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PROFILAGE ET OPTIMISATION D E L'ALGORITHME DU K-MEANS DANS UN 
ENVIRONMENT DE GRAPE DE CALCUL DE TYPE BEOWUL F 

Eric Thibodeau 

RESUME 

L'algorithme d'agglomeration statistique K-means sert a classer des bases de donnees non 
libellees en K groupes. Faisant partie de la fonction d'evaluation d'un Algorithme Ecolution-
naire (AE), I'optimisation de ce dernier est devenu un point d'interet. Malgre les multiples 
approches proposees pour son optimisation et sa parallelisation, tres pen de recherche s'est at-
tardee aux questions entourant la performance et I'efficacite parallele des implantations. Dans 
la plupart des cas, les descriptions entourant I'environnement d'execution demeurent opaques 
et la presentation precise de profiles d'execution est souvent absente. 

Nous pallions a ces lacunes en presentant une description detaillee de deux environnements, 
le grappes de calcul Beowulf et les machines paralleles de type Symmertric Multi-Processors 
(SMP). Une combinaison de modeles theoriques et empirique sert ensuite d'etalon dans la 
mesure de performance du K-means dans ces environnements. Etant la necessite d'une exper
tise pluridisciplinaire, une utilisation detaillee de la suite d'outils Tuning and Analysis Utilities 
(TAU) est presentee pour simplifier la tache du profilage de code parallele. Couplee aux comp-
teurs haute precisions foumies par I'interface Performance Applicafion Programming Interface 
(PAPI), nous presentons une approche «grey box »ayant permis de muter une implementafion 
parallele maitre-esclave du K-means vers une version hautement efficace utilisant le paradigme 
d'llots de calculs. Les optimisations sont guidees grace a 1'utilisation des modeles theoriques 
et empiriques que nous avons obtenus. 

Notre travail revele que I'opfimisation de programmes paralleles releve de bien plus qu'un 
equilibre entre calcul et communications. Nous revelons les impacts negatifs de I'utilisation de 
bibliotheques de fonctions mathematiques ainsi que de certaines versions des bibliotheques de 
communications. Un profile d'execution de haute precisions a permis d'etablir que la represen
tation et le pre-traitement des donnees peuvent s'averer etre plus couteux que le calcul et les 
communications combines. 



PROFILING AND OPTIMIZING K-MEAN S ALGORITHMS I N A BEOWULF 

CLUSTER ENVIRONMEN T 

Eric Thibodeau 

ABSTRACT 

The K-means algorithm is a well known statistical agglomeration algorithm used to sort a 
database of unlabeled items into K  groups. As part of the fitness function of an Evolutionary 
Algorithm (EA), the optimization of the K-means algorithm has become a point of great in
terest. Although many approaches have been proposed for its parallelization and optimization, 
very few address the question of scalability and efficiency. In most cases, the description of the 
execution environment remains opaque and precise profiles of the program are mostly absent. 
Performance and efficiency issues are quickly relegated to communicafion issues. 

We address these deficiencies by presenting a detailed description of two parallel environments, 
the Beowulf style clusters and the Symmetric Multi-Processors (SMP) parallel machines. A 
mixture of theoretical and empirical models were used to characterize these environments and 
set baseline expectations pertaining to the K-means algorithm. Due to the necessity of a mul-
tidisciplinary expertise, a detailed use of Tuning and Analysis Utilities (TAU) is provided to 
ease the parallel performance profiling task. Coupled with the high precision counter inter
face provided by Performance Application Programming Interface (PAPI), we present a grey 
box method by which a parallel master-slave implementation of the K-means is evolved into a 
highly efficient island version of itself. Communicafions and computational optimization were 
guided by prior theoretical and empirical models of the parallel execution environment. 

Our work has revealed that there is much more to parallel processing than the simple balance 
between computation and communications. We have brought forth the negative impact of 
using mathematical libraries for specific problems and identified performance issues specific to 
some versions of the same series of Message Passing Inerface (MPI) libraries. High precision 
profiling has shown that data representation and processing can be a more significant source of 
scalability bottleneck than computation and communications put together. 
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INTRODUCTION 

It is a well known fact that parallel processing is a multidisciplinary field of research where the 

compufing infrastmcture encompasses most of the electrical, software and telecommunication 

fields of engineering. And this is only for its implementation, to which we must add the dis

ciplines proper to the environment being used, themselves covering a wide range of interests 

from Computational Fluid Dynamics (CFD) modeling (think weather forecasting) to biochem

ical engineering passing through genetics research. The intertwining complexity is amplified 

when one considers the Beowulf approach of High Performance Computing (HPC) where a 

wide range of configurations and heterogeneity of the hardware tends to transform tradifional 

computafional models into a complex mish mash of exceptions. If we also consider the widely 

varying computation characteristics of the code to be executed in such environments, ranging 

from embarrassingly parallel to highly cohesive (computation versus communications bound), 

the answer to Which  clustering  solution  is  the  best?  can simply not exist without intricate 

knowledge of the program and the underlying environment upon which the execution is to be 

performed. 

To illustrate these intricacies. Figure 1 presents an overlapping view of the typical hardware 

and software components involved in the HPC parallel processing context. In this figure, we 

have also separated the domains of interaction whether it be hardware versus software or user 

versus system. The quadrants generated by this subdivision can each be interpreted as a field 

of specialization which can be further subdivided by the components from which they are 

composed. 

Taking all these facts into account, one cannot claim the existence of a universal solution, 

hardware or software, which can be applied to all cases. Profiling of any computational task 

and/or of the underlying hardware is therefore a requirement for the attainment of performance 

maximization given a specific environment. 



Even with such precise knowledge of the software, estimating its performance on different 

hardware can prove to be a daunting task which will tend to lead to false conclusions implying 

that the exercise of profiling is a task to be re-iterated each time new hardware is encountered. 

H
ar

dw
ar

e 

System 

Kernel (O.S. ) 

CPU ill 
IdVd 

BUS 
NIC 

HDD 

o 

Profiler 

Compilers 

User 

C 

^ 5 
OpenMP 

u 
O. 
X 

Figure 1 : An illustration view of the multiple elements and disciplines involved in paral-
lel processing. Each quadrant represents a field of research with each underlying compo-
nent being a specialization. Th e crossing of quadrants signify its multidisciplinarity and 
the overlapping emphasizes integration complexity. 

Problem Statement 

Research in the area of machine learning algorithms (including Evolutionary Algorithms (EAs)) 

is known to be computationally intensive and has been a growing user of parallel processing 

approaches to enhance its capabilities. 

As an accepted fact, most of the processing payload resides in the fitness evaluation functions 

where a proposed solution is weighed. In the realm of EAs, the acceleration of this computation 

step can either lead to a faster or a better solution for a given problem. Fitness evaluators are 

problem-specific and cannot be generalized, which is why we concentrate on such a given 



fitness evaluator, the K-Means statistical classifier, as was implemented in [44], Section 3, 

Foreground-Background Feature Extraction (FBFE)  Module. 

Given the nature of the K-Means algorithm, the most classic means of determining execution 

performance, the total mn time, is of littie use in itself. This is due to the fact that this itera

tive process terminates based on a convergence threshold, which is in turn affected by random 

initialization values and the number of participating nodes. In the case of a parallel implemen

tation, it requires that other metrics than total execution time be used to gauge its performance 

such as scalability and efficiency. With the added complexity of a parallel execution environ

ment, specialized tools are required to provide a concise view of the program's behavior and 

evolution. As algorithmic and/or code optimization techniques are applied, one must ascertain 

that the latter lead to an improvement and not a scalability bottieneck. 

All these constraints, added to the aforementioned HPC parallel processing paradigms, require 

that a unified approach be used to guide implementers as to where efforts should be deployed 

to enhance performance. It is common that, in university research, the implementers (graduate 

students) have a short time to learn all aspects of their project, programming environment and 

the code base they will most probably be using and modifying. These three aspects tend to 

mutate, implying that the performance analysis infrastructure used has to be adaptive, flexible, 

and most importantiy, relatively simple of use. 

To demonstrate how this can be accomplished, we start by describing technically and empir

ically the hardware characteristics in Chapter 1. We then present the techniques and tools by 

which we probe the software being executed on this hardware in Chapter 2. A case study 

is then presented in Chapter 3, where we fuse the tools from Chapter 2 and the architectural 

knowledge from Chapter 1 which brings us to recommendations and future outiooks in the 

conclusion. 



CHAPTER 1 

HARDWARE CHARACTERIZATIO N 

Although it may seem trivial or paradoxical to possess knowledge about a program to be exe

cuted in a given HPC environment', it is a key component to guide the proper profiling of any 

hardware platform. Ignoring the applicafion domain can result in misguided concerns about a 

component that ends up being trivial for the targeted application. For example, concentrating 

on network fabric performance when, in fact, an application is memory or computationally 

bound, rather than communications bound, can turn out to be a waste of effort and resources. 

This fact is actually alleviated by the classic Beowulf rhetorical question : 

What hardware should I use to build a cluster? 

to which the non answer usually follows as : 

It depends. 

HPC coding requures intimate knowledge of the target hardware architecture as the imple

mented strategies depend on their characteristics. Starting from a superficial perspective, if the 

available hardware is in the form of an Symmetric Multi-Processors (SMP) machine, one would 

probably concentrate on applying approaches where communication costs can be neglected and 

where memory might be plentyfull. At the other end of the spectrum, the infrastructure might 

be composed of a mass of heterogeneous computers with varying specifications, interconnected 

using relatively slow links but possessing ample local storage. Digging deeper, one might find 

out that the second model proves to be more effective since each node would happen to have 

faster, less contentious memory access and demonstrate the ability to tap advantageous aggre

gated Input/Output (I/O) bandwidth thanks to local storage. 

Obtaining knowledge of the target hardware architecture is a non trivial balance between the

oretical models and supporting empirical data. The collection of such data is usually accom

plished via micro-benchmarks and cluster gaging utilities [35]. Unfortunately, these remain 

1. Which comes first, the software or the hardware, and is the profile on hardware X still apphcable to hardware 
Y? 



either too problem specific or too general to be of tme value. For this reason, we will concen

trate on characterizing the available hardware assuming some a priori knowledge of a problem 

to be optimized (in occurrence, the K-means algorithm detailed in Chapter 3), which exhibit 

vectorial computation features coupled with considerable data traversal and, in its parallel im

plementation, adds communications at each iteration -. 

We now present some of the basic concepts pertaining to computer architecture and commu

nications fabrics. These elements will be useful when attempting to describe some of the 

characteristics and results of software profiling as presented in Chapter 2 and 3. 

1.1 Basic Computer Architectur e 

Today's common computers are still loosely based on the what is commonly known as the Von 

Neumann architecture  [23, 50] which means that they are essentially comprised of (at least) 

one of each of the following elements: 

1) A control unit (for decoding the instructions and managing data flow); 

2) An Arithmetic Logic Unit (ALU); 

3) Main memory (such as Random Access Memory (RAM) more often referred to as Dynamic 

RAM (DRAM)); 

4) An Input/Output unit managed by the control unit. 

1.1.1 Th e Control Unit and Arithmetic Logic Unit 

The control unit and ALU are probably what characterizes a Central Processing Unit (CPU) 

core the most from the point of view of a compiler. It is in these components that mnemonics ^ 

are defined to mock up the instruction set and internal structure of a CPU. For the average 

user, these differences usually don't mean much but can have a significant impact in scientific 

computing. 

2. The problems studied are embarrassingly parallel data mining appUcations which are typically memory 
bound. 

3. Menmonics are the short textual words representing operations a CPU can execute (op-codes). They are 
the building blocs of the assembly language from which binary code (programs) are created. 



For example. Advanced Micro Devices (AMD) has implemented a class of mnemonics which 

they have named SDNow*" .̂ On their side, Intel has added their own class of mnemonics 

known as the Streaming SIMD Extension (SSE), which they have named SSE* and SSSE* .̂ 

In all cases, they are an implementafion of Instruction-Level Parallelism (ILP), where perfor

mance enhancement is accomplished by applying a single instmction to multiple data elements 

loaded into independent registers of a given CPU core. This approach to low level parallelism is 

by definition known as Single Instrucfion Mulfiple Data (SIMD). The intent is that CPU cores 

would exhibit enhanced performance when dealing with vector intensive applications typical 

of multimedia and scientific computing. Nonetheless, proper use of these directives remains a 

daunting task for the compilers [15], which can benefit from some hints by the programmer, 

as we will see in Section 3.6.3. 

One must not confuse the SIMD extensions with the advent of Chip Multiprocessors (CMP), 

which are part of yet another class of parallel architecture known as Multiple Instruction Mul

tiple Data (MIMD). In this case, each processing stream (or program) is executing indepen

dentiy, implying a complete decoupling of instruction and data flow. The use of MIMD pro

gramming happens at the application level and does not exclude SIMD, the latter being imple

mented in each computing core. The only implication is that the program execution streams 

are independent in the case of MIMD and require explicit synchronization mechanisms. An 

automated implementation of such MIMD approach on CMP and SMP machines is the use of 

the OpenMP^ compiler directives. 

1.2 Cachin g in on The Main Memory 

It is a well known fact that the DRAM performance curve is substantially inferior to the pro

cessor's speed evolution over the past decades [23], p.289. To compensate for this bottie

neck, processors are built with on-chip caches ^ which help in speeding up memory access by 

4. We use the * as a globing character to include all subsequent classes. 
5. AMD now also supports the SSE* and SSSE* class of mnemonics. Note that the extra S means "Supple

mental". 
6. OpenMP is a specification which compilers are free to implement. For details, please visit h t t p : / / 

o p e n m p . o r g / . 
7. Instruction and data caches can either be separate or conmion, depending on the hardware implementation. 

http://openmp.org/


prefetching data and instructions. The size and speed of these caches is dictated by its proxim

ity to the processor core(s), which in turn is guided by transistor count limitations for a given 

physical space, heat dissipation and, of course, production costs [23]. This leads to the hierar

chical memory layout of most computers where the processor's access to memory is a growing 

succession of caches, known as levels, who's efficiency is characterized by the ratio of hits  and 

misses to each of these levels. These cache levels  are organized starting from the Level 1 (LI) 

cache, characterized by its high speed but relafively small size **. Then follows the Level 2 (L2) 

cache, slower than the LI cache but many times larger, it currently ranges from a few hundred 

kilobytes to a few megabytes. Now becoming more common, the Level 3 (L3) cache is larger 

than L2 (two to four times), and is mostiy used for CMPs as a shared memory space between 

multiple processors [52, 6]. The last and slowest link down the memory hierarchy being the 

DRAM memory modules ̂  with their ample capacity of a few gigabytes but with comparatively 

slow access time and bandwidth. 

1.2.1 Accessin g The Main Memory 

The L1/L2, Memory Management Unit (MMU) and RAM blocks of Figure I are a gross rep

resentation of the actual processor to memory architecture now present in modem computers. 

The model becomes more complex as caches, processors and cores are added to a system. One 

constant remains, the Memory Management Unit (MMU), which plays a critical role in com

puter performance as it manages the data flow between the main memory and the processor 

and is reputed as the bottleneck of any modem system. The two major computer processor 

manufacturers, AMD and Intel, have diverged in this respect during the past years when com

paring AMD's Athlon/Opteron and Intel's Pentium/Core 2 processors. AMD has opted for a 

Non Uniform Memory Access (NUMA) approach where each physical processor integrates its 

own MMU and possesses a local memory bank. Although the local memory of each processor 

is globally accessible, accessing it comes at a varying  (Non Uniform) cost depending on the 

8. Current processors generally posses an LI cache close or below 128A'bytes 
9. Note that we could push the memory hierarchy down into virtual  memory,  residing on Hard Disk Drive 

(HDD), but we won't address this case as it is an aberration to HPC and must be treated as an element that must 
not be used in such a context given HDDs are many orders of magnitude slower than RAM. 



path required for Memory Access (hence NUMA). We illustrate this in Figure 1.1 (a) where a 

processor accessing its local memory has a direct path (depicted by Path 1) and accessing an

other processor's memory bank requires a more elaborate, thus longer, path (Path 2). Intel has 

typically kept the MMU as an external device, which implies a uniform access to the memory 

banks "̂  as illusfi"ated by Figure 1.1 (b). 

Figure 1.2 (a) is a schematization of a typical AMD Opteron series of processor. It possesses an 

on chip MMU where the System Request Interface (SRI) interconnects multiple cores through 

the Crossbar (intemal processor communications fabric). The Crossbar then selects between 

the MMU for local memory requests, or the HT fink if the requested memory address is on 

a remote  processor. This implies that access to local memory (going through the MMU) is 

uniformly shared by all cores of a single processor unit. Intel's approach implemented in the 

Core 2 series processors is depicted by Figure 1.2 (b) where we can see that L2 cache is shared 

and that the MMU resides on an external chip (usually called the North Bridge). 

In the case of AMD's implementation, access to memory physically connected to another pro

cessor requires the use of the HT link [32, 28] and is typically NUMA in nature. In Figure 1.1 

(a). Path 1 illustrates the local core's direct path to memory going through the SRI/Crossbar 

and MMU. Access to remote memory is illustrated by Path 2 where a request has to traverse 

the HT link as well as both processor's SRI/Crossbar logic, which adds latency and transfer 

delays. As processors are added to the system, more of these hops  can occur, depending on 

the interconnection strategy used [28]. For Intel type CMP systems, the MMU is an extemal 

device and is dependant upon the motherboard implementer to select the interconnection strat

egy. Generally, these consist in using a single fast bus for I/O, inter-processors and memory 

(through a single MMU), as illustrated by Figure 1.1 (b). 

The direct implications of the differing memory subsystems is that, apart from extemal hard

ware required to link Intel's processors, they must share the memory bandwidth evenly across 

processors and devices whereas AMD's processors each have their own local memory banks. 

10. Although this will no longer be tme with their Core 17 series, where they have opted to integrate the MMU 
into the processor die. 
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(b) Intel's processors don't implement the MMU. Most CMP strategies available on the market implement it as a 
single chip (north bridge) which is accessed through a shared bus topology connecting all processors through 
which inter-processor communications, I/O and memory traffic is subject to contention. 

Figure 1.1 : Multi-processor memory access strategies for both AMD and Intel proces
sors. AMD possesses NUMA characteristics while Intel's implementation is essentially 
UMA. 
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with the MMU and HT link. (usually implemented in a chip called the North 

Bridge). 

Figure 1. 2 :  Thes e schematization s o f th e AMD Opteron Dua l Cor e processor s (80 0 
series) and the Intel Core 2 Duo processors illustrates how the two core variants access 
DRAM. I n both cases, the MMU possesses dual channel connectivity to DRAM for link 
bandwidth aggregation. 

This imphes that Intel's memory access is bound to memory bandwidth and bus contention as 

I/O traffic and processors are added to the system. In theory, AMD's on-chip MMU leverages 

its processors as the ideal candidates for embarrassingly parallel applications where aggregate 

memory bandwidth across multiple processors (not just multiple cores) is more important than 

single-threaded memory access. 



11 

1.2.2 Cach e Size and Contentio n 

Working at the processor's clock speed or a fraction of it, these caches are orders of magnitude 

faster than DRAM. Fetching and synchronization of the data between the caches and the 

main memory is managed by the processor's logic through different mechanisms which rely 

on easily predictable or repetitive (strided) data access patterns [31], p.300. The efficiency 

of these prefetching  mechanisms is one of the most critical components for closing the gap 

between computation and data access. 

Modem processors are now being built to contain many cores and possess a growing amount of 

Ll and L2 caches and some times L3 caches are added as the inter-core communications layer 

[6]. Depending on the strategy adopted by the manufacturer, the Ll and L2 caches can either 

be unique to each core or shared. Independent caches per core mimics SMP architecture where 

each processor is essentially monolithic and virtually interconnected with a high speed bus. 

This also implies that each core is constrained to only possessing a fraction of the cache that it 

otherwise would be possible to implement as a global cache. This strategy can be beneficial for 

independent data flows but could hamper performance when problem sizes are considerable or 

when data is locally shared amongst multiple concurrent threads. 

As a reciprocal to this approach, Intel has implemented a large shared inter-core L2 cache 

strategy for it's Core 2 processors. This approach has the advantage of a large cache for single 

threads but shared cache for concurrent threads. Figure 1.2 compares both of these strategies 

where AMD's Dual Core Opteron 800 class of processors assign independent L2 caches and 

Intel's Core 2 Quad processor is composed of four cores with L2 caches organized in core 

pairs. 

To demonstrate the different cache issues with concurrent and independent processes running 

on a CMP, was programmed Algorithm 1 in C. This Euclidean computation  kernel  is derived 

from our case study presented in Chapter 3. For our demonstration, we vary the vector dimen

sion d between 128A'bytes and 2Mbytes per process in order to saturate the L2 caches when as 

many processes as cores are started (four processes for a quad-core CMP). Note that we kept 
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the problem size boundaries identical across experiments (not a function of the processor's 

cache size) to ease the comparison. We then compute the concurrent execution's comparative 

efficiency Ecomp,  which we define to be: 

P _ tsingle  ,.  .^ 
^comp , \ i • * / 

^con.avg 

with tsingle  bciug thc time for a single thread of execution on a given processor and tcon.avg 

the average time of running concurrent threads " on that same system. This result is useful in 

identifying the interaction zones for concurrent execution of independent programs on a CMP. 

Set d to maximum vector dimension (||X||) 
Set REPS  to maximum repetitions 
Initialization of vectors X and Y  for Euclidean computation. 
for alii =  I  to  d do 

Set tstart = gettimeofdayi) 
repeat 

i 

Compute Euclidean norm such as dist =  V^ (||xj — yj | 

until Computation has been executed REPS  times 
Set tstop =  gettimeofdayi) 
Compute average time as tavg = (tstop  -  tstart)/REPS 

end for 
Algorithm 1: Memory contention test algorithm. 

Our results for the Intel Q6600 processor are presented in Figure 1.3 . Execution times are 

presented in Figure 1.3 (a) where we observe performance degradation due to execution con

currency. The cause for the degradation is attributable to the zones identified in Figure 1.3 

(b) which correspond to cache usage zones. Performance degradation begins when the vectors 

X and Y  both reach sizes of about 760kbytes per process are reached. With four concurrent 

processes, this brings the total to about 6Mbytes. This induces cache conflicts as the total cache 

capacity is 4Mbytes for all threads. The processor is forced to move parts of working data out 

of cache for one or all of the executing processes. Cache capacity  issues are then reached at 

11. The number of threads is equal to the number of available cores on the system. 
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2Mbyte vectors, which is concurrent with the processor's 4Mbyte cache as both vectors for a 

single thread fill up the cache, leaving no space for the three other threads. At this point, each 

thread is executed at about 30% efficiency (close to four times slower). These results clearly 

demonstrate the importance of cache size for the execution time of large memory bound kernels 

as well as concurrency issues that may arise within multi-core processors. 

The same observations are applied to an Opteron based SunFire A'4600 machine '~ and pre

sented in Figure 1.4 . Here we can see the significance of the NUMA architecture through the 

fact that the relative efficiency never gets even close to 1/14 (0.07), which would be expected 

if all fourteen processes had to share a single path to the DRAM. Since each CMP have a 

direct path to local memory, the contention effect is limited to local processor and is not glob

ally cumulative. This implies that this architectural approach is more scalable, as long as each 

problem is local to each processor and fits within the local DRAM banks. 

12. Refer to Appendix in, section 3. 
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(b) An overlaid version of Figure (a), the execution's relative efficiency, computed as ti /t4(at,p), is used to identify 
different cache usage zones. Presented are: in cache, cache conflicts and cache capacity (saturation). 

Figure 1.3 : Cache memory behavior on an Intel Q6600  (4 cores). Execution time char
acteristics are illustrated in (a). Cache usage zones are identified in (b). 
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(b) The execution's relative  efficiency curve is used to identify different cache usage zones. The green zone 
denotes optimal cache usage whereas red indicates conflicts are occurring. Values beyond cache conflicts fall 
into cache capacity issues (saturation). 

Figure 1.4 : Cache memory behavior on AMD Opteron 800 series based processors using 
14 cores of a SUN SunFire a:4600. Execution time characteristics are illustrated in (a). 
Execution zones are identified in (b). 
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1.2.3 Processo r Performanc e 

There is no such thing as a best processor but rather a best match between a software problem 

and a hardware solution. The test case we have presented in this section uses a wide range of 

values and executes a single mathematical kernel, which is not representative of the entire pro

gram process ' ' . Nonetheless, this isolation tactic and the use of aberrant cases (unconvention

ally large vectors compared to typical problem sizes) is of use to defining bound within which 

we can expect severe performance deterioration as well as scalability bottlenecks (concurrent 

execution performance degradation). Even if the figures indicate better  scalability for a given 

platform, raw processing time will always prime over technical features and prowess. To this 

effect. Figure 1.5 compares the average execution time of concurrently executing 4 instances 

of Algorithm 1. The comparison is performed between Intel's (^6600 and AMD's Opteron 885 

processors (on a SunFire x4600). With this current representation, Intel's (^6600 comes out as 

the best choice, even though its architecture is more susceptible to memory bottleneck issues. 

Additionally, the execution of 14 processes is included in the graph to emphasize the slight 

increase in execution time compared to 4 processes. It is important to note that, the 4 processes 

launched on the SunFire A'4600 were not bound to CPUs. This means that each processes were 

assigned an independent processor and therefore benefited from full, non-contended access to 

the DRAM '"*. We must also note that the concurrent executions do not incur any inter-process 

communications, another aspect which we address in the following section. 

13. Actually, each test is  the result of the execution of the entire program, the point is that this program is 
useless in itself, typical of a microbenchmark. 

14. Processor affinity, to force process to CPU assigmnents, was not available on the hardware at the time of 
writing. 
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Figure 1. 5 :  Executio n tim e compariso n betwee n Intel' s QGGOO and AMD's Optero n 
885 processors . Th e concurren t proces s coun t i s i n parenthesis . Th e ra w computin g 
power o f th e (56600 outperform s th e Optero n 885 fo r fou r processes . Th e cas e o f 1 4 
concurrent processes is presented to demonstrate the proportionally small impact of their 
simultaneous execution. 

1.3 Communication s 

We have shown that raw processing power has to be coupled with an efficient mechanism for 

accessing the data that resides in RAM. The typical problem sizes, as addressed in Chapter 3, 

overcome the memory and processing capabilities of a single processor system. This introduces 

the problem of segmentation, thus parallel processing, which imply multiple processors and 

communications. Independent of the hardware nature of the latter, two principal characteristics, 

latency and bandwidth, come into play. This section aims at characterizing these two critical 

components as well as weighting their importance to our usage context, which are: 

1) A network of computers forming a Beowulf style cluster interconnected using Ethernet 

based network fabric; 

2) A monolithic SMP machine using HT as network fabric. 
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We start with the Beowulf approach to parallel computing to define bandwidth and latency. We 

then apply these two properties on HT based SMP systems. 

1.3.1 Bandwidt h 

Bandwidth traditionally represents a bit count transferred over a unit of time, which is usually 

the second as denoted by bits per second (bps). This is the predominant feature of most fabrics, 

hence names such as 10/100/1000 BaseT Ethenet, where the later is the name of the standard 

describing the physical medium. Taking 100 BaseT Ethernet as an example, its bandwidth is 

said to be 100Mbps wire speed or at the wire. This is because the figures given are for the raw 

bit transfer rates, ignoring all of Ethernet's protocol overhead, such as the headers which sums 

up to 38bytes '''. Another feature of the Ethernet protocol is the Maximum Transmission Unit 

(MTU), which is the maximum payload allowed per packet. Historically, the MTU has been 

hard-limited to 1500bytes by the underlying hardware '̂  which simply followed the Ethernet 

standard '^. This upper bound to the size of each packet has a direct bearing on the efficiency of 

the communications as shown by Eq. (1.2), where BW^sefui  is the available bandwidth which 

is a ratio between the useful  payload  over the total bytes transmitted per packet. The total 

bytes transmitted is the sum of the MTU and the Ethernet headers (again, 38bytes). The useful 

payload is computed using MTUsize^  the MTU, from which we substract HDRTCP/IP,  the 

TCP/IP headers. 

MTUsize ~  HDRTCP/IP 

''Ethernet 

Taking into account the aforementioned values, the equation renders an available bandwidth of 

about 95%. The fi-ansfer rate in bytes of a 100 BaseT network becomes 100/8x0.95 = 11.88M 

bytes per second (Bps) '̂  

With Gigabit Ethernet (GigE), 9kbyte MTU called Jumbo Frames  were introduced to address 

the overhead issue and has now become common. Other than bringing the available bandwidth 

15. We don't use VLANs (RFC802.1q), otherwise, this figure would be 40bytes. 
16. Such as switch fabric, buffer limitation and Network Interfafce Card (NIC) implementations. 
17. As described by RFC894. 
18. This is a raw value, meaning that from this bandwidth one must also substi-act library overhead. 
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up to 99%, it has the effect of reducing the framing overhead of large data transfers. Unfortu

nately, this has no impact on small communications, where latency dominates. Which brings 

us to the following topic. 

1.3.2 Latenc y 

Latency is the delay imposed by hardware and software before establishing a link and actually 

starting the communication stream. For this reason, it is often modeled as if sending a Obyte 

packet. This overhead is very important for short communications. We define short  communi

cations as packets who's length (Lmax)  renders a transmission time less than the link's latency 

(tlat). This value is simply obtained by multiplying the latency with the useful bandwidth, as 

inEq. (1.3). 

Lmax =  tlat  X BW'useful (1.3) 

For example, if the latency for a 100 BaseT connection is of about tiat — 23/iseconds, given the 

theoretically usefid  bandwidth BWusefui  = 11.88M Bps, we get Lshort  ~ 273.24bytes. This is 

one way of actually weighting the latency's cost on the communications. 

These values were obtained thanks to empirical experimentation using a microbenchmark such 

as m p p t e s t [22]. The reason why empirical data is more valuable than theoretical ones 

is made obvious in figures 1.6 and 1.7 where significant performance differences exist 

between Message Passing Inerface (MPI) communication library implementations across the 

communication spectrum. 
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2 Node Synchronous Round Trip Communication Performance : LAM-MPI Vs OpenMPI 
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Figure 1.6 : LAM-MPI outperforms OpenMPI for any TCP/IP communications. The 
non-linearity are noted around the MTU barriers of 1500bytes. 
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TCP/IP 0 byte Synchronous Startup Timing: LAM-MPI Vs OpenMPI 
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(a) The setup latency differs depending on the communications library implementation. Here we compare LAM-
MPI with OpenMPI. 

TCP/IP 1500 byte Synchronous MTU Barrier: LAM-MPI Vs OpenMPI 
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Figure 1.7 : The round trip communication times using MPI libraries surrounding the 
start up times in (a) and the MTU in (b). Since these are round trip figures, all values 
have to be halved when considering asynunetric communication patterns. 
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Computation and characterization of the latency is far less straight forward than bandwidth 

since it is a transitory state which is highly dependant on many characteristics extemal to the 

NIC such as processor, bus and memory speeds as well as network topology. We demonstrate 

these facts in Figure 1.8 , where processor speed as well as inter-connection topology (the 

addition of a hop between two nodes) all have a significant impact on the latency of the com

munications. A faster CPU renders lower latencies, which can very well be explained by its 

ability to service hardware interrupts more quickly. The addition of hops, through the addition 

of network switches between nodes, have non-negligible impact as well. 
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Figure 1. 8 : The communications latency is affected by the CPU frequency and network 
topology. Highe r frequency clearl y renders lower latency and the addition of a hop be-
tween two hosts (denoted as Cross-Switch) adds significant delays. 
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1.3.3 Th e HyperTransport Interconnec t 

The HyperTransport link is the result of the HyperTransport Technology Consortium '̂  which 

is formed by a group of more than 40 companies active in the computer industry. This fact, and 

the fact that the standard is open and accessible to all, might explain its currently wide adop

tion across the industry. Although it is not uniquely destined to be used as an inter-processor 

communication backbone [47], we will concentrate on this specific use for communications. 

Of a totally different nature when compared to Ethernet, they present a relatively high speed -° 

and low latency [47] path between processors. Although this approach doesn't require un

derlying communications libraries such as MPI, the libraries are still often used since they 

present a portable interface to a program's parallelization. For this reason, we still consider 

the libraries as part of the performance assessment of this fabric. The same latency and band

width paradigm apply to HT, even though the figures are orders of magnitude apart. Again, the 

choice of the underlying communications library can have a significant impact on the applica

tion's communication performance as is illusti^ated by Figure 1.9 , where performance varied 

greatly between versions 1.1 and 1.2 of OpenMPI's implementation of the MPI. 

It is also important to note that topological considerations must still be addressed, especially 

when frequent communications are expected between computing nodes  or processors. Proper 

to NUMA architectures, processor affinity (associating a process to a given processor or core) 

and data locality become issues when HPC is concerned. In Figure 1.1 (a) from section 1.2.1, 

we illustrated that the access to remote memory required passing through the HT link, another 

processor's Crossbar and MMU. Now consider Figure 1.10 , the physical layout of a Tyan 

VXbO machine, where a process residing on CPUO accessing memory on CPU7 would have to 

perform, at best, 3 hops. This twisted ladder  configuration is one of many possible connection 

strategies [28, 32] that can result in differing hop counts. It is the variance in these hops that 

charaterize the NUMA architecture. 

19. www.hyper t ranspor t .o rg 
20. Between 12.8GBps and 51.2GBps, depending on the implemented version of the standard. 

http://www.hypertransport.org
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2 Node Round Trip Communication Performance for OpenMPI 1.1 Vs 1.2 on HyperTransport 
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Figure 1. 9 :  Comparin g OpenMP I version s 1. 1 and 1. 2 on HyperTransport by varyin g 
the messag e siz e passe d t o th e mpptes t micro-benchmark . Th e 1. 1 implementation s 
had performance issue s characterized by a sudden jump in communication times around 
packet sizes of lOOObytes. 

1.3.4 Benchmarkin g Network Communication s 

This section's performance assessment were obtained using mpptest  [22], which uses the 

local MPI implementation for it's inter-process communications. Through our experimenta

tion, we have confirmed that OpenMPI's ancestor, LAM-MPI, possesses better overall TCP/IP 

performance as seen in Figure 1.6 . This is a Icnown issue and is due to OpenMPI's team con

centrating on high bandwidth, low latency interconnects such as HT, Infinipath, Myrinet and 

others. This strategy also explains the improvements seen in Figure 1.9 where performance 

leaps were observed between the 1.1 and 1.2 release of OpenMPI running on HT links of a 

Tyan VX50. 

We also note that, contrary to normal intuition, asynchronous (non-blocking) conmiunications 

are actually slower than synchronous (blocking) communications in all cases of the m p p t e s t 
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Figure 1.10 : The Tyan VX50 interconnection strategy for 8 processors using HT. This 
twisted ladder topology provides for an average 1.5 hop between processors and their 
farthest memory pages. 
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micro-benchmark. This is illustrated by Figure 1.11 where the fastest communications are of 

the synchronous type, followed by the persistent type (lagging behind by a few yuseconds) and, 

finally, with almost 10 /^seconds delay added are the asynchronous communications. This is 

due to the fact that the MPI libraries are only active when being called and executed actively by 

a program. The only way to guarantee this is during a synchronous call, where the execution 

path is linearized and forces the communications to complete before any other task is engaged. 

This implies that, barring the use of an explicit helper  thread to keep the libraries alive,  syn

chronous communications will remain faster than their asynchronous counterparts, even with 

the presence of CMPs. 
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Figure 1.11 : MP I call types and their impact on the communication times. Synchronou s 
(sync) communications outperform both asynchronous (async) and persistant ones as the 
processor is dedicated to performing the communication task in that specific case . 
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1.3.5 Theoretica l and Empirical Mode l 

Communication modeling is dependant upon logical and topological distributions. Nonethe

less, Eq. (1.4) can be viewed as a generalized equation of Point to Point (PtP) communica

tions"' where tcomm  is the total communication time which is tg,  the setup time (or latency), 

added to the cost per byte tfyyte times the message length L  (payload). 

''comm I's  >  ''byte  ^  J-'  V t .^) 

To verify the validity of this generalization, we present Figure 1.12 , with which we are able 

to demonstrate that the theoretical model is adequate for packet sizes between 1 and 64 bytes 

and packets beyond 16 kbytes. The discrepancy between 64 and 16 kbytes can be explained 

with the non-linearity introduced by Ethernet's MTU, as they were presented in Figure 1.7 

. The value of ts  ~ 53/JS is from m p p t e s t , hence closeness of the initial theoretical values 

and this tool's results. Note that there is no theoretical  definition for ts,  being ideally 0. We 

use tbyte  = 11 ssmte/s ~ 8477s, where 11.88Mbyte/s  is the useful bandwidth as described 

in section 1.3.1. An arrow is inserted at 188Bytes,  the payload for sending a single vector of 

dimension d  = 47  floats, a size which comes in handy in our case study in Chapter 3. 

Although not all shown here, these results were cross-validated using popular microbench-

marks included in the HPC Challenge (HPCC) suite [35], the m p p t e s t [22] and n e t p i p e 

[53] applications. 

21. These are the simplest and most common form of communications used. 
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Figure 1.1 2 :  Comparing th e general theoretical communication s mode l with  empirica l 
values for a 100BaseT Etherne t network. Result s from n e t p i pe ar e slightly higher than 
mpptes t , indicatin g there might be additional overhead to his test suite. The theoretical 
value base s it s ts  o n result s fro m mpptest , thu s biasin g i t t o b e close r t o tha t tool' s 
results. An arrow is inserted at 188bytes as a point of reference for a vector of 47 floats, a 
unit which comes in handy in our case study. 

1.4 Input/Outpu t and Storage 

Discussions concerning I/O and storage strategies are usually relegated to a transitory state of 

a program and judged as being non-essential or non-contributing to an application's overall 

performance given its single occurrence either at loading or termination of a given program. 

This type of assumption only remains true if tioad  < ^e^ec the loading time is significantly 

less than the total execution time. We investigate this assumption in Figure 1.13 where each 

function's time contribution is represented as a percentage of the total runtime. This stacked 

representation clearly illustrates each function's proportional shift as the number of processors 

augments for this parallelized algorithm. Bringing our attention to the loading function l o a d _ 

samples( ) , which accounts for less than 10% of the runtime for two nodes, we see that 
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it grows to a proportion beyond 40'X. when executed on 24 nodes. This is far from being 

negligible and brings about the importance of considering an application in its entirety when 

dealing with performance. 
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Figure 1.1 3 :  An example of proportional breakdown of each task's contribution to the 
execution time for the PVQ implemented using a textual database (describe d i n Chap-
ter 3) and traversing its entirety at initiation. The loading of the data is performed by the 
load_samples ( ) functio n an d represents a significant portio n of the total execution 
time. 

1.4.1 Loca l Versus Remote Storage 

In the context of Beowulf clusters [42], it is conunon to have nodes booted off a network share 

such as Network File System (NFS) as well as having the user's work directory mapped across 

the nodes through the same means. Given the usage simplicity provided by this approach, 

one might wonder if it remains relevant to use local storage used as scratch space. With local 

storage, a single path is drawn from I/O to RAM and the bottleneck resides in the slowest 

element, the HDD. This means the local bandwith B\V^?Q^  can be expressed as being equal 
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to the HDD's bandwith (BW^f^^  = HBD"^"^)".  In the case of an SMP machine, since 

we are dealing with a single task running at a given time, we can express this bandwith as a 

fraction of itself over the number of cores, thus rendering BW^?^''  = HDD^JQ^/C,  where c 

is the number of cores. Noting that the available bandwith is shared among n  hosts such that 

Eq. (1.2) becomes BWusefui/"n,  local scratch space remains beneficial as long as BW^?^^  > 

BWusefui/n or the remote server's own local bandwidth BW^?Q^  >  BWjJ^^^/n,  which must 

also be shared among all nodes. 

1.5 Discussion s 

In this chapter, we have confirmed that processor caches are critical performance enhancing 

components used to mend the gap between processing speed and data access latency. Two of 

the cache's performance paradigms, contention  and capacity, have been empirically identified 

and zoned for two common CMP processors, Intel's Q6600  and AMD's Opteron 885 . Com

munication considerations were then brought up by our exploration of the available fabrics, 

notable the commodity 100 BaseT Ethernet and the high bandwidth, low latency HT. Issues 

with the underlying communications library, notably OpenMPI's implementation of the MPI 

standard were identified. More specifically, we demonstrated that the legacy LAM-MPI imple

mentation of the Transmission Control Protocol (TCP)/Intemet Protocol (IP) stack outperforms 

the one from OpenMPI on Ethernet based fabric. On the other hand, OpenMPI has concen

trated their efforts on high speed fabrics, for which we have noticed marked improvements on 

their use of the HT links with considerable performance enhancements. The comparison of a 

theoretical model based on initial empirical data was shown to be adequate with slight diver

gences surrounding non-linearities imposed by hardware limitations such as the MTU. Data 

access and format issues were also brought up with an example of application scalability being 

hampered due to storage format. Furthermore, simple rule  of thumbs  were established to jus

tify the use of local scratch space. Finally, the following recommendations can be made when 

applying this chapter's theory to our class of problem implemented using MPI: 

22. We include all configurations of Redundant Array of Inexpensive Diskss (RAIDs) (and their redundan
cy/bandwidth enhancements) as part of the definition of HDDs for the sake of simplicity. 
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Processor selection: 

- Problem size (or segmentation) must consider the processor's cache size or risk incurring 

significant performance loss; 

- Memory access time remains important for performance in the case of memory bound pro

cessing, which is our case; 

- When compared, it has been established that a larger cache with faster memory access is 

preferable for memory bound problems. 

Communications fabric selection: The HT fabric is more efficient than Ethernet based solu

tions. Nonetheless, the cost of HT based SMP remains high compared to an equivalent Beowulf 

based cluster using commodity Ethernet fabrics such as GigE. The fact that CMP processors 

are now commonly available also emphasizes this cost factor since we are now seeing the emer

gence of clusters of SMPs. Since our application is rather memory bound than communication 

bound, we retain no benefits to the low latency brought by HT. 

Data storage and location: Local data storage for scratch space  comes out as a definite neces

sity as communications fabrics are rapidly overwhelmed by the amount of data to be trans

ferred. And when it's not the communications fabric, the server's I/O path becomes an issue. 



CHAPTER 2 

THE PROFILING TOOLS 

Although there are myriads of system based tools such as d s t a t (display of global system 

activity), t o p (per process statistics), and even some that are specialized for cluster monitoring 

such as c a c t i " (cluster wide equivalent of d s t a t ) , these can only convey an opaque view 

of the system usage. Fine grained specifics such as which function is using up all the processor 

or which system call is taking an abnormally long time to complete cannot be presented by 

such tools. This is where profiling comes in to automate the identification of functions and the 

collection of their execution statistics. 

Profiling provides the contribution of a block code to some execution  metric  of a program. 

These metrics vary from call counts, time, and many other hardware accessible counters as will 

be presented with the use of Performance Application Programming Interface (PAPI). Profiles 

are meant only to convey a global statistical view of the total execution time. Even though a call 

graph [21] may be generated to interconnect code blocs of an overall execution, the sequence 

in which they are called in time cannot be reconstructed. This is because call graphs are based 

on aggregated profile data which is compiled in a post processing  phase, after the program 

has been executed and has exited. Therefore, time  measurements and call graphs collected by 

profiles do not permit a chronological reconstruction of events (function call sequence). This 

type of information is from the realm of program traces which we do not cover as they are more 

appropriate for code coverage analisys as well as time-sensitive troubleshooting (deadlocks in 

concurrent accesses and communications). 

Given the many profiling tools available, we will concentrate on the ones freely available-

since our main interest is their usage and not their comparison. 

1. h t t p : / / w w w . c a c t i . n e t / 
2. This also excludes tools which are free to  try during short periods such as a month or so. 

http://www.cacti.net/
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The following chapter is organized as follows, we start by defining our use of the terms Black, 

Grey and White  Box  profiling, then briefly describe the context in which the tools are used 

(program and relevant parameters). Following are the tools themselves, starting with gprof , 

the classic GNU is Not Unix (GNU) profiling utility, where we identify its limitations in the 

context of parallel HPC. The Tuning and Analysis Utilities (TAU) suite is finally presented as 

a much more elaborate and appropriate alternative, applicable to the complex environment of 

parallel processing. 

2.1 Black , Grey and White Box 

In the realm of software engineering, the terms Black  Box  [40] and White  Box  [17] refer 

mostly to code coverage and reliability with the intention of identifying faults, failures and 

unexpected behaviors. 

We adapt these terms for our specific usage to describe the conext in which the performance 

profiling is to be performed as well as its impact on the resulting program. These definitions 

are presented in Table 2.1 below. 

Term 

Black Box 

White Box 

Grey Box 

Description 

The source code is unknown 
and only the compiled pro
gram (binary) is available. 
The source code is known 
and the profiling is per
formed with explicit tooling, 
by the programmer, of the 
source code prior to compi
lation. 
The source code is known 
but the profiling isn't ex
plicitly performed within the 
original code. An external 
mechanism is used to add 
profiling code to the end pro
gram. 

Impact on the program 

None 

Some performance loss 
due to inserted profiling 
code. 

If the profiling is not 
performed selectively, 
significant performance 
loss is to be expected 
(all functions suffer 
from the profiling 
overhead). 

Impact on the source code 

Not applicable 

The source code is tooled and the 
programmer is responsible for en
suring such tools can be switched 
off. It is also implied that the right 
functions are being profiled (a priori 
identification of the bottlenecks). 
None, the tools insert the profiling 
mechanisms in an intermediate step 
of the compilation. 

Table 2.1: Black, Grey and White Box definitions . 
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As we present each tool, we will identify its capabilities as well as its use with regards to these 

different "Box" approaches to profiling. 

Throughout this chapter, we will (ab)use the same program (PVQ) that is described and thor

oughly analyzed in Chapter 3. The input and output parameters for the program execution 

are irrelevant in most figures that will be presented. In most cases, these parameters are 

nonessential and are merely set as such to provoke aberrant cases with the intent of provid

ing visual material from a real program in its execution context. The input parameters of the 

algorithm, generally listed in the legend, can therefore be ignored as they were explicitly set 

to demonstrate specific use cases, caveats or aberrations. Most titles will include the label 

GET_TIME_OF_DAY, which is the generic label to indicate the displayed metric is time. 

2.2 Sequentia l Profiling: Use Of gpro f 

The g p r o f [21] utility is a companion to the GNU C Compiler (GCC) for profiling sequential 

applications. A quick way of obtaining a profile when using the GCC is by enabling the 

- p g - g 3 directives where - p g enables profiling and - g 3 enables code symbols for the code 

annotation feature. When profiling, no optimizations higher than - 0 2 should be enabled, 

otherwise the generated profile will be incomplete and back referencing to the code will not 

work. For example, the command g p r o f - - b r i e f - p vq, where vq is the application 

name, can then be used to extract the profile information. This information is contained in the 

output file, gmon. ou t , generated after a sample run of the application has been performed''. 

The resulting output is presented in Figure 2.1 with the following columns: 

1) %: The time proportion of time spent in that function (percent of total execution time); 

2) cumulative seconds: The time for executing this function while including the child function 

calls; 

3) self seconds: The time for executing this function while excluding the child function calls; 

4) calls: The total call count; 

5) self s/call: The time (in seconds) per call while including the child function calls; 

3. Profiling does have a non negligible impact on code performance and is generally not suitable for long runs. 
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6) self s/call: The time (in seconds) per call while excluding the child function calls; 

7) name: The name of the function in question. 

It is clear that df is the predominant function in the program both in time and call counts '^. The 

source code of the functions can also be tagged with their call count using g p r o f -A vq. 

Figure 2.2 contains the two most called functions for our example program. 
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ericiaf ourrier -/l_Fi les/l_ETS/l_Ma it rise/Code/K-Means 

gprof Output 

old $ gprof -
Flat profile: 

Each sample counts as 0.01 seconds. 
% cumulativ e sel f sel f tota l 
time second s second s call s s/cal l s/cal l name 
95.94 192.8 4 192.8 4 3781843968 0.0 0 0.0 0 df 
3.35 199.5 7 6.7 2 1477282 8 0.0 0 0.0 0 centroid_de f 
0.53 200.64  1.0 7 1  1.0 7 1.0 7 load_sample s 
0.47 201.5 8 0.9 4 1  0.9 4 200.5 1 vq 
0.00 201.5 8 0.0 0 6  0.0 0 0.0 0 average_distortio n 
0.00 201.5 8 0.0 0 6  0.0 0 0.0 0 mean_vecto r 
0.00 201.5 8 0.0 0 1  0.0 0 0.0 0 centroid_ini t 
0.00 201.5 8 0.0 0 1  0.0 0 0.0 0 save_centroid s 
0.00 201.5 8 0.0 0 1  0.0 0 0.0 0 show_centroid s 

-brief -p vq 

Figure 2. 1 :  Outpu t fisting  fro m gpro f - b r i e f - p vq . Th e column s describ e th e 
following metric for each function (each Une): % time is the proportion of total execution 
time, cumulative seconds i s the inclusive execution time, self seconds i s the exclusive time, 
calls i s the tota l count . Self an d total s/call ar e for th e inclusiv e an d exclusiv e tim e pe r 
call. Finally, the last column holds the function name. 

A visual  call graph [21] can be generated from the profile as demonsti-ated in Figure 2.3 . 

This is not a feature from g p r o f but the result of calling the sequence of code in Figure 

2.4 where a python script, g p r o f 2do t .py^, translates the output from g p r o f into the 

Graphviz ^ d o t file format. This call graph draws the execution path of this simple program. 

Each box represents a function and the arrows indicate the call sequence. The percentages 

indicate the inclusive,  or cumulative, time as one walks down the graph. Exclusive times are 

indicated in parenthesis. 

4. How such observations are to be addressed is the subject of Chapter 3.6, suffice to say that this function is 
a potential bottleneck or hot spot 

5. http://code.google.com/p/jrfonseca/wiki/Gprof2Dot 
6. http://www.graphviz.org/ 

http://code.google.com/p/jrfonseca/wiki/Gprof2Dot
http://www.graphviz.org/
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df and centroid_def functions 
/* d is tance function - Euclidian Distance - / 
f loa t d f ( f loa t -v l , f loa t •v2) 

3781843968 -> I 
in t i ; 
f loa t d i s t , sum; 

sum=0.; 
for( i=0; i<T; i++) 

sum=sum+(v l [ i ] -v2[ i ] )* (v l [ i ] -v2[ i ] ) ; 

d i s t= (f loat) sqr t ( (double) sum); 
re turn d i s t ; 

/* c l a s s i f i c a t i o n of a sample ta)cing in to account each cent ro id • / 
in t cent ro id_def( in t pos, f loat .d) 

14772828 -> { 
in t i , index; 
f loa t mdist, d i s t ; 

mdist=99999.; 
for(i=0;i<NC;i++) ( 
dist=df(centroids[i].feat,samples[pos].feat); 
if (dis t < mdist) {mdist=dist ; index=i;} ; 

) 

*d=-mdist; 
return index; 

Figure 2. 2 :  The annotated sourc e code as per the use of gprof - A vq . Onl y the two 
most called functions form the source code are presented. 

2.3 Th e Itch Of Measuring Time 

Although time  is the most popular and intuitive metric, others such as Clock Per Instruction 

(CPI), FLoating point OPertaions per Second (FLOPS), cache hits  and misses can also reveal 

pertinent information about a program's efficiency. The measurement of time is a non-trivial 

task when precision is essential [51, 18]. Although it is more critical in the case of tracing 

where real-time event sequences are reconstructed [36, 8], it also applies to the quality of the 

information gathered for application profiling [10]. This information has historically depended 

on software counters provided by system calls such as g e t t i m e o f day() for which the pre

cision varies greatiy depending on the Operating System (OS)'s implementation [51, 18]. We 

address this issue in the following section. 

2.3.1 PAPI: Time To Scratch Below The Surface 

Given the time measurement variance due to systemic perturbations [48, 41] as well as other 

factors such as cluster heterogeneity, one must question whether it is valid to base performance 

assessments solely on time. The other metrics we mentioned earlier, such as CPI, FLOPS and 
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100.00% 
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1 \ 1 

load_samples 
0.53% 

(0.53%) 
1 

99.00% 
14772828 

centroid_def 
99.00% 
(3.33%) 

14772828 

95.67% 
781843968 

Figure 2. 3 :  The program call graph. Thi s call graph draws the execution path of this 
simple program . Fac h bo x represents a  function an d the arrows indicate th e cal l se-
quence. Th e percentages indicate the inclusive, o r cumulative, time as one walks down 
the graph. Exclusive times are indicated in parenthesis. 

Dot F i l e Generat ion 
gprof vq | gprof2dot .py | (dot -Tpdf -o c a l l - g r a p h . p d f 

Figure 2. 4 :  A  sample use of gprof 2dot t o generate a dot file  to be interpreted by 
Graphviz. Th e information i s generated b y gprof, the n piped int o gprof2dot. py , 
which itself pipes into the dot interprete r to generate the c a l l - g r a p h. pdf file. 

all, are reputed as being generally more precise and useful [55]. They rely on the imple

mentation of hardware counters ̂  within a given processor or other peripheral such as sensors 

[11]. Accessing these metrics requires patching of the Linux kernel and software Application 

7. Not to be confiised with hardware interrupts. 
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Programming Interfaces (APIs), such as PAPI [3, 9, 10, 38]. Figure 2.5 is an adaptation of 

[10] which depicts the different software layers at which PAPI intervenes. We have added the 

explicit names of the support tools required by PAPI in parenthesis. 

c 
o 

cc 

Si 

o a. 

Applications Measuremen t and Timing (TAU) erne 1 
PAPI Lo w Leve l 

Multiplex I  Overflo w 

Timer Interrup t 

PAPI 
High Leve l 

PAPI Machine Dependan t Substrat e 

Kernel Extensio n 
( p e r f men or p e r f c t r) j | 

Operating Syste m 
(L inux) 

Performance Counte r Hardwar e 
(CPU) 

Figure 2.5 : Th e PAPI implementation scheme. Adapted from [10 ] to include the software 
components, in parenthesis, relevant to each layer used in our implementation. 

Not all metrics can be counted nor are there as many counters as there are countable items 

[55]. For example, a processors being used may support only four simultaneous counters even 

though it is capable of probing well above 40 different events. A listing of such events, when 

PAPI is installed, is available for each machine in Appendix III. This is one of the limiting 

factors when selecting the desired statistic for collection. One must also note that some of 

these metrics are derived.  These imply additional computation to be performed by the PAPI 

low level abstraction layer. The command p a p i _ a v a i l - e <Name_of_PAPI_event> 

can be used to display the metrics from which an event is derived. This adds to overhead to the 

profiling process [12, 55], which is detrimental to the quality of the resulting information. It is 

therefore suggested that non-derived metrics be chosen as to minimize their probing impact and 

that the derived metrics be computed as part of a post-processing mechanism. Such a feature 
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is well supported in the Tuning and Analysis UtiUties, as we will demonstrate shortly. Lastiy, 

since PAPI is an API, this means that one either has to insert tracing functions into their source 

code or use profiling tools with ability to use PAPI [33, 37], which inevitably brings us to the 

following section where we explore such tools that automate the tracing insertion process. 

2.4 Timin g and Analysis Utilities (TAU) 

We have demonstrated that using g p r o f is somewhat trivial but there are many drawbacks to 

this tool in our context. Firstiy It only collects timewise and call count statistics. Secondly, 

and most importantiy, it is not meant to be used in the context of parallel processing where 

one wants to keep track of all processes running on remote computers. This limitation renders 

g p r o f practically unusable. Also, we have presented PAPI, which provides an API for access

ing the hardware counters present in modem processors. Unfortunately, this tool is not meant 

to automatically insert extra profiling and/or tracing functions into source code, such a burden 

being left to the programmer. Up until now, we have treated each tool individually and there is 

a clear need to consolidate these into a unified infrastructure to alleviate and make good use of 

each of theu: features. 

"Everything should be made as simple as possible, but not simpler." 
- Albert Einstein 

This quote from Albert Einstein is shared with the TAU [46, 1 ] development team as the pro

fiting and tracing of parallel processing application is a daunting task. Even more so when 

one adds the requirements of supporting multiple programing languages, compilers, hardware 

platforms and, above all, scalability [27]. But as we will demonstrate, the benefits of TAU's 

complex infrastructure is greatiy outweighed by its features. Once the relevant features and 

components have been identified, its use provides simple yet powerful interfaces for both pro

filing and analyzing the collected data. Given this context, we will concentrate on using TAU's 

features which apply to our use, notably, the profiling of C and C+ + code, generated by GCC 
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with the ability to collect specific metrics thanks to availability of PAPI ^ and TAU's abihty to 

use them [37]. 

2.4.1 Configurin g TAU 

TAU's features and the way it will probe a given program is selected when compiling  TAU. 

For this reason, one usually generates multiple profiling and tracing configurations ranging 

from the simple and superficial profile a  la  g p r o f to more complex and elaborate probing 

configurations for trace and call-path reconstruction. There are essentially two categories for 

TAU's compilation options. The first category specifies which libraries, compiler and/or sup

port applications (such as PAPI) will be used by the application to be profiled. The second 

category of options describe the type of profiling (measurements) to be performed^. Figure 

2.6 is an example of how one would call upon the i n s t a l l t a u script to automatically gen

erate a general set of profiling configurations. Note that global options, such as enabling MPI 

profiting with -mpi on line 3, still have to be specified. In Figure 2.7 , tines 4 and 5 are 

examples of options describing the type of profiling to be performed. For example, the op

tion MULTIPLECOUNTERS combined with PAPI's installation path (line 2), will result in a 

profiting configuration that will support he use of multiple PAPI counters. 

TAU A u t o m a t i c C o n f i g u r a t i o n 
/ i n s t a l l t a u - p r e fi'x=$ HOME/TAU/TAU - e x e c - p r e f ix= "uname -m ' 

- p a p i = $HOME/TAU/PAPI/•'uname -m ^ \ 
-mpi -pdt=$HOME/TAU/PDT/ \ 
&& make - j 4 i n s t a l l 

Figure 2. 6 :  Automated general configuration o f TAU using the i n s t a l l t au script . 

The resulting libraries are named according to these flags as a mechanism of identification. Fig

ure 2.8 presents a listing of the available configurations, each identified by then- stub Makefile 

8. Not applicable on all hardware platforms, refer to Appendix III. 
9. As of version 2.18.1 of the TAU suite, the measurement infrastructure is being rewritten to make these 

options run-time  selectable, therefore reducing the number of configuration stubs required. 
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TAU Manual Configuration 
/configure -prefix=$HOME/TAU/TAU -exec-prefix='uname -m' \ 

-papi=$HOME/TAU/PAPI/''uname -m' \ 
-mpi -pdt=$HOME/TAU/PDT/ \ 
-PROFILECALLPATH -PROFILEPARA M \ 
-DEPTHLIMIT -MULTIPLECOUNTERS \ 
&& make -j4 install 

Figure 2. 7 :  Manua l configuratio n o f specifi c feature s (line s 4  an d 5 ) usin g TAU's 
. / c o n f i g u re script . 

names formatted as M a k e f i l e . t a u - < o p t i o n s > where < o p t i o n s > relates to the afore

mentioned options. A specific configuration is selected by setting the environment variable 

TAU_MAKEFILE with the path to one of the stubs.  The user then compiles his apptication 

using the wrapper script '° instead of his usual compiler. Or, if the project has a M a k e f i l e , 

one includes the desired stub file and changes the compiler variable (typically CC or CXX) with 

TAU's wrapper script such that the compiler line becomes CXX=$ (TAU_CXX). 
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eric@h2 '/TAU/TAU/x86_64/lib S Is -1 Mak 
Makefile.tau-callpath-mpi-compensate-pdt 
Makefile.tau-callpath-mpi-pdt 
Makefile.tau-depthlimit-mpi-pdt 
Makefile.tau-mpi-compensate-pdt 
Makefile.tau-mpi-pdt 
Makefile.tau-mpi-pdt-trace 
Makefile.tau-muItiplecounters-mpi-papi-p 
Makefile.tau-multiplecounters-mpi-papi-p 
Makefile.tau-multiplecounters-papi-pdt 
Makefile.tau-multiplecounters-papi-pthre 
Makefile.tau-param-depthiimit-multiplecc 
Makefile.tau-param-mpi-pdt 
Makefile.tau-pdt 
Makefile.tau-phase-muItiplecounters-mpi-
Makefile.tau-phase-muItiplecounters-mpi-
Makefile.tau-pthread-pdt 

Available (compiled ) TAU configurations 

efile .tau-* 

dt 
dt-trace 

ad-pdt 
unters-mpi-papi-pdt 

papi-compensate-pdt 
papi-pdt 

Figure 2. 8 :  Exampl e o f TAU profiling option s that wer e compiled a t installation time . 
Following th e Makef i l e. t a u - filename  prefi x ar e the options selected a t compilatio n 
time. 

2.5 Profilin g the Source Cod e 

Profiling of the source code can be done in one of three ways: 

10. Typically, t a u _ c c . sh replaces gcc for C and tau_cxx. sh replaces g++ for C++ 
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1) Automatically insert extra profiling functions using TAU's integration of Program Database 

Toolkit (PDT) [34]; 

2) Senu-automatically insert traces using a Graphical User Interface (GUI) editor such as 

Eclipse with the TAU integration modules [49]; 

3) Manually insert function calls to keep track of called events as well as the time spent in 

these events. 

We will demonstrate the use of the first two approaches and leave manual integration of ac

cessing TAU's APIs for other advanced projects such as auto-adaptive parallel codes [29]. In 

both cases, the original source code remains intact. 

2.5.1 Automati c Code Insertions 

If TAU is configured with the - p d t option, it is possible to let the wrapper scripts insert trac

ing code automatically. This approach is as simple as compiling the code normally with the 

exception of changing the compiler name and having the TAU_MAKEFILE environment vari

able set. Using this approach, the entire program will be profiled and, if the selected profiling 

configuration includes options such as -mpi , these function calls will be uniquely identified. 

This approach is probably the best one to use when performing initial profiling of an unknown 

code base (peering into the black box). 

2.5.2 Semi-Automati c Cod e Insertions 

It is possible to perform selective  profiling  of an application while preserving the integrity of 

the source code. This is accomplished via a selection file which is passed onto the wrapper 

script as an option. The simplest way' ' to accomplish this is to use TAU's Eclipse'- modules 

[49] for selective profiling. Figure 2.9 is an example usage where we select a function (df ()) 

for profiling. Two types of user-defined events can be selected, start/stop  events and atomic 

events. The first one defines a type of counter that collects metrics at the entry and exit of the 

11. From the user's point of view. The administrator has to go through the installation of multiple Eclipse 
modules to get such features working correctly. 

12. h t t p : / / w w w . e c l i p s e . o r g / 

http://www.eclipse.org/
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selected region while the latter counts the occurrences of the selected region. Atomic events 

are tagged as user events in the generated profile and can help keep track of program dynamics 

such as iteration counts. 
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Figure 2. 9 : Selective profiling using Fclipse and TAU's selective instrumentation inter -
face. Th e df () functio n i s selected an d specifi c typ e of profile patter n is applied to it . 
The module s the n automaticall y generate s a  t a u . s e l e c t i ve file  t o be passed t o the 
wrapper script. 

2.6 Executin g the Profiled Cod e 

In the case of parallel and distributed environments, the collection of profile information re

quires more attention that simply executing the program and running the profile viewer. Al

though doing just that  will provide a valid profile with TAU, unexpected disaffects such as ex

cessively long runtimes can be experienced depending on the selected profiling options. This is 

the case for options such as TRACE and CALLPATH where the resulting files tend to be quite 

sizeable '^. Given the multitude of environment variables required to fine tune the profiting 

process, we present Figure 2.10 which is a sample script used for the profiled execution of a 

program. 

13. A typical profiling run for one of our applications generates SOOfcbytes of data while the same application 
will generate over 1.4G'byte of trace data. 
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2.6.1 Selectin g The Profile Dept h 

The first variables of interest are TAU_CALLPATH_DEPTH and TAU_DEPTH_LIMIT, from 

lines 4 and 5, which guide the depth at which the profiling must take place. For example, a 

TAU_DEPTH_LIMIT of 2 applied to the call graph of a program, such as the one described by 

Figure 2.3 , would generate a profile containing the statistical information for vq() and l o a d _ 

samplesO only, as these are the ones on the second level below the main() invocation. 
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Program Runscript.sh 

#!/bin/bash 
trap 'exi t 1' 2 3 

export TAU_CflLLPAIH_DEPTH= l 

export TAU_DEPTH_LIMII-2 

» COUNTERl enforced by the use of MULTIPLECOUNTERS and PAPI. 
export C0UNIER1-GEI_TIME_0F_DA Y 

export COUNIER2-PAPI_L2_TCM 
export C0UNTER3=PAPI_L:_DC M 

export C0UNIER4=PAPI_T0I_CYC 

for ITE R in 'seq 1 30' 
do 

for I in 'seq 2 18' 
do 

PR0F_DIR-"PAPI_MPI_Trace_iter_$IITER)/PAPI_MPI_Trace_5IIl" 
EXP_DIR-/data/eric/SPROF_DIR 
cexec -p "mkdir -p SEXP_DIR" >/dev/nul l 
export TRACEDIR-SEXP_DIR 
export PR0FILEDIR-5EXP_DI R 

orterun -x COUNTERl -x C0UNTER2 -x COUNTERS -x C0UNTER4 \ 
-X PROFIL E D I R - X TRACEDIR \ 

—prefix -/openmpi_i686 / -hostfile nodes -np $1 \ 
./pvq_i686_TAU /data/eric/feat_trainc_34291 0 

mkdir -p SPWD/$PR0F_DIR 
cexec -p "mv $EXP_DIR/. SPWD/SPROF_DIR ss rmdir $EXP_DIR" 

done 
done 

Figure 2.1 0 :  A sample script that sets up the environment for multiple runs of profiling. 

2.6.2 Selectin g The Desired PAPI Events 

Another set of important variables are present between lines 8 and 11. These are used to 

define the PAPI counters that will be used by TAU to profile the application. The first variable 

(COUNTERl) has to be set to GET_TIME_OF_DAY as it is used as a reference to synchronize 

the individual traces provided by each independent node. 
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2.6.3 Controllin g The Data Flow 

As we have mentioned earlyer, the profiling and tracing of an application can generate sizeable 

amounts of data. In lines 17 to 21, we configure the variables TRACEDIR and PROFILEDIR 

to point to local storage and are identified based on the experiment's parameters. Lines 23 to 26 

is the actual command line to launch the experiment. All environment variables are propagated 

to all nodes thanks to the - x option from o r t e r u n [5], OpenMPI's parallel process launcher. 

Once the application completes its execution, lines 28 and 29 transfer the resulting traces from 

the node's local storage to the server for post-processing of the data. 

2.6.4 Storin g The Data 

Performance Data Management Framework (PerfDMF) [27] is an interface to multiple types 

of databases '"*, which leverages the use of the TAU suite for keeping track of the evolution of 

an application's performance as the codebase changes. Although it is not required for viewing 

profiles '̂  per say, it is so for more elaborate analysis such as the ones that can be performed by 

the p e r f e x p l o r e r component '^, which can only access profile data through the PerfDMF 

interface. It also enables greater collaborative efforts as the standardized storing of the data 

eases distributed accessibility. 

The tools provided by PerfDMF are command line oriented and meant to ease the configuration 

of the GUI tools and automate the insertion of trial data. Although injecting the data into the 

database can be accomplished through the use of p a r a p r o f ' s GUI, which requires manual 

loading of each resulting profile for each experiment'^, the command tine tool per fdmf_ 

l o a d t r i a l is profiled to automate the process. Although this component does not play an 

active role in the profiting process, it plays a critical role in the decoupling of the profiling 

process from the analysis. 

14. Version 2.18.1 of TAU supports PostgreSQL, MySQL, Oracle and Derby, a local file-based database. 
15. We will present p a r a p r o f shortly. 
16. Yes, also presented shortly. 
17. A quick looks at Figure 2.10 reveals that one would have to perform 30 * 17 = 510 manual insertions! 
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2.7 Parapro f and PerfExplorer: Th e Profiling Graphica l User Interfaces 

TAU provides two independent GUIs for interpreting the profiled application's data. The 

first we present is p a r a p r o f [2], used specifically for profile analysis. The second tool, 

p e r f e x p l o r e r [26], is used for performance and scalability analysis. In both cases, they 

are composed of a main window, as depicted in Figures 2.11 (a) and 2.11 (b), for selecting 

the data source. 
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(a) The p a r a p r o f manager  window. (b) The p e r f e x p l o r e r client  window. 

Figure 2.1 1 :  Bot h GUIs posses s a  main windo w fro m whic h th e data set(s ) t o be ana -
lyzed i s selected. Th e selection i s performed i n the lef t pan e wher e trial s are presente d 
in the form of a tree structure. Th e latter depends on how the data was imported usin g 
PerfDMF. W e see in (a) that paraprof ha s an additional branch, which is used for the 
current folder's data and that (b) possesses an additional leaf named view. 

In the case of p a r a p r o f (Figure 2.11 (a)), an additional tree is present since this application 

can be used in a stand-alone fashion (without the use of the database backend). Contrary to 

this, p e r f e x p l o r e r explicitly depends on the data being stored in a database, hence the 

single tree seen in Figure 2.11 (b). Note that p e r f e x p l o r e r has an additional leaf entry 

named views,  this will be discussed with the use of p e r f e x p l o r e r itself. 

http://P-k-nieans.k-5000.n-6
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2.7.1 Th e Paraprof Profile Viewer 

Paraprof is a GUI component that provides a simple yet powerful presentation of the collected 

profiles. It has the ability to read the profile data from a multitude of different formats including 

g p r o f generated profiles. When used with TAU's suite, simply starting the application in the 

directory containing the output files is sufficient for the application to load and display the 

data. This implies that it can be used in a stand-alone mode, without requiring the connection 

to a database. The loaded profile can also be stored or retrieved to and from the database if 

so configured. Figure 2.12 is the first data representation displayed if p a r a p r o f is started 

within a directory containing profile data. By default, the bars are normalized, which makes 

the standard deviation (Std. Dev) seem disproportionate compared to the observed results. 

Metric; CET.TIME.OF.DAY 
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Std. Dev . 1 
Mean 1 
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Figure 2.1 2 :  A normalized profil e view of all processes includin g the globa l mean and 
the standard deviation (Std. Dev.) o f each functions. In this case the metric is the tim e 
proportion as per GET_TIME_OF_DAY. Each color represents a specific function and its 
length is proportional to the total execution time on that specific node . 

What makes this GUI interesting is the fact that any presented information has a contextual 

menu granting access to additional information. One can start from a global view of the entire 

execution and iterate down to the source code. This is also true for the hardware's metadata 

which is accessible through the contextual menu presented when hovering above the node 
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names. Such information becomes important when performance analysis is performed as well 

as for keeping track of the historical evolution of a given program. 

The presented data can also be filtered by selectively hiding functions, or group of functions, 

through the function (or function group) legend windows. This is presented in Figure 2.13 

where all functions are enabled but one group is selected, which adds emphasis to the selected 

group in the bar graph window. We also changed view configuration to present de-normalized 

and unstacked bars, as an alternative to the one in Figure 2.12. 

File Filte r Window s Hel p 
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n MPl.Comm.size O 
• MPl.Finalize O 
n MPl.lnlt O 
• floa t df(sample- , sampl e *) C  [|vq c ( 159.1H73,1)1 
n in t centroid.dsf(unsigne d int, float * ) C  [{vq c) (225, 
D in t load.samples(char- ) C  ({vq.c} {127,1H177,1} 1 
• in t main(lnt , char** ) C  |(vq c} (388,1}-{446,1)1 
M voi d centroid.init(cons t char* ) C  [(vq.c) {186,1H20 
n voi d mean.vectorO C  [{vq c } {246 , lH256 , l ) | 
D voidvqQ C | {vqc}{270, lH343, l ) ) 

Hie Option s Window s Hel p 

Metric CET.TIME.OF.DA Y 
Value; Exclusiv e 

D TAU : ParaProf : Grou p Legend ; Appl i _  •  X 
File Window s Hel p 

• MP I 
• TAU.DEFALIL T 
• TAU.USE R 

H 1 
1 1  H  1 
1 1  U  1 
1 I H 1 
1 l y 1 
1 1  y  1 
1 l y 1 
1 l y 1 
1 l U 1 
1 1 y 1 
1 l y i i 
1 l i 1 
1 1  y  1 
1 1  HI I 
1 mil 

• 
n ei i •II 

Figure 2.1 3 :  Individua l functions and group of functions ca n be selected to focus the 
displayed statistics . Here , the TAU_USER group is selected in the Group Legend pane 
(bottom left), which highlights the relevant functions in the main window (right). Not e 
that we have de-selected the stacked bar presentation for the main window to present an 
alternative to the normalized stacked bars from Figure 2.1 2 . 

The 3 Dimensional (3D) view, in Figure 2.14 , provides a more intuitive and dense analysis 

of the collected statistics when compared to Figures 2.12 and 2.13 . This view should 

therefore be the first one to be used to gain a rapid perspective of the program's behavior. The 

barcharts can then be used for a more in-depth analysis as they provide a complete mechaiusm 

for accessing all the data relating to each element of the program within its context '*. 

18. There is no contextual menu in the 3D presentation linking a given component to its metrics nor to its 
section of source code. 
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It is also possible to visualize the callgraph of a given execution thread. Figure 2.15 presents 

two such graphs for the same program where Figure 2.15 (a) is the graph of a master process 

while Figure 2.15 (b) is the one for a slave process. The box size and color are guided by their 

relation to selected metrics such as inclusive time and exclusive times. As with the barcharts, 

contextual menus grant access to contextual information such as the source code of a function 

and its statistics. Selecting one of the functions also highlights it in all other pa rap ro f 

windows displaying this function (except for the 3D view). 

Illlll int maindnt, char **) [{pvq.cpp}{.. 

MPLRecvQ [<... l I  I  I  I int maln{lnt , cha r " ) [{pvq.cpp). . 

void vqC) [{pvq.cpp}{250,1H3. 

int centroid_def(int, float *) [{pv.. 

(a) The master process's callgraph. 

float df(fl...i 

(b) A node's process callgraph. 

Figure 2.1 5 :  parapro f ha s the ability to display th e call graph if the program was 
profiled wit h the -PROFILECALLPATH option turned on. B y default th e box width is 
proportional to the inclusive times and the box color is selected according to the exclusive 
runtime of a given function. Both programs are the same but it is clear that the call path 
from the master node in (a) is different from one of the slave nodes in (b). 

Figure 2.16 is an example of an interaction sequence presenting the path from profiled data 

contained in the PerfDMF database down to the source code from the profiled application '^. 

19. A path to the source code must be provided is none is currently configured. 
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Std De v fT^ i 
Mean {'•' 

node 0 [~ B FuncUo n Legen d 
node 1  I  Ciou p Legen d 
node: ^ Z u»e f Even t Legen d 

Cloie Al l Sub-Window* Cal l Pith ReUUon i 

I TMI : PvAprof : CA H Gr^p h 
File Option s WiDdo%v s Help 

ni i i i i i r 
] I  >lPl.tetv< ) -' I  I 

B.t.1. OkftO-Ap i -  O  X 

^fiiiiini 

OXTl 

Show Sown Code 
Show Funaion Ba r Cha n 
Show Funcuo n Histogra m 
Assign Functio n Colo r 
Reset to Oefault Colo i 

Figure 2.1 6 :  An example of an analysis sequence in paraprof. Fro m top left, circlin g 
counter-clockwise, i s the sequenc e fro m paraprof manage r window , throug h th e ba r 
charts, the call graph and then to the source code. 

In all cases, p a r a p r o f can only be used for the punctual analysis of a given execution with 

a fixed context (such as the number of nodes). This implies that it is not the preferred tool for 

scalability and efficiency analysis and should be used for the performance analysis of a fixed 

context. 

2.7.2 Th e PerfExplorer Performanc e Analyze r 

As a sister application to p a r a p r o f , p e r f e x p l o r e r [26] is a more elaborate graphical 

front end specially created for statistical and efficiency analysis of parallel profiles. This tool 

is geared at providing an insight on a parallel program's scalability and efficiency, given some 

real-world runs of a program under possibly differing conditions. As such, it is expected that 

multiple profile runs will be executed with per-run variations such as the number of used nodes. 
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Given that scalability is a central concern to parallel processing, this tool is geared at giving as 

much information as possible in that respect so that one can quicldy identify scaling issues. 

Although p a r a p r o f provided a complete view of a single profile, it lacked the ability to 

convey tendencies that can only be obtained by comparing different profiled runs of a program. 

These tendencies are the application's speedup  and efficiency. 

2.7.3 Applicatio n Speedu p 

The speedup  (Sp)  is traditionally defined as per Eq. (2.1), a ratio between ^i, the time for a 

single process execution and tp, the time for executing its parallel counterpart with p processes. 

This evaluation of the speedup holds true as long as the program scaling is strong, meaiung that 

the computational load is not changed as machines are added. In such a case, ideal speedup 

is in direct proportion to the number of processors. Simply put, if there are p processors, the 

ideal speedup (and ultimate goal) is that a parallel application should run p  times faster than 

its sequential equivalent. Linear speedup is seldom possible to attain unless the application is 

embarrassingly parallel, meaning that it will perform computation more than anything else for 

any given p processors. Although the "anything  else" is historically bound to communications, 

we will demonstrate later that there £U"e other factors that influence the application's speedup, 

and therefore, scalability. 

Sp=j- (2.1) 
Zp 

The programmers of p e r f e x p l o r e r don't assume the reference execution of a program to 

be a single process and define a baseline execution time tbase  of a given program that is based 

on the first available timing sample, which is not necessarily executing sequentially on as a 

single process. This leads to what they call relative speedup. This leads to a slight redefinition 

of Eq. (2.1) as Eq. (2.2) by replacing the urut time î with a base reference time tbase  which is 

not bound to a single thread execution. 

5p = ^ (2.2) 
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Relative Speedup -  Islan d K-Mean s on headless:GET_TIME_OF_DAY 

7 8  9  1 0 1 1 
Number of Processors 

13 14 15 16 17 

I k=256 n=819 2 Unrolled Loop old •  k=500 0 n=80000 *  idea l 

Figure 2.1 7 : The top line shows the ideal speedup, based on the experimental data right 
below it, which starts with tbase =  ̂ i (1 processor) up to the timing for p = 1 6 processors. 
The bottom line seems to have poor speedup as it is far from the ideal line (also drawn). 
For this curve, the baseline tim e tbase  i s based on the execution with p =  5  processes. 
This induces a distortion in the speedup representation as the two series have a different 
reference for tbase-

The direct implication is that an ideal speedup is not necessarily equal to the number of proces

sors but rather a scaled factor of tbase by Pbase  ̂ the number of processor used for the base run. 

To illustrate this, we ran the test program with artificially low and high computation charac

teristics and with a different number of worker nodes to start with. We then draw the speedup 

for both execution cases in Figure 2.17 . The ideal speedup is drawn top most, then the first 

experiment with low computational load starting at p = 1 and finally, the lower most curve is 

for he experiment starting with p = 5 processors with very high computational load. Both runs 

are executed up to using 16 processes. Although the bottom most run would seem to possess 

a lower speedup, a closer look in Figure 2.18 indicates that the application is in fact exerting 

ideal speedup characteristics according to p e r f e x p l o r e r . 
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Given relative speedup is being used, to be able to compare both executions, the program would 

have to permit the scaling of tbase by Pbase2/Pbasei for a true comparison to be possible when 

presented within the same graphic. A normalized result is obtained by setting pbasei =  1' which 

would give a scaling factor of 5. This does confirm that the second experiment, which had 

displayed a seemingly poor speedup of 3.2, actually has an ideal speedup of 16 (3.2 x 5 = 16) 

after reseating. 

Relative Speedup -  [5-16 ] procs . :GET_TIME_OF_DAY 

9 1 0 1 1 1 2 
Number of Processors 

I k=500 0 n=8000 0 •  idea l I 

16 

Figure 2.1 8 : A closer look of the experiment having a baseline time tbase with 5 proces-
sors demonstrates that it actually exerts ideal speedup according to perfexplorer' s 
guideline. 

Another feature is the ability to display per-function speedups, which can help identify func

tions that will become problematic as processors are added. Figure 2.19 is one such example 

where the functions falling off below the ideal speedup curve are the most probable candidates 

of becoming scalability bottienecks. 
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Relative Speedup b y Event :GET_TIME_OF_DAY 

7 8  9  1 0 
Number of Processors 

MPI_AllreduceO •  MPLInit Q floa t df Q in t centroid.defQ othe r •  idea l 

Figure 2.1 9 :  The speedup of each event is drawn independently t o isolate the function s 
that do not scale well. Functions that fall off the ideal speedup referenc e line are the most 
probable barriers to scalability. 

2.7.4 Applicatio n Parallel Efficienc y 

The parallel  efficiency  Ep  of a parallel application is a measure of its ability to use pro

cessors as they are added to the execution enviroimient. Its general form is in Eq. (2.3), 

which is the speedup from Eq. (2.1) normalized over the number of processes Pcount-  Since 

p e r f e x p l o r e r doesn't assume the baseline time tbase is for a single process (or tbase =  ti), 

Eq. (2.3) is redefined as relative  efficiency in Eq. (2.4). This is once again a variation on the 

speedup, this time scaled by Pbase/p where pbase is the count of processors used for the baseline 

execution. 
t^ 

(2.3) Ep = T. 7 
\tp • Pcount) 

E: rel ''base  '  Pba 
tp-p 

(2.4) 
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As it is demonstrated in Figure 2.20 , the relative efficiency is a more appropriate measure of 

scalability when comparing different algorithms in differing contexts. The implementation that 

seemed to have initially poor speedup is in fact more efficient. The ideal is to keep the efficiency 

to 1 (or 100%) as p grows. As it is the case with the speedup graphs, it is also possible to display 

the relative efficiency for each element of the executing program, as demonstrated in Figure 

2.21 

Relative Efficienc y :GET_TiME_OF_DAY 

1.0 

0.9 

0.8 

S-0.7 
c 
V 
'.^ 0.6 
LU 

I 0. 5 

0.3 

0.2 

0.1 

0.0 
7 8  9  1 0 
Number of Processors 

11 12 13 14 15 16 

I • k^25 6 0^8192 Unrolled Loop old •  k=500 0 n=80000 | 

Figure 2.2 0 : Relative efficiency is not affected by the baseline's processor count p. Th e 
most efficient implementation (top line), averaging at 1, was originally presented as hav-
ing comparatively poor speedup in Figure 2.1 7 . 

2.7.5 Runtim e Breakdown 

The speedup and efficiency graphs are the de facto metrics to characterize a parallel process in 

its execution environment. As a complement to these representations, the runtime breakdown 

is composed of stacked areas representing each function's proportional contribution to the total 

execution time. This is a more intuitive view of the per-component performance progression 
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Relative Efficienc y b y Event:GET_TiME_OF_DAY 

7 8  9  1 0 
Number o f Processor s 

I IVIPI_AllreduceO *  MPIJnit O floa t df Q in t centroid.defQ othe r | 

Figure 2.21 : Relativ e efficiency by event can help identify functions with poor scalability. 
The ideal is to remain close to 1 as processor count grows. 

as processors are added. As an example. Figure 2.22 presents the same problem under three 

different angles. The relative speedup and efficiency graphs from Figure 2.22 (a) and Figure 

2.22 (b) don't convey a view as intuitive as presented by the runtime breakdown in Figure 2.22 

(c). Functions that present poor scalability will grow in surface area as processors are added. 

A quick glance at the runtime breakdown identifies these problematic functions quickly and 

efficientiy. 

2.7.6 Views 

An additional feature of p e r f e x p l o r e r is its abitity to create views based on the data present 

in PerfDMF. For example, if we have 15 iterations of the same experiment, displaying the 

resulting runtimes as in Figure 2.23 (a) isn't practical. Creating a view consolidating all 

iterations into a single experiment enables p e r f e x p l o r e r to display averaged statistics as 
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Relative Speedup by Event for PVQ; Text Databas e Relative Efficiency by Event for PVQ: Text Databas e 

fnlB] .  M P I . R K V ^ l lM t df O 

(a) Relative speedup graph. (b) Relative efficiency graph. 

Total Time Breakdown for PVQ: Text Database 

7 0 ' I 

IM MPIJnitO MMPl_Recv O floa t dfO In ! centrold.defQ In t lo«l_sampleiO •  voi d vqQ *  otTw D 

(c) Runtime breakdown graph. 

Figure 2.22 : Comparing three representation of the same profile run using relative 
efficiency in (b), relative speedup in (a) and a runtime breakdown graph in (c). The intu
itive display from the runtime breakdown eases the identification of functions becoming 
problematic as processors are added. Simply put, a widening cone such as the second 
predominant layer from the top, is indicative of a growing bottleneck. A tightening cone, 
on the other hand, means that the function looses proportional importance in the overall 
execution time. Parallel or constant area are signs of linear (ideal) speedup of a function. 

we see in Figure 2.23 (b), where the drawn cureve is the average runtime of the same 15 

experiments. 
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lOAl 

• 

Total Execution: All 15 Iteration s 

• ' " ^ ^ ^ ^ ^ • ^ ^ ^ V j n i H i t ^J^ V -
t 

0.0 2.5 5.0 7.5 10. 0 12. 5 15.0 17. 5 20. 0 22. 5 
Number of Processors 

25.0 27. 5 30.0 32.5 35. 0 37. 5 

• UNROLLE D Iteration 1  k=5000 n=100 0 •  UNROLLE D Iteration 1 0 k=5000 n  = 1000 UNROLLE D Iteration 1 1 k=5000 n=100 0 
UNROLLED Iteration 1 2 k=5000 n=100 0 UNROLLE D Iteration 1 3 k=5000 n=100 0 »  UNROLLED Iteration 1 4 k=5000 n=100 0 

- UNROLLE D iteration 1 5 k=5000 n=1000 UNROLLE D Iteration 2  k=5000 n=100 0 '  UNROLLE D iteration 3  k=5000 n=100 0 
•« UNROLLED iteration 4 k=5000 n=100 0 •  UNROLLE D Iteration 5  k=5000 n=100 0 UNROLLE D iteration 6 k=5000 n=100 0 

UNROLLED iteration 7  k=5000 n=100 0 •  UNROLLE D Iteration 8  k=5000 n=100 0 -  UNROLLE D Iteration 9  k=5000 n=100 0 

(a) Simultaneous display of the runtimes characteristics for 15 iterations of the same experiment. 

Total Execution: View of 1 5 Iterations 
10A2 

lOAl 

0.0 2. 5 5. 0 7. 5 10. 0 12. 5 15. 0 17. 5 20. 0 22. 5 25. 0 27. 5 30. 0 32. 5 35. 0 37. 5 
Number of Processors 

I • Experiment:nam e lik e %UNROLLEDXk=5000 n=1000| 

(b) Average  runtime characteristics for 15 iterations of the same experiment. 

Figure 2.2 3 : Th e use of p e r f e x p l o r er view s hel p consolidatin g experimenta l dat a 
for a  better analytica l perspective . Al l 15 experiments ar e presented i n (a) whereas an 
averaged view is presented in (b). 
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2.8 Discussion s 

We have skimmed the surface of the vast and complex field of program profiling, especially in 

the case of parallel and distributed processing. The following points are our main observation 

concenung the tools we have mentioned in this chapter: 

- The generic form of g p r o f is of little use to the parallel processing community when it 

comes to performance assessment. Extemal tools are required for basic visualization tasks 

such as callgraph generation and there is no obvious means of consolidating the collected 

information across multiple runs. 

- Modem processors provide intemal counters which convey much more relevant information 

on the execution of a program other than time of execution. Performance enhancement and 

better understanding of a program's dynanucs is accessible thanks to the use of PAPI in 

conjunction with profiling tools such as TAU. 

- TAU is a complex yet powerful profiling suite that consolidates the entire process of manual 

or automatic code trace insertions, execution tuning, data collection and displaying of the re

sults thanks to specialized GUIs oriented towards profiling and statistical analysis. This suite 

provides one of the most integrated and complete set of tools for program characterization 

in the context of parallel HPC. 

Finally, Table 2.2 associates the different profiling approaches supported by the preseted tool-

s/tollsets. It is more than obvious that TAU wins in all respects, hands down. 

Box Type 
Black 

White 

Grey 

g p r o f 
Not capable. 

Not applicable 

This is the modus operandi  for g p r o f through 
the - p g option passed onto GCC. It is inappro
priate for parallel HPC programs. 

TAU 
Only MPI calls through runtime interposition 
(hbrary wrapers)"' 
One can manually insert TAU specific profil
ing calls for a fine-grained control over which 
portion of the code is to be profiled. 
Supported in two ways: 1- through the use of 
selective profiling definition file 2- fully auto
mated using the PDT. 

Table 2.2: Black, Grey and White Box capabilities for the presented tools. 



CHAPTER 3 

CASE STUDY: PARALLEL K-MEANS ALGORITHM ANALYSI S 

Unsupervised learning has become a popular field of study ever since it's infancy. One of the 

tried and true algorithms that keeps re-surfacing in one form or another is the k-means clus

tering algorithm. This data mining algorithm uses an iterative learning approach. Its training 

phase can prove to be very time consuming depending on the size of the dataset n,  its dimen

sion of vectors d,  the number of centroids k  and the number of iterations N^gr- The latter is 

a stop condition detemuned by an imposed convergence threshold 6.  Given its computational 

complexity, represented by Eq. (3.1), it is not surprising that means to accelerating the k-means 

algorithm has been a point of interest since it's inception. 

0(ndkNiter) (3.1) 

We concentrate an implementation of the k-means used for unsupervised learning of segmented 

handwritten numeral strings as proposed by [44], Section 3, Foreground-Background Feature 

Extraction (FBFE)  Module.  In this context, k  is varied using an EA in an attempt to obtain 

an optimal Hidden Markov Model (HMM). This requires many repeated learning phases, 

implying that any means by which the process can be accelerated can lead to a higher quality 

classifier and/or in less time. 

Having access to a sequential and a parallel implementation (master-slave) of the algorithm, 

we will proceed as if we were performing a typical migration from the sequential to the parallel 

version as a means to validate the approach. With the help of Grey Box profiling results, we then 

propose a restmctured version of the parallel algorithm (island model) which has both a simpler 

and more efficient implementation, statements which will be supported through comparative 

profiling of each key functions. 

We therefore start by studying the sequential algorithm's profile, after which, we identify the 

potential parallel approaches. General parallelization considerations are presented for the al-
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gorithm. The master-slave version is then analyzed to ascertain its adherence to the identified 

approaches and pin point probable scalability bottlenecks. An altemate parallel model is then 

proposed, the island model, with a restructured communication scheme which both simplifies 

and optimizes the code. In all cases, TAU is used to perform the analysis. 

3.1 Th e Sequential k-means Algorith m 

Given an unalbelled database DB  of elements of dimension d  represented as x""" = {xi, 2:2, 

• • • . Xd}, we randomly select' k  elements that are to become the centroids defined by c''" = 

(ci, C2, • • • , Q ) , thus rendering the table of centroids C.  For each elements in DB,  we then 

identify the closest centroid Cj through Euclidean norm- (as denoted by || • ||). Once the owning 

identified (say, the fh centroid), each element's values are summed into an intermediate value 

Cj while keeping the count of elements in mj. The new centroids are then computed by mean 

vector such that cj = ^ . The process is iterated until the convergence threshold dist  is 

lower than the allowed distortion, defined as 6.  This convergence threshold is computed as 

the average distortion,  which is the sum of the Euclidean norm between each element and its 

centroid over \DB\,  the database size. This process is summarized in algorithm 2. 

3.1.1 Empirica l Evaluatio n of the Algorithm 

As with most parallel programs, our implementation of the k-means first started as a sequential 

version of itself. A profile of the apptication is used to identify the most time consuming 

sections of the algorithm as well as its computational characteristics. Parallel strategies, such 

as partitioning, depend on the computational granularity of a program, a measure we will be 

able to obtain through profiling coupled with some knowledge of the implemented algorithm. 

Our profile information is obtained by compiling the program with TAU as presented in Figure 

3.1 .̂ The parameters for this execution of the algorithm are d = 47 (vectors dimension is 

1. Our implementation uses the elements located at each \DB\/k  interval so that the results would be deter
ministic between experiments, therefore comparable. 

2. The Euclidean norm is the one we chose among many other distance computations as it is the one mostly 
used in our current experiments. 

3. The extended version is avalable at Figure II. 1 
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1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

Random initialization of C  by selecting k  elements in DB 
repeat 

Clear out intermediate values C" -<— 0, dist •<— 0 and m ^ 0 
for all Xi, where 1 < i < \DB\  d o 

Identify closest centroid as per arg min (||xi - Ck |) 

Save the element's distance from the centroid dist  =  | Xj -
Add Xi to intermediate centroid: c|̂  := c(̂  -I- Xi 
Increment the centroid's element counter mk '.=  m^  +  1 

end for 
for all c'j, where 1 < j < A: do 

Compute the new mean vector cj := c'Jrrij 
end for 
Assign new centroids as current C  =  C' 
Compute distortion dist := dist/\DB\ 

until \dist\  <  5 

• C k l l 

Algorithm 2: The Sequential K-Means 

47), A; = 500 (we want 500 centroids), \DB\  ^  67879 (we will use 67879 samples from 

the database). With a convergence threshold of  5  =  0.001, 9 iterations were required for the 

program to complete. 

Sequential k-means profiling 
$ export \ 
TAU_iyiAKEFILE = ~/TAU/TAU/x8 6 _ 6 4 / l i b / M a k e f i l e . t a u - c a l l p a t h - p d t 
$ t a u _ c c . s h - o p t C o m p i l e = " [ s n i p ] " v q . c - o vq_SIMD 
$ ./vq_SIMD . / f e a t g _ c o l . d a t $ ( ( 6 7 8 7 9 5 5 / 1 0 0 ) ) 
[ s n i p ] 

Figure 3.1 : Profilin g and execution of the sequential k-means algorithm using TAU. The 
program is then started by specifying th e reference database and the number of samples 
to load fro m th e database . Her e w e loa d 1 % of th e entir e database . Th e [ s n i p ] tag s 
indicate output truncation . 

We present an analysis of the resulting profile in Figure 3.2 . First, the call graph in Figure 

3.2 (a) indicates that the execution time (width of the boxes) mns down a direct path to the pre

dominant function c e n t r o i d _ d e f 0, being as wide as the main function. This observation 

is confirmed by Figure 3.2 (b) and Figiu-e 3.2 (c), where the lengtii of the bars representing 
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each functions are proportional to their time contribution. The function call counts presented 

in Figure 3.2 (d) come in handy with regards to a program's eligibility for parallelization as a 

high count and significant total execution time (from Figure 3.2 (c)) are indicative of probable 

partitioning for a given function. Since we are observing profiles and not traces, we have no 

means of establishing the level of each function's cohesion between calls. Nonetheless, we do 

have a  priori knowledge of the implemented algorithm and know that the computation from 

the principal loop, at line 4 of Algorithm 2, can be performed on all n  elements independentiy. 

Lastiy, the time per call metric, from Figure 3.2 (e), gives a hint as to which functions might 

be scalability bottlenecks. This information leads to scrutinizing the l o a d _ s a m p l e s ( ) and 

vq() functions as their high time per call metric might indicate a single long task, susceptible 

of not being parallelized. 
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3.2 Th e Parallel K-Means Algorith m 

As we will be presenting two parallelization approaches to the k-means algorithm, let's start 

by presenting common concepts for both approaches. We will start by presenting how the k-

means may be subdivided followed by the implied communications required by the selected 

strategy. 

3.2.1 First , Divide: The Segmentation Strategie s 

A typical approach to accelerating the resolution of massive amounts of loosely coupled cal

culations is to divide the calculated data into more manageable segments. This parallelization 

technique is appticable to the most basic form of the k-means algorithm, where, by definition, 

\DB\ :^ A;, meaning that the size of the database \DB\  is much more important than the num

ber of desired centroids k.  This implies subdividing the reference database DB  amongst the CJ 

workers, which we incrementally identify as pid = 0,1, 2, • • • , tu. This approach is known as a 

coarse grained segmentation strategy of the problem with communications only performed be

tween iterations. This is possible since the centroids aren't updated until a complete pass on the 

element database has been performed. The computation complexity form Eq. (3.1) therefore 

becomes Eq. (3.2). 

O r-^dkNit,A (3.2) 

3.2.1.1 Stride d Segmentatio n 

Two approaches to the segmentation are presented here, the first one is from [43] and is pre

sented in Algorithm 3. It consists in assigning the \DB\  elements of the database to each tu 

worker by strides in a round-robin fashion. This is accomptished using a modulo function of 

the u> node count as the database is being traversed . In essence, this strategy ensures that the 

workload is subdivided as evenly as possible to all nodes. 
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for all Xi, where 1 < z < \DB\  d o 
if pid =  i  mod UJ  then 

DB-'.^ =  Xi  {the i^h sample is assigned topid's local database} 
end if 

end for 
Algorithm 3: Segmentation by Strides of the Database 

3.2.1.2 Blocke d Segmentatio n 

The other approach, implemented for our island model, consists in subdividing the database 

into \DB\/uj  large blocks. The rational behind this approach is that it provides a predictable 

access pattern for the hardware and therefore eases optimization through prefetching of the 

data. It also makes it possible to consotidate the loading of the data into a single system call. 

This strategy is described by algorithm Algorithm 4 where DBpid  is a local process's database 

to be initialized with a block of elements within the interval delimited by pid x \DB\/uj  <= 

i <  (pid-\-l)  X \DB\/uj.  In the case where there is a remainder to \DB\/uj,  they are assigned to 

the last processor. Figure 3.3 is a graphical representation of these two segmentation strategies 

applied to a database. 

1: if pid =  u {If  pid is the last process} then 
2: DBp^d  := DB,  I pid  x \DB\/u  <=  i  <=  \DB\ 
3: els e 
4: DBpid  '.=  DB, I pid  X \DB\/uj <=  i  <  [pid  + 1) x \DB\/u 
5: en d if 

Algorithm 4: Blocked Segmentation of the Database 

3.2.1.3 Hardwar e Considerations: Load  Balancing 

The two presented approaches do not take into consideration possible variations in hardware 

characteristics between the computing nodes. These variations can come into play when there 

is a significant difference in processor performance where a slower node would slow down the 

process in whole. A common method of compensating such situations is to assign segments 

proportionally equivalent to the processing power of each node. This can be accomplished 
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Database Segmentation 
Strided 

mal^mm 

Blocked 
CPU o 

CPU 1 

CPU 2 

— - : . . - - ....... . 

CPU o a 

CPU o  " — - - « ^ 

e p w i ^ 

CPU 2 

CPU U ) 

Figure 3. 3 :  Database segmentation strategies: TOP- Strided segmentatio n (fine grained ) 
is used by the master-slave algorithm where each element of the database i s assigned t o 
one UJ worke r node in a round-robin fashion . BOTTOM - Block segmentatio n approac h 
(coarse grained), assigns equal consecutive chunk s of the database to each worker as per 
\DB\/uj with  the remainder assigned to the last worker. 

statically (at processing start up) or dynamically, through a scheduling scheme which assigns 

computational tasks as the processing evolves. The former typically requires little communi

cations whereas the latter usually implies a continuous stream of conmiunications from a task 

manager towards the nodes. This queue  based approach has been explored for the k-means 

algorithm by [58] with less than optimal results. We note that, in that specific case, \DB\  and 

d were significantly small compared to our typical use cases ̂ . 

3.2.1.4 Hardwar e Considerations: Physica l Limitation s 

Another issue that can come about are the actual hardware limitations for each processing 

node. For example, the available RAM a node has can dictate the maximum size of each 

segment. Such considerations will also gain much relevance with the growing use of Graphics 

Processing Units (GPUs). Such technology impose stricter segmentation guidelines as the 

processing units share limited amounts of video memory [7]. This in effect limits the amount 

4. Their largest performance test cases had at most \DB\  = lOOfc samples with d  =  2  whereas we have 
\DB\ =  6,5il/ and d = 47. 
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of data sets that can be loaded at a given time as well as require a different program structure to 

be used. The gain in performance remains important in the realm of classification algorithms 

as demonstrated in [16]^. 

3.2.2 The n Tell Everyone: Communication s 

Let's recall that the core element of the k-means algorithm is to compute the Euclidean norm 

between a given element and its representative centroid. We loosely represent this computation 

as tcomp-  The end of each computation cycle Nuer  is punctuated by a communication stage, 

identified as tcomm-  where all partial results are amalgamated^. These two components lead 

to the general parallel tim (^|) equation presented in Eq. (3.3). This is the prized crude repre

sentation [14] of paratiel processing time, which, as we will demonstrate, can easily lead to 

distorted expectations. For example, other times such as initialization (tinu)  and loading (tioad) 

times will come into play as important contributors to be dealt with. 

^W ^'iter  '  yt'comp  i tcomm)  W-Jj 

It was demonstrated implicitiy by [57] and then explicitiy by [43] that the number of nodes 

UI, used in the parallelization of the computation process, is theoretically limited by the inter-

iteration communications. Since the modelization of the communications is dependant upon 

the logical and topological distribution, we wiU present them in more details in their respective 

sections. 

3.3 An d Conquer: Master-Slave Model 

Although there are many ways one can implement the master-slave k-means algorithm [13, 

43], their topology can be generalized by Figure 3.4 . The approach we present here is from 

[43], where the master is responsible for computing the intermediate steps of the algorithm 

such as the centroid update and total distortion as well as propagating the new centroids. We 

5. Again, we must be weary of the dataset size as their experiment's dimensionality is not comparable to ours. 
6. We consider the consolidation as part of tcomp given its computational insignificance. 
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depict this in Algorithm 5 where the (workers (top half) are numbered such that uj — [0,p -  1]. 

The segmentation strategy is described by line 3 of Algorithm 5 using a ternary opertator where 

the local database (DBS)  is assigned the element DBj if the remainder of applying the modulo 

operator to j with the node number UJ  matches the node number itself, otherwise, the element 

is skipped^. 

Figure 3. 4 : A typical master-slave topology. All communications originate and terminate 
on the master. The nodes do not communicate between each other. 

3.3.1 Master-Slav e Communication s 

We identify conmiunications using bold and underline in Algorithm 5. In this version of the 

algorithm, the k  centroids are initialized by having each node select its first k/uj elements and 

send these to all other nodes. This process is performed using a modulo operator, applied 

against the node's identity u;, with each element being sent as they are selected. This requires 

k X  [u —  ly  PtP communications. 

After an iteration, each node sends its local centroid table C'^, element count m^̂  and distortion 

distil vectors, to the master. This, in turn, represents 3a; PtP communications, each having a 

respective payload of kd  for C'^,  k  for m^̂  and dist^ elements^. The master  then computes 

the new centiroids table C and global distortion dist and sends them back to the workers for the 

next iteration. 

7. Note that some off by one adjustments were not included for clarity. The actual implementation is available 
in Appendix I. 

8. Where each element is the size of a f l o a t (4 bytes). 
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1: if pid >  0 {This is a slave process} then 
2: Initialization of C  by selecting the first k/p elements from each pid in a round robin 

fashion and sending each locally selected element to all other workers 
3: Initialization of local database: DB^  <— [j  mod UJ)  —  u  1  DBj :  < skip  > 
4: repea t 
3: Clear out intermediate values C" •«— 0 and m <— 0 
6: fo r all Xi in DB^  d o 
7: Identify closest centroid as per arg min (||xi — Ck11) 

8: Save the element's distance from the centroid dist^  =  ||xi — Ck|| 
9: Add Xi to intermediate centroid: c^  :=  c^ -\-  Xi 

10: Increment the centroid's element counter mf", := m'^,  -\-1 
11: en d for 
12: Sen d partial results , m^̂ , C'  ̂ and dist^, to master process and wait for new C  and 

total dist. 
13: unti l \dist\  <  5 

(uj Workers) 

(Master) 
else iipid =  0  {This is the master process} then 

repeat 
Wait for partial results , /7?̂ „ C'  ̂ and dist^^, from slave processes. 

17: Combine partial results such that m/" — Y^ m,  and C' =  Y^ C'^ 
j=i j = i 

18: fo r all ĉ  where 1  < j <  k  do 
19: Compute the new mean vector c] := c'Jm^ 
20: en d for 
21: Assign new centroids as current C  —  C' 

22: Compute total distortion dist  =  j^gy Y^ distj 

Send new C  and dist t o slaves. 
until \dist\  <  S 

end if 
Algorithm 5: The Master-Slave Parallel K-Means 

Recalling the general communications model in Eq. (1.4) (from section 1.3.5), the master-slave 

communications overhead is modeled by two phases of communications. The worker to master 

commurucations are represented by Eq. (3.4), which is composed of three distinct PtP commu-

rucations (hence 3ts) and a total payload of Ak{d -\- 2). The master to worker communications 

is described by Eq. (3.5) which is also composed of three distinct PtP communications with a 
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payload of 4(A;(d-fl) + 2 ) . 

TZi:^^ =  3ts  + tbyte' 4k{d +  2) (3.4) 

T:rpdat7 = 3^, + tbyte  '  4{k{d + 1 ) + 2) (3.5) 

We have adapted these equations to reflect the actual source code implementation of the com

munication primitives. These are comprised of matching pairs of MPI_send /MPI_recv 

function pairs as illustrated by Figure 3.5 . Variable names are chosen to concur with Algo

rithm 5. 

//Send parital result s to Master 
MPI_Send(SC ,  (K«D) , MPI_FLOAT, master, tag+1, 
MPI_Send(sdistc, K ,  MPI_FLOAT, master, tag+3, 
MPI_Send (in\_w , K ,  MPI_FLOAT, master, tag+2, 

//get result s fro m Workers 
for(j = 1; j  < w; j++ ) 
( 

MPI_Recv(lC ,  (K"D) , MPI_FLOAT, j , tag 
MPI_Recv(sdistc, K ,  MPI_FLOAT, j , tag 
MPI_Recv(sm_w , K ,  MPI_FLOAT, j , tag+ 

1 

Workers send partial result s 

MPI_COMM_WORLD); 
MPI_COMM_WORLD); 

MPI_COMM_WORLD) ; 

+1, MPI_COMM_WORLD, Sstatus) ; 
+3, MPI_COMM_WORLD , istatus) ; 
2, MPI_COMM_WORLD, Sstatus) ; 

Figure 3. 5 :  The workers send their partial results to the master 

Master updates workers 

//Master 
for(i = 1; i < totalnodes; i++) 
I 

MPI_Send(SC ,  (K*(D+1)) , MP1_FL0AT, i, tag ,  MPI_COMM_WORLD); 
MPI_Send(&dist_ant, 1  ,  MPI_FLOAT, i, tag+5, MPI_COMM_WORLD); 
MPI_Send(&dist ,  1 ,  MPI_FLOAT, i, tag+6, MPI_COMM_WORLD); 

//receive fro m the Master 
MPI_Recv(SC ,  {K*(D+1)) , MPI_FLOAT, master, tag ,  MPI_COMM_WORLD, &status) ; 
MPI_Recv(&dist_ant, 1  ,  MPI_FLOAT, master, tag+5, MPI_COMM_WORLD, Sstatus) ; 
MPI_Recv{idist ,  1 ,  MPI_FLOAT, master, tag+6, MPI_COMM_WORLD, &status) ; 

Figure 3. 6 :  The master updates the workers with the new values 
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The Message Sequence Chart in Figure 3.7 illustrates an idealized^ communications between 

the master and workers. This emphasizes the fact that aU communications originate and termi

nate on the master. 

3.3.2 Master-Slav e Empirical Modelizatio n 

As it was demonstrated in Chapter 1, performance characteristics vary significantly even within 

the same class of hardware. The simple communications model, described in section 1.3.5 from 

that same chapter, will be used as a basis to define the communication times of this master-slave 

implementation. The model is completed using TAU [46] to extract the computation times of 

important parts of the application. The Beowulf cluster used for our tests is described in detail 

in Appendix IH. 

A gross estimate of the parallel computation time tcompW'^  for one iteration t,  is presented in 

Eq. (3.6) where ^/(||.||) is the time required for a single Euclidean norm computation, k  is the 

number of centroids, n is the number of samples in the database and ^' is the number of workers. 

We chose t^(||.||) for the computation times as it is the smallest token of computation in the k-

means algorithm but also the most called upon. 

\DB\ 
tcompW =  tf{\\.\\)k  (3.6) 

UJ 

We have measured that ^/(||.||) ~ 1.8//.S. With \DB\  =  342910 (the size of the entu-e test 

database), k  = 10 and u  —  10, we get a modeled tcomp\\  =  0.6172 seconds per iteration. 

Eq. (3.4) and Eq. (3.5) are then used to estimate tcomm-  Given the vector size of d =  47, we get 

± frpworker  , rpmaster\  Ci  '1\ 
^comm —  ^  {-'•  collect "•" ^update  )  W-') 

= 10 {6ts + tbyte  •  {4{k{d + 1) + 2) + 4{k{d  + 1) + 2))) 

= 6.4576ms 

9. Meaning that we neglect the possibility of out of order communications and collisions. 
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Figure 3. 7 :  Master-Slave Message Sequence Char t (MSC) for the inter-iteration com-
munications. All communications are point to point and must be performed by all nodes. 

The first thing one notices is that the model anticipates that the coinmunications will be negli

gible '° compared to the actual computation. Knowing that a trial run with the same parameters 

10. Close to 100 times less. 
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took six iterations to converge, the general equation presented in Eq. (3.3) renders a total ex

pected execution time of 3.74 seconds. Unfortunately, this figure proves to be overly optimistic 

as the actual measured execution time averages" around 9.23 seconds. The execution time 

is therefore more than threefolds the estimated value using the theoretical model based on 

empirical data. 

To investigate this large discrepancy, we profile the entire application using TAU. Our obser

vations start with the 3D view from Figure 3.8 where we have isolated the two functions of 

interest, the commurucations (the first row identified as MPI_Recv ()), and the computation 

(the second row which is identified as f l o a t df ()). The height of the bars represent the time 

spent in each function, the color represents the time per call of each function. As expected, the 

master node (node zero) spends most of its time in the MPI_Recv communication call as it 

waits for the workers to complete their part of the computation. What is also revealed is the 

heterogeneity of the cluster'" with nodes being more powerful than others. This is put forth by 

the varying heights and lighter coloring '̂  of the communication bars for the faster computers. 

The 3D view makes it easy and intuitive to correlate the computation time and communication 

times seen by each worker node. It is obvious that faster computers end up waiting longer in 

the communication calls by simply looking at the bar height. These observations alone are 

sufficient to invalidate our assumptions about the communications model, the most notable one 

being that one must account for delays imposed by all  other nodes for a communication to be 

considered completed in a master-slave topology using PtP communications. In other words, 

the present communication model is designed in a way that each PtP must complete in the 

correct order, and all delays imposed by slower nodes must be added. Note that this is not a 

limitation of the communication library but rather a design flaw in the code's use of the library 

by forcing a given sequence in the communications. 

11. We ran 30 times the experiment within the same timeframe varying the node count from 2 to 24 
12. Described in more details in Chapter HI, section 1. 
13. Had the color been the same for all bars of the same row, this would have indicated that all calls took the 

same time for that row, therefore implying that higher bars are indicative or more calls, not longer calls. 
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Figure 3. 8 : The 3D view of the master-slave communications MPI_Recv() and compu-
tation cycles df 0 for all nodes. The master node (node 0) spends most of its time waiting 
for the results from the cjorker nodes. Columns are colored according to time per call for 
the function. 

We now observe the tasks accomplished by a single worker. Figure 3.9 is a barchart presenting 

each function's cumulative contribution to the total execution time for a single worker. As 

expected, df() takes most of the time with 3.2 seconds. Once again, we notice the excessive 

time (compared to the anticipated model) for MPI_* function calls. 

Furthermore, what the model fails to address is the fact that the loading of the samples database, 

the function called load_samples(), would come in second place with 2.47 seconds. This 

last observation is one of the often neglected considerations in parallel performance models, a 

point brought up by Foster in [14] when discussing execution profiles. 
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3.213 I ' T a g B B e e e e e M M M M M M M M d floa t df(float * , float * ) [{pvq.cpp} {69.1H80,1} ] 
int load_samples(char * ) [{pvq.cpp} {102,1H175,1}] 
MPLRecvO 
int centroid.defdnt, float * ) [{pvq.cpp} {204,1}-{217,1}) 
void vqO [{pvq.cpp} {256,1}-{353.1}] = > MPI_Recv( ) 
IVIPLRecvO [  <message size> =  <1880 > ] 
MPLRecvO [  <messa9e size> =  <1920 > ] 
IVIPLRecvO [  <message si2e> = <192 > ] 
void centroidJnitO [{pvq.cpp}{178,1}-{201,1} ] =>MPI_Recv( ) 

0.335 I  I  in t main(int , char **) [{pvq.cpp} {383,1}-{43S,1}] = > MPIJnit O 
0.335 1 ^ 9 iVIPUnit O 
0.262 I B voi d vqO [{pvq.cpp} {256,1}-{353,1}] 

0.038 I  MPLSend O 
0.036 D  MPLSend O [  <message size> =  <192 > J 
0.036 D  void centroidJnitO [{pvq.cpp } {178,1}-{201,1}] = > MPLSend O 
0.016 I  MPLRecv O [  <message size> =  <4 > ] 
0.008 I  in t main(int , char ") [{pvq.cpp } {383,1}-{435,1}] = > MPl.Finalize O 
0.008 I  MPLFinalize O 

Figure 3. 9 :  Average time spent b y all nodes in each function. Eac h call s are sorted b y 
order o f contributio n importance . Call s unde r 0.008 second s aren' t show n fo r clarity . 
Braces indicate the source file and line numbers, bracket information specif y whic h cal l 
parameters were used and function cal l paths are indicated using '=>'. 

The runtime correlation analysis graphic from Figure 3.10 is also used to correlate a function's 

execution time with the addition of worker nodes. Of all the functions, only MPI_ In i t ( ) has 

a negative correlation coefficient (r = —0.50), meaning that its execution time is unrelated to 

the addition of worker nodes and might also become a bottleneck. 

Finally, we performed a scalability analysis by varying the number of cjorkers between 2 

and 24. The resulting runtime breakdown graphic in Figure 3.11 shows that the l o a d _ 

samplesO function is hampering scalability as its importance grows with the addition of 

computing nodes. An important note about MPI_Recv() is that it seems to scale quite well 

but, in fact, the presented proportion is biased by the fact that the baseline reference of two 

nodes actually has a single node computing and the master essentially spends close to 100% 

of its time in the MPl_Recv() call. Hence the 50% proportion allotted to this call when only 

two nodes are considered. We also confirm our observation from Figure 3.10 , where the neg

ative correlation predicted that the MP l _ l n i t ( ) ' s function time contribution would grow and 

therefore become a potential bottieneck as nodes are added. 
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Time Correlation pe r Function Vs Total Time 
10A3T 

• floa t dfO, r = 0.9 9 •  in t centrold.defQ, r = 0.9 9 in t load.samplesO, r = 0.96 MPIJnitO , r = -0.5 0 MPLRecvO , r = 0.9 9 
T void vqO, r = 1.0 0 »  TOTA L 

Figure 3.1 0 :  Correlatio n analysi s for uj = [2, 24]. Eac h function's tim e contribution i s 
drawn as the worker count grows. The correlation coefficient r , indicates the correlation 
between the addition of nodes and the execution time of the function. 

With such information at hand, we move onto the following section in which we present an 

optimized version of the parallel k-means where we have implemented the island parallel com

putation paradigm. 
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Total Time Breakdown for Master-Slave k-mean s 

5 6  7  8 9  1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 
Number o f Processor s 

I float dfQ M  int centroid.defO M  int load.samplesO MPLInit Q MPLRecv O *  voi d vqQ *  othe r | 

22 2 3 2 4 

Figure 3.1 1 :  Runtime breakdown for u  = [2, 24]. Eac h function's proportiona l impor -
tance for the total execution time is depicted by its surface coverag e as nodes are added 
to th e computation . A  perfectl y scalabl e functio n woul d b e represente d b y a  constan t 
surface area whereas a growing surface is indicative of poor scaling. 

3.4 Or , Invade: Synchronous Island Model 

In the master-slave model, all communications are performed from and towards a master node. 

Also, this node typically doesn't participate in the computational task other than communicat

ing and computing intermediate parameters. Computation cycles are therefore lost while the 

master awaits the results from the nodes and, vice versa, the nodes are idle while waiting for 

the update from the master node. Also, given the PtP implementation, computation on the last 

node can only start after all other nodes have received their updates, which we have modeled 

as (if - 1) • T^'^tT- ^ s another well-known topological parallel paradigm is the synchronous 

island model which can be generalized by Figure 3.12 . In this model, all nodes participate to 

the computation and the commuiucation paths interconnect all nodes. This imphes the use of 



80 

a fully connected (or flat) network such as is the case in most Beowulf implementations using 

Ethernet networking fabric. 

Figure 3.1 2 :  A  typical  islan d topology . Communication s originat e an d terminat e be -
tween each node. Thi s model implies a  fully connecte d network wher e al l nodes can see 
eachother (typical Ethernet configuration). Th e number of actual communications varie s 
depending on the MPI implementation of the global communicators . 

We use this model to address inefficiencies found in the master-slave model. Our implemen

tation of the synchronous island parallel k-means is described in Algorithm 6. Again, the 

communications are in bold and underlined and, as with the master-slave model, are also the 

point at which all nodes are synchronized at the end of each iteration. 

The most notable change between the master-slave and island model is the lack of distinction 

between a said master node and workers. Note that we have also implemented a simpUfied 

centroid initialization scheme where all nodes use a predefined pattern to initialize C  using 

elements from X.  This modification eliminates the need to communicate between nodes for 

this irutial step and also ensures that the result is not dependant upon the number of nodes 

used ''̂ . 

14. The original master-slave implementation would use a modulo operator combined with the node count to 
select elements from DB, this would lead to variances in the end result and in the execution time. 
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Local initialization of C  with elements from DB  using a pattern known by all workers 
Each local database DB^^  is assigned a chunk of size \DB\/u 
repeat 

Clear out intermediate values C ^ 0 and m <— 0 
for all Xi in DB^ d o 

Identify closest centroid as per argmin (||xi — Ck||) 

Save the element's distance from the centroid dist^ =  ||xi — Ck|| 
Add Xi to intermediate centroid: c^' := c^' -I- Xi 
Increment the centroid's element counter m^j '•= m'^  + 1 iiiciii l i l t cciiuuiv a a  t ic i i ic i ii v^uuiiic j ii^ '"' " 

end for 
Exchange and combine partial results: 
Local values of m^^, C'^  and dist^, are exchanged with all workers 
While they are being exchanged, combine partial results such that: 

UI UJ 

m'̂  = ^ mi and (7' = ^ C; 
j = i i = i 

for all c'j where 1 < j < A; do 
Compute the new mean vector cj := c'-/m^ 

end for 
Assign new centroids as current C  =  C' 

16: Compute total distortion dist  =  T^^ 2_,  ^^^tj 
3 = 1 

17: unti l \dist\  <  5 
Algorithm 6: The Island Parallel K-Means. All nodes execute this exact same algorithm. 
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3.4.1 Optimizin g the code 

As a general rule, code optimization requires that a baseline be estabtished as a point of com

parison to assess the enhancement or degradation of performance. Since we have performed 

a complete profiling of the application, we have access to per-function execution times with 

a given set of parameters such as node count, centroid count and loaded elements from the 

sample database. We can therefore work on individual functions and compare the optimized 

versions to the original ones. 

We have estabtished that the following functions '^, in order of importance as per Figure 3.9 

, either require optimization or represent a significant enough portion of the execution time to 

warrant further investigation: 

- df (): The Euclidean norm computation function; 

- l o a d _ s a m p l e s ( ) : The database loading function; 

- MP I_Recv 0 [*]'.  The MPI calls (we consider the sum of all of them); 

- c e n t r o i d _ d e f ( ) : The function that defines which elements of DB  are clostest to the k 

centroid. 

The three categories of optimizations are therefore to be considered, computation, I/O, and 

communications. In this section, we present the MPI communication primitives as they are 

the most abstracted from the hardware architecture, are tightly bound to the chosen topology 

(island), and will represent the most code architecture change. The I/O ( load_samples ( ) ) 

and computation routines ( cen t r o i d _ d e f () and df ()) are both appticable on a ordered basis 

and apply to any model. They will therefore be presented in their own section. 

15. You may peer into their original implementation in Appendix I and their final implementation in Appendix 
n. 
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3.4.2 Islan d Communication s 

As we have just demonstrated, the island model is algorithmically simpler than the master-

slave approach. The master's role in the previous implementation served the only function 

of collecting three partial results then computing and redistributing the new centroids and the 

current global distortion. 

3.4.2.1 Overlappin g Communications and Computatio n 

In the island model, these three steps are accomplished by the three MPI collective calls as 

presented in algorithm Figure 3.13 . Not only do their semantic adhere more closely to Algo

rithm 6, but they also replace 15 blocking PtP calls '̂  that were made in the original master-

slave implementation. This approach also has the added benefit that it provides the necessary 

leeway for MPI-level improvements in the implementation of the global communicator [56, 4]. 

Another key benefit is that it also overlaps communications with computation '̂  as weU as 

simplifies the implementation which in effect reduces the probability of introducing deadlock 

conditions and simplifies debugging. 

I s l a n d Coinr iun ica t ions 
HPI_Allreduce(MPI_IN_PLACE, S d i s t c , 1 , MPI.FLOAT, MPI.SUM, MPI.COMM.WORLD); 
MPI_AHreducelMPI_IN_PLACE, C_cnt , K , MPI_INT , MPI.SUH, HPI_COMM_WORLD) ; 
MPI_Allreduce(MPI_IN_PLACE, c_sum , K«T, MPI_FLOAI, MPI_SUM, MPI_COMM_WORLD); 

Figure 3.1 3 :  The three collective calls used to communicate and perform an element by 
element summation of all three intermediate variables . 

The Message Sequence Chart (MSC) in Figure 3.14 illustrates the communications between 

all workers. The three collective calls are clearly separated by the horizontal dotted lines, which 

in effect indicate a communication barrier  where all nodes must have completed their call to 

the commurucator before moving onto the next call. These barriers will prove to be a limitation 

to the algorithm which we will address shortly. 

16. Including the calls made during the initialization, otherwise the figure is 11 calls for the main computation 
loop. 

17. The efficiency of the overlapping is dependant upon the MPI library implementation. 
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nodew 

Broac cast m ™ 

Broac cast C 

Broad a St dist 

Figure 3.1 4 :  Islan d MS C fo r th e inter-iteratio n communications . Althoug h 
drawn a s sequential , collectiv e communication s ca n overla p withi n th e sam e cal l t o 
MPI_Allreduce bu t mus t complet e withi n th e sam e cal l (equivalen t t o a  communi-
cation barrier). Thes e barriers are depicted by the horizontal dotted lines. The y must 
also be performed by all nodes. 

But first, we observe a few results comparing the two communication approaches. In Figure 

3.15 (a), the total average communication time sums up to about 4.45 for the master-slave 

algorithm. In Figure 3.15 (b), our island model presents a significant improvement with a 

given average of 0.51 seconds for its unique communication. 
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MPI Recv O 
MPI Recv O 
MPI Recv O 
MPLRecvO 
MPLRecvO 
MPLSendO 
MPLSendO 
MPLSendO 
MPLSendO 
MPLRecvO 
MPLSendO 
MPLSendO 

[ <messag e size > =  <1880 > ] 
[ <messag e size > =  <192 > ] 
[ <messag e slze > =  <1920 > ] 
[ <messag e size > =  <4 > ] 
[ <messag e size > =  <192 > ] 

[ <messag e slze > =  <4 > ] 
[ <messag e size > =  <1920 > ] 
[ <messag e size > =  <40 > ] 
[ <messag e size > =  <1880 > ] 
[ <messag e size > =  <40 > ] 

(a) Averag e master-slave communication times. 

(b) Averag e island communication time. 

Figure 3.1 5 :  Average communication times for both approaches. Master-slav e commu-
nications ar e presente d i n (a ) whil e th e onl y communicatio n fo r th e islan d mode l i s i n 
(b). 

3.4.2.2 Les s Talk, More Work 

As we have just mentioned, although the use of three separate collective communication calls 

is semantically identical to the algorithm, the introduced synchronization barriers add commu

nication latency and prevent the overlap of computation for the successive collective calls. This 

effectively eliminates some of the advantages of the collective commurucators. 

There are two ways to address this. The first one is to create a custom MPI data type (structure), 

which consolidates the three elements into a single communication block. The creation of 

custom data types in itself isn't too problematic but their use with collective communicators 

that operate on the data adds the complexity of also having to create custom MPI operators. 

We opted to use a simple alternative which consists in using a single large vector to contain all 

three elements. This approach requires less code modification and proved to be much simpler to 

implement. It is also possible because the operation to be performed on all exchanged elements 

is the same (a surmnation) and that the datatypes are compatible. The only variable assignment 

that required some modification is for the centroid ownership counter m  which was changed 
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from i n t to f l o a t . The three catis from algorithm Figure 3.13 are therefore merged into a 

single call as presented in algorithm Figure 3.16 

Merged Island Communication s 

MPI_Allreduce(MPI_IN_PLACE, c_sum , (K*T + K + 1), MPI_FLOAT, HPI_SUM, MPI_COHM_WORLD); 

Figure 3.1 6 :  A single collective cal l performs th e exchange and summation of all inter -
mediate values . Th e variabl e c_svi m is supersized t o include C,  m,  and dist,  henc e th e 
communication siz e of A  *  T -h A +  1 . Each variable simply points to its specific regio n 
within c sian u 

The Message Sequence Chart (MSC) for the communications therefore becomes much simpler 

as attested by Figure 3.17 where all communications are consolidated into a single call from 

each node. This approach has the potential '̂  of generating as little as UJ  communications 

compared to the PtP approach with its 6 • (a; — 1) communications '^. 

nodel node2 nodeB nodew 

Broac 

Nodds send partial results for m , C an d dist-

cast m.C.dis t •*• 

PrQatcastm.Cclist,' 

Broaccast nn.C.dist -

• Nodes connpute new centroid ; 

Broadcast nn Cdist^ 

Figure 3.1 7 :  Simplifie d Islan d MSC fo r th e inter-iteratio n communications . A  singl e 
collective cal l from eac h nod e communicates al l intermediate value s and performs thei r 
sum at the same time. 

18. The MPI standard does not enforce that collective communicators be implemented efficiently. They can 
actually be a wrapped version of PtP communications 

19. Recall that there are 3 send-receive pairs for each node in the master-slave model. 
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3.5 Optimizatio n of I/O Routines 

We have established that the l o a d _ s a m p l e s ( ) I/O function is hampering most of the scala

bility according to Figure 3.11 . Investigations into the l o a d _ s amples() I/O routine reveals 

that the database is in fact an ASCII (text) file containing 47 columns of numeral data separated 

by spaces for each dimension d  and each element on its own line. 

Storing data in textual format, although human readable, represents a heavy burden as far as 

raw space and computation requirements are concerned. 

For example, each element of a vector is represented by a character string (ie: 0.032352) to 

which we must add a space or the end of line character. This representation takes a total of 9 

bytes for single number where its binary equivalent in f l o a t format only takes 4 bytes. Not 

withstanding a gain in precision, storing the data in binary format would therefore reduce the 

raw data transfer requirements down to 44% of the original figures. Furthermore, the textual 

representation of numbers have to be converted to f l o a t format, which implies that each and 

every byte of the file has to pass through the processor. This represents a considerable amount 

of processing which, in its binary format, isn't required. 

Finally, performance enhancing mechanisms such as Dkect Memory Access (DMA), allowing 

the direct transfer of data from disk to memory, as well as OS based file caching are impossible 

with the use of textual data. Even if the data is cached in main memory due to recent access, it 

will still need to be re-parsed by the processor the next time the program is called"". 

The above-mentioned reasons and the poor performance revealed by our performance profiling 

has lead our implementation to use a binary file format. The performance gain is more than sig

nificant, trial runs executed on 12 nodes using both approaches revealed that the text database 

took an average of 2.085 seconds to load whereas the binary version took 0.018 seconds to 

load"'. This represents a considerable speedup, the binary version being over 115 times faster 

20. Recall that the k-means of our case study is part of a Genetic Algorithm (GA) in which the k-means serves 
as a fitness evaluator, thus being called multiple times upon the same data. 

21. The binary database was in cache as the previous system call forced a read of the entire file (a call to 
mdSsum). 
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dian the original code. Such speed gain is attributable to the fact that there is no longer a need 

to convert from the ASCII format, less data needs to be read from disk, the data can be loaded 

directiy into RAM without passing through the CPU and the use of file pointer arithmetic is 

now possible, eliminating the need to read the entire database to load the node's portion into 

memory (we can jump to the right entry immediately). This enhances the program's scalabil

ity by reducing the read time proportionally to the number of workers (read time should be 

inversely propositional to the number of nodes). 

3.6 Computationa l Optimizations : Codin g for High Performance Computin g (HPC) 

Although the ultimate goal of most programming language is to provide an abstraction layer 

between hardware and software components, some considerations are to be taken into account 

when dealing with HPC. Such programming constraints are seldom applied unless there is 

a proven performance gain in the overall application, which implies that hotspots  have been 

identified and that proposed techniques are known to have a significant impact. 

In both parallel models, the df () and c e n t r o i d _ d e f () functions have prooven to be hotspots. 

They both possess a high call and cumulative time count (Figure 3.2 (d) and Figure 3.2 (c)). 

But what we have also noted is that these function calls are very short (Figure 3.2 (e)). Code 

optimization techniques are much more complex and require intrinsic knowledge of the under

lying hardware to guide the applied techniques. We will use TAU and PAPI more extensively 

in this section to investigate the probable paths to optimizing the code. When possible, the 

compiler's implementation of the technique will be used when a performance gain is obtained. 

We wiU only revert to manual modifications of the code when absolutely necessary. This way, 

the code remains as close to the original implementation and doesn't get overfitted to a given 

hardware platform. 
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3.6.1 Compile r Directives 

Compilers are the core component of any software development project, it is therefore essential 

to be aware of their capabilities and options as well as the impact using optimization flags. We 

study the impact of these in Appendix I and refer to the obtained results throughout this chapter. 

3.6.2 Mathematica l Libraries Versus Code 

We have just demonstrated that most of the program's execution time is made up of small math

ematical kernels called up repeatedly. Most basic mathematical functions, such as pow () , 

s i n ( ) , c o s ( ) are implemented via standard mathematical libraries. It is often debated 

whether or not these should be used when performance is concerned. 

The g l i b c mathematical library has an Institute of Electrical and Electronics Engineers (IEEE) 

standard compliant implementation of basic trigonometrical, logarithmic, power and many 

other operations. Although our Euclidean computation kernel is quite simple, we notice that 

the df() function from Figure 1.2 might be implemented with the pow( ) function-- to com

pute the squared distance. We investigated the relevance of such a substitution of the explicit 

code with its equivalent call to pow(). As we can see in Figure 3.18 , the use of pow( ) ren

ders code that is slower and less efficient than its hand-coded equivalent. In all cases, whether 

it be time, processor cycles, processor instructions, floating point instructions and vectorized 

Soaring point instructions, the hand coded implementation is always faster, uses less processor 

cycles and instructions. 

We attribute the performance loss to the fact that the library approach adds a function call and 

that the current GCC implementation does not yet perform propagation of optimizations such 

as defined by - f f a s t - m a t h - \ Note that optimization propagation such as ignoring error 

and boundary conditions down to the compiled library is defined in the C99 standard -'*. 

22. Note that the Hbrary documentation stipulates that any of ihe functions may in fact be defined as macros. 
23. Referring to "treatment  of  error  conditions  by  math  library  functions  (math_errhandling)"  at 

http://gcc.gnu.org/c99status.html for all 4.x versions of the GCC 
24. As per h t t p : / / w w w . o p e n - s t d . o r g / j t c l / s c 2 2 / w g l 4 / w w w / s t a n d a r d s . The  lastest  publi-

cally available version  of the standard is  the combined C99  +  TCI +  TC2. WG14 N1124, dated  2005-05-06. 

http://gcc.gnu.org/c99status.html
http://www.open-std.org/jtcl/sc22/wgl4/www/standards
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0.529 
0.787(148.754%) 
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float df(con5t float •, const float •) C (Ivq.c) (60,1H77,1)1 

(a) Metric : GET_TIME_OF_DAY 
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float df(cons t floa t * . const floa t * ) C [(«q.c) (60,1)-(77.111 

float df(cons t floa t * , const float * ) C |lvq.c)(60,lH77.1) l 

(e) Metric : PAPI_VEC_INS 

Figure 3.1 8 : Comparing hand coded squared function (a x a) to the use of pow() on Intel 
Q6600. The metric used in all cases is the exclusive mean per-call values of the fucntion. 
In all figures ((a) to (e)), the top bar (in blue) uses the explicit definition while the red bar 
below uses the library call to pow (a, 2) . Al l the presented metrics point to the expanded 
version as being more efficient b y consuming less total time (a) , cycles (b) , issuing less 
instructions (c) (total) and even less floating point (d) and vector instructions (e). 

The performance gain,  on the other hand, can be explained by the fact that the compiler was 

able to recognize the intended operation and generated code that would explicitly use hardware 

specific features such as SIMD instructions, some of the key features of the Intel Q6600. We 

detail their use and implication, coupled with loop optimizations, in the following sections. 

3.6.3 Usin g Single Instruction Multiple Data 

As we have discussed in Chapter 1, most contemporary processors have stagnated as far as 

clock speed is concerned. Other strategies such as ELP and data parallel operations are now 

being implemented to compensate for the lack of performance enhancements. This in ef

fect is indicative of the rebirth of vector processing, mostiy by adding SIMD instruction sets 

(mnemorucs) or similarly purposed processing units [39]. These instructions, as their name 

indicate, perform a single instruction upon multiple data units. The main difference between 

processors are the available instructions, ranging from simple arithmetic to complex matrix 



91 

manipulations, the data width, such as single versus double float elements, and the element 

count (2, 4, 8, etc..) upon which they can operate simultaneously. 

Their effectiveness is therefore dependant upon low level data parallelism and locatity which 

typically occur when perfomung vector computation where the same instruction is to be ap

plied to multiple consecutive elements (ie: consider the addition of two vectors). Their use has 

proven to generate code with significant speedup [15] but still require careful considerations 

with regards to memory access patterns [45]. 

To take advantage of these specialized instructions, the compilers need to be hinted both on 

the command line and through mindful coding practices so that the mathematical idioms are 

recognized by the compiler. As we have just demonstrated, the use of the generic implemen

tation of pow() is to be avoided as it obfuscates the intended operation from the compiler and 

hampers optimization. 

GCC's documentation states that hardware specific SIMD extensions are enabled through the 

option -mfpmath=sse coupled with a combination of flags such as -msse , -msse2 , -

mSdnow, and so on, depending on the hardware. In the case of more recent 64 bit hardware 

such as the x8 6_64 based architectures-^, the extensions are enabled by default. By their 

nature, these instructions are typically used within loops and prove to be most effective when 

implemented in unrolled loops [15], our next topic. 

3.6.4 Loo p Optimization s 

Probably some of the most popular topics in literature pertaining to HPC [25, 54, 31, 23], 

optimization of frequently called loops mostly consist in obtaining a higher computation versus 

control/branch ratio while reducing memory references to a minimum. 

Instead of executing a single element of a loop and caUing upon the indexing and break condi

tions, we execute multiple steps of the loop before, within and after the said loop. An example 

of one of these techniques, loop  unrolling,  is described in algorithm 7. In this case, we have 

25. Which imply most current Intel and AMD processors. 
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unrolled the inner loop by a ratio of 4 : 1 computations versus branch verification. The loop 

indice advances by steps of its unrolled power, four in this case, and the remainder of the index 

is executed in its regular form at the temunation of the unrolled version. 

for i = 0; i < (Size  - 4); z-|- = 4 do 
DATA[i]=OPl[i]-^OP2[i]; 
DATA[i-i-l ]=OPl [i-i-1 ]-(-OP2[i-i-1 ]; 
DATA[i-h2]=OPl [i-(-2]-i-OP2[i-i-2]; 
DATA[i-i-3]=OPl [i-)-3]-i-OP2[i-i-3]; 

end for 
if i mod Size  {If some elements are left to be computed.} then 

fori < Size]i  + + d o 
DATA[i ]=OPl[i ]+OP2[i ]; 

end for 
end if 

Algorithm 7: Loop Unrolling 

The direct C code application of this technique is presented in Figure 3.19 where both the 

regular (left) and unrolled (right) versions of df () are presented. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

e r i ce th inkb ig l - / l_Fi les / l_EIS/ l_Mai t r i se /Code/pvq 5 
<(mpicc -E vq.c) \ 
<(mpicc -DUNROLL -E vq.c) 
# 61 "vq.c" 
i n l i n e f loa t df(const f loat . v l , const f loa t *v2) 

f loa t sum=0.0; 
i n t i ; 

for( i=0; i<47; i++) 

s u m + = ( v l [ i ] - v 2 [ i ] ) . ( v l [ 1 1 - v 2 [ i ] ) ; 

Loop Unrolling 

diff - -suppress -common-lines -y \ 

1 » 80 "vq.c" 
1 i n l i ne f loa t df(const f loa t *vl, const f loa t *v2) 
1 f loat sum =0.0 
1 f loa t suml=0.0 
1 f loa t sum2=0.0 
1 f loa t sum3=0.0 
1 in t i=0; 

1 if (47>4)( 
1 for( ; i<(47-4); i+-4)I 
1 sum + - (v l [ i ] -v2I i J ) » ( v l [ i l -v2[ i ) ) ; 
1 suml+- (v l [ i+ l ] -v2 [ i+1] )« (v l [ i+ l ] -v2 [ i+11) ; 
1 sum2+.(v l [ i+2]-v2[ i+21)• (v l [ i+2)-v2[ i+2)) ; 
1 sum3+-(vl ( i+3]-v2[ i+3])• (v l [ i+3]-v2[ i+31) ; 
1 ) 
1 1 
> if (47»4) 
> for{; i<47; i++) 
> s u m + « ( v l [ i l - v 2 [ i ] ) » ( v l [ i j - v 2 t i ] ) ; 

> 
> sum+=suml; 
> sum+=sum2; 
> sum+=sum3; 

Figure 3.1 9 :  On the left, the original loop. On the right, the fourfold unrolled version of 
this same loop. 
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The self evident drawback of this approach is that it assumes the loop index to be high enough 

as to mask the added control latency imposed by this larger code base. Such manual modifica

tions, other than inducing probable errors, make the code less legible and somewhat hardware 

dependent as the unrolling "level" is to be defined by the processor's characteristics such as 

data, instruction and address cache sizes. For these reason, it is preferable to let the compiler 

perform these optimizations. 

Although most loop optimizations flags are set by the - 0 3 general optimization level and, by 

their nature, should not impact the results, we have found that adding - f f a s t - m a t h was 

required for the compiler to actually unroll the loops. This might be explained by the fact that, 

as it was mentioned in [15], code vectorization and loop optimization techniques tend to be 

tightly bound by nature of their application. 

To inspect the use of the SIMD extensions and loop optimizations by comparing the assembly 

code for the df () function using both - 0 3 and the combined - 0 3 - f f a s t - m a t h flags. In 

Figure 3.20 , we see that the right-hand side has an unrolled version of the loop which also 

implements software pipelining prologue (lines 16 — 24) before instructions are unrolled (lines 

25 — 30 repeated six times) and then all data is reconciled in the epilogue (not shown) with the 

added touch that the loop index is transformed into a decremented index (line 40), reputed to 

be a faster control approach on some hardware. 

Being closely related to hardware, the impact of such optimizations will vary from platform 

to platform. This is weU illustrated in Figure 3.21 where we compare above mentioned opti

mization approaches using the general flag - 0 3 , then both - 0 3 - f f a s t - m a t h and finally 

forcing the compiler to um-oU all loops with - f u n r o l l - a l l - l o o p s . Figure 3.21 (a) dis

plays a time reduction of about 6% for the Athlon XP  platform and we also note that forcing 

the unroUing of all loops proves to be detrimental to df()'s profiled time. Figure 3.21 (b) 

demonstrates that there is barely any gain obtained on the Intel Q6600. 

In the case of the Intel Q6600, many reasons might explain the lack of performance gains. 

Apart from compiler adaptation to this recent platform, the hardware itself nught actually be 
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I 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 

.L62: 

.L61: 

.L54: 
jne .L5 6 

.L64L 

jmp .L5 6 

.L60: 
jmp .L6 2 
subl $12 , *esp 
xorl %eax , %eax 
movl 16(%esp) , %ec x 
movl 20(%esp) , %ed x 
xorps %xmml , %xmml 

[nothing] 

.L67: 

1 .L67: 

Use of SIMD and unrolling of 

1 .Lee: 
1 .L59: 
1 jn e .L6 1 
1 .Le9: 
1 jm p .L6 1 
> .1.70 : 

< 
1 jm p .L6 7 
1 push l %eb x 
1 sub l S4 , %es p 
1 mov l 12(%esp) , %ea x 
1 mov l 16(%esp) , %ed x 
1 movlp s (%eax) , %xmm2 
> movlp s (%edx) , %xmmO 
> lea l 144(*eax) , %ec x 
> movlp s 16(%edx) , %xmm l 
> lea l 144(*edx) , %ebx 
> movhp s 8(%edx) , %xmm O 
> movhp s 8(%eax) , %xmm 2 
> movhp s 24{%edx), %xmm l 
> subp s %xmiiiO , %xmm2 
> movlp s 16{%eax) , %xmm O 
> movhp s 24(%eax) , %xmm O 
> subp s %xmml , %xmmO 
> mulp s %xmm2 , %xmm2 
> movlp s 32(%edx) , %xmm l 
> movhp s 40(%edx) , %xmm l 
> mulp s %xmmO , %xmmO 
> addp s %xmmO , %xmm2 

[last e ops. repeated 7 times] 
[Additionnal padding code for pipeline 

1 .L72: 
movss (%ecx,%eax,4) , %xmmO 1  movs s {%eax) , %xmmO 
subss (%edx,%eax,4) , %xmmO 1  subs s (%edx) , %xmmO 
incl %ea x 
cmpl 547 , %eax 

jne .L6 7 
sqrtss %xmml, %xmmO 

1 add l S4 , %eax 
1 add l ?4 , %edx 
> dec l %ec x 
1 jn e .L7 2 
1 sqrts s %xmml, %xmml 

loops 

reassembly] 

Figure 3.2 0 :  Pre-assembly outpu t from GCC for an Athlon XP processo r for df (). O n 
the left, the code is compiled with explicit use of SIMD directives such as -mf pmath=sse 
- m s s e -mSdnow . O n the right , the addition of -f f a s t - m a t h ha s triggered unrollin g 
of loo p a s wel l a s additiona l use of th e SIMD capabilities , generatin g mor e efficientl y 
vectorized code . 

more efficient and not require as much hand-tuning of the source code. Recall that most of the 

techniques pertaining to optimizing loops revolve around computation versus control ratios and 

data locality. Since the processors have grown dramatically in cache sizes, it is a fair bet that the 

4M cache of the Intel (^6600, compared to the Athlon XP  's 512A' -^, is having a significant 

impact which require that classic techniques be revisited and re-evaluated with regard to then-

implementation and pertinence. 

Other approaches in HPC computing include hand coding the assembly. Although rather rare 

given the prohibitive efforts required to implement, there is a vectorial mathematical library by 

26. Also noting that some of our models had 256K. 
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n 12.nodes.GCC 03 -
• 12.nodes.GCC -ffast 
n 12.nodes.GCC -ffast 

1.36 1 
1.28 (94.062%) tat. 

Mean 
-math - Mean 
-nnath -funroll-all-loops - Mean 

. 
1 
i float dfO 

1.288(94.715%)! 1 

(a) Metric: GET_TIME_0F_DAY per call on Athlon XP 

0.508 1 1 
0.506 (99.62%) fe: ) float dfC 

0.506 (99.674%) 1 1 

(b) Metric: GET_TIME_OF_DAY per call on Intel Q6600 

Figure 3.2 1 :  Execution time comparison between using - 03 (to p bars in blue), adding 
- f f a s t - m a t h (middl e bars in red), and also addinf - f u n r o l l - a l l - l o o p s (botto m 
bars in green). Th e (a) is for the execution time on Athlon XP processor s wher e we can 
see that df( ) doe s no t seem to benefit fro m - f u n r o l l - a l l - l o o p s bu t does perfor m 
better with about 6% in time gain with only -f f a s t - m a t h , (b ) is on Intel Q6600 where 
very little differences ar e noted between the three approaches. 

the name of its creator, Kazushige Goto, known as GOTO Basic Linear Algebra Subroutines 

(BLAS) which is the result of such strenuous efforts. We investigate its use in our next topic. 
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3.6.5 BLAS Librarie s 

The GOTO [20] implementation of BLAS is reputed to be the fastest since it has been hand 

written in assembler and fine tuned for all supported processors. We have replaced the Eu-

ctidean norm computation (the df ()) function with its equivalent linear algebra mathematical 

representation using the Level 1 scalar-vector BLAS. This implementation is described by the 

following equation sequence where Eq. (3.8) performs copy of one of the vectors into a tem

porary work  area, which is then added with the negated second vector in Eq. (3.9). The norm 

of the resulting vector is returned as a single scalar in Eq. (3.10). 

Vdist ^  vl  (3.8) 

Vdist <  a-v2-{-  Vdist  (3.9) 

ret ^  \\Vdist\\2  (3.10) 

This sequence translates into the code presented in Figure 3.22 , where each element of the 

original implementation are aligned with their equivalent BLAS call when possible. Note that 

the BLAS implementation actually performs the vector difference and norm in different steps 

while this is fused into a single line in the case of the C code implementation. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

ericQthinkbigl ~/l_Files/l_ETS/l_Maitrise/Code/pvq 
<(mpicc -E vq.clegrep -v "$) \ 
<(mpicc -DUSE_BLAS - E vq.c) 
# 74 "vq.c" 

inline floa t df(const float .vl , const floa t *v2 ) 
( 
float sum=0.0; 
int i; 
for(i=0; i<47 ; i++ ) 
sum+=(vl(i]-v2[i])•(vl[i]-v2[i]>; 
return sqrtf(sum); 

Using BLAS Routine 

S diff —ignore-blank-lines —suppress-common-lines -y \ 

1 « 62 "vq.c" 

1 float Vdist[47] ; 

1 inline float df(const float .vl , const floa t *v2) ( 

1 cblas.scopy(47,vl,1,vdist,1); 

1 cblas_saxpY(4 7,-1.0,v2,1, Vdist, 1); 

< return cblas_snrm2(47,vdist,1); 

Figure 3.2 2 :  The df () function using BLAS. On the left, the original loop. On the right, 
the BLAS version of this same loop. The operations on the right are aligned with the ones 
they (mostly) replace on the left . 

We compare this use of the library in Figure 3.23 to our previously optimized version that 

used - f f a s t - m a t h . As we can see, using the BLAS Level 1 Ubrary is detrimental to the 
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performance in our case from all points of view (time, computing cycles and all). According to 

[19], this is probably linlced to limited loop unrolling capabilities in the Level 1 routines due 

to the lack of prior vector dimensionality knowledge, the same paradox faced by the compiler 

when unrolting loops. To investigate this further, we created a synthetic problem "̂  calling 

upon the df() function repeatedly while varying the vector size. Our results, presented in 

Figure 3.23 (f), clearly demonstrate that there is no vector size where these libraries represent 

a performance gain. 

It is therefore not  recommended that Level 1 BLAS be used instead of plain C code. 

27. this is the same program used to investigate cache saturation in Chapter 1, section 1.2.2 
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0.596 
0.506 (84.875%) I 

float dHcons t float « . const float •) C 

(a) Metric: GET_TIME_OF_DAY per call. 

1428.221 C 
1211.74 (84.843%) B 

3 floa t df(cons t float ». const float • ) C 

(b) Metric : PAP I_TOT_CYC per call. 

1491.025 
1150.73 (77.177%)! 

(c) Metric : PAP I_T0T_INS pe r call. 

float df(con8t float«, const float • ) C 

94.193 C 
57.116 (60,637%) i float df(con6t float •. const float •) C 

(d) Metric : PAP I_FP_INS pe r call. 

47.15 EZ 
46(97.561%)! float df(const float  •• const float » ) C 

(e) Metric : PAP l_VEC_INS per call. 

o 

Ti
m

e 
(s

e 

l u u s 

1 us 

100 ns 

10 ns 

1 n c 

1 1  1  1 

n P P ffT<" t rmt^ » Vjl\_»v^ ' l l d o l i l l d l 
GCC with BLA q 

o 

1 1  1 1  1  ' 

: 

••'''J/.^-'^'^ 

.-^^^^^^ " 

-

-

1 

1 2 4 8 16 32 64 128 256 512 1 k 

Vector Size (Bytes) 
(f) Performanc e comparison between BLAS and plain C using GCC - 03 -  f fas t -math. I n no scenario does 

the BLAS implementation overcome the C implementation of the Euclidean norm computation. 

Figure 3.23 : The Level 1 BLAS Hbraraies (top blue bars and line) perform poorly in 
all cases compared to the code optimized with - f f a s t - m a t h . This is reflected in all 
aspects of the computation whether it being time (a), CPU cycles (b), instructions (c) or 
even floating point operations ((d) and (e)). Further investigation by varying the vector 
size has proven this to always be the case as demonstrated in (f) 
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3.6.6 Comparin g All Approache s 

Finally, we collect the results of all approaches in Figure 3.24 , where we include the time per 

call results of df () for both the Athlon XP  (Figure 3.24 (a)) and Intel QmOO  (Figure 3.24 

(c)). This comparison in approaches and hardware brings forth many observations: 

- Not worth using at all, the call to pow() is most detrimental on the Intel (56600, where its 

performance is even worse than using BLAS; 

- The general optimization flag, - 0 3 , performs poorly on Athlon XP  ,  even more so than 

using the pow() function, similar observations are made for the Intel Q6600; 

- The compiler's profiling mechanism renders the best result on Intel Q6600, while average 

on Atiilon XP ; 

- The use of - f a s t - m a t h is best on Athlon XP  while its use alone is detrimental on Intel 

(56600; 

- On Athlon XP  , the three best results are generally very close to eachother (within 1%) and 

are a variant of a combination of using - f f a s t - m a t h and other more advanced compiler 

options not included in the general flags such as - 0 3 . 

Additionally, we correlate these time results with the total cache misses observed on each plat

form. The L2 cache misses displayed by Figure 3.24 (b) are clearly linked with the execution 

time seen for the Athlon XP  .  For the same observation to be made on the Intel (^6600, we 

have to observe the miss rate at the Ll cache. This clearly indicates that our application is 

mostiy memory bound and that RAM to CPU bandwidth is essential for the execution perfor

mance. It also alleviates the use of data locality optimization techniques as well as any other 

means of taking advantage of the processor's prefetching abilities to keep the active data in 

local cache. 



100 

c 

C 
CO 
01 

c S 
<0 1 
0) 

1 o 

< " T u i 1 

"1 ^ = i ^ <« o  £  " <u E  c  < " 

•PB 

1 

,, 

1 
J 

• • r l 

1 

- 1 ? 
K j r o l B c n 

1 '  '  (0  '  ^ ' " l l . r 

th
 p

ow
O

) 
as

t-m
at

h 
as

t-m
at

h 
IL6

S 
- 

M
e 

as
t-m

at
h 

- M
ea

n 
1 

33
4 

1 
28

8(
9 

1,
28

8 
(9

6 

1,
28

(9
 

> fc fc  • = S= M 1 
5. 1  1  o '  ^  1 1 
u u  u  1 - u  u  1 1 
U l- ) u O  u  u  I I 
u o  u o u a 1 
^/l *>. » 1/ 1 V I * / l V I 
d l O J d j O J O J O J ^ 
"a Z}  "O  TS  73  "O  i> 
O O  O O O O  f̂ ! 
C C  C C C  C  " J 

( 1 4 
fv j r N r^ j r g r M I M — 
.-1 . - 1 ^  ^  r H r H « ° 

nnnBDB ^ 

• o 

ffi 

o 

• 

i •! 

• ^ 1 
§ • " 
o 5 

2 S ° 
o o ° 

. b 1 1 
• 

;; 

/ • ^ 

X 
< a 1 
u, o 

1 H 
• 1— 1 

H 

1 H 
' H 

U 

i (1 > 

P 

ex, 
, > 1 

a 
1 ° 

a)
 A

t
h 

• 

i 

J 

• 

) 
1 
1 
1 
1 M 

(1
01

.9
5%

) 
B

 

i 
^ 
i n 

CO 

S 
° 

^ m 
N 

r«i 
i n 
0 0 

u > • 

• H 

b 

i n 

-* O) 
rsi 

:̂  
o 
o 

_̂ 
s u 
H 

1 
CM 
h ^ 

1 
M 
04 

< 
04 .̂̂  C/D 

V 5 
CA 

s 
1) 

. C 
o 

U 

t2 
( N 
J 
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3.7 Lookin g at the Global Picture 

The significant impact that optinuzation strategies have on the cache state are bound to have 

repercussive effects on the program from a global point of view. It is therefore warranted that 

the execution of the program in its entirety be considered to ascertain its performance from a 

global perspective. Furthermore, even though it might be self evident, one must not forget that 

profiling induces significant overhead-**, especially for small computation kernels such as the 

two observed functions. 

For this reason, it is always pertinent to compare profiled times with minimally (or ideally 

non-) profiled ones. In our case, we accomplish this by selecting TAU's minimal profile by 

including only MPI and PDT as the first is required for proper library linking and recalling 

that the latter for actually used inserting profile data into the source code ~'^. We also perform 

this comparison in the parallel realm as to confirm that our proposed optimizations don't have 

adverse effects on the program when considering its parallel execution environment. Figure 

3.25 contains the results of this time comparison executed on both the Headless cluster, based 

on Athlon XP  hardware, in Figure 3.25 (a) and the H"^  cluster, based on the Intel Q6600 

processor in Figure 3.25 (b). 

Inthecaseof the Athlon A'P architecture, the use of both - f f a s t - m a t h and - f p r o f i l e -

u s e come as the globally best approach, even though our profiting of df() had slated -

f f a s t - m a t h as the best. This is not too surprising since the profiling capabitities most 

probably optimized another area of the code, such as c e n t r o i d _ d e f , and that these two ap

proaches had less than 1% differentiating them. The analysis of the Intel Q6600 architecture is 

less clear as most of the approaches overlap and no distinc advantage is given to one of them. 

Only a clear statement about the worst cases can be made, being that the pow( ) and BLAS 

approaches are to be avoided in our specific case. 

28. Our profiled code rand as much as ten times slower, depending on selected counters. 
29. Later versions of TAU are slated to have the ability of totally disabling the inserted profiling functions by 

switching to stub functions thanks to an environment variable. 
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Total Executio n Time o n Headles s 

1 

GOTO BLAS 

2 3  4 

-•- pow( ) -•--ffast-mat h 

5 6  7  8  9 
Number of Node s 

03 -ffast-mat h -fprofile-us e 

10 1 1 1 2 

-ffast-math -funroll-all-loop s 

(a) On the Athlon XP  based cluster, there are four distinct time profiles out of six possibilities. Overlapping 
eachother are 03 with pow as well as - f f a s t - m a t h with - f f a s t - m a t h - f u n r o l l - a l l - l o o p s . 
The overall "winner" is the execution optimized with - f f a s t - m a t h - f p r o f i l e - u s e 

Total Executio n Time o n H 2 

5 6  7  8 
Number o f N odes 

-»-pow() Ht-GOTOBLA S -•--ffast-math-funroll-all-loop s -ffast-math-fprofile-us e —-ffast-mat h 0 3 

(b) On the Intel Q6600 based cluster, the profiles mostly overlap with the exception of the approaches using 
pow() and GOTO BLAS. No distinct advantage can be discemed from the other approaches. An execution 
jump is observed when seven nodes are reached, which we show to be attributed to OpenMPI's MP l _ l n i t ( ) 
in Figure 3.26 (a). 

Figure 3.25 : Total execution times on both clusters. The Headless cluster (a), based on 
Athlon XP  hardware, lends a distinct advantage to the use of - f f a s t - m a t h . On the 
H"^ cluster (b), based on Intel (56600 hardware, most options overlap leading to no clear 
"winner", barring the use of GOTO BLAS and pow. 
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Figure 3.26 (a) is the runtime breakdown for the best optimized option on the H~ cluster. We 

note that MPI_ In i t ( ) is responsible for the runtime jump between six and seven node exe

cution and that the communications primitive, MP I _ A l l r e d u c e ( ) is growing in importance. 

As expected from the previous runtime results, the runtime breakdown from the Headless clus

ter is less messy  as shown in Figure 3.26 (b). An argument could have been made that the 

computation is so fast on the newer Intel Q6600 hardware that the MPI routines were bound 

to take over in execution proportion. But, as seen in Figure 3.25 , the total execution time on 

both cluster actually place the older Athlon XP  architecture ahead. This discrepancy could be 

explained by the fact that both clusters don't have exactly the same version of OpenMPI library 

(1.2.8 for i?2 and 1.2.9 for Headless) 

These result are interesting since they emphasize the fact that parallel models only taking into 

account the computation and communications can be completely off target when attempting to 

calculate the number of nodes to use to remain efficient ^°. They also bring forth the importance 

of keeping critical libraries up to date ^'. 

30. RecalUng that efficiency is usually a 50/50 ratio between computation and communications. 
31. Note that the release notes bear no mention of performance changes made between the two aforementioned 

versions of OpenMPI. 



104 

Total Runtim e Breakdow n o n H 2 

5 6 7 
Number o f Processor s 

12 

float df() « int centroid_def( ) in t main()« MPI_Allreduce() MPI_Finallze( ) MPI_lnit( ) voi d vq() • othe r 

(a) Runtime breakdown on H~,  MPI_Ini t () induces most of the jitter and an overhead jump 
after seven nodes. The communication are also growing in importance when observingMP I_ 
Al l reduce( ) . 

Runtime Breakdow n o n Headles s 

10 

5 6  7  8 
Number o f Processor s 

10 11 12 

float df()« int centrold_def( ) MPI_Allreduce() « MPI_lnit() voi d vq() othe r 

(b) Runtime breakdown on Headless, most of the execution is spent in actual computation and little 
overhead is seen from the communications and the initialization function. 

Figure 3.26 : The runrime breakdown for the best optimized options on both clusters. In 
(a) most of the execution time on the H'^ cluster is spent in MPI libraries. We see this is 
not the case in (b) for the headless cluster where most of the time is spent in computation. 
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3.8 Discussion s 

In this chapter, we have presented both a master-slave and a synchronous island model of the 

parallel K-Means. The synchronous island model was elaborated to address issues surround

ing overly complex communication patterns of the original master-slave implementation and 

to enable computation and communications to overlap. By doing this, we have successfully re

placed over fifteen communication pairs with a single collective communication. From the I/O 

perspective, important performance gain was obtained through the conversion of the ASCII 

based database into its binary format equivalent. Through profiling, the synchronous island 

model was optimized where six different approaches were compared. These included com

piler directives, standard mathematical library calls and specialized vectorial libraries (BLAS). 

A correlation between performance and cache size was established for this memory bound 

algorithm. For our experiments, two architectures of completely different generations were 

compared, the Athlon XP and the Intel Q6600 processors. 

Our final observations are that: 

- There is no globally best solution or option to optimizing a program; 

- Performance attainment requkes profiting on a function level and on a global level; 

- Profiling is to be performed for each new hardware platform; 

- Process and environment initialization must  be taken into account; 

- Programs which are memory bound will always benefit from larger processor caches. 



CONCLUSION AND FUTURE OUTLOOK 

Our work set out to be an exploration of the profiling and optimization tools with the intent of 

defining the preferred hardware and software platform upon which to execute our characterized 

code. In Chapter 1, we have established that the typical problems encountered are memory 

bound and therefore would most benefit from processor with larger caches coupled with the 

fastest memory available. When network fabric was concerned, bigger and faster always come 

first but have an inherentiy high cost. With the advent of CMPs, virtually communication  less 

parallel processing will become more and more important. However, the necessity to control 

execution concurrence of functions or programs accessing large sums of data will be required 

to ensure the processor cache is not being trashed. In the case of problems with large datasets 

loaded from disk, a clear advantage was set for distributed loading (local storage) of these sets 

after an initial propagation of the latter. 

In Chapter 2, we shortly defined different approaches to profiling, which we differentiate using 

the terms Black,  White,  and Grey  Box. We then quickly established the downfall and inap-

propriateness of classic profiling tools such as g p r o f when it comes to parallel HPC. An 

elaborate open source profiling suite, TAU was presented with its main GUI components be

ing p a r a p r o f , the parallel profiling viewer, and p e r f e x p l o r e r , the performance analyzer 

mainly used for scalability and performance analysis. The use of support utilities such as the 

Program Database Toolkit (PDT), for automated Grey  Box profiling and Performance Appli

cation Programming Interface (PAPI), for high precision and specialized measurements (such 

as floating point operations) were also demonstrated. Throughout the chapter, an example pro

gram and multiple synthetic setups were executed and profiled to demonstrate the suite's usage 

for identifying bottienecks, with some warnings about possible misinterpretations. 

Three implementations of the k-means algorithm were presented in Chapter 3. The material 

from both previous chapters served to surgically dissected the sequential and first parallel im

plementation (Master-Slave), which then served to spawn an improved implementation (the is

land model). Multiple performance optimization strategies were applied with special hardware 
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centî ic considerations as well as careful compiler directive selections. Optimal communica

tions strategy, consolidating computation with data transmission, were employed to optimize 

the MPI aspect of the implementation. The proper use of global communicators were employed 

to simplify and offload the communication patterns to MPI's intemal logic. 

FinaUy, we believe that have demonstrated that parallel HPC coding requires close attention to 

the hardware characteristics as well as the necessity for attentive profiling of parallel code. The 

extensive profiling we have performed to identify the best optimization path has demonstrated 

that the exercise of attaining the best results in the field of HPC is an iterative process to be 

repeated with the each hardware platform for any given software. 

Optimization Quick Referenc e 

As we have stressed many times, optimizing execution performance is an iterative process 

given its dependence on code base and the environment upon which the latter is to be executed. 

Figure 3.27 is a deceptively simphfied depiction of this iterative process where a change in 

any of the environmental or code elements, as we had presented them in Figure 1 , represent 

an entry point to the optimization process. As we have demonstrated, the application of each 

of these steps require a wide range of tools. 

Attempting to propose a generalized solution would be futile and misleading. Nonetheless, 

we present in Table 3.1 a short list of the optimization techniques we have applied during the 

optimization process. It may be used as a quick reference when similar coding or execution 

paradigms are met. Obviously, this table is not meant to cover the entire realm of code opti

mization, there are many excellent books [54, 23] which cover this subject more appropriately. 

The astute observer will note that most of these tactics have existed for well over a decade. 

In most cases, performance gain is obtained through consolidation of sparse data and stream

lining its access, which is in essence minding data locality. We attribute this to the fact that 

contemporary computers are still mostiy based on the Von  Neumann Architecture,  even the 

Chip MultiProcessorss (CMPs) may be considered a special case of this architecture. 
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Figure 3.2 7 : A deceptively simple diagram depicting the iterative optimization process of 
a program. The multiple entry points recall that a change in any one of the elements from 
Figure 1  are susceptible to provoking a new optimization pass. The ultimate convergence 
being that there is no more possible improvements given a stabilized environment, and 
one can then get on with life. 

Things To Come 

The CMP, or multi-core processors, are now the de facto standard desktop processor with 

implied parallelism to harness their power. As we have demonstrated, differing architectures 

and cache structures offered by vendors don't make it a clear-cut choice which will provide the 

best performance, it's application specific. With the addition of a growing adoption of General 

Purpose Graphics Processing Units (GPGPUs), the parallel processing landscape is changing 

rapidly. The following is a condensed list of topics related to the realm of HPC not treated in 

this paper but with a significant growth in popularity in the last year. All of these are parallel 
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JiiSiSSiSSlmm 

VO 

API and 
libraries 

Communi
cations 

Program
ming 

Svmntnm/rancprcl 

Large 
files/databases 

Many small files 
MPI_INIT() takes a long 
time 
Most time is spent in an 
external API routine 
Many 
and small 
Many 
and large 

Many calls to a small func
tion 
Loop with embedded con
ditions 
Loop 
applied to 
large 
datasets 

- Use binary formated files 
- Use local storage for frequently read data 
- Enhance storage performance 
- Consotidate files into a single file 
Switch to an MPI implementation that supports daemonization 

Write your own implementation and comparing results 

- Consolidate if possible, use global communicators 
- Upgrade network fabric for low latency 
- Fine tune OS specific parameters (ie: Jumbo Frames, caching pa
rameters) 
- Upgrade network fabric for high bandwidth 
Inline the function's code 

"Unswitch" the loop by creating independent loops with the condi
tions checked outside 
Be mindful of data locality: explode or create data structures to 
consolidate the element(s) of interest for the loop 
- Simplify the loop's operations and exit conditions to let the com
piler unroll and vectorize its execution 
- Don't make function calls within the loop 

Table 3.1: Pe r bottleneck optimizatio n recommendations . Prio r profiling to identify th e 
applicability of these approaches is primordial. 

approaches which do not require a communication library such as OpenMPI but can very well 

be implemented in a hybrid context: 

1) General Purpose Graphics Processing Units 

a) The Compute Unified Device Architechire (CUDA) library from NVIDIA [7, 16], is 

growing rapidly in importance in the realm of massively parallel computation adhering 

to the Single Program Multiple Data (SPMD) paradigm where the exact same sequence 

of instructions (execution kernel) is to be applied to a large dataset; 

b) Open Computing Language (OpenCL) -̂, is a new standard describing a set of low level 

functions for parallel processing. It is meant to eventually supersede libraries such as 

CUDA to present a uniform access to multi-processing capable hardware. Although 

its use it not limited to GPU paraUelization and includes CMPs and CELL processing 

32. http://www.khrones.org/opencl/ 

http://www.khrones.org/opencl/
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units, mentioned below, most of the current work present its use in the realm of GPU 

processing. 

2) Compiler and Coding Technologies 

a) GCC, newer versions (starting from 4.4), now support per-function optimization prag

mas as well as an increasing number of optimization flags; 

b) OpenMP, although not techrucally a tool, its use requires slight modifications to the 

source code to automatically parallelized blocks of code; 

c) Low Level Virtual Machine (LLVM), a new modular compiler meant to generate faster 

and more efficient code. 

3) Hardware 

a) CELL processors [30, 24], these multi-core platforms are growing rapidly in popularity; 

b) Intel's Quick Path Interconnect (QPI), a competitor to HT, is now starting to be available 

on the market, opening the doors to more multi-cpu platforms. 



APPENDIX I 

THE GNU C Compiler (GCC) 

Unless otherwise noted, our experiments are based on GNU C Compiler version 4.3.2 (Gentoo 

4 . 3 . 2 - r 3 p l . 6 , p i e - 10.1.5). 

Code optimization is generally controlled using compiler directives, flags and options. Direc

tives are defined via #pragma keys inserted in the source code. An example of such usage are 

the directives used to automate parallelization via OpenMP. 

Flags are hi-valued command line switches that enable or disable features. Their general form 

is - f l a g for enabhng a given f l a g , or - n o f l a g for disabling this same f l a g . No aU flags 

are performance related as some are used to enable features such as profiling ', guided opti

mization -, and even generate explanatory text files concerning decisions taken by the different 

heuristics engines ^ . 

Options are more elaborate and accept either multiple values or a varying range of values. For 

example, it is possible to specify the Ll cache size of a processor via the - - p a r a m 1 1 -

c a c h e - s i z e = 1 5 k parameter. Most of the options address intemal variables used by GCC 

and can control its heuristical analisys of the source code during compilation. A demonstration 

of such an option follows. 

GCC has over 144 flags, 77 of which are enabled by the global optimization flag -02 and 82 

for - 0 3 . As a general rule of tumbs, the third optimizaion level (-03), is usualy considered to 

provide the best performing results while remaining safe"^.  Since these optimization levels are 

in fact a combination of individual flags, it is worthwhile to note the differences between he 

two levels. Recent versions of GCC make this easily possible through the command presented 

1. Such as : - fprof i l e - a r c s - fp ro f i l e - g e n e r a t e . 
2. Such a s : - f b r a n c h - p r o b a b i l i t i e s - f p r o f i l e - u s e 
3. Notab ly , - fdump- t ree -vec t -de ta i l s - fdump-ipa-cgraph. 
4. In this context, code safeness mostly refers to the code's conformance to precision standards established by 

International Standards Organization (ISO) and IEEE standards 
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in Figure I.l, where we identify the flags disabled in the -02 level (thus enabled in -03) 

thanks to the - - h e l p = o p t i m i z e r s option. The result of such a call can help guide the 

user as to which flags might toggled for performance comparisons. It can also come of use 

when attempting to identity which specific flags or options are included or not for a given 

architecture, for example, this would be accomplished by a command such as gcc - - h e l p = 

t a r g e t , j o i n e d . 

eric@fourrier ~ $ diff \ 
> <(gc c -c -02 -Q —help= 
> <(gc c -c -03 -Q —help= 
> 1  grep disabled 
< -fgcse-after-reloa d 
< -finline-function s 

=opt 
=opt 

< -fpredictive-commonin g 
< -ftree-vectoriz e 
< -funswitch-loop s 

imizers ) 
imizers ) 

\ 
\ 

[disabled] 
[disabled] 
[disabled] 
[disabled] 
[disabled] 

Figure I.l: disable d in the - 02 leve l but enabled in - 0 3. A s specified i n the manpage for 
GCC, the - 02 optimizatio n level leaves out options that can grow the code size. This is to 
be considered i f excessive instructio n cach e misses are found durin g th e profiling o f the 
application. 

1 Hel p GCC Help You: Choosing the Right Flags 

Unlike Fortran, which was destined for mathematical computation from its inception, the C ^ 

language was intended to be used as system programming language. This means that the 

assumptions made for Fortran do not apply to C. 

For example, in C it is not uncommon to have two seemingly distinct variables point to the 

same location. This is known as variable or pointer aliasing and has a sigruficant impact on 

the compiler's ability to implement optimizations which are data dependent. This is one of 

the many examples where the user can tell  the compiler about the absence of such aliasing 

therefore permitting higher levels of optimization. This would be accomplished by enabling 

5. And most other languages. 
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the - f s t r i c t - a l i a s i n g flag. Note that this flag is actually enabled by default for most 

optimization levels. We present it as a meere example. As a matter of fact, the selection of op

timization flags, givent their count and non-trivial implications, has become quite complex. As 

stated ealyer, general opimization flags, - 0 2 , - 0 3 , contain opions that make no assumptions 

about the code and ensure that there is no alteration of the expected output. 

We will use our a priori knowledge of the source code and inspect df () and c e n t r o i d _ d e f () 

in Figure 1.2 and note the following characteristics also considering knwon variables such such 

as the size of the T vector, and A", the centroid count. 

Concerning df (): 

- The heart of the loop is composed of three floating point operations; 

- The loop is cafled T  times, which we know to be 47 in our case; 

Concerning c e n t r o i d _ d e f ( ) : 

- It calls df 0 A' times; 

- It gets called X/uj  times ^ itself; 

- The inner loop is dependant upon the return of the df () function call. 

In both cases, we are dealing with simple mathematical kernels applied in a loop upon many 

elements of a given vector. Furthermore, the k-means computation is an iterative process where 

the K cenroids are re-computed at each iteration. The cummulative error or bias only apply to a 

single iteration. We also posses the knowledge that our mathematical evaluations are not using 

nor are they sensitive to boundary conditions, such as Not a Number (NaN) and Infinity (Inf), 

and we needn't distinguish between positive and negative zero values as every numerical values 

in the database are between 1 and 10~9. Such a situation therefore implies optimizations that 

are proper to small loops and simple mathematical operations. These considerations permit the 

use of - 0 3 in conjunction with - f f a s t - m a t h , which are general optimization flags made 

up of a selection of other individual flags. The - f f a s t - m a t h flag implements techniques 

known to have repercussions on the mathematical precision and also ignores many exceptional 

6. The number of samples treated by the local worker. 
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1 
2 
3 
4 
5 
6 
7 

float 
( 

) 

df{const floa t *vl , const floa t *v2 ) 

float sum=0.0 ; 
int i; 
for(i=0; i<T; i++) 

sum+-(vl[ij-v2(il).(vl[i)-v2(il1; 

Source 
1 

(a) The df {), distance function, Euclidean computation function from the k-means implementation. 

Source code for centroid_def(} 

inline int centroid_def(unsigned int idx, float *d ) 
I 
register in t i,centroid=-l; 
float dist, mdist=999999999.; 

for(i=0;i<K;i++) ( 
dist=df(Scentroids[i*Tl, ^samples[idx*T]) ; 
if (dis t < mdist) { 
mdist=dist; 
centroid=i; 

) 

»d=mdist; 
return centroid ; 

(b) The c e n t r o i d _ d e f ( ) centroid definition function. It calls the df() function A' times and gets called X/u; 
times. 

Figure 1.2 : Th e d f ( ) , distanc e function , Euclidea n computatio n functio n fro m th e k -
means implementation. 

conditions pertaining to boundary values. Still, to ensure the validity of the end results, the 

computetd centroids of each optimization technique is compared to the ones obtained by run

ning a non-optimized, baseline version of the code. In all cases, the total summed distortion 

beetween each component was found to be null. 

The following sections present our findings and results supporting theuse of such optimization 

flags in our context. 

2 Le t GCC Help You: Using Profile s 

One of the last avenues we explore is the capability that most compilers possess of adapting 

optimization strategies with a priori knowledge of the code's behaviour thanks to specially gen

erated profiles. This approach obviously implies that the code be compiled with specific flags to 

enable the profiling ( - f p r o f i l e - a r c s and - f p r o f i l e - g e n e r a t e ) and tiien that it be 

recompiled with the explicit mention that the generated profiles be used (- f p r o f i l e - u s e ) . 

The intended outcome of this approach is that the compiler should generate code that uti-
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lizes case-specific optimizations, prooven to be the best with the collected knowledge. This 

approach essentially provide measured values to the intemal cost model heuristics of the com

piler and also enables specific optimizations which depend on the availability of such profile. 

This is notably the case of the - f b r a n c h - p r o b a b i l i t i e s flag which is most significant 

in the area of control structures prevalent in loops. 

Obviously, two phases are implied where the first one is composed of a trial execution and the 

second one consists in compiling with the generated data. We illustrate this in Figure 1.3, a 

section of our project's M a k e f i l e , where a call to make mpi automatically compiles the 

application, a profiting version, runs it once with typical parameters, and then re-compiles it 

with the generated profile. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

Ma)^efile with profile based optimisation s 

GCCFLAGS_03 = -Wall -Winline -march=native -03 -save-temps 
GCCFLAGS - S(GCCFLAGS_03) \ 
-mfpmath=sse -msse -m3dnow \ 
-ffast-math 

GCC_PROFILE - $(GCCFLAGS) -fprofile-arcs -fprofile-generate 
GCC_POST_PROFILE = 5(GCCFLAGS) -fbranch-probabilities -fprofile-us e -Wcoverage-mismatch 

mpi: 
mpicc S(GCCFLAGS) 5(SRCS) -o $(PROGOUI ) 
mpicc S(GCC_PROFILE) S(SRCS) -o $(PROGOUI)_gcc-prof 
orterun -np 12 -hostfile -/hosts ./S(PROGOUI)_gcc-pro f /data/eric/featg_col.da t 1 0 342910 
mpicc SlGCC_POST_PROFILE ) S(SRCS) -0 S(PROGOUT)_gcc-profiled 

Figure 1.3 : Par t o f ou r M a k e f i le use d t o generat e an d use GCC's profiU e guide d op -
timizations on Athlon XP hardware . Th e application i s built calling make mpi , whic h 
will automatically generate the appUcation, a profiUng version, run a single execution and 
the compile a profile-guided versio n from the results of the previous run. 

As we applied this approach, we have noticed that the best resuUs are obtained if the profile 

phase is compiled with the same optimization flags as the final code using the profile. In other 

words, don't expect the profiler to automagically enable - f f a s t - m a t h and don't simply en

able it after the application was profiled. In essence, the approach should be used transparantly 

with all other compilation option and optimization techniques discussed earlyer. 



APPENDIX II 

COLLECTION OF COMMAND S 

This section contains the extended version of logs and traces for commands and their output 

referred to throughout the document. 

1 Identificatio n o f GCC Option Difference s 

The following sequence of commands are used to identify the inclusion of specific directives 

within global optimization flags. The basic techiuque is described in GCC's manual page and 

we present here our usage to obtain the data pertaining to 3.6 when attempting to identify 

probable paths to further optimizing code execution thanks to specific performance-centric 

options. 

2 Taxonom y of the k-means Algorith m 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

S export IAU_HAKEFILE.~/TAU/TAU/x86_64/lib/Ma 

Sequential k-means profiling 

kefile.tau-callpath-pdt 
S tau_cc.sh -optCompile="-Wal l -march=nativ e -mfpmath=sse -03 -f)ceep-inline-functions 
-freorder-bloclcs-and-partition -fno-math-errno -ffinite-math-only -fno-trapping-math 
-fwhole-program -combin e -ffast-math -ftree-vectorizer-verbose=4 -fdump-tree-vect-de t 
$ ./vq_SIM D ./featg_col.da t $((6787955/100)) 
Limiting sample load to 67879 samples. 
NSR - 67879 
Ta)ce it easy, I am classifying. . . 
TWO LAST AVERAGE DISTORTIONS: AD1=0.000000 AD2=0.463098 Dif=0.463098 
TWO LAST AVERAGE DISTORTIONS: AD1=0.463098 AD2=0.369992 Dif-0.093105 
TWO LAST AVERAGE DISTORTIONS: ADl-0.369992 AD2-0.352347 Dif-0.017645 
TWO LAST AVERAGE DISTORTIONS: ADl-0.352347 AD2-0.343929 Dif-0.008418 
TWO LAST AVERAGE DISTORTIONS: AD1=0.343929 AD2=0.339822 Dif-O.004107 
TWO LAST AVERAGE DISTORTIONS: AD1=0.339822 AD2=0.337425 Dif-0.002398 
TWO LAST AVERAGE DISTORTIONS: ADl-0.337425 AD2-0.335747 Dif-0.001678 
TWO LAST AVERAGE DISTORTIONS: ADl-0.335747 AD2-0.334442 Dif-0.001305 
TWO LAST AVERAGE DISTORTIONS: ADl-0.334442 AD2-0.333580 Dif-0.000862 

Tempo total(s): 1333.02 8 

-funsafe-loop-optimizations 
-fno-signaling-nans \ 
ails" vq.c -o vq_SIMD 

\ 

Figure II.l: Profilin g and execution of the sequential k-means algorithm using TAU. The 
program is then started by specifying th e reference database and the number of samples 
to load from the database. 
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MACHINE DESCRIPTION S 

1 Th e Thinkbig Cluste r 

1.1 Genera l Descriptio n 

This Beowulf style cluster is composed of sixteen machines with two different processor spec

ifications and interconnected using 100 BaseT Fast Ethernet. The topology consists of a log

ically flat networks with two switches bridging interconnected as described by Figure III.l. 

This classifies it as a slightly heterogeneous cluster with a fully connected topology. Commu

nication paths between the nodes are direct while communications with the head node is split 

at the IP level between two links thanks to subnet separation. The network mask is set to a 

typicl class C of 255.255.255.0 with one broadcast domain from the point of view of the nodes. 

The serve has its NlCs configured with a subclass of 255.255.255.128, where the first NIC is 

assigned the lower part of the address range and the second NIC the upper section. 

1.2 Nod e Specification s 

The two node types are described in table Table III.l where the most significant hardware dif

ferences are outiined. The local disks vary in size between 20,40 and 80 Gigs and performance 

caracteristics as illustrated by Figure in.2. This data was collected using the averages results 

for 30 runs of the Zoned Constant Angular Velocity (ZCAV) utitity '. It is well illustrated that, 

in most cases -, HDD transfer rate diminishes significantiy as the data is located on higher order 

blocks. 

All nodes are booted via Pre eXecution Environment (PXE) and share the user's $HOME folder 

via NFS with a local disk for scratch space. 

1. Included with the bonme++ HDD performance suite 
2. With the notable exception of one of the 80 Gigabyte HDDs which seems to be defective given its low and 

irregular performance. 
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Mask: 255.255.255. 0 
I Nodes 1 to 9 Nodes i o to 16 

10.0.0.11 - 19 10.0.0.139 - 136 

Q 
mmnlSvr 

j fethl: io.0.0.1 

lies 

X 
I I  rrnt;t:r>»p r I 

1 e thl : 10.0.0.129 J-i 
MASK: 255.255.255.12 8 

Figure III.l: Thinkbig Beowulf cluster topology 

Parameters 

Processor 

Model Name 
Cache Size (KB) 

CPU MHz 
BogoMIPS 

Machine Profiles 
A B 

AMD Athlon(TM) XP 2500+ 
512 

1833.18 
3669.17 

AMD Athlon(TM) XP 2600+ 
256 

2083.158 
4169.51 

Table III.l: Thinkbig  Node Specifications 

1.3 Operating System 

The cluster's OS is Gentoo based with important software versions described in table III.2. 

Software 
GCC 
ICC 
OpenMPI 
Linux Kernel 
PAPI 

Version 
Gentoo 4.3.1-rl pl . l 
Version 10.1 Build 20080602 
1.2.7 rl9401 
linux-2.6.17-gentoo-r4 
3.5.0 

Table III.2: Thinkbig Software Specifications 
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Figure III.2 : Th e HDD's Zoned Constan t Angular Velocit y grap h for 1 6 nodes o f the 
Thinkbig cluster. These performance profiles illustrate well the heterogenety of the HDDs 
performance. Th e 40 and 80 G Byte HDDs start off with the same performance whereas 
the 20 G byte models are more than twice as slow. 

1.4 Performanc e AppUcation Programming Interface 

The node's kernel was patched to support PAPI. Figure IU.3 Usts the available events. 
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ericQthinkbigl ~ $ papi_avail -a 
Available events and hardware information. 

papi_avail - a Output 

Vendor string and code :  AuthenticAMD (2 ) 
Model strin g and code :  AMD K7 (9 ) 
CPU Revision :  0.000000 
CPU Megahertz :  2083.157959 
CPU's i n this Node :  1 
Nodes in this System :  1 
Total CPU's :  1 
Number Hardware Counters :  4 
Max Multiplex Counters :  32 

The following correspon d to fields in the PAPI_event_info_t structure. 

Name Derive d Description {Mgr . Note) 
PAPI_L1_DCM Ye s Leve l 1  data cache misses 
PAPI_L1_ICM N o Leve l 1  instruction cache misses 
PAPI_L2_DCM N o Leve l 2 data cache misses 
PAPI_L2_ICM N o Leve l 2  instruction cache misses 
PAPI_L1_TCM Ye s Leve l 1  cache misses 
PAPI_L2_TCM Ye s Leve l 2 cache misses 
PAPI_TLB_DM N o Dat a translation lookasid e buffer misses 
PAPI_TLB_IM N o Instructio n translation lookasid e buffer misses 
PAPI_TLB_TL Ye s Tota l translation lookasid e buffer misses 
PAPI_L1_LDM N o Leve l 1  load misses 
PAPI_L1_STM N o Leve l 1  store misses 
PAPI_L2_LDM N o Leve l 2 load misses 
PAPI_L2_STM N o Leve l 2  Store misses 
PAPI_HW_INT N o Hardwar e interrupt s 
PAPI_BR_UCN N o Unconditiona l branch instruction s 
PAPI_BR_CN N o Conditiona l branch instruction s 
PAPI_BR_TKN N o Conditiona l branch instructions take n 
PAPI_BR_NTK Ye s Conditiona l branch instructions not taken 
PAPI_BR_MSP N o Conditiona l branch instructions mispredicte d 
PAPI_BR_PRC Ye s Conditiona l branch instructions correctl y predicted 
PAPI_TOT_INS N o Instruction s complete d 
PAPI_BR_INS N o Branc h instruction s 
PAPI_RES_STL N o Cycle s stalle d on any resource 
PAPI_TOT_CYC N o Tota l cycles 
PAPI_L1_DCH Ye s Leve l 1 data cache hits 
PAPI_L2_DCH N o Leve l 2 data cache hits 
PAPI_L1_DCA N o Leve l 1  data cache accesses 
PAPI_L2_DCA Ye s Leve l 2 data cache accesses 
PAPI_L2_DCR N o Leve l 2 data cache reads 
PAPI_L2_DCW N o Leve l 2 data cache writes 
PAPI_L1_ICA N o Leve l 1  instruction cache accesses 
PAPI_L2_ICA N o Leve l 2  instruction cach e accesses 
PAPI_Ll_ICR N o Leve l 1  instruction cache reads 
PAPI_L1_TCA Ye s Leve l 1  total cache accesses 

avail.c PASSE D 

Figure III.3: Output listing of all PAPI events as per p a p i _ a v a il - a fo r the Athlon XP 
processors. 

2 Th e H^ Cluster 

2.1 Genera l Descriptio n 

This Beowulf style cluster is composed of nine machines each possessing a single Intel Intel 

(36600 Quad Core processor and interconnected using Gigabyte Ethernet. The topology con

sists of a flat networks with a single Dell Powerconnect 2745 switch left in unmanaged mode. 
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This classifies it as a homogeneous cluster with a fully connected topology. Communication 

paths between the nodes and the master are direct. 

2.2 Node Specification s 

All nodes are identically buih with an Intel Q6600 processor, 4GB of RAM and a local Serial 

Advanced Technology Attachment (SATA) HDD of 500GB. A more detailed description is 

presented in Table 111.3, note that the processor cache size is shared amongst all four cores 

while other specifications are for each independent core. 

Parameters 

Processor 

HDD 

Motherboard 

RAM 

Model Name 
Cache Size (KB) 
CPU MHz 
BogoMIPS 

Brand 
Model Name 
Cache Size (MB) 
Capacity (GB) 

Brand 
Model Name 
Revision 

Installed (GB) 
Speed (MHz) 
Count 

Machine Profile 
Intel(R) Core(TM)2 Quad CPU Q6600 
4096 
2400 
4800 

Western Digital 
WD5000AAKS-0 
16 
500 

ASUSTeK Computer INC. 
P5N7A-VM 
Rev l.xx 

4 
800 
2 

Table III.3: H'^ Node Specifications . 

2.3 Operatin g Syste m 

The cluster's OS is Gentoo based with important software versions described in table III.4. 

2.4 Performanc e Applicatio n Programming Interfac e 

The node's kernel was patched to support PAPI. Figure III.4 lists the available events. 
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Software 
GCC 
ICC 
OpenMPI 
Linux Kernel 
PAPI 

Version 
Gentoo 4.3.3-r2 pl . l , pie-10.1.5 
10.1 Build 20080801 
1.2.7 rl9401 
2.6.25-gentoo-r7 
3.6.2 

Table III.4: H"^ Software Specifications 
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eric@node01 - S papi_avai l - a 

Available event s an d hardwar e 

Vendor strin g an d cod e 

Model strin g 

CPU Revisio n 

CPU Megahert : 

and cod e 

CPU Cloc k Megahert z 

CPU's i n thi s Nod e 

Nodes i n thi s Syste m 

Total CPU' s 

Number Hardwar e Counter s 

Max Multiple x Counter s 

The followin g correspon d 

Name 

PAPI_L1_DCM 

PAPI_L1_ICM 

PAPI_L2_DCM 

PAPI_L2_ICM 

PAPI_L1_TCM 

PAPI_L2_TCM 

PAPI_CA_SHR 

PAPI_CA_CLN 

PAPI_CA_ITV 

PAPI_TLB_DH 

PAPI_TLB_IM 

PAPI_L1_LDM 

PAPI_L1_STM 

PAPI_L2_LDM 

PAPI_L2_STM 

PAPI_HW_INT 

PAPI_BR_CN 

PAPI_BR_TKN 

PAPI_BR_NTK 

PAPI_BR_MSP 

PAPI_BR_PRC 

PAPI_TOT_IIS 

PAPI_TOT_INS 

PAPI_FP_INS 

PAPI_BR_INS 

PAPI_VEC_INS 

PAPI_RES_SIL 

PAPI_TOT_CYC 

PAPI_L1_DCH 

PAPI_L1_DCA 

PAPI_L2_DCA 

PAPI_L2_DCR 

PAPI_L2_DCW 

PAPI_L1_ICH 

PAPI_L2_ICH 

PAPI_L1_ICA 

PAPI_L2_ICA 

PAPI_L2_TCH 

PAPI_L1_TCA 

PAPI_L2_TCA 

PAPI_L2_TCR 

PAPI_L2_TCW 

PAPI_FML_INS 

PAPI_FDV_INS 

PAPI_FP_OPS 

Code D 

0x80000000 

0x80000001 

0x80000002 

0x80000003 

0x80000006 

0x80000007 

0x8000000a 

0x8000000b 

0x8000000d 

0x80000014 

0x80000015 

0x80000017 

0x80000018 

0x80000019 

0x8000001a 

0x80000029 

0x8000002b 

0x8000002c 

0x8000002d 

0x80000026 

0x8000002f 

0x80000031 

0x80000032 

0x80000034 

0x80000037 

0x80000038 

0x80000039 

0x8000003b 

0x8000003e 

0x80000040 

0x80000041 

0x80000044 

0x80000047 

0x80000049 

0x8000004a 

0x8000004c 

0x8000004d 

0x80000056 

0x80000058 

0x80000059 

0x8000005c 

0x8000005f 

0x80000061 

0x80000063 

0x80000066 

Of 4 5 availabl e events , 1 

avail.c 

papi_avail - a Outpu t 

information. 

Genuinelntel (1 ) 

Intel Cor e 2  (18 ) 

11 000000 
2399.969971 

2399 

4 
1 
4 
5 
32 

.o f 

;riv 

Jo 
to 
les 
Jo 
«o 
•Jo 

Jo 
Jo 
Jo 
Jo 
Jo 
*lo 
^0 
ies 
•Jo 

>lo 
Mo 
Mo 
Mo 
Mo 
Ifes 

Mo 
Mo 
Mo 
Mo 
Mo 
Mo 
No 
res 
No 
res 
No 
No 
Yes 
ires 

No 
No 
ires 

ifes 

No 
ires 

No 
No 
No 
No 

relds i n th e PAPI_event_info_ t structure . 

Description (Note ) 

Level 1  dat a cach e misse s 

Level 1  instructio n cach e misse s 

Level 2  dat a cach e misse s 

Level 2  instructio n cach e misse s 

Level 1  cach e misse s 

Level 2  cach e misse s 

Requests fo r exclusiv e acces s t o share d cach e lin e 

Requests fo r exclusiv e acces s t o clea n cach e lin e 

Requests fo r cach e lin e interventio n 

Data translatio n looJcasid e buffe r misse s 

Instruction translatio n loolcasid e buffe r misse s 

Level 1  loa d misse s 

Level 1  stor e misse s 

Level 2  loa d misse s 

Level 2  stor e misse s 

Hardware interrupt s 

Conditional branc h instruction s 

Conditional branc h instruction s talce n 

Conditional branc h instruction s no t ta)ce n 

Conditional branc h instruction s mispredicte d 

Conditional branc h instruction s correctl y predicte d 

Instructions issue d 

Instructions complete d 

Floating poin t instruction s 

Branch instruction s 

Vector/SIMD instruction s 

Cycles stalle d o n an y resourc e 

Total cycle s 

Level 1  dat a cach e hit s 

Level 1  dat a cach e accesse s 

Level 2  dat a cach e accesse s 

Level 2  dat a cach e read s 

Level 2  dat a cach e write s 

Level 1  instructio n cach e hit s 

Level 2  instructio n cach e hit s 

Level 1  instructio n cach e accesse s 

Level 2  instructio n cach e accesse s 

Level 2  tota l cach e hit s 

Level 1  total cach e accesse s 

Level 2  tota l cach e accesse s 

Level 2  tota l cach e read s 

Level 2  tota l cach e write s 

Floating poin t multipl y instruction s 

Floating poin t divid e instruction s 

Floating poin t operation s 

0 ar e derived . 

PASSED 

Figure III.4: Output Usting of all PAPI events as per p a p i _ a v a i l - a for the Intel Q6600 
processor. 
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3 Th e Multiprocessor Server s 

The two SMP machines used for our experimentations both possessed 32GBytes of RAM 

and 8 Dual Core AMD Opteron processors. Table III.5 lists their key hardware caratersitics. 

Software caracteristics are listed in Table Table III.6, cells containing '-' mean the software 

wasn't installed on the specific machine. Note that PAPI was not installed on these systems 

either. 

Parameters 

Processor 

Model Name 
Cache Size (KB) 

CPU MHz 
BogoMIPS 

Machine Profiles 
SunFire x4600 Tyan VX50 
Processor 885 

1024 
2600 
3226 

Processor 875 
1024 
2200 
4420 

Table III.5: SMP machine hardware specification s 

Software 
GCC 
ICC 
OpenMPI 
Linux Kernel 
PAPI 

Version 
Gentoo4.3.1-rl pl. l 
Version 10.1 Build 20080602 
1.2.7 rl9401 
linux-2.6.17-gentoo-r4 
3.5.0 

Table III.6: SMP machine software specification s 



APPENDIX I V 

SOURCE COD E 

This section contains the printout of the principal source code used in our experimentation. 

When reasonable, the code was left untouched. When applicable, blocks of commeted test 

code were removed for clarity. 

1 Th e Island Master-Slave Implementatio n 

The following is the original implementation of the Master-Slave k-means. 

2 *&  A* 

3 *<£ Module  Name:  vector  quantisation  based  on  k—means  algorithm  &* 

4 *<£ (Parallel  Algorithm)  &* 

5 *<fe This  is  a  C++  program  with  MPI  library  &.* 

6 *&  Authors:  Aiceu  Britto  /  Albert  Hung-Ren  Ko  &* 

7 *&  &* 

g *&  &* 

9 *&  &* 

10 *«i To  compile  with  the  Makefile:  make  4 * 

11 *&  To  set  up  the  topology  of  kernels:  lamboot  —v  lamconf.  lam  &* 

12 *&  To  run:  mpirun  —v  —np  ^(number  of  kernels)  pvq  filename  <t* 

13 *&  To  erase  the  set  topology  of  kernels:  wipe  &* 

14 *&  It  will  generate  the  file  :  centroids  &* 

15 » 4 = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = d i . / 

16 

17 # i n c l u d e < s t d i o . h > 

18 # i n c l u d e < c i y p e . h > 

19 # i n c l u d e < s t r i n g . h > 

20 # i D c I u d e < s ( d l i b . h > 

21 # i n c l u d e < m a t h . h > 

22 # i n c l u d e < i o s t r e a m > 

23 ^ i n c l u d e < f s t r c a m > 

24 # i n c l u d e < iomanip> 

25 # i n c l u d e < c a s s e r t > 

26 # i n c l u d e < s s t r e a m > 

27 ^ i n c l u d e <mpi . h > 

28 u s i n g namespac e st d ; 

29 

30 # i n c l u d e < c t i m e > 

31 

32 # d e f i n e THRESHOLD O.OOI / * threshold  used  to  stop  iterations  */ 

33 # d e f i n e T 34 /« size  of  the  feature  vector  •*•/ 

34 # d e f i n e NC 256 /* number  of  centroids  * / 

35 

36 in t NSR: / * number  of  samples  */ 

37 in t SKIP ; / * NSR  divided  by  NC  * / 

38 i n t NS; /* maximum  number  of  samples  * / 

39 
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40 / • struct  used  lo  keep  a  feature  vector  and  its  centroid  • / 

41 typedef struct 

42 { 

43 f l o a t f e a t [ T ] ; 

44 in t c e n t r o i d ; 

45 1 sample ; 

46 

47 / • struct  used  lo  keep  a  centroid  and  the  number  of  samples  in  it  -^f 

48 t ypede f s t r u c t 

49 ( 

50 f l o a t f e a t [ T ] ; 

51 f l o a t number ; 

52 ) c e n t r o i d ; 

53 

54 

55 sample • s a m p l e s ; /» keep  all  training  samples  */ 

56 c e n t r o i d c e n t r o i d s [NC]; /* keep  all  centroids  • / 

57 f l o a t c_sum [ N C ] [ T ] ; / * sum  of  all  samples  of  a  class  , / / is  used  to  update  the  centroids  */ 

58 in t mynode. t o t a l n o d e s ; 

59 in t s l a v e s = 1 ; 

60 in t mas te r = 0; 

61 in t tag = l ; 

62 in t sum, s t a r t v a l . endval , accum; 

63 in t i , j . k ; 

64 MPI_Sta tus s t a t u s ; 

65 in t i oadCoun t = 0; 

66 

67 / * distance  function  —  Euclidian  Distance  * / 

68 f l o a t df (  f l o a t *vl ,  f l o a t *v 2 ) 

69 I 

70 i  n t 1  ; 

71 f l o a t d i s t , sum; 

72 

73 s u m = 0 . ; 

74 fo r (  1=0 ; i <T ; i+ + ) 

75 sum=sum+ ( v l [ i ] - v 2 [ i j ) * ( v l [ i ] - v 2 [ i ] ) ; 

76 

77 d i s t = ( f l o a t ) s q r t ( ( f l o a t )  sum ) ; 

78 retur n d i s t ; 

79 ) 

80 

81 / * load  samples  */ 

82 in t l o a d _ s a m p l e s ( cha r * f i l e n a m e ) 

83 ( 

84 FIL E *f p ; 

85 in t 1 . j ; 

86 i n t Obs ; 

87 in t r e g _ s i z e = s i z e o f ( f l o a t ) * T ; 

88 i f s i r e a m inS t ream ( f i l e n a m e ) ; 

89 IoadCount = 0; 

90 s t r i n g l i n e ; 

91 in t l i n e C o u n t = 0; 

92 

93 fp=fopen ( f i l e n a m e , "r " ) ; 

94 

95 i f ( !fp ) 

96 { 

97 p r i n t f ( " c a n ' t ^ o p e n ^ t h o u ^ f i l e : ^%s^ \n" . f i l e n a m e ) ; 

98 retur n ( 0 ) ; 

99 } 
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100 f seek ( fp . 0 , SEEK_END ) ; 

101 

102 NS = ( i n t ) f l e l l ( fp ) / r c g . s i z e ; 

103 

104 i r ( t o t a l n o d e s > 1 ) 

105 I 

106 samples= ( satnple * ) malioc ( ( NS/ ( t o t a l n o d e s — 1 ) ) * s i z e o f ( sample ) ) ; 

107 I 

108 

109 e l s e 

110 I 

111 samples= ( satnple * ) malioc ( ( NS ) . s i z e o f ( sample ) ) : 

112 ) 

113 

114 //fseekifp.  0.  SEEK_SET): 

115 if ( ! s amples ) r e t u r n —1; 

116 

117 f c l o s e ( fp ) ; 

118 

119 / * toad  samples  * / 

120 

121 whil e ( ! i nS t ream . eof {) &&  l i n e C o u n t < NS ) 

122 I 

123 g e t l i n e ( i n S t r e a m , l i n e ) ; 

124 i s t r i n g s t r e a m i s t r ( l i n e ) ; 

125 if ( ( fmod ( ( l i n e C o u n t + 1 ) . ( t o t a l n o d e s —1 ) ) == ( mynode —1 ) ) && ( mynode != mas te r ) ) 

126 I 

127 for ( 1 = 0; i < T; i++ ) 

128 I 

129 i s t r » samples [ IoadCount ] . fea t [ i ] ; 

130 s a m p l e s [ l o a d C o u n t ] , c e n t r o i d = —I; 

131 ) 

132 l o a d C o u n t + + ; 

133 I 

134 l i n e C o u n t ++; 

135 ) 

136 

137 if ( mynode == ( 1 + fmod ( ( l i n e C o u n t ) , ( t o t a l n o d e s — 1 ) ) ) ) 

138 ( 

139 IoadCount ; 

140 I 

141 / / 'cause  the  last  kernel  will  load  the  end  line  of  the  file 

142 

143 NS = ( l i n e C o u n t —1 ) ; //minus  one  because  there  is  one  empty  tine  at  Ihe  end  of  the  file  fp 

144 

145 p r i n t f { " F i n a l J>lS„=„9M\n" . NS ) ; 

146 //cout  «  "  mynode  "  «  mynode  «  "  IoadCount  "  «  IoadCount  «  endl: 

147 r e t u r n ( l i n e C o u n t ~ 1 ) ; / • return  i—I  when  binary  mode  * / 

148 ) 

149 

150 / * centroid  initialization  —  it  selects  the  first  set  of  centroids  */ 

151 void c e n l r o i d _ i ni t ( ) 

152 ( 

153 in t i , j . k . x : 

154 

155 fo r ( i = 0; i < NC; i++ ) 

156 I 

157 X = 0; 

158 if ( mynode = fmod ( ( i ) , ( t o t a l n o d e s —1 ) ) +1 ) 

159 ( 
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160 for ( j = ( l , j < T ; j + + ) 

161 I 

162 c e n t r o i d s [ i ] . f ea t [ j ]= samples [ x ] . feat [ j ] ; 

163 //cout  «  "  "  «  samplesl.X  ].  feat  [j  ]; 

164 c e n t r o i d s ( i ] . number=0; 

165 ) 

166 //cout  «  endl  « " mynode^  "  «  mynode  « " x=  "  «  x  «  endl; 

167 X++; 

168 for ( k=0; k < t o t a l n o d e s ; k++ ) 

169 I 

170 MPl_Send ( i t e n t r o i d s ( i ] . ( T+l ) , MPLFLOAT, k . t a g + 9 , MPI_COMM_W0RLD ) ; 

171 1 

172 1 

173 MPl.Rccv ( & c e n t r o i d s ( i ) . ( T + l ) . MPLFLOAT, I in t I ( fmod ( ( i ) . ( t o t a l n o d e s - 1 ) ) +1 ) , t a g + 9 , MF1_0«klM_W0RLD 

, & s l a l u s I; 

174 1 

175 I 

176 

177 /-^ classification  of  a  sample  talcing  into  account  each  centroid  * / 

178 i n t c e n l r o i d . d e f ( in t p o s , f l o a t *d  ) 

179 I 

180 in t 1 , index ; 

181 f l o a t mdist , d i s t ; 

182 

183 m d i s t = 9 9 9 9 9 9 9 9 9 ; 

184 fo r ( i = 0 ; i < N C ; i + + ) 

185 ( 

186 d i s l = d f ( c e n t r o i d s [ i ] . feat , samples [ pos ] . f ea t ) ; 

187 if ( d i s t < mdist ) (md i s l = d i s t ; index = i ; ) ; 

188 I 

189 

190 » d = m d i s t ; 

191 r e t u r n index ; 

192 1 

193 

194 / . it  calculates  new  centroids  */ 

195 void mean_vec to r t ) 

196 ( 

197 in t i . j , c ; 

198 f l o a t mas le r_c_number [NC]; 

199 

200 fo r (  c=0,t<NC.c+ + ) 

201 if ( c e n t r o i d s [c ] . number != 0 ) 

202 fo r (  j = 0 ; j < T ; j + + ) 

203 c e n t r o i d s [c ] , f ea t [ j ] = c_sum [c ] [ j ] / c e n t r o i d s [c ] . number ; 

204 

205 for ( i = 1: i < t o t a l n o d e s ; i++ ) 

206 MPl_Send ( & c c n t r o i d s , ( NC» ( T+l ) I , MPLFLOAT, i , t a g , MP1_C0MM_W0RLD ) ; 

207 ) 

208 

209 

210 / * It  calculates  the  mean  distortion  * / 

211 f l o a t a v c r a g e ^ d i s t o r t i o n ( f l o a t *\ ) 

212 ( 

213 i n t i ; 

214 f l o a t ad ; 

215 a d = 0 ; 

216 for ( 1 =0 ; i<J* : , 1++ ) 

217 a d = a d + x [ i ] ; 

218 
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219 ad=ad/NSR ; 

220 retur n a d ; 

221 ) 

222 

223 voi d vq( ) 

224 I 

225 in t i t e r a t i o n ; 

226 in t c e n l r . j . i . k , c ; 

227 f l o a t d i s t o r t i o n , d i s t o r t i o n . a n l ,  d i s i c [ N C l , d i s t ; 

228 d i s t o r t i o n =0 ; 

229 i t e r a t i o n = l ; 

230 

231 i f (  mynod e =  maste r ) 

232 pr in t f (  "Take^it^cas y , ^ l ^ a m ^ c l a s s i f y i n g .  . . \ n" ) ; 

233 

2.34 d o 

235 ( 

236 / • Initialization  */ 

237 fo r (  i=0; i<NC; i+ + ) 

238 I 

239 c e n t r o i d s 1 1 ] . number^O ; d i s t c ( i ] = 0 . ; 

240 fo r (  j = 0 ; J<T;j+ + )  c_su m [  i 1 [ j ]  = 0 .; 

241 I ; 

242 
243 

244 i f (  mynod e ! = maste r ) 

245 ( 

246 f l o a t send_c_numbe r [NC ] ; 

247 J  =  0 ; 

248 whil e { j  <  IoadCoun t ) 

249 I 

250 cent r = c c n t r o i d _ d ef (  j . &dis t ) ; 

251 sample s [ j ] . centro i d =  centr ; 

252 d i s l c [ c e n t r ] = d i s t c [ c e n t r ] + d i s t ; 

253 c e n t r o i d s [  centr ] . numbe r =  (  c e n t r o i d s [  centr ] . number )  +  1 ; 

254 fo r (  i = 0 ; i < T ; i + + ) 

255 c_sum [ c e n t r ] [ i ] + = s a m p l e s [ j ] . f e a t [ i ] ; 

256 
257 j + + ; 

258 I 

259 

260 //parallelize  this  parts 

261 fo r (  i  =  0 ; 1  <  NC ; i+ + ) 

262 send_c_numbe r [  i ] =  c e n t r o i d s (  i ] . number ; 

263 
264 MPLSen d (  &c_sum . (  NC. T ) , MPLFLOAT , master , ta g +  l, MPLCOMM.WORL D ) ; 

265 MPLSen d (  & d i s t c , NC , MPLFLOAT , master , t a g + 3 , MP1_00MM_W0RL D ) ; 

266 MPLSen d (  &send_c_numbe r ,  NC , MPLFLOAT , master , l a g + 2 , MPLOOMM_WORL D ) ; 

267 

268 //receive  from  the  broadcast 

269 MPLRec v (  &centroid s ,  (  NC * ( T + l )  ) , MPLFLOAT , master , t a g , MH_COMM_WORLD , &sta tu s ) ; 

270 MPLRec v (  &d i s t o r t i o n _ a nt ,  1 , MPLFLOAT , master , t a g + 5 , MP1_C0MM,.W0RLD , &sta tu s ) ; 

271 MPLRec v (  & d i s t o r t i o n , 1 , MPLFLOAT , master , t ag+6 , MPL00MM_WORLD . &statu s 1 ; 

272 ) 

273 
274 i f (  mynod e = = maste r ) 

275 ( 

276 
277 f l o a t s l a v e _ c _ s u m [ N C ) [ T ] ; 

278 f l o a t s l a v e _ d i s t c [NC) ; 



130 

279 f l o a t master_centroids_numbe r [NC ] ; 

280 

281 fo r (  j  =  1 ; j  <  t o t a l n o d e s ; j+ + ) 

282 { 

283 MPLRec v (  &slave_c_su m ,  (  NC. T ) , MPLFLOAT , j , ta g +  1, MPl_CX)MM_WORLD , & s l a t u s ) ; 

284 MPLRec v (  & s l a v e _ d i s t c ,  NC , MPLFLOAT , j , t a g + 3 , MPI_CX)MM_WORLD , S s t a t u s i ; 

285 MPLRec v (  &master_cenlro ids .numbe r ,  NC , MPLFLOAT , j , t a g + 2 , MH_COMM_W0RLD , i s t a t u s ) ; 

286 fo r (  1  =  0 : i  <  NC ; i+ + ) 

287 I 

288 fo r (  k  =  0 ; k  <  T ; k+ + ) 

289 c _ s u m ( i ] ( k ] =  c _ s u m ( i ] [ k ] +  slavc_c_sur a (  i ] [ k ]; 

290 

291 d i s t c [ i ] =  d i s t c [ i ] + sl a v e _ d i s tc [  i ] ; 

292 c e n t r o i d s [  i ] . number =  c e n iro ids [  i ] . number +  master_centroids_numbe r [  i ]; 

293 ) 

294 

295 1 

296 

297 mean_veclo r (  ( ; 

298 

299 d i s t o r t i o n _ a n t =  d i s t o r t i on ; 

300 d i s t o r t i o n =  a v e r a g e _ d i s t o r t i on (  d i s l c ) ; 

301 

302 fo r (  i  =  1 ; i  <  t o t a l n o d e s ; i+ + ) 

303 I 

304 MPLSen d (  & d i s t o r t i o n _ a n t ,  I . MPLFLOAT , i , t a g + 5 , MPI_COMM_WORL D ) ; 

305 MPLSen d (  & d i s l o r t i o n ,  1 , MPLFLOAT , i , t a g + 6 , MPLCOMNLWORL D ) ; 

306 I 

307 ] 

308 

309 i t e r a t i o n + + ; 

310 1 

311 whil e 1  fab s (  (  f l o a t l  (  d i s t o r t i o n _ a n t -  d i s t o r t i o n )  )  >  THRESHOL D ) ; 

312 

313 cou t «  "  i  te r a t i o n ^" «  i t e r a t i o n «  end l ; 

314 I 

315 

316 / * show  centroids  * / 

317 voi d show_centro id s (  ) 

318 ( 

319 in t 1  . j ; 

320 

321 p r i n t f (  " C e n t r o i d s ^ \ n " ) ; 

322 fo r (  i=0 ; i<NC; i+ + ) 

323 { 

324 fo r (  j = 0 ; j < T ; j + + ) 

325 i f (  1  =  0  1 1 1 = (  NC- 1 )  )  pr int f (  ••%2.2f„" , c e n t r o i d s [  i ) . fea t ( j ]  ) ; 

326 

327 i f (  i  =  0  I I i = (  NC- I )  )  pr in t f (  " \n " ) ; 

328 I 

329 I 

330 

331 / * show  samples  */ 

332 voi d show_sample s (  ) 

333 ( 

334 in t i  ,  j  ; 

335 fo r (  i=0 ; i<NSR; i+ + ) 

336 I 

337 fo r (  j = 0 ; j < T ; j + + )  pr in t f (  "%f„ " ,  sample s [  i ] . fea t ( j J  ) ; 

338 p r i n t f (  "„c=%d\n" , sample s [  i ]  c en tro i d ) ; 
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339 ] 

340 I 

341 

342 / * save centroids * / 

343 void s a v e _ c e n t r o i d s ( ) 

344 I 

345 in t I ,J ; 

346 FILE . f p ; 

.U7 

348 fp = fopen ( " c e n t r o i d s " , "wb" ) ; 

349 /* printf (" Saving centroids \n"):./ 

350 fo r ( i = 0 ; i < N C ; i + + ) 

351 ( 

352 for ( j = 0 ; j < T . j + + ) 

353 f p r i n t f ( f p , "%f,", c e n t r o i d s [ 1 ] . f e a t [ j ] ) ; 

354 f p r i n t f ( f p , " \ n " 1; 

355 ) 

3.56 fc los e (  f p ) ; 

357 1 

358 

359 

360 / * main */ 

361 main ( i n t argc , c h a r . a r g v [ ] ) 

362 I 

363 cha r . fnamei n ; 

364 

365 t i m e _ t tempol , tempo2 , tempo3 ; 

366 f l o a t t empo; 

367 

368 fnamein=argv [ 1 ] ; 

369 

370 M P L l n i l ( &argc , i a r g v ) ; 

371 MPLComm.size ( MPl_COMM_WORLD, & t o t a l n o d e s 1; 

372 MPLComm.rank ( MPIJDOMM_WORLD, &mynodc ) ; 

373 

374 / * load samples */ 

375 

376 NSR=load_samples ( fnamein ) ; 

377 

378 t ime ( &tempol ) ; 

379 

380 if ( mynode = mas te r I 

381 I 

382 if 1 N S R = —1 ) [ p r i n t f ( " e r r o r „ = ^ l o a d i n g „ s a m p l e . ^ f U e \ n " ) ; e x i t ( 1 ) ; ] 

383 p r i n t f ( "NSR„=„'W\n" , NSR ) ; 

384 t ime ( &tempo2 ) ; 

385 tempo = d i f f t i m e { tcmpo2 , tempol ) ; 

386 cou t « endl « " L o a d i n g ^ t i m e ( s ) ; ^" « tempo « e n d l ; 

387 ) 

388 

389 c e n t r o i d _ i n i t ( ) ; 

390 

391 su m =  0 ; 

392 

393 if ( mynode 1= mas te r ) 

394 ( 

395 s t a r t v a l = ( NSR. ( mynode-1 ) / ( t o t a l n o d e s — 1 ) ) + 1 ; 

396 e n d v a l = NSR* ( mynode ) / ( t o t a l n o d e s — 1 ) ; 

397 ) 

398 
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399 

400 

401 
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404 
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407 

408 

409 

410 

411 

412 

/+ vector  quantisation  . / 

v q O ; 

if ( mynode = mas te r ) 

I 
//show_centraids I)  ; 

s a v e _ c e n t r o i d s ( ) ; 

t ime ( &lempo3 ) ; 

tempo = d i f f t i m e ( tempo3 , tempo2 ) : 

p r i n t f ( " \ n E x e c u t i o n ^ t i m e ( s ) ;^%.3f \ n " , tempo ) ; 

I 

M P L F i n a l i z e ( ) ; 

r e t u r n 0 ; 

2 Th e Island k-means Implementatio n 
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The following is the implementation of the Island Ic-means we have implemented and used 

througcut the document and experiments. It is an evolution of the orignial code presented 

above. 

.& 
*& Module  Name:  vector  quantisation  based  on  k—means  algorithm 

*& Author:  Alceu  Britto 

.<J Eric  Thibodeau  (12-2007) 

*& Revisions  :  (2007)  ET:  optimized  using  bias  /ipp/mkl  libraries 

.& (2008)  ET:  MPI  re-implementation 

*(£ (28  — 11—2008) ET:  No  need  to  send  distc  as  a  vector,  we  only  need  &* 

*<5 the  summed  distortion.'  distc  (Kj  becomes  distc  &* 

*(6 Communications  are  now  fused  into  a  single  call  &* 

# i n c l u d e <mpi. h> 

^ i n c l u d e < s l d i o . h > 

# i n c l u d e < c t y p e . h > 

# i n c l u d e < s t r i n g . h > 

# i n c l u d e < s t d l i b . h > 

# i n c l u d e <ma th .h> 

#inclu<le < s y s / t i m e . h > 

//ttifdef USE_BIAS 

# i n c l u d e " c b l a s . h " 

//Mendif 

// Don't  change  this  unless  you  re—adjust  the  loops  manually 

( ( d e f i n e UNROLL_LEVEL 4 

# d e f i n e THRESHOLD 0 0 0 1 

f d e f i n e T  4 7 /* size  of  the  feature  vector  * / 

# d e f i n e DEBUG 

long N S _ l o t a l = — I ; / / number  of  samples  (total),  derived  from  DB_size  or  argv[3] 

l o n g NS ; / / number  of  samples  (local),  is  NS_total/totalnodes 

l o n g K ; / / K  in  K—Means.  this  is  argv[2] 
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35 t ypede f f l o a t s a m p l e ; / * Although  this  might  seem  convoluted  .  we  can  just  change  this  tine 

36 to  double  and  all  computations  now  use  doubles  instead  of  float  • / 

37 sample . s a m p l e s ; / * Ptr  to  table  of  all  training  samples  * / 

38 in t V_sz =  s i z e o f ( sample ) * T; //Vector  Size 

39 f l o a t • c e n t r o i d s ; /* Ptr  to  table  of  centroids  • / 

40 f l o a t * c _ c n t ; / * keeps  the  count  of  samples  per  centroid  • / 

41 f l o a t *c_sum; /* sum  of  all  samples  of a  class  ,  it  is  used  to  update  the  centroids  * / 

42 in t c_sum_s ize ; / - Used  to  supersize  c_sum  to  also  contain  c_sum  + c_cnt  + distc*/ 

43 

44 / / MPI  vars: 

45 //  MPl_Status  status: 

46 in t mynode; 

47 in t to ta lnode s ; 

48 

49 

50 / * distance  function  — 

51 - Euclidean  Distance  is  used,  which  also  means  it  is  assumed  that  the  "T"  elements  tn  the 

52 * multi—dimention  vectors  are  orthogonal  .  meaning  that  the  information  they  carry  about  the 

53 * data  does  not  overlap.  In  a  perfectly  orthogonal  system,  if  one  of  the  variables  of  the  T 

54 • dimention  is  varied,  all  other  values  aren't  affected.  This  is  seldom  the  case  tn  practice 

55 • though  we  try  to  get  as  close  as  possible.  It  's  defintion: 

56 * 

57 * distance  = sqrt  ((  Vect  I  — Vect2  )'^2)  «  essentially  Pythagorean  Theorem  on  a  dimention  >  2 

58 • 

59 . . / 

60 # i fde f USE.BLA S 

61 / / bias  temp  vectors: 

62 f loa t V d i s t [ T ] ; 

63 

M i n l i n e f loa t df ( cons t f loa t * ^ l , cons t f loa t * v2 ) ( 

65 cblas.scop y ( T , v l ,  I ,  Vdist ,  11 ; 

66 c b l a s _ s a x p y l T , - I O , v 2 , l , V d i s t , l ) ; 

67 retur n cblas_snrm 2 (T , Vdis t ,  1 )  : 

68 ] 

69 

70 #els e 

71 

72 # i fnde f UNROL L 

73 //float  df(  sample  .vl  ,  sample  *v2) 

74 i n l i n e f loa t dftcons t f loa t *v l ,  cons t f loa t »v2 ) 

75 [ 

76 f loa t sum=0,0 ; 

77 in t i ; 

78 

79 / / The  use  of  pow(i.2)  gives  faster  code  but  has  little  or  no 

80 / / impact  when  —03/—02  is  used 

81 / / We  replace  sum=sum+(vl  [  i]—v2 [  i j) .(vl  j  i]—v2[  i  ]): 

82 / / with  sum+=pow((vl  [  ij-v2l i  I)  .2): 

83 f o r ( i = 0 ; i<T ; i++) 

84 # i f n d e f POW 

85 s u m + = ( v l [ i ] - v 2 [ i ]) *( vl [ i l - v 2 [ i ] ) ; 

86 #els e 

87 sum+=pow( ( v l [ i ] - v 2 ( i ] ) , 2 ) ; 

88 #endi f //POW 

89 

90 retur n s q r t f ( s u m ) ; 

91 I 
92 # e l s e //UNROLL 

93 i n l i n e f l o a t d f t c o n s t f l o a t « v l , cons t f l o a t *v2 ) 

94 I 
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95 

96 

97 

98 

99 

100 

101 

102 

103 
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106 

107 

108 

109 

110 

111 

112 
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114 

115 

116 

117 
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119 

120 

121 

122 

123 

124 

12.'̂  

126 

127 

128 

129 

130 

131 

132 

133 

134 

135 

136 

137 

138 

139 

140 

141 

142 

143 

144 

145 

146 

147 

148 

149 

150 

151 

152 

153 

154 

f l o a t sum = 0 . 0 

f l o a t suml^O.O 

f l o a t sum2 = 0 0 

f l o a t sum3 = 0 0 

int 1=0; 

if (T>UNROLL_LEVEL)[ 

for ( ; 1 <(T-UNROLL_LLVEL) , i+=UNROLL_LEVEL 1 [ 

sum + = ( v l [ i ] - v 2 [ i ] ) . ( v l [ i ] - v 2 [ i ]) 

suml+=(v l [ i + l ) - v 2 [ i + l l ) . ( v l [ i + l ] - v 2 [ i + l ] ) 

sum2+=(vl [ i + 2 ] - v 2 [ i + 2 ) ) . ( v l [ i + 2 ] - v 2 [ i + 2 ] l 

sum3+=(vl [ i + 3 ) - v 2 [ i + 3 1 ) . ( v l [ i + 3 1 - v 2 [ i + 3 ] ) 

I 
) 
i f (THJNROLL.LEVEL) 

f o r i ; i<T ; i++) 

sum+=(vl ( i ] - v 2 ( i ] ) . ( v l [ i ] - v 2 [ 1 1) ; 

sum+=suml , 

sum+=sum2; 

sum+=sum3 ; 

return s q r t f ( s u m > ; 

) 

# e n d i f //UNROLL 

# e n d i f //USE_BLAS 

/ * load  samples 

* The  current  loading  of  samples  is  technically  optimal  but  not  ideal  for  a 

* parallel  implementation  since  the  last  node  might  end  up  with  potentially 

* no  compulation.  This  is  less  than  desireable. 

* • * / 

i n t ] o a d _ s a m p l e s ( c h a r * f i l e n a m e ) 

{ 

FILE * f p ; 

in t l o a d e d : 

in t n ; 

int n_w = 0; / / worker's  n  count 

int n_w_adj=0; / / count  after  adjusting  with  n%w 
fp=fopen ( f i lename , " r " ) ; 

f seek (fp , 0 . SEEK.END); 

n = f t e l l ( f p ) / V_sz; 

f s e e k ( f p . 0 . SEEK_SET); 

i f ( ( N S _ l o i a l < 0) II ( N S _ I o t a l > n) ) 

NS_ to t a l = n; 

# i f d e f DEBUG 

if (mynode = 0) 

p r i n t f ( " T o t a I ^ n u m b e r ^ o f „ s a m p I e s ^ = „ % l d \ n " , N S _ t o t a l ) ; 

# e n d i f //DEBUG 

// Normal  chunck  size 

n_w = n_w_adj = N S _ t o t a ] / t o t a l n o d e s ; 

n_w_adj ; / / off—by—one:  C  indices  start  al  0.  otherwise  we  end  up  with  overlap 

// The  overflow  is  assigned  to  the  last  node  (not  good  if  NS_total/totalnodes  />>> totalnodes  ) 

i f (mynode = t o t a l n o d e s — I) 

n_w_adj = n_w + N S _ t o t a l % t o t a l n o d e s ; 
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155 / / Checkin  logic: 

156 //  printf  (  "Node %/, Start/End:  %d/%d\n",  mynode.  mynode*n_w.  mynode.n_w+n_w_adj  ) : 

157 s a m p l e s = ( s a m p l e * )mal loc ( n_w_adj * V_sz ) ; 

158 if (! s a m p l e s ) [ 

159 p r i n t f ( "Memory .^al l o c a t i o n ^ e r r o r ^ w h i l e ^ l o a d i n g J ) B . \ n" ) ; 

160 go to l o a d _ e r r o r ; 

161 ) 

162 

163 / • load  samples  • / 

164 / / seeking  to  the  chunck  this  proces  will  start  loading  at:  and  toad... 

165 f s e e k ( f p , mynode.n_w»V_sz , SEEK.SET) ; 

166 loaded = f read ( samples , V_s z , n_w_adj , fp ) ; 

167 if ( l o a d e d != n .w_ad j I [ 

168 pr i n t f ("An,_^error ,^occured,^while ,_, loading^the J ) B ; ^ " ) ; 

169 p r i n t f ( " L o a d e d ^ ^ ^ a n d ^ e x p e c t e d ^ ^ ' i d " , loaded , n_w_adj ) ; 

170 go to mem_er ror ; 

171 1 

172 

173 r e t u r n loaded ; 

174 

175 l o a d _ e r r o r : 

176 f ree ( samples ) ; 

177 mem_er ror ; 

178 f c l o s e ( f p l ; 

179 r e t u r n - 1 ; 

180 1 

181 

182 / • centroid  initialization  —  it  selects  the  first  set  of  centroids 

183 . 

184 * The  original  parallel  code  would  search  through  localy  loaded  samples 

185 • and  selec  samples  as  initial  centroids  using  a  modulo  operator  + node#-

186 * We  wilt  use  the  actuatl  DB  and  keep  the  same  initialisation  as  witht  the 

187 * sequential  code  reading  the  samples  from  the  DB 

188 . . / 

189 void c e n t r o i d _ i ni t ( c o n s t c h a r . f name) 

190 [ 

191 FILE . f p ; 

192 in t i ; 

193 in t x ; 

194 / / To  get  the  same  mit  as  the  sequential  version: 

195 / / . V_5z  because  we're  dealing  with  file  pointers  (bytes): 

196 in t s k i p = ( N S _ t o t a l - l l / K * V _ s z ; 

197 

198 fp = fopen (fname , " r " ) ; 

199 

200 f o r ( i = 0 , x=0; i<K; i + + , x+=skip I ( 

201 f s e e k ( f p , x , SEEK_SET) ; 

202 f r c a d ( & c e n l r o i d s [ T . i ] , s i z e o f ( sample ) , T, fp ) ; 

203 / / memcpy((  void  *) &cent  raids  [T*  i  I. (void  *)  &samptes  [T.x}  .  T  * sizeof  (float  )): 

204 I 

205 f c l o s e ( f p ) ; 

206 1 

207 

208 / * 

209 * This  version  of  the  init  is  meant  to  be  used  if  the  DB  is  not  stored  locally. 

210 * The  advantage  is  that  only  1  process  does  the  slow  10 and  the  broadcasts  the  loaded 

211 . data  using  an  optimized  (we  hope,  MPI  implementation  dependant)  broadcast  ro  all  nodes. 

212 * Cost  model: 

213 • C_sz  = "sizeof  (  centroids ) " = T.K.  sizeof  (float) 

214 • TJoad  =  BWJo/C_sz  + T_broadcast_K 
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215 * T_broadcast_K  = 7-_comm_inir + BW^net/C_sz  + C_sz/Mm*TJCU 

216 * T_comma_init  =  ?3.1028 (usee)  (average  latency  from  hpcc—I.0.0 

217 * MrU=ISOO  (ethernet) 

218 * T_IGU=l5ms  (empirical,  mpptest) 

219 * * / 

220 voi d c e n t r o i d _ i n i t _ n e t ( const cha r *fname) 

221 [ 

222 i f I mynode = 0) 

223 c c n t r o i d_i ni t ( fname ) ; 

224 M P L B c a s K c e n t r o i d s , T.K, MPLFLOAT. 0 , MPLO0MM_WORLD) ; 

225 ] 

226 

227 / • classification  of  a  sample  taking  into  account  each  centroid  */ 

228 i n l i n e in t c e n t r o i d _ d e f ( unsigne d in t i d x , f l o a t . d ) 

229 [ 

230 r e g i s t e r in t i , c c n t r o i d = — 1 ; 

231 f l o a t mdist , d i s t ; 

232 

233 m d i s l = 9 9 9 9 9 9 9 9 9 . ; 

234 //tndist-pow(2  ,32):  //  we  start  off  very  far... 

235 

236 for t l = 0 ; i < K ; I++I [ 

237 d i s t = d f ( & c e n t r o i d s [ i*T] , &samples ( i d x . T ] ) ; 

238 i f ( d i s t < m d i s t ) [ 

239 mdi5t = d i s t ; 

240 c e n t r o 1 d = 1 ; 

241 1 

242 1 

243 

244 . d = m d i s t ; 

245 retur n c e n t r o i d ; 

246 I 

247 

248 / . it  calculates  new  centroids  * / 

249 voi d m e a n _ v e c t o r ( ) 

250 ( 

251 in t i ,c , o f f s e t ; 

252 

253 f o r ( c = 0 ; c < K , c + + l [ 

254 i f ( c _ c n t [ c ] != 0)[ 

255 o f f s e t = c . T ; 

2.56 i  =0; 

257 # i f d e f UNR0LL2 

258 i f (T>UNROLL_LEVEL)( 

259 f o r t ; i <(T-UNROLL_LEVEL) ; i+=UNROLL_LEVEL) [ 

260 c e n t r o i d s [ of f se t + i ] = c_sum [ o f f s e t + i ] / c _ c n l [ c ] ; 

261 c e n t r o i d s ( of f s e t + i + 1] = c_sum [ off se t + i + 1 ] / c _ c n l [c ] ; 

262 c e n t r o i d s [ off s e t + i+2] = c_sum[ off se t + i + 2 ] / c _ c n t [c ] ; 

263 c e n t r o i d s [ o f f s e t + i+3 ] = c_sum [ off se t + i + 3 ] / c _ c n t [c ] ; 

264 1 

265 ) 
266 if (TWNROLL_LFVEL) / / Compiler  eliminates  this  if  T  and  UNROLLJLEVEL  are  static 

267 # e n d i f 

268 f o r t ; i<T ; i++) 

269 c e n t r o i d s [ o f f s e t + i ] = c_sum[ o f f s e t + i ] / c _ c n t [ c ] ; 

270 ) 

271 ) 

272 1 

273 
274 / • It  calculates  the  mean  distortion  */ 
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275 i n l i n e f l o a t a v c r a g e _ d i s t o r t i o n ( sample *x) 

276 ( 

277 in t i ; 

278 f l o a t a d ; 

279 a d = 0 ; 

280 fo r ( i = 0 ; i < K ; i++) 

281 a d + = x [ i ] ; 

282 

283 retur n a d / N S _ t o t a l ; 

284 ] 

285 

286 void v q O 

287 ( 

288 in t i t e r a t i o n = l ; 

289 in t c e n t r , j , 1 ; 

290 f l o a t d i s l o r t i o n = 0 ; 

291 f l o a t d i s l o r t i o n _ a n t ; 

292 //float  distc  IK  j . 

293 f l o a t d i s t c ; 

294 f l o a t d i s t ; 

295 in t sPos ; / / used  to  compute  the  correct  "to  next  sample"  offset 

296 in t cPos ; / / used  to  compute  the  correct  "to  next  centroid"  offset 

297 / / Custom  data  type  for  combined  communications: 

298 

299 / * if  (mynode  ==  0  ) 

300 printf  ("Take  it  easy,  I  am  c  lassify ing  .  . .\n"): 

301 . / 

302 d i s t o r t i o n =0: 

303 i t e r a t i o n = l ; 

304 

305 do ( 

306 

307 / * Initialization  */ 

308 d i s t c = 0 . ; 

309 for ( i = 0 ; i < K ; i++) [ 

310 //distc  li  ]  = 0.: 

311 c _ c n t [ i ] = 0 ; 

312 f o r ( j = 0 ; j < T ; j + + l 

313 c_sum[ i . T + j [ = 0 . ; 

314 ) 

315 / / Using  memset  is  actually  longer  than  the  above  I 

316 / * memset  (distc  ,  0,  sizeof  (sample  )*K  ) : 

317 memset(c_sum  ,  0,  sizeof  (sample  ).K*T): 

318 memset(c_cnt  ,  0,  sizeof  (sample  )*K  ) : * / 

319 

320 j = 0 ; 

321 / / The  core,  we  pass  the  entire  DB  here: 

322 fo r ( j = 0 ; j<NS; j++1 I 

323 

324 c e n t r = c e n t r o i d _ d e f ( J , & d i s t ) ; 

325 //  distc  I  centrl+=dist: 

326 d i s t c + = d i s t ; 

327 c _ c n t ( c e n t r ]++; 

328 / / we  do  the  multiplication  ,  out  of  the  loop: 

329 / / Type  of  thing  a  compiler  should  optimize. 

330 s P o s = j . T ; 

331 c P o s = c e n l r * T ; 

332 1=0; 

333 # i f d e f UNR0LL2 

334 if (T>UNROLL_LEVEL ) ( 
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353 

354 

355 

356 

357 

358 

359 

360 

361 

362 

363 

364 

365 

366 

367 

368 

369 

370 

371 

372 

373 

374 

375 

376 

377 

378 

379 

380 

381 

382 

383 

384 

385 

386 

387 

388 

389 

390 

391 

392 

393 

394 

for ( ; i <(T-UNROLL_LEVEL) , i +=UNROLL_LEVEL) [ 

c_sum[cPos+ i ]+=sample s [ sPos + i ] ; 

c_sum [ c P o s + i + l ] + = s a m p l e s [ s P o s + i + l ] ; 

c_sum [cPos + i +2]+= samples [ sPos + i + 2 ] ; 

c_sum [ cPos+i +3]+= samples [ sPos + i + 3 ] ; 

1 
I 
if (TOUNROLL.LEVEL I / / Compiler  eliminates  this  if  T  and  VNROLL_LEVEL  are  static 

f o r i ; i<T ; i++) 

c_sum [ cPos + i ]+= samples [ sPos + i ] ; 

/ / Put  distc  into  end  of  c_suin  'mega—vector  '  (offset  from  malioc) 

c_sum [c_sum_s ize —I] = d i s t c ; 

MPI_Allreduce(MPl_lN_PLACE, c_sum , c _ s u m _ s i z e . MPLFLOAT, MPLSUM, MP1_CX)MM_W0RLD) 

d i s t c = c_sum [ c_sum_size — 1]; 

/ * After  this  point,  all  vars  are  in  the  same  state  as  if  they  had  been  computed 

by a  single  process 

./ 
m e a n _ v e c t o r ( ) ; 

di s t o r t i o n _ a n t = di s t o r t i o n ; 

//distoriion =  average_distortiont distc); 

d i s t o r t i o n = d i s t c / N S _ t o t a l ; 

i t e r a t i o n ++; 

# i f d e f DEBUG 

if (mynode = 0) 

p r i n t f (•TWOJ.AST^VERA(3E^DlSTORTIONS:^DI=%f„^>D2=%f„„Dif=%f„\n" , \ 

d i s t o r t i o n _ a n t , d i s t o r t i o n , fabs (( doub le ) ( d i s t o r t i o n _ a n t — d i s t o r t i o n ) ) ) ; 

# e n d i f 

I whi le ( f a b s ( ( d o u b l e ) ( d i s t o r t i o n _ a n t - d i s t o r t i o n ) ) > THRESHOLD); 

/ * show  centroids  * / 

void 5 h o w _ c e n t r o i d s ( ) 

[ 

i n t i , j ; 

p r i n t f ( " C e n t r o i d s ^ \ n " ) ; 

f o r t i = 0 ; i < K ; I++1 [ 

for (J = 0 ; j < T ; j ++) 

i f ( i = = 0 II i = = ( K - l ) ) p r i n t f ( " % 2 , 2 f „ " , c e n t r o i d s [ i .T+j ] ) ; 

i f ( i = 0 II i = = ( K - l ) ) p r i n t f ( • • \ n " ) ; 

) 

/ • show  samples  * / 

void s h o w _ s a m p l e s ( ) 

1 
int 1 , j ; 

for ( i = 0 , i < N S , 1++I [ 

for ( j = 0 ; j < T ; j + + ) 

p r i n t f ( "%f„" . s amples [NS.T+i )) ; 

p r i n t f ( " ^ c = N / A \ n " ) ; 

1 
) 



139 

395 / * save  centroids  */ 

396 void s a v e . c e n t r o i d s ( c o n s t c h a r , ou tname) 

397 I 

398 i n t 1 , j ; 

399 FILE * f p ; 

400 

401 fp = fopen ( outname , "wb" ) ; 

402 /»  print  f  ("  Saving  centroids  \n");*/ 

403 fo r t i = 0 , i < K ; i++) [ 

4<H for (J = 0 ; j < T ; j + + l 

405 f p r i n t f i f p , "%f , " , c e n t r o i d s [ i .T+j ] ) ; 

406 f p r i o t f ( f p , " \ o " ) ; 

407 I 

408 f c l o s e ( f p ) ; 

409 I 

410 

411 

412 / • mam  * / 

413 i n t m a i n ( i n t a r g c , c h a r . a r g v [ ] ) 

414 [ 

415 c h a r . f n a m e i n ; 

416 s t r u c t t i m e v a l t e m p o l , tempo2 ; 

417 s t r u c t t imezone i z p ; 

418 doub le t empo; 

419 

420 MPI_ ln i t (&a rgc , & a r g v ) ; 

421 MPl_Comm_size(MPl_COMM_WORLD, & t o t a l o o d e s ) ; 

422 MPl_Comm_rank(MPI_COMM_W0RLD, &mynode); 

42.1 

424 fnamein=argv [ 1 ] ; 

425 K = a i o i ( a r g v [ 2 ] ) ; 

426 if I a rgc > 3 ) [ 

427 N S _ t o t a l = a t o i ( argv [ 3 ] ) ; 

428 if (mynode = 0) 

429 p r i n t f (" Li mi t i n g _ s a m p l e ^ l o a d „ t o „ % l d ^ s a m p l e s . \ n " , N S _ t o t a l ) ; 

430 1 

431 

4.̂ 2 g e t t i m e o f d a y t & t e m p o l ,&tzp ) ; 

433 

4.̂ 4 / / we  merge  c_sum  ,  c_cnt  and  dist  into  a  single  vector  to  simplify  communication  consolidations 

435 c_sum_siz e =  ( K -  T  +  K  +  1  ) ; 

436 c_sum = ( f l o a t *l malioc ( c_sum_s ize * s i z e o f ( sample ) ) ; 

437 c_cn l = &c_sum[K*T]; / / beyond  last  element  of  c_sum  is  start  of  c_cnt 

438 //c_sum  = malloclK.  sizeof  (sample  I'T  ) ; 

439 //c_cnt  =  malioc  (K  -  sizeof  (sample)  ) ; 

440 c e n t r o i d s = ( f l o a t *) ma l loc (K * s i z e o f ( sample )*T ) ; 

441 

442 # i f d e f DEBUG 

443 if (mynode==0) 

I 11 p r i n tf ( "K: _%d\nT :,_,?td\ nc_sum_s ize ;^%d\n( c_cnt^—^c_sum ) : ^ ^ \ n" , K , T , c _ s u m _ s i z e ,( c_cnt — c_sum )) ; 

445 # e n d i f 

446 

447 if (!c_sum 11 [ c e n t r o i d s II ! c_cn t ) [ 

I Ig p r i n t f ( " malloc,_^failurc,_,on,_,c_sum^ l l , ^cen t ro ids ,_ , l l ,_ , c_cn t ,_ , ! \n" ) ; 

449 e X i I ( 1 ) ; 

4.50 1 

451 

452 / * load  samples  */ 

453 

454 N S = l o a d _ s a m p l e s ( fnamein ) : 
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455 if ( N S = - 1 ) [ 

4.56 p r i n t f ( " \nNode„%d : , jERROR^=„loading„sample„f il e \ n " .mynode) ; 

457 M P L F i n a l i z e O ; 

458 e X11 ( I ) ; 

459 ) 

460 # i f d e f DEBUG 

461 p r i n t f ( "NS^=^%lu\n" , NS) ; 

462 Vendif 

463 

464 / . cent  raids  initialization  . / 

46.̂  c e n t r o i d _ i n i t ( fnamein ) ; 

466 //  cent  raid  _init_net  (fnamein  ) ; 

467 

468 /* vector  quantisation  . / 

469 vq( I ; 

470 

471 / / show_centroids  ()  ; 

472 

473 # i f d e f DEBUG 

474 g e t t i m e o f d a y ( & t e m p o 2 ,&tzp ) ; 

475 tempo = ( doub l e ) ( t empo2 , t v _ s e c — tempol . t v _ s e c ) +  ( ( ( doubl e ) ( tempo2 , tv_usec—tempol . t v _ u s e c ) ) / 1 0 0 0 0 0 0 ) ; 

476 

477 p r i n t f ( " Tota l^ t ime^for^node^*S<i^( s ) : ^ ^ 3 f \ n " , mynode, t e m p o ) , 

478 #endi f 

479 i f (mynod e =  0 ) 

480 s a v e _ c e n t r o i d s ( " c e n t r o i d s " ) ; 

481 

482 M P L F i n a l i z e O ; 

483 retur n 0 ; 

484 I 
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