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CONTRÔLE ET COORDINATION POUR UN GROUPE DE ROBOTS  
MOBILES DANS UN ENVIRONNEMENT INCONNU 

 Hasan MEHRJERDI 

RÉSUMÉ 

Il existe de nombreuses applications pour lesquelles la tâche requise sera atteinte beaucoup 
plus efficacement avec l’utilisation d’un groupe de robots mobiles comparativement à un 
robot unique.  Les groupes de robots mobiles peuvent obtenir les résultats souhaités avec 
rapidité et précision, puisqu’il est possible de modifier chaque robot pour certaines tâches 
spécifiques, ils deviennent idéaux pour les applications telles que le sauvetage, l'exploration 
et le divertissement. Lorsqu’on compare l'issue de la mission d'un groupe de robots mobiles à 
celle d'un robot unique, il est facile de voir que les performances du groupe de robots mobiles 
améliorent la répartition des tâches spécifiques, la sécurité, la durée du temps nécessaire et 
l'efficacité du système pour atteindre le résultat souhaité.  Cette thèse étudie le suivi de la 
trajectoire et le comportement coopératif pour un groupe de robots mobiles, fondés sur 
l'utilisation d'algorithmes non linéaires et intelligents. 

Afin de créer l'algorithme de contrôle le plus efficace pour le suivi des trajectoires, nous 
présentons trois différentes techniques, soit la technique de Lyapunov, le contrôle intelligent 
(commande floue) et une version exponentielle du mode de glissement.  Les algorithmes 
développés assurent la poursuite des trajectoires désignées tout en minimisant les erreurs.  
Les résultats expérimentaux en utilisant un seul robot mobile sont présentés pour démontrer 
le potentiel et la capacité des algorithmes développés. 

Afin de coordonner un groupe de robots mobiles pour parvenir à un résultat commun, il est 
nécessaire de créer une architecture efficace et un algorithme de contrôle, ce qui leur 
permettra de travailler soit individuellement soit dans des formations robotiques organisées.  
Ceci est réalisé en employant des techniques de suivi de trajectoires  et de commandes de 
coordination, en ayant une connaissance de la localisation des robots dans leur 
environnement. Dans cette thèse, trois contrôleurs hiérarchiques différents sont présentés, 
basés sur des techniques non linéaires et en se servant de l'asservissement par PID des roues 
des robots afin de concevoir un algorithme qui démontrera à la fois la coopération et la 
coordination d'une équipe de robots mobiles.  Ces contrôleurs sont basés sur la technique de 
Lyapunov, le contrôle intelligent (commande floue) et une version exponentielle du mode de 
glissement. 

Pour l’amélioration du suivi des trajectoires, chaque robot est muni de capteurs.  Quand un 
obstacle est détecté par l'un des capteurs, l'algorithme permet une manœuvre incitant le robot  
à se déplacer autour de l'obstacle en changeant sa vitesse et sa direction.  En plus de 
l'évitement d'obstacles, les contrôleurs permettent à tous les robots  d’atteindre  
simultanément leur destination respective en ajustant la vitesse de chaque robot 
individuellement pendant que ceux-ci se déplacent le long de leur trajectoire prédéfinie.  
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Cela signifie que tout le groupe arrivera à destination en même temps, quelle que soit la 
longueur de chaque parcours individuel ou le nombre d'obstacles rencontrés. 

Les résultats expérimentaux obtenus en utilisant trois robots mobiles montrent la 
performance de ces algorithmes de contrôle et le comportement de coopération et de 
coordination par un groupe de robots. 

Mots-clés: Commande nonlinaire, Contrôle intelligent, Coopération, Coordination, Groupe 
de  robots mobiles, Mode de glissement exponentiel, Suivi des trajectoires. 



CONTROL AND COORDINATION FOR A GROUP OF  
MOBILE ROBOTS IN UNKNOWN ENVIRONMENTS  

 Hasan MEHRJERDI 

ABSTRACT 

This thesis studies the trajectory tracking and cooperative behavior for a team of mobile 
robots using nonlinear and intelligent algorithms to more efficiently achieve the mission 
outcome. There are many practical applications where specific tasks are more resourcefully 
achieved by using a group of mobile robots rather than a single robot. Mobile robots can 
subdivide and multi-task the mission with speed and accuracy and the ability to be 
individually modified for precise tasks makes them ideally suited for applications such as 
search and rescue, exploration or entertainment. When comparing the mission outcome of a 
group of multi mobile robots (MMR) to that of a single robot, we see that the performance of 
the MMR group improves the specific task allocation, safety, the time duration required and 
the system effectiveness to achieve the outcome. 

In order to create the most effective control algorithm for trajectory tracking, we present 
three different techniques including Lyapunov technique, intelligent control (fuzzy control) 
and the exponential version of sliding mode. The developed algorithms instruct a robot to 
keep moving on their desired trajectory while simultaneously reducing tracking errors. The 
experimental results when using a single mobile robot are presented to demonstrate the 
potential and capability of the developed algorithms.  

In order to coordinate a group of mobile robots to achieve a common outcome, the goal is to 
create efficient system architecture and a control algorithm that enables them to work both 
individually and in meaningful robot formations. This is achieved by employing coordination 
and trajectory tracking techniques with the knowledge derived by the localization of the 
robots from their environment. Three different hierarchical controllers are presented based on 
nonlinear and intelligent techniques in order to construct an algorithm that exhibits both 
group cooperation and coordination for a team of mobile robots. These controllers consist of 
Lyapunov technique, intelligent control (fuzzy control) and the exponential version of sliding 
mode.  

For improved trajectory tracking, each robot is fitted with onboard sensors. When an obstacle 
is detected by any of the robots’ sensors, they direct that robot to move around the obstacle 
by changing its velocity and direction. As well as obstacle avoidance, the controllers work to 
make the MMR group arrive concurrently at their target points by adjusting each of the 
individual robots’ velocities as they move along their desired trajectories. This means the 
group will arrive at their destination within the same time duration, regardless of the length 
of each individual trajectory or number of obstacles that confront each robot. 
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The experimental results obtained using three mobile robots display the performance of these 
control algorithms in producing a cooperative and coordinated behavior for the robot group. 

Key words: Coordination, Cooperative, Exponential sliding mode, Intelligent Control, Multi 
mobile robots, Nonlinear Control, Trajectory tracking 
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INTRODUCTION 

The ability for a group of mobile robots to work cooperatively has been a challenging idea in 

artificial intelligence and robotics since the beginning of science fiction in the 1950’s. Instead 

of building a powerful, single and elaborate robot, a MMR group can demonstrate flexibility 

and efficiency in performing the task required as well as making the system tolerant to 

possible individual robot faults. However, along with the benefits of skillfully completing a 

task, there is also the need to develop a behavioral approach within the MMR group similar 

to that found in any group of animals in nature. A synchronicity in the behavioral attitude of 

the group allows for a better outcome for the overall task to be accomplished.  

As the world becomes more technologically complex, we see a diversity of applications that 

are either too complicated or dangerous for humans to perform and are therefore ideally 

suited for robots exhibiting intelligent group behavior. The ability to discern the surrounding 

environment and make informed decisions would bring robot behavior one step closer to 

mimicking human behavior allowing for the safe interrogation of unknown or dangerous 

environments. Some possible applications for a mobile robot group would be surveillance, 

exploration, underwater autonomous vehicles, a fleet of marines or an unmanned aerial 

vehicle.  

Apart from the interest expressed by the robotics community in both the behavior and 

applications for MMR groups, there has also been excitement in the designing of control 

systems and algorithms needed to achieve these goals. This is especially relevant in the 

command and coordination of a team of mobile robots needing to work in known or cluttered 

environments. Theoretical control views of MMR behavior are divided between centralized 

and decentralized systems and different architectures and strategies employing both systems 

have been developed to control and coordinate a MMR group. These methods encompass 

behavior-based, virtual structure, leader follower, graph-based and potential field 

approaches. 
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The problem of exploring an unknown environment by a robot group can be facilitated by 

assigning each robot inbuilt location sensors which accumulate data and incrementally 

construct a map of the surrounding environment.  In order to avoid obstacles at any moment 

when traveling on their trajectory, this information needs to be acted upon by each robot in 

the group. Individually they need to evaluate if they should stop to avoid a collision, and if so 

work out what the next target is to explore, and then program the viability of moving there 

safely. Artificial intelligence and nonlinear algorithms exploring collision avoidance for 

mobile robots has been well documented, but largely this work has been performed using 

only a single robot. 

In this work, we focus on the problem of how to control and coordinate a group of mobile 

robots moving in group formation in an unknown environment that includes dynamic or 

static obstacles.  

This thesis is organized as follows: 

Chapter 1 presents an introduction to multi mobile robots and their applications. State of the 

art of the research in the field of coordination and control for a team of mobile robots is 

explored by evaluating current strategies and control algorithms. 

Chapter 2 proposes the use of exponential sliding mode control to maximize the efficiency 

of trajectory tracking and reduce chattering on the control inputs of the trajectory tracking 

algorithm of a nonholonomic wheeled mobile robot. Additionally, as an efficient solution, 

Lyapunov technique and intelligent control techniques are introduced. 

Chapter 3 explores the coordination and trajectory tracking for a team of mobile robots 

moving in a group formation using exponential sliding mode. The model chosen uses a 

combination of sliding technique and graph theory and the developed algorithm instructs the 

robots to keep moving on their desired trajectories while simultaneously reducing tracking 

errors to maintain the desired robot formation.  



3 

Chapter 4 considers the problem of creating a coordination algorithm for a team of mobile 

robots using a combination of the Lyapunov technique and graph theory embedded in the 

virtual structure. In this way, the knowledge derived by the localization of the robots assists 

the algorithm in creating efficient coordination and trajectory tracking commands for the 

group, which can then create useful robot formations. The experimental results obtained 

using three mobile robots display the performance of this control algorithm in creating 

efficient trajectory tracking and coordination. 

Chapter 5 introduces the design and implementation of an intelligent cooperative algorithm 

for a team of multi mobile robots. The developed algorithm bases its characteristics on the 

efficiency of fuzzy logic, facilitating robots to cooperate as a group while simultaneously 

following their individual trajectories. This creates a scenario where all the robots in the 

MMR group will arrive within the same time duration, regardless of the length or shape of 

each individual trajectory.  

Chapter 6 introduces an intelligent coordination algorithm to control a team of multi mobile 

robots being confronted with obstacles in an unknown environment. In this scenario, the 

developed algorithm processes the sensor’s data being monitored from the environment by 

each robot, and this information is used to locate and avoid any obstacles in a robot’s 

trajectory including other robots in the group. When there is a possibility of an imminent 

crash between any of the robots, or a robot and a static obstacle, the algorithm instructs these 

robots to avoid a collision while maintaining the group behavior and formation. 

Finally, some concluding remarks and future plans will be presented. 
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CHAPTER 1 

LITERATURE REVIEW

This chapter reviews the applications, recent strategies and developments of designed 

algorithms used for trajectory tracking, cooperative behavior and coordination for a team of 

mobile robots. The ability to control a group of mobile robots while permitting them to work 

cooperatively has long been a thought-provoking idea in robotics and artificial intelligence 

with the obvious advantages a robot group can bring to efficiently and speedily accomplish a 

mission. There are distinct advantages in using a group of homogeneous or heterogeneous 

mobile robots to accomplish a task rather than a more elaborately designed single robot. 

Experimental results indicate that when operating in the same environment, the overall 

mission performance of an MMR group compared to a single robot shows an improvement in 

task allocation, safety and performance, the time duration required and system effectiveness 

to achieve the mission outcome (Cao, Fukunaga et Kahng, 1997; Dudek, Jenkin et Wilkes, 

1996; Gerkey et Mataric, 2004; Guzzoni et al., 1997; Hagras et Colley, 2005; iguria et 

Howard, 2009; Nouyan et al., 2009; Schneider-Fontan et Mataric, 1998; Viguria et Howard, 

2009).  

Instead of building a powerful single robot, a MMR group can provide flexibility in 

performing the task required, as well as making the system more tolerant to possible 

individual robot faults. The first critical step in designing the structure of a coordinated robot 

group is the ability to direct each robot to follow its individual desired trajectory. This 

concept originates from the trajectory tracking techniques used for single robots, which can 

be explored to create improved algorithms for the efficient and harmonious group 

coordination of multiple robots. Also, the technical advances in wireless communication, 

sensors and embedded computing have all played a part in developing the new generation of 

coordination algorithms for robot control including group formation strategies. 
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1.1 Group Coordination Definitions  

Multi Mobile Robots (MMR) is a group of homogeneous or heterogeneous mobile robots 

that work in the same environment to accomplish a task, rather than a more sophisticated 

single robot. A cooperative multi robot is composed of individual robots that operate together 

to perform some global task. Coordination is a cooperative behavior within the MMR group 

in which the actions performed by each robotic agent take into account the actions executed 

by the other robotic agents (Farinelli, Iocchi et Nardi, 2004) where the robots have to 

communicate, exchange information or interact in some way to achieve an overall mission.  

1.2 Multi mobile Robots Applications 

MMR’s can have a variety of applications depending on the working environments and the 

tasks to which they are assigned. In this section, we investigate the various applications that 

MMR’s can be assigned, such as cooperative robot reconnaissance, surveillance, exploration 

satellite clustering, underwater autonomous vehicles and a fleet of marines, aerial vehicles 

and UAV. 

The work in (Beard, Lawton et Hadaegh, 2001) presents the problem of coordinating 

multiple spacecraft subsuming leader-following, behavioral, and virtual-structure to fly in 

tightly formations. In (Encarna et Pascoal, 2001) marine craft trajectory tracking and 

trajectory tracking combination is developed based on maneuver modified trajectory 

tracking. They performed this algorithm for the coordinated operation of an autonomous 

surface craft and an autonomous underwater vehicle. The work in (Inalhan, Stipanovic et 

Tomlin, 2002) solves coordination problem of interconnected nonlinear discrete-time 

dynamic systems using a decentralized optimization method with multiple decision makers 

and applied it to a multiple unmanned air vehicle system. In (Huntsberger et al., 2003) a 

coordination method of multiple robots is developed to perform a cliff traverse for science 

data acquisition and site construction operations that include grasping, hoisting, and the 

transport of extended objects such as large array sensors. The control of wireless mobile ad-
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hoc networks (MANETs) is another collection of autonomous nodes that communicate with 

each other without using any fixed networking infrastructure (Wang, Zhou et Ansari, 2003).   

In (Huang et al., 2006) mobile robots are considered for highway safety applications where 

they automatically deploy and maneuver safety barrels commonly used to control traffic in 

highway work zones. The leader in the group performs the complex sensing and computation 

and the followers perform simple operations under the leader’s guidance.  

Finally, (Ghommam et Mnif, 2009) considers coordinating a group of underactuated ships 

along given trajectories using a combination of Lyapunov direct method, backstepping, and 

concepts from graph theory while holding a desired formation pattern for the group. 

1.3 Trajectory Tracking  

This section explores techniques to refine the trajectory tracking for mobile robots. 

Trajectory tracking can be explained as a tracking system that delivers a consistent high 

dynamic tracking performance to enable an efficient, smooth and continuous robot 

movement along a desired trajectory.  

In recent years, the use of nonholonomic mobile robots has attracted the attention of 

researchers not only because of their practical applications, but also the theoretical challenges 

of both their nonholonomic characteristic and their nonlinearity modeling. However, the 

issues associated with nonlinearity modeling are unable to be solved by conventional linear 

control theory, and therefore other possibilities have therefore been explored by various 

researchers. 

Several different nonlinear control strategies have been proposed for the trajectory tracking 

of a mobile robot such as the work of (Fierro et Lewis, 1995) which developed an ‘adaptive 

backstepping method’ with unknown parameters. (Fukao, Nakagawa et Adachi, 2000) 

propose the backstepping method for the dynamic model of a mobile robot.  



7 

In (Maalouf, Saad et Saliah, 2006) a robust fuzzy logic controller is presented for the 

trajectory tracking of a mobile robot based on controlling the robot at a higher level. The 

controller is highly robust and flexible and automatically follows a sequence of discrete 

waypoints, and no interpolation of the waypoints is needed to generate a continuous 

reference trajectory.  

In (Antonelli, Stefano et Fusco, 2007) a trajectory tracking approach based on a fuzzy-logic 

set of rules which emulates the human driving behavior is proposed to achieve good tracking. 

The input and output of the fuzzy system are the approximate information concerning the 

next bend ahead of the vehicle and the cruise velocity respectively. The work of (Zhu et 

Yang, 2007) display a neurofuzzy-based approach with two behaviors, target seeking and 

obstacle avoidance, which are used for the combined coordination of the sensor information 

and the robot motion. To smooth the trajectory, a learning neural network technique tunes the 

parameters of membership functions. A state memory strategy is proposed for resolving the 

"dead cycle" problem.  

The work in (Ferrara et Rubagotti, 2008) introduces a gradient-tracking approach to comply 

with the nonholonomic nature of the robot. Two control laws are designed by suitably 

transforming the system model into a couple of auxiliary second-order uncertain systems. 

Distributed sensor-network spaces are used in (Hwang et Chang, 2008) via fuzzy 

decentralized sliding-mode control for the trajectory tracking and obstacle avoidance of a 

car-like mobile robot. In (Park et al., 2009) an ‘adaptive neural sliding mode control method’ 

is presented for trajectory tracking of mobile robots with model uncertainties and external 

disturbances. They use self recurrent wavelet neural networks for approximating arbitrary 

model uncertainties and external disturbances in the dynamic of a mobile robot.  
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1.4 Coordination Strategies 

The coordination and control of MMR’s can be performed in centralized or decentralized 

systems or a combination known as hybrid systems. However, in this section we consider the 

attributes of both centralized and decentralized algorithms.  

1.4.1 Centralized Algorithms 

In a centralized system, a powerful core unit makes decisions and communicates with the 

robots in the team. This core unit can optimize robot coordination, accommodate individual 

robots faults and monitor the accomplishment of the mission. However, it is possible that any 

faults in the core can facilitate a failure of the whole system. Centralized approaches do not 

scale well due to the fact that as the formation size increases, it incurs a large communication 

overhead. This is true even when employing the most advanced optimization solvers. 

In (Mariottini et al., 2005) a centralized feedback linearizing control strategy is used with an 

extended Kalman Filter to achieve a desired formation. In (Cruz et Carelli, 2006) a 

centralized control scheme and PD controller are proposed to ensure velocity tracking, but 

the derivative of the control velocity appears neglected. In (Huang et al., 2006) a centralized 

localization and control method for long distance navigation is considered for follow-the-

leader movement of a heterogeneous group of mobile robots. The algorithm allows the 

follower robots to be inexpensive by using minimal sensing and being computationally 

simple, and is therefore suited to missions with high-risk tasks. The work in (Harmati et 

Saffiotti, 2009) proposes a centralized collision free target tracking problem of a multi-agent 

robots’ system by proposing a game theory concept using a semi-cooperative Stackelberg 

equilibrium point and a formation component in the individual cost functions.  

In (Mehrjerdi, Saad et Ghommam, 2010c) an intelligent centralized coordination control and 

trajectory tracking algorithm is proposed and tested for a group of mobile robots using a 

fuzzy model.  The designed fuzzy model employs two behaviors; being trajectory tracking 
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and coordination which work together to instruct the robots to move in formation travelling 

on specific forward trajectories. 

1.4.2 Decentralized Algorithms 

A decentralized system is a robotic team that lacks any centralized organization of the 

command structure. The robustness of the system to the failure or loss of individual member 

robots, scalability and being less affected by errors in communication or computation are all 

advantages of this type of approach. However, the failure of decentralized multiple-robot 

systems to make intelligent collective decisions is a significant obstacle to their deployment 

in the real world.  

In (Keviczky, Borelli et Balas, 2006) a decentralized approach is presented where each robot 

optimizes locally for itself at each update, as well as for every neighbor. In (Keviczky et al., 

2008), the decentralized receding horizon planner is solved using mixed integer linear 

programming, where every robot is allotted a time slot in which to compute its own 

dynamically feasible collision free trajectory. In (Ren et Sorensen, 2008) a distributed 

formation control is proposed that accommodates an arbitrary number of group leaders and 

allows for arbitrary inter robot coupling on both the formation state estimation level and the 

vehicle control level. The vehicles come into agreement on the time varying position and 

orientation of the virtual center by using an extended consensus based estimation algorithm. 

In this algorithm, robustness against a single point of failure is improved by increasing the 

number of group leaders. In (Defoort et al., 2009) a decentralized receding horizon motion 

planner is presented for a team of mobile robots subject to constraints imposed by sensors 

and the communication network. The advantage of the proposed algorithm is that each 

vehicle only requires local knowledge of its neighboring vehicles.  

In (Lee et Chong, 2009) formations controls for a team of anonymous mobile robots based on 

a decentralized leader-referenced and neighbor-referenced are presented performing a task 

through cooperation. In (Ray et al., 2009) a decentralized collision free coordination and 
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navigation is adapted where agents decide their own behaviors onboard depending upon the 

motion initiative of the master agent of the formation. In these approaches, any agent can 

estimate the behavior of other agents in the formation therefore reducing the dependency of 

an individual agent on other agents while it makes decisions. The reduction of 

communication burden on the formation where only the master agent broadcasts its motion 

status per sampled time is an advantage of this method.  

1.5 Coordination and Control Algorithms  

Different architectures and strategies have been developed in either centralized or 

decentralized methods in order to control and coordinate a team of mobile robots. These 

include: behavior-based, virtual structure, leader follower, graph-based and potential field 

approaches. In this section we give more explanation and references to each of these 

algorithms. 

1.5.1 Virtual Structure 

In the virtual structure approach, the entire formation is treated as a single entity. The desired 

motion is assigned to the virtual structure that traces out the trajectory for each member of 

the formation to follow. The main advantage of using this approach is that the behavior 

coordination of the robot group is relatively simple; however the main disadvantage is its 

inherent centralization which can lead a single point of failure for the whole system. 

The work in (Beard, Lawton et Hadaegh, 2001) proposes a flying spacecraft formation based 

on a virtual structure where the coordination mechanism is specifically identified as the states 

of the formation control block and the states of the supervisor, and where the feedback to the 

formation is explicitly defined. In (Egerstedt et Hu, 2001) a model-independent coordination 

strategy is studied in combination with a desired reference trajectory for a nonphysical virtual 

leader. This method decouples the coordination problem into one planning problem. If the 

robots track their respective reference points perfectly, or if the tracking errors are bounded, 
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this method stabilizes the formation error. The work in (Ghommam et al., 2010) presents a 

combination of virtual structure and trajectory tracking approaches to derive the formation 

architecture.  A formation controller is proposed for the kinematic model of mobile robots. 

The approach is then extended to consider the formation controller by taking into account the 

physical dimensions and dynamics of the robots.  

1.5.2  Behavior Based Methods 

The behavior based model employs several behaviors for each robot and the final control is 

derived from a weighting of the relative importance of each behavior, but there is lack of 

modeling for the subsystems or robot surroundings. In (Balch et Arkin, 1998) a reactive 

behavior-based approach is introduced that implements formations integrated with 

navigational behaviors to enable a robotic team to reach navigational goals, avoid hazards 

and simultaneously remain in formation. In (Antonelli, Arrichiello et Chiaverin, 2009) a null-

space-based behavioral control in presence of static and dynamic obstacles is introduced for a 

team of mobile robots. The NSB strategy is inherited from the singularity-robust task-priority 

inverse kinematics for industrial manipulators. 

1.5.3 Leader Follower Approaches 

In the leader follower method, one of the robots is designated as the leader, with the rest 

robots as followers. The follower robots need to position themselves relative to the leader 

and to maintain a desired relative position with respect to the leader. This method is 

characterized by simplicity and reliability, but its main disadvantage is that there is no 

explicit feedback from the followers to the leader.

The work in (Huang et al., 2006) presents the control and localization of a heterogeneous 

group of mobile robots where inexpensive sensor-limited and computationally limited robots 

follow a leader robot in a desired formation over long distances. The proposed method is 

limited in that the leader needs to generally maintain line-of-sight contact with the followers.  
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The work in (Consolini et al., 2008) deals with leader–follower formations of nonholonomic 

mobile robots where the robots’ control inputs are forced to satisfy suitable constraints that 

restrict both the leader’s set of possible trajectories and the admissible positions of the 

follower with respect to the leader. In this algorithm, the follower position is not rigidly fixed 

with respect to the leader but varies in proper circle arcs centered in the leader’s reference 

frame. The research in (Chen et al., 2009b) presents a receding-horizon leader follower 

control to yield a fast convergence rate of the formation tracking errors, and works to solve 

the formation problem of multiple nonholonomic mobile robots with a rapid error 

convergence rate. A separation–bearing–orientation scheme for two-robot formations and 

separation–separation–orientation scheme for three-robot formations is presented to maintain 

the desired leader–follower relationship. In (Gu et Wang, 2009) a leader-follower flocking 

system is introduced where only a few members are group leaders with knowledge of a 

desired trajectory, while the majority of the members are group followers who can 

communicate with neighbors but do not have the global knowledge. The followers do not 

have any idea who the leaders are in the group, and all group members estimate the position 

of flocking center by using a consensus algorithm via local communication in order to keep 

the flocking group connected.  

1.5.4 Artificial Potential  

In this section we review the research performed using artificial potential approaches.  

In (Howard, Mataric et Sukhame, 2002) a distributed and scalable potential field based 

approach to deployment is presented, such that each node is repelled by both obstacles and 

by other nodes, thereby forcing the network to spread itself throughout the environment. In 

(Olfati-Saber et Murray, 2002), a natural potential functions obtained from the structural 

constraints of a desired formation is computed in a way that leads to a collision-free, 

distributed, and bounded state feedback law for each vehicle is used for the formation as well 

as the stabilization of multiple autonomous vehicles in a distributed fashion. The work in 

(Ogren, Fiorelli et Leonard, 2004) presents a stable control strategy for the coordination of 

groups of vehicles using virtual bodies and artificial potentials. In this scenario, each vehicle 
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in the group serves as a mobile sensor with the vehicle network being regarded as a mobile 

and reconfigurable sensor array.  

In (Ge et Fua, 2005), a new concept is presented for artificial potential trenches that 

effectively control the formation of a group of robots. This method improves the scalability 

and flexibility of robot formations when the team size changes, while at the same time 

allowing the robot formations to adapt to obstacles. In (Barnes, Fields et Valavanis, 2009) an 

artificial potential field generated from normal and sigmoid functions is used for swarms of 

unmanned vehicles. The artificial potential functions and limiting functions are combined to 

control swarm formation, orientation, and swarm movement as a whole.  

1.5.5 Graph theory Approaches 

Graph theory is the study of graphs: mathematical structures used to model pair-wise 

relations between objects from a certain collection. A "graph" in this context refers to a 

collection of vertices or 'nodes' and a collection of edges that connect pairs of vertices. A 

graph may be undirected, meaning that there is no distinction between the two vertices 

associated with each edge, or its edges may be directed from one vertex to another. Some 

research has been performed on the coordination of MMR using graph theory. 

In (Moreau, 2005) a model of network of agents is presented with time-dependent 

communication links. In the model, each agent updates its present state based on the current 

information received from neighboring agents. The stability analysis is based on a blend of 

graph-theoretic and system-theoretic tools with the notion of convexity playing a central role. 

In (Ren et Beard, 2005) the problem of information consensus among multiple agents is 

introduced in the presence of limited and unreliable information exchange with dynamically 

changing interaction topologies. Both discrete and continuous update schemes are proposed 

for the information consensus. They claim that information consensus under dynamically 

changing interaction topologies can be achieved asymptotically if the unions of the directed 

interaction graphs have a spanning tree frequently enough. In (Ren, 2007) consensus 
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algorithms are presented with initially a constant reference state using graph theoretical tools, 

and then a time-varying reference state, to show the necessary and sufficient conditions under 

which consensus is reached on the time-varying reference state. In (Pereira, Kumar et 

Campos, 2008) the relative configurations of constraints between robots are modeled using a 

graph where each edge is associated with the interaction between two robots. This theory 

develops a decentralized motion control system that leads each robot to their individual goals 

while maintaining the constraints specified on the graph. The work of (Purvis, Astrom et 

Mhammash, 2008) investigates the problem of decentralized planning during the motion of a 

team of cooperating mobile robots subject to the constraints on the relative configuration 

imposed by the nature of the task they are executing. The constraints between robots are 

modeled using a graph where each edge is associated with the interaction between two robots 

and describes a constraint on the relative configurations.  

  

1.5.6 Intelligent Control 

Intelligent controllers simplify the computations used by the algorithm controller. They 

mimic the way the human brain makes decisions by grouping similar objects together, and so 

create faster and more accurate response times in the decision making process. This has 

distinct advantages in MMR modeling, where multiple robots are moving along designated 

trajectories and simultaneously being directed with rapid velocity changes. In (Gu et Hu, 

2008) a fuzzy logic is proposed to the separation component where the Takagi-Sugeno rules 

and Gaussian membership functions are used. For fixed network flocking, a standard stability 

proof by using LaSalle's invariance principle is provided. For dynamic network flocking, a 

solution definition is given for non-smooth dynamics where stability is proved by a LaSalle's 

invariance principle. In (Dierks et Jagannathan, 2010) a combined kinematic/torque output 

feedback control law is developed for leader-follower-based formation control using 

backstepping to accommodate the dynamics of the robots and the formation in contrast with 

kinematic-based formation controllers. A neural network is introduced to approximate the 

dynamics of the follower and its leader using online weight tuning. Furthermore, a neutral 

network observer is designed to estimate the linear and angular velocities of both the 
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follower robot and its leader. Lyapunov theory shows that the errors for the entire formation 

are uniformly ultimately bounded while relaxing the separation principle.  In (Jolly, Kumar et 

Vijayakumar, 2010) fuzzy neural network for task planning and action selection for a mobile 

robot in a robot soccer system is used. A five layer fuzzy neural network system is trained by 

an error back propagation learning algorithm to impart a strategy based action selection. In 

(Mehrjerdi, Saad et Ghommam, 2010c) a fuzzy coordination control and trajectory tracking 

algorithm is proposed and tested for a group of autonomous mobile robots. Hierarchical 

controllers have also been developed based on fuzzy and PID to instruct the robots to move 

in formation and on specific forward trajectories. The fuzzy rules applied to the robots are 

defined by the kinematic limitation which is bounded by both linear and angular velocities as 

well as the length and curvature of the trajectories.  

1.6 Collision free Coordination  

The behavioral attribute of discerning the surrounding environment brings robot behavior 

one step closer to mimicking the vast array of human behaviors. By incorporating this ability, 

robots can become the ideal vehicles for the safe interrogation of unknown or dangerous 

environments. In this section we review the current research on the coordination and 

cooperation between MMR’s in unknown environments. 

In (Hollinger, Djugash et Singh, 2007) non-line-of-sight range measurements are used to 

define a framework for finding a non-adversarial target in cluttered environments using 

multiple robotic searches. They present two Bayesian methods for updating the expected 

location of a mobile target, and integrating these updates into planning. In (Cruz et Carelli, 

2008) an obstacle avoidance method based on the concept of impedance with fictitious forces 

is introduced where a dynamic perimeter enclosing the formation is used to help the robot 

group efficiently avoid an obstacle. The fictitious forces are applied on the perimeter rather 

than to any single robot, and thus the group formation is maintained whilst being deviated. 

The perimeter changes its shape dynamically to allow the formation to successfully avoid an 

obstacle. The work of (Ko, Seo et Simmons, 2008) proposes a method to coordinate the 
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motion of multiple heterogeneous robots; including obstacle avoidance. They use a 

prioritization technique where priority is assigned to each robot and a robot with lower 

priority avoids any robots of higher priority. To avoid collision with other robots, the 

concepts of elastic force and potential field force are used. In (Peasgood, Clark et McPhee, 

2008) obstacle-free trajectories for robots are created by the use of a graph and spanning tree 

representation. The work in (Yang et al., 2008) considers a suboptimal model using 

predictive formation control and obstacle avoidance for a group of nonholonomic mobile 

robots. They use a potential function to define the terminal state penalty term, and a 

corresponding terminal state region is added to the optimization constraints.  In (Chang et al., 

2009) a robot-deployment algorithm is explained that overcomes unpredicted obstacles and 

employs full-coverage deployment with a minimal number of sensor nodes. Without the 

location information, node placement and spiral movement policies are proposed for the 

robot to deploy sensors efficiently to achieve power conservation and full coverage. The 

research in (Do, 2009) propose dynamic cooperative controllers using potential as well as 

bump functions that force a group of mobile robots with limited sensing ranges to perform 

desired formation tracking as well as a guarantee there are no collisions between the robots.  

The work of (Harmati et Saffiotti, 2009) proposes a collision free target tracking problem for 

a multi-agent robot system. The convergence of target tracking is improved by a new game 

theoretic concept using a semi-cooperative Stackelberg equilibrium point and a new 

formation component in the individual cost functions. To enhance the robustness, a PD like 

fuzzy controller tunes the cost function weights directly for the game theoretic solution and 

helps to achieve a prescribed value of cost function components. In (Hu, Zhao et Wang, 

2009) a decentralized vision-based for target-tracking and collision-avoidance of autonomous 

robotic fish capable of 3-D locomotion is developed, and considers underwater applications 

with the uncertainties and complexity inherent in a hydro environment. In (Li, Yang et Seto, 

2009) a neural network approach is proposed for a multi-robot system with moving obstacles. 

In (Skrjanc et Klancar, 2010) a Bernstein_Bézier curve is introduced for cooperative 

collision avoidance of MMR’s. They use model predictive trajectory tracking to drive the 

robots along the obtained reference trajectories.
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1.7 Communication  

The diversity of the MMR’s applications and their potential communication protocols has 

challenged the existing literature on artificial intelligence communication. The less 

coordination a multi-robot system requires, then the better it should scale to large numbers of 

robots.   

In (Klavins, 2003) the scalability of multi-robot algorithms is studied and formalism, called 

CCL, is defined for specifying multi-robot systems and algorithms. In (Fax et Murray, 2004) 

the problem of decentralized cooperation among a collection of vehicles is presented. These 

vehicles perform a shared task with inter vehicle communication using algebraic graph 

theory in modeling the communication network and relating its topology to formation 

stability. The information flow can thus be rendered highly robust to changes in the graph, 

enabling tight formation control despite limitations in inter vehicle communication 

capability. In (Sepulchre, Paley et Leonard, 2007) a design methodology to stabilize isolated 

relative equilibria in a model of all-to-all coupled identical particles is presented moving in 

the plane at unit speed. In (Takahashi et al., 2009) a unified system of fully distributed 

meshed sensor network composed of static wireless nodes is studied to show mobile robot 

cooperation that serves as a sink node. This system is capable of fully distributed peer-to-

peer (P2P) ad hoc communication with ZigBee based protocol. A novel communication 

timing control employing coupled-oscillator dynamics is proposed, named phase-diffusion 

time-division method (PDTD). This aims at the realization of an ad hoc collision-free 

wireless communication network. The basic PDTD is extended so that it can exhibit flexible 

topological reconfiguration according to the moving sink node (robot). A mobile robot will 

function as a sink node and access the mesh network from an arbitrary position. 
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1.8 Contribution  

In this thesis we focus on the problem of how to control and coordinate a group of mobile 

robots moving in group formation in an unknown environment that includes static or 

dynamic obstacles. The goal is for all the robots in the group to simultaneously reach their 

desired target points while maintaining an overall group formation. In order to achieve this 

outcome, a method is developed in which each robot is equipped with inbuilt sensors to 

provide environmental information to a designed algorithm. This algorithm uses a 

combination of hierarchical controllers based on nonlinear and PID techniques which 

efficiently instruct the robots to maneuver along their designated trajectories and also avoid 

any obstacles they encounter. Additionally, we have carried out a variety of simulation 

experiments to prove the validity of the designed algorithm to achieve this result. 

In this research we focus on the question of how to facilitate smooth and efficient trajectory 

tracking, cooperative group behavior and obstacle avoidance for a MMR group. This thesis 

explores the use of exponential sliding mode control, Lyapunov technique and the ability to 

create an intelligent control system for a MMR group working in an unknown environment. 

Within the context of this research, an unknown environment may comprise both static and 

dynamic obstacles. Static obstacles are foreign stationary objects observed in the 

environment, while each robot can be considered as a potential dynamic obstacle for other 

members of the group.  

By exchanging information over the communication network, the robots use control laws to 

track their desired trajectories while simultaneously adjusting their speed profiles on their 

individual trajectories. The direction angle that each robot moves is determined not in 

isolation, but by the desired trajectories and overall group formation required of all the 

robots. The control algorithms are implemented on multiple homogeneous mobile robots 

called EtsRos. 
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A crash avoidance behavior is designed so that the robots within the group are assigned a 

priority status. If there is an imminent collision between robots, this behavior selects the 

one(s) that must stop to avoid a crash while allowing the priority robot to move forward or 

change its desired trajectory. Once the priority robot moves away and the crash danger 

passes, the other robots are allowed to continue moving forward in group formation. 

The core of designed algorithm uses fuzzy logic which tries to imitate the way the human 

brain processes and responds. A robust fuzzy coordination algorithm is developed so that if 

any of the robots lose their coordination, they can resume it again once the problem is solved. 

For example, if there is the chance of an imminent crash amongst any of the robots forcing 

them to temporarily abandon their place in the formation, the coordination algorithm will 

then re-acquire their correct positions once the crash has been overcome. We also propose a 

fuzzy logic approach to the monitoring and deciphering of the information sourced from the 

surrounding environment. This environmental information is gathered using a combination of 

lateral and longitudinal sonar sensors mounted on the robots. A fuzzy model coordination 

construct manipulates the robots into different formations, and requires them to follow their 

desired trajectories in either a clear environment or one that contains obstacles. 

The choice of using of a fuzzy coordination algorithm for robot control gives both flexibility 

and adaptability to the individual robots when maintaining group coordination. The robots 

must be able to dynamically change their velocity or desired trajectory when confronting 

obstacles or when they lose coordination with the rest of the group. The algorithmic model 

precisely guarantees that all the robots within the group will reach their target points both 

individually and in formation.  



CHAPTER 2 

TRAJECTORY TRACKING CONTROL OF A  
NONHOLONOMIC MOBILE ROBOT 

This chapter explores techniques to improve upon previous trajectory tracking methods 

enabling a mobile robot to reach its desired target point. Trajectory tracking can be defined as 

a tracking system that delivers a consistent high dynamic tracking performance to enable an 

efficient, smooth and continuous robot movement along a desired trajectory.  

Nonlinear control strategies for trajectory tracking proposed by other authors were reviewed 

to consider the best techniques for a single mobile robot which ultimately could be utilized 

for all robots within a MMR group. The research of (Yang et Kim, 1999) presents a robust 

sliding mode tracking control for a nonholonomic mobile robot. This uses a feedback 

linearized by the computed-torque method for the dynamic equation of the robot with its 

position being calculated by polar coordinates. The research of (Corradin et Orland, 2002) 

proposes the ‘trajectory tracking problem’ for a mobile robot by considering the presence of 

uncertainties in the dynamical model. Their proposed solution is based on a discrete sliding 

mode control which ensures both robustness and the implement ability of the controller. The 

works by (Kim et al., 2003) and then (Chwa, 2004) propose a ‘position and heading direction 

controller’ using the sliding mode control technique for mobile robots. However, model 

uncertainties in the dynamics of the mobile robot were not considered, and it was assumed 

that the bounds of external disturbances were already known. The work by (Coelho et Nunes, 

2005) proposes a ‘robust control method’ for the dynamic model with parametric 

uncertainties and external disturbances. The work by (Das et Kar, 2006) designs and 

implements an adaptive fuzzy logic for wheeled mobile robots. The work by (Hwang et 

Chang, 2007) proposes the concept of trajectory tracking and obstacle avoidance of a car-like 

mobile robot within an intelligent space via mixed ?-,?@ decentralized control using two 

distributed charge-coupled devices.  In (Chen et al., 2009a), the authors present an adaptive 

sliding mode dynamic controller for trajectory-tracking of wheeled mobile robots that 
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considers system uncertainties and disturbances. The work by (Lee et al., 2009) proposes a 

‘sliding mode control’ to asymptotically stabilize a mobile robot to a desired trajectory.  

Upon evaluation of all these previous methodologies, this chapter proposes and tests different 

trajectory tracking methods for a single mobile robot by using three different control 

procedures that consist of: 

• Exponential Sliding Mode Control 

• Fuzzy Control 

• Lyapunov Control 

In principal, these techniques are combined by the use of a low level PID controller.  This 

combination of using a low level PID controller and a high level algorithm controller creates 

an efficient nonlinear controller for the dynamic model of trajectory tracking with a mobile 

robot. This two level architecture control, based on the use of nonlinear and PID controllers, 

has been developed so that a mobile robot will exhibit a smooth tracking movement while 

moving forward on a predefined trajectory. The low level PID controller adjusts the speed of 

the left and right front wheel motors, while the high level controller coordinates the speed 

and movement of the robot by using a feedback controller. Experimental tests are performed 

in a laboratory environment employing different variations of robot trajectory tracking to 

show the ability and efficiency of these developed controllers.  

2.1 Dynamic Tracking Control of a Nonholonomic Mobile Robot using 
Exponential Sliding Mode  

Sliding Mode Control (SMC) developed in the 1950’s took the attention of the authors 

because it employs a nonlinear control strategy that uses a high speed switching control law 

with a discontinuous property (Slotine et Li, 1991). The work of (Hung, Gao et Hung, 1993; 

Hwang, 2004; Utkin, 1977) evaluate SMC for the control of mobile robots, showing it has 

merit to deliver a consistent high dynamic tracking performance due of its simple structure, 

fast response, good transient performance, and robustness with regard to parameter 
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variations. However, the most problematic issue in SMC applications is chattering, that is the 

high frequency finite amplitude control signal, which due to its interference makes it 

impossible for use with real physical systems (Levant, 1993; Park, Chwa et Hong, 2006; 

Sankaranarayanan et Mahindrakar, 2009). There are different causes of chattering which can 

exist in many situations such as the presence of fast actuators and sensors (Boiko, 2005; 

Fridman, 2003), parasitic dynamics, time delay and hysteresis (Utkin, Guldner et Shi, 1999), 

and the discontinuity of the sign function on the sliding manifold (Utkin, 1977).  

In order to attenuate and / or eliminate chattering in SMC systems, the following proposals 

have been studied by other authors. These are the use of a continuous smooth approximation 

(Levant, 1993; Shtessel, Shkolnikov et Brown, 2003; Slotine et Li, 1991) replacing the ‘sign’ 

function with a ‘boundary layer’ function (Shima, Idan et Golan, 2006), or the use of applied 

fuzzy logic to adjust the boundary layer function (Choi et Kim, 1997). Although these 

methods measurably decrease control chattering, they also unfortunately reduce the 

robustness and create an increase in the steady-state error. 

In (Bartolini et al., 2003; Ferrara et Rubagotti, 2008; Levant, 2003; Riachy et al., 2008; 

Slotine et Li, 1991) the use of high-order sliding-mode approaches are also considered. These 

have the advantage of a higher accuracy of motions, as well as chattering reduction and 

finite-time convergence for systems with relative degree two (Bartolini et al., 2001; 

Bartolini, Pisano et Usai, 2001). Also linked to this method, (Bartolini, Ferrara et Usai, 1998) 

proposes time optimal bang–bang control based on second order sliding mode to avoid 

chattering. Chattering is also mitigated by mixing second order and first order sliding mode 

control by (Bartolini et al., 2000), relying on the establishment of a hierarchy in the reaching 

phase. The work in (Boiko et al., 2007a) also develops a chattering analysis with second-

order sliding-mode controllers caused by the presence of fast actuators. Still, the main 

disadvantage of using the high-order sliding model is in its approach, due to the fact that the 

implementation becomes too complex along with the higher order sliding surface. 
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Observer-based approaches are also effective in the presence of unmodeled dynamics, for 

example (Boiko et al., 2007b) analyze the effect of introducing a fast actuator into a 

nonlinear system driven by the generalized suboptimal algorithm.  

However, all of these methodologies designed to mitigate chattering essentially involve low-

pass filters and thus sacrifice steady-state errors. There are other methods which try to reduce 

chattering; the work of (Boiko et al., 2007b) proposes a ‘sliding algorithm’ which does not 

require the use of observers and differential inequalities, and (Xu, 2008) proposes a 

‘nonlinear robust control algorithm’ with better performance in terms of chattering free and 

saturation protection with asymptotic stability. These previous methodologies have 

drawbacks in achieving efficient and smooth robot movement along a desired trajectory.  

Upon consideration of these theories, the solution adopted in this thesis to create an efficient 

and smooth robot movement builds upon the technique presented by (Fallah, 2007), where 

the authors consider an exponential reaching law for multivariable systems. In this chapter, 

we propose and evaluate the exponential sliding mode method for the dynamic trajectory 

tracking of a mobile robot (Mehrjerdi et Saad, 2010). Furthermore, we describe experiments 

in which we analyze a comparison of exponential sliding mode with both conventional and 

second order sliding modes to show its performance on chattering reduction and trajectory 

tracking for a mobile robot. 

2.1.1 Dynamic and Kinematic Modeling of Mobile Robot 

Figure 2.1 shows the general model of the mobile robot which consists of two driving wheels 

mounted on the same axis at the front while the two back wheels can freely rotate. 

In this figure, 4 is the radius of each driving wheel, / is the distance between driving wheel 

and the axes of symmetry, A)��B6�the center of mass of the mobile robot� �A� � CD�is the 

coordinate system fixed to the mobile robot, A� is the origin of the coordinate system A� � CD and is the center point between the right and left driving wheels, and $ is the 
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distance from A� to��A). �.�E F G1� 2� :HI denotes the position and orientation vector of the 

robot, and E3 F G13� 23� :3HI represents the desired trajectory. 
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Figure 2.1 Mobile robot. 

Figure 2.2 illustrates the block diagram which used to track a trajectory for a mobile robot 

using exponential sliding mode control. There are two levels of the controller, being low and 

high respectively. The low level controller is designed and implemented to adjust the right 

and left wheel velocities, whereas the higher level controller, which is an exponential sliding 

mode controller, is designed to follow a generated trajectory. Posture sensors are used to 

localize the robot, and a control algorithm uses this information to direct the robot along a 

desired trajectory. 
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Figure 2.2 Infrastructure of control. 
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For this mobile robot, the general dynamic equation is described by (Fukao, Nakagawa et 

Adachi, 2000):   

J�E�EK L M�E� EN �EN L O�E� F P�E�= L QI�E�R (2.1)

where = S T; F G=;� =<HI is the input vector and consists of motors’ torques =; and =< which 

act on the right and left wheels, R S T.��is the vector of constraint forces, J�E� S TUVU�is a 

symmetric and positive-definite inertia matrix, M�E� EN � S TU is the centripetal and coriolis 

vector, O�E� S TU is the gravitational vector, P�E� S TUV; is the input transformation 

matrix, and Q�E� S T.VU�is the matrix associated with the constraints. We consider that the 

robot is moving on flat terrain and therefore conclude that�O�E� F W. Equation (2.1) can be 

adapted as: 

X % W �Y%0$ ���:W % Y%0$ Z[�:�Y%0$ ���: Y%0$ Z[�: ( \ ]1K2K:K ^ L ]�Y%0$ _N -Z[� :�Y%0$_N -���:W ^
F 4̀ XMa6 : Ma6 :6Bb : 6Bb :/ �/ \ c=;=< d L X 6Bb :�Ma6 :�$ \ R (2.2) 

and % F %) L Y%0( F () L Y%0�$- L /-� L Y(. (2.3) 

Where %) is the mass of the robot without the driving wheels, %0 is the mass of each 

driving wheel plus the motor rotor, ()�is the moment of inertia of the platform without the 

driving wheels and (. is the moment of inertia of each wheel and the motor rotor about a 

wheel diameter; the kinematic constraints can be denoted as: 

Q�E�EN F W (2.4)

1N ���: � 2N Z[� : � $:N F W .  

It is clear that the matrix e�E� F XM�/ Z[�: L $ ��� :� M�/ Z[�: � $ ��� :�M�/ ���: � $ Z[�:� M�/ ���: L $ Z[�:�M �M \�satisfies 

�Q�E�e�E� F W�, where��M F ;-f. And therefore, we have:  
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]1N2N:N ^ F XM�/ Z[�: L $�6Bb�:� M�/ Z[�: � $�6Bb�:�M�/ ���: � $�Ma6�:� M�/ ���: L $�Ma6�:�M �M \ c7<7;d (2.5)

where 7;�� 7< represent the angular velocities of the right and left wheels. If we consider 5�� 7� as the linear and angular velocities of the mobile robot, the relation between�5�� 7� and 7;�� 7<�can be explained as: 

c7<7;d F g4̀ /4
4̀ � /4h c

57d i 5 F ?�5j (2.6)

From (2.5) and (2.6) it is clear that: 

]1N2N:N ^ F XMa6 : $ 6Bb :6Bb : �$�Ma6 :�W ` \ ck7d F ej5j (2.7)

The derivative of equation (2.7) gives:  

EN F ej5j i EK F eNj5j L ej5Nj i EK F ]1K2K:K ^
F ]�:N ��6Bb : :N ��$�Ma6 ::N ��Ma6 : $:N �6Bb:W W ^ ck7d L XMa6 : $ 6Bb :6Bb : �$�Ma6 :�W ` \ c5N7N d� (2.8)

By simplification of equation (2.8) we get: 

]1K2K:K ^ F ]�:N �5�6Bb : L :�N $�7 Z[�: L 5N �Ma6 : L 7N ������ :�6Bb :�5N L :�N 7$� L �Ma6 :�:N �5 � 7N $�7N ^
(2.9)

From combining relations (2.2) and (2.9) and in our case setting $�to zero we can conclude 

that �E� EN � F W� and: 

5N F =; L =<%4 ����� � 7N F /�=; � =<�(4 (2.10) 
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2.1.2 Exponential Sliding Mode Control 

In this section, we propose the theoretical structure of the developed exponential sliding 

mode technique for the dynamic trajectory tracking of a mobile robot. We first define the 

control algorithm by conventional and second order sliding modes, and then modify the 

algorithm to evaluate the response using exponential sliding mode. 

Substituting (2.8) for relation (2.1) and multiplying by ejI�E��and considering $ F W gives 

(Chen et al., 2009a): 

Jl�E�5Nj L Am5j F �Pn�E�= (2.11)

where���Jl F ejIJej S T-V- F c% WW (d�,�Am F ejIJeNj S T-V- F W������Pn F ejIP F j; c` `/ �/d.
Equation (2.11) can be therefore be rewritten as: 

5Nj F Jloj�E��Pn�E�= F p� = (2.12)

where��p F Jloj�E��Pn�E� F j.;q c ( (/% �/%d�
Velocity tracking error and its derivative can be defined as:  

rs F 53 � 5sN F 5N3 � 5N t (2.13)

The first step in the sliding mode control is to choose the switching function 6 in terms of the 

tracking error. The general switching function for sliding mode control can be considered as: 

u F s L Rv s�=�w
� $= (2.14)

When the sliding surface is reached, the tracking error converges to zero as long as the error 

vector stays on the surface. The convergence rate is in direct relation with the value of �R . 

If we consider Lyapunov function as: 

x F Ỳ uIu��� i xN F uIuN (2.15)

To make the system stable, we consider uN as: 
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uN F �y�6B+b�u��� z{� y | W���i ��� xN } W (2.16)

The derivative of equation (2.16) gives: 

uN F sN L Rs F �y�6B+b�u� (2.17) 

By using equations (2.12) and (2.17) we get: 

uN F G5N3 � p� =H L �Rs F �y�6B+b�u� (2.18)

The control law can be defined as: = F pojG5N3 L Rs L y�6B+b�u�H (2.19)

where poj F � ;-f c�/% �(�/% ( d,
Arbitrary-order sliding controllers with finite-time convergence have been demonstrated in 

the work of Levant (Levant, 2003). An example of an arbitrary second order sliding mode 

(ASSM) can be considered as:  

uN F �y�6B+b� ~uN L �uj-� 6B+b�u�� (2.20) 

Another form of higher-order sliding mode is called quasi-continuous higher-order sliding 

mode control (Levant, 2005). An example of quasi-continuous second-order sliding mode 

(QSSM) can be considered as: 

uN F �y� ��uN� L �u�j-�oj ~uN L �uj-� 6B+b�u��� (2.21) 

The exponential sliding mode proposed in this section is given by: 

uN F �y��u� �6B+b�u� F sN L Rs (2.22) 

where���u� F �W L �` � �W�s�9�u�, then equation (2.22) can be rewritten as: 

uN F sN L Rs F �y�� L �` � ���so���� �6B+b�u� (2.23) 
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where��� is strictly positive offset less than 1��W } �� } `�, and 9 is strictly positive. With 

proposed exponential sliding mode if we consider the Lyapunov function as: 

x F j- uIu��� i xN F uIuN���i ��� xN } W (2.24) 

This proof stability of system because ��u� is always strictly positive. If �� is selected as 1, 

the equation (2.23) becomes as equation (2.16) which shows conventional sliding mode is 

subset of exponential sliding mode. In equation (2.23) with increasing �u�, ��u��tend to �� , 

and consequently�y,��u� converges to y,�� , which is greater than K . This means that y,��u��increases in the reaching phase, and accordingly the attraction of the sliding surface 

will be faster. On the other side, with decreasing�u�, ��u� tend to 1 and then�y,��u�
converges to�y. This means that when the system approaches the sliding surface, y,��u��
gradually decreases and consequently reduces the chattering. The proposed exponential 

sliding mode will therefore dynamically adapt to the variations of the switching function by 

letting y,��u� vary between y and�y,��. Figure 2.3 shows the switching function with the 

exponential sliding control for different values of y and���. As can be seen in this figure, if 

we select �� F ` the exponential sliding control will be the same as the conventional sliding 

mode control. 
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2.1.3 Experimental Results 

The purpose of the experiments is to demonstrate the stability and the performance 

characteristics inferred from the theoretical development. Before presenting the experimental 

results, we briefly discuss the experimental setup, communication and design of the two level 

algorithm controllers being used for the trajectory tracking of an EtsRo mobile robot. 

2.1.3.1 Experimental Setup

Figure 2.4 displays the structural design for the control and trajectory planning of the ‘EtsRo’ 

nonholonomic mobile robot used in the experimental tests.  EtsRo is a mobile robot with two 

actuated wheels, with the front wheels being equipped with two DC motors using �����[���� `������  which are installed on the right and left front wheels. The incremental 

encoders are mounted on the motors counting with a resolution of �WWW����6s6,��4b. The 

wheels have a radius of  4 F ����M%. The length, width and height of EtsRo are Y���YW�8b$�``�M% respectively. The total weight of the robot is around 2.3 kg. The maximum 

linear velocity is `�`Y��%,6sM and the maximum angular velocity is 5.74�48$,6. The 

experimental tests on robot are performed in a laboratory using a flat terrain with a work area 

of � V � meters. By using the following equation, we can obtain both the linear and angular 

velocities of the individual robots: 

5 F 5&�{� L 5f�{�Y ����� � 7 F 5&�{� � 5f�{�/ � (2.25) 

Where 5&�{�  and 5f�{� denote the right and left velocities and L  shows the distance 

between the two actuated wheels.  

ZigBee modules were engineered to meet IEEE 802.15.4 standards and support the unique 

needs of a low-cost, low-powered wireless sensor network being used for communication. 

The modules operate within the 2.4 GHz frequency band, and the module range in the indoor 
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environment is up to 100 meters while the RF data rate is 250,000��B{6,6. The PC 

communicates with the robots through a serial port with a modem working in API mode. 

, ,x y ψ

ω

,d dv ω

,ref refx y

v

Figure 2.4 EtsRo and Control structural design. 

The velocity of ZigBee modem is set to 9600��B{6,6. API is used for serial-to-RF 

packetization and the frame-based API extends the level to which a host application can 

interact with the networking capabilities of the module. The robot has two second-order 

filters to eliminate sparks on the velocities. Two low level PID controllers are designed to 

achieve the best accuracy for the right and left motors with a sampling time of  �� F `W�%6
which is designated by a microcontroller mounted on the robot. The high-level controller, 

which is a non linear controller, is designed in the real-time Simulink (Matlab) with a 

sampling time of �� F �W�%6. Figure 2.5 demonstrates the control and coordination 

architecture for the mobile robot. 
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Figure 2.5 Control architecture of EtsRo.

2.1.3.2 Experimental Tests 

In this section, we discuss the results of the trajectory tracking missions involving the use of 

an EtsRo mobile robot. Experimental tests are carried out to evaluate the performance of the 

trajectory tracking algorithm used for the EtsRo robot and are designed to illustrate the 

effectiveness of the proposed exponential sliding mode technique compared to the 

conventional and second-order modes. The dynamic parameters for the EtsRo robots are 

considered as the following: 

%) F Y���*+��� %0 F �Y��*+�� () F �W` *+%- � (. F �WWY` *+%-���4 F �W��%�� / F � �`�%� $ F �WY�%
The experiment tests were performed on a sinusoidal-shape trajectory. In the first scenario, a 

CSM using control gains of y F `�� �R F `W is considered. In the second and third scenario, 

an ASSM and a QSSM with control gains y F ���� �R F `W are considered. In the last 

scenario, ESM with control gains y F �Y�� �R F `W�� �� F W�`�� 9 F � is considered. The 

initial position of the robot is G1�{��� 2�{��� :�{��HI F GW�`�WHI. Figure 2.6 presents the reference 

and actual robot trajectories. This figures show the robot moving effectively along its 

trajectory, indicating the exponential sliding mode to be experimentally successful. The 

linear and angular velocities of the robot in different scenarios are plotted in Figure 2.7. As 

can be seen in these figures, the CSM has the maximum chattering on input controls. The 

trajectory tracking errors 2�   and ¡�   are shown in Figure 2.8.  
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The results obtained by the proposed exponential sliding mode and conventional sliding 

method are compared. Table 2.1 shows the results obtained by these methods with the 

trajectory tracking errors in which 1¢;;ow£w¤<�� �2¢;;ow£w¤<�, :¢;;ow£w¤<�� Ju¥ and A¦8{{s4�can 

be calculated by: 

1¢;;ow£w¤< F § �1¢;;�U���Ü©� �ª �� ������2¢;;ow£w¤< F § �2¢;;�U���Ü©� �ª ��������:¢;;ow£w¤< F § �:¢;;�U���Ü©� �ª �
Ju¥ F § «1¢;;�U�- L 2¢;;�U�- L :¢;;�U�- �Ü©� �ª ���A¦8{{s4 F § �53�U� � 5U��Ü©� �ª F § �5¢;;�U���Ü©� �ª �

(2.26) 

Table 2.1 Comparison between CSM, ASSM, QSSM and ESM 

Total errors ¡�   ¬�   ­�   ®¯° Chatter 

Conventional Sliding  

Mode 
0.0195 

     

0.0367 

     

0.0532 

    

 .0780 

     

0.0898 

Arbitrary Second-Order 

Sliding Mode 

    

0.0089 

    

0.0180 

    

0.0579 

    

0.0682 

    

0.0352 

Quasi Second-Order  

Sliding Mode 
0.0191 

    

0.0372 

     

  0.0287 

     

   0.0577 

  

     

0.0479 

Exponential Sliding  

Mode 
0.0100 0.0324 0.0154 0.0418 0.0233 
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                          Figure 2.6 Reference and real robot trajectories. 

Ju¥� is defined as the mean square error, ª�is the number of the sampling points and A¦8{{s4�is defined as the chattering on the linear velocity of the robot. As this table shows, 

when the robot moves on its desired trajectory, the ESM produces a smaller mean square 

error compared to the CSM, AASM and QSSM, which therefore allows the robot follow its 

desired trajectory more precisely. Furthermore, the chattering present in ESM is less than the 

chattering produced by other methods. 
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                             (a) Linear                                               (b) Angular 

Figure 2.7 Velocities of robot. 
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                              (a) 1¢;;                                                                        (b) 2¢;;
      
                            

Figure 2.8 Trajectory tracking error. 

2.2 Trajectory Tracking Based on Lyapunov Technique 

In this section, a trajectory tracking approach is explained based on a Lyapunov function 

(Mehrjerdi, Saad et Ghommam, 2010a). The kinematic equation of this robot can be 

explained as: 

±1N F 5 Z[��:�2N F 5 ����:�:N F 7 t (2.27) 

where � F G1� 2� :HIdenotes the position and orientation vector of the �robot; 5 and 7 are 

linear and angular velocities respectively. The errors in posture with respect to a local frame 

of reference of the robot are given by: 

s F X1¢;;2¢;;:¢;;\ F X Z[��:� 6Bb�:� W�����:� Z[��:� WW W `\ X
1 � 132 � 23: � :3\ (2.28)

   The time derivative of the posture errors take into account the constraint (2.4) which yields: 

0 20 40 60 80 100 120 140 160
-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

time(s)

x er
r(m

)

CSM
ESM
ASSM
QSSM

CSM

ASSM

ESM

QSSM

0 20 40 60 80 100 120 140 160
-0.1

-0.05

0

0.05

0.1

time(s)

y er
r(m

)

CSM
ESM
ASSM
QSSM

QSSM

ESM

CSMASSM



37 

sN F ±1N¢;; F 5 � 53 Z[��:¢;;� L 2¢;;72N¢;; F 53 ����:¢;;� � 1¢;;7:N¢;; F :N3 � :N F 7 � 73
t

(2.29)

The aim of a control law that executes the trajectory tracking task is to reduce the posture 

errors so they converge to zero. The proposed control inputs 5 and 7 of the control law are to 

account for the velocity assignment of the robot along the trajectory as given by (Maalouf, 

Saad et Saliah, 2006): 

5 F y²1¢;; L 53 Z[��:¢;;� (2.30)

7 F 73 L 53�y³2¢;; L y´����:¢;;� (2.31)

where  y²�� y³�8b$�y´�are the control gains and positive constants.  

By substituting 5�and 7  in the errors of (2.29), we get 

]1N¢;;2N¢;;:N¢;;^ F g �y²1¢;; L 2¢;;�73 L 53�y³2¢;; L y´ ����:¢;;���53 ����:¢;;� � 1¢;;�73 L 53�y³2¢;; L y´ ����:¢;;����53�y³2¢;; L y´ ����:¢;;�� h (2.32) 

Let the candidate Lyapunov function be defined as 

x F Ỳ �1¢;;- L 2¢;;- � L ` � Z[��:¢;;�y³ (2.33)

Differentiating relation (2.33) along the solutions of (2.32), we get  

xN F �y²1¢;;- � yý³ 53 ���-�:¢;;� (2.34)

Given that y²� y³�8b$�y´�are all positive constants then xN �µ W� and the system with the 

defined control law is stable. 
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2.2.1 Experimental Results 

In this section, we discuss the experimental test results of the trajectory tracking missions of 

an EtsRo mobile robot in order to illustrate the performance of the proposed Lyapunov 

technique. These tests were performed firstly on a sinusoidal-shape trajectory and finally on a 

circle trajectory. In the first test, a sinusoidal-shape trajectory is considered. In this scenario, 

the initial position of robot is:  G1�{��� 2�{��� :�{��HI F G�`�W�WHI and nonlinear control gains are considered as: ���y² F `�� y³ F `�� y´ F `. 

Figure 2.9 presents the reference and actual robot trajectories while the trajectory tracking 

errors �2¢;; and �1�   are shown in Figure 2.10. Both these figures show the robot moving 

effectively along its trajectory. The linear and angular velocities of the robot in different 

scenarios are plotted in Figure 2.11.  

Figure 2.9 References and real robot trajectory. 

          

                                  (a)��¡�                                                              (b) �¬�  
Figure 2.10 Trajectory tracking errors. 
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                             (a) Linear                                                              (b) Angular  

Figure 2.11 Velocity of robot.

In the second test, a circle trajectory is considered. In this scenario, the initial position of 

robot is: G1�{��� 2�{��� :�{��HI F GW�`���WHI and non-linear control gains are considered as: y² F `�� y³ F `�� y´ F `.

Figure 2.12 presents the reference and actual robot trajectories while the trajectory tracking 

errors �2�   and �1¢;; are shown in Figure 2.13. Both these figures show the robot moving 

effectively along its trajectory. The linear and angular velocities of the robot in different 

scenarios are plotted in Figure 2.14.  

           
          

Figure 2.12  References and real robot trajectories.
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                               (a)�1¢;;                                                               (b) �2¢;;
          

Figure 2.13 Trajectory tracking errors. 

   
                  (a) Linear                                                                (b) Angular 

Figure 2.14 Velocity of robot.
                                                   

2.3 Trajectory Tracking Based on Fuzzy Control 

In this section, a trajectory tracking approach based on fuzzy control (Mehrjerdi et al., 

2010a) is used to implement a trajectory tracking controller. The core of the designed 

algorithm uses fuzzy logic which tries to imitate the way the human brain processes and 

responds to problems. Up until recently, computers could only process via logical patterns of 

programming. People however, think not only logically but can also recognize similarities or 
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used for indoor multiple robots. A set of linguistic fuzzy rules are extended to implement 

expert knowledge under a variety of situations. The output of the fuzzy controller determines 

the linear and angular velocities of individual robots. Experimental tests are performed using 

an EtsRo mobile robot to test the ability of the controller’s effectiveness. All control and 

trajectory planning in this section are implemented on the EtsRo. Figure 2.15 shows the 

general kinematic model of the mobile robot and a discretized trajectory. In this figure, � F G1� 2� :HI denotes the position and orientation vector of the robot. ��3�U� F ¶1�3�U�� 2�3�U�� ·3�U�¸I�represents the coordination of bw¹��sample point on the 

trajectory where�b F W�º � ª. The trajectory is described by a set of discrete node positions ��3��� to ��3�¨� linked to each other starting from the initial position to the final desired 

position. ��3�U��is bw¹ discretized sample on the trajectory.  

X

Y

ψ

L

( 1)di nx +x

y

( 1)d ny +

O

( )d nQ
( 1)d nQ +

( 2)d nQ +

( 1)d nψ +

α

RPd

( )Path i

Figure 2.15 Kinematic model of robot.

Figure 2.16 shows the fuzzy system structure with the desired number of inputs and outputs. 

Inputs of fuzzy controller are $&'�� 9�� 1¢;; and�2¢;; where $&'��is the distance from the actual 

position of robot to the next desired position, 9 is the difference between the line joining the 

current position to the next desired position and the actual heading of the robot. The output of 

the fuzzy controller determines the linear and angular velocities of individual robots. 
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Figure 2.16 Fuzzy control structure. 

The algorithm controller has two hierarchical levels of operation being low and high 

respectively. The high level controller is a fuzzy controller designed to follow generated 

EtsRo robot trajectories that are modeled by a fifth order polynomial and divided into 

segments for analysis.  The idea to solving the problem of propelling a robot along a 

continuous desired trajectory is to divide the trajectory into discrete segments and consider 

the robot moving between discontinuous sampling points. 

2.3.1 Trajectory Tracking Problem 

The task of the fuzzy trajectory tracking controller is to command the robots to follow the 

trajectories in a smooth and continuous manner with the best possible precision. In order to 

achieve this goal, it is not necessary for the robots to pass exactly through specific sampling 

points on their trajectories, but they must at least pass within a proximity to them while 

reaching their final destination. For our purposes, trajectory tracking is categorized in two 

different groups: 

1)  The robot is placed on its predefined trajectory. In this scenario, which is shown in 

Figure 2.17, the robot tries to follow its trajectory and stay on its desired trajectory. 
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Figure 2.17 Robot is on the desired trajectory.

2) In the second modelling, the robot is not placed on its predefined trajectory. In this 

scenario, which is shown in Figure 2.18, the robot tries to move forward to reach and 

follow its desired trajectory. 

Figure 2.18 Robot is not on the desired trajectory.

We consider ��and �3 to represent the position of robot and the desired trajectory 

discretized. We let 53� 73 denote the desired linear and angular velocities assignment for the  

robot. The purpose of trajectory tracking is to make the robot's velocity � F G5� 7HI track a 

desired velocity reference  �3 F G53� 73HI which means »� � �3» ¼ W� and also »� � �3» ¼ W�. 
2.3.2 Fuzzy Trajectory Tracking 

The form of the control law equation for trajectory tracking and cooperation is as follows: 

c57d F ½ªj�$&'� 9� 1¢;;� 2¢;;�ª-�$&'� 9� 1¢;;� 2¢;;�¾ (2.35)

The functions ªj and ª- are the control laws of a Sugeno type fuzzy controller. Sugeno 

controllers take in fuzzy inputs and outputs. The task of the trajectory following program is 

to make the robot passes in proximity of the sampling points in a continuous and smooth 
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manner. The behavior of the controller is such that if the discrete points are close to each 

other, then a higher precision of trajectory tracking is achieved, but the robots will move at a 

lower speed due to the processing of this higher number of sampling points. If less precision 

is required, the discrete points can be selected further apart and the robot will therefore move 

at higher speed. Here close sampling points with high precision are considered. The 

membership functions of inputs $&' and 9 are shown in Figure 2.19. 

   

                      (a)�¿ÀÁ                                                                                    (b) Â
Figure 2.19 Membership functions.

The linear and angular velocities obtained by the fuzzy controller related to inputs $&'� 9 are 

shown in the Figure 2.20. As can be seen in this figure, when the robot is far from the 

trajectory, or the distance between the actual position of robot and the next ahead sampling 

point is large, then its linear velocity will be increased. When the robot is close to the 

trajectory, or the distance between actual position of robot and the next ahead sampling point 

is small, the velocity will be decreased and the robot will move slower. In this figure, when 

the angle between the robot and the trajectory is large, the robot will have more angular 

velocity to decrease this error. 

The reason for using 1¢;;�as an input to the fuzzy system in trajectory tracking can be 

described as follows: If we suppose that a robot should travel from �3�U� to��3�UÃj�, this 

means that it has to catch the targeting point ��3�UÃj�. However, if the robot passes points 
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��3�UÃj� and then ��3�UÃ-� in the robot reference, then when moving to the next step, the 

targeting point ��3�UÃj��falls behind the actual position of the robot, which means �1 | 13� i 1¢;; } W ,  To solve this issue, we add the following rule to the fuzzy controller,  

• If  � | �Ä then robot will stop, until condition � µ �Ä is fulfilled. Figure 2.21 depicts this 

issue, 

         
                      (a) Linear                                                        (b) Angular

                                                   
Figure 2.20 Velocities obtained by fuzzy controller.

Figure 2.21 Robot passes targeting point ahead. 

If robot is not on the trajectory, or the vertical position of robot in x-y coordination �2� is 

different from the next vertical sampling point on the trajectory, then�2¢;;�will be used as an 

extra input to the fuzzy controller. This input is used to help the robot turn toward the 

trajectory and catch it. Figure 2.22 shows the necessity of using the�2¢;; as an input to the 
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fuzzy controller. If the robot is not on the trajectory and there is an error between the heading 

angle of the robot and the trajectory, the robot will turn to minimize this error. However, 

when this error is zero �9 F W� , the robot will move to a trajectory parallel to the actual 

trajectory and therefore will never reach it. To solve this problem an angle is added to 9
which is��R. Using the y-coordination, the further the robots are from the trajectory the larger 

this angle becomes and will only reduce as the robots move closer to the trajectory. Once the 

robot catches the trajectory, R will be finally zero. 

Figure 2.22 Robot is not on the same y-coordination as trajectory. 

Bª��2¢;;� | W� i 9�bsÅ� F R L 9 (2.36) 

The membership functions of this input is shown in the Figure 2.23, 

Figure 2.23 Membership function of�ÆÇÈÈ�
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Figure 2.24 shows the change of �R� related to change of�2¢;;, 

Figure 2.24 É�Obtained by fuzzy controller and�ÆÇÈÈ�
2.3.3 Stability Proof of Trajectory Tracking Algorithm 

The available controllers to steer the robot to its trajectory are��5� 7. $&'�is defined as�
$&' F Ê1¢;;- L 2¢;;- , where the derivation of �$&' along (2.29) gives: 

$N&' F �5�1¢;;$&' L 53 Z[��9 L Ë� (2.37)

where �Ë F � ����` 2s441s44�. The state error can be written as: CN F ª�$&'� 9� 1¢;;� 2¢;;� Ì�� where 

Ì F G5� 7H. 
The idea of the fuzzy controller is to linearize iX� about a number of operating points 

depending on the linguistic rules that are defined. Since in trajectory tracking the robots are 

required to move tangentially on their desired trajectories with a given velocity, we redefine 

the desired velocity to be tracked as 53 F 5�Í3ÎN where Î is a trajectory parameter 

characterizing a desired trajectory. Linearizing (2.37) about an operating point using Taylor 

series would give the Takagi-Sugeno fuzzy model for JÏ linguistic rule as (Wang, Tanaka et 

Griffin, 1996): 

Bª�C�B6���C¢Ð� Ì¢Ð�������{¦sb����CÑN F QÏCÑ L PÏÌÒ (2.38)
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where CÑ F C# � C¢Ð��,��ÌÓsE F Ì � ÌsE. The matrices QÏ and PÏ can be found as: 

QÏ F Ô¨ÔÕÖ �C¢Ð� Ì¢Ð t��,  PÏ F Ô¨Ô×Ö �C¢Ð� Ì¢Ð t��, this definition gives the  following: 

QÏ F c�5Ø3�7Í¢Ð�Ù Z[��9¢Ð L Ë¢Ð� L 5Ø37Í¢Ð ����9¢Ð L �Ë¢Ð�Ù�� 5Ø37Í ����9¢Ð L �Ë¢Ð�Ù�W W d
PÏ F cZ[� Ë¢Ð WW `d

(2.39)

where �Ú�Ù F ÔÔ3ÛÜ�.  Let �Ï�be the membership function of the inferred system set which 

corresponds to each operating point, and therefore the linearized system would be written as: 

CÑN F § ��ÏCÑ L PÏÌÒ;Ï©j Ï�§ �Ï;Ï©j (2.40)

where Ý F `�º � 4 and 4 is number of rules. Then for each model, we select a fuzzy state 

feedback controller of the form ÌÒÏ F �yÏ�C � C¢Ð�.  
The structure of the inferred controller is then 

ÌÒ F § ���ÏyÏCÑÏ;Ï©j§ �Ï;Ï©j��
(2.41)

The inferred closed loop fuzzy system has the following form 

CN F § § ���Þ�Ï�QÏ � PÏyÏ�C;Ï©j;Þ©j § § ���Þ�Ï;Ï©j;Þ©j
(2.42)

The matrix yÏ is chosen such that the matrix �QÏ � PÏyÏ� is Hurwitz. Stability for the 

equilibrium points of the fuzzy system (2.42) are known and reduce to find an appropriate 

Lyapunov function such that there exists a common positive matrix � verifying 

�QÏ � PÏyÏ�I� L ��QÏ � PÏyÏ� } W��� z�Ý F `�º � 4��������
�Ïßà� L ��Ïßà } WI   where  �Ïß F W���QÏ � PÏyÏ�I L �Qß � Pßyß�
From this we can show that the equilibrium of the fuzzy system (2.42) is globally 

asymptotically stable.  
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2.3.4 Experimental Results 

In this section, we discuss the results of different trajectory tracking experiments using an 

EtsRo mobile robot. These are: 

1) where the robot is  placed on the trajectory  

2) where the robot is not placed on the trajectory  

In the first test initial position of robot is G1�{��� 2�{��� :�{��HI F GW� �`�WHI. Figure 2.25 shows 

the reference and the actual robot trajectories in the first scenario. The trajectory tracking 

error 2¢;; is shown in Figure 2.26. As can be seen in these figures, the robot travels along its 

trajectory with negligible errors and the trajectory tracking is experimentally successful. 

Figure 2.25 Reference and real robot trajectories.

  

Figure 2.26 Trajectory tracking error�ÆÇÈÈ�

The linear and angular velocities of the robot are plotted in Figure 2.27 and 2.28. 
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Figure 2.27 Linear velocity of robot.

Figure 2.28 Angular velocity of robot. 

In the second test initial position of robot is: G1�{��� 2�{��� :�{��HI F G�`��Y�WHI. Figure 2.29 

shows the reference and the actual robot trajectories in the second scenario. The trajectory 

tracking error 2¢;;�is shown in Figure 2.30. As can be seen in these figures, the robot travels 

along its trajectory with negligible errors and the trajectory tracking is experimentally 

successful. 

Figure 2.29 Reference and real robot trajectories.
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Figure 2.30 Trajectory tracking error ÆÇÈÈ . 
The linear and angular velocities of the robot are plotted in Figure 2.31 and 2.32. 

Figure 2.31 Linear velocity of robot.

Figure 2.32 Angular velocity of robot.
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2.4 Conclusion 

In this chapter, in order to improve upon previous trajectory tracking methods enabling a 

nonholonomic EtsRo mobile robot to reach its desired target point on a trajectory, efficient 

dynamic tracking controls have been developed based on exponential sliding mode,  

Lyapunov technique and fuzzy control. A two level controller is designed incorporating a 

low level PID controller for the right and left motors, and a high level controller to control 

the speed and movement of the robot. The high level controller uses a feedback controller 

utilizing the nonlinear functions. The developed exponential sliding mode control reduces 

chattering on the control input compared to conventional sliding modes, and delivers a high 

dynamic tracking performance in a steady state mode. The experimental results obtained 

using an EtsRo mobile robot show the effectiveness of the theoretical outcomes. 



CHAPTER 3 

COORDINATION CONTROL FOR A NONHOLONOMIC TEAM OF MOBILE 
ROBOTS USING EXPONENTAL SLIDING MODE 

This chapter considers the problem of creating a coordination and trajectory tracking 

algorithm using exponential sliding mode for the control of a MMR group. This is facilitated 

by the robots utilizing knowledge derived from onboard sensors that reference their 

localization in the surrounding environment.  

Exponential sliding mode has distinct advantages for use as a coordination and trajectory 

tracking algorithm, not only due to its robustness but also its inherent ability to reduce the 

issue of chattering on the control inputs. In this section we investigate the navigation and 

coordination of a MMR group working in a two-dimensional environment. To do this, a two 

level architecture control based on the ESM and PID are used for indoor multiple robots 

achieving different formations. A high level controller coordinates the speed and movement 

of the robot group by using a feedback controller employing the ESM function. The output of 

the feedback controller determines the linear and angular velocities of individual robots. 

Each robot has its own goal or trajectory to be navigated individually and in formation with 

other robots. By attaching wheeled encoder sensors to each robot in the MMR group, 

information about the local environment can be input and interpolated to create an efficient 

trajectory tracking and coordination by the group. Exponential sliding technique is used in 

conjunction with graph theory, and together they efficiently define the formation controller 

for the dynamic model of mobile robots. The direction angle that each robot moves along its 

trajectory is determined not in isolation, but by the desired trajectories and formations of all 

the robots in the group. 

Experimental tests are performed in a laboratory environment in different robot formations to 

show the ability and efficiency of our controller and coordination algorithm.  
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3.1 Coordination Algorithm  

Figure 3.1 shows the general model of MMR’s.  
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Figure 3.1 Mobile robots and desired trajectories.

Figure 3.2 illustrates the block diagram used to describe the sliding mode control for a group 

of mobile robots. There are two levels of the controller, being low and high respectively. The 

higher level controller, which is an exponential sliding mode controller, is designed to follow 

a generated trajectory. 

Posture sensors are used to localize the robot, and a control algorithm uses this information to 

direct the robot along a trajectory in a desired group formation. 
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Figure 3.2 Infrastructure of control.

To manage the coordination problem for a group of mobile robots that must move in 

formation toward their desired target points, the developed strategy for trajectory tracking 
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that is described in chapter 2 must be modified. For this reason, information exchange 

between robots can be modeled by graph O. There are two kinds of graphs which can help 

coordination problem; directed and undirected graphs. A directed graph (digraph) consists of 

a pairs �>� á�, where > is a finite non-empty set of nodes and á S > V > denotes a set of 

ordered pairs of nodes, called edges. An edge �B� Ý� in a digraph denotes that robot Ý can 

obtain information from robot�B, but not necessarily vice versa. In contrast, the pairs of nodes 

in an undirected graph are unordered, where an edge �B� Ý� denotes that robots B�8b$�Ý�can 

obtain information from each other. The following Lemma will be used to solve the 

coordination problem. 

Lemma 3.1 (Godsil et Royle, 2001): Let â and Q be degree matrix and adjacency matrix of 

an undirected graph�O�, respectively. If  Jã  is the incidence matrix of��O, then  

/ F ¶�#Ï¸ S TUVU F â � Q F Jä�Jä�å (3.1)

and matrix / satisfies the following conditions: 

æ �#Ï µ W��� B ç Ý
è é#Ï F W��U
Ï©j �B F `�ê � bt (3.2)

For an undirected graph, / is called the Laplacian matrix, which is symmetric positive semi-

definite.  

Assumption 3.1: We assume that O is a connected graph, i.e. a trajectory exists between 

every two distinct nodes of �O. We assume that each mobile robot has to track a given desired 

trajectory where each trajectory is defined with respect to a virtual smooth trajectory 0 ( )tΩ . 

Considering a mass point on ë��{� which position is denoted by E��{� a desired trajectory 

for vehicle B  is defined by: 

ì�Ä F ë��{� L �# (3.3)
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where �# F ��:3�E��{� and :3 F ���oj ³Ní²Ní . Figure 3.3 shows formation setup of robots 

related to virtual trajectory.  

  

Figure 3.3 Formation setup.

To ensure formation along a desired trajectory, we need information exchange among robots 

about their positions. Since each robot has to converge to its desired trajectory, the inter-

vehicle communication will encompass not only positions but also the error with respect to 

the desired trajectory. The torque input controller in equation (2.19) will remain the same 

except that the sliding surface will undergo a slight modification to include the coordination 

terms. We propose the following sliding surface:  

u# F sN# L R3s# L Ë# (3.4)

where Ë# is defined as follows: 

Ë# F î# L Rï vs#�=�$=���������������w
wð

î# F èy#Ï�s# � sÏ�#ñÏ
(3.5)

where y#Ï is a diagonal matrix which its components are the elements of the Laplacian graph 

matrix that captures the communication topology between robots. 

Theorem 3.1: Let O be a strongly connected graph, that captures the communication 

topology between robots. Define the sliding surface as in equation (3.4), then applying the 
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torque input (2.19) to each robot. The trajectory tracking and the coordination problems are 

resolved which means ���w¼@ s# F W�and����w¼@ s# � sÏ F W�� z�B ç Ý�. 
Proof: From equation (2.23), it is clear that the sliding surface u is exponentially converging 

to zero. To analyze convergence to the desired trajectory, we will consider the manifold Jã�
where �u� uN� F �W�W�. In this manifold using (3.4) we can obtain: 

sK# F �R3sN# � Rïs# �èy#Ï�sN# � sNÏ�#ñÏ
(3.6) 

We will first show that in Jã �the errors��s#� sN#� F �W�W�. Equation (3.6) in a matrix form 

considering the following vector errors s F Gsjò� º � sUòHò, the matrices�
RØï F $B8+�Rï� Rï� º � Rï�� RØ3 F $B8+�R3� R3� º � R3�, and /ó F (ô/ where ô is the 

Kronicker product and can be rewritten as: 

csNsKd F ½ W (�RØï ��RØ3 L /ó�¾ cssNd (3.7)

Since the graph O is strongly connected, then /ó is a symmetric nonnegative definite matrix, 

which has one 0-eigenvalue and all the rest are strictly positive. Since we have the freedom 

to choose the matrix RØ3 such that it is dominant over the eigenvalues of /ó then the 

matrix�½ W (�RØï ��RØ3 L /ó�¾�is stable. Consequently, system (3.6) is exponentially stable in�Jã�, 
and therefore �s#� sN#� F �W�W� in�J. It is clear then, on the manifold�J, the trajectory tracking 

is solved since�s# F W. To show that formation of the robots is maintained on the 

manifold�Jã�,  we consider the following equation that holds on J
sN# F �R3s# � Rï vs#�=�$= �w

wð
èy#Ï�s# � sÏ�#ñÏ

(3.8)

In a matrix form (3.8) rewrites as: 
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cssNd F ½ W (�RØï ��RØ3 L /ó�¾ gv s#�=�$=w
wð s h (3.9) 

   It is easy to check that the matrix ½ W (�RØï ��RØ3 L /ó�¾ is stable, and consequently�
õö s�=�$=wwð � s÷�converges asymptotically to zero on�J. It is obvious then from equation (3.8) 

that the term�§ y#Ï�s# � sÏ�#ñÏ  converges to zero as time goes to infinity. This ends the proof. 

3.2 Experimental Results 

In this section, we discuss the results of experimental tests performed on the trajectory 

tracking missions involving a group of EtsRo mobile robots which illustrate the performance 

of the proposed exponential sliding mode trajectory tracking and coordination algorithm.  

3.2.1 Experimental Setup 

Figure 3.4 shows the structural design of the control, trajectory planning and coordination for 

the group of mobile robots being used in the experimental tests.  
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Figure 3.4 Structural design for MMR coordination. 
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3.2.2 Experimental Tests 

In this test, trajectories which have different lengths are considered. In this scenario, the 

initial positions and the length of the trajectories are defined as: 

G1j�{��� 2j�{��� :j�{��HI F G`���WHI� G1-�{��� 2-�{��� :-�{��HI F GW�W�WHI� G1ø�{��� 2ø�{��� :ø�{��HI F G�`��Y�WHI/- F ��ùW�%�� /j F /ø F `W��`�%
Figure 3.5 displays the reference trajectories and the actual robot trajectories in first scenario. 

The trajectory tracking errors 2¢;;�and :¢;;�are shown in Figure 3.6. As can be seen in these 

figures, the robots travel along their trajectories, and as soon as robots reach their desired 

trajectories, trajectory tracking errors reduce to zero and the formation is experimentally 

successful. 

Figure 3.5 Reference and real robots’ trajectories.

     
(a) ¬�  �ú�                                                               (b) ­�  �ú�  

            
Figure 3.6 Trajectory tracking errors.
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The linear and angular velocities are plotted in Figure 3.7. These figures show that the robots 

travel with different velocities related to the length of the trajectory travelled and their initial 

positions. We observe that at the start robot 3 has the highest velocity and robot 1 has a 

velocity of zero. Robot 2 has the lowest velocity as its length is the shortest.  

       

                          (a) Linear                                                              (b) Angular 

Figure 3.7 Velocity of robots.

3.3 Conclusion 

In this chapter, a control algorithm and efficient coordination architecture is proposed for 

a group of mobile robots enabling them to work both individually and in meaningful robot 

formations.  The developed technique combines exponential sliding mode with graph theory 

to create an efficient coordination algorithm. A designed two level controller incorporates a 

low level PID controller for the right and left motors, and a high level controller to 

coordinate the speed and movement of the robot group. The high level controller utilizes a 

feedback controller performing the exponential sliding mode function to give a consistent 

high dynamic tracking performance to each robot in the group. The experimental results 

performed on a multi-robot platform demonstrate the effectiveness of the theoretical result. 
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CHAPTER 4 

NONLINEAR COORDINATION CONTROL USING A VIRTUAL STRUCTURE 

In this chapter we move forward from our previous work to create an efficient method to 

enable a team of mobile robots with inbuilt localization sensors to travel in group formation 

along desired trajectories and simultaneously reach their individual target positions. The 

work in chapter 2 considered Lyapunov technique to provide an efficient trajectory tracking 

technique for a single robot utilizing sensor localization. Chapter 3 then explored an efficient 

coordination architecture employing exponential sliding mode for the control algorithm 

architecture therefore enabling a group of robots to move in formation to their desired target 

positions.  

In this chapter we explore the robustness of the system against noise and loss of signal to the 

individual robots, while looking at ways to improve the velocity of the robots in the MMR 

group to speedily reach their target locations. We now review the success of the algorithm 

controller described in chapter 2 as being a suitable model for creating a more efficient 

feedback controller. This controller must now be modified to work with multiple robots and 

utilizes the Lyapunov function in a two level architecture employing nonlinear and PID 

controllers which enable the robots travel in formation along predefined trajectories. The 

high level feedback controller uses the Lyapunov function to coordinate the speed and 

movement of the robot group and the low level PID controller adjusts the speed of the left 

and right front wheel motors.  

This design creates an elegant way of employing a single system to convert the formation 

control problem into a stabilization problem, and therefore bypasses the difficulty when 

using constrained motion control involving multiple systems. However, for this design to be 

functional, the issues related to the control of trajectory tracking need to be individually 

solved for each mobile robot by allowing them access to local measurements of the 

environment including the positions of the other robots. However, as each robot in the group 
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has access to their individual localization data from their posture sensors, this information 

can shared amongst all the robots allowing for a more efficient individual trajectory tracking 

and coordination.  

By introducing the concept of a virtual target that moves progressively along a desired 

trajectory, new control laws have been designed and implemented to drive the mobile robots. 

By exchanging information among robots, they use these control laws to track the moving 

virtual target while simultaneously adjusting their speed profiles on their individual 

trajectories.  

In this chapter we perform experimental tests in a laboratory environment using different 

robot formations to verify the ability of our designed Lyapunov controller and coordination 

algorithm to operate more efficiently. We also test the robustness of the system under various 

types of signal loss or failure. If there is a temporary loss of coordination due to short 

communication failures or sensor noise on the position measurement, then individual robots 

may lose group formation and divert from their designated trajectories. The results show that 

our algorithm controller will allow for this temporary loss of robot coordination, and that 

once the communication signal is restored and their coordination is resumed, the robots 

continue with the group formation on their predefined trajectories.  

4.1 The Lyapunov Control and Coordination Algorithm 

Figure 4.1 illustrates the block diagram used to control and coordinate a group of mobile 

robots. The low level controller is designed and implemented to adjust the right and left 

wheel velocities, whereas the higher level controller, which is a non-linear controller, is 

designed to follow a generated trajectory and coordinate the robots. Posture sensors are used 

to localize the robots, and a coordination algorithm uses this information to direct the robot 

group along trajectories in a desired formation. 
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Figure 4.1 Infrastructure of multi robot coordination.

For our purposes, we consider a fleet of b û Y mobile robots. To obtain coordination 

between robots, each trajectory is parameterized in term of parameter�6#. Robots keep 

coordination if �6# F 6Ï for all B� Ý. This parameter is defined as 6# F üýfý  , where þ# is signed 

curvilinear abscissa and /# is the length of trajectories. For B F `� º � b� we let �#�{� FG1#� 2#� :#HI and �3#�6#� F G13#� 23#� :3#HI  denote the position of robot B�and its assigned 

(desired) trajectory parameterized in terms of a generalized variable 6# S T , We further let 53#�6#�� 73#�6#� S T denote the desired linear and angular velocities assignment for robot�B�. 
We decompose the motion-control problem into two loops. The first loop is an inner-loop 

kinematic task, which consists of making the robot's velocity �# F G5#� 7#HI  track a desired 

velocity reference �3# F G53#� 73#HI, where 53# and 73# are given in terms of the generalized 

variable 6# time derivative as (Ghommam et al., 2010): 

53# F Ê1N3#�6#�- L 2N3#�6#�-�6�N F �Ø3#6�N (4.1) 

73# F 1N3#�6#��23�K �6#� � 1K3#�6#�2N3#�6#��1N3#�6#�- L 2N3#�6#�- 6�N F 7Í3#6N# (4.2) 

where 13#� 23# denote the desired position for robot�B. The second loop is an outer-loop 

dynamic task, which assigns the reference velocity to the robots so as to achieve a 

convergence to the trajectory.  
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4.2 Coordination Problem 

Consider a group of mobile robots each with a local controller for trajectory tracking. To 

achieve coordination between the elements of the group, a common velocity profile�5f  has to 

be assigned to all the trajectories, so that the robots move along their trajectories while 

holding a desired inter-robot formation pattern. The update for 6# can be seen as a 

coordination state such that coordination exists between two mobile robots B and Ý if and only 

if 6#�{� � 6Ï�{� F W. The key idea in designing the coordination controller is to introduce a 

control variable in form of a correction term 5Ó3#�{�  added to the defined common velocity 

profile, to obtain reference velocities for individual robots that is: 

53#�{� F 5f L 5Ó3#�{� (4.3) 

As the robots always move forward on their desired trajectories, then�5f | W. To solve the 

coordination problem, a trajectory which is called ë�, is needed with trajectory parameter 

of��6�. We suppose that there is a virtual leader with no dynamic equation that moves along 

this trajectory with a desired velocity ��6�N F 5f. We require all the robots to synchronize with 

this virtual leader, which means 6#� B F `� º � > equal to�6�. Therefore, a control law for the 

correction velocity 5Ó3# is derived such that for all B� Ý S (  the coordination error ���w¼@�6# � 6�� ¼ W and the formation velocity error ���w¼@�6N# � 5f� ¼ W.   

The time derivative of the posture errors (2.28), using the relations in (4.1), (4.2) and taking 

into account the nonholonomic constraints  

æ1N¢;;�#� F 5# � �Ø3#uN# Z[��:¢;;�#�� L 2¢;;�#�7#2N¢;;�#� F �Ø3#uN# ����:¢;;�#�� � 1¢;;�#�7#:N¢;;�#� F 7Í3#6N# � 7#
t (4.4) 

The velocity error is defined as uÒN# where  

uÒN# F 6N# � 5< (4.5) 

The kinematic error (4.4) rewrites by substituting div  and diω  by their expressions in (4.1), 
(4.2) as 
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��
�1N¢;;�#� F �5# L �Ø3#5< Z[��:¢;;�#�� L 2¢;;�#�7# L uÒN#�j#2N¢;;�#� F �Ø3#5< ����:¢;;�#�� � 1¢;;�#�7# L uÒN#�-#:N ¢;;�#� F 7Í3#uÒN# � 7# L 7Í3#5<

t (4.6) 

where �j# F �Ø3# Z[��:¢;;�#�� and �-# F �Ø3# ����:¢;;�#��.  By substituting (2.30) and (2.31) in 

the error of (4.6), we get 

]1N¢;;�#�2N¢;;�#�:N ¢;;�#�^ F �		

 �y²#1¢;;�#� L 2¢;;�#��7Í3#5< L �Ø3#5<�y³#2¢;;�#� L y´# ����:¢;;�#���� L uÒN#�j#�Ø3#5< ����:¢;;�#�� � 1¢;;�#��7Í3#5< L �Ø3#5<�y³2¢;;�#� L y´# ����:¢;;�#���� L uÒN#�-#��Ø3#5<�y³2¢;;�#� L y´# ����:¢;;�#��� L 7Í3#uÒN# ���



(4.7) 

Let the candidate Lyapunov function be defined as 

x# F Ỳ �1¢;;�#�- L 2¢;;�#�- � L ` � Z[��:¢;;�#��y³# (4.8)

Differentiating the relation (4.8) along the solutions of (4.7), we get  

xN# F �y²#1¢;;�#�- � y´#y³# �Ø3#5< ���-�:¢;;�#�� L �# uÒN# (4.9)

where �# F 1¢;;�#��j#+2¢;;�#��-# L ����´����ý��Þ�ý 7Í3#�. 

4.3 Coordination Solution 

The coordination problem is solved as follows:  

Considering the real situation, where uÒN# is not zero. We need to find a coordinating controller 

that assures the synchronization of the trajectory parameters with the virtual trajectory 

parameter�6�. Let the coordinating controller be defined like (Hong, Hu et Ao, 2006) 

uN# F 5f � � ]èé#Ï�6# � 6Ï� L �#�6# � 6��#ñÏ ^ L �# (4.10)
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�N# F �Ë� ]èé#Ï�6# � 6Ï� L �#�6# � 6��#ñÏ ^ (4.11)

where �# denotes the non-zero connection between robot B�with the center of the virtual 

structure. We suppose that the center of the virtual structure moves along the desired 

trajectory 
0

Ω  with an assigned dynamic 6N� F 5f�. Define 6� F G6j� 6-� º � 6UHI � 6�` and � F G�j� �-� º � �UHI. Equations (4.10) and (4.11) in vector form can be written as 

6N F 5f` � ��/ L P�6 L �P6�` L � (4.12)

�N=�Ë��/ L P�6 L Ë�P6�` (4.13) 

where ` F G`HUVj and P is the diagonal matrix whose Bw¹ diagonal element is��#�. Using the 

fact that�/` F W, equations (4.12) and (4.13) can be written in linear matrix form as: 

½6�N�N ¾ F ½���/ L P� (�Ë�/ L P� W¾�½6��¾ (4.14)

  
Theorem 4.1: Assume that the graph that captures the communication topology between the 

n  mobile robots is connected and then there exists constants * and  Ë such that the 

coordinated controller (4.10) and (4.11) yields the exponential convergence of ���w¼@�6# �6�� ¼ W��� ���w¼@�6N# � 5f� ¼ W. 

Proof: To show that the state 1 F �6�� ��I of the linear system (4.14) is exponentially stable, 

a Lyapunov function x F CI�1  for this system is constructed where the matrix � is a 

positive definite matrix and can be chosen as in (Hong, Hu et Ao, 2006) as follows  

� F ½ ( �Ë(�Ë( ( ¾ (4.15)

The time derivative of the Lyapunov function V  along the solutions of (4.12) and (4.13) is 

xN F �1I ½Y��` � Ë-�� �(�( YË(¾ 1 (4.16)

where�? F / L P. By Lemma 3 of (Hong, Hu et Ao, 2006), the matrix / L P is positive 

definite as we assume that the graph that captures the communication topology is connected, 
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then for the matrix � to be positive definite we select * | j���jo�������� with R.¤²�is the 

maximum eigenvalue of�?. It follows, that there is a constant �  such that xN �1� µ �Y�x�1�
or equivalently 5�1� µ 5�1�W��so- �wowð� which implies that 1�{� µ 91�{��so �wowð� and 

finally ����w¼@�6# � 6�� ¼ W and  ���w¼@�6N# � 5f� ¼ W. 

4.4 Interconnection of the Trajectory Tracking Subsystem and the Coordination 
Subsystem 

Now the objectives that we originally defined are satisfied, if we consider that the trajectory 

tracking and the coordination are two separated subsystems that have to be dealt with 

independently. However this is not the case, as it can be seen in equations (4.7) and (4.9). We 

can regard equation (4.7) as a nonlinear system that can be written as 

·N# F ª�·#� L +�·#� uÒN#) (4.17)

with the features that the nominal system ·N# F ª�·#��and its solutions are asymptotically 

stable and the perturbing term + õ·#� uÒN#÷�linearly dependent of uÒN# which exponentially 

vanishes to zero. We will need a lemma to prove that the overall system converges to zero as 

time goes to infinity. 

Lemma 4.1: Suppose that there exists a Lyapunov function for the nominal system ·N# Fª�·#�, satisfying the following conditions 

Condition 1:  Mj»·#»- µ x# µ M-»·#»-       

Condition 2: !Ô"ýÔ#ý! µ Mø»·#»      

Condition 3: !Ô"ýÔ#ý �ª�·#�! µ �M�»·#»-
and the perturbing term satisfies the exponential growth condition 

Condition 4: !+�·#� uÒN#��! µ M$»·#»so �wowð�
Then the solution ·�{� asymptotically converges to zero as time goes to infinity. 
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Proof: The time derivative of V along the solutions of (4.16) satisfies 

x�N F %xN#%·# �ª�·#� L %xN#%·# �+ õ·#� uÒN#÷ µ �M�x# L M$ MøMj x#so �wowð� µ ��M� � M$ MøMj so �wowð�� x# (4.18)

Consider the differential equation: 

ÌN F � �M� � M$ MøMj so �wowð�� Ì (4.19)

Solution of (4.19) can be given as: 

Ì�{� F Ì�{��so)&�wowð�s�)' )ø�)()�jo¢*)�+*+ð����
(4.20)

Now apply the comparison lemma yields  

x#�{� µ x#�{£�so)&�wowð�s�)' )ø�)()�jo¢*)�+*+ð��� (4.21)

This implies that there exists a positive constants M, and M-  such that 

·�{� µ M,·�{��so).�wowð� (4.22)

which completes the proof. 

All we need to do is to verify conditions 1-4 to our Lyapunov function given in equation 

(4.8) in the section. For condition 1, using the fact that �` � Z[�:#� µ �:#��and the fact that 

we restrict :# to vary in the range of õ� /- � /-�÷�we can easily find that�
%Bb 0W��� jÞ�ý1 »·#»- µ x# µ %81 0W��� jÞ�ý1 »·#»-. For condition 2 we again use the property 

that ����:#� µ �:#�  , then !Ô"ýÔ#ý! µ «Y L jÞ�ý� »·#»�. Condition 3 is easily verified for�
M� F %81 0`� y²#� Þ2ýÞ�ý1� . For condition 4, the term + õ·#� uÒN#÷ F �uÒN#�, since uÒN#�is exponentially 

convergent this implies that !+ õ·#� uÒN#÷! µ %81 05Ø3#� 0ÍíýÞ�ý1 »·#»so �wowð�. All conditions are 

satisfied. 
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4.5 Experimental Tests 

To illustrate the performance of the proposed coordination and control scheme, some tests 

are performed using three mobile robots. The purpose of the experiments is to demonstrate 

the stability and the performance characteristics inferred from the theoretical development. 

Figure 4.3 shows the EtsRos used in the experimental tests. 

Figure 4.2 EtsRos. 

If we assume robot 1 is allowed to communicate with robot 2 and 3 according to the graph of 

Figure 4.2, then we can find Laplacian matrix as follow,�/ F X Y �` �`�` ` W�` W ` \

   
                                              

Figure 4.3 Robots communication topology.

In this section, we discuss the results of symmetric and asymmetric coordinated trajectory 

tracking missions involving three EtsRo mobile robots. In the first test, circle trajectories 

which are concentric and have different radius are considered. In this scenario, robots are 

placed on a common vertical line with the initial position of: 
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G1j�{��� 2j�{��� :j�{��HI F GW� ���WHI� G1-�{��� 2-�{��� :-�{��HI F GW�`�WHI� G1ø�{��� 2ø�{��� :ø�{��HI F GW�`���WHI
and non-linear control gains are considered as:�y²# F `�� �y³# F `�� y´¢# F `. 

Figure 4.4 presents the reference and the actual robots trajectories in first scenario. The 

trajectory tracking errors 1¢;;�#��and 2¢;;�#��are shown in Figure 4.5. These figures show that 

the robots travel along their individual trajectories with different velocities to arrive together 

at the target point and the formation is therefore experimentally successful.  

Figure 4.4 References and real robots’ trajectories.

       
                            (a) 1¢;;�#�                                                                   (b) 2¢;;�#�

Figure 4.5 Trajectory tracking errors.

-2 -1 0 1 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

x (m)

y(
m

)

Robot3

Robot2

Robot1

Direction

0 50 100 150 200-0.1

-0.05

0

0.05

0.1

time(s)

x er
r (m

)

xerr(1)
xerr(2)
xerr(3)

xerr(1)

xerr(2)

xerr(3)

0 50 100 150 200
-0.05

0

0.05

time(s)

y er
r(m

)

yerr(1)
yerr(2)
yerr(3)

yerr(3)

yerr(1)

yerr(2)



71 

The linear and angular velocities are plotted in Figure 4.6. As can be seen, the third robot 

moves the fastest because of the largest circumference trajectory while the first robot has the 

slowest velocity due to the smallest circumference trajectory. The robots will adjust their 

speed along their individual trajectories to achieve an overall group coordination. Figure 4.7 

represents coordination state error. These errors reduce to zero, as is expected by the theory 

explained for all the robots.  

    

                           (a) Linear                                                               (b) Angular 

Figure 4.6 Velocity of the robots. 

Figure 4.7 Coordination state error�34 � 35.
In the second test, the robots are placed on a common vertical line, but the trajectories are 

asymmetric and interconnect in three different points and have different lengths. In this 
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G1j�{��� 2j�{��� :j�{��HI F GW�Y�WHI� G1-�{��� 2-�{��� :-�{��HI F GW�`�WHI� G1ø�{��� 2ø�{��� :ø�{��HI F GW� �Y�WHI
Figure 4.8 presents the reference and the actual robots trajectories in second scenario. The 

trajectory tracking errors 1¢;;�#��and 2¢;;�#��are shown in Figure 4.9. These figures show that 

the robots travel along their individual trajectories and the formation is experimentally 

successful. 

Figure 4.8 References and real robots’ trajectories. 

The linear and angular velocities are plotted in Figure 4.10. As can be seen in these figures, 

the robots have different shapes of velocities because they move on different trajectories and 

so they will adjust their velocities to reach the target point in the same time duration. 

    

                                (a) 1¢;;�#�                                                       (b) 2¢;;�#�
                                       Figure 4.9 Trajectory tracking errors. 
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                       (a) Linear                                                                    (b) Angular

                                
Figure 4.10 Velocities of robots. 

Figure 4.11 depicts the coordination state error which reduces to zero as predicted by the 

theory. 

Figure 4.11 Coordination state error�34 � 35�. 
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and the real trajectories of the robots and the results of the errors that we impose upon the 

system. These are a 30 sec position measurement for robot 1, and errors of a 10 sec 

communication failure for robot 2, and a 10 sec delay for robot 3. This figure shows that 

regardless of these short time communication problems or noise on position measurement, 

the robots still keep coordination and follow their desired trajectories. 

Figure 4.12 References and real robots’ trajectories with position 
measurement noise and temporary communication failures or delays.

The trajectory tracking errors 1¢;;�#� and 2¢;;�#��are shown in Figure 4.13. As can be seen in 

Figure 4.12(a), when robot 2 has a failure in communication there is a visible error on �
�����
and it loses its desired position. When the communication resumes, the coordination 

algorithm forces robot 2 to follow its desired trajectory and the trajectory following error 

reduces to zero. 

           
                           (a) 1¢;;�#�                                                            (b) 2¢;;�#�

Figure 4.13 Trajectory tracking errors. 

-1 0 1 2 3 4 5 6 7 8 9 10
-2

-1

0

1

2

x(m)

y(
m

)

Robot1

Robot2

Robot3

0 50 100 150 200-0.1

0

0.1

0.2

0.3

0.4

time(s)

x 
er

r(m
)

xerr(1)
xerr(2)
xerr(3)

xerr(2)

xerr(1) xerr(3)
0 50 100 150 200-0.1

-0.05

0

0.05

time(s)

y er
r(m

)

yerr(1)
yerr(2)
yerr(3)

yerr(3)

yerr(1)
yerr(2)



75 

The linear and angular velocities are plotted in Figure 4.14. As can be seen in these figures, 

when there is a communication failure, the linear and angular velocities of the robot reduces 

to zero and the robot will stop moving. However, when there is a communication delay, the 

robot will continue with the same angular and linear velocities as it had before the delay. 

Therefore a communication failure will stop a robot from moving, but if there is only a 

communication delay, the robot will still continue to move until the communication is 

restored. As well, these figures show that the presence of noise on the position measurement 

of robot 1 also creates noise on the linear and angular velocities of the robot. 

      

                       (a) Linear                                                                (b) Angular  

Figure 4.14 Velocities of the robots.
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shows this example with an extended communication failure for robots 2 and a delay of  YW�6sM for robot 3. 

Figure 4.15 Coordination state error�34 � 35�.

Figure 4.16 References and real robots’ trajectories 
with extended communication failures or delays.
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Figure 4.17 presents the coordination state error that exists in these tests. This figure shows 

that with the existence of a temporary loss of coordination for �YW�6sM due to short 

communication failures or delays, the robots can start losing formation.  

Figure 4.17 Coordination state error�34 � 35. ���
4.6 Conclusion 

In this chapter, a control algorithm and efficient coordination architecture is proposed for 

a group of mobile robots enabling them to work both individually and in meaningful robot 

formations.  The developed approach uses a combination of Lyapunov technique with graph 

theory embedded in a virtual structure. A two level controller is designed incorporating a low 

level PID controller for the right and left motors, and a high level controller to coordinate the 

speed and movement of the robot group. The high level controller also utilizes a feedback 

controller employing the Lyapunov function. The communication is developed with Zigbee 

technologies enabling communication with multiple mobile robots. The experimental results 

on a multi-robot platform show the effectiveness of the theoretical result and the performance 

of the system against short term communication loss or failure, as well as position 

measurement errors. 
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CHAPTER 5 

HIERARCHICAL FUZZY COORDINATION CONTROL FOR A TEAM OF 
MOBILE ROBOTS 

The algorithms designed to create cooperation between multiple mobile robots often use 

complex mathematical methods which make them difficult to implement. In this chapter, we 

present an algorithm that coordinates a group of mobile robots utilizing ‘fuzzy logic’ to 

simplify the computations used by the algorithm controller. This proposed method has 

distinct advantages in MMR modeling, where multiple robots are moving along designated 

trajectories and simultaneously being directed to perform rapid velocity and direction angle 

changes.  

Artificial intelligence research is well documented for the trajectory following of a mobile 

robot with the evaluation of a neural network approach as well as fuzzy logic controllers in 

“known” and “unknown” environments (Antonelli, Stefano et Fusco, 2007; Chang et Chen, 

2000; Geracioti et al., 1989; Li, Chang et Tong, 2004; Maalouf, Saad et Saliah, 2006). Some 

of this work uses combinations of neural network and fuzzy, termed ‘neurofuzzy’ 

applications (Mbede, Huang et Wang, 2003; Zhu et Yang, 2007). Though single robots have 

been the primary reference for much of the artificial intelligence research, these same 

methods can also be used to solve the cooperative problems for a group of multiple mobile 

robots. The cooperation between robots working as a group is a key issue to be solved where 

the robots can construct various formations while traveling on separate trajectories that can 

have differing lengths.  

In this chapter, the fuzzy model used for the algorithm controller consists of a two level 

hierarchical structure, where ‘fuzzy logic’ is the prime controller and performs the tasks of 

trajectory following, localization and group cooperation (Mehrjerdi, Saad et Ghommam, 

2010c; Mehrjerdi et al., 2010b) . The direction angle of each robot is determined by the 

desired trajectories and the formations of the whole MMR group. The proposed cooperative 

method, derived from the use of fuzzy logic and a low level PID controller, empowers the 
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robots to move, follow and coordinate their velocity and direction on trajectories that may 

have differing trajectory lengths.  

5.1 Modeling of the Mobile Robot 

Figure 5.1 shows the general kinematic model of mobile robots and the discretized 

trajectories. In this figure, B F `�º � * represents the number of individual mobile robots and �# F G1#� 2#� :#HI denotes the position and orientation vector of the Bw¹�robot of the group.  ��3#�U� F ¶13#�U�� 23#�U�� ·3#�U�¸Irepresents the coordination of  bw¹�sample point on the Bw¹
trajectory where�b F W�º � ª. The trajectory is described by a set of discrete node positions �3#��� to �3#�¨� linked to each other starting from the initial position to the final desired 

position. �3#�U��is the�bw¹� discretized sample on the trajectory.  

Figure 5.1 Kinematic model of the mobile robots.  

The Linear and angular velocities of mobile robots are subject to following bounds: 

�5#�{�� µ 5#�.¤² �7�{�� µ 7#�.¤²�5N#�{�� µ 5N#�.¤² �7N �{�� µ 7N #�.¤² (5.1)

In discrete time, equation (5.2) can be explained as follows: 
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±1#�{UÃj� F 1#�{U� L �5#�{U� Z[�:#�{U�2#�{UÃj� F 2#�{U� L �5#�{U� ��� :#�{U�:#�{UÃj� F :#�{U� L �:#�{U� t (5.2)

where ����� {U are the sampling time and the expressions of time in bw¹ sample point 

respectively. The desired robot position and orientation in sample time {U can be defined as: 

�#�{U� F G1#�{U�� 2#�{U�� :#�{U�HI (5.3) 

5.2 Optimized Neuro-Fuzzy Coordination for Multiple Mobile Robots 

Linear velocity 5#�{� and the orientation angle�6#�{� with respect to { can be calculated as: 

5#�{� F «1N#-�{� L 2N#-�{� (5.4) 

6#�{� F ���oj�2N#�{�� 1N#�{�� (5.5) 

and angular velocity 7#�{��is calculated by deriving of orientation with respect to { as: 

7���� F `` L �	N ���� �N ����8 �- 	K �����N ���� � �K ����	N �����N �-��� (5.6)

Figure 5.2 shows the general model of the system which is used to coordinate multiple 

mobile robots. Posture sensors mounted on motors of the leader robot can be used to localize 

it so that its position can be estimated. Trajectory tracking and coordination between leader 

and follower robots will be given by a neuro-fuzzy algorithm.  

Figure 5.2 Kinematic model for mobile robot.
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5.2.1 Generation of Training Data 

In this section the generation of training data which are based on the position and trajectory 

of the leader robot and the initial positions of followers is explained in detail. In order to plan 

trajectory following and coordination for a group of mobile robots, the principal idea is to 

construct a mapping between the posture of the leader robot, and the linear and angular 

velocities of the leader and follower robots. We consider sine trajectories which show a 

smooth and feasible trajectory that is suitable for the robots to easily follow. The first step is 

the generation of an appropriate training data set. The input-output data pairs have been 

obtained by adopting a sine wave trajectory and discretizing it to 400 sampling points. The 

offline generation of the adopted trajectory is based on knowing trajectory and the initial 

position of the robots. The training data set has been generated for the five different 

formations corresponding to the position of the leader and the follower mobile robots. These 

five formations can be considered as follows:  

1) The leader robot is very far back in the group compared to the follower robots. In this    

     situation the leader robot moves very fast to reach the followers, as the follower robots   

    move with their desired velocity.  

2) The leader robot is a large distance behind the follower robots, and in this situation the  

    leader robot moves fast to reach the follower robots.  

3) The leader robot is in the same position (x-reference) as the follower robots, and in this  

    situation the leader robot moves at the same velocity as the followers on their desired  

    trajectory.   

4) The leader robot is a large distance ahead of the follower robots, and in this situation the  

    leader robot stops and the follower robots move until they catch the leader.  

5) The leader robot is very far ahead of the follower robots, and again in this situation, the  

    leader robot stops and the follower robots move until they catch the leader.  

Figure 5.3 shows these different formations which are considered for training. In this figure 9j�����9- denote the follower robots. Coordination between the leader and follower robots is 

considered in this training procedure.  
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Figure 5.3 Different formations of mobile robots. 

Figure 5.4 shows the position of the leader robot in 1� 2�8b$�6�coordination considering the 

training with five different formations. Figures 5.5(a) and 5.5(b) show the obtained linear and 

angular velocities used for the leader and follower robots in training. 

Figure 5.4 Position of the leader robot in training.

           

                  (a) Leader robot                                                   (b) Follower robots 

Figure 5.5 Linear and angular velocity of the robots. 
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Each formation in training has been sampled to 400 points and five different formations are 

considered. Consequently the training data is a matrix with dimension of YWWW V �  as an 

input and four matrices which dimension of each is�YWWW V ` as outputs. The four output 

data are the linear and angular velocities for the leader and followers robots. We consider all 

follower robots as a unit, and then we imply the same linear and angular velocities to them.  

The subtractive clustering with Sugeno-type is made to train these input and output sets.

5.2.2 Neuro-Fuzzy Controller Design 

An effective solution to the online coordination and trajectory tracking for multiple mobile 

robots relies on the fuzzy logic based approach. The position of leader robot gives all 

necessary information to follow a desired trajectory and to establish coordination between the 

robots. Fuzzy networks can produce the linear and angular velocities for the leader and 

follower robots which result in the correct steering for the robots. We have used the 

following type of first order Sugeno rules which are: 

e#: (9�1;�B6��Qj#�8b$�2;�B6�Q-#�8b$�6;�B6�Qø#{¦sb5;# F ��# L �j# V 1< L �-# V 2< L �ø# V 6;7;# F ��# L �j# V 1< L �-# V 2< L �ø# V 6;5¨# F e�# L ej# V 1< L e-# V 2< L eø# V 6;7;# F u�# L uj# V 1< L u-# V 2< L uø# V 6;ªa4�B F `�ê �J

(5.7)

where J is the number of rules. The inputs to the fuzzy network controller are 1<� 2<�8b$�6<
which present the position of leader robot in each point. These positions are obtained by the 

incremental encoder sensors mounted on the right and left motors on the wheels of leader 

robot. 5<#� 7<#�8b$�5¨#� 7¨# denote outputs of fuzzy networks which are the linear and angular 

velocities for leader and follower mobile robots. These fuzzy controllers provide the 

trajectory tracking and formation to the robots. Depending on the position of leader robot, the 

linear and angler velocities��5<� 7<��are calculated and sent to the leader robot, while at the 
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same time the linear and angular velocities ��5¨� 7¨�� are calculated and sent as a command to 

the follower robots. Four different 3-input 1-output training data has been prepared (from the 

different formations). Fuzzy rule antecedent membership functions have been identified by 

using the subtractive clustering algorithm with enumerative parametric search. The 

consequent parameters of the rules are optimized by least square estimation. To find the 

appropriate number of rules and minimum least square error (LSE), an optimization is done 

with different number of rules and the related LSE are obtained.  Figures 5.6(a) and 5.6(b) 

show the result obtained for these four different fuzzy training sets. These figures present the 

error of fuzzy clustering in reference to the number of rules for the leader and the follower 

robots. 

   

             (a) Leader robot                                                    (b) Follower robots 

Figure 5.6 Training data errors and rule numbers.

In view of the number of rules and LSE, eight rule numbers are considered for all four fuzzy 

training networks. Table 5.1 shows the fuzzy clustering data for these fuzzy networks. These 

data consist of Radius, Squash factor, LSE, accept and reject ratios. 

The structure of the fuzzy inference system with 8 rules is depicted in figure 5.7. In this 

figure, the inputs 1<� 2<�8b$�6< are measured by the position of the leader robot and the 

outputs are the linear and angular velocities.   
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Table 5.1 Fuzzy clustering data

Fuzzy Network 1 Fuzzy Network 2 Fuzzy Network 3 Fuzzy Network 4 

Rule Number 8 8 8 8 

Trading Data Error 7.997e-003 2.011e-003 8.287e-004 2.757e-003 

Radius .9 .9 .5 .9 

Squash factor .5 .5 .1 .5 

Accept ratio .5 .5 .9 .5 

Reject ratio .1 .1 .7 .3 

Figure 5.7 Fuzzy inference structure. 

Figures 5.8(a) and 5.8(b) show the result obtained for output velocities after training is done. 

In this test, the initial position of the leader robot is considered as G1j�{��� 2j�{��� 6j�{��HI FG�`�W���WHI and the initial position of the follower robots are ¶1¨j�{��� 2̈ j�{��� 6¨j�{��¸I F GW�`���WHI
and ¶1¨-�{��� 2̈ -�{��� 6¨-�{��¸I F GW� �W���WHI. In this section we explain an adaptive neuro-fuzzy 

inference system (ANFIS) which constructs a fuzzy inference system (FIS) whose 

membership function parameters are tuned (adjusted) using either a backpropagation 

algorithm alone or in combination with a least squares type of method. The parameters 

associated with the membership functions changes through the learning process. To 

overcome overfitting, we consider the training data set by model. For validation the model, 

we consider a set of inputs and outputs which are sufficiently distinct from the training data. 

System sug31: 3 inputs, 
1 outputs, 8 rules      
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                   (a) Leader robot                                            (b) Follower robots 

Figure 5.8 Linear and angular velocities after subtractive clustering.

In principle, the model error for the checking data set tends to decrease as the training takes 

place up to the point that overfitting begins, and then the model error for the checking data 

suddenly increases. Figures 5.9(a) and 5.9(b) show the set of inputs and outputs used to 

validate ANFIS. A different formation from training is considered for checking validation. In 

this situation the initial position of leader robot is considered as G1j�{��� 2j�{��� 6j�{��HI FG�`�W���WHI and the initial position of follower robots are ¶1¨j�{��� 2̈ j�{��� 6¨j�{��¸I F GW�`���WHI
and�¶1¨-�{��� 2̈ -�{��� 6¨-�{��¸I F GW� �W���WHI.  

        

           (a) Input data <=Æ=� >=                          (b) Output data�?=�@=� � ?A� @A  
Figure 5.9  Checking data. 
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The membership functions of the input variables identified by ANFIS are shown in figure 

(5.10).  

Figure 5.10  Antecedent membership functions 
for the derived fuzzy model (fuzzy network 1). 

The premise parameters which are identified by the cluster center M and the standard 

deviations B of the extracted Gaussian membership function parameters are shown in Tables 

5.2 and 5.3 for all four fuzzy networks.  

Table 5.2 Antecedent parameters (leader robot)

�

����� �	
��
��1 

��Linear��	����
���

�

����� �	
��
��2 

�Angular��	����
��

Input 1 [C� D] Input 2 [C� D] Input 3 [C� D] Input 1 [C� D] Input 2 [C� D] Input 3 [C� D]

Rule 1 [3.159   5.006] [0.4799 0.2307] [0.3132    -0.01601 [3.201    4.999] [0.3777    0.2068] [0.2781    0.08375]

Rule 2 [3.177   4.703 ] [0.3243    -0.01734] [0.2728    0.4576] [3.197    4.666] [0.3385    -0.009894] [0.234      0.1455]

Rule 3 [3.251   1.979 ] [0.2905    -0.1226] [0.2502    0.2665] [3.23      1.992] [0.3569    -0.2098] [0.234      0.1455]

Rule 4 [3.195   2.906] [0.335     -0.4667] [0.2654    -0.08668] [3.19      5.451] [0.3604    0.3317] [0.2451    0.3057]

Rule 5 [3.172   5.569] [0.3231    0.3682] [0.2276    0.2465] [3.197    3.704] [0.3419    -0.3881] [0.3357    0.2373]

Rule 6 [3.194   3.825] [0.2902    -0.3674] [0.298    0.2993] [3.195    2.731] [0.2556    -0.3129] [0.3605    -0.2413]

Rule 7 [3.201   1.852] [0.2909    -0.1657] [0.2697    -0.4027] [3.19      1.913] [0.3058    -0.214 ] [0.342      -0.3712]

Rule 8 [3.184   0.5505] [0.3902    0.4227] [0.2462    -0.3412] [3.182    0.3796] [0.3895    0.3296] [0.1725    -0.06248]
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Table 5.3 Antecedent parameters (follower robots)

�

����� �	
��
��1 

�Linear��	����
���

�

����� �	
��
��2 

�Angular��	����
��

Input 1 [C� D] Input 2 [C� D] Input 3 [C� D] Input 1 [C� D] Input 2 [C� D] Input 3 [C� D] 

Rule 1 [3.159   5.006] [0.4799 0.2307] [0.3132    -0.01601 [3.201    4.999] [0.3777    0.2068] [0.2781    0.08375]

Rule 2 [3.177   4.703 ] [0.3243    -0.01734] [0.2728    0.4576] [3.197    4.666] [0.3385    -0.009894] [0.234      0.1455]

Rule 3 [3.251   1.979 ] [0.2905    -0.1226] [0.2502    0.2665] [3.23      1.992] [0.3569    -0.2098] [0.234      0.1455]

Rule 4 [3.195   2.906] [0.335      -0.4667] [0.2654    -0.08668] [3.19      5.451] [0.3604    0.3317] [0.2451    0.3057]

Rule 5 [3.172   5.569] [0.3231    0.3682] [0.2276    0.2465] [3.197    3.704] [0.3419    -0.3881] [0.3357    0.2373]

Rule 6 [3.194   3.825] [0.2902    -0.3674] [0.298    0.2993] [3.195    2.731] [0.2556    -0.3129] [0.3605    -0.2413]

Rule 7 [3.201   1.852] [0.2909    -0.1657] [0.2697    -0.4027] [3.19      1.913] [0.3058    -0.214 ] [0.342      -0.3712]

Rule 8 [3.184   0.5505] [0.3902    0.4227] [0.2462    -0.3412] [3.182    0.3796] [0.3895    0.3296] [0.1725    -0.06248] 

Table 5.4 Consequent parameters (leader robot)

�

����� �	
��
��1 

�	��	
�����
��Linear��	����
���

�

����� �	
��
��2 

�	��	
�����
��������
��	����
��

Á=ú ÁEú ÁFú Á�ú G=ú GEú GFú G�ú
Rule 1 ����� !� ����"�# ����$$" ���%%� ���$"#& �!��'% � �#�& "�$ !

Rule 2 ��'�$$ ����$$$% ���%%&& ���"�& ��$$� ��# ! $�#'! �"� '!

Rule 3 ����"!� ���$ ��!�# 1.13 ���#$ $ � �"�" %�$�% ����'

Rule 4 ����&&' ��$"�" ��"%'! 0.53 ���� "' �"��%% �"�'�! '�&�'

Rule 5 ���&"" ���" %! $�$ ' $�'"� ��'% $ $�#�! ��& & ���$#%

Rule 6 �����#& ���$�" �����# ��%& $ ��$'# "�'�& "�$�% 4.1 

Rule 7 ��'% �$�#'$ ����$� � �" % ���$'�% ��&�!' �"� $� �$�!$"

Rule 8 ����&�' ����"�!$ ���!�'$ �����#" ����' $" ������ ����&# ����$'�$
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Table 5.5 Consequent parameters (follower robots)

�

����� �	
��
��3 

�	��	
�����
��Linear��	����
���

�

����� �	
��
���

�	��	
�����
��������
��	����
���

Á=ú ÁEú ÁFú Á�ú G=ú GEú GFú G�ú
Rule 1 1.504 32.85 34.58 -20.4 -0.01683 -6.836 -1.102 3.607 

Rule 2 1.57 -8.551 -2.619 -15.97 0.04864 -0.4284 0.0635 0.3286 

Rule 3 5.219 62.63 -27.95 5.955 -0.5693 -6.271 2.212 -2.352 

Rule 4 -0.573 3.701 2.056 8.091 -0.329 0.7379 3.19 2.722 

Rule 5 0.6148 7.805 15.09 -19.11 -0.7134 -1.494 3.19 -0.6362 

Rule 6 -2.372 -2.137 4.933 16.81 1.704 3.518 2.952 -0.3323

Rule 7 4.199 9.684 8.577 0.4569 -1.407 -2.424 -2.939 0.3328 

Rule 8 0.3871 -5.17 2.612 5.771 0.04004 -0.3503 0.2926 0.3574 

Figure 5.11 shows a general model for the adaptive neuro-fuzzy used for the modeling of our 

system. The inputs are the position of the leader robot and the outputs are the velocities of the 

leader and follower robots. 

Figure 5.11 Adaptive neuro-fuzzy model  (fuzzy network 1). 
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Figures 5.12(a) and 5.12(b) show the result obtained for output velocities after our input-

output data sets are trained by ANFIS. In this situation the initial position of the leader robot 

is considered asG1j�{��� 2j�{��� 6j�{��HI F G�`�W���WHI and the initial position of the follower 

robots are ¶1¨j�{��� 2̈ j�{��� 6¨j�{��¸I F GW�`���WHI and ¶1¨-�{��� 2̈ -�{��� 6¨-�{��¸I F GW� �W���WHI. 

     

               (a) Leader robot                                                (b) Follower robots  

Figure 5.12 Linear and angular velocities after ANFIS training. 

Figure 5.13(a) and 5.13(b) show the LSE’s obtained by checking the input-output set and 

ANFIS training with 60 epochs. 

    

                 (a) Leader Robot                                                     (b) Follower robots 

Figure 5.13 Checking error versus epoch number. 
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5.2.3 Experimental Results 

Figure 5.14 shows a general view of the experimental setup and Figure 5.15 shows the 

leader-followers architecture for MMR.   

Figure 5.14 The general view 
 of experimental setup. 

, ,m m mx y θ

, ,d d dx y θ dV

dω

dRV

dLV

mRV

mLV

mV

mω

Figure 5.15 Intelligent coordination and trajectory tracking 
architecture for multiple mobile robots. 

The Cartesian coordination of the mobile robots can be obtained as follows:  

1 F 5 Z[��6�� � 2 F 5 ����6�� � 6 F v7�${ (5.8) 

In the first experimental test, the leader robot is placed far back behind the follower robots 

with the initial position of�¶1`�{W�� 2`�{W�� 6`�{W�¸� F G���W���WH�.
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The initial position of the follower robots are ¶1¨j�{��� 2̈ j�{��� 6¨j�{��¸I F GW�`���WHI and 

¶1¨-�{��� 2̈ -�{��� 6¨-�{��¸I F GW� �W���WHI accordingly. Figure 5.16 shows the results obtained 

in�{¦s�1� 2 coordinates which presents the position of the mobile robot in trajectory. As we 

can see in this figure, the leader moves fast to catch the follower robots as it sends commands 

to the followers to move at a slower velocity. As soon as the leader robot catches the 

followers, all the robots continue to move on the sine trajectory with the same velocity. 

Figure 5.16 Coordination and trajectory 
 tracking for multiple robots. 

Figures 5.17(a) and 5.17(b) show the reference and measured linear and angular velocities 

obtained by the fuzzy networks and given to the leader and follower robots.  

                     (a) Leader robot                                                  (b) Follower robots  

Figure 5.17 Linear and Angular velocities for robots. 
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In the second experimental test, the leader robot is placed far ahead of the follower robots 

with an initial position of��¶1`�{W�� 2`�{W�� 6`�{W�¸� F G�� �W���WH� and the initial position of 

follower robots are: ¶1¨j�{��� 2̈ j�{��� 6¨j�{��¸I F GW�`���WHI and ¶1¨-�{��� 2̈ -�{��� 6¨-�{��¸I FGW� �W���WHI�. Figure 5.18 shows the results obtained in the 1� 2�coordinates. As we can see in 

this figure, the leader robot stops and sends commands to the follower robots to move until 

all the robots arrive at the same point (x-reference). As soon as the follower robots catch the 

leader, all the robots continue to move on the sine trajectory. 

Figure 5.18 Coordination and trajectory 
tracking for multiple robots. 

Figures 5.19(a) and 5.19(b) illustrate the reference and measured linear and angular velocities 

obtained by the fuzzy networks and given to the leader and follower robots.  

    
                  (a) Leader robot                                                  (b) Follower robots     

Figure 5.19 Linear and Angular velocities for the robots. 
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5.3 Hierarchical Fuzzy Cooperative Control and Trajectory Tracking for a Team 
of Mobile Robots 

Figure 5.20 illustrates the block diagram used to control and synchronize a group of mobile 

robots. There are two Hierarchical levels of controller being low and high respectively. The 

high level controller, which is a fuzzy controller, is designed to coordinate the group 

formation as well as instructing the robots to follow their generated trajectories. Figure 5.21 

shows the fuzzy system structure with the desired inputs and outputs. 

              
      

Figure 5.20 Infrastructure of multi mobile control and cooperation. 

  

                                               Figure 5.21 Fuzzy control structure. 

The inputs of the fuzzy controller are�$&'�#��� 9#�� /#�� Î#�� 1¢;;�#��and�2¢;;�#�� where $&'�#��is the 

distance from the actual position of Bw¹�robot to the next desired position, 9#�is the difference 

between the line joining the current position to the next desired position and the actual 



95 

heading of the robot. /#�is the length of trajectories and Î# denotes the trajectory parameter 

being used to synchronize the individual robot within the group formation.�1¢;;�#��,�2¢;;�#�
and 9# are calculated by the following equations in robot reference as (B. Siciliano et Khatib, 

2008):  

X1¢;;�#�2¢;;�#�:¢;;�#�\ F X Z[�:# 6Bb :# W���� :# Z[�:# WW W `\ X
13# � 1#23# � 2#þ3# � :#\ (5.9)

The output of the fuzzy controller determines the linear and angular velocities of individual 

robots.  

5.3.1 Fuzzy Trajectory Tracking and the Cooperative Controller  

The form of the control law equation for trajectory tracking and cooperation is as follows: 

c5#7#d F ½ªj�$&'�#�� 9#� 1¢;;�#�� 2¢;;�#�� /# � þ#�ª-�$&'�#�� 9#� 1¢;;�#�� 2¢;;�#�� /#� þ#�¾ (5.10)

Rule bases for trajectory tracking and cooperation are shown in Table 5.6. In this table the 

inputs 1, 2 and 3 are $&'�#��� 9# and �1¢;;�#��and outputs 1 and 2 are 5#� 7#�respectively. 

Consider a group of mobile robots each with a local controller for trajectory tracking.  In 

order to have cooperation across the whole robot group, they are required to move along their 

trajectories while maintaining a desired inter-robot formation pattern, as well as reaching 

their final goals at the same time regardless of their trajectory lengths or their initial 

positions. To obtain group cooperation between the robots, each trajectory is parameterized 

in terms of parameter�H�. The robots will keep in cooperation if �H� F H� for all���� I�. 
This parameter is defined as �Î# F �ýfý , where 6#�is signed curvilinear abscissa of sampling 

points �3#�U� along the trajectory. For group cooperation, all trajectories are discretized to the 

same number of sampling points. As the robot group needs to reach their destination at the 

same time, if a trajectory is longer, then the distance between the sampling points will 
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increase, thus forcing the individual robot to move faster in order to complete the same 

number of sampling points within the allocated time. However, if the trajectory length is 

smaller, then the distance between the sampling points will decrease and the robot will move 

slower with respect to the other robots in the group. To improve the cooperation between the 

robots travelling in formation, the following rules are applied when they are ahead or behind 

to their desired trajectory position: 

Table 5.6 Rule base for trajectory tracking

Rule1 
if (input 1 is Very close) and (input 2 is No matter what) and (input3 is Poserr) then (output 1 is Very very slow) 

(output2 is Zero) 

Rule2 
if (input 1 is Close) and (input  2 is No matter what) and ((input 3 is Poserr) then (output 1 is Very slow) (output 2 

is zero) 

Rule3 
if (input 1 is Medium) and (input 2 is No matter what) and (input 3 is Poserr) then (output 1 is Slow) (output 2 is 

Zero) 

Rule4 if (input 1 is Far) and (input 2 is No matter what) and (input 3 is Poserr) then (output 1 is Fast) (output 2 is Zero) 

Rule5 
if (input 1 is Very far) and (input 2 is No matter what) and ((input 3 is Poserr) then (output 1 is Very fast) (output 

2 is Zero) 

Rule6 
if (input 1 is No matter what) and (input 2 is Big negative) and (input 3 is Poserr) then (output 1 is Very very 

slow) (output2 is Big negative) 

Rule7 
if (input 1 is No matter what) and (input 2 is Negative) and (input 3 is Poserr) then (output 1 is V ery very slow) 

(output 2 is Negative) 

Rule8 
if (input 1 is No matter what) and (input 2 is Straight) and ((input3 is Poserr) then (output 1 is Very very slow) 

(output2 is zero) 

Rule9 
if (input 1 is No matter what) and (input 2 is Positive) and ((input 3 is Poserr) then (output 1 is Very very slow) 

(output2 is Positive) 

Rule10 
if (input 1 is No matter what) and (input 2 is Big positive) and ((input 3 is Poserr) then (output 1 is Very very 

slow) (output 2 is Big positive) 

Rule11 
if (input 1 is No matter what) and (input 2 is No matter what) and (input 3 is Negerr) then (output 1 is Zero) 

(output2 is Zero) 
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• If the robot is ahead of the desired trajectory (1¢;;�#� }0), then it will stop until the 

condition Î# F ÎÏ is fulfilled for all robots. 

• If the robot is behind the desired trajectory (1¢;;�#� û W), then the robot will go faster to 

catch the trajectory and the other robots. 

Figure 5.22 and Figure 5.23 show the linear and angular velocities obtained by the 

inputs�$&'�#��� 1¢;;�#�. As can be seen in these figures, if 1¢;;�#� } W then the linear and 

angular velocities will be zero and the robot will stop.   

Figure 5.22 Linear velocity obtained by the 
fuzzy controller and inputs�JKL�4��� <ÇÈÈ�4�.    

Figure 5.23 Angular velocity obtained by the 
fuzzy controller and inputs�M4� <ÇÈÈ�4�.

Figure 5.24 represents the trajectory tracking and the cooperation flow chart algorithm. 
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Figure 5.24 Intelligent flow chart of trajectory 
tracking and cooperation. 

5.3.2 Stability Proof of the Cooperative Algorithm   

To consider the cooperation between the robots, we make use of the virtual structure 

approach. Î�N# will be a corrective signal to ensure the synchronization of the robots along with 

the center of the virtual structure of the rigid formation. The fuzzy system (2.42) considering 

the corrective term uÒN#  is rewritten as follows: 
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CN# F § § �ß�Ï�Q#Ï � P#Ïy#Ï�C#Ï;Ï©j;Þ©j § § �ß�Ï;Ï©j;Þ©j L § § �ß�Ï?#ÏCÑ#Ï;Ï©j;Þ©j§ § �ß�Ï;Ï©j;Þ©j þ�NN (5.11)

where ?#Ï is defined as  

?#Ï F ½�5Ø3# ����9#¢Ð L �2#¢Ð�O� 5Ø3# ����9#¢Ð L �2#¢Ð�O�W W ¾ (5.12)

We define the Lyapunov function for this system as:

x F W��èCÑ#I�#CÑ L �þ# � þ��-U
#©j

(5.13)

The differentiation of this Lyapunov function gives: 

xN F �èCÑ#I�#C�N L �þ# � þ���þÒN# L 7Í#�$&'�#�� � þN� L § § �ß�Ï?#ÏCÑ#Ï;Ï©j;Þ©j§ § �ß�Ï;Ï©j;Þ©j
U
#©j þÒN# (5.14)

If we choose 2 0( )
( ) 0 1( ) ( )(1 )(1 tanh( ))k t t T

i RP i i RP RPd t k e d dω ς ω −= = − −�

where (1) (2) ( ), ,...,
T

RP RP RP RP nd d d d� �= � � , this yields:  

xN F �èCÑ#I�#C�N L § § �ß�Ï?#ÏCÑ#Ï;Ï©j;Þ©j§ § �ß�Ï;Ï©j;Þ©j
U
#©j L �þ# � þ���þÒN# (5.15) 

If we choose: þ�NN F �Ì# § § PQPÖRýÖÕÑýÖ�ÖS(�TS(§ § PQPÖ�ÖS(�TS( L �þ# � þ��� F �Ì#b#�
Then from (5.15) we will have:  

xN F �èCÑ#I�#CÑ# � Ì#b#-U
#©j

(5.16)

which is negative definite. This shows by Barbalet’s lemma that CÑ# ¼ W and  �# ¼ W. It is easy 

to see then that by construction we have�Î# � ÎÏ ¼ W. 
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5.3.3 Experimental Results 

To illustrate the performance of the proposed cooperation and control scheme, some tests are 

performed using different trajectories on three mobile robots. Figure 5.25 shows the 

structural design of the control, trajectory planning, and cooperative behavior for the group 

of mobile robots being used in the experimental tests. 

Figure 5.25 General view of the experimental setup.

In this section, we discuss the results of using different formations of robots. These 

formations are: 

1) where robots travel on trajectories with differing lengths;  

2) where robots travel on trajectories with the same lengths, but the robots are not placed on 

the trajectories.  

In the first test, the trajectories which have different lengths are considered. In this scenario, 

the robots are placed on a common vertical line with the initial position and lengths as: 

G1j�{��� 2j�{��� :j�{��HI F GW�`�WHI� G1-�{��� 2-�{��� :-�{��HI F GW�W�WHI� G1ø�{��� 2ø�{��� :ø�{��HI F GW� �`�WHI/j F ���`�%�� /- F �����%� /ø F ù����%
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   Figure 5.26 shows the reference and the actual robots trajectories in the first scenario. The 

trajectory tracking error 2¢;;�is shown in Figure 5.27. As can be seen in these figures, the 

robots travel along their trajectories with negligible errors and the formation is 

experimentally successful. 

Figure 5.26 Reference and real robots’ trajectories. 

The linear and angular velocities are plotted in Figure 5.28. These figures show that the 

robots travel with different velocities relative to the length of the trajectory on which they 

travel. We observe that robot 3 has the highest velocity (longest trajectory) and robot 1 the 

lowest velocity (shortest length).        

              

Figure 5.27 Trajectory tracking errors�ÆÇÈÈ�4�. �
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                        (a) Linear                                                          (b) Angular 

     

Figure 5.28 Velocity of robots. 

In the second test, trajectories with the same lengths are considered, but the robots are not 

placed on the trajectories. As can be seen in Figure 5.29, robots 1 and 3 are ahead of their 

trajectories and robot 2 is behind its trajectory. In this scenario, all trajectories have the same 

length as /j F �����% and the initial positions of robots are defined by: 

G1j�{��� 2j�{��� :j�{��HI F G`�Y�WHI� G1-�{��� 2-�{��� :-�{��HI F G�`���`�WHI� G1ø�{��� 2ø�{��� :ø�{��HI F GY� �Y�WHI

Figure 5.29 shows both the reference and the actual robots trajectories in this scenario. This 

figure shows that to keep the formation and cooperation between the MMR group, robots 1 

and 3 come to a stop and allow robot 2 to travel faster to reach them. As soon as robot 2 

arrives at the same vertical point as robots 1 and 3, they adjust their velocities so that all three 

robots arrive at the desired sampling points at the same time. The trajectory tracking error 2¢;; is shown in Figure 5.30. As can be seen in this figure, the errors reduce to zero as the 

robots catch their predefined trajectories.  
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Figure 5.29 Reference and real robots’ trajectories. 

  

Figure 5.30 Trajectory tracking errors��ÆÇÈÈ�4�. 
      

The linear and angular velocities are plotted in Figure 5.31. These figures show that robots 1 

and 3 stop and robot 2 moves faster to catch the trajectory. 
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                         (a) Linear                                                        (b) Angular

Figure 5.31 Velocity of the robots. 

5.4 Results Comparison of both the Fuzzy and the Nonlinear Method 

In this section, we show a comparison of the results obtained by the proposed fuzzy 

algorithm and the nonlinear control method proposed in chapter 4. Tables 5.7 and 5.8 show 

the results obtained by these methods with the trajectory following errors compared for tests 

1, 2 and 3 in which��
��oU UVW�� �	
��oU UVW�, �U UVW�����XYZ can be calculated by: 

1¢;;ow£w¤< F § �1s44�b���ªbFW �ª ���������� �2¢;;ow£w¤< F § [2s44�b�[�ªbFW �ª
:¢;;ow£w¤< F § �9�b���ªbFW �ª �

Ju¥ F § «1s44�b�Y L 2s44�b�Y L 9�b�Y �ªbFW �ª

(5.17) 

Ju¥��is defined as the mean square error. As fuzzy logic mimics the way the human brain 

solves problems by grouping like things together, this approach simplifies the computations 

needed by the algorithm controller. Tables 5.7 and 5.8 show that as the robots travel on their 

desired trajectories, the fuzzy controller produces a smaller mean square error compared to 

the nonlinear method thus allowing the robots to follow their trajectories more precisely. 
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However, when the initial positions of the robots are not on the desired trajectories (test 2), 

the nonlinear control is faster at guiding them to their desired trajectories. 

Table 5.7 Comparisons between the nonlinear and  
fuzzy controller for test 1

Nonlinear Control Fuzzy Control 

Total 

errors 

1¢;; 2¢;; 9 Ju¥ 1¢;; 2¢;; ���9��� Ju¥
Robot1 -.080 .00013 -.0002 .0891 .0216 .0015 -3.5e-005 .0325 

Robot2 -.116 -.0032 .0057 .1345 .2408 -.0016 -.0054 .0493 

Robot3 -.150 -.0025 .0055 .1589 .2842 .0018 .27e-005 .0056

Table 5.8 Comparisons between the nonlinear and  
fuzzy controller for test 2

Nonlinear Control Fuzzy Control 

Total 

errors 

1¢;; 2¢;; 9 Ju¥ 1¢;; 2¢;; 9 Ju¥
Robot1 -.0993 .2920 -.2728 .4981 0.040 -0.531 0.060 0.6858 

Robot2 
-.1979 .0334 -.0527 .2309 .110 -0.201 .091 0.2619 

Robot3 
-.0084 .0749 -.1106 .2962 -0.437 0.592 -0.138 .8985 
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5.5 Conclusion 

In this chapter, a fuzzy logic controller is proposed to facilitate the smooth and efficient 

control for the trajectory following and cooperation of a group of mobile robots. A two-level 

hierarchical controller is presented to facilitate the best performance for the control 

algorithm. A high-level fuzzy controller is used to perform the tasks of trajectory following, 

localization and cooperation. This cooperation method, derived from fuzzy logic and PID, 

empowers the robots to move, follow and coordinate trajectories in different MMR group 

formations. The outputs of the fuzzy module controller are the linear and angular velocities 

of the individual robots. The experimental results obtained from three different trajectory 

scenarios demonstrate the effectiveness of the proposed algorithm. 



CHAPTER 6 

COORDINATION FOR MULTI MOBILE ROBOTS IN UNKNOWN 
ENVIRONMENTS 

In this chapter, an algorithm is proposed for the behavioral control of MMR’s using fuzzy 

logic techniques to create coordination, crash avoidance and obstacle avoidance among a 

MMR group. The design of this fuzzy logic system exhibits three behaviors: firstly trajectory 

tracking (covered in chapter 2), then group coordination (covered in chapter 5), and now in 

this chapter, collision avoidance between the robots and static obstacles or between the 

robots themselves (robots consider each other as dynamic obstacles). The coordination of the 

robot group is designed so that they finish their trajectories within same time duration 

regardless of the number of crash avoidance incidences between them, the length of the 

individual robot trajectory or the number of obstacles confronted along their paths. 

6.1 Intelligent Crash Avoidance between Multi Mobile Robots             

A crash avoidance behavior is designed so that the robots within the group are assigned a 

priority status (Mehrjerdi, Saad et Ghommam, 2010d). If there is a chance of an imminent 

collision between robots, this behavior selects the one(s) that must stop to avoid a crash while 

allowing the priority robot to move forward or change its desired trajectory. Once the priority 

robot moves away and the danger of a crash has past the other robots are then allowed to 

continue moving forward in the group formation. The core of designed algorithm uses fuzzy 

logic which imitates the way the human brain processes and responds to problems. In this 

section, the fuzzy control looks only at those collisions which may occur between robots 

where they consider each other as dynamic obstacles which can potentially cause a crash 

within the MMR group (Mehrjerdi, Saad et Ghommam, 2010b).  

Here, we investigate the navigation of multiple mobile robots working in a two-dimensional 

environment using a crash avoidance algorithm. To do this, a three level hierarchical 

architecture control based on the fuzzy model and PID is used to facilitate multiple mobile 
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robots to work together in different formations. This section focuses on achieving crash 

avoidance between the robots while they are working in a group formation to reach their 

individual targets. A set of linguistic fuzzy rules are extended to implement expert 

knowledge under a variety of situations. The output of the fuzzy controller determines the 

linear and angular velocities of the individual robots, where each robot has its own goal or 

individual trajectory to be navigated while also maintaining a group formation with the other 

robots. 

A robust fuzzy coordination algorithm is developed so that when robots lose their 

coordination, they can resume it once the problem is solved. For example, if there is the 

chance of an imminent crash among any of the robots forcing them to temporarily abandon 

their place in the formation, the coordination algorithm will then re-acquire their correct 

positions once the crash has been overcome. Within a virtual model, this architecture 

achieves different group formations by the robots, while facilitating trajectory planning, 

localization, coordination and crash avoidance behavior. The distance between the robots is 

crucial in the mapping of the direction of robot movement. The direction angle that each 

robot moves is determined not in isolation, but by the desired trajectories and formations of 

all the robots.  

If there is the chance of an impending crash among any of the robots, the algorithm works 

out which possible virtual trajectory is best for each robot in the formation in order to avoid 

these collisions. Control laws adjust the linear and angular velocities of each robot involved 

in a possible collision therefore altering their trajectories and avoiding a robot crash. 

When there are imminent crash points on the trajectories, the robots must stop or change 

their designated route according to a priority status, and either of these actions will cause the 

robots lose their coordination with the rest of the group. The fuzzy algorithm allows for this 

temporary loss of coordination, and instructs the robots to recalculate their next move whilst 

avoiding a collision with any dynamic obstacle (in this case another robot). Once a robot has 

stopped or changed its desired trajectory, and there is now no danger of a collision, it is 

allowed to resume its trajectory and continue with the group formation. This cycle of 
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allowing a loss of coordination during an imminent collision, and then re-establishing it once 

the danger has past, allows for a smooth and efficient crash avoidance behavior. 

The distance between robots is calculated by the following equation and is limited to: 

$#Ï F «�1# � 1Ï�- L �2# � 2Ï�-������������B ç Ý��� A486¦�\abs ] $#Ï�{� µ $#Ï�.#U� (6.1)

where $#Ï�.#U� is fixed according to the physical dimension of robots. Figure 6.1 shows the 

general model of mobile robot and trajectories which are divided into discrete segments. 
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Figure 6.1 Mobile robot with two actuated 
wheels and intersected trajectories. 

6.1.1 Fuzzy Coordination and Crash Avoidance Algorithm    

Figure 6.2 illustrates the block diagram used for the control, coordination and crash 

avoidance for a group of mobile robots. The controller has three hierarchical levels consisting 

of a low PID level and two higher level fuzzy controllers. The first of the higher level 

controller is designed to instruct the robots to follow their generated trajectory coordinates, 

while the second higher level controller is designed to enable the robots to avoid collisions 

(crash avoidance). Posture sensors are used to localize the robots in the group and direct them 
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to their trajectories in a desired formation. Figure 6.3 shows the fuzzy system structure and 

notates the desired inputs and outputs. 
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Figure 6.2 Fuzzy control structure.
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Figure 6.3 Infrastructure of multi robot 
control and coordination. 

To achieve our goal of robot group coordination, we propose that each robot in the group has 

a local controller for trajectory following and coordination. The prerequisites required to 

achieve coordination across the whole robot group is that they are required to move along 

their trajectories while maintaining a desired inter-robot formation pattern, and they must 

also reach their final goals at the same time regardless of their trajectory lengths, number of 

crash points or their initial positions. To avoid a collision between any of the robots when 

they come into close proximity to each other, a control law for the linear and angular 

velocities must be assigned to the robots that are in danger of a collision. To solve this crash 
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avoidance problem, we propose a control law for the correction of the linear and angular 

velocities as:  5);¤�¹�{� F 53#�{� L 5Ó3#�{�7);¤�¹�{� F 73#�{� L 7̂3#�{�
(6.2)

where �_ÓÄ� and 7̂Ä��are the correction terms. 

This requires that for any trajectory, the robots must reach their final goals in the same time 

duration and if they lose coordination for any period of time, they are able to resume it once 

the crash problem is resolved such that for all different trajectories `a� � XÄ����` ¼ W.  

6.1.2 Fuzzy Coordination and the Crash Avoidance  

The form of the control law equation for trajectory tracking and coordination is as follows: 

c5#7#d F bªj�$&'�#�� $#Ï � 9#� 1¢;;�#�� 2¢;;�#�� /#� Î#�ª-�$&'�#�� $#Ï � 9#� 1¢;;�#�� 2¢;;�#�� /# � Î#�c (6.3)

The functions ªj and ª- are the control laws of a Sugeno type fuzzy controller which can take 

both fuzzy inputs and outputs.  

To solve the problem of a crash between robots, a fuzzy control law for linear and angular 

velocities of robots is considered with respect to the priority status of the robots in the group, 

with the crash avoidance behavior designed on a priority basis. The robots are given a 

priority number rating with the lowest number robot always having precedence over the 

higher numbers. If any of the robot’s sensors indicate that a collision between them is 

imminent�¿úd�e� µ ¿úd�fúg��, the robots with the higher numbers must ‘stop’ until the priority 

robot has moved away from the collision area. The fuzzy control algorithm then recalibrates 

their trajectories so they reach their target point within specific time duration. 

Therefore, a control law is enacted by the fuzzy controller, and �# will be added to�9#.  
Bª��$#Ï�{� µ $#Ï�.#U� ���i 9#�bsÅ� F R# L 9# L �# (6.4)
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If the robots are at a significant distance from each other then this angle will be zero, but as 

they move closer together this angle increases. As the robots travel along their predefined 

trajectories, if they move inside the minimum danger zone (represented by the circles on 

Figure 6.6), then the controller considers that a crash is imminent and the lesser priority robot 

will stop. This allows the higher priority robot to either continue (if there is now no danger of 

a crash) or create a direction change (if a crash scenario is considered unavoidable). This 

trajectory change is calculated with respect to this new angle of �# being added, and after 

some distance the robot resumes the original predefined trajectory. (See trajectory change 

direction on Figure 6.6). Membership functions of this input are shown in the Figure 6.4. 

Figure 6.5 shows the changes of �# related to changes of distance between robots ($#Ï), 

Figure 6.4 Membership function of �J45�

Figure 6.5 hú�Obtained by fuzzy controller and�J45�
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Figure 6.6 shows the scenario in which robots B�and Ý�move toward each other. The circles 

around the robots show the minimum distance that is allowed for the robots to get close to 

each other before they are considered to be in danger of a crash. As can be seen in this figure, 

robot Ý��Ý | B� will stop and robot B will change its desired trajectory to avoid a crash with 

the other robot. 

X
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Rob
ot
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( )
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( )Path i

ijd

ijd

Stop

Change direction

Figure 6.6 Crash avoidance between robots. 

Equation (6.5) represents new linear and angular velocities of robots B�and Ý�. 
Bª��$#Ï�{� µ $#Ï�.#U��� 1Ï } 1# ���i �i�

i� 5#j�b L `� F 5#�b L `�7#j�b L `� F 7#�b L `� k 7̂3#5Ïj�b L `� F W7Ïj�b L `� F 7Ï�b�
t (6.5)

Figure 6.7 represents the trajectory tracking, coordination and crash avoidance algorithm. 

6.1.3 Experimental Results 

Figure 6.8 shows the design of the experimental set up for the control, trajectory planning, 

coordination and crash avoidance for a team of mobile robots. The robot trajectories are 
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generated by the trajectory generator and the robot positions are measured by sensors, while 

trajectory following, coordination and crash avoidance are performed by the fuzzy controller. 

To evaluate the integrity of the proposed algorithm, experimental tests were performed using 

three mobile robots employing different trajectories. 
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Figure 6.7 Flow chart of trajectory tracking, 
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Figure 6.8 The general view of experimental setup. 

6.1.3.1 Experimental Tests 

In this section, we discuss the results of using two different robots formations. These are: 

1) trajectories in which robots 1 and 2, then robots 2 and 3 arrive at the same points; 

2) trajectories in which robots 1 and 2, then robots 1 and 3 and finally 2 and 3 arrive at the 

same points. 

In the first formation experimental test, the trajectories being considered are robots 1 and 2, 

and then robots 2 and 3 arriving at the same sampling points at the same time. In this 

scenario, the length of trajectories and the initial positions of robots are: 

G1j�{��� 2j�{��:j�{��HI F GW�`�WHI� G1-�{��� 2-�{��:-�{��HI F GW�W�WHI� G1ø�{��� 2ø�{��:ø�{��HI F GW��`�WHI/j F ��`��%�� /- F ���%� /ø F ù��`�%
Figure 6.9 depicts the reference and the actual robots trajectories in this scenario. Figure 6.10 

shows the detail of the avoidance crash points using robots 1 & 2 and 2 & 3. Figure 6.10(a) 
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shows that when robots 1 and 2 move close to each other, robot 2 stops and robot 1 changes 

its trajectory. Figure 6.10(b) shows that when robot 3 and 1 move toward each other, robot 3 

stops and robot 2 changes its trajectory to avoid a crash. Figure 6.11 shows distance between 

all the robots in the formation when they move to follow their individual trajectories. 

Figure 6.9 Reference and real robots’ trajectories.
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Figure 6.10 Avoidance crash points between robots. 
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Figure 6.11 Distance between the robots�J45�
The trajectory tracking errors 2¢;; and 9 are shown in Figure 6.12. As can be seen in these 

figures, when the robots are close to each other the errors increase, and when robots are far 

from each other these errors decrease to zero. 

        �l�¬�  �ú��                                                                 (b) Âú  
Figure 6.12 Trajectory tracking errors.

The linear and angular velocities are plotted in Figure 6.13. These figures show that the 

velocities of robots 2 and 3 decrease to zero at some points to avoid a crash. 
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                          (a) Linear                                                         (b) Angular  

Figure 6.13 Velocity of robots. 

In the second formation experimental test, the trajectories being considered are when all 

robots will arrive at the same point at the same time. In this scenario, there are possibilities of 

three crashes. The trajectory lengths and initial positions of robots are defined as: 

G1j�{��� 2j�{��:j�{��HI F GW�Y�WHI� G1-�{��� 2-�{��:-�{��HI F G�`�W�WHI� G1ø�{��� 2ø�{��:ø�{��HI F GW��Y�WHI/j F ù����%�� /- F �����%� /ø F ù����%
   
Figure 6.14 depicts the reference and actual robots trajectories in this scenario. This figure 

shows that to keep formation and coordination between the robots and avoid crashes, the 

robots must change their predefined trajectories at some points. Figure 6.15 shows the details 

of the avoidance crash points using robots 1 & 2 and 3. This figure shows that when the 

robots move close to each other, robot 2 and 3 stop and robot 1 changes its trajectory to avoid 

a crash. 

As robot 1 moves away from the area of crash, robot 2 begins to move and changes its 

desired trajectory to avoid a crash with robot 3. When robot 2 moves away from the area of 

the crash, robot 3 which has been prevented from moving begins to travel on its desired 

trajectory. As can be seen in these figures, the fuzzy algorithm allows for a temporary loss of 

coordination and instructs the robots to recalculate their next move whilst avoiding a 

collision with any another robot. Once a robot has stopped or changed its desired trajectory, 

and there is now no danger of a collision, it is allowed to resume its trajectory and continue 
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with the group formation. Figure 6.16 shows the distance between all the robots in the 

formation when they move to follow their individual trajectories. 

Figure 6.14 Reference and real robots’ trajectories.   

Figure 6.15 Crash avoidance between  
robots with a change of trajectories.

Figure 6.16 Distance between robots�J45�
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The trajectory tracking errors 2¢;; and 9 are shown in Figure 6.17. As can be seen in these 

figures, when the robots are close to each other these errors increase and when robots are far 

from each other these errors decrease to zero. 

            �m��¬�  �ú�                                                                  (b) Âú
        

Figure 6.17 Trajectory tracking errors. 

The linear and angular velocities are plotted in Figure 6.18. These figures show that the 

velocities of robots 2 and 3 decrease to zero at some points to avoid a crash. 

      
                              (a) Linear                                                         (b) Angular  

  
Figure 6.18 Velocity of robots.
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6.2 Fuzzy Obstacle Avoidance and the Coordination Algorithm 

In this section, the design and implementation of an intelligent coordination algorithm is 

introduced for a team of MMR’s that are confronted with obstacles in an unknown 

environment (Mehrjerdi, Saad et Ghommam, 2010e). The robots in the group have inbuilt 

sensors to observe their surrounding environments. The developed algorithm bases its 

characteristics on the efficiency of fuzzy logic which enables it to coordinate the MMR group 

and follow their trajectories. Simultaneously, it processes the environmental data from the 

robot sensors to monitor the environment in order to locate and avoid any obstacles - 

including other robots in the group. When an obstacle is detected by any of the robot’s inbuilt 

sensors, they direct that robot to move around the obstacle by either changing its velocity and 

/ or direction. As well as obstacle avoidance, the controllers work to make the MMR group 

arrive concurrently at their target points by adjusting each of the robot’s velocities as they 

move along their desired trajectories. This means that the group will arrive within the same 

time duration, regardless of the length of each individual trajectory or number of obstacles 

that confront each robot. 

The experimental results of three mobile robots traveling on different trajectories in unknown 

environments are presented to show the accuracy of obtaining control, coordination and 

obstacle avoidance by using the designed fuzzy algorithm. 

The challenge for this section is to modify the algorithmic model so that it still creates an 

intelligent coordinated behavior in situations where MMR’s are placed in environments 

containing obstacles on their trajectories. To achieve the coordination and trajectory 

processing for the MMR group, it is necessary to have position and sonar sensor feedbacks 

which measures the distance between the robots and any obstacle that may appear on their 

trajectories. The designed intelligent algorithm must synchronize the robots within the group 

to execute common or diverse tasks by performing several simultaneous functions. It must 

have the ability to instruct all robots in the group to discern their environment, avoid a 

collision, track their trajectories, alter their directions and velocities, and transmit their 
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locations and environmental data to other robots in the group formation. The choice of using  

a fuzzy coordination algorithm for robot control is that it gives both flexibility and 

adaptability to the individual robots when maintaining group coordination. They must be 

able to dynamically change their velocity or desired trajectory when confronting obstacles, or 

when they lose coordination with the rest of the group. The algorithmic model must precisely 

guarantee that all the robots within the group reach their target points both individually and 

in group formation.  

The robots are equipped with sonar sensors which can measure the relative position of any 

object (other robots or environmental obstacles) if and only if, the object is within a given 

distance. The model of the mobile robot with inbuilt lateral and longitudinal sonar sensors 

can be seen in Figure 6.19. In this section, we are particularly interested in monitoring 

obstacles that are of unknown shape and size and possibly moving dynamically in time 

(robots can be considered as a dynamic obstacle for each other). 

Front
sensors

Left
sensor

Right
sensor

FL

1
2

34

Figure 6.19 Model of mobile robot 
with inbuilt sonar sensors.

Figure 6.20 shows two mobile robots in an unknown environment in the presence of an 

obstacle and displaying discretized trajectories. In this figure, �[!��� shows the distance 

between the robots and obstacles where n F `�º �� represents the number of sonar sensors, 

and in order to avoid a collision then:  �[!��� µ �[!�o���. 
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Figure 6.20 Model of mobile robots in  
an unknown environment.

Figure 6.21 illustrates the block diagram used to control and synchronize a group of mobile 

robots traveling in unknown environments. In this section, fuzzy logic is the prime controller 

and therefore performs the tasks of trajectory tracking, obstacle avoidance and group 

coordination. The secondary controller is a PID which ensures that the motor velocity to the 

robot’s left and right front wheels is always accurate. The direction angle of each robot is 

determined by the desired trajectories, the formations of the MMR group and the presence of 

obstacles in an unknown environment. 
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Figure 6.21 Infrastructure of multi robot 
control and cooperation. 

    

Figure 6.22 shows the fuzzy inference system structure with desired inputs and outputs. 

We add 4ap�#� as a new input to the fuzzy algorithm, and the output of the fuzzy controller 

determines the linear and angular velocities of the individual robots. 

ijd
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1( )iro 4( )iro3( )iro2( )iro

Figure 6.19 Block diagram of the fuzzy inference system.

One set of inputs for the fuzzy system is data coming from sonar sensors mounted on the 

robots and includes both the distance and the angle to an obstacle that appears on the 

trajectory of any of the robots. The measurements of the robot’s position and velocity are the 

second input to the algorithm and this information is combined to calculate the most 

appropriate trajectory that the robot should pursue to avoid the obstacle as well as stay within 

the group formation. The fuzzy rules applied to the robots are defined by the kinematic 
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limitations which are bounded by both the linear and angular velocities and the length and 

curvature of the individual trajectories. The designed fuzzy model employs three behaviors 

being trajectory tracking, group coordination and obstacle avoidance.  

The form of the control law equation for trajectory tracking and cooperation is as follows: 

c5#7#d F bªj�$&'�#�� $#Ï� 9#� 1¢;;�#�� 2¢;;�#�� 4ap�#�� Î#�ª-�$&'�#�� $#Ï� 9#� 1¢;;�#�� 2¢;;�#�� 4ap�#�� Î#�c (6.6)

The functions ªj and ª- are the control laws of a Sugeno type fuzzy controller which can take 

both fuzzy inputs and outputs. We propose to solve the problem of propelling a robot along a 

continuous desired trajectory in an unknown environment by observing obstacles on the 

trajectories and considering the robot moving between discontinuous sampling points while 

avoiding obstacles and other robots in the environment. The trajectories are modeled by a 

fifth order polynomial and divided into segments for analysis with the same sampling point 

numbers regardless of the shape, curvature or trajectory length.  

The robots are fitted with four sonar sensors to detect and avoid obstacles in the environment. 

These consist of two primary sensors located on the front of the robot giving a wide angle 

view ahead and two secondary sensors, one on each side giving lateral views. The newly 

designed algorithm has two modes of operation that it can quickly switch between depending 

on whether obstacles are present or not in the environment. These two modes of operation are 

termed ‘fuzzy trajectory tracking and coordination’, and ‘fuzzy obstacle detection and 

avoidance’.  

The fuzzy trajectory tracking and coordination mode is only required when there are no 

obstacles observed in the local environment by any of the robots’ sonar sensors. This first 

mode of operation is only required to perform velocity and direction changes for the robots 

due to their differing trajectory lengths, enabling the group to arrive at their individual 

destinations within the same time.  

The second mode, fuzzy obstacle detection and avoidance, is enacted once any of the robots’ 

sensors detect either a static or dynamic obstacle (another robot is also considered an 
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obstacle). In this situation, the velocity and direction changes are adjusted by a newer version 

of the algorithmic processing that uses the sonar information to move around the obstacles. 

Once the robot has cleared the offending obstacle, the algorithm reverts to the previous 

version of algorithmic processing to maintain group coordination and guide them along their 

designated trajectories. 

To solve the problem of obstacle avoidance, a fuzzy control law for the angular velocity of 

robots is considered. If any of the robot’s sensors indicate that a collision with an obstacle is 

imminent �[!��� µ �[!�o���, the fuzzy control algorithm recalibrates a new trajectory to move 

around the obstacle. Therefore, a control law is enacted by the fuzzy controller, and q# will 

be added to 9#.  Bª�4ap�#� µ 4ap�.#U� i 9#jj F 9# L q# (6.7) 

If the robot is at significant distance from the obstacle then q# will be zero, but as they move 

closer then this angle increases. This trajectory change is calculated with respect to this new 

angle of q# being added, and after moving around the obstacle the robot resumes the original 

predefined trajectory. Membership functions of the front sonar sensor inputs are shown in the 

Figure 6.23. Figure 6.24 shows the changes of q# related to changes of the distance between 

the robot and obstacles observed by the front sonar sensors (4ap�#�), 

Figure 6.20 Membership function of�Èrs�4�.         
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Figure 6.21 tú�Obtained by fuzzy controller and�Èrs�4�.    
      

In this section we consider four general cases in which robots may confront obstacles in 

unknown environments and where fuzzy obstacle and coordination rules should be 

considered. 

A) Case study 1:  

If any of the robots in the group see an obstacle on its desired trajectory then it must 

recalculate another trajectory to avoid a collision as can be seen in Figure 6.25. The robot 

does this by detecting the obstacle with its sonar sensors and uses the fuzzy logic algorithm 

to determine the best way to move around it. Once the robot has successfully passed the 

obstacle and sees that its trajectory is clear, then it resumes its trajectory to arrive at the 

target point as part of the group formation. Meanwhile, the other robots will continue until 

this robot passes the obstacle and returns to its desired trajectory.  

0

0.5

1

0

0.5

1
0

1

2

3

4

5

ro
2(i)

ro
3(i)

Θ
 (d

eg
)



128 

��
��
���
���
�

X

Y

O

ijd

Change direction

Stop

Figure 6.22 Case study 1: Mobile robot observes an obstacle.

B)  Case study 2:  

In this situation, a robot confronts an obstacle observed by its sonar sensors. However, when 

the robot tries to change its desired trajectory and direction to avoid this immediate collision, 

there appears another robot on its new trajectory and so there is also a chance of a crash with 

this robot. This situation can be seen in the Figure 6.26. In this scenario to keep the group 

coordination, the robot with less priority will stop to allow the robot confronted with the 

obstacle to pass around that obstacle. If there is no danger of a crash, the robots keep moving 

on their desired trajectories.  
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Figure 6.23 Case study 2: Mobile robot observes an obstacle 
 and there is a chance for a crash with other robots. 

C)  Case study 3:  

In this scenario, more than one robot in the group observes obstacles on their desired 

trajectories with their sonar sensors. However, when they try to change their desired 

trajectories and direction to avoid these obstacles, there is also a chance of collision between 

these robots on their new trajectories. This situation can be seen in the Figure 6.27, and in 

this scenario in order to keep the group coordination, the robot with less priority will stop 

until the robot with a higher priority (in this case robot i) can successfully pass around the 

obstacle. If there is no danger of a crash between the robots, then they will continue on their 

desired trajectories.  
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Figure 6.24 Case study 3: Mobile robots observe obstacles 
and there is a chance for a crash with other robots. 

D)  Case study 4:  

In this scenario, a robot observes an obstacle on its desired trajectories by its sonar sensors. 

However, due to the shape or the position of the obstacle this robot becomes stuck in local 

minimum and cannot pass around the obstacle in the desired time allocated for it to do so. A 

short time-delay is given for a robot which is losing its trajectory coordination with the other 

robots in the group. If it cannot pass an obstacle and is completely stuck in local minimum, 

then once this time duration has elapsed, its coordination to the other robots will be lost then 

they will continue on their trajectories without it. This situation is shown in the Figure 6.28, 

and the stuck robot is now out of the group coordination.  
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Figure 6.25 Case study 4: Mobile robot observes 
an obstacle and stuck in local minimum. 

Flow chart in Figure 6.29 represents the algorithm steps to detect obstacles and other robots, 

avoid collisions with obstacles and other robots, group formation, trajectory tracking and 

coordination. 

6.3 Simulation and Experimental Results 

To evaluate the performance of the proposed cooperation and control scheme, experimental 

tests were conducted with three mobile robots traveling on different trajectories. Fig. 6.30 

shows the EtsRo mobile robot used for the experimental setup. EtsRo is a mobile robot with 

four sonar sensors installed on the forward and lateral sides of the robot. 



132 

0i

Robot stops
v =

Read the next goal

  Is the 
last goal ?

Robot stops

       Robot detects obstacle and passes
              around the obstacle

( )

min

z i

z

ro
ro≤

( ) 0err ix <

( , , )i i ix y ψ
( , , )di di dix y ξ

Read the initial position of all robots
Read the first  goal on the paths
Read the length of the paths

iL

( ) ( ) ( ) ( ), , , , , ,RP i i err i err i i ij z iCalculate d x y d roα ς

minij ijd d≤

       Robots with less priority stop
Robot with high priority changes direction

            Fuzzy Decision
Calculate linear and angular velocities

minij ijd d≤
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Figure 6.27 The mobile robot (EtsRo). 

6.3.1 Simulation Results  

In this section, we discuss the results of three different formations of the robots. These 

formations are: 

1)  where two robots observe obstacles on their desired trajectories;  

2)  where one robot confronts an obstacle and changes its desired trajectory, but then   

     observes another robot on this new trajectory;

3)  where one of the robots is stuck by an obstacle on the path and loses coordination. 

In the first test, robots 1 and 2 confront obstacles on their desired trajectories. Figure 6.31 

shows the reference and the actual robots trajectories in this scenario. The trajectory tracking 

error 2¢;;�is shown in Figure 6.32. As can be seen in these figures, the robots detect obstacles 

and recalculate other trajectories to avoid a collision. When the trajectories are clear, the 

robots resume their desired trajectories and keep coordination. 
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Figure 6.28 Reference and real robots’ trajectories. 

Figure 6.29 Trajectory tracking errors�ÆÇÈÈ�4�. 
The linear velocity and distance between the first robot and the obstacle observed by the 

sonar sensors are plotted in Figure 6.33 and Figure 6.34 respectively. These figures show that 

the robots travel with different velocities relative to the length of the trajectories on which 

they travel, and the appearance and shape of the obstacles on their trajectories.  
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Figure 6.30 Linear velocity of robots. 

Figure 6.31 Distance between robot 1 and 
an obstacle observed by its sonar sensors. 

In the second test, when robot 1 recalculates another trajectory to avoid the obstacle on its 

desired trajectory, robot 2 then also appears on its new trajectory and there is a chance of 

imminent collision.  In this situation to avoid a crash between robots, robot 2 will stop until 

robot 1 moves around the obstacle on its trajectory. When there is no danger of a crash, robot 

2 will then continue on its desired trajectory. Figure 6.35 shows both the reference and the 
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actual robots’ trajectories where the robots move around obstacles and maintain the group 

formation. The trajectory tracking error 2¢;;�is shown in Figure 6.36. 

Figure 6.32 Reference and real robots’ trajectories.

Figure 6.33 Trajectory tracking errors ÆÇÈÈ�4�.
The linear velocity and distance between the first robot and the obstacle observed by the 

sonar sensors are plotted in Figure 6.37 and Figure 6.38 respectively. As can be seen in 

Figure 6.38, the linear velocity of robot 2 decreases to zero to avoid a crash with robot 1. 
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Figure 6.34 Linear velocity of robots.

Figure 6.35 Distance between robot 1 and 
an obstacle observed by its sonar sensors. 

In the last scenario, when robot 1 travels on its desired trajectory, it is stuck in local 

minimum by an obstacle. In this situation the other robots continue on their desired 

trajectories and keep coordination with each other but they lose coordination with this stuck 

robot. Figure 6.39 shows both the reference and the actual robots’ trajectories in this scenario 

where robot 1 stuck in local minimum. The trajectory tracking error 2¢;;�is shown in Figure 

6.40. 
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Figure 6.36 Reference and real robots’ trajectories. 

Figure 6.37 Trajectory tracking errors�ÆÇÈÈ�4�.�
The linear velocity and distance between the first robot and an obstacle that is observed by its 

sonar sensors are plotted in Figure 6.41 and Figure 6.42 respectively.  
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Figure 6.38 Linear velocity of robots.

Figure 6.39 Distance between robot 1 and 
an obstacle observed by its sonar sensors. 
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and recalculate other trajectories to avoid a collision. When their trajectories are clear, the 

robots resume their desired trajectories and keep group coordination. 
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Figure 6.41 Trajectory tracking errors�ÆÇÈÈ�4�.
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length of the trajectories on which they travel as well as the appearance and shape of 

obstacles they encounter on their trajectories.  

Figure 6.42 Linear velocity of the robots. 

Figure 6.43 Angular velocity of the robots.
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6.4 Conclusion 

In this chapter, the design and implementation of a dual layered intelligent coordination 

algorithm is introduced for a team of  MMR’s that are confronted with obstacles in unknown 

environments. The developed algorithm has two modes of operation termed ‘fuzzy trajectory 

tracking and coordination’, and ‘fuzzy crash, obstacle detection and avoidance’. The first 

mode of operation is only required to perform the velocity and direction changes for the 

robots due to their differing trajectory lengths, therefore enabling the group to arrive at their 

individual destinations within the same time duration. The second mode, fuzzy crash, 

obstacle detection and avoidance, is enacted once any of the robots’ sensors detect either a 

static or dynamic obstacles, including other robots. Once the encountered obstacle is no 

longer a threat to a robot then the control is reverted back to the first mode of operation. The 

experimental results in three different unknown formation scenarios demonstrate the 

accuracy of obtaining control, coordination and obstacle avoidance by using the designed 

fuzzy algorithm. 



CONCLUSION

In this thesis we present techniques for the control and coordination of a group of mobile 

robots moving in formation in an unknown environment that includes obstacles. The robots 

in the group are required to simultaneously reach their desired target points while 

maintaining an overall group formation. This research focuses on the question of how to 

facilitate a smooth and efficient trajectory tracking, cooperative group behavior and obstacle 

avoidance for a MMR group. This thesis proposes a solution by dividing the research into 

three areas, the dynamic tracking control to deliver smooth robot movement, the control 

algorithm for efficient robot coordination, and an intelligent coordination algorithm that 

instructs the robots to avoid any obstacles along their paths.  

Firstly, an efficient dynamic tracking control is developed for a nonholonomic mobile robot 

that is based on three modes of operation. These are exponential sliding mode, Lyapunov 

technique and fuzzy control. A two level controller is designed incorporating a low level PID 

controller for the right and left motors, and a high level controller to control the speed and 

movement of the robot. The high level controller uses a feedback controller utilizing the 

nonlinear function. The developed exponential sliding mode control reduces chattering on the 

control input compared to conventional sliding modes, and delivers a high dynamic tracking 

performance in a steady state mode. The experimental results obtained using an EtsRo 

mobile robot show the effectiveness of the theoretical outcomes. 

Secondly, control algorithms are developed for the efficient coordination of a group of 

mobile robots. These algorithms enable the robots to work both individually and in 

meaningful robot formations. The first approach is designed to incorporate a low level PID 

controller for the right and left motors, and a high level controller to coordinate the speed and 

movement of the robot group. The high level controller is designed using a feedback 

controller utilizing the exponential sliding mode function. 
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In the second approach, a control algorithm and efficient coordination architecture is 

developed for a group of mobile robots using a combination of Lyapunov technique with 

graph theory embedded within a virtual structure. The high level controller is designed using 

a feedback controller utilizing the Lyapunov function. The experimental results on a multi-

robot platform show the effectiveness of the theoretical result and the performance of the 

system against short term communication loss or failure, as well as position measurement 

errors. 

Finally in the third approach, the design and implementation of a dual layered intelligent 

coordination algorithm is introduced for a team of MMR’s that are confronted with obstacles 

in unknown environments. The developed algorithm has two modes of operation termed 

‘fuzzy trajectory following and coordination’, and ‘fuzzy obstacle detection and avoidance’. 

The first mode of operation is only required to perform the velocity and direction changes for 

the robots due to their differing trajectory lengths, therefore enabling the group arrive at their 

individual destinations within the same time duration. The second mode, fuzzy crash, 

obstacle detection and avoidance, is enacted once any of the robots’ sensors detect either a 

static or dynamic obstacle on their trajectories, including other robots. Once the obstacle is 

no longer a threat to a robot then control is reverted back to the first mode of operation. The 

experimental results in three different unknown formation scenarios demonstrate the 

accuracy of obtaining control, coordination and obstacle avoidance by using the designed 

fuzzy algorithm. 

However, in further work these concepts could be readily expanded and improved by 

including the following additions.  

�
1)  To improve the individual robot's performance and task abilities by adding sophisticated 

sensors such as cameras for a better analysis of unknown environments. 

2)  To add onboard micro computers to the robots making them more autonomous and 

powerful in their ability to process decisions. 

3)  To use low level programming such as ROS instead of Matlab. 

4)  To increase the number of robots in the team and develop new coordination algorithms.
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