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INSPECTION GEOMETRIQUE DES PIECES FLEXIBLES EN UTILISANT LA
GEOMETRIE INTRINSEQUE

Hassan, RADVAR-ESFAHLAN

RESUME

Le probléme du tolérancement des piéces mécaniques est décisif pour I’industrie de pointe.
Ses incidences économiques sont importantes pour le secteur manufacturier qui subit des
transformations profondes imposées par la globalisation des marchés et 1’évolution constante
des technologies (CAO, CMM, 3D Scanner, etc.). Il est admit aujourd’hui que I’optimisation
des performances des produits requiert la prise en compte des variations inhérentes aux
processus de fabrication, d’ou le contrdle de la qualité a travers le processus de
développement et de fabrication. Dans le cas des composantes dites ‘flexibles’ (ou non
rigides), par exemple des pieces mécanique a paroi minces comme le revétement d’un avion
ou d’une auto, I'usage industriel actuel est limité encore a I’utilisation de gabarit de
conformité, relativement couteux, qui contraignent la géométrie de la piéce a un état qui
reflete 1’assemblage. Par la suite, des mesures par contact directe ou par scanner sont
effectuées. C’est ainsi I’industrie élimine 1’effet des déformations dues a la flexibilité de la
piece pour tenter de détecter les défauts dus au procédé de fabrication.

Le projet proposé a pour objectif de faciliter les opérations d’inspection dimensionnelle et
géométrique des composantes flexibles a partir d’un nuage de points, et ce, sans recours a un
gabarit ou des opérations secondaires de conformation. Plus spécifiquement, nous visons le
développement d’une méthodologie qui permettra de localiser et de quantifier les défauts de
profil dans le cas des coques minces typique des industries aérospatiales et automobiles.

Pour arriver a cet objectif, nous mettons en ceuvre une idée que nous appelons Numerical
Inspection . Fixture. Nous utilisons les distances géodésiques pour détecter la similarité
intrinséque entre une piece a l’état libre qui inclus les effets de gravité, des contraintes
internes et des défauts de fabrication, et la méme piece telle que définie nominalement par un
modéle CAO. Ce mémoire développe le fondement théorique de cette méthode et les
algorithmes qu’y sont reliés. Nous employons une approche, déja employé dans le domaine
de I'imagerie médicale, pour identifier les distances géodésiques minimales (géométrie
métrique), les statistiques (Multidimensional Scaling - MDS) pour analyser les similarités et
dissimilarités entre deux objets, ainsi que la méthode d’éléments finis (FE) pour aboutir a une
approche générale et original pour l'inspection de pieces géométriques non rigides. Deux
méthodes y sont proposées avec des validations numériques.

Mots-clés: Inspection géométrique; pieces flexibles; géométrie intrinséque; distance

géodésique; fast marching method; multidimensional scaling.



GEOMETRICAL INSPECTION OF FLEXIBLE PARTS USING
INTRINSIC GEOMETRY

Hassan, RADVAR-ESFAHLAN

ABSTRACT

The tolerancing of mechanical parts is one of the major problems in modern industry. Its
economic consequences are important to the manufacturing sector which sustains major
transformations imposed by market globalization and technology evolution (CAD, CMM, 3D
Scanners, etc...). Today, we know that product performance optimization requires a
consideration of the inherent variations in manufacturing processes, hence quality control
throughout the development process and manufacturing. Currently, the geometric inspection
of flexible (or nonrigid) mechanical parts, such as thin-walled skins of airplane or car bodies
is still limited to the use of relatively expensive special inspection fixtures, which simulate
the use state, applying the same constraints that reflect assembly information. Subsequently,
contact measuring or scanning is performed. Simulating this use state means that,
deformation effects due to flexibility are eliminated. In this way, defects in the
manufacturing process are detectable.

The goal of this thesis is to facilitate the dimensional and geometrical inspection of flexible
components from a point cloud without using a jig or secondary conformation operation.
More specifically, we aim to develop a methodology to localize and quantify the profile
defects in the case of thin shells which are typical to the aerospace and automotive industries.

To this end, we implemented an idea that we call Numerical Inspection Fixtures. We use
geodesic distances to detect the intrinsic similarities between a part in a free state which
includes the effects of gravity, internal constraints and manufacturing defects, and the same
part as nominally defined by a CAD model. This thesis develops the theoretical foundation of
the proposed methods and related algorithms. We used an approach already used in medical
image processing to identify minimum geodesic distance and statistics (Multidimensional
Scaling) to analyze the similarities and dissimilarities between two objects, as well as the
finite element method to reach a general approach for the inspection of nonrigid parts. Two
methods are proposed with numerical validations.

Keywords: Geometric inspection; compliant part; intrinsic geometry; geodesic distance; fast

marching method; multidimensional scaling.
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INTRODUCTION

It is clear that product quality control is essential to company survival in a competitive
market. In general, the use of computer-aided inspection (CAl) is found to be less well-
developed than either that of computer-aided design (CAD) or computer-aided manufacture
(CAM). With CAI, raw data from a 3D scanner or CMM can be compared to the original
CAD design to generate impressive inspection reports. Topographical color maps highlight
deviations between the actual part and the design model, clearly indicating tolerance
conditions with far more clarity than traditional CMM (coordinate measuring machine)

reports.

Figure 01 Laser scanning Figure 02 Registration process

(Turbine blade, taken from Laser Design Inc.)' (Taken from Laser Design Inc.)"

Coordinate system Registration is required since measured data (point clouds) and the CAD
model are not in the same coordinate system. For nonrigid materials, Inspection Fixtures are
widely used to hold and support the parts for the simulation of use state. Typical examples of
such parts are: sheet metal panels, windshields, etc. Generally, for the geometric inspection
of such flexible parts, inspection fixtures, in combination with coordinate measuring systems,

(CMM) are used.

!http://www.laserdesign.com


http://www.laserdesign.com

13

The aim of this thesis is to develop a general procedure to eliminate the use of inspection
fixtures. Three-dimensional optical digitizing systems are suitable for the measurement of
large-sized flexible parts because they allow non-contact measurement and are able to
deliver, in a relatively short time, large clouds of points that are representative of object

surfaces.

Figure 03 Inspection fixture
(Daimler AG)*

The part is setup on a portable 3D optical digitizing system which is installed in a production
line regardless of datum shown in engineering drawings. Due to weight, and of course
supports, part deformations occur. An identification method must be defined in order to
extract geometrical deviations due to manufacturing defects only. The geometry of flexible
parts may vary according to their own weight and the location of supports, so it is essential to

detail the ideas around the geometry and inspection of flexible parts.

2 http://www.daimler.com/
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In many cases, it is possible to associate specific products, materials, and manufacturing
processes with particular types of seeable surface defects. For instance, injection-moulded
components may tend to present undesired sink. Similarly, cutting, grinding, and polishing
operations may produce characteristic surface markings, including an altered texture and
excessive burrs due to tool wear or the inclusion of foreign abrasive materials. It is important
to appreciate that in each case, in addition to possible surface discoloration, these defects tend
to induce a deviation in the component’s surface shape away from its nominal form. The
nature of this deviation, or this type of expected defect, is often somewhat predictable. If, in
addition, a causal mechanism can be identified, then a quantitative analysis of such defects
may be used as a basis for automatic process control. These surface defects can not only be
recognized with machine vision technologies, but can also be classified with pattern

recognition methods. This thesis does not speak to these methods.

The remainder of this thesis presents a theory and method for the geometric inspection of
nonrigid parts. Chapter 1 gives a comprehensive literature review of the necessary fields.
Chapter 2 gives theoretical foundations in metric and discrete geometry, as well as fast
marching methods and multidimensional scaling. In Chapter 3, material is compiled and we
present a methodology to measure the geometric deviation of nonrigid bodies. Chapter 4

gives verification to these methods and sample problems.



CHAPTER 1

REVIEW OF PREVIOUS RESEARCH
1.1 Geometric inspection of flexible parts

Traditional tolerance analysis methods, such as Root Sum Square method and Monte Carlo
simulation (Creveling (1997)), are not applicable to compliant parts such as sheet metal
assemblies because of possible part deformations during the assembly process. Over the past
years, different methods have been presented to predict dimensional variation on flexible
parts, especially on sheet metal assemblies. Most of the methods are based on the Finite
Element Method. Liu and Hu (1997) presented a model to analyze the effect of component
deviations and assembly spring-back on assembly variation by applying linear mechanics and
statistics. Using FEM, they constructed a sensitivity matrix for compliant parts of complex
shapes. The sensitivity matrix established a linear relationship between the incoming part
deviation and the output assembly deviation. Chang and Gossard (1997) presented the
transformation vectors to describe variation and displacement of features. They modeled the
parts and tooling as groups of features. The method represented the interaction between parts
and tooling by contact chains. A contact modeling algorithm implemented into the Method of
Influence Coefficient to prevent penetrations between parts has been presented by Dahlstrom

and Lindkvist (2007).

Non-contact 3D digitizing systems exposed a new horizon in geometric inspection of both
rigid and nonrigid parts, because they deliver much more data than mechanical probes, in a
shorter time. Weckenmann and Gabbia (2005) proposed a measuring method using virtual
distortion compensation. Fringe projection systems are suitable for the fast and contact free
measurement of parts without clamping. They used the measurement result to extract features
of the object like holes or edges. Some of these were relevant for the assembly process;
others were subject to further inspection. From the information about the transformation of
the assembly features from their actual to their nominal position, virtual distortion

compensation was used to calculate feature parameters of the distortion compensated shape.
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Their method was not completely automated because the suggested method needed some
human challenges to identify the correlation between some special points like holes and
assembly joint positions. These led the controller to find the boundary conditions of the FEM
problem. Besides, transforming the point cloud to a computer aided analyzable model is a
very time-consuming process. It seems that this method is not suitable for really flexible
parts because they have not considered the effect of gravity and the 3D situation which the

part has scanned.

The concept of the Small Displacement Torsor (SDT) has been developed by Bourdet and
Clément (1976) to solve the general problem of the fit of a geometrical surface model to a set
of points using rigid body movements. Lartigue, Thiebaut et al. (2006) took advantage of the
possibilities offered by voxel representation and SDT methods for dimensional metrology of
flexible parts. This time, they considered the effect of gravity and spatial situation of a
scanned part. This method is fundamentally based on finding the correlation between the
cloud of all measured points and CAD meshed data. In fact, the SDT is more suitable for a
small deformation. More accurate results can even be achieved if one considers the effect of

material flexibility.

Abenhaim, Tahan et al. (2009) developed iterative displacement inspection (IDI) which
smoothly deformed the CAD mesh data until matched to the range data. Their method was
based on optimal step nonrigid ICP algorithms (Amberg, Romdhani et al. (2007)). The
proposed IDI method was full of limitations. Their method was not tested in non-continuous
areas such as holes, and the point cloud needed to be dense enough because the method’s
similarity measure was only based on the nearest distance calculation. The major flaw of this
method was hidden in the fact that it strongly depended on finding some trials and prior
flexibility parameters which could vary depending on thickness. Furthermore, the method
supposes that the boundary of measured parts is without defect so the method is not suitable
in the case of shrinkage. The mentiqned drawbacks cause the IDI to be ineffective in real

engineering applications.
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Including part compliance with intrinsic geometry of surface in metrology of free-form

surfaces, is an area of research pioneered in this thesis.

1.2 Rigid and nonrigid surface registration

Parallel to mechanical engineers but in different fields like Computer science, Biomedical
engineering and Pattern recognition, tons of research has been done on Rigid and Nonrigid
Registration and deformable surface comparison domains. Besl and McKay (1992)
developed an iterative method for the rigid registration of 3D shapes. The idea behind the
iterative closest point (ICP) algorithms is simple: given two surfaces, X and Y, find the rigid
transformation (R, #), so that the transformed surface Y'= RY + ¢ is as ‘close’ as possible to
X. ‘Closeness’ is expressed in terms of some surface-to-surface distance d (RY + t, X). More

precisely, ICP can be formulated as a minimization problem:
d 1cp(X, Y) = min R,,d(RY“"I,X) (1.1

This algorithm differs in the choice of the surface-to-surface distance d (Y X) and the
numerical method for solving the minimization problem. The ICP algorithm is one of the
common techniques for refinement of partial 3D surfaces (or models) and many variant
techniques have been investigated. However, searching the closest point in the ICP algorithm
is a computationally expensive task. In order to accelerate the speed of closest point
searching, some search techniques are commonly employed. Many variants of ICP have been
proposed, affecting all phases of the algorithm - from the selection and matching of points, to
the minimization strategy. The correspondence between points is usually performed by a
nearest-neighbour search using a k-d tree structure for optimization (Bentley (1975)). The k-
d tree is a spatial data structure originally proposed to allow efficient search on orthogonal
range queries and nearest neighbour queries (Bentley (1975)). Greenspan and Godin (2001)
proposed a significant improvement in the nearest neighbour queries by using
correspondences of previous iterations of the ICP and searching only in their small

neighbourhood to update the correspondences. Another important strategy to speed up the
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registration process uses sampling techniques to reduce the number of points in the views

(Rusinkiewicz and Levoy (2001)).

Myronenko, Song et al. (2007) introduced a probabilistic method for rigid, affine, and
nonrigid point set registration, called the Coherent Point Drift algorithm. They considered
the alignment of two point sets as the probability density estimation, where one point set
represents the Gaussian Mixture Model centroid, and the other represents the data point.
They iteratively fitted the GMM centroids by maximizing the likelihood and found the
posterior probabilities of centroids, which provide the correspondence probability. The
method based on forcing the GMM centroids to move coherently as a group, preserved the

topological structure of the point sets.

Schwartz, Shaw et al. (1989) were the first that used Multidimensional Scaling (MDS)
methods to flatten the curved convoluted surfaces of the brain in order to study functional
architectures and the neural maps embedded in them. For some, their work was a
breakthrough in which surface geometry was translated into a plane. But the plane restriction
introduced deformations that actually prevented the proper matching of convoluted surfaces.

This problem can be solved if higher dimensions of the embedding space are considered.

The Fast marching method was introduced by Sethian (1996) as a computationally efficient
solution to Eikonal equations on flat domains. A related method was presented by Tsitsiklis
(1995). The fast marching method was extended to triangulated surfaces by Kimmel and
Sethian (1998). The extended method solved Eikonal equations on flat rectangular or curved

triangulated domains.

Elbaz and Kimmel (2003) presented a blend of topology and statistical methods, to introduce
the concept of Invariant signature for surfaces. Their method was based on fast marching on
triangulated domain algorithm followed by MDS technique. They have practically
transformed the problem of matching isometric-nonrigid surfaces into the problem of

matching of rigid surfaces. Using MDS, they embedded surfaces X and Y into some common
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embedding space Z called Canonical form and then measured the similarities using the
Hausdorff distance. Their method is strongly based on the Kimmel and Sethian (1998)

method in computing the geodesic distance on triangular meshes.

Mémoli and Sapiro (2005) proposed a computational framework for comparing sub-
manifolds given as point clouds. They considered permutation distance (dp) the
approximation of the Gromov-Hausdorff (dgy) distance which has been embedded in a
probabilistic framework. dp can be considered as a particular discrete case of Gromov-
Hausdorft distance .Their idea was based on selecting sub-samplings of the given point

clouds, the distance between which could be related to the Gromov-Hausdorff distance.

In fact, Euclidean embedding is rarely without distortion. Cox (2000) showed how points of
a configuration from a non-metric MDS can be forced to lie on the surface of a sphere.
Replacing the Euclidean geometry of the embedding space with a spherical one usually gives
smaller metric distortion but this distortion is still not zero. Bronstein, Bronstein et al. (2006)
proposed a method. Instead of embedding X and Y into some common embedding space that
introduced inevitable distortions, they embedded X directly into Y. In spite of the Elbaz and
Kimmel (2003) method, they did not use canonical forms anymore and the distance between

two surfaces was obtained from the solution of the embedding problem itself.



CHAPTER 2

THEORETICAL FOUNDATIONS

In this chapter, we introduce theoretical foundations that will allow us to formulate properties
of nonrigid shapes.

2.1 Metric spaces

Definition 1: Let X be an arbitrary set. A function d: X x X — RuU{e} is a metric on X if
the following conditions are satisfied for all x,y,ze X .

(1) Positiveness: d(x,y)>0 if x# y and d(x,x)=0.

(2) Symmetry: d(x,y)=d(y,x).

(3) Triangle inequality: d(x,z)<d(x,y)+d(y,z).

A metric space is a set with a metric on it. In a formal language, a metric space is a pair (X,
d) where d is a metric on X. Elements of X are called points of the metric space; d(x, y) is
referred to as the distance between points x and y.

Unless different metrics on the same set X are considered, we will omit an explicit reference

to the metric and write “a metric space X instead of “a metric space (X, d).”

Definition 2: Let X and Y be metric spaces with metrics dy and dy. A map f: X — Y'is called
distance preserving if for any a,b € X one has d(f(a), f(b))=dX(a,b). Such a bijective
distance preserving map is called an isometry, and two metric spaces related by such a map

are referred to as isometric.

Definition 3: Let X and ! be metric spaces and f: X — Y an arbitrary map. The distortion of
f is defined by:

dis /' = sup|d,(f(a), f(b))-d (a,b)| (2.1)

a.beX
The distance dx(a,b) between a pair of points in X is mapped to the distance dy (fla), Ab))

between the images of a and b under f.
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Definition 4: Let X be a length space. A curve y:7 — X is called a geodesic if for every
t € I there exists an interval J containing a neighbourhood of  in 7 such that 7'. , 1s a shortest

path. In other words, a geodesic is a curve which is locally a distance minimizer (i.e. a

shortest path).

Definition 5: Let A and B be subsets of a metric space (Z'a’z).' The Hausdorff distance
between 4 and B, denoted by dy (4, B), is defined by:

d, (A,B)=max supd,(a,B),supd, (b, A) 2.2)
eB

aeAd h

Definition 6: Gromov-Hausdorff distance between two metric spaces (X, dx) and (Y, dy) is

defined as:
dyy (X,Y)=inf {d, (X, Y)} | 2.3)

where the infimum is taken over all (semi-)metrics on X U ¥ extending the ones of X and Y.

dgn satisfies the triangle inequality, i.e. ,
dGH(XI’X3)Sd(?H(XI’X2)+d(]H(XZ’X3) (24)

for any metric spaces X , X, , X3. Moreover dgy (X, Y) = 0 if and only if X and Y are

isometric.

Definition 7: Let R be a correspondence between metric spaces X and Y. The distortion of R

is defined by:
dis R= sup{|a"Y (%, x")y—d, (y,y')| (), (x ¥y e ER} (2.5)

For any two metric spaces X and Y,
dey (X,Y) :%il%f(dis R) (2.6)

where the infimum is taken over all correspondences R between X and Y .
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22 Point cloud techniques

A point cloud is a set of vertices in a three-dimensional coordinate system created by 3D
scanners. Point clouds themselves are generally not directly usable in most 3D applications,
and therefore are usually converted triangle mesh models, NURBS models, or CAD models.
Numerical geometry is the branch of computer science that studies algorithms and data

structures for problems stated in terms of geometrical objects.

2.2.1 Smoothing of noisy data

There are two types of digital measurement techniques: contact measurement using a
coordinate measuring machine (CMM), and noncontact measurement, such as laser and
optical scanning. Non-contact measuring methods are of a significantly higher speed and
have been widely used. Unfortunately, some of the point cloud data obtained by non-contact
approach do not reflect the right location on the real surface due to physical noise added by
the technical scanning device. It is necessary to smooth point cloud data in the inspection of
free-form surfaces, because noisy points will have a negative influence on the post-
processing of this data. The big problem in smoothing point cloud data is how to solve the
dilemma between removing noisy points while preserving the underlying sampled surface, in
particular its fine features. Denoising the ranged data can be applied either before or after
mesh generation. The advantage of denoising the mesh rather than a point cloud is that the
connectivity information implicitly defines the surface topology and serves as a tool for fast
access to neighbouring samples. It is evident that the noise in range data will affect the
proposed methods, but study of these effects as well as the diverse smoothing methods may

be the subject of future research. In this thesis we will deal with noiseless data.

2.2.2 Point cloud sampling

Imagine that we were to establish a number of TV/ radio stations all over Quebec. On one
hand, the stations would have to be placed sufficiently densely to provide good coverage of

the territory. On the other hand, the installation of each station costs millions of dollars.
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Therefore, we are interested in having the network as sparse as possible. Sampling is one of
the most basic problems in discrete surface representation. On one hand, in order to better
represent the underlying surface, we prefer the sampling to be as densely as possible, and on
the other hand, we need to keep in mind that the discrete representation is used by computer
algorithms, and every additional point increases storage and computational complexity costs.
Let’s continue with our TV/ radio station problem. We start by placing the first station at a
point x;. The second station should be placed as far as possible from the first one:

x, =argmaxd, (x,x,) 2.7)

xeX

The third station will be placed at the maximum distance from x; and x», i.e.,

x, =argmaxd, (x,{x,,x,}) (2.8)

xeX
and so on. The described algorithm is well known as the farthest point sampling (FPS)

algorithm and summarized below:

e [nitialization : X'= {x; x;€ X} , d(x) = dx(x, x)).
e @ Determine sampling radius e

r=max d,(x,X")

o Ifr <7 arge stop.
e Find the farthest point from X’

x'=argmaxd,(x,X")

xeX

ey @ add x t0 X7

Algorithm 1 Farthest point sampling algorithm.

In our example we can approximate dy (x; x;) as Euclidean distance; this conveys the
extrinsic geometry of the surface. However, because a surface is also characterized by an
intrinsic geometry such a discretization, it is incomplete until the length and the metric
structures are also discretized. In other words, we should approximate the intrinsic geometry

of our surface. This will be discussed in upcoming sections.
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2.2.3 Fast marching method

In this section we are going to compute the geodesic distance in a discretized surface. This is
extremely important to approximate the intrinsic geometry of our surface. If our sampled
domain is dense enough, one idea is to approximate the geodesic distance between points
with the famous Dijkstra’s shortest path algorithm (Dijkstra (1959)). In fact, the shortest
path computed by Dijkstra’s algorithm does not always lead to the real shortest path. This
inconsistency is due to the fact that we are allowed to move in the graph only parallel to the

axes.

Figure 2.1 Shortest paths computed by Dijkstra’s algorithm.

As shown in Figure 2.1, the shortest paths computed by Dijkstra’s algorithm (solid black
lines), between A and B never converge to the true shortest path (dashed line). This implies
using another algorithm, without being restricted to the edges. Such algorithms, called the
fast marching method, were introduced by Sethian (1996). Sethian’s fast marching method is
a numerical algorithm for solving the Eikonal equation on a rectangular orthogonal mesh.
Later on, Kimmel and Sethian (1998) extended the fast marching method to triangulated

domains with the same computational complexity. Here, we focus on the latter algorithm.
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Consider a boundary, either a curve in two dimensions or a surface in three dimensions,
separating one region from another. Imagine that this curve/surface moves in a direction
normal to itself (where the normal direction is oriented with respect to an inside and an
outside) with a known speed function F. Given F and the position of an interface, the
objective is to track the evolution of the interface. Assume for the moment that F' > 0, hence
the front always moves outward. One way to characterize the position of this expanding front
is to compute the arrival time T(x, y) of the front as it crosses each point (x, y), as shown in

Figure 2.2.

Outside

Figure 2.2 Calculation of crossing time at (x, y) for expanding front F > 0.

The equation for this arrival function T(x, y) is easily derived. In one dimension, using the

fact that distance = rate * time (see Fig 2.3), we have the following:
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Figure 2.3 Setup for boundary value formulation.

In multiple dimensions, VT is orthogonal to the level sets of 7, and, similar to the one-

dimensional case, its magnitude is inversely proportional to the speed. Hence:
IVT|F=1, T=0onT (2.10)

where I is the initial location of the interface. Thus, the front motion is characterized as the
solution to a boundary value problem. If the speed F' depends only on position, then the
equation reduces to what is known as the Eikonal equation. So our goal is to construct
algorithms to solve the Eikonal equation. The following approximation of the gradient
magnitude results in a monotone scheme that selects the viscosity solution (Rouy and Tourin
(1992)): |

12

max(D'T,-D"'T,0)’

1k ik

+max(D;/T,-D,/T, 0y | =

1k

+max(D . T,-D*T,0)

ik 1k

1
— (2.11)
E/k

The standard methods for the boundary value view require iteration. Sethian described Fast
Marching Methods, which allow one to solve the boundary value problem without iteration.
Technically, it is a dynamic programming sequential estimation method, very similar to
Dijkstra’s algorithm. Fast marching keeps for each point x on the mesh the time of arrival
d(x) of the wave front originating in x, (Figure 2.4). We can freely switch between the path
length and arrival time. The initial approximation of d(x) is, like in Dijkstra’s algorithm, zero

at xo and infinity elsewhere. The algorithm classifies the points of the mesh into three
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categories: Alive, Close and Far. The Fast Marching Method algorithm is as follows: first,
tag points in the initial conditions as A/ive. Then tag as Close all points one grid point away.

Finally, all other grid points are tagged as Far.

(x0) = 0, mark it as alive.
Initialize : <4 d(x) = oo, for other points and mark them as far.
ueue of close points Q = Q.

=== Mark far neighbors of alive points as close (add to Q) ===

e For each close point x <
. For each triangle sharing the point x
» Update x from the triangle

e Mark x with minimum value of d as alive (remove from Q)

—===p> ® Stop when all points become far.

e Return distance map d(x) = dy (x, x)

Algorithm 2 Fast marching algorithm.

The main difference with Dijkstra’s algorithin is hidden under the update step. In Dijkstra’s
algorithm the path was restricted to the graph edges, and a graph vertex was updated each
time from an adjacent vertex. In fast marching, because the path can pass through the
triangular faces of the mesh, a vertex has to be updated from a triangle, requiring two

supporting vertices.

Suppose that the front reaches to x; at time d,; and to x; at time d, (Fig 2.4). Now we want to
estimate the time when the front arrives to x3. The discretization of the Eikonal equation,

considering a linear approximation leads to the following quadratic equation:
d; 1" 01-2d,.1"0d +d"Qd -1=0 (2.12)

Where d=(di,d2)’ ,V=x) ,1=1,1) and 0= )",



Without going into detail, this entire update step can be summarized in Algorithm 3.

<x,-n>+p=0

-n d3\ X3
d1 k d2
X1 ®— e )
/’ ds
di ‘ d>

<x,n>+p=0

Figure 2.4 Quadratic equation is satisfied by both n and —n.

Solve the quadratic equation and select the largest solution:
d;. 1" 01-2d,.1"0d +d"Qd -1=0
Compute the front propagation direction:
n=V"(d-d,.1)
if OV'n<0
d(x3) = min{d(x3), d5}

d; = min{di+ |[x1 - x3|l2, dot |Jx2 - x3]|2}

Algorithm 3 Fast marching update.

28
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We applied both the fast marching method and Dijkstra’s algorithm to our first case study,
between two arbitrary points, and the results are presented in Fig. 2.5. The green line
represents Dijkstra’s algorithm which results in 2.1098 m and never converges to the red line

calculated by the fast marching method. The shortest path calculated by FMM is 2.0427 m.
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Figure 2.5 Comparison between FMM and Dijkstra's algorithm.
2.3 Isometric embedding

As we said in section 2.1, intrinsic geometries rest unchangeable compared to isometric
deformations. In order to compare nonrigid shapes we should look at their intrinsic

geometries. Consider the shapes in Fig. 2.6 as metric spaces. Shapes (b) and (c) belong to

the same metric space R’. Therefore, we can measure their similarity using the Hausdorff
distance, which leads us to a well-known ICP algorithm. Now consider the shapes (a) and (b)
with the geodesic metrics dy and dy respectively. In this case, we have two different metric

spaces (X,dy) and (Y,dy) which cannot be compared using Hausdorff distance. In other words,

Hausdorff distance is not isometry-invariant.
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Now, consider the shape (X,dx), and a map like: f:(X,d,)—> (R",d,,) such that:

d(x,x") =d, (f(x). f(x) (2.13)
for all x,x'e X. Amap like f is an isometric embedding and space like R" called as

embedding space. The term canonical form, computed as Hausdorff distance between the
minimum distortion embeddings of two shapes X and Y into some common metric space
(Z,dz), are used as well. In fact, canonical form is the extrinsic representation of the intrinsic
geometry of shape X, and using this, we can transform our nonrigid shape similarity into the
rigid similarity problem. We used R® (m = 3) as embedding space, but this method can be

generalized to any embedding space. However, the problem is whether a shape like X is

isometrically embedded into R".

Intrinsically similar

“Extrinsically similar ~

Figure 2.6 Difference between intrinsic and extrinsic similarity.

In real world applications, the answer is usually negative. Recalling our knowledge of
differential geometry, we know that Gaussian curvature is an intrinsic invariant of a surface.
As an example, a sphere of radius r has constant Gaussian curvature which is equal to /7%,
At the same time, a plane has zero Gaussian curvature. As a corollary of Gauss'Theorema

Egregium (Latin: "Remarkable Theorem"), a piece of paper cannot be bent onto a sphere
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without crumpling. Conversely, the surface of a sphere cannot be unfolded onto a flat plane

without distorting the distances.

Although a truly isometric embedding of shape X is not always possible, we can try to
construct an approximate representation of X minimizing distortion as we defined in

equation (2.1):

dis f = supr|dm,,l (f(x), f(x'))—d‘\,(x,x')' (2.14)

x,x'eX
In our point cloud setting, where the shape X is sampled at N points {x;xy, ..., xy}, the

distortion criteria will be:
o= max |d,. (f(x). f(x) =y (x.%)) (2.15)

The function ¢ which measures the distortion of distances is called stress. As a routine o, is

used as the distortion criterion. Considering Z; = flx;) an N xm matrix of canonical form
coordinates and d, (Z2)=d,,.(z,,z,):

0,(Z:D,)=3|d (Z)~d, (x,.x)| (2.16)

>
Where Dy = dx(x;, x;) is a N x N matrix of geodesic distances and dj(Z) is the Euclidean
distance between the points on the canonical form. Using this formulation the coordinates of

discrete canonical form is the solution of nonlinear least-squares problem:

Z' =argmino,(Z) (2:17)

ZeRM™
and the minimization algotithms known as Multidimensional scaling that are closely related

to dimensionality reduction.
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Figure 2.7 Applying the SMACOF algorithm to the first case study.

Elbaz and Kimmel (2003) used a SMACOF algorithm to minimize stress function. In Annex
II, we have represented MATLAB codes applied to our first case study. We tried to construct
an approximate representation of our first case study, minimizing the distortion. Sampling the
part with 1267 vertices and with 20 iterations, we reduced the stress from 1.87e+4 to 168. Fig
2.7 represents the results of this applied method. In the next section we are going to look at

some deep aspects of the GMDS algorithm.

24 Generalized multidimensional scaling

The idea is to find the minimum distortion embedding of X into Y which allows us to
quantify the dissimilarity of the intrinsic geometries of two surfaces. The lowest achievable

distance can be demonstrated as embedding distance:

dE(Y,X)=f})1(1£>ydlsf (2.18)
Remind the prototype MDS problem with g, stress as:
5 2
_min_| Dl (Z,.2,)~d (x,,x)| (2.19)
- NE ]

Here the minimizer is the canonical form of the shape X and the minimum is the embedding
distortion (03). In practice, the distortion is non-zero, but yet it can be reduced by finding a
better embedding space. Cox (2000) showed how points of a configuration from non-metric

MDS can be forced to lie on the surface of a sphere. Replacing the Euclidean geometry of the
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embedding space with a spherical one usually gives smaller metric distortion, but still this
distortion is not zero. Bronstein e al. (2006) proposed a method. Instead of embedding X
and Y into some common embedding space Z that introduced inevitable distortions, they
embedded X directly into Y. In other words, they embed X into ¥ by solving the following

problem:

min_ > ld, (' y" )=, () (2.20)
S N ’>/

y

We denote the image of x; in Y as y’;,. The minimum stress value measures how much the
metric of X should be distorted in order to fit into Y. Now there is no more need to compare

canonical forms and the dissimilarity is obtained directly from the embedding distortion.

At first glance GMDS seems like an extraordinary idea for isometric invariant surface
matching problems. But in practice it presents a new set of challenges. Unlike the Euclidean
or the spherical cases, we have no more closed-form expression for d,(y/, y;) and metric
needs to be approximated as y’; are the optimization variables. Consider Y sampled at Y, =
{»1,....ym} and represented as a triangular mesh 7(Y),) So any point y' € Y,, falls into one of

the triangles ¢, € T (¢; is the triangle index). Using the convex combination of triangle vertices

x’,,x w, 2 %

ha? ’.,3:
¥ 2 3
Y, =ux, upx, +ux, (2.21)

where u' +u’+u’ =1 and ' =(t,u) are Barycentric coordinates. Especially for
complicated surfaces, finding an accurate continuous global parameterization is probably
impossible, so a local parameterization is presented, although it is needed to handle discrete
indices t; in minimization algorithm. Using FMM, distance terms dx(x;, x;) can be
precomputed; the question is how to compute distance terms d, (y/,y’) . Bronstein, Bronstein

et al. (2007) proposed the three point geodesic distance interpolation. They precomputed
(Dy); = dy(yi, y;) and in a four-step approach showed that:

dy(y,y)=u" D, (1,1 2.22)



Using the previous equation and substituting in the generalized o, stress function,

o) = (dy (x,,x, )=’ Dy (1,1 Y )

Stress as a function of v, is quadratic: o(u,) =u' Au, +2b'u, +¢, which,

A= "D (t.t)uu Dy(t.1,)

J#1

b==Y.d,(x,.x,)D,(i,.t )u,

J#i

i :dez(x,,xl)

J#

The closed-form solution for minimizer of o (u;) is:

* . _ - T T
u, =argmino(u,)=argminu, Au+2b u+c,

u; u;
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(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

In order for such a solution not to be outside the triangle, the minimizer should be so that,

u; > 0 and u' +u’+u’ =1. Without going into detail, the least square GMDS can be

summarized in Algorithm 4.

Initialize {u,, t;}

e Fori=1,...N

e Compute 4,, b; and the gradient of the stress function g, =Vo(u,)
e Select i corresponding to max | g ||

e Compute minimizer

u, =argmino(u,)

u; 20

e Move to adjacent triangles

>

e [terate until convergence <

Algorithm 4 GMD
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In Figure 2.8 we tried to construct a simplified representation of all the algorithms presented
until now. The total number of point clouds in two shapes X and Y are represented by » and
m, respectively. Dy and Dy represent symmetric matrixes of pairwise geodesic distances with

a; = 0, calculated by fast marching method.
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Figure 2.8 Simplified representation of similarity measure.



CHAPTER 3

NONRIGID GEOMETRIC INSPECTION
3.1 Geometry of flexible parts

Free-state variation is a term used to describe part distortion after the removal of forces
applied during manufacture. This distortion is principally due to the part’s weight and
flexibility and the release of internal stresses resulting from fabrication. A part of this kind,
for example, a part with a very thin wall in proportion to its diameter, is referred to as a
nonrigid part (ASME Y14.5). As a state of weightlessness is rarely possible, the shape of an
assembly component is generally defined in the use state when joined with other parts. This
use state defines the boundary conditions, which will define the constrained geometry. When
the boundary conditions are applied to the theoretical free shape, the geometry of the
assembled component is identical to a CAD model and this theoretical free shape can be
analyzed with finite element method. The actual free shape is not as the same as a theoretical
free shape, because it is not possible to elaborate its exact geometry; it includes geometric

deviation.

Two methods are defined for the tolerancing of flexible parts according to ISO 10579 and

ASME Y14.5: tolerancing at the free-state and tolerancing under constraints. Three

indications must be taking into consideration:

1) Condition of boundary constraints, such as assembly constraints and/or external forces,
including gravity.

2) Acceptable deviations at the free-state.

3) Acceptable deviations at the constrained state.

The free-state does not correspond to the state of weightlessness which we named free shape.
Besides, in ISO 10579, the position of the part in regard to the direction of the gravity is
clearly defined and it is notable that the tolerance values are greater in the free-state than in

the constrained state which generally corresponds to the use state. (Fig 3.1)
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Indication sur le dessin Interprétation
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ISO 10579-NR

Condition de contrainte: |a surface repérée A est montée (avec 120 boulons
M20 serrés avec un couple de 18 N'm 3 20 N'm) et I'élément repéré B est
contraint 2 la limite maximale du matériau correspondante.

Figure 3.1 Indication and interpretation of ISO 10579.

The condition that occurs when a cold-worked metal part has a tendency to partially return to
its original shape is called spring-back. This is because of the elastic recovery of the material

when the forming force is released. This severely affects the dimensional accuracy of the
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part. Figure 3.2 schematically illustrate the effects of spring-back during dimensional

metrology.

free-shape
free-state
springback
(no gravity)
direction of
gravity

Figure 3.2 Effect of spring-back during geometrical inspection.

Levy (1984) indicated that Traditional trial-and-error methods are time-consuming and
expensive, while empirical rule-based adjustments for spring-back are not usually applicable
to complex geometries or materials without a large database of experience. Non-finite-
element analytical methods have been applied to spring-back in die forming, often with
limitations. Nowadays, finite element methods are used for analysing and predicting spring-
back. Due to the fact that Spring-back is sensitive to a range of material and process
parameters, such as strain hardening , evolution of elastic properties , elastic and plastic
anisotropy and the presence of a Bauschinger effect (Li, Carden et al. (2002)) using these
predicts in geometrical metrology may affect the accuracy of measurement. The quantity of
this influence needs additional research. But what is clear is that doing finite element analysis
for each production process is related to knowing the forming tool specification. For
analysing complicated surfaces this is a very time-consuming process. However, the

proposed inspection method should be capable of explaining the material behaviour during
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registration between free-state (point cloud) and free-shape (nominal CAD date) states

effectively.

As we discussed before, the compliance of a part is determined by the material properties and
the geometry. Generally speaking, as shown in Fig. 3.3, three zones can be specified. Talking
about the borders of these areas is a very vague concept, but in general, for the parts in “Zone

C” the spring-back effect is negligible in comparison to the gravity effect.

)% Rigidity
L e Flexibility
v B e
100%
Zone C

Figure 3.3 Classification of rigidity of parts.

Computer aided inspection methods used for geometric inspection of parts at zone A are
based on rigid surface registration algorithms, such as the well-known ICP algorithm. In the
next two sections we are going to develop a general methodology concerning materials

belonging to zones C and B, respectively.

3.2 Identification of geometrical deviation

Various computer aided design and analysis softwares allow the inspector to easily obtain the
point cloud from a CAD model. Assuming the availability of a scanned point cloud, our goal
is to register two clouds of points. The first belongs to a CAD model and the second belongs
to range data obtained in free-state. For flexible parts and before scanning, one should take
into consideration the effect of spatial positioning (part set-up) in the final geometrical form
of scanned data. Without knowing this important fact (gravity direction), serious errors in
results can be predicted. Thus, before scanning, the part is set-up onto reference support

points in which their position is clearly defined within the part frame. Note that, the set-up
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must not be over constrained, unless otherwise specified according to designer demand (ISO
10579). In this case, the same constraints must be taken into consideration during finite

element analysis.

Let x;, x, be the theoretical points obtained within a CAD model, and x;, x, the
correspondence obtained from a finite element analysis and finally y;, y; be the

correspondence of two premier points in range data as shown in Figure 3.4.

N (X

Figure 3.4 Measured point vs. FEM analysis and CAD data.

Assuming linearity, for the geometrical deviation, the following equation can be derived:

[Rreal] = [Rmeasured] - [Rtheorical] (31)

witich [Rupegsuced] = X y',-_is the geometrical deviation between point clouds of CAD model
and the measured surface. [Ryeorical] = X x; is resulted from the finite element simulation of
part in free-shape state in addition to gravity. As mentioned before, the same set-up
constraints applied into scanning process must be taken into consideration as boundary

conditions. At this stage real geometrical deviation [R,.,] can be calculated.
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Correspondence between x; and x;” is evident; the challenge is how to find the y’; which
corresponds to x;. Let X and Y be metric spaces with metrics dx and dy; the first correspond
to a free-shape CAD model and the second to scanned range data. Due to the fact that x, and
yi belong to two different metric spaces; similarity measure cannot be computed using
Hausdorff distance algorithm. Remember that our deformation is a distance- preserving one,

that is to say d,(x,,x,)=d,(y/,y}). Thus, our goal is to find a mapping like f: X — Y, by
solving the following problem:

mil\ )VZ‘dy(y',,y'j)—d_x,(xl,xj)r (32)
=

Yieay've

where the y; is the image of x; in Y. The minimum stress value measures how much the
metric of X should be distorted in order to fit into Y. To this end, GMDS can be used to find
the correspondence between simulated CAD and scanned clouds of points. Dy = dx(x;, x;) and
Dy = dyy,, y;) are the nx3and mx3 matrix of geodesic distances computed by fast
marching method in triangulated surfaces. Note that embedding process do not need primary
surfaces registration (X and Y are different metric spaces). In this case, registration will be
done on reference support points in which the position is clearly defined within the part
frame, and this will occur before a geometric deviation calculation. Also note that a meshed
CAD-model and scanned workpiece may have a different number of vertices. In this case, as

discussed in chapter 2.4, a three point geodesic distance interpolation must be applied.

33 New definition for maximum geometric deviation

Normally the maximum deviation for geometric inspection is defined as the distance from a
sensed point to the substitute element. Nowadays as there is no similarity measure tool
between the CAD-model and range data the computer aided inspection software usually uses
the maximum point-to-surface distance for maximum deviation calculation. GNIF, which
will be presented in the next two chapters, will give us the capacity to deal with actual point-
to-point geometric deviation. Fig 3.5 demonstrates the difference between the two kinds of
geometric deviation calculations. The blue dimension line represents conventional geometric

deviation and the red one represents actual geometric deviation.
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Figure 3.5 Actual and conventional geometric deviation.

34 Numerical inspection fixture

In today’s industry, for geometric inspection of flexible parts, inspection fixtures in
combination with coordinate measuring systems (CMM) are used. Modular fixturing is an
essay for reducing the expensive costs of dedicated geometric inspection fixtures (Fig. 3.6).
The part is set-up on the fixture, simulating the use state. To this end, offset and center
locating elements together with CAD designed contour parts and quick clamps are used (Fig.
3.7). Their duty is to fix the distorted parts in a manner to eliminate the spring-back effects
simulating the use state. Regardless of the many essays about the automation of geometric
inspection process, 100% testing of all parts in mass production is impossible. In spite of
sampling inspection (statistical control) for geometrical metrology of such product, this is
still a time-consuming process. Our goal is to substitute the conventional fixtures with

numerical ones.



Figure 3.6 Dedicated inspection fixture for outer panel.
(BLUCO Corporation)’

CAD Designed Contour

Offset Locating Element

Universal Adapter Plate

30 Adjusting Element

End Plate
Cap Center Locating Element
Fixed Foot Plate Clamp
CAREIT*Profile i : Adjustable Foot Plate

Figure 3.7 Details of inspection fixture.
(BLUCO Corporation)’

3 http://www.bluco.com/
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To this end, the part is set-up onto reference support points for which the position is clearly
defined within the part frame. These points, as priori information, will be utilized as the
boundary condition, where it will simulate the gravity and support effect on the CAD-model.
The workpiece is scanned in a distorted state without a fixation device. Two ways are
possible to find the real geometrical deviation. The range data, including information about
the assembly of the workpiece is processed. With this information about the use state,
boundary conditions and the material properties, a FEM analysis is performed. The same
gravity direction is applied to a free-shape CAD model. In other words, we use CAD free-
shape model as a Numerical Fixture and processed range data will be fixed on it. The last
step is a comparison between fixed processed range data and numerical fixtures. For
complicated surfaces or surfaces with reinforced hidden ribs which are under scanned
surfaces, the segmentation and modeling of range data is as time-consuming as conventional
methods. Recent methods have been previously proposed by Weckenmann and Gabbia

(2005); we just added a gravity effect..

Distorted \
CAD-model workpiece
scanning
A Y
Gravity Pé?é?;isdseeld Supports Range data <\’:- Denoising
direction (using FEM) positions processing e Sampling
h 4 g
FEM Similarity \
A?s:mbly simulation of ———— measure using r—— Ggonjett.rlcal
Lije: CAD-model GMDS g el

Figure 3.8 Inspection process flowchart.
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Here we propose a second measuring methodology. Instead of using a free-shape CAD
model as a virtual fixture and modeling the range data (used for FEM analysis), a point cloud
of scanned data will be used as numerical fixture. With this method there is no need to resort
to the exhausting and time-consuming modeling process of range data. Pre-processed
measured data come together with a free-shape CAD-model. Note that the CAD-model
should be previously analysed, applying the gravity effect at the same direction as the

scanning process (Fig 3.8).

3.5 Generalized numerical inspection fixture

In a previous section we considered the assembly information as prior knowledge. Here we
are going to try without this information. To this end, the part is set-up onto reference support
points. As mentioned earlier, the position of these reference points are clearly defined within
the part frame. The workpiece is scanned in a distorted state without a fixation device.
Instead of using a free-shape CAD model as virtual fixture and modeling the range data (used
for FEM analysis) as in Weckenmann and Gabbia (2005), point clouds of scanned data will
be used as numerical inspection fixtures. In this way, there is no need for the time-
consuming segmentation and modeling process of range data. Preprocessed measured data
come together with a preprocessed CAD-model. Note that the CAD-model should be
previously analyzed, applying the gravity and support effects in the same direction as the
scanning process (Fig. 3.9).The transformations that map the preprocessed CAD-model
towards range data can be obtained by regular ICP method. In practice and at this stage, we
put the measuring part on the inspection fixture. In our methodology this range data plays the
role of inspection fixture and we call it: Numerical inspection fixture. Note that the
embedding process does not need primary surface registration, so the similarity detection can
take place before the rigid registration. The contour can be used for mapping the
preprocessed CAD-model into the range data. We call the mapping which is done by GMDS
and FEM, Nonrigid finite element registration. Generalized multidimensional scaling can be

used as isometry-invariant partial surface matching so there is no need for perfect contour
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hypothesis as in Abenhaim, Tahan et al. (2009). Defects due to geometric deviation can be

found after finite element nonrigid registration, eliminating the spring-back effect.

Also of note is that the meshed CAD-model and the scanned workpiece may have a different
number of vertices. Finally, this is notable in that internal stress after the assembly process

can be predicted with the proposed method.
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/ Distorted \\\

( CAD-model ) ( workpiece
A\ e \_ scanning /
¢ Simulation of Y v
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registration

A 4

Similarity Finite Element AGaometrical
measure using » Nonrogid —»& v
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Figure 3.9 Inspection process flowchart using GNIF.

For large deformations, as the similarity measure only depends on surface intrinsic geometry,
correspondence between the preprocessed CAD-model and'range data is still calculable. In
other words, similarity measure is independent from amount of deformation. This feature is
notable especially in huge parts with large range of deformations. The workpiece can be
scanned in a production line or it is indispensable for a fast scanning process. The other steps
are realized using a PC. Thus, there is no more need to stop production lines for testing a

workpiece.




CHAPTER 4

RESULTS

We have tested our methodology in a series of typical mechanical parts. This section presents
three sample case studies that evaluate performance and validate the methods developed in
previous sections. To this end, the free-form model is simulated by CATIA® and a finite
element analysis of the model is done using ANSYS® and MATLAB®. Point clouds of free-
form and free-state are simulated with a different number of vertices to evaluate the geodesic
distance interpolation. On one hand, in order to better represent the underlying surface
deviation, we prefer the point sampling to be as dense as possible. On the other hand, we
need to keep in mind that the discrete representation is used by computer algorithms, and
every additional point increases storage and computational complexity costs. To this end we
have used Voronoi tessellation in order to represent the sampled discrete nodes of (metric)
surface. Due to the fact that we have used the predefined deformation in range data
generation step, qualitative performance evaluation is effectively traceable. We have divided
our case studies in two categories for the parts belong to zone ‘B’ and 'C' (Figure 3.3).

Overall, the size and engineering properties of three case studies is represented in Table 1.
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Table 1 Overall size and engineering data.

1** case study 2" case study 3" case study

998x393x132
330x130x47 £=1
t=0.1
1400x1000x450 Young’s modulus = 2e+11 Pa
t=05 Poisson’s ratio = 0.3

Density = 7850 kg/m®
All dimensions in mm.

4.1 Geometric inspection in absence of spring-back

In this section we assume that a pén is set up on the reference points where the position is
clearly defined within the part frame. Then, the part is scanned in a distorted manner without
any fixation. A free-shape CAD model is processed applying gravity and other boundary
conditions such as support positions, much like in the real measuring process. We assume
that the workpiece belongs to the zone "C” which means the part is flexible enough so that
the spring-back effect is negligible. The similarity measure is calculated using GMDS. The
primary nonrigid registration is done using the same reference points as in the setup
procedure. Then the geometrical deviations are identified using the equation (3.1). We have
tested this methodology with two mechanical parts shown in Fig. 4.1 and Fig. 4.2. Only the
maximum geometric deviation is presented. The results are presented in Tables 2 and 3. For
better visualization, a sampled tessellated section of the part is illustrated in Fig. 4.3.
Geodesic distance interpolation enables us to accurately measure the similarity between CAD

and scanned data. There is still no exact nodal correspondence.
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Figure 4.1 First case study.

4.2 Second case study.
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Figure 4.3 Similarity measure between the CAD models

and range data.

Table 2 Numerical fixture verification

(1st case study)

Sampled R, (x10?)
points [m]

1.16
1.31

1.31975"

* .
Considered as reference value

Table 3 Numerical fixture verification

(2nd case study)

Sampled R, |, (x10?)
points [m]

50 1.03
500 1.15

1000 1.20
5200 1.2333"

* -
Considered as reference value
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4.2 Inspection results with GNIF

The aim of this section is to generalize what we have done in previous sections.
Furthermore, we consider the spring-back effect in the geometric inspection of flexible parts.
To this end, the part is setup in reference points and scanned in distorted manner. The
predefined spring-back was added to the same case studies as in previous sections. A more
sophisticated one, such as Fig 4.4, was generated. The same methodology as in the section
3.5 was applied. The transformations that map the preprocessed CAD-model towards range
data were obtained by a regular ICP method. A nonrigid finite element registration was
applied finding the correspondence between the CAD-model and range data on both the
contour areas. We remember that a GMDS is capable of isometry-invariant partial surface
matching. This means that the contour matching can be safely done in the existence of
deviation in the contour. The results are shown in Table 4. It should be mentioned that we
have used a meshed CAD-model and range data with a different number of vertices. But for

the process of computational speed both of them were sampled by Voronoi tessellation.

0.100 (m)

Figure 4.4 Third case study.



Table 4 GNIF verification

1" case study 2" case study 3 case study

Riacly [m] (x107)  Ryaely [m] (x102)  Riax]: [m] (x107)
' GNIF Results 0.96 (548,129)°  0.89 (485,139)  0.91 (889, 93)
o 1.29(1267,218) 1.29(1359,257) 1.10 (1164, 170)
133127 1.35 1.42

" The values between parentheses represent the part and contour sampled points respectively.

+ .
Considered as reference value.
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CONCLUSION

Including part compliance with intrinsic geometry of surface in metrology of free-form
surfaces is an area of research pioneered in this paper. We merged the technologies in metric
and computational geometry along with statistics and finite element methods to develop a
general approach to the geometrical inspection of nonrigid parts. This method enables us to
verify a diverse range of flexible parts without using special inspection fixtures. Although we
have tried to present convincing results, no method with such promise is likely to be widely
accepted until more practical testing can be done. Despite the fact that the proposed GNIF
method is quite efficient, there is plenty of work to do for future computational speedup and
accuracy. As a matter of fact, the proposed method is not a perfect and faultless substitution
for inspection fixtures and CMM reports. However, in real-time applications it can be used
for variational control of production lines so there will be no more need to stop production to

test a workpiece.

Comparison of methods

As a matter of fact, little research has been done in the field of computer aided inspection
comparing CAD/CAM, especially if the discussed field is nonrigid inspection. The witness
claim is the amount of software in the competitive computer- aided market. Generally
speaking, and as shown in the review of previous research, three distinguished research

projects have been completed in the field of nonrigid inspection.

In spite of the work done at the University of Erlangen-Niirnberg by Weckenmann er al.
(2005), our method does not need to transform the scanned data into a CAD-model. For
parts with varying thickness their method is particularly useless. Assuming uniform
thickness, the reverse engineering modeling of point clouds is a completely boring and time-

consuming process.
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The proposed method by Lartigue er al. (2006) at LURPA (Laboratoire universitaire de
recherche en production automatisée / université de Paris) uses the same setup points as in
the scanning process in rigid registration stages. Their proposed method does not consider
spring-back effect. This is expected for really flexible materials (Zone "C") but the problem is

that the nature of SDT is not suitable for large deformations.

Iterative displacement inspection method, developed at the Ecole de technologie supérieure
(ETS) by Abenhaim et al. (2009) includes the vast limitations. Continuity (surface without
holes, etc ...), thickness uniformity, and flawless boundaries are the essential prerequisites of
this proposed method. The major flaw in this method is hidden in the fact that the method
strongly depends on finding some trials and prior flexibility parameters which may vary
according to thickness. The mentioned limitations cause the IDI to be inefficient in real

engineering applications.

Limitations of GNIF

In the proposed inspection methodology, and for a full process automatization, we used the
contour for nonrigid, isometry-invariant, surface matching. In fact, this is the only way to
proceed when there is no prior knowledge of assembly joints and areas. This is not what to
expect for a vast range of engineering applications. For more crucial results, prior
information in assembly joints is needed. In production lines, and for each series of products,
this information is available, in spite of what is proposed by Weckenmann and Gabbia

(2005), full automatization of the inspection process is still available.

Contributions

The significant contributions made by this thesis include the following:

1) A comprehensive system was developed for the nonrigid geometric inspection of flexible
parts. Bibliographical research shows that we are the first to include the intrinsic

geometry of surface in the metrology of flexible parts.



2)

3)

4)

5)

6)

7)
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Two methodologies for dealing with flexible material inspection were proposed,

implemented and tested. The results were very promising.

Real engineering case studies including holes, radiuses, chamfers and sharp edges were
performed. The parts, as well as range data, were meshed with different meshing
strategies involving a different number of vertices. In this way, we were assured that
there is no exact correspondence between the vertices in a CAD-model and range data.

The then proposed methodologies were applied to these case studies.

Unlike the usual, we mapped the CAD-model into range data. As the mapping between
the range data and CAD-model was bijective-distance-preserving, there was no more
need to transform the point cloud into a computer aided analyzable model which is a very

time-consuming process.

Large deformations are completely normal, especially for huge parts such as automobile
and aircraft bodies. Where appropriate, large deformations were included into the case
studies. Generalized numerical inspection fixtures were implemented and tested. The

results were encouraging.

Unlike the methods presented by other authors using an embedding process, to find the
similarity between a CAD-model and range data (two different metric spaces), there is no
need for primary surface registration. This really speeds up the measuring process,

especially when we have prior information about the assembly process.

One of the significant specifications of generalized numerical inspection fixtures were the
capability for isometry-invariant partial surface matching. This means that contour

matching can be safely utilized in the existence contour deviation.
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8) It is of note that that the presented method is capable of predicting the produced stress
during the assembly process. This stress can be considerable for large deformations and

should be taken into account in some applications.

9) The presented method for the identification of geometric deviation enabled us to define a

new interpretation for maximum geometric deviation.



RECOMMENDATIONS

A new method has been developed and presented for the geometric inspection of flexible

parts using generalized numerical inspection fixture. Several topics that should be

investigated further arose during the course of this research. The most promising of them are

briefly described in this section. Future work in this area should expand and further verify the

new method.

D

2)

3)

4)

5)

6)

The GNIF method has been presented and verified in this paper using the case studies in
real engineering applications. Future work should develop more accurate geodesic

distance calculation in discrete domains, especially in the algorithm’s update stage.

Although in this paper we used the intrinsic geometry of surfaces for similarity measures
between discrete topologies, other methods like the Coherent Point Drift algorithm

should be verified as similarity measures.

With modern technologies such as laser scanners, millions of points presenting the
surface topology are accessible. This means that the simple Dijkstraalgorithm in graphs
may give the closest results in comparison with the fast marching method. This is

something that requires further research.

This work can be criticized because we dealt with noiseless data. It is evident that the
noise will affect the proposed method. This effect, as well as the effect of the diverse

smoothing methods, should be studied in depth.

Further deepening of this research would involve studying measuring uncertainty and

classifying it with surface extrinsic geometry.

Actually, this study may be criticized relentlessly due to a lack of practical experiments.

In spite of the fact that we tried to present persuasive results, especially for the second
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methodology (GNIF), there is no equivalent method for comparison and accurate
assessment. Future work should expand and verify our presented methods with practical

tests.

7) Finally we note that the same numerical framework can be used for computing form

geometrical tolerances (H.R.E and S.A.T., unpublished results).



ANNEX1

PUBLICATIONS

The publications created by this thesis include the following:

1) H. R. Esfahlan and S. A. Tahan, “Nonrigid geometric inspection using intrinsic
geometry,” in Proceedings of the CSME forum 2010 Victoria, 2010.

2) H. R. Esfahlan, J. F. Chatelain and S. A. Tahan, “Nonrigid geometric metrology using

generalized numerical inspection fixture,” Precision Engineering, 2010, “Unpublished”.



ANNEX II

SMACOF algorithm

%% Demonstration of multidimensional scaling using SMACOF
algorithm
load 1st case study

% embeding using SMACOF

X0 = [surface x.X,surface x.Y,surface x.Z2];
[X_smacof,hist smacof] = smacof (surface x.D,X0);
$ shows the results at each iteration

for k = l:length(hist smacof.time),

trisurf (surface x.TRIV,hist smacof.X{k}(:,1),hist smacof.X{k} (
:,2),hist_smacof.X{k}(:,3));
axis image; shading flat; lighting phong; camlight head;
pause (0.1) ;

%% SMACOF algorithm
function [X,hist] = smacof (D, XO0)
iter = 20; % number of iterations in SMACOF method

% initialize

iii = 1;
Z = X0;
X = X0;
D = squareform(pdist (X, 'euclidean'));

% initialize history

hist.s (1) calc _stress(X0,D);

hist.X{1l} = XO0;

fprintf (1, 'iter stress time (sec)\n')
fprintf (1, "INIT %12.3g  ————=————- \n', hist.s (1))

while (iii <= iter),
t = cputime;

B = calc B(D_,D);
X = B *Z/size(D,1);
D_ = squareform(pdist (X, 'euclidean'));



iii,hi
ik

end

%% Sub

% comp
functi
D = s
S =c¢
return

Ffahetl
d = tr
S = su
return

functi
B = ze
= fi
) =
B

su
B

return

(

{1 T

W o ww -

= cale B (DD )z

add history
hist.time(iii) = cputime-t;
hist.s(iii) = ecale stress(X,D}:
hist.X{iii} = X;

fprintf (1, '%4d %12. 39 %10.3g\n"
st.s(iii),hist.time(iii))
i = iii+1;
-functions

ute the stress

on [S] = calc stress (X,D)
quareform(pdist (X, 'euclidean'));
alc S (D,D );

on [S] = calc_ S (D,D_)
ig¢{D - D )."*4,1L)¢
m(d(:));

on [B] = calc B (D_,D)
ros (size (D))
nd(D_(:) ~= 0);
- D(i)./D_(i);
- diag(diag(B));
m(B) ;
- diag(d):;
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ANNEX III

Hausdorff distance algorithm

We have submitted the following code into MATLAB’s File Exchange toolbars. The
algorithm computes the Hausdorff distance between two point clouds and is accessible at the
following address:

http://www.mathworks.com/matlabcentral/fileexchange/27905-hausdorff-distance

3% Hausdorff Distance: Compute the Hausdorff distance between
two point clouds.
Let A and B be subsets cof a metric space (Z,dZ),

% The Hausdorff distance between A and B, denoted by dH (A,
B), is defined by:

$ dH (A, B)= max{sup dz(a,B), sup dz(b,A)}, for all a in A, b
in B

f 4

dH (A, B) = max(h(A, B),h(B, A)

where h(A, B) = max(min(d(a, b

and d(a, b) is a L2 norm.

dist H = hausdorff{ A, B )

A: First point sets.

B: Second point sets.

** A and B may have different number of rows, but must have
5

)
)

r
) ).

o oW o\

o® o\ o\®

G

O\

the same number of celumns. *

=z

o

function [dist] = hausdorff (A, B)

if(size(A,2) ~= size(B,2))
fprintf( 'WARNING: dimensionality must be the same\n' );
dist = [];
return;

end
dH = max(compute dist (A, B), compute dist (B, A))


http://www.mathworks.com/inatlabcentral/fileexchange/27905-hausdorff-distance

%% Compute distance

function([dist] = compute dist (A, B)

m = size (A, 1);
n = size(B, 1);
dim= size (A, 2);
for k = 1:m
C = ones(n, 1) * A(k, :);

D = (C-B) .* (C-B);
D = sqrt (D * ones(dim,1))
dist (k) = min(D);

end
dist = max(dist);
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ANNEX IV

GLOSSARY

Bijection a map that is surjective and injective. Bijective maps have an inverse.
Free shape corresponds to CAD-model in absence of gravity and assembly constraints.

Free-state variation is a term used to describe distortion of a part after removal of forces

applied during manufacture.
Geodesic is a locally length-minimizing curve.

Hausdorff space a ropological space (X, T), in which for every distinct x, y, there exist

disjoint open sets U,V e T'such that xeU and yeV .
Injection (one-to-one map) a map f:X — Y associating distinct argument to distinct

values, such that f(x;) = f(x,) impliesx, = x, forall x,x, € X .

Intrinsic geometry generic name for properties of a Riemannian manifold, expressible in
terms of the distance structure.

Isometric embedding a distance-preserving map.

Isometry bijective distance-preserving map.

Metric space (denoted by (X dy)) a space X equipped with a metric dy.

Nonrigid finite element registration is the mapping of CAD-model into range data which is

done by GMDS and FEM.

Surjection (onto map) a map /' : X — Y. whose range spans the whole codomain, i.e.,
f(X)=Y.

Symmetric matrix a square matrix 4 satisfying 4 o i,

Topological space denoted by (X, 7) is a space X equipped with a ropology T.
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