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DYNAMIC OPTIMIZATION O F CLASSIFICATION SYSTEM S FOR ADAPTIVE 

INCREMENTAL LEARNIN G 

Marcelo Nepomoceno KAPP 

ABSTRACT 

An incrementa l learnin g system updates itsel f in response to incoming data without reexam -
ining all the old data . Sinc e classification system s capable o f incrementally storing , filtering, 
and classifying dat a are economical, in terms of both space and time, which makes them im-
mensely usefu l fo r industrial , military , an d commercia l purposes , interes t i n designing the m 
is growing. However , th e challenge with incrementa l learnin g i s that classification task s can 
no longer be seen as unvarying, since they can actually change with the evolution of the data. 
These changes in turn cause dynamic changes to occur in the classification system' s parameters 
If such variations are neglected, the overall perfonnance of these systems will be compromised 
in the future . 

In this thesis, on the development o f a system capable o f incrementally accommodatin g new 
data and dynamically tracking new optimum system parameters for self-adaptation, we first ad-
dress the optimum selection of classifiers over time. We propose a framework which combines 
the power of Swann Intelligence Theory and the conventional grid-search metho d to progres-
sively identify potentia l solution s for graduall y updating training datasets. Th e key here is to 
consider th e adjustment o f classifier parameter s a s a dynamic optimizatio n proble m tha t de-
pends on the data available . Specifically , i t has been show n that , i f the intentio n i s to build 
efficient Suppor t Vecto r Machin e (SVM) classifiers fro m source s that provide data graduall y 
and serially , then the best way to do this is to consider model selection a s a dynamic process 
which can evolve and change over time. Thi s means that a  number of solutions are required, 
depending o n the knowledge availabl e abou t th e problem an d uncertaintie s i n the data . W e 
also investigate measures for evaluating and selecting classifier ensemble s composed of SVM 
classifiers. Th e measures employed are based on two different theorie s (diversity and margin) 
commonly use d t o understan d th e succes s o f ensembles . Thi s stud y ha s give n u s valuabl e 
insights an d helpe d u s to establish confidence-base d measure s a s a  tool fo r th e selectio n o f 
classifier ensembles . 

The main contribution o f this thesis is a dynamic optimization approac h tha t performs incre -
mental learning in an adaptive fashion by tracking, evolving, and combining optimum hypothe-
ses over time. Th e approac h incorporate s variou s theories , such a s dynamic Particl e Swan n 
Optimization, incrementa l Suppor t Vector Machine classifiers, change detection, and dynamic 
ensemble selection based on classifier confidenc e levels . Experiments carried out on synthetic 
and real-world database s demonstrat e tha t the proposed approac h outperform s th e classifica -
tion methods often use d in incremental learning scenarios. 



OPTIMISATION DYNAMIQUE POUR L'APPRENTISSAGE INCREMENTA L 
ADAPTATIF DES SYSTEMES DE CLASSIFICATION 

Marcelo Nepomoceno KAPP 

RESUME 

Lors dc I'arrivee de nouvelles donnces, un systeme d'apprentissage incrementa l s e met a jour 
automatiquement san s reexaminer le s anciennes donnees. Lor s d'un apprentissag e incremen -
tal, le s parametre s de s systeme s d e classificatio n n e son t plu s considere s comm e invariant s 
puisqu'ils peuven t evoluc r e n fonctio n de s donnees entrantes . Ce s changemcnt s causen t dc s 
variations dans I'ajustement de s parametres du systeme de classification. S i ces variations sont 
negligees, la performance finale d'un te l systeme pent etre ulterieurement compromise. De tcls 
systemes, adaptes au probleme de classification, son t tres utiles a des fins industrielles ou mili-
taires car ceux-ci sont a la fois rapides d'execution e t peu gourmands en memoire. On observe 
en consequence un interet grandissant a I'elaboration de tels systemes. 

L'objectif principa l de cette these est de developper un systeme capable de s'adapter d e fa^on 
incrementale a  I'arrive e d e nouvelle s donnees , d e suivr c e t d'analysc r dynamiqucmen t le s 
parametres du systeme optimal pour ainsi pcrmcttrc son adaptation automatique a de nouvelles 
situations. Pou r ce faire , nou s commen9ons par aborder l e probleme de la selection optimal e 
des classificateur s e n fonctio n d u temps . Nou s proposon s un e architectur e qu i combin e l a 
puissance de la theorie de I'intelligence de s essaims avec la methode plus conventionnelle de 
recherche par grilles. 

Des solutions potentielles sont progressivement identifices et mises en evidence pour des bases 
de donnees graduellemen t mise s a  jour. L'ide e principal e ic i es t d e considere r I'ajustemen t 
des parametres du classificateur comm e un probleme d'optimisation dynamique dependant des 
donnees presentees au systeme de maniere continue. E n particulier, nous avons montre que si 
I'on cherchait a elaborer un classificateur SV M (Support Vector Machines) efficace a  partir de 
sources de donnees differentes, graduelle s ou en series, mieux valait considerer le processus de 
selection de modeles comme un processus dynamique qui pent evoluer e t changer Ainsi , les 
differentes solution s son t adaptees au fil du temps en fonctio n revolutio n de s connaissance s 
accessibles sur le probleme de classifications e t de I'incertitude su r les donnees. 

Ensuite, nous etudions aussi des mesures pour revaluation et la selection d'ensembles de clas-
sificateurs compose s d e SVMs . Le s mesure s employee s son t basee s su r le s theorie s d e l a 
diversite et la marge communement utilisees pour expliquer la performance de s ensembles de 
classificateurs. Cett e etude revele des information s precieuse s pour I'elaboratio n d e mesures 
de confiance pouvan t servir pour la selection des ensembles de classificateurs . 

Finalement, la contribution majeure d e cette these est une approche d'optimisation dynamiqu e 
qui realise un apprentissage incrementa l e t adaptati f en suivant , faisan t evolue r e t corabinan t 
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les hypotheses d'optima en fonction d u temps. L'approche fait usage de concepts issus de dif-
ferentes theorie s experimentales, telles quti I'optiraisation dynamiqu e de particules d'essaims , 
les classificateurs SV M incrementaux , l a detection d e changement e t l a selection dynamiqu e 
d'ensembles a  partir de niveaux de confiance de s classificateurs. De s experiences menees sur 
des base s d e donnee s synthetique s e t reelle s montren t qu e I'approch e propose e surpass e le s 
autres methode s d e classification souven t utilisee s dans des scenario s d'apprentissag e incre -
mental. 
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q DPS O current iteration index 

Si Particl e z's current position (i.e. a solution j) 

Si Particle/' s velocity 

s'i Particl e i's individua l best position 

Sid{k, q) Particl e i's current position at dimension d,  iteration q, time k 

Ad{k, q) Particl e Ts velocity at dimension d,  iteration q,  time k 

s[^{k, q) Particl e i's individua l best position at dimension d, iteration (/, time A: 

netf) Inde x of particle's best infonnant i n its neighborhood. 

s' ,.  ^Jk, q)  Bes t solution fro m particl e i's  infonnan t neighborhood , i.e . net{\),  a t time 

k, iteration q 



XX 

s*{k, q)  Bes t solution at time k, iteration q  in S{k) 

s*{k) Bes t solution at time k  in S{k) 

s*(A: " 1 ) Bes t previous solution found, i.e . at time A -  1 

S(k) Se t o f solut ions a t t im e A 

S{k —  1) Se t of solut ions a t t ime A  — 1 

l3 Dynami c combiner s me thods ' use r pre-define d paramete r 

u Weigh t assigne d t o th e classifie r 

\ Clerc ' s constrictio n coefficien t 

(j) Clerc' s constant 

A Maximu m number of connections in swann communication topology 

g Inde x of best particle infonnan t 

rl,r2 Rando m values in [0,1] 

'!'(•) Trainin g process 

M SV M classifier, i.e . M =  *(s*(A) , I>(A)) 

e(-) General izat io n erro r est imation , e.g . e{{M),Q) 

1/ N u m b e r o f folds use d i n the cross-validatio n procedur e 

eiyf) t ' -Cros s val idat io n general izat io n erro r est imation , e.g . e^{s*{-),T>{k)) 

Sjnax Max . differenc e be twee n th e objectiv e function s value s 

a Varianc e be twee n tw o error s b y using a  Normal approx imat io n t o the B ino -

mial distr ibutio n 

20,9 Standard valu e a t the 9 0 % confidenc e leve l 



XXI 

£'L(x) Expecte d los s for a sample X 

B(x) Bia s of an ensemble fo r a sample x 

1 (x ) Varianc e of an ensemble for a sample x 

1 n (X) Ne t variance of an ensemble fo r a sample x 

K(x) Unbiase d variance of an ensemble for a sample x 

\4(x) Biase d variance of an ensembl e for a sample x 

j/m Mai n ensemble's prediction 

y* Optima l prediction 

y vi_ Th e prediction provide d by the model A4, 

d Pairwis e diversity measure averag e 

d Averag e diversit y 

dij Diversit y between a  pair of classifiers 

Q Q  Average 

DS Disagreemen t measur e 

DF Double-Faul t measur e 

DF Difficult y measur e 

A l l ' Kohavi-Wolper t (KW ) varianc e 

GD Generalize d diversit y 

A Ambiguit y 

DY Difficult y 



XXII 

CI Margin-base d measur e 

Vy Numbe r of votes for the true class 

Vj Numbe r of votes for fo r any other class 

r(x, y) Measur e of margin computed for a sample x with label y 

fi{-) Mea n functio n 

sv Se t of support vectors of a classifier 

rs Se t of relevant samples 

A Se t of samples composed of support vectors and relevant samples 

SV Se t of support vectors of all classifiers int o an ensemble 

L Maximu m number of ensemble members 

C A  classifier ensembl e 

Ml A  classifier ensembl e member 

C* Bes t ensemble selected 



INTRODUCTION 

Pattern classificatio n system s have been devise d fo r man y applications and i n many fields in 

the past . Intende d fo r differen t purpose s bu t sharin g th e sam e principles , thes e system s ar e 

designed to teach computers to solve problems based on past experiences . T o build a  pattern 

classification system , a considerable amount of data i s processed an d compared wit h patterns 

already stored in memory. I n the last four decades, remarkable advances have been made in a 

number of recognition fields, e.g. recognition , speech , handwriting, etc . I n fact , nowadays , if 

sufficient dat a are provided, i t i s possible to make an almost perfec t classifie r fo r any pattern 

classification problem . 

However, despite the advances, most of these systems have been built using real-world data that 

are considered to be stationary. I n other words, their development i s based on the assumption 

that the available training data are always adequate, representative, and available i n sufficien t 

quantity. Consequently , once the classification syste m has been trained in a laboratory phase, 

the assumption i s that it will be capable of classifying new , future instance s indefinitely i n the 

real world, i.e. in its operational phase. However, the incompleteness of training data is a com-

mon problem when developing many real-world applications. For instance, in face recognition 

applications, due to the large variation in facial expressions , lighting conditions, makeup, and 

hairstyles, i t is very difficult t o collect data on all the possibilities in advance. Likewise , there 

are unlimited way s of writing and speaking when developing handwriting o r speech recogni-

tion systems. Thus , even with the knowledge that the perfonnances o f classification system s 

are highly dependent o n data, to wait until the entire acquisition and storage process has been 

complete would be impractical, uneconomical, or even impossible. An alternative would be to 

implement systems capable of learning incrementally . 

Incremental learning systems update trained models in response to incoming data during their 

operational phase , without reexamining al l the old data. A s a result, they are economical , i n 

terms o f bot h spac e an d time , whic h make s the m immensel y usefu l fo r industrial , military , 

and commercial purposes. Because of this, interest in designing classification system s capable 



of incrementall y storing , filtering,  and classifyin g dat a i s growing. A t the sam e time , ther e 

is a  challenge wit h incrementa l learning , whic h i s that classificatio n task s ca n b e no longe r 

seen a s unvarying, sinc e the y ca n actuall y chang e accordin g t o the evolution o f data . Thes e 

changes mak e th e adjustmen t o f a  classification system' s parameter s a  dynamic process . I f 

such variations are neglected, the overall perfonnance o f these systems will be compromised 

in the future, resulting in the defeat o f even the most successful conventiona l machine learning 

techniques, because they are not capable of adapting. 

In ligh t of this, a  classification syste m mus t be able to incrementally accommodat e new data 

and dynamically adap t itsel f in order to better maintain it s optimahty with respect t o internal 

parameters, computational cost , and generalization perfonnance. Thi s brings us to the central 

topic of this thesis , which i s to contribute, with new solutions and breakthroughs , to the im-

plementation of an adaptive incremental system based on dynamic optimization techniques. In 

particular, experiments are carried out using Support Vector Machine (SVM) classifiers as base 

classifiers, an d syntheti c an d real-worl d database s involvin g differen t type s o f applications , 

such as: handwritten digits, multisensor remote-sensing images, forward-looking infrare d shi p 

images, etc . Therefore , database s wit h differen t number s o f classes , features , an d trainin g 

samples arc used when testing approaches with different learnin g strategie s (i.e . gradua l an d 

incremental) in a supervised learning context. 

Problem Statement 

A fiindamental problem wit h incrementa l learnin g i n stati c environment s i s tha t th e best se t 

of a classification system' s parameters can vary over time, owing to changes i n the incoming 

data. Suc h change s can , fo r example , b e mino r fluctuations (random o r systemati c [70] ) in 

the underlying probabilit y distributions . Thes e usuall y resul t fro m eithe r sampl e shiftin g o r 

the natural evolution of classification problems , considering that new knowledge comes in part 

from ne w observations at different times . Therefore , th e sample distributions of training data 

chunks ma y chang e an d affec t th e syste m i n severa l ways , sinc e it s decision boundarie s ar e 

estimated accordin g t o those distributions . I n the literature , these possibl e dat a change s ar e 



defined diS  population drifts  [58 , 109] . Th e problem i n incremental learnin g scenario s i s that 

they are unavoidable, eve n though the application environmen t seem s to be static (i.e . wher e 

the numbers of classes, features, etc. remain constant). 

Consequently, th e incrementa l updatin g o f a classification syste m migh t require no t only re-

viewing its existing models in terms of knowledge acquired and new data, but also in terms of 

its internal parameter s se t with respec t to such data variations. Otherwise , the whole system 

may become obsolete and so fail to achieve a better adaptation i n the future. Thi s assumption 

might explain why, even though significant researc h has been conducted to design incrementa l 

learners [13 , 109 , 93, 26, 88], the results are not often a s satisfactory a s those for batch mode 

learners (i.e . whe n al l data are considered). Takin g this into account, we propose to optimize 

the traditional incrementa l learnin g approaches tha t consider the adjustment o f parameters as 

a static process (i.e . constan t parameter values are employed infinitely ) overtime , to increase 

the system's power of generalization and decrease its complexity. 

In addition, as we use the SVM classifier here , because of its robustness against the well known 

curse of  dimensionality [38], the task o f searching fo r optimu m hype r paramete r value s i s a 

primary proble m tha t mus t b e faced , th e so-called SV M mode l selectio n problem . Solvin g 

this problem is important because, although SVMs are very powerful classifier s i n theory, their 

efficiency i n practic e relie s on the optimal selectio n o f hyper parameters . Thi s i s because a 

naive o r ad  hoc  choic e o f value s fo r it s hype r parameter s ca n lea d t o poo r perfonnanc e i n 

terms o f generalizatio n error , a s wel l a s high complexity i n tenns o f the number o f suppor t 

vectors identified . I n recent years , many mode l selectio n approache s hav e been propose d in 

the literature . The y diffe r basicall y i n tw o aspects : (1 ) th e selectio n criterion ; an d (2 ) th e 

searching methods used. Th e selection criterion, i.e . th e objective firnction, is a measure that 

guides th e search . Som e o f thes e criteri a ar e specificall y relate d t o th e SV M formulation , 

such as radius margin bound [118] , span bound [19] , and suppor t vecto r count [117] . Other s 

are classical , suc h a s th e well-know n cros s validatio n an d hold-ou t esfimations . Th e mos t 

common searchin g method s applied are the gradient descen t techniques [27 , 20, 3], the grid-

search technique s [18 , 47, 49] , and th e evolutionar y techniques , suc h a s geneti c algorithm s 



(GA) [22 , 25, 107 , 21], the covariance matrix adaptafion evolutio n strateg y (CMA-ES) [40] , 

and, more recently. Particle Swarm Optimization (PSO) [29, 52]. 

Although som e of these methods have practical implementations , e.g . gradien t descent , thei r 

appHcation i s usuall y limite d b y hurdle s i n th e mode l selectio n process . Fo r instance , th e 

gradient descen t methods require a differentiable objectiv e functio n wit h respect to the hyper 

parameters an d the kernel , which needs to be differentiable a s well. Similarly , multiple loca l 

minima i n objective fijnctions are a nightmare fo r gradien t descent-base d methods . T o over-

come this, the application of grid-search or evolutionary techniques is a very attractive option. 

Unfortunately, i n the case of the grid-search method, a good discretization of the search space 

in fixed values is crucial for achieving high performances. So , the main challenges in the SVM 

model selectio n researc h field are considered t o be : (1 ) the choice of objective function , (2 ) 

the presence o f local minima in the search space , and (3) the computational time required fo r 

model selectio n task . I n additio n t o these typica l paramete r estimatio n difficulties , th e esti -

mation o f parameter s ove r time fro m incomin g dat a a t differen t time s aggravate s th e mode l 

selection problem . Thi s i s because , whe n knowledg e o f the proble m i s limited , o r the dat a 

are noisy or arrive in batches over time, the model selection task and its performance ca n pro-

gressively degrade. So , we consider a gradual learning scenario (i.e. whe n historical data are 

not discarded ) i n order to study the dynamism o f the parameter searc h spac e with respec t t o 

different level s of uncertainty. 

An interesting alternative fo r improvin g the performance o f single classifiers i s the fusio n o f 

classifier decision s into ensembles, especially when the level of uncertainty i s high, i.e. whe n 

only small sample sets are available [116] . However , despite all these efforts, ou r understand-

ing of the effectiveness o f the ensemble methods i s stil l lacking , and i s driving new research 

on classifie r fusion . A s a result , severa l work s on ensemble s o f classifiers (EoC ) hav e been 

conducted to find measures that could b e well correlated wit h ensemble accuracy and so used 

to evaluate and select the best classifier ensembles [67, 99, 36, 28, 125, 96, 69, 73, 122, 9, 116, 

110]. Nevertheless , there i s a consensus in the literature indicating tha t some diversity exist s 

between ensembl e members , an d tha t thi s diversity i s the mai n sourc e o f possible improve -



ment i n overall perfonnance [28 , 69, 73, 122 , 9]. Althoug h i t is well accepted tha t diversit y 

is, as far as we know, a necessary condition for improving overall accuracy, there is no general 

agreement o n how to quantify i t or deal with it . Thus , even though the application o f EoC is 

clearly advantageous , th e searc h fo r a n efficien t objectiv e functio n fo r selectin g th e best en -

semble from a  pool of classifiers i s still a  persistent problem . Thi s is a particularly importan t 

issue with respect to the development of an incremental learning system, as considered in this 

thesis. 

Research Goal s and Contribution s 

In our effort t o implement an adaptive classification system , we accomplish three major goals. 

The first is to develop a method fo r searching fo r optimum values for SV M hyper parameters 

over time. We face two main challenges in this endeavor: (1 ) overcoming common difficultie s 

involving optimization processes , such as the presence o f multimodality o r discontinuities in 

the parameter search space, and (2) quickly identifying optimum solutions that fit both histori-

cal data and new, incoming data. I f we do not meet these challenges, the processes for searching 

hyper parameters over sequences of datasets could perfonn poorl y or be very time-consuming. 

To tackle thes e tw o issues , we first study th e SV M mode l selectio n tas k a s a dynamic opti -

mization proble m considerin g a  gradual learnin g contex t i n which th e syste m can b e teste d 

with respec t t o differen t level s o f uncertainty . I n particular , w e introduc e a  Particl e Swar m 

Optimization-based framewor k whic h combines the power of Swann Intelligence Theory with 

the conventional grid-search metho d to progressively identify an d evaluate potential solution s 

for graduall y update d trainin g datasets . Th e ke y ide a i s to obtai n optima l solution s vi a re -

evaluations o f previou s solution s (adapte d grid-search ) o r vi a ne w dynami c re-optimizatio n 

processes (dynamic Particle Swarm Optimization, or DPSO), Experimental results demonstrate 

that th e proposed metho d outperform s th e traditiona l approaches , whil e savin g considerabl e 

computational time. This framework wa s presented in [57, 55]. 

The second goal is to experimentally investigate several objective function s fo r the evaluation 

and selectio n o f EoC . Thi s i s a n importan t ste p i n improvin g th e applicabilit y o f SV M en -



sembles i n the classification syste m proposed here . I n this study, we analyze classifie r fusio n 

empirically throug h th e relationshi p betwee n tw o theorie s relate d t o a n ensemble' s success , 

i.e. diversit y measure s and margin theory , with ensemble accuracy . I n order to achieve this, 

we first survey some classical diversity measures and some measures related to margin theory. 

Then, an experimental protocol similar to that introduced in [116] for characterizing SV M en-

sembles i s employed t o evaluate the measures and draw results . Then , fro m a  discussion on 

those results, we try to answer some questions currently arising from the literature, such as the 

following: Whic h measure offers the best guidance in classifier fusio n evaluation ? How are the 

diversity measures related to each other? I s there a relationship among diversity, margins, and 

ensemble accuracy? What are the best measures for observing such a relationship? Finally , we 

conclude thi s study with valuable insight s on methods fo r fusio n evaluatio n and selection o f 

EoC. These investigations are very important , since i t has been demonstrated i n the literature 

that the fusion o f classifier decision s into ensembles can actually improv e the performance o f 

single classifiers, eve n SVMs [116] . However , despite these efforts, ou r understanding of the 

effectiveness o f ensemble methods continues t o perplex, an d thi s i s driving new research o n 

classifier fusio n [67 , 99 . 36 , 28, 125 , 96. 69, 73 , 122 , 9, 116 , 110] . Mos t importantly , thi s 

study provides valuable insights on how these two theories can influence each other and shows 

us how confidence-based measure s ca n b e of greater interes t than diversit y measures fo r th e 

selection of EoC. A study of this nature was presented in [54]. 

The final goal i s to propose a  classification syste m tha t perfonn s adaptiv e incrementa l learn -

ing. Th e method i s implemented base d o n the followin g tw o principles: (1 ) the incrementa l 

accommodation o f new data by updating models , and (2) the dynamic tracking o f new, opti-

mum system parameters for self-adaptation. Ou r aim is to overcome a problem that arises with 

incremental learning, which is the obsolescence of the best set of classification syste m parame-

ters as a result of incoming data. In particular, the proposed method relies on a new framewor k 

incorporating various techniques, such as single incremental SVM (ISVM) classifiers, chang e 

detection, DPSO, and, finally, dynamic selection of EoC. The goal of our method is to update, 

evolve, and combine muhiple heterogeneous hypothese s (i.e . model s with differen t parame -



ters and knowledge) over time, and hence to maintain the system's optimality with respect to 

internal parameters, computational cost , and generalization perfonnance . A s a result, adapta -

tions ar e realize d i n two levels , beyond wha t i s achieved b y the incrementa l learnin g aspec t 

alone an d into the level s of base mode parameters an d decision fusion . Thus , unlike th e tra-

ditional incremental learning approaches, which consider classifier paramete r adjustment a s a 

static process (i.e. constant parameter values are employed to update the system infinitely) , we 

are suggesting that they be optimized over time to increase their power of generalization an d 

decrease thei r complexity . I n order t o achieve this , ou r underlying hypothesis , se t out here , 

is to consider th e incrementa l learnin g process a s a  dynamic optimizatio n process , i n which 

optimum hypotheses are dynamically tracked, evolved, and combined over time. 

The propose d metho d i s validated an d demonstrate s it s efficiency throug h experiment s wit h 

synthetic and real-world databases. Result s in single and multiple classifier configuration s ar e 

compared with those obtained with these strategies: SVM optimized with PSO in batch mode, 

ISVM with paramete r value s fixed beforehand, an d two increment-capabl e classifier s (1-N N 

and Naive Bayes), which are widely applied in incremental learning studies. The performances 

of these classifiers ar e considered "n o less" than those of their batch versions [87] . An incre-

mental ensembl e strateg y wit h optimize d parameter s an d differen t combinatio n rule s i s also 

employed fo r comparison . A s additional objective s of this study , we try to verify whethe r or 

not: (I ) incrementa l learnin g with SV M can achiev e simila r performances t o those obtained 

in batch mode; (2) adaptation of the system's parameters over time is actually a dynamic opti-

mization problem, and, if so, it is important to achieve high performances; and (3) the dynamic 

selection o f Eo C can lea d to better result s than simpl y combinin g al l the pools of classifier s 

available. We introduce this method and results in [56]. 

The additional contribution s o f this work ar e to provide insight s o n strategies fo r optimizin g 

and selecting classifiers, o n the use of memory-based mechanisms , and on dynamic optimiza-

tion methods. 



Organization o f the thesis 

The thesis consists of four chapters . Chapte r 1  and chapter 2  present a  brief literature review 

of th e mai n researc h topic s an d work s relate d t o th e developmen t o f classificatio n system s 

capable o f perfonnin g incrementa l learning . Th e notio n o f dat a change s i s als o described . 

Then, general approaches and classifiers that have been proposed to build classification system s 

capable of learning incrementally are surveyed. Th e research directive s adopted in this thesis 

are also discussed. 

In chapte r 3 , we empirically demonstrat e tha t the SV M mode l selectio n proble m performe d 

over time can, in fact, be treated as a dynamic optimization problem. Based on this assumption, 

a PSO-based framework , whic h combine s the power o f Swan n Intelligenc e Theor y wit h the 

conventional grid-search method is introduced. Experimenta l results with this method and with 

traditional approaches are presented. 

In chapte r 4 , w e investigat e nin e measure s fro m tw o differen t theorie s (diversit y measure s 

and margin theory) to be employed i n the evaluation and selection o f SVM ensembles. Fro m 

empirical results , discussions on how these two theories can influenc e eac h othe r and on the 

application of margin-based measures are described. 

In chapter 5, the proposed adaptive incremental learning method is presented. W e describe each 

additional module composing the framework, an d explain the various strategies for adaptation 

and performance improvement , suc h as dynamic parameter optimizatio n and the selection o f 

ensembles based o n their respective confidence level s .  Experiment s and results obtained are 

reported. Finally , we outline our conclusions and suggest guidelines for future work . 



CHAPTER 1 

PATTERN CLASSIFICATIO N I N IMPRECISE ENVIRONMENT S 

The development o f classification system s capable o f performing adaptiv e incrementa l learn -

ing require s a n understanding o f th e challenges inlieren t t o classificatio n i n imprecis e envi -

romnents, i.e . enviromnent s where the uncertainty leve l in the incoming dat a i s usually high 

and where different types  o f data change can be involved. I n this chapter, the two main con-

cepts regarding pattern classification i n such environments are introduced: (1 ) the capability of 

incremental learning ; and (2) the various changes that can occur in the data. 

I.I Incrementa l Learning Definitio n 

Incremental learnin g means learning new data over time without keepin g al l the old data fo r 

subsequent processing, thereby reducing training time and computational effort . However , an 

incremental learne r shoul d be able to adapt to new information withou t corrupting o r forget -

ting previously learne d information . I n other words, i t must deal with the so-called stability -

plasticity dileiruna , whic h describe s th e stat e where a  stable classifie r wil l preserv e existin g 

knowledge, but will no t accommodate new information , whil e a  completely plasti c classifie r 

will learn new information, but will not conserve prior knowledge [93]. 

Incremental learnin g approache s ar e very attractiv e fo r solvin g severa l rea l worl d classifica -

don problems , especiall y thos e where : (I ) th e data acquisitio n proces s i s expensive, an d so 

only a few samples become available over time; (2) the data generation process is itself time-

dependent, a s in time series data; o r (3) the training data available are too large to be loaded 

into computer memory [109] . Basically , in agreement with Polikar et al. [93] , an incrementa l 

learning algorithm must meet the following criteria : 

a. I t should be able to learn additional information fro m new data; 

b. I t should not require access to the original data used to train the existing classifier ; 
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c. I t should preserve previously acquire d knowledge , i.e . i t should no t suffe r fro m catas -

trophic forgetting ; 

d. I t should be able to accommodate new classes that may be introduced with new data. 

It i s important t o note tha t incrementa l learnin g a s referred t o here i s a  process o f updatin g 

a classification syste m wit h suitabl y size d sample s of datasets a t a  time, i.e . bloc k b y block , 

and not one sample at a time, which i s called online learning or instance-by-instance learnin g 

[109]. I n the literature , a  generic algorith m fo r incrementa l learnin g ma y b e defined i n five 

steps [77]: 

1) Lear n rules from examples ; 

2) Stor e rules, discard examples; 

3) Us e rules to predict, navigate, etc.; 

4) Whe n new examples arrive, learn new rules using old rules and new instances; 

5) G o to step 2. 

To summarize, the general ide a behind incrementa l learnin g is that the knowledge base is in-

creased incrementally as each new piece of infonnation i s obtained. For this reason, classifica -

tion systems with incrementa l learnin g capabilities can more accurately represen t th e manner 

in which humans learn. 

Unfortunately, a s new small pieces of infonnation arriv e at different time s during incremental 

learning, the whole learning/classificatio n proces s ca n suffe r disturbances , dependin g o n the 

changes occurring in the data. We explain the possible changes to the data in the next section. 



II 

1.2 Concep t Drif t Issue s 

In many real world problems, a huge quantity of new information i s created dynamically mo-

ment by moment; for example, applications involving data streaming: spam filtering, financial 

prediction, credit card fraud protection, network intrusion and surveillance video streams, stock 

market trend analysis, etc. Most of the time, these data must be stored, filtered, or organized in 

some way. Suc h tasks demand powerful computer s and systems capable of dealing with huge 

volumes of data and data distributions that may change over time. 

A persisten t challeng e wit h incrementa l updatin g i s that possibl e variation s i n problein dat a 

distributions ca n affec t syste m perfonnance . I n th e literature , thes e change s i n the data ar e 

called concept  drifts,  specificall y population  drifts  o r real  drifts,  dependin g o n th e type  o f 

change. We explain these changes below: 

• Real  drifts:  Rea l drift s refe r t o changes i n the targe t concept s (e.g . clas s labels ) [58], 

This kind of data drifting occur s for a category of real-world problems. For example, in 

object tracking or user-interest-guided applications, the class of interest varies over time. 

This means that, in order to efficiently predic t data, the system might incrementally learn 

data about the current concept , and, at the same time, remove old, conflicting concepts . 

Thus, in real-drift situations , the incremental learning process must cope with population 

drifts resulting from updating phases, and also with changes inherent to the nature of the 

problem, whic h ca n sometime s even invalidate the knowledge alread y acquire d b y the 

system. 

• Population  drifts: Populatio n drift s refe r t o hidden changes i n the underlying dat a dis-

tributions intrinsically related to the incremental learnin g process. Thi s is because they 

result, fo r example , from samplin g shifting , whic h depends on the order and the repre-

sentativity of samples present in the incoming data. I n such cases, the concepts (classes) 

are usually predefined, but their distributions can evolve when new data arrive. For exam-

ple, the frequency o f new types of spam mails and their features ma y change drastically 

over time, which causes variations in the data distributions and decision boundaries that 
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distinguish whether or not a message is spam [31] . This means that populadon drifts are 

unavoidable in the incremental learning process, even when the application environment 

seems to be static or when real drifts are involved. 

Several example s involvin g real-world application s ca n be provided t o better illustrat e 

population drifts. Fo r example, handwriting recognition systems are usually trained from 

a fairly large amount of data. Nevertheless, there are unlimited ways of writing a charac-

ter, and i t would be impractical, i f not impossible , to collect and store every possibility. 

In this connection, a problem arises when systems implemented fro m specifi c user styles 

are exposed t o other styles, e.g. differen t population s an d regions. Th e systems would 

certainly no t achieve th e same success fo r bot h styles . T o illustrate, i n Figure 1.1 , we 

show some isolated digits handwritten in the North American and Brazilian styles . I t is 

easy to see that variations in the two styles, e.g. fo r the numbers I , 2, 7, etc., could be 

reflected i n changes to the data distribution classes, which would require updating of the 

system i n order to prevent compromising future classifications . 

a O  O o o  £)0  ^  X^  6 c)O^(PV^c>O0^ 
/ / / / / / / / / / 1  Al l  X  X^ ^  ^L  i 

6^^^^.^^^ *  ^^^ ^ ^ f ' f l y 
-7 77777--^7  71  7 7 ^ f 7 t ? ^ ^ 7 

(a) Nort h American (b ) Brazilia n 

Figure I. I Example s of variations between handwritting styles. 1.1(a) 
Handwritten digit s from North American (NIST SD-I9 database) and 1.1(b) 

handwritten digits from a  Brazilian database of checks |84]. 
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In probabilisdc terms , th e change s tha t ma y occu r i n a  classification proble m ar e related t o 

[58, 70]: 

• Prio r probabilides for the c classes, F(a;i) , . . ., P{LOC); 

• Class-conditiona l probability distributions, p{x\ujt)„ i  = 1, . , ,, c; or 

• Posterio r probabilides P{LJi\x),  i  = I,...  ,c. 

Population drifts resul t from changes that occur in the P{u!i) and p{x\iL>i) o f classes, while real 

drifts are related to changes in the P{LL>,\X) of classes. Figure 1.2 depicts these types of concept 

drifts i n probabilistic terms . Conside r the class densities fo r two classes: tî ' i and u.'2 , and the 

optimal decision boundary of separadon regarding one input variable ,r, as illustrated in Figure 

1.2(a). The effect o n the decision boundary of the various kinds of drifts mentioned previously 

are subsequently depicted in Figures 1.2(b) , 1.2(c) , and 1.2(d) . Figure 1.2(b ) illustrates a drift 

caused b y the priors . Then , Figur e 1.2(c ) depicts a  drifting i n class density resultin g fro m a 

sampling shif t fo r th e clas s W ] between th e x  value s 0.6 5 an d 0.8 , fo r example . Finally , a 

drifting i n the posterior probability of the class uji, and also between the x values 0.65 and 0.8, 

is shown in Figure 1.2(d) . 

Now that the definition o f incremental learnin g has been presented an d the difficulties i t com-

monly encounters explained, in the next section we survey the main approaches introduced in 

the literature to deal with these data changes and for incremental learning to occur. 
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Figure 1.2 Illustration s o f different kind s of data drifting , (a)  Initial . Dat a 
drifting i n (b) Priors, (c) Class densities, (d) Posterior probability . 



CHAPTER 2 

RELATED APPROACHES 

In the previous chapter , th e definition o f incrementa l learnin g wa s presented, alon g wit h th e 

challenges involve d i n keeping a  classification syste m u p to date. I n addition , w e have seen 

that populatio n drif t i s a common difficult y whic h need s to be faced b y incrementa l learnin g 

processes with the presence, or not, of real drifts. Takin g this into account and for the sake of 

clarity, a  literature review i s provided i n this chapter on the main approaches an d technique s 

that have been employed for dealing with these situations. 

First, th e main approache s applie d i n this research are a are surveyed : (1 ) instance selection , 

(2) instance weighting, (3) incremental classifiers, and (4) ensemble of classifiers. W e start by 

giving a general overview of these approaches, as illustrated in Figure 2.1. They are then sum-

marized, with reference t o their respective related works . Finally , we present a  discussion on 

the research directives adopted in our thesis for the implementation of an adaptive incremental 

learning method, which is the research domain at issue here. 

i 
Instance 
Selection 

Approaches fo r Learnin g and 
Handling Data Changes Overtim e 

1 
Instance 
Weighting 

i 
Incremental 
Classifier 

Dynamic 
Combiner 

1 
Rc-u 
Data 

1 
Ensemble 
Learnine 

1 

s 

sing of 

Incre 
Ense 

Fill 
Dal 

mental 
Tibles 

sring of 
a 

1 
Chunking o f 
Data 

Figure 2.1 Genera l overview of techniques for developing adaptive 
classification systems . 
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2.1 Instanc e Selectio n 

Instance selection-based methods handle data changes, especially those related to real drifts, by 

learning from a "time-window" of relevant examples. The relevance of the examples is usually 

measured by their "age" or correctness, depending on the strategy. A  generic example of this 

method i s depicted i n Figure 2.2 . Conside r a n existing learne r an d a  selection criterion ; th e 

instance selector carefully select s relevant examples from the data stream and stores them in a 

time-window. Whe n the number of examples in that window reaches a maximum of T items , 

the learner is entirely recreated or incrementally updated from the window. Older examples, or 

examples that are no longer relevant, are discarded. 

Related work s w e ca n cit e ar e thos e o f Schlimme r an d Grange r [100] , Widme r an d Kuba t 

[121], Maloof an d Michalski [78] , and Lazaresc u e t al . [75] . Schlimme r an d Granger [100 ] 

introduced the STAGGER system, which maintains a set of concept descriptions (sets of sym-

bols numerically weighted by Bayesian weighting measures). When the system fails to predict 

a membership class fo r a  new instance, a new, more complex concep t descriptio n i s built by 

the iterative use of feature construction , where the most relevant concept is selected. 

In [121] , Widmer and Kubat introduced the FLORA algorithm, which learns current concepts 

by implementing a rule system from a  window of recent examples. Th e algorithm learns new 

instances incrementally , whil e "forgetting " th e oldes t ones . Algorith m variant s (FLOR A 2 , 

3, an d 4 ) hav e been als o bee n implemente d wit h differen t characteristics , suc h as : th e us e 

of an adaptive window size , a store of "stable" concepts, etc . I n this same vein, Maloof and 

Michalski [78 ] have introduced a partial memory system, called AQ-PM, which tests training 

instances an d select s only misclassifie d example s t o store i n the window fo r futur e learnin g 

phases. A  user-defined threshol d controls a forgetting mechanism. Klinkenber g and Joachims 

[64] suggest dynamically adjustin g th e window size by monitoring the system's performanc e 

on th e las t chun k o f data . Th e author s trai n th e Suppor t Vecto r Machin e (SVM ) classifie r 

with differen t windo w size s fro m previou s dat a an d selec t th e windo w siz e tha t maximize s 

the accurac y o n th e las t chun k o f data . Anothe r variatio n o f th e origina l instanc e selectio n 
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approach has been introduced by Lazarescu e t al. [75] , which uses an unsupervised algorith m 

and not one, but three multiple competing windows of different size s to give the method more 

flexibility. 

Older samples - More recent samples 

Instance Selecto r 

^am-^iaiiiEoonoiiiiiiiicooooooooonocEP-

Time Window 

r 
T_ 

|_J Samples 

I Relevan t sampl e Learner 

Figure 2.2 Illustratio n of the instance selection approach. 

2.2 Instanc e Weighting 

Instance weightin g method s assig n weight s t o instance s accordin g t o thei r ag e and/o r thei r 

influence i n the current concept . Unlik e instance selection methods, where examples are con-

sidered equall y relevan t i n the window, these methods try to create differen t degree s o f rele-

vance fo r eac h example by computing weights for al l instances , even the relevant ones . Thi s 

approach has not often bee n applied, probably because it calls for learning algorithms capable 

of processing weighted instances . Fo r example, in [62, 65], the authors implemented instanc e 

weighting b y employing an SV M classifier Furthermore , they have a tendency to overfit th e 

data, as observed in [63]. 

2.3 Incrementa l Classifie r 

The incremental classifie r approac h refer s to incremental model maintenance. I n other words, 

approaches i n this group employ a  classifier algorith m capabl e o f being continually updated . 

The incrementa l learnin g proces s with a  single classifier ca n be summarized a s illustrated in 

Figure 2.3. Le t T>{1), 2?(2),. . ., T>{n)  b e datasets available to the learning algorithm at instants 



k =  1. 2 n.  Th e learnin g algorith m start s wit h a n initia l classifie r (hypothesis ) M{1) 

trained from P( l ) . Then , A^(l) is updated toM(2) o n the basis of P(2) , an d 7W(2) is updated 

to .W(3) on the basis of 15(3), and so on for fiiture iteradons. 

Older samples • More recent sample s 

Data 
Stream ^OOOOOOOOaOOOOOOOODOOOOOOOODOQOOO^-
Datasets ' 

Incremental 
Classifier 

|_| Samples 

P ( l ) •P(2) P(3) V(k) 

.VI ( 1 .V1(2) ,A.i(:? M(A;) 

Figure 2.3 Illustratio n of the incremental learning process. 

Below, we summarize some single classifiers capabl e of incremental learning : 

• Learnin g vector quantization (LVQ): a simple and successful onlin e learning algorith m 

also originating from the neural network literature [70]; 

• Naiv e Bayes Classifier: a  ver) suitabl e method fo r updatin g an existing classifier, sinc e 

the sample frequencies require d fo r calculating the prior probabilities can simply be in-

creased as new examples arrive; 

• Neares t Neighbor: a  classifier tha t is both intuitive and accurate. The training set can be 

built by storing each labeled sample x as it arrives; 

• Neura l Networks: while generally suffering fro m catastrophic forgetting [93] , a particu-

lar neural network family i s capable of incremental learning : ARTMAPs [13 , 16, 15]; 

• Decisio n Tree : a  classical batc h classifier tha t ha s been modifie d t o accommodate new 

data over time. An interesting version can be found in [50]; 
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• Suppor t Vector Machine (SVM): a classifier that tries to find a good representadon of the 

boundary betwee n classes . I t has the advantage o f being readily suite d t o incrementa l 

learning tasks. Mor e details about incremental versions of the SVM are provided i n the 

next secdon. 

2.4 Ensembl e Learnin g 

An ensemble i s a set of classifiers (e.g . decision trees (DT), artificial network s neural (ANN), 

support vector machines (SVM), etc.) organize d i n such a way that thei r individual decisions 

are combined t o obtain the ensemble predicdon when a  new example i s to be classified. Th e 

goal i s to combine different classifie r decision s to decrease the variance and the enor amon g 

single solutions obtained by training from a  dataset V. 

Ensembles o f Classifier s (EoC ) hav e becom e ver y popular , a s they ofte n outperfor m singl e 

models. Consequently , the literature on EoC has grown extensively with the objective o f un-

derstanding them better and improving their results [67, 99,36,28,125, 96, 69, 73, 122, 9,116, 

110, 54]. Becaus e of this interest , EoC are now widely applied in diverse pattern recognitio n 

applicadons. 

The construction o f an EoC involve s the design o f classifier member s and choosin g a  fusio n 

function t o combine their decisions. Classifier members can be designed in different way s [33], 

such as the following : 

• Manipulating  training examples: These methods var y th e training sample s i n order to 

generate different dataset s for training the ensemble members. Some examples are: Bag-

ging (bootstrap ^ggregat//jg [5]) and Boosting ([98]). 

• Manipulating  input  features: Method s i n this grou p manipulat e th e feature s t o obtai n 

diversity among members. Thei r goal is to provide a partial view of the training dataset 

to each ensemble member, so that they become different fro m one another Example s are 

the Random Subspace method [46] and the feature subse t selection strategies [111] . 
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• Manipulating  output targets: In this strategy, the labels of training sample s ar e manip-

ulated t o produc e differen t classifiers . Fo r instance , usin g th e Erro r Correctin g Cod e 

method [34]) , a  multi-class proble m i s transformed int o a  set o f binary problems . A t 

each ne w iteration , a  different binar y divisio n o f the training datase t i s used t o train a 

new classifier . 

Along with these three categories, there are also some methods that manipulate ensemble mem-

bers (i.e. producing heterogeneous ensembles, the members of which can actually be differen t 

classifiers [97 ] or represent variations of some aspects of a given classifier, such as the topology 

for neural networks [102] or hyperparameters fo r SVMs [115], etc). 

At the same time, the choice of fusion function depends on what kind of infonnation is obtained 

(e.g. labels , probability estimation, etc.) from the individual models. Among the most common 

options found i n the literature are: majority vodng , simple average, sum, product, maximum, 

minimum, weighte d average , Naive-Bayes combination . Decisio n Template s (DT) , etc. [61 , 

72, 71],  Fo r mor e informatio n abou t combinatio n function s an d classica l method s fo r th e 

creation o f ensembles, a comprehensive survey with examples can be found in [71]. 

In addition, different combinatio n architectures can be defined, according to classifier arrange -

ment. Ther e ar e several related topologie s o r structures i n the literature , such as conditional , 

serial, parallel, etc. Lam [74] proposed a classification o f these topologies as follows: 

• Conditional:  This topology i s based o n confidence level , and i t works in two ways. A 

base structure i s used t o measure th e confidence level . I f there i s a  rejection, o r i f the 

classification i s made with a low level of confidence, a  secondary structure is used which 

is more specialized in the particular problem. This secondary structure , which is usually 

more complex than the first, is only used for more difficult patterns . 

• Serial: Th e classifiers ar e arranged i n series. Eac h classifie r produce s a  reduced se t of 

possible classes or values that are used by posterior classifiers . 



21 

• Parallel:  Thi s topology consists of a set of classifiers consulted i n parallel. First , an EoC 

operates i n paralle l t o produce classifications o f a pattern, an d then thei r decision s ar e 

combined by a fusion function . 

• Multistage:  In this topology, the classifiers are arranged in different stages , such as hybrid 

combinations of parallel-serial o r serial-parallel architectures . 

In the same way, inspired by the success of the conventional Eo C methods introduced above , 

which ar e traditionall y applie d ove r a  single dataset , simila r techniques hav e been propose d 

to perfor m incrementa l learning . Base d o n th e origina l idea , Eo C methods fo r incrementa l 

learning also generate and combine sets of classifiers. However , the creation of base classifiers 

is slightly different, i.e . rather than fixed datasets, now new datachunks can arrive over time. 

A comprehensiv e surve y o n th e variou s ensembl e technique s fo r dynami c environment s i s 

presented in Kuncheva [70]. Based on that study and [31], the next two sections present a com-

pilation o f the proposed strategie s foun d i n the literature in two groups: dynami c combiner s 

and incremental ensemble approaches. 

2.4.1 Dynami c Combiner s 

Dynamic combiners train ensemble members in advance and then changes (i.e. concept drifts ) 

are tracked by updating the combination rule with respect to new data. Therefore , th e adapta-

tion is performed only at the decision fusion level , since existing classifiers are never retrained. 

Methods i n this group ar e commonl y calle d "hors e racing " algoritlmis . W e outline som e of 

these algorithms below: 

a. Weighted  Majority: Thi s algorith m i s compose d o f fou r step s [70] : 1  - Initializ e al l 

weights {uj}.^^^  =  1 , assigning to each bas e classifier a  classifier ensembl e C. 2 - For 

each new training sample x, compute the support for each class as the sum of the weights 

of all classifiers tha t sugges t it s respective class label s fo r x . Labe l a s x th e class with 

the larges t support . 3  - Check the true label o f x an d update the weights of all expert s 
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with an incorrect prediction as u, — (iu^,  where ,5 G [0,1] is a user predefined parameter . 

4 - Continue from Step 2. 

b. Hedge  0:  Th e same updating rule as in the Weighted Majorit y algorith m i s employed. 

However, instead o f taking decisions based on the weighted majority , thi s method uses 

the prediction fro m a  selected classifie r a s the ensemble decision. The selection process 

is based on a probability distribution defined b y the normalized weights. 

c. JVinnow:  Thi s method is similar to the Weighted Majority algorithm , but has a differen t 

updating rule . I n this algorithm, the weights are recomputed onl y i f the ensemble pro-

vides an incortec t predictio n fo r th e current inpu t x . I n addition, the weight u  of each 

classifier i s updated, as follows: I f the correct labe l for x is obtained by a given classifier , 

its weight i s increased, becoming Uj = fiuj  (promotion  step), otherwise i t is decreased, 

becoming Uj  =  UjfP  (demotion  step). I n thi s way , bas e classifier s ar e promote d o r 

punished according to the ensemble errors. 

d. Mixture  of Experts: Unlike the previous dynamic combiner methods, this strategy repre-

sents a special case in which the firsion decision rule and a selected classifier ar e updated 

from eac h new example. Therefore , i t is important to note that the base classifiers mus t 

support incremental learning . 

Although the dynamic combiner methods are attractive from an implementation point of view, 

the main problem with such an approach is their failure to adapt to new data at the base classifier 

level, since they must be trained in advance. This is a disadvantage, because it may compromise 

the performanc e o f th e whol e syste m whe n expose d t o a n environmen t wher e n o adequat e 

classifier ha s been previously trained. 

2.4.2 Incrementa l Ensemble 

Unlike dynamic combiners, the Incremental Ensemble methods are flexible, since they consider 

the updating o f ensemble size , member knowledge, and a  combination rule . Th e key here i s 
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how t o assig n th e dat a t o subset s i n orde r t o trai n th e bas e classifiers . Thi s decisio n als o 

determines how new examples are learned by the ensemble. Basically , they can be categorized 

into three groups [70]: 

a. Updated  training data:  The methods in this group use fresh dat a to make online updates 

of the ensemble members, where the combination rule may or may not change. 

• Reusing  data points: As described by Oza [86], an online bagging algorithm is used 

to converge to batch bagging as the number of training examples and the number of 

classifiers ten d to infinity . Th e training samples for the classifiers i n the ensemble 

are create d incrementally . Th e bas e classifier s ar e trained usin g onlin e classifie r 

models. 

• Filtering:  Training sets are formed fo r the consecutive classifiers a s the data flows 

through the system. The basic idea is to build the ensemble members progressively 

using portions of a training set . Example s of this kind of approach are variants of 

the tradidona l Boostin g metho d [98] , e.g . i n [82 ] o r the Pasting-small-vote s [7 ] 

method. 

• Using  data blocks or chunks: The ensemble is updated using batch mode training 

on a "chunk" of data. Tha t chunk can be treated as a single item of data, because 

the ensemble is trained on the most recent block, on a set of past blocks, or on the 

whole set of blocks. 

b. Updating  ensemble members:  Th e classifiers i n the incrementa l ensembl e ca n b e up-

dated online or retrained in batch mode when blocks of data are available. 

c. Structural  changes  to  the ensemble  This strategy creates a n individua l classifie r fro m 

each new data chunk available. Then, whenever a change in the enviromnent is detected, 

they ar e re-evaluate d an d th e wors t o r oldes t classifie r i s replaced b y a  new classifie r 

trained o n th e mos t recen t data . A  genera l overvie w o f thi s approac h i s depicte d i n 



Figure 2.4 . Th e ide a her e i s t o divid e dat a stream s int o chunk s o f dat a fo r learning . 

For each chun k o f data , a  new base classifie r i s trained an d combine d wit h precedin g 

ones fo r futur e predicdons . Thi s scheme i s also called "bloc k evoludon " in [41] . Th e 

decision's fusion o f classifiers i s usually realized by weighted voting, where the weights 

are computed from the most recent data. Figure 2.4 depicts the key idea and the variants 

that can be suggested naturally based on this idea. 
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Figure 2.4 Illustratio n of the incremental learning process based on ensemble learning. 

Despite this categorization of the approaches, it is important to note that combinations between 

them are possible. I n order to provide a better overview of the approaches an d related work s 

that we have cited in this chapter, we summarize this information i n Table 2.1. 

In thi s table , w e ca n se e th e bas e classifier , th e typ e o f dat a chang e sdadie d whe n learnin g 

over time, and the approach employed . W e provide more details on these aspects an d works 

in section 2.7 . W e now turn our focus t o the base classifier employe d i n this paper, whic h i s 

described in the next section. 
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Table 2.1 Compilatio n of some related works reported in the literature by 
outlining the base classifiers, the type of concept drift involved , and 

approach adopted. 

Related works 
Schlimmer and Granger [ 100] 
Widmcrand Kubat [121] 
Maloofand Michalsk i [78] 
Klinkenberg and Joachims [62] 
Klinkenberg and Riiping [65] 
Syedetal. [109 , 108] 
Ruping Androutsopoulos et al, [2 ] 
Street and Kim [106] 
Hultenetal, [50 ] 
Kolter and Maloof [68] 
Stanley [105] 
Wangetal, [119 ] 
Delany etal, [31 ] 
Wangetal, [120 ] 
Cohen et al, [26 ] 
Tsymbalctal, [112 ] 
Mohammed et al, [81 ] 
Muhlbaicr and Polikar [82] 
Parikh and Polikar [88] 
Tsymbalctal, [113 ] 

Base classifie r 
Rule-based learnin g 
Rule-based learnin g 
Rule-based learnin g 
Support Vector Machine 
Support Vector Machine 
Support Vector Machine (SVM) 
Naive Bayes (NB) 
Decision Trees (DT) 
Decision Tree 
Decision Tree, Nai've Bayes 
Decision Trees 
Decision Trees, Naive Bayes 
Instance-based (/\-NN) 
Decision Tree 
Decision Tree 
Decision Trees 
Multi-Layer Perceptron (MLP) 
MLP, NB, SVM 
Multi-Layer Perceptron 
Decision Trees 

Drift Type 
Real 
Real 
Both 
Real 
Real 

Population 
Population 

Both 
Real 
Real 
Real 
Both 

Population 
Real 

Population 
Population 
Population 

Real 
Population 

Both 

Approach applie d 
Instance selection 
Instance selection 
Instance selection 
Instance selection 
Instance weighting 

Incremental classifier 
Instance selection 
Ensemble learning 

Incremental classifie r 
Ensemble learnin g 
Ensemble learning 
Ensemble learning 
Instance selection 

Incremental classifie r 
Incremental classifie r 

Ensemble learning 
Ensemble learnin g 
Ensemble learnin g 
Ensemble learnin g 
Ensemble learnin g 

2.5 Suppor t Vector Machines 

The SV M classifie r i s a machine learnin g approach base d o n the structura l ris k theory intro -

duced b y Vapnik i n [117] . I n particular , an SV M classifier i s capable o f finding the optima l 

hyperplane tha t separate s tw o classes . Thi s optimal hyperplan e i s a  linea r decisio n bound -

ary separating the two classes and leaving the largest possible margin between the samples of 

the two classes. Unlik e most learning algorithms based on empirical risk , the SVM does not 

depend o n probability estimation . Thi s characteristic make s i t more robust agains t the well-

known curse of dimensionality, mainly for small datasets, since classification succes s does not 

depend o n the dimensions o f the inpu t space . Becaus e o f this , i t can b e very promisin g fo r 

incremental learning situations, and so we employ it here. 
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In particular, the training of an SVM classifier ca n be summarized a s follows. Conside r a  set 

of labeled trainin g sample s represente d b y 'D=(xi, y i ) , . . ., (x„ , y,,), wher e x , G  ''R'^ denote s 

a (i-dimensiona l vecto r i n a  space, an d /y , G  {  — 1,+!} i s the labe l associate d wit h it . Th e 

SVM training process , which produces a  linear decision boundary (optima l hyperplane ) tha t 

separates the two classes (-1 and +1), can be fonnulated by minimizing the training error: 

mm ^ll^-l l '+CEIUe. , ̂ 2 1 ) 
subject to y,((u;'^Xi)-1-6) >  1-^ j , <f ( > 0 , i=l , . . . , n 

while maximizing the margin separating the samples of the two classes. i « is a weight vecto r 

orthogonal t o the optima l hyperplane , b  is the bia s term, C  i s a  tradeoff paramete r betwee n 

error and margin, and ^j is a non negative slack variable fo r x, . Th e optimization problem in 

Equation 2.1 is usually solved by obtaining the Lagrange dual, which can be refonnulated as : 

max | E > ' - | E , , j a , a / ) / , y j X , X j , 
(2.2) 

subject to 0 < o , <  C , E T "»y» = 0 

where (a,),g n ar e Lagrangian multiplier s computed durin g the optimization fo r each trainin g 

sample. Thi s proces s select s a  fractio n /  o f trainin g sample s wit h Q ^ >  0 . Thes e sample s 

are called suppor t vectors and are used to define the decision boundary. I n extreme cases, the 

number of support vectors will be the same as the number of samples contained in the training 

set. A s a result, the w  vector can be denoted a s E l ' CdUi^i-  Figur e 2.5 illustrates the general 

idea o f th e decisio n boundar y compute d b y th e SVM , wher e ther e ar e tw o classe s (circle s 

and squares ) separate d b y an optimal hyperplane . Th e training sample s that were selected as 

support vectors are located under and between the dashed lines (margin). 

However, this SVM formulation only works for linearly separable classes, and, since real-world 

classification problem s are almost never solved with a linear classifier, a n extension i s needed 

for nonlinea r decisio n surfaces . T o solve this problem, the dot products (x^.x^ ) i n the linea r 

algorithm are replaced by a nonlinear kernel functio n A'(.) , where A'(x, , Xj) =  <:I>(x,).<&(Xj) , 
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, optimal hyperplan e 

o v^ \ o X • 

O O  - Q \ ^^ ^  ^ ^uj^*(l) -1-6 = 1 

O o  O  ^  ^^u.''^-t(x) +  b = o 

Figure 2.5 Illustratio n of S\'M optima l hyperplane separating two classes. 

and $  i s a  mapping functio n <^  :  R'^  \—>  H.  Suc h a  replacement constitute s th e so-calle d 

"kernel trick " [10] . I n order t o work, th e kerne l functio n A'(xi,Xj ) mus t sadsf y th e Mercer 

condition [117] . The kernel trick enables the linear algorithm to map the data from the original 

input space R'^  to some different spac e H  (possibl y infinitel y dimensional) , called th e featur e 

space. In this space, nonlinear SVMs can be generated, since linear operations in that space are 

equivalent to nonlinear operations in the input space. Th e most common kernels used for this 

task and their parameters (7, r, u and r) are listed in Table 2.2. Th e decision fiinction derive d 

by the SVM classifier fo r a test sample x and training samples x, can be computed as follows, 

for a two-class problem: 

•iign{f(yi)) wit h /(x ) =  ^Q,y,A' (x , ,x ) - f b (2.3) 

Table 2.2 Compilatio n of the most common kernel s 

Kernel 
Linear 

Polynomial 
Radial Basi s Function (RBF ) 

Sigmoid 

Inner Produc t Kerne l 
A'(x , ,Xj) =  x / x j 

A'(x,,Xj) =  ( 7 x f x j + /•)",( / > 0 
A"(Xi,Xj) =  t.i7;(-7| |x , -  Xj||-), 7 >  0 

A"(x,,Xj) =  tuiilil-yxjxj  -\-  r) 
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In the same way that this extension deals with nonlinear problems, the primary SV M formu -

lation require s additiona l modificatio n t o solve multiclas s problem s ( c >  2) . Ther e ar e tw o 

approaches for handling this: 

• 

• 

Onc-Against-One (OAO): This strategy arranges pairs of classifiers int o separate classes, 

and is also called a pairwise scheme, where the total number of classifiers i s c{c — l)/2 . 

Given a  tes t sample , th e classificatio n resul t i s obtaine d b y comparin g th e pair s an d 

assigning the class with the maximum number of votes to it. 

One-Against-AU (OAA): In contrast, the one-against-all strategy yields one classifier fo r 

each class c that separates that class from al l the other classes. The final decision is made 

by the winner-takes-all method , in which the classifier wit h the highest output functio n 

designates the class. 

In thi s work , w e us e th e OA O strategy, sinc e i t has bee n demonstrate d t o be faste r t o trai n 

and uses fewer suppor t vectors than the OAA approach [47] . Overall , the SVM is a powerfu l 

classifier wit h strong theoretical foundation s an d good generalization perfonnance. However , 

even though it occurs in most machine learning algorithms, training it requires fine-tuning of its 

hyperparameter set (i.e. kernel parameters and the regularization parameter C). For instance, C 

is a penalty parameter of the error term, e.g. a  high value punishes the errors too much, and the 

SVMs can either overfit the training data or underfit them . Kerne l parameters that are not well 

tuned can also lead to underfitting o r overfitting of the data. I n our case of interest, if the RBF 

kernel parameter 7 i s improperly set, the SVMs easily over- or underfit the training data, while 

a bad C  sedin g ca n caus e an explosion i n the number o f suppor t vector s identified , thereb y 

increasing th e complexit y o f the classifier s obtained . So , tunin g th e SV M hyperparameter s 

controls the classifier's powe r of generalization. Th e problem no w is to find their best values, 

which i s a non trivial task (the so-called "mode l selection " problem). I n the next chapter , we 

explain this problem and relate it to dynamic optimization problems. 
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2.6 Incrementa l Suppor t Vecto r Machine s 

The SVM classifie r ha s robust theoretical fundamentals , an d often demonstrate s goo d empir-

ical results in the literature. Unfortunately , it s training process i s very time-consuming when 

dealing wit h larg e o r noisy datasets . Thi s i s mainly becaus e th e origina l SV M formulatio n 

involves solving a quadratic programming problem, which requires that all training samples be 

loaded into computer memory at once. For this reason, many incremental support vector meth-

ods (ISVM) have been proposed t o provide options fo r updatin g a n existing mode l tha t wil l 

minimize th e computationa l cos t i n tenns o f memory an d processing time . Withou t ISVMs, 

the application of SVMs could be unviable in these situations. Here, we have grouped the most 

incremental SV M approaches found i n the literature into two categories, according to the way 

in which they conduct the incremental process: 

• Manipulating  Sample Sets (MSS): These ISVM methods update a classifier b y merging 

new data, old support vectors, and, optionally, additional samples considered relevant in 

an iterative training procedure. Other non important samples are discarded after training, 

or used fo r recursivel y testin g the models generated [108 , 109 , 80, 123 , 35, 1] . Othe r 

approaches even filter samples before retraining the model [91]. 

• Preserving  Karush-Kuhn-Tucker Conditions (PKC): These ISVM training algorithms at-

tempt to incrementally approximate an optimal decision boundary by adding a new sam-

ple to the solution and "adiabatically" updating Lagrange coefficients (a,) , and retaining 

the Karush-Kuhn-Tucke r condition s o n al l previousl y see n dat a [32 , 103] . A  sample-

discarding procedure is implemented based on a kind of leave-one-out estimate of gener-

alization error on the whole training set. Despite incremental training, the leave-one-out 

procedure makes these methods computationally expensive. 

We have compile d som e relate d work s i n Tabl e 2.3 . Mos t o f th e ISV M method s wer e in -

troduced i n orde r t o reduce trainin g tim e ove r a  dataset , an d s o no specia l techniques , lik e 
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Sequential Minima l Optimizatio n (SMO ) o r chunking-base d optimization , wer e use d i n th e 

process. 

Table 2.3 Compilatio n o f incremental SV M method s 

Ref. 

[108] 

[80] 

[123] 

[11] 

[17] 

[35] 

[94] 

[95] 

[32] 

[124] 

[101] 

[1] 

[91] 

[103] 

Grp. 

MSS 

MSS 

MSS 

MSS 

PKC 

MSS 

MSS 

MSS 

PKC 

MSS 

MSS 

MSS 

MSS 

PKC 

Description 

CuiTcnt support vectors are merged vvilh new data for classifie r 
updating. 
Based on condensed neares t neighbo r classificatio n technique , 
it exchange s sample s betwee n tw o extr a set s w.r.t . thei r cor -
rectness an d distanc e t o separatin g hyperplane . Th e proces s 
stops whether a  user specified leve l o f accuracy i s reached o n a 
extra tes t se t or one of the sets become exhausted . 
This approach use s three sample set s during the process , sam -
ples are classified , selecte d an d exchanged betwee n extr a sets. 
The ide a i s to trai n a n ISV M fro m sample s tha t represen t ver -
tices fro m conve x hull s fo r eac h class . I t i s impractical , sinc e 
the complexit y o f conve x hul l computatio n ca n b e hug e de -
pending on the input space dimension . 
It tnes t o retain th e Karush-Kuhn-Tucker (KKT ) conditions o n 
all previously seen data, while "adiabatically" add s a new sam-
ple t o th e solution . Lcave-onc-ou t i s performed fo r "unlearn -
ing" samples. 
Four strategic s ar c compare d i n thi s work . Error-drive n tech -
nique, which keep s only the misclassified dat a Fixed-partitio n 
that i s similar t o [108]. Exceeding-margi n tha t keeps new sam-
ples that exceed tli e margin defined by the current SVM model 
And finally, a  combination o f exceeding-margin+errors-dnven 
technique. 
This metho d attempt s t o re-lea m onl y a  neighborhoo d fro m 
new dat a and update  weights of old data. 

This method work s similarly t o [108]. However , i t changes the 
SVM formul a t o compute the loss function b y adding a  weight 
to punish errors  on previous suppor t vectors . 
The author s expan d th e wor k introduce d i n [17 ] t o enabl e 
hypcr-parameters updatin g durin g incrementa l learnin g ses -
sions. 

The ide a i s t o reduc e SV M trainin g tim e b y filtering a  larg e 
training datase t and training a SVM only fro m filtered samples. 
In order to achieve this , the authors us e a clustering algorithm . 
The author s propos e a  modificatio n t o adap t th e SM O algo -
rithm fo r onlin e learning . 

It prc-extracts suppor t vector s candidates fro m ne w data to re-
duce computationa l trainin g time . Th e prc-cxtractio n i s don e 
based on a relative distance between sample s to optimal hyper -
plane and a  correctness rat e of test over all previou s data . 
Like i n [108] , the previous SV s replaces al l historica l sample s 
in the retraining process . I n contrast, new chunks are "filtered " 
and only som e samples are considered fo r training, Th e impor -
tance of a sample is measured w.r. t a n adaptive distanc e t o the 
hyperplane. 
As in [ 17], this method also works based on updates at the level 
of samples coefficient s 

Requirements/data feedin g (DFc)/Hyper-paraineter s 
selection (HS)/genera l comment s 
No. /DFe: Chunks./HS : No. 

Validation set , pre-settin g o f accurac y leve l intended , 
number o f neares t neighbors , multipl e incrementa l ses -
sions. /  DFe : On e trainin g set , i.e . n o chunks . /  MS : 
No. 

(\. fi,")',  Ad,  S  control s storag e an d performanc e rates ; 
multiple incrementa l sessions . /  DFe: Chunks . /  IIS: No 
Impractical, th e complexity o f convex hul l compulatio n 
can be hug e w.r.t . sampl e spac e dimension . N o experi -
ments were performed . /  DFe : I t could be from chunks . 
/IIS: No. 
Lcavc-onc-out estimation for discarding samples. /  DFe: 
One trainin g set , i.e . n o chunks . /  HS : No. N o experi -
ments were performed . 

DFe: Chunk s /  HS : Cross-validatio n t o se t parameter s 
over the first chunk, but used values were not mentioned 
/ Reporte d result s indicat e tha t th e fixed  partition [108 ] 
overcomes th e other strategics. 

Two extra parameters : numbe r o f neighbors an d a  well 
suited erro r estimate . Multipl e incrementa l sessions . 
DFe: On e dataset, no chunks. IIS : No. 
Extra paramete r t o weigh t previou s suppor t vectors . 
DFe: Chunk s /  IIS: No. 

Leave-one-out estimatio n fo r discardin g samples . DFe : 
One trainin g set , i.e . n o chunks . /  IIS : Yes . throug h 
gradient-based search . /  On e databas e i s use d (PIM A 
from UCI) , no perfonnance result s were reported. 
There ar e extr a parameter s fo r th e clusterin g algorith m 
and a linear SV M is used (i.e . no kernel parameters , just 
linear decision function ) /  DFe: Chunk s /  IIS: No. 
The approach ha s serious limitafions, sinc e it works only 
for binar y feature s an d linea r SVMs . Besides , ofte n 
with little degradations o f performance ca n be observed. 
DFe: Chunks . /  IIS: No. 
Relative distance , muUipl e incrementa l session s fo r on e 
chunk. /  DFe: Chunks . /  HS: No. 

No mention on how to implement, set , or measure such a 
distance adaptivcly . Som e expenmcnts wit h use r graph -
ics. DFe : Chunks . /  HS: No. 

While updating hyper-paramctcrs, previou s data must be 
used. /  DFe: On e training set , i.e . n o chunks. /  IIS: Yes, 
gradient-based search . 
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The term "incremental" is used to describe the process of building models incrementally based 

on recursive procedures (training and testing) applied to a selection of samples from differen t 

subsets and the large original training set. Their goal is to generate a final model more quickly 

than by solving a larger quadratic optimization problem. Also, it is important to note that SVM 

hyperparameters ar e usually se t beforehand, withou t usin g more sophisticated methods , such 

as evolutionary computation, for example. 

In addition, the terms exact or approximate SVM usually appear in the literature in connection 

with ISV M methods . Thes e term s ar e specificall y relate d t o the resolutio n o f the quadrati c 

problem fo r buildin g th e final SVM classifier . If , fo r example , th e final  SVM solution s are 

found usin g all the training samples during the resolution of the quadratic optimization prob-

lem, the SVM is described as exact. The chunking decomposition method and SMO are exam-

ples of other methods that provide an exact solution. 

By contrast, when the algorithm considers finding the SVM solution by employing one sample 

at a  time (single pass) , i t i s called an approximate ISVM . This i s because they do not check 

other samples , and s o the final solution i s not optimal . Takin g this int o account, w e sugges t 

in ou r propose d metho d a  modifie d versio n o f Sye d e t al.' s metho d [108 , 109] , which w e 

will introduc e i n sectio n 5.1.2.1 . I n addition , th e SV M implementatio n use d i n thi s thesi s 

already provide s mechanisms t o accelerate SV M training through SMO . Such a  technique i s 

very efficien t an d demand s les s computational effor t tha n traditional quadrati c programmin g 

solvers, as shown in [92]. 

2.7 Discussio n 

This chapter surveye d th e main approaches fo r developin g mechanisms to learn fro m impre -

cise environments. From this literature review, we note that the fonner methods were proposed 

based o n the instance selection an d weighting approaches . I n recent years , though, more so-

phisticated method s have been developed usin g incrementa l classifie r an d ensembl e learnin g 

approaches. Furthennore , whe n dealin g wit h real-drif t scenarios , mos t work s us e onl y lin -

early separable synthetic classification problem s (e.g. SEA concepts, rotating hyperplane, etc.) 
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[68, 119 , 120] . By contrast, population drifts have been studied in more realistic scenarios, i.e. 

with real-world data [26, 112, 88]. 

Most importantly , we have seen tha t the main incrementa l learnin g approaches introduce d in 

the literature ar e based on different techniques : (1 ) single incrementa l learnin g classifiers; o r 

(2) ensemble of classifiers. W e have noted that some authors have adapted traditional machine 

learning algorithm s when usin g single classifiers, e.g . DT s [50] and SVMs [109] , to suppor t 

incremental learning . I n th e forme r approach , th e method s updat e a  learne r fro m block s o f 

data, while the second approach usually uses the serial combination of several individual clas-

sifiers. I n this thesis, in order to make our system more robust and capable of achieving high 

performances, w e adopt an ensemble of incremental learner s in a parallel structur e that com-

bines optimized members over time. Our system also employs the concept of relevant samples, 

inspired by the idea underlying the instance selection approach. 

In addition, the choice of a base learner for a classification syste m is very important. Throug h 

this literature review, for example, it can be seen that several incremental versions of classical 

classifiers hav e been implemented . So , i n order to selec t a  specific classifier , characteristic s 

such as power of generalization, computational complexity , and storage space required by the 

learner must be analyzed. LV Q and Nearest Neighbors may be easily employed as incremental 

algorithms fo r thi s purpose. However , they demand a  great deal of storage space i f problems 

with larg e databases ar e considered. Th e Naive Bayes classifier i s very suitable fo r updatin g 

an existin g classifie r a s i t learn s quickly , bu t i t usuall y produce s mor e generalizatio n errors . 

By contrast , althoug h th e SV M classifie r i s relativel y mor e computationall y complex , i t i s 

asymptotically much better than the Naive Bayes and other classifiers. A s for neural network s 

with incrementa l capabilities , they often hav e severa l parameters t o fit and ar e very sensitiv e 

to the order i n which example s are presented. Fo r these reasons, we have selected th e SVM 

classifier a s part of the core of the system proposed i n this thesis. 

From ou r literature review, i t can also be noted that, no matter what the incremental learnin g 

approach, no consideration has been given to tuning the system parameters over time. In other 
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words, syste m updatin g i s alway s performe d base d o n th e sam e fi.xed parameter values , o r 

at th e classifie r combinatio n level s i n th e ensembl e approaches . Thus , updatin g classifier s 

with the adaptation of their parameters has not yet been investigated. Moreover , recent results 

indicate that using well-tuned incremental learners could achieve better performances than just 

moderate ones [88]. 

We can see from th e above that the incremental updatin g of existing classifiers withou t com-

promising thei r performances remain s a  major challenge . Thi s i s because i t can be affecte d 

by possible variations in a problem's data distributions (i.e. populatio n drifts) , whic h distur b 

the process of selection of system parameters, and hence the estimation of decision boundaries 

at different times . Thi s occurs mainly when classification problem s involve complex decision 

boundaries or overlapping between classes. 

In order to overcome this challenge, an incremental learning system must be able to accommo-

date new data at no detriment to knowledge already learned [93], but it must also better adapt its 

parameters. The approach we propose for adaptive incremental learning takes this into account 

by regarding incremental learning as a dynamic optimization process. In particular, it employs 

knowledge acquired fro m previous optimization processes to decrease the computational cos t 

of frequent reoptimization . 

From an optimization point of view, our assumption is that the natural data changes mentioned 

above are sources of uncertainty reflecte d i n dynamic changes to the parameter searc h space . 

Such uncertainties become even more intense when the search fo r optimum parameter values 

must be performed ove r time. In the literature, dynamic optimization problems are categorized 

into three types:  (I ) the location o f the optimum changes over time and the amount o f shift i s 

quantified b y a severity parameter; (II) the location remains fi.xed, but the value of the objective 

function changes ; an d (III ) bot h th e locatio n an d th e valu e chang e [83] . I n thi s thesis , w e 

demonstrate empirically tha t the reoptimization o f classifiers ove r time can be seen a s a type 

III problein. 
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Moreover, from the analysis of SVM ensembles presented i n [116], which shows that the per-

formances o f a single SVM classifier ca n be improved over small datasets by combining "het -

erogeneous" SVMs in tenns of parameters, the proposed approach is implemented for evolving 

and combining a  population o f optimum solutions . Likewise , we explore the use of multiple 

classifiers to try to achieve better performances than with a single incremental learner . 

However, instead of picking up parameter values from an arbitrary grid of options, as in [116], 

the proposed method explores the self-organization power of the swarm intelligence theory and 

dynamic optimization techniques . I n this way, the proposed approach i s able to dynamically 

move a population of solutions towards optimum regions in the system parameter search space. 

Finally, the aim is to combine an optimized population of hypotheses that are well placed over 

the search spac e and that can even be multimodal, and so become a  more robust system than 

when onl y singl e model s ar e used . I n th e nex t section , w e introduc e th e first  step s i n th e 

development o f the system, which are to study the SVM model selectio n problem perfonne d 

over time as a dynamic optimization problem, and to propose a solution to it. 



CHAPTER 3 

A PSO-BASE D FRAMEWOR K FO R THE DYNAMI C SV M MODE L SELECTIO N 

(DMS) 

In the previous chapte r we outlined that the Suppor t Vecto r Machine (SVM) i s a very powerfu l 

classifier. However , w e als o mentione d tha t it s efficiency  i n practic e relie s o n th e optima l 

selection o f hyper-parameters . Th e searc h proces s fo r optima l value s fo r it s hyper-parameter s 

is the so-called SV M mode l selectio n problem . 

In thi s chapte r w e propos e a  strateg y t o selec t opdma l SV M model s i n a  dynami c fashio n i n 

order t o addres s thi s problei n whe n knowledg e abou t th e environmen t i s update d wit h ne w 

observations an d previously parameterize d model s need t o be re-evaluated , an d i n som e case s 

discarded i n favor o f revised models . Thi s strategy combine s th e power o f swann intelligenc e 

theory wit h th e conventional gri d searc h metho d i n order to progressively identif y an d sor t ou t 

potential solution s using dynamicall y update d trainin g datasets . 

Despite o f som e searc h method s hav e practica l implementations , e.g . gradien t descent , the y 

usually ar e limite d b y difficultie s relate d t o th e mode l selectio n process . Fo r example , th e 

gradient descen t method s requir e a  differentiable objectiv e functio n wit h respec t t o the hyper -

parameters an d th e kernel . I n thi s case , th e kerne l i s also require d t o be differentiable . Like -

wise, multiple loca l minim a i n objective function s als o represen t a  hard challeng e fo r gradien t 

descent base d methods . T o tackle this , the use o f grid-search an d evolutionar y technique s ar e 

interesting alternatives . However , th e grid-searc h metho d need s a  goo d discretizatio n o f th e 

search spac e i n fixed  values , whic h i s crucial t o reac h hig h performances . Thus , th e determi -

nation o f objective functio n t o be employed , th e presence o f loca l minim a i n the search space , 

and th e computationa l tim e require d fo r mode l selectio n tas k hav e bee n considere d th e mai n 

challenges i n the field. 

Additionally t o thes e difficulties , th e availabilit y o f update s o n th e knowledg e relate d t o th e 

pattern recognitio n problei n t o b e solve d represent s a  challenge too . Thes e update s typically 
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take the fonn of data arriving in batches which become available for updating the classification 

system. In fact, the quality and dynamics of training data can affect th e general model selection 

process in different ways . For example, if knowledge on the problem is limited, or the data are 

noisy o r ar e arrivin g i n batches ove r time, the model selectio n tas k an d it s performance ca n 

progressively degrade . I n order to avoid the negative effects o f uncertainties associate d wit h 

either th e training dat a o r the updates , we believe tha t an efficien t optio n i s to allow on-lin e 

re-estimation o f the curren t model' s fitness and i f required t o allow the production o f a  new 

classification mode l more suitable to both historical and new data. 

This i s importan t issu e because , i f th e goa l i s t o obtai n a  performing singl e classifier , th e 

model selection process must be able to select dynamically optimal hypcr-parameters and train 

new models fro m ne w sample s adde d t o existing batches . I n this chapter , w e first study the 

general SV M mode l selectio n tas k a s a dynamic optimizatio n proble m i n a gradual learnin g 

context, where solutio n revisions are required online to either improve existing models or re-

adapted hyper-parameter s t o train ne w classifiers fro m incomin g data . Thes e consideration s 

are especially pertinent in applications fo r which the acquisition of labeled data is expensive, 

e.g. cancer diagnosis, signature verification, etc. , in which case the data available may initially 

not be available in sufficient quantit y to perforin a n efficient mode l selection. 

However, more data may become available over time, and new models can gradually be gener-

ated to improve performance. I n contrast, as previously mentioned , no t only is the optimality 

of the models estimated a  relevant factor , bu t also the computational tim e spent to search fo r 

their parameter values . Mos t of related wor k in the literatur e has considered case s involvin g 

only a  fixed amount o f data i n systems aime d a t producin g a  single bes t solution . I n these 

approaches whenever the training set is updated with more samples, the entire search process 

must be restarted from scratch . 

The proposed method i s a Particle Swarm Optimization (PSO) based framework t o select op-

timal models i n a dynamic fashio n ove r incomin g data . Th e genera l concep t underlyin g thi s 

approach i s t o trea t th e SV M mode l selectio n proces s a s a  dynamic optimizatio n problem . 
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which ca n hav e multiple solutions , sinc e it s optimal hyper-paramete r value s ca n shif t o r not 

over the search spac e depending on the data available on the classification proble m a t a given 

instant. Thi s means tha t the proposed metho d ca n also be useful fo r real-worl d application s 

requiring th e generation o f new classifier s dynamicall y i n a  seria l way , e.g . thos e involvin g 

streaming data. The key idea is to obtain solutions dynamically over training datasets via three 

levels: re-evaluations of previous solutions, dynamic optimization processes, or even by keep-

ing the previous best solutio n foun d s o far I n this way, by shifting amon g these three levels , 

the method i s able to provide systematically adapte d solutions . W e implement th e proposed 

method base d o n thre e mai n principles : chang e detection , adapte d grid-search , an d swan n 

intelligence theory (for self-organizatio n capability) , where the goal i s to solve the model se-

lection by overcoming the constraints of the methods described above . I n addition, we try to 

answer the following questions : 

• I s PSO really efficient t o select optimal SVM models? 

• Ca n the proposed method be more efficient than the traditional grid-search or even a PSO 

based strategy? 

• I s i t possible to obtain satisfactor y result s by spending les s computational tim e than i s 

required for the application of PSO for each set of data? 

• Wha t i s the impac t i n terms of classification enors , mode l complexities , and computa -

tional time for the most promising strategies? 

This chapter is organized as follows. I n section 3. 1 we explain the relation between the model 

selection proble m an d dynami c optimizatio n problems . Ou r proposed metho d i s introduce d 

in sectio n 3.2 . Finally , th e experimenta l protoco l an d result s ar e describe d i n sectio n 3.3 , 

Discussions and conclusions are presented in section 3.4. 
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3.1 SV M Model Selection as a Dynamic Optimization Proble m 

In orde r t o generat e hig h performin g SV M classifier s capabl e o f dealin g wit h continuousl y 

updated training data an efficient mode l selection method is required. The model selection task 

can be divided into two main phases: the searching phase and the final training/test phase. 

The searching phase involve s solving an optimization problei n whos e goal i s to find optimal 

values for the SVM hyper-parameters considered in this paper (C and 7) with respect to some 

preference, or selection criterion. In our case this criterion is expressed as an objective functio n 

F evaluate d over a training dataset V,  i n terms of the cross-validation error e. So , our model 

parameter selection problem takes the following fonn min{e({C,  7), P)), or for simplificatio n 

purposes here, min(e(s, V)). Th e final training/test phase in concerned with the production and 

evaluation on a test set of the final SVM model created base d on the optimal hyper-paramete r 

set found so far in the searching phase. On the other hand, the final training and test phase con-

cerns the production an d evaluation of the final SVM model M  create d based on the optimal 

hyper-parameter se t found s o far i n the searching phase. I n other words, the common process 

related to these two phases can be summarized in five steps: 

a. Collec t training data; 

b. Star t the search fo r solutions; 

c. Fin d the hyper-parameters that perform best ; 

d. Trai n the final model with the best hyper-parameters; 

e. Asses s the performance of the final model using the test set. 

In Table 3.1 we summarize examples of SVM model selection methods found i n the literature 

organized according to the type of kernel, search methods, and objective function s employed . 

We note that th e RBF kernel ha s been investigate d the most , perhaps due to the fac t tha t the 

kernel matri x usin g sigmoi d functio n ma y no t be positive defined. Besides , eve n though th e 
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polynomial kerne l may be an attractive alternative, but numerical diflficultie s tend to arise i f a 

high degree is used, for example, a power of some minor value that 1  tend s to 0 and of a major 

one that tends to infinity. Furthermore , the RBF kernel has often achieve d a superior power of 

generalization wit h lower complexity tha n the polynomial kerne l [115] . Becaus e o f this, the 

RBF kernel is considered i n this study. 

Table 3.1 Compilatio n of some related works on SVM model 
hypcr-parameters selectio n in terms of the type of kernel used, the search 

method, and the objective function 

Ref. 
[35] 
[20] 

[18,47] 

[22] 
[25] 

[3] 

[32] 

[116] 
[103] 

[107] 

[29] 

[49] 

[52] 

Kernel' 
RBF 
RBF 

RBF 

RBF 
RBF 

RBF 

RBF 

RBF,POL 
POL 

RBF 

RBF 

RBF 

RBF 

Search metho d 
Grid-search (GS) 
Gradient descen t (GD) 

Grid-search (GS) 

Genetic algorith m (GA) 
Genetic algorith m (GA) 

Gradient descen t (GD) 

Gradient descen t (GD) 

Grid-search (GS) 
Gradient descen t (GD) 

Multi-objective G A 
(MOGA) 
Particle Swar m Optimiza -
tion (PSO) , Grid-searc h 
(GS) 
Unifonn desig n (UD) , 
Grid-search (GS) 
Particle swan n optimiza -
tion (PSO ) 

Objective functio n 
i^-Cross-validation 
Radius-margin, Spa n 
bounds, Leave-one-ou t 
t/-Cross-validation erro r 
(CV) 
Radius-margin boun d 
i/-Cross-validation erro r 
(CV) 
Hold ou t error , radius -
margin. Generalize d Ap -
proximate CV error (GACV ) 
Leave-one-out (LOO) , spa n 
bound 
t/-Cross-validation 
Generalization crto r estima -
tion boun d 
Modified radius-margi n 
bounds 
Hold ou t error, .^a-estimator 

i^-Cross-validation 

False Acceptanc e (FA) 

"RBF: Radia l Basi s Functio n kerne l whos e hyper-parameter  i s •),  POL : Polynomial kerne l whic h hyper -
parameters are the degree u  and coeflficient r.  Kerne l hypcr-parameter s and the regularization paramete r C  are 
optimized simultaneously . 
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Most of effort associate d wit h the approaches liste d i n Table 3.1 concentrated o n solving the 

complex SVM model selection problein from on e static training dataset available at time k. I n 

this case , i t should be convenient t o use perfect, i.e . noise-free , dat a and i n a fair amoun t in 

order to reach high perfonnances . 

By contrast , dat a fro m real-worl d application s ar e usuall y fa r fro m perfect , whic h give s the 

model selectio n proces s itsel f the potential fo r man y types of uncertainty. I n general, uncer -

tainty i s a  multifaceted concep t whic h usuall y involve s vagueness , incompleteness , missin g 

values, or inconsistency. Here , we assert that some uncertainties related to the machine learn -

ing area, such as missing features , random noise, or data insufficiency, generat e uncertainties 

that can disturb the optimization process responsible for model selection. Thi s is because un-

certainties ma y produc e som e dynamism i n the objective fiinction , an d s o i t i s important t o 

understand SVM model selection as a dynamic optimization problem. 

Dynamic optimization problems are complex in which the optimal solution can change over-

time in different way s [53] . Th e changes can result from variation s in the objective function , 

which implie s i n fitness dynamism. Figur e 3. 1 depict s a  conceptua l exampl e o f fitness dy-

namism, and its consequences, and shows why dynamic optimization techniques are claimed. 

One can see that in a first moment (k),  the optimization process approximates some solutions 

for a parameter 7 . 

Then, du e to some unexpected change related to the optimization task , e.g . ne w data , noise , 

etc, the objective function changes , and the solutions become outdated and trapped into a local 

minimum in the future (e.g . in k + 1). This requires that the optimization algorithm be capable 

of re-adapting the solutions to new functions. B y way of illustration, we depict in Figure 3.2 

an overview of the SVM model selection task seen as an optimization process and the possible 

uncertainties involved . 
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Figure 3.1 Illustratio n o f changes in the objective function . I n a first 
moment (A) , solutions are approximated fo r a  parameter 7 . Next, due to 
some unexpected change , e.g. new data, noise , etc.,the objective functio n 
changes and the solutions (gray circles) stay trapped i n a  local minimum , 

what require s some kind of reaction to adapt the solutions to the new 
function an d optimal (dark point ) in k  -t- L 

Model Selectio n 
Process 

Support Vecto r Machine 
Algorithm 

• Train SVM 
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„„,)„„, ,,„n.. „ . ^y  1 / ^  ^  Dynamis m 
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Figure 3.2 Overvie w of the SVM model selection tas k seen as an 
optimization proces s and the possible uncertainties involved . 
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To demonstrate this fact , w e depict a  case study in Figure 3.4 regarding the iiun{e{s.  V{k))) 

mentioned abov e for a  Uvo-class (1 and II ) classification proble m called P2, which is depicted 

in Figure 3.3. Mor e details about the construction o f this synthetic classification proble m can 

be found i n the appendix I. 

Figure 3.3 Illustratio n of the P2 classification problem . 

So first, in Figure 3.4(a) we can see an SVM hyper-parameter searc h space and optimal solu-

tions obtained with a certain number of data samples from a  classification problem . Then , the 

entire search space was recomputed with the same objective function (five-fol d cross-validatio n 

average ertor), but this time from more data. 

The resulting search space is shown in Figure 3.4(b). I t can be seen that the search space and the 

optimal solutions may actually change depending on the amount of knowledge available about 

the problem. Thi s applies to both objective functio n values , since the new objective values of 

previous optimal solutions s* have worsened fro m e  = 10 % (e.g. S i and S3) or improved (to 

So, for example), once a new optimal solution emerged, that is, S4 = (6.93,6.23). Throug h this 

example, it is easy to see that the search space and optimal points may change in tenns of both 

fitness values and positions. 
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Figure 3.4 Hyper-paramete r search space for P2 problem with differen t 
number of samples. 

In orde r t o sho w th e effec t tha t thes e hyperparameter s change s produc e i n obtaining a  final 

SVM model, we depict in Figure 3.5, for this same example, the input spaces and the respective 

decision boundarie s produced b y SVM models trained with differen t hyperparameter s value s 

and number of samples. 
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From these results, we can see that despite of 83 adequately separates the classes given a certain 

knowledge about the problem (Figure 3.5(a)), it is not capable of producing the same satisfatory 

results (Figure 3.5(b)) that a new best evaluated solution (i.e . S4) can achieve (Figure 3.5(c)) if 

more samples are considered. 

-otg-s o D S I ^ 

• 3 3 

an .  _  r> . '  .  _  , ° * i " 

Class I  O  Clas s Classifier Decision - - Ttwonca l Decision Bourxlary 

(a) S 2 and 40 samples, r =  10 % (b) S 2 and 922 samples, r =  7,81 % 

(c) S 4 and 922 samples, c = 3,90 % 

Figure 3.5 Inpu t spaces and resulting decision boundaries produced by 
training SVM models with different hyperparameter s value s and number of 
samples for the P2 problem, (a ) Decision boundaries obtained after training 

with the solution S2 and 40 samples, (b) Decision boundaries obtained for 
the same optimum solution Sj for 40 samples, but now training over 922 
samples, (c) Final result achieved for the best solution S4 regarding 922 

samples. 
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Moreover, regarding the real-world situations addressed in this paper, the model selection pro-

cess must also be designed to perfonn ove r time, i.e. fo r many datasets or incoming data. This 

is another reason why the SVM model selection problein can be seen as a dynamic optimization 

problem, i n which solution s (i.e . hyper-parameters ) mus t be checked an d selected ove r time, 

since optimal hyper-parameter values can change dynamically depending on the incoming data 

at different time s k. 

Thus, in addition to the approaches mentioned above which may only partially solve the prob-

lem and in order to attend to real-world applications needs, especially for updating and/or gen-

erating new models, this problem claims for more sophisticated methods capable o f adapting 

new solutions and saving computational time, rather than for example, starting seach processes 

from scratc h every time. 

3.2 Th e Proposed Dynamic SVM Model Selection Method (DMS) 

The goal of the proposed method is to point out dynamically optimum solutions for sequences 

of datasets V{k)  b y switching among three levels: 1 ) use the best solution sAk —  1 ) found so 

far, 2) search for a new solution over an adapted grid composed of a set of solutions S{k —  1) , 

or 3) start a dynamic optimization process. In this thesis, each solution s will represent a PSO 

particle, whic h codifie s a n SV M hyper-parameter set , e.g . (C , 7). Th e switching among the 

levels is governed b y change detection mechanisms whic h monitor noveltie s in the objectiv e 

fiinction F.  Suc h changes correspond to degradation of performance o r no improvement at all 

(stability) with respect to new data, which will indicate whether or not the system must act. 

An overvie w o f the genera l concep t proposed i s depicted i n Figure 3.6 . First , a  populatio n 

of solutions (swarm) 5(0) i s initialized b y the optimization algorithm to search fo r solution s 

for th e datase t T>{1).  afte r whic h th e optimizatio n proces s finishes  and , a  se t o f optimize d 

solutions 5(1 ) i s stored fo r futur e use . Base d o n fitness re-estimation o r according t o som e 

other criterion related to the problem, the curtent statu s of the best solution (dark circle ) will 

be examined o n ne w data . Followin g th e example , we suppos e tha t th e fitness  re-estimated 

from th e previous bes t solutio n s*(l ) fo r th e datase t P(2 ) i s stil l satisfactory , an d appl y th e 
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same solution to train a  new classifier. However , more data can be available and the goodness 

of the best solution s*(l) ma y no longer be guaranteed, e.g. betwee n datasets V{3) an d Vft). 

To solve this, wc suggest performing a  fine search over the set of optimized solutions 5(1). We 

call thi s process a n adapted grid-search, since i t applies solution s alread y optimized , whic h 

are probably located over a good deal of the search space, and are not guessed values as occurs 

in the traditional grid-search . 

The advantage is that, in the most of the time, the adapted grid-search can indeed gain in perfor-

mance if compared with traditional grid methods and also save computational time if compared 

with ful l optimizatio n processes . O n the other hand, when i t is not possible to identify a  sat-

isfactory solutio n even after a n adapted grid search, the method starts a dynamic optimizatio n 

process, a s denoted fo r th e datase t T>{7).  As a  result, a  new population o f solutions , surel y 

better adapted to the problem, will be available for the future. W e introduce the framework o f 

the proposed method below. 

DPSO 
"* ' 0 Dataset s V{) 

Best kept Adapte d Grid-Searc h 

Figure 3.6 Overvie w of the proposed model selection strategy (conceptua l 
idea). Optimum solutions for a current dataset T){k) are pointed out by 

switching among three search strategies: 1 ) use the best solution s*{k  — 1 ) 
found so far, 2) search for a new solution over an adapted grid composed of 
a set of solutions S{k —  1) , or 3) start a dynamic optimization process. The 

symbols represent different solution s from a swarm. The best solution 
selected for a dataset lies above the dashed line. The white circles in 5(0) 
denote randomly initialized solutions. Dark and white symbols indicate 

solutions from different swarms . 
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3.2.1 Framewor k for the Dynamic Selection of SVM models 

As we mentioned previously, the ideal method of creation of an SVM classifier i s composed of 

two phases: model selection and training/test phases. The first is responsible for searching for 

the best SVM hyper-parameters and the second phase uses the best hyper-parameters found to 

train and test a final SVM model A^. 

In thi s work , base d o n the conceptual ide a depicte d in Figure 3.6 and als o by concepts of 

dynamic optimizatio n problem s introduce d i n section 3.1 , we propose a  framework fo r the 

dynamic selection of SVM models over time. 

In particular, our general framework fo r the dynamic selection of SVM models is composed of 

three main modules: change detection, adapted grid-search, and dynamic particle swarm opti-

mization (DPSO). Figure 3.7 depicts it s general idea . I n addition, we summarize its working 

in Algorithm I . 

Details on each one of these modules are described in the next sections. The iipgrade_stm and 

recallstm function s ar e respectively responsible for storing and retrieving optimized solutions 

from the system's Short Term Memory  (STM). 

• V-
recall_stm((s-{;t -  \),S(k  -  i j K 

Change 
Dc lcc l ion( l ) 

upgTade_6tin(s*(fc -  1) ) 

upgrade_J^st 

(s-W,S(fe-l)) 

Filncss Evajualio n 

. ( s - ( ( r ) , 5 ( * - l l ) 

( ( • K i l M ) 

Sliorl Tcm i Memor y 
(STM I 

s-(t) 

Support Vecto r Machin e 

Te^t set 

Model Selection Phase Fmai Training Phase 

Figure 3.7 Genera l framework fo r the dynamic SVM model selection. 
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Algorithm 1  Dynamic SVM Model Selection 
1 
2: 
3: 
4: 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

Input: A training set of data V{k). 
Output: Optimized SV M classifie r 
recall_stin(s*(A; - 1),5(A : - 1) ) 
if there is a S{k -  1 ) then 

Check the preceding best solution s*{k — 1 ) regarding the dataset V{k) 
if Change_Detection(s*(A: — l),T>{k))  then 

Activate the adapted grid-search module and get solution s'{k) 
if Change Detection(s'(A;),P(A:) ) then 

Activate the DPSO module 
end if 

end if 
else 

Activate the DPSO module 
end if 
upgrade_stm(s*(-),5(-)) 
Train the final SVM classifier fro m V{k)  b y using the optimum solution found s o fan 

3.2.1.1 Chang e Detection Module 

The change detection module controls the intensity of the search process by pointing out how 

the solutions are found thereby the levels of the framework. I n particular, i t is responsible fo r 

simultaneously monitoring the quality of the model selection process and avoiding "urmeces-

sary" searching processes. 

We implement i t by monitoring differences i n the objective functio n values , in this case error 

estimations e  obtained fo r a best solution s* on the datasets V{k —  1 ) and T){k),  fo r example. 

We denote thi s fac t a s e{s',V{k —  1) ) and e(s*,P(A-)) , respectively. I f the solutio n foun d i s 

not to be satisfactory fo r the process, then a further searchin g leve l is activated. The adequacy 

of a  solution can be measured i n several ways . I n this work, a s we are intereste d i n finding 

performing solutions , we conside r tha t furthe r searche s ar e neede d i f the objectiv e functio n 

value computed does not lie in a "stable" region. 

The stabl e region i s computed throug h th e maximum expecte d differenc e 5r,-,ax  betwee n th e 

objective functio n value s a t th e 90 % confidence leve l usin g a  nonna l approximatio n t o th e 

binomial distribution (see Equafions 3.1 and 3.2) [26] . In this setting, if there is a degradation 
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of perfonnance (£(s* , V>{k-1)) <  As* ,V{k))) o r significant variation in the objective functio n 

(i.e. I  e{s*,V{k -  1) ) -  e(s*,V{k))  | > S,nax),  the n othe r level s are activated fo r additiona l 

searches. 

Figure 3.8 depicts an illustration of the 6„,^j. stabl e region idea . I n order to make this criterion 

more robust when smal l dataset s are used, we combine i t with a  rule related to the compres-

sion capability of the classifier Th e compression capabilit y i s calculated a s the proportion of 

support vectors over the number of training samples. I f the (imaj. rule and a minimal compres-

sion required ar e attained, the situation i s characterized a s stable and no furthe r searche s are 

computed. Otherwise , the model selection process continues by activating the other modules. 

Smax =  20, 9 X  V^ =  1.28 2 Xy/a  ( 3 .1 ) 

Where a is computed by, where It'(-) i s the dataset size: 

e{s*,V{k-l)) X  ( l - e ( s* ,P (A; - l ) )) c{s\V{k))  x  {I  -  e(s*,V{k))) 
W{V{k-l)) W{V{k)) 

(3.2) 

So, the change detection module may sometimes denote a  trade-off controlle r between com -

putational time spent and the quality of solutions. For instance, if we ignore this module, then 

dynamic re-optimization processes wil l be always conducted, which can produce indeed good 

results but to be unnecessarily time consuming for stable cases. 

3.2.1.2 Adapte d Grid-Searc h 

The adapted gri d searc h modul e provides optimum solutions by re-evaluating the knowledg e 

acquired fro m previou s optimization s perfonne d b y th e DPS O module . Thi s knowledg e i s 

represented by a set S{k —  1) of optimized solutions which are stored in the short tenn memory 

(STM). Usually, this method finds better solutions than the traditional grid-search method. 

Unlike the traditional grid-method , which depends on the discretization of values and requires 

the evaluation of several combinations (see Figure 3.9 for two hyper-parameters (C and 7)), the 
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Figure 3.8 Illustratio n of the change detection mechanism. In this case, as 
the new fitness is situated outside the expected region , a new optimization is 

carried out in order to find a new better solution. 

adapted grid-search module reduces the number of trials by focusing th e search in an optimal 

region. As a result, this module can save a considerable computational time. 

Basically, thi s module use s the bes t position s o f preceding optimize d solution s a s a  grid o f 

new possible candidat e solution s to be evaluated ove r the curren t dat a V{k).  A t the end o f 

the process, the best candidate is selected. Althoug h we employ this implementation, we can 

suggest other modifications, such as moving the particles by using a complete iteration of PSO, 

for example. Such a process seems interesting, but costs more in terms of processing time than 

simply re-evaluating the best particles' positions, which in most of cases may be enough. 

Nevertheless, i t is important to note that the module's result s are related to the quality o f the 

previous optimizations . Therefore , i t i s efficient whe n th e curren t populatio n o f solutions i s 

positioned on optimal regions. Otherwise , it may produce sub-optimum solutions that will be 

not satisfactor y fo r final learning purposes . I n ligh t o f this, we apply the change detection a 

second time in order to ensure the quality of the solution obtained a t the end of this process, 

as indicate d i n th e framewor k i n Figur e 3.7 . I f th e curren t solutio n i s stil l no t considere d 

satisfactory, the dynamic optimization module is activated. 
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Figure 3.9 Th e traditional grid must try a higher number of combinations 
than the adapted grid, which profits from the already optimized solution s 

S{k) provide d by DPSO. s*(A) denotes the best solution. 

3.2.1.3 Dynami c Particle Swarm Optimization - DPSO 

The DPSO module i s responsible fo r finding new solutions by means of re-optimization pro-

cesses.. We implement it based on the Particle Swann Optimization (PSO) algorithm combined 

with dynamic optimization techniques. 

The Particle Swarm Optimization (PSO) method was firstly introduced by Kennedy and Eber-

hart in 1995 [59]. Briefly, i t is a population-based optimization technique inspired by the social 

behavior of flocks of birds or schools of fishes. It is applied i n this work because i t has many 

advantages tha t mak e i t ver y interestin g whe n compare d wit h othe r population-base d opti -

mization techniques , e.g. geneti c algorithms (GA) . For instance, PSO belongs to the class of 

evolutionary algorithms that does not use the "survival of the fittest" concept. I t does not utilize 

a direct selection function, and so, particles with lower fitness can survive during the optimiza-

tion and potentially visit any point in the search space. Furthennore, the population size usually 

employed in PSO gives it another advantage over GA, since the lower population size in PSO 

favors this algorithm regarding the computational time cost factor [60] . Nonetheless, two main 

additional characteristic s give us further motivatio n for using it . First , PS O has a continuous 

codification, whic h make s i t ideal fo r the search o f optimal SV M hyper-parameters. Second , 
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the potential fo r adaptiv e control an d flexibility (e.g. self-organizatio n an d division o f labor ) 

provided b y th e swar m intelligenc e make s PS O ver y interestin g t o b e explore d fo r solvin g 

dynamic optimization problems. 

In this section , w e simplify th e index notation (e.g . fo r tim e or datasets) an d use only those 

needed t o understand th e PSO technique well . I n particular, th e standard PS O involves a set 

5 =  {s, ,s , ,s '} ' l j ' o f particles that fly in the search spac e lookin g fo r a n optimal poin t i n a 

given (i-dimensional solutio n space . Th e S; = (sJ , s ? , . . ., sf) whic h i s a vector that contains 

the set of values of the current hypothesis . I t represents the cunent locatio n o f the particle in 

the solution space , where the number o f dimensions i s problem dependent . Th e vector s,,  = 

(sJ, sf,..., sf ) whic h stores the velocities fo r each dimension of the vector s, . Th e velocities 

are responsible for changing the direction of the particle. The vector s' —  (s'' , sf,..., s'f)  i s a 

copy of the vector s, which produced the particle's individua l bes t fitness. Together, s ' and s, 

represent the particles' memories. Regarding the model selection problem, the vector positions 

s, encode the SVM hyper-parameter set to be optimized and s* denotes the best solution found . 

PSO starts the search process by initializing the particles' positions randomly over the search 

space. Then , i t searche s fo r optima l solution s iterativel y b y updating the m t o fly through a 

multidimensional searc h spac e by followin g th e curren t optimu m particles . Th e direction o f 

the particle's movement i s governed by the velocity vector s,, which is denoted by the sum of 

the infonnation fro m th e best particle's infonnan t foun d i n its neighborhood (i.e . s'^^^,^  \){q)' 

where A is the number of neighbors which connnunicate with particle index i) and the particle's 

own experience s'. Foranewiterafion^+ l an d dimension d, the update is computed as follows: 

sliq +  1 ) =  xisfiq)  +  4>rAsf{q) - s^{q))  + 0r2(C(,,,)(g) -  sf{q)))  (3.3 ) 

where \  i s the constrictio n coefficien t introduce d b y Cler c [24] , and r j an d r 2 ar e rando m 

values. Constrictio n coefficien t value s of x  =  0.729 8 and </ ) = 2.0 5 are reconunended [60]. 

'We us e thi s functiona l notatio n fo r sak e o f generality . Th e equivalen t t o traditiona l PS O woul d be : 5 
{x,,v,,p,}fli 
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Eventually th e trajector y o f a  particle i s updated b y th e su m o f it s update d velocit y vecto r 

•S (q+l) t o its current position vector s,{q) to obtain a new location, as depicted in Equation 3.4, 

Figure 3.10 depicts an illustration of particle's trajectory durin g position updating. Therefore , 

each velocit y dimensio n i f i s updated i n order t o guide the particles ' position s sf  t o searc h 

across the most promising areas of the search space. In Algorithm 2 we summarize the standard 

PSO method. 

.sf (7 + 1 ) = s f (g) + s f (<? + 1 ) (3,4 ) 

individual best 

s\(<j)i 

•5 n e l ( i , A ) ( ' 7 ) \ 

global or * 

r-

local best '  .  / 

S,{q+\) 
new particles 
position 

i , ( y + i ) 
new veloi 

^ «.(</ ) 

particle's 
position 

i,(9) 
f curren t 

velocity 

ity 

Figure 3.10 Exampl e of a particle's trajectory durin g position updating . 

Algorithm 2  Standard PSO Algorithm 
1: Input : PS O parameters. 
2: Output : Opdmized solutions. 
3: Randoml y initialize the particles 
4: g  ^ 0 ; 
5: repea t 
6: fo r all particles i such that 1  < i  <  P  d o 
7: Comput e fitness value for the current position s, (g) 
8: Updat e ^^{q) i f position •a,{q) i s better (s;(q') ^-  Sj(g) ) 
9: en d for 

10: Selec t the best fitness s'(g() 
II: fo r all particles i such that 1  < /  < F  d o 
12: Updat e velocity Siicf) (Equation 3.3) and curtent position sSyf) (Equation 3.4 ) 
13: en d for 
14: q  = q^\ 
15: unti l maximum iterations or another stop criteria be attained 



54 

In th e canonica l PS O fonnulation , a n entir e swan n i s considered a s a  singl e neighborhoo d 

where particle s shar e th e best infonnatio n discovere d b y any member o f the swann , th e so-

called gbest  topology . Th e mai n disadvantage i s that i t force s th e particles towards a  single 

best solution, which causes the swann to lose the ability to explore the search space in parallel 

more locally . Moreover , i t has a  premature convergenc e tendenc y [60] . Becaus e o f this , we 

implement thi s modul e base d o n PS O wit h a  more sophisticate d topolog y calle d loca l bes t 

(Ihest) [60]. This topology creates a neighborhood for each individual containing itself and its 

A nearest neighbors in the swarm. 

The neighborhoods can overlap and every particle can be in multiple neighborhoods. A s a re-

sult, it allows interactions among the neighborhoods and eventually more series of events may 

be discovered. Wit h this characteristic, this module is capable of explonng multiple regions in 

parallel and therefore fits better fo r functions wit h possible multiple local optima. Suc h a par-

allelism allows distant neighborhoods to be explored more independently , which i s important 

for multi-moda l problems . Moreover , th e particles ar e placed i n potentially mor e promisin g 

regions, which can allow faster recovery from variations between searching processes and also 

allow them to be used by the adapted grid search module. 

Nevertheless, even though PSO is a powerful optimization method, if the optimization problem 

suffers som e change in the objective function, fo r example between blocks of data, the particles 

can get stuck in local minima (see Figure 3.4) . T o avoid this, an alternative should be to start 

a full PSO optimization process from scratch each time that the module is activated. However , 

it would be very time consuming and even a t times unnecessary i f the changes occu r around 

the preceding optimum region. Takin g this into account, we enable the module to restart opti-

mization processes from precedin g results in order to save computational time. To implement 

this mechanism, we combine two dynamic optimization techniques: re-randomizatio n an d re-

evaluafion o f solutions , and apply them into our PSO based module . I n fact , both technique s 

were already applie d i n the PSO literature [12 , 48] to solve dynamic optimizatio n problems , 

but separately and using the gbest topology. 
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In particular, these PSO variants are commonly called DPSO (Dynamic PSO), so for the sake of 

simplicity, we name this module as DPSO to refer such a combination of approaches. Neverthe-

less, it is important to distinguish that existing dynamic PSO algorithms apply such techniques 

and change detection mechanisms in each iteration, since they suppose that objective functio n 

changes can happen during the optimization. In here, as the optimization over a dataset T>{k) a t 

a given instant k  i s indeed static, we apply these dynamic techniques to prepare the optimiza-

tion module for transitions from preceding optimizations knowledge to launch new ones. As a 

result, we take advantage of these techniques to provide diversity in the solutions and clues on 

optimal starting points before the optimization. Thus , unlike actual dynamic PSO versions, no 

extra computational effor t i s added a t each iteration . I n ligh t of this, in Figure 3, 7 and i n the 

rest of this paper, our DPSO module represents the application of these dynamic techniques to 

cooperate with the optimization algorithm, but not in its interior in each iteration. 

The focu s no w shift s t o th e whol e implementation , whic h involve s tw o mai n step s relate d 

to the wa y tha t th e optimizatio n proces s restarts . Th e main step s are liste d i n Algorithm 3 . 

First o f all , onc e th e DPS O modul e i s activated, whic h use s infonnatio n fro m th e system' s 

memory (STM) as well, every fitness is updated from th e re-evaluation of the current position 

St and bes t position s ' o f each particl e s , i n the swann S{k)  (steps : 3  to 6) . Thi s i s done to 

prevent th e particle' s memor y fro m becomin g obsolet e [12] . I n fact , th e fitness of the bes t 

positions pi can be profited fro m th e preceding leve l (adapte d grid-search) , wha t dispenses a 

second evaluation. Thereafter, a  re-optimization process is launched by keeping p% o f the best 

particles positions from the swarm 5(A:- 1), which was computed in the previous optimization, 

and b y randomly creatin g ne w particles ove r the searc h spac e [48] , Som e o f these particle s 

located near to the previous optimum region . I n this manner, we guarantee that fine searches 

are realized base d o n previous infonnation , whic h ca n adap t mor e quickly t o new data tha n 

full optimizatio n processes (step s 7  and 8) . A t the same time , we add more diversit y t o the 

algorithm fo r searching new solutions, which enable us to avoid situations in which the whole 

swarm has already converged t o a specific area . Finally , steps 9 to 23 correspond to the main 

steps of the PSO implementation, but are slightly modified b y adding a mechanism that updates 
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the connection s amon g th e particles , i f n o improvemen t i s observe d betwee n iteration s (step s 

19 t o 21) . Thes e latte r step s wer e suggeste d a s a n alternativ e b y Cler c [23 ] t o improv e th e 

adaptability, and henc e the perfonnance, o f the swann . 

Algorithm 3  Our implementatio n o f Dynamic PS O 
1: Input : PS O parameter s an d previous swann S{k  —  1) . 
2: Output : Opdmize d solutions . 
3: fo r al l particles ;  from S{k  -  1 ) suc h tha t 1  <  i  <  P  d o 
4: Comput e fitness  value s fo r s , usin g T>{k) 
5: Updat e s ' i f s, i s better (s - < — s,) 
6: en d fo r 
7: Initializ e dynamicall y th e ne w swan n S{k)  b y keepin g p%  o f the bes t infonnatio n (posi -

tions s' ) fro m th e preceding swar m S{k  -  1 ) and by creating ne w particles . 
8: Initializ e th e link s among th e particles based o n a  nearest neighborhoo d rul e accordin g t o 

the topology chosen . 
9: q^O; 

10: repea t 
11: fo r al l particles i  such tha t 1  < i  <  P  d o 
12: Comput e fitness  valu e fo r the curren t positio n s , {q) 
13: Updat e s'(g ) i f position s,{q)  i s better (s\{q)  ^  s,{q)) 
14: en d fo r 
15: Selec t th e bes t fitness  o f this iteration q,  i.e. s'(q ) 
16: fo r al l particles /  such tha t 1  < i  <  P  d o 
17: Updat e velocit y Sj(q ) (Equatio n 3.3 ) an d current position s,{q)  (Equatio n 3.4 ) 
18: en d fo r 
19: i f F{sAq))  =  F{s'{q  —  1)) {N o improvement. Chang e particl e communication struc -

ture} the n 
20: Randoml y chang e th e particles' link s based on the topology chosen . 
21: en d i f 
22: q  = q+l 
23: unti l maximu m iteration s o r other stop criteri a b e attaine d 

So, throug h th e us e o f thes e modules , th e propose d metho d allow s th e searchin g proces s t o 

evolve an d adap t itsel f dynamically. Eve n thoug h thi s framewor k ha s unique features , ther e i s 

still room fo r authors to investigate new strategies fo r the adapted grid search module, detectio n 

mechanisms, and even strategie s to re-optimize solutions . 

In orde r t o clarif y th e whol e concept , w e illustrat e th e propose d metho d i n a  cas e stud y i n 

Figure 3.11 . Thi s case study represents an empirical reference t o the general concep t illustrate d 
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in Figur e 3.6 . I n particular , i t depict s overview s o f searchin g processe s carrie d ou t b y th e 

proposed method and full optimization processes over cumulative sequences of data increased 

logarithmically fro m the Satimage database. Based on these results, it is shown in Figure 3.11 

(a) that the proposed method can achieve similar results to those obtained by full optimizatio n 

processes with PSO (Full PSO), but more quickly and in fewer iterations iterations if the whole 

sequence is considered. 

Exploring thi s cas e stud y firrther, we compile a  lis t o f activitie s perfonne d b y the propose d 

method durin g th e searchin g processe s an d thei r effect s i n tenns o f the generalizatio n eno r 

on a  test set , a s shown i n Figure 3.1 1 (b). I t i s easy t o see which modul e o f the framewor k 

was responsibl e fo r selectin g th e final solution. I n addition , w e lis t the result s o f searchin g 

processes between the datasets V(6,  13 ) in a table in order to provide more details. Basically , 

the result s i n the table include the use of the optimized swar m 5(6) , resultin g fro m a  DPSO 

execution, as a pool of hypotheses for additional datasets, where a particle s, i s selected as the 

best one , according t o some criteri a an d via : keepin g the sam e previous bes t (BK) , adapted 

grid (AG), or DPSO processes. 

Some of the main results are depicted in the table in Figure 3.11 (c), where we have selected the 

ten most performing particle s and presented thei r best positions in a logarithmic scale . Then , 

for each set , we indicate the solution pointed ou t by the method b y highlighting it s fitness in 

gray. Whe n a  previous bes t solutio n remain s th e same fo r th e next dataset , n o evaluation i s 

performed fo r the other particles. 

Assuming that the solutions are well-placed i n the search space , we have started by reporting 

the resuhs for the dataset P(6), where the best solution Sg in swann 5(6) wa s found by DPSO. 

Next, the solution Sg found over the dataset 2^(6) has been kept for dataset V{7). W e note that 

the current bes t solution experienced a  decrease in perfonnance betwee n dataset s 1 (̂7. 8) (in 

next column), which is denoted as a negative behavior 

As a consequence, the adapted grid-search module is activated to try to find another satisfactor y 

solution. Following evaluation, the adapted grid module elects a new solution Sj and no further 
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Figure 3.11 Cas e study: Operatio n o f the proposed method , Dynami c 
Model Selection (DAIS) . In (a) , we show an overview of searching processes 

for SVi M models based on the proposed metho d an d on full optimizatio n 
processes over sequences of incoming data. \ \ e ca n se e that DM S can 

approximate performing solution s by requiring fewer iteration s than ful l 
optimization processes . The dashed vertical line s indicate when more dat a 

were injected an d ho w many iterations were needed t o accomplish th e 
searching tasks . Next, in (b) and (c) , we show a zoom on the propose d 
method' activitie s and generalizatio n errors . These figures  empirically 

depict an analogy to the general concept illustrate d i n Figure 3.6. 
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searches are carried out, since the best current result has improved and there is no indication of 

any big changes tha t would justify additiona l optimizations . Next , between dataset s V(8,  9) , 

the change detectio n rul e i s re-activated, an d again a  fine search i s carried ou t over the other 

solutions to check whether or not there is a better solution. The new solution returns to Sg and 

another application o f the rule over the two best results indicates that the DPSO module does 

not need to be activated. Thereafter , betwee n dataset P(9,10), the current best particle Sg was 

preserved since no relevant variation has occurred. 

On th e othe r hand , th e sam e behavio r betwee n dataset s P(8,9 ) occur s amon g th e dataset s 

25(10,12), resulting i n Sj an d S7 , respectively. Afterwards , th e searchin g proces s continue s 

by re-activating DPSO for the dataset T>{13),  which results in a new swann 5(13) wit h a new 

best solution Sg. Therefore, dynamic optimizations are employed whenever the method judges 

it necessar y t o updat e th e swann . Mainl y du e t o perfonnance degradation , o r fo r instance , 

when the adapted grid is activated and the results are neither improved nor do they characterize 

changes in the search space. 

3.3 Experimenta l Protoco l 

A serie s o f experiment s wer e carrie d ou t t o tes t th e effectivenes s o f th e propose d method . 

In particular , w e hav e compare d ou r metho d wit h othe r mode l selectio n strategie s unde r a 

gradual learning scenario. In the latter, an SVM classifier mus t be built gradually from scratc h 

whenever mor e data become available . W e have used dataset s generate d fro m syntheti c and 

real-world problems . Fo r each dataset, the following experimenta l setup was conceived: Firs t 

of all, the original training sets were divided into sets of data. The total number of samples for 

each datase t was progressively increase d according t o a logarithmic rule [45] , from abou t 1 6 

examples per class to the total number of samples available in the dataset. Fo r datasets in which 

the original distribution of samples was unbalanced among the classes, we have maintained the 

original class-priors for each dataset. 

Then we have applied each SV M model selection strategy over the datasets. Onc e the model 

for each dataset has been selected, the performance of the classifiers was assessed in terms of its 
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generalization error on the test set after each simulation. The generalization error was estimated 

as the ratio of misclassified tes t set samples over the total number of test samples . Thi s made 

it possible to observe the effect o f the training dataset size for each model selectio n approach 

and the final test performance attained . As some strategies tested use stochastic algoritlmis, the 

results represent averages drawn over 10 replications. The kernel chosen for the SVM classifier 

was the RBF (Radia l Basi s Function) , and so , the model selectio n method s were carried ou t 

to find  optima l value s fo r th e hyper-paramete r se t (C , 7). Additiona l specification s o n th e 

approaches tested and infonnation o n the datasets are provided in next section. 

3.3.1 SV M Model Selection Strategies Tested 

We have compared the following SVM model selection strategies: 

• Traditional  Grid-Search (GS): This method selects the best solution by evaluating several 

combinations o f possible values . Th e best combinatio n i s kept to train th e final SVM 

classifier I n this study , w e consider a  grid o f 7 0 (7x10) positions , where th e possible 

combinations lie within these values: C  = {0.01 , 0.1, 100, 150, 170, 250, 600}, and 7 = 

{0.08, 0.15, 15 , 20, 50, 100, 300, 500, 1000, 1500}. 

• 1st  Grid-Search (Ist-GS): Thi s strateg y applie s a  traditional grid-searc h onl y ove r the 

first dataset and retains the same solution found fo r the subsequent subsets. 

• 

• 

• 

Full Particle Swarm Optimization (FPSO): The optimal hyper-parameter value s are se-

lected by the standard PSO algorithm for each new set of data. 

Chained PSO (CPSO):  PSO is applied by this strategy t o search fo r optima l solutions . 

However, the solutions here are optimized among sequences of datasets in a chained way, 

like a serial process. This means that the optimization process is perfonned continuousl y 

over the datasets, and not by fully re-initializing the swann between sets. 

Dynamic Model  Selection (DMS):  This strateg y i s the proposed metho d introduce d i n 

Section 3.2. 



3.3.2 Experiment s Parameter s Settin g 

The following parameters setting was used in the experiments. 

• Optimization  Algorithms Parameters: The maximum number of iterations and the swarm 

size were set to 100 and 20, respectively. The dimensions of each particle are denoted by 

hyper-parameter value s for C  and 7, where the maximum and minimum values of such 

dimensions were set to [2"^ , 2 '̂*], [2"^^, 2'°], respectively. 

The topology used in PSO and DPSO was Ibest with A =  3 . This topology was selected 

because unlike the gbest topology, which has a tendency towards premature convergence 

because al l the particles arc infiuenced b y the same global source , the Ibest topology is 

more sophisticated for exploring multiple regions in parallel [60] . Furthennore, the par-

allelism of the Ibest topology allows distant neighborhoods to be explored more indepen-

dently. Basically , thi s topology create s a  neighborhood fo r eac h individua l comprisin g 

itself and it s A  nearest neighbor s i n the swarm. A  neighborhood ma y consis t o f some 

small group of particles, where the neighborhoods overlap and every particle can be in 

multiple neighborhoods. 

Two stop criteria were implemented for the optimization processes. The first was imple-

mented based on the maximum iteration permitted. A s a result, the optimization might 

finish whenever th e number of iterations reaches the maximum valu e (100) . However , 

the secon d criterio n wa s buil t base d o n th e bes t fitness value. Generall y speaking , i f 

the best fitness value did not improve over 1 0 consecutive iterations , then the optimiza-

tion process was stopped. I n fact , thi s last stop criterion wa s the most active , since the 

simulations never attained to the maximum number of iterations. 

• Objective Function: Several objective function s hav e been proposed in the literature fo r 

searching fo r optima l hyper-parameters , e.g . radiu s margi n boun d [118] , spa n boun d 

[19], support vector count [117], etc. More infonnation abou t them can be found in [20]. 
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Unfortunately, these measures usually depend on certain assumptions, e.g. they are valid 

for a specific kerne l or require a separation of the training set without error 

The problem i s that these assumptions are quite strong fo r real-world problems . Thus , 

the best alternativ e i s to use as objective fianctio n measure s related to the performanc e 

of the classifiers , sinc e no assumptions ar e needed [40] . Takin g thi s int o account , th e 

minimization o f the generalization eno r fro m cross-validatio n (CV ) procedures ove r a 

training se t i s a good option. I n the v-CV  procedure , the original trainin g se t i s firstly 

divided int o u  portions o f data , an d the n sequentiall y on e datase t i s teste d b y usin g a 

classifier traine d fro m th e remaining u ~  \  portion s o f data. T o sum up, i t means tha t 

each instanc e o f th e entir e trainin g se t i s predicted once , an d th e final  generalization 

error i s computed a s a n averag e ove r the tes t error s obtained . I n fact , a  v-CV  i s the 

best option since it results in a better generalization erro r estimation than by separating 

a small dataset into a hold-out procedure and being less computationally expensive than 

by using leave-one-out procedure (t/=total number of training samples), for example. In 

this work, we have used ^ =  5  (five-fold cross-validation) , since it is the most commonly 

used and is also suggested in [18]. 

3.3.3 Dataset s 

We have used nin e syntheti c an d real-worl d dataset s i n the experiments . The y ar e liste d i n 

Table 3.2 along with more details. Th e synthetic problems used were the well-known Circle-

in-Square (CiS) [14] and P2 [116] problems. Th e CiS problem consists of two classes, where 

the decision boundary i s nonlinear an d the samples are unifonnly distribute d i n ranges fro m 

0 to 1 . A  circle inside a square denotes one class, while the other class is formed b y the area 

outside the circle. The area of the circle is equal to half of the square. The P2 problem is also a 

two-class problem, where each class is defined i n multiple decision regions delimited by one or 

more than four simple polynomial and trigonometric functions. A s in [45], one of the original 

equations wa s modifie d suc h tha t th e area s occupie d b y th e classe s becom e approximatel y 
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equal. In both problems, the classes are nested without overlapping, so the total probability of 

error is 0%. 

The real-problems employed are described as follows. The Adult dataset represents a two-class 

problem fro m th e UCI Repositor y [4] . Th e task i s to predict whether or not incom e exceeds 

$50K/yr based on census data. Th e DNA, German Credit, and Satimage datasets are from th e 

Statlog Projec t [79] . Th e DN A dataset i s a  multi-class problem wher e eac h clas s represent s 

a differen t protein . Th e German Credi t datase t i s a binary-classification problem , wher e the 

goal is to classify peopl e as good or bad credit risks based on a set of attributes. The Satimage 

dataset consists of multi-spectral values of pixels in a satellite image, where the aim is to predict 

the class of central pixels in 3x3 neighborhoods, given the multi-spectral features . 

The Nist-Digits i s a dataset compose d o f samples fro m th e NIST Digit s Specia l databas e 1 9 

(NIST SD19) . Compose d o f handwritten sample s o f 0  to 9  digit images , thi s datase t i s one 

of the most popular real-world database s employed t o evaluate handwritten digi t recognitio n 

methods. W e have used tw o distinct tes t set s denoted a s Nist-Digits 1  (60,089 samples ) and 

Nist-Digits 2 (58,646 samples) in this paper Bot h are parthions of the NIST's Special Database 

19: hsf-4 and hsf-7, respectively. The fonner i s considered to be more difficult t o classify than 

the latter Sample s from hsf-0123 partitions were used as training set. The feature set employed 

is the same as that suggested by Oliveira et  al. [85] . Basically , the feature s ar e a  mixture of 

concavity, contou r an d characte r surface , wher e the final  feature vecto r i s composed o f 13 2 

components normalized between 0 and 1. 

Finally, the IR-Ship database i s a military database which consists of Forward Lookin g Infra -

Red (FLIR) images of eight different classe s of ships. Th e images were provided by the U.S. 

Naval Weapon s Center and Ford Aerospace Corporation . Th e same feature se t employed by 

Park and Sklansky [89 ] was used in this work. Mor e details on the synthetic, Nist-Digits, and 

IR-Ship databases can be found in the appendix 1. 
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Table 3.2 Specification s o n the datasets used in the experiments 

Database 

Adult 
Circle-in-Square 
DNA 
Gemian Credit 
IR-Ship 
Nist-Digits 
P2 
Satimage 

Number of 
Classes 

2 
2 
3 
2 
8 
10 
2 
6 

Number of 
Features 

123 
2 

180 
24 
11 

132 
2 
36 

Number of 
Training Samples 

3,185 
3,856 
1,400 
800 

1,785 
5,860 
3,856 
4,435 

Number of 
Sets 
19 
21 
15 
13 
10 
16 
21 
15 

.Number of 
Test Samples 

29,376 
10,000 
1,186 
200 
760 

60,089/58,646 
10,000 
2,000 

3.3.4 Paralle l processing 

In order to speed up the execution of our experiments, we have implemented the PSO algorithm 

and our proposed method in a parallel processing architecture (a Beowulf cluster with 20 nodes 

using Athlon XP 2500+ processors with 1G B of PC-2700 DDR RAM (333MHz FSB)). 

The optimizatio n algorithm s wer e implemented using LAM MPl v6.5 i n master-slave mod e 

with a  simple load balance. I t means that while one master node executes the main operation 

related to the control o f the processes, like the updating of particles' positions/velocities , and 

then switching between th e different level s (e.g. adapte d grid , DPSO) , the evaluations of fit-

ness are performed b y several slave processors. Th e results obtained are given in subsequent 

sections. 

3.3.5 Obtaine d Result s 

The result s ar e reporte d i n Table s 3.3 , 3.4 , an d 3.5 , i n term s o f generalizatio n erro r rates , 

number of stored suppor t vectors, and computational tim e spent , respectively. I t is important 

to mentio n tha t thes e result s wer e teste d o n multipl e comparison s usin g th e Kruskal-Walli s 

nonparametric statistica l tes t b y testin g th e equalit y betwee n mea n values . Th e confidenc e 

level was set to 95% and the Durm-Sidak cortection was applied to the critical values. The best 

results for each classification proble m are shown in bold. 
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From the results, we can see how important a careful selectio n of hyper-parameters is to gener-

ate high performing classifiers . Fo r instance, the results for the GS and Ist-Gri d approaches in 

Table 3.3 show us that searching for optimal hyper-parameters given a new dataset can achieve 

better results , i n both classificatio n accurac y an d mode l complexity , tha n thos e tha t appl y a 

searching process just once. 

Table 3.3 Mea n error rates and standard deviation values over 10 
replications when the size of the dataset attained the size of the original 

training set. The best results are shown in bold 

Database 
Adult 
CiS 
Dna 
German Credit 
IR-Ship 
Nist-Digits 1 
Nist-Digits 2 
P2 
Satimage 

GS 
17.54 
0,34 
12.82 
30.00 
6,05 
2,82 
7,38 
1,79 
10.20 

Ist-GS 
24.06 
0.67 

42.24 
35.00 
7.50 
6,84 
14,30 
3.71 
10,50 

FPSO 
15.55 (0.06) 
0.14 (0.03) 
5.13 (0.18) 
26.6 (0.21) 
4.86 (0.35) 
2.75 (0.04) 
6.68(0.15) 
1.64(0.10) 
8.06 (0.13) 

CPSO 
23.85(0.01) 
0.19(0.03) 
6.37 (0.44) 
30.10(0.32) 
5.66 (0,45) 
3.02(0,23) 
7,33(0,59) 
2.03 (0,29) 
14.32 (0.30) 

DMS 
15.56 (0.05) 
0.13 (0.03) 
5.16 (0.56) 
26.65 (0.31) 
4.72 (0.29) 
2.74 (0.14) 
6.72 (0.39) 
1.69(0.14) 
8.26 (0.22) 

Table 3.4 Mea n of support vectors and standard deviation values 
obtained over 10 replications when the size of the dataset attained the size of 
the original training set. The best results for each data set are shown in bold 

Database 
Adult 
CiS 
Dna 
German Credi t 
IR-Ship 
Nist-Digits 
P2 
Satimage 

GS 
1508 
64 

1906 
800 
443 
880 
226 
1117 

Ist-GS 
1572 
476 
1914 
516 
661 

2912 
430 
1073 

FPSO 
1176.50(12.53) 

35.40 (6.47) 
628.40(32,50) 
418.40 (3.63) 
320.70 (13.34) 
898.40 (30.45) 
161.40(26.12) 
1888,00(93.51) 

CPSO 
3075.00(10.00) 
43.30(12.18) 

436.10 (42.83) 
776.50(74,31) 
671,40(21,74) 
1556.30(62.56) 
383,50 (77,37) 
1384,10(60,64) 

DMS 
1174.80(12.66) 

37.40 (8.36) 
810,60(31,69) 
421.30(9.74) 
318.70 (9.53) 
947.40 (55.09) 
152.80 (8.47) 

1849.00(99.64) 

In addition, we have observed that PSO based approaches are very promising, since their results 

have overtaken those of the two grid-search method s (see in Tables 3.3 and 3.4. Furthennore , 

the most important fact is that the proposed method (DMS) was able to attain similar results, but 

was less time consuming, than the full PSO (FPSO) strategy. As previously mentioned, because 

some of the model selection strategies (FPSO, CPSO, and DMS) use stochastic algorithms, we 
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have replicated th e experiments 1 0 times. Therefore , th e results fo r these strategies represen t 

averages over 1 0 replications. 

Table 3.5 Mea n computational tim e spent (hh:mm:ss) for model selection 
processes over all sequences of datasets. Result s with FPSO over the whole 

databases (FPSO-al l data) are also reported 

Database 
Database 
Adult 
CiS 
Dna 
German Credit 
IR-Ship 
NistDigit 
P2 
Satimage 

FPSO-all data 
FPSO-all data 

01:28:07(00:38:13) 
02:56:15 (00:55:41 ) 
00:34:59(00:15:59) 
00:07:51 (00:00:57 ) 
00:19:08 (00:07:41) 
06:47:51 (02:22:15 ) 
06:02:28 (00:48:29) 
01:45:55 (00:38:40) 

FPSO 
FPSO 

02:41:36(00:02:53) 
05:07:17(00:09:59) 
01:07:58(00:01:34) 
00:13:43(00:00:06) 
00:30:42 (00:01:01 ) 
13:46:00(00:16:04) 
16:04:54(00:17:44) 
02:46:18(00:03:41) 

CPSO 
CPSO 

01:37:21 (00:01:07 ) 
2:23:10(00:06:12) 
00:42:27 (00:00:39 ) 
00:11:36(00:00:02) 
00:15:17(00:04:09) 
03:46:24 (00:08:33 ) 
10:21:50(00:13:47) 
01:41:29(00:02:22) 

D.MS 
D.MS 

00:32:31 (00:02:50 ) 
01:35:45(00:08:34) 
00:14:21 (00:01:01 ) 
00:13:17(0:00:05) 

00:11:26(00:05:00) 
00:56:38 (00:05:34 ) 
05:35:55 (00:33:24 ) 
01:31:03(00:05:04) | 

All these results, mainly comparing GSv5Ist-GS and CPSOvsDMS, are particularly interesting 

because they confirm the importance of tracking optimal solutions when new data are available 

and show the relevance of the proposed method. B y analyzing the results, we can say that by 

shifting between re-evaluations and re-optimizations of previous swanns can be quite effectiv e 

for building new solutions. 

The adapte d gri d modul e i s less time consuming an d perfonns bette r than evaluating , a  grid 

randomly composed o f 70 different combination s (GS) , for instance , or starting a  whole new 

optimization proces s (FPSO) . Besides , i t was show n tha t th e DPS O algorith m i s capable o f 

tracking optima l solution s b y resettin g th e particles ' memorie s an d injectin g diversity . T o 

better visualize the performance o f the methods, we also report the mean ertor rates across all 

the subsets and over the 1 0 replications for two case studies in Figure 3.12. 

For a deeper analysis of the proposed method, we have depicted in Figure 3.13 the frequencie s 

of at which a module was responsible for the selection of the final solution. From these resuhs, 

it is even possible to guess the different degree s of difficulty amon g the databases. For example, 

databases whos e th e final solutions were pointed ou t mor e often b y the DPS O module , e.g . 
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German Credi t an d DNA , seem to have a major degre e of uncertainty, due perhaps a  greater 

overlapping between classes, than other databases, such as Nist-Digits and CiS, for example. 
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Figure 3.12 Erro r and support vectors rates. For the databases, Ship ((a) 
and (b)) and Satimage ((c) and (d)). The results were obtained over 10 

replications. 

By comparing the optimization approaches directly, we can see that the results reported in Ta-

ble 3. 6 demonstrat e tha t ou r DPS O implementatio n i s advantageous, mainl y i n tenns o f the 

processing time demanded to search for solutions. Unlike FPSO, which requires several itera-

tions, because i t starts a new search randomly every time, our dynamic version saves time by 

applying dynamic optimization techniques, such as: the use of previous knowledge, increasing 
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diversity, etc . A s a result, whe n the DPSO module i s activated, i t converges faste r an d with 

similar results to those obtained with FPSO and better than those obtained with CPSO. 

Satimaqe ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ H ^H 
• Bes t Kept 
^•Aoaptea un a 
1 ̂ DPS O 

P2 ^ ^ ^ ^ ^ ^ ^ H ^ ^ ^ ^ ^ ^ Ĥ 

iR-shiD^H^HIH^^^I 
German CreditMa 

D n a H 

CiS ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 

Ad u It ^ ^ ^ ^ H ^ ^ ^ ^ ^ l 

0 10 20 30 40 5 0 6 0 
Frequencies (%) 

70 80 9 0 10 0 

Figure 3.13 Averag e of frequencies whic h indicates how many times each 
module was responsible for pointing out the final solution. 

The results also reveal an important advantage of our dynamic model selection strategy (DMS) 

over the common used FPS O strategy . Whil e a huge amoun t of computational tim e was re-

quired for the FPSO optimization approach to perform th e model selection processes, our pro-

posed metho d wa s capable o f finding satisfactory solution s i n less computationa l time , by 

mainly considering it for each set of data. 

This is because the FPSO strateg y require s a  large number of evaluations than the proposed 

method, especially over each dataset, or still because when applied gradually over the datasets, 

the propose d metho d usuall y accelerate s th e searching proces s by approximating solution s 

before reaching the total size of training sets. 

Based on these results, we can see that the proposed method , DMS , has spent les s computa -

tional time than the other strategies. Besides , it can also be noted that sometimes the applica-
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tion of DMS gradually over subsets of data can be even faster than realizing a full optimization 

process over the entire original training set. 

Table 3.6 Mea n of number iterations attained and standard deviation 
values for each optimization algorith m over 10 replications. The results for 
the Full and Chained PS O strategies were computed over all datasets. In 

contrast, the results for the DPSO module were computed considering only 
the datasets where it was activated 

Database 
Adult 
CiS 
Dna 
German Credit 
IR-Ship 
Nist-Digits 
P2 
Satimage 

Full PSO 
18.63 (7,04) 
23,53 (7,52) 
23.18(7,07) 
21.48(7,44) 
30.45 (8,78) 
31.60(8,44) 
27.39 (9,26) 
24.86(8,19) 

Chained PSO 
12.00(1.04) 
17.71 (2,92) 
15,95 (5,47) 
12,61 (2,14) 
15.82(5.34) 
14,17(4.74) 
20.72(5,81) 
16.78(6,53) 

DPSO Module 
14,66 (4,37) 
17,05(6,10) 
17,08 (5.09) 
14.07 (4.34) 
17,38(5,20) 
15,72(6.41) 
15,50(4,61) 
18,14(6,48) 

Thus, the efficiency o f the proposed method was demonstrated through the results. Even though 

the strategies sometimes perfonn similarl y i n tenns o f generalization errors , as in the case of 

the Ci S database , th e proposed metho d i s clearly superio r wit h respec t t o other factors , e.g . 

the model complexity (numbe r o f support vectors ) and computationa l time . Furthennore , by 

taking fewer iterations and having adaptation capabilities, the use of the proposed method in a 

fully dynami c environment i s very promising, mainly in those applications where the system 

must adapt itself to new data (time-series data, for example). 

3.4 Discussio n 

In thi s chapte r w e presente d th e SV M mode l selectio n problei n a s a  dynamic optimizatio n 

problem whic h depend s o n available data . I n particular , i t was show n tha t i f one intends to 

build efficien t SV M classifiers fro m different , gradual , o r seria l sourc e o f data, the best way 

is to conside r th e mode l selectio n proces s a s a  dynamic proces s whic h ca n evolve , change , 

and hence require different solution s overtime depending on the knowledge available about the 

problem and uncertainties in the data. I n order to solve the model selection problem and also 

take int o account thi s dynamism, we proposed a  PSO-based framewor k (DMS ) based o n the 
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ideas of self-organization, chang e detection, and dynamic optimization techniques to track the 

optimal solution s an d sav e computationa l time . Th e relevanc e o f th e propose d metho d wa s 

confirmed throug h experiments conducted on nine databases. 

Briefly, the results have shown that: (1 ) if PSO is applied sequentially over datasets as a whole 

optimization proces s (Chaine d PSO ) wit h th e purpose o f saving computationa l time , the re-

sulting optimized solutions may stay trapped in local minima after successive hyper-parameter 

model selectio n processes . B y contrast , (2 ) althoug h ful l optimizatio n processe s wit h PS O 

(Full PSO strategy) constitute an efficient wa y to achieve good results, they are very time con-

suming, particularly when applied to each new dataset. (3 ) DMS was very similar to full opti -

mization processes, but less computationally expensive , mainly due to the use of the dynamic 

optimization techniques. 

Above all, we examined the SVM model selection problein in a gradual learning context where 

hyper-parameters must be re-estimated in order to retrain an SVM classifier fro m data at differ -

ent times k in a cumulative fashion, as occurs in applications where data collection is expensive, 

such as cancer diagnosis , signature verification, etc . The proposed method i s also particularly 

useful fo r real-world applicadons requiring the generation or updating of dynamically in a se-

rial way (e.g . thos e involving streaming data) . W e present som e more additional result s that 

restate our conclusions concerning the strategies tested in the appendix II. 

Nevertheless, even considering tha t the optimization o f a  single classifier i s importan t t o in -

crease it s performances, w e know tha t the use of an ensemble o f classifiers ca n improv e the 

overall performanc e o f a classification system . Especiall y when the members composing the 

ensemble are especially selected, which makes them still more accurate. 

Taking this into account, the evaluation and selection of such classifiers depen d on the choice 

of an adequate objective function . Therefore , i n order to better understand an d apply classi -

fier ensembles t o compose ou r adaptiv e incrementa l syste m i n the contex t o f this thesis , we 

investigate a  series of measures, based on different theories , to achieve such tasks in the next 

chapter. 



CHAPTER 4 

TOWARDS TO THE EVALUATION AND SELECTION O F ENSEMBLE OF 

CLASSIFIERS 

The fusion o f classifier decision s into ensembles has been widely applied to improve the per-

formance o f single classifiers . Ove r the las t years, several effort s o n ensembles of classifier s 

have been conducted to find measures that could b e well correlated with ensembles' accurac y 

[67, 99, 36, 28, 125 , 96, 69, 73, 122, 9, 116 , 110] . However , despite of the efforts, th e under-

standing of the effectiveness o f ensembles methods has still intrigued many authors. 

A consensus i n the literature indicates the presence o f some diversity between the ensembles 

members as the main factor fo r improving the overall perfonnance [28 , 69, 73, 122, 9]. Even 

though i t i s well accepte d tha t diversity i s a  necessary conditio n fo r improvin g th e majorit y 

vote accuracy , ther e i s no genera l agreemen t o n ho w to quantify o r to dea l wit h it . O n the 

other hand , bias-variance an d margin theor y has also allured som e attention i n the literature , 

since it may cast the study of ensembles of classifiers int o a large margin classifiers context. In 

particular, the margin theory was first applied by Schapire et al. [99] to provide an explanation 

on how the boosting method works . Afte r that , othe r authors have used thi s theory t o create 

new ensemble methods [6, 8] . 

The main goa l o f this chapter is , through a n empirica l study , to investigat e measures fo r the 

evaluation and selection of ensemble members. Thi s is important because sometimes , mainly 

for those situations i n which onl y smal l datasets ar e available , the use of ensemble accurac y 

over such data may not provide sufficient informatio n t o select the best ensemble. The conclu-

sions obtained in this chapter help us on the choice of the best objective function t o be used in 

our adaptive incremental learning system. 

In order to achieve this, we start our study by surveying measures from some classical theories: 

bias-variance, diversit y measures , an d margi n theor y fo r ensembles . Afterwards , a n experi -

mental protoco l simila r to one introduced b y Valentini [116 ] for characterizin g ensemble s of 
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Support Vecto r Machines i s employed t o evaluate the measures. I n addition, a  discussion on 

the obtained results i s also offered, i n which we try to answer some questions curtently foun d 

in the literature, such as: 

• Whic h measure could offer th e best guidance to evaluate the classifiers fusion ? 

• Ho w are the diversity measures related to each other? 

• I s there a relationship between diversity, margins, and ensemble accuracy? 

• Whic h are the best measures for observing such relationship? 

This chapte r i s organized a s follows . I n Sectio n 4. 1 w e summarize th e bias-variance theor y 

for ensembl e according to Domingos' theoretica l framewor k [36] . Sectio n 4.2 surveys classi-

cal measures to estimate diversity fo r classification fusion . Sectio n 4.3 introduces the margin 

theory fo r ensemble of classifiers an d measures related to it . Sectio n 4.4 describes the exper-

imental protocol applie d an d the obtained results . Finally , we discuss results and outline the 

conclusions in Section 4.5. 

4.1 Bias-Varianc e Decomposition o f Erro r 

In general, zero-one loss functions ar e the only option to be applied to classification problems . 

In order to analyze bias-variance in this context, an aftemative is to use the unified bias-varianc e 

decomposition o f the error proposed by Domingos [36] . I n this theory, regarding a free nois e 

case, the expected los s ELf) fo r a sample x i s basically decomposed into two terms: the bias 

Bf) an d the variance V(-) . Therefore , followin g the same notation introduced by Valentini in 

[116], the expected loss is computed as: 

EL{x).= B{x)  +  V{x) (4.1 ) 
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B{x) =  E{yr,j,y^)  represent s the bias of an ensemble of L  classifiers o n an example x. Th e 

bias is the loss E{.)  incurre d by the main prediction y,„  with respect to the optimal prediction 

y,. Therefore , fo r the 0/1 loss , the bias is always 0 or 1  an d computed by: 

. 1  i f V m 7 ^ V* 
B{x) =  {  '^  ^  ^  (4.2 ) 

0 i f ym = y . 

For an ensemble composed of { A4, }f classifiers , the variance of errors is considered according 

to two opposite aspects: the unbiased and biased variance. The unbiased variance Vu(x) is the 

variance when B(x) =  0 , it is responsible fo r increasin g the error. O n the other hand, biased 

variance V(,(x ) represents the variance when i?(x) =  1 , hence it is responsible for decreasing 

the error Thes e variances are calculated as: 

1 ^ 
K(x) =  -  ^ [ ( y ^ =  y. ) A (y„, ^ y^,,) ] (4.3 ) 

1=1 

1 ^ 
H(x) =  -  Y}iym  7 ^ y.) A (y,„ A  VM,)]  (4.4 ) 

1 = 1 

where yM, is the prediction provided by a classifier M,. 

Finally, the net variance K(x) i s defined i n order to combine the effects of unbiased and biased 

variance V„(x) =  Kj(x ) -  Vf,(x) . Fro m this point of view, variance can be seen as a measure 

of diversity, where its effects o n error are related to the type of the variance [115 , 116] . 

This decomposition fo r a  sample x  ca n b e generalized t o a  whole datase t b y defining EA[]. 

This way the average bias EA[B{x.)],  th e average unbiased variance £'x[Vu(x)] , and the aver-

age biased variance £'x[H(x)] compose the expected loss of generalization ove r all dataset i s 

redefined to : 

EA[EL{x)] =  E^[B{x)] +  £x[V;(x)] -  i?x[H(x) ] (4.5 ) 
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Overall, the bias-variance decomposition o f error theory allows to understand th e working of 

ensembles. Unfortunately, as it is defined by a set of metrics, the use of the bias-variance theory 

for the selection of ensembles is more complex. 

By contrast , th e margi n theor y ca n expres s th e sam e concepts , bu t i n a  more compac t way , 

since the increasing of margins denotes the decreasing of the bias and variance tenns together 

[36]. I n ligh t o f this , w e focu s o n the margin theor y an d diversit y measures . However , fo r 

sake of clarity, we also present result s based o n bias-variance analysi s with two problems in 

appendix III. 

4.2 Diversit y Measures 

Diversity ha s been quantifie d i n several way s for classificatio n fusion . A s a result, differen t 

measures have been proposed in the literature. I n this section, we describe seven well-known 

diversity measures which are usually grouped into two types: pairwise and non-pairwise [73]. 

Their value s vary i n a  range o f 0  and 1 . Moreover , i n here eac h diversit y measur e nam e i s 

accompanied with a downward anow J . or upward arrow t  indicatin g i f the diversity obtained 

is decreasing or increasing with its value. 

4.2.1 Pairwis e Measures 

In pairwise measures , firstly the diversity between al l pairs of classifiers i s calculated. There -

after, th e overal l diversit y measur e values ar e computed a s the mea n o f the pairwise values . 

For instance , given L  classifiers , ^\,~  pairwis e diversitie s d^j  ar e measured between pairs 

of classifiers, and then the final diversity d is defined b y an average: 

^ '  l , J= l , . . . , i . 

In general fo r a pairwise measure, n is the total number of samples, n}^ is the number of times 

that bot h classifier s ar e correct , n° ° represent s th e numbe r o f time s tha t bot h classifier s ar e 
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incorrect, and n^° and n°' denot e the number of times when just the first or second classifier i s 

correct, respectively. Below , we describe some pairwise measures applied in this work. 

4.2.1.1 Q  average (I ) 

With this measure, classifiers tha t tend to recognize the same samples correctly wil l have posi-

tive values of (5. This measure is computed for pairs of classifiers i  and j as : 

^^•J -  „i i , jO o +  ,^oi,,ji o (  -A 

4.2.1.2 Disagreemen t measure {]) 

This measur e denote s th e rati o betwee n th e numbe r o f observation s wher e on e classifie r i s 

correct and the other is inconect with respect to the total number of observafions [104] . Fo r a 

pair of classifiers i  and j , i t is computed by: 

DS,, ^  "A^AfA.  (4.8 ) 
n 

4.2.1.3 Double-faul t measur e (J,) 

The double-fault measure estimates the probability of coincident errors for a pair of classifiers. 

It is defined fo r a pair of classifiers ;  and j a s [104, 42]: 

' DF.^j  = —  (4.9 ) 

4.2.2 Non-pairwis e Measures 

Unlike pairwis e measures , non-pairwis e measure s ar e no t calculate d b y comparin g pair s o f 

classifiers, bu t by comparing al l L  classifier s a s a whole. Belo w there are some examples of 

these types of measures: 
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4.2.2.1 Kohavi-Wolper t (KW) variance (j ) 

Let /(xj ) b e the numbe r o f classifiers tha t correctl y recogniz e Xj . Fro m th e formul a fo r th e 

variance [67], the diversity measure becomes: 

4.2.2.2 Generalize d diversity (t ) 

Let Z  b e a random variabl e t o represen t th e proportio n o f classifiers tha t ar e incorrec t o n a 

randomly drawn sample x, p, is the probability that Z =  if  L, an d p[i) i s the probability that ?' 

randomly chosen members will be wrong on a randomly chosen x. Th e generalized diversit y 

is defined a s [90]: 

pi^) = Jl-iP" pi'-^-tirf^^P'  (4.11 ) 
i = i i = i ^  ' 

GD =  l -^ (4.12 ) 
PA) 

4.2.2.3 Ambiguit y (t ) 

The ambiguity measure was proposed by Zenobi and Cunningham [125]. Basically, it measures 

the disagreement amon g the classifiers prediction s y ^ with respec t t o the majority predictio n 

y^, where the factor correctness is not important. The ambiguity measure can be defined as : 

. n  L 

-̂  = ; ^ E E [ y - ^ ^ ' j] (4.13 ) 
1=1 J=l 

4.2.2.4 Difficult y (i ) 

Unlike the ambiguity measure , the difficulty measur e [44 ] like most of the measures i s calcu-

lated taking into account the base classifiers' correctness . The goal is to measure the degree of 
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classification difficult y o f samples. Basically , this measure is defined t o be the variance of a X 

random variable which denotes the proportion of classifiers tha t conectly classify a  sample x: 

DY =  a-{X). 

4.3 Margi n Theory 

The margin theory was originally applied to develop the Support Vector Machines theory [117] 

and to explain the success of Boosting [99]. In the fonner, Vapnik [117] has introduced the idea 

that the generalization error of a classifier can be decreased by maximizing the separation mar-

gin between classes . Basically , the margin of a sample x represents a degree of confidence in 

its classification. Here , in order to provide a global understanding of this theory, we summarize 

the different way s to compute the margin regarding a sample. 

First, the margin of a single classifier base d on some discriminate function /(. ) ove r a sample 

(x, y) with y G [—1,1] and /(x) i- + [-1,1] can be computed by: 

T{x,y) =  y f{x)  (4.14 ) 

Second, i f the classifier i s based on some probabilistic model, so the margin can be defined as: 

r(x,y) =  P(y |x) -max(P(y7^j |x ) ) (4.15 ) 

where ] i s any other class related to the classification problem . Next , fo r ensembles of clas-

sifiers, th e concept o f the margin follow s th e same ide a introduce d b y Schapire e t al. [99] . 

In general, the margin of a sample x can be computed by Equation 4.16 or by Equation 4.17 

[43, 110] , where Vy i s the number of votes for the true class, Vj is the number of votes for any 

other class, and c is the maximum number of classes in the problem: 

r X (4.16) 
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T{y:-y) =  ; ^ I  f' y -  argma x Uj  | (4.17 ) 
JA 

The mai n differenc e betwee n thes e tw o definition s fo r ensemble s i s that , whil e th e first  on e 

applies a  sum operation , th e secon d on e compute s a  max operation . Base d o n th e first  margi n 

definition, whe n dealing with multi-clas s problem s the margins ca n eve n assum e negativ e val -

ues fo r cortec t ensembl e decisions , i.e , whe n ther e i s a  plurality bu t no t a  majority [43] . B y 

contrast, followin g th e secon d definition , whic h i s a  specia l cas e o f the first  one , th e margin s 

are always positive when th e ensemble i s correct an d negative otherwise. Thus , fo r th e sake o f 

clarity, i n this chapter, w e employ bot h definitions an d sho w that i n fact the y perfonn similarl y 

and converg e t o the same regions . 

4.3.1 Margin-Relate d Measure s 

Naturally, the definition o f margin for a  sample x can also be generalized and employed to other 

measures applie d ove r a  datase t V  =  (x,,y;)"=i . I n particular , ther e ar e tw o mai n measure s 

related t o this theory : 

• Minimum  Margin('\):  Th e minimum margi n o f an ensemble o f classifiers o n a  dataset V 

is defined a s the smalles t valu e o f margi n obtaine d t o an y correc t labe l [43] . Therefore , 

the minimum margi n i s governed by : 

Q{D) =  argmin{T(yi,,y,)),  (4.18 ) 
l < j < n 

Average Margin(]):  th e averag e margi n denote s th e mea n o f al l margin s obtaine d ove r 

samples o f a given datase t V.  Thi s measure ca n be calculated as : 

1 " A'(^) = - V r ( x , , y , ) (4.19 ) 
j = i 
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In addition t o these two typical margin-base d measures , another measure ha s been propose d 

from th e margin theory . I n here, we denote this measure as CI measure, since i t was derivate 

from th e Chebishev's Inequality. Thi s measure represents a generalization bound suggested in 

[8]. I n particular, assuming an average margin //(P) >  0 , this measure is defined as : 

cm - ^ 

This measure establishes a relation between the strength of the base classifiers (average margin) 

and the dependence between them for predicting the generalization error Thi s is because, it has 

been proven that the variance of the margins is lower or equal to the average of the correlation 

coefficients o f pairs of classifiers times an average of variance between them [8]. 

Finally, the use of cumulative margin distribution graphics i s also an efficient too l to observe 

the ensembles ' behaviors . The y can be computed by two simple steps . First , the se t of mar-

gin values from a  dataset i s sorted . Next , for eac h possible value of margin i s calculated th e 

percentage of the samples whose margins are lower or equal to the current value. Graphic s of 

cumulative distribution o f margins were firstly introduced b y Schapire e t al . [99 ] to demon-

strate tha t Boostin g maximize s margins . Onc e tha t th e definition s o f diversit y an d margi n 

theories were already presented, we describe the experimental protocol adopted and the results 

obtained in the next section. 

4.4 Experimenta l Protoco l 

In orde r t o investigat e th e measure s previousl y introduce d a s objectiv e functions , w e hav e 

carried out an experimental protocol similar to one realized by Valentini [115, 116] for charac-

terizing ensembles of Support Vector Machines (SVM). 

The experimenta l setu p ha s bee n organize d int o tw o steps . Firs t o f all , w e hav e selecte d 

the complex syntheti c problem denote d P 2 and two other multi-classes real-world problems , 

Satimage an d Letter , fro m Satlo g collectio n [79] . P 2 [115 ] i s a  classification proble m tha t 
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consists o f tw o classe s ( 7 an d / / ) , where th e decision regio n fo r eac h clas s i s delimited b y 

one, two, or even more than four equations and without overlapping between the distributions. 

More details about this synthetic problein can be found in the appendix I. 

We summarize some information abou t the three classification problems used in Table 4.1. Fo r 

the P2 problem, a large dataset was generated an d splited into a small training se t and a large 

testing set composed of 100 and 10,00 0 samples respectively. Fo r the real-world problems, the 

same original distributions of samples for training and test sets were used. 

Table 4.1 Informatio n o n the databases 

Database Number of Numbe r of Numbe r of Numbe r of 
Classes Feature s Trainin g Samples Tes t Samples 

P2 
Satimage 

Letter 

2 
6 
26 

2 
36 
16 

100 
3,104 
10,500 

10,000 
1,331 
4,500 

Thereafter, ensemble s of SVM s with RBF-kemel varyin g the C  an d 7  parameters were built 

based on the Bagging method [5] . Therefore, ensembl e members were created by taking ran-

dom sample s wit h replacemen t fro m a  given origina l trainin g se t D,  an d b y buildin g the m 

on different bootstrappe d subsets . Th e total number o f 50 classifiers wa s generated fo r eac h 

problem. 

For each tes t sample x, the final classification decisio n was made by taking the majority vot e 

over th e class label s produced b y each ensemble member . A  SVM one-against-one strateg y 

was employed when dealing with the multi-class problems. Moreover, a RBF kernel was used 

because it nonlinearly maps samples into a higher dimensional space. Furthennore, this kernel 

has also obtained superior power of generalization and lower complexity than the Polynomial 

kernel [115] , for example. The variations of the C and 7 parameters were done based on these 
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values: 

f 7e {10000,2.500,100,2.5,4,1,0.25 , 0.04,0.01, 25e03, 

4e04, le04, 2.5e05, lle05,6e06,4e06, le06} 

C e  {0.01,0,1,1,2 , 5,10, 20, 50,100, 200, 500,1000} 

Therefore, 204 different combination s of models were trained and evaluated on each subset of 

data totalizing more than 30,600 different RBF-SVM s fo r all databases. Finally , the measures 

introduced in Sections 4.2 and 4.3 were evaluated over the ensembles generated and compared 

with their average loss and generalization errors . Th e average loss of predictions is computed 

between bas e classifier s output s y,  an d a  true clas s y* . I n particular , i t represent s the mean 

error rate between the ensemble members as defined i n Equation 4.21. 

.. n  L 

^•^«^^ = ;rrEE[y'^^y*] (4.21 ) nL 
1=1 j=\ 

While the generalization ertor of the ensembles is computed according to Equation 4.22, where 

ym denotes the majority vote. It corresponds to the actual ertor of the ensemble after combining 

the base classifiers. 
1 ''' 

G.Error =  -  J][y„ „ A  y* ] (4.22 ) 

1=1 

4.4.1 Obtaine d Result s 

From the obtained results we could observe very interesting relationships among diversity mea-

sures, margin theory, and majority vot e accuracy. I n order to better examine them, we start by 

analyzing th e best result s fo r eac h measur e previousl y mentione d regardin g eac h theory an d 

classification proble m tested . Th e result s ar e reporte d i n Tables 4.2 , 4.3 , and 4.4 . I n thes e 

tables, we can see the optimum value reached for each measure, their corresponding ensemble 

configuration, an d generalization power yielded, i.e . i n tenns of individual ertors (i.e. average 

loss) and generalization error after combination . 
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In Figure s 4.1 , 4.2 , an d 4.4 , w e ca n als o observ e th e behavio r o f al l measure s concernin g 

two differen t perspective s o f th e ensemble s wit h th e bes t perfonnances , i.e . wit h th e lowes t 

generalization erro r I n th e first  one , result s o f differen t ensemble s ar e plotte d b y fixing  th e 

value o f th e paramete r C  an d varyin g th e paramete r 7 . B y contrast , i n a  secon d perspective , 

the paramete r 7  i s fixed  whil e C  i s varied . Base d o n al l thi s information , w e examin e eac h 

experimental resul t wit h respec t t o th e majorit y vot e accuracy , an d finally  discus s detail s o n 

their us e a s objectiv e functio n fo r ensembl e selection . Thi s analysi s i s describe d i n th e nex t 

sections. 

4.4.1.1 Diversit y result s 

The results have show n tha t diversit y i s very importan t fo r accurac y o f EoCs, sinc e ensemble s 

with the lowes t average los s of predictions between thei r members have not reached the lowes t 

generalization erro r Thi s can be seen i n all Tables 4.2-4.4 an d Figures 4.1-4.5. 

For example , i n Tabl e 4.3 , the ensembl e compose d o f th e highes t performin g classifiers , i.e . 

with parameter s C  =  5  and 7  =  1 , did no t produc e th e mos t perfonnin g combination , whic h 

was obtaine d whe n C  =  2 0 an d sam e 7  value . I t mean s tha t individua l perfonnance s o f 

members ar e one facto r tha t contribute s to the overall ensembl e perfonnances, bu t they are no t 

sufficient. Thus , som e diversit y i s requested t o get th e highes t majorit y vot e performances , a s 

also pointed ou t i n [66]. 

However, a s we have mentioned before , th e relationship between diversit y and ensemble accu -

racy ma y b e ver y complex . I n fact , w e coul d se e tha t th e result s fo r som e diversit y measure s 

were mor e ambiguou s i n relatio n t o th e ensembl e accuracy . Thi s i s because , fo r severa l en -

sembles, they hav e assumed th e same values , even i f the ensemble s ha d differen t averag e los s 

(i.e. mea n erro r rates ) o r generalizatio n eno r (i.e . majorit y vot e error) . A s examples , w e ca n 

relate mainl y thos e focuse d o n the increasin g o f the variance betwee n th e bas e classifier s out -

puts, suc h as : Q . average. Disagreement , Ambiguity , an d Kohavi-Wolper t varianc e measures , 

as show n i n Figure s 4. 1 -  4.5 . Abov e all , thes e result s reveale d tha t th e diversit y measure s 

can b e categoriz e int o tw o group s accordin g t o thei r relationshi p wit h ensembl e accuracy . I n 
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Table 4.2 Bes t results obtained for each measure evaluated on the P2 database 

Measures 

Average Loss ([) 
Generalization Erro r (J.) 
Difficulty ( i ) 
Ambiguity {]) 
Double Fauh (j ) 
Disagreement ( t ) 
Kohavi-Wolpert (T) 
Generalized Diversit y (t ) 
Q Average ([) 
Minimum Margi n ( t ) 
Average Margi n ({ ) 
CHI) 

C 

2 
1 

0.1 
0.1 
2 

0.1 
0.1 
0.1 
0.1 
0.1 
2 
2 

7 

100 
100 
25 
25 
100 
25 
25 
25 
25 
25 
100 
100 

Value 

0,1719 
0,1274 

0 
0.2563 
0.1006 
0.3508 
0.1719 
0.5003 
0.3100 

0 
0.6561 
0.6734 

Average 
Loss(%) 

17.19 
17.59 
35.06 
35.06 
17.19 
35.06 
35.06 
35.06 
35.06 
35.06 
17.19 
17.19 

Generalization 
Error (%) 

12.78 
12.74 
28.91 
28.91 
12.78 
28.91 
28,91 
28,91 
28.91 
28.91 
12.78 
12.78 

Table 4.3 Bes t results obtained for each measure evaluated on the Satimage database 

Measures 

Average Los s 
Generalization Erro r 
Difficulty ( i ) 
Ambiguity (J) 
Double Faul t ([) 
Disagreement ( t ) 
Kohavi-Wolpert (j ) 
Generalized Diversit y (j ) 
Q Averag e (j ) 
Minimum Margi n (sum rule) (j ) 
Average Margin (sum rule) (f ) 
CI (su m mle ) ( i) 
Minimum Margi n (max . rule ) (t) 
Average Margi n (max . rule ) ( t) 
CI (max . rule ) ([) 

C 

5 
20 
0.1 
200 
50 

1000 
1000 
1000 
1000 
50 
5 

50 
50 
5 

50 

7 

1 
1 

0.25 
6e06 

1 
0.25 
0.25 
0.25 
0.25 
leOl 

1 
1 

0.01 
1 
1 

Value 

0.1091 
0.0969 
0.1586 
0.0800 
0.0816 
0.0787 
0.0386 
0.3181 
0.9568 
0.2000 
0.7818 
0.4622 
0.2000 
0.7853 
0.4442 

Average 
Loss(%) 

10.91 
11.06 
15.37 
32.94 
11.08 
12.37 
12.37 
12.37 
12.37 
26.59 
10.91 
11.08 
26.59 
10.91 
11.08 

Generalization 
Error (%) 

9.92 
9.69 
15.10 
29.30 
9.77 
10.59 
10.59 
10.59 
10.59 
26.52 
9.92 
9.77 

26.52 
9.92 
9.77 

the first one, we can group diversity measures that were "weakly" related, such as: Qaverage , 

Disagreement, Ambiguity , and Kohavi-Wolper t varianc e measures . O n the other hand . Gen-
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Table 4.4 Bes t results obtained for each measure evaluated on the Letter database 

Measures 

Average Los s 
Generalization Erro r 
Difficulty (i ) 
Ambiguity (j ) 
Double Faul t (j ) 
Disagreement ( t ) 
Kohavi-Wolpert (T ) 
Generalized Diversit y (t ) 
Q Averag e ( | ) 
Minimum Margi n (su m rule ) (t ) 
Average Margi n (su m rule)(t ) 
CI (sum rule ) {[) 
Minimum Margi n (max . rule)(t ) 
Average Margin (max . rule)(t ) 
CI (max. rule)(J. ) 

C 

10 
20 
5 
1 

20 
I 
I 

500 
2 
10 
10 
20 
20 
10 
20 

7 

1 
1 
I 

25 
I 

25 
25 

0.25 
25 
4 
1 
1 

0.25 
1 
1 

Value 

0,0456 
0,0336 
0.1298 
0.1685 
0.0275 
0.1247 
0.0611 
0.4063 
0.9526 
-0.2000 
0.9088 
0.1247 

0 
0,9142 
0.1086 

Average 
Loss(%) 

4.56 
4.58 
4.71 

29.94 
4.58 

29.94 
29.94 
6.02 

28.79 
4.77 
4.56 
4.58 
4.69 
4.56 
4.58 

Generalization 
Error (% ) 

3,44 
3.36 
3.80 

24.93 
3.36 

24.93 
24.93 
4.31 

23.78 
3.47 
3.44 
3.36 
3.45 
3.44 
3.36 

eralized Diversity' , Difficulty, an d Double-Fault measures belong to the second group denoted 

as "strongly" related. Ye t concerning thi s last group, Double-Fault measure was more related 

to the ensemble accuracy, followed b y the Difficulty an d Generalize Diversity measures which 

were slightly less correlated to the ensemble ertors. Simila r conclusions about the behaviors of 

the Double-Fault and Difficulty measure s have been also outlined in [69]. 

4.4.1.2 Margi n results 

In particular, we have evaluated the main measures provided by the margin theory : minimu m 

margin, cumulative margin s distributions , average margin , an d CI.  Base d o n the results , we 

could observ e som e interestin g insight s o n thi s theor y an d th e majorit y vot e accuracy . Fo r 

instance, in the literature, the maximization of margins on training data i s commonly pointed 

out as responsible for decreasing the generalization error on fufirre tes t sets [99]. 

So, i n a first moment, we would expect that maximizing the minimum margin fo r ensemble s 

should b e accompanied wit h the minimum generalization erto r However , the fac t i s that the 
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Figure 4.1 Result s for ensembles with the best combinations of C and 7 
parameters on two different perspective s over the P2 database, (a) 

Ensembles with the best C value fixed and varying , , and vice-versa in (b). 
The vertical dashed lines indicate where the minimal generalization error 

was attained. 

minimum margi n measur e hav e show n grea t instability . Thi s i s because , a s i t ca n b e see n 

in Figure 4.2 (a) , the tracking of the maximum minimum margin can be quite difficult, sinc e 
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(a) Satimag e - fixed C 

(b) Satimag e - fixed -) 

Figure 4.2 Som e results obtained fo r ensemble s with the best combination s 
of C and 7  parameters o n two different perspective s ove r the Satimag e 

database, (a)  results for ensembles with the best combination b y fixing and 
varying the C and 7  parameters , respectively, (b) result s obtained b y fixing 

the best 7 parameter foun d an d varying C.  Th e vertical dashe d line s 
indicate where the minimal generalization erro r wa s attained . 
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Figure 4.3 Simila r result s to that depicte d i n F'igure 4.2 but with th e 
second margi n definition (Equatio n 4.17) , i.e. with the max. rule . Vertica l 

dashed lines point out the region in which the optimum generalizatio n erro r 
was achieved. 
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many different value s can be achieved even around the best ensemble. In light of this, the greed 

maximization of the minimum margin may not be satisfactory fo r searching the best ensembles. 

On the other hand, the results reported wit h cumulativ e margins distributions have show n us 

such relation. A s examples, we have plotted some results involving high and less perfonnin g 

ensembles over the Satimage problein in Figure 4.6. Fro m these resuts, it can be seen that the 

ensembles with the best performances (i.e . compose d o f the parameters C  =  2 0 and 7  =  1 

and C  =  5 0 and 7  =  1) , have actuall y reache d large r margin s tha n ensemble s wit h lowe r 

perfonnances (e. g wit h C  =  100 0 and 7  =  0.2 5 pointe d ou t b y som e diversity measures) , 

since their margin values are more concentrated a t the maximum value (i.e. aroun d 1 , which 

produces the lowest curves). 

In addition, the results with the average margin measure have also demonstrated that classifier 

ensembles with larg e margin values are very perfonning. I n fact , w e have observed tha t this 

measure is very stable. Thus, we can particularly assert that is more relevant to concentrate on 

the average margin than only on the minimum one. 

However, although the average margin over test instance s represents a n estimate of expected 

margin fo r a  classification problei n [1II] , afte r a n analysis of the results, i t i s clear tha t this 

measure is strictly related to the average loss (mean error rate) of the base classifiers composing 

an ensembl e an d no t exactl y t o it s generalizatio n erro r T o illustrat e this , w e ca n se e tha t 

the maximum values of average margin correspond to the minimum values of average loss in 

Tables 4.2, 4.3, and 4.4, and also in Figures 4.1, 4.2, and 4.4. 

Therefore, maximizing the average margin points out the ensembles composed of the strongest 

individual members in a given pool. In general, this fact i s not much interesting because there 

is a  great tendenc y tha t i n a  limi t o f the highes t possibl e individua l perfonnances , th e base 

classifiers will be very similar, with so low diversity that their team may not reach the maximum 

majority vote accuracy. As a consequence, despite of most of the times the maximum values of 

average margins accompany the minimum values of generalization erro r for some ensembles, 

usually those with the maximum average margin and minimum generalization erro r (majorit y 
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SATIMAGE Proble m - Margins Cumulative Distnbution 

Margins 

Figure 4.6 Som e cumulative margins distributions computed on the Satimage problem. 

vote error) in the extreme cases may slight diverge. It can be seen in all results listed in Tables 

4.2,4.3, and 4.4). 

Taking thi s int o account , base d o n tw o cas e studies , w e have examine d mor e carefull y th e 

relationship between the expected generalization erro r rate and the margins of the ensemble s 

with th e lowes t averag e los s an d generalizatio n error , respectively . I n orde r t o achiev e thi s 

analysis, we compare their histograms fonned b y frequencies o f margins defined b y Equation 

4.16 computed fo r al l samples in the test set. The y are depicted i n Figures 4.7 (a)-(d) fo r the 

Satimage and Letter problems. 

Based on these results, it is possible to observe that ensembles with the lowest generalizatio n 

error (Figures 4.7 (b) and (d)) have obtained margins with more plurality of values than those 

ensembles with the lowes t average los s (Figures 4.7 (a ) and (c)) . Thus , i t is clear tha t whil e 

ensembles with very performing member s reach hig h values o f margins, ensembles with the 

lowest generalization error obtain margins relatively high, but also tend to produce values more 
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error ((b) and (d)) from Tables 4.3 and 4.4 for the Satimage and Letter 

problems, respectively. 

varied. Thes e results have demonstrated how important is a balance between the increasing of 

the margins accompanied of some variance between the ensemble members. This explains why 

the results obtained with the Cl-measure were the most correlated with the ensemble accuracy 

regarding all measures tested. Now , after reporting the evaluation of all measures and relating 

their results to the ensemble accuracies , we present a discussion on the relationship between 

these two theories and their application as objective fiinction to ensemble selection processes. 
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4.5 Discussio n 

In this chapter we have tested various measures fo r the evaluation o f classifier ensembles . I n 

particular, we could observe that the most appropriate diversity measures to evaluate or select 

ensembles are: Generalized Diversity , Difficulty, an d Double-Faul t measures . Th e other mea-

sures that regard only the variance of the outputs and not the individual members performances, 

such as Disagreement, Ambiguity, Kohavi-Wolpert, etc have been proved to be inadequate for 

such tasks. Thus , we can assert that the relationship between mos t of diversity measures and 

accuracy i s not s o strong . Thi s fac t explain s wh y seekin g diversit y explicitl y ma y b e inef -

fective t o point out ensembles with optimal generalization performance . Besides , i t confirm s 

the Accuracy-Diversity dilemma , which state s that highl y accurat e classifier s canno t b e very 

diverse [69] . I n other words , i t means that the base classifiers ar e strong, but also with som e 

variance among them. 

On the other hand, we could observe that only the increasing of the margins over a dataset may 

be an interestin g optio n fo r selectin g classifie r ensembles . I n contrast , th e minimum margi n 

measure seems not to be stable, and average margins indicated just ensembles composed of the 

strongest individua l classifiers, bu t not with the best answers combined. 

By analyzing th e result s w e have als o see n tha t th e diversity measur e Double-Faul t an d the 

margin-based measur e Cl-measur e were the two measures mor e related t o the generalizatio n 

error over all the problems. From this point of view, the relationship between the diversity and 

margin theories becomes strong. This is because, the generalization error can be well estimated 

by the combination o f high performing bas e classifiers (i.e . wit h high average margins) and a 

relative diversity between them. 

Taking thi s int o account , bot h Double-Faul t an d Cl-measur e see m promisin g t o b e used a s 

objective function s fo r the selection o f classifier ensembles . Thi s i s probably becaus e stron g 

classifiers wer e availabl e an d bot h measure s trie s to decrease th e probability o f identica l er -

rors. However , a s Double-Faul t i s a pair-wise measure , the cardinality o f the final ensemble 

selected mus t be specified i n advance. Otherwise , the resulting ensemble will always have the 
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minimum numbe r of classifiers, i.e . 2 . O n the other hand, the Cl-measure doe s not share the 

same problem. Th e boundary provided by the Cl-measure seems to be a good measure fo r the 

selection o f ensembles . Besides , i t has the advantage that th e balance betwee n accurac y an d 

diversity i s explicit: whil e the average margin is related to the strength of the base classifiers , 

the variance o f the margins can be seen as diversity represented b y the variance between the 

base classifiers. I n light of all these results, and based on experimental results presented in the 

appendix IV, we have decided to employ this measure as part of our decision module respon-

sible for the selection of ensembles, which i s described with our framework presente d i n next 

chapter 



CHAPTER 5 

A DYNAMIC OPTIMIZATION APPROACH FO R ADAPTIVE INCREMENTA L 

LEARNING I N STATIC ENVIRONMENT S 

In th e previou s chapter s w e have studie d importan t aspect s i n orde r t o develo p a n adaptiv e 

classification system . Regardin g the former, w e have seen the importance o f well tuning and 

updating th e parameter s o f classifier s overtime , sinc e the y ca n var y dependin g o n th e dat a 

available. So , th e ai m wa s a t developin g a  method abl e t o searc h fo r optimu m parameter s 

values, and a t the same time eflRcient to adapt new solution i f needed. Then , considering that 

the use of ensemble of classifiers can overperform singl e models, especially when its members 

are selecte d an d th e leve l o f uncertanit y i s high , w e hav e investigate d severa l measure s t o 

evaluate an d selec t ensemble . Th e results showed tha t measures based o n the margin theor y 

are promising to deal and select ensembles, once they regard directly the degrees of confidence 

of classifiers. 

From these standin g points , i n this chapter we propose a  method t o perform adaptiv e incre -

mental learnin g base d o n thes e two principles : (1 ) to incrementall y accommodat e ne w dat a 

by updating models, and (2) to dynamically trac k new optimum system's parameters fo r self-

adaptation. Thus , the underlying hypothesis herein is also to consider the incremental learning 

process a s being a  dynamic optimization process , i n which optimu m hypotheses ar e dynam-

ically tracked , evolved , an d combined overtime . Likewise , we have achieved wit h th e SVM 

model selection processes carried out overtime in a gradual learning scenario. 

In particular , th e propose d metho d relie s o n a  new framewor k incorporatin g differen t tech -

niques, such as single incremental Suppor t Vector Machine (ISVM) classifiers, chang e detec-

tion, dynami c Particl e Swar m Optimizatio n (DPSO) , and finally dynamic selectio n o f classi-

fier ensembles (EoC). Thus, the goal is to update, evolve and combine multiple heterogeneous 

hypotheses (i.e . model s wit h differen t parameter s an d knowledge ) overtim e to maintain th e 

system's optimalit y w.rt . interna l parameters , computationa l cost , an d generalization perfor -
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mance. A s mentioned before , th e use of ISVM ensembles i n this stud y i s justified base d on 

two main evidences foun d i n literature . First , as the classification succes s of SVMs does not 

depend on the dimensions of the input space, SVM is a robust classifier agains t the well known 

curse of dimensionality mainly involvin g smal l data sets . Therefore , i t i s very advantageou s 

for incrementa l learnin g situations. Second , SVMs ensembles are employed because they can 

often overcom e single models' perfonnances , especiall y when heterogeneous (in tenns of hy-

perparameters values ) base classifiers ar e used and the leve l of uncertainty i s high, i.e. whe n 

only small sample sets are available [116] . W e illustrate this concept with an example in Fig-

ure 5.1 , whic h show s that three different optimize d solutions , i.e . Si , So . and S3 can produce 

different classifiers ' decisio n boundaries in (b), (c). and (d) based on a same small training set 

of 84 samples. Because of this, the use of multiple solutions is very interesting, since each op-

timized solution may represent the same problein i n different ways . Eventually , the proposed 

framework provide s contributions on strategies to optimize and overproduce classifiers, as well 

as the application of memory-based mechanisms fo r solving dynamic optimization processes. 

This latter is a promising and ongoing research area [37]. 

In addition, we validate the proposed method and show its efficiency throug h experiments with 

synthetic and real-world databases. Results in single and multiple classifiers configurations are 

compared with those obtained with these strategies: SVM optimized with PSO in batch mode, 

incremental SV M with parameter values beforehand fixed, two incremental capable classifier s 

(1-NN and Naive Bayes) widely applied in incremental learnin g studies . These classifiers ar e 

tested because their performances ar e considered "no-less" with respect to their batch versions 

[87]. A n incremental ensembl e strategy with optimized parameters and different combinatio n 

rules is also employed for comparisons. 

As additiona l purposes , w e tr y t o verif y i f (I ) incrementa l learnin g wit h SV M ca n achiev e 

similar performances t o those obtained i n batch mode, (2) the adaptation of system's parame-

ters over time is actually a dynamic optimization problem and hence important to achieve high 

perfonnances, (3 ) the dynamic selection o f ensemble can lead to better results than by simply 

combining all pool of classifiers available. 
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98 

The remaining of this chapter is organized as follows. I n section 5.1 we introduce the proposed 

method for adaptive incremental learning. Experimenta l results and discussions are reported in 

sections 5.2 and 5.3, respectively. 

5.1 Th e Proposed Approach 

So far , w e have seen that , traditionally , researches o n incrementa l learnin g regard th e classi-

fiers' parameter s setting as a static process, i.e. . parameters values are initially se t (e.g. base d 

on standard value s o r estimated ove r the first datachunk available) , and kep t infinitel y fi.xed. 

However, optimum hyper-parameters values may shift ove r the search space during the evolu-

tion of the data. As a consequence, classifiers wh h obsolete internal parameters (mainly those 

related to regularization) will disturb and ruin the system's updating in tenns of generalization 

power and complexity of models. 

The propose d metho d herei n fo r adaptiv e incrementa l learnin g optimizes , selects , and com -

bines incrementa l SV M classifiers overtime . Mor e specifically , i t is designed to dynamically 

point out optimum solutions for sequences of datasets P(A:) by using the best solutions foun d 

so far, or by starting new dynamic optimization processes. As we employ incremental suppor t 

vectors machines as our base classifiers an d dynamic particle swarm optimization fo r search -

ing optimum hyper-parameter values , each solution s  represents a  particle codifying a n SVM 

hyper-parameter set , e.g. {C , 7}. Chang e detection mechanisms monitors novekies in the ob-

jective fimction F, an d indicat e how the system must act . Th e models generated ar e updated 

from incomin g data, and then dynamically selected and combined into an ensemble C. Detail s 

on the framework o f proposed approach are described below. 

5.1.1 Framewor k for Adaptive Incremental Learnin g (AIL) 

Our framework fo r adaptive incremental learning is composed of five main modules, as shown 

in Figure 5.2 and listed in Algorithm 4: change detection, adapted grid-search, dynamic particle 

swarm optimizatio n (DPSO) , incrementa l suppor t vecto r machines , an d decisio n fusion . I n 

particular, this framework represent s many upgrades in relation to our first version introduce d 
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in [57], such as the use of incremental classifiers, dynamic selection and building of ensembles 

from optimized models. Below, details on each module are provided. 

The upgradejstm an d recall_stm functions ar e respectively responsible for storing and retriev-

ing optimized solution s and important data from th e system's Shor t Tenn Memory (STM). A 

represents a  set of data sv  composed of support vector s and relevant samples rs  selected dur -

ing the training o f the final classifier fro m th e best particl e s* . Therefore , A  =  [sv*  U  rs], 

where sv'  mean s support vectors obtained fro m th e final incremental mode l TW* traine d with 

hyper-parameters foun d b y bes t particle s* . SV  denote s th e se t o f suppor t vector s sv  fro m 

incremental models obtained after final training of all P  particles from a  Swann S{k -  1) , i.e. 

SV =  {svj}^^i.  C  represents an ensemble composed of all models (i.e. classifiers) Mi. 

So, C  =  {yVfJ^i , wher e P  i s th e maximu m numbe r o f optimize d solutions . Finally , fo r 

sake o f simplicity , i n the equations , V{k)  represent s th e merge o f new dat a an d th e curren t 

knowledge store d by the method (i.e . A , a s defined above , i s composed o f relevant sample s 

and support vectors detected by the best solution found so far). 

Algorithm 4  Adaptive Incremental Learning (AIL) 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

Input: A  training set of data V{k). 
Output: Optimized SV M classifier/ensemble . 
recall_stm(s'(/c - l),S{k  -  1) ) 
if there is a 5(A; — 1 ) then 

Check the preceding best solution s*(A- - 1 ) regarding the dataset V{k) 
if Change_Detection(s'(A' - l),V{k))  the n 

Activate the adapted grid-search module and get solution s'(A:) 
if Change_Detection(s'(fc),D(fc)) the n 

Activate the DPSO module 
end if 

end if 
else 

Activate the DPSO module 
end if 
upgrade_stm(s* {•),S{-)) 
Train/update/combine th e final  incrementa l SV M classifier s fro m incomin g dat a T)(k), 
A(A-),and5V. 



100 

Diitii^et^ 

:zi£Eir 
^-iiU_stiii((s-(A- - l),S{k  -  l j \ ( / . - -  1) ) 

Change 
Detection (1 ) 

upgrade_stin(s'(fr -  1) ) 

upgrade Ĵ st 
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Figure 5.2 Genera l framework of the proposed method for incremental 
learning with dynamic SVM model selection. A represents a set of data sv' 

composed of support vectors and relevant samples rs selected during the 
training of final model A4 from best particle s*. So A = {sv*  U rs], wher e 

sv* means support vectors obtained specifically fro m final model Ad trained 
with hyper-parameters found by best particle s* and SV = {sVjjjLj denote s 
the set of support vectors sv from model s obtained after final training of all 

P particle s from a swarm S{k — 1) . 

5.1.2 Additiona l modules 

As this ne w framewor k i s built based on simila r component s alread y introduce d i n our first 

framework presente d in chapter 3 , for sake of simplicity, in this chapter we outline onl y the 

major modification s adde d to its original version . Suc h modification s ar e mainl y relate d to 

the creation o f two modules: on e for incremental learnin g with suppor t vector machines and 

another to fusion and select classifiers into optimized ensembles. They are both decribed below. 

5.1.2.1 Incrementa l Support Vector Machine Module 

In this thesis , we implemen t an incremental SV M versio n base d on the Sye d et al. metho d 

[109] due to three reasons: (1 ) it focus on the updating of models over sequences of datasets 

overtime, (2) this method has produced the best results in this comparative study [35] , and (3) 

it does not require the tuning of extra-parameters, which may need a careful setting , as it occurs 

in [80, 95, 91, 35 , 94, I] . 



101 

This latte r i s important because the settin g o f extra parameters ca n be very critical . I t i s be-

cause the y contro l whe n sample s might be either exchanged amon g temporary set s or when 

learning processes should stop. Moreover, the SVM implementation used in here [18] already 

provides mechanism s t o accelerat e th e SV M trainin g throug h th e Sequentia l Minima l Opti -

mization (SMO) technique. Therefore , i t demands less computational effort s tha n traditiona l 

quadratic programming solvers, as shown in [92]. 

Like in [109] , an incremental SV M model Mi{k) i s trained on the current training datachunk 

V(k) an d its historical support vectors sv{k —  1 ) identified fro m a  previous learning at a given 

time k. However , unlike in [109] where only support vectors are stored, our incremental SVM 

module als o retains additional training sample s relyin g i n a "relevant region" which exceeds 

the SVM margins in half of their sizes. 

R^ion o f relevan t 
' - " D  a 

Figure 5.3 Exampl e of regions defined aroun d the SVM margin separating 
two classes (circles and squares) in which relevant samples are selected from. 
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It i s interestin g t o not e that , eve n i f w e fix  thi s regio n a s bein g hal f o f th e margins , th e siz e 

of this region varie s according t o dilficuhies o f classification problem s (e.g . comple x decisio n 

boundaries, overlappin g berwee n classes , etc. ) an d hyper-parameter s selected . Althoug h th e 

storage o f additiona l sample s i s no t a  desirabl e propert y i n incrementa l learnin g algorithm s 

[93], i t i s necessary becaus e thes e additional sample s ca n become suppor t vector s durin g opti -

mizations o f SVM hyper-paramctcr s i n the future . 

Algorithm 5  The incrementa l SV M modul e 
Input: Curren t datachun k V{k),  relevan t sample s rs{k  —  1), model M,{k  —  1). 
Output: SV M mode l M,ik  -  1 ) updated . 

3: SV  =selected_supportvector(A4,(A' —  1) ) 
4: workiiig_set  =  V(k)  U  sv(k -  1 ) U rs(k -  1 ) 
5: .'\4,{k  —  1) =tra\n_svm{u'orking_set) 

5.1.2.2 Decisio n Fusio n Modul e 

The decisio n fusio n modul e dynamicall y selects , an d combine s incrementa l classifier s int o 

ensembles. Ou r dynami c selectio n strateg y i s implemente d base d o n a  generalizatio n boun d 

introduced i n [8] , which w e first  studied it s application fo r "static " SVM ensemble s i n [54]. 

In this dynamic strategy , only classifier s whos e combination minimize s thi s bound (calle d her e 

CI measure ) ar e selecte d t o compos e th e final  ensemble . I n particular , thi s measur e i s com -

puted a s CI  =  a{T)fP{T)'^,  wher e a  an d p.  denote s th e varianc e an d th e averag e calculate d 

over the se t of margins r  fro m sample s o f the curren t trainin g set , respectively . 

The margi n o f a  sample x , represent s a  degree o f confidence i n it s classification. Basically , i t 

is calculated a s the difference betwee n the decision suppor t 0  assigned to the true class t  minu s 

the highes t suppor t estimate d fo r an y othe r clas s j . i.e . T,  =  Ot(x,)  -  maxj= i c{dj(x,)]. 
JA ' 

In here , fo r a  singl e classifier , th e decisio n suppor t fo r a  clas s j  i s denote d a s th e posterio r 

probability assigned to it. I n the same way, for an ensemble composed o f classifiers with outpu t 

probabilities, th e decisio n suppor t fo r a  clas s j  i s th e averag e ove r th e posterio r probabilitie s 

assigned t o i t by each membe r 
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The selection proces s i s performed a s follows. Firs t of all, the pool of classifiers C{k)  gener -

ated fro m S{k)  ar e sorted accordin g to their respective individua l confidenc e level s (averag e 

margins). Then , the selection process starts by adding a classifier a t time until reach the ina.\-

imum numbe r o f classifiers, i.e . numbe r o f particles P.  Eac h tim e a  classifier i s added, th e 

CI selectio n criterion is recomputed. Th e best ensemble selected C* i s that whose CI valu e is 

minimal. 

Thus, the key idea is to select the ensemble with the strongest, i.e . the highest confidences, and 

less correlated classifier s ove r the curren t trainin g set . Finally , once the best ensembl e C  i s 

selected, they are combined using weighted average voting based on classifiers' performances . 

Although with different criteria , forward searches for best ensembles seem to be very promising 

[114]. 

In order to calibrate the outputs of the SVM in estimates of probabilities, we use the approach 

introduced b y W u et a l [39] , which i s implemented i n the LIBSV M softwar e [18] . I n such 

approach, give n k  classe s o f data , fo r an y x,  th e goa l i s to estimat e pi  =  p{y  =  i\x)A  — 

1,. . . , /c . The estimated pairwise class probabilities for multi-class classification i s defined a s 

Tij «  p{y  =  i\y =  i  or j , x),  tha t is, using the implementation of Lin et al. [76]: 

1 r , , w -. —, (5.1 ) 

where .4 and B  ar e estimated by minimizing the negative log-likelihood fianction using known 

training data and their decision values /. Th e pi from al l r, j i s obtained by solving: 

min^\ X;,'^ i Ej:j^,(''j,iPj -  njft) " subjec t to ^f^j p,  =  1 , p, >  0 , Vi (5.2 ) 

Based on this framework, therefore , the proposed method is capable of evolving and accommo-

dating new data by automatically selecting internal hyper-parameters, updating, and combining 

incremental SV M classifiers. Th e experimental protoco l and results obtained are described in 

next section. 



104 

5.2 Experimenta l Protoco l 

In order t o validate th e concep t o f adaptiv e incrementa l learnin g syste m a s wel l a s to show 

efficiency o f proposed method, the following experimental protocol has been carried out. Firs t 

of all, to characterize with more impact the occurrence of population drifts, the original train-

ing set s were divided into smal l datasets . Th e tota l numbe r o f datasets an d their size s were 

detennined base d o n a  minimum amoun t o f sample s require d fo r eac h class , which wa s se t 

to at leas t 16 . Th e distribution of samples were firstly separated fo r the class with the minor 

number of samples, and then proportionally for the other classes. Suc h procedure determined 

the total number of chunks. Thus , the same original proportion o f samples per class was kept 

in each datachunk. I n other words, it means that i f the original problem contains unbalance d 

classes, this same real scenario is simulated in this experimental protocol . 

Therefore, a s in most o f the incrementa l learnin g approaches , thi s experimental protoco l fo -

cused on incremental learning from datachunks with suitable-size of samples at time, i.e. block 

by block, and not one sample at a time, which is called online, or instance by instance learning 

[109]. A detailed description of the datasets and number of chunks used are listed in Table 5.1. 

We have employed classification problem s with different numbe r of features, classes, training 

and testing samples. As the proposed method uses a stochastic algorithm, the results represent 

averages drawn over 10 replications. 

Table 5.1 Specification s o n the datasets used in the experiments 

Databases 

Adult 
Circle-in-Square 
DNA 
German 
IR-Ship 
Nist-Dig 1/ 2 
P2 
Satimage 

Number of 
Classes 

2 
2 
3 
2 
8 
10 
2 
6 

Number of 
Features 

123 
2 

180 
24 
11 
132 
2 
36 

Number of 
chunks 

48 
120 
29 
15 
8 

36 
120 
25 

Number of 
Training Samples 

3,185 
3,856 
2,000 
800 

1,785 
5,860 
3,856 
4,435 

Number of 
Test Samples 

29,376 
10,000 
1,186 
200 
760 

60,089/58,646 
10,000 
2,000 
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5.2.1 Strategie s Tested 

The following incrementa l learning strategies were tested: 

5.2.1.1 Batc h SVM-PSO 

In this strategy , th e whole origina l trainin g dataset s ar e used fo r selectin g o f optimum SV M 

hyper-parameters and training the final model. The hyper-parameter selection process is carried 

out with the PSO algorithm. Thi s strategy represents an empirical lowe r bound computed fo r 

each problem, which allows us to compare the results obtained for incremental strategies with 

a batch strategy. 

5.2.1.2 Incrementa l no-less classifiers (1-Ncarcst Neighbor (1-NN) and Naive Bayes (NB)) 

These two classifiers wer e tested becaus e they arc widely employed i n the incremental learn-

ing/concept drif t literature s [119 , 30, 87], since they are considered no  less incremental learn -

ers, i.e. their results in incremental mode are similar to those obtained in batch mode [87]. 

5.2.1.3 Incrementa l SV M (ISVM) 

In this approach, an incremental SVM classifier tailored from [109] is updated from successive 

datachunks T>{k).  It s hyper-parameter s ar e firstly  tuned wit h PS O ove r th e first  datachunk 

V{\), an d then kep t fixed over all the other datachunks. N o relevant samples are kept during 

incremental learning process. 

5.2.1.4 Optimize d Rando m Aggregation (ORA-DMS ) 

This method represent s a  common incrementa l ensembl e approach , mor e specifically , a  ran-

dom aggregation approach as described in section 2.4 . I n here, it consists of combining SVM 

classifiers wit h optimu m hyper-parameter s value s trained fro m independen t datachunk s i n a 

serial wa y (i.e . on e classifier b y datachunk) [119] . Tw o combination rule s were tested wit h 

this scheme: majorit y an d simple average voting . W e set the maximum ensembl e siz e to 20. 

When the total number is reached, the oldest model is replaced for the new one. 
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5.2.1.5 Singl e Incremental SV M (IS-AIL) 

This approach denotes the proposed method in single classifier mode (i.e. only the best solution 

found so far is used by the decision fusion module) . In other words, when only one incremental 

SVM classifier an d it s respective hyper-parameters are updated from ever y datachunk V(k). 

5.2.1.6 Incrementa l EoC-DMS Swarm-based (lEoC-AIL) 

The proposed approach in EoC mode presented in section 5.1 . Therefore , i t is employed with 

its full capacity , i.e. , dynamically updating, selecting , and combining the ISVMs into ensem-

bles. 

5.2.2 Experiment s Parameters Setting 

We have used these parameters setting: 

• Optimization  Algorithms Parameters: Th e maximum number of iterations and the swarm 

size was se t to 10 0 and 20 , respectively. Th e dimensions o f the parameters (C  an d 7 ) 

search space, where the maximum and minimum values were set to [2"*̂ , 2̂ *̂ ], [2~'^, 2^°], 

respectively. Th e DPSO topology use d was the Ibest with A = 3 . W e also consider to 

stop the optimization i f the best value of fitness does no t improv e over 1 0 consecutive 

iterations. 

• Objective  Function: Severa l objectiv e firnctions have been propose d fo r searchin g fo r 

optimum SV M hyper-parameters , e.g . radiu s margi n bound , spa n bound , etc . [20] . 

Unfortunately, thes e measures depend on certain assumptions , e.g. the y are related to a 

specific kerne l o r require a  separation o f the training se t without error , which ar e quite 

strong for real-world problems. Thus , the minimization of the generalization error fro m 

I'-cross-validation procedure is a good option. A i/ = 5  is used here as suggested in [18]. 

The results for each strategy are presented in next section. 
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5.2.3 Obtaine d Result s 

The obtained results are presented i n this section as follows. Firs t of all, we examine the per-

fonnance o f eac h strateg y teste d b y evaluatin g thei r generalizatio n error s achieve d o n eac h 

database. Then , w e analyze th e data storag e require d an d complexit y o f model s generated . 

Finally, we discuss results related to the adaptation of hyperparameters and combination/selec-

tion of ensembles regarding different function s an d methods. 

5.2.3.1 Performanc e evaluatio n 

The generalization error s achieved by each strategy tested are reported in Table 5.2. These re-

sults were tested with muUiple comparisons using the Kruskal-Wallis nonparametric statistica l 

test by testing the equality between mean values. The confidence leve l was set to 95% and the 

Dunn-Sidak correction wa s applied to the critical values . Th e best result s for eac h classifica -

tion problein and incremental learnin g strategy are shown in bold. Value s underlined indicat e 

when an incremental strategy was significantly bette r than the others. 

By analyzing th e result s in this table, we can see that SV M i s very promising fo r incremen -

tal learning , sinc e ther e i s a  relevant differenc e betwee n result s o n th e first datachunks, i.e . 

SVM-PSO (P(l)) , an d result s afte r learnin g al l datachunks. I t occurs even i f with it s hyper-

parameters wer e kep t fi.xed with valu e foun d o n P( l ) (ISVM) . Mos t importantly , w e coul d 

observe the efficiency o f the proposed metho d a s well a s conclude tha t adaptive incrementa l 

learning clearl y lead s to better performances. Tha t i s because the single classifie r versio n o f 

our proposed method (IS-AIL) has obtained better results than the common ISVM strategy. I t 

shows th e importance o f the adaptation o f hyper-parameters an d o f the use of relevan t sam -

ples during the incremental learnin g process. Besides , it could be observed that the proposed 

method (lEoC-AIL ) has achieve d result s simila r to , an d sometimes , eve n bette r tha n SVM -

PSO in batch mode. The latter proves that the dynamic selection and combination of optimum 

solutions can actually improve the overall perfonnance o f the system. Figure s 5.4 (a ) and (b) 

illustrate these results with two case studies concerning these generalization error results with 

the most performing strategie s during different incrementa l learning steps at times k. 
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Moreover, it could be seen that serial incrementa l ensemble approaches (i.e . th e ORAs strate-

gies, ORA-MV an d ORA-SA) perfonned wel l especially on noisy data (e.g . a s fo r the Adult 

database), although no t statistically superior than the proposed method in these tests. B y con-

trast, the need of setting a maximum numbe r of classifiers i s determinant fo r the performanc e 

of these methods, since some knowledge may be lost when the oldest classifier i s replaced for a 

new one. This is a drawback, because the results with a single incremental learner (ISVM) were 

better than these two ensemble approaches for some problems (e.g. IR-Ship , German). Thes e 

results indicat e tha t th e updating of an existing ISV M classifie r migh t be very advantageou s 

in relation to only combine batch learners (ISVMvi-ORAs). The results with the ORA-SA ap-

proaches (ORA-S A an d ORA-MV) hav e shown tha t th e simple average fusio n functio n wa s 

superior than the majority vot e rule. Eventually , the classical "non-less " incremental learner s 

NB an d 1-N N hav e achieve d th e wors t performances . Th e onl y exceptio n occurre d fo r th e 

CiS and P2 databases, where the 1-N N classifie r outperformed th e other methods tested, but of 

course, with the inconvenience of storing all data. 

5.2.3.2 Dat a storage and complexity of models generated 

Concerning now the complexity factor of the ISVM classifiers generated. Table 5.3 summarizes 

some results regarding the mean number of support vector s stored up to the end of the incre-

mental learning process. By comparing these results, we can notice that the dynamic adaptation 

of the hyper-parameters during the incremental learning process (IS-AIL) seemed to converge 

to the results obtained in batch mode (SVM-PSO). In other words, it tends to identify abou t the 

same number of support vectors than when the whole data are available for training. 

In contrast , th e incrementa l singl e SV M classifie r strateg y wit h constan t hyper-parameter s 

(ISVM) di d no t adjus t it s model s a s effec t a s th e othe r SVM-PS O an d IS-AI L strategies . 

Of course, thes e result s ar e related t o the single classifie r strategies . O n the othe r hand , th e 

complexity o f the ensemble version lEoC-AI L may be relatively higher , onc e the number o f 

classifiers i s dynamically selected between 1  an d P.  Thus , in spite of the fact that the proposed 

method (lEoC-AlL ) supplie d remarkabl e improvement s i n terms o f generalizatio n power , i t 

can also turn the system more complex. 
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• Batch 
-ISVM 
- IS-AIL 

lEoC-AIL 

800 100 0 120 0 
Number of samples 

(a) IR-Shi p 

—^ 

0 

Batch SVM 
ISVM 
IS-AIL 
lEcC-AIL 

-PSO 

1500 2000 250 0 300 0 
Number of samples 

4500 

(b) Satimag e 

Figure 5.4 Cas e study: Compariso n amon g generalization erro r result s fo r 
batch an d th e most promising incrementa l strategies . 
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Table 5.3 Mea n an d standar d deviatio n o f number o f support vector s 
obtained afte r learnin g from al l subsets availabl e 

Databases 

Adult 
CiS 
Dna 

German 
IR-Ship 
NistDig 

P2 
Satimage 

Approaches tested 
Batch - PSO 

1176.50(12.54) 
35.40 (6.47) 

628.40 (32.50) 
306.7 (5.94) 

320.70(13.34) 
898.40 (30.45) 
161.40(26.12) 
1888.00(93.51) 

ISVM 
1140.40(57.85) 
24.50(11.19) 
385.90(55.82) 
735.80(74.47) 
291.10(5.51) 
729.00(21.56) 
82.50(10.90) 

825.00(66.92) 

IS-AIL 
1178.7(70.36) 
30.10(6.11) 

640.90 (56.49) 
426.20(55.24) 

347(13.88) 
913(27.56) 

113.00(63.44) 
1855.30(167.12) 

In addition , fro m thes e experiments , i t ca n b e see n on e o f th e mos t attractiv e advantag e o f 

incremental learning approaches, which is its capability of reducing the training se t size . Th e 

results are shown in Table 5.4. 

The trainin g siz e reductio n rat e wa s computed a s follows : th e tota l databas e siz e minu s the 

total number of updating samples used by the proposed method in the last incremental learning 

step divided by the total database size. I t can be seen that the reduction can be very expressive 

for som e problems, especially with two classes and no overlapping, such as for the CiS prob-

lem. The training size reduction is interesting because it accelerates the updating of classifiers, 

mainly for multi-class problems (e.g. for NistDig with a reduction rate of 61.23%). 

Additionally i n the same Table 5.4 , we also report th e percentage o f relevant sample s store d 

by th e propose d metho d wit h respec t t o th e curren t tota l numbe r o f suppor t vector s store d 

and incomming dat a in the las t incrementa l learnin g process . W e can see that the number of 

relevant samples may vary depending on each problem, number of classes, data distributions, 

and density of samples in such relevant regions defined b y the incremental module. 

To better illustrate this reduction effect, w e show comparisons between the number of training 

samples used by the proposed method and what should be stored if batch mode was employed 

involving two problems i n Figure 5.5 . I t can be noticed tha t the number o f training sample s 

retained during system's updating processes can vary depending on the problem and number of 
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samples. Fo r example in Figure 5.5 (a), the number of samples is smaller than in batch mode, 

but i t seem s tha t th e values wil l alway s increase . However , a s i t can b e observe d i n Figur e 

5.5 (b) for another problem, when more samples are learned afte r a  longer period of time, the 

number of samples stored may tend to saturate. Othe r two examples with the lowes t and the 

largest number of samples employed are depicted in Figures 5.6 (a) and (b), respectively. 

Table 5.4 Trainin g set size reduction (%) by using incremental learning 
instead batch mode calculated over the last set (first column). Proportion of 

relevant samples (%) inside the last incremental training set used 

Datasets 
Adult 
CiS 

DNA 
German 
IR-Ship 
NistDig 

P2 
Satimage 

Training set size reduction (% ) 
47.28 
97.86 
44.59 
31.40 
44.86 
61.23 
95.56 
19.85 

Proportion of relevant samples (% ) 
7.97 
19.56 
18.02 
12.54 
44.69 
53.59 
16.18 
45.71 

(a) DN A (b) NistDi g 

Figure 5.5 Compariso n between the number of training samples used by 
the proposed method and batch mode. The number of training samples 

retained during system's updating processes depends on factors such as the 
overlapping between classes, margin width, and density of samples in these 

regions. 
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(a) Ci S (b) Satimag e 

Figure 5.6 Compariso n between the number of training samples used by 
the proposed method and batch mode. The number of training samples 

retained during system's updating processes depends on factors such as the 
overlapping between classes, margin width, and density of samples in these 

regions. 

5.2.3.3 O n the system parameters' dynamism 

These experiments als o confirm empiricall y ou r underlying hypothesi s abou t the importanc e 

of concerning the incremental learning process as a dynamic optimization problem. In order to 

demonstrate this, we have depicted some results to exhibit the shifting and tracking of optimum 

solutions ove r th e searc h spac e give n sequence s o f dataset s T>{-).  Through a  case stud y i n 

Figure 5.7, we show that the hyper-parameters selection process represents actually a dynamic 

optimization problem of type III. 

In this example , the searc h spac e covered b y optimum solution s (denote d her e a s circles ) i s 

depicted fo r eac h datase t V{k)  fro m th e Satimage database i n one replication. Th e differen t 

sizes o f circles represen t ho w the fitness varied betwee n value s o f 14.38 % and 4.56%. Th e 

symbol "*" indicates a best solution position found when the whole training data was used in 

the searching process. 

It can be observed that optimum solutions s{k)* can vary in both fitness and hyper-parameter s 

values depending on incoming data at different incrementa l learning steps. Fo r instance, they 
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can be located in a  region fo r a  given interval s of datachunks, e.g . betwee n D(l)  an d V{7), 

and then move to others, e.g. fo r !){&)  an d 25(17), and finally for V{25).  Thi s fact, therefore , 

demonstrates tha t this problem mus t be dealt as a dynamic optimization problem. I t also ex-

plains why approaches with fixed parameters (i.e . o n P(l)) migh t perform i n a sub-optimum 

way, as shown in Table 5.2 when IS-AIL is compared with ISVM). 

0.6 

0.4 

0.2 

-0.2 

-0.4 

-0.6 

-0.8 

batch mode \ 

/ 1 

2(18) 
/ ~  >  ~  . , 

<̂̂ °' •^' i::5 

;#D(23t) 

- " - r ^ - " •̂ 3̂(16 ) 
5^(4) 
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0(8)^(9) 

~ ~  ~  ~  ^  , ^ ( 5 ) 
7b(ii) 

D(7), 
1(6) 

D(22) 

D(1)g|D(4) 

D(2) D(3 ) 

6 
log(C) 

10 

Figure 5.7 Trajector y covered by the best solution found (circles) from 
incremental step s for each new dataset D{k). Th e circles' sizes illustrate 
how the solutions' fitness can vary. Symbol "*" depicts a best solution 
position found if the whole training data is used at once (batch mode). 

Additionally, Figure s 5. 8 (a ) an d (b ) repor t detail s o n whic h modul e ha s pointe d ou t thes e 

solutions fo r eac h datase t V{k)  an d C  an d 7  hyper-parameters , respectively . I t can b e see n 

that in most of times, the best values for the hyper-parameters have changed and tracked by the 

DPSO module. B y contrast, i n more stable cases, optimized solution s stored in the system' s 

memory coul d b e profited fo r ne w learning process b y being kep t (BK ) o r selected fro m th e 

adapted grid-search (AG) module. The frequencies of the AIL modules' activations are listed in 
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Table 5.5. In these experiments, the dynamic optimization module has produced more often the 

final hyper-parameter value s solution, followe d b y searches over previous solution s (adapte d 

grid search or keeping the best one). 

10 1 5 
Datasets D( ) 

( b ) 7 

/ \ /  *^  V  * 

^ DPS O 
• B K 
• A G 

Figure 5.8 Cas e study: example on how the solutions were pointed out for 
each dataset T>{k), C,  and 7 hyper-parameters whe n using IS-AIL. 
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Table 5.5 Frequencie s (%) of AIL modules' activations over all the training datasets 

Datasets 
Adult 
CiS 

DNA 
German 
IR-Ship 
NistDig 

P2 
Satimage 

Best Kept 
28.13 
7.33 
16.90 
12.00 
24.45 
6.67 
9.66 
17.60 

Adapted Grid 
15.42 
11.59 
8.97 
18.66 
10.47 
10,56 
15.09 
10.80 

DPSO 
56.45 
81.08 
74.13 
69.34 
65.08 
82.77 
75.25 
71.60 

5.2.3.4 O n the selection and fusion of solutions into ensembles 

Turning now the focus on the dynamic selection of ensemble issue. So far in Table 5.2 we have 

seen that combining solutions improves the overall system' s perfonnance. I n this section, the 

effect o f our decision fusio n modul e devoted to this task i s outlined. First , Figure 5.9 depict s 

a cas e stud y wit h th e performance s an d cardinalitie s o f th e propose d metho d i n singl e an d 

ensemble mode over a sequence of datachunks V{k) fro m one replication. 

Based o n these results, and others already liste d in Tabic 5.2 , i t is first demonstrated tha t the 

dynamic selection of hyper-parameters and ensembles is very advantageous to provide stability 

during the incrementa l learnin g process an d hence to achieve higher perfonnances. Then , in 

Figures 5.10 and 5.11, we can see some classifiers selecte d and original pools distributed over 

the search space for datasets outlined by squares in (a). 

We can observe that ensembles with different cardinalitie s were selected for each time k, when 

either the optimized swann <S(A:) stays in the same position 5.10 or moves over the search space 

5.11. Tha t wil l depend o n the problem complexit y an d curren t data . I n the appendix V , we 

present th e whole sequence o f swanns fo r each datase t T){k)  and complementary result s that 

confirm thes e same conclusions regarding another case study. 

Table 5.6 report s some results on the final cardinalities obtained thereafte r th e last incremen -

tal learnin g processes . I n addition , w e also repor t th e variations o f cardinalitie s ove r al l th e 

datasets and replications for three different database s in Figure 5.12. 
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From these results , we can see that the number of classifiers selecte d in the ensemble varie d 

around the mean size of the original pool of 20 members. However , more variation among other 

datachunks were noticed, what indicates that the dynamic selection of classifiers in incremental 

learning mode is an open issue worth of deeper investigations. 
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(IS-AIL) and ensembles dynamically selected (lEoC-AIL). 
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(left side ) in Figure 5.9. The entire sequence of swarms for each datase t 
D{k) i s presented in the appendix V. 
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Table 5.6 EoC-AI L cardinality after dynamic ensemble selection on the 
last learning step 

Dataset 
AduU 
CiS 

DNA 
Gcnnan 
IR-Ship 
NistDig 

P2 
Satimage 

Mean (Std) 
13.40(5.72) 
13.00(2.83) 
7.60(4.62) 
10.60(5.80) 
11.00(6.46) 
8.80(4.94) 
10.60(6.98) 
9.80(6.12) 

Median 
15 
12 
8 
11 
13 
11 
10 
8 

Ending, Tabl e 5. 7 list s som e result s obtaine d fo r differen t configuration s investigate d whe n 

building our decision fusion module . Three combination functions were employed (i.e. major -

ity vote, simple average, and weighted vote) , and also three selection criteria, such as none at 

all (all P classifiers are combined), half-best (the P/2 bes t classifiers), and the CI introduced in 

section 5.1.2.2) . B y analyzing these results, as occurred fo r the ORAs strategies in Table 5.2 , 

the simple average combination function achieved better results than the majority vote rule and 

similar to, or slightly worse than, the weighted vote applied to dynamically selected ensembles. 

Moreover, thes e result s illustrat e the importance o f dynamic selectio n o f ensembles, sinc e i t 

improved the results i n relation t o whole ensembles combined wit h majority voting . Thi s i s 

possible because they ignor e classifiers tha t could inser t some bias in the ensemble's decision 

and disturb their perfonnances. 

Table 5.7 Mea n errors obtained with lEoC-AIL concerning differen t 
combination functions an d ensemble selection rules after learning from all 

series of datachunks available 

Databases 

Adult 
CiS 
Dna 

German 
IR-Ship 

NistDig -  1 
NistDig -  2 

P2 
Satimage 

Major 
AllP 

24.03(0.16) 
2.76(1.49) 
4.87(0.22) 
30.00(0.24) 
4.17(0.15) 
2.65 (0.04) 
6.28(0.60) 
8.76(7.43) 
8.34(0.19) 

ty vote 
halfbest 

24.02(0.15) 
2.64(1.47) 
4.71 (0.26 ) 
30.00(0.24) 
4.20(0.13) 
2.65 (0.04) 
6.27(0.09) 
6.58(5.12) 
8.31(0.22) 

App 
J 

Al lP 
23.62(1.39) 
2.36(1.18) 
4.72(0.26) 
30.05(0.15) 
4.12(0.26) 
2.65(0.05) 
6.27(0.07) 
5.45(4.32) 
8.18(0.16) 

roaches 
simple Average 

halfbest 
21.58(1.54) 
2.35(1.19) 
4.65(0.29) 
29.95(0.49) 
4.07(0.23) 
2.65(0.04) 
6.27(0.07) 
4.94(3.41) 
8.17(0.16) 

CI 
20.52(1.71) 
2.26(1.12) 
4.61 (0.27) 
28.95(0.36) 
4.03(0.32) 
2.64(0.03) 
6.27(0.07) 
4.18(1.56) 
8.14(0.18) 

Weighted vote 
CI 

20.52(1.60) 
1.35(0.29) 
4.61 (0.27 ) 
28.15(0.56) 
4.03 (0.30) 
2.64(0.01) 
6.27(0.07) 
3.17(0.56) 
8.14(0.17) 
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5.3 Discussio n 

We proposed a modular dynamic optimization approach to perfonn adaptiv e incremental learn-

ing. Th e propose d metho d generate s classifier s fro m optimu m region s o f parameters searc h 

space, and the n dynamicall y select s ensemble s base d o n the classifiers" confidenc e level s to 

improve the overall results . Different fro m classica l methods considering the incremental sys-

tem's parameter s settin g m  a stati c way , we showed tha t thi s process shoul d be treated a s a 

dynamic optimizatio n process . Thi s i s because thei r optimu m parameter s value s ma y shif t 

over the search space depending on incoming data. 

Through experiment s o n different syntheti c an d real-word databases , we empirically demon -

strated that the dynamic optimization of an incremental classification syste m could improve its 

performances, s o that they could overcom e classifier s withou t adaptatio n an d othe r classica l 

methods. Therefore, the performance o f a classification syste m depends further than on updat-

ing of existing models only, but also on adapting it s internal parameters. Furthermore , i t was 

seen that the application of the latter with a multiple classifier approac h become s the classifi -

cation system more flexible and, at the same time, robust for perfonning incrementa l learnin g 

and dealing with population drifts . 



CONCLUSION 

This thesis focuse d o n the implementatio n o f a classification syste m t o perform adaptiv e in -

cremental learning . Toward s the building of the system, our efforts wer e concentrated o n the 

problems of efficiently accommodatio n ne w data, adaptation o f internal system' s parameters , 

and combination o f multiple hypotheses. W e have seen that solving these problems is crucial 

to increase the overall performance of the system. 

In our first investigation, we have seen that a well tuning and updating of classifier's parameter s 

with respec t t o new dat a i s very importan t t o reach hig h performance overtime . I n orde r t o 

solve this problem, two main challenges were involved : (1 ) to overcome common diflRcultie s 

involving opfimizatio n processes , suc h a s th e presenc e o f multi-modalit y o r discontinuitie s 

in the paramete r searc h space , and (2 ) to quickly identif y optimu m solution s which fit  both 

historical an d new incomin g data . T o cope wit h thes e two issues , the SV M model selectio n 

problem was undertaken as a dynamic optimization problem which depends on available data. 

In particular, i t was shown that i f one intends to build efficient SV M classifiers fro m different , 

gradual, o r seria l sourc e o f data , th e bes t wa y i s to conside r th e mode l selectio n proces s a s 

a dynamic process which can evolve , change, and hence requir e differen t solution s overtime 

depending on the knowledge available about the problem and uncertainties in the data. 

In particular, we introduced a Particle Swarm Optimization based framework whic h combines 

the power of the swann intelligenc e theory with the conventional grid-search metho d to pro-

gressively identify an d sort out potential solutions for gradually updated training datasets. The 

idea wa s t o obtai n optima l solution s vi a re-evaluation s o f previous solution s (adapte d grid -

search) or via new dynamic re-optimization processes (dynamic particle swarm optimization). 

The relevance o f the proposed metho d wa s confirmed throug h experiments conducte d o n six 

databases. Briefly, the results have shown that: (1) if PSO is applied sequentially over datasets 

as a whole optimization process (Chained PSO) with the purpose of saving computational time, 

the resultin g optimize d solution s ma y sta y trappe d i n loca l minim a afte r successiv e hyper -

parameter mode l selectio n processes . O n the other hand , (2 ) although ful l optimizatio n pro -
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cesses with PSO (Full PS O strategy) constitute an efficient wa y to achieve good results , they 

are very time consuming, particularly when applied to each new dataset. (3 ) The perfonnanc e 

of DMS was very simila r to ful l optimizatio n processes , bu t les s computationally expensive , 

mainly due to the use of the dynamic optimization techniques. Thus , the experimental result s 

demonstrate tha t th e proposed metho d outperform s th e traditiona l approache s teste d agains t 

it while saving considerable computationa l time. However , eve n if the optimization o f a sin-

gle classifier i s important to increase it s performances, th e combination o f different member s 

can improv e the overal l performanc e o f a  classification system . Mainl y whe n th e member s 

composing the ensemble are especially selected, which makes them still more accurate. 

Taking this into account, the evaluation and selection of such classifiers depend on the choice of 

an adequate objective function . Therefore , i n order to better understand an d employ classifie r 

ensembles fo r composin g ou r adaptiv e incrementa l syste m i n th e contex t o f thi s thesis , th e 

investigation o f measure s t o perform suc h task s proceede d thi s work . W e have empiricall y 

analyzed severa l objectiv e function s fo r th e evaluatio n an d s o the selectio n o f ensembles o f 

classifiers. I n order to achieve this, we empirically investigate d classifier s fusio n throug h the 

relationship betwee n tw o theories related t o ensemble's success , i.e . diversit y measure s an d 

margin theory, with ensemble accuracy. Mos t importantly , they revealed valuable insights on 

how these two theories can influence each other and showed us how confidence based measures 

can be more interesting than diversity measures for the selection of classifier ensembles . 

Finally, we proposed a modular dynamic optimization approach to perform adaptive incremen-

tal learning. It was implemented based on these two principles: to mcrementally accommodate 

new data by updating models and to dynamically track new optimum system's parameters fo r 

self-adaptation. Thus , the goa l was to overcome a  problem tha t occur s when perfonning in -

cremental learning , whic h i s the obsoletin g o f bes t se t o f classification system' s parameter s 

according t o incoming data . Th e proposed metho d relie d o n a  new framewor k base d o n the 

ideas and component s mentione d above . Th e us e of a modified versio n o f incrementa l Sup -

port Vecto r Machin e (ISVM ) classifie r an d a  dynamic strateg y fo r th e selection o f classifie r 

ensembles wer e the main innovation s i n relation t o ou r base framework . I n particular, fro m 
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this framework, th e system's optimality i n respect to internal parameters , computational cost , 

and generalization perfonnance coul d be maintained through the generation of classifiers fro m 

optimum regions of parameters search space and the dynamic selection of ensembles based on 

the classifiers" confidence levels . 

As a  result , adaptation s ar e realize d i n tw o levels , furthe r tha n b y the incrementa l learnin g 

aspect only , bu t als o in the level s of base mode l parameter s an d decisio n fusion . Thus , un -

like classical methods considering the incremental system' s parameters setting in a static way, 

we showed that this process shoul d be treated as a dynamic optimization process. Thi s is be-

cause their optimum parameters values may shift over the search space depending on incoming 

data. A s additiona l contributions , w e provided insight s o n strategie s t o optimize an d selec t 

classifiers, o n the use of memory-based mechanisms , and methods fo r dynamic optimizatio n 

processes. 

The proposed approach was validated and showed its efficiency throug h experiments with syn-

thetic and real-world databases , e.g. involvin g handwritten digits , multisensor remote-sensing 

images, forward-looking infra-re d shi p images, etc. Result s i n single and multipl e classifier s 

configurations demonstrate d tha t the proposed approac h actuall y outperforme d classificatio n 

methods often use d in incremental learnin g scenarios . Moreover , they also demonstrated tha t 

the dynami c optimizatio n o f a n incrementa l classificatio n syste m coul d improv e it s perfor -

mances, s o that they could overcom e classifier s withou t adaptatio n an d other classica l meth -

ods. Therefore , th e performance o f a classification syste m depend s furthe r tha n on updating 

of existing model s only , but also o n adapting it s interna l parameters . Furthennore , w e have 

observed that the application of the multiple classifier approac h becomes the classification sys -

tem more ffexible and, at the same time, robust for performing incremental learning and dealing 

with population drifts . 
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Future Work s 

The results obtained i n this thesis were very encouraging an d also provide strong foundatio n 

for futur e works . However , som e issues were not investigated due to time constraints . Thus , 

probing deeper, the next stage and future direction s of this research might involve: 

• Determinin g new strategies for making the system adaptable to real drifts . I n this case, 

the design of mechanisms to "forget" sample s fro m th e system's memory must be con-

sidered to discard old samples that be conflicting with new concepts. 

• Carryin g on with population drifts situations, but using semi-supervised learning to over-

come the dependency of labeled data. This direction requires the developing and embed-

ding of an approach in the framework t o label the data before these be used by the other 

modules. 

• Investigatin g new strategies for the selection of relevant samples and ensembles. The use 

of infonnation fro m differen t time s A; could be also employed. 

• Creatin g othe r strategie s fo r bette r managin g th e system' s memory . A s a n example , 

instead o f using onl y a  shor t ten n memory , th e implementatio n o f a n additiona l lon g 

tenn memory coul d reduce even more the time for searching fo r new solutions in those 

situations in which data changes become recurrent . 

Therefore, by following these directions the system surely will be even more versatile. 



APPENDIX I 

DATABASES 

In this appendix w e describe more details about some synthetic and real-world databases em-

ployed in this thesis. 

1 Syntheti c Problem s 

Synthetic problem s ar e usefu l tool s to evaluate learnin g algorithms . I n our experiments , w e 

have used two synthetic problems already employed in the machine learning literature: 

• Circle-in-Square  (CiS)  [14]: This problem consists of two classes. Th e decision bound-

ary is nonlinear, and the samples are uniformly distribute d between the range of 0 to I . 

One class is represented by a circle inside a square, while the second class is fonned o f 

data from th e area outside the circle (see Figure I.I) . Th e area o f the circle i s equal to 

half of the square [14]. 

0 0 1 0 2 0 3 0 4 D 5 0 6 0 7 O B 0 9 

Figure I.l Illustratio n of the CircIe-in-Square problem. 

P2 [115] : Th e P2 problem also consists of two classes (/ an d / / ) . Eac h decision region 

is delimited by one or more of the four simpl e polynomial and trigonometric function s 
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(i.e. £'(?i_4(;r) ) belongs t o one of two classes (se e Figur e 1.2) . W e consider th e same 

modification o n Eqi{.v) suggested in [45], so that the classes have the same area without 

overlapping. The samples are uniformly distribute d between ranges of 0 to 10 , and then 

nonnalized between 0 and 1. 

Eqifr) —  2  X sin{.r) -t - 5 

Eq2{.A = i-r  -  2) - + 1 

EqA-r) = -O.l.A  +  0.6 x  stnflr)  +  S 
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Figure 1.2 Illustratio n of the P2 problem. 

The dat a generate d wer e nonnalize d int o a  range o f [0,1 ] accordin g t o min-ma x techniqu e 

defined b y Equation 1.2. a' and a, are normalized and non-normalized values of the ith feature ; 

min, an d tiiax,  are the minimum and maximum value of the ith feature in the entire dataset. 

(I, —  m,iii, 

iiia.i, —  miiij 
(1.2) 

As in the literature, each class uji i s represented by 50% of the samples, that is, P(wj) =  0.5 . 
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2 Real-worl d Problem s 

In this section we summarize two special real-world problem s employed i n the thesis: NIST-

SDI9andtheIR-SHIR 

• NIST-SD19:  I t i s one o f the most popula r real-world database s use d t o evaluate hand -

written digi t recognitio n methods . Basically , i t is composed o f images o f handwritte n 

samples form s (hsf ) fro m 0  to 9  organized i n eigh t series . I n the literature , i t i s com-

monly divide d int o 3  sets hsf-0123 , hsf-4 , an d hsf-7 , fo r training , validation , an d tes t 

respectively. Tabl e I.I depict s the number of samples for each digi t class in the test set, 

where th e tota l numbe r o f sample s i s 60.089 . I n thi s work , th e maximu m numbe r o f 

samples used for training is 5860 (586 samples per class). 

0 o  O  O  O  C>  O  ^  (^  c 
J / /  /  ^  / /  n  I 
^ 2  P^^^i A \9^ 
3^^333333 2 
y ? ^ / v v / - y ^ V *^ 
^Sif^^ S5^j'5 
L&i>^6>^6>^i * 
77777 7<^7  7  "^ 

^ S S-  S ^  ^  S  6  ^  9 
? ? / ? / 9 ^ f 9 f 

Figure 1.3 Example s of isolated digits from the NIST-DIG database |85| . 

The features se t extracted from the images of isolated digits were the same suggested by 

Oliveira et al. [85]. Basically, the features are a mixture of concavity, contour and surface 

of characters, where the final feature vecto r i s composed of 132 components nonnalized 

between 0 and I . Oliveira et al. have obtained with this features se t a recognition rate of 
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99.13% on the test set samples from hsf-7 using a Multilayer Perceptron Neural Network 

and a training set of 195,00 0 samples from hsf-0123 . 

Table I.I Numbe r of samples for each digit class in the test set (hsf-7)- NIST-SD19 

Class 
# 

0 
5,893 

1 
6,567 

2 
5,967 

3 
6,036 

4 
5,873 

5 
5,684 

6 
5,900 

7 
6,254 

8 
5,889 

9 
5,813 

IR-SHIP: The IR-SHI P databas e i s a  militar y databas e tha t consis t o f 254 5 Forwar d 

Looking Infra-Red (FLIR ) images of eight different classe s of ships. Th e images were 

provided by the U.S . Naval Weapons Center and Ford Aerospace Corporation. Image s 

and description s o f th e eigh t classe s o f shi p ar e depicte d i n Figur e 1.4 . I n particular , 

we use the same features se t employed by Park and Sklansky [89] , which implie s in 11 

attributes for each FLIR image. In particular, the first seven attributes represent moments 

and the others four remaining denoted parameters from a n auto regressive model. Mor e 

information abou t thi s databas e ca n b e encountere d i n [51] . Tabl e 1. 2 lists th e tota l 

number o f sample s fo r eac h class . I n here, w e divided th e entire origina l datase t int o 

80% and 20% samples for training and test, respectively. 

Table 1.2 Numbe r of samples for each class in the IR-SHIP database 

Class 
# 

1 
340 

2 
455 

3 
186 

4 
490 

5 
348 

6 
279 

7 
239 

8 
208 
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Destroyer 2 - Containe r 

3 - Civilia n Freighte r 4 - Auxiliar y Oil Replenishment 

5 - Laudin g Assault Tanker 6 - Frigat e 

7 - Cruise r 8 - Destroye r Guided Missile 

Figure 1.4 Example s o f FIR image s from th e IR-SHIP databas e |51| . 



APPENDIX II 

ADDITIONAL DYNAMIC MODEL SELECTION RESULT S 

In this appendix w e suimnarize some additional result s related t o our PSO-base d framewor k 

for the dynamic selection of SVM models over five different databases . A brief descripfion on 

the databases is listed in Table II. 1. 

Segment, Splice , Mushrooms , and Usp s are also databases fro m [4] . Th e Segmen t databas e 

contains instances randomly drawn from outdoor images. Each instance is a 3x3 region, where 

each regio n represent s a  class , suc h as : brickface , sky , foliage , etc . Th e Splic e databas e i s 

composed o f samples o f DNA sequences, where the problein i s to classify the m int o IE (in-

tron/exon) or EI (exon/intron) boundaries. Th e Mushrooms database includes descriptions of 

samples corresponding to 23 species of gilled mushrooms. Eac h specie s i s identified a s defi-

nitely edible or poisonous. Th e Usps database i s composed o f images of isolated digit s with 

300 pixels/i n i n 8-bi t gray scal e o n a  high-qualit> ' flat bed digitize r Finally , th e Svmguid e 

problem is a two-class database that involves an astroparticle application [18] . 

The result s ar e presented accordin g t o the sam e criteria investigate d i n chapter 3 . First , w e 

report the results involving generalization erro r rates, number of support vector, and computa-

tional time required in Tables II.2, II.3, and II.4, respectively. Then, the average of frequencie s 

that each module was employed to identity the final solution are depicted in Figure ILL 

Table II.I Databases ' descriptions. 

Database 

Segment 
Svmguide 
Splice 
Mushrooms 
Usps 

Number of 
Classes 

7 
2 
2 
2 
10 

Number of 
Features 

19 
4 
60 
112 
256 

Number of 
Training Samples 

1,848 
3,089 
1,000 
6,498 
7,291 

Number of 
Sets 
12 
20 
15 
24 
17 

Number of 
Test Samples 

462 
4,000 
2,175 
1,626 
2,007 
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Table II.2 Mea n erro r rate s and standard deviatio n value s over 10 
replications when th e size of the dataset attaine d th e size of the origina l 

training set . The best results for each data se t are shown in bold . 

Database 
Segment 
Svmguide 
Splice 
Mushrooms 
Usps 

GS 
2.81 
13.15 
12.38 
0.00 
10.16 

Ist-GS 
4.33 
50 

12.38 
0.00 
10.21 

FPSO 
2.78 (0.52) 
3.10(0.01) 
10.40 (0.92) 

0.00 
6.44 (0.15) 

CPSO 
4.87 (2.04) 
3.97 (0.02) 
11.9(2.10) 

0.00 
8.41 (0.19 ) 

DMS 
2.80 (0.9) 

3.11 (0.07) 
10.45(1.10) 

0.00 
6.35 (0.08) 

Table II.3 Mea n o f support vector s and standard deviatio n values 
obtained ove r 1 0 replications when the size of the dataset attaine d th e size of 
the original training set. The best results for each data se t are shown in bold. 

Database 
Segment 
Svmguide 
Splice 
Mushrooms 
Usps 

GS 
251 
2801 
959 
1102 
4200 

Ist-GS 
298 
3003 
959 
1102 
4199 

FPSO 
218.30(79.39) 
245.50 (7.90) 

499.80(176.85) 
240.80(89.15) 
1115.20(91.74) 

CPSO 
381.3(135.85) 
254.5 (3.44) 

326.10 (32.17) 
245.10 (30.48) 

1702.20(164.70) 

DMS 
281.7 (72.75) 
246.8 (5.37) 

444.50 (22.39) 
244.30 (38.21) 
1152.50(58.40) 

Table II.4 Mea n computationa l tim e spent (hh:mm:ss) fo r mode l selection 
processes for th e entire sequences of datasets with the most promisin g 

strategies. Result s for the FPSO strategy over the entire database s 
(FPSO-all data) ar e also reported . 

Database 
Segment 
Svmguide 
Splice 
Mushrooms 
Usps 

FPSO-all data FPS O CPS O DM S 
00:01:51 (00:00:38) 00:04:15(00:00:44 ) 00:02:11(00:00:31 ) 00:00:38(00:00:43 ) 
00:43:24(00:33:39) 01:44:03(00:38:15 ) 01:10:12(00:17:43 ) 00:41:30(00:39:07 ) 
00:00:39(00:00:12) 00:01:35(00:00:20 ) 00:01:35(00:00:15 ) 00:00:51(00:00:23 ) 
00:51:40(00:07:37) 02:02:21(00:08:53 ) 01:37:23(00:03:17 ) 00:01:39(00:01:27 ) 
06:10:53(02:14:33) 14:13:41(03:05:37 ) 12:35:26(03:28:36 ) 05:31:42(02:46:18 ) 
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Mushrooms 

I Best Kept 
I Adapted Grid 
]DPSO 

0 2 0 4 0 6 0 8 0 10 0 
(%) Modules frequencies that pointed out final solutions 

Figure II.I Averag e of frequencies whic h indicates how many times each 
module was responsible for pointin g out the final solution. 



APPENDIX II I 

BIAS-VARIANCE DECOMPOSITION O F EI^OR RESULT S 

In thi s appendi x w e depic t som e result s relate d t o th e Bias-Varianc e Decompositio n o f th e 

Error theor y fo r ensembl e o f classifier s introduce d b y Domingo s [36] . W e have use d tw o 

classification problem s i n the experiments: a  synthetic one (P2) and anothe r with real-worl d 

data (Satimage). 

From this theory, we could observe that the lowes t bias corresponds not always to the lowest 

expected averag e loss . I n fact , th e bes t ensemble s hav e obtaine d a  highe r variance , whic h 

demonstrates that some variations among the ensemble members is important to achieve better 

performances. Result s illustratin g thi s fac t ar e liste d i n Tables III . I an d III.2 . Therefore , a 

balance between bias-variance is indeed crucial for developing perfonning ensembles . 

In addition, the Domingos's decomposition of the variance component into unbiased and biased 

variances allows to analyze the cases in which every measure seems to provide the same result 

with different ensembles . For instance, in Table III. I we have two different ensembles, i.e. with 

C =  5  and C =  10 , that present similar generalization errors . In this case, through this theory 

we can see that the former ensemble with C =  5  and 7 = 10 0 should be diagnosticated as better 

than the secon d on e because i t has a slightly highe r unbiased variance . I n other words, both 

ensembles provide d correc t answers , bu t the first one provide d wit h mor e variate d opinion s 

regarding the same dataset. 

Furthermore, a s demonstrated i n [115 , 116] , we hav e also observe d tha t th e value o f the C 

and ' y hyperparameters ca n actuall y determin e differen t region s o f transitio n wit h hig h bia s 

or stabilized one s fo r bot h two-classes and mufti-classes problems . Som e examples o f these 

regions ca n b e see n i n Figure s III. I an d 111.2 . Moreover , w e ca n als o se e the influenc e o f 

the hyperparamete r value s whe n composin g ensembles . Fo r example , fo r th e P 2 problem , 

while lower values of regularization (i.e . fo r C)  results almost in no learning (Figure 111.1(a)), 

the increasin g o f suc h parameter s notabl y change s th e behavio r o f th e ensemble s (Figure s 
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III. l(b)-III. 1(d)). The same observations can be outlined for the real-word multi-class database, 

Satimage, in Figures 111.2(a)-lll.2(d). 

Table III.I P 2 problem 

C 
2 
5 
10 
20 

7 
100 
100 
100 
100 

Loss 
0.171912 
0.I7I568 
0.171568 
0.I72I9I 

Bias 
0.1278 
0.1295 
0.1295 

0.130400 

Net Variance 
0.044517 
0.042071 
0.042068 
0.04I79I 

Unbiased Variance 
0.070218 
0.068568 
0.068468 
0.069552 

Biased Variance 
0.025698 
0.026497 
0.026400 
0.027764 

Table III.2 Satimag e problem 

C Loss Bias Net Variance Unbiase d Variance Biase d Variance 
5 
10 
20 
50 

I 0.10907 6 0.09917 4 0.00990 2 
I 0.10957 2 0.09842 2 0.01114 9 
I O. I 10578 0.0969 2 0.01365 9 
1 0.11083 4 0.09767 1 0.01316 3 

0.022404 
0.024493 
0.026521 
0.026702 

0.014455 
0.015357 
0.014831 
0.015582 

Table III.3 Lette r problem 

C 7 Loss Bias Net Variance Unbiase d Variance Biase d Variance 
10 
20 
50 
100 

1 0.04561 8 0.03444 4 0.01117 3 
I 0.04584 9 0.03355 6 0.01229 3 
I 0.04658 7 0.03555 6 0.0I103 I 
I 0.04668 0 0.03533 3 0.01134 7 

0.017773 
0.018880 
0.018520 
0.018702 

0.009596 
0.009698 
0.010676 
0.010582 



137 

• 

• 

C=0 01 

0 Bia s 
— •¥ — Na l Vanance 
— d — UnbBbe d VanimcB 
- *  -  e<<iS9 d Variance 

1 '• [  ]  l 

0 9 

OS 

0 7 

0.6 

OS 

04 

0 3 

02 

01 

A 

-T 

1 
1 
1 

i 
1 

1 

^ 
6 

^1" ^ 

c=o 
— A — Avflfao a Loii j 

0 Bia s 

— $ — Unbiasai ] VanariMJ 
— • —  Biasn d Vanance | 

• 

• 

• 

-
-

1" 1 " 1 ~ " T t 
100002500 10 0 2 5 4  1  0  25 0  04 0  0125e-0»«-a4to-0«5a-M1»-OSe-064e-061o-06 tOZSOO 10 0 2 5 025 00 4 0  012Se-0X«-O41s-0«5a-M1e-0£e-064e-Oeie-O6 

(a) P 2 - fixed C =  0.0 1 (b) P 2 - fixed C =  0. 1 

• f t - - -a—a—a—a—a—a— 

-*—•—•—t—•—•—•—•—• 

• •  —  Biase d Vanance 

— a — a — a — a — o 

- • — • — • — • — » 

100002500 100 2 5 4  1  0  25 0 04 00125a-0»e-O4l8-O«5o-0»1a-0t»-OW»-O61a-O6 1000 0 2500 100 2 5 4  1  0  25 0 04 00125e-0»«-04le-04Se-0»la-0»«-064a-061o-06 

(c) P 2 - fixed C =  2 (d) P 2 - fi.xed C =  100 0 
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APPENDIX IV 

EXPERIMENTS WITH CLASSIFIER ENSEMBL E SELECTIO N 

The goal of this appendix is to present some results related to the selection of classifier ensem-

bles using the margin-based measure and the ensemble accuracy studied in chapter 4. 

In order to achieve this, we employ a common strateg y called : overproduc e and choose [42]. 

In this strategy, several classifiers ar e created by some ensemble generation method and then a 

selection process is applied to choose the best ensemble. The aim is, therefore, to (1) improve 

the overall perfonnance or/an d to (2) decrease the complexity of the ensemble by reducing the 

number of members. 

In here, a s we are intereste d i n obtaining stron g classifier s wit h lo w bias, we considered th e 

adjustment o f parameters before creating our ensembles. Thus, this experimental protocol can 

be summarized as follows. First , the parameters of a base classifier wer e set based on a grid-

search. I n other words, given a set of parameters and the original training set, a five-fold cross 

validation was employed to find the best parameter values for a base classifie r 

Second, once the best parameters have been defined, individua l classifiers wer e built based on 

the Bagging ensemble generation method [5] . I n this method, ensemble members are trained 

from L  subset s composed of bootstrapped sample s from th e original training data. Therefore , 

if the original training se t has n  examples , a bootstrap replicate of it is constructed b y taking 

n sample s wit h replacemen t fro m it , wher e eac h exampl e ha s a  probability o f 1/ n o f bein g 

selected a t each turn. 

Third, onc e that the poo l o f base classifiers wer e already generated , th e minimization o f the 

ensemble generalization error rate and the Cl-measure were tested as objective functions fo r the 

selection process. The margins used by the Cl-measure were computed according to Equation 

4.17. In addition, our ensemble selection process was implemented as an optimization process, 

which employs a genetic algorithm (GA) and an optimization set of samples. Finally, thereafter 

the best ensembles were selected for each database, they were tested on the respective test sets. 
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The description o f each databas e use d i s listed i n Table IV . I. A s Naive Bayes , KNN an d SV M 

with RB F kerne l wer e employe d a s base classifiers , w e als o indicat e the bes t value s foun d fo r 

A', C an d 7 in the same table for each database. Th e values tested for the SVM hyperparameter s 

are describe d i n chapte r 4 , an d fo r A ' wer e 1,3,5 . Th e final  result s represen t average s ove r 3 0 

replications. 

Table IV. I Informatio n o n th e database s 

Database Number o f Numbe r of Trainin g Optimizatio n Tes t Bes t Bes t 
Classes Feature s Se t size Se t size Se t size A ' C, 7 

P2 
Satimage 
Letter 

2 
36 
19 

100 
3,104 
770 

100 
1,331 
770 

10,000 
2,000 
770 

10,100 
10,1 
20,1 

For each database, ensembles composed of 50 members were built through the bagging method , 

as previously explained . I n addition, the genetic algorithm parameter s wer e se t a s listed in Ta-

ble IV.2 . 

Table IV. 2 Geneti c algorith m paramete r settin g 

Parameter 
Population size 

Chromosome size (L) 
Probability of crossover 
Probability of mutation 

Value 
128 
50 
0.8 

1/L, i.e. 0.0 2 

As eac h gen e o f a  chromosome represent s a  classifier , i f al l bit s wer e selected , al l classifier s 

composed th e ensemble . Th e operation s o f crossove r an d mutatio n wer e implemente d base d 

on th e one-poin t crossove r an d bit-Hi p mutation , respectively . Th e result s obtaine d an d th e 

conclusions drawn fro m thes e experiments ar e presented i n the next section . 

I Result s 

The result s obtaine d i n thi s experimen t ar e reporte d fo r eac h database , singl e classifier s (K -

NN, NB , an d SVM ) i n Tables 1V.3 , IV.5, IV.7 . Resuh s fo r th e origina l poo l o f classifier s an d 

objective functio n employe d ar e reporte d i n Table s 1V.4 , IV.6, IV.8 . Th e bes t result s fo r eac h 
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database are in bold and underlined if they are significantly bette r than the others. Additionally, 

Figures IV.I , 1V.2, 1V.3 depict the generalization erro r rates and cardinalities achieved by each 

ensemble type and objective function . 

From thes e results , w e ca n se e tha t i n genera l th e minimizatio n o f th e Cl-measur e i s ver y 

promising fo r selectio n purpose s becaus e i t selecte d ver y perfonning ensembles , an d some -

times even better than those ensembles selected through the minimization of the generalization 

error I n addition, regarding the complexity o f the ensembles, this measure also selected en -

sembles wit h th e lowes t cardinalitie s concernin g al l type s o f classifier ensemble s tested , i. e 

with NB , KJMN , or eve n SVMs . Thus , i t seem s t o be ver y advantageou s fo r bot h accurac y 

improvement and ensemble reduction size. 

Table IV.3 Obtaine d result s with a single classifier on the P2 problem. 

Classifier 
K-NN 

NB 
SVM 

Generalization Error (% ) 
14.01 
28.80 
13.90 

Table IV.4 Obtaine d result s with ensemble of classifiers on the P2 problem. 

Original 
EoC 

Obj. F'unc. 
Gen. 
Error 
U) 

CI (I) 

EoC 
KNN 
NB 

SVM 
EoC 
KNN 
NB 

SVM 
KNN 
NB 

SVM 

Average Loss (% ) 
17.38 
30.50 
17.23 

Average Loss (% ) 
17.63(0.30) 
30.79(0.49) 
18.86(0.88) 
17.39(0.20) 
30.58(0.39) 
17.40(0.10) 

Generalization Erro r (% ) 
13.70 
26.29 
13.04 

Generalization Error (% ) 
13.53(0.63) 
25.75(1,25) 
12.53 (0.46) 
13.52(0.38) 
25.93(1.10) 
12.46 (0.20) 

Cardinality 
17 
15 
21 
9 
12 
8 
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Table IV.5 Obtaine d result s with a single classifier on the Satimage problem. 

Classifier 
K-NN 

NB 
SVM 

Generalization Erro r (% ) 
10.70 
18.95 
9.55 

Table IV.6 Obtaine d result s on the Satimage problem. 

Original 
EoC 

Obj. F"unc. 
Gen. 
Error 
(i) 

Cl(D 

EoC 
KNN 
NB 

SVM 
EoC 
KNN 
NB 

SVM 
KNN 
NB 

SVM 

Average Loss (% ) 
12.14 
18.97 
10.23 

Average Loss (% ) 
12.03(0.05) 
18.82(0.08) 
10.26(0.05) 
11.94(0.02) 
18.66(0.03) 
10.24(0.00) 

Generalization Erro r (% ) 
10.40 
18.70 
9.40 

Generalization Erro r (% ) 
10.40(0.17) 
18.55(0.13) 
9.26(0.14) 
10.26(0.06) 
18.31 (0.02) 
9.24 (0.00) 

Cardinality 
19 
16 
19 
15 
8 
9 

Table IV.7 Obtaine d result s with a single classifier on the Letter problem. 

Classifier 
K-NN 

NB 
SVM 

Generalization Error (% ) 
5.46 
30.90 
3.26 

Table IV.8 Obtaine d result s on the Letter problem. 

Original 
EoC 

Obj. Func . 
Gen. 
Error 
U) 

CI(i) 

EoC 
KNN 
NB 

SVM 
EoC 
KNN 
NB 

SVM 
KNN 
NB 

SVM 

Average Loss (% ) 
7.19 

31.40 
4.30 

Average Loss (% ) 
7.17(0.04) 
31.28(0.07) 
4.27 (0.02) 
7.14(0.00) 

30.96(0.03) 
4.26(0.01) 

Generalization Error (%) 
5.45 

30.54 
3.08 

Generalization Erro r (% ) 
5.47 (0.07) 

30.15(0.18) 
3.04 (0.07) 
5.45 (0.04) 

29.82(0.12) 
3.06(0.03) 

Cardinality 
16 
20 
24 
19 
14 
20 



144 

SVMVC 

EDC at SVMi 

Slntfe SVM 

O NBK C 

| i _ NBi/Eno r 
O 
^ Eo C of NBl 

^ Slngt o NB 

l-NNilC 

1 -NNs/Eicn 

EoC of 1-NN 

Single 1-NN 

• K l 

• nXr* 
1 

- 1 

• 

1 
1 

12 1 4 

SVMVCi 

SVMi/ETOf 

C
la

ss
ifi

er
s/

O
bj

 F
un

ct
io

n 

1 i
 

1-NNafCI 

1-NNi/EmH 

- 1 
• ! - • • 

- ' 

- 1 
!_-_ 

10 

-

+ n  + * +  . 

^---cxih---' -
1 

1 -

-
16 1 8 2 0 2 2 2 4 2 6 2 8 

Error Rat e (% ) 

(a) Erro r Rate 

P2 

y CX3  ^ 
• 

-CX} ^ 

1—T—L 1  .  -
1 1— r~ ' 

15 2 0 2 5 a 
Cardinality 

(b) Cardinalit y 

Figure IV.I Generalizatio n erro r rate s and cardinalities obtained afte r 
selection processe s for the P2 problem. 



145 

I 

Ji EoCotNB s -

^ Siig W NB -

l-NNi/CI -

•-Kl-' 

(a) Erro r Rate 

--\z 
• 

(b) Cardinalit y 

CX3 1 

-̂-D-

Figure IV.2 Generalizatio n erro r rate s and cardinalities obtained afte r 
selection processes for the Satimage problem . 



146 

•4 

. . . I * . . 

(a) Erro r Rate 

• 

-D̂ -
• 

1 

• h — 

^ Q -
1 - — 

1 

H--CX~ 
., ̂ .,. 1 

1 

1 

-CX}-^ ^  -
-

1 

Cardinality 

(b) Cardinalit y 

24 2 6 2 8 1 0 

SVU^I 

SVM*t™. 

SxgBSW 

..„™ 

«.». 
^.. 
,-«««. 

,.„.c™ 

S.«a i -NH 

•'flH 

. .  ^tO- ' 

i 

LETTER 

- 1 
'-tn-' 

1 
1, 

-

' 

• 

-
• 
• 
• 
' 

(c) Zoo m on error rates 

Figure IV.3 Generalizatio n erro r rate s and cardinalitie s obtained afte r 
selection processes for the Letter problem . 



APPENDIX V 

ADDITIONAL ADAPTIVE INCRE.MENTA L LEARNING RESULT S 

In this appendix we report complementary results involving our adaptive incremental learnin g 

strategy presented in chapter 5. 

I Satimag e - Swarm Result s 

In this section , w e have depicted fro m Figur e V. 2 to V.6 the entir e sequenc e o f swarm s in -

volving the case study presented in Figure V. 1 i n section 5.2.3.4. Throug h this example, it can 

be clearly seen (1) the dynamism concerning the moving of the particles and (2) the differen t 

classifier ensemble s selected from severa l datasets P(A). 

- IS-AI L 
- lEoC-AI L 

500 100 0 150 0 200 0 250 0 300 0 350 0 400 0 450 0 
Number o f samples 

Figure V.I Result s concerning generalizatio n error s an d cardinalitie s fo r 
each datase t V{k)  fo r a  given replication comparin g AI L in single model 

(IS-AIL) and ensemble s dynamicall y selecte d (lEoC-AIL) . 
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Figures V.3, V.4, V.5, and V.6 
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Figure V.3 Sequenc e o f swarms and correspondin g particle s selected a s 
ensembles between the datasets V(7)  an d P(r2) . Th e other swarm s ar e 

depicted i n Figures V.4 , V.5, and V.6. 
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2 Cas e Study - DNA results 

This section presents further results and evidences on the system parameters' dynamism and se-

lection of solutions into ensembles for an additional case study, which corresponds to the DNA 

database. Th e results are presented through illustrations following the same way employed in 

chapter 5 (sections 5.2.3.3 and 5.2.3.4). 

First of all, we depict in Figure V.7 the trajectory covere d by the best solution found fo r each 

incremental learning process over different dataset s T>(k). Next , Figure V.8 shows an example 

on how the solutions were found fo r each dataset D{k) hyper-parameter s when using IS-AIL. 

Finally, th e generalizatio n error s obtaine d b y combinin g th e solution s foun d ar e plotte d i n 

Figure V.9 . Th e sequence s o f swarms compute d fo r eac h datase t V{k)  ar e liste d i n Figure s 

V. 10, V.I I, and V.I2. Overall, these results also confirm the same conclusions discussed in this 

thesis and exposed in chapter 5. 
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