ECOLE DE TECHNOLOGIE SUPERIEURE
UNIVERSITE DU QUEBEC

MASTER THESIS PRESENTED AT
ECOLE DE TECHNOLOGIE SUPERIEURE

AS A PARTIAL REQUIREMENT
FOR THE OBTENTION OF
MASTER OF ENGINEERING
M. ING.

BY
MARC-ALEXIS COTE

AN ANALYSIS OF QUALITY MODELS AS AFOUNDATION FOR
SOFTWARE QUALITY ENGINEERING

MONTREAL, MARS 1, 2005

© 2005 Marc-Alexis Coté All rights reserved

THIS THESIS HAS BEEN EVALUATED
BY A JURY COMPOSED OF :

Mister Witold Suryn, professor and research director
Facuity of Software Engineering and IT at Ecole de technologie supérieure

Mister Pierre Bourgue, professor and president of the jury
Faculty of Software Engineering and IT at Ecole de technologie supérieure

Mister Claude Y. Laporte, professor
Faculty of Software Engineering and IT at Ecole de technologie supérieure

THIS MEMOIR HAS BEEN DEFENDED BEFORE A JURY
ON FEBRUARY 1, 2005
AT ECOLE DE TECHNOLOGIE SUPERIEURE

ANALYSE DE MODELES DE QUALITE EN TANT QUE FONDATION A
L'INGENIERIE DE LA QUALITE DU LOGICIEL

Marc-Alexis Coté
SOMMAIRE

L'ingénierie de la qualité du logiciel (Software Quality Engineering) est une discipline
émergente dont le principal champ d'activité est 'amélioration de la qualité dans les
systémes a base de logiciels. Il est important que cette nouvelle discipline soit assise
sur une base solide prenant la forme d'un modele de qualité bien adapté a ses besoins.
Afin de cerner correctement ces besoins, la signification de ce que représente la qualité
est explorée lors d'une revue de la littérature scientifique sur ce sujet. Il est convenu
que l'ingénierie de la qualité du logiciel nécessite un modele de qualité possédant les
caractéristiques suivantes: facilite autant la définition des exigences de qualité que
I'évaluation de la qualité, exhaustif et extensible, utile tout au long du cycle de vie. Le
but de cette recherche est d'identifier un modéle de qualité applicable a l'ingénierie de
la qualité du logiciel. Afin d'atteindre ce but, les modéles de qualité reconnus par le
milieu universitaire et l'industrie sont comparés en évaluant leur appui pour l'ingénierie
de la qualité du logiciel. ISO/IEC 9126 est sélectionné comme étant le modele le plus
prometteur a ce sujet. A la suite d'une analyse approfondie du cadre du modeéle et des
mesures y étant attachées, il est conclu que méme si le cadre appuyant le modéle
ISO/IEC est conforme aux besoins, une quantité considérable de mesures ne satisfont
pas les exigences. La raison de cet échec est principalement attribuable au fait qu'une
majorité des mesures ne sont pas clairement utilisables pour définir des exigences de
qualité. Des recommandations sont étayées afin de rectifier la situation.

AN ANALYSIS OF QUALITY MODELS AS A FOUNDATION FOR SOFT
QUALITY ENGINEERING

Marc-Alexis Coté
ABSTRACT

Software Quality Engineering is an emerging discipline that is concerned with improving
the approach to software quality. It is important that this discipline be firmly rooted in a
quality model satisfying its needs. In order to define the needs of this discipline, the
meaning of quality is broadly defined by reviewing the literature on the subject.
Software Quality Engineering needs a quality model that supports the specification of
guality as well as its evaluation; it needs a quality model that is exhaustive and
extensible; it needs a quality model that is widely applicable and usable throughout the
software lifecycle. The goal of this research is to identify a quality model suitable for
such a purpose. In order to attain this goal, quality models are comparatively evaluated
with respect to their support of Software Quality Engineering. ISO/IEC 9126 is selected
as the most promising model and further evaluated. Through a more in depth analysis
of the standard and its associated measures, it is found that although the framework
behind ISO/IEC 9126 is clearly supportive of the needs of Software Quality
Engineering, the quality measures associated with the model largely fail to meet
expectations. Measures were found to be unsatisfying because a majority of them fail
to be useful in setting quality goals and requirements. Recommendations on how to
improve the measures are presented in detail.

ANALYSE DE MOPELES DE QUALITE EN TANT QUE FONDATION A
L'INGENIERIE DE LA QUALITE DU LOGICIEL

Marc-Alexis Coté
RESUME FRANCAIS

Au cours de la derniére décennie, l'attention de lindustrie du logiciel s’est déplacée de
Fajout continuel de nouvelles fonctionnalités vers 'amélioration de la qualité. Avec notre
dépendance toujours croissante en tant que société a I'égard des logiciels, cette
tendance vers la qualité ne fera que s’accentuer avec le temps.

Afin de bien cerner les besoins du client, il est généralement convenu qu’'une bonne
pratique est d’établir de fagon plus ou moins formelle ses exigences spécifiques.
Traditionnellement, les exigences de ce dernier ont été classées en deux catégories
distinctes, soit d'une part les exigences fonctionnelles, et d'autre part celles dites non
fonctionnelles. Avec cette poussée vers des logiciels de qualité, une nouvelle catégorie
d’exigences est en train de voir le jour, soit celles de qualité. Pour bien cerner les
exigences de qualité du client, il est nécessaire que la qualité en tant que telle soit bien
définie. Cette définition ne peut malheureusement pas prendre la forme d’un simple
énoncée du genre : « La qualité du logiciel est mesurée par le niveau d’observance des
exigences du client ». La qualité se doit d’étre définie par un modéle complexe en
décrivant tous les tenants et aboutissants. Malheureusement, cette lancée vers la
qualité du logiciel n’est pas appuyée par un modéle de qualité permettant tout autant la
définition des exigences de qualité que I'évaluation subséquente de leur respect dans
le produit final.

Le but de ce travail est d’identifier un modéle de qualité qui pourrait servir de base a
'amélioration de la qualité des logiciels d’une fagon continue, systématique, disciplinée
et quantifiable (Suryn, 2003). Afin d’'atteindre ce but, les étapes suivantes seront
suivies :

o Une revue de Ila littérature pertinente au sujet de cette recherche permettra
d’établir une définition largement acceptée de ce qu’est la qualité.

o En utilisant les prémisses établies lors de ia revue de la littérature, quatre
modéles de qualité reconnus par le milieu universitaire et I'industrie seront
analysés.

o Des quatre modéles précédents, une analyse en profondeur suivie d'une
évaluation seront conduites sur le modéle le plus prometteur.

o Les résultats de cette derniére étape seront analysés sous la forme d'une
discussion et des recommandations seront émises.

Ce résumé survolera ces guatre étapes.

Revue de ia littérature

II fut mentionné précédemment qu'une tendance émergente dans le domaine de
lingénierie du logiciel est d'établir des exigences de qualité. Suryn (2003), dans un
recensement des principaux écrits utilisés pour enseigner Pingénierie du logiciel,
constate gu’aucun ne reconnait I'existence de telles exigences. Il constate de plus
guaucun de ces ouvrages de référence ne reconnait implémentation de la qualité
comme un effort fortement lié au cycle de vie d'un logiciel. Cela le méne a définir
l'ingénierie de la qualité du logiciel, une discipline a laquelle la littérature fait souvent
référence, mais dont la portée est souvent floue, comme suit:

“The application of a continuous, systematic, disciplined, quantifiable
approach fo the development and maintenance of quality of software
products and systems; that is, the application of quality engineering to
software.”

Cette méthode se doit d'étre solidement appuyée par un modéle de qualité.
Malheureusement, un recensement des écrits traitant de la qualité des logiciels nous
laisse croire qu'il existe un schisme profond dans l'industrie au sujet de la définition de
ce concept. Traditionnellement, I'évaluation la qualité s’est limitée a la mesure du
niveau d’observance des exigences du client. Cette approche découle du milieu
manufacturier ou des milliers, voir des millions de piéces sont produites et doivent étre
identiques afin d’assurer leur interopérabilité. Il est de Pavis de plusieurs gu’une
définition plus large est nécessaire pour I'ingénierie du logiciel, car diverses spécificités
de la programmation sont différentes de celles d'une chaine de montage. En effet, ie
probléme n’est pas de produire des millions d’exemplaires identiques, mais bien de
créer un logiciel d'une qualité certaine. De I'avis de Kitchenham et Pfleeger (1996), la
qualité se manifeste sous 5 perspectives :

» aspect transcendantal reconnait que la gualité a un élément métaphysique
non quantifiable. Il s’agit d’'un idéal vers lequel tous veulent se diriger, mais que
nul ne peut atteindre complétement.

» 'aspect de ['utilisation reconnait que la qualité a trait a Papplicabilité du produit
par rapport a un contexte d'utilisation.

o Laspect manufacturier reconnait que la qualité est aussi appréciée en
mesurant le niveau d’observance des exigences du client.

* L'aspect appelé « produit » reconnait que la gualité peut étre appréciée en
mesurant les qualités inhérentes d’un produit.

« L'aspect de la valeur reconnait que les perspectives énumérées ci-dessus
peuvent avoir une valeur différente pour divers usagers.

Vi

Traditionnellement, les différents efforts pour atteindre la qualité ont eu tendance a se
concentrer sur un ou l'autre de ces aspects. Par exemple, les modéles comme le
Capability Maturity Model (CMM) tendent a metlre une emphase sur l'aspect
manufacturier. D'autres croient qu'en infusant des caractéristiques de qualité a un
produit, le résultat manifestera des valeurs probantes de qualité. Il s’agit 1a d’'une
emphase sur l'aspect produit. La premiére prémisse sur laguelle s’appuie ce travail
stipule qu’'un modéle de qualité visant & appuyer lingénierie de la qualité du logiciel
doit reconnaitre 'importance de chacun de ces 5 aspects. Une seconde prémisse
précise qu’il ne suffit pas que le modéle permette I'évaluation de la qualité; il doit
également appuyer la découverte et la définition d’'exigences ayant trait a2 cette
derniére.

Sélection d’'un modéle de qualité

L'aspect le plus important d’'un modéle devant appuyer l'ingénierie de la qualité du
logiciel est qu'il permette autant I'évaluation de la qualité que la définition d’exigences
ayant trait a celle-ci. U'IEEE (I[EEE, 1998) définit ces deux éléments comme étant
respectivement 'approche du bas vers le haut (bottom to top) et 'approche du haut
vers le bas (top to bottom). L’évaluation de la qualité, soit 'approche du bas vers le
haut, est inhérente a tout modéle de qualité. En nous inspirant du standard IEEE 1061,
nous avons formulé trois questions nous permettant d’évaluer le support d'un modéle
de qualité pour la définition des exigences de qualité :

e Est-ce que le modéle peut étre utilisé t6t dans le cycle de vie pour définir des
facteurs de qualité importants?

e Est-ce que les exigences de qualité établies a I'aide du modele peuvent étre
communiquées de facon efficace vers le personnel technique chargé de les
implémenter?

o Est-il possible d’identifier des mesures qui permettront de vérifier
Fimplémentation de ces exigences?

Une évaluation des modéles de qualité de McCall (1977), Boehm (1978), Dromey
(1995) et ISO/IEC 9126 (2001a), a l'aide de ces guestions, nous permet de conclure
que seul ISO/NEC 9126 peut appuyer l'ingénierie de qualité. De plus, ce modéle, séparé
en différentes parties, est le seul qui reconnait les différentes perspectives de la qualité
mentionnées ci-dessus. Une étude plus approfondie est nécessaire afin de vérifier si ce
support se manifeste dans tous les aspects du modéle.

Analyse et évaluation de ISO/NEC 9126

L'analyse préliminaire conduite précédemment nous a permis de conclure gu’a
premiére vue, le modéle proposé par le standard ISO/IEC 9126 semble étre une
fondation crédible pour lingénierie de qualité. Avant d’en arriver & une conclusion
définitive, une étude approfondie se doit d’étre entreprise.

vii

Une analyse détailiée du standard ISC/IEC 9126-1 nous permet de relever les extraits
de la norme suivanis:

1. The model must be usable in "defining qualily requirements.” (page iy,

paragraphe 3)

2. The model must be "applicable to every kind of software.” {(page 1,
paragraphe 3)

3. The model must "provide consistent terminology.” (page 1, paragraphe
3)

4. The quality model must be usable for setting quality goals for software
products and intermediate products.” (page 6, paragraphe 8)

5. The model should be "hierarchically decomposed into a quality model
composed of characteristics and subcharacteristics.” (page 6,
paragraphe 8)

6. The model must be predictive. This means that Internal Quality should
be predictive of External Quality. Likewise, External Quality must be
predictive of quality in use. (page 3, figure 2 et page 4, figure 3)

7. Conformance to the model shall be judged either by the usage of the
characteristics and subcharacteristics or by a mapping to those
characteristics and subcharacteristics. (page 2, clause 2)

Il s’agit la de promesses faites aux utilisateurs quant aux caractéristiques que posséde
le modéle dans son ensemble. Les points 1, 4 et 6 demandent une vérification plus

poussée.

Il se doit d’étre souligné que la norme ISO/IEC 9126 est séparée en quatre parties
interdépendantes. La premiére partie décrit le modéle de qualité dans son ensemble,
alors que les trois autres définissent les aspects de qualité interne, externe et
d’utilisation ainsi que les mesures y étant rattachées. Les trois aspects sont reliés
ensemble par un modéle prédictif qui a pour point d’entrée la qualité d'utilisation (voir la
Figure 12, page 40). En principe, la définition des exigences quant a la qualité
d’utilisation peut permettre de découvrir une quantité considérable d'exigences ayant
trait a la qualité externe. Il en va de méme pour la qualité externe et la qualité interne.
Lors de l'implémentation du logiciel, la qualité interne peut étre utilisée pour prédire la
gualité externe tandis quela qualité externe, quant a elle, peut servir a prédire la qualité
d'utilisation. La qualité d'utilisation est donc le point d’entrée et le point de sortie de
lingénierie de qualité. Elle représente en soi le résultat que les utilisateurs exigent et
l'objet qu'ils mesurent. L'analyse qui suit porte donc sur cet aspect particulier du
standard.

Afin de vérifier si les promesses d'ISONEC 9126 sont bel et bien réalisées dans
Paspect de la qualité d’utilisation, les mesures associées a ce dernier sont étudiées
selon quatre angles d’analyse. Ces quatre angles, inspirés du standard IEEE 1061
(IEEE, 1998), sont les suivants :

vii

e L'impact de la mesure est évalué. La mesure de l'impact permet d'apprécier ia
capacité de la mesure a discriminer la qualité.

° Le cout reiatif de la mesure est rapidement estimé. Un colt trop élevé pourrait
représenter un frein a l'utilisation.

« La pertinence de la mesure comme exigence de qualité est analysée.

e La place de la mesure dans le modele prédictif préconisé par ISO/IEC 9126 est
évaluée.

L'annexe 1 présente en détail les résultats de cette analyse. L.e fableau XVIiI (voir page
49), qui résume cette annexe, permet de constater que plus de la moitié des mesures
ne sont pas clairement utilisables t6t dans le cycle de vie pour définir des exigences de
qualité. Par contre, toutes les mesures hormis une semblent avoir leur place dans le
modeéle prédictif. Afin de pallier a cette situation, les annexes 2 et 3 présentent des
améliorations possibles aux mesures jugées plus faibles.

Discussion, Conclusion et Recommandations

A la suite de I'analyse détaillée conduite précédemment, il ne fait aucun doute que le
standard ISO/IEC 9126, dans son texte et son intention, appuie les idées et les besoins
de lingénierie de qualité du logiciel. Cependant, les mesures, qui sont en fait
'implémentation de cette intention, ne répondent pas a ces besoins. De plus, d’autres
études font la démonstration qu'il n’est pas clair que les mesures et les caractéristiques
proposées forment un ensemble exhaustif. Finalement, il n'est pas possible de prouver
formellement les liens entre la qualité d'utilisation et la qualité externe. A partir de ces
constatations, trois recommandations visant a améliorer applicabilité de ISOMAEC 9126
a 'ingénierie de la qualité émergent:

* L'applicabilité des mesures pour la définition des exigences t6t dans le cycle de
vie doit étre améliorée.

o Vérifier Fexhaustivité de chacune des parties du standard avec des modeéles
spécifigues a chacun des aspecis.

o Découvrir au sein d'études de cas concises les liens réels entre la qualité
d'utilisation et la qualité externe en s’inspirant des liens proposés dans ce texte.

Cetie recherche s’est montrée trés critique a 'égard des mesures associées a 'aspect
de la gualité d'utilisation du modéle ISO/IEC 9126. La question suivante est alors
pertinente : est-ce que ce jugement sévére face aux mesures de la qualité d’utilisation
fait que le modéle ISO/NIEC 9126 n'est pas applicable a l'ingénierie de qualité du
logiciel? La réponse a cette question est négative. Les mesures forment une partie dite
« informative » du standard. En d’aufres mots, leur utilisation n'est pas obligatoire. A la

suite de cette recherche, il est possible de concliure gue le modéle de qualité exposé
dans ISO/IEC 9126-1 est applicable a Pingénierie de qualité du logiciel selon les
critéres énumérés précédemment. Une amélioration des mesures ne fera qu'améliorer
ce verdict et faciliter Funion du standard a ce nouveau courant de pensée.

AVANT-PROPOS

Le domaine de lingénierie du logiciel étant de fagcon prédominante anglophone, la
langue anglaise fut choisie pour la rédaction de ce mémoire afin de ['offrir dans sa
totalité a un public plus étendu. Un tel choix nous permetira également de publier plus

rapidement les résultats présentés dans ce mémoire.

Nos recherches de maitrise ont tout d'abord porté sur la contribution a la qualité du
logiciel des méthodes dites “Agiles” par rapport aux méthodes traditionnelies
d'ingénierie du logiciel. Comme il est souvent le cas dans le domaine de la recherche,
nos investigations nous ont amenés a nous questionner sur l'influence des différents
modéles de qualité sur le choix d'une méthode d'ingénierie. Il nous apparaissait alors
possible que le clivage actuel entre les méthodes “Agiles” et les méthodes
traditionnelles soit causé par une vision différente de la qualité. Les protagonistes des
méthodes “Agiles” disent souvent que ce qui est important pour un client se résume a
trois dimensions: le temps nécessaire a la construction du logiciel, le codt du logiciel, et
la qualité du produit final. Il s'agit 1a d'une base de comparaison intéressante entre les
differentes méthodes dingénierie. Bien que les deux premiéres variables soient
guantifiables, une évaluation claire et précise des modéles de qualité permettant autant
la définition que I'évaluation des exigences de ce paramétre n'a pas été trouvée dans la

littérature. Ce travail de recherche vise & combler cette lacune.

REMERCIEMENTS

Je tiens a remercier le Conseil de recherches en sciences naturelles et en génie du

Canada et l'institut National d'Optigue pour leur précieux soutien financier.

Je tiens également & remercier Monsieur Witold Suryn, professeur a I'Ecole de
Technologie Supérieure, pour avoir dirigé ce mémoire et mis a notre disposition les

résultats de ses recherches sur l'ingénierie de la qualité de logiciels.

FOREWORD

The first research subject for this thesis was the influence of software development
methodologies on the resulting software quality. The goal was to find a differentiating
factor between the emerging “Agile” methodologies and the more traditional
development methodologies. As is often the case in research, such investigations led to
questions about the influence of quality models on the choice of an engineering
methodology. [t then seemed probable that the rift between Agile methodologies and
more traditional methodologies could be caused by a different vision of what constitutes
quality. The proponents of Agile methodologies often assert that there are three
dimensions that are of importance for a client: the time it takes to produce software, the
amount of money it costs to produce software, and finally the quality of the resulting
product. These three dimensions seem to form a reasonable foundation on which to
compare software engineering methodologies. While the first two dimensions can be
quantified, a comprehensive evaluation of the different quality models that allow for
both the definition and evaluation of the requirements related to the quality dimension

has not been found in the literature. This research aims to close this gap.

TABLE OF CONTENTS

Page

SOMM AR . ..o e e et ii
BB S T R A T . oo iii
RESUME FRANGAIS. ...ttt iv
AV AN T P RO P O S . .o e e e et X
REME R CIEMEN T S oo et Xi
FOR MY O R D . ..o e e ettt e e e xXii
A BLE OF CONT EN T S .. oottt ettt v et e e e e e s er e e aeenen xiil
L ST OF TABLES ..o e e e e s XV
L ST OF FIGURES . ..ot XVi
INTRODU CTION . . e e et re e e e 1
Limitations Of the r@SCaICH. ... oo e 2
CHAPTER 1 LITERATURE REVIEW. ..o 3
CHATPER 2 SELECTION OF AQUALITY MODEL. ..o 14
2.1 McCall's quality model............ooooi e 16
2.1 DS CIIPON. ... et e e a e e e e e 16
2.1.2 Discussion and evalualion.. ... 20

b IR T 07014 To: 11711 | YOO PR 21

2.2 Boehm's quality model..............oiiiiiiiii e, 21
2.2.1 DeSCHPON......oeiiiiiieiieeee e s 21
2.2.2 Discussion and eValUualion........cccoovueeieeieree et en e 25
2 T 070 1o Te: |11 1o o TR UTR PR RUPR 26

2.3 Dromey's quality model.............cooiiii 27
231 DOt ON. . e e 27
2.3.2 Discussion and evValualion.oooe e 29
2.3.3 G ONCIUSION. e et 30

2.4 ISOMEC 9126 quality model.............coo o, 31
2.4.1 DeSCHPHON......oiiiiii e 31
2.4.2 Discussion and evalUation. ... e oo 41
N JC T O Y Tt [111 Co o RO OO TS 43
CHAPTER 3 ISOMEC 9126 AS AFOUNDATION FOR QUALITY ENGINEERING. 44
3.1 Analysis MethodolOgY.cooov v 44

3.2 Analysis of the measures of Quality inUse...........cooe i 46

33 ISOMEC 9126 and Requirements ENgiNEering.......ccoccvvveeeeieeiiiienneeiecnneen. 53

34 ISOAEC 9126 and the exhaustiveness Criterion. ..o 54

Xiv

3.5 ISOMEC 9126 as a predictive model........ccccoooviiiiiieeiiiiecee e, 55
3.6 CONCIUSION. ...t e e et e e e st e e e e s e e e eeeeanes 59
DISCUSSION. ..ot s e ettt e e eanes 60
Analysis of the methodology.........c.ooo oo 60
Analysis of the resulS..........ooooiiii e 63
CONCLUSION ...ttt et et e e et e e e e ea s e eeneeeeenneean 865
RECOMMENDATIONS ...ttt e e e e e et eaes 87
APPENDICES.o e e 68
1. Analysis of ISO/IEC 9126-4 Quality in Use Measures........................... . 68
2: Suggested Improvements to ISO/IEC 9126-4............ccoiiiiiiiiiiie e, 100
3: Revised ISO/IEC 9126-4 Measure Tables..............cc.oooe e 111

BIBLIOGRAPHY ...t s 119

Table |
Table li
Table Il
Table IV
Table V
Table VI
Table Vi
Table Vil
Table IX
Table X
Table Xi
Table Xii
Table Xill
Table XiV
Table XV
Table XVi
Table XVii
Table XVIHi
Table XIX

LISTE OF TABLES

Page
Survey of books on software engineering........cccccovvvrecicieiiii e, 7
McCall's quality factors. ... 18
McCall's measurable properties...........cccoei oo 19
Evaluation of McCall's model.............ooooiiieiiii e 21
Boehm's quality factors. ... 23
Boehm's measurable properties..........c.ccccoiiiiiiii e, 24
Evaluation of Boehm's model.............cccccooii e 26
Evaluation of Dromey's model...............ccoiiiiiiii e, 31
Definition of Quality Characteristics............c.cccoo i 35
Definition of Efficiency Subcharacteristics.............cocccoccciciniiii. 35
Definition of Functionality Subcharacteristics............cccccccoeevi . 36
Definition of Reliability Subcharacteristics...............coccooiiiiiiiiiiii. 36
Definition of Usability Subcharacteristics..............cccooeeeiiiiiieiiiii. 37
Definition of Maintainability Subcharacteristics................ccccocivinen. 37
Definition of Portability Subcharacteristics.............cccooveeeiveieiL 38
Definition of Quality in Use Characteristics...................ccco i, 39
Evaluation of ISOMEC 9126.........cooi e 43
ISONEC 9126-4's suitability for Quality Engineering............cc..cccoeevee.. 49

Links from Quality in Use to External Quality..............ccocco i 57

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17

LIST OF FIGURES

Page
Focus is moving towards quality requirements..................cooiii 1
Traditional activities in the software development lifecycle..................... 10
Traditional approach to quality prediction.................ooooeiiiicc . "
An approach to Quality Engineering - 1............coooooi i 12
An approach to Quality Engineering - 2. 13
McCall's quality model...........cccooiii e 17
Boehm's quality model.............cocuiiiiiiiiiiiiic e 22
Quality evaluation of a variable component....................... 28
Dromey's Quality Model..............cocooiiiiii e 29
3-layer model for internal and External Quality.................c.cccoooenie . 34
QualityinUse model..............ooooiiiiiiiii e 38
Relationships between the different aspects of quality........................... 40
Relationships between ISO/IEC 9126 and the perspectives of quality...42
ANALYSIS @NGIES.....coi i 47
Possible measure ratings..........cccovvvi e 48
Predictive nature of quality............ccooi i 55
Pyramid-like approach........ ..o 60

INTRODUCTION

Over the last decade, the general focus of the software industry has shifted from
providing ever more functionalities to improving what has been coined the user
experience. The user experience refers to characteristics such as ease of use, security,
stability, efc. Improvements in such areas lead to an improved qualify as perceived by
the end users. Some software products, most notably Microsoft's next iteration of their
Windows operating system, have been delayed by as much as two years in order to
improve their quality. There is no doubt that software quality is becoming an
increasingly important subject in software engineering.

Traditionally, software requirements have been classified either as functional or non-
functional with eventual notions of quality hidden in the latter. As the industry focus is
shifting from functionality to improving quality, a new category of requirements are
emerging.

Functional

Software
Requirements

Non-
Functional

Functional

Software ™
Requirements

Non-
Functional

Quality

Figure 1 Focus is moving towards quality requirements

In order to define these new quality requirements, quality itself must be defined. The
role of the definition of quality is filled by what is called a quality model. Unfortunately,
the push towards software quality that can be observed in the industry today is lacking
a solid foundation in the form of an agreed upon quality model that can be used not
only to evaluate software quality, but also to specify it.

The primary objective of this research is to identify a quality model that can
serve as a basis for the improvement of software quality in a continuous,
systematic, disciplined and quantifiable way (Suryn, 2003). In order to atfain this
objective, the following process will be followed:

®

A review of the literature will allow for the observation of the state of the art in
the industry and the research community with respect to software quality. This
part of the thesis will identify possible causes for lacking software quality in the
industry and further stress the need for a solid foundation to the engineering of

quality.

o Using the premises established in the review of the literature, four quality
models recognized today will be described and evaluated with respect to their
suitability for the improvement of software quality. One model will be selected
for further analysis.

e An in-depth analysis and evaluation of the model that seems the most suited for

the improvement of quality will be conducted.

o The resuit of the analysis will be presented in form of a discussion and

recommendations.
Limitations of the research
The foliowing limitations apply to this research:

o The goal of the preliminary analysis is to identify the best possible quality model
for Software Quality Engineering. As there are many quality models, the review
of all the quality models is beyond the scope of this project. Rather, four quality
models were selected for this preliminary analysis. McCall's (1977) and
Boehm's (1978) models were selected for their historical importance and
because they are at the root of some corporate quality models. Dromey's
(1995) model was selected because it presented a novel approach to software
quality. Finally, the ISO/IEC 9126 (2001a) quality model was selected because
of its importance as an international standard.

¢ The in-depth analysis could be subject to further limitations, depending on the
model that will be selected in the preliminary analysis. Should such limitations
be necessary, they will be detailed at the beginning of the in-depth analysis.

CHAPTER 1

ATURE REVIEW

The software engineering industry has long been diagnosed with a “quality problem”
(Glass, 1997; NIST, 2002; SEi, 2002). This quality problem can take different
incarnations: from monumental disasters related to software (Glass, 1997) to disastrous
economic losses. For example, a NIST report clearly blames lacking software quality
for losses of up to 60 billion US dollars in 2002 in the United States alone (NIST, 2002).
Discussion on how to rescive the quality problem in software engineering ieads to
heated and interesting debates because what exactly constitutes the quality of a
product is often the subject of hot debate. The reason the word quality is so
controversial is that people fail to agree on what it means. For some it is “[the] degree
to which a set of inherent characteristics fulfills requirements” (ISO/IEC 1999b) while for
others it can be synonymous with “customer value” (Highsmith, 2002), or even “defect
levels” (Highsmith, 2002). A possible explanation as to why any of these definitions fail
to garner a consensus is that they generally fail to recognize the different perspectives
of quality. Kitchenham and Pfleeger (1996), by reporting the teachings of David Garvin,
report on the 5 different perspectives of quality:

» The transcendental perspective deals with the metaphysical aspect of quality. in
this view of quality, it is “something toward which we strive as an ideal, but may
never implement completely.” (Kitchenham & Pfleeger, 1996);

* The user perspective is concerned with the appropriateness of the product for a
given context of use. Kitchenham and Pfleeger further note that “whereas the
transcendental view is ethereal, the user view is more concrete, grounded in

the product characteristics that meet user's needs.”;

= The manufaciuring perspective represents quality as conformance to
requirements. This aspect of quality is stressed by standards such as ISO
9001, which defines quality as “[the] degree to which a set of inherent
characteristics fulfills requirements” (ISO/IEC 1999b). Other models, like the
Capability Maturity Model (CMM) state that the quality of a product is directly

related to the quality of the engineering process, thus emphasizing the need for

a manufacturing-like process;

o The product perspective implies that guality can be appreciated by measuring
the inherent characteristics of the product. Such an approach often leads to a
bottom-up approach to software quality: by measuring some attributes of the
different components composing a software product, a conclusion can be

drawn as to the guality of the end product;

* The final perspective of quality is value-based. This perspeclive recognizes that
the different perspectives of quality may have a different importance, or value,

to various stakeholders.

One could argue that in a world where conformance to ISO and IEEE standards is
increasingly present in contractual agreements and used as a marketing tool (Adey &
Hill, 2000), all the perspectives of quality are subordinate to the manufacturing view.
This importance of the manufacturing perspective has increased throughout the years
through works like Quality is Free (Crosby, 1979) and the popularity of movements like
Six-Sigma (Biehl, 2001). The predominance of the manufacturing view in Software
Engineering can be traced back to the 1960s, when the US Department of Defense and
IBM gave birth to Software Quality Assurance (Voas, 2003). This has led to the belief
that adherence to a development process, as in manufacturing, will lead to a quality
product. The coroliary to this belief is that process improvement will lead to improved
product quality. According to many renowned researchers, this belief is false, or at least
flawed. Geoff Dromey states:

“The flaw in this approach [that you need a qualify process to produce a
quality product] is that the emphasis on process usually comes at the
expense of constructing, refining, and using adequate product quality
models.” (Dromey, 1996)

Kitchenham and Pfleeger reinforce this opinion by stating:

“There is little evidence that conformance to process standards guarantees
good products. In fact, the critics of this view suggest that process

standards guarantee only uniformity of output [...]” (Kitchenham & Pfieeger,
1996)

Furthermore, data available from so-called Agile (Highsmith, 2002) projects show that
high quality is attainable without following a manufacturing-like approach.

However, recent studies conducted at Motorola (Eickelman, 2003; Diaz & Sligo, 1997)
and Raytheon (Haley, 1996) show that there is indeed a correlation between the
maturity level of an organization as measured by the Capability Maturity Model and the
quality of the resulting product. These studies provide data on how a higher maturity

level (as measured by the CMM) can lead to:

o Improved error/defect density (i.e. the error/defect density lowers as maturity

improves)
* Lower error rate
» Lower cycle time (time to complete parts of the lifecycle)
» Better estimation capability

From these results, one could conclude that the “quality problem” is non-existent, that it
can easily be solved by following a mature process. However, these measured
improvements are directly related to the manufacturing perspective of quality.
Therefore, such quality improvement efforis fail to address the other perspectives of
guality. This might be one of the reasons that some observers of the software
development scene perceive the “quality problem” as one of the main failings of the
software engineering industry. Furthermore, studies show that improvement efforis
grounded in the manufacturing perspective of quality are difficult to scale down to
smaller projects and/or smaller teams (Laitinen, 2000; Boddie, 2000). Indeed, rather
than being scaled down in smaller projects, these practices are simply not performed.

Over the recent years, researchers have proposed new models that try to encompass
more perspectives of quality than just the manufacturing view. One such model was
proposed by Geoff Dromey (1995; 1996). Dromey's view of the quality of the end

product is that it is directly related to the quality of the artifacts that are a by-product of
the process being followed. Therefore, he developed different models that can be used
to evaluate the quality of the requirements model, the design model and the resulting
software. The reasoning is that if quality artifacts are conceived and produced
throughout the lifecycle, then the end product will manifest attributes of quality. This
approach can clearly be linked to the product perspective of quality with elements from
the manufacturing view. This is certainly a step forward from the manufacturing-only
approach described above, but it fails to view the engineering of quality as a process
that covers all the perspectives of quality. Pfleeger (2001) warns against approaches

that focus only on the product perspective of quality:

“This view [the product view] is the one often advocated by software metrics
experts; they assume that good Internal Quality indicators will lead to good
extemmal ones, such as reliability and maintainability. However, more
research is needed to verify these assumptions and to determine which
aspects of quality affect the actual product's use.”

The above observations illustrate the disagreements that exist in both the research
community and the industry on the subject of software quality. One thing is certain
however: it is difficult to measure something that has not been thoroughly defined.
Furthermore, in this day and age of rationalization, it is doubtful that something that is
not specifically required will be implemented. This reasoning leads to the first premiss
that is the basis of this work:

A possible contribution to a complete solution to the
quality problem in sofiware engineering is to establish
gquality requirements.

Premiss |

To the extent of the knowledge of the author, to date no methodology for establishing
quality requirements exists. In fact, quality requirements are not even a recognized
body of knowledge. A survey of the most popular books on software engineering, books
that are used to teach software engineering, shows that they fail to acknowledge quality

requirements.

Table |

Survey of books on software engineering
{Adapted from Suryn (2003))

Author Book Year

Van Viiet Software Engineering (2 edition) 2003
Pfleeger Software Engineering (3" edition) 2002
Leffingwell/Widrig | Managing Software Requirements, 1% and 2™ edition 1993,
2003

Lauesen Software Requirements 2002
Budgen Software Design 2003
Humphrey A Discipline for Software Engineering 2002
Ghezzi Fundamentais of Software Engineering 2002
Kendall Systems Analysis and Design 2002
Donaldson Successful Software Development 2000
Jarvis Inroads to Software Quality 1997
Kan Metrics and Models in Software Quality Engineering 2003
N/A SWEBOK 2003

Suryn (2003) in his analysis observes:

» None recognizes the implementation of quality as an effort that closely foliows
the life cycle;

> Only one recognizes that the implementation of quality is part of the

engineering process,

» None recommends that guality requirements be modeled at the same time as
functional requirements;

< None teaches how to impiement quality in the product;
> None offers advice, tool support or methodology to quality engineers;

In fact, most of these books view quality from the manufacturing and product
perspectives. The “quality problem” is thus easily solved by following a mature process

and performing reviews, tests and inspections. Leffingwell and Widrig (1999), in their
book on requirements engineering, only mention quality as an attribute of the use case
model, thus approaching Dromey's view of quality (i.e. something that should be
considered for all the products of the software engineering process). There is not a
single word on the quality attributes that should be a part of the end product. Sadiy, this
may be considered not only as the state of the practice, but also as the state of the art.

Consequently, one could question why while most people would agree on the
importance of software quality, very few tie its implementation to the software life cycle.
The unification of the software life cycle with the engineering of quality would manifest
itself in part by the establishment of quality requirements. This leads to the second
premiss that justifies the research presented in this thesis:

A possible reason for the absence of quality requirements
is that no quality model has yet been identified to serve as
a foundation for their definition.

Premiss Il

This premiss does not state that there exists no model suitable for establishing quality
requirements, but simply that no such model has been clearly identified in the literature.
Such a model could serve as a basis for the definition of quality requirements.

The goal of a quality model is in essence to define quality. While specific definitions
have been established for given contexts, there is no consensus as to what constitutes
quality in the general sense in software engineering. In such a situation, a model that
encompasses as many perspectives of quality would prove useful. The following
premiss defines the first requirement that a suitable model for the identification of

quality requirements should respect.

A quality model that is to be used as the foundation for the
definition of quality requirements should acknowiedge all
the perspectives of quality, namely transcendental, user,
manufacturing, product and value-based.

Premiss il

Another requirement that a quality model should respect is to have the ability to support
both the definition of quality requirements and their subsequent evaluation. This can be
explained by referring to the manufacturing perspective of quality, which states that
quality is conformance to requirements. Conformance to requirements implies that
something has to be defined and measured. The following premiss states this
concisely.

A quality model that is to be used as the foundation for the
definition of quality requirements should help in both the
specification of quality requirements and the evaluation of
software quality. In other words, it should be usable from
the top of the development process to the bottom, and from
the bottom to the top.

Premiss IV

Should such a model be identified, it could lead to a new approach to quality in
software engineering. Using such a model to identify and specify quality requirements
at the beginning of the lifecycle would mark a transition from a reactive approach to
quality towards a methodology that is proactive in the engineering of quality into
software. Such a methodology is taking shape in the teachings of Suryn (2003). He has
coined such a methodology Sofiware Quality Engineering and defined it as follows:

“The application of a continuous, systematic, disciplined, quantifiable
approach fo the development and maintenance of quality of software
products and sysfems; that is, the application of qualily engineering to
software.”

This can be contrasted with traditional software engineering which is comprised of the
following activities' (Pfleeger, 2001; Pressman, 2001; Lefiingwell & Widrig, 1999):

1 This representation of the activities included in the development process is not meant to indicate that the Waterfail
model should be used. The observations made in this section are applicable o most, if not every, process model.

10

L

Requirements
Engineering

Design

Coding

Testing

4

Operation &
Maintenance

Figure 2 Traditional activities in the software development lifecycle
(ISO/IEC 2000)

In most cases, these activities will produce artifacts at their completion. For example,
the accomplishment of the Requirements Engineering process will result in the
production of a Software Requirements Specification document (SRS). The Design
phase will end with the release of a design document. The approach to achieving
quality until now has been to measure the quality of these individual artifacts with
respect to a certain evaluation model and use the results as a prediction of the end

product's quality.

As was previously mentioned, several researchers have expressed doubts about the
validity of such an approach. An approach as the one illustrated in Figure 3 can be
defined as bottom-up; by building quality components, it is assumed that the whole will
be of quality. On the other end, software quality engineering also approaches the
problem from the top to the bottom, as is illustrated in Figures 4 and 5.

Requirements
Engineering

Measure Quality

Design

of Requiremenis

Measure Quality

Coding

B of Design
Models

Measure Quality

Testing

of Code

. | Measure Quality

Operation &
Maintenance

of Tests

Measure Quality

Figure 3 Traditional approach to quality prediction

3

of Software

Adapted from Dromey (1996)

11

Stakeholders' Requirements

:

12

Traditional Quality
Requirements Requirements
Engineering Engineering
Requirements Measure of .
Design < Measure of 4 Quality model
Quality
Implementation Measure of .
i .
(COde) Qual].ty ‘—“_——_‘ Quahty mOdel
Tests] Measure of <@—— Quality model
Quality
Operation & Measure of .
) e —————————— . <
Maintenance Quality Quality model

Figure 4 An approach to Quality Engineering - 1

13

1-From top to bottom, use

a quf'ihty model to specify v
quality needs and Requirements
requirements Enginecring
7
Design
4
Coding
4
Testing
2-From bottom to top, use
' a quality model to evaluate
Operation & the quality and determine
if it is sufficient to meet

quality needs and
requirements

Figure 5 An approach to Quality Engineering - 2

It is an emerging research hypothesis that the way to resolve the quality problem in
software engineering lies in such an approach to software quality engineering (Suryn,
2003). Quality concerns should be addressed at the beginning of and throughout the
lifecycle.

More than 400 years ago, René Descartes, the famous French philosopher, is reported
to have said that “it is far better never to contemplate investigating the truth about any
matter than to do so without a method”. Carefully following such an advice, it is the
opinion of the author that software quality engineering, in order to advance in its

maturity, should select an appropriate quality model as a long-term foundation.

This thesis presents the search for a long-term foundation to software quality

engineering.

14

CHAPTER 2

SELECTION OF A QUALITY MODEL

Every methodology that aspires to be used as a foundation for quality engineering
should be firmly grounded in an appropriate quality model or framework. As a premiss
to this work, it was stated that an appropriate quaiity model for software quality
engineering should be usable from top to bottom and from bottom to top. IEEE Std
1061-1998 (IEEE, 1998) provides guidance on the usage of such a quality framework:

From top to bottom the [quality] framework facilitates:

-Establishment of quality requirements factors, by customers
and managers early in a system’s life cycle;

-Communication of the established quality factors, in terms of
quality subfactors, to the technical personnel;

-Identification of metrics® that are related to the established
quality factors and quality subfactors.

From boftom to top the [quality] framework enables the managerial and
technical personnel to obtain feedback by

-Evaluating the software products and processes at the mefrics
level;

-Analyzing the metric values fo esfimate and assess the quality
factors.

2 In 2002, the ISO/NEC JTC1 sub-committee SC7 — Systems and Software Engineering — replaced the term “metric”
by “measure” to align its vocabulary with the one used in metrology. This thesis will use the term measure whenever
possible.

15

As was pointed out in the previous section, guality frameworks tend to be used in a
bottom to top approach. The prevalence of the manufacturing and product perspectives
encourage frequent measurement of internal atiributes as a control variabie.
Furthermore, it is possible to link prevalence of the bottom to top approach to the
following points:

o Software engineering tools automatically measure some quality attributes. For
example, tools like Borland's Together automatically measure quality attributes

for the design and implementation of software.

< Up till now, quality models have emphasized the evaluation of quality, rather
than helping decide which quality attributes should be emphasized.

e The assumption that the quality of the individual artifacts will be indicative of the
end product's quality. This could be traceable to an over-emphasis on the

product perspective of quality, as was explained previously.

« An emphasis on the manufacturing perspective of quality will lead to an
evaluation of some specific quality measures throughout the life cycle. Those
specific measures include but are not limited to: error/defect density, error rate

and cycle time.

On the other end, it is suggested as a premiss to this research that quality engineering
may be accomplished by a methodology that leverages the power of both the top to
bottom and bottom to top approaches. Starting with an inadequate model will render
the task of quality engineering too difficult to attain. All models explicitly or implicitly
support the bottom up approach to quality engineering, because at some point
measurements are necessary. What is needed is a model that explicitly supports the
top to bottom approach to quality engineering.

As a first step towards reaching the stated objective of identifying a quality model
suitable for software quality engineering, this section reviews the most popular quality
models with respect to the following criteria inspired from the IEEE standard (IEEE,
1998):

16

» RModel selection question 1: Can the framework be used by stakeholders to
set quality factors early in a system's lifecycle?

o Model selection question 2: Can the established quality requirements based
on the model be effectively communicated to the technical personnel?

> Model selection question 3: Is it possible to identify measures related to the
establishment of quality factors and quality subfactors?

2.1 McCall's quality model

2.1.1 Description

McCall (McCall, Richards & Walters, 1977) introduced his quality model in 1977.
According to Pfleeger (2001), it was one of the first published quality models. Figure 6
presents this quality model. Each quality factor on the left hand side of the figure
represents an aspect of quality that is not directly measurable. On the right hand side
are the measurable properties that can be evaluated in order to quantify the quality in
terms of the factors. Table |l presents the quality factors while Table Ill describes the
measurable properties. McCall proposes a subjective grading scheme ranging from 0
(low) to 10 (high).

Corredzess — Traceability |
Congleteness |
Reliakbility =] Consistency]
Accuracy]
Effidency Frvor tolerance |
Q Execution efficiency |
- Storage efficiency]
grity Access control]
Access audit |
Usahility Operahility]
Training 1
Sinplicity]
Testahility Conciseness]
Instrumentation]
Flexihility Self-descriptiveness 1
Expandability |
Software system independence |

R hili

y { Machine independence
Conmrmications conmonality |
Interoperability

—

Data conmmmality

Figure 6 McCall's quality model
Adapted from Pleeger (2003) and McCall et al. (1977)

17

18

Table [

McCall's quality factors
(Adapted from Pressman (2001))

Quality Factor Definition
Correctness Thg extent to which a program sgtusfnes its specification and
fulfiils the customer's mission objectives.
Reliabilit The extent to which a program can be expected to perform its
y intended function with required precision.
- The amount of computing resources and code required by a
Efficiency program to perform its function.
Intearit Extent to which access to software or daia by unauthorized
grity persons can be controlled.
Usability Effort required to learn, operate, prepare input, and interpret

output of a program.

Maintainability

Effort required to locate and fix an error.

Flexibility Effort required to modify an operational program.
Testabilit Effort required to test a program to ensure that it performs its
y intended function.
Portabilit Effort required to transfer the program from one hardware
y and/or software system environment to another.
Extent to which a program can be reused in other applications
Reusability — related to the packaging and scope of the functions that the

program performs.

Interoperability

Effort required to couple one system to another.

19

Tabie Il

McCall's measurable properties
(Adapted from Pressman (2001))

Measurable Property

Definition

Auditability

The ease with which conformance to standards can be
checked. '

Accuracy

The precision of computations and control.

Communication

The degree to which standard interfaces, protocols, and

commonality bandwidth are used.

The degree to which full implementation of required function
Completeness has been achieved.
Conciseness The compactness of the program in terms of lines of code.
Consistency The use of uniform design and documentation techniques

throughout the software development project.

Data commonality

The use of standard data structures and types throughout the
program.

Error tolerance

The damage that occurs when the program encounters an
error.

Execution efficiency

The run-time performance of a program.

Expandability

The degree to which architectural, data, or procedural design
can be extended.

Generality The breadth of potential application of program components.
Hardware The degree to which software is decoupled from the hardware
independence on which it operates.
. The degree to which the program monitors its own operation
Instrumentation and identifies errors that do occur.
Modularity The functional independence of program components.
Operability The ease of operation of a program.
Securit The availability of mechanisms that control or protect
y programs and data.
. The degree to which the source code provides meaningful
Self-documentation documentation.
Simplicity The degree to which a program can be understood without

difficulty.

20

Table [l (continued)

Measurable Property Definition

The degree to which the program is independent of
nonstandard programming language features, operating

Software system

independence system characteristics, and other environmental constraints.
Traceability The ability to trace a degxgn representation of actual program
component back to requirements.
Training The degree to which the software assists in enabling new

users to apply the system.

2.1.2 Discussion and evaluation

As was noted previously, this is one of the first documented attempt at defining a
universal quality model for software systems. Some other corporate models like
MITRE's SQAE (Martin & Shaffer, 1996) are partially based on this work.

Pressman notes that “unfortunately, many of the metrics® defined by McCall et al. can
be measured only subjectively” (Pressman, 2001). It is therefore difficult to use this
framework to set precise and specific quality requirements. Furthermore, some of the
factors and measurable properties, like traceability and self-documentation among
others, are not really definable or even meaningful at an early stage for non-technical
stakeholders.

Pressman states that “The metrics may be in the form of a checkiist that is used fto
“grade” specific attributes of the software”. This statement highlights that McCall's
guality model is better suited to the bottom to top evaluation of quality rather than the
specification of quality needs.

3 This lapse of Pressman needs to be pointed out. McCall's model does not define metrics, but measurable properties
that can be measured through the use of metrics.

2.1.3 Conclusion

21

This model is not applicable with respect to the criteria outlined in the IEEE Standard

for a Software Quality Metrics Methodology for a top to bottom approach to quality

engineering. It is therefore not suited as a foundation for sofiware quality engineering

according to the stated premises.

Table IV

Evaluation of McCall's model

Model selection question

Answer

Can the framework be used by
stakeholders to set quality factors
early in a system's lifecycle?

WITH A CERTAIN LEVEL OF DIFFICULTY. ltis
difficult to use this model to specify high level
quality needs at the beginning of the lifecycle.
The high level attributes can be mostly
considered as things every software product
should exhibit.

Can the established quality
requirements based on the model
be effectively communicated to the
technical personnel?

PROBABLY. The model is already quite
technical and uses terms that should be used by
technical personnel.

Is it possible to identify measures
related to the establishment of
quality factors and quality
subfactors?

WITH A CERTAIN LEVEL OF DIFFICULTY.
Some of the measurable properties are loosely
defined.

2.2 Boehm’s quality model

2.2.1 Description

Boehm's quality model improves upon the work of McCall and his colleagues (Boehm,

Brown, Kaspar, Lipow & MacCleod, 1978). As Figure 7 shows, this guality model

loosely retains the factor-measurable propety arrangement. However, for Boehm and

his colleagues, the prime characteristic of quality is what they define as “general utility”.

According to Pfleeger (2001), this is an assertion that first and foremost, a software

system must be useful to be considered a quality system. For Boehm, general utility is

composed of as-is utility, maintainability and portability (Boehm et al., 1978):

22

o How well (easily, reliably, efficiently) can | use it [software system] as-is?
o How easy is it to maintain (understand, modify, and retest)?
o Can | still use it if | change my environment?

If the semantics of McCall's model are used as a reference, the quality factors could be
defined as: Portability, Reliability, Efficiency, Human Engineering, Testability,
Understandability and Modifiability. These factors can be decomposed into measurable
properties such as Device Independence, Accuracy, Completness, efc. Portability is
somewhat incoherent in this classification as it acts both as a top level component of

general utility, and as a factor that possesses measurable attributes.

The definitions for the factors and measurable attributes are given in Table V and Table
VI respectively.

Device mdependence f

Sel-containedness

/{ Portakility

s

A

—
S g Acouracy
| Peliability
i Campletenecs
pl Robustness finteglity
Az-is P
Wtility I Efficiency & Congistency
. =, }(
\ \\ i Aveountability

Device efficiency

_ &

Human Enginsenng

pa

Ceneral
Utility

Commurdrativensss

|
|
|
|
|
|
|
Lececsitiity |
|
]
|
|
|
]

/ .
[Testakility
S\ :’ Seli-dezaiptiveness
\ Strustwredness
1 IMaintainakility Understandability - 4
\X Cemeizeness
X / { Legibility
% Modifiability o] Tagmen iy

Figure 7 Boehm's quality model
Adapted from Pfleeger (2001), Boehm et al. (1976; 1978)

23

Table V

Boehm's quality factors
(Adapted from Boehm et al. (1976))

Quality Factor Definition
Code possesses the characteristic of portability to the extent
Portability that it can be operated easily and well cn computer
configurations other than the current one.
Code possesses the characteristic of reliability to the extent
Reliability that it can be expected to perform its intended functions
satisfactorily.
Efficiency Code possesses the characteristic of efficiency to the extent

that it fulfills its purpose without waste of resource.

Human Engineering

Code possesses the characteristic of human engineering to
the extent that it fulfills its purpose without wasting the users’
time and energy, or degrading their morale.

Testability

Code possesses the characteristic of testability to the extent
that it facilitates the establishment of verification and supports
evaluation of its performance.

Understandability

Code possesses the characteristic of understandability to the
extent that its purpose is clear to the inspector.

Modifiability

Code possesses the characteristic of modifiability to the extent
that it facilitates the incorporation of changes, once the nature
of the desired change has been determined.

Maintainability

Code possesses of maintainability to the extent that it
facilitates updating to satisfy new requirements or to correct
deficiencies.

24

Table VI

Boehm's measurable properties
{Adapted from Boehm et al. (1976))

Measurable Property

Definition

Device independence

Code possesses the characteristic of device-independance to
the extent that it can be executed on computer hardware
configurations other that its current one.

Seif-containedness

Code possesses the characteristic of self-containedness to
the extent that it performs all its explicit and implicit functions
within itself.

Accuracy

Code possesses the characteristic of accuracy to the extent
that its outputs are sufficiently precise to satisfy their intended
use.

Completeness

Code possesses the characteristic of compieteness to the
extent that all its parts are present and each part is fully
developed.

Robustness/integrity

Code possesses the characteristic of robustness to the extent
that it can continue to perform despite some violation of the
assumptions in its specification.

Consistency

Code possesses the characteristic of internal consistency to
the extent that it contains uniform notation, terminology and
symbology within itself, and external consistency fo the extent
that the content is traceable to the requirements.

Accountability

Code possesses the characteristic of accountability to the
extent that its usage can be measured. This means that
critical segments of code can be instrumented with probes to
measure timing, whether specified branches are exercised,
etc.

Device efficiency®

Code possess the characteristic of device efficiency to the
extent that it fulfills its purpose without waste of hardware
resources.

Accessibility

Code possesses the characteristic of accessibility to the
extent that it facilitates selective use of its parts.

Communicativeness

Code possesses the characteristic pf communicativeness to
the extent that it facilitates the specification of inputs and
provides outputs whose form and content are easy {o
assimilate and useful.

4 Boehm et al. (1976) does not define this property in the appendix to his paper. However, the definition can be
reconstructed from the definition of the Efficiency characieristic.

25

Table VI (continued)

Measurable Property Definition

Self-descriptiveness | Code possesses the characteristic of self-descriptiveness to
the extent that it contains enough information for a reader to
determine or verify its objectives, assumptions, constraints,
inputs, outputs, components, and revision status.

Code possesses the characteristic of structuredness to the
Structuredness extent that it possesses a definite pattern of organization of its
interdependent parts.

Code possesses the characteristic of conciseness fo the

Conciseness L L
extent that excessive information is not present.

Code possesses the characteristic of legibility to the extent

Legibility that its function is easily discerned by reading the code.

Code possesses the characteristic of augmentability to the
extent that it can easily accommodate expansion in
component computational functions or data storage
requirements.

Augmentability

2.2.2 Discussion and evaluation

It is interesting to note that in opposition to McCall's model, Boehm's model is
decomposed in a hierarchy that at the top addresses the concerns of end-users while
the bottom is of interest to technically inclined personnel. However, this interest wanes
when one reads Boehm's definition of the characteristics of software quality. Except for
General Utility and As-is Utility, all definitions begin with “Code possesses the
characteristic [...]!. The measurable properties and characteristics therefore
concentrate on highly technical details of quality that are difficult to grasp for non-
technical stakeholders that are typically involved early in the software lifecycle. The
characteristics General Utility and As-is Utility are too generic and imprecise to be
useful for defining verifiable requirements. Like the McCall model, this model is mostly
useful for a bottom to top approach to software quality (i.e. it can effectively be used to
define measures of sofiware quality, but is more difficult to use to specify quality

requirements).

26

While this model is a step forward in the sense that it provides basic support for a top to
bottom approach to software quality, this support is oo ephemeral to be considered as

a solid foundation for quality engineering.

2.2.3 Conclusion

Tabie VI

Evaluation of Boehm's model

Model selection guestion Answer
Can the framework be used by |WITH A CERTAIN LEVEL OF DIFFICULTY. it
stakeholders to set quality is difficult to use this model to specify high
factors early in a system's level quality needs at the beginning of the
lifecycle? lifecycle. The high level attributes can be

mostly considered as things every software
product shouid exhibit. It is difficult to
imagine asking an end user the following
question: “On a grade from one to ten,
please rate how useful you would like the
system to be?”. How is the usefulness
measured then?

Can the established quality PROBABLY. The model is already quite
requirements based on the technical and uses terms that should be
model be effectively used by technical personnel.
communicated to the technical

personnei?

Is it possible to identify measures |WITH A CERTAIN LEVEL OF DIFFICULTY.
related to the establishment of Measures can be defined from the

quality factors and quality measurable properties.

subfactors?

This model is not applicable with respect to the criteria outlined in the IEEE Standard
for a Software Quality Metrics Methodology for a top to bottom approach to quality
engineering. It is therefore not suited as a foundation for sofiware quality engineering
according to the stated premises.

27

2.3 Dromey's quality model

2.3.1 Description

Dromey's (1995) model takes a different approach to sofiware quality then the two
previously presented models. For Dromey, a quality model should clearly be based
upon the product perspective of quality:

“What must be recognized in any attempt to build a quality model is that
software does not directly manifest quality attributes. Instead it exhibits
product characteristic that imply or contribute to quality attributes and other
characteristics (product defects) that detract from the quality attributes of a
product Most models of software quality fail to deal with the product
characteristics side of the problem adequately and they also fail to make
the direct links between quality attributes and corresponding product
characteristics.” (Dromey, 1995) (Emphasis added to support the argument)

Dromey has built a quality evaluation framework that analyzes the quality of software
components through the measurement of tangible quality properties (Figure 9). Each
artifact produced in the software lifecycle can be associated with a quality evaluation
model. Dromey gives the following examples of what he means by software
components for each of the different models:

®

Variables, functions, statemenis, eic. can be considered components of the

implementation model;

®

A requirement can be considered a component of the requirements model;

]

A module can be considered a component of the design model;
° Etc.

According to Dromey (1995), these components all possess intrinsic properties that can
be classified into four categories:

o Correctness: Evaluates if some basic principles are violated.

28

* Internal: Measure how well a component has been deployed according to its

intended

use.

¢ Contextual: Deals with the external influences by and on the use of a

component.

» Descriptive: Measure the descriptiveness of a component (for example, does it

have a meaningful name?).

These properties are used to evaluate the quality of the components. This is illustrated

in Figure 8 for a variable component present in the implementation model.

Component

Properties

Quality-
Carrying

assigned

Property
Classification

correctness

Quality

Impact

Functionality, reliability

precise

correciness

Functionality, reliability

single-purpose

correctness

Functionality, reliability

Variable

encapsulated

contextual

Maintainability, reuse

utilized

self-descriptive

contextual

Maintainability, reuse

descriptive

Maintainability, reuse

documented

descriptive

Maintainability, reuse

Figure 8 Quality evaluation of a variable component

29

Product
model
Tangible
Component A <€ B>quality carrying
properties
High level
Linkages guality attributes
Tangible
Component B <@¥»quality carrying
properties

Figure 9 Dromey's Quality Model

2.3.2 Discussion and evaluation

it seems obvious from the inspection of the previous figures that Dromey's model is
focused on the minute details of quality. This is stated explicitly:

“‘What we can do is identify and build in a consistent, harmonious, and
complete set of product properties (such as modules without side effects)
that result in manifestations of reliability and maintainability.” (Dromey,
1996)

For Dromey, the high level characteristics of quality will manifest themselves if the
components of the softiware product, from the individual requirements to the
programming language variables®, exhibit quality carrying properties. Dromey's
hypothesis should be questioned. If aill the components of all the artifacts produced
during the software lifecycle exhibit guality carrying properties, will the resulting product
manifest characteristics such as maintainability, functionality, and others?

The foliowing analogy will be useful in answering this question.

if you buy the highest quality flour, along with the highest quality apples and
the highest quality cinnamon, will you automatically produce an apple pie
that is of the highest quality?

5 Dromey's description of his quality evaluation framework begins with requirements and ends with the
implementation.

30

The answer is cbviously negative. In addition to quality ingredients, at least three more
things are needed in order to produce an apple pie of the highest quality.

° A recipe (i.e. an overall architecture and an execution process). Dromey
acknowledges this by identifying process maturity as a desirable high level
characteristic. However, it is only briefly mentioned in both his publications on
the subject (Dromey, 1895; Dromey, 19986).

* The consumer's tastes must be taken into account. In order for the result to be
considered of the highest quality by the consumer, it needs to be tuned to his
tastes. This is akin to what is commonly called user needs in software
engineering. User needs are completely ignored by Dromey. However, as it was
demonstrated in the introduction, they are an integral and indissociable part of
software quality.

+ Someone with the qualifications and the tools to properly execute the recipe.

While Dromey's work is interesting from a technically inclined stakeholder's
perspective, it is difficult to see how it could be used at the beginning of the lifecycle to
determine user quality needs. Dromey (1995) states that software quality “must be
considered in a systematic and structured way, from the tangible to the intangible”. By
focusing too much on the tangible, Dromey fails to build a model that is meaningful for
stakeholders typically involved at the beginning of the lifecycle. Do end users care
about the variable naming convention or module coupling? In most cases, it is doubtful
that this question can be answered affirmatively. Therefore, this model is rather
unwieldy to specify user quality needs. This does not mean that it cannot be useful later
on as a checklist for ensuring that product quality is up to standards. It can definitely be
classified as a bottom to top approach to software quality.

2.3.3 Conclusion

This model is not applicable with respect to the criteria outlined in the IEEE Standard
for a Software Quality Metrics Methodology for a top to bottom approach to quality

engineering.

Table Viil

Evaluation of Dromey's model

Model selection question

Answer

Can the framework be used by
stakeholders to set quality
factors early in a system's
lifecycle?

NO. It is difficult to use this model to specify
high level quality needs at the beginning of
the lifecycle. Dromey's model defines what
couid be termed as software quality
checklists for individual components.
However, these are things that are usually of
little concern for a customer.

Can the established quality
requirements based on the
model be effectively
communicated to the technical
personnel?

YES. Checklist can be provided to technical
personnel to ensure that they perform the
work correctly.

Is it possible to identify measures
related to the establishment of
quality factors and quality
subfactors?

YES. Checklists are convenient to verify.

2.4 ISONEC 9126 quality model

2.4.1 Description

31

in 1991, the International Organization for Standardization introduced a standard

named ISO/EC 9126 (1991). Software product evaluation - Quality characteristics and
guidelines for their use. This standard aimed to define a quality model for software and

a set of guidelines for measuring the characteristics associated with it. ISO/IEC 9126

quickly gained notoriety with IT specialists in Europe as the best way to interpret and
measure quality (Bazzana, Anderson & Jokela, 1983). However, Pfleeger (2001)

reports some important problems associated with the first release of ISO/IEC 9126:

» There are no guidelines on how to provide an overall assessment of quaiity.

» There are no indications on how to perform the measurements of the quality

characteristics.

32

° Rather than focusing on the user view of software, the model's characteristics
reflect a developer view of software.

According to Pfleeger, this first incarnation of ISO/IEC 9126 is not usable as a bottom to
top approach to guality engineering, and even less usable as a top to bottom approach.

In order to address these concerns, an ISO commitiee began working on a revision of
the standard. The results of this effort are the introduction of a revised version of
ISONEC 9126 focusing on the quality model, and a new standard, ISO/IEC 14598
(ISO/IEC, 1999a) focusing on software product evaluation. ISO/IEC 14598 addresses
Pfleeger's first concern while the revision to ISO/IEC 9126 aims to resolve the second
and third issues. ISO/NEC 9126 is now a four part standard:

ISO/EC 9126-1 (ISO/EC, 2001a) defines an updated quality model.

ISO/IEC 9126-2 (ISO/IEC, 2003a) defines a set of external measures.

ISO/IEC 9126-3 (ISO/IEC, 2003b) defines a set of internal measures.

ISO/IEC 91264 (ISO/IEC, 2001b) defines a set of quality in use measures.

The new quality model defined in ISO/IEC 9126-1 recognizes three aspects of software
quality and defines them as follows: (the full definition is given as it is pertinent to the
discussion that ensues)

° Quality in Use:

Quality in use is the user's view of the quality of the software product when
it is used in a specific environment and a specific context of use. It
measures the extent to which users can achieve their goals in a particular
environment, rather than measuring the properties of the soffware itself.
(ISOAEC, 2001a)

e External quality:

External quality is the totality of characteristics of the software product from
an external view. It is the quality when the software is executed, which is
typically measured and evaluated while testing in a simulated environment
with simulated data using external melrics. During testing, most faults

33

should be discovered and eliminated. However, some fauilts may still
remain after testing. As it is difficult to correct the software architecture or
other fundamental design aspects of the soffware, the fundamental design
remains unchanged throughout the testing. (ISO/IEC, 2001a)

 Internal Quality:

Internal quality is the totality of characteristics of the software product from
an internal view. Internal quality is measured and evaluated against the
Intemal Quality requirements. Details of software product quality can be
improved during code implementation, reviewing and testing, but the
fundamental nature of the soffware product quality represented by the
Internal Quality remains unchanged unless redesigned. (ISO/IEC, 2001a)

The Internal and External Quality model is inspired from McCall and Boehm's work. It is
a three layer model composed of quality characteristics, quality subcharacteristics and
quality measures. Figure 10 illustrates this model and Tables IX to XV give the
definition of the characteristics and subcharacteristics. More than 100 measures of
Internal and External Quality are provided as part of the standard. It is important to
note that these are informational®, meaning that other measures can also be used.

6 it is important to explain what the adjective “informational” means in ISC-speak. An informational part is something
against which conformance is not measured. In the case of ISO/IEC 9126, the measures form an informational part
of the standard. This means that using these measures is a good siep towards compliance. However, the authors of
the standard recognize that there is no universal set of measures. Therefore, the standard allows for other
measures {o be defined in order to replace and/or complement the given measures. Informational could be thought
of as “proposed”.

external and
internal
guality
|
functionality reliability usability efficiency maintainability portability
suitability maturit inderstandability | time behaviour analyzability adaptability
accuracy fault toler as.ln ce learnability changeability installability
interoperability recoverabili operability resource stability co-existence
security Y attractiveness utilisation testability replaceability
functionality creliablity usability efficiency maintainability portability
compliance p compliance compliance compliance compliance

Figure 10 3-layer model for internal and External Quality

Adapted from (ISO/IEC, 2001a)

34

35

Table IX

Definition of Quality Characteristics
Adapted from (ISO/IEC, 2001a)

Quality .
Characteristic Definition
The capability of the software product to provide appropriate
Efficiency performance, relative to the amount of resources used, under

stated conditions.

Functionality

The capability of the software product to provide functions
which meet stated and implied needs when the software is
used under specified conditions.

The capability of the software product to maintain a specified

Reliability level of performance when used under specified conditions
The capability of the software product to be understood,
Usability learned, used and attractive to the user, when used under

specified conditions.

Maintainability

The capability of the software product to be modified.
Modifications may include corrections, improvements or
adaptation of the software to changes in environment, and in
requirements and functional specifications.

The capability of the software product to be transferred from

Portability one environment to another.
Table X
Definition of Efficiency Subcharacteristics
Adapted from (ISO/NEC, 2001a)
Efficiency o
Subcharacteristics Definition

Time Behavior

The capability of the software product to provide appropriate
response and processing times and throughput rates when
performing its function, under stated conditions.

Resource Utilization

The capability of the software product to use appropriate
amounts and types of resources when the software performs
its function under siated conditions.

Compliance

The capability of the software product to adhere to standards
or conventions relating to efficiency.

36

Tabie Xl

Definition of Functionality Subcharacteristics

Adapted from (ISO/MEC, 2001a)

Functionality oo
Subcharacteristics Definition
The capability of the software product to provide an
Suitability appropriate set of functions for specified tasks and user
objectives.
Accuracy The capability of the software product to provide the right or

agreed results or effects with the needed degree of precision.

Interoperability

The capability of the software product to interact with one or
more specified systems.

The capability of the software product to protect information
and data so that unauthorized persons or systems cannot

Security read or modify them and authorized persons or systems are
not denied access to them.
The capability of the software product to adhere to standards,
Compliance conventions or regulations in laws and similar prescriptions
relating to functionality.
Table Xii
Definition of Reliability Subcharacteristics
Adapted from (ISO/IEC, 2001a)
Reliability o
Subcharacteristics Definition
Maturit The capability of the software product to avoid failure as a
y result of faults in the software.
The capability of the software product to maintain a specified
Fault Tolerance level of performance in cases of software faults or of

infringement of its specified interface.

Recoverability

The capability of the software product to re-establish a
specified level of performance and recover the data directly
affected in the case of a failure.

Compiliance

The capability of the software product to adhere to standards,
conventions or regulations relating to reliability.

Table Xill

37

Definition of Usability Subcharacteristics

Adapted from (ISO/EC, 2001a)

Usability
Subcharacteristics

Definition

Understandability

The capability of the software product to enable the user to
understand whether the software is suitable, and how it can
be used for particular tasks and conditions of use.

The capability of the software product to enable the user to

Leamnability learn its application.
- The capability of the software product to enable the user to
Operability operate and contro! it.
Attractiveness I::rcapabllity of the software product to be attractive to the
Combliance The capability of the software product to adhere {o standards,
P conventions, style guides or regulations relating to usability.
Table XIV
Definition of Maintainability Subcharacteristics
Adapted from (ISO/IEC, 2001a)
Maintainability .
Subcharacteristics Definition
The capability of the software product to be diagnosed for
Analyzability deficiencies or causes of failures in the software, or for the
parts to be modified to be identified.
. The capability of the software product to enable a specified
Changeability modification to be implemented.
Stabilit The capability of the software product to avoid unexpected
y effects from modifications of the software.
Testabilit The capability of the software product to enable modified
Y software to be validated.
. The capability of the software product to adhere to standards
Compliance

or conventions relating to maintainability.

38

Table XV

Definition of Portability Subcharacteristics
Adapted from (ISO/IEC, 2001a)

Portability . L
Subcharacteristics Definition
The capability of the software product to be adapted for
Adaptabilit different specified environments without applying actions or
P ¥ means other than those provided for this purpose for the
software considered.
Installability The capability of the software product to be installed in a

specified environment.

The capability of the software product to co-exist with other
Co-existence independent software in a common environment sharing
common resources.

The capability of the software product to be used in place of
Replaceability another specified software product for the same purpose in
the same environment.

The capability of the software product to adhere to standards
or conventions relating to portability.

Compliance

Finally, Quality in Use is modeled in a different way than Internal and External Quality.
Figure 11 illustrates the two layer Quality in Use model composed of characteristics
and quality measures. Table XV provides the definition of the characteristics.

Quality in
Use

|
v v v v

l safety J satisfaction l

effectiveness productivity

Figure 11 Quality in Use model
Adapted from (ISO/IEC, 2001a)

39

Table XVI

Definition of Quality in Use Characteristics

Adapted from (ISO/IEC, 2001a)

Quality in Use oo
Characteristics Definition
The capability of the software product to enable users to
Effectiveness achieve specified goals with accuracy and completeness in a
specified context of use.
The capability of the software product to enable users to
Productivity expend appropriate amounts of resources in relation to the
effectiveness achieved in a specified context of use.
The capability of the software product to achieve acceptable
Safety levels of risk of harm to people, business, software, property
or the environment in a specified context of use.
. . The capability of the software product to satisfy users in a
Satisfaction specified context of use.

Theoretically, Internal Quality, External Quality and Quality in Use are linked together

with a predictive model’. This is illustrated in Figure 12.

7 Note that this discussion is about the concepis of internal Quality, External Quality and Quality and Use. The

implementation of these concepts in ISO/IEC 9126 will be discussed below.

40

v

User quality . _useand
needs < feedback B

Quality in use

contribute to

AN indigates
specifying

External
quality - - validation- | External quality
requirement

contribute to

A indidates
specifying

Internal
quality g - verificationr - Internal quality
requirement

Figure 12 Relationships between the different aspects of quality
Adapted from (ISO/IEC, 2001a)

This prediction relationship states that user quality needs should first be established
and specified using the Quality In Use model. From these requirements as well as other
sources, External Quality requirements should be established using the External
Quality model. Finally, the Internal Quality requirements should be constructed from the
External Quality requirements and other sources. Once the requirements are
established and software construction is under way, the quality model can be used to
predict the overall quality. For example, measurement of internal Quality can be useful
in predicting External Quality. Likewise, measurement of External Quality can be useful

in predicting Quality in Use.

The above paragraphs describe the ideal theoretical model that links these three
aspects of quality. However, in reality, noc model may claim to follow perfectly this
predictive model. Although the ISO/IEC 9126 model follows this approach closely, no
claims are made as to the real predictive power of the model. While the links between

41

Internal and External Quality seem rather obvious because the models are essentially
the same, caution must be exercised. While the name of the characteristics and
subcharacteristics are the same, the links between Internal and External Quality must
be verified empirically. The same reasoning applies to the links between External
Quality and Quality in Use.

2.4.2 Discussion and evaluation

The new version of ISO/NIEC 9126 is gaining momentum in the industry. Some
corporate quality models, for example MITRE's SQAE (Martin & Shaffer, 1996), are
beginning a migration from a model based on McCall's and Boehm's research to one
based on ISO/IEC 9126 (Coté, Suryn, Martin & Laporte, 2004a; C6té, Suryn, Martin &
Laporte, 2004b; C6té, Suryn, Laporte & Martin, 2005). This new version of ISO/IEC
9126 is thus seen as an improvement upon the older quality models.

It is interesting to see how the three aspects of quality defined above can be directly
linked to the perspectives of quality that were outlined in section 2. More specifically:

* |SO/IEC 9126-4, which defines Quality in Use, is directly related to the user and
value-based perspectives. The definition of the user perspective of quality
states that it is concerned with the appropriateness of a product for a given
context of use. Quality in Use is defined as the capability of the software
product to enable specified users to achieve specified goals in specified
contexis of use. The relationship between the two is clear. Quality in Use and
the value based perspective of quality are linked essentially through the
Satisfaction characteristic. This characteristic inherently recognizes that quality
can have a different meaning and/or value for different stakeholders.
Satisfaction levels can thus be set according to those levels of perception.

o ISOMEC 9126-3, which defines Internal Quality, and ISO/IEC 9126-2, which
defines External Quality, are directly related to both the manufacturing and
product perspectives. The definitions of the quality characteristics Functionality
and Reliability can be linked with the manufacturing perspective of quality.
Reliability, Usability, Efficiency, Maintainability and Portability are all inherent

42

characteristics of the product and a manifestation of the product perspective of

quality.

External Internal

Quality Quality

< Manufacturing perspective >

Value-based
perspective

Figure 13 Relationships between ISO/IEC 9126 and the perspectives
of quality

From the review of the different quality models, one might point out that none seem to
address the transcendental perspective of quality. One might even ask the following
pertinent question: Does ISOAEC 9126 address the transcendental perspective of
guality? Recall that the transcendental perspective of quality relates to quality as
something that is recognized but not defined. At this point, the following hypothesis will

be made:

As the transcendental perspective of quality cannot be defined, it cannot be
explicitly implemented in a software product. However, the transcendental aspect

of quality wili emerge when a holistic approach to quality engineering is taken.

This model seems to recognize all the perspectives of quality as important contributors
to the overall assessment of quality. It takes an incremental approach to software
guality that begins with Quality in Use, something that is easy to grasp for non-technical
stakeholders, and ends with Internal Quality, something more technically inclined
stakeholders will feel more comfortable with. Furthermore, there is a comprehensive set
of suggested measures that allow for the assessment of software quality.

2.4.3 Conclusion

43

Table XVIi

Evaluation of ISO/EC 9126

Model selection question

Answer

Can the framework be used by
stakeholders to set quality factors
early in a system's lifecycle?

YES. ISO/MEC 9126 impilicitly suggests that
requirements engineering should begin by
specifying quality in use needs. As these needs
are rather high level, at least compared to
external and Internal Quality needs, they can be
specified early in the lifecycle. This is supported
by Figure 12.

Can the established quality
requirements based on the model
be effectively communicated to the
technical personnel?

YES. In theory, by following a quality
specification process based on the one
illustrated in Figure 12, high level needs can be
decomposed into more specific external and
internal Quality needs that can be understood by
technical personnel.

Is it possible to identify measures
related to the establishment of
quality factors and quality
subfactors?

YES. ISO/IEC 9126 contains more than 100
measures. This seems to indicate a positive
answer to this question.

At first glance, this model seems to be the only one to fully satisfy the requirements that

were previously established for a model to be suitable for a top to bottom approach to

quality engineering. This conclusion is based on an assessment of what is stated in

ISOMNEC 9126-1. Before selecting this model as a foundation of quality engineering, a

more thorough analysis is needed.

CHAPTER 3

ISONEC 9126 AS A FOUNDATION FOR QUALITY ENGINEERING

The previous analysis of the text of ISO/IEC 9126 showed that this standard is a
promising foundation for Quality Engineering. According to the text of the standard, it
can indeed be used to specify quality requirements early in the lifecycle as well as be
useful throughout the rest of the lifecycle. Before asserting that this standard is a solid
foundation for Quality Engineering, the claims made in the text must be verified. This
chapter presents the methodology and the results of such a verification.

Before proceeding with the analysis, its scope must be defined. ISO/IEC 9126 is a
complex muiti-part standard. As it was argued before, most quality models implicitly and
explicitly support a bottom to top approach because of their measure orientation.
ISO/IEC 9126 is not different it this matter, since it offers more than 100 measures.
What seems more important to evaluate is the ability of ISO/IEC 9126 to be useful from
top to bottom (i.e. at the beginning of the software development life cycie). Figure 12 on
page 40 clearly illustrates that the entry point in a top to bottom approach lies in a
definition of the Quality in Use requirements. The second step in such an approach is to
verify how the Quality in Use needs can influence the definition of External Quality
requirements. The ability of ISO/IEC 9126 to be useful in these first two steps is crucial
to its ability of being a solid foundation to Software Quality Engineering. Such an
analysis already requires a considerable effort. Therefore, the study of External Quality,
internal Quality and the links between External Quality and Internal Quality are beyond
the scope of this research.

3.1 Analysis methodology

ISONEC 9126-1 (ISOMEC, 2001a) states that the quality model and its associated
measures should fulfill the following requirements:

1. The model must be usable in "defining qualify requirements.” (page Iv, paragraph
3)
2. The model must be "applicable to every kind of soffware.” (page 1, paragraph 3)

45

3. The model must "provide consistent terminology.” (page 1, paragraph 3)

4. The quality model must be usable for sefting quality goals for soffware products
and intermedjate products.” (page 6, paragraph 8)

5. The model should be "hierarchically decomposed into a quality model composed
of characteristics and subcharacteristics.” (page 6, paragraph 8)

6. The model must be predictive. This means that Internal Quality should be
predictive of External Quality. Likewise, External Quality must be predictive of
quality in use. (page 3, figure 2 and page 4, figure 3)

7. Conformance to the model shall be judged either by the usage of the
characferistics and subcharacleristics or by a mapping to those characteristics
and subcharacteristics. (page 2, clause 2) The model must therefore be
exhaustive enough to provide the user with a thorough selection or to provide an

unambiguous mapping.

if the model and the associated measures fulfili these stringent requirements, this
model would indeed be a suitable one on which to base a quality engineering
methodology. Therefore, the following questions will be thoroughly answered to verify

the impiementation of these requirements in the standard:

1. Can the quality model and its measures be used to thoroughly set quality
requirements at the beginning of the lifecycle? (from points 1 and 4)
2. Are the quality model and its measures exhaustive and hierarchical? (from points
1,2,4,5and 7)
3. Can the External Quality model be used as a prediction of the actual Quality in
Use? In other words, is there an unambiguous mapping between the External
and Quality in Use models? (from point 6)
An answer to the questions presented above lies in a thorough analysis of the
measures associated with the Quality in Use model. The resulis of this analysis will be

presented first.

46

3.2 Analysis of the measures of Quality in Use

This analysis of the measures wili be used to answer the three questions that were
asked in the previous section. Therefore, they must generate enough data for the
answers o be credible.

The following four angles are used to answer the first and third question:

* The relative impact of the measure will first be analyzed. The IEEE (1998)
defines the impact as an “indication of whether a metric can be used to alfer or
halt the project’. The impact can also be analyzed by asking the following
question: “Can the measure be used to indicate deficient sofiware quality?” A
measure that has low or average impact will not be a useful Quality in Use
measure.

* The second angle to be analyzed will be the approximate cost of applying the
measure and using it as a requirement. A measure that has a prohibitive cost
will not be widely usable as a foundation for quality engineering.

* For each measure, the following question will be answered: “Can this measure
be used to thoroughly set quality goals and requirements?” If a measure cannot
be used to thoroughly set quality requirements, then it cannot be used for
software quality engineering as defined in this thesis.

° Finally, the fitness of the measure in the predictability model proposed by
ISOMEC 9126-1 (see Figure 12) will be assessed on a measure by measure
basis by answering the following questions: “Which, if any, External Quality
characteristics and subcharacteristics may predict the value of this measure?”
It is important to note that the goal of this analysis is not to prove that links do
exist between External Quality and Quality in Use, but rather that such links
may exist under certain conditions. If a measure does not fit into the predictive
model, then it will be difficult to define External Quality requirements from the
Quality in Use model, making software quality engineering more difficult.

The links between the questions and the angles will now be explained.

47

Relative cost

Top to
bottom
usability

Figure 14 Analysis angles

The first question deals with the usefulness of the measure at the beginning of the life
cycle. In order for a measure to be useful, it needs to have sufficient impact and have
an acceptable cost. This is dealt with the first and second angles. In order for a
measure to be useful at the beginning of the life cycle in needs to be useful in setting
quality goals and requirements, which is one of the first activities performed in the
software life cycle. The third angle is concerned with answering this part of the

guestion.

The third question, which deals with predictability, is unambiguously answered by the
data generated from analyzing the fourth angle.

The second question, which deals with completeness, can not be answered by looking
only at the measures. This question will be answered by comparing the model to other
quality models.

The suitability of each measure will be rated qualitatively according to the following

scale:

e N : The measure is considered to be non-applicable. Such a grade is given
when the measure is clearly lacking with respect to at least one of the analysis
angle described above.

48

e C: The applicability of the measure is conditional. Such a grade is given when
the measure is conceptually applicable but could still be improved with respect

to a number of angles.

¢ A: The measure is considered to be applicable. Such a grade is given when

there are no obstacles to using this measure.

Lacking with respect to Impact,
"Cost, Usability or Predictability.

Measure
applicability

Needs improvement to be
generally applicable.

Applicable

Applicable with respect to Impact,
Cost, Usability and Predictability.

Figure 15 Possible measure ratings

Because the results of the analysis of the measures are quite voluminous, they are
presented as an appendix to this document (Appendix 1 — Analysis of ISO/IEC 9126-4

Quality In Use Measures).

The results of the analysis are presented in summary form in Table XVl

49

Table XVIil
ISONEC 9126-4's suitability for Quality Engineering

z | ¢
5| .| & 5|8
- D o© Q
o &)

Effectiveness

Task Effectiveness C A N N

Task Compietion A A | CIN| A | CIN®
Error Freguency C A C A C

Productivity

Task Time A A | CIA A N/A®
Task Efficiency A A N A N
Economic Productivity C A N A N
Productive Proportion A C A A A
Relative User Efficiency c A A A A

Safety
User Health and Safety A C A C C
Safety of People... A C A A A
Economic Damage C C A A C
Software Damage C C A A C
Satisfaction
Satisfaction Scale A C C A C
Satisfaction Questionnaire A A A A A
Discretionary Usage C C C A C
Legend:

N stands for Non-applicable
C stands for Conditional applicability
A stands for Applicabie

Of the 15 measures that are proposed by ISONIEC 9126-4, 3 or'® 4 were found to be
clearly non applicable. On the other end, between 4 and 6 measures are clearly
applicable and fuffill the goals of the quality model expressed in ISOAEC 9126-1 as

8 This measure is conditionally applicable when the tasks are not composed of muitiple goals.
9 Would be applicable with minor modifications
10 See footnotes 8 to 9 for an explanation.

50

evaluated by the criteria outline previously. The majority of the measures, between 5

and 8, have a conditional applicability.

Most of the time, the applicability is conditional because the measure has been judged
unsuitable for expressing quality goals and requirements. While ISO/IEC 9126-4 is
clearly the best hope as a foundation for software quality engineering, it is not sufficient.

For example, the measure Task Effectiveness was judged to be non applicable
because it lacked usability for expreyssing quality goals and requirements. The purpose
of this measure is to evaluate the proportion of the goals of the task that is achieved
correctly. It is applied as a user test described by the following equation:

M I:II—Z A,l , where each A; is a proportional value of each missing or incorrect

component in the task output. ISO/NIEC 9126-4 provides the following clarifications

concerning the application of this measure:

“Each potential missing or incomplete component is given a weight A
based on the extent to which it detracts from the value of the output to the
business or user. (if the sum of the weights exceeds 1, the melric is
normally set to 0, although this may indicate negative outcomes and
potential safety issues.) The scoring scheme is refined iteratively by
applying it to a series of task outputs and adjusting the weights until the
measures obtained are repeatable, reproducible and meaningful.”

This measure can clearly be used to indicate deficient software quality. However, it
might be difficult to set a threshold for quality (for example: “- a value below x indicates
low quality”). This measure can be applied to almost any kind of software, as all
software must in the end accomplish a task, and most tasks can be decomposed into a
set of goals. The analysis of this measure found that there are at least two reasons
which complicate the task of using this measure for setting quality goals and

requirements:

1. First, it is difficult to set a threshold separating sufficient quality from
insufficient quality. The reason for this is that the standard specifies that the
sum of the A must not necessarily equal 1. The consequence of this is that
the measure is unbounded. Although the standard specifies that negative

51

results are normalized to O, such results are the only clear indication of
insufficient quality.

2. The second possible obstacle to the usability of this measure is the suggestion
that the scoring scheme be refined iteratively. The standard specifies that the
“scoring scheme is refined iferatively by applying it to a series of fask outputs
and adjusting the weights unfil the measures obtained are repeafable,
reproducible and meaningful”. By requiring that the measure use task outputs
for adjusting the weights, it makes it difficult to use this measure before task
outputs are available. in the phase of requirements definition, expectations for
the measure would have to be based on an expert's judgment or statistical
data (if available/applicable). In some cases, either could prove inaccurate. it
is doubtful that software contractors would agree to having such a clause
based on such a measure in a contract.

Because the usability of this measure relies on too many conditions, it is at the very

least difficult to use this measure as a quality goal or a requirement.

The situation can be improved by reformulating the measure and explaining it properly.
By trying to be too concise, the standard obfuscates the usefulness of this measure.
The standard should first state that each task that a software product must accomplish
should be decomposed into goals. The accomplishment of those goals, whether partial
or complete, should result in the success of the task. Each goal (G) should be given a
value representing the approximate percentage of the task (Pg) that is attained when
the goal is accomplished. The sum of those percentages shouid be 100%. Some of the
goals might be marked as “essential’, meaning that failure to accomplish those goals
will result in 0% task effectiveness. The task effectiveness could be measured by the

following sum:

> P, Whenall essential goals are attained
TE= task

0%, Otherwise
A threshold for acceptable quality can then be set on a task by task basis by

determining which goals :

52

* are essential
° are desirable
s are “nice to have”

This classification can be made from many perspectives: user, business, economic, etc.
The target task effectiveness is the sum of the percentages associated to the essential
and desirable goals. The task effectiveness can then be analyzed for many users and

meaningful conclusions can be drawn from its application.
The resulis of these proposed changes may be considered essential as:

» The impact of the measure is now very important. Each task that falis below the

target task effectiveness has an unacceptable level of quality.
* The cost of the application remains negligible.

» The scoring scheme does not need to be refined iteratively anymore. The
percentages associated to each goal are not even really important. They only
help in quantifying the contribution of each goal.

o The usage of this measure will help stakeholders define a clear acceptance

criterion on a task by task basis.

Implementation of these changes would radiate positively throughout the Quality in Use
model because many other measures depend on this one. For example, it would help
defining a clear acceptance for tasks that are composed of multiple goals and thus

make the task completion measure generally applicable.

Appendix 2 proposes a set of enhancements similar to the one presented above that
makes the proposed measures of ISO/IEC 9126 suitable for thoroughly setting quality
goals and requirements at the beginning of the lifecycle. References to ISO/IEC 91264
measures beyond this point refer to these enhanced measures. Appendix 3 shows that
it is possible to express these changes in a concise language and format similar to the
ISOAEC 9126 standard.

53

The three questions that led to this analysis can now be answered, based on this
improved standard.

3.3 ISONEC 9126 and Requirements Engineering
The first question that was asked was:

Can the quality model and its measures be used to thoroughly set quality
requirements at the beginning of the lifecycle?

Figure 12 illustrated that it is indeed the goal of the quality model proposed by ISO/IEC
9126-1 to be useful early in the software engineering lifecycle as a mean for
determining quality requirements. However, this quality prediction framework relies
heavily on the Quality in Use model as the entry point by which user quality needs can
be specified. It has been shown that while the model itself is suitable for software
quality engineering, the measures associated to the model focus on a posteriori use
(i.e. they are biased toward usage at the end of the lifecycle and of little use for
specifying quality requirements). For example, the measures Task Effectiveness, Task
Completion, Error Frequency, Task Time, Task Efficiency, Economic Productivity,
Satisfaction Scale and Discretionary Usage were found to be non-applicable or of
conditional applicability with respect to usability as a goal or requirement. This
represents 8 out of 15 measures.

The enhancements proposed in Appendix 2 and 3 aim to correct this situation.

The ability ISO/IEC 91264 to express quality goals and define quality requirements at
the beginning of the lifecycle can be improved if the enhancements proposed in
Appendix 2 and 3 are implemented.

54

3.4 ISO/MEC 9126 and the exhaustiveness criterion
The second question that was asked was:

Are the quality model and its measures exhaustive and hierarchical?

First of all, there is no doubt that the model proposed in ISO/IEC 9126-1 is hierarchical.
Figures 10 and 11 clearly illustrate that fact. Recall that the Internal and External

|11

Quality model is composed of an orthogonal™ three-layer hierarchy and the Quality in

Use is composed of an orthogonal two-layer hierarchy.

As for its exhaustiveness, the Internal and External Quality model proposes 27
subcharacteristics that spawn over 6 characteristics. It is difficult to judge the
exhaustiveness based on this data alone since new aspects of Internal and External
Quality could be discovered. However, the model seems to cover most of the aspects
encountered in the study of other quality models. With respect to exhaustiveness, it is
important to note that more than 100 measures are associated to the
subcharacteristics. However, preliminary results from another ongoing research at
I'Ecole de Technologie Supérieure (Berrazouane, 2004) indicates that there are some
concerns as to the validity of these measures. One of the main reported concern is that
some of the measures are outdated and inapplicable to current software development

techniques.

On the other hand, the Quality in Use model is much more concise. While it satisfies
the hierarchical decomposition criteria, the exhaustiveness requirement is more difficult
to evaluate because the model is composed of four characteristics and 15 measures. If
it is taken into account that the set of measures associated to the Quality in Use model
is sufficient to help uncover requirements about aimost every External Quality
characteristics, then it is possible to answer this question affirmatively. This will be
demonstrated in the following section. However, it is interesting to note that another
ongoing research at Concordia’s Human Centered Software Engineering Group
(Seffah, Kececi & Donyaee, 2001) has identified other components of usability and
Quality in Use that are not addressed by ISO/IEC 91264, namely characteristics such

11 Orthogonality in this case means that there is a one to one relationship between ali the layers {i.e. Each measure is
associated to only one sub-characteristic, which is in turn associated to only one characteristic).

55

as Efficiency, Internationability and Accessibility. In this respect, the exhaustiveness of
the Quality in Use model could be improved.

3.5 ISONEC 9126 as a predictive model
The third and final question was:

Can the External Quality model be used as a prediction of the actual
Quality in Use? In other words, is there an unambiguous mapping befween
the External and Quality in Use models?

The following figure, taken from ISO/IEC 9126-1 (ISO/IEC 2001a), confirms that it is
indeed a goal of the model to be useful in a predictive manner (as opposed to being

used in a predictive manner).

|

v

User quality __useand _
needs < feedback >

Quality in use

contribute to

specifying indigates
External
quality - - validation- B External quality
requirement
contribute to o
specifying indigates
Internal
quality 4 - verification B Internal quality
requirement

Figure 16 Predictive nature of guality
Quality in Use may be used to specify parts of External Quality.
On the other hand, an evaluation of External Quality should be
indicative of Quality in Use.

56

However, neither ISO/IEC 9126-1, ISO/IEC 9126-2 nor ISO/IEC 9126-4 specify the
links between Quality in Use and External Quality. The analysis of the ISO/IEC 9126-4
measures presented in Appendix 1 allows links to be drawn between the two models. A

summary is presented below.

57

Table XIX

Links from Quality in Use to External Quality

iy @ c 1 @ ! > c > > : v ® @
Quality in Use § % :C; E % g :§ % % ol BI®|%
|la|l2|x|5!/8/8|lcla|S|E|2 E
2 clsle |3l 5 & 2| 8 5|8
8 Sl |F ¥ 2la Y 5| L e 5|8
E PR = 5| %] o| @ | O El & | 3
% | O el 2| 2|8/ 2| »¢|lw |0
% | @& E181 218|285 F| ¢
@ 213 |2/ |8 |89 8
S| 9| R ! 5 3]
G| o9 |8 B
x| 2
w
External Quality
Functionality
Suitability X?| X X | X
Accuracy X1 X X1 X
Interoperability
Security
Functionality Compliance
Reliability
Maturity X
Fault Tolerance X
Recoverability X
Reliability Compliance
Usability
Understandability XXX | XXX X | X | X]| XX XX
Learnability X X | X
Operability XXX | X | XXX |X|X X]| X | XX
Attractiveness X ! X
Usability Compliance
Efficiency
Time Behavior X X | X | X X
Resource Utilization X1 X X
Efficiency Compliance

12 An X means that there is a potential link. The strength of the link could be verified empirically and vary depending on
the context of use.

58

Table XIX (continued)
iy w0 > S|l > 0l e
Quality in Use @158 g8 £ % SIE 419 5 | =
S 8 ¢/ F 8 5|5 8 8B 5| E|hB!lEC
Slelmz| 2|8 3|28 |9 |0|&| |5
5| E 0| 2 E| TS| o0 E|v | 2Ol sg|
Slglc|®|ujela|E|s| s o|2!B
= © = % o [0 @ < o E % g
w) =g G| Q|2 9|2 | 6l% |0
38 5] |T|5/8 3288 5|8 s
& A IEIEAR AR A -
g 0l = | = 3]
°Slgl 39 S
u €| > 2
©
0]
External Quality
Maintainability
Analyzability X | X
Changeability X X
Stability X | X
Testability X | X
Maintainability Compliance
Portability
Adaptability X
Instaliability X
Co-existence X
Replaceability X
Portability Compiiance

Note: Almost all External Quality characteristics can be related to the Satisfaction Scale
and the Satisfaction Questionnaire, depending on their contents. Only the most

important relationships are shown.

From the results presented in the table, it is possible to observe that with the exception
of all the Compliance subcharacteristics, only the Inferoperability and Security
subcharacteristics are not clearly associated with Quality in Use (other than loosely with
the Satisfaction Scale or Satisfaction Questionnaire characteristics).

Figure 16 highlights the duality of the relationship between External Quality and Quality
in Use. The first part of this relationship is the influence of Quality in Use requirements

59

in uncovering External Quality requirements. The second part of the relationship is the
ability of External Quality to be predictive of Quality in Use. These two aspects are
intrinsically linked. There is no doubt that if meaningful Quality in Use requirements are
uncovered, they will help uncover External Quality requirements. For example, one only
has to look at the definitions of Suitability (Table Xi), Accuracy (Table XI),
Understandability (Table Xill) and Operability (Table Xllf) to conclude that they are a
prerequisite of proper Task Effectiveness. Evaluation of Suitability, Accuracy
Understandability and Operability requirements derived from the Task Effectiveness
requirement should therefore result in a predicted Quality in Use. Whether this
prediction reflects reality will be dependent on how many other factors influence the
required Task Effectiveness (i.e. Task Effectiveness is not only dependent on External
Quality). Meeting the External Quality requirements is a necessary but not sufficient
condition for attaining the Quality in Use requirements. Therefore, External Quality is
predictive of Quality in Use in the sense that if the External Quality requirements are
not met, attaining the necessary Quality in Use should not be possible.

In conclusion, there is no doubt that there exists a relationship between External
Quality and Quality in Use. It has been shown that a possible manifestion of this
relationship could be in links between the measures of Quality in Use and the
subcharacteristics of External Quality. Unfortunately, this relationship is not
unambiguous (i.e. it is not explicitly specified in the standard).

3.6 Conclusion

This deeper analysis of the model has shown that ISO 9126 model is indeed applicable
with respect to the criteria outlined in the IEEE Standard for a Software Quality Metrics
Methodology for a top to bottom approach to quality engineering. However there are
serious concerns with the measures associated to the model with respect to usability
for specifying quality goals and reguirements. Although the situation can be improved if
the modifications outlined in Appendix 2 and 3 are made, this will be further discussed

in the following section.

DISCUSSION

Analysis of the methodology

The primary objective of this research was to identify a quality model that can serve as
a basis for the improvement of software quality in a continuous, systematic, disciplined

and quantifiable way. In order to accomplish this objective, a pyramid like approach has
been followed(Figure 17).

Recommend ations|

Conclusion §

f . o
{ Discussion

| Evaluation of ISO/IEC 9126 |
[Analysis of ISO/IEC 9126
McCall| { Boehm | [Dromey | | ISO/IEC 9126 |

' Definition of Quality + Premises .

Figure 17 Pyramid-like approach

The rationale for following such an approach was to build a solid base for the

recommendations. Each sforey of this pyramid will now be reviewed.

» The purpose of the literature review was to define the notion of quality in
software engineering as well as establish premises on which the rest of the
thesis would rely.

A proper definition of quality is essential for analyzing and selecting a quality
model, as it will provide a foundation for comparison and evaluation. Instead of
relying on a narrow and traditional definition such as “Quality is conformance to
requirements”, it was elected to use a broad definition based on the teachings
of David Garvin. This definition sees quality as a combination of 5 perspectives:
transcendental, user, manufacturing, product and value-based. This broad
definition includes the narrower definition. The advantage of using such a

broad definition is that it allows for a wide-reaching evaluation.

61

The premises which sustain this thesis can be seen as ramifications of this
definition. It was first stated that a possible part of the solution to improving
software quality in general was to establish quality requirements. This is a
sensible suggestion, as it is impossible to improve something which is not
defined. The second premiss stated that a possible reason that quality
requirements are not established today is because no quality model has been
identified as suitable for this purpose. The third and fourth premises establish
requirements that such a model should fulfill. Namely, a quality model suitable
for software quality engineering should be congruous with the definition of
guality and support both the evaluation and specification of quality
requirements. Congruence is necessary for the model to be broadly applicable.
Support for both evaluation and specification is primordial for the activity to be
considered as an engineering discipline. These last two premises are sensible
requirements for a model to fulfill and form a solid foundation to the search for

a suitable quality model.

The second step in this approach was to identify the quality models recognized
by the indusiry and select the one that was the most promising foundation to
Software Quality Engineering for further analysis. The literature review
established that an essential characteristic for a model to be suitable for
Software Quality Engineering is to be usable both in a boffomn fo top and a fop
to bottom approach. This characteristic is essential for the model to be useful in
both specification and evaluation of software quality. It was found in this
preliminary analysis that the fext of the ISO/NEC 9126 standard meets
expectations with respect to the requirements for a model to be used as a
foundation for Software Quality Engineering. ISOAEC 9126 was the only model

to meet these requirements.

The third step was to analyze the measures of ISO/IEC 9126-4 more in depth in
order to produce data for evaluating this standard’s suitability for Software
Quality Engineering. The reason for focusing on the Quality in Use model
(ISO/MEC 9126-4) is because of it's importance in the top to bottom approach.
indeed, the Quality in Use model is the entry point for specification of gquality

62

needs and evaluation of Quality in Use informs the client if those requirements

were met.

in order to generate data for the evaluation of the standard, four analysis
angles were chosen. These angles are inspired from the IEEE standard on

software quality metrics.

The first angle was to analyze the impact of the measure. The impact of a
measure relates to it's ability to discriminate good quality from bad quality.

The second angle was to analyze the relative cost of the measure. While such
a measure might have great scientific value, it will not be widely applicable as a
foundation for quality engineering.

The third angle was to analyze if a meaningful requirement could be set from
the measure. As has been argued before, this is crucial for the model to be
useful as a foundation for Software Quality Engineering.

The fourth angle was to analyze the possibility of a relationship between the
Quality in Use measures and External Quality. A relationship between a Quality
in Use measure and External Quality characteristics and subcharacteristics is
necessary for the requirements to be further decomposed into implementable
elements. The goal was not to define the strength of the relationship between
External Quality and Quality in Use, but rather to indicate where and why such
links could exist. Defining the strength of links is beyond the scope of this

research.

While not exhaustive, these four angles form a sufficient set to reach a
conclusion on the applicability of ISO/IEC 8126 as a foundation for Software

Quality Engineering.

The fourth and final step leading to a conciusion on the suitability of ISO/IEC
9126 as a foundation for Sofiware Quality Engineering was to answer three
guestions that were deemed a sufficient requirement for the model to be
suitable using the data produced during the analysis. The first guestion

63

addressed the ability of the model to be usable in setting quality requirements
at the beginning of the lifecycle. The second question addressed the
exhaustiveness of the model. The third and final question addressed the
predictability of the model.

This approach has led to the identification ISO/AEC 9126 as the best potential
foundation for Software Quality Engineering according to the selection criteria. This
result will be further analyzed in the following section.

Analysis of the results

The evaluation of ISO/EC 9126 found that there is no question as to whether the intent
of the standard (i.e. its text) is a suitable foundation for Software Quality Engineering.
indeed, section 3.1 of this thesis quoted several places where the standard indicates

that it would be a suitable foundation.

Unfortunately, verification of the implementation of this intent (i.e. the measures)
indicates weaknesses that require improvements in order for the standard to be a
foundation for Software Quality Engineering as defined in this thesis. These needed
improvements are threefold:

* Of the 15 measures proposed by the standard, 11 fail to be ciearly applicable
with respect to the selection criteria. Particularly, a majority of the measures fail
to be clearly usable for setting meaningful quality requirements. As it has been
discussed before, it is critical for measures to be useful in this respect in order
for the standard to be considered a solid foundation for Software Quality

Engineering.

* The exhaustiveness of the standard for External and Internal Quality has been
challenged in other studies. As for the Quality in Use model, other models on
this specific subject have introduced other characteristics that are not covered
by ISO/NEC 9126-4. Exhaustiveness is not a problem per se if the model can
easily be improved. However, ISO/EC 9126 being an international standard

must go through a lengthy modification process.

64

° As was discussed previously, it is impossible to universally prove the existence
of links between Quality in Use and External Quality. Empirical verification is
necessary for different contexts of use. One of the failings of the standard is
that it does not specify where such links could exist, and how their existence
couid be establised for different contexts of use.

The guestion that must be asked is: Are these three points enough to declare that
ISO/IEC 9126 is an unsuitable foundation for Quality Engineering?

The answer to this question is negative. Regardless of how many measures fail to meet
expectations, they form an informative™ part of the standard. In other words, their
usage is not mandatory. The most important part is therefore the normative part of the
standard. This part has been found to be suitable framework for Software Quality
Engineering.

However, this does not mean that the set of measures is not important. They should be
seen as an important supportive element. In their present state, this set is clearly
lacking in its usabilty and its exhaustiveness. This thesis presenits possible
improvements to the ISO/IEC 91264 standard that aim to correct this situation.

As for the existence of links between External Quality and Quality in Use, there is no
doubt that they exist. ISO/MEC 9126 is a first and necessary step towards a truly usable
predictive framework. Subsequent versions of the standard may, and should, reinforce
this embryonic support for a predictive quality framework.

13 Please refer to the footnote on page 33 for a discussion on the meaning of informational.

CONCLUSION

This thesis has followed a path that ieads to the identification of ISO/NEC 9126 as a
model that is a suitable foundation for Software Quality Engineering. Although Software
Quality Engineering is an emerging discipline, it is important because it recognizes the
primordial significance of guality in Software Engineering and defines a systematic
approach to achieve quality. Identification of a model suitable for this purpose is
essential because such a model will be at the heart of a Software Quality Engineering
methodology.

it was found through the analysis that ISO/IEC 8126's framework is clearly supportive
of the idea of Software Quality Engineering:

|t recognizes the importance of both specifying and evaluating quality needs.

o [t defines a predictive model that supports the top to bottom and the bottom to
top approach to software quality.

|t wants to be applicable to every kind of software.

The selected model is however far from perfect. The main grievance with the model is
that the promises of the framework fail to materialize themselves in the software quality
measures that support it. These weaknesses are particularly visible when looking at the
failure of the majority of the measures to be clearly useful in specifying meaningful
requirements. These failures have been thoroughly documented in Appendix 1.
Improvements that aim to correct this situation have been detailed in Appendix 2.

This thesis has raised interesting and important guestions that could be the subject of
further research. First among these in the author's view is the need for a better
elucidation of the links between External Quality and Quality in Use. While this thesis
as hinted to links that could exist between these two aspects of quality, a more formal
specification of the links for different contexis of use could lead to better CASE tools
that thoroughly assist stakeholders uncover External Quality requirements from Quality
in Use needs. In turn, stakeholders would be assisted in uncovering Internal Quality
requirements from their External Quality needs. Such research could lead to

66

improvements that would reinforce ISO/IEC 9126's position as a solid foundation for
Software Quality Engineering. Furthermore and more importantly, in today's world of
complex software projects, such tools could prove crucial to improving software quality
by helping stakeholders provide software that has the Quality in Use required by the
users of the system and the External and Internal Quality characteristics necessary o
provide this quality in specified contexts of use.

67

RECOMMENDATIONS

Three recommendations emanate from this research.

o The first recommendation is to overhaul the measures of ISONEC 9126-4. This
thesis can serve as a guide to improving the measures:

° The reasons explaining why improvements are necessary are detailed in
Appendix 1.

» Detailed improvements to the measures are presented in Appendix 2.

» Appendix 3 presents the measures in the tabular format adopted by
ISONEC 9126.

* The second recommendation is to compare each part of the ISO/IEC 9126
standard (Internal Quality, External Quality and Quality in Use) with quality
models specific to these aspects. For example, there exists in the literature
models that are specific to Quality in Use. These models usually express new
ideas. Comparison with such models could help uncover areas not covered by
ISO/IEC 9126, therefore improving its exhaustiveness and provide some new
links between the different aspects of quality.

= The third and final recommendation is to better elucidate the links between the
different aspects of quality. While this thesis has given hints as to where such
links may exist, it is necessary for a wider applicability of the predictive

framework that this existence be confirmed through empirical research.

APPENDIX 1

ANALYSIS OF ISONEC 91264 QUALITY IN USE MEASURES

Task Effectiveness

Description

68

Measure Name

Task Effectiveness

Purpose

Measure the proportion of the goals of the task that is
achieved correctly.

Application

The measure is applied as a user test:

MI=1-3 4]

Where each A is a proportional value of each missing or
incorrect component in the fask output.

ISO 91264 further specifies: Each potential missing or
incomplete component is given a weight A; based on the
extent to which it detracts from the value of the output to
the business or user. (If the sum of the weights exceeds
1, the metric is normally set to 0, although this may
indicate negative outcomes and potential safety issues.)
The scoring scheme is refined iteratively by applying it to
a series of task outputs and adjusting the weights until
the measures obtained are repeatable, reproducible and
meaningful.

Analysis

Impact

This measure can clearly be used to indicate deficient
software quality. However, it might be difficult to set a
threshold for quality (for example, below x indicates low
quality).

This measure can be applied to almost any kind of
software, as ail software must accomplish a task, and most
tasks are composed of different goals.

Cost of application

The cost of data item collection necessary for the
application of this measure is negligible, as the collection
can be integrated to the test phase.

Can this measure be used to
thoroughly set quality goals
and requirements?

At least two elements make it difficult to use this measure
as a guality goal or requirement:

®

First of all, it is difficult to set a threshold separating
sufficient quality from insufficient quality. The reason
for this is that the standard specifies that the sum of
the Ai must not necessarily equal 1. The
consequence of this is that the measure is
unbounded. Although the standard specifies that
negative results are normalized to 0, such resuits are
the only clear indication of insufficient quality.

The second possible obstacle to the usability of this
measure is the suggestion that the scoring scheme be
refined iteratively. The standard specifies that the
“scoring scheme is refined iteratively by applying it to
a series of task outputs and adjusting the weights until
the measures obtained are repeatable, reproducible
and meaningful’. By requiring that the measure use
task outputs for adjusting the weights, it makes it
difficult to use this measure before task outputs are
available. If used as requirement, it would have to be
based on an expert judgment or statistical data (if
available/applicable). in some cases, these might
prove to be inaccurate. it is doubtful that software
contractors would agree to having a clause based on
such a measure in a contract.

Which, if any, External Quality
characteristics and
subcharacteristics may
predict the value of this

In order to complete the goals of a task, the proper
Functionality must be present. There is therefore a
strong link to suitability measures and to a lesser extent
accuracy.

70

measure? Usability is also critical. Measures from the
understandability and operability subcharacteristics
should therefore be predictive to a certain extent of the
effectiveness.
Conclusion
Discussion Although the cost of this measure seems negligible and it

fits into the predictive model, it does not meet the
requirement that it should be clearly usable in defining
guality goals.

Rating

This measure is therefore non applicable.

Task Completion

71

Description
Measure Name Task Completion
Purpose Measure the proportion of the tasks that are compleied.
Application The measure is applied as a user test:
X=AlB
Where:
= Ais the number of tasks completed
« B is the total number of tasks attempted
1S0O 912644 further notes: This metric can be measured
for one user or a group of users. If tasks can be partially
completed the Task effectiveness metric should be used.
Analysis
Impact This measure can clearly be used to indicate deficient
software quality. A low ratio implies that the users are unable
to complete the tasks that the software was built to assist.
This measurement could also be applied to mock-ups and
prototypes in order to guide the development team.
Cost of application The cost of data item collection necessary for the application

of this measure is negligible, as the collection can be
integrated to the test phase. Such a test should usually be
conducted as part of acceptance tests.

72

Can this measure be used to
thoroughly set quality goals
and requirements?

At first glance, it is doubtful that a meaningful requirement
could be set using this measure. A requirement based on
such a measure could read as follows:

“Task completion ratio shali be above 90%".

This raises the following concerns:

» s this a meaningful requirement?

= Wouldn't a high ratio of task compietion be implicitly
expected of most software?

+ More importantly, are all tasks given the same weight?

This iast concern is of the utmost importance. This measure
mixes and matches all the tasks together. it is doubtful that
ail the tasks that a system must accomplish are of the same
importance. The standard should therefore state that tasks
should be weighted or that task completion should be
measured on a task by task basis.

However, the inclusion of such a requirement in a software
requirements specification can be seen as a safety net
against incompetence on the part of the supplier. it may
even force the supplier towards the good practice of close
interaction with the end user.

Lower expectations about this measure could also lower the
initial cost of the software. it could be developed faster with
litle communication with the end users. it is important to
point out that this is not considered a good practice, but it
might be justifiabie with respect to time and costs
constraints.

it is important to note that the measure offers no guidance
on what constitutes a completed task other than referring to
the task effectiveness measure when tasks can be partially
completed. Because the task effectiveness measure has
been shown to be non-applicable, it will influence negatively
the applicability of this measure when such situations arise.

Which, if any, External Quality
characteristics and
subcharacteristics may
predict the value of this
measure?

L

In order to complete a task, the proper Functionality must
be present. There is therefore a strong link to suitability
measures and o a lesser extent accuracy.

Usability is also critical. Measures from the
understandability and operability subcharacteristics
should therefore be predictive to a certain extent of the
effectiveness.

Conclusion

73

Discussion

The cost of applying this measure is negligible as it can be
integrated o the test phase. To a certain exient, this
measure can be used as quality goal and requirement in
the simple case where there are few tasks. General
applicability in this regard is conditional to reformulation
and clarifications about the weighting probiem. Finally,
there are External Quality characteristics and
subcharacteristics that stand a good chance of having a
predictive value.

This measure fulfills almost all the goals and objectives of
ISO/IEC 9126 in the simple case where the tasks are
simple and can either be accomplished or not. in the case
where tasks are complex and can be partially
accomplished, the task effectiveness measure must be
used. Since that measure has been shown o be non-
applicable, it influences negatively the rating of this
measure.

For more information, refer to the evaluation of the task
effectiveness measure.

Rating

This measure is considered of conditional applicability in
simple cases where task can either be accomplished or
not.

It is considered non-applicable in situations where tasks
can be partially accomplished and must rely on the Task
effectiveness measure. Improvements to the Task
effectiveness measure would reflect positively on the
applicability of this measure.

Error Frequency

Description

74

Measure Name

Error Frequency

Purpose

Measure the frequency of errors.

Application

The measure is applied as a user test:
X=AIT

Where:

e Alis the number of errors made by the user

o Tis the time or number of tasks

1ISO 9126-4 further notes: This metric is only appropriate for
making comparisons if errors have equal importance, or
are weighted.

Analysis

Impact

This measure can clearly be used to indicate deficient

software quality. A high value in X will indicate that users

make a lot of errors while attempting to accomplish tasks.

There are two possible interpretations of this measure,

depending on the unitof T:

¢ When T is the amount of time, the result is the number of
errors per unit of time.

* When T is the number of tasks, the result is the number of
errors per task.

Intuitively, it can be stated that the lower the result, the

better the quality. However, it might be difficult to set a finite

threshold to separate good quality from deficient quality.

Cost of application

The cost of data item coliection necessary for the application
of this measure is negligible, as the collection can be
integrated to the test phase.

75

Can this measure be used to
thoroughly set quality goals
and requirements?

The primary concern with the usability of this measure as a
quality goal or requirement is that it seems to encourage
evaluating all the tasks at once instead of one by one.
Although the standard specifies that errors should be
weighted, it is believed that it is not sufficient to establish
clear goals and requirements.

While the standard acknowledges that errors do not have
the same importance, it fails to acknowledge that all tasks
do not have the same importance. This is of the upmost
importance in the signification and interpretation of this
measure and needs further discussion. While it might be
important to know how many errors a user will make when
performing a given task set, it is more important to know
how many errors a user will make when performing a single
given task. The standard could also clarify that tasks that are
grouped together when evaluating the error frequency
should be logically and functionally linked together.

A secondary concern is the fact that this measure should be
split into two seperate entities. This is because both the
number of errors/unit of time and the number of errors/task
are important.

Which, if any, External Quality

Usability is critical to a low error frequency. Measures from

characteristics and the understandability and operability subcharacteristics
subcharacteristics may should therefore be predictive to a certain extent of the
predict the value of this effectiveness.
measure?
Conclusion
Discussion Although the cost of applying this measure and its potential

predictive value are satisfying, there are conditions to the
usability of the Error Frequency measure in defining
meaningful quality goais and requirements. Namely,
clarifications

Rating

The applicability of this measure is therefore conditional.

76

Task Time
Description
Measure Mame Task Time
Purpose Measure the time needed to compiete a task.
Application The measure is applied as a user test:
X=Ta
Where Ta is the task time.
Analysis

impact This measure can clearly be used to indicate deficient
software quality if and only if there exists a reference task
time to compare it with. As a standalone number, this
measurement is meaningless as an indication of software
quality. However, {ISO/IEC misleads the reader into thinking
that this number is very relevant by stating that “the smaller
[the result], the better”. A smaller task time does not indicate
better quality; a task time closer to a target time is indicative
of better quality.

Cost of application The cost of data item collection necessary for the application

of this measure is negligible, as the collection can be
integrated to the test phase.

Can this measure be used to
thoroughly set quality goals
and requirements?

As is explained in the “impact” section, this measure is only
useful if there is reference task time to compare it with.
ISO/IEC 9126-4 states that the smaller the resuit, the better.
While not false, this statement is misleading. it would be
better, and more useful as a quality requirement, if this
measure were to be siated as follows:

X—T"’
T

Where:
e Tm is the measured task time
+ Te is the expected task time

When used as a requirement, this forces the stakeholders to
think about the time a task should take and the acceptable
difference beiween the measured time and the reference
time. Otherwise, the stakeholders are more likely to require
a certain fixed task time without giving regards to variance
between different users.

Which, if any, External Quality
characteristics and
subcharacteristics may
predict the value of this
measure?

Usability is critical to a low task time. Measures from the
understandability and operability subcharacteristics
should therefore be predictive to a certain extent of the of
the task time.

Efficiency is also very important in this regard. The time
behaviour measures will clearly be indicative of task time.

Conclusion

77

Discussion

This measure can be used to indicate deficient quality (if
used properly) at an acceptable cost. Furthermore, this
measure fits into the predictive model proposed by ISO/IEC
9126-1.

The usability of this measure as a quality goal or
requirement is however questionable without a reference or
target task time. This could however easily be fixed by
modifying the definition of the measure.

Rating

This measure is non-applicable as is. However, it could
easily be considered applicable with slight modifications.

Task Efficiency

Description

Measure Name

Task Efficiency

Pumpose

Measure how efficient the users are.

Application

This measure is applied as a user test:
X=MIIT

Where:
< M1 is the task effectiveness (see task effectiveness

measure)
» Tis the task time
ISONEC 9126-4 further notes: Task efficiency measures
the proportion of the goal achieved for every unit of time.
A high value indicates that a high proportion of the task is
achieved in a small amount of time. it enables
comparisons to be made, for example between fast error-
prone interfaces and slow easy interfaces.
If Task completion has been measured, task efficiency
can be measured as Task completion/task time. This
measures the proportion of users who were successful
for every unit of time. A high value indicates a high
proportion of successful users in a small amount of time.

Analysis

78

Impact

Alarge value of X will theoretically correlate with high
software quality. Therefore, this measure couid be used to
indicate deficient quality if the task efficiency is not
satisfying.

Cost of application

The cost of applying the measure is negligible, as it uses
data items collected in other measures.

79

Can this measure be used to
thoroughly set quality goals
and requirements?

This measure fails to be useful in setting quality goals and
requirements. The reason for this is that it is very difficult to
state that task efficiency should be greater than a certain
value if

= No target task time has been set.

* No target value for task effectiveness has been set. As it
has been seen previously, it is questionable that a specific
goal could be set for task effectiveness (in its current
state). This makes this measure inapplicable for setting
quality goals and requirements.

Furthermore, the units of X (undefined value / time) make

this measure difficult to interpret and use.

Which, if any, External Quality
characteristics and
subcharacteristics may
predict the value of this
measure?

Since this is a derived measure, the same characteristics
and subcharacteristics that were predictive for task time and
task effectiveness are applicable here. Namely
Functionality (with subcharacteristics suitability and
accuracy) Usability (with subcharacteristics
understandability and operability) and Efficiency (with
subcharacteristic time behaviour) should be predictive of
task efficiency.

Conclusion

Discussion

The applicability of this derived measure is very
questionable, because the measurements composing
this measure are not satisfying themselves as quality
goals and requirements. It is not questionable that this
measure can indeed be used to measure software quality
aposteriori; what is very questionable is the a priori
usability of this measure to set quality goals and
requirements. In order for this measure to be applicabie,
improvements are needed to both the Task efficiency and
Task time measures.

Rating

This measure is therefore non applicable in its current
state. Modifications to the Task effectiveness measure
would reflect positively on the applicability of this
measure.

Economic Productivity

80

Description
Measure Name Economic Productivity
Purpose Measure the cost-effectiveness of the user
Application The measure is applied as a user test:

e M1 is the task effectiveness (see task effectiveness

X=MIIC
Where:

measure)
* (is the total cost of the task
ISO/EC 91264 further notes: Costs could for example
include the user’s time, the time of others giving
assistance, and the cost of computing resources,
telephone calis, and materials.

[Analysis

Impact The higher the result, the better the economic productivity.
An economic productivity that is too low might indicate
deficient software quality. However, there is no way to set a
threshold between good quality and bad quality.
Cost of application There are two data items necessary to compute a result for

this measure.

o First, the task effectiveness must be measured as
described previously. This does not incur additional costs
over those already incurred.

» The fotal cost of the task must be evaluated. Depending
on the task and the necessary thoroughness of the
evaluation, this might require an exhaustive and
expensive investigation..

81

Can this measure be used fo
thoroughly set quality goals
and requirements?

The applicability of this measure {o set quality goals and
requirements is questionable fo start with because it relies
on a measure that has been shown to have questionable
applicabitity.

In order for this measure to be useful as a requirement, the
{otal acceptable cost of the task must be carefully estimated.
Even if this measure can be indicative of low software
quality, it is doubtful that it can be used as a software
requirement because it would require two estimations (one
for task effectiveness and another one for the cost) that will
surely contain errors and render the resuiting estimation of
the economic productivity unusable.

Furthermore, the units of X (undefined value / $) make this
measure difficult to interpret and use.

Which, if any, External Quality

Since this is a derived measure, the same characteristics

characteristics and and subcharacteristics that were predictive for task
subcharacteristics may effectiveness are applicable here. Namely Functionality
predict the value of this (with subcharacteristics suitability and accuracy) and
measure? Usability (with subcharacteristics understandability and
operability) should be predictive of task efficiency.
Efficiency will also play an important role in predicting
economic productivity, especially the time behaviour and
resource utilization subcharacteristics.
Conclusion T
Discussion The applicability of this derived measure is very

questionable, because the measurements composing
this measure are not satisfying themselves as quality
goals and requirements. Furhermore, the resulting unit of
X lacks 2 useful interpretation.

Rating

This measure is therefore non applicable.

Productive Proportion

Description

82

Measure Name

Productive Proportion

Purpose

Measure the proportion of the time a user is performing
productive actions.

Application

This measure is applied as a user test
X=TalTh

Where:

e Tais the productive time (task time — help time — error
time — search time) (Note: this is not the same “Ta” then
in other measures)

o Tbis the task time (this corresponds to the Ta of other
metrics)

ISO/EC 9126-4 further notes: This metric requires detailed

analysis of a videotape of the interaction

Analysis

Impact

This measure can clearly be used to indicate deficient
software quality. The closer the result is to 1, the less time
the user wastes in unproductive tasks like browsing the
online help.

This measure is sufficient fo show deficient software quality.
However, it is a necessary, but not sufficient condition to
demonsirate adequate software quality.

Cost of application

Because this measure requires a detailed analysis, its
application might be more expensive than other measures.

Can this measure be used to
thoroughly set quality goals
and requirements?

Because this measure uses a ratio of (partial time)/(total
time), it is easier to set a quality goal or requirement. For
example, a requirement based on this measure couid be
expressed as follows:

“The productive proportion for task OrderBook shall be
greater than 90%".

Such a requirement will coerce the developers into
producing software that is intuitive and ergonomic in order to
diminish the time that is used searching for the right function
or browsing the online or offline help.

Which, if any, External Quality
characteristics and
subcharacteristics may
predict the value of this
measure?

Usability will be critical to achieving a satisfying productive
proportion. Measures from the understandability and
operability subcharacteristics should therefore be predictive
to a certain extent of the effectiveness.

Efficiency will also play an important role in predicting the
productive proportion, especially the time behaviour and
resource utitization subcharacteristics.

Conclusion
Discussion Although this measure might prove expensive to apply, it
can clearly be used as an indicator of software quality
and can also be used as a software quality goal or
reguirement.
Rating This measure is considered applicable.

83

Relative User Efficiency

Description

84

Measure Name

Relative User Efficiency

Purpose

Measure the efficiency of a user compared o an expert.

Application

This measure is applied as a user test:
X=A/B
Where:
» Ais the task efficiency of an ordinary user
e B is the task efficiency of an expert user
The task efficiency is the same measure as previously
discussed
ISOMEC 8126-4 further notes: The user and expert carry
out the same task.

Analysis

Impact

According to ISO/IEC 9126-4, the closer the ratio is to 1, the
better the quality of the software.

The accuracy of the previous statement is questionable. A
concrete example will illustrate why this statement is not
always accurate.

This example will focus on the popular text editor emacs.
This text editor is renowned to be relatively complex to learn
and has a steep learning curve. However, once the learning
phase is complete, it allows for productivity that few text
editors can aitain. The cost of this power is increased
compilexity. Therefore, the relative user efficiency will be low.
However, one can not say on this measure alone that emacs
is of poor quality.

Therefore, one can not blindly say that a high relative user
efficiency is synonymous of quality. The only case where this
is true is when the expert's efficiency is equal to the
theoretical maximum.

Cost of application

The cost of applying the measure is negligible, as it uses
data items collected in other measures.

85

Can this measure be used to
thoroughly set quality goals
and requirements?

Even if the given example seems to undermine the usability
of this measure, it does not deter from its instinctive
meaning.

In some cases, a high relative user efficiency might be
desirable if a shallow learning curve is needed. For example
in a call center, it might be cheaper to add more operators
than to pay for more clever software that allows for higher
raw efficiency from more experienced operators.

Which, i any, External Quality

Usability is critical to a iow task time. Measures from the

characteristics and understandability, operability and especially learnabifity
subcharacteristics may subcharacteristics should therefore be predictive to a certain
predict the value of this extent of the effectiveness.
measure?
Conclusion
Discussion This measure is an example of one that is not very useful

as an absolute measure of quality, but can be very useful
as a quality requirement.

lts usability as an a posteriori measurement is more than
questionable, because it is doubtful that high relative user
efficiency correlates directly with high software quality.
However, it is useful a priori (i.e. as a quality requirement).
Indeed, it might be necessary for certain types of
applications to have a relative user efficiency close to 1.

Rating

This measure is considered applicable.

User Health and Safety

Description

86

Measure Name

User Health and Safety

Purpose

Measure the incidence of health problems among users
of the product.

Application

This measure is applied by analyzing usage statistics:
X=1—-A4lB

Where:

* Alis the number of problems reported. Problems can
include Repetitive Strain Injury (RS!), fatigue,
headaches, etc.

° B is the total number of users.

Analysis

Impact

Properly applied, this measure can be used to demonstrate
deficient software quality.

However, it might be difficult to prove that the software itself
is the root cause of the problems. For example, wrist
problems might be traceable to the way the user uses the
mouse rather than to the software.

Cost of application

This measure entails a detailed analysis of the usage
statistics. When statistics reveal a problem, more analysis
and interviews might be needed in order to find the root
cause of the problem. Depending on the depth of the
analysis, the application of this measure might prove costly.

Can this measure be used fo
thoroughly set quality goals
and requirements?

Because this measure is in the form of an absolute ratio, it is
readily usable as za goal or requirement.

it is plausibie that the stakeholders require that the software
does not cause any prejudice to the user heaith and safety.
Such a requirement would however force the stakeholders
to reflect on the definition of probiems to user health and
safety. The standard offers little guidance in this sense.

Which, if any, External Quality
characteristics and
subcharacteristics may
predict the value of this
measure?

No External Quality characteristics and subcharacteristics
directly relate to user health and safety.

Usability subcharacteristics are loosely related to user
hezlth and safety. Software that possesses
understandability and operability are less likely to let
users do something that might endanger them.

Conclusion
Discussion This measure can be used to specify quality goals and
requirements. However, its usability in the predictive
model is questionable. No External Quality
characteristics or subcharacteristics directly relate to user
health and safety.
Rating The applicability of this measure is therefore conditional

to definition of a health problem traceable to sofiware
use.

87

88

Safety of People Affected by Use of the System

Description

Measure Name

Safety of People Affected by Use of the System

Purpose

Measure the incidence of hazard 1o people affected by
use of system.

Application

This measure is applied by analyzing usage statistics:
X=1-A4/B

Where:

= Ais the number of people put at hazard

» B is the total number of people potentially affected by
the system.

ISOAEC 91264 further notes: An example of this metric

is Patient Safety, where A = number of patients with

incorrectly prescribed treatment and B = total number of

patients.

Analysis

impact

This measure can clearly be used to indicate deficient

software quality.

An interesting fact about this measure is that it measures

damages not only to the end user, but also to anybody who

might be affected by the system. For exampile, if there is a

power failure attributable to a software failure in a power

plant, then

= Alis the number of peopie affected by the blackout.

< B is the number of people who could potentially have
been affected (worst case scenario).

Therefore, this measure can be very imporiant for

measuring the quality in use of embedded applicaticns, even

though no one directly interacts with it.

Cost of application

This measure entails a detailed analysis of the usage
statistics. When statistics reveal a problem, more analysis
and interviews might be needed in order to find the root
cause of the problem. A detailed analysis will also be
necessary to uncover the number of people who have been
put to hazard and the number of people potentially affected
by the system.

Depending on the depth of the analysis, the application of
this measure might prove costly.

8¢

Can this measure be used fo
thoroughly set quality goals
and requirements?

This measure can be used in 2 number of ways to set

quality goals and requirements.

Usage of this measure as a quality goal or requirement will

force the stakeholders to:

» Consider and define the number of people who can
potentially be affected by the usage of the software.

s Consider and define what percentage of the potentially
affected population must be kept safe at all times.

|t can help the stakeholders define an upper limit on the
number of people who should potentially be affected by
usage of the software.

It is important to note that it might be hard to demonstrate a

level of safety if the testability of the software is not

sufficient.

Finally, it would be important to define what “potentially

affected by” and “put to hazard” means. The standard offers

no guidance in this case, but it is a clarification that must be

made by the stakeholders in order for this measure to be

usable.

Which, if any, External Quality

Usability is important to the safety of people affected by the

characteristics and system. Measures from the understandability and
subcharacteristics may operability subcharacteristics should therefore be predictive
predict the value of this to a certain extent of the relative safety of people.
measure? Maintainability will also be very important. Analyzability,
changeability, stability, and testability subcharacteristics
are critical to continued safety.
Conclusion
Discussion This measure has an important impact, can be used to

thoroughly set quality in use reguirements and fits into
the predictive model of ISOMEC 9126-1.

Rating

This measure is considered applicable.

Economic Damage

Description

S0

Measure Name

Economic Damage

Purmpose

Measure the incidence of economic damage.

Application

This measure is applied by analyzing usage statistics:
X=1—A4/B

Where:

» Ais the number of occurrences of economic damage.

e B is the total number of usage situations.

ISOMEC 9126-4 further notes: This can also be measured

based on the number of occurrences of situations where

there was a risk of economic damage.

Analysis

- Impact

Software that causes unforeseen economic damages clearly
possesses deficient quality. This measure can therefore be
used to a certain extent to measure quality.

However, the impact of this measure is greatly mitigated by
the fact that the economic damage is not weighted. For
example, economic damages of 103, 1,000$ and
1,000,000% are considered on the same level.

Cost of application

This measure entails a detailed analysis of the usage
statistics. When statistics reveal a problem, a thorough
analysis will be necessary to uncover the parameters of the
measure.

91

Can this measure be used to
thoroughly set quality goals
and requirements?

The usability of this measure to thoroughly set guality goals
and requiremenis is very questionable. The stakeholders will
probably be more interested in minimizing the total amount
of economic damages rather than the number of
occurrences of economic damages. Therefore, in order for
this measure {o be usable as a quality reguirement, it must
be complemented with such information.

Which, if any, External Quality
characteristics and
subcharacteristics may
predict the value of this
measure?

Reliability subcharacteristics are directly related to
economic damages. Software that possesses maturity,
fault tolerance and recoverability is less likely to cause
economic damages. If economic damages do occur, their
impact might be lessened.

Usability subcharacteristics are loosely related to possible
economic damages. Software that possesses
understandability and operability are less likely to let
users do something that cause economic damages.
Maintainability might also play an important role in the
long-term. Analyzability, changeability, stability, and
testability subcharacteristics will prove important to prevent
corruption when modifications to the software are made.

Conclusion

Discussion

This could be an important measure of quality in use. itis
very important to consider the potential economic
damages when building software. However, it does not
take into account the value of the economic damages,
which makes its impact and usability as a requirement
guestionable.

Rating

The applicability of this measure is therefore conditional
to the inclusion of the notion of maximum damage.

jare Damage

Description

92

Measure Name

Software Damage

Purpose

Measure the incidence of software corruption.

Application

This measure is applied by analyzing usage statistics:
X=1-A/IB

Where:

* Ais the number of occurrences of software corruption.

= B is the total number of usage situations.

ISONEC 9126-4 further notes: This can also be

measured based on the number of occurrences of

situations where there was a risk of software damage.

This metric can also be measured as X = cumulative cost

of software corruption / usage time.

Analysis

Impact

In this analysis, “software” is taken as the program iiself and
the data it manipulates.

Software that corrupts itself or unwillingly comprises data it
uses will undoubtedly have poor quality. Therefore, this
measure can be used to evaluate software guality.

Cost of application

This measure entails a detailed analysis of the usage
statistics. Detecting corruption of data might require analysts
to manually go through the computations carried out by the
program. The costs of such an analysis will vary with the
complexity of the operations carried out by the program.

93

Can this measure be used to
thoroughly set quality goals
and requirements?

For reasons similar to those expiained in the analysis of the
economic damage measure, the applicability of this measure
to thoroughly set quality goals and requirements is
guestionable.

While this measure is certainly useful, the stakeholders will
probably be more interested in limiting or defining the extent
of corruption that is allowable on specific data sets rather
than on the exact number of times corruption occurs. The
problem with analyzing only the number of times corruption
occurs is that there are different levels of corruption. For
example, if a software program corrupts a document by
replacing every period by a coma, it is certainly less
damageabie than if it makes the document unreadable.

The standard specifies that ancther possible measurement
of software damages is: X = cumulative cost of software
corruption / usage time. This amounts to computing the
economic damages related to software corruption and is
more relevant for stakehoiders.

Which, if any, External Quality
characteristics and
subcharacteristics may
predict the value of this
measure?

Reliability subcharacteristics are directly related to
economic damages. Software that possesses maturity,
fault tolerance and recoverability is less likely fo cause
economic damages. if economic damages do occur, their
impact might be lessened.

Usability subcharacteristics are loosely related to possible
economic damages. Software that possesses
understandability and operability are less likely to let
users do something that cause might corruption
Maintainability might also play an important role in the
iong-term. Analyzability, changeability, stabifity, and
testability subcharacteristics will prove important to prevent
corruption when modifications to the software are made.

Conclusion

Discussion

Measuring the extent of corruption the software can
cause on itself or data it analyzes is undoubtediy an
important measure of software quality. While this
measure addresses that issue, it does not do so in a way
that is the most relevant to stakeholders that specify
software requirements.

Rating

The applicability of this measure is therefore conditional
o the usage of the alternative definition of the measure.

Satisfaction Scale

Description

94

Measure Name

Satisfaction Scale

Purpose

Measure the satisfaction of the user.

Application

The measure is applied as a user test:
X=A/B
Where:
* Ais a questionnaire producing psychometric scales.
° B is the population average.

[Analysis

Impact

There is no doubt that a questionnaire producing
psychometric scales can be used to analyze the satisfaction
of users with the software product. To the extent that
satisfaction is a measure of software, then this measure is a
relevant indicator of quality in use.

The analysis of the mathematical formuia states that the
larger the resuit, the better. It could be further said that
resul{s above one will be indicative of a score that is above
the population average.

The existence of psychometric tests that are relevant for the
software being analyzed is necessary in order for this
measure {o be applicable. The population average must also
be known in order for a comparison to be made.

ISONEC 91264 contains references to psychometric that
have been used by the indusiry. However, there are no
standardized tests.

Cost of application

The cost of application will vary with the complexity of the
psychometric test. In some cases, a license for the test
might be needed. In other cases, the application of the test
might necessitate the help of a specialist. In any cases, the
users that will be subjected to the test must be chosen with
care.

85

Can this measure be used to
thoroughly set quality goals
and requirements?

Psychometrics form a well understood and well recognized
body of knowledge. Psychometrics tests are interesting for
sefting quality requirements because such tests always have
a known population average. This average can serve as
guidance for setting a relevant requirement.

Which, if any, External Quality
characteristics and
subcharacteristics may
predict the value of this
measure?

Usability is surely the External Quality characteristic that is
the most important to user satisfaction. Measures from the
understandability, learnability, operability and
attractiveness subcharacteristics should therefore be
predictive to a certain extent of the satisfaction of end users.
Depending on the questionnaire, all characteristics and
subcharacteristics except those from maintenance could be
predictive the result.

Conclusion

Discussion

The impact of this measure was shown to be positive (i.e.
there is no doubt that this measure is an indicator of user
satisfaction and therefore quality). However, the cost of
applying this measure could be prohibitive depending on
the thoroughness of the analysis.

It is important to note that this measure as the potential
to be one where almost all External Quality
subcharacteristics might prove predictive of the result.

Rating

The applicability of this measure varies with the level of
understanding of the stakeholders and the complexity of
the psychometric tests.

If the stakeholders have a thorough understanding of
psychometrics, there is no doubt that this measure is
applicable.

Satisfaction Questionnaire

[Description

g6

Measure Name

Satisfaction Questionnaire

Purpose

Measure how satisfied the user is with specific software
features.

Application

The measure is applied as a user test:

X=> (4,n)
Where:
+ Each A is a response fo the same guestion
> p is the total number of responses
1SO 91264 further notes: If the questionnaire items are
combined fo give an overall score, they should be
weighted, as different questions may have different
importance.

Analysis

Impact

This measure is one of the most powerful tools to measure
user satisfaction and to evaluate quality as perceived by the
users of the system.

Cost of application

The cost of applying this measure is negligible in most
cases. If an expert is hired to construct the questionnaire
and to perform the evaluation, the cost of application could
rise.

Can this measure be used to
thoroughly set quality goals
and requirements?

Because of its relative simplicity and its expressiveness, this
measure can be used fo thoroughly set quality goals and
requirements.

Stakeholders can determine in advance what guestions
should be asked fo users and what their level of satisfaction
should be for the software product to be considered
successful. From those questions and the target satisfaction
level, new External Quality requirements can be discovered
that will help satisfy the objectives.

In software where there is user interaction and feedback,
this measure can be used {0 discover many requirements.

ich, if any, External Quality
characteristics and
subcharacteristics may
predict the value of this
measure?

Depending on the questions that are asked, almost every
subcharacteristic can be predictive of the result of the
application of this metric.

The relation between External Quality and this measure is
almost assured, but will have to be evaluated on a case by
case basis.

Conclusion

g7

Discussion

The impact of this measure is important and the cost of
applying it is negligible. it gives the end users the chance to
express their satisfaction with the software program.
Furthermore, it allows stakeholders to thoroughly set
quality goals and requirements. Finally, the role of this
measure in the predictive model is almost assurad, but will
have to be determined depending on the questions
submitted to the user.

This measure is of critical importance to the quality in use
model.

Rating

This measure is considered applicable.

Discretionary Usage

Description

g8

Measure Name

Discretionary Usage

Purpose

Measure the proportion of potential users who choose to
use the system.

Application

The measure is applied observing users:
X=AIlB
Where:
o Ais the number of times that specific software
functions/applications/systems are used.
» B is the number of times that the specific sofiware
functions/applications/systems are intended to be used.
ISC 9126-4 further notes: This metric is appropriate when
usage is discretionary.

Analysis

Impact

When users choose to use a system on their own, itis
undoubtedly a sign of their satisfaction. To the extent that
satisfaction is a measure of software quality, then this
measure can be used fo evaluate quality in use.

However, in most business cases, usage of the software is
not discretionary. Therefore the impact of this measure is
limited in those cases.

Cost of application

The application of this measure can not be automated and
requires an analysis of user actions and potentially
interviews with users. it can thus prove costly.

Can this measure be used o
thoroughly set guality goals
and requirements?

In the case where usage of the software is discretionary, this
measure may be used to set guality goals and requirements.
However, discretionary usage shouid be a goal that is
always strived for.

Which, if any, External Quality
characteristics and
subcharacteristics may
predict the value of this
measure?

Most Usability subcharacteristics are loosely related to
discretionary usage. Scoftware that possesses learnability
and affractiveness are more likely to encourage users {o
use them.

Also, software that possesses the proper Functionafity is
more likely to favour discretionary usage.

Finally, Portability could be an important to discretionary
usage. The replaceability subcharacteristic will prove to be
particularly important, but adaptability, installabifity, and
co-existence will also be meaningful.

Conclusion

Discussion

Discretionary usage is undoubtedly a sign of good
quality. There is almost no greater consecration of quality
that when users rush to use your product by their own
free will. However, in its current state, this measure can
not be used to do more than just state a broad goal.
Furthermore, such a goai should be at the heart of
almost any product development effort, even when the
user will be forced to use the system.

Furthermore, the standard clearly states that this
measure is only applicable when usage is discretionary.
It is important to note that this measure is one of the few
that is traceable to the portability External Quality
characteristic.

Rating

The applicability of this measure is conditional to usage
being discretionary.

89

APPENDIX 2

SUGGESTED IMPROVEMENTS TO ISO/IEC 9126-4

101

Task Effectiveness
This measure is complicated and needs to be more thoroughly explained. By trying fo
be concise, the standard obfuscates the usefuiness of this measure.

The solution in making this measure applicable and usable requires a complete
reformulation. The standard should first state that each task that a software product
must accomplish should be decomposed info goals. The accomplishment of those
goals, whether partial or complete, should resuit in the success of the task. Each goal
(G) must be given a value representing the approximate percentage of the task (P¢)
that is attained when the goal is accomplished. The sum of those percentages should
be 100%. Some of the goals might be marked as “essential’, meaning that failure to
accomplish those goals will result in 0% task effectiveness. The task effectiveness is
the following sum:

Z P, Whenall essential goals are attained
TE= task

0%, Otherwise

A threshold for acceptable quality can then be set on a task by task basis by
determining which goals :

° are essential
* are desirable
e are “nice to have”

This classification can be made from many perspectives: user, business, economic, efc.
The target task effectiveness is the sum of the percentages associated to the essential
and desirable goals. The task effectiveness can then be anaiyzed for many users and

meaningful conclusions can be drawn from its application.
The resulis of these changes are important:

* The impact of the measure is now very important. Each task that falls below the
target task effectiveness has unacceptable quality.

102

o The cost of the application remains negligible.

e The scoring scheme does not need to be refined iteratively anymore. The
percentages associated to each goal are not even really important. They only
help in quantifying the contribution of each goal.

° The usage of this measure will help stakehoiders define a clear acceptance
criterion on a task by task basis.

Implementation of these changes would radiate positively throughout the Quality in Use
model because many other measures depend on this one. For example, it would help
defining a clear acceptance for tasks that are composed of multiple goals and thus
make the task completion measure generally applicable.

Task Completion

This measure can not be used to measure the task completion when complex tasks are
involved. Complex tasks are those that are composed of multiple tasks. This is due to
the reliance of this measure on the Task Effectiveness measure. According to the

analysis, the Task Effectiveness measure has been shown to be non-applicable.

In order to make this measure applicable in every situation, the modifications discussed
above for the Task Effectiveness measure should be implemented.

Error Frequency

The impact of this measure and its applicability to thoroughly set quality requirements
have been judged inadequate. By clarifying the application method, these two issues
can be resolved and this measure can be made relevant in the context of ISO/EC
9126-4.

First of all, the measure should be separated into two in order to account for and
emphasize the different aspects. Therefore, there should be a measure called
“Temporal Error Frequency” and another one named “Task Error Frequency”.

The “Task Error Frequency” could be defined as follows:

1. Select a task.

103

2. Determine the error condition(s).

3. Forevery 100 times the task is executed, determine the acceptable number of
errors.

4. Measure for each task.

A single user or a group of user could be used for measurement. Points 1 to 3 can and
should be carried out during requirements engineering. Point 4 can be carried out at

any time to measure quality.
The “Temporal Error Frequency” should be defined as follows:
1. Select a task

2. Determine the maximum amount of time that is allowable per task. Failure to

accomplish the task within the given amount of time resulis in an error.

3. For every 100 times the task is executed, determine the acceptable number of
temporal errors.

4. Measure for each task.

Once again, points 1 to 3 can be carried out during requirements engineering while
point 4 can be carried out to measure quality at any time.

Task Time

As was explained in the analysis of this measure, the measure of task time does not
correlate with Quality in Use. This is in opposition with what is stated in the ISCG/EC
9126 document.

The reason that task time does not correlate with Quality in Use is that some tasks
need to take place in a defined amount of time. If the task is done faster, the qualify of
the system will not be any better. Thus what is important is not the task time itself, but
rather the difference between the expected task time and the actual task time.

The measure can be enhanced by redefining the metric as follows:

104

Where:
o Tm is the measured task time
o Te is the expected task time

During requirements engineering, the stakeholders must define the estimated task time
for each task. A range of acceptable values must aiso be determined for Tm. For
example the following values could be determined:
T,=10s
T .€[8,11]

Where T is the range of acceptable values for Tm.

This means that the expected task time is 10 seconds. The range means that task
times between 8 and 11 seconds are acceptabie. The acceptable range for X is

therefore:
Xe€[0.8,1.1]

This definition of task time allows for a range of possibilities. For example, it is possible
to define a case where there is no limit to how fast the task can be executed:
T.,=10s
T..€[0,10]

The range of acceptable values for X is now between 0 and 1. Therefore, one can not
blindly say that a value for X closer to 1 is synonymous with higher Quality in Use.

The proposed modifications will allow this measure to be usable in thoroughly setting
guality goals and requirements, while being a clear indication of Quality in Use.

Task Efficiency
This measure was judged non-applicable because it relied on two measures that were
themselves of questionable applicability.

106

The applicability of this measure must be judged anew now that the Task Effectiveness
and Task Time measures have been changed.

Application: The Task Efficiency is measured as:

Where
o TE is the measured Task Effectiveness as proposed in this document.
° Tmis the time that is measured for the task.

impact: The result of the measurement can be interpreted as the percentage of a task
that is accomplished by unit of time. Generally, the greater the better.

Cost: The cost remains negligible.

Usability to set quality goals and requirements: During the requirements engineering

phase, the following computation should be made:

Where
* TE is the estimated Task Effectiveness as proposed in this document.

o Tmr is the range of acceptable values for the task time (refer to Task Time

measure).

X will thus be a range of values that represent the minimum acceptable Task Efficiency.
Stakeholders should evaluate this result and judge if is seems reasonable and
acceptable. If it is not, they should review their estimates for the Task Effectiveness and
Task Time.

106

This measure is useful in the requirements engineering phase as a validation of the
values expected for the Task Effectiveness and Task Time. Stakeholders should not try
to directly set this measure, as it depends on two other measures.

Predictability: There is no change to the role of this measure in the predictability model.

Conclusion. This measure is now applicabie and conformant to the objectives of
ISO/IEC 9126. While it can not be used as a requirement, it can certainly be used to
validate two other measures that are critical to the effectiveness of the model.

Economic Productivity
This measure was judged non-applicable because it relied on a measure that was itself
of questionable applicability.

The applicability of this measure must be judged anew now that the Task Effectiveness
and measure has been changed.

Application: The Economic Productivity is measured as:

_IE

X
C

Where
» TE is the measured Task Effectiveness as proposed in this document.
o C is the cost of accomplishing the task.

Impact: The result of the measurement can be interpreted as the percentage of a task
that is accomplished by unit of cost. Generally, the greater the better. It is still difficult to
set a threshold distinguishing deficient from sufficient quality. However, it is easier to

interpret the value because the ratio involves units that are easier to understand.
Cost: The cost remains negligible.

Usability to set guality goals and requirements: During the requirements engineering

phase, the following computation should be made:
_TE
C

e

X

107

Where
o TE is the estimated Task Effectiveness as proposed in this document.

e Ce is the estimated cost of the task. When estimating the total cost of the task,
stakeholders should take info account the estimated fask time and the cost of

computing resources.

X will represent the estimated Economic Productivity. As is the case for the Task
Efficiency measure, it is not recommended that it be used directly as a requirement or
goal, as it is dependant on an estimation of the cost and the Task Effectiveness
measure. Furthermore, the estimated cost is directly related to the estimated Task

Time.

This measure is useful in the requirements engineering phase as a validation of the
values expected for the Task Effectiveness. Stakeholders should not try to directly set
this measure, as it depends on ancther measure If the resulting estimation of the
Economic Productivity is not satisfying, the stakeholders should review the estimation

of the Task Efficiency.
Predictability: There is no change to the role of this measure in the predictability model.

Conclusion: This measure is now applicable and conformant to the objectives of
ISONEC 9126. While it can not be used as a requirement, it can certainly be used to
validate another measure that is critical to the effectiveness of the model.

User Health and Safety

The applicability of this measure was questionable because it did not play an important
role in the predictable model proposed by ISO/NEC 8126-1. The best way to improve
this wouldn't lie in modifying this measure, but rather in modifications to the External
Quality model. If there were an “Ergonomics” subcharacteristics attached to the
Usability characteristic, it would be predictive of User Health and Safety. Such a

subcharacteristic should include measures evaluating:

+ The choice of colors

108

e The disposition of the widgets
= etc.
A complete definition of such a subcharacteristic is beyond the scope of this work.

Economic Damage
Analyzing the economic damages that can occur due to the usage of a software
product is an important part of measuring Quality in Use. However, it was shown that

this measure can not be used effectively for this purpose in its original format.

In order to improve this measure, its definition should be changed. Instead of focusing
on the number of occurrences of economic damages, it should focus on the monetary

losses that can be associated to the economic damage.

As a first step in improving this measure, the standard should provide guidance on the
evaluation of economic damages. For example, economic damages could be classified
as follows:

e Damages to infrastructure that are traceable to software failure and for which

the developers can be held responsible.

« Damages to people that are fraceable to software failure and for which the
developers can be held responsible.

o Loss in future business that is due to poor software performance.
e etc.

Then, potential economic damages should be first evaluated on a task by task basis. If
tasks are dependent on one another, then potential economic damages should be
evaluated for different scenarios that combine task failures.

The formula for computing economic damages should be as follows:

Ed= > O, XD

economic damage scnarios

Where:

109

o Ed is the amount of economic damages.
e O is the number of times a damage scenario has occurred.
D is the measured" amount of damage.

During the requirements engineering phase, the probability of occurrence of an

economically damaging scenario shouid be grossly evaluated.

The measure could then be used as follows:

Ed= > 0,XD,
economic damage scnarios

Where:
> Ed is the amount of damages that are probable to occur.

* Oy is the likeliness or probability of occurrence of an economically damaging

scenario.
» De is the estimation of the economic damages™.

if the amount of economic damages is deemed unacceptable, a Pareto analysis could
then be conducted. The result of this analysis should be used to indicate in which
scenarios reliability and usability should be reinforced. This measure would then be

usable in setting External Quality goals and requirements.

By implementing these changes, the impact of this measure will be improved. It has
also been shown that it would then be usable in seiting quality goals and requirements.
it would thus become usable with respect to the objectives of ISONEC 9126-1.

are Damage

As is hinted to in the ISO/MEC 9126-4 standard, damage to the software will result in
economic damages. Therefore, this measure could be merged into the economic
damage measure. it has been proposed that causes of economic damage be classified
into different categories. Software damage could be such a category.

14 As evaluated by damage assessment experts. This number may include: direct losses, loss of business, etc.
15 This should be evaluated by damage assessment experts.

110

Satisfaction Scale

This measure should only be used by stakeholders knowledgeable about
psychometrics. Only expert stakeholders with the appropriate knowledge can fully
understand the implications of setting requirements based on psychometric tests.

This measure can not be transformed to be applicable for stakeholders with less

knowledge without diminishing its impact.

Therefore, the standard should clearly warn users that this measure should only be
used as a requirement when stakeholders have the appropriate understanding of

psychometrics.

Furthermore, the standard should include clear references to psychometrics test that
are applicable to Quality in Use.

111

APPENDIX 3

REVISED ISO/MEC 91264 MEASURE TABLES

112

The following pages present the suggested modifications to the ISO/NEC 9126-4
standard as a result of the analysis presented in this thesis.

8.1 Effectiveness metrics

Fffectiveness metrics assess whether the tasks performed by users achieve specified goals with accuracy and completeness in a specified context of use. They do not take account of how the goals

were achieved, only the extent to which they were achieved (see E.2.1.2).

Table 8.1 Effectiveness metrics

Metric Name Purpose of the Method of Measurement, formula and data element
metrics application computations

Task Measure the User test

Effectiveness proportion of the X i
goals of the task that TE= Z P, , Essential goals attained

=tass

€ h o
is achieved correctly? 0% | Otherwise

Interpretation of Metric scale type
measured value

00=<TE<1.0 -
The closer to 1.0
the better

Measure type

PG =
Percentage
associated
with an
attained goal.

Input to measurement

Operation (test report)
User monitoring
record

12207
Reference

6.5 Validation
5.3 Qualification
Testing

5.4 Operation

Target
Audience

User
Human
interface
designer

NOTE To use this metric, the task to be analyzed should be decomposed into goals. The accomplishment of those goals, whether partial or complete, should result in the success of the task. Each goal (G) must be given a value representing the approximate
percentage of the task (PG) that is attained when the goal is accomplished. The sum of those percentages should be 100%. Some of the goals might be marked as “essential ”, meaning that failure to accomplish those goals will result in 0% task effectiveness.

An appropriate level for task effectiveness can be established during requirement engineering for different contexis of use.

Task Completion What proportion of User test X=A/B
the tasks are A = number of tasks completed
completed? B = total number of tasks

00<X=<10 Ratio
The closer to 1.0
the better

NOTE This metric can be measured for one user or a group of users. If tasks can be partially completed the Task effectiveness metric should be used..

Task Error Measure the User test X=AIT
Frequency frequency of task A = number of times a user made an error that
errors. resulted in task failure
T = number of times the task was tried

00<sX<10 Ratio
The closer to 0.0
the better

A=Count
B=Count
X=Count /
Count

A=Count
T=Count
X=Count /
Count

Operation (test report)
User monitoring
record

Operation (test report)
User monitoring
record

6.5 Validation
5.3 Qualification
Testing

5.4 QOperation

6.5 Validation
5.3 Qualification
Testing

5.4 Operation

User
Human
interface
designer

User
Human
interface
designer

NOTE The goals for this metric should be established during requirements engineering for each task to be measured. The error conditions that cause a task to fail should be determined. An acceptable failure ratio can then be set on a task by task basis.

Metric Name Purpose of the Method of Measurement, formula and data element Interpretation of Metric scale type Measure type Input to measurement 12207 Target

metrics application computations measured value Reference Audience
Temporat Error Measure the User test X=AlT 0.0sX <1.0 Ratio A=Count Operation (test report) 6.5 Validation User
Frequency frequency of task A = number of times a user took too much or The closer to 0.0 T=Count User moniforing 5.3 Qualification Human

errors attributable to too little time to complete a task the better X=Count / record Testing interface

temporal reasons. T = number of times the task was tried Count 5.4 Operation designer

NOTE Itis important to distinguish this metric from the previous one. In this case, the errors that are observed are related to temporal mistakes. For example, a user took too much time to complete a task efficiently. The goals for this metric should be
established during requirements engineering for each task to be measured. The temporal error conditions that cause a task to fail should be determined. An acceptable failure ratio can then be set on a task by task basis.

8.2 Productivity metrics

Productivity metrics assess the resources that users consume in relation to the effectiveness achieved in a specified context of use. The most common resource is time to complete the task,

although other relevant resources could include the user s effort, materials or the financial cost of usage.

Table 8.2 Productivity metrics

Metric Name Purpose of the Method of Measurement, formula and data element
metrics application computations
‘Task time Measure the User test T,
difference between X =T,
the desired task time Tm = measured fask time
‘[‘,nd the actual task Te = expected task time
ime.

Interpretation of
measured value

The closer X is to
1, the closer the
closer the result is
to the result is to

the expected value.

This is not
necessarily a
indication of
quality.

Metric scale type

Ratio

Measure type

Tm = Time
Te = Time

NOTE Task time by itself is notc a measure of quality in use. It is recommended that an acceptable range of values of Td be determined during requirements specification.

Task efficiency How efficient are the User test X=TE/Tm
users? TE = task effectiveness
Tm = measured task time

00X
Generally, the
larger X, the
better.

TE=
percentage
Tm =Time
X=
percentage /
time unit

Input to measurement

Operation (test report)
User monitoring
record

Operation (test report)
User monitoring
record

12207 Reference

6.5 Validation
5.3 Qualification
Testing

5.4 Operation

6.5 Validation
5.3 Qualification
Testing

5.4 Operation

Target
Audience

User
Human
interface
designer

User
Human
interface
designer

NOTE1 Task efficiency measures the proportion of the goal achieved for every unit of time. A high value indicates that a high proportion of the task is achieved in a small amount of time. It enables comparisons to be made, for example between fast

error-prone interfaces and slow easy interfaces (see for example F.2.4.4).

NOTE?2 If Task completion has been measured, task efficiency can be measured as Task completion/task time. This measures the proportion of users who were successful for every unit of time. A high value indicates a high proportion of successful users

in a small amount of time.

NOTE3 During requirements specification, this metric could be used as a validation of expectations for the Task Time and Task Effectiveness metrics.

Metric Name Purpose of the Method of Measurement, formula and data element Interpretation of Metric scale type Measure type Input to measurement 12207 Reference Target

metrics application computations measured value Audience
Economic How cost effective is User test X=TEIC 0.0sX - TE= Operation (test report) 6.5 Validation User
productivity the user? TE = task effectiveness Generally, the percentage User monitoring 5.3 Qualification Human
C = total cost of the task larger X, the better. C = monetary record Testing interface
unit 5.4 Operation designer
X =

percentage /
monetary unit

NOTE 1 Costs could for example include the user s time, the time of others giving assistance, and the cost of computing resources, telephone calls, and materials.
NOTE?2 During requirements specification, this metric could be used as a validation of expectations for the Task Effectiveness metric.

Productive What proportion of User test X=Ta/Tb 00<X<1.0 Absolute Operation (test report) 6.5 Validation User

proportion the time is the user Ta = productive time = task time — help time — The closerto 1.0 Tb=Time User monitoring 5.3 Qualification Human
performing error time — search time the better X =Time / record Testing interface
productive actions. Tb = task time Time 5.4 Operation designer

NOTE This metric requires detailed analysis of a videotape of the interaction (see Macleod M, Bowden R, Bevan N and Curson I (1997) The MUSIC Performance Measurement method, Behaviour and Information Technology, 16, 279-293.).

Relative user How efficient is a User test X=A/B 00=sX<1.0 Absolute A= Operation (test report) 6.5 Validation User
efficiency user compared to an A = ordinary user’s task efficiency Generally, the percentage User monitoring 5.3 Qualification Human
expert? B = expert user's task efficiency closer to 1.0 the B= record Testing interface
better percentage 5.4 Operation designer

percentage /
percentage

NOTE The user and expert carry out the same task. If the expert was 100% productive, and the user and expert had the same task effectiveness, this metric would give a similar value to the Productive proportion.

8.3 Safety metrics

Safety metrics assess the level of risk of harm to people, business, software, property or the environment in a specified context of use. It includes the health and safety of the both the user and

those affected by use, as well as unintended physical or economic consequences

Table 8.3 Safety metrics

Metric Name Purpose of the Method of Measurement, formula and data element Interpretation of Metric scale type
metrics application computations measured value

User health and What is the incidence Usage statistics X=1-A/B 00sX<10 Absolute

safety of health problems A = pumber of users reporting RSI Generally, the
among users of the B = total number of users closer to 1.0 the
product? better

NOTE Health problems can include Repetitive Strain Injury, fatigue, headaches, etc.

Safety of people What is the incidence Usage statistics X=1-A/B 00<X=<10 Absolute
affected by use of of hazard to people A = number of people put at hazard Generally, the
the system affected by use of the B = total number of people potentially affected closer to 1.0 the

system? by use of the system better

NOTE1 Anexample of this metric is Patient Safety, where A = number of patients with incorrectly prescribed treatment and B = total number of patients.
NOTE2 If using this metric as a requirement, it is important to define “put to hazard” and “potentially affected™.

Eeconomic What is the incidence Usage statistics Ed= Z 0 .xD 00X Absolute
damage of economic damage? damage menerios The closer to 0. the

On = number of times a damaging scenario has better

occurred.

D = amount of economic damages

Measure type

A =count
B = count
X = count/
count

A = count
B = count
X = count /
count

On = count

D = monetary
value

Ed =
monetary
value

Input to measurement

Usage monitoring
record

Usage monitoring
record

Usage monitoring
record

12207 Reference

5.4 Operation

5.3 Qualification
Testing
5.4 Operation

5.3 Qualification
Testing
5.4 Operation

Target
Audience

User
Human
interface
designer

User
Human
interface
designer
Developer

User
Human
interface
designer
Developer

NOTE1 Economic damages include but are not limited to: damages to infrastructure that are traceable to software failure and for which the developers can be held responsible, damages to people that are traceable to software failure and for which the

developers can be held responsible, loss in future business that is due to poor software performance, ete.

NOTE2 Potential economic damages should be first evaluated on a task by task basis. If tasks are dependent on one another, then potential economic damages should be evaluated for different scenarios that combine task failures.

NOTE3 During requirements specification, the following formula could be used instead: ~ £d :d! Z Op*D, where Op s the estimated probability of occurrence of the scenario and De is the estimated resulting damage. If the resulting
R] . ! mage seenwios
evaluation of possible economic damages is too high, an analysis should be conducted to verify where External Quality characteristics should be insisted upon to reduce the risk.

8.4 Satisfaction metrics

Satisfaction metrics assess the user s attitudes towards the use of the product in a specified context of use.

NOTE: Satisfaction is influenced by the user's perception of properties of the software product (such as those measured by external metrics) and by the user's perception of the efficiency,

productivity and safety in use.

Table 8.4 Satisfaction metrics

Metric Name Purpose of the Method of Measurement, formula and data element Interpretation of Metric scale type
metrics application computations measured value
Satisfaction scale How satisfied is the User test X=AlB 0.0<X Ratio
user? A = questionnaire producing psychometric The larger the
scales. better.

B = population average

NOTE1 Examples of psychometric questionnaires can be found in F.3.
NOTE2 Such a metric should only be used during requirements engineering if stakeholder have an appropriate knowledge of psychometrics.

Satisfaction How satisfied is the User test X= z (A)n 00<X=<10 Ord.

The closer to 1.0
the better

Questionnaire user with specific

software features? Al = response to & question

n = number of responses

NOTE If the questionnaire items are combined to give an overall score, they should be weighted, as different questions may have different importance.

Measure type Input to measurement

A = count Operation (test report)

X = count User monitoring
record

A = count Operation (test report)

X = count User monitoring

record

12207 Reference

6.5 Validation
5.3 Qualification
Testing

5.4 Operation

6.5 Validation
5.3 Qualification
Testing

5.4 Operation

Target
Audience

User
Human
interface
designer
Developer

User
Human
interface
designer

Adey, C. A. & Hill, G. K. (2000). Quality / ISO 9000 as a Marketing Tool, [En lignel.
http:/~Aww.smps.org/mrc/articles/0200qualityiso. pdf

Bazzana, G., Anderson, O., & Jokela, T. (1993). ISO 9126 and ISO 9000: Friends or
foes? Presented at Software Engineering Standards Symposium.

Berrazouane, A. (2005). Title to be determined (Master thesis to be presented at ETS in
2005)

Biehi, R. E. (2001). Six sigma for Software. |IEEE Software, 21(2), 68-70.
Boddie, J. (2000). Do We Ever Really Scale Down?, IEEE Software, 17(5), 79-81.

Boehm, B. W,, Brown, J. R., Kaspar, J. R, Lipow, M. L. & MacCleod, G. (1978).
Characteristics of Software Quality. New York: American Elsevier.

Boehm, B. W.,, Brown, J. R, Lipow, M. L. (1976). Quanititative Evaluation of Software
Quality. Proceedings of the 2nd international conference on Software engineering, San
Fransisco, California, United States, 592-605, IEEE Computer Society Press.

Cété, M.-A., Suryn, W., Martin, R. A., Laporte, C. Y. (2004a). Evolving a Corporate
Software Quality Assessment Exercice: A Migration Path to ISONEC 9126, Software
Quality Professional, 6(3), 4-17.

Coété, M.-A., Suryn, W., Martin, R. A., Laporte, C. Y. (2004b). The analysis of the
industrial applicability of sofiware product quality ISO standards: the context of
MITRE's Software Quality Assessment exercise, in Proceedings of the 12" International
Software Quality Management & INSPIRE Conference (BSI) 2004, Canterbury, Kent,
United Kingdom.

Cété, M.-A., Suryn, W,, Laporte, C. Y., Martin, R. A. (2005). The Evolution Path for
Industrial Software Quality Evaluation Methods Applying ISO/IEC 9126:2001 Quality
Model: Example of MITRE's SQAE Method, Software Quality Journal, vol. 13, 17-30.

Crosby, P.B. (1979). Quality is free: The art of making qualify certain. New York :
McGraw-Hill.

Diaz M. & Sligo, J. (1997). How Software Process Improvement Helped Motorola, IEEE
Software, 17(5), 75-81.

120

Dromey, R. G. (1995). A model for software product quality. IEEE Transactions on
Software Engineering 21, 146-162.

Dromey, R. G. (1996). Cornering the Chimera. IEEE Software, 13(1), 33-43.
Eickelman, N. (2003). An Insider's View of CMM Level 5, IEEE Software, 20(4), 79-81.

Glass, R.L. (1997). Software Runaways: Monumental Software Disasters, Pearson
Education POD

Haley, T. J. (1996). Software Process Improvement at Raytheon, |IEEE Software, 13(6),
33-41.

Highsmith, J. (2002). Agile Sofiware Development Ecosysterns, Addison-Wesley
Professional.

IEEE. 1998. Std. 1061-1998 [EEE Standard for a Software Quality Metrics
Methodology.

ISONEC. 1999a. ISO/EC 14598-1. Software product evaluation-Part 1 : General
overview. Geneva, Switzerland: International Organization for Standardization.

ISO/MEC. 1999b. ISO/AEC 9000:2000 Quality management systems -- Fundamentals
and vocabulary . Geneva, Switzerland: International Organization for Standardization.

ISONEC. 2000. ISOAEC 15288: System Life Cycle Processes. Geneva, Switzerland:
international Organization for Standardization.

ISO/MEC. 2001a. ISOAEC 9126-1: Software Engineering-Software product quality-Part
1 Quality model. Geneva, Switzerland: International Organization for Standardization.

ISONEC. 2001b. ISOMEC DTR 9126-4: Sofiware engineering-Software product quality-
Part 4: Quality in use metrics. Geneva, Swiizerland: International Organization for
Standardization.

ISONEC. 2003a. ISOMAEC TR 9126-2: Software Engineering-Sofiware product quality-
Part 2 : External metrics. Geneva, Switzerland: International Organization for
Standardization.

ISOMNEC. 2003b. ISO/MEC TR 9126-3: Software engineering-Software product quality-
Part 3: Internal metrics. Geneva, Switzerland: International Organization for
Standardization.

121

Kitchenham, S. L., Pfleeger (1996). Software Quality: The Elusive Target. \EEE
Software, 13(1), 12-21.

Laitinen, M. (2000). Scaling Down is Hard to Do, IEEE Software, 17(5), 78-80.

Leffingwell, D. & Widrig, D. (1999). Managing Software Requirements, A Unified
Approach. Addison-Wesley Professional.

Martin, R. A. & Shaffer, L. (19986). Providing a framework for effective software quality
assessment. Bedford, Mass : MITRE Corporation.

McCall, J. A., Richards, P. K., & Walters, G. F. (1977). Factors in sofiware quality.
Griffiths Air Force Base, N.Y. : Rome Air Development Center Air Force Systems
Command.

NIST (2002). The Economic Impacts of Inadequate Infrastructure for Software Testing,
[Online] htip.//www.nist.gov/public_affaires/releases/n02-10.html (Consulted June 3
2004)

Pfleeger, S. L. (2001). Software Engineering: Theory and practice (2™ ed.). Upper
Saddle River, N.J. : Prentice Hall.

Pressman, R. S. (2001). Software Engineering: A practitioner's approach (5" ed.).
Boston: McGraw-hill.

Seffah, A. Kececi, N. Donyaee, M. (2001). QUIM: A Framework for Quantifying
Usability Metrics in Software Quality Model, Quality Software, 2001. Proceedings of the
Second Asia-Pacific Conference on, 2001, 311-318.

SEI (2002). TSP for Secure Systems, [Online] hitp://www.sei.cmu.edu/tsp/tsp-secure-
presentation/sid001.himl (Consulted June 7 2004)

Suryn, W. (2003). Course notes SYS861. Ecole de Technologie Supérieure, Montréal.

Voas, J. (2003). Assuring Software Quality Assurance. IEEE Software, 20(3), 48-49.

