
ECOLE DE TECHNOLOGIE SUPERIEURE
UNIVERSITE DU QUEBEC

MEMORANDUM PRESENTED TO
L'ECOLE DE TECHNOLOGIE SUPERIEURE

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR
A MASTER'S DEGREE IN ELECTRICAL ENGINEERING

M. Eng.

BY
Eric THIBODEAU

PROFILING AND OPTIMIZING K-MEANS ALGORITHMS IN A BEOWULF CLUSTER
ENVIRONMENT

MONTREAL, DECEMBER 21 2009

@ Copyright 2009 reserved by 6ric Thibodeau

PRESENTATION OF THE JURY

THIS MEMORANDUM HAS BEEN EVALUATED

BY THE FOLLOWING BOARD OF EXAMINERS

M. Tony Wong, Memorandum Supervisor
Departement de genie de la production automatisee a I'Ecole de technologic superieure

M. Roberet Sabourin, Memorandum Co-supervisor

Departement de genie de la production automatisee a I'EcoIe de technologic superieure

M. Guy Gauthier, President of the Board of Examiners
Departement de genie de la production automatisee a I'Ecole de technologic superieure

M. Eric Granger
Departement de genie de la production automatisee a I'Ecole de technologic superieure

TFHS MEMORANDUM WAS PRESENTED AND DEFENDED BEFORE A BOARD OF

EXAMINERS AND PUBLIC

ON NOVEMBER 24 2009

AT ECOLE DE TECHNOLOGIE SUPERIEURE

PROFILAGE ET OPTIMISATION D E L'ALGORITHME DU K-MEANS DANS UN
ENVIRONMENT DE GRAPE DE CALCUL DE TYPE BEOWUL F

Eric Thibodeau

RESUME

L'algorithme d'agglomeration statistique K-means sert a classer des bases de donnees non
libellees en K groupes. Faisant partie de la fonction d'evaluation d'un Algorithme Ecolution-
naire (AE), I'optimisation de ce dernier est devenu un point d'interet. Malgre les multiples
approches proposees pour son optimisation et sa parallelisation, tres pen de recherche s'est at-
tardee aux questions entourant la performance et I'efficacite parallele des implantations. Dans
la plupart des cas, les descriptions entourant I'environnement d'execution demeurent opaques
et la presentation precise de profiles d'execution est souvent absente.

Nous pallions a ces lacunes en presentant une description detaillee de deux environnements,
le grappes de calcul Beowulf et les machines paralleles de type Symmertric Multi-Processors
(SMP). Une combinaison de modeles theoriques et empirique sert ensuite d'etalon dans la
mesure de performance du K-means dans ces environnements. Etant la necessite d'une exper
tise pluridisciplinaire, une utilisation detaillee de la suite d'outils Tuning and Analysis Utilities
(TAU) est presentee pour simplifier la tache du profilage de code parallele. Couplee aux comp-
teurs haute precisions foumies par I'interface Performance Applicafion Programming Interface
(PAPI), nous presentons une approche «grey box »ayant permis de muter une implementafion
parallele maitre-esclave du K-means vers une version hautement efficace utilisant le paradigme
d'llots de calculs. Les optimisations sont guidees grace a 1'utilisation des modeles theoriques
et empiriques que nous avons obtenus.

Notre travail revele que I'opfimisation de programmes paralleles releve de bien plus qu'un
equilibre entre calcul et communications. Nous revelons les impacts negatifs de I'utilisation de
bibliotheques de fonctions mathematiques ainsi que de certaines versions des bibliotheques de
communications. Un profile d'execution de haute precisions a permis d'etablir que la represen
tation et le pre-traitement des donnees peuvent s'averer etre plus couteux que le calcul et les
communications combines.

PROFILING AND OPTIMIZING K-MEAN S ALGORITHMS I N A BEOWULF

CLUSTER ENVIRONMEN T

Eric Thibodeau

ABSTRACT

The K-means algorithm is a well known statistical agglomeration algorithm used to sort a
database of unlabeled items into K groups. As part of the fitness function of an Evolutionary
Algorithm (EA), the optimization of the K-means algorithm has become a point of great in
terest. Although many approaches have been proposed for its parallelization and optimization,
very few address the question of scalability and efficiency. In most cases, the description of the
execution environment remains opaque and precise profiles of the program are mostly absent.
Performance and efficiency issues are quickly relegated to communicafion issues.

We address these deficiencies by presenting a detailed description of two parallel environments,
the Beowulf style clusters and the Symmetric Multi-Processors (SMP) parallel machines. A
mixture of theoretical and empirical models were used to characterize these environments and
set baseline expectations pertaining to the K-means algorithm. Due to the necessity of a mul-
tidisciplinary expertise, a detailed use of Tuning and Analysis Utilities (TAU) is provided to
ease the parallel performance profiling task. Coupled with the high precision counter inter
face provided by Performance Application Programming Interface (PAPI), we present a grey
box method by which a parallel master-slave implementation of the K-means is evolved into a
highly efficient island version of itself. Communicafions and computational optimization were
guided by prior theoretical and empirical models of the parallel execution environment.

Our work has revealed that there is much more to parallel processing than the simple balance
between computation and communications. We have brought forth the negative impact of
using mathematical libraries for specific problems and identified performance issues specific to
some versions of the same series of Message Passing Inerface (MPI) libraries. High precision
profiling has shown that data representation and processing can be a more significant source of
scalability bottleneck than computation and communications put together.

TABLE OF CONTEN T

Page

INTRODUCTION I

CHAPTER 1 HARDWARE CHARACTERIZATION 4
1.1 Basic Computer Architecture 5

1.1.1 The Control Unit and Arithmetic Logic Unit 5
1.2 Caching in on The Main Memory 6

1.2.1 Accessing The Main Memory 7
1.2.2 Cache Size and Contention 11
1.2.3 Processor Performance 16

1.3 Communications 17
1.3.1 Bandwidth 18
1.3.2 Latency 19
1.3.3 The Hyper Transport Interconnect 23
1.3.4 Benchmarking Network Communications 24
1.3.5 Theoretical and Empirical Model 27

1.4 Input/Output and Storage 28
1.4.1 Local Versus Remote Storage 29

1.5 Discussions 30

CHAPTER2 THE PROFILING TOOLS 32
2.1 Black, Grey and White Box 33
2.2 Sequential Profiling: UseOf g p r o f 34
2.3 The Itch Of Measuring Time 36

2.3.1 PAPI: Time To Scratch Below The Surface 36
2.4 Tuning and Analysis Ufilifies (TAU) 39

2.4.1 Configuring TAU 40
2.5 Profiling the Source Code 41

2.5.1 Automatic Code Insertions 42
2.5.2 Semi-Automatic Code Insertions 42

2.6 Executing the Profiled Code 43
2.6.1 Selecting The Profile Depth 44
2.6.2 Selecting The Desired PAPI Events 44
2.6.3 ControUing The Data Flow 45
2.6.4 Storing The Data 45

2.7 Paraprof and PerfExplorer: The Profiling Graphical User Interfaces 46
2.7.1 The Paraprof Profile Viewer 47
2.7.2 The PerfExplorer Performance Analyzer 51
2.7.3 AppHcafion Speedup 52

Ill

2.7.4 Application Parallel Efficiency 55
2.7.5 Runtime Breakdown 56
2.7.6 Views 57

2.8 Discussions 60

CHAPTER 3 CASE STUDY: PARALLEL K-MEANS ALGORITHM ANALYSIS 61
3.1 The Sequential k-means Algorithm 62

3.1.1 Empirical Evaluafion of the Algorithm 62
3.2 The Parallel K-Means Algorithm 66

3.2.1 First, Divide: The Segmentafion Strategies 66
3.2.1.1 Strided Segmentation 66
3.2.1.2 Blocked Segmentafion 67
3.2.1.3 Hardware Considerations: Load Balancing 67
3.2.1.4 Hardware Considerations: Physical Limitations 68

3.2.2 Then Tell Everyone: Communications 69
3.3 And Conquer: Master-Slave Model 69

3.3.1 Master-Slave Communications 70
3.3.2 Master-Slave Empirical Modehzafion 73

3.4 Or, Invade: Synchronous Island Model 79
3.4.1 Optimizing the code 82
3.4.2 Island Communicafions 83

3.4.2.1 Overlapping Communications and Computation 83
3.4.2.2 Less Talk, More Work 85

3.5 Opfimization of Input/Output (I/O) Roufines 87
3.6 Computational Opfimizafions: Coding for High Performance Computing (HPC).. 88

3.6.1 Compiler Direcfives 89
3.6.2 Mathemafical Libraries Versus Code 89
3.6.3 Using Single Instmction Multiple Data 90
3.6.4 Loop Optimizations 91
3.6.5 Basic Linear Algebra Subroutines (BLAS) Libraries 96
3.6.6 Comparing All Approaches 99

3.7 Looking at the Global Picture 101
3.8 Discussions 105

CONCLUSION 106

APPENDIX I THE GNU C Compiler (GCC) I l l

APPENDIX n COLLECTION OF COMMANDS 116

APPENDIX m MACHINE DESCRIPTIONS 117

APPENDIX IV SOURCE CODE 125

IV

BIBLIOGRAPHY 141

LIST OF TABLES

Page

Table 2.1 Black, Grey and White Box definitions 33

Table 2.2 Black, Grey and White Box capabilities for the presented tools 60

Table 3.1 Per bottieneck optimization recommendations. Prior profiling to
identify the applicability of these approaches is primordial 109

LIST OF FIGURES

Page

Figure 1.1 Mulfi-processor memory access strategies for both Advanced
Micro Devices (AMD) and Intel processors. AMD possesses Non
Uniform Memory Access (NUMA) characterisfics while Intel's
implementafion is essentially Uniform Memory Access (UMA) 9

Figure 1.2 These schematizations of the AMD Opteron Dual Core processors
(800 series) and the Intel Core 2 Duo processors illustrates how the
two core variants access Dynamic RAM (DRAM). In both cases,
the Memory Management Unit (MMU) possesses dual channel
connectivity to DRAM for fink bandwidth aggregation 10

Figure 1.3 Cache memory behavior on an Intel (56600 (4 cores). Execution
time characteristics are illustrated in (a). Cache usage zones are
identified in (b) 14

Figure 1.4 Cache memory behavior on AMD Opteron 800 series based
processors using 14 cores of a SUN SunFire a:4600. Execution time
characteristics are illustrated in (a). Execution zones are identified
in (b) 15

Figure 1.5 Execution time comparison between Intel's (56600 and AMD's
Opteron 885 processors. The concurrent process count is in
parenthesis. The raw computing power of the (56600 outperforms
the Opteron 885 for four processes. The case of 14 concurrent
processes is presented to demonstrate the proportionally small
impact of their simultaneous execution 17

Figure 1.6 LAM-MPI outperforms OpenMPI for any
TCP/IP communications. The non-linearity are noted around the
Maximum Transmission Unit (MTU) barriers of 1500bytes 20

Figure 1.7 The round trip communication times using MPI libraries
surrounding the start up times in (a) and the MTU in (b). Since
these are round trip figures, all values have to be halved when
considering asymmetric communication patterns 21

Figure 1.8 The communications latency is affected by the Central Processing
Unit (CPU) frequency and network topology. Higher frequency

vn

clearly renders lower latency and the addition of a hop between
two hosts (denoted as Cross-Switch) adds significant delays 22

Figure 1.9 Comparing OpenMPI versions 1.1 and 1.2 on HyperTransport
by varying the message size passed to the m p p t e s t micro-
benchmark. The 1.1 implementations had performance issues
characterized by a sudden jump in communication times around
packet sizes of lOOObytes 24

Figure 1.10 The Tyan VX50 interconnection strategy for 8 processors using
HyperTransport (HT). This twisted ladder topology provides for
an average 1.5 hop between processors and their farthest memory pages 25

Figure 1.11 MPI call types and their impact on the communication
times. Synchronous (sync) communications outperform both
asynchronous (async) and persistant ones as the processor is
dedicated to performing the communication task in that specific
case 26

Figure 1.12 Comparing the general theoretical communications model with
empirical values for a 100BaseT Ethernet network. Results from
n e t p i p e are slightiy higher than m p p t e s t , indicating there
might be additional overhead to his test suite. The theoretical value
bases its ts on results from m p p t e s t , thus biasing it to be closer
to that tool's results. An arrow is inserted at 188bytes as a point of
reference for a vector of 47 floats, a unit which comes in handy in
our case study 28

Figure 1.13 An example of proportional breakdown of each task's contribution
to the execution time for the Parallel Vector Quantization (PVQ)
implemented using a textual database (described in Chapter 3)
and traversing its entirety at initiation. The loading of the data
is performed by the l o a d _ s a m p l e s () function and represents a
significant portion of the total execution time 29

Figure 2.1 Output listing from g p r o f - b r i e f - p vq. The columns
describe the following metric for each function (each line): % time
is the proportion of total execution time, cumulative seconds is the
inclusive execution time, self seconds is the exclusive time, calls
is the total count. Self and total s/call are for the inclusiv e and
exclusive time per call. Finally, the last column holds the function name. .. 35

Figure 2.2 The annotated source code as per the use of g p r o f -A vq. Only
the two most called functions form the source code are presented 36

vm

Figure 2.3 The program call graph. This call graph draws the execution
path of this simple program. Each box represents a function and
the arrows indicate the call sequence. The percentages indicate
the inclusive, or cumulative, time as one walks down the graph.
Exclusive times are indicated in parenthesis 37

Figure 2.4 A sample use of g p r o f 2 d o t to generate a d o t file to be
interpreted by Graphviz. The information is generated by gprof ,
then piped into g p r o f 2 d o t . py, which itself pipes into the d o t
interpreter to generate the c a l l - g r a p h . pdf file 37

Figure 2.5 The PAPI implementation scheme. Adapted from [10] to include
the software components, in parenthesis, relevant to each layer
used in our implementation 38

Figure 2.6 Automated general configuration of TAU using the i n s t a l l t au script... 40

Figure 2.7 Manual configuration of specific features (lines 4 and 5) using
TAU's . / c o n f i g u r e script 41

Figure 2.8 Example of TAU profiling options that were compiled at
installation time. Following the Makef i l e . t a u - filename
prefix are the options selected at compilation time 41

Figure 2.9 Selective profiling using Eclipse and
TAU's selective instmmentation interface. The df () function is
selected and specific type of profile pattern is applied to it. The
modules then automatically generates a t a u . s e l e c t i v e file to
be passed to the wrapper script 43

Figure 2.10 A sample script that sets up the envkonment for multiple runs of profiling.. 44

Figure 2.11 Both Graphical User Interfaces (GUIs) possess a main window
from which the data set(s) to be analyzed is selected. The selection
is performed in the left pane where trials are presented in the form
of a tree structure. The latter depends on how the data was imported
using Performance Data Management Framework (PerfDMF). We
see in (a) that p a r a p r o f has an additional branch, which is used
for the current folder's data and that (b) possesses an additional
leaf named view 46

Figure 2.12 A normalized profile view of all processes including the global
mean and the standard deviation (Std. Dev.) of each
functions. In this case the metric is the time proportion as per
GET_TIME_OF_DAY. Each color represents a specific function

IX

and its length is proportional to the total execution time on that
specific node 47

Figure 2.13 Individual functions and group of functions can be selected to focus
the displayed statistics. Here, the TAU_USER group is selected
in the Group Legend pane (bottom left), which highlights the
relevant functions in the main window (right). Note that we have
de-selected the stacked bar presentation for the main window to
present an alternative to the normalized stacked bars from Figure
2.12 48

Figure 2.14 Analternaterepresentationof the data in 3 Dimensional (3D). This
view provides a more intuitive view of the data through a landscape
representation or a series of bars (as shown). The bar height and
color intensity can relate to any of the collected PAPI metric or one
of the derived metrics created by the user 49

Figure 2.15 p a r a p r o f has the ability to display the call graph if the program
was profiled with the -PROFILECALLPATH option turned on. By
default the box width is proportional to the inclusive times and the
box color is selected according to the exclusive runtime of a given
function. Both programs are the same but it is clear that the call
path from the master node in (a) is different from one of the slave
nodes in (b) 50

Figure 2.16 An example of an analysis sequence in p a r a p r o f . From top
left, circling counter-clockwise, is the sequence from p a r a p r o f
manager window, through the bar charts, the call graph and then to
the source code 51

Figure 2.17 The top line shows the ideal speedup, based on the experimental
data right below it, which starts with tbase = ^i (1 processor) up to
the timing for p = 16 processors. The bottom line seems to have
poor speedup as it is far from the ideal line (also drawn). For this
curve, the baseline time tbase is based on the execution with p = 5
processes. This induces a distortion in the speedup representation
as the two series have a different reference for tbase 53

Figure 2.18 A closer look of the experiment having a baseline time tbase with
5 processors demonstrates that it actually exerts ideal speedup
according to p e r f e x p l o r e r ' s guideline 54

X

Figure 2.19 The speedup of each event is drawn independentiy to isolate the
functions that do not scale well. Functions that fall off the ideal
speedup reference line are the most probable barriers to scalability 55

Figure 2.20 Relative efficiency is not affected by the baseline's processor count
p. The most efficient implementation (top line), averaging at 1,
was originally presented as having comparatively poor speedup in
Figure 2.17 56

Figure 2.21 Relative efficiency by event can help identify functions with poor
scalability. The ideal is to remain close to 1 as processor count grows 57

Figure 2.22 Comparing three representation of the same profile run using
relafive efficiency in (b), relafive speedup in (a) and a runtime
breakdown graph in (c). The intuitive display from the
runtime breakdown eases the identification of functions becoming
problemafic as processors are added. Simply put, a widening cone
such as the second predominant layer from the top, is indicative of
a growing bottleneck. A fightening cone, on the other hand, means
that the function looses proportional importance in the overall
execution time. Parallel or constant area are signs of linear (ideal)
speedup of a function 58

Figure 2.23 The use of p e r f e x p l o r e r views help
consolidating experimental data for a better analytical perspective.
All 15 experiments are presented in (a) whereas an averaged view
is presented in (b) 59

Figure 3.1 Profiling and execution of the sequential k-means algorithm using
TAU. The program is then started by specifying the reference
database and the number of samples to load from the database.
Here we load 1% of the entire database. The [s n i p] tags indicate
output truncation 63

Figure 3.2 Each graphic is a window from p a r a p r o f , used to present
a specific view of the sequential k-means profile. The call
graph in (a) clearly shows that the execution time is mostly
attributable to c e n t r o i d _ d e f () . The stacked bargraph in
(b), and its deconstructed version in (c), also indicates this
proportional importance. The call counts from (d) help identify
potential partitioning areas as well as its grain, (e) is useful
for identifying highly cohesive functions (many short calls), thus
potential communication bottlenecks 65

XI

Figure 3.3 Database segmentation strategies: TOP- Strided segmentation (fine
grained) is used by the master-slave algorithm where each element
of the database is assigned to one LO worker node in a round-
robin fashion. BOTTOM- Block segmentation approach (coarse
grained), assigns equal consecutive chunks of the database to each
worker as per \DB\/uj with the remainder assigned to the last worker 68

Figure 3.4 A typical master-slave topology. All communications originate and
terminate on the master. The nodes do not communicate between
each other 70

Figure 3.5 The workers send their partial results to the master 72

Figure 3.6 The master updates the workers with the new values 72

Figure 3.7 Master-Slave Message Sequence Chart (MSC) for the inter-
iteration communications. All communications are point to point
and must be performed by all nodes 74

Figure 3.8 The 3D view of the master-slave communications MPI_Recv()
and computation cycles df () for all nodes. The master node (node
0) spends most of its time waiting for the results from the uorkex
nodes. Colunms are colored according to time per call for the function 76

Figure 3.9 Average time spent by all nodes in each function. Each calls are
sorted by order of contribution importance. Calls under 0.008
seconds aren't shown for clarity. Braces indicate the source file and
line numbers, bracket information specify which call parameters
were used and function call paths are indicated using '=>' 77

Figure 3.10 Correlation analysis for to = [2,24]. Each function's time •
contribution is drawn -as the worker count grows. The correlation
coefficient r. indicates the correlation between the addition of
nodes and the execution time of the function 78

Figure 3.11 Runtime breakdown for uj = [2, 24]. Each function's proportional
importance for the total execution time is depicted by its surface
coverage as nodes are added to the computation. A perfectiy
scalable function would be represented by a constant surface area
whereas a growing surface is indicative of poor scaling 79

Figure 3.12 A typical island topology. Communications originate and
terminate between each node. This model implies a fully
connected network where all nodes can see eachother (typical

xn

Ethernet configuration). The number of actual communicafions
varies depending on the MPI implementafion of the global communicators. 80

Figure 3.13 The three collective calls used to communicate and perform an
element by element summation of all three intermediate variables 83

Figure 3.14 Island MSC for the inter-iteration communications. Although
drawn as sequential, collective communications can overlap within
the same call to MPI_A11 r e d u c e but must complete within the
same call (equivalent to a communication barrier). These barriers
are depicted by the horizontal dotted lines. They must also be
performed by all nodes 84

Figure 3.15 Average communication times for both approaches. Master-slave
communications are presented in (a) while the only communication
for the island model is in (b) 85

Figure 3.16 A single collective call performs the exchange and summation
of all intermediate values. The variable c_sum is supersized to
include C, m and dist, hence the communication size of K *T -\-
K + I. Each variable simply points to its specific region within c_sura 86

Figure 3.17 Simplified Island MSC for the inter-iteration communications.
A single collective call from each node communicates all
intermediate values and performs their sum at the same time 86

Figure 3.18 Comparing hand coded squared function (a x a) to the use of pow()
on Intel (56600 . The metric used in all cases is the exclusive mean
per-call values of the fucntion. In all figures ((a) to (e)), the top
bar (in blue) uses the explicit definition while the red bar below
uses the library call to pow (a, 2) . All the presented metrics point
to the expanded version as being more efficient by consuming less
total time (a), cycles (b), issuing less instmctions (c) (total) and
even less floating point (d) and vector instmctions (e) 90

Figure 3.19 On the left, the original loop. On the right, the fourfold unrolled
version of this same loop 92

Figure 3.20 Pre-assembly output from GCC for an Athlon XP processor for
df (). On the left, the code is compiled with exphcit use of Single
Instruction Multiple Data (SIMD) directives such as -mf pmath=
s s e - m s s e -mSdnow. On the right, the addition o f - f f a s t -
math has triggered unrolUng of loop as weU as additional use of
the SIMD capabilities, generating more efficientiy vectorized code 94

xm

Figure 3.21 Execution time comparison between using - 0 3 (top bars in blue),
adding - f f a s t - m a t h (middle bars in red), and also addinf -
f u n r o l l - a l l - l o o p s (bottom bars in green). The (a) is for
the execution time on Athlon XP processors where we can see
that df 0 does not seem to benefit from - f u n r o l l - a l l - l o o p s
but does perform better with about 6% in time gain with only -
f f a s t - m a t h , (b) is on Intel (56600 where very litUe differences
are noted between the three approaches 95

Figure 3.22 The df () function using BLAS. On the left, the original loop. On
the right, the BLAS version of this same loop. The operations on
the right are aligned with the ones they (mostly) replace on the left 96

Figure 3.23 The Level 1 BLAS hbraraies (top blue bars and line) perform
poorly in all cases compared to the code optimized with - f f a s t -
math. This is reflected in all aspects of the computation whether
it being time (a), CPU cycles (b), instructions (c) or even floating
point operations ((d) and (e)). Further investigation by varying the
vector size has proven this to always be the case as demonstrated
in(f) 98

Figure 3.24 Comparing all approaches Athlon XP (a) and Intel (56600 (c). In
both cases, BLAS (purple) and pow() (light blue) are the worst
performing. A direct correlation is made between performance and
Level 2 (L2) cache misses (b) for the Athlon X P . In the case of
the Intel (56600 , the same clear cut correlation, requires that we
go down to the Level 1 (LI) cache (d) 100

Figure 3.25 Total execution times on both clusters. The Headless cluster
(a), based on Athlon XP hardware, lends a distinct advantage
to the use of - f f a s t - m a t h . On the //^ cluster (b), based on
Intel (56600 hardware, most options overlap leading to no clear
"winner", barring the use of GOTO BLAS and pow 102

Figure 3.26 The runrime breakdown for the best optimized options on both
clusters. In (a) most of the execution time on the H'^ cluster is
spent in MPI Ubraries. We see this is not the case in (b) for the
headless cluster where most of the time is spent in computation. 104

Figure 3.27 A deceptively simple diagram depicting the iterative optimization
process of a program. The multiple entry points recall that
a change in any one of the elements from Figure 1 are
susceptible to provoking a new optimization pass. The ultimate

XIV

convergence being that there is no more possible improvements
given a stabilized environment, and one can then get on with life 108

LIST OF SYMBOLS

DTI 'node
^^^ I/O

.Dw/server
^^^ I/O

tJ ''useful

C

C

^X

DB

\DB\

DB^,

d

dist

Node Input/Output Bandwidth

Server I/O Bandwidth

Useful Band Width

Number of cores in a given processoi

Table of k centroids

One of the k centroids from C

Data Base of vector elements

Data Base cardinality

Element j from u's Local Data Base

Vector dimension

Distance

E, comp

Ep

T^rel

HDREthernet

HDRTCP/IP
k
L

J-'max

-t^short

X*

rrik

Execution's comparative efficiency

Parallell Efficiency

Relative Parallell Execution Efficiency

Hard Disk Drive Input/Output Bandwidth

Ethernet Header Size

TCP/IP Header Size

Number of centroids used for the k-means algorythm

Message Lenght (Payload)

Maximum length

Shortest Pacquet Size

A vector element from DB, the Data Base

Element counter for centroid k

XVI

mt
MTUsi^e

n

^^ iter

UJ

P

Pbase

Op

h

''avg

''base

''byte

''comm

''compl \

t'con.avg

''exec

^/IMI

tlat

''load

t'navg

h
t'seq

''Single

ts

''Start

t'StOV

Element counter for centroid k on node u)

Maximum Transmission Unit size

Number of hosts

Number of iterations

Number of worker nodes

Number of processes

Number of processes for base line excution

Speedup using p processes

Time for single execution thread

Average time

Base Line Execution Time

Time to send a single byte

Total Communication Time

Computation part of t\\

Average time of miming concurrent threads

Execution Time

Time to compute a single Euclidean norm

Latency Time

Loading Time

Average time for end execution threads

Parallel Execution Time

Sequential Execution Time

Time for a single thread

Sefijp Tim e

Start time

Stop time

ACRONYMS

3D

ALU

AMD

API

bps

Bps

BLAS

CFD

CMP

CPU

CPI

CUDA

DMA

DRAM

EA

CFD

FLOPS

GA

GCC

GigE

GPU

GPGPU

GUI

3 Dimensional

Arithmetic Logic Unit

Advanced Micro Devices

Application Programming Interface

bits per second

bytes per second

Basic Linear Algebra Subroutines

Compitafional Fluid Dynamics

Chip Multiprocessors

Central Processing Unit

Clock Per Instruction

Compute Unified Device Architecture

Direct Memory Access

Dynamic RAM

Evolutionary Algorithm

Computational Fluid Dynamics

FLoafing point OPertaions per Second

Genetic Algorithm

GNU C Compiler

Gigabit Ethernet

Graphics Processing Unit

General Purpose Graphics Processing Unit

Graphical User Interface

XVIII

GNU GNU is Not Unix

HPC High Performance Computing

HPCC HPC Challenge

HDD Hard Disk Drive

HMM Hidden Markov Model

HT HyperTransport

IEEE Institute of Electrical and Electronics Engineers

ILP Instruction-Level Parallehsm

I/O Input/Output

Inf Infinity

IP Internet Protocol

ISO International Standards Organization

LI Level 1

L2 Level 2

L3 Level 3

LLVM Low Level Virtual Machine

MIMD Multiple Insfiiiction Multiple Data

MMU Memory Management Unit

MPI Message Passing Inerface

MSC Message Sequence Chart

MTU Maximum Transmission Unit

NaN Not a Number

NIC Network Interfafce Card

NFS Networked File System

UMA Uniform Memory Access

XIX

NUMA Non Uniform Memory Access

NFS Network File System

OpenCL Open Computing Language

OS Operating System

PAPI Performance Application Programming Interface

PerfDMF Performance Data Management Framework

PDT Program Database Toolkit

PtP Point to Point

PXE Pre execution Environment

PDT Program Database Toolkit

PVQ Parallel Vector Quantization

QPI Quick Path Interconnect

RAM Random Access Memory

RAID Redundant Array of Inexpensive Disks

SATA Serial Advanced Technology Attachment

SIMD Single Instruction Multiple Data

SPMD Single Program Multiple Data

SMP Symmetric Multi-Processors

SRI System Request Interface

SSE Streaming SIMD Extension

TAU Tuning and Analysis Utilities

TCP Transmission Control Protocol

ZCAV Zoned Constant Angular Velocity

INTRODUCTION

It is a well known fact that parallel processing is a multidisciplinary field of research where the

compufing infrastmcture encompasses most of the electrical, software and telecommunication

fields of engineering. And this is only for its implementation, to which we must add the dis

ciplines proper to the environment being used, themselves covering a wide range of interests

from Computational Fluid Dynamics (CFD) modeling (think weather forecasting) to biochem

ical engineering passing through genetics research. The intertwining complexity is amplified

when one considers the Beowulf approach of High Performance Computing (HPC) where a

wide range of configurations and heterogeneity of the hardware tends to transform tradifional

computafional models into a complex mish mash of exceptions. If we also consider the widely

varying computation characteristics of the code to be executed in such environments, ranging

from embarrassingly parallel to highly cohesive (computation versus communications bound),

the answer to Which clustering solution is the best? can simply not exist without intricate

knowledge of the program and the underlying environment upon which the execution is to be

performed.

To illustrate these intricacies. Figure 1 presents an overlapping view of the typical hardware

and software components involved in the HPC parallel processing context. In this figure, we

have also separated the domains of interaction whether it be hardware versus software or user

versus system. The quadrants generated by this subdivision can each be interpreted as a field

of specialization which can be further subdivided by the components from which they are

composed.

Taking all these facts into account, one cannot claim the existence of a universal solution,

hardware or software, which can be applied to all cases. Profiling of any computational task

and/or of the underlying hardware is therefore a requirement for the attainment of performance

maximization given a specific environment.

Even with such precise knowledge of the software, estimating its performance on different

hardware can prove to be a daunting task which will tend to lead to false conclusions implying

that the exercise of profiling is a task to be re-iterated each time new hardware is encountered.

H
ar

dw
ar

e

System

Kernel (O.S.)

CPU ill
IdVd

BUS
NIC

HDD

o

Profiler

Compilers

User

C

^ 5
OpenMP

u
O.
X

Figure 1 : An illustration view of the multiple elements and disciplines involved in paral-
lel processing. Each quadrant represents a field of research with each underlying compo-
nent being a specialization. Th e crossing of quadrants signify its multidisciplinarity and
the overlapping emphasizes integration complexity.

Problem Statement

Research in the area of machine learning algorithms (including Evolutionary Algorithms (EAs))

is known to be computationally intensive and has been a growing user of parallel processing

approaches to enhance its capabilities.

As an accepted fact, most of the processing payload resides in the fitness evaluation functions

where a proposed solution is weighed. In the realm of EAs, the acceleration of this computation

step can either lead to a faster or a better solution for a given problem. Fitness evaluators are

problem-specific and cannot be generalized, which is why we concentrate on such a given

fitness evaluator, the K-Means statistical classifier, as was implemented in [44], Section 3,

Foreground-Background Feature Extraction (FBFE) Module.

Given the nature of the K-Means algorithm, the most classic means of determining execution

performance, the total mn time, is of littie use in itself. This is due to the fact that this itera

tive process terminates based on a convergence threshold, which is in turn affected by random

initialization values and the number of participating nodes. In the case of a parallel implemen

tation, it requires that other metrics than total execution time be used to gauge its performance

such as scalability and efficiency. With the added complexity of a parallel execution environ

ment, specialized tools are required to provide a concise view of the program's behavior and

evolution. As algorithmic and/or code optimization techniques are applied, one must ascertain

that the latter lead to an improvement and not a scalability bottieneck.

All these constraints, added to the aforementioned HPC parallel processing paradigms, require

that a unified approach be used to guide implementers as to where efforts should be deployed

to enhance performance. It is common that, in university research, the implementers (graduate

students) have a short time to learn all aspects of their project, programming environment and

the code base they will most probably be using and modifying. These three aspects tend to

mutate, implying that the performance analysis infrastructure used has to be adaptive, flexible,

and most importantiy, relatively simple of use.

To demonstrate how this can be accomplished, we start by describing technically and empir

ically the hardware characteristics in Chapter 1. We then present the techniques and tools by

which we probe the software being executed on this hardware in Chapter 2. A case study

is then presented in Chapter 3, where we fuse the tools from Chapter 2 and the architectural

knowledge from Chapter 1 which brings us to recommendations and future outiooks in the

conclusion.

CHAPTER 1

HARDWARE CHARACTERIZATIO N

Although it may seem trivial or paradoxical to possess knowledge about a program to be exe

cuted in a given HPC environment', it is a key component to guide the proper profiling of any

hardware platform. Ignoring the applicafion domain can result in misguided concerns about a

component that ends up being trivial for the targeted application. For example, concentrating

on network fabric performance when, in fact, an application is memory or computationally

bound, rather than communications bound, can turn out to be a waste of effort and resources.

This fact is actually alleviated by the classic Beowulf rhetorical question :

What hardware should I use to build a cluster?

to which the non answer usually follows as :

It depends.

HPC coding requures intimate knowledge of the target hardware architecture as the imple

mented strategies depend on their characteristics. Starting from a superficial perspective, if the

available hardware is in the form of an Symmetric Multi-Processors (SMP) machine, one would

probably concentrate on applying approaches where communication costs can be neglected and

where memory might be plentyfull. At the other end of the spectrum, the infrastructure might

be composed of a mass of heterogeneous computers with varying specifications, interconnected

using relatively slow links but possessing ample local storage. Digging deeper, one might find

out that the second model proves to be more effective since each node would happen to have

faster, less contentious memory access and demonstrate the ability to tap advantageous aggre

gated Input/Output (I/O) bandwidth thanks to local storage.

Obtaining knowledge of the target hardware architecture is a non trivial balance between the

oretical models and supporting empirical data. The collection of such data is usually accom

plished via micro-benchmarks and cluster gaging utilities [35]. Unfortunately, these remain

1. Which comes first, the software or the hardware, and is the profile on hardware X still apphcable to hardware
Y?

either too problem specific or too general to be of tme value. For this reason, we will concen

trate on characterizing the available hardware assuming some a priori knowledge of a problem

to be optimized (in occurrence, the K-means algorithm detailed in Chapter 3), which exhibit

vectorial computation features coupled with considerable data traversal and, in its parallel im

plementation, adds communications at each iteration -.

We now present some of the basic concepts pertaining to computer architecture and commu

nications fabrics. These elements will be useful when attempting to describe some of the

characteristics and results of software profiling as presented in Chapter 2 and 3.

1.1 Basic Computer Architectur e

Today's common computers are still loosely based on the what is commonly known as the Von

Neumann architecture [23, 50] which means that they are essentially comprised of (at least)

one of each of the following elements:

1) A control unit (for decoding the instructions and managing data flow);

2) An Arithmetic Logic Unit (ALU);

3) Main memory (such as Random Access Memory (RAM) more often referred to as Dynamic

RAM (DRAM));

4) An Input/Output unit managed by the control unit.

1.1.1 Th e Control Unit and Arithmetic Logic Unit

The control unit and ALU are probably what characterizes a Central Processing Unit (CPU)

core the most from the point of view of a compiler. It is in these components that mnemonics ^

are defined to mock up the instruction set and internal structure of a CPU. For the average

user, these differences usually don't mean much but can have a significant impact in scientific

computing.

2. The problems studied are embarrassingly parallel data mining appUcations which are typically memory
bound.

3. Menmonics are the short textual words representing operations a CPU can execute (op-codes). They are
the building blocs of the assembly language from which binary code (programs) are created.

For example. Advanced Micro Devices (AMD) has implemented a class of mnemonics which

they have named SDNow*" .̂ On their side, Intel has added their own class of mnemonics

known as the Streaming SIMD Extension (SSE), which they have named SSE* and SSSE* .̂

In all cases, they are an implementafion of Instruction-Level Parallelism (ILP), where perfor

mance enhancement is accomplished by applying a single instmction to multiple data elements

loaded into independent registers of a given CPU core. This approach to low level parallelism is

by definition known as Single Instrucfion Mulfiple Data (SIMD). The intent is that CPU cores

would exhibit enhanced performance when dealing with vector intensive applications typical

of multimedia and scientific computing. Nonetheless, proper use of these directives remains a

daunting task for the compilers [15], which can benefit from some hints by the programmer,

as we will see in Section 3.6.3.

One must not confuse the SIMD extensions with the advent of Chip Multiprocessors (CMP),

which are part of yet another class of parallel architecture known as Multiple Instruction Mul

tiple Data (MIMD). In this case, each processing stream (or program) is executing indepen

dentiy, implying a complete decoupling of instruction and data flow. The use of MIMD pro

gramming happens at the application level and does not exclude SIMD, the latter being imple

mented in each computing core. The only implication is that the program execution streams

are independent in the case of MIMD and require explicit synchronization mechanisms. An

automated implementation of such MIMD approach on CMP and SMP machines is the use of

the OpenMP^ compiler directives.

1.2 Cachin g in on The Main Memory

It is a well known fact that the DRAM performance curve is substantially inferior to the pro

cessor's speed evolution over the past decades [23], p.289. To compensate for this bottie

neck, processors are built with on-chip caches ^ which help in speeding up memory access by

4. We use the * as a globing character to include all subsequent classes.
5. AMD now also supports the SSE* and SSSE* class of mnemonics. Note that the extra S means "Supple

mental".
6. OpenMP is a specification which compilers are free to implement. For details, please visit h t t p : / /

o p e n m p . o r g / .
7. Instruction and data caches can either be separate or conmion, depending on the hardware implementation.

http://openmp.org/

prefetching data and instructions. The size and speed of these caches is dictated by its proxim

ity to the processor core(s), which in turn is guided by transistor count limitations for a given

physical space, heat dissipation and, of course, production costs [23]. This leads to the hierar

chical memory layout of most computers where the processor's access to memory is a growing

succession of caches, known as levels, who's efficiency is characterized by the ratio of hits and

misses to each of these levels. These cache levels are organized starting from the Level 1 (LI)

cache, characterized by its high speed but relafively small size **. Then follows the Level 2 (L2)

cache, slower than the LI cache but many times larger, it currently ranges from a few hundred

kilobytes to a few megabytes. Now becoming more common, the Level 3 (L3) cache is larger

than L2 (two to four times), and is mostiy used for CMPs as a shared memory space between

multiple processors [52, 6]. The last and slowest link down the memory hierarchy being the

DRAM memory modules ̂ with their ample capacity of a few gigabytes but with comparatively

slow access time and bandwidth.

1.2.1 Accessin g The Main Memory

The L1/L2, Memory Management Unit (MMU) and RAM blocks of Figure I are a gross rep

resentation of the actual processor to memory architecture now present in modem computers.

The model becomes more complex as caches, processors and cores are added to a system. One

constant remains, the Memory Management Unit (MMU), which plays a critical role in com

puter performance as it manages the data flow between the main memory and the processor

and is reputed as the bottleneck of any modem system. The two major computer processor

manufacturers, AMD and Intel, have diverged in this respect during the past years when com

paring AMD's Athlon/Opteron and Intel's Pentium/Core 2 processors. AMD has opted for a

Non Uniform Memory Access (NUMA) approach where each physical processor integrates its

own MMU and possesses a local memory bank. Although the local memory of each processor

is globally accessible, accessing it comes at a varying (Non Uniform) cost depending on the

8. Current processors generally posses an LI cache close or below 128A'bytes
9. Note that we could push the memory hierarchy down into virtual memory, residing on Hard Disk Drive

(HDD), but we won't address this case as it is an aberration to HPC and must be treated as an element that must
not be used in such a context given HDDs are many orders of magnitude slower than RAM.

path required for Memory Access (hence NUMA). We illustrate this in Figure 1.1 (a) where a

processor accessing its local memory has a direct path (depicted by Path 1) and accessing an

other processor's memory bank requires a more elaborate, thus longer, path (Path 2). Intel has

typically kept the MMU as an external device, which implies a uniform access to the memory

banks "̂ as illusfi"ated by Figure 1.1 (b).

Figure 1.2 (a) is a schematization of a typical AMD Opteron series of processor. It possesses an

on chip MMU where the System Request Interface (SRI) interconnects multiple cores through

the Crossbar (intemal processor communications fabric). The Crossbar then selects between

the MMU for local memory requests, or the HT fink if the requested memory address is on

a remote processor. This implies that access to local memory (going through the MMU) is

uniformly shared by all cores of a single processor unit. Intel's approach implemented in the

Core 2 series processors is depicted by Figure 1.2 (b) where we can see that L2 cache is shared

and that the MMU resides on an external chip (usually called the North Bridge).

In the case of AMD's implementation, access to memory physically connected to another pro

cessor requires the use of the HT link [32, 28] and is typically NUMA in nature. In Figure 1.1

(a). Path 1 illustrates the local core's direct path to memory going through the SRI/Crossbar

and MMU. Access to remote memory is illustrated by Path 2 where a request has to traverse

the HT link as well as both processor's SRI/Crossbar logic, which adds latency and transfer

delays. As processors are added to the system, more of these hops can occur, depending on

the interconnection strategy used [28]. For Intel type CMP systems, the MMU is an extemal

device and is dependant upon the motherboard implementer to select the interconnection strat

egy. Generally, these consist in using a single fast bus for I/O, inter-processors and memory

(through a single MMU), as illustrated by Figure 1.1 (b).

The direct implications of the differing memory subsystems is that, apart from extemal hard

ware required to link Intel's processors, they must share the memory bandwidth evenly across

processors and devices whereas AMD's processors each have their own local memory banks.

10. Although this will no longer be tme with their Core 17 series, where they have opted to integrate the MMU
into the processor die.

DRAM AMD 80 0 Serie s Processo r Bloc k AMD 80 0 Serie s Processo r Bloc k

Corel

SRI/Crossbar

Path 1

MMU H T HT IF

coreO

DRAM

Corel

SRI/Crossbar

HT

RAM and I/ O

HT HT MM U

(a) Multi-processor implementations of the Opteron processors possess UMA characteristics where local cores
access memory uniformly as seen by Path 1. Access to remote memory (physically attached to another
processor) requires passing through the HT Unk and two controller stacks as demonstrated through Path 2,
which is NUMA by definition.

Intel Q6600 Processor Bloc k Intel Q6600 Processo r Block

coreO Core l core 2 core 3 coreO core ! core 2 core 3

Processor, I/ O and RA M BUS (shared)

DRAM DRAM DRAM DRAM

MMU
External I/ O Chi p (Nort h Bridge)

t
To I/O

Single Pat h
to DRA M

(b) Intel's processors don't implement the MMU. Most CMP strategies available on the market implement it as a
single chip (north bridge) which is accessed through a shared bus topology connecting all processors through
which inter-processor communications, I/O and memory traffic is subject to contention.

Figure 1.1 : Multi-processor memory access strategies for both AMD and Intel proces
sors. AMD possesses NUMA characteristics while Intel's implementation is essentially
UMA.

L I

L2

AMD 80 0 Seri e sProc e ss a Blo c k

coreO

64k Inst r 64 k Dat a

1MB Data/Instr .

Corel

64k Instr . 64 k Dat a

1MB Data/lnstr .

SRI/Crossbar

MMU HTHTH T

Dual Chann e IM e nncr y Acce ss

DRAM

10

LI

L2

Intel 0660 0 Proc e ssor Blo c k

coreOD Corel c®re^c®re 3

32k 32 k 32 k 32 k 32 k 32 k 32 k 32 k
Inst. Data Inst. Data Inst . Data Inst . Data

2MB Data/lnstr, 2M B Data/lnstr.

i
MMU

External I/ O Chi p (Nort h Bridg e)

^ f ^ r

Dual Chann e IM e nria y Acce s s

DRAM
(a) AMD implement independent Ll and L2 caches (b) Intel implement a larger shared L2 cache and

stacked over the SRI and crossbar, which interface DRAM access is accomplished via an extemal MMU
with the MMU and HT link. (usually implemented in a chip called the North

Bridge).

Figure 1. 2 : Thes e schematization s o f th e AMD Opteron Dua l Cor e processor s (80 0
series) and the Intel Core 2 Duo processors illustrates how the two core variants access
DRAM. I n both cases, the MMU possesses dual channel connectivity to DRAM for link
bandwidth aggregation.

This imphes that Intel's memory access is bound to memory bandwidth and bus contention as

I/O traffic and processors are added to the system. In theory, AMD's on-chip MMU leverages

its processors as the ideal candidates for embarrassingly parallel applications where aggregate

memory bandwidth across multiple processors (not just multiple cores) is more important than

single-threaded memory access.

11

1.2.2 Cach e Size and Contentio n

Working at the processor's clock speed or a fraction of it, these caches are orders of magnitude

faster than DRAM. Fetching and synchronization of the data between the caches and the

main memory is managed by the processor's logic through different mechanisms which rely

on easily predictable or repetitive (strided) data access patterns [31], p.300. The efficiency

of these prefetching mechanisms is one of the most critical components for closing the gap

between computation and data access.

Modem processors are now being built to contain many cores and possess a growing amount of

Ll and L2 caches and some times L3 caches are added as the inter-core communications layer

[6]. Depending on the strategy adopted by the manufacturer, the Ll and L2 caches can either

be unique to each core or shared. Independent caches per core mimics SMP architecture where

each processor is essentially monolithic and virtually interconnected with a high speed bus.

This also implies that each core is constrained to only possessing a fraction of the cache that it

otherwise would be possible to implement as a global cache. This strategy can be beneficial for

independent data flows but could hamper performance when problem sizes are considerable or

when data is locally shared amongst multiple concurrent threads.

As a reciprocal to this approach, Intel has implemented a large shared inter-core L2 cache

strategy for it's Core 2 processors. This approach has the advantage of a large cache for single

threads but shared cache for concurrent threads. Figure 1.2 compares both of these strategies

where AMD's Dual Core Opteron 800 class of processors assign independent L2 caches and

Intel's Core 2 Quad processor is composed of four cores with L2 caches organized in core

pairs.

To demonstrate the different cache issues with concurrent and independent processes running

on a CMP, was programmed Algorithm 1 in C. This Euclidean computation kernel is derived

from our case study presented in Chapter 3. For our demonstration, we vary the vector dimen

sion d between 128A'bytes and 2Mbytes per process in order to saturate the L2 caches when as

many processes as cores are started (four processes for a quad-core CMP). Note that we kept

12

the problem size boundaries identical across experiments (not a function of the processor's

cache size) to ease the comparison. We then compute the concurrent execution's comparative

efficiency Ecomp, which we define to be:

P _ tsingle ,. .^
^comp , \ i • * /

^con.avg

with tsingle bciug thc time for a single thread of execution on a given processor and tcon.avg

the average time of running concurrent threads " on that same system. This result is useful in

identifying the interaction zones for concurrent execution of independent programs on a CMP.

Set d to maximum vector dimension (||X||)
Set REPS to maximum repetitions
Initialization of vectors X and Y for Euclidean computation.
for alii = I to d do

Set tstart = gettimeofdayi)
repeat

i

Compute Euclidean norm such as dist = V^ (||xj — yj |

until Computation has been executed REPS times
Set tstop = gettimeofdayi)
Compute average time as tavg = (tstop - tstart)/REPS

end for
Algorithm 1: Memory contention test algorithm.

Our results for the Intel Q6600 processor are presented in Figure 1.3 . Execution times are

presented in Figure 1.3 (a) where we observe performance degradation due to execution con

currency. The cause for the degradation is attributable to the zones identified in Figure 1.3

(b) which correspond to cache usage zones. Performance degradation begins when the vectors

X and Y both reach sizes of about 760kbytes per process are reached. With four concurrent

processes, this brings the total to about 6Mbytes. This induces cache conflicts as the total cache

capacity is 4Mbytes for all threads. The processor is forced to move parts of working data out

of cache for one or all of the executing processes. Cache capacity issues are then reached at

11. The number of threads is equal to the number of available cores on the system.

13

2Mbyte vectors, which is concurrent with the processor's 4Mbyte cache as both vectors for a

single thread fill up the cache, leaving no space for the three other threads. At this point, each

thread is executed at about 30% efficiency (close to four times slower). These results clearly

demonstrate the importance of cache size for the execution time of large memory bound kernels

as well as concurrency issues that may arise within multi-core processors.

The same observations are applied to an Opteron based SunFire A'4600 machine '~ and pre

sented in Figure 1.4 . Here we can see the significance of the NUMA architecture through the

fact that the relative efficiency never gets even close to 1/14 (0.07), which would be expected

if all fourteen processes had to share a single path to the DRAM. Since each CMP have a

direct path to local memory, the contention effect is limited to local processor and is not glob

ally cumulative. This implies that this architectural approach is more scalable, as long as each

problem is local to each processor and fits within the local DRAM banks.

12. Refer to Appendix in, section 3.

14

10 ms

-5- 1 ms

E

S 100 us

10 us

: t4(avg.)
t, - - -

•

.

•

131 k 262 k 52 4 k 1 M

Log(vector Size (Bytes))
2M

(a) Average concurrent execution rime of 4 processes (̂ 4(0^9.)) versus the vector size. Divergence starts
around IMbytes problem size per process and is Unearized around 2Mbytes. Our comparison baseUne
is f 1, the rime for a single process.

10 ms

o
Q)

(D

E o

1 ms

100 us

10 us

yU(a\/g.)'
In rarh p

Cc Che capacit y

rarhp cc

131 k 262 k 524 k 1 M 2M
Log(Vector Size (Bytes))

o c
0)
o

UJ
Qi

o a:

(b) An overlaid version of Figure (a), the execution's relative efficiency, computed as ti /t4(at,p), is used to identify
different cache usage zones. Presented are: in cache, cache conflicts and cache capacity (saturation).

Figure 1.3 : Cache memory behavior on an Intel Q6600 (4 cores). Execution time char
acteristics are illustrated in (a). Cache usage zones are identified in (b).

15

o

CD

O

100 ms

10 ms

1 ms

100 us

10 us

1

t - . - . .
t (n\/n ^
l l 4 K'^^'d)

•

•

' ^ ' ^ " ^

w • ^ '

^ *

•

• ^

•

131 k 262 k 52 4 k 1 M

Log(Vector Size (Bytes))

2M

(a) Average concurrent execution time of 14 processes (ti^i^avg.)) is affected as the problem size grows.
Divergence starts around 128A'bytes problem size per process and is linearized around IMbytes. Our
comparison baseUne is ii , the time for a single process.

100 ms

10 ms U_V^14iavgi .

o
0)
w
0)
E
D5
O

1 ms

100 us

10 us

n cac r

131 k 262 k 52 4 k 1 M

Log(Vector Size (Bytes))
2M

o
c
"o
SE
LU
0)
>

JO
0)

(b) The execution's relative efficiency curve is used to identify different cache usage zones. The green zone
denotes optimal cache usage whereas red indicates conflicts are occurring. Values beyond cache conflicts fall
into cache capacity issues (saturation).

Figure 1.4 : Cache memory behavior on AMD Opteron 800 series based processors using
14 cores of a SUN SunFire a:4600. Execution time characteristics are illustrated in (a).
Execution zones are identified in (b).

16

1.2.3 Processo r Performanc e

There is no such thing as a best processor but rather a best match between a software problem

and a hardware solution. The test case we have presented in this section uses a wide range of

values and executes a single mathematical kernel, which is not representative of the entire pro

gram process ' ' . Nonetheless, this isolation tactic and the use of aberrant cases (unconvention

ally large vectors compared to typical problem sizes) is of use to defining bound within which

we can expect severe performance deterioration as well as scalability bottlenecks (concurrent

execution performance degradation). Even if the figures indicate better scalability for a given

platform, raw processing time will always prime over technical features and prowess. To this

effect. Figure 1.5 compares the average execution time of concurrently executing 4 instances

of Algorithm 1. The comparison is performed between Intel's (^6600 and AMD's Opteron 885

processors (on a SunFire x4600). With this current representation, Intel's (^6600 comes out as

the best choice, even though its architecture is more susceptible to memory bottleneck issues.

Additionally, the execution of 14 processes is included in the graph to emphasize the slight

increase in execution time compared to 4 processes. It is important to note that, the 4 processes

launched on the SunFire A'4600 were not bound to CPUs. This means that each processes were

assigned an independent processor and therefore benefited from full, non-contended access to

the DRAM '"*. We must also note that the concurrent executions do not incur any inter-process

communications, another aspect which we address in the following section.

13. Actually, each test is the result of the execution of the entire program, the point is that this program is
useless in itself, typical of a microbenchmark.

14. Processor affinity, to force process to CPU assigmnents, was not available on the hardware at the time of
writing.

17

o
0)

E

O)
o

100 ms

10 ms

1 ms

100 us

10 us

Q6600 (4)
SxOpteron 885 (4)

8xOpteron885(14)

I

r

_, z/-^ —

1 1 1 1

_ - - " "

/

131 k 262 k 52 4 k

Log(Vector Size (Bytes))

1 M 2M

Figure 1. 5 : Executio n tim e compariso n betwee n Intel' s QGGOO and AMD's Optero n
885 processors . Th e concurren t proces s coun t i s i n parenthesis . Th e ra w computin g
power o f th e (56600 outperform s th e Optero n 885 fo r fou r processes . Th e cas e o f 1 4
concurrent processes is presented to demonstrate the proportionally small impact of their
simultaneous execution.

1.3 Communication s

We have shown that raw processing power has to be coupled with an efficient mechanism for

accessing the data that resides in RAM. The typical problem sizes, as addressed in Chapter 3,

overcome the memory and processing capabilities of a single processor system. This introduces

the problem of segmentation, thus parallel processing, which imply multiple processors and

communications. Independent of the hardware nature of the latter, two principal characteristics,

latency and bandwidth, come into play. This section aims at characterizing these two critical

components as well as weighting their importance to our usage context, which are:

1) A network of computers forming a Beowulf style cluster interconnected using Ethernet

based network fabric;

2) A monolithic SMP machine using HT as network fabric.

18

We start with the Beowulf approach to parallel computing to define bandwidth and latency. We

then apply these two properties on HT based SMP systems.

1.3.1 Bandwidt h

Bandwidth traditionally represents a bit count transferred over a unit of time, which is usually

the second as denoted by bits per second (bps). This is the predominant feature of most fabrics,

hence names such as 10/100/1000 BaseT Ethenet, where the later is the name of the standard

describing the physical medium. Taking 100 BaseT Ethernet as an example, its bandwidth is

said to be 100Mbps wire speed or at the wire. This is because the figures given are for the raw

bit transfer rates, ignoring all of Ethernet's protocol overhead, such as the headers which sums

up to 38bytes '''. Another feature of the Ethernet protocol is the Maximum Transmission Unit

(MTU), which is the maximum payload allowed per packet. Historically, the MTU has been

hard-limited to 1500bytes by the underlying hardware '̂ which simply followed the Ethernet

standard '^. This upper bound to the size of each packet has a direct bearing on the efficiency of

the communications as shown by Eq. (1.2), where BW^sefui is the available bandwidth which

is a ratio between the useful payload over the total bytes transmitted per packet. The total

bytes transmitted is the sum of the MTU and the Ethernet headers (again, 38bytes). The useful

payload is computed using MTUsize^ the MTU, from which we substract HDRTCP/IP, the

TCP/IP headers.

MTUsize ~ HDRTCP/IP

''Ethernet

Taking into account the aforementioned values, the equation renders an available bandwidth of

about 95%. The fi-ansfer rate in bytes of a 100 BaseT network becomes 100/8x0.95 = 11.88M

bytes per second (Bps) '̂

With Gigabit Ethernet (GigE), 9kbyte MTU called Jumbo Frames were introduced to address

the overhead issue and has now become common. Other than bringing the available bandwidth

15. We don't use VLANs (RFC802.1q), otherwise, this figure would be 40bytes.
16. Such as switch fabric, buffer limitation and Network Interfafce Card (NIC) implementations.
17. As described by RFC894.
18. This is a raw value, meaning that from this bandwidth one must also substi-act library overhead.

19

up to 99%, it has the effect of reducing the framing overhead of large data transfers. Unfortu

nately, this has no impact on small communications, where latency dominates. Which brings

us to the following topic.

1.3.2 Latenc y

Latency is the delay imposed by hardware and software before establishing a link and actually

starting the communication stream. For this reason, it is often modeled as if sending a Obyte

packet. This overhead is very important for short communications. We define short communi

cations as packets who's length (Lmax) renders a transmission time less than the link's latency

(tlat). This value is simply obtained by multiplying the latency with the useful bandwidth, as

inEq. (1.3).

Lmax = tlat X BW'useful (1.3)

For example, if the latency for a 100 BaseT connection is of about tiat — 23/iseconds, given the

theoretically usefid bandwidth BWusefui = 11.88M Bps, we get Lshort ~ 273.24bytes. This is

one way of actually weighting the latency's cost on the communications.

These values were obtained thanks to empirical experimentation using a microbenchmark such

as m p p t e s t [22]. The reason why empirical data is more valuable than theoretical ones

is made obvious in figures 1.6 and 1.7 where significant performance differences exist

between Message Passing Inerface (MPI) communication library implementations across the

communication spectrum.

20

2 Node Synchronous Round Trip Communication Performance : LAM-MPI Vs OpenMPI

0}
E

600

500

400

300

200

100

OpenMPI
LAM-MPI

^r i

yf''

v ' V

^̂ ..<<r̂

~f~f^''

^^,^-^<^

•^^fT^' '

1500 3000
Size (bytes)

Figure 1.6 : LAM-MPI outperforms OpenMPI for any TCP/IP communications. The
non-linearity are noted around the MTU barriers of 1500bytes.

21

TCP/IP 0 byte Synchronous Startup Timing: LAM-MPI Vs OpenMPI

80

75

70

tim
e

65

60

55

50

45

OpenMPI
LAM-MPI

V
^ y

^ " * N

* "* ^ *
_̂ ^ "

_ ^ • V

•

/ " ^ '

- - " '
' ^ /

20 40 6 0

Size (bytes)

80 100

(a) The setup latency differs depending on the communications library implementation. Here we compare LAM-
MPI with OpenMPI.

TCP/IP 1500 byte Synchronous MTU Barrier: LAM-MPI Vs OpenMPI

360

350

340

"w" 330

0)

.i 32 0

310

300

290

1 1

OpenMPI
LAM-MPI

r

1

1

^̂ *^

^ r "
* * " * • V '

.'
/

4 *

1350 140 0 145 0 150 0 155 0 160 0 165 0 170 0 175 0 180 0

Size (bytes)

(b) The 1500byte MTU barrier adds a 10//second delay due to communication re-initiation.

Figure 1.7 : The round trip communication times using MPI libraries surrounding the
start up times in (a) and the MTU in (b). Since these are round trip figures, all values
have to be halved when considering asynunetric communication patterns.

22

Computation and characterization of the latency is far less straight forward than bandwidth

since it is a transitory state which is highly dependant on many characteristics extemal to the

NIC such as processor, bus and memory speeds as well as network topology. We demonstrate

these facts in Figure 1.8 , where processor speed as well as inter-connection topology (the

addition of a hop between two nodes) all have a significant impact on the latency of the com

munications. A faster CPU renders lower latencies, which can very well be explained by its

ability to service hardware interrupts more quickly. The addition of hops, through the addition

of network switches between nodes, have non-negligible impact as well.

90

85

80

75

70

I 6 5

60

55

50

45
20

TCP/IP 0 byte Startup Timing (latency)

2.0GH2 - - -
1.8-2GHZ

• ••'*'*

f^—"I—-'^'^'^

' •

, • • • — • • * * '

/ V - c - ^ ^ ^ ^ " ' ^ ^ ' ^ * '

j.^

-<^/

40 60 80 100

Size (bytes)

Figure 1. 8 : The communications latency is affected by the CPU frequency and network
topology. Highe r frequency clearl y renders lower latency and the addition of a hop be-
tween two hosts (denoted as Cross-Switch) adds significant delays.

23

1.3.3 Th e HyperTransport Interconnec t

The HyperTransport link is the result of the HyperTransport Technology Consortium '̂ which

is formed by a group of more than 40 companies active in the computer industry. This fact, and

the fact that the standard is open and accessible to all, might explain its currently wide adop

tion across the industry. Although it is not uniquely destined to be used as an inter-processor

communication backbone [47], we will concentrate on this specific use for communications.

Of a totally different nature when compared to Ethernet, they present a relatively high speed -°

and low latency [47] path between processors. Although this approach doesn't require un

derlying communications libraries such as MPI, the libraries are still often used since they

present a portable interface to a program's parallelization. For this reason, we still consider

the libraries as part of the performance assessment of this fabric. The same latency and band

width paradigm apply to HT, even though the figures are orders of magnitude apart. Again, the

choice of the underlying communications library can have a significant impact on the applica

tion's communication performance as is illusti^ated by Figure 1.9 , where performance varied

greatly between versions 1.1 and 1.2 of OpenMPI's implementation of the MPI.

It is also important to note that topological considerations must still be addressed, especially

when frequent communications are expected between computing nodes or processors. Proper

to NUMA architectures, processor affinity (associating a process to a given processor or core)

and data locality become issues when HPC is concerned. In Figure 1.1 (a) from section 1.2.1,

we illustrated that the access to remote memory required passing through the HT link, another

processor's Crossbar and MMU. Now consider Figure 1.10 , the physical layout of a Tyan

VXbO machine, where a process residing on CPUO accessing memory on CPU7 would have to

perform, at best, 3 hops. This twisted ladder configuration is one of many possible connection

strategies [28, 32] that can result in differing hop counts. It is the variance in these hops that

charaterize the NUMA architecture.

19. www.hyper t ranspor t .o rg
20. Between 12.8GBps and 51.2GBps, depending on the implemented version of the standard.

http://www.hypertransport.org

24

2 Node Round Trip Communication Performance for OpenMPI 1.1 Vs 1.2 on HyperTransport

14

12

10

E
6

OpenMPI 1. 1
OpenMPI 1 2

. * - » ' * ^

1

- w r J ' * ' * ' ' ' ' * ^

1

(̂

500 100 0 150 0 200 0 250 0

Size (bytes)

3000 3500 4000

Figure 1. 9 : Comparin g OpenMP I version s 1. 1 and 1. 2 on HyperTransport by varyin g
the messag e siz e passe d t o th e mpptes t micro-benchmark . Th e 1. 1 implementation s
had performance issue s characterized by a sudden jump in communication times around
packet sizes of lOOObytes.

1.3.4 Benchmarkin g Network Communication s

This section's performance assessment were obtained using mpptest [22], which uses the

local MPI implementation for it's inter-process communications. Through our experimenta

tion, we have confirmed that OpenMPI's ancestor, LAM-MPI, possesses better overall TCP/IP

performance as seen in Figure 1.6 . This is a Icnown issue and is due to OpenMPI's team con

centrating on high bandwidth, low latency interconnects such as HT, Infinipath, Myrinet and

others. This strategy also explains the improvements seen in Figure 1.9 where performance

leaps were observed between the 1.1 and 1.2 release of OpenMPI running on HT links of a

Tyan VX50.

We also note that, contrary to normal intuition, asynchronous (non-blocking) conmiunications

are actually slower than synchronous (blocking) communications in all cases of the m p p t e s t

25

Figure 1.10 : The Tyan VX50 interconnection strategy for 8 processors using HT. This
twisted ladder topology provides for an average 1.5 hop between processors and their
farthest memory pages.

26

micro-benchmark. This is illustrated by Figure 1.11 where the fastest communications are of

the synchronous type, followed by the persistent type (lagging behind by a few yuseconds) and,

finally, with almost 10 /^seconds delay added are the asynchronous communications. This is

due to the fact that the MPI libraries are only active when being called and executed actively by

a program. The only way to guarantee this is during a synchronous call, where the execution

path is linearized and forces the communications to complete before any other task is engaged.

This implies that, barring the use of an explicit helper thread to keep the libraries alive, syn

chronous communications will remain faster than their asynchronous counterparts, even with

the presence of CMPs.

75

70

65

60

55

50

45

TCP/IP 0 byte Startup Timing 2GH z

sync
async

persistant

•* . " *

1 . . ^

^ / "* ' / ^ /

^ _ _

/ * * '

^ • N ^

1 ^ - ^ /

...--"v

...-

^ - /
- • ' ' — ^

' " /""^"^

20 40 6 0

Size (bytes)

80 100

Figure 1.11 : MP I call types and their impact on the communication times. Synchronou s
(sync) communications outperform both asynchronous (async) and persistant ones as the
processor is dedicated to performing the communication task in that specific case .

27

1.3.5 Theoretica l and Empirical Mode l

Communication modeling is dependant upon logical and topological distributions. Nonethe

less, Eq. (1.4) can be viewed as a generalized equation of Point to Point (PtP) communica

tions"' where tcomm is the total communication time which is tg, the setup time (or latency),

added to the cost per byte tfyyte times the message length L (payload).

''comm I's > ''byte ^ J-' V t .^)

To verify the validity of this generalization, we present Figure 1.12 , with which we are able

to demonstrate that the theoretical model is adequate for packet sizes between 1 and 64 bytes

and packets beyond 16 kbytes. The discrepancy between 64 and 16 kbytes can be explained

with the non-linearity introduced by Ethernet's MTU, as they were presented in Figure 1.7

. The value of ts ~ 53/JS is from m p p t e s t , hence closeness of the initial theoretical values

and this tool's results. Note that there is no theoretical definition for ts, being ideally 0. We

use tbyte = 11 ssmte/s ~ 8477s, where 11.88Mbyte/s is the useful bandwidth as described

in section 1.3.1. An arrow is inserted at 188Bytes, the payload for sending a single vector of

dimension d = 47 floats, a size which comes in handy in our case study in Chapter 3.

Although not all shown here, these results were cross-validated using popular microbench-

marks included in the HPC Challenge (HPCC) suite [35], the m p p t e s t [22] and n e t p i p e

[53] applications.

21. These are the simplest and most common form of communications used.

28

(s
ec

))
Lo

g(
Ti

m
e

10 ms

1 ms

100 us

^setup •• • *byte ' -
mpptest
netpipe

1 ' 1 ' 1

<^''

__—:-^^^-^ ^ l

I . I . I .

1 4 1 6
1 1

64 25 6 1 k

Log(Payload Size (Bytes))

' 1

<•"''/

1

4V.

1 '

y ^

/ -

-

16k

Figure 1.1 2 : Comparing th e general theoretical communication s mode l with empirica l
values for a 100BaseT Etherne t network. Result s from n e t p i pe ar e slightly higher than
mpptes t , indicatin g there might be additional overhead to his test suite. The theoretical
value base s it s ts o n result s fro m mpptest , thu s biasin g i t t o b e close r t o tha t tool' s
results. An arrow is inserted at 188bytes as a point of reference for a vector of 47 floats, a
unit which comes in handy in our case study.

1.4 Input/Outpu t and Storage

Discussions concerning I/O and storage strategies are usually relegated to a transitory state of

a program and judged as being non-essential or non-contributing to an application's overall

performance given its single occurrence either at loading or termination of a given program.

This type of assumption only remains true if tioad < ^e^ec the loading time is significantly

less than the total execution time. We investigate this assumption in Figure 1.13 where each

function's time contribution is represented as a percentage of the total runtime. This stacked

representation clearly illustrates each function's proportional shift as the number of processors

augments for this parallelized algorithm. Bringing our attention to the loading function l o a d _

samples() , which accounts for less than 10% of the runtime for two nodes, we see that

29

it grows to a proportion beyond 40'X. when executed on 24 nodes. This is far from being

negligible and brings about the importance of considering an application in its entirety when

dealing with performance.

Total Time Breakdown for PVQ: Text Database
100-

E
i-
4-.

o

V
Ql
10

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Number o f Processor s

iMPIJnitQ BMPLRecv O floa t dfQ in t centroid.defQ in t load.samplesQ Mvoidvq O 'Mother]

Figure 1.1 3 : An example of proportional breakdown of each task's contribution to the
execution time for the PVQ implemented using a textual database (describe d i n Chap-
ter 3) and traversing its entirety at initiation. The loading of the data is performed by the
load_samples () functio n an d represents a significant portio n of the total execution
time.

1.4.1 Loca l Versus Remote Storage

In the context of Beowulf clusters [42], it is conunon to have nodes booted off a network share

such as Network File System (NFS) as well as having the user's work directory mapped across

the nodes through the same means. Given the usage simplicity provided by this approach,

one might wonder if it remains relevant to use local storage used as scratch space. With local

storage, a single path is drawn from I/O to RAM and the bottleneck resides in the slowest

element, the HDD. This means the local bandwith B\V^?Q^ can be expressed as being equal

30

to the HDD's bandwith (BW^f^^ = HBD"^"^)". In the case of an SMP machine, since

we are dealing with a single task running at a given time, we can express this bandwith as a

fraction of itself over the number of cores, thus rendering BW^?^'' = HDD^JQ^/C, where c

is the number of cores. Noting that the available bandwith is shared among n hosts such that

Eq. (1.2) becomes BWusefui/"n, local scratch space remains beneficial as long as BW^?^^ >

BWusefui/n or the remote server's own local bandwidth BW^?Q^ > BWjJ^^^/n, which must

also be shared among all nodes.

1.5 Discussion s

In this chapter, we have confirmed that processor caches are critical performance enhancing

components used to mend the gap between processing speed and data access latency. Two of

the cache's performance paradigms, contention and capacity, have been empirically identified

and zoned for two common CMP processors, Intel's Q6600 and AMD's Opteron 885 . Com

munication considerations were then brought up by our exploration of the available fabrics,

notable the commodity 100 BaseT Ethernet and the high bandwidth, low latency HT. Issues

with the underlying communications library, notably OpenMPI's implementation of the MPI

standard were identified. More specifically, we demonstrated that the legacy LAM-MPI imple

mentation of the Transmission Control Protocol (TCP)/Intemet Protocol (IP) stack outperforms

the one from OpenMPI on Ethernet based fabric. On the other hand, OpenMPI has concen

trated their efforts on high speed fabrics, for which we have noticed marked improvements on

their use of the HT links with considerable performance enhancements. The comparison of a

theoretical model based on initial empirical data was shown to be adequate with slight diver

gences surrounding non-linearities imposed by hardware limitations such as the MTU. Data

access and format issues were also brought up with an example of application scalability being

hampered due to storage format. Furthermore, simple rule of thumbs were established to jus

tify the use of local scratch space. Finally, the following recommendations can be made when

applying this chapter's theory to our class of problem implemented using MPI:

22. We include all configurations of Redundant Array of Inexpensive Diskss (RAIDs) (and their redundan
cy/bandwidth enhancements) as part of the definition of HDDs for the sake of simplicity.

31

Processor selection:

- Problem size (or segmentation) must consider the processor's cache size or risk incurring

significant performance loss;

- Memory access time remains important for performance in the case of memory bound pro

cessing, which is our case;

- When compared, it has been established that a larger cache with faster memory access is

preferable for memory bound problems.

Communications fabric selection: The HT fabric is more efficient than Ethernet based solu

tions. Nonetheless, the cost of HT based SMP remains high compared to an equivalent Beowulf

based cluster using commodity Ethernet fabrics such as GigE. The fact that CMP processors

are now commonly available also emphasizes this cost factor since we are now seeing the emer

gence of clusters of SMPs. Since our application is rather memory bound than communication

bound, we retain no benefits to the low latency brought by HT.

Data storage and location: Local data storage for scratch space comes out as a definite neces

sity as communications fabrics are rapidly overwhelmed by the amount of data to be trans

ferred. And when it's not the communications fabric, the server's I/O path becomes an issue.

CHAPTER 2

THE PROFILING TOOLS

Although there are myriads of system based tools such as d s t a t (display of global system

activity), t o p (per process statistics), and even some that are specialized for cluster monitoring

such as c a c t i " (cluster wide equivalent of d s t a t) , these can only convey an opaque view

of the system usage. Fine grained specifics such as which function is using up all the processor

or which system call is taking an abnormally long time to complete cannot be presented by

such tools. This is where profiling comes in to automate the identification of functions and the

collection of their execution statistics.

Profiling provides the contribution of a block code to some execution metric of a program.

These metrics vary from call counts, time, and many other hardware accessible counters as will

be presented with the use of Performance Application Programming Interface (PAPI). Profiles

are meant only to convey a global statistical view of the total execution time. Even though a call

graph [21] may be generated to interconnect code blocs of an overall execution, the sequence

in which they are called in time cannot be reconstructed. This is because call graphs are based

on aggregated profile data which is compiled in a post processing phase, after the program

has been executed and has exited. Therefore, time measurements and call graphs collected by

profiles do not permit a chronological reconstruction of events (function call sequence). This

type of information is from the realm of program traces which we do not cover as they are more

appropriate for code coverage analisys as well as time-sensitive troubleshooting (deadlocks in

concurrent accesses and communications).

Given the many profiling tools available, we will concentrate on the ones freely available-

since our main interest is their usage and not their comparison.

1. h t t p : / / w w w . c a c t i . n e t /
2. This also excludes tools which are free to try during short periods such as a month or so.

http://www.cacti.net/

33

The following chapter is organized as follows, we start by defining our use of the terms Black,

Grey and White Box profiling, then briefly describe the context in which the tools are used

(program and relevant parameters). Following are the tools themselves, starting with gprof ,

the classic GNU is Not Unix (GNU) profiling utility, where we identify its limitations in the

context of parallel HPC. The Tuning and Analysis Utilities (TAU) suite is finally presented as

a much more elaborate and appropriate alternative, applicable to the complex environment of

parallel processing.

2.1 Black , Grey and White Box

In the realm of software engineering, the terms Black Box [40] and White Box [17] refer

mostly to code coverage and reliability with the intention of identifying faults, failures and

unexpected behaviors.

We adapt these terms for our specific usage to describe the conext in which the performance

profiling is to be performed as well as its impact on the resulting program. These definitions

are presented in Table 2.1 below.

Term

Black Box

White Box

Grey Box

Description

The source code is unknown
and only the compiled pro
gram (binary) is available.
The source code is known
and the profiling is per
formed with explicit tooling,
by the programmer, of the
source code prior to compi
lation.
The source code is known
but the profiling isn't ex
plicitly performed within the
original code. An external
mechanism is used to add
profiling code to the end pro
gram.

Impact on the program

None

Some performance loss
due to inserted profiling
code.

If the profiling is not
performed selectively,
significant performance
loss is to be expected
(all functions suffer
from the profiling
overhead).

Impact on the source code

Not applicable

The source code is tooled and the
programmer is responsible for en
suring such tools can be switched
off. It is also implied that the right
functions are being profiled (a priori
identification of the bottlenecks).
None, the tools insert the profiling
mechanisms in an intermediate step
of the compilation.

Table 2.1: Black, Grey and White Box definitions .

34

As we present each tool, we will identify its capabilities as well as its use with regards to these

different "Box" approaches to profiling.

Throughout this chapter, we will (ab)use the same program (PVQ) that is described and thor

oughly analyzed in Chapter 3. The input and output parameters for the program execution

are irrelevant in most figures that will be presented. In most cases, these parameters are

nonessential and are merely set as such to provoke aberrant cases with the intent of provid

ing visual material from a real program in its execution context. The input parameters of the

algorithm, generally listed in the legend, can therefore be ignored as they were explicitly set

to demonstrate specific use cases, caveats or aberrations. Most titles will include the label

GET_TIME_OF_DAY, which is the generic label to indicate the displayed metric is time.

2.2 Sequentia l Profiling: Use Of gpro f

The g p r o f [21] utility is a companion to the GNU C Compiler (GCC) for profiling sequential

applications. A quick way of obtaining a profile when using the GCC is by enabling the

- p g - g 3 directives where - p g enables profiling and - g 3 enables code symbols for the code

annotation feature. When profiling, no optimizations higher than - 0 2 should be enabled,

otherwise the generated profile will be incomplete and back referencing to the code will not

work. For example, the command g p r o f - - b r i e f - p vq, where vq is the application

name, can then be used to extract the profile information. This information is contained in the

output file, gmon. ou t , generated after a sample run of the application has been performed''.

The resulting output is presented in Figure 2.1 with the following columns:

1) %: The time proportion of time spent in that function (percent of total execution time);

2) cumulative seconds: The time for executing this function while including the child function

calls;

3) self seconds: The time for executing this function while excluding the child function calls;

4) calls: The total call count;

5) self s/call: The time (in seconds) per call while including the child function calls;

3. Profiling does have a non negligible impact on code performance and is generally not suitable for long runs.

35

6) self s/call: The time (in seconds) per call while excluding the child function calls;

7) name: The name of the function in question.

It is clear that df is the predominant function in the program both in time and call counts '^. The

source code of the functions can also be tagged with their call count using g p r o f -A vq.

Figure 2.2 contains the two most called functions for our example program.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

ericiaf ourrier -/l_Fi les/l_ETS/l_Ma it rise/Code/K-Means

gprof Output

old $ gprof -
Flat profile:

Each sample counts as 0.01 seconds.
% cumulativ e sel f sel f tota l
time second s second s call s s/cal l s/cal l name
95.94 192.8 4 192.8 4 3781843968 0.0 0 0.0 0 df
3.35 199.5 7 6.7 2 1477282 8 0.0 0 0.0 0 centroid_de f
0.53 200.64 1.0 7 1 1.0 7 1.0 7 load_sample s
0.47 201.5 8 0.9 4 1 0.9 4 200.5 1 vq
0.00 201.5 8 0.0 0 6 0.0 0 0.0 0 average_distortio n
0.00 201.5 8 0.0 0 6 0.0 0 0.0 0 mean_vecto r
0.00 201.5 8 0.0 0 1 0.0 0 0.0 0 centroid_ini t
0.00 201.5 8 0.0 0 1 0.0 0 0.0 0 save_centroid s
0.00 201.5 8 0.0 0 1 0.0 0 0.0 0 show_centroid s

-brief -p vq

Figure 2. 1 : Outpu t fisting fro m gpro f - b r i e f - p vq . Th e column s describ e th e
following metric for each function (each Une): % time is the proportion of total execution
time, cumulative seconds i s the inclusive execution time, self seconds i s the exclusive time,
calls i s the tota l count . Self an d total s/call ar e for th e inclusiv e an d exclusiv e tim e pe r
call. Finally, the last column holds the function name.

A visual call graph [21] can be generated from the profile as demonsti-ated in Figure 2.3 .

This is not a feature from g p r o f but the result of calling the sequence of code in Figure

2.4 where a python script, g p r o f 2do t .py^, translates the output from g p r o f into the

Graphviz ^ d o t file format. This call graph draws the execution path of this simple program.

Each box represents a function and the arrows indicate the call sequence. The percentages

indicate the inclusive, or cumulative, time as one walks down the graph. Exclusive times are

indicated in parenthesis.

4. How such observations are to be addressed is the subject of Chapter 3.6, suffice to say that this function is
a potential bottleneck or hot spot

5. http://code.google.com/p/jrfonseca/wiki/Gprof2Dot
6. http://www.graphviz.org/

http://code.google.com/p/jrfonseca/wiki/Gprof2Dot
http://www.graphviz.org/

36

1
2
3
4
5
6
7
8
9

10
11
12
13
14
13
16
17
18
19
20
21
22
23
24
25
26
27
28
29

df and centroid_def functions
/* d is tance function - Euclidian Distance - /
f loa t d f (f loa t -v l , f loa t •v2)

3781843968 -> I
in t i ;
f loa t d i s t , sum;

sum=0.;
for(i=0; i<T; i++)

sum=sum+(v l [i] -v2[i])* (v l [i] -v2[i]) ;

d i s t= (f loat) sqr t ((double) sum);
re turn d i s t ;

/* c l a s s i f i c a t i o n of a sample ta)cing in to account each cent ro id • /
in t cent ro id_def(in t pos, f loat .d)

14772828 -> {
in t i , index;
f loa t mdist, d i s t ;

mdist=99999.;
for(i=0;i<NC;i++) (
dist=df(centroids[i].feat,samples[pos].feat);
if (dis t < mdist) {mdist=dist ; index=i;} ;

)

*d=-mdist;
return index;

Figure 2. 2 : The annotated sourc e code as per the use of gprof - A vq . Onl y the two
most called functions form the source code are presented.

2.3 Th e Itch Of Measuring Time

Although time is the most popular and intuitive metric, others such as Clock Per Instruction

(CPI), FLoating point OPertaions per Second (FLOPS), cache hits and misses can also reveal

pertinent information about a program's efficiency. The measurement of time is a non-trivial

task when precision is essential [51, 18]. Although it is more critical in the case of tracing

where real-time event sequences are reconstructed [36, 8], it also applies to the quality of the

information gathered for application profiling [10]. This information has historically depended

on software counters provided by system calls such as g e t t i m e o f day() for which the pre

cision varies greatiy depending on the Operating System (OS)'s implementation [51, 18]. We

address this issue in the following section.

2.3.1 PAPI: Time To Scratch Below The Surface

Given the time measurement variance due to systemic perturbations [48, 41] as well as other

factors such as cluster heterogeneity, one must question whether it is valid to base performance

assessments solely on time. The other metrics we mentioned earlier, such as CPI, FLOPS and

37

100.00%
(0.00%)

99.47%\0.53%
1 \ 1

load_samples
0.53%

(0.53%)
1

99.00%
14772828

centroid_def
99.00%
(3.33%)

14772828

95.67%
781843968

Figure 2. 3 : The program call graph. Thi s call graph draws the execution path of this
simple program . Fac h bo x represents a function an d the arrows indicate th e cal l se-
quence. Th e percentages indicate the inclusive, o r cumulative, time as one walks down
the graph. Exclusive times are indicated in parenthesis.

Dot F i l e Generat ion
gprof vq | gprof2dot .py | (dot -Tpdf -o c a l l - g r a p h . p d f

Figure 2. 4 : A sample use of gprof 2dot t o generate a dot file to be interpreted by
Graphviz. Th e information i s generated b y gprof, the n piped int o gprof2dot. py ,
which itself pipes into the dot interprete r to generate the c a l l - g r a p h. pdf file.

all, are reputed as being generally more precise and useful [55]. They rely on the imple

mentation of hardware counters ̂ within a given processor or other peripheral such as sensors

[11]. Accessing these metrics requires patching of the Linux kernel and software Application

7. Not to be confiised with hardware interrupts.

38

Programming Interfaces (APIs), such as PAPI [3, 9, 10, 38]. Figure 2.5 is an adaptation of

[10] which depicts the different software layers at which PAPI intervenes. We have added the

explicit names of the support tools required by PAPI in parenthesis.

c
o

cc

Si

o a.

Applications Measuremen t and Timing (TAU) erne 1
PAPI Lo w Leve l

Multiplex I Overflo w

Timer Interrup t

PAPI
High Leve l

PAPI Machine Dependan t Substrat e

Kernel Extensio n
(p e r f men or p e r f c t r) j |

Operating Syste m
(L inux)

Performance Counte r Hardwar e
(CPU)

Figure 2.5 : Th e PAPI implementation scheme. Adapted from [10] to include the software
components, in parenthesis, relevant to each layer used in our implementation.

Not all metrics can be counted nor are there as many counters as there are countable items

[55]. For example, a processors being used may support only four simultaneous counters even

though it is capable of probing well above 40 different events. A listing of such events, when

PAPI is installed, is available for each machine in Appendix III. This is one of the limiting

factors when selecting the desired statistic for collection. One must also note that some of

these metrics are derived. These imply additional computation to be performed by the PAPI

low level abstraction layer. The command p a p i _ a v a i l - e <Name_of_PAPI_event>

can be used to display the metrics from which an event is derived. This adds to overhead to the

profiling process [12, 55], which is detrimental to the quality of the resulting information. It is

therefore suggested that non-derived metrics be chosen as to minimize their probing impact and

that the derived metrics be computed as part of a post-processing mechanism. Such a feature

39

is well supported in the Tuning and Analysis UtiUties, as we will demonstrate shortly. Lastiy,

since PAPI is an API, this means that one either has to insert tracing functions into their source

code or use profiling tools with ability to use PAPI [33, 37], which inevitably brings us to the

following section where we explore such tools that automate the tracing insertion process.

2.4 Timin g and Analysis Utilities (TAU)

We have demonstrated that using g p r o f is somewhat trivial but there are many drawbacks to

this tool in our context. Firstiy It only collects timewise and call count statistics. Secondly,

and most importantiy, it is not meant to be used in the context of parallel processing where

one wants to keep track of all processes running on remote computers. This limitation renders

g p r o f practically unusable. Also, we have presented PAPI, which provides an API for access

ing the hardware counters present in modem processors. Unfortunately, this tool is not meant

to automatically insert extra profiling and/or tracing functions into source code, such a burden

being left to the programmer. Up until now, we have treated each tool individually and there is

a clear need to consolidate these into a unified infrastructure to alleviate and make good use of

each of theu: features.

"Everything should be made as simple as possible, but not simpler."
- Albert Einstein

This quote from Albert Einstein is shared with the TAU [46, 1] development team as the pro

fiting and tracing of parallel processing application is a daunting task. Even more so when

one adds the requirements of supporting multiple programing languages, compilers, hardware

platforms and, above all, scalability [27]. But as we will demonstrate, the benefits of TAU's

complex infrastructure is greatiy outweighed by its features. Once the relevant features and

components have been identified, its use provides simple yet powerful interfaces for both pro

filing and analyzing the collected data. Given this context, we will concentrate on using TAU's

features which apply to our use, notably, the profiling of C and C+ + code, generated by GCC

40

with the ability to collect specific metrics thanks to availability of PAPI ^ and TAU's abihty to

use them [37].

2.4.1 Configurin g TAU

TAU's features and the way it will probe a given program is selected when compiling TAU.

For this reason, one usually generates multiple profiling and tracing configurations ranging

from the simple and superficial profile a la g p r o f to more complex and elaborate probing

configurations for trace and call-path reconstruction. There are essentially two categories for

TAU's compilation options. The first category specifies which libraries, compiler and/or sup

port applications (such as PAPI) will be used by the application to be profiled. The second

category of options describe the type of profiling (measurements) to be performed^. Figure

2.6 is an example of how one would call upon the i n s t a l l t a u script to automatically gen

erate a general set of profiling configurations. Note that global options, such as enabling MPI

profiting with -mpi on line 3, still have to be specified. In Figure 2.7 , tines 4 and 5 are

examples of options describing the type of profiling to be performed. For example, the op

tion MULTIPLECOUNTERS combined with PAPI's installation path (line 2), will result in a

profiting configuration that will support he use of multiple PAPI counters.

TAU A u t o m a t i c C o n f i g u r a t i o n
/ i n s t a l l t a u - p r e fi'x=$ HOME/TAU/TAU - e x e c - p r e f ix= "uname -m '

- p a p i = $HOME/TAU/PAPI/•'uname -m ^ \
-mpi -pdt=$HOME/TAU/PDT/ \
&& make - j 4 i n s t a l l

Figure 2. 6 : Automated general configuration o f TAU using the i n s t a l l t au script .

The resulting libraries are named according to these flags as a mechanism of identification. Fig

ure 2.8 presents a listing of the available configurations, each identified by then- stub Makefile

8. Not applicable on all hardware platforms, refer to Appendix III.
9. As of version 2.18.1 of the TAU suite, the measurement infrastructure is being rewritten to make these

options run-time selectable, therefore reducing the number of configuration stubs required.

41

TAU Manual Configuration
/configure -prefix=$HOME/TAU/TAU -exec-prefix='uname -m' \

-papi=$HOME/TAU/PAPI/''uname -m' \
-mpi -pdt=$HOME/TAU/PDT/ \
-PROFILECALLPATH -PROFILEPARA M \
-DEPTHLIMIT -MULTIPLECOUNTERS \
&& make -j4 install

Figure 2. 7 : Manua l configuratio n o f specifi c feature s (line s 4 an d 5) usin g TAU's
. / c o n f i g u re script .

names formatted as M a k e f i l e . t a u - < o p t i o n s > where < o p t i o n s > relates to the afore

mentioned options. A specific configuration is selected by setting the environment variable

TAU_MAKEFILE with the path to one of the stubs. The user then compiles his apptication

using the wrapper script '° instead of his usual compiler. Or, if the project has a M a k e f i l e ,

one includes the desired stub file and changes the compiler variable (typically CC or CXX) with

TAU's wrapper script such that the compiler line becomes CXX=$ (TAU_CXX).

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

eric@h2 '/TAU/TAU/x86_64/lib S Is -1 Mak
Makefile.tau-callpath-mpi-compensate-pdt
Makefile.tau-callpath-mpi-pdt
Makefile.tau-depthlimit-mpi-pdt
Makefile.tau-mpi-compensate-pdt
Makefile.tau-mpi-pdt
Makefile.tau-mpi-pdt-trace
Makefile.tau-muItiplecounters-mpi-papi-p
Makefile.tau-multiplecounters-mpi-papi-p
Makefile.tau-multiplecounters-papi-pdt
Makefile.tau-multiplecounters-papi-pthre
Makefile.tau-param-depthiimit-multiplecc
Makefile.tau-param-mpi-pdt
Makefile.tau-pdt
Makefile.tau-phase-muItiplecounters-mpi-
Makefile.tau-phase-muItiplecounters-mpi-
Makefile.tau-pthread-pdt

Available (compiled) TAU configurations

efile .tau-*

dt
dt-trace

ad-pdt
unters-mpi-papi-pdt

papi-compensate-pdt
papi-pdt

Figure 2. 8 : Exampl e o f TAU profiling option s that wer e compiled a t installation time .
Following th e Makef i l e. t a u - filename prefi x ar e the options selected a t compilatio n
time.

2.5 Profilin g the Source Cod e

Profiling of the source code can be done in one of three ways:

10. Typically, t a u _ c c . sh replaces gcc for C and tau_cxx. sh replaces g++ for C++

42

1) Automatically insert extra profiling functions using TAU's integration of Program Database

Toolkit (PDT) [34];

2) Senu-automatically insert traces using a Graphical User Interface (GUI) editor such as

Eclipse with the TAU integration modules [49];

3) Manually insert function calls to keep track of called events as well as the time spent in

these events.

We will demonstrate the use of the first two approaches and leave manual integration of ac

cessing TAU's APIs for other advanced projects such as auto-adaptive parallel codes [29]. In

both cases, the original source code remains intact.

2.5.1 Automati c Code Insertions

If TAU is configured with the - p d t option, it is possible to let the wrapper scripts insert trac

ing code automatically. This approach is as simple as compiling the code normally with the

exception of changing the compiler name and having the TAU_MAKEFILE environment vari

able set. Using this approach, the entire program will be profiled and, if the selected profiling

configuration includes options such as -mpi , these function calls will be uniquely identified.

This approach is probably the best one to use when performing initial profiling of an unknown

code base (peering into the black box).

2.5.2 Semi-Automati c Cod e Insertions

It is possible to perform selective profiling of an application while preserving the integrity of

the source code. This is accomplished via a selection file which is passed onto the wrapper

script as an option. The simplest way' ' to accomplish this is to use TAU's Eclipse'- modules

[49] for selective profiling. Figure 2.9 is an example usage where we select a function (df ())

for profiling. Two types of user-defined events can be selected, start/stop events and atomic

events. The first one defines a type of counter that collects metrics at the entry and exit of the

11. From the user's point of view. The administrator has to go through the installation of multiple Eclipse
modules to get such features working correctly.

12. h t t p : / / w w w . e c l i p s e . o r g /

http://www.eclipse.org/

43

selected region while the latter counts the occurrences of the selected region. Atomic events

are tagged as user events in the generated profile and can help keep track of program dynamics

such as iteration counts.

44
45
46
47
48-
4y
50
51
52
53
54
55
56
57
58
59
60
61
62'

centroic
f l o a t * '

/ • d i s t

Refacior

£pen Declaratio n
Open Eefinition
Go to Qe:;t membe r
Go to previous membe r
Declarations
References
Search Tex t

F3
Ctrl+F3

Shift+Ctrl+Down
Shift+Ctrl+Up

It is used to update the centroids •/

d i s t - '
retuirr

/ • shC'V.
©void sh e

Selectr/e Instrumentatio n
Bun A s
Qebug As
Profile As
Validate

Figure 2. 9 : Selective profiling using Fclipse and TAU's selective instrumentation inter -
face. Th e df () functio n i s selected an d specifi c typ e of profile patter n is applied to it .
The module s the n automaticall y generate s a t a u . s e l e c t i ve file t o be passed t o the
wrapper script.

2.6 Executin g the Profiled Cod e

In the case of parallel and distributed environments, the collection of profile information re

quires more attention that simply executing the program and running the profile viewer. Al

though doing just that will provide a valid profile with TAU, unexpected disaffects such as ex

cessively long runtimes can be experienced depending on the selected profiling options. This is

the case for options such as TRACE and CALLPATH where the resulting files tend to be quite

sizeable '^. Given the multitude of environment variables required to fine tune the profiting

process, we present Figure 2.10 which is a sample script used for the profiled execution of a

program.

13. A typical profiling run for one of our applications generates SOOfcbytes of data while the same application
will generate over 1.4G'byte of trace data.

44

2.6.1 Selectin g The Profile Dept h

The first variables of interest are TAU_CALLPATH_DEPTH and TAU_DEPTH_LIMIT, from

lines 4 and 5, which guide the depth at which the profiling must take place. For example, a

TAU_DEPTH_LIMIT of 2 applied to the call graph of a program, such as the one described by

Figure 2.3 , would generate a profile containing the statistical information for vq() and l o a d _

samplesO only, as these are the ones on the second level below the main() invocation.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Program Runscript.sh

#!/bin/bash
trap 'exi t 1' 2 3

export TAU_CflLLPAIH_DEPTH= l

export TAU_DEPTH_LIMII-2

» COUNTERl enforced by the use of MULTIPLECOUNTERS and PAPI.
export C0UNIER1-GEI_TIME_0F_DA Y

export COUNIER2-PAPI_L2_TCM
export C0UNTER3=PAPI_L:_DC M

export C0UNIER4=PAPI_T0I_CYC

for ITE R in 'seq 1 30'
do

for I in 'seq 2 18'
do

PR0F_DIR-"PAPI_MPI_Trace_iter_$IITER)/PAPI_MPI_Trace_5IIl"
EXP_DIR-/data/eric/SPROF_DIR
cexec -p "mkdir -p SEXP_DIR" >/dev/nul l
export TRACEDIR-SEXP_DIR
export PR0FILEDIR-5EXP_DI R

orterun -x COUNTERl -x C0UNTER2 -x COUNTERS -x C0UNTER4 \
-X PROFIL E D I R - X TRACEDIR \

—prefix -/openmpi_i686 / -hostfile nodes -np $1 \
./pvq_i686_TAU /data/eric/feat_trainc_34291 0

mkdir -p SPWD/$PR0F_DIR
cexec -p "mv $EXP_DIR/. SPWD/SPROF_DIR ss rmdir $EXP_DIR"

done
done

Figure 2.1 0 : A sample script that sets up the environment for multiple runs of profiling.

2.6.2 Selectin g The Desired PAPI Events

Another set of important variables are present between lines 8 and 11. These are used to

define the PAPI counters that will be used by TAU to profile the application. The first variable

(COUNTERl) has to be set to GET_TIME_OF_DAY as it is used as a reference to synchronize

the individual traces provided by each independent node.

45

2.6.3 Controllin g The Data Flow

As we have mentioned earlyer, the profiling and tracing of an application can generate sizeable

amounts of data. In lines 17 to 21, we configure the variables TRACEDIR and PROFILEDIR

to point to local storage and are identified based on the experiment's parameters. Lines 23 to 26

is the actual command line to launch the experiment. All environment variables are propagated

to all nodes thanks to the - x option from o r t e r u n [5], OpenMPI's parallel process launcher.

Once the application completes its execution, lines 28 and 29 transfer the resulting traces from

the node's local storage to the server for post-processing of the data.

2.6.4 Storin g The Data

Performance Data Management Framework (PerfDMF) [27] is an interface to multiple types

of databases '"*, which leverages the use of the TAU suite for keeping track of the evolution of

an application's performance as the codebase changes. Although it is not required for viewing

profiles '̂ per say, it is so for more elaborate analysis such as the ones that can be performed by

the p e r f e x p l o r e r component '^, which can only access profile data through the PerfDMF

interface. It also enables greater collaborative efforts as the standardized storing of the data

eases distributed accessibility.

The tools provided by PerfDMF are command line oriented and meant to ease the configuration

of the GUI tools and automate the insertion of trial data. Although injecting the data into the

database can be accomplished through the use of p a r a p r o f ' s GUI, which requires manual

loading of each resulting profile for each experiment'^, the command tine tool per fdmf_

l o a d t r i a l is profiled to automate the process. Although this component does not play an

active role in the profiting process, it plays a critical role in the decoupling of the profiling

process from the analysis.

14. Version 2.18.1 of TAU supports PostgreSQL, MySQL, Oracle and Derby, a local file-based database.
15. We will present p a r a p r o f shortly.
16. Yes, also presented shortly.
17. A quick looks at Figure 2.10 reveals that one would have to perform 30 * 17 = 510 manual insertions!

46

2.7 Parapro f and PerfExplorer: Th e Profiling Graphica l User Interfaces

TAU provides two independent GUIs for interpreting the profiled application's data. The

first we present is p a r a p r o f [2], used specifically for profile analysis. The second tool,

p e r f e x p l o r e r [26], is used for performance and scalability analysis. In both cases, they

are composed of a main window, as depicted in Figures 2.11 (a) and 2.11 (b), for selecting

the data source.

Rie Options Hel p
• Application s j
9 C3Siaridar d Applications \

9 d ! ! Default Ap p
? C 3 Default Exp

^^113 17.nodes/PAPLMP

V L

<

<

>- C3 Binaiv PVQ
>- C3 Island K-Means o n Thinkb
>- Q Islan d K-Means o n headle
>- C^ New Application

' Q P-k-nieans.k-5000.n- 6

«1 « i 1 ! •

ExpFleld
Name
Application ID
Expenrneni 10
rvSINFO
CONFICINFO
INSTRUINFO
COMPILERINFO

Value
Default Exp
0
0

pit ^alysi i Jflnv s £h>i u VisualiiaUo n Hel p
? Performanc e Data

9 C3jdb c derby/expon/home/eri c
• - Q Binar v PVQ
*- C3 Island K-Means o n Thinkbt
O" C3 Island K-Means o n headles
o- C3 Nev^ Application
o- C3 P'<'Q
'^ C 3 P-k-means.k=5000.n«6'
" - n View s

,^ I Custo m Chares
• Correlatio n Results

• Clusu r Result s
• Analysi s Management

Field

a L
(a) The p a r a p r o f manager window. (b) The p e r f e x p l o r e r client window.

Figure 2.1 1 : Bot h GUIs posses s a main windo w fro m whic h th e data set(s) t o be ana -
lyzed i s selected. Th e selection i s performed i n the lef t pan e wher e trial s are presente d
in the form of a tree structure. Th e latter depends on how the data was imported usin g
PerfDMF. W e see in (a) that paraprof ha s an additional branch, which is used for the
current folder's data and that (b) possesses an additional leaf named view.

In the case of p a r a p r o f (Figure 2.11 (a)), an additional tree is present since this application

can be used in a stand-alone fashion (without the use of the database backend). Contrary to

this, p e r f e x p l o r e r explicitly depends on the data being stored in a database, hence the

single tree seen in Figure 2.11 (b). Note that p e r f e x p l o r e r has an additional leaf entry

named views, this will be discussed with the use of p e r f e x p l o r e r itself.

http://P-k-nieans.k-5000.n-6

47

2.7.1 Th e Paraprof Profile Viewer

Paraprof is a GUI component that provides a simple yet powerful presentation of the collected

profiles. It has the ability to read the profile data from a multitude of different formats including

g p r o f generated profiles. When used with TAU's suite, simply starting the application in the

directory containing the output files is sufficient for the application to load and display the

data. This implies that it can be used in a stand-alone mode, without requiring the connection

to a database. The loaded profile can also be stored or retrieved to and from the database if

so configured. Figure 2.12 is the first data representation displayed if p a r a p r o f is started

within a directory containing profile data. By default, the bars are normalized, which makes

the standard deviation (Std. Dev) seem disproportionate compared to the observed results.

Metric; CET.TIME.OF.DAY
Value: Exclusiv e

Std. Dev . 1
Mean 1

node 1 1
node 2 1
node 3 1
node 4 1
node 5 1
node 6 1
node 7 1
node 8 1
node 9 1

node 1 0 1
node 1 1 1
node 1 7 1
nnrip 1 3 1
node 1 4 1
nnrip 1 S 1

1 1
1

1
1
1

i....::.--.̂ . , ., ^^i^SiMJLL^.

,
1 -• • .

1 • mi
1,
1

1
1

1
1

1

II
1 If^ D

1 Ei^ g
! la i 1 ua i 1 1 = 1

^ 1 = 1
B la i 1 1= 1

1 1^ 1
1 i^ g
1 i=j g

1 \Mmd^

1 i = g
1 1 ^ 1

J = g
i ^ ^ ^ ^ i ^ ^ a

Figure 2.1 2 : A normalized profil e view of all processes includin g the globa l mean and
the standard deviation (Std. Dev.) o f each functions. In this case the metric is the tim e
proportion as per GET_TIME_OF_DAY. Each color represents a specific function and its
length is proportional to the total execution time on that specific node .

What makes this GUI interesting is the fact that any presented information has a contextual

menu granting access to additional information. One can start from a global view of the entire

execution and iterate down to the source code. This is also true for the hardware's metadata

which is accessible through the contextual menu presented when hovering above the node

48

names. Such information becomes important when performance analysis is performed as well

as for keeping track of the historical evolution of a given program.

The presented data can also be filtered by selectively hiding functions, or group of functions,

through the function (or function group) legend windows. This is presented in Figure 2.13

where all functions are enabled but one group is selected, which adds emphasis to the selected

group in the bar graph window. We also changed view configuration to present de-normalized

and unstacked bars, as an alternative to the one in Figure 2.12.

File Filte r Window s Hel p

\m MPLAIIreduce O
' H MPl.Comm.rank O
n MPl.Comm.size O
• MPl.Finalize O
n MPl.lnlt O
• floa t df(sample- , sampl e *) C [|vq c (159.1H73,1)1
n in t centroid.dsf(unsigne d int, float *) C [{vq c) (225,
D in t load.samples(char-) C ({vq.c} {127,1H177,1} 1
• in t main(lnt , char**) C |(vq c} (388,1}-{446,1)1
M voi d centroid.init(cons t char*) C [(vq.c) {186,1H20
n voi d mean.vectorO C [{vq c } {246 , lH256 , l) |
D voidvqQ C | {vqc}{270, lH343, l))

Hie Option s Window s Hel p

Metric CET.TIME.OF.DA Y
Value; Exclusiv e

D TAU : ParaProf : Grou p Legend ; Appl i _ • X
File Window s Hel p

• MP I
• TAU.DEFALIL T
• TAU.USE R

H 1
1 1 H 1
1 1 U 1
1 I H 1
1 l y 1
1 1 y 1
1 l y 1
1 l y 1
1 l U 1
1 1 y 1
1 l y i i
1 l i 1
1 1 y 1
1 1 HI I
1 mil

•
n ei i •II

Figure 2.1 3 : Individua l functions and group of functions ca n be selected to focus the
displayed statistics . Here , the TAU_USER group is selected in the Group Legend pane
(bottom left), which highlights the relevant functions in the main window (right). Not e
that we have de-selected the stacked bar presentation for the main window to present an
alternative to the normalized stacked bars from Figure 2.1 2 .

The 3 Dimensional (3D) view, in Figure 2.14 , provides a more intuitive and dense analysis

of the collected statistics when compared to Figures 2.12 and 2.13 . This view should

therefore be the first one to be used to gain a rapid perspective of the program's behavior. The

barcharts can then be used for a more in-depth analysis as they provide a complete mechaiusm

for accessing all the data relating to each element of the program within its context '*.

18. There is no contextual menu in the 3D presentation linking a given component to its metrics nor to its
section of source code.

49

I I n
5

£ l l

[T

5 .
z 1
s H

e:
1*
«
3
OF

«

ffi

•o n
c c
A) 0 1

S 3

hi
 v

al
ue

r v
al

ue

X 1 ^

~
G
S
"̂
c
e
e

s
s
e

a ea

&

6 6 6

1

t
i
»
1

1 t i . 1
5 = ! 5 S
1 1 1 1 •

^ l O ^ o

O to "- l «•)

0 t (,
* » . • ' . .

•• < - «
" c /

/ c . - /

C8 - O
Jm .«- >

* - a >
C3 . C
^ .- >
^ ; ^
"O o

Si " S

.t e .-tt « s w
S ^
o «
E .s
t« o

si
a. =»
»2 .« .S f *̂ "S
IS ^
H ^
Q.S
s

s

^ . a .- «
2 ^ «

• " « «

O C A M
^ U w
5 5 < »

• a " ^ . «

c " 3 s
a> V C

2- S «
^ I - a >

^ o " «
a
a

S c «
c o £
ui t a
iS - 2 o
e
<

^ ft a, o
a. o

^ « J -
2 S

'£ .2 o;

50

It is also possible to visualize the callgraph of a given execution thread. Figure 2.15 presents

two such graphs for the same program where Figure 2.15 (a) is the graph of a master process

while Figure 2.15 (b) is the one for a slave process. The box size and color are guided by their

relation to selected metrics such as inclusive time and exclusive times. As with the barcharts,

contextual menus grant access to contextual information such as the source code of a function

and its statistics. Selecting one of the functions also highlights it in all other pa rap ro f

windows displaying this function (except for the 3D view).

Illlll int maindnt, char **) [{pvq.cpp}{..

MPLRecvQ [<... l I I I I int maln{lnt , cha r ") [{pvq.cpp). .

void vqC) [{pvq.cpp}{250,1H3.

int centroid_def(int, float *) [{pv..

(a) The master process's callgraph.

float df(fl...i

(b) A node's process callgraph.

Figure 2.1 5 : parapro f ha s the ability to display th e call graph if the program was
profiled wit h the -PROFILECALLPATH option turned on. B y default th e box width is
proportional to the inclusive times and the box color is selected according to the exclusive
runtime of a given function. Both programs are the same but it is clear that the call path
from the master node in (a) is different from one of the slave nodes in (b).

Figure 2.16 is an example of an interaction sequence presenting the path from profiled data

contained in the PerfDMF database down to the source code from the profiled application '^.

19. A path to the source code must be provided is none is currently configured.

51

1 TAU : P*i«>>ni> M M o g w
Flit Option s Hel p

I TAl k i>ar«Pnih Souru Biootw : <«qMHtJIU>n«/*rk;l.FII*VI.ma.M«llc<>*JCo<MEM« - D X
File Hil p

I

? apv Q
•> C3NonThroiiled
0- ONonThronied
•>- C3 Non Throttled
o- • No n Throiiled
o-C]Non Thronied
•> • No n ThronlEd
>• O No n Thronied
•>• C3 Non Thronied
o- c:3Non Thronied
t C 3 Non Thronied

••C33

fas
foe

U . f G38

-L C31 0

/ • centroi d i n i t i a l i z a t i o n
tfoid cenTroia_lnit()
(
i n t i . J . k . * ;

Tor (1 * 0 ; i < MC ; i++)
{

node 6
node 7
node 8
node 9

I t select s th e f i r s t se t of centroid s V

I f (aynoa e — • faod C flJ.Ctoxalnode s -1 >)+ i)
i

forO-0;]<T;]++> <
cen t ro idspJ . fea tD] - sa»pies[»J. f«at [)] ;
/ / t o u t « ' ' « saapieslKj. featCj] ;
centroid«[i] .m»ber«0;

/ /cout « end l « * •ynode - ' « aynod e '

for (k-O ; k < totalnodes ; k<-*-)

• • ' « K <- ; en c

MPI.SendC¢roidsCiJ. a * l) . " f l^L i

HPIJlec»Micentrol(is.CO. CT+i"> . HPIJ^JJAT . Oot)(ftad(CO.(totalnode s -1

'lie Option s Wfndovv s Help

Heme Tim e
/alue e>ciu;u -

Std De v fT^ i
Mean {'•'

node 0 [~ B FuncUo n Legen d
node 1 I Ciou p Legen d
node: ^ Z u»e f Even t Legen d

Cloie Al l Sub-Window* Cal l Pith ReUUon i

I TMI : PvAprof : CA H Gr^p h
File Option s WiDdo%v s Help

ni i i i i i r
] I >lPl.tetv<) -' I I

B.t.1. OkftO-Ap i - O X

^fiiiiini

OXTl

Show Sown Code
Show Funaion Ba r Cha n
Show Funcuo n Histogra m
Assign Functio n Colo r
Reset to Oefault Colo i

Figure 2.1 6 : An example of an analysis sequence in paraprof. Fro m top left, circlin g
counter-clockwise, i s the sequenc e fro m paraprof manage r window , throug h th e ba r
charts, the call graph and then to the source code.

In all cases, p a r a p r o f can only be used for the punctual analysis of a given execution with

a fixed context (such as the number of nodes). This implies that it is not the preferred tool for

scalability and efficiency analysis and should be used for the performance analysis of a fixed

context.

2.7.2 Th e PerfExplorer Performanc e Analyze r

As a sister application to p a r a p r o f , p e r f e x p l o r e r [26] is a more elaborate graphical

front end specially created for statistical and efficiency analysis of parallel profiles. This tool

is geared at providing an insight on a parallel program's scalability and efficiency, given some

real-world runs of a program under possibly differing conditions. As such, it is expected that

multiple profile runs will be executed with per-run variations such as the number of used nodes.

52

Given that scalability is a central concern to parallel processing, this tool is geared at giving as

much information as possible in that respect so that one can quicldy identify scaling issues.

Although p a r a p r o f provided a complete view of a single profile, it lacked the ability to

convey tendencies that can only be obtained by comparing different profiled runs of a program.

These tendencies are the application's speedup and efficiency.

2.7.3 Applicatio n Speedu p

The speedup (Sp) is traditionally defined as per Eq. (2.1), a ratio between ^i, the time for a

single process execution and tp, the time for executing its parallel counterpart with p processes.

This evaluation of the speedup holds true as long as the program scaling is strong, meaiung that

the computational load is not changed as machines are added. In such a case, ideal speedup

is in direct proportion to the number of processors. Simply put, if there are p processors, the

ideal speedup (and ultimate goal) is that a parallel application should run p times faster than

its sequential equivalent. Linear speedup is seldom possible to attain unless the application is

embarrassingly parallel, meaning that it will perform computation more than anything else for

any given p processors. Although the "anything else" is historically bound to communications,

we will demonstrate later that there £U"e other factors that influence the application's speedup,

and therefore, scalability.

Sp=j- (2.1)
Zp

The programmers of p e r f e x p l o r e r don't assume the reference execution of a program to

be a single process and define a baseline execution time tbase of a given program that is based

on the first available timing sample, which is not necessarily executing sequentially on as a

single process. This leads to what they call relative speedup. This leads to a slight redefinition

of Eq. (2.1) as Eq. (2.2) by replacing the urut time î with a base reference time tbase which is

not bound to a single thread execution.

5p = ^ (2.2)

53

Relative Speedup - Islan d K-Mean s on headless:GET_TIME_OF_DAY

7 8 9 1 0 1 1
Number of Processors

13 14 15 16 17

I k=256 n=819 2 Unrolled Loop old • k=500 0 n=80000 * idea l

Figure 2.1 7 : The top line shows the ideal speedup, based on the experimental data right
below it, which starts with tbase = ̂ i (1 processor) up to the timing for p = 1 6 processors.
The bottom line seems to have poor speedup as it is far from the ideal line (also drawn).
For this curve, the baseline tim e tbase i s based on the execution with p = 5 processes.
This induces a distortion in the speedup representation as the two series have a different
reference for tbase-

The direct implication is that an ideal speedup is not necessarily equal to the number of proces

sors but rather a scaled factor of tbase by Pbase ̂ the number of processor used for the base run.

To illustrate this, we ran the test program with artificially low and high computation charac

teristics and with a different number of worker nodes to start with. We then draw the speedup

for both execution cases in Figure 2.17 . The ideal speedup is drawn top most, then the first

experiment with low computational load starting at p = 1 and finally, the lower most curve is

for he experiment starting with p = 5 processors with very high computational load. Both runs

are executed up to using 16 processes. Although the bottom most run would seem to possess

a lower speedup, a closer look in Figure 2.18 indicates that the application is in fact exerting

ideal speedup characteristics according to p e r f e x p l o r e r .

54

Given relative speedup is being used, to be able to compare both executions, the program would

have to permit the scaling of tbase by Pbase2/Pbasei for a true comparison to be possible when

presented within the same graphic. A normalized result is obtained by setting pbasei = 1' which

would give a scaling factor of 5. This does confirm that the second experiment, which had

displayed a seemingly poor speedup of 3.2, actually has an ideal speedup of 16 (3.2 x 5 = 16)

after reseating.

Relative Speedup - [5-16] procs . :GET_TIME_OF_DAY

9 1 0 1 1 1 2
Number of Processors

I k=500 0 n=8000 0 • idea l I

16

Figure 2.1 8 : A closer look of the experiment having a baseline time tbase with 5 proces-
sors demonstrates that it actually exerts ideal speedup according to perfexplorer' s
guideline.

Another feature is the ability to display per-function speedups, which can help identify func

tions that will become problematic as processors are added. Figure 2.19 is one such example

where the functions falling off below the ideal speedup curve are the most probable candidates

of becoming scalability bottienecks.

55

Relative Speedup b y Event :GET_TIME_OF_DAY

7 8 9 1 0
Number of Processors

MPI_AllreduceO • MPLInit Q floa t df Q in t centroid.defQ othe r • idea l

Figure 2.1 9 : The speedup of each event is drawn independently t o isolate the function s
that do not scale well. Functions that fall off the ideal speedup referenc e line are the most
probable barriers to scalability.

2.7.4 Applicatio n Parallel Efficienc y

The parallel efficiency Ep of a parallel application is a measure of its ability to use pro

cessors as they are added to the execution enviroimient. Its general form is in Eq. (2.3),

which is the speedup from Eq. (2.1) normalized over the number of processes Pcount- Since

p e r f e x p l o r e r doesn't assume the baseline time tbase is for a single process (or tbase = ti),

Eq. (2.3) is redefined as relative efficiency in Eq. (2.4). This is once again a variation on the

speedup, this time scaled by Pbase/p where pbase is the count of processors used for the baseline

execution.
t^

(2.3) Ep = T. 7
\tp • Pcount)

E: rel ''base ' Pba
tp-p

(2.4)

56

As it is demonstrated in Figure 2.20 , the relative efficiency is a more appropriate measure of

scalability when comparing different algorithms in differing contexts. The implementation that

seemed to have initially poor speedup is in fact more efficient. The ideal is to keep the efficiency

to 1 (or 100%) as p grows. As it is the case with the speedup graphs, it is also possible to display

the relative efficiency for each element of the executing program, as demonstrated in Figure

2.21

Relative Efficienc y :GET_TiME_OF_DAY

1.0

0.9

0.8

S-0.7
c
V
'.^ 0.6
LU

I 0. 5

0.3

0.2

0.1

0.0
7 8 9 1 0
Number of Processors

11 12 13 14 15 16

I • k^25 6 0^8192 Unrolled Loop old • k=500 0 n=80000 |

Figure 2.2 0 : Relative efficiency is not affected by the baseline's processor count p. Th e
most efficient implementation (top line), averaging at 1, was originally presented as hav-
ing comparatively poor speedup in Figure 2.1 7 .

2.7.5 Runtim e Breakdown

The speedup and efficiency graphs are the de facto metrics to characterize a parallel process in

its execution environment. As a complement to these representations, the runtime breakdown

is composed of stacked areas representing each function's proportional contribution to the total

execution time. This is a more intuitive view of the per-component performance progression

57

Relative Efficienc y b y Event:GET_TiME_OF_DAY

7 8 9 1 0
Number o f Processor s

I IVIPI_AllreduceO * MPIJnit O floa t df Q in t centroid.defQ othe r |

Figure 2.21 : Relativ e efficiency by event can help identify functions with poor scalability.
The ideal is to remain close to 1 as processor count grows.

as processors are added. As an example. Figure 2.22 presents the same problem under three

different angles. The relative speedup and efficiency graphs from Figure 2.22 (a) and Figure

2.22 (b) don't convey a view as intuitive as presented by the runtime breakdown in Figure 2.22

(c). Functions that present poor scalability will grow in surface area as processors are added.

A quick glance at the runtime breakdown identifies these problematic functions quickly and

efficientiy.

2.7.6 Views

An additional feature of p e r f e x p l o r e r is its abitity to create views based on the data present

in PerfDMF. For example, if we have 15 iterations of the same experiment, displaying the

resulting runtimes as in Figure 2.23 (a) isn't practical. Creating a view consolidating all

iterations into a single experiment enables p e r f e x p l o r e r to display averaged statistics as

58

Relative Speedup by Event for PVQ; Text Databas e Relative Efficiency by Event for PVQ: Text Databas e

fnlB] . M P I . R K V ^ l lM t df O

(a) Relative speedup graph. (b) Relative efficiency graph.

Total Time Breakdown for PVQ: Text Database

7 0 ' I

IM MPIJnitO MMPl_Recv O floa t dfO In ! centrold.defQ In t lo«l_sampleiO • voi d vqQ * otTw D

(c) Runtime breakdown graph.

Figure 2.22 : Comparing three representation of the same profile run using relative
efficiency in (b), relative speedup in (a) and a runtime breakdown graph in (c). The intu
itive display from the runtime breakdown eases the identification of functions becoming
problematic as processors are added. Simply put, a widening cone such as the second
predominant layer from the top, is indicative of a growing bottleneck. A tightening cone,
on the other hand, means that the function looses proportional importance in the overall
execution time. Parallel or constant area are signs of linear (ideal) speedup of a function.

we see in Figure 2.23 (b), where the drawn cureve is the average runtime of the same 15

experiments.

59

lOAl

•

Total Execution: All 15 Iteration s

• ' " ^ ^ ^ ^ ^ • ^ ^ ^ V j n i H i t ^J^ V -
t

0.0 2.5 5.0 7.5 10. 0 12. 5 15.0 17. 5 20. 0 22. 5
Number of Processors

25.0 27. 5 30.0 32.5 35. 0 37. 5

• UNROLLE D Iteration 1 k=5000 n=100 0 • UNROLLE D Iteration 1 0 k=5000 n = 1000 UNROLLE D Iteration 1 1 k=5000 n=100 0
UNROLLED Iteration 1 2 k=5000 n=100 0 UNROLLE D Iteration 1 3 k=5000 n=100 0 » UNROLLED Iteration 1 4 k=5000 n=100 0

- UNROLLE D iteration 1 5 k=5000 n=1000 UNROLLE D Iteration 2 k=5000 n=100 0 ' UNROLLE D iteration 3 k=5000 n=100 0
•« UNROLLED iteration 4 k=5000 n=100 0 • UNROLLE D Iteration 5 k=5000 n=100 0 UNROLLE D iteration 6 k=5000 n=100 0

UNROLLED iteration 7 k=5000 n=100 0 • UNROLLE D Iteration 8 k=5000 n=100 0 - UNROLLE D Iteration 9 k=5000 n=100 0

(a) Simultaneous display of the runtimes characteristics for 15 iterations of the same experiment.

Total Execution: View of 1 5 Iterations
10A2

lOAl

0.0 2. 5 5. 0 7. 5 10. 0 12. 5 15. 0 17. 5 20. 0 22. 5 25. 0 27. 5 30. 0 32. 5 35. 0 37. 5
Number of Processors

I • Experiment:nam e lik e %UNROLLEDXk=5000 n=1000|

(b) Average runtime characteristics for 15 iterations of the same experiment.

Figure 2.2 3 : Th e use of p e r f e x p l o r er view s hel p consolidatin g experimenta l dat a
for a better analytica l perspective . Al l 15 experiments ar e presented i n (a) whereas an
averaged view is presented in (b).

60

2.8 Discussion s

We have skimmed the surface of the vast and complex field of program profiling, especially in

the case of parallel and distributed processing. The following points are our main observation

concenung the tools we have mentioned in this chapter:

- The generic form of g p r o f is of little use to the parallel processing community when it

comes to performance assessment. Extemal tools are required for basic visualization tasks

such as callgraph generation and there is no obvious means of consolidating the collected

information across multiple runs.

- Modem processors provide intemal counters which convey much more relevant information

on the execution of a program other than time of execution. Performance enhancement and

better understanding of a program's dynanucs is accessible thanks to the use of PAPI in

conjunction with profiling tools such as TAU.

- TAU is a complex yet powerful profiling suite that consolidates the entire process of manual

or automatic code trace insertions, execution tuning, data collection and displaying of the re

sults thanks to specialized GUIs oriented towards profiling and statistical analysis. This suite

provides one of the most integrated and complete set of tools for program characterization

in the context of parallel HPC.

Finally, Table 2.2 associates the different profiling approaches supported by the preseted tool-

s/tollsets. It is more than obvious that TAU wins in all respects, hands down.

Box Type
Black

White

Grey

g p r o f
Not capable.

Not applicable

This is the modus operandi for g p r o f through
the - p g option passed onto GCC. It is inappro
priate for parallel HPC programs.

TAU
Only MPI calls through runtime interposition
(hbrary wrapers)"'
One can manually insert TAU specific profil
ing calls for a fine-grained control over which
portion of the code is to be profiled.
Supported in two ways: 1- through the use of
selective profiling definition file 2- fully auto
mated using the PDT.

Table 2.2: Black, Grey and White Box capabilities for the presented tools.

CHAPTER 3

CASE STUDY: PARALLEL K-MEANS ALGORITHM ANALYSI S

Unsupervised learning has become a popular field of study ever since it's infancy. One of the

tried and true algorithms that keeps re-surfacing in one form or another is the k-means clus

tering algorithm. This data mining algorithm uses an iterative learning approach. Its training

phase can prove to be very time consuming depending on the size of the dataset n, its dimen

sion of vectors d, the number of centroids k and the number of iterations N^gr- The latter is

a stop condition detemuned by an imposed convergence threshold 6. Given its computational

complexity, represented by Eq. (3.1), it is not surprising that means to accelerating the k-means

algorithm has been a point of interest since it's inception.

0(ndkNiter) (3.1)

We concentrate an implementation of the k-means used for unsupervised learning of segmented

handwritten numeral strings as proposed by [44], Section 3, Foreground-Background Feature

Extraction (FBFE) Module. In this context, k is varied using an EA in an attempt to obtain

an optimal Hidden Markov Model (HMM). This requires many repeated learning phases,

implying that any means by which the process can be accelerated can lead to a higher quality

classifier and/or in less time.

Having access to a sequential and a parallel implementation (master-slave) of the algorithm,

we will proceed as if we were performing a typical migration from the sequential to the parallel

version as a means to validate the approach. With the help of Grey Box profiling results, we then

propose a restmctured version of the parallel algorithm (island model) which has both a simpler

and more efficient implementation, statements which will be supported through comparative

profiling of each key functions.

We therefore start by studying the sequential algorithm's profile, after which, we identify the

potential parallel approaches. General parallelization considerations are presented for the al-

62

gorithm. The master-slave version is then analyzed to ascertain its adherence to the identified

approaches and pin point probable scalability bottlenecks. An altemate parallel model is then

proposed, the island model, with a restructured communication scheme which both simplifies

and optimizes the code. In all cases, TAU is used to perform the analysis.

3.1 Th e Sequential k-means Algorith m

Given an unalbelled database DB of elements of dimension d represented as x""" = {xi, 2:2,

• • • . Xd}, we randomly select' k elements that are to become the centroids defined by c''" =

(ci, C2, • • • , Q) , thus rendering the table of centroids C. For each elements in DB, we then

identify the closest centroid Cj through Euclidean norm- (as denoted by || • ||). Once the owning

identified (say, the fh centroid), each element's values are summed into an intermediate value

Cj while keeping the count of elements in mj. The new centroids are then computed by mean

vector such that cj = ^ . The process is iterated until the convergence threshold dist is

lower than the allowed distortion, defined as 6. This convergence threshold is computed as

the average distortion, which is the sum of the Euclidean norm between each element and its

centroid over \DB\, the database size. This process is summarized in algorithm 2.

3.1.1 Empirica l Evaluatio n of the Algorithm

As with most parallel programs, our implementation of the k-means first started as a sequential

version of itself. A profile of the apptication is used to identify the most time consuming

sections of the algorithm as well as its computational characteristics. Parallel strategies, such

as partitioning, depend on the computational granularity of a program, a measure we will be

able to obtain through profiling coupled with some knowledge of the implemented algorithm.

Our profile information is obtained by compiling the program with TAU as presented in Figure

3.1 .̂ The parameters for this execution of the algorithm are d = 47 (vectors dimension is

1. Our implementation uses the elements located at each \DB\/k interval so that the results would be deter
ministic between experiments, therefore comparable.

2. The Euclidean norm is the one we chose among many other distance computations as it is the one mostly
used in our current experiments.

3. The extended version is avalable at Figure II. 1

63

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Random initialization of C by selecting k elements in DB
repeat

Clear out intermediate values C" -<— 0, dist •<— 0 and m ^ 0
for all Xi, where 1 < i < \DB\ d o

Identify closest centroid as per arg min (||xi - Ck |)

Save the element's distance from the centroid dist = | Xj -
Add Xi to intermediate centroid: c|̂ := c(̂ -I- Xi
Increment the centroid's element counter mk '.= m^ + 1

end for
for all c'j, where 1 < j < A: do

Compute the new mean vector cj := c'Jrrij
end for
Assign new centroids as current C = C'
Compute distortion dist := dist/\DB\

until \dist\ < 5

• C k l l

Algorithm 2: The Sequential K-Means

47), A; = 500 (we want 500 centroids), \DB\ ^ 67879 (we will use 67879 samples from

the database). With a convergence threshold of 5 = 0.001, 9 iterations were required for the

program to complete.

Sequential k-means profiling
$ export \
TAU_iyiAKEFILE = ~/TAU/TAU/x8 6 _ 6 4 / l i b / M a k e f i l e . t a u - c a l l p a t h - p d t
$ t a u _ c c . s h - o p t C o m p i l e = " [s n i p] " v q . c - o vq_SIMD
$./vq_SIMD . / f e a t g _ c o l . d a t $ ((6 7 8 7 9 5 5 / 1 0 0))
[s n i p]

Figure 3.1 : Profilin g and execution of the sequential k-means algorithm using TAU. The
program is then started by specifying th e reference database and the number of samples
to load fro m th e database . Her e w e loa d 1 % of th e entir e database . Th e [s n i p] tag s
indicate output truncation .

We present an analysis of the resulting profile in Figure 3.2 . First, the call graph in Figure

3.2 (a) indicates that the execution time (width of the boxes) mns down a direct path to the pre

dominant function c e n t r o i d _ d e f 0, being as wide as the main function. This observation

is confirmed by Figure 3.2 (b) and Figiu-e 3.2 (c), where the lengtii of the bars representing

64

each functions are proportional to their time contribution. The function call counts presented

in Figure 3.2 (d) come in handy with regards to a program's eligibility for parallelization as a

high count and significant total execution time (from Figure 3.2 (c)) are indicative of probable

partitioning for a given function. Since we are observing profiles and not traces, we have no

means of establishing the level of each function's cohesion between calls. Nonetheless, we do

have a priori knowledge of the implemented algorithm and know that the computation from

the principal loop, at line 4 of Algorithm 2, can be performed on all n elements independentiy.

Lastiy, the time per call metric, from Figure 3.2 (e), gives a hint as to which functions might

be scalability bottlenecks. This information leads to scrutinizing the l o a d _ s a m p l e s () and

vq() functions as their high time per call metric might indicate a single long task, susceptible

of not being parallelized.

65

'

1

c

1

• 4

B

=1
J

o
3

X)
•n
c
o

^

n'
s

;h
e

fu
nc

ti
o

o

ip
or

ti
on

al
 I

ar
e

p

V3

se
gm

en
i

13
X)

fi
le

.

o

ic
ke

d
p

ĉ

3
1)
o
c

TT ^

J-J -x -

j _ , - u

S . E ^ 9
= ^ ^ ^ 2
- ' - S , ^ ^
•^ 1 E >
o o ! ^ S

>+- i _ 1 (D

"° S J ^ E
{^ ^ ^ T .

5
-a

a .E .E i i

rsi

0
.2

.
r

r

1 o

2
.7

4
8

0
.0

si
1-

>*

P

E

H7

•* 8

1.

ti
m

e
(i

n
se

i

<L>

cl
us

iv

X

(c
)

E

*
A-> *

4 J - U

g.E?^9
- = ^ ^ 2
- ' - S , ^ ^ * j 1 E > ra T 3 r : 1
5 O 1/ 1 ^
>4— l _ 1 f D -

•° £ j c E ?
1^ ^ ^ T 3 ^

V
fl

o
,

n
 TO

O

^
 i

n
t

O I B
r H M

10
91

1
1̂

.E 'i 9

r-\ O) T-i ^

U3

•Kl

——

K

c

liv
e

ca
ll

co
i

3

E
xc

l
3

TT ^ . ^

4-1 *
ra i _

—. O f D
4_, - U

S.E?^?
^ ^ ^ 2
- • • S , ^ ^
•M 1 E > ra T 3 r ; i _ — ra ^ '
— o if) ^ <*- i - 1 f D - —

•° S S ^ ^
ro ^ - T 3 T 3
o - ^ - ^ O 5= .E . E >

fNj r ^ IB m

o o ll r\i 9 6 1
o l l

7
4

7
.9

^
B

c6

o >

' ^ li
in
oi
CTi

(N

^ B i
^^

ll
is

ec
on

ds
)

•g

er
 c

al
l

(i
n

i

u.

ve
 t

im
e

E
xc

lu
si

'

u

o

13
c

pr
op

or
ti

c

•5
• ^

bo
x

ph
,

03
u<

a
"̂
u

(a
)<

u
a

si
ve

ex

cl
u

X I

o
ri

s
co

l
ti

m
e,

iv

e
cl

us

c

lie
.

T
he

ra

ph
 i

n
de

nt
if

y
s)

,
th

u
s

ca
ns

 p
r

ke
d

ba

(d
)

he
l

sh
or

t
c;

S « E s^
.:i " » 2 «

se
qu

en
ti

al

ef
 O

.T
h

e
ill

 c
ou

nt
s

f
nc

ti
on

s
(m

le
w

 o
f t

he
 1

tr
o

id
_

d
<

ce

.
T

he
 c

a
oh

es
iv

e
fu

> C C ' J
y < U M > % s o t s
W O O OX)
V ^ & - ^

se
nt

 a
 s

p
ib

ut
ab

le

io
na

l
im

ti

fy
in

g
h

SI 5 1 S

us
ed

 to

m
os

tl
y

hi
s

pr
o

fu
lf

o
r

>. _ . . W O)

fr
om

 p
a
ra

p
ro

f
ex

ec
ut

io
n

ti
m

e
is

z),

 a
ls

o
in

di
ca

te
s

ts
 g

ra
in

,
(e

)
is

 u
s

S * « 2 <»
-P * - — — o

ph
ic

 is
 a

 w
in

ly

 s
ho

w
s

th
a

ct
ed

 v
er

si
on

ar

ea
s

as
 w

el

io
n

bo
tt

le
ne

2 c 3 2 1 ? 5 w> « - S .s • -^m % *^ ^m

J3 ^ B « S
« « s • « g

r i S ^ § < 2
9̂ U I B • « - «

^ " « « g g

66

3.2 Th e Parallel K-Means Algorith m

As we will be presenting two parallelization approaches to the k-means algorithm, let's start

by presenting common concepts for both approaches. We will start by presenting how the k-

means may be subdivided followed by the implied communications required by the selected

strategy.

3.2.1 First , Divide: The Segmentation Strategie s

A typical approach to accelerating the resolution of massive amounts of loosely coupled cal

culations is to divide the calculated data into more manageable segments. This parallelization

technique is appticable to the most basic form of the k-means algorithm, where, by definition,

\DB\ :^ A;, meaning that the size of the database \DB\ is much more important than the num

ber of desired centroids k. This implies subdividing the reference database DB amongst the CJ

workers, which we incrementally identify as pid = 0,1, 2, • • • , tu. This approach is known as a

coarse grained segmentation strategy of the problem with communications only performed be

tween iterations. This is possible since the centroids aren't updated until a complete pass on the

element database has been performed. The computation complexity form Eq. (3.1) therefore

becomes Eq. (3.2).

O r-^dkNit,A (3.2)

3.2.1.1 Stride d Segmentatio n

Two approaches to the segmentation are presented here, the first one is from [43] and is pre

sented in Algorithm 3. It consists in assigning the \DB\ elements of the database to each tu

worker by strides in a round-robin fashion. This is accomptished using a modulo function of

the u> node count as the database is being traversed . In essence, this strategy ensures that the

workload is subdivided as evenly as possible to all nodes.

67

for all Xi, where 1 < z < \DB\ d o
if pid = i mod UJ then

DB-'.^ = Xi {the i^h sample is assigned topid's local database}
end if

end for
Algorithm 3: Segmentation by Strides of the Database

3.2.1.2 Blocke d Segmentatio n

The other approach, implemented for our island model, consists in subdividing the database

into \DB\/uj large blocks. The rational behind this approach is that it provides a predictable

access pattern for the hardware and therefore eases optimization through prefetching of the

data. It also makes it possible to consotidate the loading of the data into a single system call.

This strategy is described by algorithm Algorithm 4 where DBpid is a local process's database

to be initialized with a block of elements within the interval delimited by pid x \DB\/uj <=

i < (pid-\-l) X \DB\/uj. In the case where there is a remainder to \DB\/uj, they are assigned to

the last processor. Figure 3.3 is a graphical representation of these two segmentation strategies

applied to a database.

1: if pid = u {If pid is the last process} then
2: DBp^d := DB, I pid x \DB\/u <= i <= \DB\
3: els e
4: DBpid '.= DB, I pid X \DB\/uj <= i < [pid + 1) x \DB\/u
5: en d if

Algorithm 4: Blocked Segmentation of the Database

3.2.1.3 Hardwar e Considerations: Load Balancing

The two presented approaches do not take into consideration possible variations in hardware

characteristics between the computing nodes. These variations can come into play when there

is a significant difference in processor performance where a slower node would slow down the

process in whole. A common method of compensating such situations is to assign segments

proportionally equivalent to the processing power of each node. This can be accomplished

68

Database Segmentation
Strided

mal^mm

Blocked
CPU o

CPU 1

CPU 2

— - : . . - -

CPU o a

CPU o " — - - « ^

e p w i ^

CPU 2

CPU U)

Figure 3. 3 : Database segmentation strategies: TOP- Strided segmentatio n (fine grained)
is used by the master-slave algorithm where each element of the database i s assigned t o
one UJ worke r node in a round-robin fashion . BOTTOM - Block segmentatio n approac h
(coarse grained), assigns equal consecutive chunk s of the database to each worker as per
\DB\/uj with the remainder assigned to the last worker.

statically (at processing start up) or dynamically, through a scheduling scheme which assigns

computational tasks as the processing evolves. The former typically requires little communi

cations whereas the latter usually implies a continuous stream of conmiunications from a task

manager towards the nodes. This queue based approach has been explored for the k-means

algorithm by [58] with less than optimal results. We note that, in that specific case, \DB\ and

d were significantly small compared to our typical use cases ̂ .

3.2.1.4 Hardwar e Considerations: Physica l Limitation s

Another issue that can come about are the actual hardware limitations for each processing

node. For example, the available RAM a node has can dictate the maximum size of each

segment. Such considerations will also gain much relevance with the growing use of Graphics

Processing Units (GPUs). Such technology impose stricter segmentation guidelines as the

processing units share limited amounts of video memory [7]. This in effect limits the amount

4. Their largest performance test cases had at most \DB\ = lOOfc samples with d = 2 whereas we have
\DB\ = 6,5il/ and d = 47.

69

of data sets that can be loaded at a given time as well as require a different program structure to

be used. The gain in performance remains important in the realm of classification algorithms

as demonstrated in [16]^.

3.2.2 The n Tell Everyone: Communication s

Let's recall that the core element of the k-means algorithm is to compute the Euclidean norm

between a given element and its representative centroid. We loosely represent this computation

as tcomp- The end of each computation cycle Nuer is punctuated by a communication stage,

identified as tcomm- where all partial results are amalgamated^. These two components lead

to the general parallel tim (^|) equation presented in Eq. (3.3). This is the prized crude repre

sentation [14] of paratiel processing time, which, as we will demonstrate, can easily lead to

distorted expectations. For example, other times such as initialization (tinu) and loading (tioad)

times will come into play as important contributors to be dealt with.

^W ^'iter ' yt'comp i tcomm) W-Jj

It was demonstrated implicitiy by [57] and then explicitiy by [43] that the number of nodes

UI, used in the parallelization of the computation process, is theoretically limited by the inter-

iteration communications. Since the modelization of the communications is dependant upon

the logical and topological distribution, we wiU present them in more details in their respective

sections.

3.3 An d Conquer: Master-Slave Model

Although there are many ways one can implement the master-slave k-means algorithm [13,

43], their topology can be generalized by Figure 3.4 . The approach we present here is from

[43], where the master is responsible for computing the intermediate steps of the algorithm

such as the centroid update and total distortion as well as propagating the new centroids. We

5. Again, we must be weary of the dataset size as their experiment's dimensionality is not comparable to ours.
6. We consider the consolidation as part of tcomp given its computational insignificance.

70

depict this in Algorithm 5 where the (workers (top half) are numbered such that uj — [0,p - 1].

The segmentation strategy is described by line 3 of Algorithm 5 using a ternary opertator where

the local database (DBS) is assigned the element DBj if the remainder of applying the modulo

operator to j with the node number UJ matches the node number itself, otherwise, the element

is skipped^.

Figure 3. 4 : A typical master-slave topology. All communications originate and terminate
on the master. The nodes do not communicate between each other.

3.3.1 Master-Slav e Communication s

We identify conmiunications using bold and underline in Algorithm 5. In this version of the

algorithm, the k centroids are initialized by having each node select its first k/uj elements and

send these to all other nodes. This process is performed using a modulo operator, applied

against the node's identity u;, with each element being sent as they are selected. This requires

k X [u — ly PtP communications.

After an iteration, each node sends its local centroid table C'^, element count m^̂ and distortion

distil vectors, to the master. This, in turn, represents 3a; PtP communications, each having a

respective payload of kd for C'^, k for m^̂ and dist^ elements^. The master then computes

the new centiroids table C and global distortion dist and sends them back to the workers for the

next iteration.

7. Note that some off by one adjustments were not included for clarity. The actual implementation is available
in Appendix I.

8. Where each element is the size of a f l o a t (4 bytes).

71

1: if pid > 0 {This is a slave process} then
2: Initialization of C by selecting the first k/p elements from each pid in a round robin

fashion and sending each locally selected element to all other workers
3: Initialization of local database: DB^ <— [j mod UJ) — u 1 DBj : < skip >
4: repea t
3: Clear out intermediate values C" •«— 0 and m <— 0
6: fo r all Xi in DB^ d o
7: Identify closest centroid as per arg min (||xi — Ck11)

8: Save the element's distance from the centroid dist^ = ||xi — Ck||
9: Add Xi to intermediate centroid: c^ := c^ -\- Xi

10: Increment the centroid's element counter mf", := m'^, -\-1
11: en d for
12: Sen d partial results , m^̂ , C' ̂ and dist^, to master process and wait for new C and

total dist.
13: unti l \dist\ < 5

(uj Workers)

(Master)
else iipid = 0 {This is the master process} then

repeat
Wait for partial results , /7?̂ „ C' ̂ and dist^^, from slave processes.

17: Combine partial results such that m/" — Y^ m, and C' = Y^ C'^
j=i j = i

18: fo r all ĉ where 1 < j < k do
19: Compute the new mean vector c] := c'Jm^
20: en d for
21: Assign new centroids as current C — C'

22: Compute total distortion dist = j^gy Y^ distj

Send new C and dist t o slaves.
until \dist\ < S

end if
Algorithm 5: The Master-Slave Parallel K-Means

Recalling the general communications model in Eq. (1.4) (from section 1.3.5), the master-slave

communications overhead is modeled by two phases of communications. The worker to master

commurucations are represented by Eq. (3.4), which is composed of three distinct PtP commu-

rucations (hence 3ts) and a total payload of Ak{d -\- 2). The master to worker communications

is described by Eq. (3.5) which is also composed of three distinct PtP communications with a

72

payload of 4(A;(d-fl) + 2) .

TZi:^^ = 3ts + tbyte' 4k{d + 2) (3.4)

T:rpdat7 = 3^, + tbyte ' 4{k{d + 1) + 2) (3.5)

We have adapted these equations to reflect the actual source code implementation of the com

munication primitives. These are comprised of matching pairs of MPI_send /MPI_recv

function pairs as illustrated by Figure 3.5 . Variable names are chosen to concur with Algo

rithm 5.

//Send parital result s to Master
MPI_Send(SC , (K«D) , MPI_FLOAT, master, tag+1,
MPI_Send(sdistc, K , MPI_FLOAT, master, tag+3,
MPI_Send (in_w , K , MPI_FLOAT, master, tag+2,

//get result s fro m Workers
for(j = 1; j < w; j++)
(

MPI_Recv(lC , (K"D) , MPI_FLOAT, j , tag
MPI_Recv(sdistc, K , MPI_FLOAT, j , tag
MPI_Recv(sm_w , K , MPI_FLOAT, j , tag+

1

Workers send partial result s

MPI_COMM_WORLD);
MPI_COMM_WORLD);

MPI_COMM_WORLD) ;

+1, MPI_COMM_WORLD, Sstatus) ;
+3, MPI_COMM_WORLD , istatus) ;
2, MPI_COMM_WORLD, Sstatus) ;

Figure 3. 5 : The workers send their partial results to the master

Master updates workers

//Master
for(i = 1; i < totalnodes; i++)
I

MPI_Send(SC , (K*(D+1)) , MP1_FL0AT, i, tag , MPI_COMM_WORLD);
MPI_Send(&dist_ant, 1 , MPI_FLOAT, i, tag+5, MPI_COMM_WORLD);
MPI_Send(&dist , 1 , MPI_FLOAT, i, tag+6, MPI_COMM_WORLD);

//receive fro m the Master
MPI_Recv(SC , {K*(D+1)) , MPI_FLOAT, master, tag , MPI_COMM_WORLD, &status) ;
MPI_Recv(&dist_ant, 1 , MPI_FLOAT, master, tag+5, MPI_COMM_WORLD, Sstatus) ;
MPI_Recv{idist , 1 , MPI_FLOAT, master, tag+6, MPI_COMM_WORLD, &status) ;

Figure 3. 6 : The master updates the workers with the new values

73

The Message Sequence Chart in Figure 3.7 illustrates an idealized^ communications between

the master and workers. This emphasizes the fact that aU communications originate and termi

nate on the master.

3.3.2 Master-Slav e Empirical Modelizatio n

As it was demonstrated in Chapter 1, performance characteristics vary significantly even within

the same class of hardware. The simple communications model, described in section 1.3.5 from

that same chapter, will be used as a basis to define the communication times of this master-slave

implementation. The model is completed using TAU [46] to extract the computation times of

important parts of the application. The Beowulf cluster used for our tests is described in detail

in Appendix IH.

A gross estimate of the parallel computation time tcompW'^ for one iteration t, is presented in

Eq. (3.6) where ^/(||.||) is the time required for a single Euclidean norm computation, k is the

number of centroids, n is the number of samples in the database and ^' is the number of workers.

We chose t^(||.||) for the computation times as it is the smallest token of computation in the k-

means algorithm but also the most called upon.

\DB\
tcompW = tf{\\.\\)k (3.6)

UJ

We have measured that ^/(||.||) ~ 1.8//.S. With \DB\ = 342910 (the size of the entu-e test

database), k = 10 and u — 10, we get a modeled tcomp\\ = 0.6172 seconds per iteration.

Eq. (3.4) and Eq. (3.5) are then used to estimate tcomm- Given the vector size of d = 47, we get

± frpworker , rpmaster\ Ci '1\
^comm — ^ {-'• collect "•" ^update) W-')

= 10 {6ts + tbyte • {4{k{d + 1) + 2) + 4{k{d + 1) + 2)))

= 6.4576ms

9. Meaning that we neglect the possibility of out of order communications and collisions.

74

ma; i ter wo r

i ^'
^ d ist i

i n ^
^ (

Keri worke r 2

•2

^ d5t 2

.4 r^
• ^

^
^

^
^ • ^

Cl

dist ant ^

dist^

T'

^

(

dist

d

C™

disf"

m«"

• Master compute s ne w centro k

' 1
w

ant 2 ^

1 r

c™

dist ant^ -

dist*"

workerw

Is

k.

^

^
w

Figure 3. 7 : Master-Slave Message Sequence Char t (MSC) for the inter-iteration com-
munications. All communications are point to point and must be performed by all nodes.

The first thing one notices is that the model anticipates that the coinmunications will be negli

gible '° compared to the actual computation. Knowing that a trial run with the same parameters

10. Close to 100 times less.

75

took six iterations to converge, the general equation presented in Eq. (3.3) renders a total ex

pected execution time of 3.74 seconds. Unfortunately, this figure proves to be overly optimistic

as the actual measured execution time averages" around 9.23 seconds. The execution time

is therefore more than threefolds the estimated value using the theoretical model based on

empirical data.

To investigate this large discrepancy, we profile the entire application using TAU. Our obser

vations start with the 3D view from Figure 3.8 where we have isolated the two functions of

interest, the commurucations (the first row identified as MPI_Recv ()), and the computation

(the second row which is identified as f l o a t df ()). The height of the bars represent the time

spent in each function, the color represents the time per call of each function. As expected, the

master node (node zero) spends most of its time in the MPI_Recv communication call as it

waits for the workers to complete their part of the computation. What is also revealed is the

heterogeneity of the cluster'" with nodes being more powerful than others. This is put forth by

the varying heights and lighter coloring '̂ of the communication bars for the faster computers.

The 3D view makes it easy and intuitive to correlate the computation time and communication

times seen by each worker node. It is obvious that faster computers end up waiting longer in

the communication calls by simply looking at the bar height. These observations alone are

sufficient to invalidate our assumptions about the communications model, the most notable one

being that one must account for delays imposed by all other nodes for a communication to be

considered completed in a master-slave topology using PtP communications. In other words,

the present communication model is designed in a way that each PtP must complete in the

correct order, and all delays imposed by slower nodes must be added. Note that this is not a

limitation of the communication library but rather a design flaw in the code's use of the library

by forcing a given sequence in the communications.

11. We ran 30 times the experiment within the same timeframe varying the node count from 2 to 24
12. Described in more details in Chapter HI, section 1.
13. Had the color been the same for all bars of the same row, this would have indicated that all calls took the

same time for that row, therefore implying that higher bars are indicative or more calls, not longer calls.

76

,̂ ^1
1 .a-vQ -~^ w H

5.a87 —\' « •

û \
Cd \

O- \
U ,̂ 962 -A

o ""^^

o

iVnT^ m \ 1 i K \
• 1 ,

^^^H ̂ ^^^^H ^ L*"" ^

1 1 " 1

^ _ ^ ^ ^ ^ £ - -

w^H^^BI^^^^^^^^^^^^^I

:̂ -.. ^^^I^ 'HH' '^ ' r / ^^^^^^^^^H
^̂ "̂ -̂̂ "^ISH I 1 ^^^^l^^^^^^ l

/"^^„^ ^^V ^^^^^V^^^^^^H
/^'-^.^ :^_^^^^VJA^^^^^^ I

.s> / ^
**

~~ ~ — r . ^ - ^ Z..?-̂ ^
/ / ' /

I* T—~ ~ L - 5 «^ ^
/ / r ^ 6 ^

• / / / " ^

1 C

Hi^M^ / ^

^ ^ ^ B / ,.961

^^^m^-^L' "

W / "^'^'
W L "'<'>
-J ""()

Figure 3. 8 : The 3D view of the master-slave communications MPI_Recv() and compu-
tation cycles df 0 for all nodes. The master node (node 0) spends most of its time waiting
for the results from the cjorker nodes. Columns are colored according to time per call for
the function.

We now observe the tasks accomplished by a single worker. Figure 3.9 is a barchart presenting

each function's cumulative contribution to the total execution time for a single worker. As

expected, df() takes most of the time with 3.2 seconds. Once again, we notice the excessive

time (compared to the anticipated model) for MPI_* function calls.

Furthermore, what the model fails to address is the fact that the loading of the samples database,

the function called load_samples(), would come in second place with 2.47 seconds. This

last observation is one of the often neglected considerations in parallel performance models, a

point brought up by Foster in [14] when discussing execution profiles.

77

3.213 I ' T a g B B e e e e e M M M M M M M M d floa t df(float * , float *) [{pvq.cpp} {69.1H80,1}]
int load_samples(char *) [{pvq.cpp} {102,1H175,1}]
MPLRecvO
int centroid.defdnt, float *) [{pvq.cpp} {204,1}-{217,1})
void vqO [{pvq.cpp} {256,1}-{353.1}] = > MPI_Recv()
IVIPLRecvO [<message size> = <1880 >]
MPLRecvO [<messa9e size> = <1920 >]
IVIPLRecvO [<message si2e> = <192 >]
void centroidJnitO [{pvq.cpp}{178,1}-{201,1}] =>MPI_Recv()

0.335 I I in t main(int , char **) [{pvq.cpp} {383,1}-{43S,1}] = > MPIJnit O
0.335 1 ^ 9 iVIPUnit O
0.262 I B voi d vqO [{pvq.cpp} {256,1}-{353,1}]

0.038 I MPLSend O
0.036 D MPLSend O [<message size> = <192 > J
0.036 D void centroidJnitO [{pvq.cpp } {178,1}-{201,1}] = > MPLSend O
0.016 I MPLRecv O [<message size> = <4 >]
0.008 I in t main(int , char ") [{pvq.cpp } {383,1}-{435,1}] = > MPl.Finalize O
0.008 I MPLFinalize O

Figure 3. 9 : Average time spent b y all nodes in each function. Eac h call s are sorted b y
order o f contributio n importance . Call s unde r 0.008 second s aren' t show n fo r clarity .
Braces indicate the source file and line numbers, bracket information specif y whic h cal l
parameters were used and function cal l paths are indicated using '=>'.

The runtime correlation analysis graphic from Figure 3.10 is also used to correlate a function's

execution time with the addition of worker nodes. Of all the functions, only MPI_ In i t () has

a negative correlation coefficient (r = —0.50), meaning that its execution time is unrelated to

the addition of worker nodes and might also become a bottleneck.

Finally, we performed a scalability analysis by varying the number of cjorkers between 2

and 24. The resulting runtime breakdown graphic in Figure 3.11 shows that the l o a d _

samplesO function is hampering scalability as its importance grows with the addition of

computing nodes. An important note about MPI_Recv() is that it seems to scale quite well

but, in fact, the presented proportion is biased by the fact that the baseline reference of two

nodes actually has a single node computing and the master essentially spends close to 100%

of its time in the MPl_Recv() call. Hence the 50% proportion allotted to this call when only

two nodes are considered. We also confirm our observation from Figure 3.10 , where the neg

ative correlation predicted that the MP l _ l n i t () ' s function time contribution would grow and

therefore become a potential bottieneck as nodes are added.

78

Time Correlation pe r Function Vs Total Time
10A3T

• floa t dfO, r = 0.9 9 • in t centrold.defQ, r = 0.9 9 in t load.samplesO, r = 0.96 MPIJnitO , r = -0.5 0 MPLRecvO , r = 0.9 9
T void vqO, r = 1.0 0 » TOTA L

Figure 3.1 0 : Correlatio n analysi s for uj = [2, 24]. Eac h function's tim e contribution i s
drawn as the worker count grows. The correlation coefficient r , indicates the correlation
between the addition of nodes and the execution time of the function.

With such information at hand, we move onto the following section in which we present an

optimized version of the parallel k-means where we have implemented the island parallel com

putation paradigm.

79

100

<u
E

o

Total Time Breakdown for Master-Slave k-mean s

5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1
Number o f Processor s

I float dfQ M int centroid.defO M int load.samplesO MPLInit Q MPLRecv O * voi d vqQ * othe r |

22 2 3 2 4

Figure 3.1 1 : Runtime breakdown for u = [2, 24]. Eac h function's proportiona l impor -
tance for the total execution time is depicted by its surface coverag e as nodes are added
to th e computation . A perfectl y scalabl e functio n woul d b e represente d b y a constan t
surface area whereas a growing surface is indicative of poor scaling.

3.4 Or , Invade: Synchronous Island Model

In the master-slave model, all communications are performed from and towards a master node.

Also, this node typically doesn't participate in the computational task other than communicat

ing and computing intermediate parameters. Computation cycles are therefore lost while the

master awaits the results from the nodes and, vice versa, the nodes are idle while waiting for

the update from the master node. Also, given the PtP implementation, computation on the last

node can only start after all other nodes have received their updates, which we have modeled

as (if - 1) • T^'^tT- ^ s another well-known topological parallel paradigm is the synchronous

island model which can be generalized by Figure 3.12 . In this model, all nodes participate to

the computation and the commuiucation paths interconnect all nodes. This imphes the use of

80

a fully connected (or flat) network such as is the case in most Beowulf implementations using

Ethernet networking fabric.

Figure 3.1 2 : A typical islan d topology . Communication s originat e an d terminat e be -
tween each node. Thi s model implies a fully connecte d network wher e al l nodes can see
eachother (typical Ethernet configuration). Th e number of actual communications varie s
depending on the MPI implementation of the global communicators .

We use this model to address inefficiencies found in the master-slave model. Our implemen

tation of the synchronous island parallel k-means is described in Algorithm 6. Again, the

communications are in bold and underlined and, as with the master-slave model, are also the

point at which all nodes are synchronized at the end of each iteration.

The most notable change between the master-slave and island model is the lack of distinction

between a said master node and workers. Note that we have also implemented a simpUfied

centroid initialization scheme where all nodes use a predefined pattern to initialize C using

elements from X. This modification eliminates the need to communicate between nodes for

this irutial step and also ensures that the result is not dependant upon the number of nodes

used ''̂ .

14. The original master-slave implementation would use a modulo operator combined with the node count to
select elements from DB, this would lead to variances in the end result and in the execution time.

81

Local initialization of C with elements from DB using a pattern known by all workers
Each local database DB^^ is assigned a chunk of size \DB\/u
repeat

Clear out intermediate values C ^ 0 and m <— 0
for all Xi in DB^ d o

Identify closest centroid as per argmin (||xi — Ck||)

Save the element's distance from the centroid dist^ = ||xi — Ck||
Add Xi to intermediate centroid: c^' := c^' -I- Xi
Increment the centroid's element counter m^j '•= m'^ + 1 iiiciii l i l t cciiuuiv a a t ic i i ic i ii v^uuiiic j ii^ '"' "

end for
Exchange and combine partial results:
Local values of m^^, C'^ and dist^, are exchanged with all workers
While they are being exchanged, combine partial results such that:

UI UJ

m'̂ = ^ mi and (7' = ^ C;
j = i i = i

for all c'j where 1 < j < A; do
Compute the new mean vector cj := c'-/m^

end for
Assign new centroids as current C = C'

16: Compute total distortion dist = T^^ 2_, ^^^tj
3 = 1

17: unti l \dist\ < 5
Algorithm 6: The Island Parallel K-Means. All nodes execute this exact same algorithm.

82

3.4.1 Optimizin g the code

As a general rule, code optimization requires that a baseline be estabtished as a point of com

parison to assess the enhancement or degradation of performance. Since we have performed

a complete profiling of the application, we have access to per-function execution times with

a given set of parameters such as node count, centroid count and loaded elements from the

sample database. We can therefore work on individual functions and compare the optimized

versions to the original ones.

We have estabtished that the following functions '^, in order of importance as per Figure 3.9

, either require optimization or represent a significant enough portion of the execution time to

warrant further investigation:

- df (): The Euclidean norm computation function;

- l o a d _ s a m p l e s () : The database loading function;

- MP I_Recv 0 [*]'. The MPI calls (we consider the sum of all of them);

- c e n t r o i d _ d e f () : The function that defines which elements of DB are clostest to the k

centroid.

The three categories of optimizations are therefore to be considered, computation, I/O, and

communications. In this section, we present the MPI communication primitives as they are

the most abstracted from the hardware architecture, are tightly bound to the chosen topology

(island), and will represent the most code architecture change. The I/O (load_samples ())

and computation routines (cen t r o i d _ d e f () and df ()) are both appticable on a ordered basis

and apply to any model. They will therefore be presented in their own section.

15. You may peer into their original implementation in Appendix I and their final implementation in Appendix
n.

83

3.4.2 Islan d Communication s

As we have just demonstrated, the island model is algorithmically simpler than the master-

slave approach. The master's role in the previous implementation served the only function

of collecting three partial results then computing and redistributing the new centroids and the

current global distortion.

3.4.2.1 Overlappin g Communications and Computatio n

In the island model, these three steps are accomplished by the three MPI collective calls as

presented in algorithm Figure 3.13 . Not only do their semantic adhere more closely to Algo

rithm 6, but they also replace 15 blocking PtP calls '̂ that were made in the original master-

slave implementation. This approach also has the added benefit that it provides the necessary

leeway for MPI-level improvements in the implementation of the global communicator [56, 4].

Another key benefit is that it also overlaps communications with computation '̂ as weU as

simplifies the implementation which in effect reduces the probability of introducing deadlock

conditions and simplifies debugging.

I s l a n d Coinr iun ica t ions
HPI_Allreduce(MPI_IN_PLACE, S d i s t c , 1 , MPI.FLOAT, MPI.SUM, MPI.COMM.WORLD);
MPI_AHreducelMPI_IN_PLACE, C_cnt , K , MPI_INT , MPI.SUH, HPI_COMM_WORLD) ;
MPI_Allreduce(MPI_IN_PLACE, c_sum , K«T, MPI_FLOAI, MPI_SUM, MPI_COMM_WORLD);

Figure 3.1 3 : The three collective calls used to communicate and perform an element by
element summation of all three intermediate variables .

The Message Sequence Chart (MSC) in Figure 3.14 illustrates the communications between

all workers. The three collective calls are clearly separated by the horizontal dotted lines, which

in effect indicate a communication barrier where all nodes must have completed their call to

the commurucator before moving onto the next call. These barriers will prove to be a limitation

to the algorithm which we will address shortly.

16. Including the calls made during the initialization, otherwise the figure is 11 calls for the main computation
loop.

17. The efficiency of the overlapping is dependant upon the MPI library implementation.

nodel

Broaccast m^

Broac cast C ^

Broad':ast dist

node2 node3

Nodes send partial results for n

Broaccast m-̂

Broa :icast m-

Nodes send partial results for T

Broac cast C •

BroadcastC-

Modes send partial results for d ist

Broad :ast dis f

Broac cast dist -

Nodes computes new centroic 5

84

nodew

Broac cast m ™

Broac cast C

Broad a St dist

Figure 3.1 4 : Islan d MS C fo r th e inter-iteratio n communications . Althoug h
drawn a s sequential , collectiv e communication s ca n overla p withi n th e sam e cal l t o
MPI_Allreduce bu t mus t complet e withi n th e sam e cal l (equivalen t t o a communi-
cation barrier). Thes e barriers are depicted by the horizontal dotted lines. The y must
also be performed by all nodes.

But first, we observe a few results comparing the two communication approaches. In Figure

3.15 (a), the total average communication time sums up to about 4.45 for the master-slave

algorithm. In Figure 3.15 (b), our island model presents a significant improvement with a

given average of 0.51 seconds for its unique communication.

85

1.993 1
1.666 1

0.466 1
0.371 1

0.006
0.004
0.003
0.002

6.5E-4
6.2E-4
3.4E-4
1.6E-4

MPI Recv O
MPI Recv O
MPI Recv O
MPLRecvO
MPLRecvO
MPLSendO
MPLSendO
MPLSendO
MPLSendO
MPLRecvO
MPLSendO
MPLSendO

[<messag e size > = <1880 >]
[<messag e size > = <192 >]
[<messag e slze > = <1920 >]
[<messag e size > = <4 >]
[<messag e size > = <192 >]

[<messag e slze > = <4 >]
[<messag e size > = <1920 >]
[<messag e size > = <40 >]
[<messag e size > = <1880 >]
[<messag e size > = <40 >]

(a) Averag e master-slave communication times.

(b) Averag e island communication time.

Figure 3.1 5 : Average communication times for both approaches. Master-slav e commu-
nications ar e presente d i n (a) whil e th e onl y communicatio n fo r th e islan d mode l i s i n
(b).

3.4.2.2 Les s Talk, More Work

As we have just mentioned, although the use of three separate collective communication calls

is semantically identical to the algorithm, the introduced synchronization barriers add commu

nication latency and prevent the overlap of computation for the successive collective calls. This

effectively eliminates some of the advantages of the collective commurucators.

There are two ways to address this. The first one is to create a custom MPI data type (structure),

which consolidates the three elements into a single communication block. The creation of

custom data types in itself isn't too problematic but their use with collective communicators

that operate on the data adds the complexity of also having to create custom MPI operators.

We opted to use a simple alternative which consists in using a single large vector to contain all

three elements. This approach requires less code modification and proved to be much simpler to

implement. It is also possible because the operation to be performed on all exchanged elements

is the same (a surmnation) and that the datatypes are compatible. The only variable assignment

that required some modification is for the centroid ownership counter m which was changed

86

from i n t to f l o a t . The three catis from algorithm Figure 3.13 are therefore merged into a

single call as presented in algorithm Figure 3.16

Merged Island Communication s

MPI_Allreduce(MPI_IN_PLACE, c_sum , (K*T + K + 1), MPI_FLOAT, HPI_SUM, MPI_COHM_WORLD);

Figure 3.1 6 : A single collective cal l performs th e exchange and summation of all inter -
mediate values . Th e variabl e c_svi m is supersized t o include C, m, and dist, henc e th e
communication siz e of A * T -h A + 1 . Each variable simply points to its specific regio n
within c sian u

The Message Sequence Chart (MSC) for the communications therefore becomes much simpler

as attested by Figure 3.17 where all communications are consolidated into a single call from

each node. This approach has the potential '̂ of generating as little as UJ communications

compared to the PtP approach with its 6 • (a; — 1) communications '^.

nodel node2 nodeB nodew

Broac

Nodds send partial results for m , C an d dist-

cast m.C.dis t •*•

PrQatcastm.Cclist,'

Broaccast nn.C.dist -

• Nodes connpute new centroid ;

Broadcast nn Cdist^

Figure 3.1 7 : Simplifie d Islan d MSC fo r th e inter-iteratio n communications . A singl e
collective cal l from eac h nod e communicates al l intermediate value s and performs thei r
sum at the same time.

18. The MPI standard does not enforce that collective communicators be implemented efficiently. They can
actually be a wrapped version of PtP communications

19. Recall that there are 3 send-receive pairs for each node in the master-slave model.

87

3.5 Optimizatio n of I/O Routines

We have established that the l o a d _ s a m p l e s () I/O function is hampering most of the scala

bility according to Figure 3.11 . Investigations into the l o a d _ s amples() I/O routine reveals

that the database is in fact an ASCII (text) file containing 47 columns of numeral data separated

by spaces for each dimension d and each element on its own line.

Storing data in textual format, although human readable, represents a heavy burden as far as

raw space and computation requirements are concerned.

For example, each element of a vector is represented by a character string (ie: 0.032352) to

which we must add a space or the end of line character. This representation takes a total of 9

bytes for single number where its binary equivalent in f l o a t format only takes 4 bytes. Not

withstanding a gain in precision, storing the data in binary format would therefore reduce the

raw data transfer requirements down to 44% of the original figures. Furthermore, the textual

representation of numbers have to be converted to f l o a t format, which implies that each and

every byte of the file has to pass through the processor. This represents a considerable amount

of processing which, in its binary format, isn't required.

Finally, performance enhancing mechanisms such as Dkect Memory Access (DMA), allowing

the direct transfer of data from disk to memory, as well as OS based file caching are impossible

with the use of textual data. Even if the data is cached in main memory due to recent access, it

will still need to be re-parsed by the processor the next time the program is called"".

The above-mentioned reasons and the poor performance revealed by our performance profiling

has lead our implementation to use a binary file format. The performance gain is more than sig

nificant, trial runs executed on 12 nodes using both approaches revealed that the text database

took an average of 2.085 seconds to load whereas the binary version took 0.018 seconds to

load"'. This represents a considerable speedup, the binary version being over 115 times faster

20. Recall that the k-means of our case study is part of a Genetic Algorithm (GA) in which the k-means serves
as a fitness evaluator, thus being called multiple times upon the same data.

21. The binary database was in cache as the previous system call forced a read of the entire file (a call to
mdSsum).

88

dian the original code. Such speed gain is attributable to the fact that there is no longer a need

to convert from the ASCII format, less data needs to be read from disk, the data can be loaded

directiy into RAM without passing through the CPU and the use of file pointer arithmetic is

now possible, eliminating the need to read the entire database to load the node's portion into

memory (we can jump to the right entry immediately). This enhances the program's scalabil

ity by reducing the read time proportionally to the number of workers (read time should be

inversely propositional to the number of nodes).

3.6 Computationa l Optimizations : Codin g for High Performance Computin g (HPC)

Although the ultimate goal of most programming language is to provide an abstraction layer

between hardware and software components, some considerations are to be taken into account

when dealing with HPC. Such programming constraints are seldom applied unless there is

a proven performance gain in the overall application, which implies that hotspots have been

identified and that proposed techniques are known to have a significant impact.

In both parallel models, the df () and c e n t r o i d _ d e f () functions have prooven to be hotspots.

They both possess a high call and cumulative time count (Figure 3.2 (d) and Figure 3.2 (c)).

But what we have also noted is that these function calls are very short (Figure 3.2 (e)). Code

optimization techniques are much more complex and require intrinsic knowledge of the under

lying hardware to guide the applied techniques. We will use TAU and PAPI more extensively

in this section to investigate the probable paths to optimizing the code. When possible, the

compiler's implementation of the technique will be used when a performance gain is obtained.

We wiU only revert to manual modifications of the code when absolutely necessary. This way,

the code remains as close to the original implementation and doesn't get overfitted to a given

hardware platform.

89

3.6.1 Compile r Directives

Compilers are the core component of any software development project, it is therefore essential

to be aware of their capabilities and options as well as the impact using optimization flags. We

study the impact of these in Appendix I and refer to the obtained results throughout this chapter.

3.6.2 Mathematica l Libraries Versus Code

We have just demonstrated that most of the program's execution time is made up of small math

ematical kernels called up repeatedly. Most basic mathematical functions, such as pow () ,

s i n () , c o s () are implemented via standard mathematical libraries. It is often debated

whether or not these should be used when performance is concerned.

The g l i b c mathematical library has an Institute of Electrical and Electronics Engineers (IEEE)

standard compliant implementation of basic trigonometrical, logarithmic, power and many

other operations. Although our Euclidean computation kernel is quite simple, we notice that

the df() function from Figure 1.2 might be implemented with the pow() function-- to com

pute the squared distance. We investigated the relevance of such a substitution of the explicit

code with its equivalent call to pow(). As we can see in Figure 3.18 , the use of pow() ren

ders code that is slower and less efficient than its hand-coded equivalent. In all cases, whether

it be time, processor cycles, processor instructions, floating point instructions and vectorized

Soaring point instructions, the hand coded implementation is always faster, uses less processor

cycles and instructions.

We attribute the performance loss to the fact that the library approach adds a function call and

that the current GCC implementation does not yet perform propagation of optimizations such

as defined by - f f a s t - m a t h - \ Note that optimization propagation such as ignoring error

and boundary conditions down to the compiled library is defined in the C99 standard -'*.

22. Note that the Hbrary documentation stipulates that any of ihe functions may in fact be defined as macros.
23. Referring to "treatment of error conditions by math library functions (math_errhandling)" at

http://gcc.gnu.org/c99status.html for all 4.x versions of the GCC
24. As per h t t p : / / w w w . o p e n - s t d . o r g / j t c l / s c 2 2 / w g l 4 / w w w / s t a n d a r d s . The lastest publi-

cally available version of the standard is the combined C99 + TCI + TC2. WG14 N1124, dated 2005-05-06.

http://gcc.gnu.org/c99status.html
http://www.open-std.org/jtcl/sc22/wgl4/www/standards

90

0.529
0.787(148.754%)

1569.978 (124.141%)

float df(con5t float •, const float •) C (Ivq.c) (60,1H77,1)1

(a) Metric : GET_TIME_OF_DAY

1264 67 C
: : - j ^ . j , ^ . j ' . ;

(b) Metric: PAPI_TOT_CYC

1824.907(154.409%) E

(c) Metric: PAPI_TOT_INS

57.118 1 1

(d) Metric: PAPI_FP_INS

float df(const floa t •, const float •) C | lvq.c)(60,lH77,l)]

float df(cons t floa t * , const floa t *) C [Ivq.cl (60, lH77, l l i

float df(cons t floa t * . const floa t *) C [(«q.c) (60,1)-(77.111

float df(cons t floa t * , const float *) C |lvq.c)(60,lH77.1) l

(e) Metric : PAPI_VEC_INS

Figure 3.1 8 : Comparing hand coded squared function (a x a) to the use of pow() on Intel
Q6600. The metric used in all cases is the exclusive mean per-call values of the fucntion.
In all figures ((a) to (e)), the top bar (in blue) uses the explicit definition while the red bar
below uses the library call to pow (a, 2) . Al l the presented metrics point to the expanded
version as being more efficient b y consuming less total time (a) , cycles (b) , issuing less
instructions (c) (total) and even less floating point (d) and vector instructions (e).

The performance gain, on the other hand, can be explained by the fact that the compiler was

able to recognize the intended operation and generated code that would explicitly use hardware

specific features such as SIMD instructions, some of the key features of the Intel Q6600. We

detail their use and implication, coupled with loop optimizations, in the following sections.

3.6.3 Usin g Single Instruction Multiple Data

As we have discussed in Chapter 1, most contemporary processors have stagnated as far as

clock speed is concerned. Other strategies such as ELP and data parallel operations are now

being implemented to compensate for the lack of performance enhancements. This in ef

fect is indicative of the rebirth of vector processing, mostiy by adding SIMD instruction sets

(mnemorucs) or similarly purposed processing units [39]. These instructions, as their name

indicate, perform a single instruction upon multiple data units. The main difference between

processors are the available instructions, ranging from simple arithmetic to complex matrix

91

manipulations, the data width, such as single versus double float elements, and the element

count (2, 4, 8, etc..) upon which they can operate simultaneously.

Their effectiveness is therefore dependant upon low level data parallelism and locatity which

typically occur when perfomung vector computation where the same instruction is to be ap

plied to multiple consecutive elements (ie: consider the addition of two vectors). Their use has

proven to generate code with significant speedup [15] but still require careful considerations

with regards to memory access patterns [45].

To take advantage of these specialized instructions, the compilers need to be hinted both on

the command line and through mindful coding practices so that the mathematical idioms are

recognized by the compiler. As we have just demonstrated, the use of the generic implemen

tation of pow() is to be avoided as it obfuscates the intended operation from the compiler and

hampers optimization.

GCC's documentation states that hardware specific SIMD extensions are enabled through the

option -mfpmath=sse coupled with a combination of flags such as -msse , -msse2 , -

mSdnow, and so on, depending on the hardware. In the case of more recent 64 bit hardware

such as the x8 6_64 based architectures-^, the extensions are enabled by default. By their

nature, these instructions are typically used within loops and prove to be most effective when

implemented in unrolled loops [15], our next topic.

3.6.4 Loo p Optimization s

Probably some of the most popular topics in literature pertaining to HPC [25, 54, 31, 23],

optimization of frequently called loops mostly consist in obtaining a higher computation versus

control/branch ratio while reducing memory references to a minimum.

Instead of executing a single element of a loop and caUing upon the indexing and break condi

tions, we execute multiple steps of the loop before, within and after the said loop. An example

of one of these techniques, loop unrolling, is described in algorithm 7. In this case, we have

25. Which imply most current Intel and AMD processors.

92

unrolled the inner loop by a ratio of 4 : 1 computations versus branch verification. The loop

indice advances by steps of its unrolled power, four in this case, and the remainder of the index

is executed in its regular form at the temunation of the unrolled version.

for i = 0; i < (Size - 4); z-|- = 4 do
DATA[i]=OPl[i]-^OP2[i];
DATA[i-i-l]=OPl [i-i-1]-(-OP2[i-i-1];
DATA[i-h2]=OPl [i-(-2]-i-OP2[i-i-2];
DATA[i-i-3]=OPl [i-)-3]-i-OP2[i-i-3];

end for
if i mod Size {If some elements are left to be computed.} then

fori < Size]i + + d o
DATA[i]=OPl[i]+OP2[i];

end for
end if

Algorithm 7: Loop Unrolling

The direct C code application of this technique is presented in Figure 3.19 where both the

regular (left) and unrolled (right) versions of df () are presented.

1
2
3
4
5
6
7
8
9

10

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

e r i ce th inkb ig l - / l_Fi les / l_EIS/ l_Mai t r i se /Code/pvq 5
<(mpicc -E vq.c) \
<(mpicc -DUNROLL -E vq.c)
61 "vq.c"
i n l i n e f loa t df(const f loat . v l , const f loa t *v2)

f loa t sum=0.0;
i n t i ;

for(i=0; i<47; i++)

s u m + = (v l [i] - v 2 [i]) . (v l [1 1 - v 2 [i]) ;

Loop Unrolling

diff - -suppress -common-lines -y \

1 » 80 "vq.c"
1 i n l i ne f loa t df(const f loa t *vl, const f loa t *v2)
1 f loat sum =0.0
1 f loa t suml=0.0
1 f loa t sum2=0.0
1 f loa t sum3=0.0
1 in t i=0;

1 if (47>4)(
1 for(; i<(47-4); i+-4)I
1 sum + - (v l [i] -v2I i J) » (v l [i l -v2[i)) ;
1 suml+- (v l [i+ l] -v2 [i+1])« (v l [i+ l] -v2 [i+11) ;
1 sum2+.(v l [i+2]-v2[i+21)• (v l [i+2)-v2[i+2)) ;
1 sum3+-(vl (i+3]-v2[i+3])• (v l [i+3]-v2[i+31) ;
1)
1 1
> if (47»4)
> for{; i<47; i++)
> s u m + « (v l [i l - v 2 [i]) » (v l [i j - v 2 t i]) ;

>
> sum+=suml;
> sum+=sum2;
> sum+=sum3;

Figure 3.1 9 : On the left, the original loop. On the right, the fourfold unrolled version of
this same loop.

93

The self evident drawback of this approach is that it assumes the loop index to be high enough

as to mask the added control latency imposed by this larger code base. Such manual modifica

tions, other than inducing probable errors, make the code less legible and somewhat hardware

dependent as the unrolling "level" is to be defined by the processor's characteristics such as

data, instruction and address cache sizes. For these reason, it is preferable to let the compiler

perform these optimizations.

Although most loop optimizations flags are set by the - 0 3 general optimization level and, by

their nature, should not impact the results, we have found that adding - f f a s t - m a t h was

required for the compiler to actually unroll the loops. This might be explained by the fact that,

as it was mentioned in [15], code vectorization and loop optimization techniques tend to be

tightly bound by nature of their application.

To inspect the use of the SIMD extensions and loop optimizations by comparing the assembly

code for the df () function using both - 0 3 and the combined - 0 3 - f f a s t - m a t h flags. In

Figure 3.20 , we see that the right-hand side has an unrolled version of the loop which also

implements software pipelining prologue (lines 16 — 24) before instructions are unrolled (lines

25 — 30 repeated six times) and then all data is reconciled in the epilogue (not shown) with the

added touch that the loop index is transformed into a decremented index (line 40), reputed to

be a faster control approach on some hardware.

Being closely related to hardware, the impact of such optimizations will vary from platform

to platform. This is weU illustrated in Figure 3.21 where we compare above mentioned opti

mization approaches using the general flag - 0 3 , then both - 0 3 - f f a s t - m a t h and finally

forcing the compiler to um-oU all loops with - f u n r o l l - a l l - l o o p s . Figure 3.21 (a) dis

plays a time reduction of about 6% for the Athlon XP platform and we also note that forcing

the unroUing of all loops proves to be detrimental to df()'s profiled time. Figure 3.21 (b)

demonstrates that there is barely any gain obtained on the Intel Q6600.

In the case of the Intel Q6600, many reasons might explain the lack of performance gains.

Apart from compiler adaptation to this recent platform, the hardware itself nught actually be

94

I
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

.L62:

.L61:

.L54:
jne .L5 6

.L64L

jmp .L5 6

.L60:
jmp .L6 2
subl $12 , *esp
xorl %eax , %eax
movl 16(%esp) , %ec x
movl 20(%esp) , %ed x
xorps %xmml , %xmml

[nothing]

.L67:

1 .L67:

Use of SIMD and unrolling of

1 .Lee:
1 .L59:
1 jn e .L6 1
1 .Le9:
1 jm p .L6 1
> .1.70 :

<
1 jm p .L6 7
1 push l %eb x
1 sub l S4 , %es p
1 mov l 12(%esp) , %ea x
1 mov l 16(%esp) , %ed x
1 movlp s (%eax) , %xmm2
> movlp s (%edx) , %xmmO
> lea l 144(*eax) , %ec x
> movlp s 16(%edx) , %xmm l
> lea l 144(*edx) , %ebx
> movhp s 8(%edx) , %xmm O
> movhp s 8(%eax) , %xmm 2
> movhp s 24{%edx), %xmm l
> subp s %xmiiiO , %xmm2
> movlp s 16{%eax) , %xmm O
> movhp s 24(%eax) , %xmm O
> subp s %xmml , %xmmO
> mulp s %xmm2 , %xmm2
> movlp s 32(%edx) , %xmm l
> movhp s 40(%edx) , %xmm l
> mulp s %xmmO , %xmmO
> addp s %xmmO , %xmm2

[last e ops. repeated 7 times]
[Additionnal padding code for pipeline

1 .L72:
movss (%ecx,%eax,4) , %xmmO 1 movs s {%eax) , %xmmO
subss (%edx,%eax,4) , %xmmO 1 subs s (%edx) , %xmmO
incl %ea x
cmpl 547 , %eax

jne .L6 7
sqrtss %xmml, %xmmO

1 add l S4 , %eax
1 add l ?4 , %edx
> dec l %ec x
1 jn e .L7 2
1 sqrts s %xmml, %xmml

loops

reassembly]

Figure 3.2 0 : Pre-assembly outpu t from GCC for an Athlon XP processo r for df (). O n
the left, the code is compiled with explicit use of SIMD directives such as -mf pmath=sse
- m s s e -mSdnow . O n the right , the addition of -f f a s t - m a t h ha s triggered unrollin g
of loo p a s wel l a s additiona l use of th e SIMD capabilities , generatin g mor e efficientl y
vectorized code .

more efficient and not require as much hand-tuning of the source code. Recall that most of the

techniques pertaining to optimizing loops revolve around computation versus control ratios and

data locality. Since the processors have grown dramatically in cache sizes, it is a fair bet that the

4M cache of the Intel (^6600, compared to the Athlon XP 's 512A' -^, is having a significant

impact which require that classic techniques be revisited and re-evaluated with regard to then-

implementation and pertinence.

Other approaches in HPC computing include hand coding the assembly. Although rather rare

given the prohibitive efforts required to implement, there is a vectorial mathematical library by

26. Also noting that some of our models had 256K.

95

n 12.nodes.GCC 03 -
• 12.nodes.GCC -ffast
n 12.nodes.GCC -ffast

1.36 1
1.28 (94.062%) tat.

Mean
-math - Mean
-nnath -funroll-all-loops - Mean

.
1
i float dfO

1.288(94.715%)! 1

(a) Metric: GET_TIME_0F_DAY per call on Athlon XP

0.508 1 1
0.506 (99.62%) fe:) float dfC

0.506 (99.674%) 1 1

(b) Metric: GET_TIME_OF_DAY per call on Intel Q6600

Figure 3.2 1 : Execution time comparison between using - 03 (to p bars in blue), adding
- f f a s t - m a t h (middl e bars in red), and also addinf - f u n r o l l - a l l - l o o p s (botto m
bars in green). Th e (a) is for the execution time on Athlon XP processor s wher e we can
see that df() doe s no t seem to benefit fro m - f u n r o l l - a l l - l o o p s bu t does perfor m
better with about 6% in time gain with only -f f a s t - m a t h , (b) is on Intel Q6600 where
very little differences ar e noted between the three approaches.

the name of its creator, Kazushige Goto, known as GOTO Basic Linear Algebra Subroutines

(BLAS) which is the result of such strenuous efforts. We investigate its use in our next topic.

96

3.6.5 BLAS Librarie s

The GOTO [20] implementation of BLAS is reputed to be the fastest since it has been hand

written in assembler and fine tuned for all supported processors. We have replaced the Eu-

ctidean norm computation (the df ()) function with its equivalent linear algebra mathematical

representation using the Level 1 scalar-vector BLAS. This implementation is described by the

following equation sequence where Eq. (3.8) performs copy of one of the vectors into a tem

porary work area, which is then added with the negated second vector in Eq. (3.9). The norm

of the resulting vector is returned as a single scalar in Eq. (3.10).

Vdist ^ vl (3.8)

Vdist < a-v2-{- Vdist (3.9)

ret ^ \\Vdist\\2 (3.10)

This sequence translates into the code presented in Figure 3.22 , where each element of the

original implementation are aligned with their equivalent BLAS call when possible. Note that

the BLAS implementation actually performs the vector difference and norm in different steps

while this is fused into a single line in the case of the C code implementation.

1
2
3
4
5
6
7
8
9
10
11
12
13

ericQthinkbigl ~/l_Files/l_ETS/l_Maitrise/Code/pvq
<(mpicc -E vq.clegrep -v "$) \
<(mpicc -DUSE_BLAS - E vq.c)
74 "vq.c"

inline floa t df(const float .vl , const floa t *v2)
(
float sum=0.0;
int i;
for(i=0; i<47 ; i++)
sum+=(vl(i]-v2[i])•(vl[i]-v2[i]>;
return sqrtf(sum);

Using BLAS Routine

S diff —ignore-blank-lines —suppress-common-lines -y \

1 « 62 "vq.c"

1 float Vdist[47] ;

1 inline float df(const float .vl , const floa t *v2) (

1 cblas.scopy(47,vl,1,vdist,1);

1 cblas_saxpY(4 7,-1.0,v2,1, Vdist, 1);

< return cblas_snrm2(47,vdist,1);

Figure 3.2 2 : The df () function using BLAS. On the left, the original loop. On the right,
the BLAS version of this same loop. The operations on the right are aligned with the ones
they (mostly) replace on the left .

We compare this use of the library in Figure 3.23 to our previously optimized version that

used - f f a s t - m a t h . As we can see, using the BLAS Level 1 Ubrary is detrimental to the

97

performance in our case from all points of view (time, computing cycles and all). According to

[19], this is probably linlced to limited loop unrolling capabilities in the Level 1 routines due

to the lack of prior vector dimensionality knowledge, the same paradox faced by the compiler

when unrolting loops. To investigate this further, we created a synthetic problem "̂ calling

upon the df() function repeatedly while varying the vector size. Our results, presented in

Figure 3.23 (f), clearly demonstrate that there is no vector size where these libraries represent

a performance gain.

It is therefore not recommended that Level 1 BLAS be used instead of plain C code.

27. this is the same program used to investigate cache saturation in Chapter 1, section 1.2.2

98

0.596
0.506 (84.875%) I

float dHcons t float « . const float •) C

(a) Metric: GET_TIME_OF_DAY per call.

1428.221 C
1211.74 (84.843%) B

3 floa t df(cons t float ». const float •) C

(b) Metric : PAP I_TOT_CYC per call.

1491.025
1150.73 (77.177%)!

(c) Metric : PAP I_T0T_INS pe r call.

float df(con8t float«, const float •) C

94.193 C
57.116 (60,637%) i float df(con6t float •. const float •) C

(d) Metric : PAP I_FP_INS pe r call.

47.15 EZ
46(97.561%)! float df(const float •• const float ») C

(e) Metric : PAP l_VEC_INS per call.

o

Ti
m

e
(s

e

l u u s

1 us

100 ns

10 ns

1 n c

1 1 1 1

n P P ffT<" t rmt^ » Vjl_»v^ ' l l d o l i l l d l
GCC with BLA q

o

1 1 1 1 1 '

:

••'''J/.^-'^'^

.-^^^^^^ "

-

-

1

1 2 4 8 16 32 64 128 256 512 1 k

Vector Size (Bytes)
(f) Performanc e comparison between BLAS and plain C using GCC - 03 - f fas t -math. I n no scenario does

the BLAS implementation overcome the C implementation of the Euclidean norm computation.

Figure 3.23 : The Level 1 BLAS Hbraraies (top blue bars and line) perform poorly in
all cases compared to the code optimized with - f f a s t - m a t h . This is reflected in all
aspects of the computation whether it being time (a), CPU cycles (b), instructions (c) or
even floating point operations ((d) and (e)). Further investigation by varying the vector
size has proven this to always be the case as demonstrated in (f)

99

3.6.6 Comparin g All Approache s

Finally, we collect the results of all approaches in Figure 3.24 , where we include the time per

call results of df () for both the Athlon XP (Figure 3.24 (a)) and Intel QmOO (Figure 3.24

(c)). This comparison in approaches and hardware brings forth many observations:

- Not worth using at all, the call to pow() is most detrimental on the Intel (56600, where its

performance is even worse than using BLAS;

- The general optimization flag, - 0 3 , performs poorly on Athlon XP , even more so than

using the pow() function, similar observations are made for the Intel Q6600;

- The compiler's profiling mechanism renders the best result on Intel Q6600, while average

on Atiilon XP ;

- The use of - f a s t - m a t h is best on Athlon XP while its use alone is detrimental on Intel

(56600;

- On Athlon XP , the three best results are generally very close to eachother (within 1%) and

are a variant of a combination of using - f f a s t - m a t h and other more advanced compiler

options not included in the general flags such as - 0 3 .

Additionally, we correlate these time results with the total cache misses observed on each plat

form. The L2 cache misses displayed by Figure 3.24 (b) are clearly linked with the execution

time seen for the Athlon XP . For the same observation to be made on the Intel (^6600, we

have to observe the miss rate at the Ll cache. This clearly indicates that our application is

mostiy memory bound and that RAM to CPU bandwidth is essential for the execution perfor

mance. It also alleviates the use of data locality optimization techniques as well as any other

means of taking advantage of the processor's prefetching abilities to keep the active data in

local cache.

100

c

C
CO
01

c S
<0 1
0)

1 o

< " T u i 1

"1 ^ = i ^ <« o £ " <u E c < "

•PB

1

,,

1
J

• • r l

1

- 1 ?
K j r o l B c n

1 ' ' (0 ' ^ ' " l l . r

th
 p

ow
O

)
as

t-m
at

h
as

t-m
at

h
IL6

S
-

M
e

as
t-m

at
h

- M
ea

n
1

33
4

1
28

8(
9

1,
28

8
(9

6

1,
28

(9

> fc fc • = S= M 1
5. 1 1 o ' ^ 1 1
u u u 1 - u u 1 1
U l-) u O u u I I
u o u o u a 1
^/l *>. » 1/ 1 V I * / l V I
d l O J d j O J O J O J ^
"a Z} "O TS 73 "O i>
O O O O O O f̂ !
C C C C C C " J

(1 4
fv j r N r^ j r g r M I M —
.-1 . - 1 ^ ^ r H r H « °

nnnBDB ^

• o

ffi

o

•

i •!

• ^ 1
§ • "
o 5

2 S °
o o °

. b 1 1
•

;;

/ • ^

X
< a 1
u, o

1 H
• 1— 1

H

1 H
' H

U

i (1 >

P

ex,
, > 1

a
1 °

a)
 A

t
h

•

i

J

•

)
1
1
1
1 M

(1
01

.9
5%

)
B

i
^
i n

CO

S
°

^ m
N

r«i
i n
0 0

u > •

• H

b

i n

-* O)
rsi

:̂
o
o

_̂
s u
H

1
CM
h ^

1
M
04

<
04 .̂̂ C/D

V 5
CA

s
1)

. C
o

U

t2
(N
J

ĉ

c
2
<
„_.
X I
^ — •

• o

n
o
c=

1
1

i 1

;|
• J

il
jl

jl

|l

^
c
o

UJ

ô

1
1 1
1 1 1
1
1 1

1
1 1 1 1 1
1 1 1 1
1
1
1
1 I 1
1
1 1
1 1 1
I I 1 1

Jl
^ 1 ^ 1
^ 1 ^ 1 ^ |U

1^ 1 Q

1-
7

(8
4,

49
3%

) S

7,
0E

-7
 (8

0.
4

^ p.^

r^

111

00

i

'

1

* , I
^ — 1
,: ^ H

; < ! a
i ^^

°, ' "
'', M
'; H

i H
• U J

o

'_*

5
o
o>

c)
 In

te

CO

•̂
LU
CO

• D

re
o I T

—
S
'-> H

I
M

'"'
M
O.

Si
v :
c/:

^
§
OJ

- C
ca

u
"ca

1
J

! S
11 3
ly §
— . n C
;s ^ ^ fN ^ -" ^
O rs , " O

-̂ t •— -

o

CO

o

3 o\

h° in 1 ^

0.
30

4
(1

0
8

0,
3

(1
1

1
I • 1 ? m
m
oi
(M
i H

(N
to
m
b

.2f
s—^

^ ^ s—^

»
0

-a e
«
^
"a u s

00
< J
CO

CA

cs
J3
o

Si

).
In

u
s » ^ o o
CO
CO

"S
• * ^

fi NM

e
CQ

N . ^

Cl,
>̂
s
^
s

ac
he

s
A

t

Ot
a
a

^
2 • * ^

<
a
ha

a
, f i

W5
V
C/3
Ml

s
0)

2
- J

-o e
(J
a
a
S u o 1
a
e

a , £

CS
B
y>
B

.2
b

o

-3
<

ISJD
e

3
a>

a u
^ M

J
,13

o •*•>

e
o
-a
o ex)
u
^

. * r i

4 . ^
M a
u
'3

e
_o *.s ,2
h

O
U

.*< S u
h

"u
u
s
c/3

J3
4 . ^

o
CO
CO

o>

C w S I— I

pa
n

C
om

••
• ^

<s m
a>

ig
ur

pe

r
w

or
st

V
, f i
4iri

0)
h
cs

ue
)

th
e

as
eo

f

u
a> . f l
.w
e ^ N

cC
ta . a - <

101

3.7 Lookin g at the Global Picture

The significant impact that optinuzation strategies have on the cache state are bound to have

repercussive effects on the program from a global point of view. It is therefore warranted that

the execution of the program in its entirety be considered to ascertain its performance from a

global perspective. Furthermore, even though it might be self evident, one must not forget that

profiling induces significant overhead-**, especially for small computation kernels such as the

two observed functions.

For this reason, it is always pertinent to compare profiled times with minimally (or ideally

non-) profiled ones. In our case, we accomplish this by selecting TAU's minimal profile by

including only MPI and PDT as the first is required for proper library linking and recalling

that the latter for actually used inserting profile data into the source code ~'^. We also perform

this comparison in the parallel realm as to confirm that our proposed optimizations don't have

adverse effects on the program when considering its parallel execution environment. Figure

3.25 contains the results of this time comparison executed on both the Headless cluster, based

on Athlon XP hardware, in Figure 3.25 (a) and the H"^ cluster, based on the Intel Q6600

processor in Figure 3.25 (b).

Inthecaseof the Athlon A'P architecture, the use of both - f f a s t - m a t h and - f p r o f i l e -

u s e come as the globally best approach, even though our profiting of df() had slated -

f f a s t - m a t h as the best. This is not too surprising since the profiling capabitities most

probably optimized another area of the code, such as c e n t r o i d _ d e f , and that these two ap

proaches had less than 1% differentiating them. The analysis of the Intel Q6600 architecture is

less clear as most of the approaches overlap and no distinc advantage is given to one of them.

Only a clear statement about the worst cases can be made, being that the pow() and BLAS

approaches are to be avoided in our specific case.

28. Our profiled code rand as much as ten times slower, depending on selected counters.
29. Later versions of TAU are slated to have the ability of totally disabling the inserted profiling functions by

switching to stub functions thanks to an environment variable.

102

Total Executio n Time o n Headles s

1

GOTO BLAS

2 3 4

-•- pow() -•--ffast-mat h

5 6 7 8 9
Number of Node s

03 -ffast-mat h -fprofile-us e

10 1 1 1 2

-ffast-math -funroll-all-loop s

(a) On the Athlon XP based cluster, there are four distinct time profiles out of six possibilities. Overlapping
eachother are 03 with pow as well as - f f a s t - m a t h with - f f a s t - m a t h - f u n r o l l - a l l - l o o p s .
The overall "winner" is the execution optimized with - f f a s t - m a t h - f p r o f i l e - u s e

Total Executio n Time o n H 2

5 6 7 8
Number o f N odes

-»-pow() Ht-GOTOBLA S -•--ffast-math-funroll-all-loop s -ffast-math-fprofile-us e —-ffast-mat h 0 3

(b) On the Intel Q6600 based cluster, the profiles mostly overlap with the exception of the approaches using
pow() and GOTO BLAS. No distinct advantage can be discemed from the other approaches. An execution
jump is observed when seven nodes are reached, which we show to be attributed to OpenMPI's MP l _ l n i t ()
in Figure 3.26 (a).

Figure 3.25 : Total execution times on both clusters. The Headless cluster (a), based on
Athlon XP hardware, lends a distinct advantage to the use of - f f a s t - m a t h . On the
H"^ cluster (b), based on Intel (56600 hardware, most options overlap leading to no clear
"winner", barring the use of GOTO BLAS and pow.

103

Figure 3.26 (a) is the runtime breakdown for the best optimized option on the H~ cluster. We

note that MPI_ In i t () is responsible for the runtime jump between six and seven node exe

cution and that the communications primitive, MP I _ A l l r e d u c e () is growing in importance.

As expected from the previous runtime results, the runtime breakdown from the Headless clus

ter is less messy as shown in Figure 3.26 (b). An argument could have been made that the

computation is so fast on the newer Intel Q6600 hardware that the MPI routines were bound

to take over in execution proportion. But, as seen in Figure 3.25 , the total execution time on

both cluster actually place the older Athlon XP architecture ahead. This discrepancy could be

explained by the fact that both clusters don't have exactly the same version of OpenMPI library

(1.2.8 for i?2 and 1.2.9 for Headless)

These result are interesting since they emphasize the fact that parallel models only taking into

account the computation and communications can be completely off target when attempting to

calculate the number of nodes to use to remain efficient ^°. They also bring forth the importance

of keeping critical libraries up to date ^'.

30. RecalUng that efficiency is usually a 50/50 ratio between computation and communications.
31. Note that the release notes bear no mention of performance changes made between the two aforementioned

versions of OpenMPI.

104

Total Runtim e Breakdow n o n H 2

5 6 7
Number o f Processor s

12

float df() « int centroid_def() in t main()« MPI_Allreduce() MPI_Finallze() MPI_lnit() voi d vq() • othe r

(a) Runtime breakdown on H~, MPI_Ini t () induces most of the jitter and an overhead jump
after seven nodes. The communication are also growing in importance when observingMP I_
Al l reduce() .

Runtime Breakdow n o n Headles s

10

5 6 7 8
Number o f Processor s

10 11 12

float df()« int centrold_def() MPI_Allreduce() « MPI_lnit() voi d vq() othe r

(b) Runtime breakdown on Headless, most of the execution is spent in actual computation and little
overhead is seen from the communications and the initialization function.

Figure 3.26 : The runrime breakdown for the best optimized options on both clusters. In
(a) most of the execution time on the H'^ cluster is spent in MPI libraries. We see this is
not the case in (b) for the headless cluster where most of the time is spent in computation.

105

3.8 Discussion s

In this chapter, we have presented both a master-slave and a synchronous island model of the

parallel K-Means. The synchronous island model was elaborated to address issues surround

ing overly complex communication patterns of the original master-slave implementation and

to enable computation and communications to overlap. By doing this, we have successfully re

placed over fifteen communication pairs with a single collective communication. From the I/O

perspective, important performance gain was obtained through the conversion of the ASCII

based database into its binary format equivalent. Through profiling, the synchronous island

model was optimized where six different approaches were compared. These included com

piler directives, standard mathematical library calls and specialized vectorial libraries (BLAS).

A correlation between performance and cache size was established for this memory bound

algorithm. For our experiments, two architectures of completely different generations were

compared, the Athlon XP and the Intel Q6600 processors.

Our final observations are that:

- There is no globally best solution or option to optimizing a program;

- Performance attainment requkes profiting on a function level and on a global level;

- Profiling is to be performed for each new hardware platform;

- Process and environment initialization must be taken into account;

- Programs which are memory bound will always benefit from larger processor caches.

CONCLUSION AND FUTURE OUTLOOK

Our work set out to be an exploration of the profiling and optimization tools with the intent of

defining the preferred hardware and software platform upon which to execute our characterized

code. In Chapter 1, we have established that the typical problems encountered are memory

bound and therefore would most benefit from processor with larger caches coupled with the

fastest memory available. When network fabric was concerned, bigger and faster always come

first but have an inherentiy high cost. With the advent of CMPs, virtually communication less

parallel processing will become more and more important. However, the necessity to control

execution concurrence of functions or programs accessing large sums of data will be required

to ensure the processor cache is not being trashed. In the case of problems with large datasets

loaded from disk, a clear advantage was set for distributed loading (local storage) of these sets

after an initial propagation of the latter.

In Chapter 2, we shortly defined different approaches to profiling, which we differentiate using

the terms Black, White, and Grey Box. We then quickly established the downfall and inap-

propriateness of classic profiling tools such as g p r o f when it comes to parallel HPC. An

elaborate open source profiling suite, TAU was presented with its main GUI components be

ing p a r a p r o f , the parallel profiling viewer, and p e r f e x p l o r e r , the performance analyzer

mainly used for scalability and performance analysis. The use of support utilities such as the

Program Database Toolkit (PDT), for automated Grey Box profiling and Performance Appli

cation Programming Interface (PAPI), for high precision and specialized measurements (such

as floating point operations) were also demonstrated. Throughout the chapter, an example pro

gram and multiple synthetic setups were executed and profiled to demonstrate the suite's usage

for identifying bottienecks, with some warnings about possible misinterpretations.

Three implementations of the k-means algorithm were presented in Chapter 3. The material

from both previous chapters served to surgically dissected the sequential and first parallel im

plementation (Master-Slave), which then served to spawn an improved implementation (the is

land model). Multiple performance optimization strategies were applied with special hardware

107

centî ic considerations as well as careful compiler directive selections. Optimal communica

tions strategy, consolidating computation with data transmission, were employed to optimize

the MPI aspect of the implementation. The proper use of global communicators were employed

to simplify and offload the communication patterns to MPI's intemal logic.

FinaUy, we believe that have demonstrated that parallel HPC coding requires close attention to

the hardware characteristics as well as the necessity for attentive profiling of parallel code. The

extensive profiling we have performed to identify the best optimization path has demonstrated

that the exercise of attaining the best results in the field of HPC is an iterative process to be

repeated with the each hardware platform for any given software.

Optimization Quick Referenc e

As we have stressed many times, optimizing execution performance is an iterative process

given its dependence on code base and the environment upon which the latter is to be executed.

Figure 3.27 is a deceptively simphfied depiction of this iterative process where a change in

any of the environmental or code elements, as we had presented them in Figure 1 , represent

an entry point to the optimization process. As we have demonstrated, the application of each

of these steps require a wide range of tools.

Attempting to propose a generalized solution would be futile and misleading. Nonetheless,

we present in Table 3.1 a short list of the optimization techniques we have applied during the

optimization process. It may be used as a quick reference when similar coding or execution

paradigms are met. Obviously, this table is not meant to cover the entire realm of code opti

mization, there are many excellent books [54, 23] which cover this subject more appropriately.

The astute observer will note that most of these tactics have existed for well over a decade.

In most cases, performance gain is obtained through consolidation of sparse data and stream

lining its access, which is in essence minding data locality. We attribute this to the fact that

contemporary computers are still mostiy based on the Von Neumann Architecture, even the

Chip MultiProcessorss (CMPs) may be considered a special case of this architecture.

108

Hardware
. chang e

/" Librar y \
change

'Parameter
change,^

i
Identify

bottlenecks

Apply
optimizations

Improvements
possible?

yes

nd

Get on
With life!

Figure 3.2 7 : A deceptively simple diagram depicting the iterative optimization process of
a program. The multiple entry points recall that a change in any one of the elements from
Figure 1 are susceptible to provoking a new optimization pass. The ultimate convergence
being that there is no more possible improvements given a stabilized environment, and
one can then get on with life.

Things To Come

The CMP, or multi-core processors, are now the de facto standard desktop processor with

implied parallelism to harness their power. As we have demonstrated, differing architectures

and cache structures offered by vendors don't make it a clear-cut choice which will provide the

best performance, it's application specific. With the addition of a growing adoption of General

Purpose Graphics Processing Units (GPGPUs), the parallel processing landscape is changing

rapidly. The following is a condensed list of topics related to the realm of HPC not treated in

this paper but with a significant growth in popularity in the last year. All of these are parallel

109

JiiSiSSiSSlmm

VO

API and
libraries

Communi
cations

Program
ming

Svmntnm/rancprcl

Large
files/databases

Many small files
MPI_INIT() takes a long
time
Most time is spent in an
external API routine
Many
and small
Many
and large

Many calls to a small func
tion
Loop with embedded con
ditions
Loop
applied to
large
datasets

- Use binary formated files
- Use local storage for frequently read data
- Enhance storage performance
- Consotidate files into a single file
Switch to an MPI implementation that supports daemonization

Write your own implementation and comparing results

- Consolidate if possible, use global communicators
- Upgrade network fabric for low latency
- Fine tune OS specific parameters (ie: Jumbo Frames, caching pa
rameters)
- Upgrade network fabric for high bandwidth
Inline the function's code

"Unswitch" the loop by creating independent loops with the condi
tions checked outside
Be mindful of data locality: explode or create data structures to
consolidate the element(s) of interest for the loop
- Simplify the loop's operations and exit conditions to let the com
piler unroll and vectorize its execution
- Don't make function calls within the loop

Table 3.1: Pe r bottleneck optimizatio n recommendations . Prio r profiling to identify th e
applicability of these approaches is primordial.

approaches which do not require a communication library such as OpenMPI but can very well

be implemented in a hybrid context:

1) General Purpose Graphics Processing Units

a) The Compute Unified Device Architechire (CUDA) library from NVIDIA [7, 16], is

growing rapidly in importance in the realm of massively parallel computation adhering

to the Single Program Multiple Data (SPMD) paradigm where the exact same sequence

of instructions (execution kernel) is to be applied to a large dataset;

b) Open Computing Language (OpenCL) -̂, is a new standard describing a set of low level

functions for parallel processing. It is meant to eventually supersede libraries such as

CUDA to present a uniform access to multi-processing capable hardware. Although

its use it not limited to GPU paraUelization and includes CMPs and CELL processing

32. http://www.khrones.org/opencl/

http://www.khrones.org/opencl/

110

units, mentioned below, most of the current work present its use in the realm of GPU

processing.

2) Compiler and Coding Technologies

a) GCC, newer versions (starting from 4.4), now support per-function optimization prag

mas as well as an increasing number of optimization flags;

b) OpenMP, although not techrucally a tool, its use requires slight modifications to the

source code to automatically parallelized blocks of code;

c) Low Level Virtual Machine (LLVM), a new modular compiler meant to generate faster

and more efficient code.

3) Hardware

a) CELL processors [30, 24], these multi-core platforms are growing rapidly in popularity;

b) Intel's Quick Path Interconnect (QPI), a competitor to HT, is now starting to be available

on the market, opening the doors to more multi-cpu platforms.

APPENDIX I

THE GNU C Compiler (GCC)

Unless otherwise noted, our experiments are based on GNU C Compiler version 4.3.2 (Gentoo

4 . 3 . 2 - r 3 p l . 6 , p i e - 10.1.5).

Code optimization is generally controlled using compiler directives, flags and options. Direc

tives are defined via #pragma keys inserted in the source code. An example of such usage are

the directives used to automate parallelization via OpenMP.

Flags are hi-valued command line switches that enable or disable features. Their general form

is - f l a g for enabhng a given f l a g , or - n o f l a g for disabling this same f l a g . No aU flags

are performance related as some are used to enable features such as profiling ', guided opti

mization -, and even generate explanatory text files concerning decisions taken by the different

heuristics engines ^ .

Options are more elaborate and accept either multiple values or a varying range of values. For

example, it is possible to specify the Ll cache size of a processor via the - - p a r a m 1 1 -

c a c h e - s i z e = 1 5 k parameter. Most of the options address intemal variables used by GCC

and can control its heuristical analisys of the source code during compilation. A demonstration

of such an option follows.

GCC has over 144 flags, 77 of which are enabled by the global optimization flag -02 and 82

for - 0 3 . As a general rule of tumbs, the third optimizaion level (-03), is usualy considered to

provide the best performing results while remaining safe"^. Since these optimization levels are

in fact a combination of individual flags, it is worthwhile to note the differences between he

two levels. Recent versions of GCC make this easily possible through the command presented

1. Such as : - fprof i l e - a r c s - fp ro f i l e - g e n e r a t e .
2. Such a s : - f b r a n c h - p r o b a b i l i t i e s - f p r o f i l e - u s e
3. Notab ly , - fdump- t ree -vec t -de ta i l s - fdump-ipa-cgraph.
4. In this context, code safeness mostly refers to the code's conformance to precision standards established by

International Standards Organization (ISO) and IEEE standards

112

in Figure I.l, where we identify the flags disabled in the -02 level (thus enabled in -03)

thanks to the - - h e l p = o p t i m i z e r s option. The result of such a call can help guide the

user as to which flags might toggled for performance comparisons. It can also come of use

when attempting to identity which specific flags or options are included or not for a given

architecture, for example, this would be accomplished by a command such as gcc - - h e l p =

t a r g e t , j o i n e d .

eric@fourrier ~ $ diff \
> <(gc c -c -02 -Q —help=
> <(gc c -c -03 -Q —help=
> 1 grep disabled
< -fgcse-after-reloa d
< -finline-function s

=opt
=opt

< -fpredictive-commonin g
< -ftree-vectoriz e
< -funswitch-loop s

imizers)
imizers)

\
\

[disabled]
[disabled]
[disabled]
[disabled]
[disabled]

Figure I.l: disable d in the - 02 leve l but enabled in - 0 3. A s specified i n the manpage for
GCC, the - 02 optimizatio n level leaves out options that can grow the code size. This is to
be considered i f excessive instructio n cach e misses are found durin g th e profiling o f the
application.

1 Hel p GCC Help You: Choosing the Right Flags

Unlike Fortran, which was destined for mathematical computation from its inception, the C ^

language was intended to be used as system programming language. This means that the

assumptions made for Fortran do not apply to C.

For example, in C it is not uncommon to have two seemingly distinct variables point to the

same location. This is known as variable or pointer aliasing and has a sigruficant impact on

the compiler's ability to implement optimizations which are data dependent. This is one of

the many examples where the user can tell the compiler about the absence of such aliasing

therefore permitting higher levels of optimization. This would be accomplished by enabling

5. And most other languages.

113

the - f s t r i c t - a l i a s i n g flag. Note that this flag is actually enabled by default for most

optimization levels. We present it as a meere example. As a matter of fact, the selection of op

timization flags, givent their count and non-trivial implications, has become quite complex. As

stated ealyer, general opimization flags, - 0 2 , - 0 3 , contain opions that make no assumptions

about the code and ensure that there is no alteration of the expected output.

We will use our a priori knowledge of the source code and inspect df () and c e n t r o i d _ d e f ()

in Figure 1.2 and note the following characteristics also considering knwon variables such such

as the size of the T vector, and A", the centroid count.

Concerning df ():

- The heart of the loop is composed of three floating point operations;

- The loop is cafled T times, which we know to be 47 in our case;

Concerning c e n t r o i d _ d e f () :

- It calls df 0 A' times;

- It gets called X/uj times ^ itself;

- The inner loop is dependant upon the return of the df () function call.

In both cases, we are dealing with simple mathematical kernels applied in a loop upon many

elements of a given vector. Furthermore, the k-means computation is an iterative process where

the K cenroids are re-computed at each iteration. The cummulative error or bias only apply to a

single iteration. We also posses the knowledge that our mathematical evaluations are not using

nor are they sensitive to boundary conditions, such as Not a Number (NaN) and Infinity (Inf),

and we needn't distinguish between positive and negative zero values as every numerical values

in the database are between 1 and 10~9. Such a situation therefore implies optimizations that

are proper to small loops and simple mathematical operations. These considerations permit the

use of - 0 3 in conjunction with - f f a s t - m a t h , which are general optimization flags made

up of a selection of other individual flags. The - f f a s t - m a t h flag implements techniques

known to have repercussions on the mathematical precision and also ignores many exceptional

6. The number of samples treated by the local worker.

114

1
2
3
4
5
6
7

float
(

)

df{const floa t *vl , const floa t *v2)

float sum=0.0 ;
int i;
for(i=0; i<T; i++)

sum+-(vl[ij-v2(il).(vl[i)-v2(il1;

Source
1

(a) The df {), distance function, Euclidean computation function from the k-means implementation.

Source code for centroid_def(}

inline int centroid_def(unsigned int idx, float *d)
I
register in t i,centroid=-l;
float dist, mdist=999999999.;

for(i=0;i<K;i++) (
dist=df(Scentroids[i*Tl, ^samples[idx*T]) ;
if (dis t < mdist) {
mdist=dist;
centroid=i;

)

»d=mdist;
return centroid ;

(b) The c e n t r o i d _ d e f () centroid definition function. It calls the df() function A' times and gets called X/u;
times.

Figure 1.2 : Th e d f () , distanc e function , Euclidea n computatio n functio n fro m th e k -
means implementation.

conditions pertaining to boundary values. Still, to ensure the validity of the end results, the

computetd centroids of each optimization technique is compared to the ones obtained by run

ning a non-optimized, baseline version of the code. In all cases, the total summed distortion

beetween each component was found to be null.

The following sections present our findings and results supporting theuse of such optimization

flags in our context.

2 Le t GCC Help You: Using Profile s

One of the last avenues we explore is the capability that most compilers possess of adapting

optimization strategies with a priori knowledge of the code's behaviour thanks to specially gen

erated profiles. This approach obviously implies that the code be compiled with specific flags to

enable the profiling (- f p r o f i l e - a r c s and - f p r o f i l e - g e n e r a t e) and tiien that it be

recompiled with the explicit mention that the generated profiles be used (- f p r o f i l e - u s e) .

The intended outcome of this approach is that the compiler should generate code that uti-

115

lizes case-specific optimizations, prooven to be the best with the collected knowledge. This

approach essentially provide measured values to the intemal cost model heuristics of the com

piler and also enables specific optimizations which depend on the availability of such profile.

This is notably the case of the - f b r a n c h - p r o b a b i l i t i e s flag which is most significant

in the area of control structures prevalent in loops.

Obviously, two phases are implied where the first one is composed of a trial execution and the

second one consists in compiling with the generated data. We illustrate this in Figure 1.3, a

section of our project's M a k e f i l e , where a call to make mpi automatically compiles the

application, a profiting version, runs it once with typical parameters, and then re-compiles it

with the generated profile.

1
2
3
4
5
6
7
8
9
10
11
12
13

Ma)^efile with profile based optimisation s

GCCFLAGS_03 = -Wall -Winline -march=native -03 -save-temps
GCCFLAGS - S(GCCFLAGS_03) \
-mfpmath=sse -msse -m3dnow \
-ffast-math

GCC_PROFILE - $(GCCFLAGS) -fprofile-arcs -fprofile-generate
GCC_POST_PROFILE = 5(GCCFLAGS) -fbranch-probabilities -fprofile-us e -Wcoverage-mismatch

mpi:
mpicc S(GCCFLAGS) 5(SRCS) -o $(PROGOUI)
mpicc S(GCC_PROFILE) S(SRCS) -o $(PROGOUI)_gcc-prof
orterun -np 12 -hostfile -/hosts ./S(PROGOUI)_gcc-pro f /data/eric/featg_col.da t 1 0 342910
mpicc SlGCC_POST_PROFILE) S(SRCS) -0 S(PROGOUT)_gcc-profiled

Figure 1.3 : Par t o f ou r M a k e f i le use d t o generat e an d use GCC's profiU e guide d op -
timizations on Athlon XP hardware . Th e application i s built calling make mpi , whic h
will automatically generate the appUcation, a profiUng version, run a single execution and
the compile a profile-guided versio n from the results of the previous run.

As we applied this approach, we have noticed that the best resuUs are obtained if the profile

phase is compiled with the same optimization flags as the final code using the profile. In other

words, don't expect the profiler to automagically enable - f f a s t - m a t h and don't simply en

able it after the application was profiled. In essence, the approach should be used transparantly

with all other compilation option and optimization techniques discussed earlyer.

APPENDIX II

COLLECTION OF COMMAND S

This section contains the extended version of logs and traces for commands and their output

referred to throughout the document.

1 Identificatio n o f GCC Option Difference s

The following sequence of commands are used to identify the inclusion of specific directives

within global optimization flags. The basic techiuque is described in GCC's manual page and

we present here our usage to obtain the data pertaining to 3.6 when attempting to identify

probable paths to further optimizing code execution thanks to specific performance-centric

options.

2 Taxonom y of the k-means Algorith m

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

S export IAU_HAKEFILE.~/TAU/TAU/x86_64/lib/Ma

Sequential k-means profiling

kefile.tau-callpath-pdt
S tau_cc.sh -optCompile="-Wal l -march=nativ e -mfpmath=sse -03 -f)ceep-inline-functions
-freorder-bloclcs-and-partition -fno-math-errno -ffinite-math-only -fno-trapping-math
-fwhole-program -combin e -ffast-math -ftree-vectorizer-verbose=4 -fdump-tree-vect-de t
$./vq_SIM D ./featg_col.da t $((6787955/100))
Limiting sample load to 67879 samples.
NSR - 67879
Ta)ce it easy, I am classifying. . .
TWO LAST AVERAGE DISTORTIONS: AD1=0.000000 AD2=0.463098 Dif=0.463098
TWO LAST AVERAGE DISTORTIONS: AD1=0.463098 AD2=0.369992 Dif-0.093105
TWO LAST AVERAGE DISTORTIONS: ADl-0.369992 AD2-0.352347 Dif-0.017645
TWO LAST AVERAGE DISTORTIONS: ADl-0.352347 AD2-0.343929 Dif-0.008418
TWO LAST AVERAGE DISTORTIONS: AD1=0.343929 AD2=0.339822 Dif-O.004107
TWO LAST AVERAGE DISTORTIONS: AD1=0.339822 AD2=0.337425 Dif-0.002398
TWO LAST AVERAGE DISTORTIONS: ADl-0.337425 AD2-0.335747 Dif-0.001678
TWO LAST AVERAGE DISTORTIONS: ADl-0.335747 AD2-0.334442 Dif-0.001305
TWO LAST AVERAGE DISTORTIONS: ADl-0.334442 AD2-0.333580 Dif-0.000862

Tempo total(s): 1333.02 8

-funsafe-loop-optimizations
-fno-signaling-nans \
ails" vq.c -o vq_SIMD

\

Figure II.l: Profilin g and execution of the sequential k-means algorithm using TAU. The
program is then started by specifying th e reference database and the number of samples
to load from the database.

APPENDIX H I

MACHINE DESCRIPTION S

1 Th e Thinkbig Cluste r

1.1 Genera l Descriptio n

This Beowulf style cluster is composed of sixteen machines with two different processor spec

ifications and interconnected using 100 BaseT Fast Ethernet. The topology consists of a log

ically flat networks with two switches bridging interconnected as described by Figure III.l.

This classifies it as a slightly heterogeneous cluster with a fully connected topology. Commu

nication paths between the nodes are direct while communications with the head node is split

at the IP level between two links thanks to subnet separation. The network mask is set to a

typicl class C of 255.255.255.0 with one broadcast domain from the point of view of the nodes.

The serve has its NlCs configured with a subclass of 255.255.255.128, where the first NIC is

assigned the lower part of the address range and the second NIC the upper section.

1.2 Nod e Specification s

The two node types are described in table Table III.l where the most significant hardware dif

ferences are outiined. The local disks vary in size between 20,40 and 80 Gigs and performance

caracteristics as illustrated by Figure in.2. This data was collected using the averages results

for 30 runs of the Zoned Constant Angular Velocity (ZCAV) utitity '. It is well illustrated that,

in most cases -, HDD transfer rate diminishes significantiy as the data is located on higher order

blocks.

All nodes are booted via Pre eXecution Environment (PXE) and share the user's $HOME folder

via NFS with a local disk for scratch space.

1. Included with the bonme++ HDD performance suite
2. With the notable exception of one of the 80 Gigabyte HDDs which seems to be defective given its low and

irregular performance.

18

Mask: 255.255.255. 0
I Nodes 1 to 9 Nodes i o to 16

10.0.0.11 - 19 10.0.0.139 - 136

Q
mmnlSvr

j fethl: io.0.0.1

lies

X
I I rrnt;t:r>»p r I

1 e thl : 10.0.0.129 J-i
MASK: 255.255.255.12 8

Figure III.l: Thinkbig Beowulf cluster topology

Parameters

Processor

Model Name
Cache Size (KB)

CPU MHz
BogoMIPS

Machine Profiles
A B

AMD Athlon(TM) XP 2500+
512

1833.18
3669.17

AMD Athlon(TM) XP 2600+
256

2083.158
4169.51

Table III.l: Thinkbig Node Specifications

1.3 Operating System

The cluster's OS is Gentoo based with important software versions described in table III.2.

Software
GCC
ICC
OpenMPI
Linux Kernel
PAPI

Version
Gentoo 4.3.1-rl pl . l
Version 10.1 Build 20080602
1.2.7 rl9401
linux-2.6.17-gentoo-r4
3.5.0

Table III.2: Thinkbig Software Specifications

119

s.

65000

60000

55000

50000

a 4500 0

25000

20000
10000 70000 8000(

Figure III.2 : Th e HDD's Zoned Constan t Angular Velocit y grap h for 1 6 nodes o f the
Thinkbig cluster. These performance profiles illustrate well the heterogenety of the HDDs
performance. Th e 40 and 80 G Byte HDDs start off with the same performance whereas
the 20 G byte models are more than twice as slow.

1.4 Performanc e AppUcation Programming Interface

The node's kernel was patched to support PAPI. Figure IU.3 Usts the available events.

120

ericQthinkbigl ~ $ papi_avail -a
Available events and hardware information.

papi_avail - a Output

Vendor string and code : AuthenticAMD (2)
Model strin g and code : AMD K7 (9)
CPU Revision : 0.000000
CPU Megahertz : 2083.157959
CPU's i n this Node : 1
Nodes in this System : 1
Total CPU's : 1
Number Hardware Counters : 4
Max Multiplex Counters : 32

The following correspon d to fields in the PAPI_event_info_t structure.

Name Derive d Description {Mgr . Note)
PAPI_L1_DCM Ye s Leve l 1 data cache misses
PAPI_L1_ICM N o Leve l 1 instruction cache misses
PAPI_L2_DCM N o Leve l 2 data cache misses
PAPI_L2_ICM N o Leve l 2 instruction cache misses
PAPI_L1_TCM Ye s Leve l 1 cache misses
PAPI_L2_TCM Ye s Leve l 2 cache misses
PAPI_TLB_DM N o Dat a translation lookasid e buffer misses
PAPI_TLB_IM N o Instructio n translation lookasid e buffer misses
PAPI_TLB_TL Ye s Tota l translation lookasid e buffer misses
PAPI_L1_LDM N o Leve l 1 load misses
PAPI_L1_STM N o Leve l 1 store misses
PAPI_L2_LDM N o Leve l 2 load misses
PAPI_L2_STM N o Leve l 2 Store misses
PAPI_HW_INT N o Hardwar e interrupt s
PAPI_BR_UCN N o Unconditiona l branch instruction s
PAPI_BR_CN N o Conditiona l branch instruction s
PAPI_BR_TKN N o Conditiona l branch instructions take n
PAPI_BR_NTK Ye s Conditiona l branch instructions not taken
PAPI_BR_MSP N o Conditiona l branch instructions mispredicte d
PAPI_BR_PRC Ye s Conditiona l branch instructions correctl y predicted
PAPI_TOT_INS N o Instruction s complete d
PAPI_BR_INS N o Branc h instruction s
PAPI_RES_STL N o Cycle s stalle d on any resource
PAPI_TOT_CYC N o Tota l cycles
PAPI_L1_DCH Ye s Leve l 1 data cache hits
PAPI_L2_DCH N o Leve l 2 data cache hits
PAPI_L1_DCA N o Leve l 1 data cache accesses
PAPI_L2_DCA Ye s Leve l 2 data cache accesses
PAPI_L2_DCR N o Leve l 2 data cache reads
PAPI_L2_DCW N o Leve l 2 data cache writes
PAPI_L1_ICA N o Leve l 1 instruction cache accesses
PAPI_L2_ICA N o Leve l 2 instruction cach e accesses
PAPI_Ll_ICR N o Leve l 1 instruction cache reads
PAPI_L1_TCA Ye s Leve l 1 total cache accesses

avail.c PASSE D

Figure III.3: Output listing of all PAPI events as per p a p i _ a v a il - a fo r the Athlon XP
processors.

2 Th e H^ Cluster

2.1 Genera l Descriptio n

This Beowulf style cluster is composed of nine machines each possessing a single Intel Intel

(36600 Quad Core processor and interconnected using Gigabyte Ethernet. The topology con

sists of a flat networks with a single Dell Powerconnect 2745 switch left in unmanaged mode.

121

This classifies it as a homogeneous cluster with a fully connected topology. Communication

paths between the nodes and the master are direct.

2.2 Node Specification s

All nodes are identically buih with an Intel Q6600 processor, 4GB of RAM and a local Serial

Advanced Technology Attachment (SATA) HDD of 500GB. A more detailed description is

presented in Table 111.3, note that the processor cache size is shared amongst all four cores

while other specifications are for each independent core.

Parameters

Processor

HDD

Motherboard

RAM

Model Name
Cache Size (KB)
CPU MHz
BogoMIPS

Brand
Model Name
Cache Size (MB)
Capacity (GB)

Brand
Model Name
Revision

Installed (GB)
Speed (MHz)
Count

Machine Profile
Intel(R) Core(TM)2 Quad CPU Q6600
4096
2400
4800

Western Digital
WD5000AAKS-0
16
500

ASUSTeK Computer INC.
P5N7A-VM
Rev l.xx

4
800
2

Table III.3: H'^ Node Specifications .

2.3 Operatin g Syste m

The cluster's OS is Gentoo based with important software versions described in table III.4.

2.4 Performanc e Applicatio n Programming Interfac e

The node's kernel was patched to support PAPI. Figure III.4 lists the available events.

122

Software
GCC
ICC
OpenMPI
Linux Kernel
PAPI

Version
Gentoo 4.3.3-r2 pl . l , pie-10.1.5
10.1 Build 20080801
1.2.7 rl9401
2.6.25-gentoo-r7
3.6.2

Table III.4: H"^ Software Specifications

123

eric@node01 - S papi_avai l - a

Available event s an d hardwar e

Vendor strin g an d cod e

Model strin g

CPU Revisio n

CPU Megahert :

and cod e

CPU Cloc k Megahert z

CPU's i n thi s Nod e

Nodes i n thi s Syste m

Total CPU' s

Number Hardwar e Counter s

Max Multiple x Counter s

The followin g correspon d

Name

PAPI_L1_DCM

PAPI_L1_ICM

PAPI_L2_DCM

PAPI_L2_ICM

PAPI_L1_TCM

PAPI_L2_TCM

PAPI_CA_SHR

PAPI_CA_CLN

PAPI_CA_ITV

PAPI_TLB_DH

PAPI_TLB_IM

PAPI_L1_LDM

PAPI_L1_STM

PAPI_L2_LDM

PAPI_L2_STM

PAPI_HW_INT

PAPI_BR_CN

PAPI_BR_TKN

PAPI_BR_NTK

PAPI_BR_MSP

PAPI_BR_PRC

PAPI_TOT_IIS

PAPI_TOT_INS

PAPI_FP_INS

PAPI_BR_INS

PAPI_VEC_INS

PAPI_RES_SIL

PAPI_TOT_CYC

PAPI_L1_DCH

PAPI_L1_DCA

PAPI_L2_DCA

PAPI_L2_DCR

PAPI_L2_DCW

PAPI_L1_ICH

PAPI_L2_ICH

PAPI_L1_ICA

PAPI_L2_ICA

PAPI_L2_TCH

PAPI_L1_TCA

PAPI_L2_TCA

PAPI_L2_TCR

PAPI_L2_TCW

PAPI_FML_INS

PAPI_FDV_INS

PAPI_FP_OPS

Code D

0x80000000

0x80000001

0x80000002

0x80000003

0x80000006

0x80000007

0x8000000a

0x8000000b

0x8000000d

0x80000014

0x80000015

0x80000017

0x80000018

0x80000019

0x8000001a

0x80000029

0x8000002b

0x8000002c

0x8000002d

0x80000026

0x8000002f

0x80000031

0x80000032

0x80000034

0x80000037

0x80000038

0x80000039

0x8000003b

0x8000003e

0x80000040

0x80000041

0x80000044

0x80000047

0x80000049

0x8000004a

0x8000004c

0x8000004d

0x80000056

0x80000058

0x80000059

0x8000005c

0x8000005f

0x80000061

0x80000063

0x80000066

Of 4 5 availabl e events , 1

avail.c

papi_avail - a Outpu t

information.

Genuinelntel (1)

Intel Cor e 2 (18)

11 000000
2399.969971

2399

4
1
4
5
32

.o f

;riv

Jo
to
les
Jo
«o
•Jo

Jo
Jo
Jo
Jo
Jo
*lo
^0
ies
•Jo

>lo
Mo
Mo
Mo
Mo
Ifes

Mo
Mo
Mo
Mo
Mo
Mo
No
res
No
res
No
No
Yes
ires

No
No
ires

ifes

No
ires

No
No
No
No

relds i n th e PAPI_event_info_ t structure .

Description (Note)

Level 1 dat a cach e misse s

Level 1 instructio n cach e misse s

Level 2 dat a cach e misse s

Level 2 instructio n cach e misse s

Level 1 cach e misse s

Level 2 cach e misse s

Requests fo r exclusiv e acces s t o share d cach e lin e

Requests fo r exclusiv e acces s t o clea n cach e lin e

Requests fo r cach e lin e interventio n

Data translatio n looJcasid e buffe r misse s

Instruction translatio n loolcasid e buffe r misse s

Level 1 loa d misse s

Level 1 stor e misse s

Level 2 loa d misse s

Level 2 stor e misse s

Hardware interrupt s

Conditional branc h instruction s

Conditional branc h instruction s talce n

Conditional branc h instruction s no t ta)ce n

Conditional branc h instruction s mispredicte d

Conditional branc h instruction s correctl y predicte d

Instructions issue d

Instructions complete d

Floating poin t instruction s

Branch instruction s

Vector/SIMD instruction s

Cycles stalle d o n an y resourc e

Total cycle s

Level 1 dat a cach e hit s

Level 1 dat a cach e accesse s

Level 2 dat a cach e accesse s

Level 2 dat a cach e read s

Level 2 dat a cach e write s

Level 1 instructio n cach e hit s

Level 2 instructio n cach e hit s

Level 1 instructio n cach e accesse s

Level 2 instructio n cach e accesse s

Level 2 tota l cach e hit s

Level 1 total cach e accesse s

Level 2 tota l cach e accesse s

Level 2 tota l cach e read s

Level 2 tota l cach e write s

Floating poin t multipl y instruction s

Floating poin t divid e instruction s

Floating poin t operation s

0 ar e derived .

PASSED

Figure III.4: Output Usting of all PAPI events as per p a p i _ a v a i l - a for the Intel Q6600
processor.

124

3 Th e Multiprocessor Server s

The two SMP machines used for our experimentations both possessed 32GBytes of RAM

and 8 Dual Core AMD Opteron processors. Table III.5 lists their key hardware caratersitics.

Software caracteristics are listed in Table Table III.6, cells containing '-' mean the software

wasn't installed on the specific machine. Note that PAPI was not installed on these systems

either.

Parameters

Processor

Model Name
Cache Size (KB)

CPU MHz
BogoMIPS

Machine Profiles
SunFire x4600 Tyan VX50
Processor 885

1024
2600
3226

Processor 875
1024
2200
4420

Table III.5: SMP machine hardware specification s

Software
GCC
ICC
OpenMPI
Linux Kernel
PAPI

Version
Gentoo4.3.1-rl pl. l
Version 10.1 Build 20080602
1.2.7 rl9401
linux-2.6.17-gentoo-r4
3.5.0

Table III.6: SMP machine software specification s

APPENDIX I V

SOURCE COD E

This section contains the printout of the principal source code used in our experimentation.

When reasonable, the code was left untouched. When applicable, blocks of commeted test

code were removed for clarity.

1 Th e Island Master-Slave Implementatio n

The following is the original implementation of the Master-Slave k-means.

2 *& A*

3 *<£ Module Name: vector quantisation based on k—means algorithm &*

4 *<£ (Parallel Algorithm) &*

5 *<fe This is a C++ program with MPI library &.*

6 *& Authors: Aiceu Britto / Albert Hung-Ren Ko &*

7 *& &*

g *& &*

9 *& &*

10 *«i To compile with the Makefile: make 4 *

11 *& To set up the topology of kernels: lamboot —v lamconf. lam &*

12 *& To run: mpirun —v —np ^(number of kernels) pvq filename <t*

13 *& To erase the set topology of kernels: wipe &*

14 *& It will generate the file : centroids &*

15 » 4 = d i . /

16

17 # i n c l u d e < s t d i o . h >

18 # i n c l u d e < c i y p e . h >

19 # i n c l u d e < s t r i n g . h >

20 # i D c I u d e < s (d l i b . h >

21 # i n c l u d e < m a t h . h >

22 # i n c l u d e < i o s t r e a m >

23 ^ i n c l u d e < f s t r c a m >

24 # i n c l u d e < iomanip>

25 # i n c l u d e < c a s s e r t >

26 # i n c l u d e < s s t r e a m >

27 ^ i n c l u d e <mpi . h >

28 u s i n g namespac e st d ;

29

30 # i n c l u d e < c t i m e >

31

32 # d e f i n e THRESHOLD O.OOI / * threshold used to stop iterations */

33 # d e f i n e T 34 /« size of the feature vector •*•/

34 # d e f i n e NC 256 /* number of centroids * /

35

36 in t NSR: / * number of samples */

37 in t SKIP ; / * NSR divided by NC * /

38 i n t NS; /* maximum number of samples * /

39

126

40 / • struct used lo keep a feature vector and its centroid • /

41 typedef struct

42 {

43 f l o a t f e a t [T] ;

44 in t c e n t r o i d ;

45 1 sample ;

46

47 / • struct used lo keep a centroid and the number of samples in it -^f

48 t ypede f s t r u c t

49 (

50 f l o a t f e a t [T] ;

51 f l o a t number ;

52) c e n t r o i d ;

53

54

55 sample • s a m p l e s ; /» keep all training samples */

56 c e n t r o i d c e n t r o i d s [NC]; /* keep all centroids • /

57 f l o a t c_sum [N C] [T] ; / * sum of all samples of a class , / / is used to update the centroids */

58 in t mynode. t o t a l n o d e s ;

59 in t s l a v e s = 1 ;

60 in t mas te r = 0;

61 in t tag = l ;

62 in t sum, s t a r t v a l . endval , accum;

63 in t i , j . k ;

64 MPI_Sta tus s t a t u s ;

65 in t i oadCoun t = 0;

66

67 / * distance function — Euclidian Distance * /

68 f l o a t df (f l o a t *vl , f l o a t *v 2)

69 I

70 i n t 1 ;

71 f l o a t d i s t , sum;

72

73 s u m = 0 . ;

74 fo r (1=0 ; i <T ; i+ +)

75 sum=sum+ (v l [i] - v 2 [i j) * (v l [i] - v 2 [i]) ;

76

77 d i s t = (f l o a t) s q r t ((f l o a t) sum) ;

78 retur n d i s t ;

79)

80

81 / * load samples */

82 in t l o a d _ s a m p l e s (cha r * f i l e n a m e)

83 (

84 FIL E *f p ;

85 in t 1 . j ;

86 i n t Obs ;

87 in t r e g _ s i z e = s i z e o f (f l o a t) * T ;

88 i f s i r e a m inS t ream (f i l e n a m e) ;

89 IoadCount = 0;

90 s t r i n g l i n e ;

91 in t l i n e C o u n t = 0;

92

93 fp=fopen (f i l e n a m e , "r ") ;

94

95 i f (!fp)

96 {

97 p r i n t f (" c a n ' t ^ o p e n ^ t h o u ^ f i l e : ^%s^ \n" . f i l e n a m e) ;

98 retur n (0) ;

99 }

127

100 f seek (fp . 0 , SEEK_END) ;

101

102 NS = (i n t) f l e l l (fp) / r c g . s i z e ;

103

104 i r (t o t a l n o d e s > 1)

105 I

106 samples= (satnple *) malioc ((NS/ (t o t a l n o d e s — 1)) * s i z e o f (sample)) ;

107 I

108

109 e l s e

110 I

111 samples= (satnple *) malioc ((NS) . s i z e o f (sample)) :

112)

113

114 //fseekifp. 0. SEEK_SET):

115 if (! s amples) r e t u r n —1;

116

117 f c l o s e (fp) ;

118

119 / * toad samples * /

120

121 whil e (! i nS t ream . eof {) && l i n e C o u n t < NS)

122 I

123 g e t l i n e (i n S t r e a m , l i n e) ;

124 i s t r i n g s t r e a m i s t r (l i n e) ;

125 if ((fmod ((l i n e C o u n t + 1) . (t o t a l n o d e s —1)) == (mynode —1)) && (mynode != mas te r))

126 I

127 for (1 = 0; i < T; i++)

128 I

129 i s t r » samples [IoadCount] . fea t [i] ;

130 s a m p l e s [l o a d C o u n t] , c e n t r o i d = —I;

131)

132 l o a d C o u n t + + ;

133 I

134 l i n e C o u n t ++;

135)

136

137 if (mynode == (1 + fmod ((l i n e C o u n t) , (t o t a l n o d e s — 1))))

138 (

139 IoadCount ;

140 I

141 / / 'cause the last kernel will load the end line of the file

142

143 NS = (l i n e C o u n t —1) ; //minus one because there is one empty tine at Ihe end of the file fp

144

145 p r i n t f { " F i n a l J>lS„=„9M\n" . NS) ;

146 //cout « " mynode " « mynode « " IoadCount " « IoadCount « endl:

147 r e t u r n (l i n e C o u n t ~ 1) ; / • return i—I when binary mode * /

148)

149

150 / * centroid initialization — it selects the first set of centroids */

151 void c e n l r o i d _ i ni t ()

152 (

153 in t i , j . k . x :

154

155 fo r (i = 0; i < NC; i++)

156 I

157 X = 0;

158 if (mynode = fmod ((i) , (t o t a l n o d e s —1)) +1)

159 (

128

160 for (j = (l , j < T ; j + +)

161 I

162 c e n t r o i d s [i] . f ea t [j]= samples [x] . feat [j] ;

163 //cout « " " « samplesl.X]. feat [j];

164 c e n t r o i d s (i] . number=0;

165)

166 //cout « endl « " mynode^ " « mynode « " x= " « x « endl;

167 X++;

168 for (k=0; k < t o t a l n o d e s ; k++)

169 I

170 MPl_Send (i t e n t r o i d s (i] . (T+l) , MPLFLOAT, k . t a g + 9 , MPI_COMM_W0RLD) ;

171 1

172 1

173 MPl.Rccv (& c e n t r o i d s (i) . (T + l) . MPLFLOAT, I in t I (fmod ((i) . (t o t a l n o d e s - 1)) +1) , t a g + 9 , MF1_0«klM_W0RLD

, & s l a l u s I;

174 1

175 I

176

177 /-^ classification of a sample talcing into account each centroid * /

178 i n t c e n l r o i d . d e f (in t p o s , f l o a t *d)

179 I

180 in t 1 , index ;

181 f l o a t mdist , d i s t ;

182

183 m d i s t = 9 9 9 9 9 9 9 9 9 ;

184 fo r (i = 0 ; i < N C ; i + +)

185 (

186 d i s l = d f (c e n t r o i d s [i] . feat , samples [pos] . f ea t) ;

187 if (d i s t < mdist) (md i s l = d i s t ; index = i ;) ;

188 I

189

190 » d = m d i s t ;

191 r e t u r n index ;

192 1

193

194 / . it calculates new centroids */

195 void mean_vec to r t)

196 (

197 in t i . j , c ;

198 f l o a t mas le r_c_number [NC];

199

200 fo r (c=0,t<NC.c+ +)

201 if (c e n t r o i d s [c] . number != 0)

202 fo r (j = 0 ; j < T ; j + +)

203 c e n t r o i d s [c] , f ea t [j] = c_sum [c] [j] / c e n t r o i d s [c] . number ;

204

205 for (i = 1: i < t o t a l n o d e s ; i++)

206 MPl_Send (& c c n t r o i d s , (NC» (T+l) I , MPLFLOAT, i , t a g , MP1_C0MM_W0RLD) ;

207)

208

209

210 / * It calculates the mean distortion * /

211 f l o a t a v c r a g e ^ d i s t o r t i o n (f l o a t *\)

212 (

213 i n t i ;

214 f l o a t ad ;

215 a d = 0 ;

216 for (1 =0 ; i<J* : , 1++)

217 a d = a d + x [i] ;

218

129

219 ad=ad/NSR ;

220 retur n a d ;

221)

222

223 voi d vq()

224 I

225 in t i t e r a t i o n ;

226 in t c e n l r . j . i . k , c ;

227 f l o a t d i s t o r t i o n , d i s t o r t i o n . a n l , d i s i c [N C l , d i s t ;

228 d i s t o r t i o n =0 ;

229 i t e r a t i o n = l ;

230

231 i f (mynod e = maste r)

232 pr in t f ("Take^it^cas y , ^ l ^ a m ^ c l a s s i f y i n g . . . \ n") ;

233

2.34 d o

235 (

236 / • Initialization */

237 fo r (i=0; i<NC; i+ +)

238 I

239 c e n t r o i d s 1 1] . number^O ; d i s t c (i] = 0 . ;

240 fo r (j = 0 ; J<T;j+ +) c_su m [i 1 [j] = 0 .;

241 I ;

242
243

244 i f (mynod e ! = maste r)

245 (

246 f l o a t send_c_numbe r [NC] ;

247 J = 0 ;

248 whil e { j < IoadCoun t)

249 I

250 cent r = c c n t r o i d _ d ef (j . &dis t) ;

251 sample s [j] . centro i d = centr ;

252 d i s l c [c e n t r] = d i s t c [c e n t r] + d i s t ;

253 c e n t r o i d s [centr] . numbe r = (c e n t r o i d s [centr] . number) + 1 ;

254 fo r (i = 0 ; i < T ; i + +)

255 c_sum [c e n t r] [i] + = s a m p l e s [j] . f e a t [i] ;

256
257 j + + ;

258 I

259

260 //parallelize this parts

261 fo r (i = 0 ; 1 < NC ; i+ +)

262 send_c_numbe r [i] = c e n t r o i d s (i] . number ;

263
264 MPLSen d (&c_sum . (NC. T) , MPLFLOAT , master , ta g + l, MPLCOMM.WORL D) ;

265 MPLSen d (& d i s t c , NC , MPLFLOAT , master , t a g + 3 , MP1_00MM_W0RL D) ;

266 MPLSen d (&send_c_numbe r , NC , MPLFLOAT , master , l a g + 2 , MPLOOMM_WORL D) ;

267

268 //receive from the broadcast

269 MPLRec v (¢roid s , (NC * (T + l)) , MPLFLOAT , master , t a g , MH_COMM_WORLD , &sta tu s) ;

270 MPLRec v (&d i s t o r t i o n _ a nt , 1 , MPLFLOAT , master , t a g + 5 , MP1_C0MM,.W0RLD , &sta tu s) ;

271 MPLRec v (& d i s t o r t i o n , 1 , MPLFLOAT , master , t ag+6 , MPL00MM_WORLD . &statu s 1 ;

272)

273
274 i f (mynod e = = maste r)

275 (

276
277 f l o a t s l a v e _ c _ s u m [N C) [T] ;

278 f l o a t s l a v e _ d i s t c [NC) ;

130

279 f l o a t master_centroids_numbe r [NC] ;

280

281 fo r (j = 1 ; j < t o t a l n o d e s ; j+ +)

282 {

283 MPLRec v (&slave_c_su m , (NC. T) , MPLFLOAT , j , ta g + 1, MPl_CX)MM_WORLD , & s l a t u s) ;

284 MPLRec v (& s l a v e _ d i s t c , NC , MPLFLOAT , j , t a g + 3 , MPI_CX)MM_WORLD , S s t a t u s i ;

285 MPLRec v (&master_cenlro ids .numbe r , NC , MPLFLOAT , j , t a g + 2 , MH_COMM_W0RLD , i s t a t u s) ;

286 fo r (1 = 0 : i < NC ; i+ +)

287 I

288 fo r (k = 0 ; k < T ; k+ +)

289 c _ s u m (i] (k] = c _ s u m (i] [k] + slavc_c_sur a (i] [k];

290

291 d i s t c [i] = d i s t c [i] + sl a v e _ d i s tc [i] ;

292 c e n t r o i d s [i] . number = c e n iro ids [i] . number + master_centroids_numbe r [i];

293)

294

295 1

296

297 mean_veclo r ((;

298

299 d i s t o r t i o n _ a n t = d i s t o r t i on ;

300 d i s t o r t i o n = a v e r a g e _ d i s t o r t i on (d i s l c) ;

301

302 fo r (i = 1 ; i < t o t a l n o d e s ; i+ +)

303 I

304 MPLSen d (& d i s t o r t i o n _ a n t , I . MPLFLOAT , i , t a g + 5 , MPI_COMM_WORL D) ;

305 MPLSen d (& d i s l o r t i o n , 1 , MPLFLOAT , i , t a g + 6 , MPLCOMNLWORL D) ;

306 I

307]

308

309 i t e r a t i o n + + ;

310 1

311 whil e 1 fab s ((f l o a t l (d i s t o r t i o n _ a n t - d i s t o r t i o n)) > THRESHOL D) ;

312

313 cou t « " i te r a t i o n ^" « i t e r a t i o n « end l ;

314 I

315

316 / * show centroids * /

317 voi d show_centro id s ()

318 (

319 in t 1 . j ;

320

321 p r i n t f (" C e n t r o i d s ^ \ n ") ;

322 fo r (i=0 ; i<NC; i+ +)

323 {

324 fo r (j = 0 ; j < T ; j + +)

325 i f (1 = 0 1 1 1 = (NC- 1)) pr int f (••%2.2f„" , c e n t r o i d s [i) . fea t (j]) ;

326

327 i f (i = 0 I I i = (NC- I)) pr in t f (" \n ") ;

328 I

329 I

330

331 / * show samples */

332 voi d show_sample s ()

333 (

334 in t i , j ;

335 fo r (i=0 ; i<NSR; i+ +)

336 I

337 fo r (j = 0 ; j < T ; j + +) pr in t f ("%f„ " , sample s [i] . fea t (j J) ;

338 p r i n t f ("„c=%d\n" , sample s [i] c en tro i d) ;

131

339]

340 I

341

342 / * save centroids * /

343 void s a v e _ c e n t r o i d s ()

344 I

345 in t I ,J ;

346 FILE . f p ;

.U7

348 fp = fopen (" c e n t r o i d s " , "wb") ;

349 /* printf (" Saving centroids \n"):./

350 fo r (i = 0 ; i < N C ; i + +)

351 (

352 for (j = 0 ; j < T . j + +)

353 f p r i n t f (f p , "%f,", c e n t r o i d s [1] . f e a t [j]) ;

354 f p r i n t f (f p , " \ n " 1;

355)

3.56 fc los e (f p) ;

357 1

358

359

360 / * main */

361 main (i n t argc , c h a r . a r g v [])

362 I

363 cha r . fnamei n ;

364

365 t i m e _ t tempol , tempo2 , tempo3 ;

366 f l o a t t empo;

367

368 fnamein=argv [1] ;

369

370 M P L l n i l (&argc , i a r g v) ;

371 MPLComm.size (MPl_COMM_WORLD, & t o t a l n o d e s 1;

372 MPLComm.rank (MPIJDOMM_WORLD, &mynodc) ;

373

374 / * load samples */

375

376 NSR=load_samples (fnamein) ;

377

378 t ime (&tempol) ;

379

380 if (mynode = mas te r I

381 I

382 if 1 N S R = —1) [p r i n t f (" e r r o r „ = ^ l o a d i n g „ s a m p l e . ^ f U e \ n ") ; e x i t (1) ;]

383 p r i n t f ("NSR„=„'W\n" , NSR) ;

384 t ime (&tempo2) ;

385 tempo = d i f f t i m e { tcmpo2 , tempol) ;

386 cou t « endl « " L o a d i n g ^ t i m e (s) ; ^" « tempo « e n d l ;

387)

388

389 c e n t r o i d _ i n i t () ;

390

391 su m = 0 ;

392

393 if (mynode 1= mas te r)

394 (

395 s t a r t v a l = (NSR. (mynode-1) / (t o t a l n o d e s — 1)) + 1 ;

396 e n d v a l = NSR* (mynode) / (t o t a l n o d e s — 1) ;

397)

398

132

399

400

401

4(12

403

404

405

406

407

408

409

410

411

412

/+ vector quantisation . /

v q O ;

if (mynode = mas te r)

I
//show_centraids I) ;

s a v e _ c e n t r o i d s () ;

t ime (&lempo3) ;

tempo = d i f f t i m e (tempo3 , tempo2) :

p r i n t f (" \ n E x e c u t i o n ^ t i m e (s) ;^%.3f \ n " , tempo) ;

I

M P L F i n a l i z e () ;

r e t u r n 0 ;

2 Th e Island k-means Implementatio n

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

The following is the implementation of the Island Ic-means we have implemented and used

througcut the document and experiments. It is an evolution of the orignial code presented

above.

.&
*& Module Name: vector quantisation based on k—means algorithm

*& Author: Alceu Britto

.<J Eric Thibodeau (12-2007)

*& Revisions : (2007) ET: optimized using bias /ipp/mkl libraries

.& (2008) ET: MPI re-implementation

(£ (28 — 11—2008) ET: No need to send distc as a vector, we only need &

<5 the summed distortion.' distc (Kj becomes distc &

(6 Communications are now fused into a single call &

i n c l u d e <mpi. h>

^ i n c l u d e < s l d i o . h >

i n c l u d e < c t y p e . h >

i n c l u d e < s t r i n g . h >

i n c l u d e < s t d l i b . h >

i n c l u d e <ma th .h>

#inclu<le < s y s / t i m e . h >

//ttifdef USE_BIAS

i n c l u d e " c b l a s . h "

//Mendif

// Don't change this unless you re—adjust the loops manually

((d e f i n e UNROLL_LEVEL 4

d e f i n e THRESHOLD 0 0 0 1

f d e f i n e T 4 7 /* size of the feature vector * /

d e f i n e DEBUG

long N S _ l o t a l = — I ; / / number of samples (total), derived from DB_size or argv[3]

l o n g NS ; / / number of samples (local), is NS_total/totalnodes

l o n g K ; / / K in K—Means. this is argv[2]

133

35 t ypede f f l o a t s a m p l e ; / * Although this might seem convoluted . we can just change this tine

36 to double and all computations now use doubles instead of float • /

37 sample . s a m p l e s ; / * Ptr to table of all training samples * /

38 in t V_sz = s i z e o f (sample) * T; //Vector Size

39 f l o a t • c e n t r o i d s ; /* Ptr to table of centroids • /

40 f l o a t * c _ c n t ; / * keeps the count of samples per centroid • /

41 f l o a t *c_sum; /* sum of all samples of a class , it is used to update the centroids * /

42 in t c_sum_s ize ; / - Used to supersize c_sum to also contain c_sum + c_cnt + distc*/

43

44 / / MPI vars:

45 // MPl_Status status:

46 in t mynode;

47 in t to ta lnode s ;

48

49

50 / * distance function —

51 - Euclidean Distance is used, which also means it is assumed that the "T" elements tn the

52 * multi—dimention vectors are orthogonal . meaning that the information they carry about the

53 * data does not overlap. In a perfectly orthogonal system, if one of the variables of the T

54 • dimention is varied, all other values aren't affected. This is seldom the case tn practice

55 • though we try to get as close as possible. It 's defintion:

56 *

57 * distance = sqrt ((Vect I — Vect2)'^2) « essentially Pythagorean Theorem on a dimention > 2

58 •

59 . . /

60 # i fde f USE.BLA S

61 / / bias temp vectors:

62 f loa t V d i s t [T] ;

63

M i n l i n e f loa t df (cons t f loa t * ^ l , cons t f loa t * v2) (

65 cblas.scop y (T , v l , I , Vdist , 11 ;

66 c b l a s _ s a x p y l T , - I O , v 2 , l , V d i s t , l) ;

67 retur n cblas_snrm 2 (T , Vdis t , 1) :

68]

69

70 #els e

71

72 # i fnde f UNROL L

73 //float df(sample .vl , sample *v2)

74 i n l i n e f loa t dftcons t f loa t *v l , cons t f loa t »v2)

75 [

76 f loa t sum=0,0 ;

77 in t i ;

78

79 / / The use of pow(i.2) gives faster code but has little or no

80 / / impact when —03/—02 is used

81 / / We replace sum=sum+(vl [i]—v2 [i j) .(vl j i]—v2[i]):

82 / / with sum+=pow((vl [ij-v2l i I) .2):

83 f o r (i = 0 ; i<T ; i++)

84 # i f n d e f POW

85 s u m + = (v l [i] - v 2 [i]) *(vl [i l - v 2 [i]) ;

86 #els e

87 sum+=pow((v l [i] - v 2 (i]) , 2) ;

88 #endi f //POW

89

90 retur n s q r t f (s u m) ;

91 I
92 # e l s e //UNROLL

93 i n l i n e f l o a t d f t c o n s t f l o a t « v l , cons t f l o a t *v2)

94 I

134

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

12.'̂

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

f l o a t sum = 0 . 0

f l o a t suml^O.O

f l o a t sum2 = 0 0

f l o a t sum3 = 0 0

int 1=0;

if (T>UNROLL_LEVEL)[

for (; 1 <(T-UNROLL_LLVEL) , i+=UNROLL_LEVEL 1 [

sum + = (v l [i] - v 2 [i]) . (v l [i] - v 2 [i])

suml+=(v l [i + l) - v 2 [i + l l) . (v l [i + l] - v 2 [i + l])

sum2+=(vl [i + 2] - v 2 [i + 2)) . (v l [i + 2] - v 2 [i + 2] l

sum3+=(vl [i + 3) - v 2 [i + 3 1) . (v l [i + 3 1 - v 2 [i + 3])

I
)
i f (THJNROLL.LEVEL)

f o r i ; i<T ; i++)

sum+=(vl (i] - v 2 (i]) . (v l [i] - v 2 [1 1) ;

sum+=suml ,

sum+=sum2;

sum+=sum3 ;

return s q r t f (s u m > ;

)

e n d i f //UNROLL

e n d i f //USE_BLAS

/ * load samples

* The current loading of samples is technically optimal but not ideal for a

* parallel implementation since the last node might end up with potentially

* no compulation. This is less than desireable.

* • * /

i n t] o a d _ s a m p l e s (c h a r * f i l e n a m e)

{

FILE * f p ;

in t l o a d e d :

in t n ;

int n_w = 0; / / worker's n count

int n_w_adj=0; / / count after adjusting with n%w
fp=fopen (f i lename , " r ") ;

f seek (fp , 0 . SEEK.END);

n = f t e l l (f p) / V_sz;

f s e e k (f p . 0 . SEEK_SET);

i f ((N S _ l o i a l < 0) II (N S _ I o t a l > n))

NS_ to t a l = n;

i f d e f DEBUG

if (mynode = 0)

p r i n t f (" T o t a I ^ n u m b e r ^ o f „ s a m p I e s ^ = „ % l d \ n " , N S _ t o t a l) ;

e n d i f //DEBUG

// Normal chunck size

n_w = n_w_adj = N S _ t o t a] / t o t a l n o d e s ;

n_w_adj ; / / off—by—one: C indices start al 0. otherwise we end up with overlap

// The overflow is assigned to the last node (not good if NS_total/totalnodes />>> totalnodes)

i f (mynode = t o t a l n o d e s — I)

n_w_adj = n_w + N S _ t o t a l % t o t a l n o d e s ;

135

155 / / Checkin logic:

156 // printf ("Node %/, Start/End: %d/%d\n", mynode. mynode*n_w. mynode.n_w+n_w_adj) :

157 s a m p l e s = (s a m p l e *)mal loc (n_w_adj * V_sz) ;

158 if (! s a m p l e s) [

159 p r i n t f ("Memory .^al l o c a t i o n ^ e r r o r ^ w h i l e ^ l o a d i n g J) B . \ n") ;

160 go to l o a d _ e r r o r ;

161)

162

163 / • load samples • /

164 / / seeking to the chunck this proces will start loading at: and toad...

165 f s e e k (f p , mynode.n_w»V_sz , SEEK.SET) ;

166 loaded = f read (samples , V_s z , n_w_adj , fp) ;

167 if (l o a d e d != n .w_ad j I [

168 pr i n t f ("An,_^error ,^occured,^while ,_, loading^the J) B ; ^ ") ;

169 p r i n t f (" L o a d e d ^ ^ ^ a n d ^ e x p e c t e d ^ ^ ' i d " , loaded , n_w_adj) ;

170 go to mem_er ror ;

171 1

172

173 r e t u r n loaded ;

174

175 l o a d _ e r r o r :

176 f ree (samples) ;

177 mem_er ror ;

178 f c l o s e (f p l ;

179 r e t u r n - 1 ;

180 1

181

182 / • centroid initialization — it selects the first set of centroids

183 .

184 * The original parallel code would search through localy loaded samples

185 • and selec samples as initial centroids using a modulo operator + node#-

186 * We wilt use the actuatl DB and keep the same initialisation as witht the

187 * sequential code reading the samples from the DB

188 . . /

189 void c e n t r o i d _ i ni t (c o n s t c h a r . f name)

190 [

191 FILE . f p ;

192 in t i ;

193 in t x ;

194 / / To get the same mit as the sequential version:

195 / / . V_5z because we're dealing with file pointers (bytes):

196 in t s k i p = (N S _ t o t a l - l l / K * V _ s z ;

197

198 fp = fopen (fname , " r ") ;

199

200 f o r (i = 0 , x=0; i<K; i + + , x+=skip I (

201 f s e e k (f p , x , SEEK_SET) ;

202 f r c a d (& c e n l r o i d s [T . i] , s i z e o f (sample) , T, fp) ;

203 / / memcpy((void *) ¢ raids [T* i I. (void *) &samptes [T.x} . T * sizeof (float)):

204 I

205 f c l o s e (f p) ;

206 1

207

208 / *

209 * This version of the init is meant to be used if the DB is not stored locally.

210 * The advantage is that only 1 process does the slow 10 and the broadcasts the loaded

211 . data using an optimized (we hope, MPI implementation dependant) broadcast ro all nodes.

212 * Cost model:

213 • C_sz = "sizeof (centroids) " = T.K. sizeof (float)

214 • TJoad = BWJo/C_sz + T_broadcast_K

136

215 * T_broadcast_K = 7-_comm_inir + BW^net/C_sz + C_sz/Mm*TJCU

216 * T_comma_init = ?3.1028 (usee) (average latency from hpcc—I.0.0

217 * MrU=ISOO (ethernet)

218 * T_IGU=l5ms (empirical, mpptest)

219 * * /

220 voi d c e n t r o i d _ i n i t _ n e t (const cha r *fname)

221 [

222 i f I mynode = 0)

223 c c n t r o i d_i ni t (fname) ;

224 M P L B c a s K c e n t r o i d s , T.K, MPLFLOAT. 0 , MPLO0MM_WORLD) ;

225]

226

227 / • classification of a sample taking into account each centroid */

228 i n l i n e in t c e n t r o i d _ d e f (unsigne d in t i d x , f l o a t . d)

229 [

230 r e g i s t e r in t i , c c n t r o i d = — 1 ;

231 f l o a t mdist , d i s t ;

232

233 m d i s l = 9 9 9 9 9 9 9 9 9 . ;

234 //tndist-pow(2 ,32): // we start off very far...

235

236 for t l = 0 ; i < K ; I++I [

237 d i s t = d f (& c e n t r o i d s [i*T] , &samples (i d x . T]) ;

238 i f (d i s t < m d i s t) [

239 mdi5t = d i s t ;

240 c e n t r o 1 d = 1 ;

241 1

242 1

243

244 . d = m d i s t ;

245 retur n c e n t r o i d ;

246 I

247

248 / . it calculates new centroids * /

249 voi d m e a n _ v e c t o r ()

250 (

251 in t i ,c , o f f s e t ;

252

253 f o r (c = 0 ; c < K , c + + l [

254 i f (c _ c n t [c] != 0)[

255 o f f s e t = c . T ;

2.56 i =0;

257 # i f d e f UNR0LL2

258 i f (T>UNROLL_LEVEL)(

259 f o r t ; i <(T-UNROLL_LEVEL) ; i+=UNROLL_LEVEL) [

260 c e n t r o i d s [of f se t + i] = c_sum [o f f s e t + i] / c _ c n l [c] ;

261 c e n t r o i d s (of f s e t + i + 1] = c_sum [off se t + i + 1] / c _ c n l [c] ;

262 c e n t r o i d s [off s e t + i+2] = c_sum[off se t + i + 2] / c _ c n t [c] ;

263 c e n t r o i d s [o f f s e t + i+3] = c_sum [off se t + i + 3] / c _ c n t [c] ;

264 1

265)
266 if (TWNROLL_LFVEL) / / Compiler eliminates this if T and UNROLLJLEVEL are static

267 # e n d i f

268 f o r t ; i<T ; i++)

269 c e n t r o i d s [o f f s e t + i] = c_sum[o f f s e t + i] / c _ c n t [c] ;

270)

271)

272 1

273
274 / • It calculates the mean distortion */

137

275 i n l i n e f l o a t a v c r a g e _ d i s t o r t i o n (sample *x)

276 (

277 in t i ;

278 f l o a t a d ;

279 a d = 0 ;

280 fo r (i = 0 ; i < K ; i++)

281 a d + = x [i] ;

282

283 retur n a d / N S _ t o t a l ;

284]

285

286 void v q O

287 (

288 in t i t e r a t i o n = l ;

289 in t c e n t r , j , 1 ;

290 f l o a t d i s l o r t i o n = 0 ;

291 f l o a t d i s l o r t i o n _ a n t ;

292 //float distc IK j .

293 f l o a t d i s t c ;

294 f l o a t d i s t ;

295 in t sPos ; / / used to compute the correct "to next sample" offset

296 in t cPos ; / / used to compute the correct "to next centroid" offset

297 / / Custom data type for combined communications:

298

299 / * if (mynode == 0)

300 printf ("Take it easy, I am c lassify ing . . .\n"):

301 . /

302 d i s t o r t i o n =0:

303 i t e r a t i o n = l ;

304

305 do (

306

307 / * Initialization */

308 d i s t c = 0 . ;

309 for (i = 0 ; i < K ; i++) [

310 //distc li] = 0.:

311 c _ c n t [i] = 0 ;

312 f o r (j = 0 ; j < T ; j + + l

313 c_sum[i . T + j [= 0 . ;

314)

315 / / Using memset is actually longer than the above I

316 / * memset (distc , 0, sizeof (sample)*K) :

317 memset(c_sum , 0, sizeof (sample).K*T):

318 memset(c_cnt , 0, sizeof (sample)*K) : * /

319

320 j = 0 ;

321 / / The core, we pass the entire DB here:

322 fo r (j = 0 ; j<NS; j++1 I

323

324 c e n t r = c e n t r o i d _ d e f (J , & d i s t) ;

325 // distc I centrl+=dist:

326 d i s t c + = d i s t ;

327 c _ c n t (c e n t r]++;

328 / / we do the multiplication , out of the loop:

329 / / Type of thing a compiler should optimize.

330 s P o s = j . T ;

331 c P o s = c e n l r * T ;

332 1=0;

333 # i f d e f UNR0LL2

334 if (T>UNROLL_LEVEL) (

138

3.35

336

337

338

339

340

341

342

343

344

345

346

.347

348

349

350

351

3.52

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

for (; i <(T-UNROLL_LEVEL) , i +=UNROLL_LEVEL) [

c_sum[cPos+ i]+=sample s [sPos + i] ;

c_sum [c P o s + i + l] + = s a m p l e s [s P o s + i + l] ;

c_sum [cPos + i +2]+= samples [sPos + i + 2] ;

c_sum [cPos+i +3]+= samples [sPos + i + 3] ;

1
I
if (TOUNROLL.LEVEL I / / Compiler eliminates this if T and VNROLL_LEVEL are static

f o r i ; i<T ; i++)

c_sum [cPos + i]+= samples [sPos + i] ;

/ / Put distc into end of c_suin 'mega—vector ' (offset from malioc)

c_sum [c_sum_s ize —I] = d i s t c ;

MPI_Allreduce(MPl_lN_PLACE, c_sum , c _ s u m _ s i z e . MPLFLOAT, MPLSUM, MP1_CX)MM_W0RLD)

d i s t c = c_sum [c_sum_size — 1];

/ * After this point, all vars are in the same state as if they had been computed

by a single process

./
m e a n _ v e c t o r () ;

di s t o r t i o n _ a n t = di s t o r t i o n ;

//distoriion = average_distortiont distc);

d i s t o r t i o n = d i s t c / N S _ t o t a l ;

i t e r a t i o n ++;

i f d e f DEBUG

if (mynode = 0)

p r i n t f (•TWOJ.AST^VERA(3E^DlSTORTIONS:^DI=%f„^>D2=%f„„Dif=%f„\n" , \

d i s t o r t i o n _ a n t , d i s t o r t i o n , fabs ((doub le) (d i s t o r t i o n _ a n t — d i s t o r t i o n))) ;

e n d i f

I whi le (f a b s ((d o u b l e) (d i s t o r t i o n _ a n t - d i s t o r t i o n)) > THRESHOLD);

/ * show centroids * /

void 5 h o w _ c e n t r o i d s ()

[

i n t i , j ;

p r i n t f (" C e n t r o i d s ^ \ n ") ;

f o r t i = 0 ; i < K ; I++1 [

for (J = 0 ; j < T ; j ++)

i f (i = = 0 II i = = (K - l)) p r i n t f (" % 2 , 2 f „ " , c e n t r o i d s [i .T+j]) ;

i f (i = 0 II i = = (K - l)) p r i n t f (• • \ n ") ;

)

/ • show samples * /

void s h o w _ s a m p l e s ()

1
int 1 , j ;

for (i = 0 , i < N S , 1++I [

for (j = 0 ; j < T ; j + +)

p r i n t f ("%f„" . s amples [NS.T+i)) ;

p r i n t f (" ^ c = N / A \ n ") ;

1
)

139

395 / * save centroids */

396 void s a v e . c e n t r o i d s (c o n s t c h a r , ou tname)

397 I

398 i n t 1 , j ;

399 FILE * f p ;

400

401 fp = fopen (outname , "wb") ;

402 /» print f (" Saving centroids \n");*/

403 fo r t i = 0 , i < K ; i++) [

4<H for (J = 0 ; j < T ; j + + l

405 f p r i n t f i f p , "%f , " , c e n t r o i d s [i .T+j]) ;

406 f p r i o t f (f p , " \ o ") ;

407 I

408 f c l o s e (f p) ;

409 I

410

411

412 / • mam * /

413 i n t m a i n (i n t a r g c , c h a r . a r g v [])

414 [

415 c h a r . f n a m e i n ;

416 s t r u c t t i m e v a l t e m p o l , tempo2 ;

417 s t r u c t t imezone i z p ;

418 doub le t empo;

419

420 MPI_ ln i t (&a rgc , & a r g v) ;

421 MPl_Comm_size(MPl_COMM_WORLD, & t o t a l o o d e s) ;

422 MPl_Comm_rank(MPI_COMM_W0RLD, &mynode);

42.1

424 fnamein=argv [1] ;

425 K = a i o i (a r g v [2]) ;

426 if I a rgc > 3) [

427 N S _ t o t a l = a t o i (argv [3]) ;

428 if (mynode = 0)

429 p r i n t f (" Li mi t i n g _ s a m p l e ^ l o a d „ t o „ % l d ^ s a m p l e s . \ n " , N S _ t o t a l) ;

430 1

431

4.̂ 2 g e t t i m e o f d a y t & t e m p o l ,&tzp) ;

433

4.̂ 4 / / we merge c_sum , c_cnt and dist into a single vector to simplify communication consolidations

435 c_sum_siz e = (K - T + K + 1) ;

436 c_sum = (f l o a t *l malioc (c_sum_s ize * s i z e o f (sample)) ;

437 c_cn l = &c_sum[K*T]; / / beyond last element of c_sum is start of c_cnt

438 //c_sum = malloclK. sizeof (sample I'T) ;

439 //c_cnt = malioc (K - sizeof (sample)) ;

440 c e n t r o i d s = (f l o a t *) ma l loc (K * s i z e o f (sample)*T) ;

441

442 # i f d e f DEBUG

443 if (mynode==0)

I 11 p r i n tf ("K: _%d\nT :,_,?td\ nc_sum_s ize ;^%d\n(c_cnt^—^c_sum) : ^ ^ \ n" , K , T , c _ s u m _ s i z e ,(c_cnt — c_sum)) ;

445 # e n d i f

446

447 if (!c_sum 11 [c e n t r o i d s II ! c_cn t) [

I Ig p r i n t f (" malloc,_^failurc,_,on,_,c_sum^ l l , ^cen t ro ids ,_ , l l ,_ , c_cn t ,_ , ! \n") ;

449 e X i I (1) ;

4.50 1

451

452 / * load samples */

453

454 N S = l o a d _ s a m p l e s (fnamein) :

140

455 if (N S = - 1) [

4.56 p r i n t f (" \nNode„%d : , jERROR^=„loading„sample„f il e \ n " .mynode) ;

457 M P L F i n a l i z e O ;

458 e X11 (I) ;

459)

460 # i f d e f DEBUG

461 p r i n t f ("NS^=^%lu\n" , NS) ;

462 Vendif

463

464 / . cent raids initialization . /

46.̂ c e n t r o i d _ i n i t (fnamein) ;

466 // cent raid _init_net (fnamein) ;

467

468 /* vector quantisation . /

469 vq(I ;

470

471 / / show_centroids () ;

472

473 # i f d e f DEBUG

474 g e t t i m e o f d a y (& t e m p o 2 ,&tzp) ;

475 tempo = (doub l e) (t empo2 , t v _ s e c — tempol . t v _ s e c) + (((doubl e) (tempo2 , tv_usec—tempol . t v _ u s e c)) / 1 0 0 0 0 0 0) ;

476

477 p r i n t f (" Tota l^ t ime^for^node^*S<i^(s) : ^ ^ 3 f \ n " , mynode, t e m p o) ,

478 #endi f

479 i f (mynod e = 0)

480 s a v e _ c e n t r o i d s (" c e n t r o i d s ") ;

481

482 M P L F i n a l i z e O ;

483 retur n 0 ;

484 I

BIBLIOGRAPHY

[1] Allan, Benjamin A. et Robert Armstrong et al.: A Component Architecture for
High-Performance Scientific Computing. International Journal of High Performance
Computing Applications, 20(2) : 163-202, 2006, ISSN 1094-3420.

[2] Bell, R., A.D. Malony et S. Shende: ParaProf: A Portable, Extensible, and Scalable
Tool for Parallel Performance Profile Analysis. LECTURE NOTES IN COMPUTER
SCIENCE, pages 17-26, 2003.

[3] Browne, S., J. Dongarra, N. Gamer, G. Ho et P. Mucci: A Portable Programming
Interface for Performance Evaluation on Modern Processors. International Journal of
High Performance Computing Applications, 14(3): 189-204, 2000.
http://hpc.sagepub.com/cgi/content/abstract/14/3/18 9.

[4] Bruck, J., Ching Tien Ho, S. Kipnis, E. Upfal et D. Weathersby: Efficient algorithms for
all-to-all commimications in multiport message-passing systems. Parallel and Distributed
Systems, IEEE Transactions on, 8(11) :1143-1156, Nov 1997, ISSN 1045-9219.

[5] Castain, R.H., TS. Woodall, D.J. Daniel, J.M. Squyres, B. Barrett et G.E. Fagg: The
Open Run-Time Environment (OpenRTE) : A transparent multicluster environment for
high-performance computing. Tome 24, pages 153-157, 2008.
http://www.sciencedirect.com/science/article/B6V06-4NH7DWP-
l/2/25a630 4 83957 69febdl3ce3f2a9545b8.

[6] Chang, J., Ming Huang, J. Shoemaker, J. Benoit, Szu Liang Chen, Wei Chen, Siufu Chiu,
R. Ganesan, G. Leong, V. Lukka, S. Rusu et D. Srivastava: The 65-nm 16-MB Shared On-
Die L3 Cache for the Dual-Core Intel Xeon Processor 7100 Series. Solid-State Circuits,
IEEE Journal of, 42(4) :846-852, April 2007, ISSN 0018-9200.

[7] Che, Shuai, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Sheaffer et Kevin
Skadron: A performance study of general-purpose applications on graphics processors
using CUDA. J. Parallel Distrib. Comput., 68(10): 1370-1380, 2008, ISSN 0743-7315.

[8] Desnoyers, M. et M. Dagenais: Lo-w disturbance embedded system tracing with linux
trace toolkit next generation, rapport technique, Ecole Polytechnique de Montreal, 2006.
http://Itt.polymtl.ca/files/papers/celf2006-desnoyers.pdf.

[9] Dongarra, J., K. London, S. Moore, P. Mucci et D Terpstta: Using PAPI for Hardware
Performance Monitoring on Linux Systems. Dans Conference on Linux Clusters : The
HPC Revolution, page 11, National Center for Supercomputing Applications (NCSA),
University of Illinois, June 2001.

http://hpc.sagepub.com/cgi/content/abstract/14/3/18
http://www.sciencedirect.com/science/article/B6V06-4NH7DWPl/2/25a630
http://www.sciencedirect.com/science/article/B6V06-4NH7DWPl/2/25a630
http://Itt.polymtl.ca/files/papers/celf2006-desnoyers.pdf

142

[10] Dongarra, J., A.D. Malony, S. Moore, P. Mucci et S. Shende: Performance
Instrumentation and Measurement for Terascale Systems. LECTURE NOTES IN
COMPUTER SCIENCE, pages 53-62, 2003.

[11] Dongarra, Jack: The Impact of Multicore on Math Software and Exploiting Single
Precision Computing to Obtain Double Precision Results. Parallel Processing, 2006.
ICPP 2006. International Conference on, page 19, Aug. 2006, ISSN 0190-3918.

[12] Dongarra, Jack, Kevin London, Shirley Moore, Philip Mucci, Daniel Terpstra, Haihang
You et Min Zhou: Experiences and Lessons Learned with a Portable Interface to
Hardware Performance Counters. Parallel and Distributed Processing Symposium,
International, 0 :6, 2003, ISSN 1530-2075.

[13] Forman, George et Bin Zhang: Linear speed-up for a parallel non-approximate recasting
of center-based clustering algorithms, including K-Means, K-Harmonic means, and EM.
Rapport technique 93, HP Laboratories, 2000. Mean square error (MSE); K-harmonic
means (KHM); Expectation-maximization (EM); Multidimensional data clustering;
Center-based clustering.

[14] Foster, Ian: Designing and Building Parallel Programs. Addison-Wesley Publishing Co.,
fevrier 1995, ISBN 0201575949.

[15] Franchetti, F , S. Krai, J. Lorenz et C.W. Ueberhuber: Efficient Utilization of SIMD
Extensions. Proceedings of the IEEE, 93(2) :409^25, Feb. 2005, ISSN 0018-9219.

[16] Garcia, V., E. Debreuve et M. Barlaud: Fast k nearest neighbor search using GPU.
Computer Vision and Pattern Recognition Workshops, 2008. CVPRW '08. IEEE
Computer Society Conference on, pages 1-6, June 2008.

[17] Garg, P.: Investigating coverage-reliability relationship and sensitivity of reliability
to errors in the operational profile. Dans Software Testing, Reliability and Quality
Assurance, pages 21-35, Dec 1994.

[18] Gleixner, T. et D. Niehaus: Hrtimers and Beyond : Transforming the Lima Time
Subsystems. Dans Proceedings of the Ottawa Linux Symposium, tome 1, page 16, juillet
2006.

[19] GOEDEKER, Adolfy HOISIE Stephan: Performance Optimization of Numerically
Intensive Code. Siam, 2001, ISBN 0-89871-484-2.

[20] Goto, Kazushige et Robert A. van de Geijn: Anatomy of high-performance matrix
multiplication. ACM Trans. Math. Softw., 34(3) :l-25, 2008, ISSN 0098-3500.

[21] Graham, Susan L., Peter B. Kessler et Marshall K. Mckusick: Gprof: A call graph
execution profiler. Dans SIGPLAN '82 : Proceedings of the 1982 SIGPLAN symposium

143

on Compiler construction, pages 120-126, New York, NY, USA, 1982. ACM, ISBN 0-
89791-074-5.

[22] Gropp, W. et E. Lusk: Reproducible measurements of MPI performance characteristics.
DuroPVM/MPI'99, septembre 1999.

[23] Hennessy, John L. et David A. Patterson: Computer Ar-chitecture : A Quantitative
Approach. The Morgan Kaufmann Series in Computer Architecture and Design. Denise
E. M. Penrose (The Morgan Kaufmann Series in Computer Architecture and Design),
fourth edition edition. May 2007, ISBN 13 : 978-0-12-370490-0 10 : 0-12-370490-1.
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike0 9-
20\& path=ASIN/1558605967.

[24] Hofstee, Peter et Michael Day: Hardware and software architectures for the CELL
processor. Hardware/Software Codesign and System Synthesis, 2005. CODES-i-ISSS
'05. Thu-d lEEE/ACM/IFIP International Conference on, pages 1-1, Sept. 2005.

[25] Huang, JC et T. Leng: Generalized loop-unrolling : a method for program speedup. Dans
1999 IEEE Symposiiun on Application-Specific Systems and Software Engineering and
Technology, 1999. ASSET'99. Proceedings, pages 244-248, 1999.

[26] Huck, Kevin A. et Allen D. Malony: PerfExplorer : A Performance Data Mining
Framework For Large-Scale Parallel Computing. Dans SC '05 : Proceedings of the
2005 ACM/IEEE conference on Supercomputing, page 41, Washington, DC, USA, 2005.
IEEE Computer Society, ISBN 1-59593-061-2.

[27] Huck, Kevin A., Allen D. Malony, Robert Bell et Alan Morris: Design and
Implementation of a Parallel Performance Data Management Framework. Dans ICPP
'05 : Proceedings of the 2005 International Conference on Parallel Processing, pages
473^82, 2005.
http://csdl2.computer.org/persagen/DLAbsToc.jsp?
resourcePath=/dl/proceedings/\&toc=comp/proceedings/icpp/
20 05/2380/00/2 380toc.xml\&DOI=10.110 9/ICPP.2005.2 9.

[28] Hughes, P. et B. Conway: The AMD Opteron Northbridge Architecture. IEEE Micro,
27(2): 10-21, March-April 2007, ISSN 0272-1732.

[29] K. Huck, A. Malony S. Shende et A. Morris.: TAUg : Runtime Global Performance
Data Access using MPI. Dans Springer (redacteur): EuroPVM/MPI Conference, numero
LNCS 4192, pages 313-321, September 2006.

[30] Kahle, J.: The Cell Processor Architecture. Microarchitecture, 2005. MICRO-38.
Proceedings. 38th Annual IEEE/ACM International Symposium on, pages 3-3, 12-16
Nov. 2005.

http://www.amazon.ca/exec/obidos/redirect?tag=citeulike0
http://csdl2.computer.org/persagen/DLAbsToc.jsp

144

[31] Kaspersky, Kris: Code Optimizatoin : Effective Memory Usage. A-LIST, 295 East
Swedesford Rd., 2003, ISBN 1-931769-24-9.

[32] Keltcher, Chetana N., Kevin J. McGrath, Ardsher Ahmed et Pat Conway: The AMD
Opteron Processor for Multiprocessor Servers. IEEE Micro, 23(2) :66-76, 2003,
ISSN 0272-1732.

[33] Kufrin, R.: PerfSuite : An Accessible, Open Source Performance Analysis Environment
for Linux. Dans Presented at The 6th International Conference on Linux Clusters : The
HPC Revolution, tome 151, page 05, 2005.

[34] Lindlan, K.A.; Cuny J.; Malony A.D.; Shende S.; Mohr B.; Rivenburgh R.; Rasmussen
C : A Tool Framework for Static and Dynamic Analysis of Object-Oriented Software with
Templates. Supercomputing, ACM/IEEE 2000 Conference, pages 4 9 ^ 9 , Nov 2000,
ISSN 1063-9535.

[35] Luszczek, P., J.J. Dongarra, D. Koester, R. Rabenseifner, B. Lucas, J. Kepner, J.
McCalpin, D. Bailey et D. Takahashi: Introduction to the HPC Challenge Benchmark
Suite, avril 2005.
http://repositories.cdlib.org/lbnl/LBNL-57 4 93.

[36] Moore, M., R. Wisniewski, R. Yaghmour, K. Zanussi et T. Dagenais: Efficient and
Accurate Tracing of Events in Linux Clusters, rapport technique, Ecole Polytechnique
de Montreal, May 11-14 2003.

[37] Moore, S., D. Cronk, F. Wolf, A. Purkayastha, P Teller, R. Araiza, M.G. Aguilera
et J. Nava: Performance Profiling and Analysis of DoD Applications Using PAPI
and TAU. Users Group Conference, (10.1109/DODUGC.2005.50) :394-399, 2005,
ISSN 10.1109/DODUGC.2005.50.

[38] Mucci, P.J., S. Browne, C. Deane et G. Ho: PAPI: A Portable Interface to Hardware
Performance Counters. Dans Proc. Dept. of Defense HPCMP Users Group Conference,
pages 7-10, 1999.

[39] Mueller, S.M.; Jacobi C.; Oh H. J.; Tran K.D.; Cottier S.R.; Michael B.W.; Nishikawa
H.; Totsuka Y ; Namatame T.; Yano N.; Machida T.; Dhong S.H.: The vector floating-
point unit in a synergistic processor element of a CELL processor. Computer Arithmetic,
2005. ARITH-17 2005. 17th IEEE Symposium on, pages 59-67, 27-29 June 2005,
ISSN 1063-6889.

[40] Munson, J.C.: A software blackbox recorder. Dans Aerospace Applications Conference,
1996. Proceedings., 1996 IEEE, tome 4, pages 309-320 vol.4, Feb 1996.

[41] Nataraj, Aroon, Alan Morris, Allen D. Malony, Matthew Sottile et Pete Beckman:
The Ghost in the Machine : Observing the Effects of Kernel Operation on Parallel

http://repositories.cdlib.org/lbnl/LBNL-57

145

Application Performance. Dans SC '07: Proceedings of the 2007 ACM/IEEE conference
on Supercomputing, pages 1-12, New York, NY, USA, 2007. ACM, ISBN 978-1-59593-
764-3.

[42] Ridge, D., D. Becker, P. Merkey et T. Sterling: Beowulf: harnessing the power of
parallelism in apile-of-PCs. Aerospace Conference, 1997. Proceedings., IEEE, 2 :79-91
vol.2. Feb 1997.

[43] S. Britto Jr, Alceu de, Paulo S. L. de Souza, Robert Sabourin, Simone R. S. de Souza
et Dibio L. Bogres: A Low-Cost Parallel K-Means Algorithm Using Cluster Computing.
rapport technique, Ecole-de Technologic Superieure, aout 2003.

[44] S. Britto Jr, Alceu de, Robert Sabourin, Bortolozzi F. et Suen C.Y: Recognition of
Handwritten Numeral Strings Using a Two-Stage Hmm-Based Method, septembre 2003.

[45] Shahbahrami. A., B. Juurlink et S. Vassiliadis: Performance Impact of Misaligned
Accesses in SIMD Extensions. Dans Proc. 17th Armual Workshop on Circuits, Systems
and Signal Processing (ProRISC2006), Veldhoven, The Netherlands, November, pages
23-24, 2006.

[46] Shende, Sameer S. et Allen D. Malony: The Tau Parallel Performance System.
International Journal of High Performance Computing Applications, 20(2) :287-311,
2006.
http://hpc.sagepub.com/cgi/content/abstract/20/2/287.

[47] Slogsnat, David, Alexander Giese et Ulrich Briining: A versatile, low latency
HyperTransport core. Dans FPGA '07 : Proceedings of the 2007 ACM/SIGDA 15th
international symposium on Field programmable gate arr'ays, pages 45-52, New York,
NY, USA, 2007. ACM, ISBN 978-1-59593-600-4.

[48] Sottile, Matthew Joseph: A measurement and simulation methodology for parallel
computing performance studies. These de doctorat. University of Oregon, Albuquerque,
NM, USA, 2006, ISBN 978-0-542-73568-4. Adviser-David A. Bader.

[49] Spear, W., A. Malony, A. Morris et S. Shende: Integrating TAU with Eclipse : A
Performance Analysis System in an Integrated Developmertt Environment. LECTURE
NOTES IN COMPUTER SCIENCE, 4208 :230, 2006.

[50] Stallings, WiUiam: Computer Organization and Architecture : designing for
performance. Alan Apt (Prentice-Hall Inc.), fifth edition edition, 2000, ISBN 0-13-
081294-3.

[51] Shiltz, J., N. Aravamudan et D. Hart: We Are Not Getting Any Younger: A New Approach
to Time and Timers. Dans Linux Symposium, pages 219-232, 2005.

http://hpc.sagepub.com/cgi/content/abstract/20/2/287

146

[52] Tam, S., S. Rusu, J. Chang, S. Vora, B. Cherkauer et D. Ayers: A 65nm 95W Dual-Core
Multi-Threaded XeonA@ Processor with L3 Cache. Solid-State Circuits Conference,
2006. ASSOC 2006. IEEE Asian, pages 15-18, Nov. 2006.

[53] Turner, D. et X. Chen: Protocol-dependent message-passing performance on linux
clusters. Dans Proceedings of the IEEE International Conference on Cluster Computing.,
pages 187-194, septembre 2002.

[54] Wadleigh, Kevin R. et Isom L. Crawford: Software Optimization for High Performance
Computing. Helwett-Packard Professinal Books. Prentice Hall PTR, 2000, ISBN 0-13-
017008-9.

[55] Weaver, V.M. et S.A. McKee: Can hardware performance counters be trusted. Dans
Workload Characterization, 2008. IISWC 2008. IEEE International Symposium on, pages
141-150,2008.

[56] Worringen, J.: Pipelining and overlapping for MPI collective operations. Dans Local
Computer Networks, 2003. LCN '03. Proceedings. 28th Annual IEEE International
Conference on, pages 548-557, octobre 2003.

[57] Zhang, Bin, Meichun Hsu et George Forman: Accurate Recasting of Parameter
Estimation Algorithms Using Sufficient Statistics for Efficient Parallel Speed-Up
Demonstrated for Center-Based Data Clustering Algorithms, rapport technique, HP
Laboratories Palo Alto, juillet 2000.

[58] Zhang, Yufang, Zhongyang Xiong, Jiali Mao et Ling Ou: The Study of Parallel K-Means
Algorithm. Intelligent Control and Automation, 2006. WCICA 2006. The Sixth World
Congress on, 2 :5868-5871, 2006.

