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RESUME

Avec la croissance soutenue de I’énergie ¢€olienne sur les marchés énergétiques, les
opérateurs des réseaux électriques ont de plus en plus de défis a relever en maticre
d’équilibrage de réseau, le tout afin de minimiser les colits associés a la gestion des autres
sources ¢énergétiques. Le vent étant une source énergétique variable, la prévision de la
puissance ¢olienne est donc 1’'une des solutions qui permettra a ce type d’énergie de devenir
viable du point de vue économique, tant sur les marchés régulés que dans les marchés
ouverts. Dorénavant, il semble qu’il y ait un besoin urgent pour des modéles permettant de
prédire de manicre fiable la puissance ¢€olienne a court-terme (0 — 48 h); ceci, afin de
maintenir I’intégration de I’énergie €éolienne dans le portefeuille énergétique des différentes

juridictions.

En fonction des besoins de 1’industrie éolienne, « Environnement Canada » effectue, depuis
trois ans, des prévisions météorologiques expérimentales dans ’est canadien a 1’aide d’un
modele de prévisions numériques a aire limitée (GEM-LAM 2.5 km). La région couverte
englobe la péninsule gaspésienne ainsi qu’une partie des provinces maritimes. Cette région
couvre plusieurs sites éoliens tels que North Cape. Ce site est situé a I’Ile du Prince Edouard
ou le Wind Energy Institute of Canada opere un centre d’essais €olien. Une analyse
préliminaire des prévisions et une inspection minutieuse de ce site ont permis de démontrer
que, bien que la résolution du modéele soit déja relativement haute, elle manque tout de méme
de raffinement afin de bien représenter les phénomeénes météorologiques pour ce site cotier a
topographie complexe. Pour cette raison, un module géophysique de traitement statistique
des sorties (Geophysic Model Output Statistic (GMOS)) a été développé et appliqué afin de
permettre une optimisation de 1’utilisation du modele de prévision météorologique a des fins
de prévision de la puissance éolienne a court-terme. GMOS différe des MOS couramment
utilisés dans les centres météorologiques par les aspects suivants : 1) il prend en compte les

paramétres géophysiques régionaux (hauteur topographique, rugosité de surface, etc.) ainsi



que la direction du vent; 2) il peut étre directement appliqué pour corriger les sorties de

différents modeles numériques sans entrailnement, bien qu’un entrainement soit bénéfique.

Ce module statistique a été entrainé et testé pour le site de North Cape, ou il a réduit I’erreur
quadratique des prévisions de 25 a 30 %. Cette amélioration significative est observable
pour tous les horizons temporels ainsi que pour la majorité des conditions météorologiques.
De plus, la signature topographique de I’erreur de prévision a ¢été ¢€liminée suite a
I’application du GMOS. Dr’ailleurs, le modele de prévision numérique combiné au GMOS
offre une prévision supérieure a celle de la persistance dés un horizon de 2 h. Ce gain n’était
observable qu’a partir d’un horizon de 4 h sans 1’utilisation du GMOS. Enfin, une validation
effectuée pour un site établi a Bouctouche (Nouveau Brunswick), présentant des
améliorations similaires des prévisions de vent de surface, a permis de démontrer

I’applicabilité générale de la méthode.

Cette étude, présentant un module statistique permettant I’optimisation de [’utilisation des
prévisions météorologiques a haute résolution, a aussi contribu¢ au développement d’une
méthodologie afin de mieux comprendre les erreurs de prévisions reliées aux différentes
conditions météorologiques. Cet outil d’analyse a permis d’évaluer la contribution d’erreur
de phase et d’amplitude pour des conditions atmosphériques normales ainsi que pour divers
évenements météorologiques a caractére dynamique tels que les variations subites de vitesse
du vent, le passage de dépressions etc. Une compréhension accrue des erreurs de prévisions
ainsi que l’acquisition de prévisions éoliennes plus précises permettront d’augmenter la

valeur économique de I’énergie €olienne sur le marché.

Mots- Clés : énergie €éolienne, prévision de puissance, prévisions numériques, couche limite

atmosphérique, vent de surface, sites complexes, statistiques de sortie, analyse d’erreur
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ABSTRACT

With the sustained growth of wind energy installed capacity for electricity generation,
electricity system operators have increasing challenges balancing the electricity grid, notably
in regards to minimizing the cost of other energy sources dispatch. Due to the variability of
wind, wind power generation forecasting is an important issue for the economic viability of
wind energy, whether in regulated or open markets. Therefore, there is a pressing need for
robust short-term (up to 48 hours) surface wind forecast models, and eventually wind power
forecast models, in order to sustain the integration of wind energy in electricity portfolios of

jurisdictions.

Computed for the needs of the wind energy industry, three years of experimental
meteorological forecasts in Eastern Canada are available from Environment Canada
Numerical Weather Prediction (NWP) model configured on a limited-area (GEM-LAM 2.5
km) for wind power predictions. These data include forecasts for the region of North Cape
(Prince Edward Island) where the Wind Energy Institute of Canada runs a test site for wind
turbines.  Although the model spatial resolution is already relatively high (2.5 km),
preliminary statistical analysis and site inspection revealed that the model does not have
sufficient grid spacing refinement to properly represent the meteorological phenomena on
this complex coastal site. For this reason, a Geophysic Model Output Statistic (GMOS)
module has been developed and applied to optimize the use of the short-term NWP. GMOS
differs from other MOS that are widely used by meteorological centers in the following
aspects: 1) it takes into accounts the surrounding geophysical parameters such as surface
roughness, terrain height, etc. along with the wind direction; 2) GMOS can be directly
applied for model output correction without any training although a training of the GMOS

will further improve the results.



VI

This statistical module was trained and tested over the North Cape site and it basically
improves the predictions RMSE by 25 — 30 % for all time horizons and almost all
meteorological conditions. Also, the topographic signature of the forecast error due to
insufficient grid refinement is eliminated and the NWP combined with the GMOS now
outperforms the persistence model after a 2 h horizon, instead of 4 h without the GMOS.
Ultimately, in order to generalize the results, this methodology has been validated by an
independent test case performed on a site located in Bouctouche (New Brunswick). Similar
improvements on the GEM-LAM 2.5km forecasts were observed thus, showing the general

applicability of the GMOS.

Although the current study presents an optimization of the use of short-term NWP for wind
power forecasts using a statistical module, it also contributes to the development of a
methodology and an analysis tool to assess and understand the NWP uncertainties on the
amplitude and the phase of the surface wind forecast errors for different meteorological
situations. A better knowledge of the wind speed and wind power forecast uncertainties,
along with more accurate short-term wind forecast models, will increase the economic value

of wind energy on the market.

Keywords: wind energy, wind power forecast, numerical weather prediction, atmospheric

boundary layer, surface wind, complex sites, model output statistics, uncertainty analysis
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INTRODUCTION

Due to the global warming and to the many consequences of energy generation, industries
and governments are promoting and developing power generation from renewable sources
such as wind power. This type of energy has reduced impacts on the environment compared
to more conventional power plants like nuclear, oil, natural gas and coal. As a matter of fact,
in some European countries, up to 21 % of the energy generation comes from wind power
(e.g. Portugal 9 %, Spain 12 % and Denmark 21 % (Global Wind Energy Council, 2008))

and this type of clean energy is also increasingly being adapted and used in North America.

One of the major concerns of integrating wind energy into electricity grids is the variability
of the wind, and therefore, the power. With the sustained growth of wind energy installed
capacity for electricity generation, electrical system operators need large amounts of spinning
reserves from other energy sources to compensate for the fluctuations from the wind power,
thus greatly affecting the cost of energy production. They also have increasing challenges
optimizing the energy sources dispatch and minimizing the electrical network balancing
costs. Therefore, wind power generation forecasting is an important issue for the economic
efficiency of wind energy. More robust short-term (up to 48 hours) wind power forecasts
will contribute to optimize the scheduling of conventional power plants and optimize the
value of wind energy within the market in order to sustain the integration of wind energy in

electricity portfolios of jurisdictions.

Three years of experimental meteorological forecasts in eastern Canada are available from
Environment Canada Global Environment Multiscale Numerical Weather Prediction (NWP)
model configured on a limited-area uniform 2.5 km horizontal grid spacing (GEM-LAM 2.5
km) for wind power predictions. These data also include forecasts for the region of North
Cape on Prince Edward Island (PEI, Canada) where the Wind Energy Institute of Canada
(WEICan) runs a test site for wind turbines and the PEI Energy Corporation operates a 10
MW wind farm. WEICan records wind speed at six different heights as well as wind

direction, temperature and barometric pressure at single heights from a 60m mast, while the



PEI Energy Corporation records the total power production, the wind speed and the wind
direction of each turbine at the same site. The forecasts, the power production and the
atmospheric measurements use the same data format and the same time intervals (hourly
averages), which facilitates model evaluation. With these two partners, it is thus possible to
correlate model uncertainties to site characteristics or meteorological events and finally, to

improve the forecast method itself.

The first chapter of this thesis gives a brief introduction of the state of the art on short-term
wind forecasting and uncertainties, while an analysis of the database quality is performed in
Chapter 2. Since data from different sources are available, a simple methodology is used to
identify outliers. Data from both forecast and measured series associated to outlying data are
removed in order to prevent errors due to outliers. Also, since vertical heat fluxes and
temperature stratification have an impact on the vertical wind profile (see Chapter 1), low
level thermal stability values derived from forecast outputs are integrated in the vertical
interpolation of the wind speed to the anemometer height in order to improve the accuracy of

this interpolation (Chapter 3).

In order to improve the Numerical Weather Predictions (NWP), a preliminary analysis over
the North Cape site is conducted to define the parameters that shall be used to implement a
Geophysic Model Output Statistics (GMOS) module (Chapter 4). The main objective of this
research work is to improve short-term wind forecasting model by developing and applying
different types of statistical modules (linear regressions, Artificial Neural Networks (ANN),
etc.) to predict more precisely the wind speed as a function of the site characteristics and
meteorological parameters (Chapter 5). Statistical techniques have been preferred over
physical micro-scale models as they are computationally inexpensive (see Chapter 1).
Calibration of the GMOS is done using one year of data and then, the evaluation phase takes
place over the remaining period. Note that, in order to generalize the results, a validation of
the complete methodology is also performed using a similar meteorological tower owned by

Université de Moncton which is located in Bouctouche (New Brunswick (NB), Canada).



Throughout this work, in order to express the forecast error characteristics, many statistical
criteria and error indicators are computed while figures and graphs are produced to illustrate
the different results. Mainly, the mean absolute error (MAE) evaluates the error directly in
terms of wind speed prediction; the root mean squared error (RMSE) evaluates the error in
terms of wind speed prediction and verifies the error distribution; the bias evaluates the
systematic error. Note that the standard deviation (STD), being a component of the RMSE,
can also be used to verify the error distribution, but as the RMSE will be decomposed in
Chapter 6 to represent different characteristics of the forecast errors, this criteria is preferred
over the STD. In all cases, these criteria are normalized with the site annual mean wind
speed to maintain the results independent from the site itself. Furthermore, to compare
different models, an improvement indicator is also used. The final section of this thesis
(Chapter 6) presents the analysis of the short-term wind forecasts uncertainties. This
expanded work is done using amplitude and phase error description as well as exploratory
analyses to detail the uncertainty characteristics and different error tendencies or evolution in
time. This analysis is used as a dynamic approach to evaluate the contribution of
meteorological events to forecast errors; meteorological situations related to high uncertainty

of short-term wind predictions can then be identified.

The objective of the current study is to optimize the use of short-term NWP for complex sites
by applying statistical methods. The conclusions of this assessment contribute to the
development of the forecast model with Environment Canada by applying the GMOS
developed and notably by identifying meteorological events with high uncertainties by means
of the evaluation protocol being developed. Ultimately, a better knowledge of these
uncertainties and better wind forecasts will increase the economic value of wind energy in

the market.



CHAPTER 1

LITERATURE REVIEW

1.1 Numerical wind power prediction models

Landberg et al. (2003) and Giebel et al. (2003) provide complete reviews of wind power
prediction models. They show that most short-term wind power forecast models use the
available regional NWP as input parameters, usually geostrophic wind speed and direction.
Generally, those NWP models have a coarse spatial resolution ranging from 5 to 25 km.
Therefore, the first step in wind power predictions is to estimate the wind resources at the
exact wind farm location (wind speed and direction). This downscaling operation is
generally done using a physical Limited Area Model (LAM) with higher resolution (meso-
scale or micro-scale) and employing the global NWP as initial lateral boundary conditions.
Also, high resolution topography and surface roughness measurements are used to

characterize the site.

Then the wind speed at the site is generally scaled down to the turbine rotor height by
applying a logarithmic vertical profile for neutral atmospheric stability. Landberg (1998)
shows that it is also possible to correlate the geostrophic wind with the surface wind by using
a simple relation, assuming the geostrophic drag law as a linear function. Considering
different surface roughness, along with the geostrophic wind speed and direction, he points
out that it is possible to predict surface wind speed directly from the geostrophic wind under
neutral atmosphere. He also demonstrates that the variation in the wind direction with height
(Ekman spiral) is one of the most difficult parameter to predict and cannot be simplified into
a simple relation. Nonetheless, wind speed can be predicted using simple methods with a
relatively good accuracy (in comparison with micro-scale models). Finally, correlations are
generally developed using the turbine power curves to convert the surface wind to electrical
power. The wind power forecast models can also take into account the wind farm layout to
integrate the wake effect of a turbine on the aerodynamics of the whole wind farm into the

final wind power forecast.



1.2 Model output statistics

Most wind power prediction models use Model Output Statistics (MOS) to correct biases and
the general amplitude errors (auto-regressive statistical models, ANN, etc.). When used off-
line, MOS are calibrated using historical wind farm data in order to search for the optimal
statistical parameters. If the power production data are available online, MOS can be
calibrated in real time. Therefore, online data offer many advantages. Tuning off-line MOS
needs considerable efforts compared to self calibrating MOS; online MOS adapts themselves
to annual and seasonal variations, farm layout and data quality. Also, Kariniotakis et al
(2004) show that Kalman filtering techniques clearly improve NWP systematic errors for
linear (e.g. temperature) and non-linear parameters (e.g. wind speed). Since statistical
techniques are computationally inexpensive, they conclude that it is worthwhile using them.
With a proper MOS, systematic errors remain low. Thus, there remain two types of random
errors still occurring in wind power forecast: amplitude and phase errors. The amplitude
error misjudges the intensity of a meteorological event and the phase error misplaces the
event in time. Therefore, since the wind power forecast is affected by both the intensity and
occurrence of the wind, work is needed to assess the uncertainties of models on the amplitude

and the phase errors of wind speed forecasts.

1.3 Reference models

When comparing different NWP models to obtain their performance evaluation, it is
interesting to first define a reference model using only simple physical considerations
(Madsen et al., 2004). Ten years ago, persistence models, where the future wind is assumed
to be the same as the last measured wind speed, along with climatology predictions, using the
annual mean wind speed, were used as reference models. These basic models were used for
their simplicity and because persistence is excellent for short-term forecasts up to 3 - 6 hours
(Landberg and Watson, 1994; Liu, 2009). This is explained by the fact that the atmospheric
motion is driven by pressures systems which changes much more slowly than wind

turbulence, since the time scale of pressures systems is in the order of days.



More recently, Nielsen et al. (1998, p. 29) defined a new reference model because they found
that “it is not reasonable to use the persistence model when the forecast length is more than a
few hours.” Thus, they merged both the persistence and the climatology prediction models.
To get the new reference model, they linearly combine the old reference models for each
forecast horizon. This new model performs better than both individual models for all time
horizons. Since then, this new reference model is used to compare the different NWP models
being analyzed for different time horizons. Note that the new reference model has to be
calibrated with measured time series to determine the statistical parameters using the
autocorrelation of the wind speed from measured time series (Madsen et al., 2004).
Therefore, it is important to split the database and clearly define the calibration data (as for
any learning model) and the test data for the error analysis. Then the performance evaluation

of the model has to be done with the test data.

14 Performance evaluation of models

Before carrying out the performance evaluation with different criteria, it is important to
verify the quality of the data. One can perform a visual check of the data to ensure that there
are no outliers within the data (e.g., zero wind speed due to icing of an anemometer) or, if
data are available from different measurements, they can be compared directly to identify the
outliers. Kariniotakis et al. (2004) also points out that it is necessary to use common data
(NWP, power production and atmospheric measurements) and common data format for
proper model comparison. Then, in the standardized protocol for performance evaluation of
prediction models (Madsen et al., 2004), a guideline is presented to properly use statistical
criteria to determine the power prediction uncertainties. It is recommended using many

statistical criteria, to express different error characteristics.

In order to evaluate the errors directly in terms of amplitude, it is recommended to use the
MAE, while the STD is used to evaluate the error distribution to get the confidence interval
based on the Gaussian distribution. Note that larger absolute errors have larger effects on the

RMSE than on the MAE. Therefore, when used along with the MAE, the RMSE can be used



to obtain details on the error distribution. The bias can still be computed to verify the
systematic error, since there is no perfect MOS. In all cases, it is important to normalize
these criteria with the installed power capacity of the wind farm or the mean wind speed.
This operation makes the results independent from the wind farm or the site itself. When the
objective is to compare prediction models, it is recommended to use the improvement
criterion, also referred to as “skill” score. This criterion is defined as the difference between
the error of the reference model (€,.f) and the analyzed model error (€,,,4e1), Normalized

with the reference model error (€p¢f).

€ —€
Imodel = ( ref model)/eref = Imoder € ]—o0, 1] (1.1)

The improvement can be computed for each of the criteria presented above. An
improvement score of zero means that the model performs as well as the reference model.
Conversely, a perfect model would get a score of one; while a negative score means that the

reference model performs better than the analyzed model.

Madsen et al. (2004) also recommend the use of exploratory analyses to detail the uncertainty
analysis. A histogram plot or a cumulative squared error graph can help to illustrate different
error tendencies or evolution in time. These analyses can point out a time period that needs
further investigations (due to changes in the NWP). Kariniotakis et al. (2004) use the
forecast with errors lower than 10% to visually compare the analyzed models in a graph.
They also use the minimum and maximum values of the errors as exploratory analyses to
characterize the model uncertainties. The general results of the performance evaluations
need to be expressed for a precise time horizon (generally 6 or 12 h), for some time periods

(seasonal) or for meteorological events.



1.5 Benefit of ensemble forecasts

It is well known that the accuracy of the NWP models is a major concern in wind power
predictions. Doubling the spatial and temporal resolution of the NWP models would increase
the computational time by a factor of at least eight. But the exact same computational time
could be used to run an ensemble of eight members (combining different NWP models) in
order to obtain a better forecast. A solution to this problem is to use NWP ensembles to
significantly reduce the RMSE. It is shown that a combination of an ensemble of predictions
outperforms the individual NWP members (Lange et al., 2006) and ensemble forecasts can
also give the confidence level of the predictions. Such combination is done by statistically
weighting the NWP for different weather classes. Ensemble forecast can be achieved either
by using different NWP models, by using different parameterization of the same model or by

varying the input data (Nielsen et al. 2004 and Nielsen et al. 2007a).

Nielsen et al. (2007a) point out that the operational robustness (reliability or accuracy) of a
model is highly increased by using data from different sources. Nielsen et al. (2004) also
achieve ensemble forecasts using different parameterization of the same model or by using
perturbed initial conditions. Statistical methods combining the NWP and the new reference
model is another way to get sophisticated bias correction (e.g. Wind Power Prediction Tool
model). Based on a combination of the different forecast properties (variance, kurtosis,
skewness, etc.) and the weather conditions, with low linear correlation between the different
members, ensemble forecast almost guarantee improvements of the model (Nielsen et al.,
2007b). In this work, it is also recommended to realize ensemble forecast using only few
good uncorrelated forecasts, rather than a multitude of correlated forecasts. The statistical
weighting and bias correction of the ensemble forecast can be computed using error, variance
or meteorological characteristics criteria. Like MOS, ensemble forecast models tend to give
better results (lower MAE and higher correlation) with regular recalibration or online auto-

calibration (Nielsen et al., 2007b).



1.6 Challenges to overcome

In most wind farm applications, the end users (wind farm managers, transmission system
operators, energy service suppliers and traders) are not the ones who run the NWP models;
rather, they only use the predictions. The end users experience directly the consequences of
the forecast errors, such as the variation in the price of energy on the market, supply
contracts, operating costs and security concerns. Therefore, it is important to provide an

appropriate estimate of the forecast error.

Many studies show that it is difficult to forecast sudden and pronounced changes in the
weather produced by meteorological events such as the passage of a meso-scale front. For
instances, Lange and Heinemann (2003) show that forecast errors are highly related to the
local meteorological events. Days with typical meteorological conditions can be classified
using synoptic meteorology (historical data including pressure as well as wind speed and
direction). They use one average error value per day to compare the different groups and
they find a profound difference within different weather situations. Dynamic events, like low
pressure systems, produce much higher forecast uncertainties than quasi static ones, such as
high pressure systems. Cutler et al. (2007) have similar conclusions about wind power ramps

(high phase and amplitude errors).

Kariniotakis et al. (2004) point out an important diurnal variations of the MAE for some
European NWP models, indicating that there is still a lot of work to do to integrate surface
heat fluxes (Landberg and Watson, 1994) and temperature stratification (Lange and
Heinemann, 2003) in these models. These phenomena related to atmospheric stability are
still quite difficult to predict. Similarly, Kariniotakis et al. (2004) observe that model
uncertainties are directly related to the terrain complexity. In another study, Nielsen et al.
(2007a) show that using planetary boundary layer stability measures derived from
meteorological forecasts improves the forecast for complex sites. These results suggest
including some physical parameters (atmospheric stability or terrain characteristics) in MOS

to get more accurate predictions, especially for sudden meteorological events.
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Subsequently, according to the needs of electrical systems operators, the objective of the
present study is to develop a GMOS which integrates terrain and wind characteristics to
improve the wind forecast of a NWP model, particularly in complex terrain. Also, it is
intended to integrate stability as derived from meteorological forecast in the vertical
interpolation of the wind speed forecast. The purpose of these assessments is to contribute to
the development of the forecast model used at Environment Canada by applying such
techniques and notably by identifying meteorological events with high uncertainties by
means of an evaluation protocol. Finally, phase, amplitude and systematic errors
decomposition intend to help defining NWP research priorities in improving wind energy

forecasting.



CHAPTER 2

MEASUREMENT DATA

At the North Cape site, the WEICan records wind speed at six different heights as well as
wind direction, temperature and barometric pressure using a mast located at 47.054082 N,
63.99865 W (see Figure 2.1). Except for the atmospheric pressure, the exact same data is
gathered at the Bouctouche tower located at 46.472217 N, 64.73915 W (see Figure 2.2).
These 60 m towers have respectively a 0.3 m (triangular lattice tower) and 0.152 m (tubular
tower) width. Figures 2.1 - 2.2 present the location of both sites: the cross represents the
anemometer tower while the grid represents a subset of the Environment Canada GEM-LAM
horizontal grid for wind predictions. Tables 2.1 - 2.2 present the different sensor types and

their configuration on both towers.

Figure 2.1 North Cape site location (PEI, Canada).



Figure 2.2 Bouctouche site location (NB, Canada).
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Table 2.1 Sensor descriptions and positioning on the North Cape anemometer tower

# | Sensor model Height (m) | Boom length (m) | Orientation (°)
N1 |NRG Type 40 Maximum Anemometer 9.83 0.89 295
N2 | NRG Type 40 Maximum Anemometer 16.95 0.97 295
N3 |NRG Type 40 Maximum Anemometer 26.96 1.02 295
N4 | NRG Type 40 Maximum Anemometer 39.79 1.06 295
NS5 | Barometric Pressure Sensor 61205V 41.50 - -
N6 | NRG 200 Series Wind Vane 48.82 0.83 55
N7 | Campbell Scientific Temperature 49.22 - -
Probe-107/108

N8 | NRG Type 40 Maximum Anemometer 49.70 1.32 295
N9 |NRG Type 40 Maximum Anemometer 58.37 1.44 295

Note that the atmospheric measurements (10 minute averages and STD from 1Hz data),

along with the forecasts, use the same data format and the same time intervals which allows

proper model evaluation. It is important to note that the first year of the measurement data is
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used to train the different statistical modules that are implemented for both sites (Chapter 5).
Then, for the evaluation phase (Chapter 6), it is suggested to use at least eight month of data
(one complete year is recommended) in order to produce results that are representative of the
model behaviour in an actual wind power plant, which operates all year around. This
recommendation is based on the fact that model evaluation over shorter period than eight
months shows non representative results: insufficient evaluation data put emphasis on a
certain season, which is not desirable when assessing the evaluation of the general
performance of a model. Yet, two complete years of data (May 2007 to April 2009) are
available for the North Cape site, but only 22 month of data (July 2008 to April 2010) are
available for the Bouctouche site. Therefore, the first year of both time series is used for the

training phase and the remaining period is set as the validation database.

Table 2.2 Sensor descriptions and positioning on the Bouctouche anemometer tower

# |Sensor model Height (m) | Boom length (m) | Orientation (°)
B1|NRG Type 40 Maximum Anemometer 10.0 1.5 315

B2 | Campbell Scientific Temperature Probe 3.0 - -

107/108

B3 | NRG Type 40 Maximum Anemometer 30.0 1.5 315

B4 |NRG Type 40 Maximum Anemometer 40.0 1.5 315

B5 |NRG Type 40 Maximum Anemometer 50.0 1.5 315

B6 | NRG 200 Series Wind Vane 58.0 1.5 345

B7 |NRG Type 40 Maximum Anemometer 60.0 1.5 315

B8 | NRG Type 40 Maximum Anemometer 60.2 1.5 135

With the training and validation databases set for both sites, it is now possible to perform the
data quality analysis. Since measurements from different sensors are available, a simple
methodology is used in section 2.1 to identify outliers. Then, in section 2.2, an analysis is
performed to select the appropriate anemometers that have to be used to test and validate the

NWP model. In Tables 2.1 - 2.2, it is possible to note that every sensor is mounted no closer
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than 1.5 times the tower width to avoid high flow distortion due to the mast (Kaimal, 1994)
which is analyzed in detail 