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FOREWARD  

 

This PhD thesis was written between September 2008 and March 2011, under the supervision 

of Professor François Brissette at the École de technologie supérieure, Université du Québec. 

The main objective was to couple climate models and statistical downscaling methods for 

quantifying the hydrologic impacts of climate change for a Canadian river basin (Quebec 

Province). It is a part of the project “Impact of climate change in Canadian River Basins and 

adaptation strategies for the hydropower industry”, supported by the Natural Science and 

Engineering Research Council of Canada (NSERC), Hydro-Québec, Manitoba Hydro and the 

Ouranos Consortium on Regional Climatology and Adaptation Climate Change. This 

research focused on approaches to generate climate projections that could be used for impact 

studies, with an emphasis on hydrology. 

 

This PhD thesis is structured by means of articles. Eight articles were published in or 

submitted to scientific journals with peer review. The PhD student is the first author and the 

thesis supervisor is the main co-author for all the articles. These articles are presented in 

Chapters 1-8, comprising the main body of the thesis. Additional results are presented in the 

appendix. An “Introduction” section presents the research background, the main scientific 

problems and the objectives, as well as a general methodology. A literature review follows. 

A brief conclusion drawn from the articles and some recommendations for further research 

are presented following the articles. The bibliography at the end of the thesis contains all the 

references used in the course of completing this thesis. 
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IMPROVEMENTS OF STATISTICAL DOWNSCALING METHODS AND 
EVALUATION OF THEIR CONTRIBUTIONS TO THE UNCERTAINTY OF 

HYDROLOGIC IMPACTS IN A CHANGING CLIMATE  
 

Jie CHEN  
 

ABSTRACT 

 
The most important impacts of climate change will likely be linked to water resources. 
Hydropower companies throughout the world increasingly realize that they must deal with 
future climate change. To evaluate future impacts, realistic climate projections that 
encompass the uncertainty linked to climate change are needed. Given the relatively large 
biases of General Circulation Model (GCM) outputs, particularly for precipitation and to a 
lesser extent for temperatures at the regional scale, it is necessary to perform some post-
processing to improve these global-scale models for hydrologic and water resource 
management studies. The two most commonly used approaches, dynamical and statistical 
downscaling, each have significant advantages and drawbacks. It is not a simple task to select 
one over the other.  

 
This work aims at coupling global and regional climate models and statistical downscaling 
into a new hybrid method by merging stochastic weather generators with climate models that 
quantify the hydrological impacts of climate change for a Canadian river basin. The 
performances of stochastic weather generators were first improved. A statistical downscaling 
method combining attributes of both stochastic weather generator and change factor (CF) 
methods was then developed. Several aspects of statistical downscaling were also evaluated. 
Moreover, global uncertainty and the downscaling uncertainty were outlined in quantifying 
the hydrological impacts of climate change.  

 
A spectral correction method and integration scheme resulted in a weather generator that can 
accurately produce the low-frequency variability of precipitation and temperatures, as well as 
the auto- and cross-correlations of and between maximum and minimum temperature (Tmax 
and Tmin).  

 
A large number of atmospheric predictors were used to assess the ability of statistical 
methods to downscale precipitation to the station scale. The downscaling of daily 
precipitation occurrence was mostly unsuccessful with both linear regression methods and 
using discriminant analysis, even though the latter was much better. Explained variances 
were very low for regression-based downscaling of precipitation, although results were 
consistently improved as the climate model resolution was made progressively finer. Even 
when going to the 15-km resolution Canadian Reginal Climate Model (CRCM), the 
predictors still explained less than 50% of the total site precipitation variance. Despite the 
added complexity, the weather typing approach was not much better at downscaling 
precipitation than the approaches without classification.  
 



XII 

The weather generator was used as a downscaling tool to downscale outputs of the CRCM 
(45km scale) to catchment scale. Its performance was further compared with the CF method 
for quantifying the hydrological impacts of climate change. Both downscaling methods 
suggested increases in annual and seasonal discharges for the 2025-2084 period. The weather 
generator-based method predicts more increase in spring (AMJ) discharge, as well as smaller 
increases in summer-autumn (JASON) and winter (DJFM) discharges than the CF method. 
Moreover, both methods indicated increases in mean annual and seasonal low flows, while 
there are considerable differences between their predictions.  

 
All downscaling methods including dynamical and statistical approaches suggested general 
increases in winter discharge (November - April) and decreases in summer discharge for the 
2071-2099 horizon. Winter flows would be especially large for regression-based methods, 
which also predicted the largest temperature increases in autumn and winter. Peak discharges 
would appear earlier for all downscaling methods, but their timing varies according to the 
downscaling method.  
 
A GCM was consistently a major uncertainty contributor when quantifying the hydrological 
impacts of climate change. However, other sources of uncertainty such as the choice of 
downscaling method and natural variability, as represented by GCM ensemble runs, also had 
a comparable and even larger uncertainty affect depending on the criteria. For example, the 
downscaling method was the largest source of uncertainty with respect to spring discharge 
magnitude, annual low flow and peak discharge; while GCM initial conditions (which were a 
member of the ensemble runs) dominated the uncertainty for the time to peak discharge and 
the time to the end of flood. Uncertainties linked to greenhouse gase emission scenarios 
(GGES) and hydrological model structure also played an important role in hydrological 
predictions, but these were somewhat less than those related to GCMs and the downscaling 
method. Uncertainties due to the hydrological model parameters had less impact than those 
of the other five sources. 

 
Overall, combining Regional Climate Models (RCMs) and statistical downscaling in a 
unified approach appeared to have significant advantages in quantifying the hydrological 
impacts of climate change. Any management and adaptation of water resource systems 
should consider the effects of future climate change, as well as all sources of uncertainty.  
 
 
Key words: climate change, hydrology, weather generator, downscaling, climate model, 
uncertainty 



 

IMPROVEMENTS OF STATISTICAL DOWNSCALING METHODS AND 
EVALUATION OF THEIR CONTRIBUTIONS TO THE UNCERTAINTY OF 

HYDROLOGIC IMPACTS IN A CHANGING CLIMATE 
 

 Jie CHEN  
 

 RÉSUMÉ 

 
Les plus importants impacts dus aux changements climatiques seront vraisemblablement 
liées aux ressources en eau. Les producteurs d’hydroélectricité réalisent maintenant qu’ils 
doivent tenir compte de ces changements. Pour évaluer adéquatement les impacts futurs, il 
existe un besoin pour des projections climatiques réalistes qui encadrent l’incertitude liée aux 
changements climatiques. Compte tenu des biais liés aux simulations des modèles 
climatiques, et ce particulièrement pour les précipitations, il est nécessaire de traiter les 
sorties de ces modèles pour les besoins d’études d’impacts en hydrologie ou en gestion des 
ressources hydriques. Les deux approches couramment utilisées à cet effet (approches de 
mise à l’échelle dynamique et statistique) ont chacune leurs avantages et inconvénients, et il 
est difficile de les départager.  
 
Ce travail vise à coupler les sorties de modèles climatiques globaux et régionaux avec une 
approche  statistique de mise à l’échelle basée sur un générateur stochastique de climat, et de 
quantifier les impacts hydrologiques des changements climatiques sur deux bassins versants 
québécois (Manicouagan 5 et Ceizur). La performance d’un générateur stochastique de 
climat fut d’abord améliorée et une approche hybride combinant le générateur de climat et la 
méthode de mise à l’échelle ‘des deltas’ a été développée.  L’incertitude liée au choix d’une 
méthode de mise à l’échelle a été quantifiée dans le cas d’études hydrologiques.  
 
Une approche de correction spectrale et un schéma intégré pour la génération des 
températures a résulté en un générateur de climat capable de reproduire la variabilité 
interannuelle des précipitations et températures, de même que l’autocorrélation et les 
corrélations croisées des températures maximales et minimales. 
 
Le générateur de climat ainsi amélioré a été utilisé comme outil de mise à l’échelle sur deux 
bassins versants, et a été comparé à la méthode des deltas pour la quantification des impacts 
de changements climatiques. Les deux méthodes suggèrent des augmentations de débits 
annuels et saisonniers pour la période 2025-2084. L’approche du générateur stochastique 
suggère toutefois des augmentations de débits plus grandes au printemps et plus faibles l’été.  
 
Un grand nombre de prédicteurs atmosphériques a été utilisé pour valider l’habileté des 
approches de régressions linéaires, couramment utilisées. La mise à l’échelle de l’occurrence 
des précipitations a résulté en un faible taux de succès.  Le pourcentage de variance expliqué 
pour la mise à l’échelle des quantités de précipitation est très bas, et ce pour l’ensemble des 
stations testées et modèles climatiques utilisés. Bien que globalement médiocre, la 
performance de ces approches augmente avec l’augmentation de la résolution des modèles 
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climatiques utilisées (300km, 45km, 15km). Une étape additionnelle de classification en 
types de climat n’a pas amélioré la performance de manière significative. 
 
Toutes les méthodes de mise à l’échelle utilisées/développées dans le cadre de cette étude 
prévoient une augmentation des débits hivernaux et une diminution des débits d’été pour la 
période 2071-2099. L’augmentation des débits hivernaux est particulièrement grande pour 
les méthodes basées sur les régressions linéaires, qui prédisent aussi les plus grandes 
augmentations de température pour l’automne et l’été. La pointe de crue printanière est 
devancée pour toutes les méthodes testées mais les résultats varient en fonction de la 
méthode. 
 
Les modèles climatiques contribuent à l’incertitude globale du changement climatique de 
façon majeure peu importe le critère utilisé. Toutefois, d’autres sources d’incertitude telles 
que les approches de mise à l’échelle et la variabilité naturelle (telle que représenté par les 
simulations d’ensemble des modèles climatiques) peuvent contribuer à l’incertitude globale 
de manière similaire (et même plus) dépendant du critère choisi.  Par exemple, le choix d’une 
méthode de mise à l’échelle est la principale source d’incertitude pour la pointe de la crue 
printanière et les débits d’étiage, alors que la variabilité naturelle domine l’incertitude pour 
les dates d’occurrence de la crue printanière et de la fin de la crue. L’incertitude liée au 
scénario d’émission et au modèle hydrologique est aussi importante, mais moins que les 
sources mentionnées ci-haut. L’incertitude liée au choix de paramètres du modèle 
hydrologique était la moins importante pour tous les critères choisis.  
 
De façon globale, la combinaison de méthodes dynamique et statistique de mise à l’échelle 
présente des avantages dans la quantification des impacts hydrologiques du changement 
climatique, notamment dans la détermination de l’incertitude future.   
 
 
Mots clés: changement climatique, hydrologie, générateur de climat, mise à l’échelle, 
modèle climatique, incertitude 
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INTRODUCTION 

 

The average surface air temperature of Earth rose more than 0.7 °C (1.3°F) over the last 

century. Significantly, it has spiked dramatically in recent years, reaching a new high in 1998 

(Henson, 2008). This warming has disrupted the climate system and water cycle process. 

Whitfield and Cannon (2000) showed that reductions in summer flows, increases in winter 

precipitation and earlier spring flows were observed in Quebec, Canada. The 

Intergovernmental Panel on Climate Change (IPCC, 2007) stated that global mean 

temperature will likely increase between 1.8-4.0 °C by the end of this century. The larger 

increase in temperature will have further discernible impacts on continental water resources 

(IPCC, 2007, Srikanthan and McMahon, 2001; Xu and Singh, 2004). Small changes in 

precipitation frequency and/or quantity can result in distinct effects on the mean annual 

discharge for a watershed (Risbey and Entekhabi, 1996; Whitfield and Cannon, 2000; Muzik, 

2001). Changes in catchment hydrology will then affect the performance and management of 

water systems, since hydropower generation is modulated by water resources. Hydropower 

companies throughout the world increasingly realize that they must deal with climate change. 

In Canada alone, hydropower is a multi-billion dollar industry, especially for the Province of 

Quebec, which was the world’s fourth largest producer of hydropower with 7% of the 

international production (Quebec Government, 2004). Moreover, the increasing occurrence 

of more intense climate events like very severe storms may also increase environmental 

stresses. In this context, water resource management will face even more challenges. 

Management will need to be adjusted based not only on the natural variability of past climate 

but also in relation to future climate changes, because the climate observations in recent 

decades no longer fall within the variability of past climate due to the increase of greenhouse 

gas emissions (IPCC, 2007).  

 

To better evaluate the impacts of future climate change will require the development of high 

quality climate projections and the best possible estimation of uncertainty. Even through 

General Circulation Models (GCMs) were developed to predict future climate, their spatial 

and temporal resolutions are too coarse to assess the catchment and site-specific impacts of 
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climate change (Leavesley, 1994; Hostetler, 1994). Therefore, for impact studies it is 

necessary to perform some post-processing to improve upon these global-scale models. This 

post-processing is called downscaling and it addresses the scale difference between global 

models and the local scale at which impact studies are generally conducted. There are two 

widely used downscaling techniques: dynamic downscaling and statistical downscaling. 

Dynamic downscaling is developed based on dynamic formulations using the initial and 

time-dependent lateral boundary conditions of GCMs to achieve a higher spatial resolution 

by nesting Regional Climate Models (RCMs) (Caya and Laprise, 1999). The spatial 

resolution of an RCM is much improved over that of a GCM, but it is still too coarse for 

small or medium-size watersheds and site-specific impact studies. Moreover, RCMs are only 

available for limited regions, due to their large computational cost (Solman and Nunez, 

1999). To address these problems, statistical downscaling methods have been proposed. 

Statistical downscaling involves linking the states of some variables representing a large 

scale (GCM or RCM grid scale, predictors) and the states of some variables representing a 

much smaller scale (catchment or site scale, predictands). A range of statistical downscaling 

approaches have been developed, and can be classified into three categories: transfer 

function, weather typing and weather generator (Kidson and Thompson, 1998; Mearns et al., 

1999a, b; Murphy, 1999; Wilby et al., 2000). The main strengths of statistical downscaling 

over dynamic downscaling are the low computational cost and the relative ease of 

application. Thus, it is often used as a complementary technique to downscale GCM outputs. 

However, statistical downscaling approaches also have drawbacks. For example, the 

probable lack of a stable relationship between predictors and predictands in the transfer 

function method, as well as in the weather typing scheme (Chen et al., 2011a). In addition, 

the adjustment of transition probabilities of precipitation occurrence, such as a wet day 

following a wet day (P11) and a wet day following a dry day (P01) is still a challenge for the 

weather generator based method.  

 

Over the past decade, stochastic weather generators were widely used in climate change 

studies as a downscaling tool. Daily stochastic weather generators such as Weather 

GENerator (WGEN; Richardson, 1981; Richardson and Wright, 1984), CLImate GENerator 
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(CLIGEN; Nicks et al., 1995) and Weather Generator Ecole de Technologie Superieure 

(WeaGETS; Chen et al., 2011b) can rapidly produce multiple-year outputs at a daily time 

scale, which can be used to quantify the impacts of climate change (Wilks, 1992, 1999a; 

Pruski and Nearing, 2002; Zhang et al., 2004, Zhang, 2005; Zhang and Liu, 2005) , 

especially for extreme climate events. This is achieved by perturbing the parameters of the 

weather generator according to the relative changes projected by a climate model. One 

significant problem with current stochastic weather generators is the underestimation of the 

monthly and inter-annual variances, because they do not take into account the low-frequency 

component of climate variability (Buishand, 1978; Johnson et al., 1996; Wilks, 1989, 1999b; 

Gregory et al., 1993; Katz and Parlange, 1993, 1998; Hansen and Mavromatis, 2001).  

 

Since each downscaling method has its unique advantages and drawbacks, it is not a trivial 

task to select one over the other. This work aims at combining climate models and statistical 

downscaling in a new hybrid method by merging stochastic weather generator with climate 

models for quantifying the hydrologic impacts in a changed climate. To proceed along these 

lines, weather generators were first improved in their capacity to generate precipitation, 

maximum temperature (Tmax) and minimum temperature (Tmin). Several aspects of 

statistical downscaling were then evaluated, as well as the global uncertainty involved in 

quantifying the hydrological impacts of climate change. This thesis also looks at the 

uncertainty associated with the choice of a downscaling method. 

 

This thesis consists of five parts: an introduction, literature review, main body, general 

conclusions and recommendations. The introduction covers the background and scientific 

problem and outlines the objectives. The methodology and structure of the thesis are also 

summarized in the introduction. The literature review presents relevant scientific articles 

published on stochastic weather generators and statistical downscaling. Hydrological 

modeling in climate change studies and the uncertainty of hydrological impact studies under 

climate change are also described in the literature review. The main body of the thesis 

consists of eight published or submitted research articles. These are presented in chapters 1 to 

8. General conclusions are summarized after the presentation of the main body. Finally, the 
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limitations of this research and recommendations for further studies are described. The 

appendices contain additional unpublished results.  

 

The eight articles presented in Chapters 1-8 can be divided into five sections: 1: stochastic 

weather generator improvements (Chapters 1-3); 2: statistical downscaling (Chapters 4-5); 3: 

downscaling of weather generator parameters (Chapter 6); 4: downscaling uncertainty 

(Chapter 7); and 5: global uncertainty of hydrologic impacts (Chapter 8). The links between 

the chapters and the flow chart of this research are presented in Figure 0.1.   

 

Section 1: Stochastic weather generator improvements (Articles 1-3):  

Since the reliability of downscaled projections depends on the performance of the weather 

generator, the first step involved improvements to weather generators. These are presented 

separately in three articles (Chapters 1-3 in this thesis). (1) A spectral correction method is 

presented to deal with the low-frequency problem for precipitation. The power spectra were 

computed using Fast Fourier Transforms (FFT). Low-frequency variability was modeled 

based on the observed power spectra of monthly and annual precipitations. Generation of 

synthetic monthly and yearly time series was achieved by assigning random phases for each 

spectral component. The link to daily parameters was established through linear functions. 

(2) Two widely used weather generators (WGEN and CLIGEN) were integrated into a hybrid 

method to solve the correlation problems for Tmax and Tmin. The above-mentioned spectral 

correction method was further applied to correct the inter-annual variability for Tmax and 

Tmin.  (3) A stochastic weather generator incorporating the aforementioned improvements 

was developed and made available to the scientific community as an open source code. First-

order and higher-order (second and third-orders) Markov chains were used to produce 

precipitation occurrence. Two distributions (exponential and gamma) were provided to 

generate precipitation amount. The conditional and unconditional schemes derived from 

CLIGEN and WGEN were made available to simulate Tmax and Tmin. 

Section 2: Statistical downscaling (Articles 4-5):  

Precipitation, a critical element of hydrology studies that is also much more difficult to 

downscale than temperature, was the only variable evaluated in this section. Several aspects 
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of the statistical downscaling of precipitation were examined, and are presented by two 

articles (Chapters 4-5 in this thesis). The first (Chapter 4) includes the following aspects: (a) 

downscaling of precipitation using a statistical downscaling model (SDSM), (b) downscaling 

of precipitation occurrence using a discriminant analysis based model, and downscaling of 

precipitation amount using a stepwise linear regression method (DASR), (c) evaluation of the 

improvement in statistical downscaling using RCM variables as predictors over GCM, based 

on an SDSM-like model, and (d) an assessment of the efficiency of the weather typing 

approach in downscaling precipitation. The second (Chapter 5) evaluates the reliability of the 

regression-based method in downscaling precipitation for North America. The precipitation 

occurrence and amount were downscaled by a discriminant analysis-based model and a 

stepwise linear regression approach, respectively. The percentages of correct wet and dry day 

classifications and the percentages of explained variance for both calibration and validation 

were used as criteria to assess the reliability of statistical downscaling across North-America. 

 

Section 3: Downscaling of weather generator parameters (Article 6):  

This section presents a new hybrid statistical downscaling method combining the attributes of 

both stochastic weather generator and change factor (CF) methods, using RCM-projected 

precipitation and temperatures as predictors. The parameters of the weather generator were 

modified to take into account variations projected by a climate model. These variations were 

based on the CF approach. For example, take the probability of precipitation occurrence P01. 

For various reasons, the P01 obtained from climate model data would not match the P01 

measured at a station. Thus, similarly to the CF method, the difference between the P01 

obtained from climate models in present and future climates was applied to the observed 

data. The same method was also applied to the probability of precipitation occurrence, P11, 

to monthly mean precipitation and monthly Tmax and Tmin. The variance of monthly 

precipitation, Tmax and Tmin were adjusted using a proportional method. The hydrological 

impacts of climate change were then quantified based on the simulation of a hydrological 

model for a Canadian river basin (Quebec Province) for the 2025-2084s period (centered by 

30-year moving averages from 2011-2099).  
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The downscaling of weather generator parameters using atmospheric circulation indices, 

GCM and RCM variables as predictors was also investigated. Since weak corrections were 

obtained between atmospheric circulation indices and four precipitation parameters (P01, 

P11, unconditional probability of daily precipitation occurrence and seasonal precipitation), 

as well as between GCM (RCM) predictors and precipitation parameters, this downscaling 

experiment was unsuccessful. Thus, there was no article written for this work. The 

correlations between atmospheric circulation indices and precipitation parameters calculated 

for 16 stations dispersed across North America, as well as correlations between GCM (RCM) 

predictors and precipitation parameters are presented in appendix A to give a reference for 

further studies.  

 

Section 4: Downscaling uncertainty (Article 7):  

The uncertainty of six downscaling methods was investigated in the context of quantifying 

the hydrological impacts of climate change for a Canadian river basin (Quebec province). 

These methods regrouped dynamical and statistical approaches, including the CF method, the 

bias correction method and the above-mentioned weather generator-based approach. Future 

(2070-2099) hydrological regimes simulated with a hydrological model were compared to 

the reference period (1970-1999) using the average hydrograph, annual and seasonal mean 

discharge and peak discharge as criteria. 

 

Section 5: Global uncertainty of hydrologic impacts (Article 8):  

This section considered global uncertainty by combining results from an ensemble of six 

GCMs, two greenhouse gas emission scenarios (GGES), five GCM initial conditions, four 

downscaling techniques, three hydrological model structures and ten sets of hydrological 

model parameters. Each climate projection was equally weighted to predict the hydrology on 

a Canadian river basin (Quebec Province) for the 2081-2100 horizon. Future (2081-2100) 

hydrological regimes simulated with three hydrological models were compared to the 

reference period (1971-1990) using mean annual discharge, mean seasonal discharge, annual 

low flow (95%), peak discharge, time to the beginning of flood, time to peak discharge and 

time to the end of flood as criteria.  
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Figure 0. 1 Flow chart of this work. 
 

 

 





 

LITERATURE REVIEW  

This session first introduces the research progress of stochastic weather generators in 

producing daily precipitation and temperature. Then, dynamical and statistical downscaling 

are summarized, especially a range of statistical downscaling including transfer function, 

weather generator and weather typing approaches are highlighted. The hydrological 

modeling in climate change studies and global uncertainty of hydrological impacts studies 

are briefly described next.  

 

1) Stochastic weather generators  

With the growing use of physically based response models like hydrological and agricultural 

models, there is frequently a requirement of weather generators to generate long climate 

series as inputs of those models to simulate the long term effects of climate variability. The 

generated climate series are expected to be statistically similar to those of the actual data. The 

most appealing property of weather generators is that they provide a complete record for any 

desired period of time. Moreover, they are able to generate daily weather data for ungauged 

areas through interpolating model parameters from adjacent gauged sites (Baffaut et al., 

1996). Recently, weather generators have been used as downscaling tools to produce 

multiple-year climate change scenarios at daily time scale for assessing the impacts of 

climate change (Semenov & Barrow, 1997; Wilks, 1992, 1999a; Pruski and Nearing, 2002; 

Zhang et al., 2004; Zhang, 2005; Zhang and Liu, 2005; Minville et al., 2008). Over last three 

decades, several stochastic weather generators have been developed, such as Weather 

Generator (WGEN) (Richardson, 1981; Richardson and Wright, 1984), USCLIMATE 

(Hanson et al., 1994), Climate Generator (CLIGEN) (Nicks et al., 1995), Climate Generator 

(ClimGen) (Stockle et al., 1999) and Long Ashton Research Station-Weather Generator 

(LARS-WG) (Semenov and Barrow, 2002).  

 

1.1) Precipitation models  

Most weather generators separately deal with the precipitation occurrence and intensity 

processes. The precipitation occurrence is separated into two weather states: wet and dry. 
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The daily precipitation intensity process involves the simulation of nonzero precipitation 

amounts.  

 

1.1.1) Precipitation occurrence models 

Models of rainfall occurrence include two main types which are based on Markov chains and 

alternative renewal process. 

 

The simplest and widely used statistical model for simulating daily precipitation occurrence 

is the first order, two-state Markov model (Katz, 1977; Richardson, 1981; Wilks, 1989, 1992; 

Nicks et al., 1995), which can be defined in terms of two transition probabilities, a wet day 

following a dry day (P01) and a wet day following a wet day (P01):  

 

P01 = Pr{precipitation on day t | no precipitation on day t-1}              (1a) 

 

P11 = Pr{precipitation on day t | precipitation on day t-1}                  (1b) 

 

Since precipitation either occurs or does not on a given day, the two complementary 

transition probabilities are P00 = 1-P01 and P10 = 1-P11. The first-order Markov model is 

adequate for generating wet spells (Wilks, 1999b; Zhang and Garbrecht, 2003; Chen et al., 

2009). However, it underestimates the long dry spell in some regions (Buishand, 1978; 

Guttorp, 1995; Racsko et al., 1991; Semenov and Porter, 1995; Wilks, 1999b; Chen et al., 

2009).   

 

A generalization of first-order Markov model is to consider higher-order Markov model like 

second- and third-order (Chin, 1977; Gates and Tong, 1976; Wilks, 1999b). If a deficiency of 

first-order Markov model in simulating the precipitation occurrence is the underestimation of 

long dry spells, the higher-order models may have positive effects. However, one problem of 

higher-order Markov model used in climate change studies is that too many parameters 

require to be determined. Due to first-order model adequately simulates the wet spells, Stern 

and Coe (1984) and Wilks (1999b) suggested using hybrid order Markov chains, which use 
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first-order Markov model for wet spells, but allow higher-order model for dry sequences. 

Thus, the requirement of determined parameters is significant decreased from 2k to k+1, 

where k is the order of Markov model. Wilks (1999b) examined different precipitation 

occurrence models including first-, second-, third- and hybrid order Markov models, 

Negative Binomial and Mixed Geometric distributions in reproducing wet and dry spell 

lengths. The results showed that every precipitation occurrence model reasonably well 

represented the wet spells. However, all Markov model underestimated the longest dry spells, 

but high-order Markov models performed better than first-order model, and spell-length 

models were better than Markov model.  

 

In the alternating renewal process, the precipitation time series is considered as a sequence of 

alternating wet and dry spells of varying length, rather than simulating precipitation 

occurrence day by day. Different distributions may then be used to fit the wet and dry spells 

independently. Those distributions normally include the logarithmic series (Green, 1964), 

truncated negative binomial distribution (Buishand, 1978), truncated geometric distribution 

(Roldan and Woolhiser, 1982) and semi-empirical distribution (Semenov and Barrow, 2002). 

Foufoula-Georgiou and Lettenmaier (1987) used a Markov renewal model for simulating 

precipitation occurrences, where the time between precipitation occurrences was sampled 

from two different geometric distributions and the transition from one distribution to the 

other was governed by a Markov chain. Smith (1987) introduced a family of models termed 

Markov-Bernoulli processes consisting of a sequence of Bernoulli trials with randomized 

success probabilities described by a first-order, two-state Markov chain to generate 

precipitation occurrences. Semenov and Barrow (2002) used the semi-empirical distributions 

for the lengths of wet and dry day spells in LARS-WG. The generated lengths derived from 

the semi-empirical distribution which fitted by observed series. The results showed that every 

single series from the observed data was well reproduced by semi-empirical distributions. 

The comparison of LARS-WG with WGEN demonstrated that semi-empirical distribution is 

better than first order Markov model (Semenov et al., 1998). However, the ability of the 

alternating renewal process method depends on the parameter estimation, thus, a long 
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observed time series (normally more than 25 years) is needed. Moreover, it is susceptible to 

poor parameter estimates in arid regions (Roldan and Woolhiser, 1982).  

 

1.1.2) Precipitation intensity models 

The other important process of stochastic weather generator is the generation of daily 

precipitation intensity on wet days. A number of models have been proposed to generate 

daily precipitation intensity given the occurrence of a wet day. The simplest one is the 

exponential distribution (Todorovic and Woolhiser, 1974; Richardson, 1981) which has a 

probability density function given by  

 

xexf λλ −=)(                                                                 (2) 

 

where x is daily precipitation intensity and λ is the distribution parameter (equal to the 

inverse of the mean). 

 

The Weibull probability distribution was also used to simulate the daily precipitation 

intensity (Stockle et al., 1999; Kevin et al., 2005). For a wet day the precipitation amount is 

generated by 

 

αβα
αβ

α )(1)( xexxf −−=
                                                    (3) 

 

where α and β are the two distribution parameters.  

 

One other widely used distribution is two-parameter Gamma distribution (Jones et al., 1972; 

Goodspeed and Pierrehumbert, 1975; Coe and Stern, 1982; Richardson and Wright, 1984; 

Woolhiser and Roldan, 1982), the probability density function for this distribution is  

 

( )
)(

]exp[
)(

1

αβ
ββ α

Γ
−=

− xx
xf                                                  (4) 



13 

where α and β are the two distribution parameters, and Г(α) indicates the gamma function 

evaluated at α. 

 

The mixed Exponential distribution was also used in some researches (Woolhiser and 

Pegram, 1979; Woolhiser and Roldan, 1982, 1986), with a probability density function of 

 

)exp(
1
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2211 ββ

α
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α xx
xf

−−+−=                                          (5) 

 

This distribution is a probability mixture of two one-parameter exponential distributions. The 

parameter α is the mixing probability, which determines the weights given to the two 

exponential distributions with scale parameters β1 and β2.  

 

A three-parameter skewed normal distribution was also used to generate the daily 

precipitation intensity (Nicks and Lane, 1989, Nicks et al., 1995).  
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where, λ is standard normal deviate; μ, s and g are the mean, standard deviation and skew 

coefficient of daily precipitation intensity, respectively. 

 

Besides distributions describe above, a truncated power of normal distribution (Bardossy and 

Plate, 1992; Hutchinson et al., 1993), kappa distribution (Chapman, 1994, 1998) and semi-

empirical distribution (Semenov and Barrow, 2002) were also used to simulate the daily 

precipitation intensity.  

 

Numerous studies were conducted to evaluate, compare and improve the ability of weather 

generators in simulating the daily precipitation intensity (Johnson et al., 1996; Headrick and 

Wilson, 1997; Semenov et al., 1998; Wilks, 1999b; Zhang and Garbrecht, 2003; Kevin et al., 
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2005; Elshamy et al., 2006; Zhang et al., 2007; Kou et al., 2007; Chen et al., 2008; Chen et 

al., 2009). Chapman (1994, 1998) compared five models including the exponential, gamma, 

kappa, mixed exponential and skewed normal distributions in simulating daily precipitation 

intensity. The results showed that the best one is the skewed normal distribution, followed by 

mixed exponential, kappa and gamma distributions, and the worst is the exponential 

distribution. Wilks (1999b) compared the ability of independent and identically gamma 

distribution, common-α gamma distribution and mixed exponential distribution. The results 

demonstrated that mixed exponential distribution was the best one, next was the common-α 

gamma distribution and then the identically gamma distribution. Those comparisons indicate 

that more complex distributions may be more capable in simulating daily precipitation 

intensity, although most of them are satisfactory in producing the means of daily, monthly 

and annual precipitation amounts. However, weather generators less well reproduce extreme 

precipitation events (Buishand, 1978; Guttorp, 1995; Racsko et al., 1991; Semenov and 

Porter, 1995), because most of these distributions are not “heavy tailed”. Wilks (1999b) 

examined the ability of the identically gamma distribution, common-α gamma and mixed 

exponential distributions in reproducing the observed extremes (largest daily precipitation in 

each month) of precipitation amount and demonstrated that the common-α gamma 

distribution is better than identically gamma distribution, and the mixed exponential 

distribution was the best one in matching the observed extremes. However, the distribution of 

extreme precipitation can vary quite drastically on a regional basis and it is difficult to find a 

distribution that is suitable for all climate zones. 

 

The other problem with weather generators is that they underestimate low-frequency 

variance (Buishand, 1978; Johnson et al., 1996; Wilks, 1989, 1999b; Gregory et al., 1993; 

Katz and Parlange, 1993, 1998; Hansen and Mavromatis, 2001), because they do not take 

into account the low-frequency component of climate variability.  

 

The low-frequency variability of precipitation depends on the daily precipitation occurrence 

and intensity processes. Wilks (1999b) compared a diverse range of precipitation occurrence 

and intensity models in preserving low-frequency variability. The results demonstrated that 
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none of models and combinations achieved complete recovery of the observed variance in 

monthly total precipitation, although increasingly complex component models did succeed in 

reducing the overdispersion between the synthetic and observed variability. This was 

unsatisfactory because although the complexity of the models was increased, it still did not 

take into account the low-frequency component of climate variability. These simple 

stationary models (whose statistics do not change from month to month and from year to 

year) cannot fully reproduce the variability of a nonstationary climate, which therefore makes 

the introduction of some degree of nonstationarity into these models appropriate. 

 

Hansen and Mavromatis (2001) attempted to improve inter-annual variability characteristics 

by perturbing monthly parameters using a low-frequency stochastic model, and evaluated the 

effectiveness of the low-frequency component on low-frequency variability of the generated 

monthly climate at 25 locations in the continental USA. The results indicated that for 

monthly precipitation, the low-frequency correction reduced total error and eliminated 

negative bias of inter-annual variability, and reduced the number of station-months with 

significant differences between observed and generated inter-annual variability, but it over-

represented the variability of precipitation frequency. 

 

Dubrovsky et al. (2004) applied the monthly generator (based on a first-order linear 

autoregressive model) to fit the low-frequency variability based on the daily WGEN-like 

weather generator, Met & Roll. The results demonstrated that conditioning the daily 

generator on a monthly generator has the most positive effect, especially on the output of a 

hydrological model, and the variability of the monthly streamflow characteristics was better 

simulated. However, this method still could not reproduce the observed standard deviations 

and autocorrelations of monthly and annual precipitations exactly, because it did not 

specifically consider the inter-annual variability, thus indicating that schemes for correcting 

monthly variability have limited effect at the annual scale. 

 

Wang and Nathan (2007) also provided a method for coupling daily and monthly time scales 

in the stochastic generation of rainfall series. The key feature of the method involves first 
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generating two similar time series, one preserving key statistical properties at a finer time 

scale and the other at a coarser time scale. The finer time scale series is then adjusted to make 

it consistent with the coarser one. This method appears to perform well in that it satisfactorily 

preserved some key statistical properties at daily, monthly and even yearly scales. However, 

it was only tested for the coefficient of variation on Australian weather data. Other statistics, 

such as the autocorrelation of annual precipitation, are important for some applications. 

 

1.2) Temperature models 

Generation of maximum temperature (Tmax) and minimum temperature (Tmin) are the usual 

main components of the weather generator and it is very important for climate change 

impacts studies.   

 

Comparatively to precipitation, temperatures are much simpler to produce, since they often 

approximately follow a normal distribution. However, daily Tmax and Tmin are correlated 

with each other and this correlation varies depending on whether the day is dry or wet. Thus, 

the preservation of these correlations is an important criterion to assess the performance of a 

weather generator.  

 

Richardson (1981, 1984) applied a first-order linear autoregressive model to generate the 

residual series of Tmax and Tmin in WGEN. This approach is good at reproducing the lags 0 

and 1 correlations, but the lags of greater than one day could not be well preserved 

(Richardson, 1981). CLIGEN uses two random numbers to generate the standard normal 

deviate. The second number for one day is reused as the first number for the next day (Nicks 

et al., 1995). But this method underestimated the correlations; especially the day-to-day 

persistence (Zhang, 2004; Chen et al., 2008). In order to simplify the procedure, LARS-WG 

uses constant lag 1 auto-correlations for Tmax and Tmin and pre-set cross-correlation 

between them. These simplifications apparently are unable to exactly preserve the 

correlations, especially the long-term persistence. Moreover, the generated Tmax should be 

larger than Tmin on any given day in order to consistent with the real climate system. 

However, the Tmax and Tmin are generated independently by some models such as WGEN 
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and version 5.111 of CLIGEN. It results in several cases that the Tmin is larger than Tmax. 

Thus, a range check is imposed in some weather generators. This procedure may perturb the 

statistics even autocorrelation of Tmin, if there are large numbers of cases that the generated 

Tmin are larger than Tmax. But in the latest version of CLIGEN (version 5.22564), the Tmin 

is generated conditionally with the Tmax, the range check is unnecessary. 

 

Similarly to precipitation, weather generators also underestimate the low-frequency variance 

of Tmax and Tmin (Dubrovsky et al., 2004) because they do not explicitly take into account 

aspects of low-frequency component of climate variability. Dubrovsky et al. (2004) applied 

the monthly generator (based on a first-order linear autoregressive model) to adjust the low-

frequency variability of generated Tmax and Tmin based on a daily WGEN-like weather 

generator, Met & Roll. The results showed that conditioning the daily weather generator on a 

monthly model has positive effects. However, this method still could not accurately 

reproduce standard deviations and autocorrelations of observed averaged yearly 

temperatures, because it did not specifically consider the inter-annual variability. To date, no 

one has been able to correct the low-frequency variability of temperatures for weather 

generators. The reason may be that the correction of temperatures is more complicated than 

precipitation because the Tmax and Tmin are correlated to each other. Correction of one 

variable may perturb their cross-correlations and results in Tmin larger than Tmax on any 

given day.  

 

1.3) Conclusions on stochastic weather generators  

Stochastic weather generators are computer models which produce synthetic daily climate 

variables, such as precipitation and temperature, which statistically resemble to the observed 

data. They are good at generating quantities of each variable. However, they are often found 

to be deficient with respect to two potentially important characteristics. First of all, the low-

frequency variance is distinctly underestimated, which results in an underestimation of low-

frequency variability of streamflow at the revier basin. Secondly, they less well represent 

extreme events, especially, longest dry spells and maximum daily precipitation intensity. A 

few published articles were conducted to deal with the low-frequency problem like 
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Dubrovsky et al. (2004), Wang and Nathan (2007). However, those methods still have their 

drawbacks and are unable to completely solve this problem. For example, Wang and 

Nathan’s method is arguably the best available for dealing with the low-frequency problem, 

but it was only tested for the coefficient of variation on Australian weather data. Other 

statistics, such as the autocorrelation of annual precipitation, are important for some 

applications. Extreme value characteristics were investigated by Wilks (1999b) through the 

comparison of 3 daily precipitation intensity, 8 precipitation occurrence models and their 

combinations. Different models have different ability, but none of models and combinations 

could reproduce the extreme value characteristics accurately. A well adapted “heavy tailed” 

frequency distributions may need to be investigated. But this is not an easy task because 

different regions have different precipitation characteristics; it is not easy to find a 

distribution that is capable for every weather condition. Moreover, precipitation occurrence 

model like first-order Markov chain is inadequate for simulating longest dry spells in some 

regions. High-order Markov models perform better, but there are more parameters needed to 

be determined.  

 

2) Downscaling  

Mismatches of spatial and temporal resolutions between GCM outputs and the data 

requirements of hydrological models are major obstacles for quantifying the hydrologic 

impacts of climate change. This is because GCMs  generally run at a resolution of 150-300 

km and regional studies require a resolution of 10-50 km or finer at a daily scale. Therefore, 

it is common to downscale the GCM outputs from grid scale to regional or site-specific scale 

using dynamical and/or statistical downscaling. However, each downscaling method has its 

advantages and drawbacks. A growing number of studies have been undertaken to compare 

statistical versus dynamical models (Kidson and Thompson, 1998; Mearns et al., 1999a, b; 

Murphy, 1999; Wilby et al., 2000).  

 

2.1) Dynamical downscaling  

Over the past decade, regional climate model (RCM) was developed as a downscaling tool 

based on the initial and time-dependent lateral boundary conditions of GCM. Because of its 
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higher spatial resolution, the RCM has more capabilities to capture the effects of regional 

details on local climate such as orographic precipitation. Presently, model grids of 50 km 

have become feasible and finer will likely be developed in the near future along with the 

increase of computer performances (Bengtsson, 1996; May and Roeckner, 2001; Déqué and 

Gibelin, 2002).  

 

Duffy et al. (2003) evaluated the performances of current RCMs and concluded that nearly 

all quantities simulated by higher-resolution RCMs agree better with observations in terms of 

spatial patterns, but their performance still depends on different regions and specific 

variables. Moreover, their resolution is still too coarse to some practical applications such as 

quantifying the impacts of field agriculture or small catchment water resources under climate 

change. At this point, the site-specific or small catchment climate data derived from 

statistical downscaling may be preferred.   

 

2.2) Statistical downscaling 

As a complementary technique to RCM, a diverse range of statistical downscaling techniques 

have been developed. Those techniques fall in three categories: transfer function, weather 

generator, and weather typing (Wilby and Wigley, 1997; von Storch et al., 2000; Zhang, 

2005). In reality, many downscaling studies used more than one of these techniques (Wilby 

and Wigley, 1997). Besides the above mentioned three types of statistical downscaling, the 

change factor method is a relatively straightforward and widely used method. It is conducted 

as the following three steps. A baseline climatology is first established using long-term 

climate data for the site or region of interest. Secondly, changes between present and future 

climates projected by GCM at grid points close to the target site are calculated usually at a 

monthly time scale. Thirdly, the changes suggested by GCM are simply added to (for 

temperature) or multiplied for (for precipitation) each day in the baseline time series. This 

method is computationally straightforward and easy to apply. Meanwhile, local climate 

change scenario is directly related to changes in the GCM output. The most significant 

drawback is that the temporal sequencing of wet and dry days and variance of each variable 

are unchanged (Diaz-Nieto and Wilby, 2005).  
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2.2.1) Transfer function approaches 

The transfer function approach involves establishing statistical linear or nonlinear 

relationships between observed local climatic variables (predictands) and large-scale GCM or 

RCM output (predictors). The methods used to derive those relationships include multivariate 

linear or nonlinear regressions, principal component analysis (PCA), canonical correlation 

analysis (CCA), singular value decomposition (SVD), artificial neural networks (ANN), etc. 

Most commonly used predictors from GCM output include vorticity, airflow indices, wind 

velocity and direction, mean sea-level pressure, geopotential heights and relative humidity, 

etc (Wilby et al., 1998a; Solman and Nunez, 1999; Sailor and Li, 1999; Trigo and Palutikof, 

2001). Widmanm et al. (2003) and Zhang (2005) downscaled precipitation using GCM 

precipitation as a predictor. The results showed that the performance of using GCM 

precipitation as a predictor was better than conventional methods using other predictors. 

However, most authors agree that predictors selected should be variables that are reasonably 

well-reproduced by GCM, and precipitation may not fit this criterion. 

 

The most typical transfer function approach is done with a statistical downscaling model 

(SDSM) which was developed by Wilby et al. (2002a) for the rapid development of single-

site, ensemble scenarios of daily weather variables. This model is good at reproducing 

temperatures with a explained variance normally in excess of 70%. But the explained 

variance of precipitation is usually less than 30% (Wilby et al., 2002a).  

 

The main strength of the transfer function approach to future climate scenario generation is 

the relative ease of application. A potential obstacle is probable lack of stable relationships 

between predictors and predictand. For example, Wilby (1997) has shown that, even within a 

single circulation regime, precipitation diagnostics may vary considerably from year to year.   

 

2.2.2) Weather generator approaches 

Stochastic weather generators are able to be used as a downscaling tool to produce local 

climate change scenarios (Wilks, 1992; Semenov and Barrow 1997). It is achieved by 

perturbing their parameters according to the changes projected by GCMs.  
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Wilby et al. (2002b) explored the use of synoptic-scale predictor variable to downscale both 

high- and low-frequency variability of daily precipitation at sites across the Great Britain. 

The results showed that the conditionally stochastic rainfall models displayed positive effects 

on monthly rainfall statistics relative to the control, but still did not completely remove 

overdispersion. In order to better simulate the low-frequency variability, predictors that used 

to fit the transfer functions are needed to be further investigated. As mentioned earlier, Zhang 

(2005) used the transfer function approach to spatially downscale monthly GCM output from 

grid scale to site scale using GCM precipitation as a predictor. Subsequently, the monthly 

precipitation was temporally downscaled to daily time scale using CLIGEN. This method is 

relatively simple and can produce infinite-length time series with the same statistical 

properties of climate scenarios. However, it adjusts the precipitation occurrence according to 

its relationship with monthly precipitation. The relationship between monthly precipitation 

and occurrence is required for further investigation. Similarly, several other studies (Wilks, 

1999a; Chen et al., 2006; Kilsby et al., 2007; Qian et al., 2005, 2010; Wilks, 2010) also 

downscaled precipitation with weather generators through adjusting their statistical 

parameters on the basis of the changes of monthly precipitation. The downscaled daily 

precipitation series are then generated by the weather generator using adjusted parameters. 

The results illustrated that the proposed method is capable of reproducing the mean of daily 

precipitation intensity. 

 

Overall, the appealing property of using weather generator approach is its ability to rapidly 

produce ensembles of climate scenarios for studying the impacts of rare climate events. The 

disadvantage is that the precipitation occurrence parameters cannot be easily adjusted for a 

changing climate. 

 

2.2.3) Weather typing schemes 

Weather typing downscaling methods involve grouping local meteorological variables in 

relation to different classes of atmospheric circulation based on a given weather classification 

scheme (Bardossy and Plate, 1992; von Storch et al., 1993). In general, weather classification 

procedures include PCA (White et al., 1991; Shoof and Pryor, 2001), cluster analysis (Wilks, 



22 

1995), CCA (Gyalistras et al., 1994), fuzzy rules (Bardossy et al., 1995), ANN (Bardossy et 

al., 1994), analogue procedures (Martin et al., 1997; Timbal et al, 2009), Lamb Weather 

Types (Lamb, 1972; Jones et al., 1993; Conway and Jones, 1998), etc. Given a classification 

scheme, weather types are grouped. The relationships between large scale variables and local 

meteorological variable may then be established separately for each weather type. The 

analogue approach is one of weather typing schemes which involves picking the event in the 

past when the situation most closely resembles the day in the future. The benefits of analogue 

approach are that it is able to preserve the spatial correlation of predictand and is easy to 

apply even if predictands do not follow a normal distribution. However, only events that have 

occurred in the past can be modeled, thus, it is unable to study rare events under future 

climate change.  

 

Shoof and Pryor (2001) downscaled precipitation and temperature based on the classification 

scheme of PCA. First of all, PCA was employed to reduce the number of intercorrelated 

variables to a smaller set of uncorrelated components. Principle component elements were 

then calculated for every day and used as predictors to fit linear (for temperatures) and 

Poisson (for precipitation) transfer functions with the local meteorological variables. The 

results showed that the accuracy of the downscaling models of temperature was better than 

that of precipitation. The precipitation models exhibited lesser predictive capabilities. This 

may be due to use principle component elements as predictors rather than use circulation 

climate variables, such as vorticity, airflow indices and wind speed.  

 

The main advantage of weather typing schemes is that local variables are closely linked to 

the circulation on a large scale. It provides a greater understanding of the problems that are 

involved compared to other downscaling techniques. The drawbacks of this method are that 

the reliability depends on the stationary relationship between large scale circulation and local 

climate, and it requires an additional task of weather classification. 

 

2.3) Comparison of statistical downscaling methods 
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Given a range of downscaling techniques, it is necessary to compare the capability and 

reliability of those methods.  

 

Wilby et al (1998b) investigated the abilities of six downscaling methods including two 

weather generator techniques (WGEN and a method based on spell-length duration (SPEL)), 

two methods using vorticity as a predictor (B-Circ and C-Circ), and two variations of ANN 

using circulation data, and circulation plus temperature data as predictors. The validation 

tests showed that the WGEN and SPEL methods performed better than all other methods for 

the majority of diagnostics. But they were incapable to capture the low-frequency variations 

of rainfall. B-Circ and C-Circ methods performed well and were better than ANN, because 

ANN overestimated the frequency of wet days.  

 

Widmann et al. (2003) compared three statistical downscaling methods including local 

rescaling, SVD and local rescaling with a dynamical correction using precipitation as a 

predictor. The results demonstrated that the SVD method explained over 60% of the 

observed monthly precipitation variability at almost locations in the studied region. The local 

scaling method also performed very well over the most parts of the region, but less well than 

the SVD method. Moreover, the local rescaling with a dynamical correction method 

performed almost as well as the SVD approach. This research indicated using GCM 

simulated precipitation as a predictor may be better than using large scale atmospheric 

circulation variables.   

 

Diaz-Nieto and Wilby (2005) compared the abilities of CFs and statistical downscaling 

methods for assessing the impact of climate change on low flow in a river basin. The results 

illustrated that changes of low flow related to the statistical downscaling scenarios are 

generally more conservative than that arising from CFs.  

 

Wetterhall et al. (2007) evaluated four downscaling methods including two analogue 

methods (one using PCA and one using gradients in the pressure field (TWS)) and two 

conditional-probability methods (one using classification of weather patterns (MOFRBC) 
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and one using SDSM). The results showed that the MOFRBC and SDSM were superior to 

other methods for the ranked probability scores; analogue methods were better than other 

methods during winter and autumn; SDSM and TWS were skillful during spring and 

MOFRBC during summer.  

 

Overall, each statistical downscaling method has its advantages and drawbacks. The choice 

of one method over others should according to the application purposes and data availability.  

 

2.4) Conclusions on downscaling  

The present GCMs are unable to resolve important catchment-scale processes because the 

spatial resolutions is too coarse. Therefore, two typical downscaling techniques: dynamical 

and statistical downscaling, have been developed to address these scale problems. Each 

method has its benefits and weaknesses. For example, dynamical downscaling is more 

physically realistic representation of the regional climate while high computer resources 

demanded. Statistical downscaling is easy to apply but it seldom captures climate variability 

at temporal or spatial scales (Conway et al., 1996) and the relationships between predictand 

and predictors are not always stationary. Due to above mentioned drawbacks, the comparison 

of downscaling methods should be continued and new techniques are needed to be 

developed. First of all, downscaling of weather generator parameters based on low-frequency 

predictors may be good at downscaling climate variability. Moreover, downscaling GCMs or 

RCM output using weather typing scheme may have effects on fixing the latter drawback of 

statistical downscaling. Because circulation-based downscaling provides greater physical 

understanding of the problems that are involved due to different local weather conditions are 

determined by different synoptic-scale circulations. Moreover, due to the unique advantages 

and drawbacks of each downscaling methods result in different future climate projections, it 

is necessary to investigate the uncertainty related to downscaling techniques for quantifying 

the hydrological impacts of climate change.   

 

3) Hydrological modeling in climate change studies 



25 

Hydrologic models provide a useful framework to investigate the relationship between the 

regional climate and catchment water resources (Xu, 1999). Over the last two decades, a 

large number of researches were reported to deal with the potential effects of climate change 

on water resources based on hydrologic models (Diaz-Nieto and Wilby, 2005; Wilby and 

Harris, 2006; Minville et al., 2008, 2009). The use of hydrological models in climate change 

studies ranges from using simple water-balance models to assess the annual and seasonal 

streamflow variation (Arnell, 1992) to using complex distributed models to evaluate the 

variations in surface and groundwater quantity (Running and Nemani, 1991). Based on the 

level of complexity, different models including empirical models (annual base), monthly 

water-balance models, conceptual lumped models and process-based distributed models are 

used depending on study purposes and model availability (Leavesley, 1994). Gleick (1986) 

and Xu (1999) reviewed several different modelling approaches for assessing the regional 

hydrologic impacts of climate change. They concluded that monthly water balance models 

are flexible and easy to apply over other models. But this kind of model is unable to 

adequately account for the characteristics of individual meteorological events. Thus, it is 

unable to capture the rare hydrological event such as flood. In contrast, conceptual lumped 

models are able to assess the magnitude and timing of the process response to climate 

change, while their capability depends on the number of parameters and the time period of 

input data. Process-based distributed models are able to simulate the spatial pattern of 

hydrologic response within a basin (Beven, 1989; Bathurst and O’Connell, 1992). But a large 

quantity of data is required to calibrate and validate the models. The choice of one model 

should depend on practical application purposes, model and data availability. Moreover, 

hydrological models are designed and calibrated for stationary conditions. But in climate 

change studies, they are usually applied to a climate change condition. Dietterick et al. 

(1999) suggested that the performance of hydrological model between colder / wetter years 

and hotter / dryer years was similar. Thus, the hydrological model may perform well for the 

future climate. 

 

4) Uncertainty of hydrological impacts under climate change context 
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Given the large number of GCMs, Greenhouse Gas Emissions Scenarios (GGES) and 

downscaling methods available, it is becoming increasingly difficult to assess the 

uncertainties that result from their combination. This difficulty is further amplified when 

taking into account the choice of an impact model (such as a hydrological model) and its 

parameters, which also contribute to global uncertainty. Various sources of uncertainty have 

been clearly identified and it has been recognized that they should be taken into account in 

climate change impact studies. A failure to cover the full range of uncertainty may result in 

severely biased impact studies. The uncertainty cascade can be classified as follows: (1) 

GGES; (2) GCM structure; (3) GCM initial conditions. (4) downscaling method; (5) 

hydrological model structure; and (6) hydrological model parameters;  Running GCMs with 

different initial conditions is a way to assess natural variability as perceived by the climate 

model. Some of these uncertainty sources may be reduced in the future (through higher 

resolution GCMs for example), but some causes of uncertainty will always remain. The 

acknowledgement and proper quantification of uncertainty is vital to facilitate a risk-based 

approach to decision making. As such, a appropriate framework to properly sample all 

sources of uncertainty is very much needed. To date, there have been several hydrological 

impact studies that have taken some causes of uncertainties into account, but only a rare few 

have investigated most of the entire cascade of uncertainties listed above. 

 

Jenkins and Lowe (2003) studied changes in global mean rainfall from different GCMs and 

GGES and showed that GCM uncertainty dominates GGES uncertainty. This finding has 

been confirmed by several other studies. Rowell (2006) investigated the uncertainty arising 

from RCM formulation, and compared it with three other sources of uncertainty (GCMs, 

GGES and GCM initial conditions (ensemble runs)) with respect to changes in seasonal 

precipitation and temperature for the United Kingdom. The results showed that the 

uncertainty due to RCM formulation was relatively small, while GCMs consistently 

demonstrated a dominant role for each season. Deque et al. [2007] assessed the uncertainty of 

ten RCMs which are driven by 3 GCMs under two GGES (A2 and B2). Some runs have been 

repeated three times to take into account the internal variability. The results showed that the 

uncertainty introduced by the choice of the driving GCM is generally larger than the other 
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three sources. But the RCM uncertainty for the summer precipitation has the same magnitude 

as the choice of the GCM. This conclusion was proved by Fowler and Ekstrom [2009], 

through comparing 13 RCMs in predicting changes of seasonal precipitation extreme for 9 

UK rainfall regions using a weighting scheme. The results demonstrated that the largest 

contribution to uncertainty in the multi-model ensembles comes from the lateral boundary 

conditions used by RCMs including in the ensemble. These studies investigated the 

uncertainty on the primary outputs of climate models (temperature and/or precipitation) 

rather than on river flow. Different results may be obtained when transferring climate 

projections to watershed streamflows, since it is a non-linear process. 

 

Prudhomme and Davies (2009) used three GCMs, two GGES and two downscaling 

techniques (a statistical downscaling model (SDSM) and the RCM HadRM3) to investigate 

the uncertainty in river flows, and demonstrated that GCMs were the main contributors to 

monthly mean flow uncertainty. The downscaling of originating uncertainty was also 

important, but the contribution of GGES to uncertainty was negligible. Kay et al. (2009) also 

investigated different sources of uncertainties including five GCMs, four GGES (A1F1, A2, 

B1 and B2), two downscaling methods (change factor (CF) and RCM)), two hydrological 

models, hydrological model parameters and GCM initial conditions on the impact of climate 

change on flood frequency in England. With this research, each source of uncertainty was 

assessed individually rather than in combination with each other. The results showed that the 

uncertainty related to GCM structure was the largest, but other sources of uncertainty were 

also important, although less so than GCM uncertainty. However, Booij (2005) found that the 

uncertainty related to GCM initial conditions was larger than that of GCMs and RCMs.  

 

Wilby and Harris (2006) presented a probabilistic framework for quantifying different 

sources of uncertainties on future low flows. They used four GCMs, two GGES, two 

downscaling methods (SDSM and CF), two hydrological model structures and two sets of 

hydrological model parameters. The results again showed that GCMs are the main 

contributor to global uncertainty, followed by downscaling methods. Uncertainties due to 

hydrological model parameters and GGES were less important. This is probably the most 
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thorough study so far, in terms of inclusion of the most sources of uncertainty. However, it is 

also not fully exhaustive. Firstly, two downscaling methods, two hydrological model 

structures and two sets of hydrological model parameters are likely to be insufficient to 

represent their uncertainty envelope.  They also did not consider hydrological models with 

different levels of complexity and structure. The study did not consider the uncertainty due to 

the GCM initial conditions. Finally, since the purpose of this research was to provide a 

framework for assessing uncertainties in climate change impact studies, the only quantified 

variable was river low flows. Other hydrological variables such annual, seasonal and peak 

discharges may respond quite differently with respect to global uncertainty. 

 

Overall, climate change impact studies based on a single GCM and/or downscaling method 

and/or impact model should be interpreted with caution. Using two carefully selected models 

and/or methods may also be insufficient, because the process by which climate projections 

become hydrologic variables is non-linear.  
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1.1 Abstract  

Weather generators are computer models that produce time series of meteorological data that 

have similar statistical properties as that of observed data. The past decade has seen a sharp 

and renewed increase in interest in weather generators, linked to their potential use in climate 

change studies.  One appealing property of weather generators is their ability to rapidly 

produce time series of unlimited length, thus permitting impact studies of rare occurrences of 

meteorological variables. However, one problem with daily weather generators is that they 

underestimate monthly and inter-annual variances because they do not take into account the 

low-frequency component of climate variability. This research aims to present an approach 

for correcting the low-frequency variability of weather variables for weather generator and to 

assess its ability to reproduce key statistical parameters at the daily, monthly and yearly 

scales. The approach is applied to precipitation which is usually the variable displaying the 

largest inter-annual variability. The daily stochastic precipitation model is a Richardson-

based weather generator that uses a first-order two-state Markov chain for precipitation 

occurrence and a gamma distribution for precipitation amounts. Low-frequency variability 

was modelled based on observed power spectra of monthly and annual time 
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series. Generation of synthetic monthly and yearly precipitation data was achieved by 

assigning random phases for each spectral component. This preserved the power spectra, 

variances and the autocorrelation functions at the monthly and annual scales.  The link to 

daily parameters was established through linear functions. The quality of these corrections 

was assessed through direct and indirect validation tests, with the direct validation focusing 

on comparing the means, standard deviations and autocorrelations of different weather series. 

The results showed that standard deviations of both monthly and annual precipitations were 

produced almost exactly. The proposed method also preserved the autocorrelation of annual 

precipitation. The indirect validation involved modelling the discharge of a river basin using 

a hydrological model driven by different precipitation series. The results showed that the 

corrected weather series significantly improved the variability of simulated flow discharges 

at the monthly and annual scales compared to those simulated using the data generated by the 

standard weather generator. 

 

Keywords: Weather generator; Precipitation; Low-frequency variability; Power Spectra.  

 

1.2 Introduction 

A stochastic weather generator is a computer algorithm that uses existing meteorological 

records to produce a long series of synthetic daily weather data. The statistical properties of 

the generated data are expected to be similar to those of the actual data for a specified site. 

Unlike historical weather records, which may have missing data, the weather generator 

output provides a complete record for any desired period of time, thus enhancing the use of 

continuous hydrologic models (Kevin et al., 2005). Moreover, it can be used to generate daily 

weather data for ungauged areas through spatial interpolation of model parameters from 

adjacent gauged sites (Baffaut et al., 1996). An important application of weather generators 

involves them serving as computationally inexpensive tools to produce multiple-year climate 

change scenarios at the daily time scale, which are used to assess the impact of future climate 

change (Semenov & Barrow, 1997; Wilks, 1992, 1999a; Pruski and Nearing, 2002; Zhang et 

al., 2004; Zhang, 2005; Zhang and Liu, 2005; Minville et al., 2008). Model parameters of the 
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weather generator can be readily manipulated to simulate arbitrary changes in mean and 

variance quantities for sensitivity analysis, or be deliberately modified to mimic changes in 

mean and variance as predicted by global climate models (GCMs) for impact assessment. 

Over the years, several weather generators have been developed, such as the Weather 

Generator (WGEN) (Richardson, 1982; Richardson and Wright, 1984), USCLIMATE 

(Hanson et al., 1994), Climate Generator (CLIGEN) (Nicks et al., 1995), Climate Generator 

(ClimGen) (Stockle et al., 1999), Long Ashton Research Station -Weather Generator (LARS-

WG) (Semenov and Barrow, 2002), etc. While weather generators are good at preserving the 

precipitation quantity, they however underestimate low-frequency variations (e.g., Buishand, 

1978; Johnson et al., 1996; Wilks, 1989,1999b; Gregory et al., 1993; Katz and Parlange, 

1993, 1998; Hansen and Mavromatis, 2001; Zhang and Garbrecht, 2003; Chen et al, 2009). 

This underprediction results from the simplifying assumption that climate, and more 

specifically, the daily precipitation process, is stationary. These models do not explicitly take 

into account aspects of low-frequency variability such as decadal oscillations, and thus 

underestimate monthly and yearly variances.  

 

The low-frequency variability of precipitation depends on the daily precipitation occurrence 

and intensity processes, especially the variance of the daily precipitation amounts and 

number of wet days. Several studies have attempted to solve this drawback with weather 

generators. Wilks (1999b) compared the variance of monthly precipitation generated by 

independent and identical (iid) Gamma distribution, Common-α Gamma distribution and 

Mixed Exponential distribution. The results showed that the iid Gamma distributions 

produced substantial overdispersion, and that the Common-a Gamma distribution brings only 

a slight improvement to this. By contrast, the overdispersion in wet-day variance produced 

by the Mixed Exponential distribution was substantially smaller, although not zero, meaning 

that using the Mixed Exponential distribution to represent wet-day precipitation amounts in 

stochastic weather models should bring about a substantial improvement in the simulation of 

inter-annual variability. Meanwhile, Wilks (1999b) also compared the variance of the 

number of wet days in each month among different precipitation occurrence models, 

including first-, second-, third- and hybrid-order Markov models and Negative Binomial and 
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Mixed Geometric distribution, as well as average percentage overdispersion of total monthly 

precipitation, for all combinations of precipitation occurrence models and precipitation 

intensity models. The results demonstrated that none of the combinations achieved complete 

recovery of the observed variance in monthly total precipitation, although increasingly 

complex component models did succeed in reducing the overdispersion - or discrepancy - 

between the synthetic and observed variability. This was unsatisfactory because although the 

complexity of the models was increased, it still did not take into account the low-frequency 

component of climate variability. These simple stationary models (whose statistics do not 

change from month to month and from year to year) cannot fully reproduce the variability of 

a nonstationary climate, which therefore makes the introduction of some degree of 

nonstationarity into these models appropriate. 

 

Hansen and Mavromatis (2001) attempted to improve inter-annual variability characteristics 

by perturbing monthly parameters using a low-frequency stochastic model, and evaluated the 

effectiveness of the low-frequency component on low-frequency variability of the generated 

monthly climate at 25 locations in the continental USA. The results indicated that for 

monthly precipitation, the low-frequency correction reduced total error and eliminated 

negative bias of inter-annual variability, and reduced the number of station-months with 

significant differences between observed and generated inter-annual variability, but it over-

represented the variability of precipitation frequency. 

 

Dubrovsky et al. (2004) applied the monthly generator (based on a first-order autoregressive 

model) to fit the low-frequency variability based on the daily WGEN-like weather generator, 

Met & Roll. The results demonstrated that conditioning the daily generator on a monthly 

generator has the most positive effect, especially on the output of a hydrological model, and 

the variability of the monthly streamflow characteristics was better simulated. However, this 

method still could not reproduce the observed standard deviations and autocorrelations of 

monthly and annual precipitations exactly, because it did not specifically consider the inter-

annual variability, thus indicating that schemes for correcting monthly variability have 

limited effect on the annual scale. 
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Wang and Nathan (2007) also provided a method for coupling daily and monthly time scales 

in the stochastic generation of rainfall series. The key feature of the method involves first 

generating two similar time series, one preserving key statistical properties at a finer time 

scale and the other at a coarser time scale. The finer time scale series is then adjusted to make 

it consistent with the coarser one. This method appears to perform well in that it satisfactorily 

preserved some key statistical properties at daily, monthly and even yearly scales. However, 

it was only tested for the coefficient of variation on Australian weather data. Other statistics, 

such as the autocorrelation of annual precipitation, are important for some applications.  

 

Accordingly, this research aimed to present an approach for correcting the low-frequency 

variability of precipitation for the weather generator, assess its ability to reproduce key 

statistical parameters, and to compare it against Wang and Nathan’s method. 

 

1.3 Materials and methods  

1.3.1 Introduction of a stochastic weather generator 

WeaGETS (Weather Generator École de Technologie Supérieure), which is a WGEN-like 

three-variate (precipitation, maximum and minimum air temperature) single-site stochastic 

weather generator programmed in Matlab, was used as the basic stochastic weather generator 

in this study. This paper only focuses on precipitation generation.  

 

The precipitation component of WeaGETS is a Markov chain for occurrence and a gamma 

distribution  for quantity. A first-order two-state Markov chain is used to generate the 

occurrence of wet or dry days. The probability of precipitation on a given day is based on the 

wet or dry status of the previous day, which can be defined in terms of the two transition 

probabilities:  

 

P01=Pr{precipitation on day t | no precipitation on day t-1}                (1.1a) 

 

P11=Pr{precipitation on day t | precipitation on day t-1}                    (1.1b) 
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Since precipitation either occurs or does not occur on a given day, the two complementary 

transition probabilities are P00=1-P01 and P10=1-P11. 

 

For a predicted rain day, a two-parameter Gamma distribution is used to generate daily 

precipitation depth (Richardson, 1981). The probability density function for this distribution 

is:  
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where the variable x is the daily precipitation depth, α and β are the two distribution 

parameters, and Г(α) represents the gamma function evaluated at α. 

 

1.3.2 Correction of low-frequency variability and validations 

The aim of the model is to specifically account for low-frequency variability by correcting 

daily precipitation at the monthly and yearly scales, using power spectra of observed time 

series at the same scales.   The power spectra are computed using Fast Fourier Transforms 

(FFT). Wang and Nathan’s (2007) method, which is arguably the best available for dealing 

with the low-frequency problem, was also programmed and used as a comparison method.  

 

The key feature of Wang and Nathan’s method is that it requires that we first generate two 

similar time series, one preserving key statistical properties at a finer time scale and the other 

at a coarser time scale. The resemblance between the two series is achieved by using the finer 

time scale model as a building block for the coarser time scale model, and then using the 

same sequence of non-exceedance probabilities for the random elements as inputs to both 

models. The preservation of the key statistical properties of the two series at their appropriate 

time scales is achieved by using different sets of estimated parameters for the two models. A 

coupling transformation technique introduced by Koutsoyiannis (2001, 2003) is then applied 

to modify the finer time scale series so that this series becomes consistent with the coarser 
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time scale series. This transformation technique is based on a developed generalized 

mathematical proposition, which ensures preservation of marginal and joint second-order 

statistics and of linear relationships between lower- and higher-level processes. Wang and 

Nathan also used a basic weather generator based on WGEN (Richardson, 1984), but with 

the exception that its parameters are not smoothed with Fourier harmonics. To allow for a 

proper comparison, WeaGETS was also used without smoothing. The smoothing process 

eliminates sharp parameter transitions between computing periods that may occur due to 

outliers (such as extreme precipitation), especially for shorter time series. In either case, the 

weather generator should reproduce the exact monthly targeted precipitation mean (either 

smoothed or raw). WeaGETS parameters are computed every two weeks.  

 

The use of FFT is widespread in engineering and signal processing, and it stems from the 

concept that any discrete signal (such as yearly total precipitation over a basin) can be 

exactly represented by a summation of sine waves with magnitude S and phase φ.  Following 

the FFT, each sine wave component is expressed as a complex number: 

 

( 1)C X i Y i= + ∗ = −                                                   (1.3) 

 

from which the magnitude S and phase φ can be extracted with the following equations: 

 

2 2S C X Y= = +                                                       (1.4) 

 

1tan ( / )Y Xφ −=                                                          (1.5) 

 

The variance and phase of each component can be modified and returned back in complex 

form with the following equation, and then returned back to the time domain with an inverse 

FFT: 

( * )iC S e φ= ∗                                                           (1.6) 
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By modifying the phase of each component and reverting to the time domain, a new signal 

with an identical power spectrum (and variance) can be created. As such, low-frequency 

components (such as decadal variability) will be preserved in the new signal. This property is 

used to modify the daily sequences from the weather generator in order to correct for the 

underestimated variances at the monthly and inter-annual scales. Throughout this paper, this 

is referred to as the spectral correction method/approach, and it is comprised of five steps: 

 

1) A daily precipitation series was generated by WeaGETS using parameters derived from 

the observed daily precipitation series. In this study, the length of the generated series 

was 20 times that of the observed one, which allowed a precise evaluation of the 

statistical parameters of the synthetic time series.    

 

2) Monthly variability was modeled based on a power spectrum using FFT for each monthly 

series. The generation of a new power spectrum for monthly precipitation was achieved 

by assigning random phases to each spectral component and transferring back to the time 

domain, as discussed above.  Random phases were chosen from a uniform distribution 

over the range [0, 2π]. Since the length of generated series was 20 times of the observed 

one, random phases were drawn for each 20-year simulation, and subsequently integrated 

together. The use of the same random phase for each 20-year simulation would have 

resulted in identical time series. 

 

3) The daily precipitation series generated in step (1) was adjusted incrementally. The series 

of the monthly precipitation derived from the WeaGETS-generated daily series (step (1)) 

were adjusted to the monthly series generated in step (2), using linear functions. In this 

adjustment procedure, the value of the increment applied to the daily series was the same 

for all days within a month. No adjustment was made to the precipitation occurrence. 

 

4) Following steps (1) to (3), the standard deviation of each monthly precipitation would be 

corrected exactly, but that of yearly precipitation would still be lower than the observed 

one, since, as discussed earlier, correcting for monthly variability has limited effect on 
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inter-annual variability. Therefore, in this step, an additional correction for inter-annual 

variability was made following the procedure outlined in steps (2) and (3).  This 

correction is made on the data that was corrected for monthly variability, not on the 

original data.  

 

5) Following step (4), the variance of yearly precipitation was corrected exactly. However, 

this resulted in an overestimation of the variance at the monthly scale, which was 

previously perfectly reproduced after step (3). This indicates that the monthly 

precipitation variances are affected by variability at both the monthly and annual scales. 

Following the correction of the inter-annual variability, an additional correction was 

made at the monthly scale. Thus, steps (2) to (4) were repeated in an iterative scheme in 

order to find the correct initial monthly corrections that would result in the best 

reproduction of monthly precipitation variance once the yearly correction was applied. 

The iterative scheme is needed because correcting at either scale influences the other 

(correcting at the monthly scale affects the yearly scale and vice-versa). 

 

The quality of the corrections was assessed through direct and indirect validation tests. The 

direct validation tries to answer the question as to how the corrected weather series resembles 

the observed one. It focuses on the reproduction of characteristics representing the 

distribution of the variables, especially standard deviations of the monthly and yearly 

precipitations. In this study, the means and standard deviations of WeaGETS-generated, 

spectral correction and Wang and Nathan’s methods corrected monthly, and yearly 

precipitations relative to observed data were compared. Similarly, autocorrelations of annual 

precipitations were also compared. Since precipitation amounts are known not to have 

normal distributions, instead of t- and F-tests, nonparametric Mann-Whitney and squared 

ranks tests (Conover, 1999) were conducted to test the equality of the means and standard 

deviations between observed and synthesized monthly and annual precipitation series. In 

addition, nonparametric Kolmogorov-Smirnov (K-S) tests, which apply to any type of 

distributions, were used to test the equality of the population distributions of observed versus 

synthesized data. All the tests were two-tailed, and a significance level of P=0.05 was used.  
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P=0.05 refers to a Type 1 error, and the larger the P value, the more likely it is for the two 

series to be similar, and vice versa. The indirect validation tries to answer the question as to 

whether the corrected precipitation series is applicable in a given application. In this study, 

the indirect validation is done by comparing the statistical properties of output characteristics 

from a hydrological model driven by different precipitation series generated by WeaGETS, 

spectral correction and Wang and Nathan’s approaches. Like the direct validation, the means 

and standard deviations of monthly and annual discharges simulated using synthesized 

precipitation series were compared to those of the observed series. Nonparametric Mann-

Whitney, squared ranks and K-S tests were conducted to test the equality of the mean, 

standard deviation and distribution for monthly and annual discharges, respectively. The 

frequency distributions of mean and maximum annual discharges simulated using the 

observed and synthesized precipitation series were also compared. 

 

1.3.3  Hydrological model 

Indirect validation was based on modeling the discharge of a river basin using the 

hydrological model HSAMI, which was developed by Hydro-Québec, and which has been 

used to forecast natural inflows for over 20 years now. It is used by Hydro-Québec for hourly 

and daily forecasting of natural inflows on 84 watersheds with surface areas ranging from 

160 km2 to 69195 km2, and Hydro-Québec's total installed hydropower capacities on these 

basins exceed 40GW. HSAMI is a 23-parameter, lumped, conceptual, rainfall-runoff model. 

Two parameters account for evapotranspiration, 6 for snowmelt, 10 for vertical water 

movement, and 5 for horizontal water movement. Vertical flows are simulated with 4 

interconnected linear reservoirs (snow on the ground, surface water, unsaturated and 

saturated zones).  Horizontal flows are filtered through 2 hydrograms and one linear 

reservoir.  The model takes into account snow accumulation, snowmelt, soil freezing/thawing 

and evapotranspiration.  

The basin-averaged minimum required daily input data for the model are: minimum and 

maximum temperatures, and liquid and solid precipitations. Cloud cover fraction and snow 

water equivalent can also be used as inputs, if available. A natural inflow or discharge time 
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series is also needed for proper calibration/validation. For this study, ten years of data was 

used for model calibration (1958-1968), and 34 years for validation (1969-2002). Automatic 

calibration of the model was performed using the shuffled complex evolution (SCE-UA) 

algorithm (Duan et al., 1992). The optimal combination of parameters was chosen based on 

the Nash-Sutcliffe criteria for both calibration and validation runs. The chosen set of 

parameters yielded values of the Nash-Sutcliffe criteria of 0.67 for calibration and 0.64 for 

validation. The relatively low values of the Nash-Sutcliffe criteria are linked due to the 

absence of weather stations in the southern portion of the basin and not to the hydrological 

model which performs extremely well in several other similar basins in Quebec. 

 

Since the focus of this research was on the development and demonstration of an approach 

for correcting low-frequency variability for the weather generator, details concerning the 

calibration and validation of a hydrological model are not discussed here.  

 

1.3.4 Meteorological and hydrological data 

The meteorological data, including daily precipitation, maximum and minimum air 

temperatures of 6 stations dispersed across Canada, were used in this study. Basic 

information, including average annual precipitation, longitude, latitude, elevation, and record 

duration for these stations is given in table 1.1. Average annual precipitation at these stations 

varied from 268.8 mm in Yellowknife to 1827.3 mm in Langara, which adequately represents 

the natural climate variability in Canada. 

 

The indirect validation is based on 44 years (1959-2002) of discharge at the Châteauguay 

River Basin. This unregulated river basin is located in southwest Quebec, Canada, and covers 

a drainage area of 2543 km2.  The basin overlaps the Canadian and US borders (60% of the 

basin is in Canada and 40% in the US). The average annual river discharge of the river at the 

watershed outlet is 40 m3/sec., but may exceed 1000 m3/sec. during the spring discharge. 

Daily area-averaged meteorological data used to estimate parameters for the weather 

generator and drive the hydrological model was derived from a network of 6 stations 
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distributed throughout and around the catchment. The discharge was derived from one 

hydrometric station near the basin outlet. 

 
 

Table 1.1 Location, record period, and average annual precipitation for 6 stations 
 

Region 
Station 

name 

Latitude 

(°N) 

Longitude 

(°W) 

Elevation 

(m) 

Records of 

daily precip

Precipitation 

(mm) 

Queen 

Charlotte 

Islands 

Langara 54.25 133.05 14 
1937-2006 

(70) 
1827.3 

Middle St. 

Lawrence 

River Basin 

Dorval 45.47 73.75 36 
1943-1994 

(52) 
953.4 

Vancouver 

Island 
Victoria 48.65 123.32 19 

1941-2006 

(66) 
871.2 

Nelson and 

Churchill 

River Basin 

Churchill 58.73 94.05 29 
1947-2006 

(60) 
439.1 

Okanagan 

River Basin 

Vernon 

Goldstream 

Ranch 

50.23 119.20 482 
1907-1996 

(90) 
413.2 

Mackenzie Yellowknife 62.47 114.43 206 
1945-2002 

(58) 
268.8 

 

 

1.4 Results  

1.4.1 Direct validation   

Figures 1.1a and 1.1b present the time series and power spectra of observed annual 

precipitation at the Victoria station. By assigning random phases to each component of the 

power spectrum and reverting to the time domain, a new signal (annual precipitation) with an 
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identical power spectrum (and variance) can be created. The annual precipitation time series 

created (figure 1.1c) and observed data have the same power spectrum as shown in figure 

1.1d. 

 
 

 

 
Figure 1.1 Time series ((a) and (c)) and their power spectra ((b) and (d)) of averaged  

annual precipitation at the Victoria station. 
 
 
WeaGETS reproduced monthly and annual averaged precipitations very well (figure 1.2), 

and Mann-Whitney tests showed that there is no significant difference between observed and 

WeaGETS-generated data at the P=0.05 level (table 1.2). It indicates that the Markov chain 

and gamma distribution  are capable of simulating the precipitation occurrence and quantity.  
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Figure 1.2 The ratios of the means of monthly and annual precipitation derived from  

the synthesized weather series (synt) to the means derived from the observed series (obs)  
for 6 stations. The synthesized precipitation series include the data generated by  

WeaGETS (GEN), corrected using the spectral correction approach (SPC) and Wang  
and Nathan’s method (WAN). The stations include (a) Victoria, (b) Langara, (c)  

Vernon Goldstream Ranch, (d) Yellowknife, (e) Churchill, and (f) Dorval. 
 
 

Wang and Nathan’s method had little effect on simulating the mean of precipitation at the 

monthly and yearly scales (figure 1.2). All the Mann-Whitney tests between observed and 

corrected data were insignificant at P=0.05. Moreover, the spectral correction method also 

produced the mean of precipitation very well, and it was indeed better than that corrected 

through Wang and Nathan’s method and generated by WeaGETS with precipitations 
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simulated almost exactly for some stations, such as the Langara and Dorval stations. All 

differences can be attributed to the stochastic nature of precipitation generation. 

 

The weather generator underestimated the variability of monthly precipitation, which is 

represented by its standard deviation as shown in figure 1.3. The squared ranks tests further 

showed that standard deviations of monthly precipitations were poorly reproduced, with 22 

out of 72 months for 6 stations being different at the P=0.05 level (table 1.2). However, 

Wang and Nathan’s method performed much better at preserving the monthly variability for 

all months and stations. The squared ranks tests showed that standard deviations were 

significantly different at P=0.05 for only 1 out of 72 months. Moreover, the spectral 

correction approach significantly corrected the monthly standard deviations for all months 

and stations. It reproduced the standard deviation of observed monthly precipitation almost 

exactly. The squared ranks tests showed that there were no significant differences at P=0.05 

for all 72 months on 6 stations. 

 

As with the underestimation of monthly precipitation, the WeaGETS also under predicted the 

standard deviation of annual precipitation. The squared ranks test showed significant 

differences at P=0.05 for 5 out of 6 annual precipitation series. Wang and Nathan’s method 

had some effects, but the standard deviation of annual precipitation was overestimated for 

some cases, such as the Victoria, Langara and Churchill stations. The squared ranks tests 

showed that there were significant differences at P=0.05 for 2 out of 6 stations. The spectral 

correction method preserved the standard deviations of annual precipitation exactly. All the 

squared ranks tests were insignificant at the P=0.05 level. 
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Figure 1.3 The ratios of the standard deviations of monthly and annual precipitations  
derived from the synthesized weather series (synt) to the standard deviations derived  

from the observed series (obs) for 6 stations. The synthesized precipitation series include  
the data generated by WeaGETS (GEN), corrected using the spectral correction (SPC)  

and Wang and Nathan’s (WAN) methods. The stations include (a) Victoria, (b) Langara,  
(c) Vernon Goldstream Ranch, (d) Yellowknife, (e) Churchill, and (f) Dorval. 

 
 
The WeaGETS-generated precipitation had few months which passed the K-S tests (table 

1.2). Both correction approaches could improve the distribution of the monthly precipitation 

to some degree. The K-S tests showed that the distributions of monthly observed 

precipitations were statistically different for only 1 out 72 months from Wang and Nathan’s 

method corrected data, and for no month from the spectral correction data, respectively. The 
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distribution of annual precipitation between WeaGETS-generated and observed data was 

significantly different for 2 out of 6 stations at the P=0.05 level. Both correction methods 

significantly improved the distributions. The K-S tests showed that there were no significant 

differences between the distributions of WeaGETS-generated and both corrected yearly 

precipitations at the P=0.05 level. 

 

The observed annual precipitation autocorrelation functions presented in figure 1.4 display 

clear trends, which indicate that wetter and dryer years are not random, but rather, come in 

series, as was shown by the power spectra of annual precipitation series. For several 

hydrologic applications such as drought studies, it is important to be able to reproduce these 

successions of dryer/wetter years. The results for autocorrelation of precipitation at the 

monthly scale were similar and were not shown. WeaGETS could not preserve the 

autocorrelation function because it does not take into account the low-frequency component 

of climate variability. Although Wang and Nathan’s method reproduced the standard 

deviations of monthly and annual precipitation well, it did not preserve the observed 

autocorrelation, while the spectral correction method successfully reproduced the observed 

autocorrelation for all 6 stations.  

 
 

Table 1.2 The numbers of monthly and annual precipitation series over 72 months and 6 
stations that rejected the Mann-Whitney, squared ranks and K-S tests; the synthesized data 

include WeaGETS-generated (GEN), spectral correction (SPC) and Wang and Nathan’s 
methods corrected (WAN) 

 
 Monthly Yearly 

 

Mann- 

Whitney 

test 

Squared 

ranks 

tests 

K-S 

test 

Mann- 

Whitney 

test 

Squared ranks 

tests 
K-S test 

GEN 0/72 22/72 4/72 0/6 5/6 2/6 

SPC 0/72 0/72 1/72 0/6 0/6 0/6 

WAN 0/48 1/72 0/72 0/6 2/6 0/6 
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Figure 1.4 10 years lagged autocorrelation of observed (OBS), WeaGETS-generated  
(GEN), spectral correction (SPC) and Wang and Nathan’s methods (WAN) corrected  

annual precipitations for 6 stations. The stations include (a) Victoria, (b) Langara,  
(c) Vernon Goldstream Ranch, (d) Yellowknife, (e) Churchill, and (f) Dorval. 

 
 
1.4.2 Indirect validation 

The indirect validation was based on modeling of the discharge of the Châteauguay River 

Basin using the hydrological model, HSAMI, driven by different precipitation series 

(observed and synthetized). In order to avoid any bias resulting from the hydrological model 

when comparing different methods, the control period of discharge is represented by 

modeled data, and not by an actual observed discharge. Further, for the control period, 

maximum and minimum air temperatures used to simulate the discharge were generated by 
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the weather generator, rather than using observed temperatures. Thus, all differences were 

solely attributed to the precipitation correction scheme. The hydrological model was then run 

with four time-series:  observed, WeaGETS-generated, modified using spectral correction, 

and using Wang and Nathan’s method.  

 

Figure 1.5 presents the averaged hydrographs simulated with the four time series for the 

Châteauguay River Basin. Each synthesized weather data could properly simulate the 

averaged annual discharge. Moreover, not many differences existed among the discharges 

simulated using synthesized weather data, but the hydrographs derived from synthesized 

weather data were smoother because they were produced using longer time series, further 

indicating that the mean precipitation properties are well reproduced by the  weather 

generator.  

 
 

 

 
Figure 1.5 Averaged hydrographs simulated using the observed (OBS), WeaGETS-generated 

(GEN), and spectral correction (SPC) and Wang and Nathan’s (WAN) methods corrected 
precipitation series for the Châteauguay river basin. 
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Figures 1.6a and 1.6b present the ratios of means and standard deviations of monthly and 

annual precipitations derived from the synthesized weather series to those derived from the 

observed series. The results again show that WeaGETS significantly underestimated the 

standard deviations of monthly and annual precipitation, while the two corrected series 

reproduced the standard deviations very well; indeed both corrected series reproduced the 

standard deviation of yearly precipitation almost exactly. The observed and synthesized 

weather series were used to drive the hydrologic model to simulate the discharge.  

 

The results show that WeaGETS-generated data properly simulated the means of monthly 

and annual discharges although there are some fluctuations (figure 1.6c). All the Mann-

Whitney tests between discharges simulated using observed and WeaGEST-generated 

weather series were insignificant at P=0.05 (table 1.3).  

 

The standard deviation of discharge simulated using WeaGETS-generated data was 

underestimated (figure 1.6d). The squared ranks tests showed that there were significant 

differences at P=0.05 for 3 out of 12 months between those simulated using observed data 

and those simulated using WeaGETS-generated weather data. However, the standard 

deviation of monthly discharge simulated using the data corrected by spectral correction 

method was more or less improved. The squared ranks tests showed significant differences 

for only 1 out of 12 months at the P=0.05 level. The monthly discharges simulated using 

precipitation corrected by Wang and Nathan’s method were also significantly improved. 

None of the squared ranks tests was significantly different at P=0.05 for all 12 months. 

Figure 1.6d shows that both correction methods result in improvement for all months, with 

the exception of January and February discharges, which are similar to those seen in 

WeaGETS-derived data. That is because the Châteauguay River Basin was covered with 

snow during these months, and the variability of monthly precipitation had little effect on 

discharges, and furthermore, discharge is also typically very low during these months. There 

was a significant difference between annual discharges simulated using the observed and 

WeaGETS-generated weather series, but the spectral correction and Wang and Nathan’s 
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methods simulated the standard deviation of yearly discharge very well. The squared ranks 

tests for standard deviations were insignificant at the P=0.05 level. 

 
 

 

 
Figure 1.6 Ratios of means (a) and standard deviations (b) of monthly and annual 
precipitations derived from the synthesized weather series (synt) to the means and  

standard deviations derived from the observed series (obs); and ratios of the means (c)  
and standard deviations (d) of discharges simulated with the synthesized precipitation  

series (synt) to those simulated with the observed precipitation series (obs) at the 
Châteauguay River Basin; the synthesized precipitation series include WeaGETS-generated 
(GEN), spectral correction (SPC) and Wang and Nathan’s (WAN) methods corrected data. 

 
 
The K-S tests showed that distributions of discharges were not different at P=0.05 between 

those simulated with observed and with each synthesized weather series at the monthly and 

yearly scales (table 1.3). 
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Table 1.3 The numbers of monthly and annual discharge series over 12 months and  
1 yearly series that rejected the Mann-Whitney, squared ranks and K-S tests;  
the synthesized data include WeaGETS-generated (GEN), spectral correction  

(SPC) and Wang and Nathan’s (WAN) methods corrected. 
 

 Monthly Yearly 

 
Mann- 

Whitney test 

Squared 

ranks tests 

K-S 

test 

Mann- 

Whitney test 

Squared 

ranks tests 
K-S test 

GEN 0/12 3/12 0/12 0/1 1/1 0/1 

SPC 0/12 1/12 0/12 0/1 0/1 0/1 

WAN 0/12 0/12 0/12 0/1 0/1 0/1 

 
 

WeaGETS significantly underestimated the frequency distribution of the mean annual 

discharge (figure 1.7a). However, those simulated using precipitations corrected through the 

spectral correction and Wang and Nathan’s method were significantly improved, although 

they were somewhat overestimated. Similarly to the simulation of averaged annual discharge, 

the maximum annual discharge from spring snowmelt (from February 1st to late May) 

simulated using WeaGETS-generated data was significantly underestimated (figure 1.7b), 

but was improved by the corrected weather data. However, they were still lower than the 

observed ones.   

 

Similarly to the changing trends in yearly precipitation, the flood and drought years are also 

not random, but rather, come in a series, as shown by the autocorrelation functions of mean 

yearly discharge (figure 1.8). These provide the decision basis for agricultural management 

and hydrologic applications. However, the mean yearly discharges simulated using 

WeaGETS-generated precipitations and with precipitations corrected through Wang and 

Nathan’s method could not preserve the observed autocorrelation functions. That was 

because the WeaGETS and Wang and Nathan’s method could not reproduce the observed 

autocorrelation functions of averaged yearly precipitations. The spectral correction method 

successfully reproduced the observed autocorrelation, although not exactly. 
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Figure 1.7 Frequencies of mean and maximum annual discharges simulated with the 
observed, WeaGETS-generated (GEN), and spectral correction (SPC) and Wang and 

Nathan’s (WAN) methods corrected precipitation series. 
 
 

 

 
Figure 1.8 10 years lagged autocorrelation of averaged yearly discharges simulated  
with the observed (OBS), WeaGETS-generated (GEN), spectral correction (SPC)  

and Wang and Nathan’s methods (WAN) corrected precipitations series. 
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1.5 Discussion and Conclusions 

An approach based on a power spectrum for coupling time scales of stochastic time series 

models is presented in this research. This approach was compared with an existing method 

(Wang and Nathan’s (2007) method) on the basis of how well the low-frequency variability 

of precipitation is preserved. The ability of each method to simulate the discharge of a river 

basin using a hydrological model was also evaluated. Low-frequency variability was first 

modeled using an FFT-derived power spectrum. Generation of monthly and yearly 

precipitation data was achieved by assigning random phases for each spectral component, 

which preserved the power spectrum and variances as well as the autocorrelation 

function. The link to daily parameters was established through linear functions, and direct 

and indirect validation experiments were conducted to examine the effects of those 

corrections. In the direct validation experiments, the statistics derived from WeaGETS-

generated, spectral correction and Wang and Nathan’s methods corrected precipitation series 

were compared with those derived from the observed series. In the indirect validation 

experiments, the discharge simulated by a hydrological model driven by observed and 

synthesized weather data were examined.  

 

Direct validation experiments showed that the spectral correction approach reproduced the 

observed standard deviations of monthly and annual precipitations almost exactly. Although 

results were not presented, it should be noted that the standard deviation of seasonal 

precipitation was also significantly improved, although we did not specifically correct for it. 

Seasonal variance was however not as well reproduced as that of the monthly and yearly 

scales, which indicates that it may be useful to add the seasonal scale in the correction 

scheme. More importantly, the spectral correction approach could reproduce the observed 

autocorrelation of annual precipitation. Wang and Nathan’s method also significantly 

improved the standard deviations of precipitation at monthly and yearly scales, but not as 

well, especially for annual precipitation. This is because their method only considered the 

variability and autocorrelation at the monthly scale, whereas the spectral correction approach 

considered both time scales.  
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The results of the indirect validation indicate that the modifications of the weather generator 

improved the reliability of the statistics derived from the output of the hydrological model. 

The precipitation series corrected through the spectral correction approach improved the 

statistical properties of the discharge derived from driving the hydrological model. The 

standard deviations of monthly and yearly discharges were better reproduced, indicating that 

preserving the observed low-frequency variability is very important in the simulation of 

discharge when used with synthetic stochastic weather series. The frequencies of mean and 

maximum annual discharges simulated using the spectral correction approach corrected 

precipitation series were also obvious improved. Wang and Nathan’s method corrected 

precipitation series also significantly improved the simulation of discharges’ variability at 

monthly and yearly scales compare with those simulated using WeaGETS-generated data. 

Moreover, the spectral correction method successfully reproduced the observed 

autocorrelation of averaged yearly discharge, unlike WeaGETS and Wang and Nathan’s 

method, because the periodicities of the streamflow characteristics, i.e., timing and 

magnitude of peak flow and specific runoff, are related to the variation in the autocorrelation 

of the time-series of precipitation (Fassnacht, 2006). The spectral correction method 

preserved the observed autocorrelation functions of mean yearly precipitation, so it could 

reproduce the autocorrelation of averaged yearly discharge. This is very important in 

hydrologic applications. It should be noted that although the variability of monthly and 

yearly precipitations and autocorrelation were reproduced almost exactly by the spectral 

correction method, the variability of monthly discharge was not as good as that of 

precipitation. There may be three reasons for this. Firstly, as mentioned above, the 

corrections of monthly and inter-annual variability has limited effect on other time scales, 

and so the corrected precipitation series may still not be as good as the observed data. 

Secondly, the discharge was affected not only by precipitation, but also by temperatures, 

which control the snow melting. WeaGETS-generated temperatures were used to replace the 

observed ones, in order to remove any biases due to the temperature generating process. 

However, by doing so, another bias was introduced in which temperatures and precipitations 

were no longer correlated in the observed time series. Even though it seemed better to 

proceed as such, a new bias may however have been introduced. Thirdly, the proposed 
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approach keeps the precipitation occurrence process constant. Ongoing work indicates that 

transition probabilities also display inter-annual variability, and are partly correlated with 

annual precipitation. Even though the proposed spectral correction approach significantly 

improves the simulation of water discharge, further improvements may be required that 

occurrence variability be specifically taken into account. However, a relatively simple 

technique for adjusting the daily precipitation occurrence sequence is not immediately 

obvious (Wang and Nathan, 2007). Furthermore, although indirect validation is generally 

valid for a given impact model, location and experimental setting, further testing may be 

needed.  
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2.1 Abstract  

Stochastic weather generators are commonly used to generate time series of weather 

variables to drive agricultural and hydrologic models. One of their most appealing features is 

the ability to rapidly generate very long time-series for studying the impacts of rare climate 

events. However, they do have various problems; such as the inability to represent the inter-

annual variability of the climate system, and it is difficult for them to accurately preserve the 

auto- and cross-correlation of maximum and minimum temperatures (Tmax and Tmin). This 

research aims to: (1) compare the abilities of two of the most widely-used weather generators 

(CLIGEN and WGEN) in generating Tmax and Tmin; (2) merge the two weather generators 

into a hybrid method that combines the strengths of each (referred to as the integration 

method); and (3) apply an approach to correct the inter-annual variability of Tmax and Tmin 

(referred to as the spectral correction method). The results show that CLIGEN reproduced 

mean daily Tmax and Tmin very well. WGEN also produced the mean daily Tmax 

reasonably well, but slightly underestimated the mean daily Tmin. Moreover, CLIGEN was 

better than WGEN at producing standard deviations of daily Tmax and Tmin. Integration and 
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spectral correction methods resulted in a weather generator that accurately produced mean, 

standard deviation and extremes of daily Tmax and Tmin. The auto- and cross-correlations of 

and between daily Tmax and Tmin were well reproduced and much better than those of 

CLIGEN- and WGEN-generated data. Moreover, the spectral correction approach 

successfully reproduced the observed inter-annual variability of Tmax and Tmin.  

 

Keywords: Stochastic Weather Generator; CLIGEN; WGEN; Temperature; Climate 

variability  

 

2.2 Introduction  

With the growing use of physically-based response models such as hydrological and 

agricultural models, there has been a more frequent requirement for weather generators to 

generate long meteorological time series to simulate the long term effects of climate 

variability. Over the past three decades, several weather generators have been developed to 

meet this requirement, such as Weather Generator (WGEN) (Richardson, 1981; Richardson 

and Wright, 1984), USCLIMATE (Hanson et al., 1994), Climate Generator (CLIGEN) 

(Nicks et al., 1995), Climate Generator (ClimGen) (Stockle et al., 1999), and the Long 

Ashton Research Station-Weather Generator (LARS-WG) (Semenov and Barrow, 2002). The 

main reason for the development of weather generators is the ability to generate long-term 

synthetic daily weather data that statistically resemble the observed historical record. 

Weather generators can also be used to generate weather data for ungauged basins by 

interpolating the model parameters from adjacent gauged sites. More recently, another 

application of weather generators is to use them as a downscaling tool to generate climate 

projections at the daily time scale to quantify the impacts of future climate change (Semenov 

& Barrow, 1997; Wilks, 1992, 1999a; Pruski and Nearing, 2002; Zhang et al., 2004; Zhang, 

2005; Zhang and Liu, 2005). This use is achieved by perturbing the weather generator 

parameters according to relative changes projected by a climate model (Zhang, 2005). Of all 

the aforementioned weather generators, WGEN and CLIGEN are arguably the ones most 
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widely used for simulating daily weather time series including precipitation, maximum and 

minimum temperatures (Tmax and Tmin) and solar radiation.   

 

Over the past few decades, numerous studies have been conducted to evaluate, improve and 

compare the performance of weather generators (Qian et al., 2004; Semenov et al., 1999; 

Zhang and Garbrecht, 2003; Hayhoe, 2000, Chen et al., 2009). Weather generators are good 

at producing precipitation occurrence and quantity (Semenov et al., 1998; Chen et al., 2008, 

Chen et al., 2009), but have difficulties dealing with inter-annual variability. Several methods 

have been presented to correct this problem (Hansen and Mavromatis, 2001; Dubrovsky et 

al., 2004; Wang and Nathan, 2007; Chen et al., 2010). Compared to precipitation, the 

simulation of temperatures has been given less attention in the literature. Weather generators 

also significantly underestimate the monthly and annual variability of temperatures 

(Dubrovsky et al., 2004). Dubrovsky et al. (2004) applied a monthly generator (based on a 

first-order linear autoregressive model) to adjust the low-frequency variability of Tmax and 

Tmin based on a WGEN-like weather generator. The results demonstrated that conditioning a 

daily weather generator on a monthly model has positive effects. However, this model was 

still unable to accurately reproduce yearly variances and autocorrelations of observed 

temperatures because it did not specifically consider the inter-annual variability. To date, no 

other approaches have been proposed to correct the underestimation of monthly and annual 

temperature variability. One of the explanations for this lacuna is that temperatures are not 

considered as important as precipitation in some practical applications like hydrological 

studies. Another reason is that temperature correction is more difficult, because Tmax and 

Tmin are correlated with each other.  

 

The preservation of the auto- and cross-correlations for and between Tmax and Tmin is an 

important criterion for assessing the ability of a weather generator to simulate temperatures, 

but very few approaches have tried to address this problem. For example, CLIGEN uses two 

random numbers to generate the standard normal deviate. The second number for one day is 

reused as the first number for the following day.  This method has limited effects, however, 

especially for evaluating day-to-day persistence (Zhang, 2004; Chen et al., 2008). WGEN 
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uses a first-order linear autoregressive model to generate the residual series of Tmax and 

Tmin. According to this scheme, the lag 0 and lag 1 correlations are derived from the 

observed data and lag k’s correlation coefficient is given by the kth power of the lag 1 

correlation. This approach is thus effective at reproducing lag 0 and lag 1 correlations, but 

lags greater than one day are not well-preserved (Richardson, 1981).  

 

The objectives of this work were to: (1) compare the abilities of two of the most widely-used 

weather generators (CLIGEN and WGEN) at generating Tmax and Tmin; (2) merge the two 

weather generators into a hybrid method that combines the strengths of each; and (3) apply 

an approach to correct the inter-annual variability of Tmax and Tmin.  

 

2.3 Methodology 

2.3.1 Stochastic weather generators 

The two weather generators compared here, CLIGEN and WGEN, are arguably the ones 

most commonly used. They generate synthetic daily weather data using statistics derived 

from observed data based on a normal distribution, combined with a random number 

generator. Table 2.1 briefly summarizes the differences between the two weather generators 

at producing Tmax and Tmin. More details are presented below.  

 

2.3.1.1 WGEN  

WGEN is a four-variate (precipitation, Tmax, Tmin and solar radiation) single-site stochastic 

weather generator. It uses a first-order linear autoregressive model to generate Tmax and 

Tmin. The observed time series is first reduced to residual elements by subtracting the daily 

mean and dividing by the standard deviation. The means and standard deviations are 

conditioned on the wet or dry status (Richardson 1981). The residual series are then 

generated by: 
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)()()( ,1,, jBjAxjx ipipip ε+= −                                               (2.1)  

 

where xp,i(j) is a (2×1) matrix for day i of year p, whose elements are the residuals of Tmax 

(j=1) and Tmin (j=2); )(, jipε  is a (2×1) matrix of independent random components that are 

normally distributed with a mean of zero and a variance of unity; and A and B are (2×2) 

matrices whose elements are defined such that the new sequences have the desired auto- and 

cross-correlation coefficients. The A and B matrices are determined by 

 

1
01
−= MMA                                                                  (2.2) 

 

TT MMMMBB 1
1

010
−−=                                                         (2.3) 

 

where the superscripts -1 and T denote the inverse and transpose of the matrix, respectively, 

and M0 and M1 are the lag 0 and lag 1 covariance matrices.  

 

The daily values of Tmax and Tmin are found by multiplying the residuals by the standard 

deviation and adding the mean using the following equations. 

 

ipxT ,maxmaxmax ×+= σμ
                                                     (2.4) 

 

ipxT ,minminmin ×+= σμ
                                                      (2.5) 

 

Because Tmax and Tmin are generated independently using equations (2.4) and (2.5) 

resulting in a large number of cases where the generated Tmin is larger than Tmax on a given 

day. To resolve this problem, a range check is imposed, forcing Tmin to be smaller than 

Tmax. Tmin may be set to Tmax-1, for example. However, this has an undesirable effect on 

the mean and standard deviation of Tmin. 
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Table 2.1 Comparison of the WGEN and CLIGEN algorithms at  
generating maximum and minmum temperatures (Tmax and Tmin) 

 
NO. WGEN CLIGEN 

1 Tmax and Tmin  are conditioned on wet 

and dry states 

Tmax and Tmin are not conditioned 

on wet and dry states 

2 The time series of observed data is reduced 

to a time series of residual elements. (daily 

basis) 

Parameters are calculated for each 

month. (monthly basis) 

3 Residual elements are analyzed to 

determine the auto- and cross-correlation 

of and between Tmax and Tmin. 

Two random numbers are used to 

generate the standard normal deviate. 

The second number for one day is 

reused as the first number for the 

following day. 

4 Generating residual series of Tmax and 

Tmin is based on a first-order linear 

autoregressive model. The daily values of 

Tmax and Tmin are found by multiplying 

the residuals by the standard deviation and 

adding the mean. 

The smaller standard deviation of 

Tmax or Tmin is used as a base, and 

the other parameter is generated 

conditioned on the chosen parameter.  

5 Tmax and Tmin are generated 

independently, resulting in several cases in 

which Tmin is larger than Tmax on a given 

day. A range-check scheme is imposed to 

force Tmin to be smaller than Tmax. 

Tmin is generated conditioned on 

Tmax to ensure it is less than Tmax on 

a given day. The range check scheme 

is unnecessary.  

 
 
2.3.1.2 CLIGEN  

The CLIGEN weather generator generates daily values of Tmax, Tmin, dew point 

temperature, solar radiation, and wind velocity and direction, as well as precipitation-related 

variables such as precipitation occurrence/quantity, duration, peak storm intensity and time to 
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peak intensity, based on long-term monthly statistical parameters. This paper only focuses on 

the generation of Tmax and Tmin.  

 

Daily Tmax and Tmin are generated using normal distributions. The long-term monthly 

statistical parameters, including the mean and standard deviation, are used to run CLIGEN to 

generate daily weather series. Specifically, the temperature with the smaller standard 

deviation between Tmax and Tmin is computed first, followed by the other. If the standard 

deviation of Tmax is larger than or equal to the standard deviation of Tmin, daily 

temperatures are generated by equations (2.6) and (2.7): 

 

 χσμ ×+= minminminT                                                           (2.6) 

 

χσσμμ ×−+−+= 2
min

2
maxminmaxminmax )(TT                                (2.7) 

 

If the standard deviation of Tmax is less than that of Tmin, daily temperatures are generated 

by equations (2.8) and (2.9): 

 

χσμ ×+= maxmaxmaxT                                                          (2.8) 

 

χσσμμ ×−−−−= 2
max

2
minminmaxmaxmin )(TT

                                (2.9) 

 

where μ is the monthly mean of the daily temperatures, σ is the standard deviation of daily 

temperatures, and χ is a generated standard normal deviate, which is obtained for each day 

using two random numbers. A Tmin generated using this scheme is always less than Tmax, 

which eliminates any need for the range check that must be used in WGEN to ensure that 

Tmin is less than Tmax. 
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2.3.2 Integration method 

The main motivation for this work was to combine the most desirable properties of both 

weather generators into a hybrid method to maximize the strengths and minimize the 

drawbacks of each. To achieve this, WGEN is used as the basic weather generator, but 

instead of using equations (2.4) and (2.5), the conditional equations (2.6) – (2.9) derived 

from CLIGEN are used, to ensure that the Tmin is always less than the Tmax on a given day. 

Thus, the range check is no longer necessary. Throughout this paper, this is referred to as the 

integration method.  

 

2.3.3 Correction of the inter-annual variability  

An important goal of this work was to specifically correct the inter-annual variability of 

Tmax and Tmin using the power spectra of observed time series at the yearly scale. The 

power spectra are computed using Fast Fourier Transforms (FFT). This approach was 

proposed by Chen et al. (2010) for correcting the low-frequency variability of precipitation 

for weather generators. 

 

The use of FFT is widespread in engineering and signal processing, and it stems from the 

concept that any discrete signal (such as yearly averaged Tmin at a station) can be exactly 

represented by a summation of sine waves with magnitude S and phase φ . Following the 

FFT, each sine wave component is expressed as a complex number: 

 

)1(C −=∗+= iYiX                                              (2.10) 

 

from which the magnitude S and phase φ  can be extracted with the following equations: 

 

22S YXC +==                                                      (2.11) 

 

)(tan 1 XY−=φ                                                         (2.12) 
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The variance and phase of each component can be modified and returned back in complex 

form with the following equation, and then returned back to the time domain with an inverse 

FFT: 

 

)( φ∗∗= ieSC                                                         (2.13) 

 

By modifying the phase of each component and reverting to the time domain, a new signal 

with an identical power spectrum (and variance) can be created. As such, low-frequency 

components (such as decadal variability) will be preserved in the new signal. This property is 

used to modify the daily sequences from the weather generator in order to correct for the 

underestimated variances at the inter-annual scale. Throughout this paper, this procedure is 

referred to as the spectral correction method/approach, and it is comprised of three steps: 

 

1) Daily Tmax and Tmin time series are generated by WGEN with the integration method 

using parameters derived from the observed daily temperature series. In this study, the 

length of the generated series was 20 times that of the observed one in order to precisely 

evaluate the statistical parameters of the synthetic time series.  

 

2) Inter-annual variability is modeled based on a power spectrum using FFT. The generation 

of a new power spectrum for Tmax is achieved by assigning random phases to each 

spectral component and then transferring back to the time domain. To be sure not to 

perturb the cross-correlation between Tmax and Tmin, the random phases used to 

generate the power spectrum of Tmax were also used to generate that of Tmin.   

 

3) The daily Tmax and Tmin series generated in step 1 are adjusted incrementally. The 

series of yearly averaged Tmax and Tmin calculated from the daily series generated in 

step 1 are adjusted to the yearly averaged Tmax and Tmin series generated in step 2, 

using linear functions.  
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2.3.4 Validation of each method 

The diagnostics listed in table 2.2 were used to compare the observed and synthesized Tmax 

and Tmin. Two tailed t- and F-tests were conducted to test the equality of the mean and 

standard deviation between observed and synthesized Tmax and Tmin time series, 

respectively. A significance level of P=0.05 was used for these tests.  

 
 

Table 2.2 Diagnostics for comparing each method 
 

NO. Diagnostics 

1 Mean and standard deviation of daily Tmax and Tmin 

2 Averaged yearly maximum Tmax and minimum Tmin 

3 Auto- and cross-correlations of and between Tmax and Tmin 

4 Autocorrelation of averaged yearly Tmax and Tmin 

5 Mean and standard deviation of averaged yearly Tmax and Tmin 

 
 
2.3.5 Meteorological data 

Meteorological data, including daily Tmax, Tmin and precipitation for six stations dispersed 

across Canada, were used to drive the weather generators. To be consistent with a previous 

study, the chosen meteorological stations are the same ones used by Chen et al. (2010) to 

verify the spectral correction method for correcting low-frequency precipitation variability. 

Basic information, including longitude, latitude, elevation, record duration and averaged 

yearly Tmax and Tmin for these stations is given in table 2.3. Averaged yearly temperatures 

at these stations varied from -2.72°C in Churchill to 14.10°C in Victoria for Tmax, and -

10.91°C in Churchill to 5.55°C in Langara for Tmin, adequately representing the natural 

climate variability in Canada. 

 

 
 



65 

Table 2.3 Location, record period, and average annual maximum and minimum  
temperature for six stations (Lat=latitude; Lon=longitude and Ele=elevation)   

 

Region 

Station 

number 

and name 

Lat 

(°N) 

Lon 

(°W) 

Ele 

(m) 

Records 

of daily 

data 

Averaged 

yearly 

Tmax (°C) 

Averaged 

yearly 

Tmin (°C) 

Vancouver 

Island 

(1) 

Victoria 
48.65 123.32 19 

1941-2006 

(66) 
14.10 5.38 

Queen 

Charlotte 

Islands 

(2) 

Langara 
54.25 133.05 14 

1937-2006 

(70) 
9.86 5.55 

Okanagan 

River Basin 

(3) 

Vernon 

Goldstrea

m Ranch 

(VGR) 

50.23 119.20 482 
1907-1996 

(90) 
12.70 1.92 

Mackenzie 

(4) 

Yellow- 

knife 

62.47 114.43 206 
1945-2002 

(58) 
-0.57 -9.34 

Nelson and 

Churchill 

River Basin 

(5) 

Churchill 
58.73 94.05 29 

1947-2006 

(60) 
-2.72 -10.91 

Middle St. 

Lawrence 

River Basin 

(6) 

Dorval 
45.47 73.75 36 

1943-1994 

(52) 
11.08 1.59 

 
 
2.4 Results 

2.4.1 The relationship between averaged yearly precipitation and temperatures 

One of the goals of this paper is to apply a method to correct the inter-annual variability of 

Tmax and Tmin for weather generators. In order to do this, correlations between averaged 

yearly temperatures and precipitation were looked at. If averaged yearly temperatures are 
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strongly correlated with precipitation, the correlation may be perturbed by correction 

schemes.  

 

The correlation between averaged yearly temperatures and precipitation was tested for six 

stations (table 2.4). The results showed that there is no significant correlation between the 

averaged yearly Tmax (Tmin) and precipitation at the P=0.05 level, with the exception of the 

Churchill station where the correlation is nevertheless small. Therefore, it was assumed that 

the inter-annual variability of Tmax and Tmin can be corrected independently of 

precipitation. 

 
 

Table 2.4 The correlation between averaged yearly  
Tmax (Tmin) and precipitation for six stations 

 

Station 

Tmax vs. precipitation Tmin vs. precipitation 

Correlation 

coefficient (R) 
P value 

Correlation 

coefficient (R) 
P value 

Victoria 0.120 0.338 0.191 0.125 

Langara 0.207 0.085 0.207 0.058 

Vernon Goldstream 

Ranch (VGR) 
0.152 0.093 0.022 0.835 

Yellowknife 0.176 0.187 0.237 0.074 

Churchill 0.270 0.037 0.256 0.048 

Dorval 0.183 0.193 0.126 0.374 

 
 
2.4.2 Power spectra of mean yearly temperature time series 

Figures 2.1a and 2.1b show the time series and power spectra of the mean yearly Tmin at the 

Yellowknife station. Figure 2.1b clearly shows that warmer and colder years are not 

randomly distributed and do display patterns associated with climate natural variability. In 

this case there are strong 3- and 10-year oscillations.  By assigning random phases to each 
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component of the power spectrum and reverting to the time domain, a new signal (mean 

yearly Tmin) with an identical power spectrum (and thus showing the same variability) can 

be created. This mean yearly Tmin time series (figure 2.1c) has a power spectrum (figure 

2.1d) that is almost identical to the one shown in figure 2.1b. 

 
 

 

 
Figure 2.1 Time series ((a) and (c)) and their power spectra ((b) and (d))  

of averaged yearly Tmin at the Yellowknife station. 
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2.4.3 Statistics of maximum and minimum temperatures 

All of the methods, including CLIGEN, WGEN, integration and spectral correction 

approaches, reproduced the mean daily Tmax very well (table 2.5). In particular, the mean 

daily Tmax was exactly produced by the spectral correction method. The t-tests showed that 

there is no significant difference between observed and the method-generated Tmax at the 

P=0.05 level. WGEN somewhat underestimated the standard deviation of daily Tmax. The F-

tests showed that observed and WGEN-generated Tmax are significantly different for all 6 

stations. The standard deviations of CLIGEN generated-data virtually matched those from 

observation in all cases. All of the F-tests between observed and CLIGEN-generated data 

were insignificant at P=0.05. Standard deviations of daily Tmax produced by the integration 

and spectral correction methods were better than those generated by WGEN, but slightly 

worse than those generated by CLIGEN. The F-tests showed that the observed standard 

deviations of generated data were significantly different for the integration method (4 out of 

6 stations) and for the spectral correction method (3 out of 6 stations). Looking at extremes, 

WGEN was the worst at preserving the averaged yearly maximum temperature with a mean 

absolute error (MAE) of 3.23°C. CLIGEN, integration and spectral correction methods were 

all better with MAEs of 1.44°C, 1.59°C and 1.60°C, respectively.  

 

Table 2.6 shows that WGEN performed the poorest at reproducing Tmin, with MAEs of 

mean, standard deviation and averaged yearly minimum Tmin of 0.43°C, 0.41°C and 4.98°C, 

respectively. The t- and F-tests showed that the means and standard deviations of observed 

data were significantly different from those generated with WGEN at P = 0.05 for all stations 

and for 5 out of 6 stations, respectively. This is essentially because of the range check 

imposed in WGEN to insure that the daily Tmin is less than Tmax on any given day. 

CLIGEN reproduced the mean and the standard deviation of Tmin very well for all six 

stations. Both the integration and the spectral correction methods reproduced Tmin 

reasonably well, although there were significant differences for standard deviations for two 

and one stations out of six, respectively. For extreme Tmin, WGEN again performed less 

well, with an MAE of 4.98°C for the averaged yearly Tmin. CLIGEN performed the best 
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with an MAE of 2.82, while the integration and spectral correction had the same MAE 

(4.43°C). 

 
 

Table 2.5 Statistics (°C) of daily Tmax by location and source 
 (AYMax=averaged yearly maximum) 

 
Station  Statistic  OBS WGEN CLIGEN INT SPC 

Victoria 

Mean  14.10 14.09 14.10 14.10 14.10 

Std. dev 6.36 6.06* 6.36 6.25* 6.26* 

AYMax 30.75 28.05 29.85 29.55 29.51 

Langara 

Mean  9.86 9.86 9.86 9.87 9.86 

Std. dev 4.43 4.35* 4.43 4.39 4.43 

AYMax 20.70 19.64 20.00 19.90 19.89 

Vernon 

Goldstream 

Ranch 

Mean  12.70 12.72 12.70 12.68 12.70 

Std. dev 11.28 10.73* 11.28 11.04* 11.07* 

AYMax 34.81 33.22 37.45 36.43 36.46 

Yellowknife 

Mean  -0.57 -0.56 -0.57 -0.59 -0.57 

Std. dev 16.77 15.80* 16.76 16.55* 16.67 

AYMax 28.46 24.04 29.95 28.56 28.59 

Churchill 

Mean  -2.71 -2.72 -2.70 -2.76 -2.71 

Std. dev 15.46 14.47* 15.48 15.37 15.40 

AYMax 30.35 23.38 31.58 26.13 26.19 

Dorval 

Mean  11.08 11.07 11.08 11.05 11.08 

Std. dev 12.55 11.77* 12.54 12.35* 12.36* 

AYMax 32.79 30.15 34.50 34.40 34.43 

 
* is different from observed time series at P = 0.05. 
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Table 2.6 Statistics (°C) of daily Tmin by location and source  
(AYMin=averaged yearly minimum) 

 
Station  Statistic  OBS WGEN CLIGEN INT SPC 

Victoria 

Mean  5.38 5.30* 5.38 5.38 5.38 

Std. dev 4.72 4.86* 4.72 4.69 4.71 

AYMin -8.09 -8.60 -8.30 -7.11 -7.06 

Langara 

Mean  5.55 5.38* 5.55 5.56 5.55 

Std. dev 4.21 4.20 4.21 4.21 4.21 

AYMin -7.90 -6.63 -6.77 -7.23 -7.25 

Vernon 

Goldstream 

Ranch 

Mean  1.92 1.69* 1.90 1.86 1.91 

Std. dev 8.23 8.51* 8.24 8.14* 8.18 

AYMin -25.57 -24.66 -25.28 -21.53 -21.47 

Yellowknife 

Mean  -9.34 -10.27* -9.35 -9.42 -9.34 

Std. dev 17.02 17.89* 17.01 16.97 17.01 

AYMin -44.62 -57.34 -51.10 -54.51 -54.43 

Churchill 

Mean  -10.91 -11.65* -11.00 -10.97 -10.91 

Std. dev 14.97 15.52* 14.98 15.29* 15.32* 

AYMin -40.84 -49.86 -46.89 -49.45 -49.38 

Dorval 

Mean  1.59 1.17* 1.59 1.54 1.59 

Std. dev 11.74 12.34* 11.73 11.69 11.70 

AYMin -28.87 -34.34 -31.62 -26.48 -26.43 

 
* is different from observed time series at P = 0.05. 
 
 
2.4.4 Auto- and cross-correlation of daily temperatures 

Auto- and cross-correlations of and between daily Tmax and Tmin were computed for 

unfiltered observed and synthesized data sets. Figure 2.2 shows the results for Tmax. The 

observed data show a clear day-to-day persistence. WGEN predictably reproduced the 

observed lag 1 autocorrelation, but lags greater than one day were consistently greater than 
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those of the observed data with the exception of the wettest station, Langara. This indicates 

that WGEN may preserve the autocorrelation correctly for very wet stations. CLIGEN 

consistently underestimated day-to-day persistence. The integration and spectral correction 

methods reproduced not only the day-to-day persistence, but also the month-to-month 

persistence as shown by the 30-day lag results.  

 
 

 

 
Figure 2.2 40 days of lagged autocorrelation for observed (OBS), CLIGEN- 

generated, WGEN-generated, integrated weather generator generated (INT) and  
spectral correction method corrected (SPC) daily Tmax for the 6 stations of Table 3. 
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Similarly to its results for Tmax, CLIGEN consistently underestimated the autocorrelation of 

Tmin, especially at the day-to-day persistence (figure 2.3). The other three methods worked 

well, although WGEN was systematically inferior to the integration and spectral correction 

methods. The range check imposed in WGEN has little effects on the autocorrelation of 

Tmin. 

 
 

 

 
Figure 2.3 40 days of lagged autocorrelation for observed (OBS), CLIGEN- 

generated, WGEN-generated, integrated weather generator generated (INT) and  
spectral correction method corrected (SPC) daily Tmin for the 6 stations of Table 3. 
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Cross-correlation persistence between Tmax and Tmin is shown in figure 2.4. CLIGEN data 

underestimated the cross-correlations between Tmax and Tmin. Once again WGEN showed 

better performance than CLIGEN, while the integration and spectral correction methods were 

the most successful at reproducing the observed cross-correlations. 

 
 

 

 
Figure 2.4 40 days of lagged cross correlation between observed (OBS), CLIGEN-generated, 

WGEN-generated, integrated weather generator generated (INT) and spectral correction 
method corrected (SPC) daily Tmax and those of daily Tmin for the 6 stations of Table 3. 
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2.4.5 Autocorrelation of averaged yearly temperatures 

Figure 2.5 displays the autocorrelation function of the observed averaged yearly Tmin. It 

clearly indicates that warmer and cooler years are not random, but rather, come in series, as 

was shown by the power spectra of averaged yearly Tmin series (figure 2.1). Since similar 

results were obtained with Tmax, only the results of Tmin are shown in figure 2.5. For many 

applications, such as agriculture, it is important to be able to reproduce these successions of 

warmer/cooler years. WGEN, CLIGEN and the integrated method could not preserve the 

autocorrelation function for temperatures because it does not take into account the low-

frequency component of climate variability. Instead, it tries to reproduce the average year, 

every year. The spectral correction method successfully reproduced the observed 

autocorrelation for all 6 stations. 

 

2.4.6 Inter-annual variability of Tmax and Tmin 

All methods reproduced the mean yearly Tmax and Tmin very well (table 2.7), with the 

exception of WGEN which had some problems with Tmin. The t-tests showed that mean 

yearly Tmins were significantly different at P=0.05 for five out of six stations. As mentioned 

earlier, this occurs because a range check is used with WGEN to ensure the Tmin is less than 

Tmax on any given day, thereby perturbing the statistics of Tmin. 

 

CLIGEN, WGEN and the integration method underestimated the inter-annual variability of 

averaged yearly Tmax and Tmin, as represented by their standard deviations (table 2.8). The 

F-tests showed that there is a statistically significant difference between the observed data 

and that generated from the three methods for all 6 stations at the P=0.05 level. The 

integration method somewhat improved the simulation of yearly Tmax. This was because 

equation (2.7) was used to generate Tmax if the standard deviation of Tmax was larger than 

or equal to the standard deviation of Tmin. It implies that the standard deviation of Tmax was 

conditioned on the standard deviation of Tmin in some cases. The spectral correction method 

preserved the standard deviations of averaged yearly Tmax and Tmin very well for all 
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stations. All the F-tests between the standard deviations of observed and of the spectral 

correction method corrected data were insignificant at the P=0.05 level. 

 
 

 

 
Figure 2.5 10 years of lagged autocorrelation of observed (OBS), CLIGEN-generated, 

WGEN-generated, integrated weather generator generated (INT) and spectral correction 
method corrected (SPC) averaged yearly Tmax for the 6 stations of Table 3. 
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Table 2.7 Means of yearly Tmax and Tmin derived from the synthesized and  
observed series for 6 stations. The synthesized Tmax and Tmin series  

include the data generated by CLIGEN, WGEN, integrated weather generator  
(INT), and corrected using the spectral correction method (SPC) 

 

NO 
Tmax Tmin 

OBS WGEN CLIGEN INT SPC OBS WGEN CLIGEN INT SPC 

1 14.10 14.09 14.10 14.10 14.10 5.38 5.30 5.38 5.39 5.38 

2 9.86 9.86 9.86 9.87 9.86 5.55 5.38* 5.55 5.56 5.55 

3 12.70 12.72 12.70 12.68 12.70 1.92 1.69* 1.90 1.86 1.92 

4 -0.57 -0.56 -0.57 -0.59 -0.57 -9.34 -10.27* -9.35 -9.42 -9.34 

5 -2.71 -2.72 -2.70 -2.76 -2.71 -10.91 -11.65* -11.00 -10.97 -10.91 

6 11.08 11.07 11.08 11.05 11.08 1.59 1.17* 1.59 1.54 1.59 

 
* is different from observed time series at P = 0.05. 
 
 

Table 2.8 Standard deviations of yearly Tmax and Tmin derived from the  
synthesized and observed series for 6 stations. The synthesized precipitation  
series include the data generated by CLIGEN, WGEN, integrated weather  
generator (INT), and corrected using the spectral correction method (SPC) 

 

NO 
Tmax Tmin 

OBS WGEN CLIGEN INT SPC OBS WGEN CLIGEN INT SPC 

1 0.67 0.22* 0.16* 0.29* 0.67 0.59 0.27* 0.15* 0.27* 0.59 

2 0.66 0.19* 0.13* 0.24* 0.65 0.72 0.26* 0.12* 0.26* 0.71 

3 0.88 0.29* 0.24* 0.47* 0.88 0.95 0.55* 0.22* 0.52* 0.94 

4 1.16 0.17* 0.35* 0.64* 1.13 1.35 0.98* 0.35* 0.79* 1.33 

5 1.25 0.23* 0.37* 0.66* 1.21 1.18 0.70* 0.30* 0.70* 1.12 

6 0.66 0.18* 0.28* 0.49* 0.64 0.82 0.65* 0.27* 0.55* 0.79 

 
* is different from observed time series at P = 0.05. 
 
 
2.5 Discussion and conclusions 

Two weather generators, CLIGEN and WGEN, were compared with respect to the generation 

of minimum and maximum temperatures (Tmax and Tmin). Both generate Tmax and Tmin 
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based on a normal distribution; the main differences are that unlike WGEN, CLIGEN 

generates Tmax and Tmin conditioned on each other, and they use different schemes to 

preserve the auto- and cross-correlation of and between Tmax and Tmin. The results showed 

that CLIGEN reproduced the mean and standard deviation of daily Tmax and Tmin very 

well, and better than WGEN. This is because WGEN-independent generations of Tmax and 

Tmin result in a large number of cases where Tmin is larger than Tmax in a day. Any scheme 

forcing Tmin to be smaller than Tmax perturbs the statistics of Tmin. WGEN reproduced the 

observed lag 1 autocorrelation very well but its performance deteriorated rapidly for greater 

lags, with the exception of the wettest station -- Langara. The autocorrelation coefficients of 

CLIGEN-generated temperatures were consistently less than those of the observed data. The 

CLIGEN scheme of using two uniform random numbers for inducing additional dependency 

between two consecutive days is clearly inadequate, even for the lag 1 autocorrelation 

coefficient. Zhang (2004) and Chen et al. (2008) obtained similar results with respect to 

CLIGEN. WGEN proved better than CLIGEN in producing the cross-correlation between 

Tmax and Tmin. Neither weather generator could preserve the autocorrelation of averaged 

yearly Tmax and Tmin, nor preserve their inter-annual variability.  

 

The integration and spectral correction methods resulted in weather generators that produced 

accurate means, standard deviations and extremes of daily Tmax and Tmin. Moreover, when 

compared to WGEN and CLIGEN, the integration and spectral correction schemes improved 

the simulations of auto- and cross-correlations for and between daily Tmax and Tmin. 

However, similarly to both WGEN and CLIGEN, the integration method was unable to 

preserve the autocorrelation function of averaged yearly Tmax and Tmin, because, as 

mentioned earlier, it does not take into account the low-frequency variability of climate. The 

spectral correction approach successfully reproduced the observed autocorrelation of 

averaged yearly Tmax and Tmin, and also successfully preserved the inter-annual variability 

of Tmax and Tmin.  

 

Overall, coupling the integration method with the spectral correction method results in a 

weather generator that not only accurately preserves basic statistics including means, 
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standard deviations and extremes of Tmax and Tmin, but also preserves the auto- and cross-

correlations for and between Tmax and Tmin. Even more importantly, this coupled method 

preserves the autocorrelation functions and inter-annual variability. The monthly variability 

was also improved along with the correction of inter-annual variability (results not shown), 

but it was not as good as that at the yearly scale, indicating that the scheme for correcting 

inter-annual variability has a limited effect at the monthly scale. Thus, it might be necessary 

to add monthly or seasonal variability into the correction scheme. However, this step may 

lead to overfitting problems, resulting in too many cases where Tmin is greater than Tmax. 

This paper only validated the applied methods directly, rather than linking them into practical 

applications. A more comprehensive assessment, including linking these methods with 

agricultural and hydrological models, for example, may be required in further studies.  
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3.1 Abstract  

Stochastic daily weather generators are often used to generate long time series of weather 

variables to drive hydrological and agricultural models. More recently, they have also been 

used as a downscaling tool for studying the impacts of climate change. This paper describes a 

versatile stochastic daily weather generator (WeaGETS) for producing daily precipitation, 

maximum and minimum temperatures (Tmax and Tmin). First, second and third-order 

Markov models are provided to generate precipitation occurrence, and exponential and 

gamma distributions are available to produce daily precipitation quantity. Precipitation 

generating parameters have options to be smoothed using Fourier harmonics. Two schemes 

(unconditional and conditional) are available to simulate Tmax and Tmin. Finally, a spectral 

correction approach is included to correct the well-known underestimation of monthly and 

inter-annual variability associated with weather generators. The Matlab freeware allows for 

easy modification of all routines, making it easy to add precipitation distribution or additional 

weather variables to simulate. The performance of this weather generator is demonstrated 

with respect to the generation of precipitation, Tmax and Tmin for two Canadian 



80 

meteorological stations. The results show that the widely used first-order Markov model is 

adequate for producing precipitation occurrence, but it underestimates the longest dry spell 

for dry station. The higher-order models have positive effects. The gamma distribution is 

consistently better than the exponential distribution at generating precipitation quantity, and 

the conditional scheme is better than the unconditional scheme in simulating Tmax and 

Tmin. WeaGETS underestimates the monthly and inter-annual variances of precipitation and 

temperatures. However, the spectral correction approach successfully preserves the observed 

low-frequency variability and autocorrelation functions of precipitation and temperatures. 

 

Keywords: Stochastic weather generator; precipitation; temperature; Matlab 

 

3.2 Introduction  

Weather generators are computer algorithms that produce long time series of weather 

variables that have statistical properties comparable to those of existing records. They are 

also able to generate weather data at ungauged sites through the interpolation of model 

parameters from adjacent gauged sites (Baffult et al., 1996). Weather generators can generate 

weather data at various temporal scales, but the daily scale is the one that has received the 

most attention. Over the past decade, they have been widely used in climate change studies 

as a downscaling tool by perturbing their parameters to account for expected changes in 

precipitation and temperature (Semenov and Barrow, 1997; Wilks, 1992; Pruski and Nearing, 

2002; Zhang et al., 2004; Zhang, 2005; Zhang and Liu, 2005; Kilsbyet al., 2007). The 

appealing property of downscaling weather generator parameters is their ability to rapidly 

produce ensembles of climate scenarios for studying the impacts of rare climate events. Over 

the past three decades, several weather generators have been developed to meet those 

requirements, such as WGEN (Richardson, 1981; Richardson and Wright, 1984), 

USCLIMATE (Hanson et al., 1994), CLIGEN (Nicks et al., 1995), ClimGen (Stockle et al., 

1999) and LARS-WG (Semenov and Barrow, 2002). The generation of precipitation, 

maximum temperature (Tmax) and minimum temperature (Tmin) are the usual main 

components of these weather generators. However, these weather variables are often 
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generated based on different schemes, for example, daily precipitation quantity is generated 

using a gamma distribution in WGEN while a Pearson III distribution is used in CLIGEN. 

Most weather generators use a first-order Markov model to generate precipitation occurrence. 

This model has been shown to be adequate in temperate climates but in wet or dry areas, the 

use of higher-order Markov chains may be necessary (Wilks, 1999b). To circumvent this 

problem, LARS-WG uses empirical histograms of dry/wet series. A one-parameter 

exponential distribution is the simplest method used to generate daily precipitation quantity 

(Todorovic and Woolhiser, 1974; Richardson, 1981), but the two-parameter gamma 

distribution is more widely used due to its better performance. A three-parameter Person III 

distribution is also used to generate daily precipitation quantity in CLIGEN. Compared to 

precipitation, temperatures are much simpler to produce, since they often approximately 

follow a normal distribution. However, daily Tmax and Tmin are correlated with each other 

and this correlation varies depending on whether a day is dry or wet. Thus, the preservation 

of these correlations is an important criterion to assess the performance of a weather 

generator. Moreover, one problem with currently available daily weather generators is the 

underestimation of monthly and inter-annual variances because they do not take into account 

the low-frequency component of climate variability. Several methods have been presented to 

correct the low-frequency variability of precipitation (Hansen and Mavromatis, 2001; 

Dubrovsky et al., 2004; Wang and Nathan, 2007; Chen et al., 2010). The spectral correction 

approach of Chen et al. (2010) is arguably the best available method for dealing with the 

low-frequency problem.  

 

All of the weather generators currently available only provide a single scheme to generate 

each climate variable, such as the first-order Markov model for precipitation occurrence and 

exponential or gamma distribution for wet day precipitation quantity. Users have little choice 

in selecting appropriate options for generating weather variables according to their specific 

study. Moreover, there is no scheme incorporated into weather generators to deal with their 

underestimation of inter-annual variability. 
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This paper describes a Matlab-based software package for the stochastic weather generation 

of precipitation and temperatures (Tmin and Tmax) for individual sites at a daily time scale. 

Simply by perturbing its parameters, this weather generator can also be used to evaluate the 

impacts of climate change. The software is named WeaGETS (Weather Generator Ecole de 

Technologie Supérieure). It regroups several options of other weather generators into one 

package, and allows for the correction of the underestimation of inter-annual variability. 

More importantly, users can easily tailor it to their specific needs with simple modifications. 

 

3.3 Model description 

This paper first presents the algorithm for the generation of precipitation and temperatures. 

Two Canadian meteorological weather stations are then selected to demonstrate the typical 

performance of WeaGETS. Discussion and conclusions are presented in the last section. 

 

WeaGETS provides three options to generate precipitation occurrence, two options to 

produce precipitation quantity and two options to simulate Tmax and Tmin. There is also an 

option of smoothing the precipitation parameters with Fourier harmonics following 

Richardson’s approach (1981), and to correct for the low-frequency variability of 

precipitation and temperature following the spectral correction method of Chen et al. (2010).  

 

The basic input data include an observed weather data filename, a filename to store the 

subsequently generated data, a precipitation threshold value (minimum rainfall amount in 

‘mm’ for a day to be considered wet) and the number of years of data to generate. Figure 3.1 

presents the WeaGETS structure chart. 
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Figure 3.1 Structure chart of the WeaGETS stochastic weather generator. 

 
 
3.3.1 Smoothing Scheme  

The precipitation occurrence parameters include the transition probabilities of first, second 

and third-order Markov chains. For precipitation amounts, there is one parameter for the 

exponential distribution, and two parameters for the gamma distribution. These parameters 

are computed on a biweekly basis (26 estimations over the whole year). Because of climate 
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variability and the finite length of the historical records, the variation from one 2-week 

period to the other will not be smooth, and the true yearly distribution of the parameter value 

will be party hidden. The user can decide to accept sudden variations (keeping constant 

parameters values for the 2-week period) or to smooth the computed distribution to allow for 

smooth transitions of the parameters on a daily basis. In the latter case, WeaGETS will try to 

reproduce the precipitation characteristics of the smoothed line and not of the original 

observed values. In this case, generated precipitation may be slightly different than the 

observed precipitation. One to four Fourier harmonics can be used to smooth the yearly 

parameters distribution. The smoothing process eliminates sharp parameter transitions 

between computing periods that may occur due to outliers, especially for short time series. 

Figure 3.2 presents the P10 parameter smoothed by Fourier harmonics. A first-order Fourier 

harmonic is clearly inadequate in this case. A higher number of harmonics will better fit the 

data at the potential expense of reproducing trends that may not exist (as would be the case in 

figure 3.2d). The choice of smoothing or not, and how much smoothing is needed, is partly a 

philosophical debate and will depend on the experience of the modeler. In most cases, the use 

of two harmonics is adequate for representing seasonal trends in the precipitation-generating 

parameters, but this depends on local climatology. 

 

3.3.2 Generation of precipitation occurrence 

WeaGETS provides three options including first, second and third-order Markov models to 

produce precipitation occurrence. The first-order Markov process is the simplest and most 

widely used. The probability of precipitation on a given day is based on the wet or dry status 

of the previous day, which can be defined in terms of two transition probabilities, P01 and 

P11:  

 

P01 = Pr{precipitation on day t | no precipitation on day t-1}              (3.1a) 

 

P11 = Pr{precipitation on day t | precipitation on day t-1}                   (3.1b) 
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Figure 3.2 A dry day following a wet day (P10) calculated at a two-week scale and smoothed 

by first-order (a), second-order (b), third-order (c) and fourth-order (d) Fourier harmonics. 
 
 
Since precipitation either occurs or does not occur on a given day, the two complementary 

transition probabilities are P00 = 1 - P01 and P10 = 1 - P11. 

 

A generalization of the first-order Markov model is to consider higher-order Markov models 

such as the second and third-order models. Letting Rt = 0 if day t is dry, and Rt = 1 if day t is 

wet, equations (3.1a) and (3.1b) can be extended to the second and third-order Markov chains 

following equations (3.2) and (3.3): 
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Pijk = Pr{ Rt = k | Rt = j | Rt = i }                                            (3.2) 

 

Phijk = Pr{Rt = k | Rt = j | Rt = i | Rt = h}                                    (3.3) 

 

where h, i, j and k =0 or 1, respectively. 

 

The number of parameters required to characterize precipitation occurrence increase 

exponentially with the order of Markov process. This means that two, four and eight 

parameters must be estimated for first, second and third-order Markov models, respectively. 

As mentioned earlier, first-order Markov chains may not be adequate for generating long dry 

or wet spells. Higher-order Markov models perform better, but more parameters must be 

determined. Since a minimum number of rainfall events need to be present to adequately 

estimate transition probabilities, second and third-order parameter estimation requires longer 

time series of observed precipitation. If the goal is to use WeaGETS as a downscaling tool 

for climate change studies, the first-order process is usually more practical because it only 

requires the perturbation of two parameters.  

 

3.3.3 Generation of precipitation quantity 

For a predicted rainy day, two probability distribution functions are available to produce the 

daily precipitation quantity. The first is the one-parameter exponential distribution, which has 

a probability density function given by  

 

xexf λλ −=)(                                                                     (3.4) 

 

where x is the daily precipitation intensity and λ is the distribution parameter (equal to the 

inverse of the mean).  

 

The other function is the two-parameter gamma distribution. The probability density function 

for this distribution is given by 
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where α and β are the two distribution parameters, and Г(α) indicates the gamma function 

evaluated at α. This method is easy to compute and performs better than the exponential 

distribution. Therefore, it is widely used to generate daily precipitation quantity. It would be 

very easy to add other distribution functions, such as the mixed exponential (a three-

parameter distribution) that has also been used in the literature. 

 

3.3.4 Generation of maximum and minimum temperatures 

Similarly to WGEN, the WeaGETS uses a first-order linear autoregressive model to generate 

Tmax and Tmin. The observed time series is first reduced to residual elements by subtracting 

the daily means and dividing by the standard deviations. The means and standard deviations 

are conditioned on the wet or dry status. The residual series are then generated by 

 

)()()( ,1,, jBjAj ipipip εχχ += −                                             (3.6) 

 

where xp,i(j) is a (2×1) matrix for day i of year p whose elements are the residuals of Tmax 

(j=1) and Tmin (j=2); 
)(, jipε

is a (2×1) matrix of independent random components that 

are normally distributed with a mean of zero and a variance of unity. A and B are (2×2) 

matrices whose elements are defined such that the new sequences have the desired auto and 

cross correlation coefficients. The A and B matrices are determined by 
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where the superscripts -1 and T denote the inverse and transpose of the matrix, respectively, 

and M0 and M1 are the lag 0 and lag 1 covariance matrices.  

 

Two options are available to generate Tmax and Tmin on top of the generated residual series. 

The first is derived from WGEN or version 5.111 of CLIGEN. The daily values of Tmax and 

Tmin are found by multiplying the residuals by the standard deviation σ and adding the mean 

μ (equations (3.9) and (3.10)). Throughout this paper, this option is referred to as the 

unconditional scheme. 

 

ipT ,maxmaxmax χσμ ×+=                                                     (3.9) 

 

ipT ,minminmin χσμ ×+=                                                    (3.10) 

 

Because Tmax and Tmin are generated independently of each other based on equations (3.9) 

and (3.10), there are a number of cases where Tmin is larger than Tmax. Thus, a range check 

is imposed to force Tmin to be less than Tmax. For example, if Tmin is greater than Tmax, 

Tmin is set equal to Tmax – 1.  

 

The other option is derived from the latest version of CLIGEN (version 5.22564). The 

temperature with the smallest standard deviation between Tmax and Tmin is first computed, 

followed by the others (Chen et al. 2008). This option is referred to as the conditional scheme 

throughout this paper. If the standard deviation of Tmax is larger than or equal to the 

standard deviation of Tmin, daily temperatures are generated by equations (3.11) and (3.12): 

 

ipT ,minminmin χσμ ×+=                                                 (3.11) 

 

ipTT ,
2

min
2

maxminmaxminmax )( χσσμμ ×−+−+=                         (3.12) 
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If the standard deviation of Tmax is less than that of Tmin, daily temperatures are generated 

by equations (3.13) and (3.14): 

 

ipT ,maxmaxmax χσμ ×+=                                                          (3.13) 

 

ipTT ,
2

max
2

minminmaxmaxmin )( χσσμμ ×−−−−=                             (3.14) 

 

Using this scheme, Tmin is always less than Tmax and no range check is necessary. 

 

3.3.5 Correction of low-frequency variability 

Weather generators underestimate the monthly and inter-annual variance, because they do 

not take into account the low-frequency component of climate variability. WeaGETS 

provides an approach to correct for this underestimation, for both precipitation and 

temperature.   

 

Low-frequency variability is first modeled using a Fast Fourier Transform (FFT) based on 

the power spectra of the annual time series of precipitation and temperature. Generations of 

monthly and yearly precipitation and yearly average temperatures data are achieved by 

assigning random phases for each spectral component, which preserve the power spectrum 

and variances as well as the autocorrelation function. The link to daily parameters is 

established through linear functions. Throughout this paper, this is referred to as the spectral 

correction approach/method. The correction of monthly and inter-annual variability for 

precipitation follows the approach of Chen et al. (2010). Their results show that this approach 

performs very well in preserving the low-frequency variability of precipitation and 

temperatures.  
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3.4 Generation process 

3.4.1 Input data 

The input data consists of daily precipitation, Tmax and Tmin. The model does not take into 

account bissextile years. Any significant precipitation occurring on a February 29th should be 

redistributed equally on February 28th and March 1st. The maximum and minimum 

temperatures of a February 29th can be simply removed. Missing data should be assigned a -

999 value. The input file contains the following matrices and vectors:  

1) P: matrix with dimensions [nyears*365], where nyears is the number of years, containing     

daily precipitation in mm. 

2) Tmax: matrix with dimensions [nyears *365], where nyears is the number of years, 

containing maximum temperature in Celsius. 

3) Tmin: matrix with dimensions [nyears *365], where nyears is the number of years, 

containing minimum temperature in Celsius. 

4) yearP: vector of length [nyears *1] containing the years covered by the precipitation. 

5)  yearT: vector of length [nyears *1] containing the years covered by the Tmax and Tmin. 

 

3.4.2 Output data 

The output also consists of daily precipitation, Tmax and Tmin values. It contains the 

following matrices: 

1) gP: matrix with dimensions [gnyears*365], where gnyears is the number of years of 

generated precipitation in mm without low-frequency variability correction. 

2) gTmax: matrix with dimensions [gnyears *365], where gnyears is the number of years of 

generated Tmax in Celsius without low-frequency variability correction.  

3) gTmin: matrix with dimensions [gnyears *365], where gnyears is the number of years of 

generated Tmin in Celsius without low-frequency variability correction. 

 

If the low-frequency variability correction option is chosen, another file will be produced. It 

also contains three matrices, named corP, corTmax and corTmin, respectively. 
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1) corP: matrix with dimensions [gnyears *365], where gnyears is the number of years of 

generated precipitation in mm with low-frequency variability correction. 

2) corTmax: matrix with dimensions [gnyears *365], where gnyears is the number of years 

of generated Tmax in Celsius with low-frequency variability correction.  

3) corTmin: matrix with dimensions [gnyears *365], where gnyears is the number of years 

of generated Tmin in Celsius with low-frequency variability correction. 

  

3.4.3 Running the program 

There are many subprograms in the WeaGETS package, but the user only needs to run the 

main program RUN_WeaGETS.m. All of the options will then be offered in the form of 

questions, presented as follows:  

1) Basic input 

a) Enter an input file name (string): 

A name for the observed data shall be entered within single quotes, for instance,       

‘filename’ for the supplied file.  

b) Enter an output file name (string): 

A name for the generated data shall be entered within single quotes, for example 

‘filename_generated’.  

c) Enter a daily precipitation threshold: 

Precipitation threshold is the amount of precipitation used to determine whether a given 

day is wet or not (0.1mm is the most commonly used value).  

d) Enter the number of years to generate: 

The number of years of the generated time series of precipitation and temperatures is 

entered here.   

2) Precipitation and temperature generation  

a) Smooth the parameters of precipitation occurrence and quantity (1) or do not smooth (0).  

b) If option 1 is selected, enter the number of harmonics to be used (between 1 and 4).  

c) Select an order of Markov Chain to generate precipitation occurrence, 1: First-order; 2: 

Second-order; 3: Third-order. 
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d) Select a distribution to generate wet day precipitation amount: 1: Exponential or 2: 

Gamma.  

e) Select a scheme to generate Tmax and Tmin: 1: Unconditional or 2: Conditional. 

3) Low-frequency variability correction 

a) Correct the low-frequency variability of precipitation, Tmax and Tmin (1) or do not 

correct (0). 

If option 1 is selected, a filename containing the corrected data will need to be entered.  

 

Once weather generation is completed, the first year of generated data without and with the 

low-frequency variability correction will be plotted. 

 

3.5 An illustration of model performance 

Two Canadian meteorological stations are used to illustrate the performance of WeaGETS. 

The basic information, including average annual precipitation, Tmax and Tmin, longitude, 

latitude, elevation and record duration for the two stations is given in table 3.1. WeaGETS 

has been used and tested extensively at several other locations under various climates (Caron, 

2006; Chen et al., 2010). These two stations were selected simply to outline the typical 

outputs and results.   

 
 

Table 3.1 Location, record period, average annual precipitation, maximum and 
 minimum temperatures (Tmax and Tmin) for Ottawa and Churchill stations 

 
Station 

name 

Latitude 

(°N) 

Longitude 

(°W) 

Elevation 

(m) 

Records of 

data 

Annual 

precip 

Annual 

Tmax 

Annual 

Tmin 

Ottawa 45.26 75.74 93 
1891-2008 

(118) 
882 10.98 0.79 

Churchill 58.73 94.05 29 
1947-2006 

(60) 
439.1 -2.71 -10.91 
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The observed daily precipitation, Tmax and Tmin, were used to run WeaGETS to generate 

synthetic time series without parameter smoothing. The length of the generated series is 10 

times that of the observed series. Statistics including mean, standard deviation, percentiles 

and extreme values are calculated for both observed and synthesize time series for each 

meteorological variable.  

 

3.5.1 Precipitation occurrence 

The precipitation occurrences are produced using first, second and third-order Markov 

chains. The statistics of dry and wet spells calculated from those time series are presented in 

table 3.2. Each Markov model produces a good replication of the mean of both dry and wet 

spells for both stations. However, the standard deviation of dry spells is slightly 

underestimated by each model, while the two higher-order models perform somewhat better 

than the first-order model. Each Markov model reproduced the 25th, 50th and 75th percentiles 

of both dry and wet spells for both stations. The longest dry spells are overestimated for the 

Ottawa station and underestimated for the Churchill station. Overall, the performance at the 

Ottawa station is slightly better that at the Churchill station. The differences between stations 

are due to the different climate zones they belong to. Churchill is a relative dry station and 

Ottawa is much wetter. The third-order Markov model is, not surprisingly the best. Wilks 

(1999b) observed that the first-order Markov model may be inadequate at generating long 

dry spells in very wet and or dry regions. Here, the replication of long wet spells is better 

than for long dry spells, especially for the Ottawa station.  

 

3.5.2 Precipitation quantity 

To compare the exponential and gamma distributions in terms of accurately producing 

precipitation quantity, two time series of precipitation occurrence are generated using the 

first-order Markov model, and then the wet day precipitations are simulated with exponential 

and gamma distributions, respectively. The results show that both the exponential and 

gamma distributions reproduce the daily precipitation mean very well (table 3.3). However, 

they both underestimate the standard deviations of daily precipitation with mean relative 
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errors (MREs) of -25.8% for exponential distribution and -14.6% for gamma distribution 

over two stations. This indicates that both distributions underestimate the high-frequency 

variability of precipitation. Both distributions overestimate the 25th, 50th and 75th percentiles 

of daily precipitation for both stations, while underestimating the all time maximum daily 

precipitations. This is understandable because neither the exponential nor the gamma 

distribution is tailed to generated extreme precipitation events. It is well-documented that 

extreme precipitation values follow different distribution functions. Both distributions, 

however, perform well in producing monthly and annual mean precipitation, while they 

underestimate the standard deviation of monthly precipitation with MREs of -16.0% for 

exponential distribution and -11.7% for gamma distribution. The standard deviation of 

annual precipitation is also considerably underestimated with MREs of -31.4% for the 

exponential distribution and -29.1% for the gamma distribution. As discussed earlier, this 

indicates that the exponential and gamma distributions underestimate the inter-annual and 

intra-annual variability of precipitation. Both distributions generate the percentiles of 

monthly and yearly precipitations very well for the Ottawa station. In contrast, for the 

Churchill station, both distributions overestimate the lower percentiles of monthly and yearly 

precipitations, and underestimate the higher percentiles. This indicates (again) that weather 

generators generally perform better when simulating precipitation for wetter regions than for 

dry regions. Moreover, the gamma distribution is consistently better than the exponential 

distribution at simulating precipitation.   

 

3.5.3 Maximum and minimum temperatures 

Tmax and Tmin are generated using both unconditional and conditional schemes, 

conditioned on wet and dry states simulated with first-order Markov model. Table 3.4 

presents the statistics of observed and synthetic Tmax and Tmin. The results show that both 

unconditional and conditional schemes produce the mean of daily temperatures well, 

although there is a small underestimation of Tmin with the unconditional scheme. This is 

because Tmax and Tmin are generated independently, resulting in several cases where Tmin 

is greater than Tmax in a single day. Thus, a range check is imposed to force the generated 
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Tmin to be less than Tmax. This procedure affects the statistics of Tmin. Overall, both 

unconditional and conditional schemes provide good simulations of standard deviations of 

Tmax and Tmin, even though there are some biases. Both schemes poorly reproduce the all 

time maximum and minimum temperatures, especially for the Churchill station. The 

conditional scheme is consistently better than the unconditional one for all statistics overall. 

 
 

Table 3.2 Statistics of dry and wet spells for the Ottawa and Churchill stations 
(Obs=observed data, Order 1= first-order Markov chain, Order 2= second-order  
Markov chain, Order 3= third-order Markov chain, and Std = standard deviation) 

 

Station Source 

Dry spell Wet spell 

Obs 
Order 

1 

Order 

2 

Order 

3 
Obs 

Order 

1 

Order 

2 

Order 

3 

Ottawa 

Mean 3.0 3.0 3.0 3.0 2.0 2.0 2.0 2.0 

Std 2.6 2.4 2.5 2.5 1.3 1.4 1.3 1.3 

25th percentile 1 1 1 1 1 1 1 1 

50th percentile 2 2 2 2 2 1 2 2 

75th percentile 4 4 4 4 2 2 2 2 

Longest 25 29 30 28 16 17 14 14 

Churchill 

Mean 3.2 3.2 3.2 3.2 2.2 2.2 2.2 2.2 

Std 3.0 2.8 2.8 2.9 1.7 1.7 1.6 1.7 

25th percentile 1 1 1 1 1 1 1 1 

50th percentile 2 2 2 2 2 2 2 2 

75th percentile 4 4 4 4 3 3 3 3 

Longest 43 32 31 39 17 26 19 23 
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Table 3.3 Statistics of daily, monthly and yearly precipitation quantities for  
Ottawa and Churchill stations (Obs=observed data, Exp=exponential  
distribution, Gam=gamma distribution and Std =standard deviation) 

 

Station Source 
Daily Monthly Yearly 

Obs Exp Gam Obs Exp Gam Obs Exp Gam 

Ottawa 

Mean 6.1 6.1 6.1 73.5 73.3 73.6 882.0 879.1 882.8 

Std 7.6 6.2 6.9 33.9 30.2 31.9 112.9 97.7 99.2 

25th 

percentile 
1.3 1.8 1.4 48.7 51.8 50.7 814.1 813.8 816.5 

50th 

percentile 
3.3 4.2 3.8 69.5 69.2 69.4 872.5 880.1 881.9 

75th 

percentile 
8.1 8.4 8.2 94.5 91.5 91.5 961.6 939.4 943.8 

Maximum 108.6 84.1 95.0 250.2 261.7 242.2 1159.2 1273.0 1183.4

Churchill 

Mean 2.9 2.9 2.9 36.6 36.4 36.7 439.1 436.9 440.6 

Std 4.8 3.3 3.9 29.1 23.0 24.1 102.5 52.0 55.3 

25th 

percentile 
0.5 0.8 0.6 15.0 18.0 18.0 361.9 400.2 403.3 

50th 

percentile 
1.2 1.8 1.6 28.5 31.0 30.9 426.2 434.7 437.6 

75th 

percentile 
3.2 3.8 3.7 50.3 50.9 50.8 503.3 469.1 476.6 

Maximum 62.3 44.3 84.2 247.0 166.1 183.5 748.5 587.1 644.7 
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Table 3.4 Statistics of maximum and minimum temperatures for Ottawa and  
Churchill stations (Std = standard deviation and Max or Min = all time 

 maximum of maximum temperature and all time minimum of minimum  
temperature, Obs=observed, Uncon=unconditional, con=conditional) 

 

Station Source 
Tmax Tmin 

Obs Uncon Con Obs Uncon Con 

Ottawa 

Mean 11.0 11.0 11.0 0.8 0.4 0.8 

Std 13.0 12.3 12.7 12.0 12.5 11.9 

25th percentile 1.0 -0.2 -0.7 -7.2 -8.8 -8.8 

50th percentile 11.7 12.1 12.0 1.8 2.2 2.3 

75th percentile 22.2 22.5 22.4 10.6 10.6 11.0 

Max or Min 37.8 35.5 38.7 -38.9 -51.6 -47.4 

Churchill 

Mean -2.7 -2.7 -2.7 -10.9 -11.7 -10.9 

Std 15.5 14.5 15.3 15.0 15.5 15.2 

25th percentile -15.2 -15.4 -14.9 -24.6 -24.5 -23.6 

50th percentile -1.4 -2.4 -2.2 -8.0 -10.3 -9.5 

75th percentile 9.3 10.8 11.0 1.9 2.5 2.8 

Max or Min 36.9 30.0 36.3 -45.4 -70.3 -65.4 

 
 

Auto and cross-correlations of and between daily Tmax and Tmin are computed for observed 

and synthetic (unconditional and conditional) time series (figure 3.3). The autocorrelation is a 

measure of the persistence of temperature trends, and is an important characteristic to 

reproduce. The unconditional scheme reproduces the observed lag 1 autocorrelation well, but 

for larger lags its values are consistently greater than those of observed data for both stations. 

The conditional scheme reproduces the day-to-day persistence much better. Similar 

conclusion can also been found when looking at cross-correlation.    
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Figure 3.3 40 days of lagged auto and cross-correlation of and  

between observed (OBS), unconditional and conditional generated data  
for maximum and minimum temperatures for the Ottawa and Churchill stations. 

 

 

3.5.4 Low-frequency variability correction 

A main advantage of WeaGETS over most other stochastic weather generators is that an 

approach to correct for the underestimation of the low-frequency variability for both 

precipitation and temperature is built in. This section illustrates the performance of the 

spectral correction approach in dealing with this problem. Two data sets (both including 

precipitation, Tmax and Tmin) were generated using a first-order Markov model for 

precipitation occurrence, gamma distribution for wet day precipitation quantity and the 
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conditional scheme for Tmax and Tmin. One data set is corrected using the spectral 

correction method and the other is not. The mean and standard deviations of monthly 

precipitation are compared for both data sets, as well as the means, standard deviations and 

auto correlations of annual precipitation, Tmax and Tmin.   

 

Figure 3.4 presents the ratios of the mean and standard deviations of monthly and annual 

precipitations derived from the synthesized weather series to those derived from the observed 

series. Without spectral correction, WeaGETS reproduces monthly and annual averaged 

precipitations well (figure 3.4a and 3.4b), but it underpredicts the variance of monthly and 

yearly precipitation, as shown in figures 3.4c and 3.4d. Spectral correction significantly 

improves this performance. 

 
 

 

 
Figure 3.4 The ratios of the mean and standard deviations (std) of monthly and annual 

precipitations derived from the synthetic weather series (synt) to the mean and standard 
deviations derived from the observed series (obs) for the Ottawa and Churchill stations. The 

synthetic precipitation series includes both uncorrected and corrected time series. 
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The means of yearly Tmax and Tmin are reproduced very well by the conditional scheme at 

both stations, with or without correction (table 3.5). Without correction, as was the case for 

precipitation, WeaGETS underestimates the inter-annual variability of temperature data, as 

represented by its standard deviation. In contrast, the spectral correction method preserves 

the standard deviations of yearly Tmax and Tmin very well.  

 
 

Table 3.5 Mean and standard deviations of yearly Tmax and Tmin derived from the 
synthesized and observed series for Ottawa and Churchill stations. The synthesized 

precipitation series includes both uncorrected and corrected time series 
 

Source 

Ottawa Churchill 

Tmax Tmin Tmax Tmin 

Mean Std Mean Std Mean Std Mean Std 

Obs 10.98 0.84 0.79 1.09 -2.71 1.25 -10.91 1.18 

Uncorrected 11.00 0.43 0.44 0.51 -2.70 0.66 -10.90 0.71 

Corrected 10.98 0.83 0.79 1.08 -2.71 1.21 -10.91 1.12 

 
 
The annual autocorrelation functions of observed annual precipitation, Tmax and Tmin 

presented in figure 3.5, display clear trends, indicating that dryer and wetter years, and 

warmer and cooler years, do not occur in random order. Without correction, weather 

generators simply aim to reproduce the same mean climatology year after year, as shown in 

figure 3.5. The spectral correction method successfully reproduces the observed 

autocorrelation of precipitation, Tmax and Tmin for both stations. 

 

3.6 Discussion and conclusions 

WeaGETS is a Matlab-based daily stochastic weather generator that can generate 

precipitation, Tmax and Tmin time series of unlimited length, thus permitting impact studies 

of rare occurrences of meteorological variables. Furthermore, by perturbing its parameters 

according to changes projected by climate models, it can be used as a downscaling tool for 

climate change studies. WeaGETS has the advantage of incorporating the computational 
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schemes of other well-known weather generators, as well as offering unique options, such as 

correction of the underestimation of inter-annual variability, and the ability to use Markov 

chains of varying orders. More importantly, the use of Matlab allows for easy modification of 

the source code to suit the specific needs of users. It would be very easy, for example, to add 

additional precipitation distribution functions. Finally, Matlab offers an integrated 

environment to further analyze the data generated by WeaGETS.    

 
 

 

 
Figure 3.5 10-year lagged autocorrelation of observed (OBS), weather  

generator produced (uncorrected and corrected) average yearly 
 precipitation, Tmax and Tmin for the Ottawa and Churchill stations. 
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Two Canadian stations are selected to illustrate WeaGETS’ performance. The results 

demonstrate that the most widely used model, a first-order Markov model, is adequate at 

producing precipitation occurrence, but it underestimates the longest wet and especially dry 

spells. The higher-order models have positive effects. The gamma distribution is consistently 

better than the exponential distribution in generating precipitation quantity, and the 

conditional scheme is better than the unconditional scheme at simulating temperatures. As is 

the case for all available weather generators, WeaGETS underestimates the monthly and 

inter-annual variances of precipitation and temperatures. The included spectral correction 

approach option is very successful in resolving this underestimation problem.   

 

Although WeaGETS is more flexible than other available weather generators in generating 

precipitation, Tmax and Tmin, it does have a few limitations. Firstly, the exponential and 

gamma distributions are inadequate at reproducing the extremes of precipitation, because 

they are not heavy-tailed. The three-parameter Pearson III distribution or Fréchet distribution 

may be better. However, the extremes of precipitation have been drawn from rather different 

populations than most daily precipitation observations that the distribution has been fit to 

(Wilks, 1999b), because they are associated with unusual meteorological events. Moreover, 

the distribution of extreme precipitation can vary quite drastically on a regional basis, and it 

is no simple task to find a distribution that is suitable for all climate zones. As mentioned 

earlier, users working with a specific distribution function can easily add it to WeaGETS. 

Another limitation is linked to the spectral correction approach that keeps the precipitation 

occurrence process constant. Ongoing work shows that the transition probabilities also 

display inter-annual variability. However, a relatively simply approach to adjust the low-

frequency variability of precipitation occurrence remains elusive. Finally, the low-frequency 

variability of temperatures is only corrected at the yearly scale. Consequently, the monthly 

variability is improved, but it is not as good as that at the yearly scale (results not shown). 

This is because the correction of inter-annual variability has a limited effect at the monthly 

scale (Chen et al., 2010). Thus, it may be necessary to correct the monthly variability at the 

same time, but this may bring along overfitting problems resulting in cases where Tmin is 

greater than Tmax in a given day. Therefore, this type of correction is not incorporated into 
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this version of WeaGETS. When working with weather generators, there is always the 

danger that more complex schemes dealing with secondary statistics may have a negative 

impact on the more fundamental distribution properties of the generated variables. The 

authors plan to address these problems in future versions of WeaGETS.  
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4.1 Abstract  

The resolution of General Circulation Models (GCMs) is too coarse for climate change 

impact studies at the catchment or site-specific scales. To overcome this problem, both 

dynamical and statistical downscaling methods have been developed. Each downscaling 

method has its advantages and drawbacks, which have been described in great detail in the 

literature. This paper evaluates the improvement in statistical downscaling (SD) predictive 

power when using predictors from a Regional Climate Model (RCM) over a GCM. Our 

approach uses mixed downscaling, combining both dynamic and statistical methods. 

Precipitation, a critical element of hydrology studies that is also much more difficult to 

downscale than temperature, is the only variable evaluated in this study. The SD method 

selected here uses a stepwise linear regression approach for precipitation quantity and 

occurrence (similar to the well-known Statistical Downscaling Model (SDSM) and called 

SDSM-like herein). In addition, a discriminant analysis (DA) was tested to generate 

precipitation occurrence, and a weather typing approach was used to derive statistical 

relationships based on weather types, and not only on a seasonal basis as is usually done. To 

compare the relative efficiency of the SD approaches, relationships were derived at the same 
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sites using the same predictors at a 300km scale (the National Center for Environmental 

Prediction (NCEP) reanalysis) and at a 45km scale with data from the limited-area Canadian 

Regional Climate Model (CRCM) driven by NCEP data at its boundaries. Predictably, using 

CRCM variables as predictors rather than NCEP data resulted in a much-improved explained 

variance for precipitation, although it was always less than 50% overall. For precipitation 

occurrence, the SDSM-like model slightly overestimated the frequencies of wet and dry 

periods, while these were well-replicated by the DA-based model. Both the SDSM-like and 

DA-based models reproduced the percentage of wet days, but the wet and dry statuses for 

each day were poorly downscaled by both approaches. Overall, precipitation occurrence 

downscaled by the DA-based model was much better than that predicted by the SDSM-like 

model. Despite the added complexity, the weather typing approach was not much better at 

downscaling precipitation than approaches without classification. Overall, despite significant 

improvements in precipitation occurrence prediction by the DA scheme, and even going to 

finer scales predictors, the SD approach tested here still explained less than 50% of the total 

precipitation variance. While going to even smaller scale predictors (10-15 km) might 

improve results even more, such smaller scales would basically transform the direct outputs 

of climate models into impact models, thus negating the need for statistical downscaling 

approaches.  

 

Keywords: Downscaling; Statistical downscaling, Weather typing; Precipitation; Regional 

climate model 

 

4.2 Introduction 

Mismatches of spatial and temporal resolutions between General Circulation Model (GCM) 

outputs and the data requirements of hydrological models pose major obstacles to the 

quantification of the hydrologic impacts of climate change. This is because GCMs generally 

run at a resolution of 150-300 km (IPCC 2007) while impact study models usually require 

data at a much finer resolution, from station data to resolutions of a just few kilometers. 

Therefore, “downscaling” techniques have been developed to deal with scale and resolution. 
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There are two widely used downscaling techniques: dynamic downscaling (regional climate 

models (RCMs)) and statistical downscaling (SD). RCMs are limited-area dynamic models 

that use GCMs data at their boundary, both spatially and temporally. The main drawback of 

RCMs is that they are computationally costly complex models (Solman and Nunez 1999). As 

such, RCM data is relatively scarce, fewer greenhouse gas emission scenarios are run and, 

except for a few inter-comparison studies, data from more than one model is rarely available 

for climate change uncertainty studies. Moreover, despite improvements, the output of RCMs 

is still too coarse for several practical applications, such as smaller watersheds and site-

specific agricultural impact studies, which may need local and site-specific climate scenarios. 

SD involves linking the states of certain variables that represent a large-scale (GCMs or 

RCMs grid-scale - predictors) model, and the states of certain variables representing a much 

smaller-scale (catchment or site0scale - predictands) model. SD approaches are 

computationally cheap and relatively simple and easy to apply. Thus, a wide range of SD 

techniques have been developed. Those techniques fall into three main categories: transfer 

function, weather typing, and weather generator (Wilby and Wigley 1997; von Storch et al. 

2000; Zhang 2005). In reality, many downscaling studies use more than one of these 

categories (Wilby and Wigley 1997).  

 

4.2.1 Transfer function approaches  

Transfer function approaches involve establishing statistical linear or nonlinear relationships 

between observed local climatic variables (predictands) and large-scale GCM or RCM 

outputs (predictors). The most commonly used methods for deriving those relationships 

include multivariate linear or nonlinear regressions, principle component analysis (PCA), 

canonical correlation analysis (CCA), singular value decomposition (SVD), and artificial 

neural networks (ANN). The most commonly used predictors from GCM outputs include 

vorticity, airflow indices, wind velocity and direction, mean sea level pressure, geopotential 

heights, and relative humidity (Wilby et al. 1998a; Solman and Nunez 1999; Sailor and Li 

1999; Trigo and Palutikof 2001). Widmanm et al. (2003) and Zhang (2005) downscaled 

precipitation using GCM precipitation as a predictor. The results showed that the 
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performance was better using GCM precipitation as a predictor than with conventional 

methods using other predictors. However, most authors agree that predictors selected should 

be variables that are reasonably well-reproduced by GCM (or RCM), and precipitation may 

not fit this criterion, especially at the GCM scale. 

 

The most typical transfer function approach makes use of the statistical downscaling model 

(SDSM) developed by Wilby et al. (2002a) for the rapid development of single-site, 

ensemble scenarios of daily weather variables. This model is good at downscaling 

temperature with a percentage of explained variance normally in excess of 70%, but its 

performance is not as good for precipitation, with an explained variance usually less than 

30%. The linear regression scheme of the SDSM also results in downscaled precipitation that 

has a much smaller standard deviation than observed precipitation. To overcome this 

problem, a stochastic component is added to the downscaled data. 

 

The main strength of the transfer function approach to future climate scenario generation is 

the relative ease of application. A potential obstacle is the probable lack of a temporally 

stable relationship between predictors and predictands. For example, Wilby (1997) has 

shown that, even within a single circulation regime, precipitation diagnostics may vary 

considerably from year to year. 

 

4.2.2  Weather typing schemes 

Weather typing downscaling methods involve grouping local meteorological variables in 

relation to different classes of atmospheric circulation based on a given weather classification 

scheme (Bardossy and Plate 1992; von Storch et al. 1993). In general, weather classification 

procedures include PCA (White et al. 1991; Shoof and Pryor 2001), cluster analysis (Wilks 

1995), CCA (Gyalistras et al. 1994), fuzzy rules (Bardossy et al. 1995), ANN (Bardossy et al. 

1994), analogue procedures (Martin et al. 1997; Timbal et al. 2009) and Lamb Weather 

Types (Lamb 1972; Jones et al. 1993; Conway and Jones 1998). Within a classification 

scheme, weather types are grouped and the relationships between large-scale variables and 
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local meteorological variables may be established separately for each weather type. The 

analogue approach is a weather typing scheme that involves finding the event in the past 

when the situation most closely resembles the day in the future. The benefits of the analogue 

approach are that it is able to preserve the spatial correlation of predictands and it is easy to 

apply, even if the predictands do not follow a normal distribution. However, only events that 

have occurred in the past can be modeled; thus, it cannot study rare events under future 

climate changes.  

 

Shoof and Pryor (2001) downscaled precipitation and temperatures based on the PCA 

classification scheme. PCA was first employed to reduce the number of inter-correlated 

variables to a smaller set of uncorrelated components. Principle component elements were 

then calculated for each day and used as predictors to fit linear (for temperatures) and 

Poisson (for precipitation) transfer functions with the local meteorological variables. The 

results showed that the precipitation models exhibited poorer predictive capabilities. This 

may be due to the use of principal component elements as predictors rather than circulation 

climate variables, such as vorticity, airflow indices and wind speed. 

 

The main advantage of weather typing schemes is that local variables are sensitively linked 

to large-scale atmospheric circulations. Compared to other downscaling techniques, it 

provides a greater understanding of the problems involved. The drawbacks of this method are 

that the reliability depends on the stationary relationship between large-scale circulation and 

local climate, and that it requires the additional task of weather classification. 

 

4.2.3 Weather generator approaches 

Over the past decade, stochastic weather generators have been used in climate change studies 

as downscaling tools (Wilks 1992, 1999a; Semenov and Barrow 1997; Pruski and Nearing 

2002; Zhang et al. 2004, Zhang 2005; Zhang and Liu 2005; Minville et al. 2008). This is 

achieved by perturbing their parameters according to the changes of future climates, derived 

from GCMs or RCMs.  
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Wilby et al. (2002b) explored the use of synoptic-scale predictor variables to downscale both 

the high- and low-frequency variability of daily precipitation at sites across Great Britain. 

The results showed that conditionally stochastic rainfall models displayed positive effects on 

monthly rainfall statistics, but they did not completely remove overdispersion. As mentioned 

earlier, Zhang (2005) used a transfer function approach to spatially downscale monthly GCM 

output from grid-scale to site-scale using only GCM monthly precipitation as a predictor. 

Subsequently, the monthly precipitation was temporally downscaled to a daily time scale 

using the weather generator CLIGEN. The method is relatively simple and can produce 

infinite-length time series with the same statistical properties of climate scenarios. However, 

this method adjusts the precipitation occurrence according to the relationship between 

monthly precipitation and transition probability used to describe the precipitation occurrence 

process. There is frequently no strong relationship. Similarly to Zhang’s method, Wilks 

(1999a) and Chen et al. (2006) also downscaled precipitation with weather generators by 

adjusting their statistical parameters based on the changes in monthly precipitation. The 

downscaled daily precipitation series are then generated by weather generators using adjusted 

parameters. The results illustrated that the proposed method was capable of reproducing the 

mean precipitation quantity. 

 

Overall, the most appealing feature of using a weather generator approach is its ability to 

rapidly produce sets of climate scenarios for studying the impacts of rare climate events. The 

disadvantages are that the precipitation occurrence parameters cannot be easily adjusted for 

future climate conditions, and unanticipated effects on secondary variables may be induced 

which then changes the quantity of one variable; for example, adjusting the precipitation 

occurrence may affect the precipitation amount, because both determine the precipitation 

amount. 
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4.2.4 Comparison of statistical downscaling methods 

Given the range of possible downscaling techniques, a comparison in their predictive ability 

is needed for a given application. Wilby et al. (1998b) investigated the abilities of six 

downscaling methods: two weather generator techniques (WGEN and a method based on 

spell-length duration (SPEL)), two methods using vorticity as a predictor (B-Circ and C-

Circ), and two variations of ANN using circulation data and circulation with temperature data 

as predictors. The validation tests showed that the WGEN and SPEL methods performed 

better than all the other methods for the majority of diagnostics. However, they both 

underestimated the standard deviation of monthly precipitation. The B-Circ and C-Circ 

methods performed well, and were better than the ANN methods, which consistently 

overestimated the frequency of wet days.  

 

Widmann et al. (2003) compared three SD methods: local rescaling, SVD, and local rescaling 

with a dynamical correction, using precipitation as a predictor. The results demonstrated that 

the SVD method explained over 60% of the observed monthly precipitation variability at 

almost all locations in the studied region. The local scaling method also performed very well 

over most parts of the region, but it was not as good as the SVD method. Moreover, the local 

rescaling with a dynamical correction method performed almost as well as the SVD 

approach. This research indicated that using GCM-simulated precipitation as a predictor may 

have positive effects. Diaz-Nieto and Wilby (2005) compared the abilities of “change factor” 

(CF) and SD methods to assess the impact of climate change on low flow in a river basin. 

The results illustrated that the changes of low flow related to the SD scenarios are generally 

more complex than those arising from CF methods. Wetterhall et al. (2007) evaluated four 

downscaling methods: two analog (one using PCA and one using gradients in the pressure 

field (Teweles-Wobus scores, TWS)) and two conditional-probability methods (one using 

classification of weather patterns (MOFRBC) and one using SDSM. The results showed that 

MOFRBC and SDSM, the conditional-probability methods, were superior to the analog 

methods for the ranked probability scores; analog methods were better than other methods in 
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winter and autumn; and SDSM and TWS were most accurate in the spring and MOFRBC in 

the summer.  

 

Overall, each SD method has its advantages and drawbacks. The choice of one method over 

another should be made according to the application purposes, time of year and data 

availability. Moreover, more robust SD methods need to be developed for impact assessment 

studies of climate change.  

 

The objectives of this research are to (1) evaluate the improvement in SD using RCM 

variables as predictors over GCM, based on an SDSM-like model, and (2) assess the 

efficiency of a weather typing approach in downscaling precipitation using Canadian RCM 

(CRCM) variables as predictors. 

 

4.3 Methodology 

The SD method selected here uses a stepwise linear regression approach for precipitation 

quantity and occurrence (similar to the well-known SDSM model and called SDSM-like 

herein). In addition, a discriminant analysis (DA) was used to generate precipitation 

occurrence, and a weather typing approach was used to derive statistical relationships based 

on weather types and not only on a seasonal basis as is usually done. Predictor variables were 

derived from the Canadian RCM (CRCM4.2.0), and, at the GCM-scale, from the National 

Center for Environmental Prediction (NCEP) re-analysis data interpolated to the CGCM3.1 

grid. The data used in this research covers the period 1970 to 1999. The NCEP and the 

CRCM predictors considered are listed in tables 4.1 and 4.2, respectively.  

 

4.3.1 Downscaling precipitation occurrence 

Two methods are used to downscale precipitation occurrence, one based on linear regression 

(the SDSM-like model) and one based on DA. 

 



113 

Table 4.1 NCEP predictor variables used to select precipitation predictors for downscaling 
 
Predictor variable Abbreviation Predictor variable Abbreviation

Mean sea level pressure ncepmslp 500hPa Divergence ncepp5zh 

1000hPa Wind Speed ncepp_f 850hPa Wind Speed ncepp8_f 

1000hPa U-component ncepp__u 850hPa U-component ncepp8_u 

1000hPa V-component ncepp__v 850hPa V-component ncepp8_v 

1000hPa Vorticity ncepp__z 850hPa Vorticity ncepp8_z 

1000hPa Wind Direction ncepp_th 850hPa Geopotential ncepp850 

1000hPa Divergence ncepp_zh 850hPa Wind Direction ncepp8th 

500hPa Wind Speed ncepp5_f 850hPa Divergence ncepp8zh 

500hPa U-component ncepp5_u 500hPa Specific Humidity ncep s500 

500hPa V-component ncepp5_v 850hPa Specific Humidity nceps850 

500hPa Vorticity ncepp5_z 1000hPa Specific Humidity ncepshum 

500hPa Geopotential ncepp500 Temperature at 2m nceptemp 

500hPa Wind Direction ncepp5th   

 
 
4.3.1.1 SDSM-like model 

The SDSM uses a conditional process to downscale precipitation. Local precipitation 

amounts depend on wet-/dry-day occurrence, which in turn depend on regional-scale 

predictors such as mean sea level pressure, specific humidity and geopotential height (Wilby 

et al. 1999; Wilby and Dawson 2007). Specifically, downscaling of precipitation occurrence 

is achieved by linking daily probabilities of non-zero precipitation (Pwet) with large-scale 

predictor variables (Wilby et al. 1999). 

 

 

 

 



114 

Table 4.2 Surface and upper-air variables of CRCM used for synoptic classification  
of circulation indices and to select precipitation predictors for downscaling 

 
Surface variables Abbreviation Surface variables Abbreviation 

East component of wind at 

10-meter height 

ESU 
Total precipitation rate  

PCP 

East component of wind at 

10-meter height 

NSV Specific humidity at 2-

meter height 

SQ 

Screen temperature at 2-meter 

height 

ST 
Surface pressure 

PS 

Upper-air variables Abbreviation  Upper air variables Abbreviation  

Air temperature 
 North component of 

wind 

 

850 hPa TEMP850 850 hPa NV850 

700 hPa TEMP700 700 hPa NV 700 

500 hPa TEMP500 500 hPa NV 500 

Relative humidity  Cloud by layer   

850 hPa RHUM850 850 hPa CLD850 

700 hPa RHUM700 700 hPa CLD700 

500 hPa RHUM500 500 hPa CLD500 

East component of wind  Absolute vorticity  

850 hPa EU850 850 hPa AVRT850 

700 hPa EU700 700 hPa AVRT700 

500 hPa EU500 500 hPa AVRT500 

 
 
Similarly to the SDSM, Pwet for a given day was downscaled using NCEP and CRCM 

variables, respectively, and a lag-1 autocorrelation parameter as predictors in this study 

(referred to as the SDSM-like model). The steps are: (1) A partial correlation analysis was 

applied to identify the relationship between NCEP (or CRCM) variables and Pwet. Variables 

with significant correlation to the Pwet plus lag-1 autocorrelation parameter of Pwet were 

selected as predictors; (2) A multiple linear regressive equation was fitted between Pwet and 



115 

step (1)-identified predictors plus lag-1 Pwet; and  (3) A uniformly distributed random number 

r (0 ≤ r ≤ 1) was used to determine whether precipitation occurs. For any given day, a wet-

day occurred if r ≤ Pwet. 

 

4.3.1.2 Discriminant analysis 

The other downscaling method is based on the DA using NCEP (or CRCM) variables, 

respectively, and their lag-1 variables as predictors. With DA, it is necessary to have an 

available “training sample” in which it is known that each of the vectors is classified 

correctly (Wilks 1995). In this research, NCEP (or CRCM) variables and their lag-1 variables 

were used as the training sample. The precipitation series were first divided into two groups, 

a wet-day group (daily precipitation amount ≥1mm) and a dry-day group (daily precipitation 

amount < 1mm). The future observation of unknown groups (wet - and dry - days) was 

similarly classified according to rules constructed based on training sample and 

corresponding groups.  

 

A weather typing approach described in section of 4.3.2.2 was also used to downscale 

precipitation occurrence based on the DA and using CRCM variables as predictors to assess 

the efficiency of the weather typing approach in downscaling precipitation occurrence. 

 

4.3.2 Downscaling of the daily precipitation amount  

Precipitation amounts were downscaled using an SDSM-like model and a weather typing 

approach. For the SDSM-like model, precipitation amounts were downscaled from both 

GCM scale (NCEP data) and CRCM scale to site-specific scale in order to assess the 

improvement in SD using RCM variables over GCM.  
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4.3.2.1 SDSM-like model 

The SDSM-like model was used in this research as a benchmark method to compare with the 

weather typing approach and to assess the improvement in SD using predictors at the RCM 

scale over the GCM scale. The main difference from the SDSM package is that we only look 

at the predictive power of the statistical functions without the stochastic component of SDSM 

(variance inflation and bias correction) that acts as a weather generator superimposed over 

the SD scheme. The main procedures of the SDSM-like model are the following:. 1-

Identification of the screen variable: a partial correlation analysis was used to identify the 

relationship between NCEP (or CRCM) variables and precipitation amounts. Their lag-1 

variables were also used as candidate predictors. Variables which significantly correlated to 

precipitation amounts were then selected as predictors; 2-Model calibration: multiple linear 

regressive equations were established between precipitation amounts and step one-identified 

predictors for each season. Since the distribution of the daily precipitation is highly skewed, a 

fourth root transformation was applied to the original data before fitting the transfer function; 

and 3-Application of transfer functions: established transfer functions were further used to 

downscale precipitation amounts for data series at the validation period.  

 

4.3.2.2 Weather typing scheme 

The local meteorological conditions are controlled by the synoptic-scale meteorological 

system (Orlanski, 1975). For certain meteorological applications it is useful to group weather 

into distinct types. By doing this, the weather within the same type is more or less 

homogeneous, while it is markedly different in other types. Generally speaking, the weather 

forces may be similar in a weather type but inhomogeneous in different types. When this 

concept is used for downscaling, the weather types are first classified using either GCM or 

RCM-scale variables, and different predictor sets are then selected to downscale the local 

variables according to each weather type. This provides for a greater physical understanding 

of the climate sensitivity and variability. In contrast, a traditional downscaling model like 

SDSM does not specifically consider the climate sensitivity and variability because it uses 
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the same predictors for a given time period (monthly, seasonal or annual). Thus, one of the 

goals of this research is to assess the efficiency of a weather typing approach in downscaling 

precipitation amount and occurrence. The weather typing approach was only tested with the 

CRCM4.2.0 data. 

 

The specific procedures are: 1-Synoptic classification: CRCM variables were first subjected 

to PCA. The first few components that explain most of the variance of the original dataset 

were selected. By doing this, a number of inter-correlated variables were reduced to a smaller 

set of uncorrelated principle components. Principal component elements were then calculated 

for each principal component and cluster analysis was applied to them to obtain a number of 

different weather types; 2-Determining the screen variables for each weather type: similarly 

to the SDSM-like model, partial correlation analysis was used to identify the relationship 

between CRCM variables and precipitation amounts for each weather type. The variables 

that significantly correlated to daily precipitation were used as predictors for a specific 

weather type; 3- Model calibration: multiple linear regressive equations were established 

between precipitation amounts and step 2-identified predictors for each weather type. 

Similarly to the SDSM-like model, a fourth root transformation was applied to the original 

data before fitting the transfer function; and 4- Model validation: the same as for the SDSM-

like model described above in 4.3.2.1.  

 

4.3.3 Model validation 

The observed precipitation series were divided into two periods: 1970-1984 and 1985-1999. 

The first half period of data was used to calibrate the model. For the SDSM-like model and 

weather typing approach, this dataset was used to fit the transfer function; for the DA based 

model, this dataset was used as a known group to build the discriminant function to derive 

unknown precipitation occurrence. The second data period was used for validation. The 

following diagnostics were used to validate the capabilities of each downscaling model (table 

4.3).   
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Table 4.3 Diagnostics used to validate the downscaling method 
 

Diagnostics 

Precipitation occurrence  Precipitation amount 

Frequency distribution of dry and wet periods Mean of daily precipitation 

The longest wet and dry spells Standard deviation of daily precipitation 

Total wet days 
Distribution of daily precipitation (Q-Q 

plot) 

Successful rates of identified wet and dry days Explained variance 

 
 
4.3.4 Studied river basin and data 

Results from four stations over the Gatineau River Watershed (Southwestern portion of the 

Quebec province in Canada) are presented in this paper (table 4.4). 

 
Table 4.4 Location, record period, and average annual precipitation for 4 stations 

 

Station 
Latitude 

(°N) 

Longitude 

(°W) 

Elevation 

(m) 

Records of daily 

precipitation 

Precipitation 

(mm) 

svir219 47.53 74.41 461 1970-1999 (30) 981.1 

svir293 47.19 76.30 387 1970-1999 (30) 980.4 

svir559 46.04 76.03 142 1970-1999 (30) 973.9 

svir689 45.51 76.26 81 1970-1999 (30) 861.6 

 
 
4.4 Results 

4.4.1 Downscaling of daily precipitation occurrence 

The frequencies of the observed, SDSM-like and DA-based model’s downscaled wet and dry 

spells at station svir293 using CRCM variables as predictors are plotted in figure 4.1. Since 

similar results were obtained from all four stations, for illustration purposes only results from 
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the svir293 station are shown. The SDSM-like model slightly overestimated the frequencies 

of the wet and dry periods, especially at low frequencies. However, the longest wet and dry 

periods were slightly underestimated, with 13 and 11 days the observed and DA-downscaled 

longest wet periods, and 21 and 18 days the longest observed and DA-downscaled dry 

periods. Wilby et al. (2002a) reported a similar result when precipitation occurrence was 

downscaled using SDSM. In contrast, the frequencies of both wet and dry periods were well 

replicated by the DA-based model. The longest wet and dry periods were also reasonably 

well-produced, with 13 and 13 days for the longest wet periods, and 21 and 18 days for the 

observed and downscaled longest dry periods. 

 

NCEP variables were used as predictors to downscale precipitation occurrence to assess the 

improvement in SD using RCM-scale over GCM-scale variables (table 4.5). The results 

showed that both downscaling methods, the SDSM-like and the DA-based models, well-

reproduced the total wet days. Consequently, the total dry days were also well-produced. 

Moreover, there were no distinct differences noted from using these models. 

 

However, the reproduction of total wet or dry days is not adequate to judge the ability of 

downscaling models, because if both the wet and dry days are poorly produced and have a 

similar number of error cases, the errors may be offset. A more useful metric is the 

percentage of correct wet and dry day classifications (Wilks 1995). The results presented in 

table 4.5 indicate that neither of the precipitation occurrence downscaling models was 

successful in producing wet and dry days, although the DA-based model was better than the 

SDSM-like model. For the SDSM-like model, there was essentially no difference from the 

observed results whether using NCEP or CRCM variables as predictors. It reproduced dry 

days better than wet days; the averaged success rate for the dry days was 61.5% with NCEP 

variables as predictors and 61.3% when using CRCM variables. For wet days, these numbers 

were 38.9% and 39.0%, respectively.  
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Figure 4.1 Frequency distribution of wet and dry periods extracted from observed (OBS) and 
downscaled daily precipitation occurrences at the svir293 station. The downscaling methods 

include the SDSM-like model and discriminant analysis (DA). 
 
 
A similar success rate of wet and dry days were found by Wilby et al. (1999) in their studies 

using HadCM2 variables, including mean sea level pressure, specific humidity and 500hpa 

geopotential height as predictors in Colorado, US. However, in their research, the 

reproduction of wet days was better than for dry days. This may be because the research was 

conducted in different regions and used different GCMs and variables. The results obtained 

from the DA- based model for downscaling precipitation occurrence were better than those 
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of the SDSM-like approach. In addition, the use of CRCM variables as predictors yielded a 

slightly improved results over using NCEP variables. The averaged success rates for wet 

days were 73.0% when using CRCM variables as predictors and 68.8% when using NCEP 

variables. The numbers for dry days were 81.9%, and 74.1%, respectively. Dry days were 

better reproduced than wet days for both approaches.  

 
 

Table 4.5 Downscaling of precipitation occurrence using  
SDSM-like and discriminant analysis-based models 

 

station 
 SDSM-like model  Discriminant Analysis 

 NCEP scale CRCM scale  NCEP scale CRCM scale 

 tot_day 5475 

svir219 

cor_wet_day 42.8% 43.8%  66.3% 72.0% 

cor_dry_day 58.0% 56.1%  75.4% 80.1% 

obs_wet_day 2400 

dow_wet_day 2320 (-3.3%) 2356 (-1.8%)  2347 (-2.2%) 2340 (-2.5%) 

svir293 

cor_wet_day 43.6% 45.1%  68.5% 74.8% 

cor_dry_day 56.6% 56.0%  75.1% 82.5% 

obs_wet_day 2452 

dow_wet_day 2379 (-3.0%) 2435 (-0.7%)  2432 (-0.8%) 2362 (-3.7%) 

svir559 

cor_wet_day 35.7% 34.6%  70.1% 73.2% 

cor_dry_day 64.6% 64.9%  72.5% 81.9% 

obs_wet_day 1929 

dow_wet_day 1944(0.9%) 1913 (-0.7%)  2326 (20.8%) 2052 (6.5%) 

svir689 

cor_wet_day 33.3% 32.4%  70.1% 71.9% 

cor_dry_day 66.7% 68.1%  73.4% 83.1% 

obs_wet_day 1818 

dow_wet_day 1824 (0.3%) 1757 (-3.4%)  2248 (23.7%) 1926 (5.9%) 

 
Note: tot_day = the total days used to verify the downscaling approach; cor_wet_day = the percentage 
of correctly identified wet days; cor_dry_day = the percentage of correctly identified dry days; 
obs_wet_day = the observed wet days within the total days; and dow_wet_day = the downscaled wet 
days within the total days. The value in parentheses is the relative error of downscaled wet days. 
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Since the results presented in table 4.5 indicate that the DA-based model is the best, it was 

the scheme chosen to assess the weather typing approach. 

 

The results pertaining to the coupled weather typing and DA methods are presented in table 

4.6. Similar results were obtained from all four stations, but only those results from the 

svir293 station are shown. Based on the classification scheme of the PCA and cluster 

analysis, the whole time series of precipitation was classified into 4 weather types and first 

compared with a 4-season classification scheme. For precipitation occurrence, results 

indicate that the weather classification scheme resulted in worse results than with a simple 

seasonal classification. The averaged success rates for the weather typing approach were 

70.1% for wet days and 75.4% for dry, compared to 74.4% and 80.8%, respectively, with 

seasonal classification. Since weather conditions are more homogeneous within a weather 

type, it increases the difficulty of identifying wet and dry states, which likely explains the 

decreased performance for precipitation occurrence. 

 
 

Table 4.6 Downscaling of seasonal precipitation occurrence  
using the weather typing scheme at station svir293 

 
 SDSM-like Weather types 

 
Spring 

(MAM) 

Summer 

(JJA) 

Autumn 

(SDN) 

Winter 

(DJF) 
Type1 Type2 Type3 Type4 

tot_day 1380 1380 1365 1350 1365 2005 1131 976 

cor_wet_day 75.2% 70.1% 76.8% 75.5% 68.4% 69.6% 66.0% 76.3% 

cor_dry_day 85.0% 76.5% 81.0% 80.8% 75.2% 79.8% 74.7% 71.9% 

obs_wet_day 529 652 664 607 228 728 764 738 

dow_wet_day 
526  

(-0.6%) 

628  

(-3.7%) 

643 

 (-3.2%) 

601 

 (-1.0%) 

438 

(92.1%)

765 

(5.1%) 

597  

(-21.9%) 

630 

(-14.6%)

 
Note: tot_day = the total days used to verify the downscaling approach; cor_wet_day = the percentage 
of correctly identified wet days; cor_dry_day = the percentage of correctly identified dry days; 
obs_wet_day = the observed wet days within the total days; and dow_wet_day = the downscaled wet 
days within the total days. The value in parentheses is the relative error of downscaled wet days.  
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4.4.2 Downscaling of daily precipitation amount  

The results for precipitation amounts are presented in table 4.7. Overall, the results show 

improvements in all cases when using RCM-scale variables as predictors over GCM-scale, 

and additional (although more modest) improvements when using a weather typing scheme at 

the seasonal time scale. The means of daily precipitation amounts downscaled by an SDSM-

like model using NCEP variables as predictors was markedly underestimated for each 

season, with mean relative errors (MRE) of -31.2% for spring, -42.6% for summer, -37.5% 

for autumn and -32.6% for winter across four stations. Precipitation amounts downscaled by 

an SDSM-like model using CRCM variables as predictors were improved, but still 

underestimated precipitation amounts with an MRE of -27.0% . Adding a weather typing 

scheme resulted in a modest improvement in the underestimation of precipitation amounts, 

with an MRE of -25.2%.  

 

Similarly to results for the mean, the standard deviation of daily precipitation amounts was 

markedly underpredicted by the SDSM-like model using NCEP variables as predictors, with 

the MRE at -70.5% across the four stations (table 4.8). Downscaling using CRCM variables 

as predictors significantly improved the standard deviation of the precipitation amount, 

although it was still underestimated for most seasons with an MRE of -37.5%. Adding 

weather typing resulted in no additional improvements (MRE of -37.4%). 

 

Percentile plots of downscaled precipitation amounts using the following models: SDSM-like 

with NCEP predictors, SDSM-like with CRCM predictors, and SDSM-like with CRCM 

predictors conditioned on weather types are presented in figure 4.2. Similar results were 

obtained at all stations, but only the results of station svir293 are shown. The results indicate 

that the downscaled precipitation amounts were too high for light precipitation (below the 

50th percentile) and too small for heavier precipitation (above the 50th percentile). This 

pattern was consistent for all seasons and all downscaling approaches. However, the 

distribution of downscaling using CRCM variables as predictors was much better than those 
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using NCEP variables as predictors. The weather typing approach did not show any 

advantage, even though it is more physically based. 

 
 

Table 4.7 Comparison of the mean daily precipitation downscaled by an SDSM-like model 
and a weather typing scheme using NCEP and CRCM-scale variables as predictors (The 

value in parentheses is the percentage of relative error for each season. WT=weather typing) 
 

 

 

 

Station Season Observed SDSM_NCEP SDSM_CRCM WT_CRCM

sivr219 

spring (MAM) 4.16 2.87 (-31.1) 3.12 (-25.0) 3.40 (-18.4) 

summer (JJA) 5.68 3.36 (-40.8) 3.69 (-35.1) 3.57 (-37.1) 

autumn (SON) 4.61 2.67 (-42.2) 3.60 (-21.9) 3.63 (-21.3) 

winter (DJF) 3.26 2.16 (-33.8) 2.37 (-27.4) 2.52 (-22.7) 

svir293 

spring (MAM) 3.53 2.67 (-24.5) 2.79 (-20.9) 2.94 (-16.6) 

summer (JJA) 5.02 3.08 (-38.6) 3.31 (-34.1) 3.43 (-31.7) 

autumn (SON) 4.35 2.72 (-37.3) 3.38 (-22.2) 3.46 (-20.4) 

winter (DJF) 2.75 2.06 (-25.2) 2.32 (-15.7) 2.45 (-10.8) 

svir559 

spring (MAM) 5.54  3.95 (-28.8) 4.16 (-25.0) 4.29 (-22.5) 

summer (JJA) 6.37  3.99 (-37.4) 3.85 (-39.6) 3.90 (-38.9) 

autumn (SON) 6.08  3.76 (-38.2) 4.03 (-33.7) 4.06 (-33.2) 

winter (DJF) 4.33  3.51 (-18.9) 4.13 (-4.6) 4.08 (-5.8) 

svir689 

spring (MAM) 4.85 2.98 (-38.5) 3.30 (-32.0) 3.38 (-30.4) 

summer (JJA) 6.14 3.14 (-48.8) 3.29 (-46.4) 3.08 (-49.8) 

autumn (SON) 5.19 3.33 (-35.9) 3.85 (-25.8) 3.91 (-24.7) 

winter (DJF) 3.60 2.27 (-36.9) 2.79 (-22.3) 2.94 (-18.3) 

Mean relative error (%) -- -34.8 -27.0 -25.2 
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Table 4.8 Comparison of the standard deviation of daily precipitation  
downscaled by an SDSM-like model and by a weather typing scheme 

 using NCEP and CRCM variables as predictors (The value in parentheses 
 is the percentage of relative error for each season. WT=weather typing) 

 
Station Season Observed SDSM_NCEP SDSM_CRCM WT_CRCM

sivr219 

spring (MAM) 4.71 1.90 (-59.6) 3.71 (-21.2) 3.64 (-22.6) 

summer (JJA) 6.56 1.52 (-76.8) 3.12 (-52.4) 2.60 (-60.3) 

autumn (SON) 5.96 1.52 (-74.5) 5.25 (-11.9) 5.15 (-13.7) 

winter (DJF) 4.00 1.50 (-62.5) 2.86 (-28.5) 2.60 (-34.9) 

svir293 

spring (MAM) 4.67 1.77 (-62.0) 3.74 (-19.9) 3.73 (-20.1) 

summer (JJA) 6.28 1.67 (-73.4) 2.49 (-60.4) 2.75 (-56.2) 

autumn (SON) 6.10 1.75 (-71.3) 4.49 (-26.4) 4.27 (-30.0) 

winter (DJF) 3.47 1.39 (-59.9) 4.47 (28.9) 3.79 (9.2) 

svir559 

spring (MAM) 6.06  1.94 (-67.9) 3.35 (-44.7) 3.57 (-41.1) 

summer (JJA) 8.27  1.53 (-81.5) 1.55 (-81.2) 2.17 (-73.8) 

autumn (SON) 7.77  2.06 (-73.5) 3.49 (-55.1) 3.46 (-55.4) 

winter (DJF) 4.97  1.74 (-64.9) 4.46 (-10.3) 4.07 (-18.0) 

svir689 

spring (MAM) 5.68 1.47 (-74.2) 3.58 (-36.9) 3.37 (-40.6) 

summer (JJA) 8.10 1.00 (-87.7) 1.57 (-80.6) 1.35 (-83.3) 

autumn (SON) 7.04 2.07 (-70.6) 4.69 (-33.4) 4.54 (-35.5) 

winter (DJF) 4.59 1.50 (67.3) 4.20 (-8.5) 4.39 (-4.3) 

Mean relative error (%) -- -70.5 -37.5 -37.4 
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Figure 4.2 Plots of 5, 15, 25, 50, 75, 95 and 99 percentiles of observed vs. downscaled  
daily precipitation for each season at station svir293. The percentiles of each season  
were divided by the corresponding observed mean of each season (SDSM-NCEP =  

SDSM-like with NCEP predictors; SDSM-CRCM = SDSM-like with CRCM predictors;  
and WT-CRCM = SDSM-like with CRCM predictors conditioned on weather types. 

 
 
The percentage of explained variance indicates the extent to which daily variations in the 

local predictands are determined by regional forcing (Wilby et al., 2002a). For temperature, 

an explained variance over 70% is quite normal, but for precipitation, it is generally less than 

30%. Using SDSM, Wilby et al. (2002a) found explained variances of 28%, 73% and 72% 
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for precipitation amounts, maximum and minimum temperatures, respectively. The results 

for the percentage of explained variance are presented for precipitation amounts in table 4.9. 

In this research, the averaged explained variance for precipitation amounts was only 13.8% 

using NCEP variables and the SDSM-like model for calibration, and 13.3% for validation 

across 4 seasons and four stations. In particular, these were extremely low in the summer; 

only 8.0% and 8.4% for calibration and validation, respectively. The explained variance was 

higher in winter, with a percentage of explained variance of 18.3 for calibration and 15.4 for 

validation. Across all seasons and stations, the explained variances were distinctly improved 

when using CRCM variables as predictors. These were 30.2% and 32.2% for calibration and 

validation, respectively. Adding weather typing modestly improved the explained variance to 

33.6% and 33.5% for calibration and validation, respectively. The explained variance was 

still lower in the summer (<20%) and the best in winter at more than 40%. The improvement 

with weather typing was at their maximum over winter, indicating the winter precipitation 

was controlled by large-scale atmospheric circulation to a greater degree.  

 

4.5 Discussion and conclusion 

4.5.1 Downscaling of daily precipitation occurrence 

This paper compared the ability of two approaches to downscale precipitation occurrence 

(the linear regression approach of an SDSM-like model, and a DA-based model) at the GCM 

and RCM scales. The results showed that the SDSM-like model slightly overestimated the 

frequencies of wet and dry periods. In contrast, the frequencies of both wet and dry periods 

were well replicated by the downscaling model based on DA. Both approaches reproduce 

total wet days and dry days accurately. However, this apparently good performance is an 

illusion, since the wet or dry status for each day was poorly downscaled. Wet days were 

frequently predicted to be dry and vice-versa. In fact, with a 61% success rate, the SDSM-

like model was only slightly better than a random draw. The observed accuracy in total wet 

days (and dry days) simply reflects the fact that each model had the same percentage of 

errors in wet and dry days. Despite the above limitation, precipitation occurrence downscaled 

by the DA-based model was better than that obtained using the SDSM-like model. This 
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should not be a surprise, since discriminant analysis finds the optimal linear combination of 

predictors that separate two different groups. Discriminant analysis has much in common 

with linear regression, and it can be shown that linear regression may, at best, match DA 

performance, but cannot possibly exceed it. Hence, the performance of DA-based model 

indicates the best possible outcome for a linear method. As such its performance is relatively 

disappointing in that it fails to adequately reproduce wet and dry states at all stations and 

seasons. While the success rates may seem adequate (between 66% and 83%), it should be 

observed that a perfectly random scheme would result in a 50% success rate. Perhaps even 

more disappointing is the fact that DA did not do significantly better in separating wet days 

from dry days identified using a much higher precipitation threshold (results not shown). In 

other words, extremely wet days were not categorized as ‘wet’ any more frequently than 

moderately wet days. This indicates that there is simply not enough information present in 

the predictors to accurately downscale precipitation occurrence, particularly at the GCM 

scale. The improvements resulting from using RCM predictors clearly show that some 

additional information is added at the finer scale, but it is still not sufficient for the 

approaches to be used in a climate change context. This is also reflected in the fact that 

weather typing was not useful in downscaling precipitation occurrence, although this is likely 

at least partly due to the more homogeneous conditions within each weather type, rendering 

identification of wet/dry states more challenging. 

 

Overall, downscaling of daily precipitation occurrence was largely unsuccessful with the 

linear techniques used. Daily precipitation occurrence is controlled by many factors, some of 

which are linked to large scale atmospheric circulation. Clearly, for the selected stations, sub-

grid processes play a significant role in determining whether or not precipitation occurs. The 

selected variables were unable to capture a major portion of the variability. The addition of 

lag-1 variables did not improve results significantly.  
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Table 4.9 Comparison of explained variance of daily precipitation downscaled 
 by SDSM-like models and a weather typing scheme using NCEP  

and CRCM variables as predictors (WT=weather typing) 
 

Station Season 

Explained variance (%) of 

calibration  

Explained variance (%) of 

validation 

SDSM_

NCEP 

SDSM_

CRCM 

WT_ 

CRCM

SDSM_ 

NCEP 

SDSM_

CRCM 

WT_ 

CRCM

sivr219 

spring (MAM) 15.7 36.7 42.6  12.4 31.7 32.4  

summer (JJA) 9.6 23.9 21.7  6.5 19.2 21.2  

autumn (SON) 12.0 36.1 38.4  13.6 42.0 40.2  

winter (DJF) 20.0 35.4 41.1  13.8 34.9 36.2  

svir293 

spring (MAM) 18.5 43.9 45.3  21.5 48.2 48.1  

summer (JJA) 11.4 24.1 27.5  13.9 28.1 28.0  

autumn (SON) 15.4 39.2 44.1  15.2 51.4 50.2  

winter (DJF) 21.5 41.4 47.6  16.9 45.3 47.7  

svir559 

spring (MAM) 14.6  28.7  32.2  11.8  26.1  28.2  

summer (JJA) 6.9  7.3  11.9  7.1  12.3  11.4  

autumn (SON) 12.2  23.7  26.4  14.9  33.4  35.7  

winter (DJF) 14.3  33.4  38.3  12.4  28.0  30.1  

svir689 

spring (MAM) 13.0 33.6 36.3  11.3 26.8 27.0  

summer (JJA) 3.9 8.6 8.9  5.9 11.1 18.4  

autumn (SON) 13.8 28.8 31.6  17.0 38.7 37.6  

winter (DJF) 17.5 38.4 43.9  18.6 38.1 44.1  

Mean 13.8 30.2 33.6 13.3 32.2 33.5 

 
 
A better approach may be to try to downscale monthly or seasonal transition probabilities 

such as P01 (a wet day following a dry day) and P11 (a wet day following a wet day). Since 

these variables are only needed at the monthly or seasonal scales, more robust relationships 

may be derived with monthly or seasonal averaged values from GCM and RCM data. The 

downscaled monthly or seasonal transition probabilities can then be disaggregated at the 
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daily scale using a stochastic weather generator. There are three advantages to linking 

weather generator parameters with RCM or GCM variables. Firstly, the spatial scales of 

RCMs and GCMs indicate that their variables are more likely to be linked to the monthly or 

seasonal climate variability rather than to daily scales. Secondly, RCM and GCM outputs are 

considered more robust at the monthly or seasonal scales than at daily scales (Maurer and 

Hidalgo 2007). Finally, downscaling weather generator parameters allows the generation of 

time-series of infinite length, thus allowing the study of rare events. However, as mentioned 

earlier, Wilby et al. (2002b) explored the use of synoptic-scale predictor variables to 

downscale both high- and low-frequency variability of precipitation based on conditional 

stochastic rainfall models at sites across Great Britain. Their results showed that their 

conditional rainfall models displayed positive effects on monthly rainfall statistics relative to 

the control, but they did not completely remove overdispersion. This may be because the 

applied predictors did not accurately explain the local climate variability. Moreover, Zhang 

(2005) used the mean of monthly precipitation to downscale weather generator parameters 

(P01 and P11), but there is frequently no strong relationship between monthly precipitation 

and transition probability. Therefore, to better simulate the low-frequency variability, 

predictors that strongly correlate with transition probabilities are needed. Clearly, there are 

research opportunities in this area. 

 

4.5.2 Downscaling of daily precipitation amount 

This paper compared the ability of two approaches to downscale precipitation amounts (the 

linear regression approach of an SDSM-like model, with and without weather typing) at the 

GCM and RCM scales. Both the mean and standard deviations were markedly 

underestimated for the two approaches tested.  These results are consistent with other SD 

studies and were observed using GCM and RCM scale predictors, for all seasons and all 

stations. The weather typing approach was somewhat better than the SDSM-like model 

(without weather typing) in downscaling the precipitation mean, but there was the same 

mediocre ability at downscaling the standard deviation of precipitation. The downscaled 

precipitation amounts were too high for the observed light precipitation (below the 50th 
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percentile) and too small for the observed heavier precipitation (above the 50th percentile). 

This pattern was consistent for all seasons, stations and approaches.  

 

Downscaling using RCM variables as predictors distinctly improved the mean and standard 

deviation for both approaches. In particular, the explained variance, which was very low with 

GCM scale predictors, was improved with RCM scale predictors. Clearly, the finer resolution 

of RCMs increased a models’ ability to capture regional details affecting the local climate. 

However, going from a 300km scale to a 45km scale did not yield spectacular improvements. 

Considering that wet days were diagnosed incorrectly up to 28% of the time, and that dry 

days were identified as wet up to 20% of the time, it would seem that the information 

contained in GCM and RCM variables is more about the likelihood of precipitation and less 

about precipitation itself. The marked lack of success of weather typing in this paper testifies 

to that. Grouping days into weather types makes physical sense, but did not improve the 

success rate, indicating that a large part of the information on the processes leading to 

precipitation is generally not present at the GCM and RCM scales. Nevertheless, the 

improvements observed when going to the RCM scale raise the obvious question of how 

much better would SD get with an RCM run at an even finer resolution. At a 15km grid, 

much of the precipitation process would still have to be parameterized within RCMs, thus 

limiting potential improvements in SD. It should be emphasized that at the 45km scale, direct 

inclusion of RCM outputs into hydrological models is possible on larger watersheds (with or 

without bias correction). With a 15 km grid, biases would be reduced even more, enabling 

direct use of RCM data in even more applications. With a 1km grid, the physical equations 

could resolve convective processes on their own and precipitation accuracy should (in theory 

at least) improve dramatically. However, at this scale, for most applications, SD would not be 

needed anymore. In this sense, for the approaches and stations presented in this paper, SD 

seems to have hit a dead-end for precipitation, while it still has an advantage in uncertainty 

studies. With the exception of intercomparison studies, RCM data is scarce and difficult to 

obtain. Data is rarely available from more than one RCM (driven by one GCM) over a given 

area while GCM data is now abundant with global coverage. With regards to the uncertain 

future, it is essentially impossible to adequately cover the major source of uncertainty 
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(climate models) at the regional scale. Consequently, downscaling techniques from GCM 

data will continue to be an avenue of research. 
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5.1 Abstract  

The mismatch of spatial resolution between General Circulation model (GCM) outputs and the 

data requirements of hydrological models are major obstacles for quantifying the hydrologic 

impacts of climate change. Downscaling methods have been developed to overcome this 

problem. Among the different methods available, regression-based statistical approaches have 

been the most widely used, due to their low computational cost and relative ease of 

application. However, while these approaches work relatively well for downscaling 

temperatures, they often account for only a small percentage of the observed precipitation 

variance. The objective of this paper is to assess the reliability of regression-based approaches 

in downscaling precipitation for North America across different scales from GCMs to mid and 

high resolution Regional Climate Models (RCM) all the way to station scale. Overall, nine 

downscaling experiments were performed, combining four spatial scales starting from GCM 

(300km), going to RCMs at 45km and 15km, and finally to the station scale. The statistical 

downscaling method selected here uses discriminant analysis for precipitation occurrence and 

a stepwise linear regression approach for precipitation amounts. The percentages of correct wet 

and dry day classifications and percentages of explained variance for both calibration and 
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validation were used as criteria to assess these methods. The results showed that the 

downscaling of daily precipitation occurrence was mostly unsuccessful at all scales, although 

results did constantly improve with the increased resolution of climate models. Results for 

downscaling of dry day occurrence at the station scale went from 75.4% (GCM predictors) to 

77.7% (45-km RCM predictors) and finally to 82.0% (15-km RCM predictors). For 

precipitation amounts, the average explained variances when downscaling to the station scale 

were less than 25% when using GCM predictors. Using RCM predictors at 45-km yielded a 

clear improvement in downscaling ability although explained variance rarely got above 40%. 

Using predictors at the 15-km scale yielded little improvement over the 45-km predictors. To 

gain a better understanding of those results, precipitation was also downscaled across all scales 

(GCM to GCM, GCM to 45-km RCM, GCM to 15-km RCM, 45-km RCM to 45-km RCM, 

45-km RCM to 15-km RCM, and finally, 15-km RCM to 15-km RCM). The percentages of 

explained variance for downscaled GCM precipitation from GCM predictors were consistently 

lower than 40%. Downscaling of 45-km RCM precipitation amounts using 45-km RCM 

predictors distinctly improved the explained variances for both calibration and validation, but 

going to the 15-km RCM scale resulted in little improvement. The average explained variance 

was always less than 85% for both calibration and validation. While downscaling GCM 

precipitation from GCM predictors (or RCM precipitation from RCM predictors) cannot really 

be considered downscaling, as there is no change in scale, the exercise yields interesting 

information as to the theoretical limit in predictive ability at the station scale. This was 

especially clear at the GCM scale, where the inability of downscaling GCM precipitation from 

GCM predictors demonstrates that GCM precipitation-generating processes are largely at the 

sub-grid scale, thus indicating that downscaling daily precipitation at the station scale from 

GCM scale is virtually a dead-end. While results got better at the RCM scale, the results 

indicate that overall, regression-based approaches did not perform well in downscaling 

precipitation.  

 

Keywords: Statistical downscaling; discriminant analysis; stepwise linear regression; 

precipitation 
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5.2 Introduction 

The Intergovernmental Panel on Climate Change (IPCC) stated that continued greenhouse 

gas emissions at or above current rates would cause further warming and consequently 

induce many changes in the global climate system during the 21st century (IPCC, 2007). This 

kind of climate change will severely affect terrestrial water resources in the future 

(Srikanthan and McMahon, 2001; Xu and Singh, 2004). In order to quantify the impacts of 

climate change, the development of tools or approaches to generate future climate projections 

is necessary. General Circulation Models (GCMs) have been developed to simulate the 

present climate and predict future climate change. However, the spatial and temporal 

resolutions of GCMs are too coarse to assess the regional and site-specific impacts of climate 

change (Leavesley, 1994; Hostetler, 1994). It is necessary to perform some post-processing 

to improve upon these global-scale models for impact studies. Consequently, two widely 

used classes of downscaling techniques have been developed: dynamic downscaling and 

statistical downscaling.  

 

Dynamical downscaling was developed based on dynamic formulations using initial and 

time-dependent lateral boundary conditions of GCMs to achieve a higher spatial resolution 

by nesting limited-area Regional Climate Models (RCMs). The main drawback of RCMs is 

their high computational cost (Solman and Nunez, 1999). Therefore, they are only available 

for limited regions, and, except for a few intercomparison studies, there is rarely more than 

one RCM operating over a given area, thus limiting the ability to sample the uncertainty 

linked to climate modeling. Moreover, despite improvements, the outputs of most RCMs are 

still too coarse to enable their direct use for impact studies over small to medium size 

watersheds which may require local and site-specific climate projections. Statistical 

downscaling involves linking the states of some variables representing a large scale (GCM or 

RCM grid scale, predictors) to the states of some variables representing a much smaller scale 

(catchment or site scale, predictands). The main strengths of statistical downscaling 

approaches are that they are computationally inexpensive and relatively easy to apply. Thus, 

they are often used to downscale GCM outputs. However, there is often a marked lack of 
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strong relationships between predictors and predictands, especially for precipitation. Over the 

past two decades, a diverse range of statistical downscaling methods have been developed. 

They fall into three categories: transfer function (regression based, Wilby et al., 1998a; 

Wilby et al., 2002a), weather generator (Wilks, 1999a; Zhang, 2005), and weather typing 

(von Storch et al., 1993; Schoof and Pryor, 2001).  

 

Transfer functions are the most widely used statistical downscaling approaches. They involve 

establishing statistical linear or nonlinear relationships between observed local climatic 

variables (predictands) and large-scale GCM output (predictors). The most commonly used 

predictors from GCM outputs include vorticity, airflow indices, wind velocity and direction, 

mean sea-level pressure, geopotential heights and relative humidity (Wilby et al., 1998a; 

Solman and Nunez, 1999; Sailor and Li, 1999; Trigo and Palutikof, 2001). A typical transfer 

function approach is with the one used by the statistical downscaling model (SDSM) 

developed by Wilby et al. (2002a). This model works relatively well in downscaling 

temperature at the station scale, with a percentage of explained variance usually over 70%. 

However, it underestimates the daily precipitation (both mean and variance), because the 

percentage of explained variance is generally less than 30% (Wilby et al, 1999). To address 

this problem, bias correction and variance inflation schemes were incorporated within the 

SDSM to ensure that observed and downscaled precipitation totals were equal for the 

simulation period. When using bias correction and variance inflation, the SDSM essentially 

becomes a weather generator, where a stochastic component is superimposed on top of the 

downscaled variable. Another statistical downscaling approach is based on the use of 

stochastic weather generators. Weather generator parameters are perturbed according to the 

changes of future climate projected by climate models (Wilks, 1992, 2010; Semenov and 

Barrow 1997, Wilby et al, 2002b; Zhang, 2005, Qian et al., 2010). The appealing property of 

the weather generator approach is its ability to rapidly produce ensembles of climate 

scenarios for studying the impacts of rare climate events. The main disadvantages are that 

changes in one variable may affect secondary variables (adjusting the precipitation 

occurrence may affect the precipitation amount), and that the link between parameters and 

future climate may not be easy to establish. Weather typing schemes have also been used as a 
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downscaling method, which involves grouping local meteorological variables in relation to 

different classes of atmospheric circulation based on a given weather classification scheme 

(Bardossy and Plate, 1992; von Storch et al., 1993). The main advantage is that local 

variables are sensitively linked to the large scale atmospheric circulation. The drawbacks are 

that the reliability depends on the stationary relationship between large scale circulation and 

the local climate of each weather type, and that it requires the additional task of weather 

classification. 

 

Overall, even though there are a number of statistical downscaling methods, regression-based 

approaches are the type most widely used. The ease of application, especially with the SDSM 

freeware package, explains in large part the popularity of these methods. Accordingly, this 

paper aims at assessing the reliability of regression-based approaches in downscaling daily 

precipitation for North America through statistical downscaling across several scales, from 

GCM to mid and high resolution RCMs, all the way to station scale. To better reflect the real 

ability of the statistical downscaling method, this paper only considers the results of the 

regression scheme, with no stochastic component added on top of the downscaled 

component.  

 

5.3 Study area and data 

5.3.1 Study area 

The study was conducted over North America (except Greenland) in a zone extending from 

within 10° of latitude of both the equator and the North Pole. It embraces every climatic 

zone, from tropical rain forest and savanna in the lowlands of Central America to ice fields in 

Northern Canada, which adequately represents the spatial climate variability (figure 5.1). 

Two hundred and fifty-eight Canadian GCM3 (CGCM3) 300km grid points dispersed across 

North America were selected to test the ability of regression-based statistical downscaling 

methods. Since the Canadian RCM (CRCM) has many more grid points than the number of 

CGCM3 grid points due to its higher resolution, the 258 grid points closest to CGCM3 grid 

points were chosen for downscaling. The use of 15-km CRCM data was restricted to the 
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Manicouagan river basin in Quebec, Canada with 1369 grid points (37×37 grid). One 

hundred and fifty-six (12×13) grid points were selected for the downscaling from the 45-km 

CRCM to the 15-km CRCM and from the 15-km CRCM to the 15-km CRCM. In addition, 

six grid points within or close to the Manicouagan river basin were used for the downscaling 

from GCM to the 15-km CRCM. Moreover, sixteen stations dispersed across Canada and the 

United States were used for downscaling from GCM and 45-km CRCM to the station scale, 

and six stations within or close to the Manicouagan river basin were used to downscale 

precipitation at the station scale from the 15-km CRCM predictors (figure 5.1). Basic 

information, including latitude, longitude, elevation, average annual precipitation and record 

duration for these stations is given in table 5.1. The downscaling experiments and the number 

of selected grid points or stations are presented in table 5.2. 

 
 

 

 
Figure 5.1 Selected study stations over North America and  

Manicouagan river basin in Quebec, Canada. 
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5.3.2 Data 

This project made use of several different climatic databases. The CGCM3 data and the 

National Center for Environmental Prediction (NCEP) reanalysis data interpolated to the 

CGCM3 grid (Kalnay et al., 1996; DAI CGCM3 Predictors, 2008) were used at the GCM 

scale. The regional scale is covered at the 15-km and 45-km scales by the CRCM (version 

4.2.3) as discussed in Music and Caya (2007, 2009) over the North-American domain for the 

45-km resolution, and over the Quebec domain for the 15-km resolution. CRCM is driven by 

NCEP data at its boundaries in the former, and by the 45-km CRCM over the Quebec domain 

in the latter. Although the results are from the same version of the CRCM, the 15-km CRCM 

data was driven at its boundary conditions by a different run (over the Quebec domain) than 

the one used in this paper at the 45-km scale (over the North American domain). This is 

important to mention as this may have implications on the results. Since the NCEP is the 

parent of the CRCM, it is further used to represent GCM data for downscaling from 300-km 

scale to finer scale (experiments 2, 4 and 7). CGCM data was used for the first downscaling 

experiment (GCM to GCM).  

 

The data in this research covers the period 1961 to 2000, with the exception of some stations 

within or close to the Manicouagan river basin that have a record shorter than 40 years, as 

shown in table 5.1. The first half-period of data was used to calibrate the model (establishing 

the transfer function), and then the second period of data was used to verify the ability of the 

fitted transfer function. The GCM, NCEP, 45-km CRCM and 15-km CRCM predictors 

considered are listed in table 5.3. 
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Table 5.1 Location, record period, and average annual precipitation for 16 stations (ID 1-16) 
dispersed throughout North America and 6 stations  (ID 17-22) within or close to the 

Manicouagan river basin (Lat=latitude; Lon=longitude and Ele=elevation) 
 

ID 
State or 

Province 

Station 

name 

Lat 

(°N) 

Lon 

(°E) 

Ele 

(m) 

Records of 

daily precip

Annual 

precip 

1 
British 

Columbia 
Quatsino 50.53 -127.65 3 

1961-2000 

(40) 
2491.9 

2 
Northwest 

Territories 

Norman 

Wells 
65.28 -126.80 73 

1961-2000 

(40) 
298.4 

3 
Northwest 

Territories 
Hay River 60.84 -115.78 165 

1961-2000 

(40) 
328.2 

4 Nunavut Alert 82.52 -62.28 31 
1961-2000 

(40) 
158.7 

5 Nunavut Eureka 79.98 -85.93 10 
1961-2000 

(40) 
70.6 

6 Nunavut 
Resolute 

Cars 
74.72 -94.99 66 

1961-2000 

(40) 
144.9 

7 Manitoba The Pas 53.97 -101.10 270 
1961-2000 

(40) 
444.5 

8 Ontario Kapuskasing 49.40 -82.47 227 
1961-2000 

(40) 
849.0 

9 Quebec Schefferville 54.80 -66.82 522 
1961-2000 

(40) 
768.1 

10 Massachusetts Lawrence 42.70 -71.17 18 
1961-2000 

(40) 
1106.2 

11 
North 

Carolina 
Fayetteville 35.06 -78.86 29 

1961-2000 

(40) 
1175.9 

12 Mississippi Port Gibson 31.99 -90.97 37 
1961-2000 

(40) 
1449.4 
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ID 
State or 

Province 

Station 

name 

Lat 

(°N) 

Lon 

(°E) 

Ele 

(m) 

Records of 

daily precip 

Annual 

precip 

13 Nebraska Hartington 42.62 -97.26 418 
1961-2000 

(40) 
660.3 

14 Arizona Seligman 35.33 -112.88 1601
1961-2000 

(40) 
315.8 

15 Washington Longview 46.15 -122.92 4 
1961-2000 

(40) 
1190.1 

16 California Hanford  36.32 -119.64 75 
1961-2000 

(40) 
209.6 

17 Quebec Bain-Someau 49.13 -68.2 21.6 
1967-2000 

(34) 
997.5 

18 Quebec Labrieville 49.30 -69.55 152 
1961-1992 

(32) 
847.5 

19 Quebec Sept-Iles 50.22 -66.27 55 
1961-2000 

(40) 
1126.1 

20 Quebec Rimouski 48.45 -68.52 36 
1966-1999 

(34) 
877.1 

21 Quebec Bonnard 50.73 -71.05 506 
1965-1998 

(34) 
934.6 

22 Newfoundland 
Wabush 

Lake 
52.93 -68.87 551 

1961-2000 

(40) 
854.8 

 
 
5.4 Methodology 

The precipitation occurrence was downscaled using discriminant analysis and the wet day 

precipitation amounts were downscaled using a stepwise linear regression. Discriminant 

analysis is a technique for classifying a set of observations into predefined classes (Wilks, 

1995). The purpose is to determine the class of an observation based on a set of variables 

known as predictors or input variables. It has much in common with linear regression, as it 
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finds the optimal linear combination of predictors that separate predefined groups (two 

groups: wet and dry in this case). In other words, its performance indicates the best possible 

outcome for a linear method. 

 
 

Table 5.2 Downscaling experiments and number of selected grid points or stations 
 

No. Experiment Number of grid points or stations 

1 CGCM to CGCM 258 grid points over North America 

2 NCEP to 45-km CRCM 258 grid points over North America 

3 45-km CRCM to 45-km CRCM 258 grid points over North America 

4 NCEP to 15-km CRCM 
6 grid points within or close to the Manicouagan 

river basin 

5 45-km CRCM to 15-km CRCM 
156 grid points within or close to the 

Manicouagan river basin 

6 15-km CRCM to 15-km CRCM 
156 grid points within or close to the 

Manicouagan river basin 

7 NCEP to station 16 stations dispersed across the North America 

8 45-km CRCM to station 16 stations dispersed across the North America 

9 15-km CRCM to station 
6 stations within and or close to the Manicouagan 

river basin 

 
 
With discriminant analysis for downscaling of precipitation occurrence, it is necessary to 

have an available “training sample” in which each of the vectors are known to be classified 

correctly. In this paper, the first half period of climate model (CGCM, NCEP, 45-km CRCM 

or 15-km CRCM) predictors and their lag-1 predictors were used as the training sample. The 

precipitation series were first divided into two groups, a wet-day group (daily precipitation 

amount ≥1mm) and a dry-day group (daily precipitation amount < 1mm). Other threshold 

values for the determination of wet days were tested and yielded similar results. The 

precipitation occurrence at the validation period was similarly classified according to rules 

constructed based on training samples and corresponding groups.  
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A stepwise linear regression approach was selected to downscale wet day precipitation 

amounts. All of the CGCM (NCEP) or CRCM variables and the lag-1 variables of the first 

half period were used to select predictors using the stepwise regressive method. Multiple 

linear regressive equations were then fitted between the precipitation and the predictors for 

each season. Since the distribution of the daily precipitation is highly skewed, a fourth root 

transformation was applied to the original data before fitting the transfer function. The 

established transfer functions were then used to downscale daily precipitation for the second 

half period using CGCM, NCEP or CRCM variables and their lag-1. 

 

This research downscales daily precipitation occurrence and amounts from CGCM scale to 

CRCM scale (45-km and 15-km) and then to station scale. As mentioned earlier, this results 

in nine downscaling experiments combining four spatial scales (table 5.2). In the cases where 

precipitation was downscaled from predictors at the same scale (experiments 1, 3 and 6 from 

table 5.2), the predictors were those listed in table 5.3 as well as their lag-1 counterparts, and 

daily precipitation was used as the predictand. Technically speaking, these experiments 

cannot be classified as downscaling since the scale remains constant, but the results can give 

interesting information about the ability to downscale at a finer scale. For the other 

downscaling experiments (going to a finer scale), the larger scale variables were used as 

predictors and the finer scale or station precipitation was used as the predictand.  
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Table 5.3 CGCM, NCEP, 45-km CRCM and 15-km CRCM variables 
 used to select precipitation predictors for downscaling 

 

 

GCM and NCEP 

variables 

45-km CRCM 

variables 
15-km CRCM variables 

Surface 

variables 

Mean sea level pressure East component of wind East component of wind 

Temperature at 2m 
North component of 

wind 
North component of wind 

Total precipitation rate Total precipitation rate 

Screen specific humidity Screen specific humidity  

Tmin Tmin 

Tmax  Tmax 

Surface geopotential  Screen temperature  

Snow on ground Mean sea level pressure  

Upper-

air 

variables 

East component of wind 

(500, 850 and 1000 hPa) 

East component of wind 

(500, 700 and 850 hPa) 

East component of wind 

(500, 700 and 850 hPa) 

North component of 

wind 

(500, 850 and 1000 hPa) 

North component of 

wind 

(500, 700 and 850 hPa) 

North component of wind 

(500, 700 and 850 hPa) 

Geopotential 

(500 and 850 hPa) 

Geopotential 

(500, 700 and 850 hPa) 

Geopotential 

(500, 700 and 850 hPa) 

Specific humidity 

(500, 850 and 1000 hPa) 

Relative humidity 

(500, 700 and 850 hPa) 

Relative humidity 

(500, 700 and 850 hPa) 

Vertical vorticity 

(500, 850 and 1000 hPa) 

Vertical vorticity 

(500, 700 and 850 hPa) 

Vertical vorticity 

(500, 700 and 850 hPa) 

Divergence 

(500, 850 and 1000 hPa) 

Clouds by layer 

(500, 700 and 850 hPa) 

Clouds by layer 

(500, 700 and 850 hPa) 

Wind direction 

(500, 850 and 1000 hPa)  

Air temperature 

(500, 700 and 850 hPa) 

Wind speed  (500, 850 

and 1000 hPa)   
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5.5 Results 

5.5.1 Downscaling of precipitation occurrence 

The percentage of correct wet and dry day classifications is a useful metric to judge the 

accuracy of a downscaling model (Wilks, 1995). Figure 5.2 presents the percentages of dry 

and wet days downscaled from CGCM to CGCM (experiment 1), from NCEP to 45-km 

CRCM (experiment 2), and from 45-km CRCM to 45-km CRCM (experiment 3) for 258 grid 

points over North America. Generally, discriminant analysis was not successful in producing 

dry and wet days for all grid points. However, the reproduction of dry days was consistently 

better than those of wet days for all downscaling experiments. Moreover, the success rates of 

dry and wet days were higher for the west coast of North America and the northern part of 

Canada. In these regions, precipitation is strongly affected by the Pacific and Arctic oceans 

and accordingly, precipitation occurrence is more correlated to large scale atmospheric 

circulation.  

 

On the other hand, the interior and eastern coasts of North America are under a continental 

climate where regional details such as topography play a much more important role in 

precipitation occurrence. Specifically, for experiment 1 (CGCM to CGCM), the success rates 

of dry and wet days ranged between 53.1% and 90.0% and between 65.4% and 84.9% with 

means of 77.8% and 73.2%, respectively, across the 258 grid points of North America. These 

numbers should be interpreted by keeping in mind that a success rate of 50% is no better than 

having a random assignation of dry and wet days. Experiment 1 clearly shows that 

precipitation generation in a climate model is largely controlled by sub-grid processes, and 

that important information is missing from grid-scale predictors. It should then not be a 

surprise to observe worse results when downscaling from NCEP to 45-km CRCM scale 

(experiment 2). The success rates changed from 57.5% to 88.5% for dry days and from 

57.8% to 82.5% for wet days with means of 70.1% and 67.9% across the 258 grid points of 

North America, respectively. Better results were obtained when downscaling from 45-km 

CRCM to 45-km CRCM scale (experiment 3).The mean success rates were 89.7% for dry 

state and 83.9% for wet state with maximum success rates of 96.9% and 90.1%, respectively, 
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across the 258 grid points of North America. These numbers outline the increased potential 

of the higher resolution RCMs for downscaling to the station scale. 

 

Downscaling from 45-km CRCM to 15-km CRCM scale (experiment 5), the percentages of 

correct dry and wet days ranged between 67.0% and 73.0% and between 59.4% and 73.5% 

with means of 69.5% and 69.3%, respectively, across the 156 grid points within or close to 

the Manicouagan river basin (figure 5.3). In percentage values, the results seem worse than 

downscaling from NCEP to 45-km CRCM scale, but since the experiments were not carried 

out over the same domains, a direct comparison is not possible. However, since the 

percentages of correct dry and wet days of Quebec were lower than other parts of North 

America (figures 5.2c and 5.2d), it appears that the results from experiment 5 are slightly 

better. 

 

Due to availability restrictions on the 15-km CRCM data, only six NCEP and 15-km CRCM 

grid points were selected for downscaling from NCEP to 15-km scale (experiment 4). The 

average percentages of correct dry and wet days were 73.2% and 68.8%, respectively (table 

5.4). Overall, results were similar to those obtained when going from 45-km CRCM to 15-

km CRCM with average percentages of correct dry and wet days of 69.5% and 69.3%, and 

when downscaling from NCEP to 45-km CRCM (70.1% and 67.9%). Again, it should be 

noted a direct comparison is not possible since the former case only averaged 6 grid points 

over the Manicouagan river basin, while the latter two averaged 156 grid points over the 

Manicouagan river basin and 258 grid points over North America, respectively. 
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Figure 5.2 Percentages of correct wet and dry day classifications downscaled from  

CGCM to CGCM scale (A and B), from NCEP to 45-km CRCM scale  
(C and D) and from 45-km CRCM to 45-km CRCM scale (E and F). 
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Figure 5.3 Percentages of correct wet and dry day classifications  

downscaled from 45-km CRCM to 15-km CRCM scale. 
 
 

Table 5.4 Percentages of correct wet and dry day classifications 
 downscaled from NCEP to 15-km CRCM scale. 

 

Grid 
Downscaling from NCEP to 15-km CRCM  

Percentage of correct dry days (%) Percentage of correct wet days (%) 

Grid 1 73.2  67.6  

Grid 2 72.2  72.1  

Grid 3 73.7  67.8  

Grid 4 73.8  71.7  

Grid 5 72.8  66.5  

Grid 6 73.5  67.0  

Mean 73.2  68.8  

 
 

The best results were obtained then downscaling 15-km precipitation occurrence from 15-km 

predictors (experiment 6) over the Manicouagan river basin (figure 5.4). The percentages of 

correct dry and wet states ranged between 88.2% and 94.6% and between 77.0% and 87.9% 

with means of 91.3% and 83.6%, respectively, across the 156 grid points. In addition, for 

both downscaling from 45-km CRCM and 15-km CRCM to 15-km CRCM scale 

(experiments 5 and 6), the success rates for dry states at the southeastern Manicouagan river 
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basin were greater than those at the northwestern river basin, but the success rates of wet 

states show an opposite pattern. This is likely linked to the observed precipitation pattern 

showing a north to south gradient of increasing precipitation. This pattern is an example of 

the ability of the 15-km CRCM to detect patterns of precipitation at this fine scale, and 

indicates the positive potential of downscaling to the station scale, as will be evaluated next.  

 
 

 

 
Figure 5.4 Percentages of correct wet and dry day classifications  

downscaled from 15-km CRCM to 15-km CRCM scale. 
 
 

For climate change impact studies, the GCM or RCM outputs are normally downscaled to the 

station scale. Accordingly, daily precipitation occurrence was downscaled from NCEP, 45-

km CRCM and15-km CRCM to the station scale. As discussed above, success rates were 

expected to be smaller than when predicting precipitation occurrence from same-scale 

predictors, and this is exactly what was observed. The prediction of dry states was also 

consistently better than that of wet states for all downscaling experiments, as shown in table 

5.5. For downscaling from NCEP to station scale (experiment 7), the percentages of correct 

dry and wet states ranged between 69.7% and 89.1% and between 56.7%and 82.4%, 

respectively, with means of 75.4% and 69.6% across all 16 North American stations (ID 1-

16). The success rates indicate a large spatial variability. The use of 45-km CRCM variables 

as predictors (experiment 8) yielded only small improvements over using NCEP predictors. 

The averaged success rates for dry and wet days were 77.7% and 70.2% across the same 16 
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stations. Even though a direct comparison is not possible, it is interesting to note that the 

average percentages of correct dry and wet days for the six stations over the Manicouagan 

river basin were slightly better when downscaling from 15-km CRCM to station (experiment 

9). The percentages of correct dry and wet days were 82.0% and 71.6%, respectively, when 

going to 15-km CRCM scale.  

 
 

Table 5.5 Percentages of correct wet and dry day classifications (%) downscaled 
 from NCEP, 45-km CRCM and 15-km CRCM to station scale 

 

ID 

Downscaling from 

NCEP to station 

Downscaling from 45-

km CRCM to station 

ID 

Downscaling from 

15-km CRCM to 

station 

Correct 

dry days  

(%) 

Correct 

wet days 

(%)  

Correct 

dry days  

(%) 

Correct 

wet days  

(%) 

Correct 

dry days 

(%) 

Correct 

wet days 

(%)  

1 82.9 82.3 85.4 80.6 17 84.3 73.1 

2 71.9 74.7 78.3 75.1 18 79.9 68.0 

3 79.6 69.2 79.9 72.3 19 83.9 73.9 

4 76.9 73.7 77.8 71.7 20 81.6 69.0 

5 70.7 63.0 73.7 65.6 21 81.2 72.3 

6 75.4 63.1 76.8 66.8 22 81.0 73.4 

7 72.4 64.2 74.7 65.2 

8 73.7 63.6 76.0 63.4 

9 74.0 65.0 70.1 66.0 

10 69.7 56.7 68.8 60.0 

11 69.7 68.7 74.8 69.2 

12 70.3 72.1 75.2 70.7 

13 71.7 66.4 70.1 67.8 

14 76.9 82.4 83.1 72.7 

15 81.0 78.1 86.5 79.3 

16 89.1 70.9 91.8 76.1 

Mean 75.4 69.6 77.7 70.2 -- 82.0 71.6 
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5.5.2 Downscaling of precipitation amounts  

The percentage of explained variance indicates the extent to which daily variations in the 

local predictands are determined by regional forcing (Wilby et al., 2002b). For temperature, 

an explained variance over 70% is quite normal, but for precipitation, it is generally less than 

30% for downscaling from GCM to station scale (Wilby et al., 1999).  

 

Figures 5.5-5.7 present the percentages of explained variances for the calibration and 

validation of each season for downscaling from CGCM to CGCM (experiment 1) and from 

NCEP and 45-km CRCM to 45-km CRCM scale (experiments 2 and 3). Similarly to 

precipitation occurrence, the explained variances over the western coast of North America 

and the northern part of Canada were higher than those in the interior and eastern coast 

regions for all downscaling experiments, especially for the downscaling from 45-km CRCM 

to 45-km CRCM scale. Percentages of explained variance were lower in the summer and 

higher in the winter for all downscaling experiments. This is consistent with previous work 

and simply indicates that convective precipitation, typically occurring during summers, is 

less controlled by regional atmospheric circulation than is cyclonic precipitation. More 

specifically, for downscaling from CGCM to CGCM, the averaged explained variance for 

daily precipitation amounts was 32.7% for calibration and 28.3% for validation across four 

seasons and 258 grid points. The maximum explained variance was 58.1% for calibration and 

56.1% for validation. On average, this indicates that only about 30% of the information is 

presented within the chosen predictors. These results again outline the fact that the 

precipitation generating processes within climate models are parameterized at a sub-grid 

scale. These relatively poor results also indicate that downscaling from GCM to a finer scale 

can only yield even poorer results for precipitation amounts. This is indeed the case when 

downscaling from NCEP to 45-km CRCM scale (experiment 2). The explained variance was 

only 15.8% for calibration and 11.3% for validation across four seasons and all 258 grid 

points, even though the 45-km CRCM model was driven by NCEP data at its boundaries. 

Downscaling precipitation amounts from 45-km CRCM using 45-km CRCM predictors 

yielded much improved results with average explained variances of 73.8% and 71.6% for 
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calibration and validation, respectively. Results were predictably poorer when downscaling 

precipitation amounts at the 15-km scale using 45-km CRCM predictors (figure 5.8, 

experiment 5), even though the selected grid points were different between the two 

downscaling experiments. The percentages of explained variances were 16.8% for calibration 

and 18.4% for validation across four seasons and 156 grid points within or close to the 

Manicouagan river basin. In particular, they were extremely low in the summer with only 

9.9% and 14.0% for calibration and validation, respectively. The explained variance was 

higher in winter, with a percentage of explained variance of 22.5% for calibration and 23.0% 

for validation. As discussed earlier, the low explained variance is possibly due in part to the 

fact that the 45-km CRCM data used in this research was not run on the same domain as the 

15-km CRCM. Nevertheless, these results have significant implications on the potential 

validity of finer-scale RCMs and their ability to statistically downscale precipitation at a finer 

scale, as will be discussed in more detail later. Downscaling precipitation amounts at the 15-

km CRCM scale from 15-km CRCM predictors (experiment 6) showed slightly more 

consistency than the same experiments at the NCEP and 45-km CRCM scales (experiments 1 

and 3). The average explained variance was 77.2% for calibration and 75.2% for validation 

across four seasons and 156 grid points within or close to the Manicouagan river basin. 

Moreover, the explained variances of the northern part of Manicouagan river basin were 

higher than those of the other parts of the river basin for both calibration and validation.  

 

Experiment 4 looked at downscaling 15-km CRCM precipitation amounts from NCEP 

predictors. The average explained variances were 28.6% for calibration and 21.8% for 

validation across four seasons and all six grid points (table 5.6).  
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Figure 5.5 Explained variance of daily precipitation downscaled from CGCM to CGCM 

scale for calibration and validation of each season (Spring = Mar. + Apr. + May; Summer = 
Jun. + Jul. + Aug.; Autumn= Sep. + Oct. + Nov; Winter = Dec. + Jan. + Feb.). 
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Figure 5.6 Explained variance of daily precipitation downscaled from NCEP to 45-km 

CRCM scale for calibration and validation of each season (Spring = Mar. + Apr. + May; 
Summer = Jun. + Jul. + Aug.; Autumn = Sep. + Oct. + Nov; Winter = Dec. + Jan. + Feb.). 
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Figure 5.7 Explained variance of daily precipitation downscaled from 45-km CRCM to 45-
km CRCM scale for calibration and validation of each season (Spring = Mar. + Apr. + May; 
Summer = Jun. + Jul. + Aug.; Autumn = Sep. + Oct. + Nov.; Winter = Dec. + Jan. + Feb.). 
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Figure 5.8 Explained variance of daily precipitation downscaled from 45-km CRCM to 15-
km CRCM scale for calibration and validation of each season (Spring = Mar. + Apr. + May; 
Summer = Jun. + Jul. + Aug.; Autumn = Sep. + Oct. + Nov; Winter = Dec. + Jan. + Feb.). 
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Figure 5.9 Explained variance of daily precipitation downscaled from 15-km CRCM to 15-
km CRCM scale for calibration and validation of each season (Spring = Mar. + Apr. + May; 
Summer = Jun. + Jul. + Aug.; Autumn = Sep. + Oct. + Nov; Winter = Dec. + Jan. + Feb.). 
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Table 5.6 Explained variance of daily precipitation downscaled from NCEP to  
15-km CRCM scale for calibration and validation of each season 

 

Grid 
Explained variance of calibration (%) Explained variance of validation (%) 

MAM JJA SON DJF MAM JJA SON DJF 

Grid 1 30.8  25.8  27.1  31.8  21.6  14.8  23.5  27.2  

Grid 2 31.3  19.0  29.8  31.5  23.4  19.5  23.6  25.4  

Grid 3 20.7  18.8  24.8  38.8  20.6  17.7  24.0  22.9  

Grid 4 27.2  19.4  29.9  37.3  23.6  16.7  26.0  28.6  

Grid 5 27.6  16.2  27.9  42.7  20.1  11.7  19.7  31.5  

Grid 6 35.6  14.0  32.3  45.3  20.6  11.3  17.9  31.9  

Mean 28.9  18.9  28.6  37.9  21.7  15.3  22.4  27.9  

 
 
Finally, daily precipitation amounts were downscaled to the station scale from NCEP, 45-km 

CRCM and 15-km CRCM scales (experiments 7, 8 and 9). Results are presented in tables 

5.7, 5.8 and 5.9, respectively. Going from large scale predictors to the station scale is the goal 

for most climate change impact studies, and these are ultimately the most relevant results for 

most users. The explained variances of daily precipitation amount were only 17.8% for 

calibration and 10.6% for validation across four seasons and all 16 stations when using 

NCEP predictors. Values were especially low in the summer (11.6% for calibration and 7.0% 

for validation) and slightly higher in the winter (22.0% for calibration and 11.0% for 

validation). As discussed above, the explained variances also reflect a large spatial variability 

depending on station location. For example, in the spring, the maximum explained variance 

was 35.7% (station 9), while the minimum was 5.0% (station 12). Across all seasons and 

stations, the explained variances were somewhat improved when using 45-km CRCM 

variables as predictors. These were 21.6% and 13.2% for calibration and validation, 

respectively. When downscaling from 15-km CRCM to station scale, the average explained 

variance was 33.4% for calibration and 30.3% for validation. However, the explained 

variance was still lower in the summer (<20%) and was the highest in the winter at more than 

40%. As discussed earlier, although the selected stations were different in experiment 9, 

results nonetheless indicate the added value of the finer 15-km CRCM scale. The 
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improvements observed with finer scale predictors were the greatest in winter, again 

indicating the better ability of the finer scale climate model at describing regional 

atmospheric circulation. Convective precipitation events again proved to be a more complex 

problem, and will be discussed below.   

 
 

Table 5.7 Explained variance of daily precipitation downscaled from NCEP  
to station scale for calibration and validation of each season 

 

Station 

Explained variance  

of calibration (%) 

Explained variance  

of validation (%) 

MAM JJA SON DJF MAM JJA SON DJF 

1 30.3 19.7 33.9 32.9 33.3 25.1 32.3 30.8 

2 11.6 19.9 23.4 23.9 11.1 5.1 18.4 3.2 

3 13.9 5.0 15.7 18.7 7.9 0.6 14.6 5.2 

4 20.5 17.9 28.1 7.5 12.1 7.6 18.4 2.7 

5 16.6 14.4 16.0 17.9 16.9 6.9 6.7 8.8 

6 22.3 14.7 15.5 20.5 13.4 4.9 13.9 7.6 

7 21.9 14.5 22.9 22.1 13.3 12.8 14.3 19.0 

8 35.7 18.6 26.8 35.4 16.1 13.8 23.3 23.5 

9 30.5 16.1 11.6 25.7 15.6 8.6 19.5 22.9 

10 18.8 3.8 24.3 22.8 3.9 4.0 5.4 1.9 

11 10.0 11.4 20.9 9.9 3.3 3.2 2.9 4.4 

12 5.0 2.0 5.9 16.4 2.9 0.8 6.5 3.7 

13 13.7 7.4 13.5 22.1 2.6 0.7 6.4 4.6 

14 8.8 6.0 15.3 23.6 5.0 0.7 1.8 9.5 

15 16.0 7.1 21.6 29.9 12.1 12.4 16.0 18.3 

16 14.4 7.1 17.9 22.1 10.0 5.7 10.5 10.0 

Mean 18.1 11.6 19.6 22.0 11.2 7.0 13.2 11.0 
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Table 5.8 Explained variance of daily precipitation downscaled from 45-km  
CRCM to station scale for calibration and validation of each season 

 

Station 

Explained variance  

of calibration (%) 

Explained variance  

of validation (%) 

MAM JJA SON DJF MAM JJA SON DJF 

1 33.8 22.3 38.8 33.7 40.7 27.8 45.0 40.1 

2 15.4 22.1 26.4 26.2 18.0 8.2 19.3 5.0 

3 22.7 11.6 25.6 34.2 12.9 0.9 17.2 8.3 

4 24.1 18.9 25.8 17.4 16.3 8.0 17.4 5.9 

5 19.4 22.9 12.9 19.1 18.8 7.7 6.4 8.0 

6 26.0 16.9 22.3 15.9 11.2 5.2 16.9 8.4 

7 24.5 18.0 25.0 26.4 18.9 15.3 16.2 14.1 

8 34.3 17.9 25.8 18.7 19.0 15.7 26.1 26.8 

9 30.8 18.3 21.0 29.5 18.6 9.4 16.4 23.4 

10 18.8 7.0 28.0 24.4 3.6 6.2 6.2 2.5 

11 12.2 5.3 14.9 13.1 9.2 4.4 6.0 10.7 

12 13.2 7.3 5.8 19.1 4.3 4.4 7.4 9.7 

13 19.9 6.1 33.8 40.5 2.0 2.0 6.2 5.9 

14 18.7 8.4 12.9 30.0 7.5 1.3 2.3 4.3 

15 24.6 11.0 35.3 39.5 23.6 9.3 34.1 33.4 

16 24.2 20.0 14.9 29.1 6.7 7.0 13.8 14.4 

Mean 22.7 14.6 23.1 26.0 14.5 8.3 16.0 13.8 

 
 
5.6 Discussion and conclusion 

Regression-based statistical downscaling methods were evaluated with respect to precipitation. 

The methodology involved nine downscaling experiments at four different spatial scales, from 

GCM scale all the way to station scale. The precipitation occurrence was downscaled using 

discriminant analysis and a stepwise linear regression method was used for downscaling daily 
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precipitation amounts. The approaches tested are representative of the most commonly used 

statistical downscaling method in the literature.   

 
 

Table 5.9 Explained variance of daily precipitation downscaled from  
15-km CRCM to station scale for calibration and validation of each season 

 

Station 

Explained variance  

of calibration (%) 

Explained variance  

of validation (%) 

MAM JJA SON DJF MAM JJA SON DJF 

17 39.5 25.7 36.0 47.8 35.2 14.6 36.5 46.9 

18 25.1 11.4 30.6 48.1 22.8 13.4 31.9 33.5 

19 40.8 21.6 35.8 44.6 33.3 14.5 51.5 52.8 

20 29.5 11.7 28.2 38.3 13.8 7.7 33.1 19.0 

21 29.8 19.8 40.3 52.0 30.5 15.9 31.5 57.1 

22 39.0 22.3 31.9 50.5 27.3 21.4 35.7 48.2 

Mean 33.9 18.8 33.8 46.9 27.1 14.6 36.7 42.9 

 
 
Prior to going to the station scale, downscaling experiments were first performed within the 

realm of climate models to gain insights on the maximum potential ability of the approach 

(experiments 1 to 6).  Clearly, if the tested downscaling method is not successful when applied 

between a RCM and its parent GCM (or NCEP data), there is little hope of having any success 

at the station scale. 

 

With respect to downscaling precipitation occurrence, table 5.10 summarizes the average 

percentages of correct dry and wet days of all of the downscaling experiments. Within the first 

six experiments, not surprisingly, the best predictions of precipitation occurrence were all 

obtained from downscaling precipitation from predictors at the same scale. Results improved 

when going from CGCM to CRCM scale, but overall, the differences were very small between 

the 15-km and 45-km CRCM. Even in these best-case experiments, the performance was less 

than stellar, especially for wet days, clearly indicating that within climate models, precipitation 
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generation is a lot more complex than a linear combination of atmospheric variables. It is 

important to keep in mind that these are same-scale experiments that represent an upper bound 

in terms of potential performance when downscaling to a finer scale using linear transfer 

functions. Results rapidly deteriorated for the ‘true’ downscaling experiments (experiments 2, 

4 and 5), for which both average success rates of correct dry and wet days were below 75%. 

The results show quite clearly that there is an important loss of information when trying to 

downscale at a finer scale, even within the same parent GCM and associated CRCM. Once the 

GCM (or NCEP) information is transmitted at the boundaries of the RCM, the regional model 

is now free within its own domain and there are no guarantees that storm patterns will not 

move a little bit further south or north. While regional patterns should on average stay the 

same, daily precipitation may differ markedly within a few grid points, which explains the 

relatively poor performance. The same limitation also applies to downscaling at the station 

scale. For downscaling from NCEP and CRCM to station scale, the average percentage of 

correct dry days increased slightly as the climate model resolution gets finer. However, there 

was little change for wet days across all three scales. The maximum average percentage of 

correct days was 82.0% for dry days and 71.6% for wet days. While better than a random 

guess, this performance is certainly not adequate for modeling series of consecutive wet or dry 

days. Since these series are critical to many agricultural or hydrological climate change impact 

studies, the obvious conclusion is that linear regression-based statistical downscaling methods 

are inappropriate for modeling precipitation occurrence, at least over North America. Since 

results are dependent upon geographical location, it is not possible to state that these methods 

could not yield acceptable results somewhere else, but the fact remains that any climate change 

impact study based on linear regression downscaling, should be suspect unless the ability of 

properly modeling precipitation occurrence is clearly demonstrated, or unless precipitation 

occurrence is not an important factor. One example of such an application is snowmelt-related 

flooding. In Nordic climates, precipitation accumulated over several months usually melts 

within a few weeks at most. In this context, it does not matter that much if snowfall occurrence 

was not well reproduced, as long as there is the right amount of snow accumulation at the onset 

of the spring thaw. In contexts such as these the results for downscaling precipitation amounts 

would be worthwhile. 
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The average seasonal percentages of the explained variances of precipitation amounts for the 

calibration and validation periods for all downscaling experiments were also summarized in 

table 5.10.  

 
 

Table 5.10 Average percentages of correct dry and wet day classifications and average 
explained variance of daily precipitation for each downscaling combination 

 

ID Experiment 

Correct 

dry 

days 

(%) 

Correct 

wet 

days 

(%) 

Average explained variance 

of calibration (%) 

Average explained 

variance of validation (%) 

MAM JJA SON DJF MAM JJA SON DJF 

1 CGCM to 

CGCM  
77.8 73.2 30.7 33.8 33.3 32.8 26.4 30.2 28.5 28.0 

2 NCEP to 45-km 

CRCM 
70.1 67.9 15.2 12.7 16.0 19.1 10.3 9.5 13.0 12.5 

3 45-km CRCM to 

45-km CRCM  
89.7 83.9 74.3 70.7 73.5 76.6 72.4 68.0 71.1 74.7 

4 NCEP to 15-km 

CRCM 
73.2 68.8 28.9 18.9 28.6 37.9 21.7 15.3 22.4 27.9 

5 45-km CRCM 

to15-km CRCM  
69.5 69.3 17.6 9.9 17.2 22.5 16.1 14.0 20.4 23.0 

6 15-km CRCM to 

15-km CRCM  
91.3 83.6 77.2 73.7 74.5 83.5 74.5 71.4 73.2 81.7 

7 NCEP to station 75.4 69.6 18.1 11.6 19.6 22.0 11.2 7.0 13.2 11.0 

8 45-km CRCM to 

station 
77.7 70.2 22.7 14.6 23.1 26.0 14.5 8.3 16.0 13.8 

9 15-km CRCM to 

station 
82.0 71.6 33.9 18.8 33.8 46.9 27.1 14.6 36.7 42.9 

 
 

As was done earlier for precipitation occurrence, downscaling experiments within the realm of 

climate models (experiments 1- 6) will first be discussed prior to examining station scale 

downscaling. When performing same-scale downscaling (experiments 1, 3 and 6), results 

increased from about 30% at the CGCM scale to around 73% for 45-km CRCM, to an average 
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of 76% for the 15-km CRCM. These numbers are not interesting by themselves since they do 

not represent true downscaling experiments, but they are very relevant in helping to understand 

the limits of the tested approach at the station scale, the ultimate goal for most impact studies. 

These numbers indicate that downscaling from GCM scale to the station scale is likely a futile 

exercise, but that the use of predictors at the finer regional scales may yield better results. The 

results from experiments 2, 4 and 5 (downscaling from NCEP to CRCM (45-km and 15-km) or 

from 45-km CRCM to 15-km CRCM) demonstrated that even within climate models, linear 

regression at best explains 37.9% of the observed variance for daily precipitation amounts. 

 

Results of experiments 7, 8 and 9, where downscaling was performed at the station scale, 

demonstrated quite convincingly the poor performance of linear regression schemes for 

downscaling precipitation amounts at the station level. The average percentage of explained 

variance was always less than 14.2% (as low as 7% for summer) when downscaling from 

GCM scale. A disappointing increase of around 3% in explained variance was observed when 

using 45-km CRCM predictors. Many studies have shown a large reduction in precipitation 

biases when using RCM over GCM. Our results indicate that these improvements mostly do 

not transfer to the tested statistical downscaling approach. Even at the finer 45-km scale, the 

world seen by the climate model is vastly different than the real world. As discussed earlier, 

even when driven by NCEP data, the model is free to create its own dynamics and the chaotic 

nature of the climate system virtually insures that storm patterns will not be recreated in the 

same positions and at the same time as they are in the real world. Since it is difficult for linear 

methods to reproduce precipitation occurrence, it should not be surprising to find an even 

poorer performance for precipitation amounts.  

 

However, the percentages of explained variance almost doubled when downscaling from 15-

km CRCM predictors. This improvement is clear, even though we are not comparing results 

over the same domains. This seems to indicate that the much better representation of the real 

physical world (especially in terms of digital elevation models, vegetation and humidity zones) 

allows for a much better resemblance between the virtual world of the climate model and the 

real world. While they are improved, the percentages of explained variance remain relatively 
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low, with a maximum of 46.9% for winter and a minimum of 14.6% for summer. However, 

these downscaling results are not of much practical use, because at that scale, CRCM 

precipitation exhibits small precipitation biases (at least over southern Quebec where it was 

tested here) and can be directly input into impact models without the need for further 

downscaling .  

 

The main conclusion of this study is that linear regression statistical approaches are mostly an 

ineffective downscaling tool for both precipitation occurrence and precipitation amounts, at 

least for most parts of North America. In light of these results, it is difficult to understand why 

the use of this method has been so prevalent in the last decade. One of the reasons is probably 

because it works relatively well for downscaling temperatures, and that it is only natural to 

extend it to other predictands such as precipitation. Another reason is very likely due to how 

easy the SDSM freeware is to use. The built-in bias correction and variance inflation tools may 

yield apparently adequate results for the wrong reasons in the hands of untrained users. For 

example, the proper amount of bias correction and variance inflation may give nearly perfect 

QQ plots between downscaled and observed precipitation amounts, even with predictors 

explaining less than 10% of the total variance. 

 

There remains the last caveat of all statistical downscaling methods -- which the established 

links between predictors and predictands must hold in a changed climate. This is a leap of faith 

for all statistical methods but particularly for the commonly used regression-based approaches 

that use NCEP predictors and then apply the extracted relationships to GCM predictors. While 

they do share many similarities, NCEP data and GCM data are completely independent. NCEP 

data aims at representing the real world, whereas GCMs operate in their own virtual world. 

NCEP reanalysis data is based on the assimilation of real world observed data into a climate 

model, whereas GCMs operate on their own, in their own world at a scale that limits the 

resemblance between both worlds. This explains in large part why GCMs exhibit relatively 

large biases for both temperature and precipitation. Under these conditions, it is in fact unlikely 

that rules established from NCEP predictors will hold with GCM data, under both current and 

future climate conditions.  
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6.1 Abstract  

A major obstacle in quantifying the hydrological impacts of climate change is the mismatch 

between the coarse resolution of General Circulation Models’ (GCMs) and Regional Climate 

Models’ (RCMs) outputs and the fine resolution requirements of hydrological models. Both 

dynamical and statistical downscaling approaches have been developed to overcome this 

problem. This research presents a statistical downscaling approach combining the attributes 

of both the stochastic weather generator (WG) and the change factor (CF) method using an 

RCM projected precipitation and temperatures as predictors. It is further compared against 

the commonly used CF method in terms of quantifying the hydrological impacts of climate 

change over the next century for a Canadian watershed (Quebec province). Both downscaling 

methods suggested increases in winter (November - April) discharge and decreases in 

summer (June - October), especially for those downscaled by the WG-based method. The 

WG-based method predicted higher peak discharges than the CF method. The two 

downscaling methods suggested significantly different increases in annual and seasonal 

discharges and particularly for low flows. Hydrology results show that precipitation and 

temperature variability play a very important role in the runoff generating process and that 
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neglecting to address these changes can lead to biased results. The results also outline the 

uncertainty linked to the choice of a downscaling method. The proposed WG approach has 

the significant advantage over the CF method of allowing for different probabilities of 

precipitation and variability in a changed climate, and is arguably a better approach than the 

more widely used CF method.  

 

Keywords: Statistical downscaling; stochastic weather generator; change factor method; 

hydrology; climate change 

 

6.2 Introduction 

The Intergovernmental Panel on Climate Change (IPCC, 2007) states that the average surface 

air temperature of Earth will likely increase between 1.8-4.0 ºC by the end of this century. 

Climate models predict that extreme events such as severe storms will increase in frequency, 

and that the variability of precipitation will also be on the rise (IPCC, 2007). Climate change 

will affect the global hydrological cycle and consequently, assessing the changes in future 

precipitation (quantity and variability) is a priority.  Quantifying the impacts of climate 

change requires a tool or an approach that is able to produce climate projections. General 

Circulation Models (GCMs) were developed over several years to meet this requirement. 

However, the resolution of current GCMs is too coarse to assess the watershed and site-

specific impacts of climate change (IPCC, 2007). Dynamical and statistical downscaling 

methods have been developed to resolve this issue. Dynamical downscaling is developed 

based on dynamic formulations using the initial and time-dependent lateral boundary 

conditions of GCMs to achieve a higher spatial resolution by nesting Regional Climate 

Models (RCM) (Caya and Laprise, 1999). The spatial resolution of RCMs is much better 

than that of GCMs. However, this method remains too coarse for small and medium-size 

watersheds as well as for site-specific impact studies. Moreover, RCM data is only available 

for limited regions, due to the large computational cost of running the models (Solman and 

Nunez, 1999). To overcome this problem, statistical downscaling methods have been 

developed. These involve linking the states of some variables representing a large scale 
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(GCM or RCM grid scale, predictors) to the states of some variables representing a much 

smaller scale (catchment or site scale, predictands). A range of statistical downscaling 

methods have been developed, and can be classified into three categories: transfer function 

(Wilby et al., 1998a; Wilby et al., 2002a), weather typing (von Storch et al. 1993; Schoof and 

Pryor, 2001) and weather generator (WG)-based approaches (Wilks, 1999a; Zhang, 2005; 

Kilsby et al., 2007; Qian et al., 2005, 2010). Each category has its advantages and drawbacks. 

For transfer functions and weather typing schemes, the chief drawback is that they do not 

consistently provide a stable relationship between predictors and predictands (Chen et al., 

2011a). In the case of WG approaches, the adjustment of transition probabilities, such as a 

wet day following a wet day (P11) and a wet day following a dry day (P01) is still a 

challenge. Transfer functions are the most widely used methods, with vorticity, airflow 

indices, wind velocity and direction, mean sea-level pressure, geopotential heights and 

relative humidity as the most commonly used predictors (Wilby et al., 1998a; Solman and 

Nunez, 1999; Sailor and Li, 1999; Trigo and Palutikof, 2001). 

 

Over the past decade, stochastic weather generators (WGs) have been commonly used as 

downscaling tools for climate change studies (Wilby et al. 2002b, Zhang, 2005, Kilsby et al., 

2007; Qian et al., 2005, 2010; Wilks, 2010). Daily stochastic WGs like WGEN (Richardson, 

1981; Richardson and Wright, 1984), CLIGEN (Nicks et al., 1995), and WeaGETS (Chen et 

al., 2011b) can rapidly produce climate projections at a daily time scale that can be used to 

quantify the impacts of climate change (Wilks, 1992; Pruski and Nearing, 2002; Zhang et al., 

2004, Zhang, 2005; Zhang and Liu, 2005). There are two main approaches for parametric 

adjustments of WGs (Wilks, 2010). The first involves a day-by-day change to the WG 

parameters based on daily variations in atmospheric circulation (Wilby et al., 2002b). The 

other one is the most commonly used method, and involves changes in WG parameters based 

on assumed changes in the corresponding monthly statistics of atmospheric circulation 

(Zhang, 2005, Kilsby et al., 2007; Qian et al., 2005, 2010; Wilks, 2010). Wilby et al. (2002b) 

explored the use of synoptic-scale predictor variables (North Atlantic Oscillation and Sea 

Surface Temperature) to downscale both high- and low-frequency variability of daily 

precipitation at sites across Great Britain. The results showed that conditionally stochastic 
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rainfall models displayed positive effects on monthly rainfall statistics. However, the 

relationship between precipitation parameters and indices was very weak for most of the 

tested stations. Other work indicates that statistical downscaling using GCM precipitation 

directly as a predictor performed much better than using other predictors (Widmann et al., 

2003; Zhang, 2005). Zhang (2005) presented a method for statistically downscaling GCM 

monthly outputs from GCM grid scale to site-specific scale using GCM-projected 

precipitation and temperature as predictors. GCM-projected monthly precipitation was first 

spatially downscaled from a grid box to a target station using transfer functions. The spatially 

downscaled monthly precipitation was then downscaled to daily precipitation series at the 

target station using CLIGEN. For the downscaling of precipitation occurrence, transition 

probabilities were adjusted based on spatially downscaled monthly precipitation. This 

method has not been tested in different climates, and the relationships between transition 

probabilities and monthly precipitation may strongly depend on geographical location.  

 

The change factor (CF) method is a straightforward and widely used downscaling method 

(Diaz-Nieto and Wilby, 2005). It establishes a baseline climatology using long-term climate 

data for the target site. The changes between present and future climates derived from a 

GCM grid point close to the target site, usually at a monthly scale, are added to (for 

temperature) or multiplied by (for precipitation) each day in the baseline time series. This 

method is computationally straightforward and easy to apply. The most significant drawback 

is that the temporal sequencing of wet and dry days and the variance of each variable are 

unchanged.  

 

The objective of this work is to present a statistical downscaling method combining the 

attributes of both stochastic WG and the CF methods, using RCM-projected precipitation and 

temperatures as predictors. This new method is further compared to the CF method by 

quantifying the hydrological impacts of climate change for a Canadian watershed (Quebec 

province). The huge advantage of the developed method over the CF method is that 

differences in precipitation occurrence and variance of all variables can be specifically taken 
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into account. In addition, time series of any length can be generated -- an advantage for the 

study of extremes.  

 

6.3 Study area and data 

6.3.1 Study area 

This study was conducted for the Manicouagan 5 river basin (figure 6.1) located in central 

Quebec, Canada. It covers 24,610 km2 of mostly forested area. It has a rolling to moderately 

hilly topography with a maximum elevation of 952 m above sea level. The reservoir at the 

basin outlet has a mean level of 350 m above sea level. Population density is extremely low 

and logging is the only industrial activity over the basin. The basin drains into the 

Manicouagan 5 reservoir, a 2000 km2 annular reservoir within an ancient eroded impact 

crater. The basin ends at the Daniel Johnson dam which is the largest buttressed multiple arch 

dam in the world. The installed hydropower capacity is 2.6GW. The annual mean discharge 

of the Manicouagan 5 River is 529m3/s. Snowmelt peak discharge usually occurs in May and 

averages 2200 m3/s. 

 
 

 

 
Figure 6.1 Location map of Manicouagan 5 river basin. 
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6.3.2 Data 

The observed data consisted of precipitation, maximum and minimum temperatures (Tmax 

and Tmin) interpolated on a 10 km grid by the National Land and Water Information Service 

(www.agr.gc.ca/nlwis-snite). The interpolation is performed using a thin plate smoothing 

spline surface fitting method (Hutchinson et al., 2009). Discharge data at the basin outlet was 

obtained from mass balance calculations at the dam and provided by Hydro-Québec. Climate 

data consisted of RCM-projected precipitation, Tmax and Tmin. Data from the Canadian 

Regional Climate Model (CRCM) (v.4.2.0) with a grid resolution of 45km driven by the 

Canadian General Circulation Model (v3.1) (CGCM3) was used. This work covers the 1970-

1999 period (reference period) for calibration and the 2011-2099 period in climate change 

mode. Thirty-year moving averages were calculated for climate data for the 2011- 2099 

period, which resulted in 60 30-year horizons centered over 2025-2084.  

 

6.4 Methodology 

A new downscaling method based on WG is presented below. Precipitation, Tmax and Tmin 

were downscaled from the CRCM scale to the site-specific scale over the 2025-2084 period 

(centered by 30-year moving averages from 2011-2099) using CRCM precipitation and 

temperatures as predictors. The results were compared against the widely-used CF method in 

downscaling precipitation, Tmax and Tmin and in simulating hydrological impacts using a 

lumped conceptual hydrological model. 

 

6.4.1 Downscaling of weather generator parameters 

This section presents a method based on stochastic WGs for statistically downscaling 

CRCM-projected precipitation, Tmax and Tmin. The method can also be applied to GCM 

outputs. A WG is first calibrated using observed data. The parameters of the WG are then 

modified to take into account variations projected by a climate model (GCM or RCM). This 

variation is based on a delta change approach. For example, take the probability of 

occurrence of P01, a common parameter of weather generators using a two-state Markov 
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chain for precipitation occurrence. For various reasons, P01 from GCM or RCM data will not 

match P01 measured at a station. Thus, similarly to the CF method, the difference between 

P01 projected by GCM (or RCM) in present and future climate will be applied to the 

observed data. The same method is also applied to the probability of occurrence of P11 and 

the monthly mean precipitation (MMP). The prerequisite for using this method is that the 

GCM (or RCM) simulated P01, P11 and MMP should display gradual changes as the climate 

varies. Figure 6.2 displays the 30-year moving averages of CGCM3- and CRCM-simulated 

seasonal MMP, P01 and P11 for the 1961-2099 period. The results show that MMP, P01 and 

P11 change gradually from 1960 to 2099 for all four seasons. The correlations between each 

change trend and its linear regression are very significant for both CGCM3 and CRCM data 

at the P=0.01 level (table 6.1). Thus, this method is feasible for downscaling the MMP, P01 

and P11 of GCM and RCM outputs.  

 
 

 

 
Figure 6.2 The 30-year moving averages of monthly mean precipitation (MMP),  

P01 and P11 for CRCM and CGCM data over the 1961-2099 period. 
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Table 6.1 The correlation coefficient of the linear regression for CRCM  
and CGCM statistics, including monthly mean precipitation  

(MMP), P01 and P11 for the 2025-2084 period 
 

 

CGCM CRCM 

MMP P01 P11 MMP P01 P11 

R2 P R2 P R2 P R2 P R2 P R2 P 

Winter 0.83 <0.01 0.89 <0.01 0.80 <0.01 0.70 <0.01 0.62 <0.01 0.43 <0.01 

Spring 0.97 <0.01 0.92 <0.01 0.81 <0.01 0.96 <0.01 0.87 <0.01 0.50 <0.01 

Summer 0.73 <0.01 0.61 <0.01 0.46 <0.01 0.62 <0.01 0.76 <0.01 0.59 <0.01 

Autumn 0.89 <0.01 0.53 <0.01 0.95 <0.01 0.50 <0.01 0.83 <0.01 0.38 <0.01 

 
 
The WG used in this research is CLIGEN (Nicks and Lane, 1989). In this study, only the 

functions to generate precipitation (occurrence and quantity), Tmax and Tmin were used. 

Other WGs could also have been used. A first-order two-state Markov chain is used to 

generate the occurrence of wet or dry days. The probability of precipitation on a given day is 

based on the wet or dry status of the previous day, which can be defined in terms of the two 

transition probabilities: P01 and P11. For a predicted wet day, a three-parameter skewed 

normal Pearson III distribution was used to generate daily precipitation quantity for each 

month (Nicks and Lane, 1989). A normal distribution was used to simulate Tmax and Tmin. 

The temperature with the smaller standard deviation between Tmax and Tmin is computed 

first, followed by the other temperature (Chen, et al, 2008). The mean and standard deviation 

of Tmax and Tmin were calculated monthly and smoothed with Fourier interpolation to a 

daily scale.  

 

A total of nine monthly parameters are needed by CLIGEN to generate precipitation, Tmax 

and Tmin. These include P01 and P11 for generating precipitation occurrence, the mean, 

standard deviation and skewness for generating daily precipitation quantity and the means 

and standard deviations of Tmax and Tmin. The skewness of precipitation is supposed to be 

unchanged in the future for this study. The other eight parameters are modified based on the 

projected climate change as predicted by a GCM or an RCM by following these steps:  
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1) Similarly to the CF method, the adjusted monthly mean Tmax and Tmin for the future 

horizon ( futadjT , ) are estimated as: 

 

)( ,,, refCMfutCMobsfutadj TTTT −+=                                                (6.1) 

 

The adjusted values are obtained by adding the differences predicted by a GCM or an RCM 

between the future horizon and the reference period )( ,, refCMfutCM TT −  to the observed mean 

monthly observed temperatures )( obsT .  

 

2) Monthly means and variances of precipitation, monthly variances of Tmax and Tmin and 

the transition probabilities of precipitation occurrence P01 and P11 for the future horizon 

are adjusted by:   

 

)/( ,,, refCMfutCMobsfutadj XXXX ×=                                             (6.2) 

 

where X represents the variable to be adjusted. The subscripts are the same as above.    

 

3) The P01 and P11 values are expressed in terms of an unconditional probability of daily 

precipitation occurrence (π ) and the lag-1 autocorrelation of daily precipitation (r) for 

further adjustments. 

 

1101

01

1 PP

P

++
=π

                                                              (6.3) 

 

0111 PPr −=                                                                   (6.4) 

 

4) The adjusted mean daily precipitation per wet day (ud) is estimated as (Wilks, 1999a; 

Zhang, 2005): 
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π
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d

m
d N

=
                                                                   (6.5) 

 

where Nd is the number of days in a month, πdN  is the average number of wet days in a 

month, and um is the step (2)-adjusted monthly precipitation.  

 

5) The adjusted daily variance ( 2
dσ ) is approximated using equation (6.6), based on the step 

(2)-adjusted variance of the monthly precipitation ( 2
mσ ) (Wilks, 1999a). 
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All adjusted precipitation, Tmax and Tmin parameter values are input into CLIGEN to 

generate 900-year long time series of daily meteorological data. Long time series are used to 

obtain the true expectancy of a WG. Short time series could results in biases due to the 

random nature of the stochastic process. Each 900-year time series is representative of a 30-

year horizon as defined earlier. All in all, sixty 900-year time series (centered over 2025-

2084) were generated. The flow chart of WG-based downscaling is presented in figure 6.3. 
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6.4.2 Change factor method 

The CF method involves adjusting the observed daily temperature (Tobs,d) by adding the 

difference in monthly temperature between the future horizon and the reference period 

predicted by the climate model (GCM or RCM) )( ,,,, mrefCMmfutCM TT −  to obtain the daily 

temperature at the future horizon (Tadj,fut,d) (equation (6.7)) (Chen et al., 2011c). The adjusted 

 
Figure 6.3 Flow chart of downscaling of weather generator parameters. 
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daily precipitation for the future horizon (Padj,fut,d) is obtained by multiplying the precipitation 

ratio  ( mrefCMmfutCM PP ,,,, / ) by the observed daily precipitation (Pobs,d) (equation (6.8)).   

 

)( ,,,,,,, mrefCMmfutCMdobsdfutadj TTTT −+=                               (6.7) 

 

)/( ,,,,,,, mrefCMmfutCMdobsdfutadj PPPP ×=                                 (6.8) 

 

6.4.3 Hydrological simulation 

The hydrological simulation used the HSAMI hydrological model developed by Hydro-

Québec, and which has been used to forecast natural inflows for over 20 years (Fortin, 2000). 

HSAMI is used by Hydro-Québec for hourly and daily forecasting of natural inflows over 84 

watersheds with surface areas ranging from 160 km2 to 69,195 km2. Hydro-Québec's total 

installed hydropower capacity on these basins exceeds 40GW. HSAMI is a 23-parameter, 

lumped, conceptual, rainfall-runoff model. Two parameters account for evapotranspiration, 

six for snowmelt, ten for vertical water movement, and five for horizontal water movement. 

Vertical flows are simulated with four interconnected linear reservoirs (snow on the ground, 

surface water, unsaturated and saturated zones). Horizontal flows are filtered through two 

hydrograms and one linear reservoir. Model calibration is done automatically using the 

shuffled complex evolution optimization algorithm (Duan, 2003). The model takes snow 

accumulation, snowmelt, soil freezing/thawing and evapotranspiration into account.  

 

The basin-averaged minimum required daily input data for HSAMI are: Tmax, Tmin, liquid 

and solid precipitation. Cloud cover fraction and snow water equivalent can also be used as 

inputs, if available. A natural inflow or discharge time series is also needed for proper 

calibration/validation. For this study, thirty years (1970-1999) of daily discharge data were 

used for model calibration/validation. The optimal combination of parameters was selected 

based on Nash-Sutcliffe criteria. The set of parameters thus chosen yielded Nash-Sutcliffe 

criteria values of 0.89 for both the validation (20 years) and calibration periods (10 years). 
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This high Nash-Sutcliffe criteria value is representative of the good quality of the weather 

inputs and observed discharge values. 

 

6.5 Results 

6.5.1 Validation of the weather generator and the hydrological model 

The validation of the hydrological model HSAMI was based on the performance of the 

simulated hydrographs (labeled OBS-SIM) at the basin outlet compared to the observed 

hydrograph. Mean hydrograph results are presented in figure 6.4. The mean hydrograph 

simulated by HSAMI using CLIGEN-generated data (labeled OBS-WG) for the reference 

period is also displayed to validate the ability of CLIGEN at generating weather data 

representative of its training period. The mean hydrograph from the observed discharge 

(labeled OBS) is also presented for comparison. The observed precipitation and temperatures 

resulted in a mean hydrograph that is very close to the observed one. A slight bias was 

introduced by CLIGEN in late fall and winter. However, the overall fits are quite good.  

 

6.5.2 Climate change projections 

6.5.2.1 Dry and wet day spells 

The CF method does not take into account the temporal sequencing of dry and wet days, 

which is its main drawback. The WG-based method modifies the transition probabilities of 

precipitation occurrence based on RCM-projected variations. Thus, the dry and wet day 

spells change according to the differences in RCM-projected dry and wet day spells between 

the future and reference periods. Figures 6.5 and 6.6 show the average dry and wet day spells 

downscaled by the CF and WG-based methods, respectively, for 12 months over the 2025-

2084 period (30-year moving average from 2011-2099) for the Manicouagan 5 river basin. 

Changes in precipitation occurrence are not taken into account by the CF method. Thus, the 

average dry and wet day spells are stationary over the 2025-2084 period for all months 

(horizontal dashed lines in figures 6.5 and 6.6). The WG-based method displays clear trends 
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throughout the century, which is markedly different from the situation at the reference 

period. The WG-based method suggested shorter dry day spells for all months of the 2025-

2084 period, comparing to those of the reference period, indicating that wet days will become 

more common. However, there is no uniform pattern for monthly average wet day spells, 

which are predicted to be longer for April and November and shorter for July and August for 

the 2025-2084 period. In addition, this pattern would be first shorter and then longer than that 

of the reference period for January, March, September, October and December throughout 

the 2025-2084 period. In contrast, February wet day spells would have an opposite trend than 

that of the reference period. 

 
 

 

 
Figure 6.4 Observed (OBS) and HSAMI modeled averaged hydrograph (OBS-SIM)  

for the reference period (1970-1999) at the Manicouagan 5 watershed. An  
HSAMI-simulated hydrograph using CLIGEN-produced meteorological  

data at the reference period (OBS-WG) is also plotted. 
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Figure 6.5 Mean dry day spells downscaled by change factor (CF) and  

weather generator-based (WG) methods for each month over the  
2025-2084 period for the Manicouagan 5 river basin. 
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Figure 6.6 Mean wet day spells downscaled by change factor (CF)  

and weather generator-based (WG) methods for each month over the  
2025-2084 period for the Manicouagan 5 river basin. 

 
 
6.5.3 Annual and seasonal precipitation 

Figure 6.7 shows the annual and seasonal evolutions of mean precipitations downscaled by 

the CF and WG-based methods for the 2025-2084 period. Both downscaling methods suggest 

very similar general increases in annual mean precipitations, reaching 200 mm by the end of 

the century. Similarities are not surprising since the CF and WG-based methods are 

essentially the same with respect to mean precipitation. The slight differences can be 

attributed to the stochastic nature of precipitation generation by WG. The seasonal 
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precipitations would also increase, with the largest increase in winter (DJFM). Similar results 

were obtained by Minville et al. (2009) for a study over the Peribonka River watershed.  

 
 

 

 
Figure 6.7 Annual and seasonal precipitation downscaled by change  

factor (CF) and weather generator-based (WG) methods over the  
2025-2084 period for the Manicouagan 5 river basin. 

 
 
6.5.3.1 Annual and seasonal temperatures 

Figure 6.8 presents the annual and seasonal evolutions of Tmax (higher lines) and Tmin 

(lower lines) downscaled by the CF and WG methods over the Manicouagan 5 river basin. 

Similarly to precipitation, the annual and seasonal mean Tmaxs and Tmins are non-

stationary, and increase gradually over the 2025-2084 period. The CF and WG-based 

methods predict increases in annual Tmax and Tmin by nearly 3.0°C and 3.4°C, respectively, 

and by the end of the century. As was the case for mean precipitation, both methods are 

essentially equivalent with respect to mean temperature, with the slight differences due to the 

stochastic nature of the WG-based approach.   
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Figure 6.8 Annual and seasonal Tmaxs and Tmins downscaled by  

change factor (CF) and weather generator-based (WG) methods over  
the 2025-2084 period for the Manicouagan 5 river basin. 

 
 
6.5.3.2 Mean daily precipitation 

The CF and WG-based methods suggest similar increases in annual and seasonal 

precipitations for the 2025-2084 period, but the dry and wet day spells are significantly 

different. Specifically, mean daily precipitation changes in the opposite direction than that of 

the wet day frequency. Figure 6.9 demonstrates the mean daily precipitation downscaled by 

the two methods for 12 months over the 2025-2084 period. Both downscaling methods show 

gradual increases in mean daily precipitation for all months of the 2025-2085 period. 

However, the CF method suggests more increases in mean daily precipitation than the WG-

based method. This is because the CF method predicts more wet days with similar annual and 

seasonal precipitations than the WG-based method. 
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Figure 6.9 Mean daily precipitation downscaled by change factor  
(CF) and weather generator-based (WG) methods for each month  

over the 2025-2084 for the Manicouagan 5 river basin. 
 
 
6.5.3.3 Standard deviation of daily precipitation 

Both CF and WG-based methods suggest changes in daily precipitation variance. The change 

of variance predicted by the CF method is based on the change of mean daily precipitation, 

because the CF method does not specifically modify the precipitation variance. However, the 

WG-based method specifically takes into account the variance of precipitation based on 

RCM-projected variations. Figure 6.10 presents the standard deviation of daily precipitation 

downscaled by CF and WG-based methods for 12 months over the 2025-2084 period. Both 
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downscaling methods suggest general increases in the standard deviations of daily 

precipitation for all months. For the CF method, the change in standard deviation of daily 

precipitation is consistent with the change in the mean precipitation. The WG-based method 

suggests more future variability for the most of months, consistent with that predicted by the 

RCM. 

 
 

 

 
Figure 6.10 Standard deviation of daily precipitation downscaled by change  

factor (CF) and weather generator-based (WG) methods for each month  
over the 2025-2084 period for the Manicouagan 5 river basin. 
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6.5.3.4 Standard deviation of daily Tmax and Tmin 

The CF method does not take into account the change of variance for Tmax and Tmin. 

Standard deviations of Tmax and Tmin downscaled by the CF method are constant for the 

2025-2084 period, which is exactly equal to that of the reference period as presented in 

figures 6.11 and 6.12. However, similarly to the transition probabilities of precipitation 

occurrence, the WG-based method adjusts the variances of Tmax and Tmin based on the 

RCM-projected changes. Compared to the reference period (1970-1999), the WG-based 

method suggests decreases in the variability of winter (December, January and February) 

Tmax, while it suggests increases for all other months. 

 
 

 

 
Figure 6.11 Standard deviation of daily Tmax downscaled by change  

factor (CF) and weather generator-based (WG) methods for each month  
over the 2025-2084 period for the Manicouagan 5 river basin. 



188 

 
 

Figure 6.12 Standard deviation of daily Tmin downscaled by change  
factor (CF) and weather generator-based (WG) methods for each month  

over the 2025-2084 period for the Manicouagan 5 river basin. 
 
 
6.5.4 Hydrological impacts 

6.5.4.1 Average annual hydrograph 

Figure 6.13 presents the envelope of the averaged annual hydrographs simulated with the 

weather variables downscaled by the CF and WG-based methods. Each envelope is 

represented by 60 averaged annual hydrographs (2025-2084 period). When the time period is 

near the reference period, the averaged annual hydrograph of the future period is close to that 

of the reference period. To avoid the minor bias resulting from the hydrological model when 
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comparing the future to the reference period, the discharge at the reference period is 

represented by model data and not by the observed discharge. The results showed that both 

downscaling methods suggest increases in winter (November - April) discharge. Decreases in 

summer (June - October) are predicted for most future horizons, especially for those 

downscaled by the WG-based method. The WG-based method suggests peak discharges 

higher than both those of the CF method and the simulated peak discharges at the reference 

period. Significantly, the peak discharges increase even more as the future advances, 

especially for WG-based method. Peak discharges over the 2025-2085 period are predicted to 

be earlier than those at the reference period by both downscaling methods. Lags vary from 12 

days (May 12th) to 19 days (May 5th) for the WG-based method and from 6 days (May 18th) 

to 22 days (May 2nd) for the CF method. 

 
 

 

 
Figure 6.13 Envelopes of 60 averaged annual hydrographs simulated with change  

factor (CF) and weather generator-based (WG) methods’ downscaled precipitation,  
Tmaxs and Tmins over the 2025 -2084 period at the Manicouagan 5 river basin.  
The observed hydrograph for the 1970-1999 period is displayed for comparison. 
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6.5.4.2 Annual and seasonal discharges  

Figure 6.14 presents the 30-year moving averages of annual and seasonal discharges 

simulated by HSAMI using weather data downscaled by the CF and WG-based methods. 

Compared to the reference period discharge (straight dashed line in figure 6.14), both 

methods suggest increases in annual, spring and winter discharges over the 2025-2084 

period. The summer-autumn discharge predicted by CF method is less than that at the 

reference period for most horizons, but WG-based method suggests increase in summer-

autumn discharge for most horizons. Even though both downscaling methods predict similar 

annual and seasonal mean precipitations and temperatures, the annual and seasonal 

discharges are different, especially for seasonal discharge. This indicates that the annual and 

seasonal discharges are not only affected by the means of the precipitation and temperatures, 

but also by their variance and by precipitation occurrence. In addition, these results reflect 

that the process by which climate projections become hydrologic variables is not a linear one. 

Annual discharge suggested by the CF method is slightly more than that predicted by the 

WG-based method over the 2025-2085 period. The discharges differ more at the seasonal 

scale than at the annual scale. Compared to the CF method, the WG-based method suggests 

larger increases in spring (AMJ) discharge, and smaller increases in summer-autumn 

(JASON) and winter (DJFM) discharges.  

 

6.5.4.3 Annual and seasonal low flows 

Changes in monthly precipitation averages can conceal subtle variations in dry spells that are 

potentially significant for low flows (Diaz-Nieto and Wilby, 2005). The two downscaling 

methods suggest similar changes in monthly precipitation, but different changes in 

precipitation occurrence, resulting in noticeable differences in mean low flows (Q95, derived 

from mean hydrographs) at the river basin. Figure 6.15 presents the 30-year moving averages 

of mean annual and seasonal low flows for the 2025-2084 period. Both downscaling methods 

suggest general increases in average annual and seasonal low flows, but there are 

considerable differences in their predictions. The CF method predicts larger increases in 
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mean annual low flow than the WG-based method. These greater increases, compared to the 

WG-based method, occur in spring and winter low flows, resulting in the larger increases in 

annual low flow.  

 
 

 

 
Figure 6.14 Annual and seasonal mean discharge simulated with change factor (CF) and 

weather generator-based (WG) methods’ downscaled precipitation, Tmaxs and Tmins over 
the 2025 -2084 period at the Manicouagan 5 river basin. The annual and seasonal mean 

discharge over the reference period (1970-1999) is shown, for comparison. 
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Figure 6.15 Annual and seasonal mean low flow simulated with change factor (CF)  
and weather generator-based (WG) methods’ downscaled precipitation, Tmax and  
Tmin over the 2025 -2084 period at the Manicouagan 5 river basin. The annual and  
seasonal low flow for the reference period (1970-1999) is plotted for comparison. 

 
 

Figure 6.16 presents the 30-year moving averages of the annual and seasonal minimal low 

flows (minimums of 30-year for CF method and 900-year for WG-based method) for the 

2025-2084 period and those for the reference period. Similarly to the mean low flows shown 

in figure 6.15, both downscaling methods suggest increases in annual and seasonal minimal 

low flows, but those predicted by WG-based figures display more variability. The WG 

method has a much longer time series (900 years compared to 30 years) that is better at 

sampling climate variability. The CF method predicts larger increases in minimal low flow, 

especially for the more distant future period, and larger increases in spring and winter 

minimal low flows than the WG-based method. The WG-based method is better able to 

capture long series of dry days that lead to low flows. The WG-predicted summer-autumn 

minimal low flows for the 2025-2084 period are considerably larger than those for the 

reference period. Both methods give similar results, although the WG-based method predicts 

low flows that are 10% smaller than those of the CF method, on average. 
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Figure 6.16 The minimal annual and seasonal low flow (Q5) simulated with the  

change factor (CF) and weather generator-based (WG) downscaling methods over  
the 2025 -2084 period at the Manicouagan 5 river basin. The minimal annual and  

seasonal low flow for the reference period (1970-1999) is also plotted, for comparison. 
 
 
6.6 Discussion and Conclusions  

A new statistical downscaling method combining a stochastic WG and some aspects of the 

CF method was presented in this paper. The parameters of the WG are perturbed to take into 

account the relative variations in the means and variances of weather variables projected by a 

climate model. The precipitation and temperature parameters projected by climate models 

display gradual (significantly non-stationary) changing patterns, which form the basis for the 

parameter perturbation of the WG. This downscaling method is relatively simple to use and 

negates the prerequisite of a strong relationship between local-scale variables (predictants) 

and large scale climate model variables (predictors) common to most statistical downscaling 

methods.  
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The proposed downscaling method is compared to the CF method in downscaling 

precipitation, Tmax and Tmin and further quantifying the hydrological impacts of climate 

change over the 2025-2084 period for the Manicouagan 5 river basin. Both downscaling 

methods suggest similar increases in annual and seasonal precipitations and temperatures for 

the 2025-2084 period. This was as expected, since both approaches are similar with respect 

to their treatment of precipitation and temperature means. Analysis of climate change 

scenarios shows that monthly dry and wet spells for the 2025-2084 period predicted by the 

WG-based method would be considerably different from those of the reference period. The 

CF method does not consider any change in precipitation occurrence over the reference 

period, a clear weakness of the approach. Compared to the reference period, the WG-based 

method predicts shorter dry day spells for the 2025-2084 period, thus indicating an increasing 

wet day frequency. Different dry and wet day spells and similar seasonal precipitation results 

in different mean daily precipitations between the two downscaling approaches. The standard 

deviation of daily precipitation, Tmax and Tmin differ markedly depending on the 

downscaling method. This should not be a surprise, since the WG-based method specifically 

takes the variance change of precipitation and temperatures into account, while the CF 

method does not. To evaluate how those changes translate into hydrological variables, 

weather variables derived from both downscaling methods were fed into the lumped semi-

conceptual hydrology model HSAMI. 

 

Both downscaling methods suggest general increases in winter (November - April) discharge 

and decreases in summer (June - October), the increases being larger when downscaled by 

the WG-based method. The WG-based method suggests higher peak discharges than those 

predicted by the CF method and those of the reference period. Peak discharges over the 

2025-2084 period would be observed earlier than those at the reference period according to 

both downscaling methods. The differences between the weather variables downscaled from 

the two methods are amplified when transferred to hydrologic variables. Even though both 

downscaling methods suggest similar increases in annual and seasonal precipitations and 

temperatures, the annual and seasonal discharges are markedly different, especially for 
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seasonal discharge. This indicates that precipitation and temperature variability play an 

important role in the processes leading to runoff.  

 

The comparison of the two downscaling methods reveals the main weakness of the CF 

method; that it keeps the precipitation occurrence and variability of all weather variables 

constant. This fallibility is probably not a major obstacle with respect to spring snowmelt, as 

shown in figure 6.14, because spring floods are the result of several months of snow 

accumulation followed by rapid melting. As such, the most important feature to have in a 

climate change study is the correct total quantity of solid precipitation. The variability of 

solid precipitation during the winter months is likely a less important feature, unless 

variability adds the frequent mid-winter thaws that cannot be captured by the CF method. For 

summer and fall events, damages often result from one major rainfall event, or from droughts 

that occur after long periods with little to no precipitation. In such cases, the CF method 

would be totally inappropriate for climate change studies. This situation is clearly delineated 

by the low flow results, where the two downscaling approaches display very different trends. 

The proposed WG-based method takes into account the change of precipitation occurrence 

and the variance of all variables, so it should arguably result in better climate projections for 

impact studies. Time series of any length can be generated with this method, another 

advantage for the study of rare events. 
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7.1 Abstract  

Uncertainty estimation of climate change impacts has been given a lot of attention in the 

recent literature. It is generally assumed that the major sources of uncertainty are linked to 

General Circulation Models (GCMs) and Greenhouse Gases Emissions Scenarios (GGES). 

However, other sources of uncertainty such as the choice of a downscaling method have been 

given less attention. This paper focuses on this issue by comparing six downscaling methods 

to investigate the uncertainties in quantifying the impacts of climate change on the hydrology 

of a Canadian (Quebec province) river basin. The downscaling methods regroup dynamical 

and statistical approaches, including the change factor method and a weather generator-based 

approach. Future (2070-2099, 2085 horizon) hydrological regimes simulated with a 

hydrological model are compared to the reference period (1970-1999) using the average 

hydrograph, annual mean discharge, peak discharge and time to peak discharge as criteria. 

The results show that all downscaling methods suggest temperature increases over the basin 

for the 2085 horizon. The regression-based statistical methods predict a larger increase in 

autumn and winter temperatures. Predicted changes in precipitation are not as unequivocal as 
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those of temperatures, they vary depending on the downscaling methods and seasons. There 

is a general increase in winter discharge (November - April) while decreases in summer 

discharge are predicted by most methods. Consistently with the large predicted increases in 

autumn and winter temperature, regression-based statistical methods show severe increases 

in winter flows and considerable reductions in peak discharge. Across all variables, a large 

uncertainty envelope was found to be associated with the choice of a downscaling method. 

This envelope was compared to the envelope originating from the choice of 28 climate 

change projections from a combination of 7 GCMs and 3 GGES. Both uncertainty envelopes 

were similar, although the latter was slightly larger. The regression-based statistical 

downscaling methods contributed significantly to the uncertainty envelope. Overall, results 

indicate that climate change impact studies based on only one downscaling method should be 

interpreted with caution.  

 

Keywords: Climate change; uncertainty; downscaling; hydrology; precipitation; temperature 

 

7.2 Introdution 

The Intergovernmental Panel on Climate Change (IPCC, 2007) stated that there is high 

confidence that recent climate changes have had discernible impacts on physical and 

biological systems. Many General Circulation Models (GCMs) consistently predict increases 

in frequency and magnitudes of extreme climate event and variability of precipitation (IPCC, 

2007). This will affect terrestrial water resource in the future, perhaps severely (Srikanthan 

and McMahon, 2001; Xu and Singh, 2004). For continental water resources, hydrological 

models are frequently used to quantify the hydrological impacts of climate change using 

GCM data as inputs (Salathe, 2003; Diaz-Nieto and Wilby, 2005; Minville et al., 2008, 

2009). However, the spatial resolution mismatch between GCMs outputs and the data 

requirements of hydrological models is a major obstacle (Leavesley, 1994; Hostetler, 1994; 

Xu, 1999). It is therefore necessary to perform some post-processing to improve upon these 

global-scale models for impact studies. Consequently, dynamical downscaling (regional 

climate models, RCMs) and statistical downscaling (SD) methods have been developed to 
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meet this requirement. RCMs are developed based on dynamic formulations using initial and 

time-dependent lateral boundary conditions of GCMs to achieve a higher spatial resolution at 

the expense of limited area modeling (Caya and Laprise, 1999). The main problem of RCMs 

is the computational cost (Solman and Nunez, 1999). Thus, it is only available for limited 

regions. Moreover, despite improvements, outputs of RCMs are still too coarse for some 

practical applications, like small watershed hydrological and field agricultural impact studies, 

which may need local and site-specific climate scenarios. SD techniques have been 

developed to overcome these challenges. They involve linking the state of some variables 

representing a large scale (GCM or RCM grid scale, the predictors) and the state of other 

variables representing a much smaller scale (catchment or site scale, the predictands). These 

techniques are computationally cheap and relatively easy to implement.  

 

These SD techniques fall into three categories: transfer function (Wilby et al., 1998a; Wilby 

et al., 2002a), weather typing (von Storch et al. 1993; Schoof and Pryor, 2001) and weather 

generator (WG) (Wilks, 1999a; Zhang, 2005). Transfer function approaches involve 

establishing statistical linear or nonlinear relationships between observed local climatic 

variables (predictands) and large-scale GCM outputs (predictors) (Wilby et al. 2002a). They 

are relatively easy to apply, but their main drawback is the probable lack of a stable 

relationship between predictors and predictands (Wilby and Wigley, 1997). Weather typing 

scheme involves grouping local meteorological variables in relation to different classes of 

atmospheric circulation (Bardossy and Plate 1992; von Storch et al. 1993). The main 

advantage is that local variables are closely linked to global circulation. However, its 

reliability depends on a stationary relationship between large-scale circulation and local 

climate. Especially for precipitation, there is frequently no strong correlation between daily 

precipitation and large-scale circulation. The WG method is based on the perturbation of its 

parameters according to the changes projected by climate models (Zhang, 2005; Kilsby et al., 

2007; Qian et al., 2005, 2010; Wilks, 2010). The appealing property is its ability to rapidly 

produce sets of climate scenarios for studying the impacts of rare climate events and 

investigating natural variability.  
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Another relatively straightforward and popular downscaling method for rapid impact 

assessment of climate change is the change factor (CF) method (Minville et al., 2008; Diaz-

Nieto and Wilby, 2005; Hay et al, 2000). It involves adjusting the observed time series by 

adding the difference (for temperatures) or multiplying the ratio (for precipitation) between 

future and present climates as simulated by the RCMs or GCMs. The most significant 

drawbacks are that the temporal sequencing of wet and dry days, and that the variances of 

temperatures are unchanged. 

 

The unique advantages and drawbacks of each downscaling method result in different future 

climate projections. In particular, some downscaling methods are unable to capture the 

extremes of climate events that are often of particular concern in hydrology. Differences in 

future climate projections imply that downscaling methods add uncertainties in quantifying 

the impacts of climate change on hydrology. Many studies have focused on uncertainties 

linked to GCMs (Graham et al., 2007a, b; Maurer and Hidalgo, 2008; Minville et al., 2008; 

Christensen and Lettenmaier, 2007; Hamlet and Lettenmaier, 1999). Rowell (2006) 

compared the effect of different sources of uncertainty including emissions scenario, GCM, 

RCM and initial condition ensembles on changes in seasonal precipitation and temperature 

for the UK. The uncertainty from a GCM was found to be the largest. Prudhomme and 

Davies (2009) used three GCMs, two greenhouse gas emission scenarios (GGES) and two 

downscaling techniques (statistical downscaling model (SDSM) and HadRM3) to investigate 

their uncertainty in propagating river flow, and demonstrated that uncertainties from GCMs 

are larger than those from downscaling methods and GGES. Kay et al. (2009) also 

investigated different sources of uncertainties including GGES, GCM’s structure (five 

GCMs), downscaling method (CF and RCM), hydrological model structure (two models), 

hydrological model parameters (jack-knifed calibrated parameter sets) and the internal 

variability of the climate system on the impact of climate change on flood frequency in 

England. With this research, each different source of uncertainty was done individually rather 

than in combination with each other. The results showed that the uncertainty related to GCM 

structure is the largest, but that other sources of uncertainty are significant if the GCM 

structure’s influence was not taken into account. Wilby and Harris (2006) presented a 
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probabilistic framework for quantifying different sources of uncertainties on future low flow. 

They used four GCMs, two GGES, two downscaling techniques (SDSM and CF), two 

hydrological model structures and two sets of hydrological model parameters. The results 

indicated that GCMs revealed the greatest uncertainty, followed by downscaling methods. 

Uncertainties due to hydrological model parameters and GGES were less important.  

 

Generally, GCMs are considered to be the largest source of uncertainty for quantifying the 

impacts of climate change. However, the uncertainty related to the downscaling and bias-

correction methods must be taken into account for better estimation of the impact of climate 

change (Quintana Segui et al, 2010). Moreover, although some studies attempted to 

investigate the uncertainty related to downscaling techniques, only two methods were 

involved. A better method may use multi-downscaling techniques (more than two) for 

quantifying their uncertainty propagation in hydrology.  

 

The objective of this study is to quantify the impacts of climate change on a Canadian river 

basin (Quebec province), while investigating the uncertainties related to downscaling 

techniques, using six downscaling methods. The downscaling methods include both 

dynamical and statistical approaches, including the CF method and a WG-based approach.  

 

7.3 Study area and data 

7.3.1 Study area 

This study was conducted for the Manicouagan 5 river basin located in central Quebec, 

Canada. It covers 24,610 km2 of mostly forested areas (figure 7.1). It has a rolling to 

moderately hilly topography with a maximum elevation of 952 m above sea level. The 

reservoir at the basin outlet has a mean level of 350 m above sea level. Population density is 

extremely low and logging is the only industrial activity over the basin. The basin drains into 

the Manicouagan 5 reservoir, a 2000 km2 annular reservoir within an ancient eroded impact 

crater. The basin ends at the Daniel Johnson dam which is the largest buttressed multiple arch 

dam in the world. The installed capacity of the dam is 2.6GW. The annual mean discharge of 
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the Manicouagan 5 River is 529 m3/s. Snowmelt peak discharge usually occurs in May and 

averages 2200 m3/s. 

 
 

 

 
Figure 7.1 Location map of Manicouagan 5 river basin. 

 
 
7.3.2 Data 

The different datasets used in this work are summarized in table 7.1. Observed data consisted 

of precipitation, maximum temperature (Tmax) and minimum temperature (Tmin) 

interpolated on a 10 km grid by the National Land and Water Information Service 

(www.agr.gc.ca/nlwis-snite). The interpolation is performed using a thin plate smoothing 

spline surface fitting method (Hutchinson et al., 2009). Discharge data at the basin outlet was 

obtained from mass balance calculations at the dam and were provided by Hydro-Québec. 

Climate data consisted of reanalysis, GCM and RCM data. Data from the Canadian GCM 

(v3.1) (CGCM) and the Canadian RCM (v.4.2.0) (CRCM) was used. Average grid resolution 

was about 300 km for the CGCM and 45 km for the CRCM. The National Center for 

Environmental Prediction (NCEP) reanalysis data was used as a proxy to GCM data, to 

calibrate some of the downscaling used in this paper. This data uses a T62 (~ 209 km) global 
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spectral model to consistently collect observational data from a wide variety of observed 

sources (Kalnay et al., 1996; DAI CGCM3 Predictors, 2008). It includes information from 

both models and observations. SD techniques were calibrated using NCEP predictors 

interpolated at the CGCM scale. In climate change mode, predictors from the CGCM were 

used directly. The CRCM data driven by NCEP was also used for calibration purposes, while 

in climate change mode it was driven by the CGCM at its boundary and initial conditions. 

This work covers the 1970 - 1999 period (reference period) for calibration and the 2070 - 

2099 period (2085 horizon) in climate change mode. The atmospheric predictors considered 

(NCEP and CGCM) are listed in table 7.2. 

 
 

Table 7.1 The datasets used in this research 
 
NO Dataset Purpose Time period 

1 Observed P, Tmax and Tmin 

(interpolated at a 10km scale - 

NLWIS dataset), measured 

discharge 

Baseline, calibration of Hydrological 

model and WG 

1970-1999 

2 CGCM P, Tmax and Tmin Downscaling of CF and WG methods 1970-1999, 

2070-2099 

3 CRCM P, Tmax and Tmin  Downscaling of CF and WG, and CRCM 

with and without BC methods 

1970-1999, 

2070-2099 

4 NCEP predictors interpolated to 

CGCM grid 

Calibration of SDSM and DASR 1970-1999 

5 CGCM predictors Downscaling of SDSM and DASR 2070-2099 

6 CRCM P, Tmax and Tmin 

driven by NCEP 

Calibration of HM for the method of 

CRCM without BC 

1970-1999 

 
Note: P=precipitation; Tmax=maximum temperature; Tmin=minimum temperature; BC=bias 
correction; WG=weather generator; SDSM=statistical downscaling model, and DASR=discriminant 
analysis coupled with stepwise linear regression downscaling method 
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Table 7.2 NCEP and CGCM predictor variables used to  
select precipitation predictors for downscaling 

 
Predictor variable Abbreviation Predictor variable Abbreviation

Mean sea level pressure ncepmslp 500hPa Divergence ncepp5zh 

1000hPa Wind Speed ncepp_f 850hPa Wind Speed ncepp8_f 

1000hPa U-component ncepp__u 850hPa U-component ncepp8_u 

1000hPa V-component ncepp__v 850hPa V-component ncepp8_v 

1000hPa Vorticity ncepp__z 850hPa Vorticity ncepp8_z 

1000hPa Wind Direction ncepp_th 850hPa Geopotential ncepp850 

1000hPa Divergence ncepp_zh 850hPa Wind Direction ncepp8th 

500hPa Wind Speed ncepp5_f 850hPa Divergence ncepp8zh 

500hPa U-component ncepp5_u 500hPa Specific Humidity ncep s500 

500hPa V-component ncepp5_v 850hPa Specific Humidity nceps850 

500hPa Vorticity ncepp5_z 1000hPa Specific Humidity ncepshum 

500hPa Geopotential ncepp500 Temperature at 2m nceptemp 

500hPa Wind Direction ncepp5th   

 
 
7.4 Methodology 

7.4.1 Downscaling methods 

Six downscaling methods will be compared in this work. They consist of using CRCM 

data with (1) and without (2) bias correction, CF (3) and WG (4) methods at both CGCM and 

CRCM scales and two statistical downscaling methods: SDSM (5) and discriminant analysis 

coupled with step-wise regression method (6) at CGCM scale. Table 7.3 briefly describes all 

of the methods. Details follow below.  
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Table 7.3 Downscaling methods used in this work 
 

Method Brief description 
Acronym used in 

the paper 

1 Direct use of CRCM precipitation and temperature data 

without any bias correction, but with a specific 

hydrology model calibration.   

CRCM-NONBC 

2 Direct use of CRCM precipitation and temperature data 

with bias correction. 

CRCM-BC 

3  Change factor method, based on CRCM and CGCM 

data.  

CRCM-CF 

CGCM-CF  

4  Weather generator method based on CRCM and CGCM 

data.  

CRCM-WG 

CGCM-WG  

5 Statistical approach using the SDSM package with 

variance inflation and bias correction. GCM scale 

predictors are used (NCEP/CGCM). 

CGCM-SDSM  

6 Statistical approach using discriminant analysis for 

precipitation occurrence and stepwise linear regression 

for precipitation and temperature data. GCM scale 

predictors are used (NCEP/CGCM).  

CGCM-DASR  

 

 
 
7.4.1.1 Canadian RCM without bias correction 

With the improved resolution of RCMs and the relatively small biases of RCM output data 

(compared to GCM data), it is now possible to envision direct use of RCM data as proxies to 

observed data. This is especially appealing in the cases where basins are much larger than the 

grid resolution. In this method, no bias correction is made, but the hydrology model is 

specifically calibrated to this data against observed discharge. The assumption behind this 

method is that biases are sufficiently small to be overcome by the hydrology model through 

the calibration process. While many take the accuracy of observed precipitation and 
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temperature data for granted, it is known that such data can also be biased. For example, rain 

gauges are known to underestimate real precipitation and weather station density is often 

low, especially in remote areas or at higher altitude, thus introducing spatial biases. If the 

specifically calibrated hydrology model is able to adequately reproduce observed discharge 

with realistic internal parameters, it can be argued that RCM data is no more biased than 

observed data. It is just biased differently, and thus the need for a specific calibration.   

 

7.4.1.2 Canadian RCM with bias correction 

While RCM data has been shown to be much more precise than their GCM counterparts, 

simulated monthly mean precipitation and temperatures are nevertheless biased when 

compared to observed data (Minville et al., 2009). These biases are large enough to induce 

significant errors if introduced directly into models such as hydrology models. In this 

method, bias correction is applied to both temperature and precipitation data. For 

precipitation, a correction is made to both monthly mean frequency and quantity, using the 

Local Intensity Scaling Method developed by Schmidli et al. (2006). This method involves 

three steps: (1) A wet-day threshold is determined from the daily RCM precipitation series of 

each month such that the threshold exceedence matches the wet-day frequency of the 

observed time series; (2) A scaling factor is calculated to insure that the mean of the observed 

precipitation is equal to that of RCM precipitation at the reference period for each month; 

and (3) The monthly thresholds and factors determined in the reference climate are used to 

adjust monthly precipitation for the 2085 horizon.  

 

A three-step bias correction is also carried out for both the mean and variance of monthly 

temperatures (including Tmax and Tmin) of RCM data.  

 

1) Daily RCM temperatures are corrected on a monthly basis using the following equation: 

 

)( ,2085,2085, refRCMobsRCMcor TTTT −+=
 
                                 (7.1) 
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Where Tcor,2085 is the daily corrected temperature at the horizon 2085 obtained by adding the 

difference in mean monthly temperatures between observed data and RCM reference period 

)( ,refRCMobs TT − to the RCM temperature data for the 2085 horizon (TRCM,2085).  

 

2) In a subsequent step, the standard deviation of monthly temperatures ‘S’ at the 2085 

horizon is corrected using the following equation: 

 

)( ,2085,2085, refRCMobsRCMcor SSSS ×=
 
                                  (7.2) 

 

Equation (7.2) effectively corrects the standard deviation of RCM temperatures based on the 

standard deviation ratio between observed and RCM temperatures over the reference period 

(subscripts are the same as defined for equation (7.1). 

 

3) In a last step, downscaled temperatures at the daily scale for the 2085 horizon are 

obtained by adjusting temperatures obtained in step 1 to the standard deviation calculated 

in step 2. This is done by normalizing the step 1 temperatures to a zero mean and 

standard deviation of one, and transforming back to the step 2 standard deviation. This 

technique assumes that biases are time-invariant and ensures that the temperatures of the 

RCM over the reference period have the same monthly mean and standard deviation as 

those of the observed data. 

 

7.4.1.3 Change factor (CF) method 

The CF method involves adjusting the observed daily temperature (Tobs,d) by adding the 

difference in monthly temperature predicted by the climate model (GCM or RCM) between 

the 2085 horizon and the reference period )( ,,,2085, mrefCMmCM TT −  to obtain daily temperature 

at the 2085 horizon (Tadj,2085,d) (equation (7.3)). The adjusted daily precipitation for the 2085 
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horizon (Padj,2085,d) is obtained by multiplying the precipitation ratio  ( mrefCMmCM PP ,,,2085, / ) 

with the observed daily precipitation (Pobs,d) (equation (7.4)).   

 

)( ,,,2085,,,2085, mrefCMmCMdobsdadj TTTT −+=                               (7.3) 

 

)/( ,,,2085,,,2085, mrefCMmCMdobsdadj PPPP ×=                                (7.4) 

 

7.4.1.4 Weather generator (WG)-based method 

The WG used in this research is CLImate GENerator (CLIGEN, Nicks and Lane, 1989). In 

this study, only the functions to generate precipitation occurrence and quantity, Tmax and 

Tmin were used. Other weather generators could also have been used. 

 

In CLIGEN, a first-order two-state Markov chain is used to generate the occurrence of wet or 

dry days. The probability of precipitation on a given day is based on the wet or dry status of 

the previous day, which can be defined in terms of the two transition probabilities: wet day 

following a dry day (P01) and a wet day following a wet day (P11). For a predicted wet day, 

a three-parameter skewed normal Pearson III distribution was used to generate daily 

precipitation intensity for each month (Nicks and Lane, 1989).  

 

A normal distribution was used to simulate Tmax and Tmin. The temperature with the 

smaller standard deviation between Tmax and Tmin is computed first, followed by the other 

temperature (Chen, et al, 2008). The mean and standard deviation of Tmax and Tmin were 

calculated monthly and smoothed with Fourier interpolation at a daily scale. 

 

Overall, CLIGEN requires a total of 9 monthly parameters to generate precipitation, Tmax 

and Tmin. They include p01, and p11 for generating precipitation occurrence, mean, standard 

deviation and skewness for generating daily precipitation intensity and means and standard 

deviations of Tmax and Tmin. The skewness of precipitation is supposed to be unchanged in 
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the future for this study. Thus, there are 8 parameters that require modification for every 

future climate change scenario. 

 

The parameters of CLIGEN are modified to take into account the variations predicted by 

a climate model (GCM or RCM). This variation is based on a delta change approach. For 

example, take the probability of precipitation occurrence P01. For various reasons, the P01 

from GCM or RCM data will not match the P01 measured at a particular station. Thus, 

similarly to the CF method, the difference obtained from the GCM (or RCM) between the 

future and the reference periods will be applied to the observed data. This is a hybrid method 

combining attributes of both statistical and CF methods. The huge advantage over the CF 

method is that differences in precipitation occurrence and variance of all variables can be 

taken into account. Time series of any length can be generated, which is another advantage 

for the studies of extremes. 

 

Details of this approach are as follows: 

1) Similarly to the CF method, the adjusted monthly mean Tmax and Tmin for the 2085 

horizon ( 2085,adjT ) are estimated as:  

 

)( ,2085,2085, refCMCMobsadj TTTT −+=                                             (7.5) 

 

The adjusted values are obtained by adding the differences predicted by a climate model 

(GCM or RCM) between the 2085 horizon and the reference period )( ,2085, refCMCM TT − to the 

observed mean monthly observed temperatures )( obsT .  

 

2) Monthly means and variances of precipitation, monthly variances of Tmax and Tmin and 

transition probabilities of precipitation occurrence p01 and p11 for the 2085 horizon are 

adjusted by:  

 

)/( ,2085,2085, refCMCMobsadj XXXX ×=                                          (7.6) 
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where X represents the variable to be adjusted. The subscripts are the same as above.    

 

3) The p01 and p11 values are expressed in terms of an unconditional probability of daily 

precipitation occurrence (π ) and the lag-1 autocorrelation of daily precipitation (r) for 

further adjustments. 

1101

01

1 PP

P

−+
=π                                                         (7.7) 

0111 PPr −=                                                             (7.8) 

 

4) The adjusted mean daily precipitation per wet day (ud) was estimated as (Wilks, 1999a; 

Zhang, 2005): 

 

π
μμ

d

m
d N

=                                                              (7.9) 

 

where Nd is the number of days in a month, πdN   is the average number of wet days in a 

month, and um is the step (2)-adjusted monthly precipitation.  

 

5) The adjusted daily variance ( 2
dσ ) was approximated using equation (7.10), based on the 

step (2)-adjusted variance of the monthly precipitation ( 2
dσ ) (Wilks, 1999a). 
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                                             (7.10) 

 

All of the adjusted precipitation, Tmax and Tmin parameter values were input to CLIGEN to 

generate 900 years of daily time series (Thirty 30-year realizations). An ensemble of 

realizations was used to insure that the method converges toward its true mean response. Due 

to the stochastic nature of the WG, a single realization of 30 years could have resulted in a 

biased estimate.  
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7.4.1.5 Statistical downscaling model (SDSM) 

The SDSM is a downscaling tool developed by Wilby et al. (2002a) that can be used to 

develop climate change scenarios. The SDSM uses a conditional process to downscale 

precipitation. Local precipitation amounts depend on wet-/dry-day occurrences, which in turn 

depend on regional-scale predictors such as mean sea level pressure, specific humidity and 

geopotential height (Wilby et al., 1999; Wilby and Dawson, 2007). Specifically, downscaling 

of precipitation occurrence is achieved by linking daily probabilities of non-zero 

precipitation with large-scale predictors selected from the variables listed in table 7.2. 

 

The main procedures of the SDSM for downscaling wet day precipitation intensity, Tmax 

and Tmin (predictands) are the following: (1) Identification of the screen variable: a partial 

correlation analysis was used to identify the relationship between NCEP variables and 

predictands. Variables that significantly correlated to predictands were then selected as 

predictors; (2) Model calibration: multiple linear regressive equations were established 

between predictands and step (1)-identified predictors for each season. Since the distribution 

of the daily precipitation is highly skewed, a fourth root transformation was applied to the 

original precipitation before fitting the transfer function (Wilby and Dawson, 2007); and (3) 

Application of transfer functions: established transfer functions were further used to 

downscale precipitation amounts, Tmax and Tmin for the 2085 horizon.  

 

The SDSM bias correction was applied to insure that observed and downscaled precipitation 

totals were equal for the simulation period. The variance inflation scheme was also used, to 

increase the variance of precipitation and temperatures to agree better with observations. 

When using bias correction and variance inflation, SDSM essentially becomes a weather 

generator, where a stochastic component is superimposed on top of the downscaled variable. 

This is especially true for precipitation, where the explained variance is generally less than 

30% (Wilby et al., 1999). 
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7.4.1.6 Discriminant analysis coupled with step-wise regression method (DASR)  

This approach is similar to that of the SDSM, but with no stochastic component added on top 

via bias correction and variance inflation. The main difference is that precipitation 

occurrence is downscaled using a discriminant analysis and the daily precipitation intensity 

of wet days is downscaled using a stepwise linear regression approach.  

 

With discriminant analysis for the downscaling of precipitation occurrence, it is necessary to 

have an available “training sample” in which it is known that each of the vectors is classified 

correctly (Wilks, 1995). In this research, the NCEP variables interpolated to the CGCM grid 

and their lag-1 variables were used as the training sample. The precipitation series were first 

divided into two groups, a wet-day group (daily precipitation amount ≥1mm) and a dry-day 

group (daily precipitation amount < 1mm). The future precipitation occurrence was similarly 

classified according to rules constructed based on a training sample and corresponding 

groups.  

 

The SD method selected here uses a stepwise linear regression for the precipitation quantity 

of wet days, Tmax and Tmin (predictands). Twenty-five NCEP variables and the lag-1 

variables for the reference period were used to select predictors using the stepwise regressive 

method. Multiple linear regressive equations were then fitted between predictands and 

selected predictors for each season. A fourth root transformation was also applied to the 

original precipitation before fitting the transfer function. The established transfer functions 

were then used to downscale daily precipitation for the 2085 horizon using CGCM 

predictors.  

 

7.4.2 Hydrological simulation 

The impacts of climate change on hydrology at the catchment were quantified based on 

discharges simulated with the hydrological model HSAMI, developed by Hydro-Québec, and 

which has been used to forecast natural inflows for over 20 years (Fortin, 2000). HSAMI is 
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used by Hydro-Québec for hourly and daily forecasting of natural inflows on 84 watersheds 

with surface areas ranging from 160 km2 to 69,195 km2. Hydro-Québec's total installed 

hydropower capacity on these basins exceeds 40GW. HSAMI is a 23-parameter, lumped, 

conceptual, rainfall-runoff model. Two parameters account for evapotranspiration, 6 for 

snowmelt, 10 for vertical water movement, and 5 for horizontal water movement. Vertical 

flows are simulated with 4 interconnected linear reservoirs (snow on the ground, surface 

water, unsaturated and saturated zones). Horizontal flows are filtered through 2 hydrograms 

and one linear reservoir. Model calibration is done automatically using the shuffled complex 

evolution optimization algorithm (Duan, 2003). The model takes snow accumulation, 

snowmelt, soil freezing/thawing and evapotranspiration into account.  

 

The basin-averaged minimum required daily input data for HSAMI are: Tmax, Tmin, liquid 

and solid precipitations. Cloud cover fraction and snow water equivalent can also be used as 

inputs, if available. A natural inflow or discharge time series is also needed for proper 

calibration/validation. For this study, thirty years (1970-1999) of daily discharge data were 

used for model calibration/validation. The optimal combination of parameters was chosen 

based on Nash-Sutcliffe criteria. The chosen set of parameters yielded Nash-Sutcliffe criteria 

values of 0.89 for both validation and calibration periods. This high value of the Nash-

Sutcliffe criteria is representative of the good quality of weather inputs and observed 

discharge. 

 

7.5 Results 

7.5.1 Validation of downscaling methods 

The validation of each downscaling method was based on the quality of the simulated 

hydrographs at the basin outlet, when compared to the hydrograph developed from observed 

weather data. Mean hydrograph results are presented in figure 7.2. The mean hydrograph 

from observed discharge (labeled OBS) and a hydrograph simulated from observed weather 

data (labeled OBS-SIM) show the small biases introduced by the hydrological model. The 

overall fit is quite good, with a Nash-Sutcliffe coefficient of 0.89 over the length of the time 
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series, as mentioned above. The mean hydrograph simulated from WG generated weather 

data (labeled OBS-WG) is also displayed to verify the possibility of using the WG method. 

The other curves represent the downscaling approaches presented in table 7.3, with the 

exception of the CF method which requires no validation. Overall, all of the methods, with 

the exception of CGCM-DASR, result in hydrographs that are very close the one simulated 

using observed precipitation and temperatures time series. The best methods were found to 

be CRCM data with bias correction and the SDSM. In addition, the performance of CLGEN 

was also qualified to use in this research. The performance of the hydrological model when 

calibrated with raw RCM data indicates that the biases of the climate model are small enough 

to be accounted for by the hydrology model. However, the Nash-Sutcliffe coefficient was 

better when using the standard calibration and correcting the biases (0.89 for CRCM-BC 

versus 0.81 for CRCM-NONBC), indicating that RCM data is either more biased than the 

observed values or less coherent with the observed discharge. 

 
 

 

 
Figure 7.2 Averaged annual hydrographs for the reference period (1970-1999)  

at the Manicouagan 5 river basin. Observed (OBS), observed weather data simulated  
(OBS-SIM), and weather generator data simulated (OBS-WG) discharges are also  

plotted for comparison. See Table 1 for the downscaling method acronyms. 
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As mentioned above, discharges simulated with the precipitation, Tmax and Tmin 

downscaled by DASR were underestimated. This is because DASR underestimated the 

precipitation (mean and standard deviation), while the SDSM reproduced it very well (figure 

7.3). This indicates that the explained variance of the linear regression approach is not 

sufficient to properly resolve discharge. The stochastic component added by the SDSM via 

bias correction and variance inflation makes up for the basic flaw of the approach (a small 

percentage of explained variance) with respect to precipitation. Results are much better for 

temperatures because of the much larger percentage of explained variance. The DASR and 

SDSM methods are very similar and the observed differences between these approaches 

outline the differences in the raw predictive power of the statistical scheme and with the 

added stochastic component. This will be further discussed after the results in a changed 

climate are presented. 

 

7.5.2 Climate change scenarios  

7.5.2.1 Monthly and daily mean precipitations  

All downscaling methods show increases in total seasonal precipitation for the 2085 horizon 

(figure 7.4a). The ratios of increase range from 6% to 67% for spring, 1% to 20% for 

summer, 3% to 21% for autumn and between 5 and 45% for winter. Although both CGCM-

SDSM and CGCM-DASR are regression-based methods, the former suggests more increases 

in monthly precipitation than the latter. This is partly due to the underestimation of mean 

precipitation by the CGCM-DASR model (figure 7.3b). A bias correction is used with the 

SDSM to insure the downscaled mean precipitation agrees better with the observation.  

 

The CGCM-DASR suggests 12% winter daily precipitation increase and 5% decrease for 

spring, 8% decrease for summer and 2% decrease for autumn (figure 7.4b). However, the 

other downscaling methods, with the exception of CGCM-WG, predict increases in daily 

precipitation for all seasons. The increased/decreased ratios range from 11% to 68% for 

spring, -4% (predicted by CGCM-WG) to 19% for summer, -1% (predicted by CGCM-WG) 
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to 29% for autumn and between 12% and 40 % for winter. The variation of daily 

precipitation in each season is not consistent with that of totally seasonal precipitation. This 

is because the daily precipitation quantity is affected not only by the seasonal precipitation 

quantity, but also by precipitation occurrence. The precipitation occurrence is different for 

each downscaling method (results not shown). 

 
 

 

 
Figure 7.3 Means and standard deviations of observed (OBS) and DASR and  

SDSM downscaled monthly precipitations, Tmax and Tmin at the  
Manicouagan 5 river basin for the reference period (1970-1999). 

 
 

The CGCM-DASR predicts a 26% standard deviation increase for total winter precipitation 

and a decrease for all other seasons (8% for spring, 26% for summer and 19% for autumn) 

for the 2085 horizon (figure 7.4c). This decrease is partly due to the underestimation of the 

variance of precipitation as shown in figure 7.3b. As mentioned earlier, the SDSM uses a 

stochastic component to increase downscaled variances to better agree with observations. 
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Other downscaling methods suggest increases in the standard deviation of seasonal 

precipitation for each season (20-59% for spring, 4-19% for summer and autumn and 

between 18% and 50% for winter). Although the CF and WG methods share similarities, the 

observed increases are different, because the CF method adjusts precipitation variance 

through a modification of the mean, while WG-based methods adjust it from changes of not 

only precipitation quantity but also occurrence. In addition, variances downscaled from 

CGCM and CRCM data are also different, although the CRCM is driven by the CGCM. 

Predicted changes in the standard deviation of daily precipitation are not unequivocal (figure 

7.4d). The CGCM-DASR suggests reductions in the standard deviation of daily precipitation 

(between 50% and 63% depending on the season) while the other methods suggest increases 

for most of the seasons.  

 

7.5.2.2 Average temperatures  

Figure 7.5 presents annual temperature (average of Tmax and Tmin) cycles for all 

downscaling methods for the 2085 horizon and for the observed data (reference period). All 

of the downscaling methods suggest increases in temperatures for the 2085 horizon. 

Increases range between 3.6 °C and 6.3 °C for spring, 0.4 °C and 4.1°C for summer, 1.8 °C 

and 4.8°C for autumn and between 5.7 °C and 9.1°C for winter. Winter temperature 

increases are greater than for other seasons. The CRCM-NONBC method suggests lower 

increases in temperature than other methods. The regression-based statistical methods 

predict a much larger increase in autumn and winter average temperatures. Average 

temperature cycle graphs display the freezing dates when the average temperature climbs 

above and descends below zero degrees. These dates are April 27th and October 15th for 

the reference period. Depending on the specific downscaling method, this period could start 

as early as April 11th and as late as November 13th for the 2085 horizon, which implies that 

the freezing season could be shortened by up to 42 days. These changes would affect the 

snow accumulation in the winter and the spring snowmelt.  
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Figure 7.4 Mean and standard deviation of the observed (1970-1999) and downscaled  
(2070-2099) monthly and daily precipitations at the Manicouagan 5 river basin. (a):  
mean monthly precipitation; (b): mean daily precipitation; (c): standard deviation of  

monthly precipitation; and (d): standard deviation of daily precipitation. 
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Figure 7.5 Observed (1970-1999) and downscaled (2070-2099) average  

annual temperature cycle at the Manicouagan 5 river basin. 
 
 
7.5.3 Uncertainty of annual precipitation and maximum and minimum 

temperatures 

Probability density functions (PDFs) of the annual precipitation, Tmax and Tmin, were built 

to show the uncertainties related to downscaling methods (figure 7.6). The probability of a 

variable (precipitation, Tmax or Tmin) falling within a given set is given by the integral of its 

density over the set. The total area under each PDF is equal to one. The annual precipitations 

for the reference period are between 557.8 mm and 1230.8 mm with a median value of 863.7 

mm (there is a 50% probability of annual precipitation being greater or less than 863.7 mm) 

and a mode (most frequent value) of 850.1 mm. The PDFs show that all downscaling 

methods predict an increase in annual precipitation for the 2085 horizon; the magnitude of 

increase varies from one method to the other ranging between 75.0 (CRCM-NONBC) and 

219.1 mm (CRCM-WG). The CRCM-WG predicts the largest increase in annual 

precipitation. Medians of annual precipitation would also increase by between 9% and 26% 

in the 2085 horizon. The CRCM-NONBC predicts the lowest increase in the median and the 

CRCM-WG predicts the highest. Figure 7.6a shows that an average year of precipitation in 

the current climate would become a very dry year in the 2085 future climate.  
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Each downscaling method suggests increases in annual mean Tmax and Tmin for the 2085 

horizon. The magnitude of the increases varies from one method to the other, ranging 

between 3.6 °C and 5.4 °C for Tmax and between 2.4 °C and 5.8 °C for Tmin. In addition, all 

downscaling methods predict increases in the medians of annual mean Tmax (3.7-5.6°C) and 

Tmin (2.7-6.1°C). The CRCM-NONBC predicts the smallest increases in temperatures, 

while the two regression-based methods (CGCM-SDSM and CGCM-DASR) suggest the 

largest increases.  

 
 

 

 
Figure 7.6 Probability density functions (PDF) of the observed (1970-1999) and downscaled 

(2070-2099) annual mean precipitation and maximum and minimum temperatures at the 
Manicouagan 5 river basin. 

 
 
7.5.4 Hydrologic impacts of climate change  

7.5.4.1 Hydrologic variables 

Figure 7.7 presents average hydrographs simulated with precipitation and temperature 

downscaled from the different methods. To avoid any bias resulting from the hydrological 

modeling process, discharge for the reference period is represented by modeled discharge 

and not by observations. The results showed that all downscaling methods suggest increases 

in winter discharge (November-April) and decreases in summer (June-October). The two 
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regression-based methods predict much larger increases in winter flows than other methods, 

and, consequently, their snowmelt peak discharges are much lower. These two methods 

predict a larger increase in autumn and winter temperatures; the liquid winter precipitation 

rapidly contributes to runoff instead of being accumulated in the snow cover. Thus, there is 

not very much snowmelt in spring to contribute to peak discharge. For annual discharges, the 

only simulation that predicts a decrease comes from the CGCM-DASR method, largely 

because this method underestimates precipitation. All other downscaling methods show 

increases in annual discharges ranging between 3.5% (CRCM-NONBC) and 20.9% (CRCM-

WG). By the 2085 horizon, the two regression-based methods and the CRCM-NONBC 

suggest decreases in peak discharges between 4.1% (CRCM-NONBC) and 25.1% (CGCM-

DASR). The slight decrease predicted by CRCM-NONBC is due to a smaller increase in 

annual precipitation, relative to a larger increase in temperature. However, the CGCM-WG 

predicts an increase in peak discharge, as do the CRCM-WG and the CRCM-BC. For these 

three methods, increases in winter temperature are not sufficient to offset the precipitation 

increase. In addition, for all downscaling methods the peak discharges of the 2085 horizon 

are observed earlier than for the reference period. Lags vary from 12 days (May 12th) for the 

CRCM-NONBC to 27 days (April 27) for the CGCM-CF. 

 

7.5.4.2 Uncertainty of hydrologic variables 

In order to better quantify the uncertainties of hydrologic variables, PDFs were constructed 

for peak discharge, time to peak discharge and annual mean discharge (figure 7.8). These 

graphs display the global uncertainty linked to downscaling techniques. Figure 7.8a shows 

that the two regression-based methods predict the largest decreases in peak discharges. All of 

the downscaling methods predict an earlier peak discharge (figure 7.8b), although there is 

significant inter-annual variability. Inter-annual variability is very large for the two 

regression-based methods as shown by their very flat PDFs. Large inter-annual variability is 

also shown with future annual mean discharge (figure 7.8c). As mentioned earlier, the 

CGCM-DASR method is the only that shows decreases in future annual mean discharge. The 
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CF methods (CGCM-CF and CRCM-CF) display the largest future inter-annual variability of 

mean discharge (flattest PDFs in figure 7.8c). 

 
 

 

 
Figure 7.7 Average annual hydrographs for the future (2070-2099) and  

reference (1970-1999) periods at the Manicouagan 5 river basin. 
 
 
7.6 Discussion and conclusions 

The uncertainty of climate change impacts on hydrology has been given more and more 

attention in the scientific literature. By far the largest focus has been on investigating the 

roles of GCMs and GGES in the uncertainty cascade. Other sources of uncertainty, such as 

the choice of downscaling method, have been given much less attention. Six downscaling 

methods were compared to investigate the uncertainty of downscaling methods in 

quantifying the impact of climate change on the hydrology of a Canadian (Quebec province) 

River basin. The downscaling methods regroup dynamical and statistical approaches 

including the CF method and a WG-based approach. Two regression-based methods (SDSM 

and DASR) are also used for comparison. The downscaling methods were first validated 

based on the modeling of discharge. Overall, all of the methods, with the exception of 

CGCM-DASR, result in hydrographs that are very close to the hydrograph simulated by 



223 

using observed precipitation and temperature time series. The best methods were CRCM data 

with bias correction and the SDSM. The DASR method underestimates the hydrograph, 

clearly indicating that the explained variance of the linear regression approach is not 

sufficient to properly resolve discharge issues. The stochastic component added by the 

SDSM via bias correction and variance inflation makes up for the basic flaw of the approach 

(only a small percentage of variance is explained) with respect to precipitation.   

 
 

 

 
Figure 7.8 Probability density functions (PDF) of (a) peak discharge, (b) time 
 to peak discharge and (c) annual mean discharge for the future (2070-2099) 

 and reference (1970-1999) periods at the Manicouagan 5 river basin. 
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The analysis of climate change scenarios shows that all downscaling methods suggest 

increases in temperature over the basin for the 2085 horizon. The two regression-based 

methods show larger increases in autumn and winter temperatures than the others. Depending 

on the specific downscaling method, the freezing season would be shortened by 26-42 days. 

Predicted changes in precipitation are not as unequivocal as those for temperature. Results 

vary seasonally and depend on the downscaling method. The combined effects of 

precipitation and temperature changes influence discharge differently depending on the 

downscaling method. All of the methods show a general increase in winter discharge 

(November-April) and most show a decrease in summer discharge. Winter flows are 

especially large for the two regression-based methods, which also predict the largest 

temperature increases in autumn and winter. Liquid winter precipitation rapidly contributes 

to runoff instead of being temporarily stored in the snow cover. This leads to strongly 

attenuated snowmelt peak flows. Peak discharges appear earlier for all downscaling methods, 

but their timing varies according to the downscaling method.  

 

The results indicate that climate change impact studies based only on one downscaling 

method should be interpreted with caution. General speaking, it is assumed that the major 

sources of uncertainty are linked to GCMs and GGES (Kay et al., 2009; Wilby and Harris, 

2006). To make a comparison with GCM-linked uncertainty, the uncertainty envelope 

derived from the choice of downscaling method in this paper is compared to that originating 

from a combination of 28 climate projections from a combination of 7 GCMs and 3 GGES 

(figure 7.9). Both uncertainty envelopes display the same characteristics. Downscaling 

contributes to a larger uncertainty in winter flows, but GCM-GGES projections give a much 

larger uncertainty over the snowmelt season. Both envelopes are very similar in the summer 

and fall seasons. Comparing six downscaling methods to 28 projections (from 7 GCMs and 3 

GGES) should contribute to a larger uncertainty envelope in the latter case, and overall this is 

what was observed. On the other hand, the two regression-based SD methods contributed 

proportionally more to the uncertainty envelope, because their behavior was markedly 

different in several instances. 
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Figure 7.9 Envelopes of simulated discharge with (a) six downscaling methods and (b) 28 
GCMs and GGES using the change factor downscaling method at the Manicouagan 5 river 

basin for the future period (2070-2099). The discharge simulated with observed climate  
data for the reference period (1970-1999) is also plotted for comparison. 

 
 
The results indicated quite clearly that the choice of a downscaling method is critical for any 

climate change impact study on hydrology. Can the results outlined in this paper help in 

selecting an appropriate method? For the most part, the answer would be ‘no’ and that 

additional research is needed. However, these results do raise some important points. It can 

be argued that regression-based methods should be used with caution due to their distinctive 

behavior compared to other downscaling methods; their downscaled future temperatures are 

very high, especially when compared to the direct outputs from the regional climate models 

(which exhibit relatively small biases in the current climate). So despite the fact that a high 

percentage of temperature variance is explained by regression-based methods in the current 

climate, the anomalous downscaled future temperatures raise serious questions about the 

stationary nature of the regression. This was always a weak point of regression-based 

methods that could never be clearly disproved or confirmed. If there is doubt that regression 

equations are stationary for temperature, the case of the validity of the approach for 

precipitation is even harder to make, mostly because the percentage of explained variance is 

very low to begin with. The CGCM-DASR model (a regression-based model with no bias or 
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variance correction) was included for comparison purposes only. It is clearly inadequate at 

reproducing adequate precipitation in the current climate. However, both this flawed method 

(CGCM-DASR) and the one correcting for precipitation bias and variance (CGCM-SDSM) 

give nearly identical future mean hydrographs (figure 7.7), further raising doubts as to the 

validity of transposing regression equations in changed climate predictions. 

 

The strength and weaknesses of the CF method have been discussed in several papers. This 

method gives similar results whether factors are derived from the GCM or the RCM (driven 

by the same GCM at its boundaries). Its main weakness (that it does not modify future 

variance and precipitation occurrence) is probably not a major obstacle with respect to spring 

snowmelt. Since spring floods are the result of several months of snow accumulation 

followed by rapid melting, the most important feature to have in a climate change study is the 

correct total quantity of solid precipitation. The variability of solid precipitation during the 

winter months is a less important feature to have. On the other hand, for summer and fall 

events, damages often result from one major rainfall event, and droughts from long periods 

with little to no precipitation. In such cases, the CF method would be totally inappropriate for 

climate change studies and another downscaling method would be necessary. In such cases, 

WG based approaches may be more successful in resolving extremes series of dry days and 

high temperature. This would especially be the case for arid and semi-arid areas. 

 

An interesting result from this paper is that the biases in the RCM that was used are small 

enough that they can be dealt with by the hydrological model, thus negating any bias 

correction on the outputs from the CRCM. As discussed earlier, this approach stems from the 

assumption that biases present in observed weather data (especially for precipitation) are of 

the same order as those from the RCM precipitation. As such, a specific calibration of the 

hydrology model to each dataset is sufficient. While this has proved to be the case in the 

present climate, there are large differences in future predicted outflows between the direct 

inputs of RCM data (CRCM-NONBC) and the use of RCM data with bias corrections 

(CRCM-BC). This is partly because CRCM precipitation used to calibrate the hydrological 

model (1970-1999) was driven by initial and boundary conditions of NCEP, while it was 
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driven by initial and boundary conditions of CGCM for the future period (2070-2099). 

However, both datasets were considerably different for the reference period (results not 

shown). It should be not a surprise, since NCEP data and GCM data are not entirely 

comparable. NCEP data aims at representing the real world, whereas GCMs operate in their 

own virtual world. It is difficult to say which method is the most correct from both practical 

and theoretical viewpoints. The fact that they give a markedly different future hydrology 

indicates that either the assumption of constant bias does not hold, or that the choice of 

different calibration parameters (in the case of CRCM-NONBC) results in significant future 

uncertainty. However, recent work (Poulin et al., 2011) demonstrates that the uncertainty 

derived from hydrology model parameters is relatively small, raising doubts toward the 

common assumption of constant biases over time. Even if the direct use of RCM data had 

proved to be the most interesting method, the problem remains that it would not be possible 

to sample GCM uncertainty with this approach, as it would require outputs from several 

RCMs, all driven by different GCMs, over the same basin.   

 

Clearly, more research is needed before this problem is settled. In particular, it would be 

interesting to get results from basins in different climate zones (especially arid and semi-arid 

climates) as the hydrological response to a choice of a given downscaling method may be 

related to a given climate. It is not possible at this stage to recommend a specific 

downscaling method for a given application, or even to use several downscaling methods to 

produce an ensemble of forcings for hydrology models, such as commonly done with GCM 

and GGES. Cases where the downscaling uncertainty envelope is contained within other 

uncertainties sources should not be treated with the same attention than cases where 

downscaling is the main source of uncertainty. The first conclusion of this paper is that the 

choice of a downscaling method does matter, and that the uncertainty linked to the choice of 

a downscaling method should not be ignored in any climate change impact study. The second 

conclusion is that downscaling methods are not created equal and that the choice of one or 

more approach should be evaluated on a case by case basis with respect to the objectives of 

the climate change impact study.    
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8.1 Abstract 

General Circulation Models (GCMs) and Greenhouse Gas Emissions Scenarios (GGES) are 

generally considered to be the two major sources of uncertainty in quantifying the climate 

change impacts on hydrology. Other sources of uncertainty have been given less attention. 

This study considers global uncertainty by combining results from an ensemble of six GCMs, 

two GGES, five GCM initial conditions, four downscaling techniques, three hydrological 

model structures and 10 sets of hydrological model parameters. Each climate projection is 

equally weighted to predict the hydrology on a Canadian watershed for the 2081-2100 

horizon. The results show that the choice of GCM is consistently a major contributor to 

uncertainty. However, other sources of uncertainty, such as the choice of a downscaling 

method and the GCM initial conditions also have a comparable or even larger uncertainty for 

some hydrological variables. Uncertainties linked to GGES and the hydrological model 

structure are somewhat less than those related to GCMs and downscaling techniques. 

Uncertainty due to the hydrological model choice of parameters has the least important 

contribution among all the variables considered. Overall, this research underlines the 

importance of adequately covering all sources of uncertainty. A failure to do so may result in 



230 

moderately to severely biased climate change impact studies. Results further indicate that the 

major contributors to uncertainty vary depending on the hydrological variables selected, and 

that the methodology presented in this paper is successful at identifying the key sources of 

uncertainty to consider for a climate change impact study.  

 

Keywords: Climate change, hydrology, uncertainty, hydrological model, general circulation 

model, downscaling 

 

8.2 Introduction 

The Intergovernmental Panel on Climate Change (IPCC, 2007) stated that climate change 

will have discernible impacts on continental water resources, due to changes in precipitation 

and temperatures that will have an effect on the global water circulation. Thus, water 

resources management, already stressed with the hazards of natural variability, will face 

additional challenges. General Circulation Models (GCMs) are the major tools that provide 

information about future climate. General speaking, there are two steps to follow to quantify 

the hydrological impacts of climate change based on GCMs outputs: (1) GCM outputs 

(usually precipitation and temperatures) are first downscaled to a watershed or site-specific 

scale to obtain climate change projections at an appropriate scale; and (2) climate change 

projections are then input into hydrological models to simulate future hydrological 

conditions. A decision-maker can then make long-term decisions according to the predicted 

hydrological conditions and variability. However, given the large number of GCMs, 

Greenhouse Gas Emissions Scenarios (GGES) and downscaling methods available, it is 

becoming increasingly difficult to assess the uncertainties that result from their combination. 

This difficulty is further amplified when taking into account the choice of an impact model 

(such as a hydrological model) and its parameters, which also contribute to global 

uncertainty. Various sources of uncertainty have been clearly identified and it has been 

recognized that they should be taken into account in climate change impact studies. A failure 

to cover the full range of uncertainty may result in severely biased impact studies. The 

uncertainty cascade can be classified as follows: (1) GCM structures; (2) GGES; (3) 
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downscaling methods; (4) hydrological model structures; (5) hydrological model parameters; 

and (6) GCM initial conditions. Running GCMs with different initial conditions is a way to 

assess natural variability as perceived by the climate model. Some of these uncertainty 

sources may be reduced in the future (through higher resolution GCMs for example), but 

some causes of uncertainty will always remain. The acknowledgement and proper 

quantification of uncertainty are vital to facilitate a risk-based approach to decision making. 

As such, a non-biased framework to properly sample all sources of uncertainty is very much 

needed. To date, there have been several hydrological impact studies that have taken some 

causes of uncertainties into account, but only a rare few have investigated most of the entire 

cascade of uncertainties listed above.  

 

Jenkins and Lowe (2003) studied changes in global mean rainfall from different GCMs and 

GGES and showed that GCM uncertainty dominates GGES uncertainty. This finding has 

been confirmed by several other studies. Rowell (2006) investigated the uncertainty arising 

from RCM formulation, and compared it with three other sources of uncertainty (GCMs, 

GGES and GCM initial conditions (ensemble runs)) with respect to changes in seasonal 

precipitation and temperature for the United Kingdom. The results showed that the 

uncertainty due to RCM formulation was relatively small, while GCMs consistently 

demonstrated a dominant role for each season. These two studies investigated the uncertainty 

on the primary outputs of climate models (temperature and/or precipitation) rather than on 

river flow. Different results may be obtained when transferring climate projections to 

watershed streamflows, since it is a non-linear process.  

 

Prudhomme and Davies (2009) used three GCMs, two GGES and two downscaling 

techniques (a statistical downscaling model (SDSM) and the RCM HadRM3) to investigate 

the uncertainty in river flows, and demonstrated that GCMs were the main contributors to 

monthly mean flow uncertainty. The downscaling of originating uncertainty was also 

important, but the contribution of GGES to uncertainty was negligible. Kay et al. (2009) also 

investigated different sources of uncertainties including five GCMs, four GGES (A1F1, A2, 

B1 and B2), two downscaling methods (change factor (CF) and RCM)), two hydrological 
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models, hydrological model parameters and GCM initial conditions on the impact of climate 

change on flood frequency in England. With this research, each source of uncertainty was 

assessed individually rather than in combination with each other. The results showed that the 

uncertainty related to GCM structure was the largest, but other sources of uncertainty were 

also important, although less so than GCM uncertainty. However, Booij (2005) found that the 

uncertainty related to GCM initial conditions was larger than that of GCMs and RCMs.  

 

Wilby and Harris (2006) presented a probabilistic framework for quantifying different 

sources of uncertainties on future low flows. They used four GCMs, two GGES, two 

downscaling methods (SDSM and CF), two hydrological model structures and two sets of 

hydrological model parameters. The results again showed that GCMs are the main 

contributor to global uncertainty, followed by downscaling methods. Uncertainties due to 

hydrological model parameters and GGES were less important. This is probably the most 

thorough study so far, in terms of inclusion of the most sources of uncertainty. However, it 

also has several limitations. Firstly, two downscaling methods, two hydrological model 

structures and two sets of hydrological model parameters are likely to be insufficient to 

represent their uncertainty envelope. In particular, using only two downscaling methods 

results in an underestimation of the true contribution of downscaling to uncertainty (Chen et 

al., 2011c).  They also did not consider hydrological models with different levels of 

complexity and structure. The study did not consider the uncertainty due to the GCM initial 

conditions. As mentioned earlier, the uncertainty linked to GCM initial conditions is even 

larger than that of GCMs in some cases (Booij, 2005). Finally, since the purpose of this 

research was to provide a framework for assessing uncertainties in climate change impact 

studies, the only quantified variable was river low flows. Other hydrological variables such 

annual, seasonal and peak discharges may respond quite differently with respect to global 

uncertainty.  

 

The objective of this research is to outline the contribution of six sources of uncertainty, with 

respect to the impacts of climate change on the hydrology of a Canadian river basin (Quebec 

province). The uncertainties considered include (1) six GCMs; (2) two GGES; (3) four 
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downscaling methods; (4) three hydrological model structures; (5) ten sets of hydrological 

model parameters; and (6) five GCM initial conditions. Future (2081-2100) hydrological 

regimes are compared to the reference period (1971-1990) using mean annual and seasonal 

discharges, annual low flow (95%), peak discharge, time to the beginning of flood, time to 

peak discharge and time to the end of flood as criteria. 

 

8.3 Study area and data 

8.3.1 Study area 

This study was conducted over the Manicouagan 5 river basin, which is located in the center 

of Quebec province, Canada (figure 8.1). It is the biggest sub-basin of the Manicouagan 

watershed, which covers 24,610 km2 of mostly forested areas. It has a rolling to moderately 

hilly topography with a maximum elevation of 952 m above sea level. The reservoir at the 

basin outlet has a mean level of 350 m above sea level. Population density is extremely low 

and logging is the only industrial activity over the basin. The basin drains into the 

Manicouagan 5 reservoir, a 2000 km2 annular reservoir within an ancient eroded impact 

crater. The basin ends at the Daniel Johnson dam, which is the largest buttressed multiple 

arch dam in the world. The installed capacity of the dam is 2.6GW. The annual mean 

discharge of the Manicouagan 5 River is 529m3/s. Snowmelt peak discharge usually occurs 

in May and averages 2200 m3/s. 
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Figure 8.1 Location map of Manicouagan 5 river basin. 

 
 
8.3.2 Data 

Observed data consisted of precipitation, maximum temperature (Tmax) and minimum 

temperature (Tmin) interpolated on a 10km grid by the National Land and Water Information 

Service (www.agr.gc.ca/nlwis-snite). The interpolation is performed using a thin plate 

smoothing spline surface fitting method (Hutchinson et al., 2009).  Discharge data at the 

basin outlet was obtained from mass balance calculations at the dam and was provided by 

Hydro-Quebec. Daily precipitation, Tmax and Tmin projected by six GCMs (CGCM3, 

CSIRO-Mk3.5, GFDL-CM2.0, MPI-ECHAM5, MIROC3.2-Medres and MRI-CGCM2.3) 

under two emission scenarios (A2, B1) from the Fourth Assessment Report (IPCC, 2007) 

were used. To investigate the uncertainty of GCM initial conditions, the daily precipitation, 

Tmax and Tmin, from five runs of MRI-CGCM2.3 under either A2 or B1 scenarios were also 

used. Table 8.1 presents the general information of the chosen GCMs. Since statistical 

downscaling requires GCM variables as predictors to calibrate the model and create future 

climate change projections, the National Center for Environmental Prediction (NCEP) 

reanalysis data interpolated to the Canadian GCM (CGCM3) grid was used to calibrate the 
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statistical method. In climate change mode, predictors from the CGCM3 under the A2 

emission scenario were used directly. The atmospheric predictors considered (NCEP and 

CGCM3) are listed in table 8.2. This work covers the 1971 - 1990 period (reference period) 

for calibration and the 2081 - 2100 period (future horizon) in climate change mode. 

 
 

Table 8.1 General information of selected GCMs 
 

Acronym Country Resolution Scenario Run 

Number 

of grid 

points 

CGCM3 Canada 3.75° x 3.75° A2, B1 Run1 4 

CSIRO-Mk3.5 Australia 1.87° x 1.87° A2, B1 Run1 10 

GFDL-CM2.0 United States 2.0° x 2.5° A2, B1 Run1 6 

MPI-ECHAM5 Germany 1.87° x 1.87° A2, B1 Run1 10 

MIROC3.2-Medres Japan 2.8° x 2.8° A2, B1 Run1 6 

MRI-CGCM2.3 Japan 2.8° x 2.8° A2, B1 Run1-Run5 6 

 
 

Table 8.2 NCEP and CGCM3 variables used to select precipitation  
predictors for the statistical downscaling model 

 
Source Predictor Predictor 

Surface 

variables 
Mean sea level pressure Temperature at 2m 

Upper-air 

variables 

East component of wind (500, 850 and 

1000 hPa) 

Vertical vorticity (500, 850 and 

1000 hPa) 

North component of wind (500, 850 and 

1000 hPa) 

Divergence (500, 850 and 1000 

hPa) 

Geopotential (500 and 850 hPa) 
Wind direction (500, 850 and 

1000 hPa) 

Specific humidity (500, 850 and 1000 

hPa) 

Wind speed (500, 850 and 1000 

hPa) 
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Since Manicouagan 5 is a large watershed, several GCM grid points were selected to 

represent the climate of the river basin, using the following procedure. A 600km diameter 

circle was drawn around the center point of the watershed and all GCM grid points within the 

circle were chosen. By doing this, at least four grid points were selected for each GCM. 

Then, the average climate (precipitation and temperatures) over the river basin was 

calculated using the Inverse Distance Weighting method. The number of selected grid points 

for each GCM is presented in the last column of table 8.1.  

 

8.4 Methodology 

This research investigates the contributions of GCMs, GGES, GCM initial conditions, 

downscaling techniques, hydrological model structures and parameters to the global 

uncertainty of future hydrologic regimes. Each climate projection is equally weighted to 

predict the hydrology on the Manicouagan 5 watershed for the 2081-2100 horizon. Figure 8.2 

presents the framework of the considered uncertainty cascade. 

 

8.4.1 GCM, GGES and GCM initial conditions  

Six GCMs under two emission scenarios were selected to investigate the uncertainty of 

hydrological impacts under climate change (table 8.1). They are a subset of the climate 

models and emission scenarios that contributed to the IPCC Fourth Assessment Report 

(IPCC, 2007). The six GCMs were selected to cover most of the uncertainty displayed on a 

mean yearly precipitation-temperature dispersion diagram. According to IPCC (2007), A2 

describes a very heterogeneous world with high population, slow economic development and 

slow technological change; B1 describes a convergent world with global population peaking 

during the mid-century and with very rapid changes in economic structures towards a service 

and information economy. These two scenarios are two extremes of greenhouse gas 

emissions. Thus, they represent a large range of uncertainty.  

 

There are two methods with which to consider the uncertainty related to the internal 

variability of a climate system. The first is a climate model-based approach that consists of 
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running an ensemble of simulations using different initial conditions, with subsequent 

identical forcing (Kay et al, 2009). The other method is to use a stochastic weather generator 

to produce an ensemble of climate projections. The former approach was used in this study 

with five runs of MRI-CGCM2.3 under either A2 or B1 scenarios. Due to the limitation of 

the available climate data, only one simulation run (run 1) was used for the other five GCMs.  

 
 

 

 
Figure 8.2 A framework of the uncertainty cascade considered; a vertical dashed  

line indicates that the flow chart under its linked text box is identical to the previous  
one. Ensemble runs were only available for MRI, and SDSM was used with  

CGCM3 predictors only. GCM = Global Circulation Models; GGES = Greenhouse  
gas emission scenarios; DS=downscaling methods; HM = hydrological model;  

HMP = hydrological model parameters; BC = bias correction, CF = change factor;  
and WG = weather generated based method. 

 
 
8.4.2 Downscaling techniques 

Four downscaling methods were used to downscale GCM outputs to watershed scale in this 

study. These include bias correction, the change factor method (CF), a weather generator 

(WG) based method and the SDSM. Each approach is detailed below.  
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8.4.2.1 Bias correction method 

In this method, a monthly bias correction is applied to both temperature and precipitation 

data. For precipitation, a correction is made to both monthly mean frequency and quantity, 

using the Local Intensity Scaling Method developed by Schmidli et al. (2006). This method 

contains three steps: (1) A wet-day threshold is determined from the daily GCM precipitation 

series of each month such that the threshold exceedence matches the wet-day frequency of 

the observed time series; (2) A scaling factor is calculated to insure that the mean of the 

observed monthly precipitation is equal to that of the GCM precipitation multiplied by the 

scaling factor for the reference period; and (3) The monthly thresholds and factors 

determined in the reference climate are used to adjust monthly precipitation for the future 

horizon.  

 

Daily GCM temperatures are corrected on a monthly basis using the following equation 

(Chen et al. 2011c):  

 

)( ,,, refGCMobsfutGCMfutcor TTTT −+=                                     (8.1) 

 

where Tcor,fut is the daily corrected temperature at future horizon (2081-2100) obtained by 

adding the difference in mean monthly temperatures between observed data and the GCM 

reference period )( , refGCMobs TT −  to the GCM temperature data for the future horizon 

(TGCM,fut). After the monthly mean correction is done, the standard deviation of monthly 

temperatures ‘S’ at the future horizon is corrected using the following equation: 

 

)( ,,, refGCMobsfutGCMfutcor SSSS ×=                                       (8.2) 

 

Equation (8.2) effectively corrects the standard deviation of GCM temperatures based on the 

standard deviation ratio between observed and GCM temperatures over the reference period 
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(subscripts are the same as those defined for equation (8.1)). In a last step, downscaled 

temperatures at the daily scale for the future horizon are obtained by adjusting temperatures 

obtained in step 1 to the standard deviation calculated in step 2. This is done by normalizing 

the step 1 temperatures to a zero mean and standard deviation of one, and transforming back 

to the step 2 standard deviation. This technique assumes that biases are time-invariant, and 

ensures that the temperatures of the GCM over the reference period have the same monthly 

mean and standard deviation as those of the observed data. .
 
 

 

8.4.2.2 Change factor (CF) method 

The CF method involves adjusting the observed daily temperature (Tobs,d) by adding the 

difference in monthly temperature between the future horizon and the reference period 

predicted by the GCM )( ,,,, mrefGCMmfutGCM TT −  to obtain the daily temperature at the future 

horizon (Tadj,fut,d) (equation (8.3)) (Chen et al., 2011c). The adjusted daily precipitation for 

the future horizon (Padj,fut,d) is obtained by multiplying the precipitation ratio  

( mrefGCMmfutGCM PP ,,,, / ) by the observed daily precipitation (Pobs,d) (equation (8.4)).   

 

)( ,,,,,,, mrefGCMmfutGCMdobsdfutadj TTTT −+=                                     (8.3) 

 

)/( ,,,,,,, mrefGCMmfutGCMdobsdfutadj PPPP ×=                                       (8.4) 

 

8.4.2.3 Weather generator (WG) based method 

The WG used in this research is CLIGEN (Nicks and Lane, 1989), which was used to 

generate daily precipitation occurrence and amounts, as well as Tmax and Tmin. CLIGEN 

was chosen because it generates precipitation and temperature independently, and the mean 

and standard deviation of each variable are explicitly used in its probability distribution 

function, so that the incorporation of GCM projected monthly changes in statistical moments 
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is straightforward (Zhang, 2005; Chen et al. 2009). However, other weather generators could 

also have been used. 

 

In CLIGEN, a first-order two-state Markov chain is used to generate the occurrence of wet or 

dry days. The probability of precipitation on a given day is based on the wet or dry status of 

the previous day, which can be defined in terms of the two transition probabilities: a wet day 

following a dry day (P01) and a wet day following a wet day (P11). For a predicted wet day, 

a three-parameter skewed normal Pearson III distribution was used to generate daily 

precipitation intensity for each month (Nicks and Lane, 1989).  

 

A normal distribution was used to simulate Tmax and Tmin. The temperature with the 

smaller standard deviation between Tmax and Tmin is computed first, followed by the other 

temperature (Chen, et al, 2008). The mean and standard deviation of Tmax and Tmin were 

calculated monthly and smoothed with Fourier interpolation to a daily scale.  

 

CLIGEN requires a total of nine monthly parameters to the generate precipitation, Tmax and 

Tmin. These include p01 and p11 for generating precipitation occurrence, mean, standard 

deviation and skewness for generating daily precipitation intensity and mean and standard 

deviations of Tmax and Tmin. The skewness of precipitation is assumed to be unchanged in 

the future for this research. Thus, there are eight parameters that require modification at 

every future climate change scenario.  

 

The parameters are modified to take into account the variations predicted by a GCM (Chen et 

al. 2011c). This variation is based on a CF approach that has the following steps: 

 

1) Similarly to the CF method, the adjusted monthly mean Tmax and Tmin for the future 

horizon ( futadjT , ) are estimated as: 

 

)( ,,, refGCMfutGCMobsfutadj TTTT −+=                                   (8.5)
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The adjusted values are obtained by adding the differences predicted by a GCM between the 

future horizon and the reference period )( ,, refGCMfutGCM TT −  to the observed mean monthly 

observed temperatures )( obsT .  

 

2) Monthly means and variances of precipitation, monthly variances of Tmax and Tmin and 

transition probabilities of precipitation occurrence p01 and p11 for the future horizon are 

adjusted by:  

 

)/( ,,, refGCMfutGCMobsfutadj XXXX ×=                                    (8.6) 

 

where X represents the variable to be adjusted. The subscripts are the same as above.    

 

3) The p01 and p11 values are expressed in terms of an unconditional probability of daily 

precipitation occurrence (π ) and the lag-1 autocorrelation of daily precipitation (r) for 

further adjustments. 

 

1101

01

1 PP

P

++
=π

                                                        (8.7) 

 

0111 PPr −=                                                             (8.8) 

 

4) The adjusted mean daily precipitation per wet day (ud) is estimated as (Wilks, 1999a; 

Zhang, 2005): 

 

π
μμ

d

m
d N

=
                                                            (8.9) 

 

where Nd is the number of days in a month, πdN  is the average number of wet days in a 

month, and um is the step (2)-adjusted monthly precipitation.  
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5) The adjusted daily variance (
2
dσ ) is approximated using equation (8.10), based on the 

step (2)-adjusted variance of the monthly precipitation (
2

mσ ) (Wilks, 1999a). 
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                                      (8.10) 

 

All of the adjusted precipitation, Tmax and Tmin parameter values were input to CLIGEN to 

generate 600 years of daily time series (Thirty 20-year realizations).  

 

8.4.2.4 Statistical downscaling model (SDSM) 

The SDSM is a downscaling tool that can be used to develop climate change scenarios 

(Wilby et al., 2002a). It uses a conditional process to downscale precipitation. Local 

precipitation amounts depend on wet-/dry-day occurrences, which in turn depend on 

regional-scale predictors such as mean sea level pressure, specific humidity and geopotential 

height (Wilby et al. 1999; Wilby and Dawson 2007). Specifically, downscaling of 

precipitation occurrence is achieved by linking daily probabilities of non-zero precipitation 

with large-scale predictor variables. 

 

The main procedures of the SDSM for downscaling wet day precipitation intensity, Tmax 

and Tmin (predictands) are the following: (1) Identification of the screen variable: a partial 

correlation analysis was used to identify the relationship between NCEP variables (table 8.2) 

and predictands (precipitation, Tmax and Tmin). Variables that were significantly correlated 

to predictands were then selected as predictors; (2) Model calibration: multiple linear 

regressive equations were established between predictands and step (1)-identified predictors 

for each season. Since the distribution of the daily precipitation is highly skewed, a fourth 

root transformation was applied to the original precipitation before fitting the transfer 

function (Wilby and Dawson, 2007); and (3) Application of transfer functions: established 

transfer functions were further used to downscale precipitation amounts, Tmax and Tmin for 

the future horizon.  
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The SDSM bias correction was applied to insure that observed and downscaled precipitation 

totals were equal for the simulation period. A variance inflation scheme was also used, to 

increase the variance of precipitation and temperatures to better agree with observations. 

When using bias correction and variance inflation, a SDSM essentially becomes a WG, in 

which a stochastic component is superimposed on top of the downscaled variable. This is 

especially true for precipitation, where the explained variance is generally less than 30% 

(Wilby et al, 1999). Since a large number of variables are required to use an SDSM, only 

CGCM3 under A2 emission scenario was used with this downscaling method.  

 

8.4.3 Hydrological model structures and parameters 

Two lumped conceptual models and one physically-based distributed model were used to 

investigate the contributions of model structure and choice of model parameters to the global 

uncertainty. 

 

8.4.3.1 Hydrological model structures 

1) HSAMI model : 

HSAMI is a lumped conceptual rainfall-runoff model developed by Hydro-Québec and 

which has been used to forecast natural inflows for over 20 years (Fortin, 2000). It is used by 

Hydro-Québec for hourly and daily forecasting of natural inflows on 84 watersheds with 

surface areas ranging from 160 km2 to 69,195 km2. Hydro-Québec's total installed 

hydropower capacity on these basins exceeds 40GW. HSAMI has up to 23 model 

parameters. Two parameters account for evapotranspiration, six for snowmelt, ten for vertical 

water movement, and five for horizontal water movement. Vertical flows are simulated with 

four interconnected linear reservoirs (snow on the ground, surface water, unsaturated and 

saturated zones). Horizontal flows are filtered through two hydrograms and one linear 

reservoir. Model calibration is done automatically using the shuffled complex evolution 
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optimization algorithm (SCE-UA) (Duan, 2003). The model accounts for snow 

accumulation, snowmelt, soil freezing/thawing and evapotranspiration.  

The basin-averaged minimum required daily input data for HSAMI are: Tmax, Tmin, liquid 

and solid precipitations. Cloud cover fraction and snow water equivalent can also be used as 

inputs, if available. A natural inflow or discharge time series is also needed for proper 

calibration/validation. The optimal combination of parameters was chosen based on Nash-

Sutcliffe criteria. 

 

2) HMETS model: 

HMETS is a lumped conceptual rainfall-runoff model developed at the Ecole de Technologie 

Supérieure (Brissette, 2010). It is a MATLAB-based freeware, and has up to 20 free 

parameters: ten parameters for snowmelt, one for evapotranspiration, four for infiltration and 

five for upper and lower soil reservoirs. Similarly to HSAMI, model calibration is done 

automatically using the SCE-UA (Duan, 2003), and as with the HSAMI, it accounts for snow 

accumulation, snowmelt, soil freezing/thawing and evapotranspiration.  

 

The basin-averaged minimum required daily input data for HMETS are: Tmax, Tmin, liquid 

and solid precipitations or total precipitation. A natural inflow or discharge time series is 

needed for proper calibration/validation. The optimal combination of parameters was chosen 

based on Nash-Sutcliffe criteria. 

 

3) HYDROTEL model: 

The HYDROTEL model is a spatially-distributed and physically-based simulation tool 

developed by a research team from the Institut National de la Recherche Scientifique in 

Quebec City, Canada (Fortin et al. 2001). It has been applied to several watersheds located in 

the province of Quebec and in other countries such as southern France (Fortin et al. 1995; 

Fortin et al. 2007). Currently, it is used operationally by the Centre d’expertise hydrique du 

Québec for flow forecasting in the context of river and reservoir management.  
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To run this model, a given watershed must first be divided into several simulation units (or 

elementary subwatersheds) called relatively homogeneous hydrological units (RHHUs). The 

number of RHHU subdivisions on a given river basin depends on the hydrological network’s 

discretization specified by the user. Each RHHU comprises a river reach, may include 

various land occupations and is assumed to be characterized by a single soil type. The 

simulation process is based on five sub-models: (1) snowpack accumulation and melting, (2) 

potential evapotranspitation (PET), (3) vertical water budget in the subsurface, unsaturated 

and saturated zones, (4) flow on sub-watersheds, and (5) channel flow in river reaches. 

Simulations can be executed at a daily or sub-daily time step. In this study, simulations were 

run on a daily basis. To reduce the calibration time, only the twelve most sensitive 

parameters out of 26 were calibrated automatically using the SCE-UA (Duan, 2003). The 

remaining parameters were set to fixed values according to the results of previous studies 

(Turcotte et al., 2007).  

 

The required meteorological inputs are daily precipitation, Tmax and Tmin (see section 2.2). 

To simplify the comparison with the other two lumped conceptual models, the time series of 

precipitation and temperatures for the future period were aggregated and used as a lumped 

input, instead of using spatially distributed data to run the model. 

 

8.4.3.2 Hydrological model parameters 

To analyze the parameter space uncertainty, HSAMI was automatically calibrated ten times 

using the SCE-UA. In each calibration, the SCE-UA method looks for an optimal parameter 

set within a bounded parameter space, based on maximization of the Nash-Sutcliffe 

efficiency criterion. All 23 parameters were invariably considered in each calibration. 

Twenty years (1971-1990) of daily discharge was used for model calibration and 10 year of 

data (1991-2000) was used for validation. The optimal combination of parameters was 

selected, based on Nash-Sutcliffe criteria. This set of parameters yielded Nash-Sutcliffe 

criteria values of 0.90 for calibration and 0.85 for validation. These high values for Nash-
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Sutcliffe criteria are representative of the good quality of weather inputs and observed 

discharge for the Manicouagan 5 river basin. 

 

Since a previous study showed that the calibration of a hydrological model contributes small 

uncertainty on hydrological impacts of climate change (Poulin et al., 2011), only HSAMI 

was used to investigate parameter space uncertainty. Both HMETS and HYDROTEL were 

only calibrated once. The daily discharge from 1971-1990 was used to calibrate HMETS and 

the data from 1991-2000 was used for validation with Nash-Sutcliffe values of 0.85 for 

calibration and 0.73 for validation. Since HYDROTEL calibration is time-consuming, even 

when using a multi-processor computer (64-bit system with four 2.94-GHz processors), only 

ten years of daily discharge data (1979-1988) with a mean annual discharge similar to that of 

the 20-year time series (1971-1990) was used for calibration with a Nash-Sutcliffe value of 

0.85. The other ten years of data (1989-1998) with a mean annual discharge similar to that of 

the calibration time series (1979-1988) was used for validation with a Nash-Sutcliffe value of 

0.75.   

 

8.4.4 Statistical analysis 

The annual hydrographs were calculated from all daily discharge time series simulated by the 

three hydrological models. They were further grouped into six uncertainty sources. For 

example, to investigate the uncertainty linked to GCMs, hydrographs were grouped by 

GCMs (six GCMs), each group including hydrographs from two emission scenarios, three 

downscaling methods and three hydrological models. To ensure that each projection was 

weighted equally, projections involving hydrological model parameters and downscaling 

SDSM were not included. The combination and sample size of each group for each source of 

uncertainty are presented in table 8.3. 

 

The mean annual hydrograph was calculated for each group. For example, eighteen 

hydrographs were averaged for each GCM. Nine hydrological parameters (table 8.4) were 

then calculated as criteria to investigate each source of uncertainty. Time to the beginning 
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and to the end of flood (Criteria 7 and 9) is determined by the following procedures: (1) A 

cumulative hydrograph is calculated based on the mean annual hydrograph. (2) Four 

breakpoints of the cumulative mean hydrograph are then determined insuring that the Root-

Mean-Square error between the cumulative mean hydrograph and a straight line 

approximation (5 lines) is minimized. The time to the first breakpoint is the beginning of 

spring flood, and the time to the second is the end of flood.  

 
 

Table 8.3 The combination and sample size of each group for each source of uncertainty 
 

ID Source 
Group 

size 
Combination of each group 

Sample size 

of each 

group 

1 GCM 6 2 (GGES) × 3 (DS)×3 (HM)  18 

2 GGES 2 6 (GCM) × 3 (DS)×3 (HM)  54 

3 GCM initial conditions  5 2 (GGES) × 3 (DS)×3 (HM)  18 

4 Downscaling method (DS) 4* 6 (GCM) × 2 (GGES)×3 (HM)  36 

5 Hydrological model (HM) 3 6 (GCM) × 2 (GGES)×3 (DS)  36 

6 Hydrological model 

parameters  
10 6 (GCM) × 2 (GGES)×3 (DS) 36 

 
*SDSM is only used to investigate downscaling uncertainty, since only CGCM3 under A2 emission 
scenario was used with this method. 
 

 

Table 8.4 Nine criteria used to investigate each source of uncertainty 
 
ID Criterion ID Criterion ID Criterion 

1 Annual mean discharge 4
Winter (DJFM) 

mean discharge 
7 

Time to the 

beginning of flood 

2 
Spring (AMJ) mean 

discharge 
5

95% low flow 

dishcang 
8 

Time to peak 

discharge 

3 
Summer-autumn (JASON) 

mean discharge 
6

Magnitude of peak 

discharge 
9 

Time to the end of 

flood 
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A paired t-test was performed for each combination of uncertainty sources to assess its 

contribution in predicting mean annual and seasonal (spring, summer-autumn and winter) 

discharges. For example, for the assessment of GCM uncertainty, the paired t-test was 

conducted by emission scenarios, downscaling methods and hydrological models (n=18). 

Furthermore, annual and seasonal discharges of the future horizon (2081-2100) were tested 

against the discharges at the reference period (1971-1990) for significant changes, using a t-

test. The significance level used in this research is P=0.05 -- referring to a Type 1 error. The 

larger the P value, the more likely two populations are similar, and vice versa.  

 

The statistical tests could not be conducted for the other five chosen criteria (ID 5-9, table 

8.4), because the mean value of each criteria is different when computing from the mean 

hydrograph versus averaging the criteria obtained from each individual hydrograph within a 

group. For example, if the peak discharges from two hydrographs are 2000 m3/s and 3000 

m3/s, when the two hydrographs are averaged, the peak discharge will necessarily be smaller 

than 2500 m3/s, unless the peak discharge of each hydrograph occurs on the exact same day. 

 

8.5 Results 

8.5.1 Validation of downscaling methods and hydrological models  

The validation of each hydrological model was based on the quality of the simulated mean 

hydrographs at the basin outlet, when compared to the observed mean hydrograph. Mean 

hydrograph results are presented in figure 8.3. Mean hydrographs simulated by HSAMI using 

input data from the CLIGEN (labeled CLIGEN-SIM) and from the SDSM (labeled SDSM-

SIM) at the reference period are also displayed. These two curves are an indirect validation 

of the ability of CLIGEN and SDSM to produce unbiased estimates of precipitation and 

temperatures. The mean hydrograph from observed discharge (labeled OBS) is also presented 

for comparison. Overall results are very good, although small biases were introduced by the 

hydrological models, especially HYDROTEL, which somewhat overestimated late summer 

and autumn streamflows. The results indicate that all three hydrological models perform 
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well, and that CLIGEN and SDSM generate precipitation and temperature data of excellent 

quality.   

 
 

 

 
Figure 8.3 Observed (OBS) and modeled averaged hydrographs for the reference  

period (1971-1990) for the ‘Manicouagan 5’ watershed. The simulated hydrographs  
include HSAMI modeled using CLIGEN (CLIGEN-SIM) and SDSM (SDSM-SIM) 

generated input data, as well as simulations with HSAMI, HMETS and  
HYDROTEL models using observed meteorological data for the reference 

 period (HSAMI-SIM, HMETS-SIM and HYDROTEL-SIM). 
 
 
8.5.2 Climate change projections 

The seasonal (spring, summer-autumn and winter) and annual changes of precipitation (ratio) 

and mean temperature (difference) are plotted by GCMs, GGES, GCM initial conditions and 

downscaling techniques in figure 8.4 to illustrate each source of uncertainty. Climate 

projections from the same source are first grouped and then averaged to a mean climate 

projection. For example, eighteen hydrographs were averaged for each GCM for assessing 

the GCM uncertainty. 

 



250 

All of the GCMs, GGES, GCM initial conditions and downscaling techniques suggest 

increases in seasonal and annual precipitations and mean temperatures for the 2081-2100 

horizon. GCMs and GGES are the major contributors to uncertainty, although GCM initial 

conditions and downscaling techniques can be important depending on the season. Figure 8.4 

shows that the MIROC3 model contributes significantly to the uncertainty envelope, 

particularly with respect to temperature. The uncertainty related to GCMs is larger than that 

linked to GGES, even though two emission scenarios are compared to six GCMs, because 

these two scenarios represent two extremes of greenhouse gas emissions. The uncertainty 

linked to the GCM initial conditions is much smaller than for GCMs and GGES, with the 

exception of spring precipitation. 

 

Downscaling method uncertainty proved to be the least important in predicting precipitation 

and mean temperature. The CF, WG and bias correction methods are similar in downscaling 

quantities of precipitation and temperature. Thus, they suggest very similar changes in both 

mean precipitation and temperature, as shown in figure 8.4. However, since the WG and bias 

correction methods modify precipitation occurrence, and the CF method does not, these three 

methods may result in different hydrologic responses. The SDSM predicts larger increases in 

annual average temperatures, with the exception of the spring season.  
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Figure 8.4 Scatter plots of seasonal and annual changes of mean  

temperature and precipitation for GCMs, GGES, GCM initial  
conditions and downscaling techniques at the 2081-2100 horizon. 

 
 
8.5.3 Hydrological impacts 

Figure 8.5 presents future average hydrographs simulated by three hydrological models using 

downscaled climate projections from GCMs, GGES and GCM initial conditions. The mean 

annual hydrographs are plotted through averaging hydrological projections by the different 

sources, respectively. The annual mean hydrograph for the reference period (1971-1990) is 

also plotted for comparison. To avoid any bias resulting from the hydrological modeling 

process, the hydrograph for the reference period is represented by the average of the 

simulations of the three hydrological models chosen for the reference period, and not by 

observations. The results show streamflow increases during winter (November - April) and a 

decrease in summer (June - October) in most cases. The snowmelt peak discharges are lower 

than those of the reference period, with the exception of those predicted by the GFDL and 
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MPI models (figure 8.5a), and from the models downscaled with the WG-based method 

(figure 8.5d). These observations are consistent with other Nordic watershed studies, and 

testify to more frequent winter snowmelt episodes and lessened snowpack due to increasing 

temperatures. For all hydrographs, peak discharges for the future horizon are observed earlier 

than for the reference period. Lags vary from 8 to 25 days. The uncertainty related to GCM 

structure is the largest, but all other sources (with the exception of hydrological model 

parameters) also contribute to large uncertainties. For example, downscaling methods have a 

comparable uncertainty to GCMs in predicting spring discharges. The MIROC3 model 

(figure 8.5a) and the SDSM method (figure 8.5d) contribute the largest parts to GCM and 

downscaling uncertainty, respectively. In order to look at uncertainty in more detail, the 

global uncertainty of hydrological impacts under climate change is further compared using 

the nine criteria mentioned earlier. 

 
 

 

 
Figure 8.5 Average annual hydrographs for the future (2081-2100) and reference  

(1971-1990) periods at the Manicouagan 5 river basin. OBS = observed data  
simulated discharge; CAL1-CAL2 = the set of hydrological model parameters;  

A=GCMs; B=GGES; C=initial conditions; D=Downscaling methods;  
E=Hydrology models and F=Hydrology model parameters. 
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8.5.3.1 The uncertainty of a climate model structure 

The relative changes in values between the future and reference periods ((Fut-Ref) / Ref × 

100%) for the simulated values of the nine criteria of table 8.4 are presented in table 8.5. All 

GCMs suggest a statistically significant increase in annual discharge ranging between 5.7% 

(CSIRO) and 21.7% (MPI) at the P=0.05 level for the 2081-2100 horizon. The paired t-tests 

show that six GCMs are significantly classified into four groups at P=0.05. Within each 

group, there is no significant difference among mean annual discharges. Two climate models 

(MIROC3 and MRI) suggest decreases in spring (AMJ) discharges, but the results are not 

statistically significant. The response for summer-autumn (JASON) discharge is not clear 

(three models predict increases and three suggest decreases), but all six GCMs predict 

statistically significant increases in winter (DJFM) discharge. All GCMs suggest an increase 

in low flow, ranging between 34.0% (CSIRO) and 199.1% (MIROC3), but the peak 

discharge has a different pattern. Two GCMs predict slight increases while four GCMs 

suggest decreases with two models (MIROC3 and MRI) largely contributing to the 

uncertainty. All GCMs suggest earlier flood season and peak discharge. The end of flood 

would also come earlier. Specifically, the flood season would move earlier, from 12 days up 

to 42 days earlier, but the end of flood would be earlier by only 6 to 22 days, indicating that 

the flood season would be longer. 

 

8.5.3.2 Uncertainty of greenhouse gas emission scenarios 

Table 8.6 presents results with respect to GGES. Future changes in discharge are statistically 

significant. The paired t-tests show that the annual and seasonal discharges predicted by the 

A2 scenario are consistently greater than those suggested by the B1 scenario. Similarly to the 

results observed for GCMs, the time to the beginning of flood, time to peak discharge and 

time to the end of flood for the 2081-2100 horizon are observed earlier than for the reference 

period, and the flood season will be longer.  
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Table 8.5 Statistics of simulated discharge for the reference period (1971-1990) and relative 
changes ((Fut-Ref) / Ref × 100%) between the future (2081-2100) and reference periods 

 
Criterion 

ID 
1 2 3 4 5 6 7 8 9 

Reference 543.4 1025.6 579.8 134.8 97.7 2220.8 1 May 24 May 13 Jun 

CGCM3 21.4*a 24.2*a 5.6*a 91.7*a 78.2 -2.7 
11 Apr 

(20) 

16 May 

(8) 

7 Jun 

(6) 

CSIRO 5.7*b 8.1*b -2.6b 37.5*b 34.0 -5.3 
19 Apr 

(12) 

11 May 

(13) 

3 Jun 

(10) 

GFDL 11.0*c 18.6*a -7.9*c 70.2*c 68.4 2.6 
9 Apr 

(22) 

1 May 

(23) 

31 May 

(13) 

MIROC3 11.9*d -6.2c -8.7*c 227.6*d 199.1 -33.1 
20 Mar 

(42) 

29 Apr 

(25) 

22 May 

(22) 

MPI 21.7*a 13.7*d 22.1*d 64.4*c 45.9 7.2 
13 Apr 

(18) 

1 May 

(23) 

25 May 

(19) 

MRI 19.4*a -2.6c 20.8*d 137.3*e 97.7 -33.9 
1 Apr 

(30) 

30 Apr 

(24) 

31 May 

(13) 

 
* denotes a significant difference of modeled discharges between the future and reference periods at 
the P=0.05 level. Data from two emission scenarios, three downscaling methods and three 
hydrological models (n=18) for each GCM were tested against the mean discharge at the reference 
period using a t-test. Different letters in each column indicate a statistically significant difference 
(P=0.05) for a paired t-test.  
 
The last three statistics are the Julian days of average time of occurrence rather than relative changes; 
the number in parenthesis indicates how much earlier the occurrence is (in days) when compared to 
the reference period.  
 
 
8.5.3.3 Uncertainty of GCM initial conditions  

Ensemble runs are only available for the MRI model. Ensemble runs result from running the 

same GCM with different initial conditions. These runs represent a natural variability as seen 

by a climate model. Five runs of MRI under either A2 or B1 scenarios were downscaled by 

three methods (bias correction, CF and WG-based methods) to obtained climate projections. 

Hydrographs simulated by three hydrological models are then averaged. The results show 
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that all ensemble runs suggest statistically significant (P=0.05) increases in annual discharge 

between 5.7% and 19.8% (table 8.7). Four runs suggest a decrease in spring discharge while 

one predicts an increase. The paired t-tests show that there are significant differences among 

all the runs, except for the spring discharges between run1 and run3. All runs show 

statistically significant increases in summer-autumn and winter discharges, which are 

classified into three groups by paired t-tests at the P=0.05 level. Compared to the reference 

period, low flows would increase by 77.1% to 110.8% while peak discharges would decrease 

by 25.5% to 40.2%. Run1 contributes largely to low flow uncertainty. In addition, all runs 

suggest an earlier snowmelt, shorter time to peak discharge, and a longer flood season. The 

changing range of the time to the end flood (4 to 22 days) was greater than that of the time to 

the beginning of flood (23 to 32 days).   

 
 
Table 8.6 Statistics of simulated discharge for the reference period (1971-1990) and relative 
changes ((Fut-Ref) / Ref × 100%) between the future (2081-2100) and the reference periods 
 

Criterion 

ID 
1 2 3 4 5 6 7 8 9 

Reference 543.4 1025.6 579.8 134.8 97.7 2220.8 1 May 
24 

May 
13 Jun 

A2 19.5*a 9.6*a 6.6*a 146.9*a 128.3 -12.5 
2 Apr 

(29) 

1 May 

(23) 

29 May 

(15) 

B1 7.9*b 9.0*b 3.2*b 62.7*b 55.8 -14.8 
14 Apr 

(17) 

9 May 

(15) 

3 Jun 

(10) 

 
* denotes a significant difference of modeled discharges between the future and reference periods at 
the P=0.05 level. Data from six GCMS, three downscaling methods and three hydrological models 
(n=54) for each GGES were tested against the mean discharge at the reference period using a t-test. 
Different letters in each column indicate a statistically significant difference (P=0.05) for a paired t-
test.  
 
The last three statistics are the Julian days of average time of occurrence rather than relative changes; 
the number in parenthesis indicates how much earlier the occurrence is (in days) when compared to 
the reference period. 
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Table 8.7 Statistics of simulated discharge for the reference period (1971-1990) and relative 
changes ((Fut-Ref) / Ref × 100%) between the future (2081-2100) and the reference periods 

 
Criterion 

ID 
1 2 3 4 5 6 7 8 9 

Reference 543.4 1025.6 579.8 134.8 97.7 2220.8 1 May 24 May 13 Jun 

RUN1 19.5*a -2.6a 21.3*a 136.5*a 110.8 -33.8 
1 Apr 

(30) 

30 Apr 

(24) 

31 May 

(13) 

RUN2 5.7*b -8.1*b 2.4b 102.1*b 74.2 -38.3 
30 Mar 

(32) 

30 Apr 

(24) 
5 Jun (8) 

RUN3 13.6*c -1.5a 13.0*c 103.4*b 76.7 -25.5 
6 Apr 

(25) 

9 May 

(15) 

2 Jun 

(11) 

RUN4 9.0*d -14.1*c 13.8*c 114.9*c 87.0 -40.2 
30 Mar 

(32) 

26 Apr 

(28) 

22 May 

(22) 

RUN5 19.8*a 6.3d 19.0*a 101.6*b 77.1 -26.5 
8 Apr 

(23) 

13 May 

(11) 
9 Jun (4) 

 
* denotes significant difference of modeled discharges between future and reference period at the 
P=0.05 level. Data from 2 GGES, three downscaling methods and three hydrological models (n=18) 
for each run were tested against the mean discharge at the reference period using a t-test. Different 
letters in each column indicate a statistically significant difference (P=0.05) for a paired t-test.  
 
The last three statistics are the Julian days of average time of occurrence rather than relative changes; 
the number in parenthesis indicates how earlier the occurrence is (in days) when compared to the 
reference period, Mar=March, Apr=April and Jun=June. 
 
 
 
8.5.3.4 Uncertainty of downscaling techniques 

Compared to the reference period, the average annual discharge for the 2081-2100 horizon 

shows a statistically significant increase (9.0% to 17.1%) for every downscaling method 

(P<0.05) (table 8.8). Moreover, the paired t-tests show significant differences between each 

paired group. The bias correction and WG-based methods predict a statistically significant 

increase in spring discharge while the SDSM predicts a sharp decrease. All of the 

downscaling methods suggest statistically significant increases in summer-autumn and winter 
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discharges, and increases in low flow. The SDSM predicts the largest increase in winter 

temperatures, resulting in the largest increase in winter discharge and the largest decrease in 

peak flood discharge. Similarly to other uncertainty sources, the time to the beginning and 

the end of flood, and the time to peak discharge would be earlier and the flood season would 

last longer.   

 
 
Table 8.8 Statistics of simulated discharge for the reference period (1971-1990) and relative 
changes ((Fut-Ref) / Ref × 100%) between the future (2081-2100) and the reference periods 

 
Criterion 

ID 
1 2 3 4 5 6 7 8 9 

Reference 543.4 1025.6 579.8 134.8 97.7 2220.8 1 May 24 May 13 Jun 

BC 14.4*a 9.8*a 5.2*a 90.3*a 78.8 -14.4 
10 Apr 

(21) 

2 May 

(22) 

2 Jun 

(11) 

CF 13.0*b 0.8b 2.1*b 141.9*b 123.1 -24.4 
3 Apr 

(28) 

1 May 

(23) 

3 Jun 

(10) 

WG 17.1*c 19.5*c 3.1*c 79.9*c 54.5 3.0 
9 Apr 

(22) 

5 May 

(19) 

31 May 

(13) 

SDSM 9.0 -23.2 -3.4 260.4 252.3 -44.1 
25 Mar 

(37) 

20 Apr 

(34) 

27 May 

(17) 

 
* denotes a significant difference of modeled discharges between the future and the reference periods 
at the P=0.05 level. Data from six GCMS, two GGES and three hydrological models (n=36) for bias 
correction (BC), CF and WG-based downscaling methods were tested against the mean discharge at 
the reference period using a t-test. The results of the SDSM were not included. Different letters in 
each column indicate a statistically significant difference (P=0.05) for a paired t-test.  
 
The last three statistics are the Julian days of average time of occurrence rather than relative changes; 
the number in parenthesis indicates how much earlier the occurrence is (in days) when compared to 
the reference period. 
 
 
8.5.3.5 Uncertainty of hydrological model structure 

All hydrological models suggest statistically significant increases in annual (9.7% to 17.1%) 

and winter discharge (69.9% to 136.6%), respectively, at the P=0.05 level (table 8.9). The 
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paired t-tests show significant differences between the hydrological models in predicting 

annual, summer-autumn and winter discharge. There are no consistent differences between 

the two lumped models and the distributed physically-based model. Overall the trends are the 

same as previously discussed.   

 
 
Table 8.9 Statistics of simulated discharge for the reference period (1971-1990) and relative 
changes ((Fut-Ref) / Ref × 100%) between the future (2081-2100) and the reference periods 

 
Criterion ID 1 2 3 4 5 6 7 8 9 

Reference 543.4 1025.6 579.8 134.8 97.7 2220.8 1 May 24 May 13 Jun 

HSAMI 9.7 *a 11.0*a -2.7a 69.9*a 58.2 -14.8 
10 Apr 

(21) 

2 May 

(22) 

5 Jun 

(8) 

HMETS 17.1*b 9.9*a 2.7b 136.6*b 119.3 -12.8 
3 Apr 

(28) 

2 May 

(22) 

30 May 

(14) 

HYDROTEL 15.4*c 2.3b 9.6*c 121.6*c 123.6 -21.4 
12 Apr 

(19) 

1 May 

(23) 

3 Jun 

(10) 

 
* denotes a significant difference of modeled discharges between the future and the reference periods 
at the P=0.05 level. Data from six GCMS, two GGES and three downscaling methods (n=36) for each 
hydrological model were tested against the mean discharge at the reference period using a t-test. 
Different letters in each column indicate a statistically significant difference (P=0.05) for a paired t-
test.  
 
The last three statistics are the Julian days of average time of occurrence rather than relative changes; 
the number in parenthesis indicates how much earlier the occurrence is (in days) when compared to 
the reference period. 
 
 
8.5.3.6 Uncertainty of hydrological model parameters 

The observed future trends are the same as discussed above. Table 8.10 clearly shows that 

the uncertainty linked to the choice of model parameters is very low compared to the other 

sources discussed above.   
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8.6 Discussion and conclusions 

The past decade has seen a rapidly increasing number of climate change impact studies, with 

a large number of these focusing on water resources. With the growing availability of GCMs 

outputs, the results display a larger uncertainty, especially for a more distant future. Earlier 

studies took a relatively narrow view of uncertainty sources, often with GCM structure and 

GGES as the only two sources considered. Wilby and Harris (2006) were the first to propose 

a framework for quantifying uncertainties in climate change on river low flows. To our 

knowledge, this is still the most thorough uncertainty study in the literature. The proposed 

framework was solid, but the case application was not fully exhaustive, as mentioned earlier.  

 

This research assessed the integrated impacts of climate change uncertainty on various 

hydrological variables, under an equal-weighted scheme. The uncertainty envelopes combine 

results from an ensemble of six GCMs, two GGES, five GCM initial conditions, four 

downscaling techniques, three hydrological model structures and 10 sets of hydrological 

model parameters. Since the uncertainties of dynamical and statistical downscaling were 

specifically investigated by a previous study (Chen et al., 2011c), only four statistical 

downscaling techniques are used in this research.  

 

The results show that all of the GCMs, GGES, GCM initial conditions and downscaling 

techniques suggest increases in seasonal and annual precipitations and mean temperatures for 

the 2081-2100 horizon. GCMs and GGES are consistently major contributors to uncertainty, 

while GCM initial conditions and downscaling methods show less uncertainty at the seasonal 

and yearly scales. The GCM initial conditions are critical for spring precipitation, but are 

much less important for other seasons and at the yearly scale. Compared to the other sources, 

the uncertainty of downscaling methods was less important in predicting seasonal and annual 

precipitation and mean temperature. The SDSM predicts the largest increase in annual mean 

temperatures and makes a considerable contribution to the uncertainty of downscaling 

methods. 
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Table 8.10 Statistics of simulated discharge for the reference period (1971-1990) and relative 
changes ((Fut-Ref) / Ref × 100%) between the future (2081-2100) and the reference periods 

 
Criterion 

ID 
1 2 3 4 5 6 7 8 9 

Reference 543.4 1025.6 579.8 134.8 97.7 2220.8 1 May 24 May 13 Jun 

CAL1 9.7* 11.0* -2.7* 69.9* 58.2 -14.8 
10 Apr 

(21) 

2 May 

(22) 

5 Jun 

(8) 

CAL2 9.9* 11.8* -4.1* 75.9* 64.8 -14.1 
9 Apr 

(22) 

2 May 

(22) 

5 Jun 

(8) 

CAL3 10.6* 11.7* -2.6* 75.1* 63.9 -14.3 
9 Apr 

(22) 

2 May 

(22) 

5 Jun 

(8) 

CAL4 9.4* 11.9* -5.0* 73.2* 61.2 -14.1 
9 Apr 

(22) 

3 May 

(21) 

5 Jun 

(8) 

CAL5 9.6* 11.8* -4.5* 74.2* 62.9 -14.3 
9 Apr 

(22) 

3 May 

(21) 

5 Jun 

(8) 

CAL6 9.8* 11.1* -4.2* 79.0* 67.6 -15.1 
9 Apr 

(22) 

2 May 

(22) 

5 Jun 

(8) 

CAL7 9.5* 11.1* -3.1* 68.9* 59.5 -14.4 
10 Apr 

(21) 

2 May 

(22) 

5 Jun 

(8) 

CAL8 9.4* 10.0* -3.6* 76.4* 68.0 -15.7 
9 Apr 

(22) 

2 May 

(22) 

5 Jun 

(8) 

CAL9 10.1* 10.5* -2.6* 76.8* 68.1 -15.5 
9 Apr 

(22) 

2 May 

(22) 

5 Jun 

(8) 

CAL10 10.3* 11.3* -2.2* 73.4* 61.6 -15.0 
10 Apr 

(21) 

2 May 

(22) 

5 Jun 

(8) 

 
* denotes a significant difference of modeled discharges between the future and the reference periods 
at the P=0.05 level. Data from six GCMS, two GGES and three downscaling methods (n=36) for each 
set of hydrological model parameter were tested against the mean discharge at the reference period 
using a t-test.  
 
The last three statistics are the Julian day of average time of occurrence rather than relative changes; 
the number in parenthesis indicates how much earlier the occurrence is (in days) when compared to 
the reference period. 
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Climate projections (precipitation and temperatures) were then transferred to watershed 

streamflows using hydrological models. Compared to the reference period, there is a 

consistent increase in winter streamflows (November - April) and a decrease in summer 

(June - October) discharge. The snowmelt peak discharges are diminished, with the exception 

of those predicted by the GFDL and the MPI GCMs, and by the WG-based downscaling 

method. Peak snowmelt discharges for the future horizon are observed earlier than for the 

reference period. The MIROC3 GCM and the SDSM downscaling method contribute largely 

to their uncertainty envelopes, because their behaviors are markedly different in several 

instances. 

 

In order to outline global uncertainty in more detail, table 8.11 ranks all six uncertainty 

sources in order of importance; each hydrological variable based on its relative change ((Fut-

Ref) / Ref × 100%) or range [Min, Max] for the 2081-2100 horizon. As outlined by several 

previous studies, GCMs are consistently major contributors to uncertainty and ranks either as 

the first or the second most important source for all nine of the studied hydrological 

variables. Downscaling methods are the next most important source of uncertainty and rank 

first in importance for three hydrological variables and second for two others. GCM initial 

conditions are the third largest source of uncertainty and rank first or second for four 

variables. Surprisingly perhaps, GGES are only the fourth largest source of uncertainty, with 

a contribution similar to that of hydrological model structure. Both these sources rank either 

third, fourth or sixth, for all hydrological variables. The results for GGES and hydrological 

model structure may partly be influenced by the smaller sample size that may underestimate 

the true uncertainty envelope. However, the two chosen GGES are really opposites and 

represent optimistic and pessimistic scenarios, and should adequately cover the range of 

uncertainty. The same can be said about the choice of very different hydrological model 

structures. The least important source of uncertainty is by far the one linked to the choice of 

hydrological model calibration parameters. A similar conclusion was drawn by Poulin et al. 

(2011) when they investigated the contributions of model structure and parameter choice to 

the uncertainty related to hydrological modeling in climate change impact studies.  
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Overall, this research underlines some of the dangers arising from climate change impact 

studies based on a single GCM and/or downscaling method and/or impact model. Using two 

carefully selected models and/or methods may also be insufficient, because the process by 

which climate projections become hydrologic variables is non-linear. A good example relates 

to downscaling uncertainty. The uncertainty of downscaling methods is less important in 

predicting seasonal and annual changes of precipitation and mean temperature (figure 8.3). In 

particular, the CF and bias correction methods used in this study are very similar; but they 

are markedly different in predicting streamflows. 

 

The uncertainty cascade considered in this work is not exhaustive. GGES and GCM runs 

were limited by the availability of model outputs for using a SDSM and looking at GCM 

initial condition. Only the CGCM3 output was downscaled by the SDSM and five runs of 

MRI were used to assess the GCM initial conditions. In addition, all climate projections and 

hydrological models were equally weighted to predict the hydrology on the watershed. Some 

authors have recommended assigning unequal weights to GCMs and hydrological models 

based on their performances at the reference period. For example, GCMs can be weighted 

according to their relative ability to reproduce present climate variables, and hydrological 

models can be weighted by their performance at reproducing flow series (Wilby and Harris, 

2006). However, assigning unequal weights to GCMs and/or hydrological models is still a 

controversial topic in climate change impact studies (Stainforth et al., 2007; Brekke et al, 

2008). The main reasons are that (1) the interpretation of the output range as a formal 

uncertainty estimate basically depends on the spread of results from a small number of 

climate models and/or hydrological models, and (2) the performances of models for present 

and future periods are probably different. Since this study focuses on outlining the global 

uncertainty from a range of sources, the simple equal-weighted scheme may be more 

appropriate.  

 

Results from this work outline several of the pitfalls of climate change impact studies, and 

also show that it will be extremely difficult to suggest a universal simplified approach to 

uncertainty studies. Major sources of uncertainty depend on the variable under study and may 
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also likely depend on the basin under study. In certain cases, some sources of uncertainty 

may hide within others. For example, if one source of uncertainty is consistently larger than 

another, it may be unnecessary to take the latter one into account. This research averaged all 

projections for each uncertainty source, and could not extract such information from the 

major uncertainty contributors. This would be an area for future research. 

 
 

Table 8.11The relative change ((Fut-Ref) / Ref × 100%) range (in square brackets)  
of each statistic (hydrological variable) between future (2081-2100) and reference  

periods for all sources of uncertainty, and the descending ranking of all sources  
of uncertainty for each variable (in parentheses). For the last three statistics, differences  

are expressed in days and not in terms of relative difference. SD=downscaling  
techniques, HM=hydrological model, HMP=hydrological model parameters 

 
Criterion 

ID 
1 2 3 4 5 6 7 8 9 

GCM 

[5.7, 

21.7] 

(1) 

[-6.2, 

24,2] 

(2) 

[-8.7, 

22.1] 

(1) 

[37.5, 

227.6] 

(1) 

[34.0, 

199.1] 

(2) 

[-33.8, 

7.2] 

(2) 

[12, 

42] 

(1) 

[8, 

25] 

(1) 

[6, 

22] 

(2) 

GGES 

[10.8, 

19.5] 

(3) 

[9.0, 

9.6] 

(6) 

[3.2, 

6.6] 

(5) 

[62.7, 

146.9] 

(3) 

[55.8, 

128.3] 

(3) 

[-14.8, 

-12.5] 

(5) 

[17, 

29] 

(3) 

[15, 

23] 

(4) 

[10, 

15] 

(5) 

RUN 

[5.7, 

19.8] 

(2) 

[-

14.1, 

6.3] 

(3) 

[2.4, 

21.3] 

(2) 

[101.6, 

136.5] 

(5) 

[74.2, 

110.8] 

(5) 

[-40.2, 

-25.5] 

(3) 

[23, 

32] 

(4) 

[11, 

28] 

(1) 

[4, 

22] 

(1) 

SD 

[9.0, 

17.1] 

(4) 

[-

23.2, 

19.5] 

(1) 

[-3.4, 

5.2] 

(4) 

[79.9, 

260.4] 

(2) 

[54.5, 

252.3] 

(1) 

[-44.1, 

3.0] 

(1) 

[21, 

37] 

(2) 

[19, 

34] 

(3) 

[10, 

17] 

(4) 

HM 

[9.7, 

17.1] 

(5) 

[2.3, 

11.0] 

(4) 

[-2.7, 

9.6] 

(3) 

[69.9, 

136.6] 

(4) 

[58.2, 

123.6] 

(4) 

[-21.4, 

-12.8] 

(4) 

[19, 

28] 

(4) 

[22, 

23] 

(5) 

[8, 

14] 

(3) 

HMP 

[9.4, 

10.6] 

(6) 

[10.0, 

11.9] 

(5) 

[-5.0, 

-2.2] 

(6) 

[68.9, 

79.0] 

(6) 

[58.2, 

68.1] 

(6) 

[-15.7, 

-14.1] 

(6) 

[21, 

22] 

(6) 

[21, 

22] 

(5) 

[8, 

8] 

(6) 
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CONCLUSION 

 

The IPCC (2007) has stated that the average global surface temperature will very likely 

increase on the order of a few degrees by the end of this century, and that consequently, 

global hydrological cycles will intensify. To assess the hydrological impacts of climate 

changes, high quality and high resolution future climate projections will be needed. 

However, the current available dynamical and statistical downscaling techniques have their 

strengths and limitations, resulting in different climate projections. It is not an easy task to 

select one over the other. This research coupled climate models and statistical downscaling 

methods, merging a stochastic weather generator with the climate models to quantify the 

hydrologic impacts of climate change for a Canadian river basin (Quebec Province). The 

performances of weather generators were first improved. A statistical downscaling approach 

combining the attributes of the weather generator and CF methods was then developed to 

downscale precipitation, Tmax and Tmin from the CRCM scale (45km) to catchment scale to 

quantify the hydrologic impacts of climate change. To accomplish this, several aspects of 

statistical downscaling were also examined. A range of downscaling approaches result in 

different future climate projections, which means that the choice of a downscaling method 

adds uncertainties to quantify the impacts of climate change on hydrology. Moreover, the 

uncertainty comes not only from downscaling methods but also from other sources, such as 

GCMs, GGES, GCM initial conditions, hydrological model structures and parameters. The 

downscaling uncertainty and the global uncertainty were investigated in terms of quantifying 

the hydrologic impacts of climate change. The main conclusions are summarized using the 

same five sections described in the introduction.  

 

1) Weather generator improvements:  

A spectral correction method resulted in a weather generator that can accurately reproduce 

the low-frequency variability of precipitation and temperatures, as well as accurately 

preserve autocorrelations of annual precipitation and temperatures. Moreover, the auto- and 

cross-correlations of and between Tmax and Tmin were also significantly improved by using 

an integration scheme derived from using the strong points of two weather generators, 
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WGEN and CLIGEN. The improved weather generator is able to accurately generate 

precipitation, Tmax and Tmin time series of unlimited length for studying the impact of rare 

occurrences of meteorological variables. Furthermore, by perturbing weather generator 

parameters according to the relative change projected by a climate model, it can be used as a 

downscaling tool for climate change studies.  

 

2) Statistical downscaling:  

The downscaling of daily precipitation occurrence was unsuccessful with the SDSM-like 

method and the discriminant analysis-based method, while the discriminant analysis-based 

method was much better than the SDSM-like method. In particular, the results were 

consistently improved as the resolution of the climate model got finer. For downscaling from 

NCEP, 45-km CRCM and 15-km CRCM scale to station scale, the success rate of dry days 

changed from 75.4% (NCEP) to 77.7% (45-km CRCM) and finally to 82.0% (15-km 

CRCM). For the prediction of the NCEP precipitation amount using NCEP predictors, the 

average explained variances were consistently lower than 40%. The explained variance was 

much improved for the prediction of 45-km CRCM precipitation amount using 45-km 

CRCM predictors. However, going to the CRCM at a 15-km scale did not yield spectacular 

improvements. The average explained variance was still less than 85% for both calibration 

and validation. The explained variance was very low when downscaling from NCEP to 

station scale. Using CRCM variables at both the 45-km and 15-km scales improved the 

results but not dramatically, as the percentages of explained variance was still less than 50%. 

Going to an even finer scale such as 5km or 1km scale would probably improve the results 

even more. However, it should be noted that such smaller scales would basically transform 

the direct outputs of climate models into impact models, thus negating the need for statistical 

downscaling approaches. Perhaps even more disappointing is the fact that the weather typing 

approach was not better at downscaling precipitation than approaches without classification, 

despite the added complexity. 

 

3) Downscaling of weather generator parameters:  

A new statistical downscaling method combining the attributes of stochastic weather 
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generator and CF methods is presented. This method takes into account relative changes of 

precipitation occurrence and the variance of all variables projected by a climate model. In 

addition, time series of any length can be generated for the studies of extremes. It was 

compared with the CF method for quantifying the hydrological impacts. The results showed 

that both downscaling methods suggest increases in annual and seasonal discharges for the 

2025-2084 period. The weather generator-based method predicted more increases in spring 

(AMJ) discharge, and smaller increases in summer-autumn (JASON) and winter (DJFM) 

discharges than the CF method. Peak discharges for the 2025-2085 period were predicted by 

two downscaling methods to be earlier than was observed at the reference period (1971-

1990). Both downscaling methods showed increases in mean annual and seasonal low flow, 

but there were considerable differences between them.  

 

4) Downscaling uncertainty:  

All of the downscaling methods suggested temperature increases over the basin for the 2071-

2099 horizon. The regression-based statistical methods predicted a larger increase in autumn 

and winter temperatures. Predicted changes in precipitation were not as univocal as those of 

temperatures and they varied depending on the downscaling methods and seasons. There was 

a general increase in winter discharge (November - April) and decreases in summer 

discharge were predicted by most methods. Consistently with the large predicted increases in 

autumn and winter temperature, regression-based statistical methods showed severe increases 

in winter flows and considerable reductions in peak discharge. Across all variables, a large 

uncertainty envelope was found to be associated with the choice of a downscaling method. 

This envelope was compared to the envelope originating from the choice of 28 climate 

change projections from a combination of 7 GCMs and 3 GGES. Both uncertainty envelopes 

were similar, although the latter was slightly larger. The regression-based statistical 

downscaling methods contributed significantly to the uncertainty envelope. 

 

5) Global uncertainty of hydrologic impacts:  

GCMs were consistently the largest major contributor to uncertainty in quantifying the 

hydrological impacts of climate change. However, other sources of uncertainty, such as 
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downscaling methods and GCM initial conditions were also important, especially for some 

criteria. For example, the choice of downscaling method dominates the uncertainty for spring 

discharge, annual low flow and peak discharge, while GCM initial conditions offered the 

largest source of uncertainty with respect to the time to peak discharge and time to the end of 

flood. Uncertainties linked to GGES and hydrological model structure were somewhat less 

than those related to GCMs and downscaling methods, but much more than those from 

hydrological model parameters which were little important for all considered variables. 

 

Overall, the improvement of weather generator is the first innovation of this work. The 

weather generator was used as a downscaling tool for climate change studies. This 

downscaling method is straightforward and easy to apply. Taking into account the change of 

precipitation occurrence and variance of all variable is the major advantage of this method 

over the CF method. The assessment of statistical downscaling approach highlighted the 

possibility of using this widely used downscaling method. This will be a benchmark, even a 

landmark research on the reliability of statistical downscaling as a tool for climate change 

impacts studies. The outline of downscaling uncertainty and global uncertainty underlined 

some of the dangers arising from climate change impacts studies based on a single GCM and 

/or downscaling method and /or impact model. It is important of consider all sources of 

uncertainty.  

 



 

RECOMMENDATIONS 

 

This part outlines the limitations of this work and the recommendations for further research. 

They are extracted from the articles of Chapters 1-8 and summarized for each of the five 

sections of the thesis. 

 

1) Weather generator improvements:  

The low-frequency variability corrections for the weather generator model were conducted at 

the monthly and yearly scale for precipitation and at the yearly scale for temperatures. The 

other scales’ variability, for example, seasonal variability, was also significantly improved, 

but not reproduced as well as that of the monthly and yearly scales. Therefore, it may be 

useful to add the seasonal scale for precipitation and both monthly and seasonal scales for 

temperatures into the correction scheme. However, when correcting for both monthly and 

seasonal variability of Tmax and Tmin, the perturbation scheme may result in too many cases 

where Tmin is greater than Tmax for a given day. In addition, the proposed approach keeps 

the precipitation occurrence process constant. Ongoing work indicates that transition 

probabilities also display inter-annual variability, and are partly correlated with annual 

precipitation. Even though the proposed spectral correction approach significantly improved 

the simulation of water discharge, further improvements may be required so that occurrence 

variability is specifically taken into account. Moreover, this research only used a commonly 

used distribution (gamma distribution) to generate daily precipitation, which is inadequate at 

reproducing the extreme of precipitation, because it not heavy-tailed. Thus, a modeling of 

extreme precipitation events through the use of well adapted heavy-tailed frequency 

distribution such as mix exponential distribution or Frechet distribution may be necessary for 

future work.  

 

2) Statistical downscaling:  

Regression-based statistical downscaling approaches did not work well for precipitation with 

the very low explained variances. In this sense, the statistical downscaling approach seems to 

have hit a dead-end for precipitation. However, it probably still has advantages in uncertainty 
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studies, since RCM data is scarce and difficult to obtain. Data is rarely available from more 

than one RCM (driven by one GCM) over a given area while GCM data is now abundant 

with global coverage. With regards to the uncertain future, it is essentially impossible to 

adequately cover the major source of uncertainty (climate models) at the regional scale. 

Consequently, downscaling techniques from GCM data will continue to be a productive 

avenue of research. 

 

3) Downscaling of weather generator parameters:  

Similarly to the CF method, weather generator-based methods considers relative changes 

projected by climate models, thus, long time series’, including climate change information, 

are required to calculate the relative changes. Therefore, it is impossible to robustly verify 

this method using present climate data. However, there are still a few options for validating 

this method in future studies. The first option is to compare its performance in predicting 

hydrology with that of the finer RCM data (for example, at the 15-km scale), with a specific 

hydrology model calibration. Secondly, it can be validated by comparing the performance of 

hydrological prediction with the constructed outflow using RCM variables. Last but not least, 

it can be verified by comparing its results with other robustly-validated downscaling 

methods, for example Zhang‘s method (2005), which has been verified with very good 

performances in the US.  

 

4) Downscaling uncertainty:  

This work indicated that the choice of a downscaling method is critical for any climate 

change impact study on hydrology. Even if several downscaling methods are provided, it is 

difficult to say which one is most appropriate for a given situation. Thus, additional research 

is needed. However, it can be argued that regression-based methods should be used with 

caution due to their distinctive behavior compared to other downscaling methods; their 

downscaled future temperatures are very high, especially when compared to the direct 

outputs from regional climate models (which exhibit relatively small biases in the current 

climate). In particular, they did not perform very well for downscaling precipitation when 

assessing was done with the linear regression-based downscaling method. 
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5) Global uncertainty of hydrological impacts:  

All climate projections, as well as hydrological models, were equally weighted to predict the 

hydrology on the watershed for this research. Some authors have recommended assigning 

unequal weights to GCMs and hydrological models based on their performances at the 

reference period. For example, GCMs can be weighted according to their relative ability to 

reproduce present climate variables, and hydrological models can be weighted by their 

performance at reproducing flow series (Wilby and Harris, 2006). However, assigning 

unequal weights to GCMs and/or hydrological models is still a controversial topic in climate 

change impact studies (Stainforth et al., 2007; Brekke et al, 2008). The main reasons are that 

(1) the interpretation of the output range as a formal uncertainty estimate basically depends 

on the spread of the results from a small number of climate models and/or hydrological 

models, and (2) the performances of models for present and future periods are probably 

different. Since this study focuses on outlining the global uncertainty from a range of 

sources, the simple equal-weighted scheme was more appropriate. However, it will likely be 

worthwhile to compare these results with an unequally-weighted scheme in future research. 

Major sources of uncertainty depend on the variable under study and may also depend on the 

basin under study.  

 

Similarly to  previous studies, GCM is the largest contributor of uncertainty for quantifying 

the hydrological impacts of climate change. Thus, it may be necessary to take in account 

GCM uncertainty for any impact study. GGES is important for this study, while not so much 

impartant for other studies such as the study of Wilby and Harris (2006). Definitely, it will be 

more important for advanced future. However, hydrological model parameters uncertainty is 

consistently less than others. So it may be ignored for further studies. Finally, only outlining 

the importance of each uncertainty component is not enough for global uncertainty study. In 

certain cases, some sources of uncertainty may be hidden within others. For example, if one 

source of uncertainty is consistently larger than another, it may be unnecessary to take the 

latter one into account. This research averaged all projections for each uncertainty source, 

and could not extract such detailed information from the major uncertainty contributors. 
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Extracting the hidden uncertainty information (defines the overlap between uncertainty 

sources) and specify how many uncertainty components have to be considered require 

additional work.  

 

Overall, even though several innovations were obtained by this work, there remain a 

significant number of opportunities for further study. It is hoped that the contributions 

presented in this thesis will be a solid basis to build upon.  

 

 



 

APPENDIX  I  
 
 

DOWNSCALING OF WEATHER GENERATOR PARAMETERS USING 
ATMOSPHERIC CIRCULATION INDICES, GCM AND RCM VARIABLES AS 

PREDICTORS 
 

Statistical downscaling poorly produces the low-frequency variation of precipitation (Wilby 

et al., 1998). This may be because the applied predictors did not accurately explain the local 

climate variability. Precipitation occurrences and quantity are controlled by synoptic-scale 

atmospheric circulation. Linking weather generator parameters with low-frequency 

predictors, such as the North Atlantic Oscillation (NAO) and El Nino Southern Oscillation 

(ENSO), may present advantages in preserving the low-frequency variability. However, the 

prerequisite is that strong correlations must exist between low-frequency predictors and 

weather generator parameters. Since precipitation is much more difficult to downscale than 

temperature, correlations between four precipitation parameters including P01, P11, 

unconditional probability of daily precipitation occurrence (PI), and seasonal precipitation 

(SP), and atmospheric circulation indices were calculated for 16 stations dispersed across 

North America, in addition to correlations between precipitation parameters and several 

GCM and/or RCM predictors. The locations of the 16 selected stations are presented in 

Figure A.1. 

 

A I-1 Correlations between precipitation parameters and atmospheric circulation 

indices 

Sixteen meteorological stations dispersed across North America were used to investigate the 

correlations between atmospheric circulation indices and SP, P01, P11 and PI. Table A.1 

presents the number of stations (out of 16) that have significant correlations (p<0.05) to the 

12 atmospheric circulation indices and SP, P01, P11 and PI for the period 1970-1999. The 

results showed that correlations between atmospheric circulation indices and precipitation 

parameters were not statistically significant at the P=0.05 level for most stations. The 

correlation was stronger in the autumn and winter than in the other seasons. However, the 

largest number of correlations was only six out of 16 stations, in between winter for P01 and 
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with the East Pacific/North Pacific pattern. For spring and summer, there were zero or only 

one station out of the 16 with significant correlation at P=0.05. This indicates that 

precipitation is controlled by complicated factors, and not only by global atmospheric 

circulation. For example, local details such as topography play very important roles in 

precipitation. Wilby et al. (2002b) explored the use of the North Atlantic Oscillation (NAO) 

and Sea Surface Temperature (SST) patterns to downscale seasonal precipitation variability. 

That study showed somewhat positive results in monthly rainfall statistics, mostly  because 

they had carefully selected only two stations in the British Isles, stations which had strong 

correlations between NAO or SST and precipitation parameters. For most of other stations, 

there were no strong correlations (Wilby et al, 2002b).  

 
 

 

Figure-A I-1 Sixteen selected study stations in North America. 
 
 
 A I-2 Correlations between precipitation parameters and GCM predictors 

The correlation coefficients between precipitation parameters (SP, P01, P11 and PI) and 25 

CGCM3 predictors were calculated for 16 stations dispersed across North America (Table 

A.2). There were stronger correlations between SP and CGCM3 predictors, as well as 

between PI and CGCM3 predictors, than between transition probabilities of precipitation 
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occurrence (P01 and P11) and CGCM3 predictors at the P=0.05 level. However, there were 

consistently fewer than eight stations that had significant correlations at P=0.05. Moreover, 

these correlations were not consistent for all seasons. For example, winter SP was correlated 

to mean sea level pressure (mslpna), while summer SP was not. Therefore, for most stations, 

it was impossible to accurately downscale precipitation using GCM variables. 

 
 

Table-A I-1 The number of sites with significant correlations (p<0.05) between four 
precipitation parameters (SP=seasonal total precipitation, P01=a wet day following a dry  

day, P11= a wet day following a wet day and PI= unconditional probability of daily 
precipitation occurrence) and 12 atmospheric circulation variables or patterns (NAO=North 

Atlantic Oscillation, EA= East Atlantic Pattern, WP=West Pacific Pattern, EP/NP=East 
Pacific/North Pacific Pattern, PNA=Pacific/North American Pattern, EA/WR=East 
Atlantic/West Russia Pattern, SCA=Scandinavia Pattern, ENSO=El Niño-Southern 

Oscillation, SST=Sea Surface Temperature, PDO=Pacific Decadal Oscillation, 
AMO=Atlantic Multidecadal Oscillation, SLP=Sea Level Pressure), stratified by season  

from 1970 to 1999. Sample size, n=16, (S1=spring, S2=summer, A=autumn and W=winter) 
 

Variable 
SP P01 P11 PI 

S1 S2 A W S1 S2 A W S1 S2 A W S1 S1 A W

NAO 0 1 2 2 1 1 1 1 0 0 1 4 0 1 2 3 

EA 1 0 0 0 1 0 0 1 1 0 1 0 1 0 1 1 

WP 1 1 1 0 0 0 1 1 2 1 1 0 0 0 1 1 

EP/NP 0 1 1 3 0 0 1 6 0 0 0 0 1 0 2 4 

PNA 0 0 2 2 1 0 3 1 0 0 3 1 1 0 2 2 

EA/WR 1 1 1 1 2 0 1 4 1 1 0 2 1 0 1 4 

SCA 0 0 1 1 1 1 3 1 0 0 2 2 0 1 4 2 

ENSO 0 1 0 1 1 3 1 2 2 1 0 3 1 1 0 3 

SST 1 0 0 2 2 1 0 1 1 1 2 0 2 1 0 2 

PDO 0 1 2 1 1 1 2 3 2 1 3 1 0 1 2 2 

AMO 1 1 2 1 3 1 2 1 0 1 1 1 1 1 3 3 

SLP 0 1 0 1 1 3 0 2 3 1 0 4 1 1 0 3 
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Table-A I-2 The number of sites with significant correlations (P<0.05) between four 
precipitation parameters (SP=seasonal total precipitation, P01=a wet day following a  

dry day, P11= a wet day following a wet day and PI= unconditional probability of  
daily precipitation occurrence) and 25 CGCM predictors, stratified by season from  

1970 to 1999. Sample size, n=16, (S1=spring, S2=summer, A=autumn and W=winter) 
 

GCM 

Variable 

SP P01 P11 PI 

S1 S2 A W S1 S2 A W S1 S2 A W S1 S2 A W

mslpna 2 1 1 3 1 2 2 3 0 1 1 1 1 2 2 4 

p500na 0 1 1 1 1 2 0 2 1 1 2 2 1 1 0 3 

p5thna 1 1 1 1 1 0 0 1 3 3 0 3 1 1 0 3 

p5zhna 1 3 4 5 2 3 4 3 1 1 3 3 0 5 4 5 

p5_fna 0 1 0 3 0 1 1 1 2 2 0 3 1 2 0 4 

p5_una 1 2 0 3 0 1 1 2 2 0 1 4 0 2 0 4 

p5_vna 0 2 4 6 1 1 2 4 1 1 2 2 2 1 3 5 

p5_zna 0 2 0 3 1 2 2 3 1 1 1 2 0 2 0 3 

p850na 1 0 0 4 0 1 1 4 0 1 2 0 1 1 1 4 

p8thna 0 1 1 4 0 1 1 2 1 2 0 2 0 1 1 3 

p8zhna 1 4 2 5 4 2 2 6 1 1 4 2 2 4 5 5 

p8_fna 0 0 0 2 0 1 1 3 1 1 2 3 0 1 0 3 

p8_una 0 1 2 6 0 0 2 2 3 0 1 3 0 0 1 5 

p8_vna 3 0 2 5 4 1 1 6 1 1 1 3 6 1 3 7 

p8_zna 1 1 1 3 1 0 2 3 2 0 1 2 1 0 1 3 

p_thna 0 0 1 3 1 0 0 3 3 4 0 3 1 0 0 3 

p_zhna 1 1 2 1 4 2 1 1 2 0 2 2 2 1 3 4 

p__fna 1 0 0 5 2 1 1 2 1 1 1 0 0 1 1 3 

p__una 2 1 0 6 1 1 1 1 2 1 1 1 2 2 0 4 

p__vna 0 3 1 4 3 0 1 4 1 1 1 3 3 2 2 5 

p__zna 2 1 3 7 2 2 3 3 4 0 0 2 1 2 3 5 

s500na 0 0 1 3 2 0 1 4 1 2 1 0 2 0 1 3 

s850na 3 0 2 4 4 1 0 4 1 3 0 4 3 2 0 5 
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GCM 

Variable 

SP P01 P11 PI 

S1 S2 A W S1 S2 A W S1 S2 A W S1 S2 A W

shumna 3 1 2 3 2 1 0 3 1 2 2 4 3 2 2 4 

tempna 1 2 2 2 2 0 0 3 0 1 1 3 1 0 2 2 

 
 
A I-3 Correlations between precipitation parameters and RCM predictors 

Table A.3 presents the number of stations which had significant correlations between 25 

CRCM predictors and precipitation parameters (SP, P01, P11 and PI). Compared with 

CGCM3 predictors, CRCM variables were more strongly correlated with precipitation 

parameters, because more local details were taken into account when increasing the 

resolution. In particular, more RCM predictors were significantly correlated to winter 

precipitation parameters at the P=0.05 level. However, the correlations for other seasons 

were not nearly as good, indicating that winter precipitation was controlled by large-scale 

atmospheric circulation to a greater degree than other precipitations. Even if the precipitation 

parameters for some stations were significantly correlated to CRCM variables at the P=0.05 

level, the small correlation coefficients nevertheless result in  a small percentage of explained 

variances for the transfer functions established between precipitation parameters and RCM 

predictors. Therefore, downscaling of weather generator parameters based on GCM or RCM 

predictors is still problematic for precipitation.     
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Table-A I-3 The number of sites with significant correlations (p<0.05) between four 
precipitation parameters (SP=seasonal total precipitation, P01=a wet day following a  

dry day, P11= a wet day following a wet day and PI= unconditional probability of daily 
precipitation occurrence) and 25 CRCM predictors, stratified by season from 1970  
to 1999. Sample size, n=16, (S1=spring, S2=summer, A=autumn and W=winter) 

 
RCM 

Variable 

SP P01 P11 PI 

S1 S2 A W S1 S2 A W S1 S2 A W S1 S2 A W 

cld500 2 3 1 7 3 3 1 8 2 1 0 4 3 1 2 9 

cld700 1 2 2 7 2 1 1 7 2 2 0 3 2 2 1 8 

cld850 2 1 2 7 2 1 1 6 2 1 1 2 3 2 3 8 

phi500 0 0 1 2 2 3 0 4 2 1 1 3 0 2 0 3 

phi700 0 0 0 3 1 2 0 3 1 1 1 1 0 3 0 6 

phi850 0 1 1 6 1 1 1 6 0 1 1 2 1 2 1 7 

rhum500 2 1 2 5 4 1 0 6 1 1 0 2 3 2 0 7 

rhum700 0 0 2 6 3 0 2 8 3 2 1 4 4 0 2 8 

rhum850 1 1 2 8 3 1 2 8 2 1 2 2 3 1 4 10 

u500 1 2 3 5 0 1 1 2 2 1 1 3 0 2 1 4 

u700 0 1 2 4 0 0 1 2 4 0 0 2 0 0 0 5 

u850 1 1 2 3 1 1 1 5 4 0 1 3 1 1 0 5 

v500 1 0 4 5 2 1 1 3 2 1 1 2 2 3 2 4 

v700 0 2 4 5 2 1 1 5 2 1 2 4 1 1 4 4 

v850 1 2 2 3 3 1 2 4 1 0 1 3 3 0 4 4 

w500 1 1 1 8 1 1 0 6 2 0 1 7 1 1 1 10 

w700 1 1 1 9 0 0 2 7 2 1 1 7 1 1 1 10 

w850 0 0 2 6 1 1 2 7 1 0 1 5 1 1 3 9 

pnm 1 3 2 4 1 1 1 4 1 1 1 2 1 2 1 5 

sq 1 0 1 2 2 1 0 3 3 0 0 2 4 1 0 5 

stmn 1 1 2 3 2 0 0 2 2 1 2 4 2 1 3 2 

stmx 1 2 2 1 4 3 1 1 1 1 0 2 2 4 0 1 

su 0 3 1 4 3 4 1 4 3 3 3 2 6 4 2 5 
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RCM 

Variable 

SP P01 P11 PI 

S1 S2 A W S1 S2 A W S1 S2 A W S1 S2 A W 

sv 1 0 2 4 5 1 0 4 2 1 0 2 3 1 1 3 

pcp 2 3 2 12 3 2 0 11 2 0 1 7 4 4 0 10 
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