. Consequently, before analysing 

a Langevin equation, we will first discuss the Brownian motion of particles in its simplest 

form. A Brownian motion is a random movement of particles suspended in a fluid and it is 

also called a Wiener Process [16]. If a small particle is immersed in a fluid, then a friction 

force will act on the particle. The Stoke law gives the equation for this damping force [15]. 

Fc =-y^v (2.1 ) 

Also the Newton second law express that the summation of forces on an object is equal to the 

mass of this object muhiphed by his acceleration. 

1'̂ = mv (2.2) 

Therefore, the expression of motion for the particle of mass (m)  without any additional forces 

is given by: 

mv + Xv = Q .23) 

and the relaxation time (T) is defined as: 

r = ^ (2.4) 
X 
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However, this equation is valid only when the mass of the particle is large enough so its 

velocity due to thermal fluctuations is null or negligible. The mean energy of the particle in 

one dimension is given by the equipartition law [17]. The original concept of equipartifion 

was that the total kinetic energy of a system is shared equally among all of its independent 

part once the system has reached thermal equilibrium [17]. 

^m{v') = hj (2.5) 

The equation (2.3) needs to be modified with the respect of equation (2.5), which leads to the 

correct thermal energy. The correction consists in adding, on the right-hand side of (2.3), a 

fluctuating force (Fj),  which is a stochastic or random force [15]. 

F(t) =  F^{t) + F^(t) (2.6) 

The fluctuating force occurs because the problem isn't treated exactly. If the problem was 

treated exactly, the coupled equations of motion for all the molecules of the fluid and for the 

small particle would be solved, and then, no stochastic force would occur. In reality, because 

of the large number of molecules in the fluid (in the order of 10^ )̂, these coupled equations 

generally can't be solved. 

Therefore, the force (Fj)  varies from one system to the other, and one thing to do is to 

consider the average of this force for the ensemble. The fluctuating force per unit mass (F), 

which is called the Langevin force, is obtained by dividing the force (Fj)  by the mass. We 

also divide all the remaining terms of the equation (2.6) by the mass and we thus obtain the 

equation of the Langevin force. 

v + -v =  Y(t) (2-7) 



20 

The first assumption of this force is that its average over the ensemble should be zero, since 

the equafion of motion for the average velocity is given by the equation (2.3). 

( r ( r ) ) -0 (2.8) 

If two Langevin forces at different times are multiplied, we then assume that the average 

value is zero at time differences (t'-t),  for a time larger than the duration of a collision (TQ). 

This assumption seems to be reasonable, since the collisions between the molecules of the 

fluid and the particle are approximately independent. 

{r{t)rit')) = o fo r \t-t'\^T^i 0 (2.9 ) 

Nevertheless, the duration time of a collision is usually much smaller than the relaxation time 

(T) of the velocity of the particle. Therefore, the limit of TQ ^ 0 should be taken as a much 

more reasonable approximation. 

{r(t)r(t')) =  qS{t-t') (2.10) 

Risken describes in reference [15] the apparition of the delta (S)  function. He states: "The 5 

function appears because otherwise the average energy of the small particle can't be finite as 

it should be according the equipartition law" shown at the equation (2.5). The variable (q) 

describes the noise strength of the Langevin force. In fact, the noise strength is the variable 

which describes the size of the scatter plot. More the strength is high, more the scatter plot 

will be large. 

q = 2AkT/m^ (2.ii) 

Once the Brownian motion is explained, the Langevin equation can be introduced. The form 

of the general non-linear Langevin equation, for one stochastic variable (Q, is given by: 
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c^h(c,t)+g(c,t)nt) (2.12 ) 
The noise strength may be absorbed in the function g,  while the fiinction h  is the 

deterministic drift. Also, the Langevin force is again a Gaussian stochastic variable with zero 

mean and delta correlated fiinction. However, a formal general solution for the stochastic 

differential equation (2.12) can not be given [15]. 

2.2 Fokker-Planc k equation 

The introduction of the Fokker-Planck equation is necessary to better understand the origin 

of the equations and variables, which will lead to constmct a power curve following 

Markov's theory. 

The probability density of the stochastic variable can be calculated with the Fokker-Planck 

equation. The Kramers-Moyal expansion coefficients of this Fokker-Planck equation are 

giving by [15]: 

Therefore, the solution of (2.12) is giving by C  (t +  r) where r > 0. The differential equafion 

(2.12) is then written in the form of an integration to derive these Kramers-Moyal expansion 

coefficients. 

at+r)-x= \[h(at'),t')+g(aannn]dt' (2.i4 ) 

After some manipulafions of the equation (2.14), giving by [15], and with the limit x —> 0 we 

thus obtain for the drift coefficient: 

D^\x,t) =  h(x,t) +  ^^g(x,t) (215) 
dx 
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The term D ' ' contains the deterministic drift and another term which is called the noise-

induced drift. 

^ : i - ,w = ^ ^ ( x , 0 = {|-^<^'(x,0 (2.16) 
ax 2  ax 

2.3 Stochastic processes 

Let's start the stochastic processes by defining that the probability that the random variable C 

is equal or less than x is called Q (C'^x). Since the variable Cis also real, then Q (CS '^)  = \. 

Therefore, the derivative of Q with respect to x is the probability density function (W)  of the 

variable C 

W^(x) = j-Qi^<x) =  {S(x-^)) (2-17) 

Also, by assuming that Q  is differentiable, the probability dQ  to find the continuous 

stochastic variable ^ in the interval (x < C<x + dx) is seen as follow: 

Q{^<x +  dx) -Q(^<x) =  — Q(^ < x)dx = W, (x)dx (218) 
dx 

The probability density of the random variable C at time /„, under the condition that the 

random variable at the time /„-! < /n has the sharp value Xn-i, is defined by the conditional 

probability density. 

Q(Xn^t„\x„_„t„_,',...',X„t,) = {S(X„-^(t„)))  I 
|(r„-l)=x„-l ^(r|)=x , 

tn>t„-^> •••>{, (2.19) 
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2.4 Marko v property 

A Markov process is a type of stochastic process. The process described by the Langevin 

equation (2.12), with 8-correlated Langevin force, is a Markov process. Its conditional 

probability at time t^ depends only on the value at the next earlier time. However, if r(r) is no 

longer (5-correlated, the Markov property is destroyed. 

2(^„.'J-Vi.'„-i;-;^p^i) = 2(^„ ' ' J^«- i>d) (2.20) 

The interpretation of equation (2.20) may lead that there is only a memory value of the 

variable for the latest time. The arbitrary of the time difference /2 - 'i of the conditional 

probability Q(x2,t2\x\,ti)  of a Markov process, affects the dependence of Q  on xi. Indeed, if 

the time difference is large, then the dependence will be small, conversely if the time 

difference is infinitesimally small then the conditional probability will have the sharp value 

xi [15]. If  n  = 2 and the time difference is infinitesimally small, then the conditional 

probability will be giving by: 

limQ(x^,/j I X,,?,) = S(xj -Xj) (221) 

2.5 Coefflcient s estimatio n 

As seen in (2.13), the Kramers-Moyal expansion coefficients of the Fokker-Planck equation 

are giving by: 

D<"»(.T) = - l i m - M ' " ' ( x , r ) (2-22) 
n\ '•^ 0 T 

with the conditional moment (A/ ') 

M,"'(x,r) = (x,(r + r ) -x , (0 ) | . , „ . , (2.23) 
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Now the variable x can be replaced by Psiaie,  which is the power state in a certain bin speed, 

while X, can be replaced by P which is the power output of the wind turbine. In fact, there are 

multiple power states inside a certain bin speed. 

^ r (P.a,e  > r) =  {P(t + r) - />(/)>! ,„^^ (2.24) 

The expected power output of  Pstaie  is then calculated with the conditional probability density 

Q(P„+\, t  +  x\P„, t).  This conditional probability describes the probability of states Pn+\,  of 

the system variable Psiate,  at time t  + x with the condition that the system is in state P„ at time 

t[\]. 

The drift coefficient (D*'') is then obtained by dividing the conditional moment (M)  by the 

relaxation time (T) and then calculating the limit r —> 0. The drift can be explained as a force 

that acts on each power state inside a bin speed and it is directed toward the stationary power 

at this bin speed. For example, if we have a strong negative force, then the power state where 

the calculation has been done is much higher than the stationary power. On the other hand, if 

we have a small positive drift, then the power state is a little bit smaller than the stationary 

power. 

In order to calculate the drift coefficient, it is necessary to calculate the slope for an interval 

of r where we assume the process to be Markovian [7]. The Figure 2.1 shows an example of 

the conditional moment in function of the relaxation time at a certain power state. Therefore, 

the drift coefficient is the slope of the linear regression. 

; . ( l . (n .dM^^'iP...,^) 
^^^""^' ^^  (2.25) 
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Figure 2.1 Example of  conditional moment in  function of  the relaxation time (r). 

Then, the stationary power is found by the search of null crossing or the minimal potential of 

the deterministic coefficient D^^\Pstate)  [!]• The stationary power found with the minimal 

potential is defined as: 

C,™,n=min(-JD'"(/'_)^P,„J (2.26) 

Even if the search of zero crossing seems easier, the minimal potential doesn't cumulate 

errors like the fit of the linear regression. In fact, if there is a drift value which is offset of its 

supposed value, then the linear regression will fit to that error, while the minimal potenfial 

will be less affected. Therefore, theoretically this method is more accurate. As shown in 

Figure 2.2, and explained in thesis of GE's student [13], the minimal potential and the linear 

regression do not give the same result when calculating the stationary power at a certain 

power state. 
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Figure 2.2 Comparison of the minimal potential with the zero crossing to 
determine the stationary power output [13]. 

With the mathemafical model presented in this chapter, which contains the methods to 

calculate the conditional moments, the drift coefficients and the stationary powers, we will 

calculate the Markov's power curve, and analyse the impact of different parameters. This 

analysis will be shown in Chapter 4 for the MM anemometer and Chapter 5 for the nacelle 

anemometer. However, before doing any analysis, we will first introduce the turbine 

analysed in this thesis. 



CHAPTER 3 

WIND-TURBINES DESCRIPTION 

The data analysed in this thesis are all supplied by the wind-energy division of General 

Electric (GE). Those data are also from GE's wind turbines. GE is one of the world leaders in 

manufacturing and assembly wind turbines, with more than 7500 turbines installation, which 

produce more than 9800 MW [4]. 

Prior to constmction of a power curve following Markov's theory, we will describe the wind 

turbines to analyse. In this thesis there will be three wind farms and five wind turbines to 

evaluate. In this chapter the introduction of those wind mrbines is done. This includes the 

description of the turbines, the MM anemometer, the wind measurement sectors, the scatter 

plot of the power in fiinction of the wind speed, the location of those wind farms and more. 

3.1 Klondike-I I 

The Klondike-II site is located in the U.S.A. in Oregon state (see Figure 3.1). It has 50 

mrbines, which generate a total 75 MW of wind power, including one 1.5xle and forty-nine 

1.5sl. The turbine model analysed in this thesis will be the 1.5xle and it produces 1,5 MW at 

the rated wind speed, which is reached at 12,5 m/s. The cut-in wind speed of this turbine is 

3,5 m/s, while the cut-off wind speed is 20 m/s. The rotor speed is variable, (between 10,1 

and 18,7 rotation per minute (rpm)) and its diameter is 82,5 meters. The electrical frequency 

output of this turbine can be either 50 Hz or either 60 Hz to accommodate European and 

North American standard respectively. 

The output power of the turbine is recorded by a measurement system at a rate of 50 times 

per second. The data analysed in this thesis was obtained over a three weeks period from 

Febmary 5"* to Febmary 28"̂  2006. The anemometers for Klondike-10 are both Sonic for the 
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MM anemometer and for the nacelle anemometer. For the MM anemometer it is a Gill 

Windmaster P6032, while for the nacelle anemometer it is a Metek USA-1. 

Figure 3.1 Klondike-II site located in U.S.A. in the Oregon State. 

For the Klondike-ll site, the turbine analysed will be Klondike-10. This turbine is situated at 

a distance of 197 meters of the meteorological mast. The wind measurement sector is 

between 236 and 315 degrees. The scatter plot of the power in funcfion of the wind speed is 

shown at Figure 3.2. 
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Figure 3.2 Scatter plot of the power in function of the MM wind speed at an 
averaged time of 1 second for Klondike-10. 

3.2 Wietmarsche n 

The Wietmarschen site is situated in Germany (see Figure 3.3). ft is composed of mulfiple 

1.5sl turbines, which produces 1,5 MW of wind power at a rated wind speed of 14 m/s. The 

cut-in wind speed of those turbines is 3,5 m/s, while the cut-off wind speed is 20 m/s. Like 

Klondike-II turbines, the rotor speed is variable. In fact, it varies between 11 and 20,4 rpm 

and its diameter is 77 meters. The electrical frequency output of this turbine is 50 Hz, which 

can not be utilised in North America. 

The output power of the Wietmarschen turbines is recorded at a rate of 50 times per second. 

The data analysed in this thesis are obtained on a 19 days period, which was collected in 

December 2004. The anemometers for both Wietmarschen turbines are Sonic, while it is also 

the same for the MM anemometer. All anemometers do have a Gill Windmaster 1086M. The 

Wietmarschen turbines do also have a cheap cup anemometer at the nacelle, but we won't 

ufilise the data obtained from this anemometer in this thesis, since it is not as accurate as the 

Sonic anemometers. 
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Figure 3.3 Wietmarschen site located in Germany. 

For Wietmarschen site, the turbines analysed will be Wietmarschen-1 and Wietmarshen-2. 

Those turbines are at a distance of 269 and 185 meters respectively of the meteorological 

mast. The wind measurement sector for both turbines is between 218 and 318 degrees. The 

scatter plot of the power output in funcfion of the wind speed, for the Wietmarschen-1 

turbine, is shown at Figure 3.4. It can be noticed that the scatter plot is much larger for 

Klondike-10 turbine. Therefore, the Markov's theory will be tested, because it will be 

interesfing to study the behaviour of the power curve when the turbulence intensity is much 

larger than usual. This effect has been shown at Figure 1.5, when the lEC power curves were 

constructed at different turbulence intensity. 
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Scatter plot of the power in fiinction o f the wind speed for Wietmarschen-1 
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Figure 3.4 Scatter plot of the power in function of the MM wind speed at an 
averaged time of 1 second for Wietmarschen-1. 

3.3 Pretti n 

The Pretfin site is situated in Germany (see Figure 3.5). The turbines ufilised for this site are 

the same as the Wietmarschen-site ones (1.5sl turbines). All the parameters of Pretfin-site 

turbines are the same than the ones of Wietmarschen-site turbines. Unlike Wietmarschen and 

Klondike turbines, the output power of Prettin turbines is recorded at each second. The data 

analysed in this thesis are obtained over a 5 months period and was collected from June to 

November 2006. The anemometers for both Prettin turbines are the same than the ones from 

Wietmarschen turbines. Thus they are all Sonic anemometers of type Gill Windmaster 

1086M. Also, like the Wietmarschen turbines, the Prettin turbines do have a cheap cup 

anemometer at the nacelle, which we won't ufilise in this thesis. 
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Figure 3.5 Prettin site located in Germany. 

For Prettin site, the turbines analysed will be Prettin-4 and Prettin-5. Those turbines are at a 

distance of 369 and 291 meters respecfively of the meteorological mast, which is a long 

distance. Indeed, the locafion of the MM shouldn't be beyond four times the rotor diameter, 

which is 308 meters in this case. However, this long distance will test the Markov property, 

since the correlation between the wind speed read at the MM anemometer and the power 

output at the turbine will be reduced. Therefore, the scatter plot will be larger and the 

turbulence intensity wil l increase. 

The wind measurement sector is between 207 and 256 degrees for Prettin-4, while it is 

between 210 and 305 degrees for Prettin-5. The scatter plot of the power in funcfion of the 

wind speed, for the Prettin-5 machine, is shown at Figure 3.6. 
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Figure 3.6 Scatter plot of the power in function of the MM wind speed at an 
averaged time of I second for Prettin-5. 

Now, we do have a good idea of the turbines utilized in this master thesis, and we do know 

the differences between the equipments on each wind farms. The main difference is the 

measurement system of Klondike-10 and Wietmarschen turbines, which is not the same than 

Prettin turbines, since it can only collect the data once per second, while it is 50 times per 

second for the three others turbines. The data obtained from these equipments will be ufilized 

to optimize the Markov power-curves by evaluafing the effect of different parameters. 



CHAPTER 4 

POWER CURVE CONSTRUCTED WITH THE METEOROLOGICAL-MAS T 
ANEMOMETER 

Before constmcting a nacelle power-curve following Markov's theory, it is preferable to 

make it with the MM anemometer, since the wind speed isn't affected by the blade passage. 

Moreover, it is also important to constmct a power curve with the simulated data, because as 

shown in secfion 1.2, the stochastic power curve will not fit with the lEC power curve, so 

there won't be any reference to know if the Markov power-curve software is working or not. 

However, if simulated data are created following a theoretical power curve, like illustrated in 

Figure 4.1, then it will be possible to validate if the software and the novel theory are good to 

constmct a power curve. Thus, knowing that the software is good, the power curve made 

with real data will likely be good. 

In a perfect Markov power-curve we want to have a perfect cubic curve, which start from the 

cut-in wind speed until the rated power. This means if the curve constmcted with Markov 

theory doesn't follow perfectly a cubic curve, then the Markov power-curve isn't considered 

perfect. From the rated wind speed the curve should become horizontal until the cut-off wind 

speed. In fact, the theoretical power curve shown in Figure 4.1 is a good example of what we 

want to look for in a perfect Markov power-curve. 
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Scatter plot of the simulated data around the theoretical power curve 
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Figure 4.1 Scatter plot of the simulated data around the theoretical power-curve [6]. 

However, mulfiple differences are present between the real and the simulated data. The first 

difference is that the wind speed read at the meteorological-mast anemometer takes a certain 

fime before reaching the turbine. Moreover, the wind turbine doesn't react instantly to the 

wind speed fluctuation. In order to solve the turbine reaction, it is necessary to take a 

relaxafion time (r), for which the values will give an appropriate linear regression in the 

calculation of the drift, like shown at the Figure 2.1. The relaxation time used in this thesis, is 

between 5 and 15 seconds, according to the research made by the University of Oldenburg 

[8]. In this report, we assume that the simulated data react the same way than the turbine. In 

fact, by making this supposition the software utilised to calculate the Markov power-curve is 

the same for real and simulated data. 

Another difference is the apparition of holes when utilising the real data. Indeed, those holes 

are created either when the data at a certain moment aren't good, or when there is a period of 

time, more than the relaxation time, between the data recorded. The bad data appear because 

either the system of the turbine is malfuncfioning, the wind speed is outside of the 

measurement sector, or there is a sensor that is not working properly or other different 

reasons. Nevertheless, Markov's theory doesn't accept those holes in the data, since the 
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calculation of the moment needs to be done with the respect of the equation (2.24), in which 

the power differences need to be taken at each relaxation time. 

To lighten the report, only the power curves from the simulated data and Klondike-10 turbine 

are presented in graphic form. However, the analyses are also done for the four others 

turbines. The final results of the power curve for those turbines will be presented in the 

Chapter 6 to verify Markov power-curve efficiency. 

4.1 Defaul t power-curve 

To start the analysis, we will set a default power-curve. This default power-curve can be 

modified in further section depending on results obtained. Therefore, if we find out that 

parameter A is better than parameter B, then parameter A will be kept in all fiarther sections 

of this thesis. For the moment, the default power-curve is constmcted with: 

> the mean to calculate the conditional moment; 

> the minimal potential to calculate the stationary power; 

> ten power states at each bin speed; 

> the relaxation time constant between 5 and 15 seconds; 

> the bins speed set at 0,5 m/s; 

> the averaged fime of the data at 1 second. 

The flowchart of the Markov power-curve software is shown in the APPENDIX I. Figure 4.2 

and Figure 4.3 illustrate the default power-curve for the simulated data and for the 

meteorological-mast anemometer of Klondike-10 respectively. The power curve constmcted 

with the lEC standard, for the simulated data, is well under the theoretical one at the rated 

power, while the one made with the Markov's theory is much closer. This demonstrates the 

flaw, explained in section 1.2, of averaging instead of taking the stationary power. The power 

curve obtained for Klondike-10 with Markov's theory is obviously not good. Indeed, the 

power found at the bin speed of 6,25 m/s is too high of what it was supposed to be. In fact. 
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the power curve needs to follow a cubic curve before the rated power. Moreover, once the 

power curve has reached the rated power, the power curve following Markov's theory stops, 

which is another sign of bad power curve. 
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Figure 4.2 Default power-curve for the simulated data. 
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Figure 4.3 Default power-curve for the MM anemometer of Klondike-10. 
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In order to understand the problem which occurs at 6,25 m/s, it is required to go one step 

deeper into the problem. The stochasfic power has been calculated at this bin speed, where 

the potenfial is minimal in the equation of the drift in function of the power. Figure 4.4 

shows, with the linear-regression method at the bin speed of 6,25 m/s, that the stationary 

power should have been near 400 kW, since it crosses zero at this value. Conversely Figure 

4.5, with the minimal-potenfial method, shows that the minimum is close to 650 kW. 

Consequently, if the minimum in Figure 4.5 isn't in the proximity of 400 kW, then it 

signifies that this curve should have normally ascended faster than it did. Thus, this suggests 

that the drift at the power states of 579 kW and 720 kW would have been lower and then 

their potential would have been higher. 

4 

2 

0 

-2 

•'c 
Q 

-4 

-6 

-8 

-Tc 

Zero crossing with hnear regression metho d to determine the powe r 

- < ^ 

1 ^ Value of the drift at each power state | 

1 

"---^ 0 :  ; 1
—

 

1 ' ' 

)0 200 .̂ 00 400 500 600 700 800 900 idfio 1100 
Power (kW) 

Figure 4.4 Linear-regression method to determine the power at the bin speed of 
6,25 m/s for Klondike-10. 
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Figure 4.5 Minimal-potential method to determine the power at the bin speed 
of 6,25 mis for Klondike-10. 

It is now interesting to look at the calculafion of the moment in function of the relaxation 

time to understand the behaviour of a power state which has a bad drift value. For the 

example the power state of 579 kW at the bin speed of 6,25 m/s is ufilised. Figure 4.6 

demonstrates that the linear regression obtained with the relaxafion time between 5 and 15 

seconds doesn't fit well the distribufion of the moment in funcfion of the relaxafion fime. In 

that case it is normal that the slope, which is the drift, isn't good. Further works and analysis 

will be done in this thesis in order to correct those problems. Moreover, the recommendation 

secfion proposes that a new relaxation-fime interval should be found at some power states in 

order to obtain a good power inside a bin speed. However, this problem isn't present at each 

bin speed. Generally, when this problem occurs, it is easy to spot on the Markov power-

curve. For the moment, we will put our effort to increase the shape of the Markov power-

curve, and also to get some points beyond the rated power for the real data. 
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Figure 4.6 Conditional moment in function of the relaxation time at the bin 
speed of 6,25 m/s at the power state of 579 kWfor Klondike-10. 

4.2 Power-state s range fdter 

Yet, the calculation of the power curve following Markov's theory has shown that there are 

no points beyond the rated power. Indeed the power curve stops at the bin speed of 11,25 

m/s, like illustrated at Figure 4.3. The main reason of that is because the scatter plot isn't as 

large at the rated power, than anywhere before it. In fact, the sizes of the power states are 

variable from a bin to another, but are the same size inside a certain bin, and the power-states 

number is also constant. Therefore, if there are some data, for any reasons, which are a little 

bit offset of the scatter plot at the rated power, then the power-states size will adjust to that. 

Thus, there are less power states covering the data beyond the rated power and the number 

isn't enough to calculate the appropriate stafionary power at those bins speed. The extremes 

data in the scatter plot occurs when the measurement system record erroneous data, the 

turbine doesn't work properly, or there is high turbulence intensity on that turbine. 
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A way to correct that is to create a filter that will eliminate the extremes data at each bin 

speed to re-adjust the dimension of the power states. This filter is called the power-states 

range filter. For instanc6, if 10% of the data are filtered, then 5% of the maximum and the 

minimum power inside a bin speed will be removed to calculate the size of the power states. 

However, it is important to mention that the data removed in order to re-calculate the power-

states size are still kept to calculate the conditional moment. 

Figure 4.7 and Figure 4.8 show the analysis of the power-states range filter at 0%, 5% and 

10% for the simulated and for the real data respectively. The power-states range filter at 0% 

is, in fact, the reference power curve, which is the default power-curve established in section 

4.1. To lighten the graphics, the plot of the power curve at other percentage isn't shown, 

while the yellow dots show the powers removed to calculate the power-states size. 

Nevertheless, these graphics demonstrate that the power-states range filter is necessary to 

eliminate extremes powers, especially for real data, in order to constmct a good power curve. 

The best power curve found with this analysis, for all five turbines and the simulated data, 

occurs when around 15% of the data are filtered. Therefore, the new default power-curve will 

have the power-states range filter, which will filter 15%) of the data at each bin speed to 

calculate the power-states size. 
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Figure 4.7 Comparison of different power-states range filter for the simulated data. 
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Figure 4.8 Comparison of different power-states range fdter for the MM 
anemometer of Klondike-10. 

4.3 Metho d to calculate the conditional moment 

The basic method to calculate the condifional moment is to take the mean of the power 

differences, at a certain bin speed, at a certain power state and at a certain relaxafion time. 
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like shown in the equation (2.24). However, this method has some flaws, since the 

conditional moment might be greatly affected by extremes data, which might occur 

frequently on a wind turbine. Figure 4.9 illustrates the dispersion of the power differences 

and there is more dispersion on the left side than on the right side of the histogram. In that 

case, the mean will be affected to the left of the histogram, instead of being close to the 

highest amount of data. This section will compare this method with two others methods to 

calculate the condifional moment. 
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Figure 4.9 Histogram of the power difference for the bin speed of 9,25 m/s, for the power 
state of 1450 kW and for the relaxation time (T) of 5 seconds for Klondike-10. 

4.3.1 Media n 

The first method to compare with the mean is the median, since it is less affected by extremes 

data, than the mean. In fact, in a perfect Gaussian distribufion, the mean and the median will 

give the same value. However, when this distribution isn't perfect the mean and the median 

won't have the same value. For instance, the median won't be affected by the values at the 

extreme left or right, but only by the amount of points on each side, which is not the case 

when utilising the mean method. The comparison of the mean and the median has been done 

for the simulated data (Figure 4.10), for the MM anemometer of Klondike-10 (Figure 4.11) 
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and for Prettin and Wietmarschen turbines, which aren't presented here. The power curve 

constmcted with the mean is the reference power curve for simulated and real data. 

The comparison between the mean and the median shows approximately no difference for 

the simulated data, and the reason might be because these data are theoretical and we can 

assume that this is a perfect Gaussian distribution, and therefore there is no extremes data in 

that group. However, the power curve made with Klondike-10 did greatly improve with the 

median. In fact, the shape of the power curve is smoother and more cubic than the one 

constmcted with the mean to calculate the conditional moment. Moreover, others analysis 

has been done with Prettin and Wietmarschen and the median constantly gave better results 

than making the average of the power differences. Therefore, the median, when calculating 

the condifional moment, should replace the mean in the construcfion of the default power-

curve. 

Power curve constructed with simulated data 

Wind speed (m/s) 

Figure 4.10 Comparison of the mean with the median to calculate the power 
curve for the simulated data. 
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Power curve constructed with MM anemometer for Klondike-10 
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Figure 4.11 Comparison of the mean with the median to calculate the power 
curve for the MM anemometer of Klondike-10. 

However, we can see that the power curve constmcted with the median is a little bit lower 

than the one constmcted with the lEC standard. In fact this is normal at the start of the curve, 

because of the averaging effect of the lEC power-curve, but it should be higher close to the 

rated power. There can be mulfiple reasons it is not. Firstly, we know that the Markov power-

curve isn't perfect yet, so other parameters should be analysed in order to ameliorate this 

curve. And secondly, this lEC curve is done with only three weeks of data so it can be 

influenced by the short fime of acquisifion. Nevertheless, for the four other turbines, the 

Markov power-curve is higher than the lEC power-curve close to the rated power, so we will 

continue to improve the power curve with other parameters, while keeping the median to 

calculate the conditional moment. 

4.3.2 Mos t frequent power-differenc e 

The second method to compare with the default power-curve will be to take the most 

frequent power-difference. Mainly, this method consists in binning the power differences, 

taking the bin with the highest amount of data, then averaging the power differences in that 

bin. On the other hand, only keeping the bin with the highest amount of data might lead to 
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some errors. In reality, the bin with the second highest number of data might be in a big 

proporfion of the one with the highest amount of data. Figure 4.12 demonstrates an example 

when a power-difference bin, next to one with the highest number of data, is proportionally 

high. 

Therefore, it is necessary to fix a certain percentage to only keep the bin higher than this 

proporfion of the highest amount of data. Figure 4.12 shows an example of the distribution 

for the power differences, while Figure 4.13 illustrates the bins kept after filtering the bins 

lower than the fixed percentage. These percentages are constant and we will analyse the 

proportion values. 

Example of power difference 

Bin with the highest number of data 

Power differenc e 

Figure 4.12 Example of  distribution for the  power difference. 
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Figure 4.13 Example of distribution for the power difference at 50% of the 
highest number of data. 

Figure 4.14 shows the results obtained with this method using the meteorological-mast 

anemometer for Klondike-10. Obviously this method doesn't seem to work properly. Indeed, 

by removing some power-differences bins, there is also a great possibility to remove good 

values inside those bins. Moreover, the Gaussian distribufion is clearly reduced by this 

method, like the example demonstrates at the Figure 4.13. Furthermore, the reduction of the 

number of data inside a power state brings inaccuracy in the calculation of the condifional 

moment. Therefore, this method can't be ufilised to calculate the conditional moment. 

Consequently, the use of the median will be kept as a default parameter to constmct the 

power curve, since the most frequent method is far from being a good method. 
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Figure 4.14 Comparison of the median with the most frequent to calculate the 
power curve for the MM anemometer of Klondike-10. 

4.3.3 Power-difference s filter 

After trying different methods to calculate the condifional moment, it might be advantageous 

to only filter the power differences, because if there are extremes data inside a certain power 

state, then the power-differences filter might helps getting good results. 

Basically, this method consists in filtering a certain proportion of data at both end of the 

power-differences variable. However, this kind of filtering is not required when calculafing 

the conditional moment with the median, since the median takes the middle point of a 

variable, and removing a certain proportion at both end of this variable will lead to the same 

value. Therefore, this filtering can only be analysed when utilising the mean to calculate the 

conditional moment. 

For the simulated data (Figure 4.15) and for the meteorological-mast anemometer of 

Klondike-10 (Figure 4.16), there is no significant differences between the use of the median, 

and the use of the power-differences filter when constructing a power curve. Moreover, the 

difference is close to null when comparing the power-differences filter percentage. These 
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graphics show that the results are the same for 5% and 10%. This is also the same for others 

percentages, which are not shown in the graphics. 
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Figure 4.15 Comparison of the median with the power-differences filter to 
calculate the power curve for the simulated data. 
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Figure 4.16 Comparison of the median with the power-differences filter to 
calculate the power curve for the MM anemometer of Klondike-10. 
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However, when ufilising the Prettin and the Wietmarschen data, the median is far better than 

the power-differences filter. Figure 4.17 illustrates that using the power-differences filter 

isn't as good as the median for Wietmarschen-2; this is also tme for Prettin and 

Wietmarschen-1 turbines. In fact, the main problem with this method, which is also 

explained in secfion 4.3.1, is that we use the mean to calculate the conditional moment, but 

this fime with a filter. As soon as the power differences inside a power state don't follow a 

perfect Gaussian distribution, the mean will be more affected than the ufilisation of the 

median, which lead to a higher risk of getfing the wrong value. Therefore, the median should 

be kept when calculafing the condifional moment. 
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Figure 4.17 Comparison of the median with the power-differences filter to 
calculate the power curve for the MM anemometer of Wietmarschen-2. 

4.4 Metho d to calculate the stationary power curve 

Until now, the calculation of the stafionary power curve was made with the minimal 

potential. However, this method seems to have some problems when a second minimum 

arises (see Figure 4.5). Even though the second minimum problem might be solved for 

Klondike-10 turbine with the use of the median, the Wietmarschen-1, Wietmarschen-2 and 

Prettin-4 turbines still does have this problem. 
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The apparition of the second minimums is difficult to eliminate, since we need to find which 

po'ints aren't good in the graphic of the drift in function of the power. In fact, the wrongs drift 

values close to zero might create a second minimum when calculating the integral. Therefore, 

using the linear-regression method instead of the minimal-potential method might solve the 

problem, because it will be less affected by the bad drift values close to zero. However, the 

results could be even worst for the drift values far from zero. 

After calculating the power curve with both methods, the minimal potential is still the best 

way to constmct a power curve. Figure 4.18 shows that there is no considerable difference 

between these two methods for the simulated data. However, the Figure 4.19 illustrates that 

the linear regression has some peaks, which is not wanted. Moreover, the power curves 

obtained with Wietmarschen and Prettin mrbines are better with the minimal potential to 

calculate the stationary power. The reason it works better with the minimal potential is 

because it doesn't adjust to the fit of the linear regression. In fact, if there is only one point 

wrong, the linear regression might be greatly affected, which is not the case for the minimal 

potential, unless that point re-crosses zero which will give a second minimum problem. 

Consequently, a method should be found to eliminate that problem and will be investigated 

in section 4.5. For the moment, the calculation of the power curve with the minimal potential 

will remains, because theoretically it should give the best results, and experimentally it does 

too. 
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Power curve constructed with simulated data 
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Figure 4.18 Comparison of the minimal potential with the linear regression to 
calculate the power curve for the simulated data. 
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Figure 4.19 Comparison of the minimal potential with the linear regression to calculate 
the power curve for the MM anemometer of Klondike-10. 

4.5 Metho d to calculate the drift 

The calculation of the drift is done by calculafing the slope of the linear regression in the 

graphic of the condifional moment in funcfion of the relaxafion time, like shown in Figure 
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2.1. Until now, the relaxafion time was already defined, which was between 5 and 15 seconds 

[8]. Nonetheless, in applying another interval than the original one, it might solve the second 

minimum problem explained in section 4.4, since it will give different drift values. 

A method to change this interval might be by finding the best linear regression between 5 and 

15 seconds, instead of taking the entire interval. An approach to determine the best linear-

regression curve is by finding the curve with the best coefficient of determination (R-square). 

The more this value is close to 1, the more the linear regression will fit with the data. 

Nevertheless, it is better to calculate the adjusted coefficient of determination (R-square 

adjusted), since it can decrease when the number of values increase, which is not the case for 

the standard coefficient of determination. 

The difference between these two methods is negligible for the simulated data. Figure 4.20 

demonstrates that every points of one curve overlap all points of the other curve. Moreover, 

the power curve constmcted with the real data, at the Figure 4.21, still shows that there is no 

conclusive evidence of power curve improvement when utilising the adjusted coefficient of 

determination method. The reason of that can be because the entire interval generally 

contains good value. Therefore, if we utilise any value of the relaxation time inside this 

interval, we will get the same results or close to it. Consequently, the default power-curve 

shouldn't be changed and the entire interval between 5 and 15 seconds will be kept. 

However, like mentioned in section 4.1, the interval of the relaxation time should be 

modified at some power states in order to obtain a perfect power value at each bin speed, 

which is also proposed in the recommendation section. 
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Power curve constructed with simulated data 
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Figure 4.20 Comparison of the power curve with different methods to calculate 
the drift for the simulated data. 

Power curve constructed with MM anemometer for Klondike-10 
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Figure 4.21 Comparison of the power curve with different methods to calculate 
the drift for the MM anemometer of Klondike-10. 

4.6 Power-state s number 

Defining the number of power states is necessary since the acquisition fime of the data and 

the success of the power-curve constmction depend on it. Indeed, the more the power-states 
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number is high; the more the recording fime can be long to obtain data to construct a good 

power curve. On the other hand, the more the power-states number is low; the more the 

quality of the power curve can be reduced. Therefore, it can require an opfimal number of 

power states to construct a good power curve in a short fime, which is what is analysed here. 

The power-states size is variable at each bin speed, depending of the power distribution 

inside that bin speed. However, inside a certain bin speed, the power-states size is the same. 

Unfil now, the constmction of the power curve was made with ten power states. 

The results obtained, at Figure 4.22 and at Figure 4.23, illustrates that the constmction of 

power curve following Markov's theory needs at least eight power states. Indeed, there is an 

asymptote starting from the moment the power-state number reaches eight, which means that 

higher than this value the stationary power at each bin speed is approximately the same. 

Moreover, the Wietmarschen and Prettin data confirm that eight power states are enough to 

constmct a good power curve following Markov's theory, but more power states also can be 

ufilised. For the rest of this thesis, all analysis will be done with eight power states. 

Power curve constructed with simulated data 

Wind speed (m/s) 

Figure 4.22 Comparison of different number of power states to calculate the 
power curve for the simulated data. 
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Power curve constructed with MM anemometer for Klondike-10 
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Figure 4.23 Comparison of different number of power states to calculate the 
power curve for the MM anemometer of Klondike-10. 

4.7 Averagin g time 

Since the start of this thesis, the averaging fime of data was 1 second. However, there is a 

possibility to average the data over a longer period. Nonetheless, those averaging fimes 

higher than the default one aren't recommended for various reasons. 

Firstly, the acquisition time of the data might be longer, since there will be less data over a 

same period. For example if we average the data at each 4 seconds, then over a period of 1 

minute, there will be 15 data of 4 seconds average, instead of 60 data of 1 second average. 

Secondly, the number of condifional moment in funcfion of the relaxation fime will be 

reduced. In reality, the relaxafion fime will sfiU be between 5 and 15 seconds, but since the 

data are averaged at a higher time than 1 second, the number of condifional moment will 

diminish. For example, if we still average the data at each 4 seconds, the condifional moment 

can only be calculated at 4, 8, 12 and 16 seconds, which gives four values of conditional 

moment instead of ten values. Therefore, the precision of the slope, when calculating the 

drift, will be reduced. 
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The results obtained at Figure 4.24 illustrate that there is no considerable difference between 

the power curves constructed with different averaging times. However, the data averaged at 

one second might require less time to collect, than the others averaging fimes. The analysis of 

the minimal time to acquire data will be presented later in this thesis. For the moment, the 

power curve constructed with data averaged at I second will be kept. 

Power curve constructed with MM anemometer for Klondike-10 
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Figure 4.24 Comparison between the averaging times higher than 1  second to construct 
the power curve for the MM anemometer of  Klondike-10. 

According to the last results, it might be advantageous to ufilise an averaging time shorter 

than 1 second. In that case, the time to collect data could be even more reduced. The 

Klondike-10 and the Wietmarschen measurements systems collect the power at a rate of 50 

Hz, which means that it can collect 50 data per second. However, the data averaged at 0,02 

second aren't available for the Prettin turbines. Thus, the constmcfion of the power curves 

with data averaged at 0,1 and 0,2 second can be analysed for the Wietmarschen and the 

Klondike turbines. The reason why the data averaged at 0,02 second isn't considered in this 

analysis is because it requires a lot of space in the memory of the computer. Therefore, the 

periods examined were too short to give at least a good scatter plot to constmct a power 

curve. 
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Figure 4.25 illustrates the power curves constmcted with the averaging fimes shorter than 1 

second. The results obtained demonstrate that the power curve can be constmcted, with good 

results, at different averaging time shorter than I second. Moreover, there is no difference 

between those averaging times. Therefore, it is preferable to ufilise the data averaged at 0,1 

second, since it might give the advantage to construct the same power curve in less time. 

More details on the analysis of the minimal recording time for the Markov power-curves will 

be given in Chapter 7. 
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Figure 4.25 Comparison between the averaging times shorter than 1  second to construct 
the power curve for the  MM anemometer of  Klondike-10. 

4.8 Win d speed averaging 

When the MM anemometer reads the wind speed, the power output of the turbine doesn't 

react instantly. Indeed, there is an algorithm inside the turbine, which averages the wind 

speeds over a certain period of time to determine the power output. This algorithm is present 

in the system because the wind speed fluctuates over a short period of time. The construction 

of the power curve following Markov's theory is made with the data averaged at each 

second. Therefore, the wind speed changes bin constantly, which causes that the power 



59 

output of the turbine might be in the wrong bin. Moreover, when the wind speed is obtained 

from the nacelle anemometer, there is more fluctuation because of the addition of blade 

passage. 

A solution to counter this problem is to average the wind speeds over a certain period of 

time, then replace the wind speeds read over this period by the wind speed averaged. For 

example, if we decide to average the wind speeds over 60 seconds, then the wind speeds 

from 1 second to 60 seconds will take the value of the averaged one. 

Figure 4.26 and Figure 4.27 show that the difference is negligible for different wind speed 

averaging times with the simulated data and the meteorological-mast anemometer of 

Klondike-10. However, this parameter is important to keep in the default power-curve, 

because it gives better results on others sites than Klondike-10. Indeed, for Wietmarschen 

and Prettin turbines the results are better with this parameter, especially at 30 seconds, like 

demonstrated in Figure 4.28. The reason why it is better for those two sites is because of the 

large scatter plot, which is mostly caused by turbulent winds. In reality, the wind speed on 

those sites can fluctuate really fast, which causes that the power output might be on the 

wrong bin speed. On Klondike-10 turbine, the wind speed isn't as turbulent as the other two 

sites, therefore the scatter plot is smaller. Thus, the wind speed will be averaged over a 

period of 30 seconds in the default MM power-curve. 
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Figure 4.26 Comparison of different averaging times of the wind speed to 
construct the power curve for the  simulated data. 
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Figure 4.27 Comparison of different averaging times of  the wind speed to construct the 
power curve for the  MM anemometer  of  Klondike-10. 
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Power curve constructed with MM anemometer for Wietmarschen-2 
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Figure 4.28 Comparison of different averaging times of the wind speed to construct the 
power curve for the MM anemometer of Wietmarschen-2. 

4.9 Synthesi s of all parameters 

Until now, the analysis of different parameters has been done to determine which ones give 

the best power curve with the meteorological-mast anemometer. Even if nearly all figures 

shown in this chapter are from Klondike-10 and the simulated data, this analysis also has 

been done for Wietmarschen and Prettin turbines. Therefore, the default power-curve is now 

consfituted with: 

the power-state range filter of 157c; 

the median to calculate the condifional moment; 

eight power states to calculate the stationary power at each bin speed; 

the minimal potenfial to calculate the stafionary power; 

the relaxation time between 5 and 15 seconds to calculate the drift coefficient; 

the bins speed set at 0,5 m/s; 

the wind speed averaged over a period of 30 seconds; 

the data averaged on a period of I second or less. 
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Besides, the previous analysis made with the simulated data has shown that a constmction of 

power curve following Markov's theory is possible, since most of the power curves made 

with these data are on the theoretical curve, like the one shown in Figure 4.1. It does also 

confirm that the Markov power-curve software is working. 

Furthermore, it also has been demonstrated that the averaging time of the data shouldn't be 

over 1 second, since the power curve will eventually loose in accuracy. Albeit the results 

with the averaging time under 1 second seem good with Klondike-10 and Wietmarschen-site 

turbines, it can't be proven with Prettin-site mrbines, because it doesn't collect data at a rate 

under 1 second. Nonetheless, this method could save time when constmcting a power curve 

following Markov's theory. An analysis of the time required will be done in the Chapter 7. 



CHAPTER 5 

POWER CURVE CONSTRUCTED WITH THE NACELLE ANEMOMETER 

To construct the nacelle power-curve following Markov's theory, it is necessary to keep the 

parameters obtained with the meteorological-mast anemometer. However, there are some 

differences between the MM and the nacelle anemometer. Indeed, there is a transfer function 

to pass the constmction of the power curve from the MM anemometer to the nacelle 

anemometer. In fact, this transfer function is required because the blade passage affects the 

wind speed recorded at the nacelle anemometer. 

First a correlation between the MM wind-speed and the nacelle wind-speed is required. This 

correlafion should be done following the bin-correlafion method, which is explained in 

secfion 1.1.1. Figure 5.1 illustrates this correlation. The blue line is the normal correlafion, 

which is done with all the data, while the red dot-line is the bin correlafion, which is done at 

each bin speed. The last correlation is the oncoming standard procedure according to the lEC 

standard [12]. 
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Figure 5.1 Correlation between the MM and the nacelle anemometer for Klondike-10. 
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Then, the constmcfion of the nacelle power-curve following Markov's theory can be done 

with the defaults parameters. Therefore, we assume that the relaxation time (r) is the same 

than the one ufilised for the MM anemometer. Figure 5.2 shows the nacelle power-curve 

obtained, while keeping the optimal parameters found from the MM power-curve. The power 

curve constructed with the nacelle anemometer isn't as good as the one made with the MM 

anemometer. Indeed, this power curve is a little bit erratic below the rated power. 

Consequently, the transfer funcfion might require more parameters, than only the bin-

correlation method. 
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Figure 5.2 Default power-curve constructed  for the  nacelle anemometer of  Klondike-10. 

5.1 Wind-spee d averaging at the nacelle anemometer 

The main reason the nacelle power-curve, shown at Figure 5.2, isn't as good as the one made 

with the MM is because the wind speed is greatly affected by the blade passage. Therefore, 

the transfer funcfion and the power curve might be improved by averaging the wind speed 

over another period of time than 30 seconds, which is one of the default parameters for the 

MM anemometer. 
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Moreover, it is also important to mention that we can't average the data on a period like 0,5 

or 1 secohd, because in this interval we don't know if we do have the effect of blade passage 

or not. In fact, the rotor speed can be between 10 and 20 rpm, which means between 30 and 

60 blade passages per minute, which is at least one blade passage per 2 seconds. This is why 

it is preferable to average on longer period of time for the nacelle anemometer, because we 

do know that we do have the effect of blade passage. 

Figure 5.3 illustrates the comparison of different wind speed averaging times, when 

constmcting a power curve with the nacelle anemometer. The results show that it is 

preferable to average the wind speed over a period of two minutes. Moreover, the analysis 

with Prettin and Wietmarschen gives also the same results, since their power curves have 

greatly improve and they are close to perfect. The graphics of the constmction of the power 

curve with the nacelle anemometer, for those sites, are shown in section 6.2. 

The reason why the wind speed averaging times passes from 30 seconds to two minutes with 

the nacelle anemometer is because of the effect of the blades passage. In fact, the addition of 

the blades passage with the high variation of the wind speed in a short time causes that the 

average of the wind speed should be done on a longer period in order to get a significant 

value of the wind speed in the interval. 

Thus, the transfer fianction is better when the wind speed is averaged over a period of two 

minutes, and it should be incorporated in the default power-curve constmcted with the 

nacelle anemometer. 
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Power curve constructed with nacelle anemometer for Klondike-10 

2000 scatter plot 
-Construction of Markov power curve with the wind speed averaging at 30 second (reference) 
-Construction of Markov power curve with the wind speed averaging at 60 second 

Constmction of Markov power curve with the wind speed averaging at 120 second 
^^(-^^•L 

8 1 0 1 2 
Wind speed (m/s) 

14 16 20 

Figure 5.3 Comparison of different wind-speed averaging time for the power curve 
constructed for the nacelle anemometer of Klondike-10. 

5.2 Rotor-positio n fdte r 

Another method to decrease the effect of blade passage might be by filtering with the rotor 

position, because the wind passes trough the blades before reaching the nacelle anemometer. 

Consequently, the wind is affected by that, and removing the data that are affected by the 

blade passage could provide a better power curve. 

However, the rotor posifion to filter is dependent of the wind speed, and the distance between 

the rotor and the nacelle anemometer. In reality, there is a difference of time between the 

moment the wind reaches the blade and the moment the wind reaches the nacelle 

anemometer. This fime difference changes in function of the wind speed. Consequently, the 

calculation of the influenced rotor posifion (f)  will be in funcfion of these two parameters 

[10]. 

(p = 
360*d*O) 

V *n *6 0 
(5.1) 
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The method to use the equafion (5.1) is to average the wind speed over a certain period of 

time, calculate the influenced rotor posifion, remove the wind speed at an interval of ± 40 

degrees of tp, and re-calculate the averaged wind speed [10]. The wind speed is averaged over 

a two minutes period, since it was the best period of fime found in section 5.1. 

Figure 5.4 illustrates the comparison with and without the rotor-position filter. The analysis 

can only be done for Klondike-10, since we don't have the data of the rotor posifion for 

Wietmarschen and Prettin turbines. Moreover, the graphic shows no or negligible differences 

between these two power curves. Therefore, the rotor-position filter can not be kept as a 

default parameter for constmcting a power curve with the nacelle anemometer. However, the 

study of this filter should be done with more sites and more turbines, which will produce a 

better conclusion. For all these reasons this analysis is, for the moment, inconclusive. 
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Figure 5.4 Comparison of the rotor-position filter for the power curve 
constructed for the nacelle anemometer of Klondike-10. 

5.3 Averagin g time below 1  second 

Like demonstrated in section 4.7, if the averaging time is reduced, then the recording fime 

might also be reduced, which is the primary goal of this thesis. That secfion has also shown 
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that there is no considerable difference between the power curve constmcted with the MM 

anemometer for 0,1 and I second averaged. However, it is important to verify it for the 

nacelle anemometer, since there is a transfer funcfion to pass from the MM wind-speed 

towards the nacelle wind-speed. 

The comparison of the time averaging for the nacelle anemometer is shown at Figure 5.5. 

Akin to the analysis obtained with the MM power-curve, the nacelle power-curve shows no 

difference between the data at different averaging fimes. It is also the same for Wietmarschen 

turbines, but those two power curves will be illustrated in the secfion 6.2. Therefore, there is 

a possibility to average the power at a shorter time than 1 second and to obtain a good power 

curve, with the nacelle anemometer. 
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Figure 5.5 Comparison of the time averaging for the power curve constructed 
for the nacelle anemometer of Klondike-10. 

This chapter has presented the constmcfion of the nacelle power-curve following Markov's 

theory. The results obtained for Klondike-10 turbine are good, but not great. Generally, the 

power curve constmcted with the MM anemometer is better than the one obtained with the 

nacelle anemometer for this site. Moreover, until now the power curves aren't stable. One of 

the reasons is because the Markov power-curve software isn't perfect yet and more 
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improvements need to be done. More meteorological-mast and nacelle power-curves from 

others sites will be shown in the Chapter 6, which will verify the efficiency of this novel 

method. 



CHAPTER 6 

VALIDATION OF THE POWER CURVE WITH WIETMARSCHEN AND 
PRETTIN TURBINES 

The validation of the parameters with Wietmarschen and Prettin turbines was included in 

Chapter 4 for the meteorological-mast anemometer, and in Chapter 5 for the nacelle 

anemometer, even though the majority of the graphics are from the Klondike-10 mrbine. 

However, now it is necessary to prove that the constmction of the power curve following 

Markov's theory works for others sites than Klondike-10. Consequently, the others sites 

validation is done for the meteorological-mast anemometer and the nacelle anemometer. 

Afterward, it will be possible to determine the minimal number of data required per bins 

speed, and then deduce the minimal time to constmct a Markov power-curve. 

6.1 Meteorological-mas t anemomete r 

The parameters utilised to constmct the power curve for Wietmarschen and Prettin turbines 

are the same as the optimal ones found in the Chapter 4. However, Wietmarschen and Prettin 

turbines are a little bit different than Klondike-10 since the scattering of the power at each 

bin speed is more dispersed. This great dispersion might be caused by the distance between 

the mrbines and their respective MM. Indeed, these distances are much higher than the 

Klondike-10 one. We need to mention that Prettin measurement-systems don't have the 

advantage to collect data on a shorter period than 1 second. Therefore, the analysis can only 

be done with I second data for those turbines. 

The power curve constmcted with the default parameters for the MM anemometer of Prettin-

4 and Prettin-5 are represented by Figure 6.1 and Figure 6.2 respectively. The results of those 

power curves show that it is not perfect for this site, when applying the Markov's theory to 

the MM. In fact, there are some abmpt changes in those power curves, which confirm that 

perfection is not reached yet. The large scatter plot doesn't affect that much the Markov 
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power-curve. However, there is not enough data once the wind speed has reached the rated 

power. In fact, the lEC power curves are also not perfect, since there are some abrupt 

changes and they both stop close to 14 m/s. On a positive note, the powers obtained at the 

rated power give better results than the lEC ones. Moreover, there are only a couple of points 

on each of those power curves that aren't good. Other than that, the curves seem to follow a 

cubic function of the wind speed. 
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Figure 6.1 Power curve obtained with the default parameters for the MM 
anemometer of Prettin-4. 
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Power curve constructed with MIvI anemometer for Prettin-5 
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Figure 6.2 Power curve obtained with the default parameters for the MM 
anemometer of Prettin-5. 

The MM power-curves obtained for Wietmarschen-1 and Wietmarschen-2, illustrated at 

Figure 6.3 and Figure 6.4 respectively are a little bit better than the ones obtained for Pretfin 

turbines. In fact, the curves seem to be cubic before the rated power and sharp at the rated 

power. Nonetheless, like Prettin, there are two or three points that aren't good. 

Like mentioned before, the height of the scatter plot is mainly due to the distance between 

the MM anemometer and the turbine. Therefore, the correlation between the power output of 

the turbine and the wind speed is greatly reduced. However, that doesn't seem to affect 

greatly the MM power-curve. The analysis with the nacelle anemometer might give better 

results, than the one made with the meteorological-mast anemometer. 
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Power curve constructed with M M anemometer for Wietmarschen-1 
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Figure 6.3 Power curve obtained with the default parameters for the MM 
anemometer of Wietmarschen-1. 

Power curve constructed with M M anemometer for Wietmarschen-2 
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Figure 6.4 Power curve obtained with the defaidt parameters for the MM 
anemometer of Wietmarschen-2. 

Before moving to the verificafion with the nacelle anemometer for those two sites, we will 

compare the results obtained at different averaging time for Wietmarschen turbines. The 

previous analysis has proven that the averaging time shorter than 1 second had no influence 

on the power curve. Therefore, it will be appropriate to verify it with the MM anemometer of 
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Wietmarschen turbines. Figure 6.5 and Figure 6.6 illustrate the comparison between the data 

averaged at I, 0,2 and 0,1 second for Wietmarschen-1 and Wietmarshen-2 respectively. 

Again, the results obtained confirm that there are little or no differences among the averaging 

times. Con,sequently, the data averaged at a period of time less than 1 second can be used to 

constmct a MM power curve following Markov's theory. 

Yet, the construction of the MM power curve following Markov's theory has been done and 

verified with five turbines and three sites. Until now, the results obtained look good at the 

rated power, even though there is large scatter plot for the Wietmarschen and Prettin turbines. 

That does prove that the turbulence intensity doesn't influence the value of the stochastic 

power calculated by Markov's theory, which is not the case with the lEC standard. However, 

the power curves aren't stable, since there are some points that are a little bit offset of a cubic 

curve. 

Power curve constructed with MM anemometer for Wietmarschen-1 

8 10 12 
Wind speed (m/s) 

Figure 6.5 Comparison of the time averaging for the  power curve constructed 
for the  MM anemometer of  Wietmarschen-1. 
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Power curve constructed with MM anemometer fo r Wietmarschen- 2 
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Figure 6.6 Comparison of the time averaging for the power curve constructed 
for the MM anemometer of Wietmarschen-2. 

6.2 Nacell e anemometer 

The verification for the Pretfin and Wietmarschen turbines, with the meteorological-mast 

anemometer, has proven that this new method gives acceptable results. Nevertheless, it is not 

stable yet, nor perfect, since the power curves obtained don't perfectly follow a cubic curve. 

This verificafion also should be done with the nacelle anemometer, since there is a transfer 

function, and the results might be different than the MM anemometer. In order to make this 

verificafion, the default parameters found for the nacelle anemometer will be utilised. 

The nacelle power-curve of Prettin-4 and Prettin-5 turbines, shown respecfively at Figure 6.7 

and Figure 6.8, illustrate that it does have a great shape. In fact, the results are better when 

the power curve is constmcted with the nacelle anemometer than with the meteorological-

mast anemometer. Furthermore, it is the same thing for the nacelle power-curve of 

Wietmarschen-1 and Wietmarschen-2 turbines (Figure 6.9 and Figure 6.10). However, the 

nacelle power-curve for Prettin-4 turbine has some points offset of the cubic curve, which 

confirm that the results are sfill not stable. 
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The reason why the behaviour of the power curve is better with the nacelle anemometer for 

these two sites might be because the turbines are too far away from their respective MM. 

Thus, the correlation between the power of the turbine and the wind speed, from the MM 

anemometer, is a little bit lost, which is not the case with the nacelle anemometer. Moreover, 

it is also caused by the power curves not being stable for the MM and for the nacelle 

anemometer, which might lead to some random results. Therefore, improving the power-

curve software will lead to better and more stable results. 

Power curve constructed with nacelle anemometer for Prettin-4 
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Figure 6.7 Power curve obtained with the default parameters for the nacelle 
anemometer of Prettin-4. 
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Power curve constructed with nacelle anemometer for Prettin-5 

1800 

1600 

1400 

_ 1 2 0 0 

^ 1 0 0 0 

I 800 
a. 

600 

400-

200-

Scatter plot 
lEC power curve 

—•—Markov power curve 

8 10 12 
Wind speed (m/s ) 

14 16 n 20 

Figure 6.8 Power curve obtained with the default parameters for the  nacelle 
anemometer of  Prettin-5. 
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Figure 6.9 Power curve obtained with the defauh parameters for the  nacelle 
anemometer of  Wietmarschen-1. 
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Figure 6.10 Power curve obtained with the default parameters for the nacelle 
anemometer of Wietmarschen-2. 

The previous verification with the MM anemometer of Wietmarschen turbines has shown 

that the power curves were the same with 0,1 and I second averaged. We made the same 

verification with the nacelle anemometer and the results are still the same. Figure 6.11 and 

Figure 6.12 don't show any major differences. However, there are sfill one or two points that 

are offset of the power curve made with the 1 second averaged data. But generally, the 

averaged time under 1 second is good, and looking towards this direction in future work isn't 

a bad idea, since the acquisition time of the data might reduce, and therefore a good power 

curve would be created in a shorter fime. 
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Figure 6.11 Comparison of the time averaging for the power curve constructed 
for the nacelle anemometer of Wietmarschen-1. 

Power curve constructed with nacelle anemometer for Wietmarschen-2 
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Figure 6.12 Comparison of the time averaging for the power curve constructed 
for the nacelle anemometer of Wietmarschen-2. 

Overall, constmcting a power curve with the data averaged on a shorter fime than 1 second 

gives the same results as the power curve constructed with the data averaged at 1 second. 

Indeed, this fact has been verified with Klondike-10 and with Wietmarschen turbines. 

Therefore, it might be advantageous to utilise the data averaged at 0,1 second, since they 
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might require less time to collect than the data averaged at I second. This type of analysis 

will be done in the Chapter 7. 

Furthermore, this section also has verified the power curve obtained from the nacelle 

anemometer with Wietmarschen and Prettin turbines. It has been demonstrated that it gives 

good results with the default parameters. Nonetheless, those power curves aren't perfect nor 

stable and can not be utilised as a new standard yet. This thesis brings a great enhancement of 

what was done before, but more improvements need to be done before considering utilising 

this novel method and this software to constmct a power curve as a reference procedure. 



CHAPTER 7 

TIME REQUIRED TO CONSTRUCT A NACELLE POWER-CURVE FOLLOWIN G 
MARKOV'S THEORY 

The main goals of this thesis are to save money by diminishing the recording time of the 

data, to avoid seasonal fluctuation when analysing the effect of different settings, and to 

constmct a more accurate power curve. In order to do that, we need to analyse the minimal 

number of data required to constmct a good power curve. This total amount of data is 

directly proportional to the minimal number of data per bin speed. Therefore, the analysis of 

the minimal number of data per bin speed is done for all five turbines. However, this 

analysis, for the data averaged on shorter period than 1 second, can't be done for Prettin 

turbines. 

In order to do that, we first should take the stationary power obtained with all the data at a 

certain bin speed and on a certain turbine. Then, we must calculate that power with different 

numbers of data and evaluate the error between those stationary powers and the stationary 

power found with all the data. These errors are expressed in percentage, since the difference 

of powers will inevitably be less important at lower wind speed, while it will be more 

important at higher wind speed. Afterwards, it will be possible to illustrate them on a graphic, 

and then deducing the minimal number of data required, with an asymptote close to zero 

percent. 

First, the analysis has been done with the data averaged at 1 second with the nacelle 

anemometer. Thus, all 5 turbines of the three wind sites were analysed. The APPENDIX II 

contains the tables of the power error in function of the number of data for the data averaged 

at I second with different wind turbines. With those tables, the graphic at Figure 7.1 was 

constmcted. This graphic shows the asymptote starting close to 4000 seconds. Indeed, all the 

power errors are under 5 % over this value. Consequently, the minimal time required to find 
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the stationary power inside a certain bin speed is 4000 seconds, with the data averaged at 

second, which is a little bit over than one hour. 

Power error at each bin speed in function of the time for the data averaged at 1 second 
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Figure 7.1 Power error at each bin speed in function of the time for the data 
averaged at 1 second. 

Then, the same analysis has been done for the data averaged at 0,1 second. The tables which 

contain the results are found in the APPENDIX III . Then, Figure 7.2 was created with the 

values obtained in those tables. In opposifion to what was expected, the minimal time 

required to obtain the stationary power inside a certain bin speed, for data averaged at 0,1 

second, is the same than for data averaged at 1 second. In fact, the asymptote found at Figure 

7.2, albeit less clear, starts at 4000 seconds, which is again over 1 hour. The averaged fime is 

10 fime shorter, but the number of data to constmct a good power curve has decupled. Thus, 

the acquisition fimes to collect data are the same, however the results are more tmstful with 

the data averaged at 1 second because the error decrease further than 4000 seconds, which is 

not the case with the data averaged at 0,1 second. 
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Power error at each bin speed in function of the time for the data averaged at 0,1 second 
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Figure 7.2 Power error at each bin speed in function of the time for the data 
averaged at 0,1 second. 

The minimal fime required to determine the stafionary power inside a certain bin speed, 

obtained for the data averaged at 0,1 and 1 second, is a little bit more than 1 hour. The lEC 

standard stipulates that it requires at least 30 minutes per bin speed in order to get the correct 

power. However, below the rated power this value is absolutely not enough because of the 

large scatter plot. Therefore, if 20 points is enough below the rated power with the lEC 

standard, it means that it will require 200 minutes to calculate the accurate power per bin 

speed. Consequently, in that case, the construction of the nacelle power-curve following 

Markov's theory is little bit more than 3 times faster than the standard procedure. 

Nevertheless, the Markov power-curves aren't stable yet, since it doesn't follow a perfect 

cubic curve. More improvements should be done to improve the parameters of this novel 

method, and then stabilize the results. Once it will be stabilized, the speed at which a power 

curve can be reached with Markov's theory will surely increase again. 



CONCLUSION 

Thesis review 

This work has permitted to develop a program in order to constmct a nacelle power-curve in 

a more accurate method. Albeit the results aren't stable, this is an improvement of what was 

realised before in this field, especially for General Electric. Moreover, this master thesis has 

also evaluated the optimal parameters to obtain the best power curve following this novel 

method. A resume of each of the seven chapters are presented below. 

Chapter I presented a literature review of the previous works in this field. The lEC standard, 

along with their flaws, has been explained. In addition, the works of different contributors, 

concerning the constmction of a power curve following a stochastic approach, have been 

described. 

Chapter 2 demonstrated a mathematical model to constmct a power curve following the 

Markov's theory. The method to determine different coefficients and parameters also has 

been exposed. 

Chapter 3 introduced the turbines and the wind farms analysed in this thesis. Consequently, 

the locafion, the operating data and the limitation of those turbines have been presented. 

Chapter 4 idenfified the influence of each parameter to constmct a Markov power-curve with 

the MM anemometer. The results of those analysis lead to constmct a power curve with the 

following parameters: 

> a power-state range filter set at 15%; 

> the median to calculate the conditional moment; 

> eight power states to calculate the stationary power at each bin speed; 

> the minimal potential to calculate the stationary power; 
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> the relaxation time between 5 and 15 seconds to calculate the drift coefficient; 

> the bins speed set at 0,5 m/s; 

> the wind speed averaged over a period of 30 seconds; 

> the data averaged at 1 second or less. 

Chapter 5 determined the best parameters to constmct a Markov power-curve, but this time 

with the nacelle anemometer. The results demonstrated that the only different parameter from 

the MM anemometer is the period of time to average the wind speed. Indeed, the best period 

of time found to average the wind speed with the nacelle anemometer is two minutes. 

Chapter 6 verified the power curve obtained with the default parameters for Wietmarschen 

and Prettin turbines, and this for the data averaged at 0,1 and 1 second. The results found 

prove that the power curves constructed with this novel method are good, but aren't stable 

yet. Therefore, more improvements in the Markov power-curve program need to be done in 

order to obtain perfect and stable results. 

Chapter 7 analysed the minimal amount of data required per bin speed to constmct a nacelle 

power-curve following Markov's theory. The results obtained demonstrate that the Markov 

power-curves require less time than the lEC procedure for the data averaged at 0,1 and I 

second. In fact, it requires a little bit more than an hour to calculate the power inside a certain 

bin speed for the Markov's theory, while most of the time it requires at least 200 minutes 

with the lEC standard. Moreover, by improving and stabilizing the power curve, the speed to 

constmct a Markov power-curve will increase, and thus become more interesting to apply it 

to the lEC standard. 

Contribution 

The overall contribution of this master project is the development of a program, which can 

constmct a MM or a nacelle power-curve by following the Markov's theory. This method is a 

stochastic one, and eventually might lead to a more precise power curve in a shorter time. 
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Furthermore, this thesis also analysed different parameters in order to obtain the best power 

curve from the MM and the nacelle anemometer. Finally, the evaluation of the minimal 

amount of time required to constmct a Markov po\Ver-curve has been tested and analysed. 



RECOMMENDATIONS 

The recommendations for fiiture efforts to invest in the continuance of this work mainly 

concern the improvement of the Markov power-curve software. In order to do that, some 

points are required to be investigated. 

The first recommendation is to utilise more data set to analyse the rotor-position filter, when 

using the nacelle anemometer to calculate the Markov power-curve. Then, it will be possible 

to determine if this filter gives better results or not. 

The second recommendation is based when the Markov power-curve is constmcted with the 

meteorological-mast anemometer. In that case, it is important that the MM is not too far 

away from the mrbine, otherwise the correlation between the MM wind speed and the power 

output might be lost, since the stochastic powers have more chance to be in the wrong bin 

speed. Thus, in respecting the distances recommended by the lEC standard, and in averaging 

the wind speed over a certain period of time, the MM power curves should give good results, 

even though they aren't stable yet. 

The final recommendation is based on the second minimum problem, when calculating the 

stationary power with the minimal potential. A method should be found to pass through this 

problem and to have more constancy when calculating the stationary power. One way to 

perhaps solve this dilemma might be in the values of the relaxation time to calculate the drift. 

Indeed, this thesis utilised only a relaxation time constant between 5 and 15 seconds. Further 

improvements need to be done on this relaxation time, since it might also depend of 

parameters like the wind speed, the algorithm of the turbine, the blade angle, the 

measurement system or the value of the turbulent intensity. 

An experiment has been executed in order to help ftiture searchers to understand the 

investigation concerning the relaxation time. Mainly, this test takes the best linear regression 

in the graphic of the moment in fiinction of the relaxation time, but this time with other 
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interval than the one between 5 and 15 seconds. If we go back to the power curve obtained at 

Figure 4.3, it shows that the power at 6,25 m/s isn't correct. For all power state of this bin 

speed, the best regressions are found in the plots of the condifional moment in function of the 

relaxafion fime, which are presented in APPENDIX IV. For five of those seven graphics the 

interval between 5 and 15 seconds was correct. Nevertheless, for the two others graphics, at 

power state of 579 and 720 kW, it wasn't the optimal interval, and therefore it has been 

corrected. We also remember that the drift is the slope of this linear regression. Thus, a new 

graphic of the integral of the drift in function of the power for this bin speed was constmcted, 

which is in fact the same graphic like the one shown at Figure 4.5, but this fime with the 

interval of the linear regression corrected, and the results are definitively better. Figure below 

shows that the minimal potenfial is reached at 377 kW, instead of 650 kW. According to the 

graphic at Figure 4.3, it is a better approximafion of the power at the bin speed of 6,25 m/s. 
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Corrected power in function of the integral of the drift at the bin speed of 6,25 m/s. 

However, this test wasn't done for an entire power curve but demonstrates that it can be 

possible to reach a great stochastic power at a certain bin speed by modifying the interval of 

the relaxation time at some power states. Like mentioned before, more invesfigafion on that 

problem should be done, and once solved a perfect Markov power-curve, constmcted in a 

short time, might be possible to reach. 



APPENDIX I 

FLOW CHART: SOFTWARE TO CONSTRUCT THE STATIONARY 
POWER CURVE 
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Figure I.l Flowchart  of the Markov software 
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Flowchart of the Markov software (cont.) 
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Flowchart of the Markov software  (cont.) 
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APPENDIX II 

POWER ERROR FOR THE DATA AVERAGED AT 1 SECOND 

Table II. I 

Stationary power output in fiinction of the number of data per bin speed, with the data 
averaged at 1 second for the Klondike-10 mrbine 

Klondike-10 at 7,25 m/s 
Number 

data 
5040 
4000 
3500 
3000 
2000 
1000 
500 

Power 
(kW) 

601,02 
600,97 
612,02 
682,85 
712,95 
581,60 
588,84 

Power error 

(%) 
0,00 
-0,01 
1,83 

13,62 
18,62 
-3,23 
-2,03 

Klondike-10 at 10,75 m/s 
Number 

data 
9118 
8000 
7000 
5000 
3000 
2000 
1500 
1000 
500 
250 

Power 
(kW) 

1538,40 
1536,80 
1533,90 
1533,60 
1533,90 
1538,30 
1448,30 
1449,00 
1403,40 
1388,70 

Power error 

(%) 
0,00 
-0,10 
-0,29 
-0,31 
-0,29 
-0,01 
-5,86 
-5,81 
-8,78 
-9,73 
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Table 11.2 

Stationary power output in function of the number of data per bin speed, with the data 
averaged at I second for the Wietmarschen-1 turbine 

Wietmarschen-1 at 11,75 m/s 
Number 

data 
12120 
10000 
8000 
5000 
3000 
2500 
2000 
1000 
500 
250 

Power 
(kW) 

1508,50 
1498,20 
1497,80 
1492,60 
1492,40 
1489,80 
1468,20 
1472,20 
1479,60 
1428,60 

Power error 

(%) 
0,00 
-0,68 
-0,71 
-1,05 
-1,07 
-1,24 
-2,67 
-2,41 
-1,92 
-5,30 

Wietmarschen-1 at 8,25 m/s 
Number 

data 
10000 
5000 
4000 
3500 
3000 
2000 
1000 
500 

Power 
(kW) 

635,83 
634,93 
620,80 
608,09 
598,86 
592,48 
583,18 
581,61 

Power error 

(%) 
0,00 
-0,14 
-2,36 
-4,36 
-5,81 
-6,82 
-8,28 
-8,53 

Table II.3 

Stationary power output in function of the number of data per bin speed, with the data 
averaged at 1 second for the Wietmarschen-2 turbine 

Wietmarschen-2 at 9,75 m/s 
Number 

data 
10000 
8000 
5000 
4000 
3000 
2000 
1000 
500 

Power 
(kW) 

1010,90 
1016,70 
1008,50 
1005,70 
1017,50 
1017,70 
1021,10 
1057,10 

Power error 

(%) 
0,00 
0,57 
-0,24 
-0,51 
0,65 
0,67 
1,01 
4,57 

Wietmarschen-2 at 7,75 m/s 
Number 

data 
10000 
8000 
5000 
4000 
3000 
2000 
1000 
500 

Power 
(kW) 

544,67 
546,80 
560,36 
565,74 
563,64 
562,43 
550,40 
555,02 

Power error 

(%) 
0,00 
0,39 
2,88 
3,87 
3,48 
3,26 
1,05 
1,90 
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Table II.4 

Stationary power output in function of the number of data per bin speed, with the data 
averaged at 1 second for the Prettin-4 turbine 

Prettin-4 at 6,75 m/s 
Number 

data 
10000 
5000 
4000 
3000 
2000 
1500 
1000 
500 

Power 
(kW) 

275,20 
271,01 
277,68 
277,74 
280,68 
290,80 
292,44 
288,80 

Power error 

(%) 
0,00 
-1,52 
0,90 
0,92 
1,99 
5,67 
6,26 
4,94 

Prettin-4 at 9,75 m/s 
Number 

data 
10000 
8000 
3000 
2000 
1000 
500 

Power 
(kW) 

1277,70 
1277,70 
1277,70 
1276,70 
1276,90 
1272,60 

Power error 

(%) 
0,00 
0,00 
0,00 
-0,08 
-0,06 
-0,40 

Table II.5 

Stationary power output in fianction of the number of data per bin speed, with the data 
averaged at 1 second for the Prettin-5 mrbine 

Prettin-5 at 8,25 m/s 
Number 

data 
10000 
5000 
4000 
3000 
2000 
1000 
500 

Power 
(kW) 

602,13 
608,79 
605,15 
590,34 
599,28 
503,54 
489,69 

Power error 

(%) 
0,00 
1,11 
0,50 
-1,96 
-0,47 

-16,37 
-18,67 

Prettin-5 at 11,75 m/s 
Number 

data 
10000 
5000 
4000 
3000 
2000 
1000 
500 

Power 
(kW) 

1495,90 
1498,90 
1498,90 
1483,00 
1483,40 
1499,10 
1389,90 

Power error 

(%) 
0,00 
0,20 
0,20 
-0,86 
-0,84 
0,21 
-7,09 



APPENDIX III 

POWER ERROR FOR THE DATA AVERAGED AT 0,1 SECOND 

Table III. 1 

Stationary power output in fiinction of the number of data per bin speed, with the data 
averaged at 0,1 second for the Klondike-10 turbine 

Klondike-10 at 7,25 m/s 
Number 

data 
70000 
50000 
30000 
20000 
15000 
10000 
5000 
3000 

Power 
(kW) 

595,05 
585,93 
580,63 
595,12 
525,85 
525,82 
524,45 
524,45 

Power error 

(%) 
0,00 
-1,53 
-2,42 
0,01 

-11,63 
-11,63 
-11,86 
-11,86 

Klondike-10 at 8,25 m/s 
Number 

data 
40000 
30000 
20000 
10000 
5000 
4000 
3500 
3000 

Power 
(kW) 

881,53 
900,46 
880,75 
872,35 
869,88 
918,06 
921,05 
833,16 

Power error 

(%) 
0,00 
2,15 
-0,09 
-1,04 
-1,32 
4,14 
4,48 
-5,49 

Stationary power output in function of the number of data per bin speed, with the data 
averaged at 0,1 second for the Klondike-10 mrbine (cont.) 

Klondike-10 at 10,25 m/s 
Number 

data 
100000 
80000 
50000 
40000 
30000 
20000 
10000 
5000 

Power 
(kW) 
1416,6 
1424,3 
1417,3 

1472,40 
1471,90 
1421,80 
1422,30 
1425,30 

Power error 
(%) 
0,00 
0,54 
0,05 
3,94 
3,90 
0,37 
0,40 
0,61 
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Table 1II.2 

Stationary power output in fiinction of the number of data per bin speed, with the data 
averaged at 0,1 second for the Wietmarschen-1 turbine 

Wietmarschen-1 at 7,75 m/s 
Number 

data 
100000 
70000 
50000 
30000 
20000 
15000 
10000 
5000 
3000 

Power 
(kW) 

551,54 
548,69 
561,50 
567,43 
593,80 
584,41 
568,89 
576,68 
579,14 

Power error 

(%) 
0,00 
-0,52 
1,81 
2,88 
7,66 
5,96 
3,15 
4,56 
5,00 

Wietmarschen-1 at 9,25 m/s 
Number 

data 
60000 
50000 
40000 
25000 
20000 
15000 
10000 
5000 

Power 
(kW) 

886,38 
886,33 
877,93 
846,25 
840,27 
817,85 
835,70 
847,72 

Power error 

(%) 
0,00 
-0,01 
-0,95 
-4,53 
-5,20 
-7,73 
-5,72 
-4,36 

Stationary power output in function of the number of data per bin speed, with the data 
averaged at 0,1 second for the Wietmarschen-2 turbine (cont.) 

Wietmarschen-1 at 10,75 m/s 
Number 

data 
100000 
70000 
45000 
30000 
25000 
20000 
15000 
10000 

Power 
(kW) 

1266,70 
1266,30 
1230,70 
1291,00 
1299,60 
1229,20 
1299,00 
1250,80 

Power error 
(%) 
0,00 
-0,03 
-2,84 
1,92 
2,60 
-2,96 
2,55 
-1,26 
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Table III.3 

Stationary power output in funcfion of the number of data per bin speed, with the data 
averaged at 0,1 second for the Wietmarschen-2 mrbine 

Wietmarschen-2 at 5,75 m/s 
Number 

data 
110000 
90000 
50000 
40000 
30000 
20000 
10000 
5000 

Power 
(kW) 
167,53 
172,21 
175,92 
172,21 
135,76 
135,76 
135,77 
165,34 

Power error 

(%) 
0,00 
2,79 
5,01 
2,79 

-18,96 
-18,96 
-18,96 
-1,31 

Wietmarschen-2 at 8,75 m/s 
Number 

data 
70000 
60000 
45000 
30000 
25000 
20000 
15000 
10000 
5000 

Power 
(kW) 

690,89 
672,03 
685,18 
700,14 
698,61 
705,79 
699,10 
702,76 
703,39 

Power error 

(%) 
0,00 
-2,73 
-0,83 
1,34 
1,12 
2,16 
1,19 
1,72 
1,81 

Stationary power output in fiinction of the number of data per bin speed, with the data 
averaged at 0,1 second for the Wietmarschen-2 turbine (cont.) 

Wietmarschen-2 at 10,25 m/s 
Number 

data 
100000 
70000 
50000 
40000 
30000 
25000 
20000 
15000 
10000 
5000 

Power 
(kW) 
1155,8 
1182,4 

1193,00 
1242,50 
1207,00 
1217,90 
1237,40 
1226,40 
1251,9 
1252,3 

Power error 
(%) 
0,00 
2,30 
3,22 
7,50 
4,43 
5,37 
7,06 
6,11 
8,31 
8,35 



APPENDIX IV 

CONDITIONAL MOMENT IN FUNCTION OF THE RELAXATION 
TIME 
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Figure IV. 1 Conditional moment in  function of  the relaxation time at  the bin 
speed of 6,25 m/s and at the power state of 156 kW. 
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Figure IV.2 Conditional moment in  function of  the relaxation time at  the bin 
speed of 6,25 m/s and at the power state of 297 kW. 
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Figure IV.3 Conditional moment in  function of  the relaxation time at  the bin 
speed of 6,25 m/s and at the power state of 438 kW. 
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Figure IV.4 Conditional moment in  function of  the relaxation time at  the bin 
speed of 6,25 m/s and at the power state of 579 kW. 
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Figure IV.5 Conditional moment in  function of  the relaxation time at the bin 
speed of 6,25 m/s and at the power state of 720 kW. 
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Figure IV.6 Conditional moment in  function of  the relaxation time at the bin 
speed of 6,25 m/s and at the power state of 862 kW. 
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Figure IV.7 Conditional moment in  function of  the relaxation time at  the bin 
speed of 6,25 m/s and at the power state of 1003 kW. 
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