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RÉSUMÉ 
 
Au cours de la phase de l’analyse des besoins pour le développement d’un système, l’accent 
est souvent porté sur les besoins fonctionnels, tandis que les besoins non fonctionnels (Non 
Functional Requirements - NFR) sont capturés par les analystes systèmes seulement à un 
niveau très global : au cours de cette phase, les NFR sont décrits typiquement au niveau du 
système et non au niveau du logiciel. Le détail de ces besoins non fonctionnels est souvent 
précisé (c'est à dire défini au niveau de détail nécessaire) par les concepteurs du système à la 
phase de l’architecture et à la phase de conception du système. 
 
Pour le moment, il n’y a pas de consensus sur la manière de décrire et de mesurer les besoins 
non fonctionnels des systèmes (system-NFR) : c’est donc un défi de les prendre en compte 
dans l’estimation des efforts pour le développement des logiciels qui feront partie de ces 
systèmes et dans l’évaluation de la productivité des projets de développement de ces 
logiciels.  
 
Durant la phase de l’analyse des besoins pour les logiciel, les besoins non fonctionnels des 
systèmes peuvent être décrits et spécifiés comme étant les besoins fonctionnels alloués au 
logiciel : ceci permet alors  aux ingénieurs logiciels de développer, tester et configurer les 
livrables finaux aux utilisateurs du système. 
 
La motivation  de cette recherche est de contribuer à l’effort d’amélioration des modèles 
d’estimation des projets de développement logiciel en introduisant les exigences non 
fonctionnelles des systèmes au sein du processus d’estimation du projet logiciel et ce au 
travers d’une vue quantitative. 
 
Le but de cette recherche est d’aider les chefs de projets, les organisations ainsi que les 
chercheurs, à prendre des décisions éclairées sur les plannings des projets et sur le 
développement des logiciels et ce pendant la phase initiale d’identification des besoins, des 
spécifications et d’estimation des besoins non fonctionnels d’un système incluant du logiciel 
embarqué. Plus précisément, cette étude a comme but de contribuer à une meilleure 
définition, description et estimation de certains entrants, qui sont les besoins non fonctionnels 
du système, nécessaire pour réaliser une estimation préalable des couts.  
 
Dans les standards internationaux, un certain nombre de concepts sont utilisés afin de décrire 
différents types de besoins non fonctionnels des systèmes, que ces besoins soient au niveau 
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du système, du logiciel ou du matériel. L’objectif de cette recherche est d’effectuer, le plus 
en amont possible, les spécifications et la quantification des besoins fonctionnel pour le 
logiciel, dérivés des besoins non fonctionnels au niveau système, en utilisant comme base les 
standards de l’ingénierie du logiciel. 
 
Pour atteindre cet objectif de recherche les deux sous-objectifs de recherche spécifiques 
suivants doivent être atteints: 
• Conceptions de modèles standards pour l’identification et la spécification des besoins 

fonctionnels de l'utilisateur (FUR) alloués au logiciel pour répondre aux besoins non 
fonctionnels du système (system-NFR). 

• Mesure de la taille fonctionnelle,  en utilisant le standard COSMIC ISO 19761.  
 
des besoins fonctionnels alloués au logiciel pour répondre aux besoins non fonctionnels du 
système les résultats de cette recherche sont à un ensemble de quatorze (14) modèles de 
spécifications et de mesure, basés sur des standards, pour les besoins non-fonctionnels du 
système qui peuvent être alloués à du logiciel embarqué temps réel. 
 
La contribution principale de cette recherche est cet ensemble de quatorze modèles des 
besoins fonctionnels des utilisateurs du logiciel basés sur des standards pour l’identification, 
la spécification et la mesure des besoins non fonctionnels du système. 
 
 
 
Mots clés: Génie logiciel, Besoins non fonctionnels (NFR), Standards internationaux ECSS, 
ISO 9126 et IEEE-830, Mesure des besoins fonctionnels de l'utilisateur du logiciel, COSMIC 
– ISO 19761. 
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ABSTRACT 

 
During the system requirements phase, the focus is often on the functional requirements of 
the system, while non-functional requirements (NFR) are captured by system analysts at a 
very global level only: in this system analysis phase, these NFR are typically described at the 
system level and not at the software level. Detailing these NFR is typically left to be handled 
(i.e., defined at the necessary level of detail) much later by system designers in the system 
architecture and design phases. 
 
As yet, there is no consensus on how to describe and measure the system non-functional 
requirements (system-NFR); it is therefore challenging to take them into account in software 
project estimation and software project productivity benchmarking. 
 
In the software requirements engineering step, the system-NFR can be detailed and specified 
as software functional user requirements (software-FUR), to allow a software engineer to 
develop, test, and configure the final deliverables to the system users.  
 
The research project motivation is to contribute to the improvement of the estimation models 
of software development effort by including the system-NFR in the software estimation 
process through a quantitative view of such NFR.  
 
The goal for this research project is to help project managers, organizations, and researchers 
to make informed decisions on project planning and software development projects in the 
early identification, specification, and measurement of the system-NFR for the embedded 
software. More specifically, this research project aims at contributing to better define, 
describe, and measure  the system-NFR allocated to software-FUR for real time and 
embedded software..   
 
The research objective is the early specification and measurement of software-FUR derived 
from system-NFR, using as a basis the systems and software engineering standards.  
 
To achieve this research objective the following two specific research sub-objectives must be 
reached:  
• Designs of standard-based generic models for the identification and specification of 

software-FUR for system-NFR; 
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• Measurement of the functional size of software-FUR for system-NFR using the COSMIC 
ISO 19761 standard. 

 
The results of this research will be a set of standard-based specification and measurement 
models for system-NFR for real-time embedded software. 
 
The main outcome of this research study is the set of fourteen (14) standard-based models of 
software-FUR for the early identification, specification, and measurement of system non- 
functional requirements allocated to software.  
 
 
Keywords: Software Engineering, Non functional requirement (NFR),  ECSS, ISO 9126 and 
IEEE830 International Standards, Software-FUR Measurement, COSMIC – ISO 19761. 
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INTRODUCTION 

 

The terminology adopted in this thesis is closely aligned with the system and software 

engineering terminology adopted jointly by the ISO and IEEE standards organizations, and in 

particular in (ISO 15288  2008, ISO 12207 2008 and ISO 15979 2002).  

 

Non functional requirements (NFR) play a critical role in system development. They may 

have a considerable impact on project effort (Chung and do Prado Leite 2009) and should be 

taken into account for estimation purposes and for comparing project productivity. In current 

practice, NFR may be viewed, defined, interpreted, and evaluated differently by different 

people in the later phases of the project (Chung, Nixon et al. 2000), particularly when they 

are stated vaguely and only briefly at the system requirements phase.  

  

NFR have received less attention in the software engineering literature and are definitely less 

well understood than other cost factors (Mylopoulos, Chung et al. 1992). Furthermore, 

measurement is essential if NFR are to be taken as quantitative inputs to an estimation or 

productivity benchmarking process. However, not much work has been published to date on 

how to measure them. 

 

In practice, requirements are initially typically addressed at the system level (Abran and Al-

Sarayreh 2010a; Al-Sarayreh and Abran 2010b), either as high-level system functional user 

requirements (system-FUR) or as high-level system non-functional requirements (system-

NFR). The latter must usually be detailed, allocated, and implemented in hardware, software 

as software FUR (software-FUR) or in a specific combination of hardware and software. To 

distinguish between these types of requirements, system-FUR describe the required functions 

in a system, while system-NFR describe how the required functions must behave in a system.  

 

In the ECSS (European Cooperation on Space Standardization) standards for the aerospace 

industry (ECSS-S-ST-00C 2008; ECSS-E-ST-10C 2009; ECSS-Q-ST-80C 2009), ISO 9126 

(ISO-9126 2004) and the IEEE 830 (IEEE-830 1998) standards, there are a number of 
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concepts provided to describe various types of candidate system-NFR at the system, 

software, and hardware levels. However, these standards vary in their views, terminology, 

and coverage of such system requirements. 

 

Problem statement 

 

In the system requirements phase, the focus is often on detailing and documenting the system 

functional requirements while their allocation to the software and hardware parts of the 

system being designed is being done in the system architecture phase. The NFR, in contrast, 

are often captured only generically at a fairly high level and they do not include the levels of 

details necessary for the system engineers to allocate them yet as specific functionalities to be 

handled either by the software or the hardware, or a combination thereof. 

 

The European standards for the aerospace industry (ECSS series), include sixteen (16) types 

of NFR for embedded and real-time software as follows: 

1. Reliability systems requirements; 

2. Maintainability systems requirements; 

3. Interfaces systems requirements; 

4. Portability systems requirements; 

5. Operations systems requirements; 

6. Configuration systems requirements; 

7. Data definitions and database systems requirements; 

8. Adaptations and installations systems requirements; 

9. Design and implementation constraints systems requirements; 

10. Performance systems requirements; 

11. Security and privacy systems requirements; 

12. Safety systems requirements; 

13. Resources systems requirements; 

14. Human factor requirements; 

15. Quality systems Requirements; 

16. Other NFR requirements. 
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A number of concepts are provided in the ECSS and other standards to describe the various 

types of candidate NFR at the system, software, and hardware levels. 

  

Prior to the research work reported in this thesis, there were no standard-based models for the 

identification and specification of software-FUR for implementing system-NFR based on the 

various views documented in international standards and in the literature. Consequently, it 

was challenging to specify and to measure these system-NFR related software-FURS, and to 

take them into account quantitatively for estimation purposes in software development 

projects.  

 

This document reports on the research work carried out to develop fourteen standard-based 

models for system-NFR which could be allocated to software-FUR. The availability of these 

standard-based models aims to facilitate the early identification and specification of the 

system-NFR and their detailed allocation as specific functions to be handled by the specified 

allocation to hardware or software or a specific combination of the two. In the absence of 

such standard-based and detailed models, such NFR are typically handled in practice much 

later on the software development life cycle when, at system testing time, users and 

developers discover that NFR have been overlooked and additional effort must be expended 

to implement them.  

 

The approach adopted in this research for the structure of these standard-based models is to 

use the generic model of software functional requirements proposed in the COSMIC (ISO-

9761 2011) model, thereby allowing as well to measure the functional size of such system-

NFR requirements allocated to software and, next, to take them into account for estimation 

purposes. 

 

Thesis organization  

 

This thesis contains nine chapters and four Annexes. The current introduction outlines the 

problem statement and the organization of the thesis. 
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Chapter 1 presents an overview of the non-functional requirements (NFR), as reported in the 

literature and in standards. 

Chapter 2 presents the research project definition, including the research motivation, goal, 

objectives and users of the research results. Chapter 2 also presents the detailed methodology 

designed to tackle the research objectives, including the research phases and the research 

inputs. 

 

Chapter 3 presents a survey of the system-NFR views, concepts, and terms in the ECSS, ISO 

and IEEE standards. It identifies which standards currently address aspects of the software-

FUR derived from system-FUR and system-NFR. The outcome of Chapter 3 is the 

identification of the various elements that should be included in the design of standard-based 

model of software-FUR for each type of system-NFR. 

 

Chapter 4 presents a standard-based model for the functions needed to address the system’s 

reliability requirements. This chapter proposes the standard-based model of software-FUR 

for system reliability. This standard-based model can be considered as a kind of reference 

model for the identification of system reliability requirements and can be used for their 

allocation to software functions implementing such requirements. 

 

Chapter 5 presents a standard-based model for specifying and measuring software 

requirements for the functions needed to address the system’s maintainability requirements. 

This chapter proposes the standard-based model of software-FUR for system maintainability. 

This standard-based model can be considered as a kind of reference model for the 

identification of system maintainability requirements, and can be used for their allocation to 

software functions implementing such requirements. 

 

Chapter 6 presents the system interface concepts dispersed in multiple standards and 

integrates them into a standard-based model of software-FUR for system interface-NFR. The 

availability of this standard-based model can facilitate the early identification and 

specification of the system interface-NFR and their detailed allocation as specific system 
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interface functions to be handled by hardware or software, or to a specific combination of the 

two.  

 

Chapter 7 presents the other eleven types of system-NFR in the ECSS: specification and 

measurement models. The structures of the standard-based models are based on the generic 

model of software adopted by the COSMIC measurement standard: the necessary 

information for measuring their functional size is then readily available. Specifically, the 

standard-based models of system-NFR presented in this chapter are based on: the ECSS 

standards for the description of the NFR for system and the COSMIC measurement model of 

functional requirements. 

 

Chapter 8 presents a case study using a standard-based model of software-FUR for system 

reliability-NFR. This chapter uses a valve control system (VCS) as a case study to illustrate 

the use of the standard-based model of software-FUR for system reliability-NFR. The 

selected case study aims at the identification and classification, then measurement, of the 

software-FUR for system reliability-NFR. 

 

Chapter 9 presents the system requirements traceability matrix (RTM) in ECSS standards 

with the system life cycle for hardware and software. A modified RTM is proposed in this 

chapter by using the same ECSS traceability approach with some additional changes to 

tackle system-FUR and system-NFR. This chapter presents also a  summary of the number 

of the traceability concepts and terms for the proposed fourteen standard-based models, as 

well as the detailed traceability to specific sections of the ECSS standards for the proposed 

reliability-NFR model.   

 

The Conclusion chapter summarizes the results of this thesis, the contributions, and the 

expected impacts for the industry as well as suggestions for future work. 

 

Annex I presents the NFR terms, concepts and vocabulary as defined in the literature. 
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Annex II (rom Annex II-A to Annex IIK) presents the details of 11 standard-based models of 

software-FUR f derived from system-NFR. 

 

Annex III presents the detailed traceability to the ECSS standards series of the standard-

based models of software-FUR derived from system-NFR. 

 

Annex IV (from Annex IV-A to Annex IV-G) presents the published works in international 

conferences for seven (7) standard-based models of software-FUR derived from system-

NFR.  

 



 

CHAPTER 1 

LITERATURE REVIEW 

1.1 Introduction 

 

The non-functional requirements (NFR), are often only generically captured at a fairly high 

level and they do not yet include the degree of detail that is necessary for the system 

engineers to allocate such NFR as specific functionalities to be handled either by the software 

or the hardware, or a specific combination of both. 

 

In the literature, there are many published studies tackling the NFR. Some of these studies 

present methods for the identification and classification of the NFR. as well as proposed 

frameworks and NFR ontologies.  

 

In practice, requirements are initially typically addressed at the system level (Abran, Al-

Sarayreh et al. 2010a), (Al-Sarayreh, Abran et al. 2010b) and (Karl 2003), either as high level 

system functional user requirements (system-FUR) or as high level system non functional 

requirements (system-NFR). The latter must usually be detailed, allocated, and implemented 

in either hardware or software, or both, as software-FUR for example – see Figure 1.1. 

 

 

 

 

 

Figure 1.1 Mapping system-FUR and NFR to software-FUR 

 

To distinguish between these types of requirements, system-FUR describes the required 

functions in a system, while system-NFR describes how the required functions must behave 

in a system. In the software requirements engineering step, system-NFR can then be detailed 

System-NFR 

Software-FUR 

System-FUR 
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and specified as software-FUR, to allow a software engineer to develop, test, and configure 

the final deliverables to system users.  

 

The term "functional" refers to the set of functions the system (including the software) must 

offer, while the term "non functional" refers to the manner in which such functions perform. 

An FUR is typically phrased with a subject and a predicate (i.e.,, noun/verb), such as: "The 

system must print 5 reports". NFR, by contrast, are typically phrased with an adverb or 

modifying clause, such as: "The system will print 5 reports quickly", or "The system will 

print 5 reports with a high degree of reliability". 

 

Currently, the European Cooperation on Space Standardization (ECSS) and the Institute of 

Electrical and Electronics Engineers (IEEE) propose two NFR lists with some primitive 

concepts and vocabularies; similarly, ISO proposes in the ISO 9126 standard, a quality model 

of software products. 

 

This chapter presents a survey of the literature consulted for this research work and is 

organized as follows:  

• Section 1.2 surveys the NFR in the academic literature;  
• Section 1.3 surveys the NFR in international standards;  
• Section 1.4 surveys the NFR ontologies.  
• A summary is presented in section 1.5. 
 

1.2 NFR in the academic literature 

 

In the literature on systems/software engineering, there are a number of published works on 

NFR. Some of the early works on NFR, such as that of (Chung 1993), presents the initial 

attempts to capture knowledge in this domain. Chung’s work was followed by that of  

(Mylopoulos, Chung et al. 1999) who suggested viewing all requirements as goals, each goal 

being an umbrella for related requirements, both functional and NFR. 
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Chung (Chung 1993) and Andrew (Andrew 2000) aimed to make NFR more quantitative in 

nature, while Andrew (Andrew 2000) found that there are often gaps between the stakeholder 

vision and requirements representation.  

 

(Chung, Nixon et al. 2000) proposed a taxonomy for NFR, indicating that it is unrealistic to 

expect designers and developers to incorporate an entity that they cannot readily identify. 

While taxonomies aim to be inclusive of the entire set of entities in question, these authors 

suggested (Chung, Nixon et al. 2000) that a one-level or two-level taxonomy would suffice 

initially and that there are over 161 identifiable types of NFR. 

 

(Moreira, Araujo et al. 2002), (Rosa, Cunha et al. 2002), (Park and Kang 2004), and (Glinz 

2005) have proposed new methods for classifying NFR early in the software development 

process, while (Kaiya, Osada et al. 2004) have presented a method for identifying 

stakeholders and their NFR preferences by means of case diagrams of existing systems. 

 

(Paech, Dutoit et al. 2002) recommended that functional requirements (FR), NFR, and 

architecture be tightly co-developed and addressed in a coherent and integrated manner, 

suggesting that NFR be decomposable into more refined NFR and additional FR, as well as 

architectural decisions. 

 

 (Cysneiros and Leite 2004) presented a process to elicit NFR, analyze their 

interdependencies, and trace those to functional conceptual models using UML  by 

integrating the NFR into class, sequence, and collaboration diagrams. This process also 

shows how certain cases and scenarios can be adapted to deal with NFR. 

 

More recently, (Mylopoulos 2006) promoted goal-oriented requirements engineering and 

suggests a specific solution involving the establishment of an agent-oriented software 

development method. Called the TROPOS project, this software method covers not only the 

requirements but also the design phases and addresses the design of high-variability software 

for systemss such as home care and business process design. 
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(Galster and Bucherer 2008) have proposed a taxonomy for NFR in a service-oriented 

context. Their taxonomy implements three main categories of NFR: process requirements, 

NFR external requirements, and NFR service requirements. The taxonomy can be applied 

with individual services as well as with a service-based system as a whole. This taxonomy is 

considered as a starting point and checklist when handling NFR issues in service-oriented 

and particularly highly-distributed environments. 

 

(Bharadwaj and Nair 2009) presented an approach for some of the NFR used in the FPA 

method by the International Function Point Users Group (IFPUG) to determine the degree of 

influence for each of them. The study shows that NFR affect the FP value while attempting 

to capture the actual applicable attributes of the fourteen GSCs for a given application. This 

is further complicated because the influence of NFR on the project size is also difficult to 

quantify. Furthermore, several different scale types are used in the various steps and the 

results of many of the steps and sub-steps of the measurement designs of the GSCs are based 

on inappropriate use of mathematical properties of corresponding scale types (Abran, 2010).  

 

More recently, (Kassab, Daneva et al. 2009) proposed some solutions for building a NFR 

framework. For example,  (Kassab, Daneva et al. 2009) suggested adopting a sequence of 

systematic activities with the aim of identifying, specifying, and separating FR from NFR, as 

well as  a discussion on NFR prioritization and risk assessment. They also reported (Kassab, 

Ormandjieva et al. 2008) an initial solution using the COSMIC method for determining the 

functional size of NFR based on "soft goal" concepts, to deal with the problem of 

quantitatively assessing the proposed NFR framework early in a project. 

 

Recently, (Casamayor, Godoy et al. 2010) proposed a method based on a semi-supervised 

learning techniques for automatic identification and classification of NFR. The method is 

based on a reduced number of categorized requirements by taking advantage of the 

knowledge provided by uncategorized ones, as well as certain properties of text. The learning 

method also exploits feedback from users to enhance classification performance. 
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Moreover, (Supakkul, Hill et al. 2010) presented a pattern-based approach composed of four 

kinds of NFR patterns for capturing and reusing knowledge of NFR patterns, problem 

patterns, alternatives patterns, and selection patterns. According to these authors, the NFR 

patterns may be visually represented and organized by rules specialization to create more 

specific patterns, composition to build larger patterns, and of instantiation to create new 

patterns using existing patterns as templates. This NFR pattern approach is based on the TJX 

incident, one of the largest credit card thefts in history, as a case study. 

 

More recently, (Bendjenna, Charrel et al. 2010) proposed a process to identify the NFR to 

model them using a fuzzy cognitive map. According to these authors using a fuzzy cognitive 

map to model NFR allows moving from the conventional modelling to computer-based 

modelling. 

 

Finally, (Yakkali and Subramanian 2010) proposed an approach based on minimum spanning 

trees and the NFR Framework for Control and Data Acquisition (CADA) systems used to 

monitor and control critical infrastructures ranging from computer networks to 

manufacturing.  

 

1.3 NFR in international standards 

 

The software industry has been working on the description of NFR, in particular through 

international standardization bodies, such as the European Cooperation on Space 

Standardization (ECSS), the Institute of Electrical and Electronics Engineers (IEEE), and the 

International Organization for Standardization (ISO). 

 

1.3.1 European international standards (ECSS) 

 
The European Cooperation for Space Standardization (ECSS) is an organization that works 

to improve standardization within the European space sector. The ECSS frequently publishes 

standards targeted to the contractors working for the European Space Agency (ESA) (ECSS-

ESA 2005).  The ECSS standards series includes a number of NFR at the system level. 
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More specifically, (ECSS-E-40-Part-1B 2003;ECSS-Q-80B 2003; ECSS-E-40-Part-2B 2005) 

for the aerospace industry includes sixteen (16) types of the NFR for embedded and real-time 

software – see Table 1.1. A number of NFR-related concepts are dispersed throughout the 

ECSS standards to describe, at varying levels of details, the various types of NFRs at the 

system, software, and hardware levels.  

 
Table 1.1 List of the 16 NFR types in ECSS Standards 

 
ID Types of Non Functional Requirement 
1 Reliability requirements 
2 Maintainability requirements 
3 Interface requirements 
4 Portability requirements 
5 Operations requirements 
6 Software Configuration & Delivery Requirements 
7 Data Definitions & Database Requirements 
8 Adaptation & Installation Requirements 
9 Design & Implementation Constraints requirements 
10 Performance requirements 
11 Security & Privacy requirements 
12 Safety requirements 
13 Resources requirements 
14 Human Factors requirements 
15 Quality requirements 
16 Other Requirements 

 

1.3.2 IEEE 830 standard 

 

The IEEE develops its standards through a consensus development process, approved by the 

American National Standards Institute (ANSI). IEEE 830 “The recommended practice for 

software requirements specifications standard” (IEEE-830 1998) was developed within the 

IEEE societies and the standards coordinating committees of the IEEE standards association 

(IEEE-SA) standards board.  
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More specifically, (IEEE-830 1998) identifies thirteen types of NFR to be included in a 

software requirements document - see Table 1.2. A number of NFR-related concepts are 

dispersed throughout the IEEE standards to describe, at varying levels of detail, the various 

types of candidate NFR at the system, software, and hardware levels.  

 
Table 1.2 List of the NFR types in IEEE-Std 830 - 1998 

 
ID Type of Non Functional Requirements 
1 Performance requirements 
2 Interface requirements 
3 Operational requirements 
4 Resource requirements 
5 Verification requirements 
6 Reliability requirements 
7 Quality requirements 
8 Acceptance requirements 
9 Documentation requirements 
10 Security requirements 
11 Portability requirements 
12 Maintainability requirements 
13 Safety requirements 

 
 

1.3.3 ISO 9126 standard series 

 

The ISO 9126 series (ISO-9126 2004) proposes a model for the evaluation of the quality, and 

associated metrics, of a software product. ISO 9126-1 presents the quality model of six (6) 

quality characteristics and several quality sub-characteristics for internal and external quality, 

which are further subdivided into sub-characteristics. These sub-characteristics are 

manifested externally when the software is used as a part of a computer system, and are a 

result of internal software attributes - see Table 1.3.  
 

Table 1.3 List of quality characteristics in ISO 9126  
 

ID Quality Characteristics and Sub characteristics 

1 

Functionality: is defined as a set of attributes that bear on the existence of a set 
of functions and their specified properties. The functions are those that satisfy 
stated or implied needs. The sub characteristics related to this quality 
characteristic are: suitability, accuracy, interoperability, compliance, and security 
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Table 1.4 List of quality characteristics in ISO 9126 (Contd) 
 

ID Quality Characteristics and Sub characteristics 

2 

Reliability: is defined as a set of attributes that bear on the capability of software 
to maintain its level of performance under stated conditions for a stated period of 
time. The quality sub characteristics related to these factors are: maturity, 
recoverability, compliance and fault tolerance 

3 

Efficiency: is defined as a set of attributes that bear on the relationship between 
the level of performance of the software and the amount of resources used, under 
stated conditions. The sub characteristics related to this characteristic are: time 
behaviour, resource behaviour and compliance. 

4 

Usability: is defined as a set of attributes that bear on the effort needed for use, 
and on the individual assessment of such use, by a stated or implied set of users. 
The sub characteristics related to this characteristic are: learnability, 
understandability, compliance and operability 

5 
Maintainability: is defined as a set of attributes that bear on the effort needed to 
make specified modifications. The sub characteristics related to this characteristic 
are: stability, analyzability, changeability, compliance and testability 

6 
Portability: is defined as a set of attributes that bear on the ability of software to 
be transferred from one environment to another. The sub characteristics related to 
this characteristic are: installability, replaceability, conformance and adaptability 

 

1.3.4 ISO 19759 (SWEBOK guide) 

 

The Guide to the Software Engineering Body of Knowledge (ISO-19759 2004) (SWEBOK 

Guide), written under the auspices of the IEEE Computer Society’s professional practices 

committee, was initiated in 1998 to develop an international consensus in pursuing the 

following objectives:  

• To characterize the content of the software engineering discipline; 

• To promote a consistent view of software engineering worldwide; 

• To provide access to the software engineering body of knowledge; 

• To clarify the place and set the boundary of software engineering with respect to other   

disciplines; 

• To provide a foundation for curriculum development and individual certification 

material. 
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The SWEBOK Guide (ISO-19759 2004) presents the ‘Software Requirements’ knowledge 

area (KA) as the first KA in the software engineering life cycle process. According to the 

SWEBOK Guide, the software requirements KA is concerned with the elicitation, analysis, 

specification, and validation of software requirements. It is widely acknowledged within the 

software industry that software projects are critically vulnerable when these activities are 

performed poorly. 

 

In the ‘Software Requirements Fundamentals’ in the SWEBOK Guide (ISO-19759 2004) 

The functional requirements describe the functions that the software is to execute whereas 

the non functional requirements (NFR) are the ones that act to constrain the solution. They 

can be further classified according to whether they are performance requirements, 

maintainability requirements, safety requirements, reliability requirements, or one of many 

other types of software requirements.  

 

1.3.5 ISO 19761 (COSMIC method) 

 

It is specified in ISO 14143-1(ISO-14143-1 2007) that a functional size measurement (FSM) 

method must measure software-FUR. In addition,  (ISO-19761 2011) – COSMIC  proposes a 

generic model of software-FUR that clarifies the boundary between hardware and software. 

Figure 1.2 illustrates the generic flow of data from a functional perspective from hardware to 

software. From this generic model of software functional requirements – see Figure 1.2, we 

observe the following: 

• Software is bounded by hardware. In the so-called “front-end” direction (i.e.,, the left-

hand side in Figure 1.2), software used by a human user is bounded by I/O hardware, 

such as a mouse, a keyboard, a printer, or a display, or by engineered devices, such as 

sensors or relays. In the so-called “back-end” direction (i.e.,, the right-hand side of Figure 

1.2), software is bounded by persistent storage hardware, like a hard disk, and RAM and 

ROM memory; 

• The software functionality is embedded within the functional flows of data groups. Four 

distinct types of data movements can characterize such data flows. In the “front end” 
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direction, two types of movements (Entry and Exit) allow the exchange of data with the 

users across a ‘boundary’. In the “back end” direction, two types of movements (Read 

and Write) allow the exchange of data with persistent storage hardware; 

• Different abstractions are typically used for different measurement purposes. In real-time 

software, the users are typically the engineered devices that interact directly with the 

software; that is, the user is ‘I/O hardware’. For business application software, the 

abstraction commonly assumes that the users are humans who interact directly with the 

business application software across the boundary, in which case the I/O hardware is 

ignored.   

 

The COSMIC FSM method (ISO-19761 2011) is aimed at measuring the size of software 

based on identifiable FUR. Once identified, those requirements are allocated to hardware and 

software from the unifying perspective of a system integrating these two “components”. 

Since COSMIC is aimed at sizing software and only the requirements allocated to the 

software are currently considered in its measurement procedure.   

 

 

 

 

 

 

 
 

 
 
 
 
 
 

Figure 1.2 Generic flow of data groups for a functional perspective in COSMIC – ISO 19761 
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In this research work, the generic model of COSMIC (ISO 19761) will be used to measure 

the functional size of the functions of the system-NFR allocated to software-FUR, which 

functions are mentioned in other international standards such as ECSS, IEEE and Iso 9126.  

For example, the IFPUG (International Function Point User Group) sizing method has been 

published as an ISO Standard ( ISO 20926 2003); this method  attempts to capture and size 

the NFR through it set of  the fourteen general system characteristics (GSCs) for a given 

application. This is further complicated in the IFPUG method structure since the influence of 

NFR on the project size is also difficult to quantify. Furthermore, several different scale types 

are used in the various steps of the IFPUG method and the results of many of the steps and 

sub-steps of the measurement designs of the GSCs are based on inappropriate use of 

mathematical properties of corresponding scale types (Abran, 2010). 

 
1.3.6 Software Functional Size Measurement (FSM) 

 

The functional size measurement (FSM) is used to measure software products from a user 

perspective. FSM must be independent of technical development and implementation 

decisions and it can be used to compare the productivity of different techniques and 

technologies (Abran 2010).  

 

FSM has reached a high maturity level: for example, the basic concepts and definitions of 

FSM have been standardized by the International Organization for Standardization in (ISO-

14143-1 2007) while five measurement methods have been adopted by ISO as International 

Standards, such as: COSMIC (ISO-19761 2011).  

 

The COSMIC (ISO-19761 2011) standard is considered as a second generation of an FSM 

method. COSMIC method has been extensively tested and its use is increasing especially in 

the real-time and telecommunications; it is as well compatible with modern specification 

methods such as unified modeling languages (UML), and object-oriented (OO) techniques. 

COSMIC method defines the principles, rules, and a process for measuring the functional 

size of a piece of software.  ‘Functional size’ is a measure of the ‘amount of functionality’ 

provided by the software. 
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1.3.7 COSMIC guideline for sizing service oriented architectural software  

 

COSMIC-SOA is a supplementary guideline (COSMIC 2010) for the COSMIC standard 

published by the COSMIC Group in 2010. It is intended to be used by expert ‘measurers’ 

who have the task of measuring the functional size of software services according to the 

COSMIC method. In particular, the COSMIC method defines and standardizes particular 

concepts, such as layers, peer components, the unlimited size of a functional process, and that 

pieces of software can be functional users of each other; these concepts are perfectly suited 

for measuring SOA-based software requirements. 

 

There are many definitions of a service-oriented architecture (SOA), such as: a flexible set of 

design principles used during systems development and integration (COSMIC 2010); a 

process including the definition of the architecture, components, modules, interfaces, and 

data for a system to satisfy specified requirements (SoberIT: 2008). 

 

SOA has been selected in this thesis as example of sets of more complex requirements. Of 

course, there could be other types of complex requirements from different viewpoints: for 

example, various types of architectures, and architecture design semantics in multi-tiered and 

distributed systems. 

 

COSMIC Guideline (COSMIC 2010) aids measurers of services when there are SOA 

requirements by separating functions into distinct units, or services. These services 

communicate with each other by exchanging data in a well-defined, shared format, or by 

coordinating an activity between two or more services and aims to show how the COSMIC 

method can be applied to measure SOA software without needing to adapt the method in any 

way. 

 

The COSMIC Guideline for SOA (COSMIC 2010) offers three types of data movements in 

Table 1.4.  

 



19 

Table 1.5 COSMIC SOA guideline - Tthree types of data movements  
(COSMIC 2010) 

 
ID COSMIC-SOA Data Movements Types Generic Measurement Model 

1 

COSMIC-SOA exchange messages: 
 
An application requiring commonly-used 
information from another application sends 
a request to the service of the application 
that can handle the request or the application 
may call upon its own services. Such calls 
are also called ‘messages’. Each message 
may consist of one or more data movements 
 

 

 

 

 

2 

COSMIC-SOA intermediary services:  
 
When a functional process of an application 
service in application A requires data that 
are available via an application service in 
application B, the former application service 
calls upon a functional process of the 
intermediary service. This service 
functionality is also needed by other 
applications in the overall SOA framework, 
as it may itself be realized in the form of a 
utility service  
 

 

 

 

 

 

3 

COSMIC-SOA data exchanges:  
The data movements between components 
in the same layer, i.e., between peer 
components (where a component may be an 
application or a service). It shows direct and 
indirect exchanges of data between 
components. If components exchange data 
directly, then, for measurement purposes, 
the measurer will identify Exit and/or Entry 
data movements, as per the data movements 
between service A (SA) and service B (SB). 
An indirect exchange of data between 
components means that a service in one 
component writes data in a storage device, 
which is subsequently read by a service in 
another component. the measurer will 
identify a Write data movement in service 
SA and a Read in service SB 
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1.4 NFR ontologies 

 

Ontology is a formal representation of a set of concepts within a domain and the relationships 

between these concepts. It is used to reason about the properties of that domain and may be 

used to define the domain (Liu 2010) .  

  

An ontology provides a shared vocabulary that can be used to model a domain — that is, 

with the types of objects and-or concepts that exist, and their properties, relations, and the 

rules of the ontology meta model. The metadata can be filled in with concepts from an 

ontology to model a NFR.  

 

An ontology deals with questions concerning what entities exist or can be said to exist and 

how such entities can be grouped, related within a hierarchy, and subdivided according to 

similarities and differences. 

The use of NFR-ontologies is still as a research in progress in the software/system-NFR 

domain for the following reasons: 

• The NFR-ontologies are built based on individual concepts and views, not on consensual 

views as agreed upon in international standards; 

• The NFR domain is hard to model and the relationships between these requirements are 

often contradictory; because there is no abstract knowledge for NFR, it is hard to build a 

conceptualized view for the NFR-ontology; 

• The NFR-ontology is difficult to enforce during software development projects; 

• The NFR-ontology does not allow measuring these NFR with the available functional 

size measurement (FSM) methods such as COSMIC and FPA. 

 

1.5 Summary 

 

The term NFR has been used in academia and industry but there is still no common definition 

for this term and the NFR domain is hard to model and viewed: the NFR are defined, 

interpreted, and evaluated differently by authors and standards. The relationships between 
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these requirements are often contradictory. In practice, NFR have received less attention in 

the software engineering literature, including  in software estimation models.. 
 

The European ECSS series of standards for the aerospace industry includes sixteen types of 

NFR for embedded and real-time software and the NFR-related concepts are dispersed 

throughout the ECSS standards to describe, at varying levels of detail, the various types of 

candidate NFRs at the system, software, and hardware levels.  

 

The ECSS standards series uses a set of concepts and vocabularies to describe their 16 types 

of NFR. While conducting an inventory of the entire set of NFR-related concepts and terms 

described in the ECSS-E-40 and ECSS-Q-80 series and in ECSS-ESA as the integrated 

standard for ECSS-E and ECSS-Q, we observed that: 

• The NFR elements list in ECSS is dispersed throughout various parts and there is 

therefore no integrated view of all types of NFR elements in the list. 

• The NFR elements are described differently and at different levels of detail. 

• There is no obvious guidance on how to measure the NFR in the ECSS standards series. 

 

Additionally, in the ISO 9126 and IEEE 830, a number of concepts are provided to describe 

various types of NFR at the system and software levels in the testing and evaluation 

processes. However, these ISO and IEEE documents also vary in their views, terminology, 

and coverage of these requirements.  

 

In addition, the SWEBOK Guide (ISO-19759 2004) includes in the ‘software requirements’ 

KA a description of the steps to move from system-NFR to software-NFR: requirements 

elicitation, requirements analysis, requirements specification, and requirements verification. 

These activities could be used to build a standard-based modeling from a high-level system-

NFR to a detailed level of software-NFR such as Configuration Control and Data.  

 

Furthermore, the basic concepts and definitions of FSM have been standardized by the 

International Organization for Standardization in (ISO-14143-1 2007) and five measurement 
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methods have been adopted by ISO as International Standards. The newest method in 

COSMIC (ISO-19761 2011). COSMIC method has been extensively tested and its use is 

increasing especially in the real-time and telecommunications. In particular, the COSMIC 

method is compatible with modern specification methods, such as UML, OO techniques and 

a COSMIC-SOA guideline that developed by the COSMIC group in 2010. This guideline 

aims to show how the COSMIC method can be applied to measure SOA software 

requirements. 

 

In the work reported here, preference is given to the views, concepts, and vocabulary most 

widely used by the industry, as evidenced in its standardization infrastructure, rather than 

those in the academic literature. Similarly, for the structuring and description of models of 

FUR and for measurement purposes, the measurement views, concepts, and terminology 

from the standardization infrastructure have been adopted in this research thesis, rather than 

those in the literature. 

 



 

CHAPTER 2 

RESEARCH GOAL, OBJECTIVES, AND METHODOLOGY 

2.1 Introduction 

 

A research methodology is one of the keys to the success of a research project. It helps 

ensure that the research itself is valid and the methodology used is appropriate. (Ellis and 

Levy 2008) mentioned that “the problem is the axis around which the whole research effort 

revolves. The statement of the problem must first be expressed with the utmost precision; it 

should then be divided into more manageable sub-problems. Such an approach clarifies the 

goals and directions of the entire research effort”. 

 

This chapter describes the research project definition including: the research motivation, the 

research goal, the research objectives, the users of the research ersults, key inputs to this 

research work and the research methodology. 

 

2.2 Research motivation 

 

The research project motivation is to contribute to the improvement of the estimation models 

of software development effort by including the system-NFR in the software estimation 

process through a quantitative view of such NFR.  

 

2.3 Research goal 

 

The goal for this research project is to help the project managers, organizations, and 

researchers make informed decisions during project planning and software development 

projects in the early identification, specification, and measurement of the system-NFR for 

embedded software. More specifically, this research project aims to contribute to better 

define, describe, and measure some of the inputs, which are the system-NFR required for a 

priori cost estimation.   
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2.4 Research objectives 

 

The research objective is the early specification and measurement of software-FUR derived 

from system-NFR, using as a basis the systems and software engineering standards.  

 

To achieve this research objective the following two specific research sub-objectives must be 

reached:  

• Designs of standard-based models for the identification and specification of software-

FUR for system-NFR. 

• Measurement of the functional size of software-FUR for system-NFR using the COSMIC 

ISO 19761 standard. 

 

The NFR measurements results should be available as early as possible in software projects 

and in particular be available for a priori estimating. The results of this research will be a set 

of  standard-based generic requirements and measurement models for system-NFR for 

embedded software. 

 

2.5 Users of research 

 

The users of research in this research work are people who are working on the requirements 

and measurement of the software-FUR derived from system-NFR. 

 

2.6 Research input 

 

This research project for the specification and measurement of the software-FUR from the 

system-NFR using international standards has the following key inputs: 

• ECSS European international standards, 2003-2010; 

• ISO 9126, 2004; 

• IEEE 830, 1998; 
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• ISO 19761 (COSMIC, 2011); 

• COSMIC SOA guideline 2010; 

• ISO 19759 (SWEBOK Guide, 2004). 

 

2.7 Overview of the research methodology 

 

This section presents an overview of the research methodology designed to pursue the 

research objective. This research methodology consists of five phases as seen in Figure 2.1. 

 

Phase 1: NFR in the literature review 

Phase 1 of the research methodology consists of surveying the literature on NFR, in both the 

academic literature and in the international standards on systems and software engineering – 

see chapter 1 and Annex I. 

 

Phase 2: Identification of NFR concepts, terms and vocabularies in international 

standards 

Phase 2 of the research methodology consists of surveying the concepts, vocabularies and 

terminologies from different standards for each of the 16 types of ECSS-NFR – see chapter 

3. 

 

Phase 3: Mapping and modeling of standard-based models of NFR types for software-

FUR specifications and measurement 

Phase 3 of the research methodology consists of the identification, specification and 

measurement  of software-FUR derived from fourteen (14) types of system-NFR in the ECSS 

standards – see chapters 4, 5, 6 and 7 as well as Annex II. 

 

 

 

Phase 4: Case study-Valve Control System (VCS) 
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Phase 4 of the research methodology consists of a case study to illustrate some of the 

proposed standard-based models of software-FUR derived from system-NFR – see chapter 8. 

 

Phase 5: Traceability and Operationalization 

Phase 5 of the research methodology consists of proposing a modified system requirement 

traceability matrix (RTM)  within the system life cycle to tackle system-FUR and system-

NFR in high and detailed levels, as well as the detailed traceability to specific sections and 

pages of the ECSS standards of the proposed reliability-NFR model.  

 

2.8 Detailed research methodologyPhase 1: NFR in the literature  

It is noted from the literature survey of the NFR in chapter 1 that NFR are still hard to model 

and use in software projects and NFR are defined differently by different authors. This phase 

of the methodology consists of following steps: 

• Step 1.1: NFR in the academic literature 

This step presents a survey of the early and recent works on NFR in the academic 

literature – see chapter 1. 

• Step 1.2: NFR in international standards 

This step presents a survey of the NFR in standards such as ECSS, ISO, IEEE and ISO 

19759 (SWEBOK Guide) as well as a standard measurement method such as ISO 19761 

(COSMIC method) and its supplementary COSMIC-SOA guideline. This step is a key 

input for this research study – see chapter 1. 

 

Phase 2: Identification of NFR concepts, terms and vocabularies in international 

standards 

This phase 2 of the methodology consists of the following steps: 

• Step 2.1: ECSS views and concepts for 16 NFR types in the ECSS standard series 

This step identifies the NFR related views, concepts and terms in the ECSS standards. 

• Step 2.2: ISO 9126 views and concepts for some of the NFR types in the ECSS list 

This step identifies the NFR related views, concepts and terms in the ISO 9126 standards. 

• Step 2.3: IEEE views and concepts for some of the NFR types in the ECSS list 
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This step identifies the NFR related views, concepts and terms in the IEEE standards. 

• Step 2.4: ISO 19759 (SWEBOK Guide) views and concepts for some of the NFR 

types in the ECSS list 

This step identifies the NFR related views, concepts and terms in the ISO 19759 for 

Configuration and design and implementation constraints requirements.  

 

Phase 3: Mapping and modeling of standard-based models of NFR types for software-

FUR specifications and measurement 

This phase 3 of the methodology consists of following steps: 

• Step 3.1: Identification of functions to be specified for each type of system-NFR 

This step identifies the functions to be specified or corresponding functions to be 

measured for each type of system-NFR in the ECSS list. 

• Step 3.2: Identification of the system-NFR types allocated to software-FUR 

This step identifies the function types for each type of system-NFR in the ECSS list. 

• Step 3.3: Identification of the NFR relationships 

This step identifies the relationships between the specified function allocated to software-

FUR of the system-NFR in the ECSS list by using the COSMIC functional modelling 

view. 

• Step 3.4: Model of function types relationships based on COSMIC and system views.   

This step identifies a standard-based models for each type of system-NFR allocated to 

software-FUR. 

• Step 3.5: A standard-based measurement model of software-FUR using COSMIC-

SOA Guideline  

This step uses the COSMIC-SOA Guideline to identify the service oriented architecture 

requirements for the standard-based generic models of each type of the system-NFR 

allocated to software-FUR. 

• Step 3.6: Sizing a reference instantiation of the standard-based models of software-

FUR   

This step identifies the functional measurement size for different specific instantiations 

for each type of system-NFR allocated to software-FUR. 
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Phase 4: A case study- Valve Control System (VCS) 

This phase of the methodology includes the case study “Valve Control system”. The selected 

case study aims at the identification, specification and measurement of the standard-based 

model of software-FUR for system reliability-NFR using the following steps: 

• Step 4.1: Specification of the system reliability-NFR to be allocated to software. 

• Step 4.2: Specification of the ECSS-based reliability allocated to software-FUR for 

the VCS components. 

• Step 4.3: Measurements of the system-reliability-NFR for the VCS case study. 

 

Phase 5: Traceability and operations 

This phase 5 of the methodology consists of the following steps: 

• Step 5.1: Traceability model in the ECSS standard series 

These step presents the traceability model used in the ECSS standards series for the 

system-FUR. 

• Step 5.2: Improvement for a traceability model in ECSS standard series 

This step identifies some improvements for extending the ECSS traceability model in the 

previous step to include system-FUR and NFR; 

• Step 5.3: The traceability of the concepts, terms and vocabularies for the proposed 

fourteen standard-based models 

This step identifies the traceability of the functions identified in the various ECSS, IEEE 

and ISO standards  for the proposed fourteen standard-based models. 

• Step 5.4: A detailed traceability for  the standard-based model of software-FUR for 

system reliability-NFR  

This step identifies the detailed traceability to specific sections and pages of the ECSS 

standards of the proposed reliability-NFR model. 
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Figure 2.1 Research methodology – overview of phases 



 

CHAPTER 3 

IDENTIFICATION OF NFR CONCEPTS AND VIEWS IN STANDARDS 

3.1 Introduction 

 

The NFR are typically described at the system level and not at the software level. As yet, 

there is no consensus on how to describe and measure system-NFR. In current practice, they 

may be viewed, defined, interpreted, and evaluated differently by different people in the later 

project phases, particularly when they are stated vaguely and only briefly in the system 

requirements phase (Chung and do Prado Leite 2009).  

 

In the ECSS (European Cooperation on Space Standardization) standards for the aerospace 

industry (ECSS-S-ST-00C 2008; ECSS-E-ST-10C 2009; ECSS-Q-ST-80C 2009) and 

(ECSS-E-40-Part-1B 2003; ECSS-Q-80B 2003; ECSS-E-40-Part-2B 2005), ISO 9126  (ISO-

9126 2004) and IEEE 830 (IEEE-830 1998), a number of concepts are provided to describe 

various types of NFR at the system, software, and hardware levels. However, these standards 

vary in their views, terminology, and coverage of operations. 

 

This chapter is organized as follows to describe the concepts and views of the 16 types of 

system-NFR in the ECSS series: 

Section 3.2   Reliability systems requirements. 

Section 3.3   Maintainability systems requirements. 

Section 3.4   Interfaces systems requirements. 

Section 3.5   Portability systems requirements. 

Section 3.6   Operations systems requirements. 

Section 3.7   Configuration systems requirements. 

Section 3.8   Data definitions and database systems requirements. 

Section 3.9   Adaptations and installations systems requirements. 

Section 3.10 Design and implementation constraints systems requirements. 

Section 3.11 Performance systems requirements. 
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Section 3.12 Security and privacy systems requirements. 

Section 3.13 Safety systems requirements. 

Section 3.14 Resources systems requirements. 

Section 3.15 Human factor requirements. 

A summary is presented in section 3.16  

 

3.2 Reliability systems requirements 

 

This section presents a survey of the reliability-related views, concepts, and terms in the 

ECSS (ECSS-S-ST-00C 2008; ECSS-E-ST-10C 2009; ECSS-Q-ST-80C 2009) , ISO 9126 

(ISO-9126 2004), and IEEE-830 (IEEE-830 1998)  standards. This section identifies which 

standards currently address aspects of the software-FUR that may be derived from system 

reliability FUR and NFR. 

 

3.2.1 ECSS: views and concepts for reliability 

 

Reliability, in the ECSS standards, shall be specified at the system level. The reliability 

requirements can be met by introducing adequate redundancy features. The ECSS standards 

consider reliability as the acceptable probability of system failure which is based on the 

equipment reliability and availability specifications.  

 

According to the ECSS, reliability models shall be prepared to support predictions: FMEA 

(Failure Mode and Effects Analysis), FMECA (Failure Mode, Effects and Criticality 

Analysis) as well as reliability testing. Demonstration shall be performed according to the 

project reliability requirements in order to check the following: 

1. Failure modes and effects;  

2. Failure tolerance, failure detection and recovery;  

3. Statistical failure data to support predictions and risk assessment;  

4. Consolidated reliability assessments;  
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5. Capability of the hardware to operate with software or to be operated by a human being 

in accordance with the specifications;  

6. Demonstrated reliability of critical items;  

7. Justification of data bases used for theoretical demonstrations. 

 

Table 3.1 presents a list of concepts and vocabulary used in the ECSS standards to describe 

system-related reliability requirements. The ECSS standards specify that reliability 

requirements must be implemented in software, hardware, or a combination of the two. 

 

3.2.2 IEEE: views and concepts for reliability 

 

IEEE-830 (IEEE-830 1998) lists reliability as one of the thirteen (13) NFR types in their list. 

IEEE-830 (IEEE-830 1998) only defines the reliability requirements as the factors required 

to establish the required reliability of the software system at time of delivery; however, it 

does not provide guidance on how to describe and specify the reliability requirements and it 

does not provide guidance on how to measure them - see Table 3.1.  

 

IEEE-1220 (IEEE-1220 2007) only defines the reliability requirement as the analysis of 

system effectiveness for each operational scenario, without mentioning how to describe and 

specify the reliability requirements. 

 

3.2.3 ISO views and concepts for reliability 

 

The key view on reliability in the ISO 9126  (ISO-9126 2004) series is from the perspective 

of the quality of the software product: reliability is presented as a quality characteristic, 

which is decomposed into quality sub-characteristics and then into proposed derived 

measures to quantify those quality sub-characteristics. The inventory of related concepts and 

vocabulary on software reliability, such as maturity, fault tolerance and recoverability, is 

presented in Table 3.1. 
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Furthermore, (ISO-24765 2008) for the systems and software engineering vocabulary defines 

the reliability as the probability that software will not cause the failure of a system for a 

specified time under specified conditions. (ISO-24765 2008) uses the following concepts 

with their definitions:  

1. Function to identify error to input; 

2. Function to identify error to output. 

 

Table 3.1 Reliability views, concepts and terms in ECSS and ISO 

 

ID 
Standard 

Organization 
Key view Concepts and terms 

1 ECSS 
Acceptable probability of 
system failure 

 
• Component failure 
• Redundancy feature 
• Data parameter 
• Reliability methods, 

operations and mechanism 
• Failure tolerance 
• FMEA and FMECA 
• Failure detection 
• Failure isolation 
• Failure recovery 
• Failure data 

 

2 ISO 

The capability of the software 
product to maintain a specified 
level of performance when used 
under specified conditions 

 
• Maturity 
• Fault tolerance  
• Recoverability  
• Fault Density 
• Failure Resolution 
• Incorrect Operation 
• Availability 
• Breakdown Time 
• Recovery Time 
• Fault Removal  
• Failure Avoidance 
• Restart ability  
• Restorability 
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3.3 Maintainability systems requirements 

 

This section presents a survey of the maintainability-related views, concepts, and terms in the 

ECSS (ECSS-S-ST-00C 2008; ECSS-E-ST-10C 2009; ECSS-Q-ST-80C 2009), (ECSS-E-40-

Part-1B 2003; ECSS-Q-80B 2003; ECSS-E-40-Part-2B 2005) and (ECSS-ESA 2005), (ISO-

9126 2004) and (IEEE-830 1998) standards. This section identifies which standards currently 

address aspects of the software-FUR which may be derived from the system maintainability 

FUR and NFR. 

 

3.3.1 ECSS: views and concepts for maintainability 

 

Maintainability in the ECSS standards is considered part of the integrated support 

requirements in system engineering, including related activities and procedures. Table 3.2 

presents a list of the concepts and vocabulary used in the set of 13 ECSS standards to 

describe system-related maintainability requirements. For instance, the ECSS specifies that, 

for system maintainability, failure modes, effect, and criticality (FMECA) must be analyzed. 

It does not specify, however, whether such requirements must be implemented in software or 

hardware, or in a combination of the two.  

 

3.3.2 IEEE: views and concepts for maintainability 

 

IEEE-830 (IEEE-830 1998) standard lists maintainability as one of the NFR types on their 

list, but does not define it, nor does it provide guidance on how to describe and specify the 

maintainability requirements; neither, of course, does it provide guidance on how to measure 

any of these NFR. (IEEE-14764 2006) and (IEEE-982.1 2005) only define the 

maintainability requirement as the capability of the software product to be modified, without 

mentioning how to describe and specify the maintainability requirements. 
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3.3.3 ISO: views and concepts for maintainability 

 

The key view on maintainability in the ISO 9126 (ISO-9126 2004) series is from the 

perspective of the quality of the software product. Maintainability is presented as a ‘quality 

characteristic’ of the software, which is decomposed into quality sub characteristics and then 

into proposed derived measures to quantify those quality sub characteristics. The inventory 

of related concepts and vocabulary on software maintainability, such as analyzability, 

changeability, etc., is presented in Table 3.2.  

 

Table 3.2 Maintainability views concepts and terms in the ECSS and ISO standards 

 

ID 
Standard 

organization 
Key view Concepts and terms 

1 
ECSS 

 

Part of the integrated 
logistical support 
requirements in system 
engineering, including 
activities and procedures 

• Maintainability activities and 
procedures 

• Maintainability operations 
• Environment control and life 

support systems design (ECLSS) 
• FMECA: failure mode, effect, 

and criticality analysis 
• FMEA:  failure mode and effect 

analysis 
• Mean time‐to‐repair and system 

downtime  
• Fault detection and isolation 

capability 
• System malfunction 

2 
ISO 

 

 
The maintainability quality 
characteristic denotes the 
capability of the software 
product to be modified.   
 
Modifications may include 
corrections, improvements, 
or adaptation of the 
software to changes in 
environment 

• Analyzability 
• Audit Trial Capability 
• Failure Analysis Capability 
• Status Monitoring Capability 
• Diagnostic Function Support 
• Changeability 
• Change Efficiency 
• Software Change Control 

Capability 
• Modifiability 
• Stability 
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Table 3.2 Maintainability views concepts and terms in the ECSS and ISO standards 
(Continued) 

 

ID 
Standard 

organization 
Key view Concepts and terms 

2 
ISO 

 

 
The maintainability quality 
characteristic denotes the capability of 
the software product to be modified.   
 
Modifications may include 
corrections, improvements, or 
adaptation of the software to changes 
in environment 

• Modification Impact 
• Change Success Ratio 
• Testability 
• Availability of a built-

in test function 
• Retest Efficiency 
• Test Restart 

Capability 

 

3.4 Interface systems requirements 

 

This section presents a survey of the interface-related views, concepts, and terms in the ECSS 

and IEEE-830 standards. This section identifies which standards currently address some 

aspects of the software-FUR derived from the interface system-FUR and system-NFR. 

 

3.4.1 ECSS: views and concepts for interfaces 

 

The ECSS standards  ECSS (ECSS-S-ST-00C 2008; ECSS-E-ST-10C 2009; ECSS-Q-ST-

80C 2009) and (ECSS-E-40-Part-1B 2003; ECSS-Q-80B 2003; ECSS-E-40-Part-2B 2005)  

present software interfaces as a set of NFR for real time and embedded software. In 

particular, the ECSS-E-40 include the design of the external interface as part of the interface 

control document (ICD), while the design of the internal interface is included as part of the 

software design document (SDD). Also, (ECSS-ESA 2005) specifies that the detailed design 

of the software product interfaces should be defined during the interface design phase. 

 

In ECSS (ECSS-S-ST-00C 2008; ECSS-E-ST-10C 2009; ECSS-Q-ST-80C 2009) and 

(ECSS-E-40-Part-1B 2003; ECSS-Q-80B 2003; ECSS-E-40-Part-2B 2005) and (ECSS-ESA 

2005), the majority of interfaces are software-to-software interfaces, and the ECSS requires 
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that they shall be defined in the requirements baseline (i.e., the requirements baseline must 

include the requirements applicable to the various elements of the system product tree). 

 

Table 3.3 presents a list of concepts and vocabulary used in the ECSS standards to describe 

system-related interface requirements. These standards specify that interface requirements 

must be implemented in software or hardware, or a combination of the two. 

 

3.4.2 IEEE: view and concepts for interfaces 

 

Software interface requirements are also presented in (IEEE-830 1998) as NFR, and the 

interface is defined through a detailed description of all inputs into, and outputs from, the 

software system. In particular, (IEEE-830 1998) mentions that the interface can be analyzed 

and understood through the user interfaces, the hardware interfaces, the software interfaces, 

and the communications interfaces. Note that, where (IEEE-830 1998) defines an interface as 

‘inputs’ or outputs’, these are considered only as collections of data movements and not 

integrated into specific functional processes. (IEEE-830 1998) does not provide an analysis 

or explanation of the linkage between the set of interface concepts identified- see Table 3.3. 

 

IEEE (IEEE-830 1998)  identifies the system interface functionality of the software designed 

to accomplish the system requirements, and describes the interfaces that match the system for 

the following types of interfaces: 

1. User interface:  provides the logical characteristics for communication between the 

software product and its users. This includes the configuration characteristics (e.g. 

required screen formats, page or window layouts, content of any reports or menus, 

availability of programmable function keys, etc.) necessary to meet the software 

requirements; 

2. Hardware interface: provides the logical characteristics for communication between the 

software product and the hardware components of the system. This includes 

configuration characteristics (number of ports, instruction sets, etc.) and addresses such 

matters as what devices are to be supported, how they are to be supported, and the related 
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protocols. For example, full-screen support may be specified for the terminal, as opposed 

to line-by-line support; 

3. Software interface: specifies other software products (e.g. a data management system, an 

operating system, a mathematical package, etc.) for the user, and provides the means of 

communication with other application systems (e.g. the linkage between an accounts 

receivable system and a general ledger system) required by the user; 

4. Communications interface: provides the user with network interconnection capability, 

such as with local network protocols, etc. 

 

Table 3.3 Interface: views, concepts and terms in ECSS and IEEE 
 

ID 
Standards 

organization 
Key view Concepts and terms 

1 
ECSS 

 

 
 
 
Interface 

requirements must be 
implemented in 
software or 
hardware, or a 
combination of the 
two 

• User interface between the system and the 
product 

• Interface communications in various 
communication layers: 
 External interfaces for telemetry, 

telecommands, ranging, and data: 
spacecraft-to-ground, spacecraft-to-
spacecraft, ground-to-ground  

 Internal interfaces between items of on-
board equipment 

• Control software interfaces, including:  
 Software interfaces for  system 

applications 
 Interface specifications through 

programming languages  
 Interface specifications for each layer of 

socket programming, including data size 
control, data direction (unidirectional or 
bidirectional), data serialization, 
methods, and ports 

• Control Hardware interfaces: 
• Physical, thermal, and electrical interfaces 

2 
IEEE 

 

Interface is defined 
through a detailed 
description of all 
inputs into, and 
outputs from, the 
software system 

• User interfaces,  
• Hardware interfaces,  
• Software interfaces, and  
• Communications interfaces. 
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3.5 Portability systems requirements 

 

This section presents a survey of the portability-related views, concepts, and terms used in 

international standards. It identifies which standards currently address some aspects of the 

software-FUR derived from the portability system-NFR. The elements of portability are 

dispersed in various system views throughout the ECSS standards, and are expressed as 

either: 

• System portability functional user requirements (system portability-FUR);  

• System portability non functional requirements (system portability-NFR). 

 

3.5.1 ECSS: view and concepts for portability 

 

The ECSS standards series ECSS (ECSS-S-ST-00C 2008; ECSS-E-ST-10C 2009; ECSS-Q-

ST-80C 2009) and (ECSS-E-40-Part-1B 2003; ECSS-Q-80B 2003; ECSS-E-40-Part-2B 

2005) and (ECSS-ESA 2005), includes a number of portability requirements at the system 

level. Portability in the ECSS standards is considered as the capability of the system to be 

transferred from one environment to another. Table 3.4 presents a list of concepts and 

vocabulary used in the ECSS standards to describe system-related portability requirements. 

For instance, the ECSS specifies minimum dependency on software and hardware (system 

portability) and independence of the operating system from hardware and software 

obsolescence. What it does not specify, however, is whether or not such requirements must 

be implemented in software or hardware, or a combination of the two. 

 

3.5.2 IEEE: view and concepts for portability 

 

The (IEEE-830 1998) lists the portability requirements as one of the NFR on their list. The 

IEEE describes portability by specifying the attributes of software that relate to the ease of 

porting the software to other host machines and/or operating systems, and provides some 

portability concepts – see Table 3.4.  
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3.5.3 ISO standards: views and concepts for portability 

 

The key view on portability in the (ISO-9126 2004) is from the perspective of the quality of 

the software product: portability is presented as a ‘quality characteristic’ and is then 

decomposed into quality sub-characteristics and next into proposed derived measures to 

quantify those quality sub-characteristics. The inventory of related concepts and vocabulary 

on software portability, such as replaceability and co-existence, is presented in Table 3.4. 

Portability in (ISO-24765 2008) is considered as a system or component that can be 

transferred from one hardware or software environment to another. Table 3.4 presents the 

concepts and vocabulary used in (ISO-24765 2008) to describe system-related portability 

requirements. While ISO 24765 states that portability in a system environment refers to a 

transfer between software and hardware, it does not specify whether portability requirements 

must be implemented in the software or the hardware, or in a combination of the two.  

 

Portability in (ISO-2382-1 1993) is described as a program to be executed on various types 

of data processing systems. Table 3.4  presents a list of concepts and vocabulary used in 

(ISO-2382-1 1993) to describe system-related portability requirements. For instance, this 

standard refers to portability between a program and a sub part of the same program (sub 

program) when this program is executed using different data processing systems and system 

program calls (SPC) or remote procedural calls (RPC) between the program and sub program 

functions, independently of the language. It does not, however, specify whether such 

requirements must be implemented in the software or the hardware, or in a combination of 

the two.  

 

Table 3.4 Portability views, concepts and terms in the standards 
 

ID 
Standard 

organization 
Key views Concepts and terms 

1 ECSS 

 
The capability of the 

system to be transferred 
from one environment to 
another 

• Minimum system dependency 
• Independent from  the operating 

system 
• Minimum hardware dependency 
• Obsolescence of hardware or software 
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Table 3.4 Portability views, concepts and terms in the standards (Continued) 
 

ID 
Standard 

organization 
Key views Concepts and terms 

2 
IEEE 830 

 

Describe portability by specifying 
the attributes of software that 
relate to the ease of porting the 
software to other host machines 
and/or operating systems 

• Percentage of components 
with host-dependent code 

• Percentage of code that is 
host-dependent 

• A proven portable language 
• A particular compiler or 

language subset 
• A particular operating system 

3 
ISO 9126 

 

The capability of the software 
product to be transferred from one 
environment to another 
Environment may include the 

organizational, hardware, or 
software environment 

• Sharing common resources 
• Independent software in a 

common environment 
• Continued use of data  
• Software running 

concurrently with other 
software 

• Replaceability  
• Co-existence 

4 
ISO 24765 

 

A system or component can be 
transferred from one hardware or 
software environment to another 

• Software environment 
• Hardware environment 

 

5 
ISO 2382-1 

 

A program to be executed on 
various types of data processing 
systems 

• Language independence 
• Data processing system 
• Isolating software system 

calls 
 

3.6 Operations systems requirements 

 

This section presents a survey of the operations-related views, concepts, and terms in the 

ECSS and IEEE-830 standards. It identifies which standards currently address aspects of the 

software-FUR derived from system operations FUR and NFR. The expected outcome is the 

identification of the various elements that should be included in the design of a standard-

based framework for modeling software-FUR for system operations-NFR. 
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3.6.1 ECSS: views and concepts for operations 

 

The ECSS standards series ECSS (ECSS-S-ST-00C 2008; ECSS-E-ST-10C 2009; ECSS-Q-

ST-80C 2009) and (ECSS-E-40-Part-1B 2003; ECSS-Q-80B 2003; ECSS-E-40-Part-2B 

2005) and (ECSS-ESA 2005) includes a number of operations requirements at the system 

level. Clearly, the ECSS focuses on the system-FUR for the early development phases, while 

the system-NFR are typically discussed within the context of later development phases, such 

as evaluation or testing.  

 

The elements of operations are dispersed in various system views throughout various ECSS 

standards, and are expressed as either: 

• System operations FUR;  

• System operations NFR. 

 

Operations in the ECSS standards include any specified operations mode and mode transition 

for the software, and, in the case of man-machine interaction, the intended use scenarios and 

diagrams may be used to show the intended operations and related transition modes. 

Moreover, operations engineering should cover all operations activities through all phases of 

the life cycle; i.e., preparation, validation, execution, and disposal. 

 

Table 3.5 presents a list of concepts and vocabulary used in the ECSS standards to describe 

system-related operations requirements. For instance, the ECSS specifies that, for system 

operations mode, an analysis of the operational functions (inter-operational function and 

operational function event) and of the system transitions mode (operational control interface 

and operational data interface) must be carried out.  

 

The ECSS specifies that such requirements must be implemented in software or hardware, or 

a combination of the two. 

 



43 

3.6.2 IEEE: views and concepts for Operations  

 

The (IEEE-830 1998)  includes operations as one of the NFR types in their list of NFR, and 

considers the various modes of operation as part of the user interface. But it does not define 

what an operations requirement is, nor does it provide guidance on how to describe and 

specify the operations requirements. Of course, it does not provide guidance on how to 

measure any of these NFR either. 

 

Table 3.5 Operations: view, concepts and terms in the ECSS standards 
 

ID 
Standard 

Organization 
Key views Concepts and terms 

1 ECSS 
Operational and 

transition modes 

• Inter-operational function 
• Operational function event 
• Operational control interface 
• Operational data interface 
• System operations mode 
• System transitions mode 
• Operational scenario 

 

3.7 Configuration systems requirements 

 

This section presents a survey of the configuration-related views, concepts, and terms in the 

ECSS standards ECSS (ECSS-S-ST-00C 2008; ECSS-E-ST-10C 2009; ECSS-Q-ST-80C 

2009) and (ECSS-E-40-Part-1B 2003; ECSS-Q-80B 2003; ECSS-E-40-Part-2B 2005) and 

(ECSS-ESA 2005) and in the SWEBOK Guide (ISO-19759 2004). It identifies which 

standards or views currently address some aspects of the software-FUR derived from system-

NFR, specifically for the functional configuration requirements. 

 

3.7.1 ECSS: views and concepts for configuration  

 

Configuration in the ECSS standards is considered part of the “design and implementation 

engineering process”, which includes control activities and data flows for the operational 
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functions and data transfers of defined items. Table 3.6 presents a list of the concepts and 

vocabulary used in those standards to describe system-related configuration requirements. 

 

For instance, ECSS standards specify that each item or element defined during the design 

phase can be configured. They also specify what configuration requirements shall be 

implemented in software. 

 

3.7.2 ISO 19759 (SWEBOK Guide): views and concepts for configuration 

 

The key view on configuration in the SWEBOK guide (ISO-19759 2004) is that of a 

software with minor system views for the functional and/or physical characteristics of 

hardware, firmware, or software, or a combination of these, as set forth in technical 

documentation and achieved in a product – see Table 3.6.  

 

Configuration can also be thought of as a collection of specific versions of hardware, 

firmware, or software items combined according to specific procedures to serve a particular 

purpose. Configuration management (CM), then, is the discipline of identifying the 

configuration of a system at distinct times for the purpose of systematically controlling 

changes to that configuration.  

 

The use of the functional configuration audit (FCA) and the physical configuration audit 

(PCA) can be considered as a prerequisite for the establishment of the product baseline. The 

purpose of the PCA is to ensure that the design and reference documentation are consistent 

with the product as built. 

 

Table 3.6 Configuration: views, concepts and terms in ECSS and ISO 19759 
 

ID 
Standard 

organization 
Key view Concepts and terms 

1 ECSS 
Secure environment with controlled 
access linked to the required physical 
and functional characteristics  

• Control activities of defined 
configuration items: 
− control flow 
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Table 3.6 Configuration: views, concepts and terms in ECSS and ISO 19759 (Continued) 

 

ID 
Standard 

organization 
Key view Concepts and terms 

1 ECSS 

Secure environment 
with controlled 
access linked to the 
required physical 
and functional 
characteristics of the 
system 
 

 
− data flow 

• Each item or component defined during the 
design can be configured, such as:  
− modules,  
− processes and threads,  
− events and communication channels between 

a module and a sub software module  
• Control operational functions 
• Register data transfers  

 

2 ISO 19759 

Functional and/or 
physical 
characteristics of 
hardware, firmware, 
or software, or a 
combination of these

 
• Functional characteristics of hardware, 

firmware, and software 
• Systematic control of changes to 

configuration  
• Configuration control 
• Physical configuration audit (PCA) 

 
 

3.8 Data definitions and database systems requirements 

 

This section presents a survey of the data definitions and database -related views, concepts, 

and terms in the ECSS standards ECSS (ECSS-S-ST-00C 2008; ECSS-E-ST-10C 2009; 

ECSS-Q-ST-80C 2009) and (ECSS-E-40-Part-1B 2003; ECSS-Q-80B 2003; ECSS-E-40-

Part-2B 2005) and (ECSS-ESA 2005). This section identifies which standards currently 

address aspects of the software-FUR derived from system data definition and database FUR 

and NFR  

 

3.8.1 ECSS views and concepts for data definition and database  

 

(ECSS-E-ST-70-31C 2008) includes a number of data definition and database requirements 

at the system level. Data definitions and database requirements are described in ECSS 
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standards series by data requirements and the corresponding mission data provided by a 

supplier to a customer. Formally, this data is part of the user manual for the corresponding 

element of the space system. Moreover, the ECSS requires these data definitions and 

database requirements to be defined in the requirements baseline (i.e., the requirements 

baseline must include the requirements applicable to the various elements of the system 

product tree). 

 

More specifically, data definitions and database requirements are described through the data 

model requirements and the system model object. According to the ECSS standards, data 

model requirements (ECSS-E-ST-70-31C 2008) are composed of: 

1. System data items which include:  

• System entity types (such as: event, parameter, system element, reporting data); 

• System value types (such as: simple value and record value); 

• System data types (simple type and complex type). 

 

2. Product data schema which include: 

• Product configuration data; 

• Monitoring & data control. 

 

A system model object refers to any object of the populated database that is uniquely 

identified by a name: e.g. a system element, a reporting data, an activity or an event. 

Moreover, a system model object is derived from data model requirements and data mission. 

 

Table 3.7 presents a list of concepts and vocabulary used in the ECSS standards to describe 

system-related data definition and database requirements. ECSS standards specify that data 

definitions and database requirements must be implemented in software, hardware, or a 

combination of the two. 
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Table 3.7 Data definitions and database views, concepts and terms in ECSS 

 

ID 
Standard 

organization 
concepts and terms 

1 ECSS 

Data model 
requirements  
 
 

System 
Data items  
 
 

System entity 
types 
 

• Event 
• Parameter  
• System element  
• Reporting data 
• Activity  

System value 
types  

• Simple value  
• Record value 

System data 
types 

• Simple type  
• Complex type 

Product 
data 
schema  

• Product configuration data  
• Monitoring & data control 

System 
model object 

• Data model requirements 
• Data mission. 

 

3.9 Adaptation and installation: systems requirements 

 

This section presents a survey of the adaptation and installation-related views, concepts and 

terms in the ECSS (ECSS-S-ST-00C 2008; ECSS-E-ST-10C 2009; ECSS-Q-ST-80C 2009) 

and (ECSS-E-40-Part-1B 2003; ECSS-Q-80B 2003; ECSS-E-40-Part-2B 2005) and (ECSS-

ESA 2005), (ISO-9126 2004) and (IEEE-830 1998) standards. This section identifies which 

standards currently address some aspects of the software-FUR derived from system-NFR, 

specifically for the adaptation and installation software-FUR. 

 

3.9.1 ECSS: views and concepts for adaptation and installation 

 

The ECSS-E-40 specifies that adaptation and installation requirements should be described 

or referenced; also (ECSS-ESA 2005),  specifies that the supplier shall prepare the 

deliverable software product for its installation in the target platform or system environment 

as well as the resources and information to install shall be determined and available 

containing set-up activities.  
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While the (ECSS-E-ST-10C 2009) describes the adaptation and installation requirements as 

the adaptation data to specific installation for the system. ECSS-E-ST-10C 2009 identifies 

the adaptation data by making reference to all unique-to-site data contained in the released 

software as well as specifying all the instructions to build and install the software item, 

including: 

1. Procedures to regenerate executable software from the delivered source code; 

2. Procedures to install the software in the target environment; 

3. Procedures to verify the correct execution of the installation; 

4. Adaptation data, security issues relevant to the installation. 

 

(ECSS-Q-ST-80C 2009) mentions that the adaptation and installation requirements should be 

described through approaches, methods, procedures, resources and organization to install, 

commission, and check the operation of the equipment in its fixed operational environment. 

Moreover (ECSS-E-ST-10C 2009) describes the installation to be performed in accordance 

with the installation procedure and that the ground computer equipment and supporting 

services for implementing the final system shall be selected according to the project 

requirements regarding installation requirements conditions.  

 

(ECSS-E-ST-10C 2009): the system adaptation as the resource reallocation between 

software, hardware and system environment. Table 3.8 illustrates the set of concepts and 

vocabulary used in the ECSS standards to describe adaptation and installation. 

 

3.9.2 IEEE: views and concepts for adaptation and installation 

 

The (IEEE-830 1998) lists adaptation and installation requirements as one of the NFR type. 

IEEE defines adaptation and installation as requirements for any data or initialization 

sequences that are specific to a given site, mission, or operational mode.  
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In particular, (IEEE-830 1998) mentions that the site or mission-related features should be 

modified to adapt the software to a particular installation, but does not provide guidance on 

how to describe and specify the adaptation and installation requirements. 

 

3.9.3 ISO: views and concepts for adaptation and installation 

 

The key view on adaptation and installation in the (ISO-9126 2004) is from the perspective 

of the quality of the software product: adaptation and installation is presented as ‘sub quality 

characteristics’ of the portability quality characteristic. The inventory of related ISO concepts 

and vocabulary on software adaptation and installation is presented in Table 3.8. 

 

Table 3.8 Adaptation and installation views, concepts and terms in the standards 

 

ID 
Standard 

organization 
Key views Concepts and terms 

1 
ECSS 

 

Adaptation and installation 
requirements are described 
using approaches, methods, 
procedures, resources and 
check the operation of the 
equipment in its fixed 
operational environment. 
 
 

• System Environments (adaptation) 
− Host-Target platform 
− Memory Resources 
− Storage resources 
− Transmission resources 
− I/O resources 

• Software and Data Environments 
(installation) 
− Registered Data Transfer 
− Control Data Transfer 
− Set Data Transfer with system 

resources 

2 ISO 

Software product is adapted 
to different specified 
environments 
 
Software product installed 

in a specified environment 

• Adaptability of hardware, software 
and system environment. 

• Adaptability of software data 
structures.  

• Ease of software installation 
procedure 

• Ease of setup retry when the 
software is already installed 
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3.10 Design and implementation constraints (D&I) systems requirements 

 

This section presents a survey of the design and implementation (D&I) constraints views, 

concepts and terms in the ECSS (ECSS-S-ST-00C 2008; ECSS-E-ST-10C 2009; ECSS-Q-

ST-80C 2009) and (ECSS-E-40-Part-1B 2003; ECSS-Q-80B 2003; ECSS-E-40-Part-2B 

2005) and (ECSS-ESA 2005), (ISO-9126 2004) and (IEEE-830 1998) standards and (ISO-

19759 2004) (SWEBOK Guide) . This section identifies which standards currently address 

some aspects of the software-FUR derived from system requirements.  

 

3.10.1 ECSS: views and concepts for D&I constraints 

 

The elements of D&I constraints are dispersed in various system views throughout different 

ECSS standards and are expressed as either: 

1. System D&I constraints functional user requirements (system D&I constraints-FUR); 

2. System D&I constraints non-functional requirements (system D&I constraints-NFR).  

 

The identification of D&I constraints in the ECSS standards is derived from an analysis of 

the requirements on the system and its functions. All system requirements are allocated to a 

set of D&I constraints. Moreover, hardware configuration D&I constraints, software 

configuration D&I constraints, and human operations D&I constraints shall be subsequently 

identified from these requirements. The supplier shall transform the requirements for the 

software D&I constraints into an architecture that describes its top-level structure and 

identifies the software components, ensuring that all the requirements for the software D&I 

constraints are allocated to its software components and later refined to facilitate detailed 

design. 

 

The software architectural design shall describe the D&I constraints within:   

1. The static architecture (i.e., decomposition into software elements such as packages and 

classes or modules); 
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2. The dynamic architecture, which involves active objects such as threads, tasks and 

processes; 

3. The mapping between the static and the dynamic architecture, and the software 

behaviour. 

 

The software D&I constraints requirements shall produce the physical model of the software 

components described during the software architectural design. For embedded software D&I 

constraints the following information should be included: 

1. Type of D&I constraints participating to the real time behaviour, described by stating its 

logical and physical characteristics with D&I; 

2. Scheduling types with D&I (e.g. single or multi-threads); 

3. Scheduling model with D&I (e.g. pre-emptive or not, fixed or dynamic priority based); 

4. Analytical model with its D&I (e.g. rate monotonic scheduling, deadline monotonic 

scheduling); 

5. Tasks identification and D&I priorities; 

6. Communication and synchronization with D&I; 

7. Time management through D&I; 

8. The dependencies of a component should be described by listing the D&I upon its use by 

other components. 

 

The ECSS-ESA document covers the tailoring of the ECSS-E-40 requirements for the 

European Space Agency (ESA) software projects. In this document, the software design 

includes a program design, pseudo-code and flow charts. Software D&I may specify that the 

processing has to be performed using a particular algorithm and program parameters. 

 

Table 3.9 presents a list of concepts and vocabulary used in ECSS to describe system related 

D&I constraints requirements and ECSS mentions that such requirements may be 

implemented in software. 
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3.10.2 ISO 19759 (SWEBOK Guide): views and concepts for D&I  

 

According to the (ISO-19759 2004) SWEBOK Guide, “Software requirements express the 

needs and constraints placed on a software product that contribute to the solution of some 

real-world problem". The (ISO-19759 2004) mentions explicitly D&I constraints as non-

functional requirements in the “Software Requirements’ knowledge area (KA) and implicitly 

within the context of activities for design in the ‘Software Design’ KA. 

 

Software design is defined in (ISO-19759 2004) as both “the process of defining the 

architecture, components, interfaces, and other characteristics of a system or component" and 

“the result of [that] process". Furthermore software design in the software engineering life 

cycle is defined as activities in which software requirements are taken as inputs for analysis 

in the software design phase.  

The architectural design is also described by (ISO-19759 2004) as the point at which the 

requirements process overlaps with software or systems design and illustrate how 

challenging it is to cleanly decouple the two tasks; software architecture is “a description of 

the subsystems and components of a software system and the relationships between them”. 

This means that ISO 19759 is describing the D&I constraints in the Software Requirements 

KA and these D&I constraints should be reflected on the software design in the Software 

Design KA. 

 

Moreover, software design consists of two activities that fit between software requirements 

analysis and software construction (ISO-19759 2004): 

• Software architectural design (sometimes called top level design): describing software’s 

top-level structure and organization and identifying the various components; 

• Software detailed design: describing each component sufficiently to allow for its 

construction. 

 

The (ISO-19759 2004) decomposes the software D&I constraints into processes, tasks, and 

threads and deals with related efficiency, atomicity, synchronization, and scheduling issues. 



53 

Table 3.9 presents a list of concepts and vocabulary used in the (ISO-19759 2004) to describe 

system related D&I constraints. The (ISO-19759 2004) SWEBOK Guide specifies that such 

requirements be implemented in software design. 

 

Table 3.9 D&I constraints views, concepts and terms in ECSS and ISO 

 

ID 
Standard 

organization 
Key view Concepts and terms 

1 ECSS 

Design and 
implementation 
(D&I) constraints 
applicable to 
various components 
of the system 
product 

• Software architectural D&I constraints on 
modules, classes, packages 

• Software detailed D&I constraints on tasks 
and processes 

• Physical model of the software D&I 
constraints described during the software 
architectural design 

• The logical model of the D&I constraints 
described in software architectural design 

2 ISO 19759 

Software 
requirements 
express the needs 
and constraints 
placed on a software 
product that 
contribute to the 
solution of some 
real-world problem 

• Software architectural D&I constraints on 
modules, classes, packages or top level 
structure 

• Software detailed D&I constraints on tasks 
and processes 

• Physical model of the software D&I 
constraints described during the software 
architectural design 

• The logical model of the software D&I 
constraints described within the software 
architectural design 

• Static and dynamic D&I constraints with 
system design 

 

3.11 Performance systems requirements 

 

This section presents a survey of the performance requirements views, concepts and terms in 

the ECSS (ECSS-S-ST-00C 2008; ECSS-E-ST-10C 2009; ECSS-Q-ST-80C 2009) and 

(ECSS-E-40-Part-1B 2003; ECSS-Q-80B 2003; ECSS-E-40-Part-2B 2005) and (ECSS-ESA 

2005), (ISO-9126 2004) and (IEEE-830 1998) standards. The expected outcome is the 

identification of the various elements that should be included in the standard-based 
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framework for modelling software-FUR for system performance requirements.  

 

3.11.1 ECSS: views and concepts for performance  

 

The elements of performance requirements are dispersed in various system views throughout 

different ECSS standards and are expressed as either: 

1. System performance functional user requirements (system performance -FUR);  

2. System performance non-functional requirements (system performance -NFR) 

 

The (ECSS-E-40-Part-1B 2003;ECSS-Q-80B 2003; ECSS-E-40-Part-2B 2005) present 

software performance as a system-NFR for embedded software – see Table 3.10. 

According to (ECSS-E-ST-60-20C-Rev.1 2008) standard. Performance requirement is a 

specification that the output of the system does not deviate by more than a given amount 

from the target output. 

 

According to (ECSS-E-ST-60-20C-Rev.1 2008) the performance can be measured by 

evaluating processing speed, response time, resource consumption and throughput. 

 

In (ECSS-E-ST-60-20C-Rev.1 2008) and (ECSS-E-60A 2004) the performance requirements 

should assess that the controlled system performance is coherent with the control objectives 

generated by the requirement engineering process and the numerical requirements defined by 

the requirements analysis, furthermore, performance analysis should be conducted during all 

the phases of the control development process. 

 

The response time (ECSS-E-ST-60-20C-Rev.1 2008) is defined as minimally acceptable of 

the rest time. A longer response time can cause users to think the system is down. You also 

need to specify rest of time; for example, the peak minute of a day, 1 percent of interactions. 

Response time degradations can be more costly or painful at a particular time of the day.  
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Response time is measured (ECSS-E-ST-60-20C-Rev.1 2008) from the time that the user 

performs the action until the user receives enough feedback from the computer to continue 

the task. It is the user's subjective wait time. It is not from entry to a subroutine until the first 

write statement.  

 

Performance monitoring or performance observation (ECSS-E-ST-60-20C-Rev.1 2008) is 

often used in optimizing the use of software in a system. A performance monitor is generally 

regarded as a facility incorporated into a processor to monitor selected characteristics to 

assist in the debugging and analyzing of systems by determining a machine's state at a 

particular point in time. Often, the performance monitor (ECSS-E-ST-60-20C-Rev.1 2008) 

produces information relating to the utilization of a processor's instruction execution and 

storage control. For example, the performance monitor can be utilized to provide information 

regarding the amount of time that has passed between events in a processing system. The 

information produced usually guides system architects toward ways of enhancing 

performance of a given system or of developing improvements in the design of a new system. 

 

The typical throughput refers to the number of event responses that have been completed 

over a given observation interval as in (ECSS-E-ST-60-20C-Rev.1 2008).  

  

Performance can be measured using the following concepts and terms such as: response to 

reference signals (e.g. response time, settling time, and tracking error for command profiles), 

accuracy and stability errors in the presence of disturbances, measurement errors (e.g. 

attitude knowledge) and frequency domain requirements (e.g. bandwidth). 

 

3.11.2 IEEE: views and concepts for performance  

 

The (IEEE-830 1998) presents software performance requirements as a non-functional 

requirement; in addition, (IEEE-830 1998) defines the performance requirements as the static 

and the dynamic numerical requirements placed on the software or on human interaction with 

the software as a whole. Static numerical requirements may include the number of terminals 
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to be supported, the number of simultaneous users to be supported and amount and type of 

information to be handled. Static numerical requirements are sometimes identified under a 

separate section entitled capacity.  

 

Dynamic numerical requirements may include, for example, the numbers of transactions and 

tasks and the amount of data to be processed within certain time periods for both normal and 

peak workload conditions. All of these requirements should be stated in measurable terms – 

see Table 3.10. 

 

Table 3.10 Performance views, concepts and terms in ECSS 
 

ID 
Standard 

organization 
Key view Concepts and terms 

1 ECSS 

Performance requirement is 
a specification that the 
output of the system does 
not deviate by more than a 
given amount from the 
target output 

• Response to reference signals  
− Response time, 
− Settling time,  
− Tracking error for command 

profiles 
•  Throughput time. 

− Bandwidth 
− Workload 

• Resource consumption  
− Main memory time 
− Storage device time 
− processor execution time 

• Evaluation processing speed 
− Accuracy errors 
− Stability errors 
− System scalability 

 

2 
IEEE 830 

 

 
Performance requirements 
as static and the dynamic 
numerical requirements 
placed on the software or 
on human interaction with 
the software as a whole. 
 

• Static numerical requirements 
• Capacity 
• Concurrency 

• Dynamic numerical requirements 
• Workload 
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3.12 Security systems requirements 

 

This section presents a survey of the security requirements views, concepts and terms in the 

ECSS (ECSS-S-ST-00C 2008; ECSS-E-ST-10C 2009; ECSS-Q-ST-80C 2009) and (ECSS-

E-40-Part-1B 2003; ECSS-Q-80B 2003; ECSS-E-40-Part-2B 2005) and (ECSS-ESA 2005), 

(ISO-9126 2004) and (IEEE-830 1998)  and (ISO-9126 2004) standards. The expected 

outcome is the identification of the various elements that should be included in the standard-

based model of software-FUR for system security requirements.  

 

3.12.1 ECSS: views and concepts for security  

 

The ECSS standards series present security as a system-NFR for real-time and embedded 

software – see Table 3.11 in these standards, the security requirements are described as 

specifications, including related factors, which might compromise sensitive information; and 

the ECSS requires that the system security shall be defined in the requirements baseline (i.e., 

the requirements base must include the requirements applicable to the various elements of the 

system product tree.  

 

In the ECSS standards, the system security is described as: 

1. Access control roles for person or group of persons and access control per system or 

entity; 

2. Availability for redundant power or data and automatic restart; 

3. System data integrity such as integrity with firewall, antivirus, external PKI (encryption 

and decryption of data) and integrity with different types of system backup (such as 

automatic, time interval, durability, data versioning and run-time backups).   

 

1.12.2 IEEE: views and concepts for security  

 

Security requirements are also presented in (IEEE-830 1998) as an NFR type : IEEE 

specifies the factors that protect the software from accidental or malicious access use, 
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modification, destruction, or disclosure. Specific requirements in this area could include the 

need to utilize certain cryptographically techniques; to keep specific log or history data sets; 

to assign certain functions to different modules; to restrict communications between some 

areas of the program and to check data integrity for critical variables – see Table 3.11. 

 

1.12.3 ISO: views and concepts for security 

  

The (ISO-9126 2004) lists the security as part of the software functionality to define the 

software product quality. In addition, (ISO-9126 2004) defines the security as the capability 

of the software product to protect information and data so that unauthorized persons or 

systems cannot read or modify them and authorized persons or systems are not denied access 

to them – see Table 3.11. 

 

 Table 3.11 Security: views, concepts and terms in standards 
 

ID 
Standards 

organization 
key views Concepts and terms 

1 

 
 
 
 
 

ECSS  

The key views of software security 
requirements in ECSS standards are 
described as specifications, including 
related factors, which might 
compromise sensitive information. 
Moreover, the ECSS standards 
require that the system security shall 
be defined in the requirements 
baseline which defines the 
requirements applicable to various 
elements of the system product tree 

• Access control roles for the 
system, person and groups 

• Availability for redundant 
power or data and automatic 
restart man machined 

• System data integrity such as 
integrity with firewall, 
antivirus, external PKI 

2 

 
 
 
 
 

IEEE-830  

The key views of software security 
requirements in the IEEE 830 
standard are factors that protect the 
software from accidental or malicious 
access use, modification, destruction, 
or disclosure 

• Cryptographictechniques;  
• Specific log or history data 

sets 
• Assign certain functions to 

different modules 
• Restrict communications 

between some areas of the 
program and  

• Check data integrity for 
critical variables 
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Table 3.11Security: views, concepts and terms in standards (Continued) 
 

ID 
Standards 

organization 
key views Concepts and terms 

3 

 
 

ISO 9126  

The key view of software security in 
ISO 9126 is described as a part of the 
software functionality to define the 
software product quality 

• Access Auditability 
• Access Controllability 
• Data Corruption/ 

Prevention 
• Data Encryption 

 

3.13 Safety systems requirements 

 

This section presents a survey of the safety-related views, concepts and terms in the ECSS 

(ECSS-S-ST-00C 2008; ECSS-E-ST-10C 2009; ECSS-Q-ST-80C 2009) and (ECSS-E-40-

Part-1B 2003; ECSS-Q-80B 2003; ECSS-E-40-Part-2B 2005) and (ECSS-ESA 2005), (ISO-

9126 2004) and (IEEE-830 1998)  and (ISO-9126 2004) standards. This section identifies 

which standards currently address some aspects of the software-FUR derived from the safety 

system-NFR. 

 

3.13.1 ECSS: views and concepts for safety  

 

The ECSS present safety as an NFR for real-time and embedded software – see Figure 3.12 

in these standards, the safety requirements are described as system states where an acceptable 

level of risk is not exceeded with respect to fatality, injury or occupational illness, damage to 

launcher hardware or launch site facilities, damage to an element of an interfacing manned 

systems, etc.  

 

According to (ECSS-Q-ST-40C 2009), safety requirements shall be identified and traced 

from the system level into the design and then allocated to the lower levels; furthermore, the 

identified safety requirements shall be justified in the design and presented in an appropriate 

document.  
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The (ECSS-Q-ST-40C 2009) describes the mandatory aspects for safety requirements of a 

system safety programme to ensure that all safety risks associated with the design, 

development, production and operations of space product are adequately identified, assessed, 

minimized, controlled and finally accepted through the implementation of a safety assurance 

programme. 

 

The (ECSS-Q-ST-40C 2009) safety policy is applied by implementing a system safety 

programme, supported by risk assessment, which can be summarized as follows: 

1. Hazardous characteristics (system and environmental hazards) and functions with 

potentially hazardous failure effects are identified and progressively evaluated by 

iteratively performing systematic safety analyses;  

2. The potential hazardous consequences associated with the system characteristics and 

functional failures are subjected to a hazard reduction sequence whereby:  

• Hazards are eliminated from the system design and operations;  

• Hazards are minimized;  

• Hazard controls are applied and verified.  

3. The risks that remain after the application of a hazard elimination and reduction process 

are progressively assessed and subjected to risk assessment, in order to:  

• Show compliance with safety targets; 

• Support design trade-offs;  

• Identify and rank risk contributors;  

• Support apportionment of project resources for risk reduction;  

• Assess risk reduction progress; 

• Support the safety and project decision-making process (e.g. waiver approval, 

residual risk acceptance).  

4. The adequacy of the hazard and risk control measures applied is formally verified in order 

to support safety validation and risk acceptance; 

5. Approval obtained from the relevant authorities.  
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3.13.2 ISO: views and concepts for safety  

 

The (ISO-9126 2004) includes safety as a quality sub-characteristic to assess the level of risk 

of harm to people, business, software, property or the environment in a specified context of 

use.  It includes the health and safety of the both the user and those affected by use, as well as 

unintended physical or economic consequences – see Table 3.12.  

 

3.13.3 IEEE: views and concepts for safety  

 

The (IEEE-1220 2007) defines safety specifications as equipment/system design features, 

performance specifications, and training that reduce the potential for human or machine 

errors or failures that cause injury or death within the constraints of operational effectiveness, 

time, and cost throughout the equipment/system life cycle.  

 

It describes also the safety plan as the approach and methods for conducting safety analysis 

and assessing the risk to operators, the system, the environment, or the public.  

 

The (IEEE-1220 2007) describes software safety as falling into one or more of the following 

categories:  

1. Software whose inadvertent response to stimuli, failure to respond when required, 

response out-of-sequence, or response in combination with other responses can result in 

an accident.  

2. Software that is intended to mitigate the result of an accident;  

3. Software that is intended to recover from the result of an accident.   

 

The set of key views in standards on safety requirements, as well as the set of concepts, 

terminology and vocabulary to describe safety requirements are presented in Table 3.12, 

including the following standards. 
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Table 3. 12 Safety: views, concepts and terms in the standards  

 

ID 
Standards 

organization 
Key views Concepts and terms 

1 ECSS 

Safety requirements shall 
be identified and traced 
from the system level into 
the design and then 
allocated to the lower 
levels 

• Safety control software hazards 
• Safety levels of software integration  
• Critical software catastrophic 
• Safety software functions  
• Safety failure mechanism and  
• Safety switching of redundant items 
• Safety audit software 

2 IEEE 1220 

Safety is specifications on 
equipment/system design 
features, performance, and 
training that reduce the 
potential for human or 
machine errors that cause 
injury or death 

• Safety failures within the  
constraints of operational effectiveness, 
time, throughout the equipment/system 
life cycle  

• Safety approach and methods 
• Safety analysis and assessing the risk to 

operators, system, environment, or 
public 

3 
 

ISO 9126 

Assessing the level of 
risk of harm to people, 
business, software, 
property or the 
environment in a 
specified context of use 

• User health and safety 
• Safety of people affected by use of 

the system 
• Economic damage 
• Software damage 

4 IEEE 830 Not clear • Check data integrity for critical 
variables 

5 IEEE 1228 

Safety is a freedom from 
software hazards.  

Safety program is a 
systematic approach to 
reducing software risks 

• Safety related software 
• Software safety hazard 
• Safety critical software 
• Levels of software integrity 

 

 

3.14 Resources systems requirements 

 

This section presents a survey of the resources-related views, concepts and terms in the 

ECSS (ECSS-S-ST-00C 2008; ECSS-E-ST-10C 2009; ECSS-Q-ST-80C 2009) and (ECSS-

E-40-Part-1B 2003; ECSS-Q-80B 2003; ECSS-E-40-Part-2B 2005) and (ECSS-ESA 2005), 
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(ISO-9126 2004) and (IEEE-830 1998) standards to identify the resources foundation in 

system-NFR see- Table 3.13. 

 

3.14.1 ECSS: views and concepts for resources  

 

The ECSS present resources as a system-NFR for real-time and embedded software: in these 

standards, the resources requirements are described as what the component needs from its 

environment to perform its function with computer resources (such as: CPU load and 

maximum memory size) to be considered by the supplier. 

The ECSS-E-40 indicates the computer hardware resource requirements on the utilization 

(e.g. processor capacity and memory capacity) available for the software item (e.g. sizing and 

timing) and computer software resource requirements on the software items to be used by or 

incorporated into the system (or constituent software product) (e.g. a specific real time 

operating system). 

 

The (ECSS-Q-ST-40C 2009) describes all the resource requirements related to the software 

and the hardware requirements (target hardware on which the software is specified to 

operate), as follows: 

1. List of the requirements relevant to hardware environment in which the software is 

specified to operate; 

2. List of the sizing and timing requirements applicable to the software item under 

specification; 

3. Description of the computer software to be used with the software under specification or 

incorporated into the software item (e.g. operating system and software items to be 

reused); 

4. Description of the real time constraints to respect (e.g. time management with respect to 

the handling of input data before its loss of validity). 

 

The (ECSS-S-ST-00C 2008) describes hardware resources by the assignable, addressable bus 

paths that allow peripheral devices and system processors to communicate with each other. 
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Hardware resources typically include I/O port addresses, interrupt vectors, and blocks of bus-

relative memory addresses. Resources are assigned to each device node in the device tree 

(assuming that the represented device needs resources and those resources are available). 

 

3.14.2 IEEE: views and concepts for resources  

 

The (IEEE-1220 2007) indicates to collect measurements, tracked and reported at pre-

established control points during each stage of development, to enable the quality system and 

achievement of efficient use of resources – see Table 3.13. 

 

3.14.3 ISO: views and concepts for resources  

 

The (ISO-9126 2004) define the resources as the capability of the software product to use 

appropriate amounts and types of resources when the software performs its function under 

stated conditions. ISO 9126 identifies the resources as part of product efficiency and 

describes ways to measure the software recourses through: 

1. I/O resource devices; 

2. Memory resources; 

3. Transmission recourses.  

 

Table 3.13 Resources: views, concepts and terms in standards 

 

ID 
Standard 

organization 
key views Concepts and terms 

1 
ECSS 

 

The resource requirements 
related to the software and 
the hardware requirements 
(target hardware on which 
the software is specified to 
operate) 

 
• CPU load 
• Maximum memory size 
• Computer hardware resource 

requirements 
− Processor capacity for the 

software items 
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Table 3.13 Resources: views, concepts and terms in standards (Continued) 
 

ID 
Standard 

organization 
key views Concepts and terms 

1 
ECSS 

 

The resource requirements related 
to the software and the hardware 
requirements (target hardware on 
which the software is specified to 
operate) 

− Memory capacity for 
the software items 
 

• Computer software 
resource requirements 
− Specific real time 

operating system 
− Software elements. 

 
•  I/O port addresses 
•  Interrupt vectors 
•  Blocks of bus-relative 

memory addresses 
•   I/O Resource List 
•   I/O Resource Descriptor 

 

2 IEEE-1220 

Collected measurements, tracked, 
and reported at pre-established 
control points during each stage of 
development to enable a quality 
system and achievement of 
efficient use of resources 

• Not Clear 

3 ISO 9126 

Capability of the software product 
to use appropriate amounts and 
types of resources when the 
software performs its function 
under stated conditions 

• I/O resource devices 
• Memory resources 
• Transmission recourses  

 

3.15 Human factors system requirements 

 

This section presents a survey of the human factors requirements views, concepts and terms 

in the ECSS (ECSS-S-ST-00C 2008; ECSS-E-ST-10C 2009; ECSS-Q-ST-80C 2009) and 

(ECSS-E-40-Part-1B 2003; ECSS-Q-80B 2003; ECSS-E-40-Part-2B 2005) standards– see 

Table 3.14. 
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3.15.1 ECSS: views and concepts for human factors 

 

The identification of human factors in the ECSS standards is derived from an analysis of the 

requirements on the system and its functions. ECSS standards include the human factors as 

one of 16 NFR for the embedded and real time software.  Human factors engineering 

(ergonomics) specifications, including those related to manual operations, human equipment 

interactions, constraints on personnel, and areas requiring concentrated human attention, that 

are sensitive to human errors and training.  

 

The (ECSS-E-ST-10-11C 2008) forms part of the system engineering branch of the 

Engineering area of the ECSS system. As such it is intended to assist in the consistent 

application of human factors engineering to space products by specifying normative 

provisions for methods, data and models to ensuring of the safety, performance and problem 

avoidance in space system and payload operations. Moreover, This standard belongs to the 

human factors discipline, as identified in (ECSS-E-ST-10-11C 2008) , and defines the human 

factors engineering and ergonomics requirements applicable to elements and processes.  

 

According to (ECSS-E-ST-10-11C 2008) the application of human factors (that in the space 

domain includes ergonomics) to systems design enhances effectiveness and efficiency, 

improves human working conditions, and diminishes possible adverse effects of use on 

human health, safety and performance. Applying ergonomics to the design of systems 

involves taking account of human capabilities, skills, limitations and needs.  

 

A space system design will consider human factors and especially the two following main 

aspects from the very beginning of the conceptual phase. Firstly, the human being will be 

correctly taken into account in the design of the hardware, software and operations products 

and, secondly, the corresponding organization and training will be addressed in parallel to the 

design of the hardware and software. 

 



67 

For instance, ECSS standards provide a set of requirements for a human centered design 

process applied to a space system compatible with the (ISO-13407 1999):  Human centered 

design processes for interactive systems. The incorporation of the human centered design 

into the overall project structure shall be initiated during the feasibility phase to avoid risk of 

late and costly redesign or incorrect human integration.  

 

Human factors considerations in (ECSS-E-ST-10-11C 2008) relevant to meeting system 

performance and having safety implications include: 

1. Human performance (e.g., human capabilities and limitations, workload, function 

allocation, hardware and software design, decision aids, environmental constraints, and 

team versus individual performance); 

2. Training (e.g., length of training, training effectiveness, retraining, training devices and 

facilities, and embedded training); 

3. Staffing (e.g., staffing levels, team composition, and organizational structure); 

4. Personnel selection (e.g., minimum skill levels, special skills, and experience levels); 

5. Safety and health aspects (e.g., hazardous materials or conditions, system or equipment 

design, operational or procedural constraints, biomedical influences, protective 

equipment, and required warnings and alarms). 

 

Table 3.14 Human factors views, concepts and terms in ECSS 
 

Key view Concepts and terms in ECSS 

human factors 
relevant to meeting 
system performance 
and having safety 
implications 

• Performance of the human factors (Cognitive ergonomics) 
 Human capabilities and knowledge profiles and boundaries such 

as: 
− Workload 
− Function Allocation 
− Hardware and Software Design 
− Decision Aids 
− Team versus Individual Performance 

 Training  
− Length of Training 
− Training Effectiveness 
− Retraining 
− Training Devices and Facilities  

 



68 

Table 3.14 Human factors views, concepts and terms in ECSS (Continued) 
 

Key view Concepts and terms in ECSS 

 

− Embedded Training 
 Staffing  

− Staffing Levels  
− Team Composition 
− Organizational Structure 

 Personnel Selection  
− Minimum Skill Levels 
− Special Skills 
− Experience Levels 

• Safety of the human factors (Environmental ergonomics) 
 Mechanical Safety 
 Electrical Safety 
 Environmental Safety 
 Operational Safety 
 Psycho/physiological Safety  

• Human interface factors 
 Visual, audio or tactile cues and information on interface 

characteristics and task performance  
 Interface customization 
 Identification of safety related controls 

 

3.16 Discussion and observation  

 

3.16.1 ECSS standards 

 

While conducting the survey of all non functional concepts and terms described in the ECSS-

E-40 and ECSS-Q-series and in ECSS-ESA as the integrated standard for ECSS-E and 

ECSS-Q, it was observed that: 

1. The various system-NFR are described differently, and at different levels of detail within 

the standards contents; 

2. The various system-NFR are dispersed throughout the various documents: there is 

therefore, no integrated view of all types of candidate of non functional requirements; 

3. There is no obvious link for each type of system-NFR in ECSS-ESA as the integrated 

standard and between all other ECSS standards that describe these requirements within 

their contents or within their different ECSS standards contents;  
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4. It is also to be noted that ECSS does not propose a way to measure such requirements 

and, without measurement, it is challenging to take such an NFR as a quantitative input to 

an estimation process or in productivity benchmarking. 

 

3.16.2 IEEE standards 

 

While conducting the survey of all NFR concepts and terms described in the IEEE standards, 

it was observed that 

1. IEEE standards do not provide guidance on how to describe and specify most of the NFR 

in their list or on the NFR list in ECSS; 
2. IEEE standards do not provide guidance on how to measure any of these NFR. 

 

3.16.3 ISO 9126 standards 

 

While conducting the survey of all quality concepts and terms described in the ISO 9126 

standards, it was observed that: 

1. The key view in the ISO 9126 series is from the perspective of the quality of the software 

product; 

2. ISO 9126 presents ‘quality characteristics’, which are decomposed into quality sub 

characteristics and then into proposed derived measures to quantify those quality sub 

characteristics;  

3. A large number of measures are proposed in ISO 9126, but none addresses software-

FUR; 

4.  ISO 9126 doe not use of these concepts at the system level or looking at what functions 

must be performed at the software level (i.e., FUR allocation to software) to implement 

these system level NFR. 

 

3.16.4 ISO 19759 (SWEBOK guide) 

 

While conducting the survey of all NFR concepts and terms described in the ISO 19759 

standards, it was observed that: 
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1. The key view in the ISO 19759 is from the perspective of the software level, and some 

parts at the system level; 

2. The D&I constraints and Configuration requirements are described in ISO 19759 

differently at the software and system levels, and at different levels of details. 

 

3.17 Summary 

 

This chapter has presented a survey of the system-NFR views, concepts, and terms in the 

ECSS, ISO, and IEEE standards. It has identified which standards currently address aspects 

of the software-FUR derived from system-FUR and NFR. 

 

The outcome of this chapter is the identification of the various elements that should be 

included in the design of a standard-based framework for specifying software-FUR for 

system-NFR. 

 

In the work reported here, preference has been given to the views, concepts, and vocabulary 

most widely used by the industry, as evidenced in its standardization infrastructure, rather 

than those in the academic literature. Similarly, for the structuring and description of models 

of FUR and for measurement purposes, the measurement views, concepts, and terminology 

from the standardization infrastructure are adopted, rather than those in the literature.  

 



 

CHAPTER 4 

RELIABILITY: IDENTIFICATION, SPECIFICATION AND MEASUREMENT OF 
SOFTWARE-FUR DERIVED FROM SYSTEM-NFR 

4.1 Introduction 

 

Currently, there exists no standard-based model of software-FUR  for the identification and 

specification of system reliability NFR based on the various views of reliability documented 

in international standards. Consequently, it is challenging to measure these reliability-related 

software-FUR and take them into account quantitatively for estimation purposes.  

 

The European ECSS series of standards for the aerospace industry includes reliability 

requirements as one of sixteen types of NFR for embedded and real time software. As 

presented in chapter 3, a number of reliability related concepts are dispersed throughout the 

ECSS, ISO 9126, and IEEE 830 standards to describe at varying levels of details the various 

types of candidate reliability requirements at the system, software, and hardware levels.  

 

This chapter organizes these dispersed reliability concepts into a standard-based model of 

software-FUR for system reliability NFR. The availability of detailed standard-based model 

of software-FUR for system reliability NFR can facilitate the early identification and 

specification of the system reliability-NFR and their detailed allocation as specific reliability 

functions to be handled by the specified allocation to hardware or software or in a specific 

combination of both. 

 

The approach adopted in this research for the structure of the standard-based model of 

software-FUR for system reliability NFR is based on the generic model of software-FUR 

proposed in the COSMIC (ISO-19761 2011) model, thereby allowing the measurement of the 

functional size of such reliability requirements allocated to software and taking them into 

account for estimations purposes.  
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This chapter focuses on a single type of NFR, that is, system reliability requirements, and 

reports on the work carried out to define an integrated view within a standard-based model of 

software-FUR for system reliability NFR. 

  

The reliability-related views, concepts, and terms in the ECSS, ISO, and IEEE standards  

identified in Chapter 3 should be included in the design of standard-based model of software-

FUR for system reliability NFR. The elements of reliability are dispersed in various system 

views throughout various ECSS standards and are expressed as either – see Figure 4.1:  

• System reliability functional user requirements (system reliability FUR); 

• System reliability non-functional requirements (system reliability NFR). 

 
 

 

 
 
 

 

 

 

 

 

 

Figure 4.1 Mapping system requirements into software-FUR for reliability 

 

The chapter is organized as follows. Section 4.2 presents a standard-based model of 

software-FUR for system reliability NFR. Section 4.3 presents a standard-based model of 

software-FUR for system reliability NFR using a service-oriented architecture (SOA). 

Section 4.4 presents the generic sizing of the standard-based model of software-FUR for 

system reliability NFR. Section 4.5 presents a measurement example. Finally, a summary is 

presented in section 4.6. 

 

 

System Reliability-FUR 

 

System Reliability-NFR 

 
 

Software-FUR for 
Reliability Requirements 
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4.2 A standard-based model of software-FUR for system reliability NFR 

 

The identified terminologies and concepts of reliability requirements in chapter 3 are mapped 

here into a proposed standard-based model of software-FUR for system reliability NFR. 

 

4.2.1 Mapping reliability views and vocabulary from standards  

 

Table 4.1 presents the system functions that are present either as system requirements in the 

ECSS standard or as reliability-related concepts in ISO 9126: each of these functions could 

be interpreted, and specified, as software-FUR.   

 

Table 4.1 Reliability functions in ECSS, IEEE & ISO 9126 

 

ID 
 

Reliability Functions 
 

1 Function to identify failure system tolerance 
2 Function to identify fault recovery tolerance 
3 Function to identify error data tolerance 
4 Function to identify error to handle input 
5 Function to identify error to produce output 
6 Function to identify error to produce correct output 
7 Function to identify fault prevention 
8 Function to identify fault detection 
9 Function to identify fault removal 
10 Function to identify failure operation 
11 Function to identify failure mechanism 

 

Furthermore, various types of system-related reliability requirements can be derived from 

ISO 9126.  Table 4.2 presents four (4) system reliability function types (left-hand side 

column) for system reliability requirements and corresponding software functions 

(middlecolumn) that may be specified to implement such reliability functions for the system 

reliability requirements.  
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Table 4.2 System reliability functions types and related software functions 

 

ID 
System reliability 
functions types 

Software functions for reliability 
System reliability 

requirements derived 
from ISO 9126 

1 
System reliability 

prediction 
(SRP) 

Failure system tolerance function. 
Fault recovery tolerance function. 
Error data tolerance function. 

System prediction 
tolerance 

2 
System reliability 

prediction failures 
(SRPF) 

Failure operation function. 
Failure mechanism function. 

System 
recoverability 

3 
System reliability 
prediction faults 

(SRPF1) 

Fault prevention function. 
Fault detection function. 
Fault removal function. 

System fault 
tolerance 

4 
System reliability 
prediction errors 

(SRPE) 

Error to handle input function. 
Error to produce output function. 
Error to produce correct output 

function. 

System maturity  

 

4.2.2 Identification of the system reliability functional types allocated to software-FUR 

 

This section identifies the four (4) function types and the relationships between these 

function types that may be allocated to software-FUR for system reliability. 

 

System Reliability Prediction (SRP) 

 

System reliability prediction (SRP) is used to predict the MTBF (mean time between 

failures) of items. The MTBF is determined by dividing the total cumulative operation hours 

for all fielded products by the number of system failures, error data and faults recovery 

occurrences. This is achieved by performing a prediction analysis method. The prediction 

analysis method can be used to define the quantitative parameters for components of a 

complete system. In this section according to ECSS standards, the system reliability 

prediction (SRP) allocated to software should be used a prediction algorithm that allows 

system architects to analyze the reliability of the system before it is built. 
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System modeling views for System Reliability Prediction (SRP)  

Figure 4.2 illustrates a system modelling view of data movements for the system reliability 

prediction (SRP) (function type 1): 

1. System reliability prediction (SRP): uses a prediction algorithm to exchange data 

movements between the failure system tolerance function (FSTF), the fault recovery 

tolerance function (FRTF) and the error data tolerance function (EDTF); 

2. Failure system tolerance function (FSTF): exchanges data movements with other failures 

sub-system such as the failure operations and the mechanism functions in the system 

reliability prediction failure (SRPF) or function type 2; 

3. Fault recovery tolerance function (FRTF): exchanges data movements with other faults 

sub-system such as the fault prevention and the detection and removal functions in the 

system reliability prediction fault (SRPF1) or function type 3; 

4. Error data tolerance function (EDTF): exchanges data movements with other error sub- 

system such as the error to handle input and output functions in the system reliability 

prediction error (SRPE) or function type 4.  

 

FSTF, FRTF and EDTF contact each other through intermediary services in order to deliver 

different types of data transfers (symbol      in Figure 4.2). 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 System Reliability Prediction (SRP): system modelling view 
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COSMIC modelling views for System Reliability Prediction (SRP)  

Figure 4.3 illustrates a COSMIC modelling view of the data movements for the system 

reliability prediction (SRP) (function type 1) based on Figure 4.2: 

1. SRP sends and receives a data group (i.e., Entry or Exit) to an FSTF, FRTF and EDTF; 

2. FSTF, FRTF and EDTF send and receive data groups (i.e., Entry or Exit) to failures, 

faults and errors functions in function types 2, 3 and 4; 

3. FSTF, FRTF and EDTF send and receive data groups (i.e., Entry and Exit) between each 

other using intermediary services (IS). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 System Reliability Prediction (SRP): COSMIC modelling view. 
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System Reliability Prediction Failures (SRPF) 

 

System reliability prediction failures (SRPF) usually depend on time, with the rate varying 

over the life cycle of the system. SRPF is divided into: 

1. The Failure operation function (FOF) is defined as a particular way in which an 

equipment or machine failure can occur. The typical failure modes are: (1) premature 

operation, (2) failure to operate at the prescribed time, (3) failure to cease operation at the 

prescribed time, (4) failure during operation, and (5) degraded or excessive operational 

capability; 

2. The Failure mechanism function (FMF) is defined by the means or methods by which a 

failure can be discovered by an operator under normal system operation or can be 

discovered by the maintenance crew by some diagnostic action. 

 

System modelling views for System Reliability Prediction Failures (SRPF) 

Figure 4.4 illustrates a system modelling view of data movements for the system reliability 

prediction failures (SRPF) (function type 2) which is divided into: 

1. Failure operation function (FOF): exchange data movements with failure system 

tolerance function (FSTF) in function type 1, see- Figure 4.2; 

2. Failure mechanism function (FMF): exchange data movements with failure system 

tolerance function (FSTF) in function type 1, see- Figure 4.2;  

FOF and FMF contact each other through intermediary services in order to deliver different 

types of data transfers (symbol     in Figure 4.4). 

 

 

 

 

 

 

 

Figure 4.4 System Reliability Prediction Failures (SRPF): system modelling view 
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COSMIC modelling views for System Reliability Prediction Failures (SRPF) 

Figure 4.5 illustrates a COSMIC modelling view of the data movements for the system 

reliability prediction failures (SRPF) (function type 2): 

1. FOF and FMF read and write a data group (i.e., Read or Write) from a persistent 

storage; 

2. FOF and FMF send and receive data groups (i.e., Entry or Exit) between each other 

using intermediary services. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5 System Reliability Prediction Failures (SRPF): COSMIC modelling view 
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2. Fault detection and isolation is a subfield of control engineering which concerns itself 

with monitoring a system, identifying when a fault has occurred and pinpointing the type 

of a fault and its location. 

3. Fault Removal can be sub-divided into two sub-categories: Removal during Development 

and Removal during Use. Removal during development requires verification so that 

faults can be detected and removed before a system is put into production. Once systems 

have been put into production a system is needed to record failures and remove them via 

a maintenance cycle. 

 

System modelling views for System Reliability Prediction Faults (SRPF1) 

Figure 4.6 illustrates a system modelling view of data movements for the system reliability 

prediction faults (SRPF1) (function type 3) which is divided into: 

1. Fault prevention function (FPF): exchanges data groups with fault recovery tolerance 

function (FRTF) in a function type 1, see Figure 4.2; 

2. Fault detection function (FDF): exchange data groups with fault recovery tolerance 

function (FRTF) in a function type 1, see Figure 4.2; 

3. Fault removal function (FRF): exchange data groups fault recovery tolerance function 

(FRTF) in a function type 1, see Figure 4.2. 

 

FPF, FDF and FRF contact each other through intermediary services in order to deliver 

different types of data transfers (symbol     in Figure 4.6). 

 

 

 

 

 

 

 

 

Figure 4.6 System Reliability Prediction Faults (SRPF1): system modelling view. 
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COSMIC modelling views for System Reliability Prediction Faults (SRPF1) 

Figure 4.7 illustrates a COSMIC modeling view of the data movements for system reliability 

prediction faults (SRPF1) (function type 3): 

1. FPF, FDF and FRF read and write a data group (i.e., Read or Write) from/to a persistent 

storage. 

2. FPF, FDF and FRF send and receive data groups (i.e., Entry or Exit) between each other 

using intermediary services. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7 System Reliability Prediction Faults (SPRF1): COSMIC modelling view 
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for systems not satisfying these conditions. This kind of problems frequently happens with 

reliability function errors due to the following reasons: 

1. Function error to handle input in the reliability model; 

2. Function error to produce output in the reliability model; 

3. Function error to produce the correct output in the reliability model. 

 

System modelling views for System Reliability Prediction Errors (SRPE) 

Figure 4.8 illustrates a system modelling view of data movements for the system reliability 

prediction errors (SRPE) (function type 4) which can be divided into: 

1. Error to handle input function (EHIF): exchanges data movement with error data 

tolerance function (EDTF) in a function type 1, see Figure 4.2; 

2. Error to produce output function (EPOF): exchanges data movement with error data 

tolerance function (EDTF) in a function type 1, see Figure 4.2; 

3. Error to produce correct output function (EPCOF): exchanges data movement with error 

data tolerance function (EDTF) in a function type 1, see Figure 4.2. 

 

EHIF, EPOF and EPCOF contact each other through intermediary services in order to deliver 

different types of data transfers (symbol     in Figure 4.8). 

 
 

 

 

 

 

 

 

 

 

 

Figure 4.8 System Reliability Prediction Errors (SRPE): system modelling view 
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COSMIC modelling views for System Reliability Prediction Errors (SRPE). 

Figure 4.9 illustrates a COSMIC modelling view of the data movements for system reliability 

prediction errors (SRPE) (function type 4): 

1. EHIF, EPOF and EPCOF read and write a data group (i.e., Read or Write) from-to a 

persistent storage; 

2. EHIF, EPOF and EPCOF send and receive data groups (i.e., Entry or Exit) between each 

other using intermediary services. 

Figure 4.9 System Reliability Prediction Errors (SRPE): COSMIC modelling view 
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4.2.3 Model of the functions types relationships based on system views 

 

Figure 4.10 presents an overview of the relationships between the function types for system 

reliability that may be allocated to software-FUR. More specifically, the system reliability 

requirements model is composed of 11 functions grouped into four function types. The data 

flows on the model are also divided into direct data flows and the intermediary data flows: 

1. The SRP model (Function Type 1) can be used to specify the data flows between the 

three sub functions types and the data flows with the other functions on the system 

reliability model – see Figure 4.10; 

2. The SRPF model (Function Type 2) can be used to specify the data flows between the 

two sub functions types and the data flows with other functions on the system reliability 

model. Function type 2 can be aligned with ISO 9126 on system recoverability– see 

Figure 4.10; 

3. The SRPF1 model (Function Type 3) can be used to specify the data flows between the 

three sub functions and the data flows with other functions on the system reliability 

model. Function type 3 can be aligned with ISO 9126 on system fault tolerance – see 

Figure 4.10; 

4. The SRPE model (Function Type 4) can be used to specify the data flows between the 

three sub functions and the data flows with other functions on the system reliability 

model. Function type 4 can be aligned with ISO 9126 on system maturity – see Figure 

4.10. 

 

4.2.4 Model of the functional types relationships based on COSMIC views 

 

Figure 4.11 presents an overview of the relationships between the function types in the 

reliability software-FUR, using COSMIC for graphical representation. More specifically: 

1. The SRP model can be used to specify and measure its functional size from the 

received/sent data groups from/to failure system tolerance function (FSTF), Fault 

recovery tolerance function (FRTF) and Error data tolerance function (EDTF) – see 

Figure 4.11; 
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2. The SRPF model can be used to specify and measure its functional size from the 

received/sent data groups from/to failure operation function (FOF) and failure mechanism 

function (FMF) – see Figure 4.11;  

3. The SRPF1 model can be used to specify and measure its functional size from the 

received/sent data groups from/to fault prevention function (FPF), Fault detection 

function (FDF) and fault removal function (FRF) – see Figure 4.11; 

4. The SRPE model can be used to specify and measure its functional size from the 

received/sent data groups from/to error to handle input function (EHIF), error to produce 

output function (EPOF) and error to produce correct output function (EPCOF) – see 

Figure 4.11. 
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Figure 4.10 System modelling view for system reliability requirements 

A standards-based model of software-FUR for system reliability NFR 
System modelling view 
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Figure 4.11 A standard-based model of software-FUR for system reliability NFR 
 (Function Level) 

A standards-based model of software-FUR for system reliability NFR  
COSMIC modelling view (Function Level)  
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4.3 A standard-based model of software-FUR for system reliability NFR using a 

COSMIC-SOA  

 

Figure 4.11 illustrates the standard-based model of software-FUR for system reliability NFR. 

Figure 4.11 is considered a high-level model of requirements and describes the important 

concepts and relationships for system reliability requirements as defined in the ECSS 

international standards. In this section, the standard-based model of software-FUR for system 

reliability NFR using COSMIC-SOA is built in Figure 4.12 to elaborate on the model to 

show a more complete picture, which includes showing what is involved in instantiating the 

modeled entities in practice – for more details, see (COSMIC 2010). Figure 4.12 also 

describes the detailed measurement model which can be used to specify and measure the 

functionality at the service level. 

 

The standard-based model of software-FUR for system reliability NFR using COSMIC-SOA 

in Figure 4.12 provides an integrated suite of services that can be used in multiple business 

domains to measure the functional size of software-FUR in an COSMIC SOA environment. 

In this model, the term “service” refers to a set of related software-FUR functions. The 

COSMIC-SOA guideline offers three types of data movements architecture in Table 1.4 - see 

chapter 1. 

 

 

 

 

 

 

 

 

 

 

 



88 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12 A standard-based model of software-FUR for system reliability NFR COSMIC 
modelling view (Function and Service Levels) 
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A standards-based model of software-FUR for system reliability NFR  
COSMIC modelling view (Function and Service Level)  
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4.4 Sizing of the standard-based model of software-FUR for system reliability NFR 

 

The specification of the standard-based model of software-FUR for system reliability NFR in 

any specific project is a specific instantiation of the proposed model described in Figure 4.12. 

When the software specification document is at the level of the movements of data groups, 

then these functional requirements can be directly measured using the COSMIC 

measurement rules. The measurement example presented next is illustrative of an 

instantiation of the standard-based model of software-FUR for system reliability NFR in an 

SOA context for a single data group for all the identified possible flows of data groups. 

 

The measurement example in this section explains how to use the proposed standard-based 

model of software-FUR for system reliability NFR to size an hypothetical model composed 

of all of the kinds of software-FUR for system reliability-NFR.  

 

4.4.1 Measurement of exchange messages for system reliability  

 

There are eleven (11) functions types of system reliability, interacting with their own services, 

for the measurement of exchange messages in the standard-based model of software-FUR for 

system reliability NFR using COSMIC-SOA - see Figure 4.12. According to COSMIC-SOA 

guideline (COSMIC 2010), each functional process may interact with its own service by 

sending and receiving data movements (i.e., Entry and Exit). 

 

Table 4.3 illustrates the measurement results for interactions between the system reliability 

functional processes with its own service processes i.e., the first line in Table 4.3 (Failure 

System Tolerance Function-FSTF) interacts with its own service process Failure System 

Tolerance Service-FSTS). For each interaction between each functional process with its own 

functional service process, the measurement result for this operation is equal to 4 CFP –see 

Table 4.4; the total measurement result is equal to 44 (see the green shaded arrows in Figure 

4.12). 
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Table 4.3 Measurement of the exchange messages for the proposed model 

 
Id. Of 

Functions 
Types of Exchange Services for System Reliability Quantity of 

Data MovementsApplication Functional 
Process 

Service Functional process 

1 
Failure System Tolerance 

Function  (FSTF) 
Failure System Tolerance 

Service (FSTS) 
4 

2 
Fault Recovery Tolerance 

Function  (FRTF) 
Fault Recovery Tolerance 

Service (FRTS) 
4 

3 
Error Data Tolerance 

Function (EDTF) 
Error Data Tolerance 

Service (EDTS) 
4 

4 
Failure Operation Function 

(FOF) 
Failure Operation Service 

(FOS) 
4 

5 
Failure Mechanism 
Function (FMF) 

Failure Mechanism Service 
(FMS) 

4 

6 
Fault Prevention Function 

(FPF) 
Fault Prevention Service 

(FPS) 
4 

7 
Fault Detection Function 

(FDF) 
Fault Detection Service 

(FDS) 
4 

8 
Fault Removal Function 

(FRF) 
Fault Removal Service 

(FRS) 
4 

9 
Error to Handle Input 

Function (EHIF) 
Error to Handle Input 

Service (EHIS) 
4 

10 
Error to Produce Output 

Function (EPOF) 
Error to Produce Output 

Service (EPOS) 
4 

11 
Error to Produce Correct 

Output Function (EPCOF) 
Error to Produce Correct 
Output Service (EPCOS) 

4 

The Total of Data Movements 44 CFP 
 

Table 4.4 Measurement example for the interactions between one application functional 
process and one service functional process 

 
Application 
Functional 

Process 

Service 
Functional 
process 

 
Data Movement Description 

Data 
Movement 

Type 
Failure System 

Tolerance 
Function 
(FSTF) 

 

Failure System 
Tolerance 
Service 
(FSTS) 

FSTF sends a data group to FSTS X 
FSTS receives a data group from FSTF E 
FSTS sends a data group to FSTF X 

FSTF receives a data group from FSTS E 

The Total of Data Movements 4 CFP 
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4.4.2 Measurement of intermediary services for system reliability  

 

When a functional process service in Figure 4.12 requires data that is available via another 

functional process service, the former calls upon a functional process of the intermediary 

service. According to the standard-based model of software-FUR for system reliability NFR, 

the types of data movements for using the intermediary service must be an Entry and Exit. 

 

Table 4.5 illustrates the measurement results for the intermediary services based on Figure 

4.12 (see the red shaded arrows in Figure 4.12). This table presents an instantiation of a 

single data group for all possible flows of the data groups identified above, and listed as a 

data movement example for one intermediary service in Table 4.6. For this operation 

requirement the measurement results are equal to 8 CFP.   

 

Table 4.5 Measurement of the intermediary services for the proposed model 

 
Id. of 

Intermediary 
services 

Types of Intermediary Services  Quantity of 
Data 

Movements Functional Service  Functional Service  

IS-1 
Failure System Tolerance 

Service (FSTS) 
Fault Recovery Tolerance 

Service (FRTS) 
8 

IS-2 
Fault Recovery Tolerance 

Service (FRTS) 
Error Data Tolerance Service 

(EDTS) 
8 

IS-3 
Failure Operation Service 

(FOS) 
Failure Mechanism Service 

(FMS) 
8 

IS-4 
Fault Prevention Service 

(FPS) 
Fault Detection Service 

(FDS) 
8 

IS-5 
Fault Detection Service 

(FDS) 
Fault Removal Service (FRS) 8 

IS-6 
Error to Handle Input 

Service (EHIS) 
Error to Produce Output 

Service (EPOS) 
8 

IS-7 
Error to Produce Output 

Service (EPOS) 
Error to Produce Correct 
Output Service (EPCOS) 

8 

The Total of Data Movements 56 CFP 
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Table 4.6 COSMIC-SOA measurement example for the IS between functional Service 

  
Intermediary Services Data Movement Description Data 

Movement Type IS-1 

Failure 
System 

Tolerance 
Service 
(FSTS) 

Fault 
Recovery 
Tolerance 

Service 
(FRTS) 

FSTF sends a data group to IS-1 X 
IS-1 receives a data group from FSTF E 
IS-1 sends a data group to FRTF X 
FRTF receives a data group from IS-1 E 
FRTS sends a data group to IS-1 X 
IS-1 receives a data group from FRTF E 
IS-1 sends a data group to FSTF X 
FSTF receives a data group from IS-1 E 

The Total of Data Movements 8 CFP 
Note: IS-1 is the first intermediary service in Figure 4.12. 

 

4.4.3 Measurement of the direct and indirect data movements for system reliability  

 

This section is based on Figure 4.12 which illustrates the possible flows of data between 

components in the same layer, i.e., between peer components (where a component may be an 

application or a service). This section shows direct and indirect exchanges of data between 

components – one or both forms of which may be involved when services communicate. If 

components exchange data directly, the measurer will identify the Exit and/or Entry data 

movements, as per the data movements between service A and service B. An indirect 

exchange of data between components means that a service in one component writes data 

which are subsequently read by a service in another component. In this situation, the 

measurer will identify a Write data movement in the former component and a Read data 

movement in the other.  

 

Specifically, Table 4.7 illustrates the measurement results for the exchange of data 

movements between the system reliability requirements model in a functional process or in 

service architecture layers – see Figure 4.12. This table presents an instantiation of this 

operation. The measurement results are equal to 38 CFP (see the yellow and blue shaded 

arrows in Figure 4.12). 
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Table 4.7 Measurements results for direct and indirect data groups  

COSMIC-SOA 
Functions types 

Data Movement Description 
Data 

MovementType 

 
Functional User (FU) 

FU sends a data group to FSTF. 
FU sends a data group to FRTF. 
FU sends a data group to FDTF. 
FU receives a data group from  FSTF 
FU receives a data group from  FRTF 
FU receives a data group from  FDTF 

E 
E 
E 
X 
X 
X 

Failure System 
Tolerance Function  

(FSTF) 

FSTF sends a data group to FOF 
FSTF sends a data group to FMF 
FSTF receives a data group from FOF  
FSTF receives a data group from FMF 

E 
E 
X 
X 

 
Fault Recovery 

Tolerance 
Function  (FRTF) 

FRTF sends a data group to FPF 
FRTF sends a data group to FDF 
FRTF sends a data group to FRF 
FRTF receives a data group from FPF 
FRTF receives a data group from FDF 
FRTF receives a data group from FRF 

E 
E 
E 
X 
X 
X 

 
Error Data Tolerance 

Function (EDTF) 

EDTF sends a data group to EHIF 
EDTF sends a data group to EPOF 
EDTF sends a data group to EPCOF 
EDTF receives a data group from EHIF 
EDTF receives a data group from EPOF 
EDTF receives a data group from EPCOF 

E 
E 
E 
X 
X 
X 

Failure Operation 
Function (FOF) 

FOF reads and writes a data group 
from/to persistent storage. 

R & W 

Failure Mechanism 
Function(FMF) 

FMF reads and writes a data group 
from/to persistent storage. 

R & W 

Fault Prevention 
Function (FPF) 

FPF reads and writes a data group from/to 
persistent storage. 

R & W 

Fault Detection Function 
(FDF) 

FDF reads and writes a data group 
from/to persistent storage. 

R & W 

Fault Removal Function 
(FRF) 

FRF reads and writes a data group from/to 
persistent storage. 

R & W 

Error to Handle Input 
Function (EHIF) 

EHIF reads and writes a data group 
from/to persistent storage. 

R & W 

Error to Produce Output 
Function (EPOF) 

EPOF reads and writes a data group 
from/to persistent storage. 

R & W 

Error to Produce Correct 
Output Function 

(EPCOF) 

EPCOF reads and writes a data group 
from/to persistent storage. 

R & W 

The Total functional size  38 CFP 
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4.5 Requirements and measurement examples  

 

This section presents two specific measurement examples of the use of the standard-based 

model of software-FUR for system reliability NFR.  

 

Example 1: Description of the requirements for a simple failure tolerance function (FTSF) to 

be allocated to software:, 

• Step 1: To implement the requirements for  failure system tolerance function (FSTF) - see 

figures 4.2, 4.4 and 4.10, a software function must collect data of actual failure operations 

in the system (FOF) and data from the failure mechanisms (FMF) ( a single or multiple 

failure mechanism requirement(s) must have been documented in the requirements at the 

system level, and allocated to the software – but is not described here for simplicity 

sake).  

• Step 2: once the above FTSF requirements are detailed at a lower level of software 

requirements,  the FTSF portion of the standard-based measurement model of the system 

reliability-NFR can be used for measuring the functional size of the functions allocated to 

Software-FUR. 

 

Example 2: The set of functional requirements allocated to software for the system 

reliability requirements for a specific instantiation is the following (i.e. a subset of the full 

model in figure 4.2): 

1. The functional user (FU) sends one data group to FSTF and another data group to FRTF; 

2. The FSTF sends one data group to FOF and another data group to FMF. 

 

Based on Figure 4.12 (arrows in yellow) and Table 4.7, the functional size measurement 

results are presented in Table 4.8 for the data movements identified by the measurer for this 

example. In this example, it is assumed for simplicity sake that there is a single data group 

involved in the requirements. 
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Table 4.8 Measurements results for direct and indirect data movements  
 

COSMIC-SOA 
Functions 

Data Movement Description 
Data 

Movement Type 

 
Functional User 

(FU) 

FU sends a data group to FSTF. 
FU sends a data group to FRTF. 
FU receives a data group from  FSTF 
FU receives a data group from  FRTF 

E 
E 
X 
X 
 

Failure System Tolerance 
Function  (FSTF) 

FSTF sends a data group to FOF 
FSTF sends a data group to FMF 
FSTF receives a data group from FOF  
FSTF receives a data group from FMF 

E 
E 
X 
X 
 

Failure Operation 
Function (FOF) 

FOF reads and writes a data group 
from/to persistent storage. 

 
R & W 

 

Failure Mechanism 
Function(FMF) 

FMF reads and writes a data group 
from/to persistent storage. 

 
R & W 

 
The Total Functional Size  12 CFP 

 

4.6 Summary 

 

This chapter has introduced the standard-based model of software-FUR for system reliability 

NFR for specifying and measuring software requirements for the functions needed to address 

the system’s reliability requirements.  

 

The main contribution of this chapter is our proposed standard-based model of software-FUR 

for system reliability NFR. This model can be considered as a kind of reference model for the 

identification of system reliability requirements, and can be used for their allocation to 

software functions implementing such requirements. System requirements allocated to 

hardware have not been addressed in this chapter. Since the structure of the general model is 

based on the generic model of software adopted by the COSMIC measurement standard, the 

necessary information for measuring their functional size is readily available, and an example 

has been presented of a specific instantiation of this model. Specifically, the standard-based 

model of software-FUR for system reliability NFR presented in this chapter is based on: 
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• The ECSS standards for the description of the NFR for system reliability;  

• The COSMIC measurement model of functional user requirements. 

 

The proposed standard-based model of software-FUR for system reliability NFR is 

independent of the software type and the languages in which the software-FUR will be 

implemented. The proposed model provides: 

• A specification model for each type, or all types, of reliability requirements: for example; 

the functional requirements to be allocated to software for the system reliability 

prediction. 

• A specification measurement model for each type, or all types, of system reliability 

requirements allocated to software-FUR. 

 

In the absence of such standard-based model of software-FUR for system reliability NFR, 

such NFR requirements are typically handled in practice much later on in the software 

development life cycle when, for example, at system testing time, users and developers find 

out that a number of reliability requirements have been overlooked and additional work has 

to be expanded to implement them. 



 

CHAPTER 5 

MAINTAINABILITY: IDENTIFICATION, SPECIFICATION AND 
MEASUREMENT OF SOFTWARE-FUR DERIVED FROM SYSTEM-NFR 

5.1 Introduction 

 

Currently, there exists no standard-based model of software-FUR for system maintainability-

NFR for the identification and specification of system maintainability requirements based on 

the various views documented in international standards and in the literature. Consequently, 

it is challenging to measure these maintainability-related software-FUR, and take them into 

account quantitatively for estimation purposes.  

 

The ECSS includes maintainability requirements as one of sixteen (16) types of non 

functional requirement (NFR) for embedded and real time software. A number of 

maintainability related concepts are dispersed throughout the ECSS, ISO 9126 (ISO-9126 

2004), and IEEE (IEEE-830 1998) standards to describe at varying levels of details the 

various types of candidate maintainability requirements at the system, software, and 

hardware levels.  

 

This chapter organizes these dispersed maintainability concepts into a standard-based model 

of software-FUR for system maintainability-NFR. The availability and details of the model 

can facilitate the early identification and specification of the system maintainability-NFR and 

their detailed allocation as specific maintainability functions to be handled by the specified 

allocation to hardware or software or in a specific combination of both. 

 

The approach adopted in this research for the structure of this model is based on the generic 

model of software-FUR proposed in the COSMIC – (ISO-19761 2011) model, thereby 

allowing the measurement of the functional size of such maintainability requirements 

allocated to software and taking them into account for estimations purposes. 
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System  
Maintainability-FUR 

System  
Maintainability-NFR 

Software-FUR 
 for Maintainability Requirements 

This chapter focuses on a single type of NFR, that is, system maintainability requirements, 

and reports on the work carried out to define an integrated view of the standard-based model 

of software-FUR for system maintainability-NFR based on international standards, including 

the use of the generic COSMIC (ISO-19761 2011) model of software-FUR. 

 

The maintainability related views, concepts and terms in the ECSS, IEEE, and ISO standards 

have been identified in chapter 3 and should be included in the design of the standard-based 

model of software-FUR for system maintainability-NFR. The elements of maintainability are 

dispersed in a number of system views throughout various ECSS standards, and are 

expressed as either – see Figure 5.1: 

• System maintainability  functional user requirements (system maintainability-FUR); 

• System maintainability-NFR. 

 

 

 

 

 

   

 

 
 
 

Figure 5.1 Mapping system-NFR to the maintainability FUR allocated to software 
 

The chapter is organized as follows. Section 5.2 presents a standard-based model of 

software-FUR for system maintainability NFR. Section 5.3 presents a standard-based model 

of software-FUR for system maintainability NFR using a service-oriented architecture 

(SOA). Section 5.4 presents the sizing of a standard-based model of software-FUR for 

system maintainability NFR. Section 5.5 presents a measurement example. Finally, a 

summary is presented in section 5.6. 
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5.2 A standard-based model of software-FUR for system maintainability-NFR 

 

The terminologies and concepts of maintainability identified in chapter 3 are mapped here 

into a proposed standard-based model of software-FUR for system maintainability NFR. 

5.2.1 Mapping maintainability views, concepts, and terms from standards 

 

During the mapping of maintainability requirements views and concepts from ISO 9126 and 

ECSS, it was observed that a high level of standard-based model of software maintainability 

requirements is defined by ISO, while a detailed (but disperse) view of system-

maintainability requirements is provided by ECSS.  

 

Table 5.1 presents the system maintainability requirements that are present either as system 

requirements in the ECSS standard or as maintainability-related concepts in ISO 9126. Each 

of these could be interpreted, and specified, at times as software-FUR.   

 

Table 5.1 Maintainability requirements in ECSS & ISO 9126 

 
ID System Maintainability Requirements 
1 Failure Data Operation 
2 Failure Data Monitoring 
3 Failure Data Control 
4 System Failure Tasks 
5 Failure Isolation 
6 Failure Detection 
7 Correct Data Faults 
8 Correct System Defects 
9 Fault Prevention of Data Control 
10 Fault Prevention of System Functions 
11 Fault Allocation Time 

 

Furthermore, various types of system-related maintainability requirements can be derived 

from ISO 9126. Table 5.2 presents various procedures (middle column) associated with the 

system maintainability requirements and the corresponding software functions (right-hand 
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column) that may be specified to implement such procedures for the five types of system 

maintainability requirements.  

Table 5.2 System maintainability requirements and related software functions 

 

ID 
System 

Maintainability 
in ISO 9126 

System 
Maintainability 

Procedures  
Software functions for maintainability 

1 
System 
Analyzability 

System 
Maintainability 
Failure Procedure 
(SMFP) 

• System Diagnostic Functions (SDF) 
• Failure Data Operation Function 

(FDOF) 
• Failure Data Monitoring Function 

(FDMF) 
• Failure Data Control Function 

(FDCF) 
• System Failure Tasks Function 

(SFTF) 
 

2 
System 
Analyzability & 
Changeability 

System Registered 
Failures Procedure 
(SRFP) 

• Failure Detection Function (FDF) 
• Failure Isolation Function (FIF) 

3 
System 
Changeability 

System Malfunction 
Procedure (SMP) 

• Correct Data Faults Function 
(CDFF) 

• Correct System Defects Function 
(CSDF) 
 

4 
System  
Stability  

System Stability 
Procedure (SSP) 

• Fault Prevention of Data Control 
Function (FPDCF) 

• Fault Prevention of System Function 
(FPSF)  
 

5 
System 
Testability  

System Testability 
Procedure (STP) 
 

• System Time Function (STF) 
• Fault Allocation Time Function 

(FATF) 
 

 

5.2.2 Identification of system maintainability functions types allocated software-FUR 

 

The section identifies the function types and the relationships between these function types 

allocated to software-FUR for system maintainability. 
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System Maintainability Failure Procedure (SMFP) 

 

Figure 5.2 illustrates a system modeling view (i.e., a high-level view) of the data movements 

for the system maintainability failure procedure (SMFP) (Function Type 1) which is divided 

into: 

1. The set of SDF constitutes a program or software written for the express purpose of 

examining the state of the hardware, or for locating problems with the hardware or 

operating system environment in/on which it is running. It sends data groups to the 

failure data operation, monitoring, and control functions (FDOF, FDMF, and FDCF) and 

to the system failure tasks function (SFTF); 

2. The FDOF is the collection of failure activities required to operate the system diagnostic 

services and their execution. It reads about other services from stored information and 

writes their results on the system; 

3. The FDMF keeps track of services in progress, and some information is provided from 

the FDOF results using intermediary services. It reads about other services from stored 

information and writes their results on the system; 

4. The FDCF provides or assigns tasks, or brings about changes and verifies their service 

execution, to meet the deadlines and requirements. It reads about other services from 

stored information and writes their results on the system. The FDCF also uses 

intermediary services to connect the FDMF results, which provide some information; 

5. The SFTF provides a complete description of a small unit of work. This description 

consists of two parts: 

• A data payload, which parameterizes the task;  

• Code, which implements the task. 

• SFTF reads about other services from stored information and writes their results on 

the system. In Figure 5.2, the intermediary services are represented by a cross in a 

small circle (   ). 
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System Maintainability Failure Procedure (SMFP) 
Function Type 1 
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The system maintainability failure procedure (SMFP) (Function Type 1) sends its results 

throughout the intermediary services to be used by the system stability procedure (SSP) 

(Function type 4) and system testability procedure (STP) (Function type 5). 

 

The FDOF and FDMF in the system maintainability failure procedure (SMFP) (function type 

1) send their results to FDF in the system registered failure procedure (SREP) (function type 

2). The FDCF and SFTF in the system maintainability failure procedure (SMFP) (function 

type 1) send their results to FIF in the system registered failure procedure (SREP) (function 

type 2). 

 
Figure 5.2 System Modeling View of a System Maintainability Failure Procedure (SMFP) 

 

Figure 5.3 illustrates the COSMIC modeling scenario for the data movements for the System 

Maintainability Failure Procedure (SMFP).  
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System Maintainability Failure Procedure (SMFP) 
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The SDF sends a data group to the failure data operation, data monitoring, and data control 

functions and system failure tasks function (FDOF, FDMF, FDCF and SFTF): 

1. The FDOF reads data groups about other services from stored information and writes 

their results as data movements on the system; 

2. The FDMF reads data groups about other services from stored information and writes 

their results as data movements on the system; 

3. The FDCF reads data groups about other services from stored information and writes 

their results as data movements on the system; 

4. The SFTF reads data groups about other services from stored information and writes their 

results as data movements on the system. 

 

The FDOF, FDMF, FDCF, and SFTF send and receive data groups to connect their 

functionality or service with one another by using intermediary services, which are 

represented by a cross inside a small circle        – see Figure 5.3. 

Figure 5.3 COSMIC Modeling View of a Maintainability Failures Procedure (SMFP) 
(i.e., with COSMIC data movements) 
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System Registered Failures Procedure (SRFP) 

 

Figure 5.4 illustrates a system modeling view (i.e., a high-level view) of the data movements 

for the system registered failures procedure (SRFP) (Function Type 2): 

1. The failure detection function (FDF) includes the ability of the system to detect and 

report a failure by saving the following results in the system: 

• The system correctly indicates a safe condition; 

• The system correctly indicates a malfunction requiring corrections; 

• The system erroneously indicates a safe condition in the event of a malfunction; 

• It provides information about data faults that could be occur. 

2. The Failure Isolation Function (FIF) includes the ability of the system to identify the 

failure by saving the following results in the system: 

• System task operations cannot access data; 

• The modified data during a transaction that has not yet been completed; 

• The FIF provides information about system defects that could be occurred in the 

future.  

 

The FDF and FIF contact each other through intermediary services to decide through 

different services which types of defects or faults can be appear in the system.  

 

The FDF and FIF receive and send data movements from other function types in the 

maintainability model as follows:  

1. The FDF receives its functionality based on the FDOF and FDMF results from System 

Maintainability Failure Procedure (SMFP) (Function Type 1) – see Figure 5.2; 

2. The FIF receives its functionality based on the FDCF and SFTF results from System 

Maintainability Failure Procedure (SMFP) (Function Type 1) – see Figure 5.2; 

3. The FDF sends its results to be used by the correct data faults function (CDFF) to system 

malfunction procedure (SMP) (Function type 3); 

4. The FIF sends its results to be used by the correct system defects function (CSDF) to 

system malfunction procedure (SMP) (Function type 3). 
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System Registered  
Failures Procedure (SRFP)  

Function Type 2 
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System Stability 
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Function type 4 

System Testability 
Procedure (STP) 
Function type 5 

5. The system registered failure procedure (SRFP) (Function Type 2) sends their results 

throughout the intermediary services to be used by the system stability procedure (SSP) 

(Function type 4) and system testability procedure (STP) (Function type 5); 

6.  In Figure 5.4, the intermediary services are represented by a cross in a small circle      . 

 

Figure 5.4 System Modeling Maintainability of the Registered Failures Procedure (SRFP) 

 

Figure 5.5 illustrates a COSMIC modeling view of the data movements for the system 

registered failures procedure (SRFP) (Function Type 2): 

1. The Failure Detection Function (FDF) receives a data group from the FDOF and FDMF. 

2. The FDF reads and/or writes a data group to/from the storage area or system buffer. 

3. The FIF receives a data group from the FDCF and SFIF. 

4. The FIF reads and/or writes a data group to/from the storage area or system buffer. 

5. The FDF and FIF contact each other by sending and receiving a data group using 

intermediary services. 

6. In Figure 5.5, the intermediary services are represented by a cross in a small circle     . 



106 

System Malfunction 
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System Maintainability 
Failure Procedure (SMFP) 

Function Type 1 

System Registered  
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Figure 5.5 COSMIC Modeling View of the Maintainability Registered Failures Procedure 

(SRFP) (i.e., with COSMIC data movements) 
 

System Malfunction Procedure (SMP) 

 

Figure 5.6 illustrates a system modeling view (i.e., a high-level view) of the data movements 

for the maintainability system malfunction procedure (SMP) (Function Type 3): 

1. The Correct Data Faults Function (CDFF) is used when there is an abnormal condition at 

the component, equipment, or subsystem level, which may lead to failure in the 

functional unit or execution unit. The CDFF provides information about asymmetric and 

symmetric data faults, a result which may be used by a next functionality in the 

maintainability systems requirements allocated to software; 

2. The Correct System Defects Function (CSDF) is a functionality which is used when a 

reproducible or catastrophic malfunction occurs consistently under the same 

circumstances. It provides information about a failure of computer software to meet 
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requirements, a result which may be used by a next functionality in the maintainability 

systems requirements allocated to software. 

 

The CDFF and CSDF contact each other through intermediary services to decide through 

various services which type of defects or faults can be appear in the system.  

 

The CDFF and CSDF receive and send data movements from other function types in the 

maintainability model as follows:  

1. The CDFF receives its functionality based on the FDF and FIF results. 

2. The CSFD receives its functionality based on the FIF results. 

3. The CDFF and CSDF send their results throughout the intermediary services to be used 

by the system stability procedure (SSP) (Function type 4) and system testability 

procedure (STP) (Function type 5). 

4. In Figure 5.6, the intermediary services are represented by a cross in a small circle       . 

 

Figure 5.6 System Modeling View of a System Malfunction Procedure (SMP) 

 

Figure 5.7, illustrates a COSMIC modeling view of the data movements for the 

maintainability system malfunction procedure (SMP) (Function Type 3): 

1. The Correct Data Faults Function (CDFF) receives data groups from the FDF and FIF; 
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2. The CDFF reads and/or writes a data group to/from a storage area or system buffer; 

3. The Correct System Defect Function (CSDF) receives a data group from the FIF; 

4. The CSDF reads and/or writes a data group to/from a storage area or system buffer; 

5. The CDFF and CSDF contact each other by sending and receiving a data group using 

intermediary services; 

6. The CDFF and CSDF in function type 3 send their results throughout the intermediary 

services to be used by the system stability procedure (SSP) (Function type 4) and system 

testability procedure (STP) (Function type 5); 

7. In Figure 5.7, the intermediary services are represented by a cross in a small circle      . 

 
Figure 5.7 COSMIC Modeling View of a System Malfunction Procedure (SMP) 

(i.e., with COSMIC data movements) 
 

System Stability Procedure (SSP) 

 

Figure 5.8 illustrates a system modeling view (i.e., a high-level view) for the data movements 

for the system stability procedure (SSP) (Function Type 4): 

1. The Fault Prevention of Data Control Function (FPDCF) is used when classifying the 

types of data faults being incorporated into a system. The FPDCF provides information 

about system data faults, a result which may be used by other functionalities, such as 



109 

SDF or system registered failures and system malfunctions in the maintainability systems 

allocated to software; 

2. The Fault Prevention of System Function (FPSF) deals with preventing faults being 

incorporated into a system. The FPSF provides information about system faults, a result 

which may be used by other functionalities, such as SDF in the maintainability systems 

allocated to software. 

 

The FPSF and FPDCF contact each other through intermediary services to provide the degree 

of system health. In Figure 5.8, the intermediary services are represented by a cross in a 

small (      ). 

 

The FPSF and FPDCF receive their functionality based on the results of the function types 1, 

2, 3 and 5 using intermediary services. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.8 System Modeling View of System Stability Procedure (SSP) 

 

Figure 5.9 illustrates a COSMIC modeling view of the data movements for the system 

stability procedure (SSP) (Function Type 4): 
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1. The FPDCF sending and receiving a data group using intermediary services from/to 

functions types 1, 2, 3 and 5. It reads and/or writes a data group to/from a storage area or 

system buffer; 

2. The FPSF sending and receiving a data group using intermediary services from/to 

functions types 1, 2, 3 and 5. It reads and/or writes a data group to/from a storage area or 

system buffer. 

 

The FPSF and FPDCF contact each other by sending and receiving a data group using 

intermediary services. In Figure 5.9, the intermediary services are represented by a cross in a 

small circle      . 

 

 
Figure 5.9 COSMIC Modeling View of a System Stability Procedure (SSP) 

(i.e., with COSMIC data movements) 
 

System Testability Procedure (STP) 

 

Figure 5.10, illustrates a system modeling view (i.e., a high-level view) of the data 

movements for the system testability procedure (STP) (Function Type 5): 

1. The system time function (STF) is a system for describing points in time. It has two 

layers: the first encodes a point in time as a real number for each event in the system, and 



111 

the second encodes that number as a sequence of bits or in another form. The STF 

provides time information about when the maintainability failure procedure occurred and 

the time of registering the failure for each event. This result may be used by other 

functionalities, such as the system stability function in the maintainability systems 

allocated to software; 

2. The Fault Allocation Time Function (FATF) is used to provide both the execution time 

and the required memory for each event in the memory. It provides information about 

when the maintainability failure occurred: the time of registered failure for each event, 

and, when a system malfunctions, the faults or defects that occurred.  Its result may be 

used by other functionalities, such as the system stability function in the maintainability 

systems allocated to software. 

 

The STF and FATF contact each other through intermediary services. In Figure 5.10, the 

intermediary services are represented by a cross in a small circle      . 

 

The STF and FATF receive their functionality based on the results of function types 1, 2, and 

3 in this model. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10 System Modeling View of the System Testability Procedure (ST) 
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Figure 5.11, illustrates a COSMIC modeling view of the data movements for the system 

testability procedure (STP) (Function Type 5): 

1. The STF receives a data group from function types 1, 2 and 3 in the maintainability 

model using intermediary services. It reads and/or writes a data group to/from a storage 

area or system buffer; 

2. An FATF receives a data group from function types 1, 2 and 3 in the maintainability 

model using intermediary services. It reads and/or writes a data group to/from a storage 

area or system buffer. 

 

The STF and FATF contact each other by sending and receiving a data group using 

intermediary services. In Figure 5.11, the intermediary services are represented by a cross in 

a small circle       . 

 

 
Figure 5.11 COSMIC Modeling View of a System Testability Procedure (ST) 

(i.e., with COSMIC data movements) 
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5.2.3 Model of the functions types relationships based on system views 

 

Figure 5.12 presents an overview of the relationships between the function types for system 

maintainability that may be allocated to software-FUR. More specifically, the system 

maintainability requirements model is composed of 12 functions grouped into five function 

procedures types. The data flow on the model is also divided into direct data flows and the 

intermediary data flows: 

1. The SMFP (Function Type 1) can be used to specify the data flows between its five sub 

functions and the data flows with the other functions on the system maintainability model 

– see Figure 5.12; 

2. The SRFP model (Function Type 2) can be used to specify the data flows between its two 

sub functions and the data flows with the other functions on the system maintainability 

model – see Figure 5.12; 

3. The SMP model (Function Type 3) can be used to specify the data flows between its two 

sub functions and the data flows with the other functions on the system maintainability 

model – see Figure 5.12; 

4. The SSP (Function Type 4) can be used to specify the data flows between its two sub 

functions and the data flows with the other functions on the system maintainability model 

– see Figure 5.12; 

5. The STP model (Function Type 5) can be used to specify the data flows between its two 

sub functions and the data flows with the other functions on the system maintainability 

model – see Figure 5.12. 

 

Figure 5.13 presents an overview of the relationships between the function types for system 

maintainability that may be allocated to software-FUR, using COSMIC for graphical 

representation. More specifically: 

1. The SMFP model can be used to specify and measure its functional size from the 

received/send data movements from/to SDF, FDOF, FDMF, FDCF and SFTF – see 

Figure 5.13; 
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2. The SRFP model can be used to specify and measure its functional size from the 

received/send data movements from/to FIF and FDF− see Figure 5.13; 

3. The SMP model can be used to specify and measure its functional size from the 

received/send data movements from/to CDFF and CSDF − see Figure 5.13;  

4. The SS model can be used to specify and measure its functional size from the 

received/send data movements from/to FPDCF and FPSF− see Figure 5.13;  

5. The ST model can be used to specify and measure its functional size from the 

received/send data movements from/to STF and FATF − see Figure 5.13. 
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Figure 5.12 System Modeling View for System Maintainability Requirements 
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Figure 5.13 Standard-based model of software-FUR for system maintainability-NFR 
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5.3 A standard-based model of software-FUR for system maintainability using SOA  

 

A standard-based model of software-FUR for system maintainability-NFR is considered as a 

high-level model of requirements that helps explain, and position, the variety of 

maintainability-related functions described at the system level in the ECSS, IEEE, and ISO 

standards. 

 

However, in practice, such a high-level model typically does not include detailed information 

documenting the required data groups necessary to unambiguously identify the specific 

corresponding data movements. 

 

The standard-based model of software-FUR for system maintainability-NFR using SOA 

describes the detailed measurement model which can be used to specify and measure the 

functionality described in Figure 5.13. 

 

5.3.1 Measurements of exchange messages for system maintainability  

 

This section illustrates the standard-based model of software-FUR for system 

maintainability-NFR using SOA. This model is built based on Figure 5.13 and a role of the 

COSMIC-SOA explained in Table 1.4 in chapter 1.  

 

System Maintainability Failure Procedure (SMFP) 

 

Figure 5.14 describes the detailed measurements for the exchange of data messages between 

the application level and the services level for Function Type 1 (i.e., the System 

Maintainability Failure Procedure). 

 

Table 5.3 contains the detailed measurement manual of the standard-based model of 

software-FUR for system maintainability-NFR for the SDF and their sub applications A, B, 

C, and D (i.e., the Maintainability Failure Procedure); in this case, they are triggered in the 
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requesting messages; the service functional process FS replies to FA and the sub applications 

with messages containing the requested data or an error message. 

 

 
Figure 5.14 Exchange of data messages for sub applications (A, B, C, D) 

with their services for SMFP 
 

Table 5.3 Measurement of the exchange messages of the application, sub application, and 
services for SMFP 

 

ID 
Functional Process Sub 

Application 
CFP 

Functional Process 
Services 

CFP 

Sub 
Application 

A 

• A functional process FDOF-
A is triggered in the 
requesting messages from 
service functional process 
FS-A  

• A functional process FDOF-
A receives data from FS-A 

X 
 
 
 
 

E 

 
• A service functional process 

FS-A receives a message from a 
functional process FDOF-A 

• The service functional process 
FS-A replies to FDOF-A with a 
message containing the 
requested data or an error 
message 
 

E 
 
 
 

X 

Sub 
Application 

B 

• A functional process FDMF-
B is triggered in the 
requesting messages from 
service functional process 
FS-B  

• A functional process FDMF-
B  receives data from FS-B 

X 
 
 
 
 

E 

 
• A service functional process 

FS-B receives a message from a 
functional process FDMF-B 

• The service functional process 
FS-B replies to FDMF-B with a 
message containing the 
requested data or an error 
message 
 

E 
 
 
 

X 

     E                  X                   E                       X                 E                      X                  E                    X       
      X                  E                   X                       E                 X                      E                  X                    E 

Sub-Application A 
Failure Data 

Operation Function  
(FDOF-A) 

Sub-Application B 
Failure Data 

Monitoring Function 
(FDMF-B)

Sub-Application C 
Failure Data Control 

Function 
(FDCF-C)

Sub-Application D 
System Failure Tasks 

Function 
(SFTF-D)

Service SA 
FDO  

Functional Process  
(FS-A)  

Service SB 
FDM 

Functional Process  
(FS-B)

Service SC 
FDC 

Functional Process  
(FS- C)

Service SD 
SFT 

Functional Process  
(FS- D)
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   X                           E                                    X                           E 
   
   E                           X                                   E                           X 

Sub-Application E 
Failure Isolation Function 

(FIF-E) 

Sub-Application F 
Failure Detection Function 

(FDF-F) 

Service SE 
FI 

Functional Process  
(FS-E)  

Service SF 
FD 

Functional Process  
(FS-F)  

Table 5.3 Measurement of the exchange messages of the application, sub application, and 
services for SMFP (Continued) 

 

ID 
Functional Process Sub 

Application 
CF
P 

Functional Process 
Services 

CFP 

 
 

Sub 
Application 

C 

• A functional process FDCF-C 
is triggered in the requesting 
messages from service 
functional process FS-C  

• A functional process FDCF-C  
receives data from FS-C 

X 
 
 
 
 

E 

• A service functional process FS-
C receives a message from a 
functional process FDCF-C 

• The service functional process 
FS-C replies to FDCF-C with a 
message containing the requested 
data or an error message 

E 
 
 
 

X 

 
 

Sub 
Application 

D 

• A functional process SFTF-D 
is triggered in the requesting 
messages from service 
functional process FS-D  

• A functional process SFTF-D 
receives data from FS-D 

X 
 
 
 

E 

• A service functional process FS-
D receives a message from a 
functional process SFTF-D 

• The service functional process 
FS-D replies to SFTF-D with a 
message containing the requested 
data or an error message 

E 
 
 
 

X 

The total functional size = 16 CFP
 

System Registered Failure Procedure (SRFP) 

 

Figure 5.15 describes the detailed measurements for the exchange of data messages between 

application level and services level for SRFP. Table 5.4 contains the detailed measurement 

manual for the COSMIC-SOA model of system maintainability requirements for the SREP 

and their sub applications E, and F; in this case, they are triggered in the requesting 

messages; the service functional process FS replies to FA and the sub applications with 

messages containing the requested data or an error message. 

 

 

 

 

 

 

 

 
Figure 5.15 Interactions sub applications (E and F) with their services for SRFP 
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Table 5.4 Measurement of the exchange messages of the application, sub application, and 
services for SRFP 

 

ID 
Functional Process Sub 

Application 
CFP Functional Process Services CFP 

 
 
 

Sub 
Application 

E 

• A functional process 
FIF-E is triggered in 
the requesting 
messages from service 
functional process FS-
E  

• A functional process 
FIF-E receives data 
from FS-E 

X 
 
 
 
 
 

E 

• A service functional process 
FS-E receives a message 
from a functional process 
FIF-E 

• The service functional 
process FS-E replies to FIF-
E with a message 
containing the requested 
data or an error message 

E 
 
 
 
 
 

X 

 
 

Sub 
Application 

F 

• A functional process 
FDF-F is triggered in 
the requesting 
messages from service 
functional process FS-F 

• A functional process 
FDF-F receives data 
from FS-F 

X 
 
 
 
 
 

E 

• A service functional process 
FS-F receives a message 
from a functional process 
FDF-F 

• The service functional 
process FS-F replies to 
FDF-F with a message 
containing the requested 
data or an error message 

E 
 
 
 
 

X 

The total functional size = 8 CFP
 

System Malfunction Procedure (SMP) 

 

Figure 5.16 describes the detailed measurements for an exchange data message between the 

application level and services level for Function Type 3 (System Malfunction Procedure). 

 

Table 5.5 contains the detailed measurement manual for the COSMIC-SOA model of system 

maintainability requirements for system malfunction procedure and their sub applications G, 

and H, in this case, are triggered in the requesting messages; the service functional process 

FS replies to FA and the sub applications with messages containing the requested data or an 

error message. 
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Figure 5.16 Interactions sub applications (G and H) with their services for SMP 

 

Table 5.5 Measurement of the exchange messages of the application, sub application, and 
services for SMP 

 

ID 
Functional Process Sub 

Application 
CFP Functional Process Services 

CF
P 

 
 
 

Sub 
Application 

G 

• A functional process 
CDFF-G is triggered in 
the requesting messages 
from service functional 
process FS-G  

• A functional process 
CDFF-G receives data 
from FS-G 

X 
 
 
 
 

E 

• A service functional 
process FS-G receives a 
message from a functional 
process CDFF-G 

• The service functional 
process FS-G replies to 
CDFF-G with a message 
containing the requested 
data or an error message 

E 
 
 
 
 

X 

 
 
 

Sub 
Application 

H 

• A functional process 
CSDF-H is triggered in 
the requesting messages 
from service functional 
process FS-H  

• A functional process 
CSDF-H receives data 
from FS-H 

X 
 
 
 
 

E 

• A service functional 
process FS-H receives a 
message from a functional 
process CSDF-H 

• The service functional 
process FS-H replies to 
CSDF-H with a message 
containing the requested 
data or an error message 
 

E 
 
 
 
 

X 

The total functional size = 8 CFP
 

Sub-Application G 
Correct Data Faults Function 

(CDFF-G) 

Sub-Application H 
Correct System Defects Function 

(CSDF-H) 

Service SG 
CDF 

Functional Process  
(FS-G)  

 

Service SH 
CSD 

Functional Process  
(FS-H)  

X                            E                      X                            E      
E                         X                    E                          X      
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System Stability Procedure (SSP) 

 

Figure 5.17 describes the detailed measurements for the exchange data messages between the 

level application and services level for Function Type 4 (System Stability Procedure). 

 

Table 5.6 contains the detailed measurement manual for the COSMIC-SOA model of system 

maintainability requirements for system stability and their sub applications K, and L, in this 

case, are triggered in the requesting messages; the service functional process FS replies to FA 

and the sub applications with messages containing the requested data or an error message. 

 

 

 

 

 

 

 

 

 
Figure 5.17 Interactions sub applications (K and L) with their services for SSP 

 

Table 5.6 Measurement of the exchange messages of the application, sub application, and 
services for SSP 

 

ID 
Functional Process Sub 

Application 
CFP Functional Process Services CFP 

 
 
 

Sub 
Application 

K 

• A functional process 
FBDCF-K is  triggered 
in the requesting 
messages from service 
functional process FS-
K  

• A functional process 
FBDCF-K receives 
data from FS-K 

X 
 
 
 
 

E 

• A service functional 
process FS-K receives a 
message from a functional 
process FBDCF-K  

• The service functional 
process FS-K replies to 
FBDCF-K with a message 
containing the requested 
data or an error message 
 

E 
 
 

X 

Sub-Application K 
Fault Prevention of Data Control Function 

(FBDCF-K) 

Sub-Application L 
Fault Prevention of System Functions 

(FPSF-L) 

Service SK 
FBDC 

Functional Process  
(FS-K)  

Service SL 
FPS 

Functional Process  
(FS-L)  

X                          E                                             X                                     E 
 

E X E X
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Table 5.6 Measurement of the exchange messages of the application, sub application, and 
services for SSP (Continued) 

 

ID 
Functional Process Sub 

Application 
CFP Functional Process Services CFP 

 
 
 

Sub 
Application 

L 

• A functional process 
FPSF-L is triggered in 
the requesting 
messages from service 
functional process FS-
L  

• A functional process 
FPSF-L receives data 
from FS-L 

X 
 
 
 
 

E 

• A service functional 
process FS-L receives a 
message from a functional 
process FPSF-L 

• The service functional 
process FS-L replies to 
FPSF-L with a message 
containing the requested 
data or an error message 

E 
 
 
 
 

X 

The total functional size = 8 CFP
 

System Testability Procedure (STP) 

 

Figure 5.18 describes the detailed measurements for exchange data messages between the 

application level and services level for Function Type 5 (System Testability). 

 

Table 5.7 contains the detailed measurement manual for the COSMIC-SOA model of system 

maintainability requirements for system testability procedure and their sub applications I, and 

J, in this case, are triggered in the requesting messages; the service functional process FS 

replies to FA and the sub applications with messages containing the requested data or an 

error message. 

 

 

 

 

 

 

 

 

Figure 5.18 Interactions sub applications (I and J) with their services for STP 

Sub-Application I 
System Time Function 

(STF-I) 

Sub-Application J 
Fault Allocation Time Function  

(FATF-J) 

Service SI 
ST 

Functional Process  
(FS-I)  

Service SJ 
FAT 

Functional Process  
(FS-J)  

       X                                E                                                   X   
E 
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Table 5.7 Measurement of the exchange messages of the application, sub application, and 
services STP 

 

ID 
Functional Process Sub 

Application 
CFP Functional Process Services CFP 

 
 
 

Sub 
Application 

I 

• A functional process 
STF-I is triggered in 
the requesting 
messages from service 
functional process FS-I 

• A functional process 
STF-I receives data 
from FS-I 

X 
 
 
 
 

E 

• A service functional 
process FS-I receives a 
message from a functional 
process STF-I 

• The service functional 
process FS-I replies to STF-
I with a message containing 
the requested data or an 
error message 

E 
 
 
 

X 

 
 
 

Sub 
Application 

J 

• A functional process 
FATF-J is triggered in 
the requesting 
messages from service 
functional process FS-J 

• A functional process 
FATF-J receives data 
from FS-J 

X 
 
 
 
 
 

E 

• A service functional 
process FS-J receives a 
message from a functional 
process FATF-J 

• The service functional 
process FS-J replies to 
FATF-J with a message 
containing the requested 
data or an error message 

E 
 
 
 

X 

The total functional size = 8 CFP
 

5.3.2 Measurement of intermediary services for system maintainability  

 

When a functional process of an application service in application A requires data that are 

available via an application service in application B, the former application service calls a 

functional process of the intermediary service, which may complete the following tasks as a 

separate utility service – for more details, see :  

1. Control the handling of the request received from a service of application A; 

2. Translate the ‘language’ of the message from application A into the ‘language’ of 

application B (and possibly applications C, D..., if services of other applications are 

involved) that must fulfill the request; 

3. Call on a functional process of the application service of application B by means of the 

translated message; 
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4. Receive the reply message from the functional process of application B (and possibly 

reply messages from applications C, D …); 

5. Translate the results into a message in the language of application A; 

6. Send the reply message to (the functional process of the service of) application A; 

7. Manage exceptional situations; 

8. Log data about the handling of services.  

 

The COSMIC-SOA model for maintainability requirements describes the detailed 

measurement for the intermediary services. This section describes the second step of the 

COSMIC model for detailed measurement for intermediary services between the application 

and sub applications of the standard-based model of software-FUR for system 

maintainability-NFR to identify the software-FUR services. 

 

System Maintainability Failure Procedure (SMFP) 

 

Figure 5.19 describes the detailed measurements for the intermediary services between the 

application level and services level for Function Type 1 (SMFP) and Table 5.8 contains the 

detailed measurement between intermediary services (SA, SB, SC and SD).  

 

 

 

 

 

 

 

 

 

Figure 5.19 The intermediary services between sub application services (SA, SB, SC and SD) 
for SMFP 
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Table 5.8 Measurement of the intermediary services for SMFP 
 

The intermediary 
services for Function 

Type 1 
Functional Process Services CFP

The intermediary services 
between FS-A and FS-B 

• A service functional process FS-A sends one data group to 
intermediary service (IS) between service SA and service 
SB. 

• Intermediary service (IS) between service SA and service SB 
receives one data group from a service functional process 
FS-A. 

• Intermediary service (IS) between service SA and service SB 
sends one data group to a service functional process FS-B. 

• A service functional process FS-B receives one data group 
from intermediary service (IS) between service SA and 
service SB. 

• A service functional process FS-B sends one data group to 
intermediary service (IS) between service SA and service 
SB. 

• Intermediary service (IS) between service SA and service SB 
receives one data group from a service functional process 
FS-B. 

• Intermediary service (IS) between service SA and service SB 
sends one data group to a service functional process FS-A. 

• A service functional process FS-A receives one data group 
from intermediary service (IS) between service SA and 
service SB. 

X 
 
 

E 
 
 

X 
 
 

E 
 
 

X 
 

E 
 
 
 

X 
 

E 

 
 
 
 
 
 
 
 
 
 

Sub 
Application 

A 

 
 
 
 
 
 
 
 
 
 

Sub 
Application 

B 

The intermediary services 
between FS-B and FS-C 

• A service functional process FS-B sends one data group to 
intermediary service (IS) between service SB and service SC. 

• Intermediary service (IS) between service SB and service SC 
receives one data group from a service functional process 
FS-B. 

• Intermediary service (IS) between service SB and service SC 
sends one data group to a service functional process FS-C. 

• A service functional process FS-C receives one data group 
from intermediary service (IS) between service SB and 
service SC. 

• A service functional process FS-C sends one data group to 
intermediary service (IS) between service SB and service SC. 

• Intermediary service (IS) between service SB & service SC 
receives one data group from a service functional process 
FS-C. 

• Intermediary service (IS) between service SB and service SC 
sends one data group to a service functional process FS-B. 

• A service functional process FS-B receives one data group 
from intermediary service (IS) between service SB and 
service SC. 
 

X 
 

E 
 
 

X 
 

E 
 
 
 

X 
 

E 
 
 

X 
 

E 

 
 
 
 
 
 

Sub 
Application 

B 

 
 
 
 
 
 

Sub 
Application 

C 
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Table 5.8 Measurement of the intermediary services for SMFP (Continued) 
 

The intermediary 
services for Function 

Type 1 
Functional Process Services CFP 

The intermediary services 
between FS-C and FS-D 

• A service functional process FS-C sends one data group to 
intermediary service (IS) between service SA and service 
SD. 

• Intermediary service (IS) between service SC and service SD 
receives one data group from a service functional process 
FS-C. 

• Intermediary service (IS) between service SC and service SD 
sends one data group to a service functional process FS-D. 

• A service functional process FS-D receives one data group 
from intermediary service (IS) between service SC and 
service SD. 

• A service functional process FS-D sends one data group to 
intermediary service (IS) between service SC and service 
SD. 

• Intermediary service (IS) between service SC and service SD 
receives one data group movements from a service functional 
process FS-D. 

• Intermediary service (IS) between service SC and service SD 
sends one data group to a service functional process FS-C. 

• A service functional process FS-A receives one data group 
from intermediary service (IS) between service SC & service 
SD. 

X 
 
 
E 
 
 
X 
 
E 
 
X 
 
 
E 
 
X 
 
 
E 

 
 
 
 
 
 
 
 

Sub 
Application 

C 

 
 
 
 
 
 
 
 

Sub 
Application D 

The total functional size = 24 CFP

 

System Registered Failure Procedure (SRFP) 

 

Figure 5.20 describes the detailed measurements for intermediary services between the 

application level and the services level for Function Type 2 (system Registered Failures 

procedure) and Table 5.9 contains the detailed measurement between the intermediary 

services (SE and SF).   

 

 

 

 

Figure 5.20 The intermediary services for sub application (SE and SF) for SRFP 

  X     E              
 
  E     X              

   X    E      
 
   E    X      

Service SE - FI 
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Service SF  -  FD 
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(FS-F)  

 
Intermediate 
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IS  

E&F
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Table 5.9 Measurement of the intermediary services for SRFP 
 
The intermediary services 

for functional type 2 
Functional Process Services CFP 

The intermediary services 
between FS-E and FS-F 

• A service functional process FS-E sends one data 
group to intermediary service (IS) between service 
SE and service SF. 

• Intermediary service (IS) between service SE and 
service SF receives one data group from a service 
functional process FS-E. 

• Intermediary service (IS) between service SE and 
service SF sends one data group to a service 
functional process FS-F. 

• A service functional process FS-F receives one data 
group from intermediary service (IS) between service 
SE and service SF. 

 
• A service functional process FS-F sends one data 

group to intermediary service (IS) between service 
SE and service SF. 

• Intermediary service (IS) between service SE and 
service SF receives one data group from a service 
functional process FS-F. 

• Intermediary service (IS) between service SE and 
service SF sends one data group to a service 
functional process FS-E. 

• A service functional process FS-E receives one data 
group from intermediary service (IS) between service 
SE and service SF. 
 

X 
 
 

E 
 
 

X 
 
 

E 
 
 
 
 

X 
 
 

E 
 
 

X 
 
 

E 

Sub 
Application 

E 

Sub 
Application 

F 

The total functional size = 8 CFP

 

System Malfunction Procedure (SMP) 

 

Figure 5.21 describes the detailed measurements for intermediary services between the 

application level and services level for Function Type 3 (System Malfunction Procedure) and 

Table 5.10 contains the detailed measurement between the intermediary services (SG and 

SH).   
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Figure 5.21 The intermediary services between sub application (SG and SH) for SMP 

 

Table 5.10 Measurement of the intermediary services for SMP 
 
The intermediary 

services for Function 
Type 3 

Functional Process Services CFP 

The intermediary 
services between FS-G 

and FS-H 

• A service functional process FS-G sends one data group to 
intermediary service (IS) between service SG and service 
SH. 

• Intermediary service (IS) between service SG and service 
SH receives one data group from a service functional 
process FS-G. 

• Intermediary service (IS) between service SG and service 
SH sends one data group to a service functional process FS-
H. 

• A service functional process FS-H receives one data group 
from intermediary service (IS) between service SG and 
service SH. 

 
• A service functional process FS-H sends one data group to 

intermediary service (IS) between service SG and service 
SH. 

• Intermediary service (IS) between service SG and service 
SH receives one data group from a service functional 
process FS-H. 

• Intermediary service (IS) between service SG and service 
SH sends one data group to a service functional process FS-
G. 

• A service functional process FS-G receives one data group 
from intermediary service (IS) between service SG and 
service SH. 
 

X 
 
 

E 
 
 

X 
 
 

E 
 
 
 

X 
 
 

E 
 
 
 

X 
 
 

E 

Sub 
Applicatio

n G 

Sub 
Applicatio

n H 

The total functional size = 8 CFP

  X      E              
 

 

 E       X              

                  

  X     E      
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System Stability Procedure (SSP) 

 

Figure 5.22 describes the detailed measurements for intermediary services between the 

application level and services level for Function Type 4 (System Stability) and Table 5.11 

contains the detailed measurement of the intermediary services (SK and SL). 

 

 

 

 

 

 

 
Figure 5.22 The intermediary services between sub application (SK and SL) for SSP 

 

Table 5.11 Measurement of the intermediary services for SSP 
 

The intermediary 
services for Function 

Type 5 
Functional Process Services CFP 

The intermediary 
services between FS-K 

and FS-L 

• A service functional process FS-K sends one data group to 
intermediary service (IS) between service SK and service SL. 

• Intermediary service (IS) between service SK and service SL 
receives one data group from a service functional process FS-
K. 

• Intermediary service (IS) between service SK and service SL 
sends one data group to a service functional process FS-L. 

• A service functional process FS-L receives one data group 
from intermediary service (IS) between service SK and service 
SL. 

• A service functional process FS-L sends one data group to 
intermediary service (IS) between service SK and service SL. 

• Intermediary service (IS) between service SK and service SL 
receives one data group from a service functional process FS-
L. 

• Intermediary service (IS) between service SK and service SL 
sends one data group to a service functional process FS-K. 

• A service functional process FS-K receives one data group 
from intermediary service (IS) between service SK and service 
SL. 
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The total functional size = 8 CFP
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The intermediary services between SSP and STP 

 

Figure 5.23 describes the detailed measurements for the intermediary services between the 

application levels and services level for Function Types 4 and 5 (System stability and System 

testability) and Table 5.12 contains the detailed measurement between the intermediary 

services (SI and SK) , (SI and SL) , (SJ and SK) and (SJ and SL) .   

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.23 The intermediary services between sub application services (SI and SK), (SI and 
SL) and (SJ and SK), (SJ and SL) for (SSP and STP) 
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Table 5.12 Measurement of the intermediary services for SSP and STP 
 
The intermediary 
services Function 

Types 4 & 5 
Functional Process Services CFP

The intermediary 
services between FS-I 

and FS-K 

• A service functional process FS-I sends one data group to 
intermediary service (IS) between service SI and service 
SK. 

• Intermediary service (IS) between service SI and service SK 
receives one data group from a service functional process 
FS-I. 

• Intermediary service (IS) between service SI and service SK 
sends one data group to a service functional process FS-K. 

• A service functional process FS-K receives one data group 
from intermediary service (IS) between service SI and 
service SK. 

• A service functional process FS-K sends one data group t to 
intermediary service (IS) between service SI and service 
SK. 

• Intermediary service (IS) between service SI and service SK 
receives one data group from a service functional process 
FS-K. 

• Intermediary service (IS) between service SI and service SK 
sends one data group to a service functional process FS-I. 

• A service functional process FS-I receives one data group 
from intermediary service (IS) between service SI and 
service SK. 
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Sub 
Application 

I 

 
 
 
 
 
 
 
 
 

Sub 
Application 

K 

The intermediary 
services between FS-I 

and FS-L 

• A service functional process FS-I sends one data group to 
intermediary service (IS) between service SI and service 
SL. 

• Intermediary service (IS) between service SI and service SL 
receives one data group from a service functional process 
FS-I. 

• Intermediary service (IS) between service SI and service SL 
sends one data group to a service functional process FS-L. 

• A service functional process FS-L receives one data group 
from intermediary service (IS) between service SI and 
service SL. 

• A service functional process FS-L sends one data group to 
(IS) between service SI and service SL. 

• Intermediary service (IS) between service SI and service SL 
receives one data group from a service functional process 
FS-L. 

• Intermediary service (IS) between service SI and service SL 
sends one data group to a service functional process FS-I. 

• A service functional process FS-I receives one data group 
from (IS) between service SI and service SL. 
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Table 5.12 Measurement of the intermediary services for SSP and STP (Continued) 
 
The intermediary 
services Function 

Types 4 & 5 
Functional Process Services CFP

The intermediary 
services between FS-J 

and FS-K 

• A service functional process FS-J sends one data group to 
intermediary service (IS) between service SJ and service 
SK. 

• Intermediary service (IS) between service SJ and service 
SK receives one data group from a service functional 
process FS-J. 

• Intermediary service (IS) between service SJ and service 
SK sends one data group to a service functional process FS-
K. 

• A service functional process FS-K receives one data group 
from (IS) between service SJ and service SK. 

• A service functional process FS-K sends one data group to 
(IS) between service SJ and service SK. 

• Intermediary service (IS) between service SJ and service 
SK receives one data group from a service functional 
process FS-K. 

• Intermediary service (IS) between service SJ and service 
SK sends one data group to a service functional process FS-
J. 

• A service functional process FS-J receives one data group 
from (IS) between service SJ and service SK. 
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X 
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X 
 

E 
 
 

X 
 
 

E 

 
 
 
 
 
 

Sub 
Application 

J 

 
 
 
 
 
 

Sub 
Application 

K 

The intermediary 
services between FS-J 

and FS-K 

• A service functional process FS-J sends one data group to 
(IS) between service SJ and service SL. 

• Intermediary service (IS) between service SJ and service SL 
receives one data group from a service functional process 
FS-J. 

• Intermediary service (IS) between service SJ and service SL 
sends one data group to a service functional process FS-L. 

• A service functional process FS-L receives one data group 
from intermediary service (IS) between service SJ and 
service SL. 

• A service functional process FS-L sends one data group to 
(IS) between service SJ and service SL. 

• Intermediary service (IS) between service SJ and service SL 
receives one data group from a service functional process 
FS-L. 

• Intermediary service (IS) between service SJ and service SL 
sends one data group to a service functional process FS-J. 

• A service functional process FS-J receives one data group 
from intermediary service (IS) between service SJ and 
service SL. 

X 
 

E 
 
 

X 
 

E 
 
 

X 
 

E 
 
 
 

X 
 

E 

 
 
 
 
 
 
 

Sub 
Application 

J 

 
 
 
 
 
 
 

Sub 
Application 

L 

The total functional size = 32 CFP
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The intermediary services between SMFP, SRFP and SMP with STP 

 

Figure 5.24 and Figure 5.25 describe the detailed measurements for the intermediary services 

between the application level and services level for Function Types 1, 2, 3, and 5 (and Table 

5.13 contains the detailed measurement between the intermediary services for SK and SL 

with (SA, SB, SC, SD, SE, SF, SG and SH). 

 

 

 

 

 

 

 

 

 

 

  

Figure 5.24 The intermediary services between sub application services SK 
with (SA, SB, SC, SD, SE, SF, SG and SH)  

 
 
 
 

 

 

 

 

 

 

 

 
 

Figure 5.25 The intermediary services between sub application services SL 
with (SA, SB, SC, SD, SE, SF, SG and SH)  
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Table 5.13 Measurement of the intermediary services for SMFP, SRFP, SMP and STP 
 

The intermediary 
services for Function 

Types 1, 2, 3, & 4 
Functional Process Services CFP 

The intermediary services 
between 

FS-K and FS-A 
FS-K and FS-B 
FS-K and FS-C 
FS-K and FS-D 
FS-K and FS-E 
FS-K and FS-F 
FS-K and FS-G 
FS-K and FS-H 

• A service functional process FS-K sends one data group to intermediary 
services (IS) between service SK and services  SA, SB, SC, SD, SE, SF, 
SG, SH 

• Intermediary services (IS) between service SK and services SA, SB, SC, 
SD, SE, SF, SG, SH receives one data group from a service functional 
process FS-K. 

• Intermediary services (IS) between service SK and service SA, SB, SC, 
SD, SE, SF, SG, SH sends one data group to a service functional process 
FS-A, FS-B, FS-C, FS-D, FS-E, FS-F, FS-G, FS-H . 

• A service functional process FS-A, FS-B, FS-C, FS-D, FS-E, FS-F, FS-
G, FS-H receives one data group from intermediary services (IS) 
between service SK and services SA, SB, SC, SD, SE, SF, SG, SH. 

• A service functional process FS-A, FS-B, FS-C, FS-D, FS-E, FS-F, FS-
G, FS-H sends one data group to intermediary services (IS) between 
service SK and services SA, SB, SC, SD, SE, SF, SG, SH. 

• Intermediary services (IS) between service SK and services SA, SB, SC, 
SD, SE, SF, SG, SH receives one data group from a service functional 
process FS-A, FS-B, FS-C, FS-D, FS-E, FS-F, FS-G, FS-H 

• Intermediary services (IS) between service SK and services SA, SB, SC, 
SD, SE, SF, SG, SH sends one data group to a service functional process 
FS-K. 

• A service functional process FS-K receives one data group from 
intermediary services (IS) between service SK and services SA, SB, SC, 
SD, SE, SF, SG, SH. 
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Sub 
Application 

K 

 
Sub 

Application 
A 
B 
C 
D 
E 
F 
G 
H 

The intermediary services 
between 

FS-L and FS-A 
FS-L and FS-B 
FS-L and FS-C 
FS-L and FS-D 
FS-L and FS-E 
FS-L and FS-F 
FS-L and FS-G 
FS-L and FS-H 

• A service functional process FS-L sends one data group to intermediary 
services (IS) between service SL and services  SA, SB, SC, SD, SE, SF, 
SG, SH 

• Intermediary services (IS) between service SL and service SA, SB, SC, 
SD, SE, SF, SG, SH receives one data group from a service functional 
process FS-L. 

• Intermediary services (IS) between service SL and services SA, SB, SC, 
SD, SE, SF, SG, SH sends one data group to a service functional process 
FS-A, FS-B, FS-C, FS-D, FS-E, FS-F, FS-G, FS-H . 

• A service functional process FS-A, FS-B, FS-C, FS-D, FS-E, FS-F, FS-
G, FS-H receives one data group from intermediary service (IS) between 
service SL and services SA, SB, SC, SD, SE, SF, SG, SH. 

• A service functional process FS-A, FS-B, FS-C, FS-D, FS-E, FS-F, FS-
G, FS-H sends one data group to intermediary services (IS) between 
service SL and services SA, SB, SC, SD, SE, SF, SG, SH. 

• Intermediary service (IS) between service SL and service SA, SB, SC, 
SD, SE, SF, SG, SH receives one data group from a service functional 
process FS-A, FS-B, FS-C, FS-D, FS-E, FS-F, FS-G, FS-H 

• Intermediary services (IS) between service SL and services SA, SB, SC, 
SD, SE, SF, SG, SH sends one data group to a service functional process 
FS-L. 

• A service functional process FS-L receives one data group from 
intermediary service (IS) between service SL and services SA, SB, SC, 
SD, SE, SF, SG, SH. 
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The total functional size = 128 CFP
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5.3.3 Measurements of data movements between Functional processes 

 

Based on Figure 5.13, this section presents the possible flows of data movements between all 

functions in the system maintainability requirements.  

 

System Maintainability Failure Procedure (SMFP) 

 

Figure 5.26 describes the detailed measurements for direct data movements of services in the 

application level for Function Type1 (SMFP) and Table 5.14 contains the detailed 

measurement between the SDF and sub applications (A, B, C and D). 

 

 

 

 

 

 

 

 

Figure 5.26 Direct data movements between the application (SDF) and sub applications (A, 
B, C, D) for SMFP 

 

Table 5. 14 Measurement of the direct data movements for SMFP 
 

ID Functional Process Application (direct data movements) CFP 

 
Application 

with Sub 
Application 
A, B, C, and 

D 

• Failure Data Operation Function receives at least one data group 
from System Diagnostic Function. 

• Failure Data Monitoring Function receives at least one data group 
from System Diagnostic Function. 

• Failure Data Control Function receives at least one data group from 
System Diagnostic Function. 

• System Failure Task Function receives at least one data group from 
System Diagnostic Function. 

 
E* 

 
E* 

 
E* 

 
E* 

The total functional size = 4 CFP
In the above table (*) means a variable numbers of data movements in this case. 

 

 

E                  E                        E                                 E       

Functional Application 
System Diagnostic 

Function  
SDF

Sub-Application A 
Failure Data Operation 

Function  
(FDOF-A) 

Sub-Application B 
Failure Data Monitoring 

Function 
(FDMF-B) 

Sub-Application C 
Failure Data Control 

Function 
(FDCF-C) 

Sub-Application D 
System Failure Tasks 

Function 
(SFTF-D) 
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System Registered Failure Procedure (SRFP) 

 

Figure 5.27 describes the detailed measurements for direct data movements of services in the 

application level for Function Type 2 (SRFP) and Table 5.15 contains the detailed 

measurement for the direct data movements between sub applications (A, B, C and D) and  

sub applications (E and F). 

 

 

 

 

 

 

 

 

 

Figure 5.27 Direct data movements between sub applications (A, B, C, D) and sub 
applications (E and F) for SRFP 

 

Table 5.15 COSMIC-SOA measurement of the direct data movements for SRFP 
 

ID 
 

Functional Process Application D (direct data movement) CFP 

Sub Applications 
A, B, C, and D 

with Sub 
Applications E 

and F 

• FIF-E receives at least one data group from FDOF-A 
• FIF-E receives at least one data group from FDMF-B 
• FDF-F receives at least one data group from FDCF-C 
• FDF-F receives at least one data group from SFTF-D 

E* 
E* 
E* 
E* 

The total functional size = 4 CFP

 
System Malfunction Procedure (SMP) 

 
Figure 5.28 describes the detailed measurements for direct data movements of services in the 

application level for SMP and Table 5.16 contains the detailed measurement for the direct 

data movements between sub applications (E and F) and sub applications (G and H). 

E                             E                                        E                              E 

Sub-Application E 
Failure Isolation Function 

(FIF-E) 

Sub-Application F 
Failure Detection Function 
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Sub-Application A 
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(FDOF-A) 

Sub-Application B 
Failure Data 

Monitoring Function 
(FDMF-B) 
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(FDCF-C) 

Sub-Application D 
System Failure Tasks 

Function 
(SFTF-D) 
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Figure 5.28 Direct data movements between sub applications (E and F) and sub applications 
(G and H) for SMP 

 

Table 5.16 COSMIC-SOA measurement of the direct data movements for SMP 
 

ID 
 

Functional Process Application D (direct data movements) CFP 

Sub 
Applications 

E, F, G, and H 
with Sub  

• CSDF-H receives at least one data group from FIF-E 
• CSDF-H receives at least one data group from FIF-E  
• CDFF-G receives at least one data group from FDF-F 

E* 
E* 
E* 

The total functional size 3 CFP

 

5.3.4 Indirect data movements for all function types  

 

Figure 5.29 describes the detailed measurements for the indirect data movements of services 

in the application level by using the same persistent storage for all the functional services and 

Table 5.17 contains the detailed measurement for the indirect data movements between the 

12 sub applications. 
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Figure 5.29 Indirect data movements between all sub applications in all functional types 

 

Table 5.17 Measurement of the indirect data movements for the model 
 

ID 
 

Functional Process Application (Indirect Data Movements) CFP 

Sub 
Application 
A, B, C, D, 
E, F, G, H, 
I, J, K, and 

L 

 
• Service SA writes a data group in the persistent storage to be used 

by other services in the maintainability model 
• Service SA reads a data group from the persistent storage from 

another service in the maintainability model 
• Service SB writes a data group in the persistent storage to be used 

by other services in the maintainability model 
• Service SB reads a data group from the persistent storage from 

another service in the maintainability model 
• Service SC writes a data group in the persistent storage to be used 

by other services in the maintainability model 
• Service SC reads a data group from  the persistent storage from 

another service in the maintainability model 
• Service SD writes a data group in the persistent storage to be used 

by other services in the maintainability model 
• Service SD reads a data group from  the persistent storage from 

another service in the maintainability model 
• Service SE writes a data group in the persistent storage to be used 

by other services in the maintainability model 
 

W 
 

R 
 

W 
 

R 
 

W 
 

R 
 

W 
 

R 
 
 

W 
 

W        R           W       R         W         R         W          R          W       R         W         R
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Service SE 
FI 

Functional 
Process  
(FS-E)  
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Process  
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Functional 
Process  
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Persistent Storage 
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Table 5.17 Measurement of the indirect data movements for the model (Continued) 

 
ID 

 
Functional Process Application (Indirect Data Movements) CFP 

Sub 
Application 
A, B, C, D, 

E, F, G, H, I, 
J, K, and L 

• Service SE reads a data group from  the persistent storage from another 
service in the maintainability model 

• Service SF writes a data group in the persistent storage to be used by 
other services in the maintainability model 

• Service SF reads a data group from  the persistent storage from another 
service in the maintainability model 

• Service SG writes a data group in the persistent storage to be used by 
other services in the maintainability model 

• Service SG reads a data group from  the persistent storage from another 
service in the maintainability model 

• Service SH writes a data group in the persistent storage to be used by 
other services in the maintainability model 

• Service SH reads a data group from  the persistent storage from another 
service in the maintainability model 

• Service SI writes a data group in the persistent storage to be used by 
other service in the maintainability model 

• Service SI reads a data group from  the persistent storage from another 
service in the maintainability model 

• Service SJ writes a data group in the persistent storage to be used by 
other services in the maintainability model 

• Service SJ reads a data group from  the persistent storage from another 
service in the maintainability model 

• Service SK writes a data group in the persistent storage to be used by 
other services in the maintainability model 

• Service SK reads a data group from  the persistent storage from another 
service in the maintainability model 

• Service SL writes a data group in the persistent storage to be used by 
other services in the maintainability model 

• Service SL reads a data group from  the persistent storage from another 
service in the maintainability model 

R 
 

W 
 

R 
 

W 
 

R 
 

W 
 

R 
 

W 
 

R 
 
 

W 
 

R 
 

W 
 

R 
 

W 
 

R 

The total functional size =  24 CFP
 

5.4 Sizing of the standard-based model for system maintainability-NFR 

 

The specification of software-FUR for system maintainability in any specific project is a 

specific instantiation of the proposed standard-based model of software-FUR for system 

maintainability-NFR described in Figure 5.13. When the software specification document is 

at the level of the movements of data groups, then these functional requirements can be 

directly measured using the COSMIC measurement rules.   
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Table 5.18 presents the measurement results based on the detailed measurement manual 

using a specific instantiation of maintainability requirements, which would have one of each 

of the maintainability function types and relationships described in the previous sections and 

in Figure 5.13. For example, Table 5.18 and Table 5.19 illustrate the sizing of the standard-

based model of software-FUR for system maintainability-NFR: 

 

Table 5.18 Measurement of the maintainability model (Function Level) 

 
Measurement of standard-based model of software-FUR for system maintainability-NFR CFP 

COSMIC-SOA Direct and Indirect Data Movements   
Direct Data Movements  

 
11 

1 Function Type 1 (SMFP) 4 
2 Function Type 2 (SRFP) 4 
3 Function Type 3 (SMP) 3 

Indirect Data Movements  
24 3 All Functions Types (SMFP, SRFP,SMP, SSP and STP) 24 

Total Functional Size 35 CFP 
 

Table 5.19 Measurement of the maintainability model (Service level) 

 
Measurement of model of maintainability (Service level) CFP 

 
 
 
A 

COSMIC-SOA exchange messages (services)  
 
 
48 

1 Function Type 1(SMFP) 16 
2 Function Type 2 (SRFP) 8 
3 Function Type 3 (SMP) 8 
4 Function Type 4 (SS) 8 
5 Function Type 5 (ST) 8 

 
 
 
 
 
B 

COSMIC-SOA intermediary services  
 
 
 
328 

1 Function Type 1 (SMFP) 24 
2 Function Type 2 (SRFP) 8 
3 Function Type 3 (SMP) 8 
4 Function Type 4 (SS) 8 
5 Function Type 5 (ST) 8 
6 Function Type 1, Function Type 2, Function Type 3, with Function 

Type 5 (SMFP,  SRFP and SMP with STP) 
120 

7 Function Type 1, Function Type 2, Function Type 3, Function Type 
5 with Function Type 4 (SMFP,  SRFP, SMP and STP with SSP) 

152 

Total Size Functional = 376 CFP
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5.5 A measurement example 

  

The specification of software-FUR for system maintainability requirements in any specific 

project is a specific instantiation of the proposed generic model described in Figure 5.13. 

When the software specifications document is at the level of the movement of data groups, 

then these functional requirements can be directly measured using the COSMIC 

measurement rules. This section presents a measurement example of the use of the COSMIC 

generic model of system maintainability requirements allocated to software. 

 

The measurement example in this chapter explains how to use the proposed reference 

maintainability model to size a hypothetical framework with all of the kinds of software-FUR 

described in the framework.  

 

Example: The functional requirements allocated to software for the system maintainability 

failures procedure (SMFP) for a specific instantiation are: 

1. The SDF sends four data groups to the FDOF; 

2. The SDF sends one data group to the FDMF; 

3. The SDF sends one data group to the FDCF; 

4. The SDF sends two data groups to the SFTF. 

 

The next section presents the functional measurement sizing for the system Maintainability 

Failure Procedure using the standard-based model of software-FUR for system 

maintainability-NFR. 

 

The Functional Measurement Solution 

Based on Figure 5.13 of the standard-based model of software-FUR for system 

maintainability-NFR and the COSMIC-SOA guideline for specifying data movements, the 

functional size measurement method for the SMFP for this example is as follows: 
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5.5.1 Measurement of the exchange messages 

 

1. The SDF in the application layer send four data groups to the FDOF, which means that 

four (4) functional processes will interact with four (4) functional services;  

2. The SDF in the application layer sends a data group to the FDMF, which means that one 

(1) functional process will interact with one (1) functional service; 

3. The SDF in the application layer sends a data group to the FDCF, which means that one 

(1) functional process will interact with one (1) functional service; 

4. The SDF in the application layer sends two (2) data groups to the SFTF, which means 

that two (2) functional processes will interact with two (2) functional services; 

 

Measurement Results 

1. The number of functional services = 8; 

2. Each functional process in the application layer will interact with each service. The data 

movements between each functional process and service = 4 CFP;  

3. The functional size for the 8 services = 8 X 4 = 32 CFP. 

 

5.5.2 Measurement of the intermediary services 

 

1. The FDOF has four (4) functional services, which means that four (4) FDOF functional 

services need four intermediary services to contact the FDMF functional service; 

2. The FDMF has one (1) functional service, which means one (1) FDMF functional service 

needs one (1) intermediary service to contact the FDCF functional service; 

3. The FDCF has one (1) functional service, which means that one (1) FDCF functional 

service needs one (1) intermediary service to contact the SFTF functional service; 

4. The SFTF has two (2) functional services, which means that two (2) SFTF functional 

services need two (2) intermediary services. 

 

Measurement Results  

1. Each intermediary service includes 8 data movements or 8 CFP; 
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2. In the example, 8 intermediary services are needed – see Figure 5.13; 

3. The functional measurement size for the 8 intermediary services X 8 CFP for each = 64 

CFP. 

 

5.5.3 Measurement of data movements (Function Level) 

 

Direct data movements: 

1. The SDF will send 4 data groups directly to the FDOF, each functional data movement 

including one entry. The functional size = 4 CFP; 

2. The SDF will send 1 data group directly to the FDMF, each functional data movement 

including one entry. The functional size  = 1 CFP; 

3. The SDF will send 1 data group directly to the FDCF, each functional data movement 

including one entry. The functional size  = 1 CFP; 

4. The SDF will send 2 data groups directly to the SFTF, each functional data movement 

including one entry. The functional size  = 1X2 = 2 CFP; 

5. FU sends 1 data group and receives  another one ( 2 CFP); 

6. The total functional measurement size (direct data movement case) = 10 CFP. 

 

Indirect data movements:  

1. Each of four services for the FDOF stores its results in a system buffer to be used by 

another functional service, and reads some data from the buffer to improve its work. The 

functional size  = 4 services X 2 (Read and Write) = 8 CFP; 

2. One service for the FDMF stores its results in a system buffer to be used by another 

functional service, and reads some data from the buffer to improve its work. The 

functional size  = 1 service X 2 (Read and Write) = 2 CFP; 

3. One service for the FDCF stores its results in a system buffer to be used by another 

functional service, and reads some data from the buffer to improve its work. The 

functional size = 1 service X 2 (Read and Write) = 2 CFP; 
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4. Each of two services for the SFTF stores its results in a system buffer to be used by 

another functional service, and reads some data from the buffer to improve its work. The 

functional size  = 2 services X 2 (Read and Write) = 4 CFP; 

5. The total functional size = 8 + 2 + 2 + 4 16 CFP. 

 

5.6 Summary 

 

Maintainability is typically described initially as NFR at the system level, and, subsequently, 

systems engineers must apportion these systems requirements very carefully, as either 

software or hardware requirements, to conform to the maintainability requirements of the 

system. Within the ECSS, ISO 9126, and IEEE standards, a number of views and concepts 

are provided to describe various types of maintainability requirements at the system, 

software, and hardware levels.  

 

This chapter has collected and organized these concepts into a standard-based model of 

software-FUR for system maintainability-NFR. This model corresponds to a standard-based 

model for specifying software-FUR for system maintainability-NFR. This model is based on 

the generic model of software proposed in COSMIC–ISO 19761, which allows measurement 

of the functional size of the software maintainability requirements using this COSMIC 

international standard of measurement.  

 

The proposed standard-based model of software-FUR for system maintainability-NFR is 

independent of the software type and the languages in which the software-FUR will be 

implemented. This standard-based model of software-FUR for system maintainability-NFR 

provides: 

• A specification model for each type, or all types, of maintainability requirements. For 

example, the requirements to be allocated to software for the maintainability failure 

procedures for system analyzability, the registered failures and software/system 

malfunctions for system changeability, and for system/software stability and testability; 
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• A specification measurement model for each type, or all types, of maintainability 

requirements. 

 

In the absence of such a standard-based model of software-FUR for system maintainability-

NFR, such NFR requirements are typically handled in practice much later on in the software 

development life cycle when at system testing time, users and developers find out that a 

number of maintainability requirements have been overlooked and additional work has to be 

expanded to implement them.  

 



 

CHAPTER 6 

INTERFACES: IDENTIFICATION, SPECIFICATION AND MEASUREMENT OF 
SOFTWARE-FUR DERIVED FROM SYSTEM-NFR 

6.1 Introduction 

 

Currently, there exists no standard-based model of software-FUR for system interfaces NFR 

for the identification and specification of software-FUR for implementing system interfaces 

requirements (system-NFR) based on the various views documented in international 

standards and in the literature. Consequently, it is challenging to measure these interfaces-

related software-FUR, and take them into account quantitatively for estimation purposes.  

 

The ECSS includes interface requirements as one of sixteen (16) types of non functional 

requirement (NFR) for embedded and real time software. A number of concepts are provided 

in the ECSS and IEEE standards to describe the various types of candidate system interface 

requirements at the system, software, and hardware levels.  

 

This chapter organizes these dispersed system interface concepts into a standard-based model 

of software-FUR for system interfaces NFR. The availability and the detailed model can 

facilitate the early identification and specification of the system interface-NFR and their 

detailed allocation as specific system interface functions to be handled by that allocation to 

hardware or software, or to a specific combination of the two.  

 

The approach adopted to structuring this model is based on the generic model of software 

functional requirements proposed in the COSMIC (ISO-19761 2011) model, with which the 

functional size of the system interface requirements allocated to software can be measured, 

and to take them into account for estimation purposes. 

 

This chapter focuses on a single type of NFR, that is, system interfaces requirements, and 

reports on the work carried out to define an integrated view for a standard-based model of 
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software-FUR for system interfaces NFR based on international standards, including the use 

of the generic COSMIC (ISO-19761 2011) model of software-FUR. 

 

The interfaces-related views, concepts and terms in the ECSS and IEEE standards have been 

identified in chapter 3 and should be included in the design of a standard-based model of 

software-FUR for system interfaces NFR. The elements of interfaces are dispersed in various 

system views throughout a number of ECSS standards, and are expressed as either – see 

Figure 6.1: 

• System interface functional user requirements (system interface-FUR); 

• System interface non functional requirements (system interface-NFR). 

 

 

 

 

 

 

Figure 6.1 Mapping system requirements to software-FUR for an interface 

 

The chapter is organized as follows. Section 5.2 presents a standard-based model of 

software-FUR for system interfaces NFR. Section 5.3 presents a standard-based model of 

software-FUR for system interfaces NFR using a service-oriented architecture (SOA). 

Section 5.4 presents the sizing of the standard-based model of software-FUR for system 

interfaces NFR. Section 5.5 presents a measurement example. Finally, a summary is 

presented in section 5.6. 

 

6.2 A standard-based model of software-FUR for system interfaces NFR 

 

The terminologies and concepts of interfaces identified in chapter 3 are mapped here into a 

proposed standard-based model of software-FUR for system interfaces NFR using the 

generic FUR model proposed in COSMIC. This COSMIC based model then becomes a 

System Interface-FUR System Interface-NFR 

 

Software-FUR for 
Interface Requirements 
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standard-based model of describing the software-FUR from system interfaces based on the 

ECSS standards. 

 

6.2.1 Mapping system interface views and concepts and terms from standards  

 

Table 6.1 presents the interface requirements that are present either as system requirements in 

the ECSS standards or as interface-related concepts in IEEE 830 (IEEE-830 1998), each of 

which could at times be interpreted, and specified, as software-FUR. 

 

We observe that the general identification of interface requirements in all these standards is 

the same (e.g. user interface requirements, software and hardware interface requirements, and 

interface communication requirements), while the description of the detailed requirement 

views for general interface requirements differ from one standard to another. 

 

Table 6.1 Interface requirements in ECSS and IEEE 

 

ID 
System interface 

requirements 
System interface 

functionality 
Description of system 
interface functionality 

1 User interface 

Logical characteristics of the 
interface(s) between the 
system software product and 
its users  

What is needed to allow users 
(devices and humans) to 
interact with the system 

2 
 
Hardware interface 
 

Hardware configuration  

What is needed to ensure 
support for the hardware and 
the specific hardware 
configuration by the system 
(i.e., logical structure, physical 
address, and expected 
behavior) 

3 
Software interface 
 

System applications 
Interface specifications 
through programming 
languages  
Interface specifications for 
each layer of interface socket 
programming 

What is needed to allow 
communication with other 
software system components 
that are not part of the 
software to be designed (such 
as operating system, files, 
database management system, 
or other application software) 
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Table 6.1 Interface requirements in ECSS and IEEE (Continued) 

 

ID 
System interface 

requirements 
System interface 

functionality 
Description of system 
interface functionality 

4 
Communications 
interface 

 
Communication layers and 
links  
 

What is needed to allow 
communication between pieces 
of system software and 
software embodied in other 
systems or components  

 

6.2.2 Interface functions to be specified 

 

The system interface functions to be specified (and the corresponding entities to be 

measured) are divided into two types of system interface functions that may be allocated to 

software-FUR − see Table 6.2.  

1. System interface components (SIC): components that permit high-level interaction 

between interface functions. 

2. System interface specifications (SIS): specifications that describe the level of interaction 

required for interface component functions. 

 

Table 6.2 System interface functions that may be allocated to software-FUR 

 

ID 
System interface function 

types 
System interface functions 

 

1 
System interface components 

(SIC) 

• User interface function (UIF) 

• Hardware interface function (HIF) 

• Software  interface function (SIF) 

• Communication interface function (CIF) 

2 
System interface specifications 

(SIS) 

• Interface specification function (ISF) 

• Interface specification Link function (ISLF) 

 

6.2.3 Identification of the system interface function types allocated to software-FUR 

 

In this section, the function types allocated to software-FUR for system interfaces, and the 

relationships between them are identified. 
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System Interface Components (SIC) 

 

The system interface components (SIC) are considered to constitute a high-level control 

interface between the various external parts of the system. The standard-based identifications 

of system interface components (SIC) include user interfaces, hardware interfaces, 

communications interfaces, and high-level parts of a software interface. 

 

Figure 6.2 illustrates a system modeling view of data movements for the System Interface 

Components (SIC): 

1. User interface function (UIF): a user interface function is used to exchange data 

movements between HIF, SIF, and CIF; 

2. Hardware interface function (HIF): it exchanges data movements with the user interfaces 

function (UIF), and with the other sub interface modules. It is used to configure the 

hardware items with the other parts of the system; 

3. Software interface function (SIF): it exchanges data movements with the user interfaces 

function (UIF), and with the other sub interface modules. It is used to configure the 

software items, with the other parts of the system; 

4. Communication interface function (CIF): it exchanges data movements with the user 

interfaces function (UIF), and with the sub interface modules. It is used to configure the 

hardware items or other data groups, with the other parts of the system. 

 

HIF, SIF, and CIF use intermediary services to interact with one another to deliver different 

types of data interface (     symbol in Figure 6.2).  

 

HIF, SIF, and CIF send and receive data groups (i.e., Entry or Exit) from/to interface 

specification function (ISF) in system interface specification (SIS) (Function Type 2). 
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Figure 6.2 System interface components (SIC): a system modeling view 

 

Figure 6.3 illustrates a COSMIC modeling view of the data movements for the system 

interface components (SIC) (Function Type 1): 

1. UIF sends a data group (i.e., Entry) to an HIF, SIF, or CIF; 

2. HIF, SIF, and CIF send and receive data groups (i.e., Entry or Exit) to interface 

specification function (ISF) in Function Type 2; 

3. HIF, SIF, and CIF send and receive data groups (i.e., Entry or Exit) between them using 

intermediary services; 

4. HIF, SIF, and CIF send data groups (i.e., Exit) to UIF. 

 

 

 

 

 

 

 

 

 

 

Figure 6.3 System interface components (SIC): COSMIC modeling view 
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System Interface Specifications (SIS) 

 

According to the ECSS, most interfaces are software-to-software; therefore, system interface 

specifications may be considered to describe SIC at an internal or detailed level, e.g. 

programs running on the operating system or system device driver programs. Such interfaces 

are used to manage orders from HIF, SIF, and CIF to provide these components with detailed 

information, such as constants, data types, types of procedures, exception specifications, and 

method signatures, in order to build a network of interfaces inside the system. 

 

Figure 6.4 illustrates a system modeling view of the data movements for the System Interface 

Specifications (SIS). These specifications can be divided into:  

1. Interface specifications function (ISF): it exchanges data movements for the HIF, SIF, 

and CIF in system interface components (SIC) function type 1 and it exchanges data 

movements for the interface specification link function (ISLF) in function type 2; 

2. Interface specification link function (ISLF): it exchanges data movements for interface 

specification function (ISF), and it reads and writes data from/to persistent storage. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4 System interface specifications (SIS): a system modeling view 
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Figure 6.5 illustrates a COSMIC modeling view of the data movements for the system 

interface specifications (SIS): 

1. ISF send a data group (i.e., Exit) to an HIF, SIF, or CIF in Function Type 1 (SIC); 

2. ISF sends and receives data groups (i.e., Entry or Exit) with ISLF; 

3. ISLF sends and receives data groups (i.e., Entry or Exit) with ISF; 

4. ISLF reads and writes data groups to/from persistent storage. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5 System interface specifications (SIS): COSMIC modeling view 

 

Model of the functions types relationships based on system and COSMIC  

 

Figure 6.6 presents an overview of the relationships between the function types for system 

interfaces that may be allocated to software-FUR. Specifically, the system interface 

requirements model is composed of six functions grouped into two Function Types. The data 

flow on the model is also divided into direct data flows and the intermediary services data 

flows: 

1. The SIC model (Function Type 1) can be used to specify the data flows between four sub 

functions and the data flows with the other functions on the system interface model (see 

Figure 6.6); 
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2. The SIS model (Function Type 2) can be used to specify the data flows between the two 

sub functions and the data flows with the other functions on the system interface model 

(see Figure 6.6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.6 System modeling view for the system interface requirements 

 

Figure 6.7 presents an overview of the relationships between the function types in the 

interface software-FUR, using COSMIC for graphical representation. Specifically: 

1. The SIC model can be used to specify and measure the function size of the system user 

interface function (UIF) from the received/sent data groups from/to the HIF, SIF, and CIF 

– see Figure 6.7; 

2. The SIS model can be used to specify and measure the functional size from the 

received/sent data groups from/to interface specifications function (ISP), and the 

interface specifications link function (ISLF) – see Figure 6.7. 
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Figure 6.7 A standard-based model of software-FUR for system interfaces NFR 

 (Function level) 

 

6.3 A standard-based model of software-FUR for system interfaces NFR using SOA  

 

In this chapter, Figure 6.7 illustrates the COSMIC standard-based model of software-FUR for 

system interfaces NFR. This model describes the important concepts and relationships for 

system interface requirements, as defined in the ECSS and IEEE standards. In this section, a 

standard-based model of software-FUR for system interfaces NFR using a service oriented 

architecture (SOA) is built to show a more complete picture, which includes showing what is 

involved in instantiating the modeled entities in practice – for more details, see . 

 

Figure 6.8 illustrates a COSMIC standard-based model of software-FUR for system 

interfaces NFR using an SOA. This model is built based on Figure 6.7, and on the role of the 

COSMIC-SOA explained in (COSMIC 2010) . 
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A standards-based model of software-FUR for system interfaces NFR  
(Function and Service levels) 
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Figure 6.8 A standard-based model of software-FUR for system interfaces NFR  

(Function and Service levels) 
 

6.4 Sizing of the standard-based model of software-FUR for system interfaces NFR 

 

The specification of software-FUR for system interfaces in a project is a specific instantiation 

of the proposed standard-based model of software-FUR for system interfaces NFR described 

in Figure 6.8. When the software specification document is at the level of the movements of 
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data groups, then these functional requirements can be directly measured using the COSMIC 

measurement rules. The measurement example presented next illustrates a reference 

instantiation of the specification and measurement model of software-FUR for system 

interfaces in an SOA context for a single data group for all the possible flows of data groups 

identified. 

 

The measurement example in this section explains how to use the proposed reference model 

of system interfaces to size a hypothetical model composed of all the kinds of software-FUR 

described in the framework.  

 

6.4.1 Measurement of exchange messages for system interface  

 

There are six functionality types of system interfaces, each interacting with its own services, 

for the measurement of exchange services for system interfaces using COSMIC-SOA – see 

Figure 6.8. According to COSMIC-SOA, each functional process may interact with its own 

service by sending and receiving data movements (i.e., Entry and Exit). Table 6.3 illustrates a 

measurement example for the interactions between a functional process and its own 

functional service process.  

 

Table 6.3 COSMIC-SOA measurement example for the interactions between a functional 
process and its own functional service process 

 
COSMIC-SOA Types  

Data Movement Description 
Data 

Movement 
Type 

Functional 
Process 

Functional Service

Hardware 
Interface 

Function (HIF) 
 

Hardware 
Interface Service 

(HIS) 

HIF sends a data group to HIS X 
HIS receives a data group from HIF E 
HIS sends a data group to HIF X 
HIF receives a data group from HIS E 

The total functional size 4 CFP 
 

Table 6.4 illustrates the measurement results of the standard-based model of software-FUR 

for system interfaces NFR for interactions between a system interface functional process and 
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its own service processes, i.e., a hardware interface function (HIF) interacts with its own 

service process, the hardware interface service (HIS). The measurement result for this 

operation is equal to 4 CFP for each interaction between a functional process and its own 

functional service process. The total measurement result is equal to 24 CFP – see the yellow 

shaded arrows in Figure 6.8. 

 

Table 6.4 Measurement for exchange messages 
 

Function 
ID 

Exchange Services for System Interfaces No. of 
Data 

Movements Functional Process Functional Service 

1 
User Interface Function 

(UIF) 
User Interface Service (UIS) 4 

2 
Hardware Interface Function 

(HIF) 
Hardware Interface Service (HIS) 4 

3 
Software Interface Function 

(SIF) 
Software Interface Service (SIS) 4 

4 
Communication Interface 

Function (CIF) 
Communication Interface Service 

(CIS) 
4 

5 
Interface specification 

function 
(ISF) 

Interface specification  Service 
(ISS) 

4 

6 
Interface specification Link 

function (ISLF) 
Interface specifications Link 

Service (ISLS) 
4 

The total functional size 24 CFP 
 

6.4.2 Measurement of intermediary services for system interface 

 

In this section, and based on Figure 6.8, when a functional process service requires data that 

are available via another functional process service, the former calls upon a functional 

process of the intermediary service. According to the COSMIC-SOA model of measurement 

for system interfaces, the types of data movements that can be used by the intermediary 

service are Entries and Exits – see Table 1.4 in chapter 1. 

 

Table 6.5 illustrates a measurement example for the intermediary service between a 

functional process and its own functional service process. 
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Table 6.5 COSMIC-SOA measurement example for the intermediary service  
 

COSMIC-SOA Intermediary 
Service 

 
Data Movement Description 

Data 
Movement 

Type Functional 
Service 

Functional 
Service 

Hardware 
Interface Service 
(HIS) 

Software 
Interface Service 
(SIS) 

HIS sends a data group to IS-1 X 
IS-1 receives a data group from HIS E 
IS-1 sends a data group to SIS X 
SIS receives a data group from IS-1 E 
SIS sends a data group to IS-1 X 
IS-1 receives a data group from SIS E 
IS-1 sends a data group to HIS X 
HIS receives a data group from IS-1 E 

The total functional size 8 CFP 
Note: IS-1 is the first intermediary service in Figure 6.8. 

 

Table 6.6 illustrates the COSMIC-SOA measurement results for intermediary services – see 

the red shaded arrows in Figure 6.8. This table presents an instantiation of a single data group 

for all possible flows of the data groups identified above, and listed as a data movement 

example for one intermediary service in Table 6.5. For this interface requirement, the 

measurement results are equal to 8 CFP.  

  

Table 6.6 COSMIC-SOA measurement for intermediary services  
 

Intermediary 
Service ID 

Intermediary Services for System Interfaces No. of Data 
Movements Functional Process Functional process 

1 
Hardware Interface 

Service (HIS) 
Software Interface Service 

(SIS) 
8 

2 
Software Interface 

Service (SIS) 
Communication Interface 

Service (CIS) 
8 

The total functional size 16 CFP 
 

6.4.3 Measurement of the direct and indirect data movements for system interface  

 

This section is based on Figure 6.8, which illustrates the possible flows of data between 

components in the same layer, i.e., between peer components (where a component may be an 

application or a service). This section shows direct and indirect exchanges of data between 
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components. If components exchange data directly, the measurer will identify the Exit and/or 

Entry data movements. An indirect exchange of data between components means that a 

service in one component writes data which are subsequently read by a service in another 

component.  

 

Specifically, Table 6.7 illustrates the measurement results for standard-based model of 

software-FUR for system interfaces NFR for the exchange data movements at function level 

or in service architecture layers – see Figure 6.8. This table presents an instantiation of this 

operation. The measurement results are equal to 16 CFP – see the blue shaded arrows in 

Figure 6.8. 
 

Table 6.7 Measurements of direct and indirect data groups for system interfaces 

 

Interface Function Data Movement Description 
Data Movement 

Type 

 
User Interface Function 

(UIF) 

• UIF sends a data group to HIF 
• UIF sends a data group to SIF 
• UIF sends a data group to CIF 
• UIF receives a data group from  HIF 
• UIF receives a data group from  SIF 
• UIF receives a data group from  CIF 

E 
E 
E 
X 
X 
X 

Hardware Interface 
Function (HIF) 

• HIF sends a data group to ISF 
• HIF receives a data group from ISF  

E 
X 

Software Interface 
Function (SIF) 

• SIF sends a data group to ISF 
• SIF receives a data group from ISF 

E 
X 

Communication Interface 
Function (CIF) 

• CIF sends a data group to ISF 
• CIF receives a data group from ISF 

E 
X 

Interface specification 
function (ISF) 

• ISF sends a data group to ISLF 
• ISF receives a data group from ISLF 

E 
X 

Interface specification link 
function (ISLF) 

• ISLF reads a data group from persistent 
storage (PS) 

• ISLF writes a data group to (PS) 
R & W 

The total functional size 16 CFP 
 

6.5 A Measurement Example 

  

The specification of software-FUR for system interface requirements in a particular project is 

a specific instantiation of the proposed model described in Figure 6.8. When the software 
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specifications document is at the level of the movements of data groups, then these functional 

requirements can be directly measured using the standard-based model of software-FUR for 

system interfaces NFR (Function and Service levels). 

 

Example: The set of functional requirements allocated to software for the system interface 

requirements for a specific instantiation is the following: 

1. UIF, HIF, and SIF call upon their own functional services to exchange their messages; 

2. HIF uses an intermediary service with SIF; 

3. UIF send one data group to HIF and another data group to SIF. 

 

The Functional Measurement Solution 

Based on Figure 6.8 for the standard-based model of software-FUR for system interfaces 

NFR using an SOA for specifying data movements, the measurement procedure to determine 

the functional size for interfaces on function types 1 and 2 for this example is as follows: 

 

6.5.1 Measurement of exchange messages 

 

The functional processes (UIF, HIF, and SIF) interacting with the functional services for 

UIS, HIS, and SIS in this example include the data movements shown in Figure 6.8 (arrows 

shaded in yellow). With the help of Table 6.4 the functional size measurement results are 

presented in Table 6.8. 

 

Table 6.8 Measurement results for the interactions between three functional processes 
 

Function 
ID 

Exchange messages for System Interfaces No. of Data 
Movements Functional Process Service Process 

1 
User Interface Function 

(UIF) 
User Interface Service 

(UIS) 
4 

2 
Hardware Interface 

Function (HIF) 
Hardware Interface Service 

(HIS) 
4 

3 
Software Interface 

Function (SIF) 
Software Interface Service 

(SIS) 
4 

The Functional Size 12 CFP 
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6.5.2 Measurement of intermediary services 

 

The functional process services (HIS and SIS) use intermediary services to interact with 

other functional process services in this example, including the data movements shown in 

Figure 6.8 (red arrows). With the help of Table 6.6, the functional size measurement results 

are presented in Table 6.9. 

 

Table 6.9 Measurement results of intermediary services 
 

Intermediary 
Services ID 

Intermediary Services No. of Data 
Movements Functional Process Functional Process 

1 
Hardware Interface Service 

(HIS) 
Software Interface Service 

(SIS) 
8 

The Functional Size 8 CFP 
 

6.5.3 Measurement of data movements  

 

Based on Figure 6.8 (blue arrows) and Table 6.7, the functional size measurement results are 

presented in Table 6.10 for the data movements identified by the measurer for this example.  

 

Table 6.10 Measurements of direct and indirect data movements for system interfaces. 
 

Interface Functions Data Movement Description 
Data 

Movement  

 
User Interface Function 

(UIF) 

• UIF sends a data group to HIF 
• UIF sends a data group to SIF 
• UIF receives a data group from  HIF 
• UIF receives a data group from  SIF 

E 
E 
X 
X 

Hardware Interface 
Function (HIF) 

• HIF sends a data group to ISF 
• HIF receives a data group from ISF  

E 
X 

Software Interface 
Function (SIF) 

• SIF sends a data group to ISF 
• SIF receives a data group from ISF 

E 
X 

Interface specification 
function (ISF) 

• ISF sends a data group to ISLF 
• ISF receives a data group from ISLPF 

E 
X 

Interface specifications 
Link function (ISLF) 

• ISLF reads a data group from persistent 
storage (PS) 

• ISLF writes a data group to (PS) 
R & W 

The functional size 12 CFP 
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6.6 Summary 

 

The Interface requirements are typically described initially as non functional requirements at 

the system level, and system engineers must subsequently apportion these system 

requirements very carefully as either software or hardware requirements to conform to the 

interface requirements of the system. A number of views and concepts are provided in the 

ECSS and IEEE standards to describe various types of candidate interface requirements at 

the system, software, and hardware levels.  

 

This chapter has introduced a standard-based model of software-FUR for system interfaces 

NFR (Function and Service levels) for specifying and measuring software requirements for 

the functions needed to address the system’s interface requirements.  

 

The main contribution of this chapter is our proposed standard-based model of software-FUR 

for system interfaces NFR. This model can be considered as a kind of reference model for the 

identification of system interface requirements, and can be used for their allocation to 

software functions implementing such requirements. The structure of the proposed model is 

based on the generic model of software adopted by the COSMIC measurement standard, the 

necessary information for measuring their functional size is readily available, and an example 

has been presented of a specific instantiation of this reference model.  

 

Specifically, the standard-based model of software-FUR for system interfaces NFR presented 

in this chapter is based on: 

• The ECSS and IEEE standards for the description of the NFR for system interfaces;  

• The COSMIC measurement model of software-FUR. 

 

The proposed standard-based model of software-FUR for system interfaces NFR is 

independent of the software type and the languages in which the software-FUR will be 

implemented. The proposed standard-based model of software-FUR for system interfaces 

NFR provides: 
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• A specification model for each type, or all types, of interface requirements: for example; 

the requirements to be allocated to software for the system interface components; 

• A specification measurement model for each type, or all types, of interface requirements. 

 



 

CHAPTER 7 
THE OTHER ELEVEN TYPES OF SYSTEM-NFR IN ECSS: SPECIFICATION AND 

MEASUREMENT MODELS 

7.1 Introduction 

 

This chapter presents the other eleven (11) standard-based model of software-FUR for 

system -NFR that can be allocated to software FUR. The detailed modeling procedures for 

these standard-based models are presented in the Annex II. 

 

This chapter is organized as follows:  

Section 7.2   presents the portability system requirements. 

Section 7.3   presents the operations system requirements.  

Section 7.4   presents the configuration system requirements.  

Section 7.5   presents the data definitions and database system requirements.  

Section 7.6   presents the adaptation and installation system requirements.  

Section 7.7   presents the design and implementation constraints system requirements.  

Section 7.8   presents the performance system requirements.  

Section 7.9   presents the security system requirements.  

Section 7.10 presents the safety system requirements.  

Section 7.11 presents the resources system requirements.  

Section 7.12 presents the human factors requirements.  

A summary is presented in section 7.13. 

 

7.2 Portability system requirements  

 

This section maps the portability terminologies found throughout the ECSS, IEEE, and ISO 

standards from chapter 3 into a proposed standard-based model of software-FUR for system 

portability-NFR, through the use of the generic model of FUR proposed in the COSMIC 

model presented in chapter 1.  
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7.2.1 Mapping views and concepts for portability from ECSS, ISO, and IEEE  

 

Based on a synthesis of the various definitions, key views and concepts presented in chapter 

3 the system portability requirements are listed in Table 7.1. It is important to note that Table 

7.1 includes software, data, and hardware components which are interconnected. If the 

system can run on two or more kinds of devices, or with two or more kinds of operating 

systems that are easily or conveniently transported, then system portability is achieved. So 

we consider these components as environments for the software-FUR for the system 

portability-NFR − see also Table 7.2.  

 

Table 7.1 Portability requirements in ECSS, ISO, and IEEE 
 

ID 
 

System portability requirements 
 

1 • Isolating software system calls 
2 • Independence of the operating system 
3 • Independence of the middleware 

4 • Independence of the programming language 
virtual machine 

5 • Independence of browsers 
6 • Client independence 
7 • Server independence 
8 • Storage independence 
9 • Network independence 
10 • Database independence 

11 • Distributed data base management system 
(DDBMS) 

 

In Table 7.2, portability requirements must be identified for each environment (from 

environment 1 to environment n), when required. In addition, the types of portability 

requirements should be identified for each environment and must be allocated to: software 

components, hardware components, and data components. 
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Table 7.2 Portability types, by environment 
 

Environment 1 … Environment n 
− Software Components in Environment 1 

o Independence of the operating system 
o Independence of the middleware 
o Independence of the programming 

language virtual machine 
o Independence of browsers 

− Hardware Components in Environment 1 
o Independence of Client  
o Independence of Server  
o Independence of Storage  
o Independence of Network 

− Data Components in Environment 1 
o Independence of Database 
o Distributed data base management 

system (DDBMS) 

… − Software Components in Environment  n 
o Independence of the operating system 
o Independence of the middleware 
o Independence of the programming 

language virtual machine 
o Independence of browsers 

− Hardware Components in Environment n 
o Independence of Client  
o Independence of Server  
o Independence of Storage  
o Independence of Network 

− Data Components in Environment n 
o Independence of Database  
o Distributed data base management 

system (DDBMS) 
 

7.2.2 Software portability functions to be specified 

 

The functions and corresponding entities to be specified and measured for software 

portability are listed in Table 7.3. Portability component functions and the corresponding 

entities for portability are represented by the environment of these components. Portability 

environment function and the corresponding entities are represented by the capability of the 

isolated software pieces in the environment to call each other.  

 

Table 7.3 Portability functions that may be allocated to software 
 

ID 
Portability 

Type 
Portability functions 

1 Portability 
Components 

• Independence of the operating system function 
• Independence of the middleware function 
• Independence of the programming language virtual machine function 
• Independence of the browser function 
• Client independence function 
• Server independence function 
• Storage independence function 
• Network independence function 
• Database independence function 
• Distributed data base management system (DDBMS) function

2 Portability 
Environment 

• Isolating software system calls function 
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7.2.3 Identification of the function types in software portability  

 

In this section, the portability function types are identified based on the findings of the 

portability functions as identified in the previous section. The system portability 

requirements allocated to software-FUR are divided into portability components and 

environments; each type in this division has its own functions. The proposed portability 

function types are illustrated in system and COSMIC modeling views, in order to propose a 

standard-based model of software-FUR for system portability-NFR based on the proposed 

system modeling view. 

 

The proposed portability functions can be divided into four function types, three of them 

specified for portability components and the fourth for portability environments. Table 7.4 

illustrates these portability function types, based on the identified portability functions. 

 

Table 7.4 Function types for portability functions that may be allocated to software 
 

ID Function Types Portability Functions 

1 

 
 

System Software 
Components 

• Independence of the operating system function (IOSF) 
• Independence of the middleware function (IMF) 
• Independence of the programming language virtual machine 

function (IPLVMF) 
• Independence of the browser function (IBF) 

2 
System Data 
Components 

• Independence of the database function (IDF) 
• Distributed data base management system function 

(DDBMSF)  

3 

 
System Hardware 

Components 

• Independence of the client function (ICF) 
• Independence of the server function (ISF) 
• Independence of the storage function (ISTF) 
• Independence of the network function (INF) 

4 Isolating System Calls • Isolating software system calls function (ISSCF) 

 

7.2.4 A standard-based model of software-FUR for system portability using SOA  

 

Figure 7.1 illustrates a standard-based model of software-FUR for system portability-NFR 

using an SOA. This model is built based on the proposed portability functions and function 

types and the role of the COSMIC-SOA explained in (COSMIC 2010). 
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Figure 7.1 Standard-based model of software-FUR for system portability-NFR 
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7.3 Operations system requirements 

 

This section assembles the terminologies and concepts of system operations dispersed 

throughout the ECSS standards. There are two types of system-related operations 

requirements that can be derived from the ECSS standards series: system operations mode, 

and system transitions mode. 

 

7.3.1 Mapping system operations views and concepts from ECSS and IEEE standards  

 

Table 7.5 presents the two types of system operations requirements, and related functions, 

which are included as system requirements in the ECSS and IEEE standards. These could, at 

times, be interpreted and specified, as software FUR: 

1. System operations mode: this refers to the expected operations for the executed functions 

occurring in the system. The system operations mode consists of the inter-operational 

functions (IOPF) and the operational function events (OPFE);    

2. System transitions mode: this refers to the expected data and control operations via the 

interface functionality that could occur in the system.  The system transitions mode 

consists of operational data interface functions (OPDIF) and operational control interface 

functions (OPCIF). 

 

Table 7.5 System operations FUR in the ECSS standards series 
 

ID 
Types of System 

Operations 
Operations Functions to be Specified 

1 
System operations mode • Inter-operational function (IOPF) 

• Operational function event (OPFE) 

2 
System transitions mode • Operational data interface function (OPDIF) 

• Operational control interface function (OPCIF) 
 

According to ECSS standards, the functions relationships across these two modes, as 

illustrated in Figure 7.2 are the following: 
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1. The inter-operational function (IOPF) in system operations mode, which are controlled 

by the operational control interface function (OPCIF) in system transitions mode. This 

relationship will be referred to the ‘System Operational Control’, or Function Type 1; 

2. The operational function event (OPFE) in system operations mode, which sends and 

receives data movements from the operational data interface function (OPDIF) in system 

transitions mode. This relationship will be referred to the ‘System Operational Data’, or 

Function Type 2 

 

For example, in embedded and real-time software: 

1. A system scheduler sends distribution routines which form the operational control 

interface and the inter-operational functions;  

2. The system device routines form the operational data interface and the operational 

function events.  

 

 
 

 

 

 

 

 

 

 

 

Figure 7.2 System operations functions and function types  

 

In the next section, these terminologies are mapped into a proposed standard-based model of 

software-FUR for system operations-NFR, using the generic FUR model proposed in 

COSMIC – ISO 19761. This model is used for describing the software-FUR from system 

operations requirements based on the ECSS standards. 
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7.3.2 A standard-based model of software-FUR for system operation-NFR using SOA  

 

Figure 7.3 illustrates a standard-based model of software-FUR for system operations-NFR 

using an SOA. This model is built based on the proposed system operations requirements. 

functions and function types and the role of the COSMIC-SOA explained in (COSMIC 2010)  

 

 

Figure 7.3 standard-based model of software-FUR for system operations-NFR 
 Using an SOA  
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7.4 Configuration System requirements 

 

This section assembles the terminologies and concepts associated with the configuration 

elements that are dispersed throughout the ECSS standards and the SWEBOK Guide (ISO-

19759 2004). These terminologies are mapped to a standard-based model of software-FUR for 

system configuration NFR, through the use of the generic model of FUR proposed in the 

COSMIC model.  

 

7.4.1 Mapping system configuration views and concepts from ECCS standards  

 

From a synthesis of the previous configuration-related definitions, views, and concepts in the 

ECSS and the ISO 19759 standards, we can draw the following conclusions: 

1. They all consider configuration as an important part of the design; 

2. They all mention control configuration items or configuration elements, such as: 

• Control flow for operational functions; 

• The data flow register in each operational function. 

 

The software-FUR for system configuration-NFR based on the previous mapping is 

presented in Table 7.6. 

 

Table 7.6 Software-FUR for system configuration NFR 
 

ID Software-FUR for System Configuration NFR 
1 Configuration control flow function 
2 Configuration data flow function 
3 Register data transfer function 
4 Operational functions 

 

Two types of configuration requirements must be identified: 

1. Configuration control flows: the relationships between the operational functions for the 

configuration items or elements; 
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2. Configuration data flows: partition of an application into pieces that can be configured 

individually on configurable hardware or in software. 

 

7.4.2 Configuration function types and functions to be specified 

 

The configuration functions to be specified are divided into configuration data and control 

flows – see Table 7.7: 

1. The configuration data flow specifies the register data that could come into the system 

view; 

2. The configuration control flow specifies the expected operational functions in use in the 

system. 

 

The ECSS view of system configuration NFR is that of a secure environment, including data 

flows and control flows. The ECSS view of software-FUR for system configuration NFR 

within a secure environment includes: 

1. Register data transfer, containing a transfer history extraction unit, which extracts transfer 

history information from data subjected to data transfer each time the data transfer is 

performed, the extracted transfer history information being separate from the data 

subjected to data transfer in the secure environment for the system configuration NFR; 

2. Operational functions, defining an area of responsibility within an operational function in 

a hierarchical structure in the secure environment for the system configuration NFR. 

 

Table 7.7 Configuration functions that may be allocated to software 
 

Candidate 
Function 

Types 
Configuration Type Configuration Functions 

Function type 
1 

Configuration Data Flow Register data transfer function 

Function type 
2 

Configuration Control Flow Operational functions 
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7.4.3 A standard-based model of software-FUR for system configuration-NFR using an 

SOA  

 

Figure 7.4 illustrates a standard-based model of software-FUR for system configuration-NFR 

using an SOA. This model is built based on the system configuration requirements, functions 

and function types and the role of the COSMIC-SOA explained in (COSMIC 2010). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.4 A standard-based model of software-FUR for system 
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7.5 Data definitions and database system requirements 

 

This section assembles the terminologies and concepts of data definition and database 

dispersed throughout the ECSS standards. These terminologies are mapped into a proposed 

standard-based model of software-FUR for system data definition and database -NFR using 

the generic FUR model proposed in COSMIC. This model for describing the software-FUR 

from system data definition and database requirements is based on the ECSS standards. 

 

7.5.1 Mapping data definition views and concepts from ECCS standards  

 

Table 7.8 presents the functions to address system data definition and database requirements 

that are present as system requirements in the ECSS standard: each of these could be 

interpreted, and specified, at times as software-FUR.   
 

Table 7.8 Functions to address system data definition and database requirements 
 

ID 
Functions to address system data definition and 

database  requirements
1 Function to identify event 
2 Function to identify parameter 
3 Function to identify system element 
4 Function to identify reporting data Function to identify activity 
5 Function to identify simple value 
6 Function to identify record value 
7 Function to identify simple type 
8 Function to identify complex type 
9 Function to identify configuration data 
10 Function to identify monitoring data 
11 Function to identify control data 

 

Various types of system-related data definition and database requirements can be derived 

from the following set of concepts: 

1. System data items (SDI): 

• System entity types (SET); 

• System value types (SVT); 
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• System data types (SDT). 

2. System product data schema (SPDS). 

 

Table 7.9 presents various typical system data definition and database functions (middle 

column) for system data definition and database requirements and corresponding software 

functions (right-hand side column) that may be specified to implement such data definition 

and database functions for the system data definition and database requirements (and 

corresponding entities to be measured).  

 

Table 7.9 System data definition requirements and related software functions 
 

ID Function types  
System 

functions for 
DD and DB  

Software functions for data definition and 
database requirements 

1 

Function Type 1 
System data 
items (SDI) 

 

System 
entity types 

(SET) 

• Function to identify event (EF) 
• Function to identify parameter (PF) 
• Function to identify system element (SEF) 
• Function to identify reporting data (RDF) 
• Function to identify activity (AF) 

System 
value types 

(SVT) 

• Function to identify simple value (SVF) 
• Function to identify record value (RVF) 

System data 
types (SDT) 

• Function to identify simple type (STF) 
• Function to identify complex type (CTF) 

2 
Function Type 2 

System product data schema 
(SPDS) 

• Function to identify configuration data (SCDF) 
• Function to identify monitoring data (SMDF) 
• Function to identify control data (SCDF1) 

 

7.5.2 A standard-based model of software-FUR for system data definition and 

database -NFR using an SOA  

 

Figure 7.5 illustrates a standard-based model of software-FUR for system data definition and 

database-NFR using an SOA. This model is built based on the system data definitions and 

database requirements, functions and function types and the role of the COSMIC-SOA 

explained in (COSMIC 2010). 
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Figure 7.5 A standard-based model of software-FUR for system  
Data definition and database -NFR using an SOA 

 

 

 

 

 
 

 

 

F
u

n
ction

 T
yp

e 2: S
ystem

 
P

rod
u

ct D
ata S

ch
em

a 
(S

P
D

S
) 

System 
Monitoring 

Data Service 
(SMDS) 

System 
Configuration 
Data Service 

(SCDS) 

System 
Control Data 

Service 
(SCDS1) 

System Monitoring Data 
Function (SMDF) 

System Configuration Data 
Function (SCDF) 

System Control Data 
Function (SCDF1) 

E   X 

X   E 

E   X 

X   E 
IS

6 
E   X 

X   E 

E   X 

X   E 
IS 

7 

X 
 

E 
E  

X

X 
 

E 
E  

X

X 
 

E 
E  

X 

    Function Type 1: System Data Items (SDI) 

Persistent Storage 

Data Type 

Simple Type 
Service 
(STS) 

 

Complex Type 
Service 
(CTS) 

Value Type 

Simple Value 
Service 
(SVS) 

Record Value 
Service 
(RVS) 

System Entity Type  

Event 
Service 

(ES) 

Parameter Service 
(PS) 

System Element Service 
(SES) 

Reporting Data 
Service  
(RDS) 

Activity 
Service 
(AS) 

(IS-1)

X 
 

E 
E  

X

X 
 

E 
E   

X

E 

 

W 

R

Parameter Function 
(PF) 

System Element 
Function 

(SEF) 

X 
 

E 
E  
X 

Event 
Function 

(EF) 

Reporting Data 
Function 
(RDF) 

Activity 
Function 

(AF) 

Simple Type Function 
(STF) 

Complex Type 
Function 

(CTF) 

Simple Value 
Function (SVF) 

Record Value 
Function 
(RVF) 

 

W 

R

E   X

X   E

E   X

X   E
IS

2

E 

X 
 

E

E  

X 

F 
U 
R 

E   X

X   E

E   X

X   E
IS

5

X 
 

E 
E  

X

X 
 

E 
E  

X

X 
 

E 
E  

X 

X 
 

E 
E  

X

(IS-3) 

X 
 

E 
E  

X

X 
 

E 
E   

X

X 
 

E 
E  

X

X 
 

E 
E  

X

(IS-4)

X 
 

E 
E  

X

X 
 

E  
E   

X

X 
 

E 
E  

X

X  E 

X E 

E 
X 

E 

X 

X 
 

E 
E  

X

X 
 

E 
E  

X

X 
 

E 
E  
X 

R  

W
R 

W
 

W
R 

X 
 

E 
X 

 

E 

X 
 

E 



180 

7.6 Adaptation and installation system requirements 

 
This section assembles the dispersed terminologies and concepts of adaptation and 

installation dispersed throughout ECSS, IEEE and ISO standards into a proposed standard-

based model of software-FUR for system adaptation and installation-NFR using an SOA 

through the use of the generic model of FUR proposed in the COSMIC model.  This model 

can then be used for describing the software adaptation and installation requirements (i.e., 

from system-NFR into software-FUR) based on ECSS.  

 

7.6.1 Mapping the adaptation and installation views and concepts from standards 

 

Table 7.10 presents the system adaptation and installation requirements that are present either 

as system requirements in the ECSS standards or as adaptation and installation-related 

concepts in ISO 9126: each of these could be interpreted, and specified, at times as software 

FUR.    

Table 7.10 Adaptation and installation in ECSS & ISO 9126 
 

ID System adaptation and installation requirements 
1 Software Data Structure 
2 Registered Data Transfer 
3 Control Data Transfer 
4 Set Data Transfer with System Resources 
5 Operational Environment 
6 Localizing I/O Resources 
7 Host-Target Platform 
8 Memory Resources 
9 Storage Resources 
10 Transmission Resources 

 

Table 7.11 presents various typical procedures (left-hand side column) for system adaptation 

and installation requirements and corresponding software functions (right-hand side column) 

that may be specified to implement such procedures for the three types of system adaptation 

and installation requirements.  
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Table 7.11 System adaptation and installation requirements related software functions 
 

ID 
System adaptation and 

installation requirements 
Software functions 

1 
System Software 
Environment 
 

• Software Data Structure 
• Registered Data Transfer 
• Control Data Transfer 
• Set Data Transfer with System Resources 

2 
System Integrated  
Environment 

• Operational Environment 
• Localizing I/O Resources 

3 
System Hardware Environment 
 

• Host-Target Platform 
• Memory Resources 
• Storage Resources 
• Transmission Resources 

 

7.6.2 Software adaptation and installation functions and function types to be specified 
 

The adaptation and installation functions to be specified (and corresponding entities to be 

measured) are composed of ten functions that may be allocated to software adaptation and 

installation requirements; the specified functions are divided into three function types (and 

corresponding entities types) - see Table 7.12. 

 

Table 7.12 System adaptation and installation functions and functions types 
 

ID Function types Adaptation and installation functions 

1 
System Software 
Environment (SSE) 
 

• Software Data Structure Function  (SDSF) 
• Registered Data Transfer Function (RDTF) 
• Control Data Transfer Function (CDTF) 
• Set Data Transfer with System Resources Function  

(SDTF) 

2 
System Integrated  
Environment (SIE) 

• Operational Environment Function  (OPEF) 
• Localizing I/O Resources Function  (IORF) 

3 
System Hardware 
Environment (SHE) 

• Host-Target Platform Function (HTPF) 
• Memory Resources Function (MRF) 
• Storage Resources Function (SRF) 
• Transmission Resources Function (TRF) 
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7.6.3 A standard-based model of software-FUR for system adaptation and installation-

NFR using an SOA  

 

Figure7.6 illustrates a standard-based model of software-FUR for system adaptation and 

installation-NFR using an SOA. This model is built based on the system adaptation and 

installation requirements, corresponding functions and function types and the role of the 

COSMIC-SOA explained in (COSMIC 2010) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.6 A standard-based model of software-FUR for system adaptation and installation-
NFR using an SOA 
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7.7 Design and implementation (D&I) constraints system requirements 

 

This section assembles the terminologies and concepts of D&I constraints dispersed in the 

ECSS standards into a proposed standard-based model of software-FUR for system of D&I 

constraints-NFR using an SOA through the use of the generic model of FUR proposed in the 

COSMIC model. This model can then be used for describing the software-FUR from system 

D&I constraints based on ECSS and ISO 19759.  

 

7.7.1 D&I constraints requirements and functions to be specified 

 

The types of system D&I constraints can be derived from the physical and logical models 

which include: 

• The static design and its D&I constraints; 

• The dynamic design and its D&I constraints; 

• The mapping between both the static and the dynamic design and the D&I constraints  

views; 

• The behaviour of the system design before and after implementation. 

 

The functions to be specified (and corresponding entities to be measured) are divided into 

external and internal constraints functions - see Table 7.13. The internal D&I constraints 

refer to the expected logical D&I constraints that could appear from the system behaviour, 

while the external D&I constraints refer to the expected physical D&I constraints. 

 

Table 7.13 Software D&I functions to be specified 
 

D&I constraint D&I constraint types 
D&I 

components 
Internal D&I 
constraints 

Internal D&I constraints on 
module(s) and process(s) 

• Module(s) 
• Process(s) 

External D&I 
constraints 

External D&I constraints on 
channels and event(s) 

• Channel(s) 
• Event(s) 
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7.7.2 Model of function types relationships 

 

Figure 7.7 presents an overview of the relationships between the function types in the D&I 

constraints software-FUR using the COSMIC model for graphical representation. More 

specifically: 

1. The sub-model of internal D&I constraints function type 1 can be used to specify (and to 

measure the functional size of) the internal D&I constraints for the processes and the 

internal channels or events from the received/sent data movements from/to any other 

processes and internal channels in the same module – See Figure 7.7;  

2. The sub-model of external D&I constraints on channels function type 2 can be used to 

specify (and to measure the functional size of) the external D&I constraints for the 

external channels from the received/sent data movement from/to any other processes in 

different modules – See Figure 7.7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.7 A standard-based model of software-FUR for system D&I constraints-NFR  
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7.7.3 A model of D&I constraints services  

 

This model is referred here as a generic model of software-FUR for system D&I constraints: 

1. The internal D&I constraints in modules (function type 1 in Figure 7.7): Each module 

may have many processes, each process may interact using an internal channel or event 

(for example, through an RPC or remote procedural call) for an internal connection; in 

this case the processes should be considered as a storage device for such kind of 

information before data marshalling between the other processes - see also Figure 7.8; 

2. The external D&I constraints on channels (function type 2 in Figure 7.7): many modules 

may interact with each other through their own processes. In this case many processes in 

different modules may use external channels (for example: through an RMI or a remote 

method invocation) for external connection - see also Figure 7.8; 

3. Process 1.1 starts sending to process 1.n in module 1 (for example process 1.1 represents 

function and process 1.n represents a sub-function in the same module); 

4. Process n.1 should start sending to interact process n.n in a module 2 ( for example 

process n.1 represent function n and process n.n represent sub-function in the same 

module). 

 

Figure 7.8 A model of D&I constraints requirements allocated to software 
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7.7.4 A model of D&I constraints of data movements in Software-FUR view 

 

Figure 7.9 and Figure 7.10 show the possible flows of data movements between components; 

the exchange of data between components could be direct or indirect exchange of data 

movements to provide the functional user with services.  

 

Figure 7.9 shows that each process (or component) in the figure could exchange the data 

directly to provide services to the functional user; in this case for the measurements uses, we 

identify Entry and/or Exit data movements. 

 

Figure 7.10 shows indirect exchange of data between processes which means that a service in 

one process writes data which is subsequently read by another process. In this situation this 

identifies a write data movement in the next process and a read data movement by the latter. 

 

Figure 7.9 Direct Data Movements Figure 7.10 Indirect Data Movements 

 

7.8 Performance system requirements 

 

This section maps the performance terminologies found throughout the ECSS and IEEE 

standards from chapter 3 into a proposed standard-based model of software-FUR for system 

performance -NFR using an SOA through the use of the generic model of FUR proposed in 

the COSMIC model. 
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7.8.1 Mapping views and concepts for performance from ECSS and IEEE standards 

 

Based on a synthesis of the various definitions, the key views and concepts presented in 

chapter 3 on software-FUR for system performance-NFR are presented in Table 7.14.  

 

Table 7.14 Performance requirements in ECSS and IEEE 
 

ID System performance requirements 
1 Static numerical requirements 
2 Dynamic numerical requirements 
3 Response to reference signals 
4 Response time 
5 Settling time 
6 Tracking error for command profiles 
7 Throughput time 
8 Bandwidth 
9 Workload 
10 Resource consumption 
11 Main memory time 
12 Storage device time 
13 Processor instruction execution 
14 Evaluation processing speed 
15 Accuracy errors 
16 Stability errors 
17 System scalability 
17 Concurrency 
18 Static numerical requirements 

 

7.8.2 Software system performance functions to be specified 

 

The functionality and corresponding entities to be specified (and measured) for system 

performance allocated to software are listed in Table 7.15.  
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Table 7.15 System performance functions that may be allocated to software 
 

ID System performance types System performance functions 

1 
Static numerical requirements 

 

 
• Resource consumption 
• Main memory time 
• Storage device time 
• Processor instruction execution 
• Evaluation processing speed 
• Accuracy errors 
• Stability errors 
• System scalability 
• Concurrency 

 

2 
Dynamic numerical requirements 
 

 
• Response to reference signals 
• Response time 
• Settling time 
• Tracking error for command profiles 
• Throughput time 
• Bandwidth 
• Workload 

 
 

7.8.3 Identification of the function types in the performance system requirements 

 

In this section, the system performance function types are identified based on the findings of 

the performance functions, as discussed in the previous section. The system performance 

requirements allocated to software-FUR are divided into two types of requirements: static 

and dynamic numerical requirements. Each type in this division has its own functionality. 

The proposed performance function types are illustrated in system and COSMIC modeling 

views, in order to propose a standard-based model of software-FUR for system performance -

NFR using an SOA- see Table 7.16.  
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Table 7.16 Function types for performance functions that may be allocated to software 
 

System 
performance 

types 

System performance 
function types 

System performance functions 

Static 
numerical 

requirements 
 

Function type 1 
Resource 

consumption 
(RC) 

 
• Main memory time function (MMTF) 
• Storage device time function (SDTF) 
• Processor instruction execution function 

(PIEF) 
 

Function type 2 
Evaluation processing 

speed (EPS) 

 
• Accuracy errors function (AEF) 
• Stability errors function (SEF) 
• System scalability function (SSF) 
• Concurrency function (CF) 

 

Dynamic 
numerical 

requirements 
 

Function type 3 
Response to reference 

signals (RRS) 

 
• Response time function (RTF) 
• Settling time function (STF) 
• Tracking error for command profiles function 

(TECPF) 
 

Function type 2 
Throughput time 

(TT) 

 
• Bandwidth function (BF) 
• Workload function (WF) 

 
 

7.8.4 A standard-based model of software-FUR for system performance-NFR using an 
SOA  

 

Figure 7.11 illustrates a standard-based model of software-FUR for system performance -

NFR using an SOA. This model is built based on the proposed performance functions and 

function types and the role of the COSMIC-SOA explained in (COSMIC 2010). 

 

 

 

 

 



190 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.11 A standard-based model of software-FUR for  
system performance -NFR using an SOA 
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7.9 Security system requirements 

 

This section maps the security terminologies found throughout the ECSS, IEEE, and ISO 

standards from chapter 3 into a standard-based model of software-FUR for system security-

NFR using an SOA through the use of the generic model of FUR proposed in the COSMIC 

model. 

 

7.9.1 Mapping views and concepts for security from ECSS, ISO, and IEEE standards 

 

Based on a synthesis of the various definitions, the key views and concepts presented in 

chapter 3 on software-FUR for system security-NFR are presented in Table 7.17.  

 

Table 7.17 Security requirements in ECSS, ISO, and IEEE 
 

ID System security requirements 
1 Confidentiality 
2 Availability 
3 Integrity 
4 Access control role 
5 Security login 
6 Authentication 
7 Redundant power and network 
8 Redundant data 
9 Automatic restart 
10 Firewall 
11 Antivirus 
12 External PKI 
13 Backup type 
14 Encryption and decryption 

 

7.9.2 Software system security functions to be specified 

 

The functionality and corresponding entities to be specified (and measured) for system 

security allocated to software are listed in Table 7.18. 
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Table 7.18 System security functions that may be allocated to software 
 

ID 
System security 

types 
System security functions Activity (examples) 

1 
 

Confidentiality 
 

• Access control role function 
• Per person 
• Per group 

• Security login function 

• User name & 
password 

• Password change 
• Smart card 
• Single sign on 
• Automatic login 

• Authentication function 

• Per person 
• Per group 
• Per entity 
• Per system 
• Smart card 
• Biometrics 

2 Availability 

• Redundant power and network 
function • Available 24 H/ 7 

Days • Redundant data function 
• Automatic restart function 

3 Integrity 

• Firewall function 
• Attack detection 
• Hot and cold backup 
• Encryption and 

decryption 
Algorithm 

• Antivirus function 
• External PKI function 
• Backup type function 
• Encryption and decryption 

function 
 

7.9.3 Identification of the function types in the security  

 

In this section, the system security function types are identified based on the findings on the 

security functions, as discussed in the previous section. The system security requirements 

allocated to software-FUR are divided into three types of requirements: confidentiality, 

availability and integrity. Each type in this division has its own functionality. The proposed 

security functional types are illustrated in system and COSMIC modeling views, in order to 

propose a standard-based model of software-FUR for system security-NFR using an SOA- 

see Table 7.19.  
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Table 7.19 Function types for security functions that may be allocated to software 

 

ID 
System security functional 

types 
System security functions 

1 
Function type 1 

System Confidentiality 
(SC) 

• Access control role function (ACRF) 
• Security login function (SLF) 
• Authentication function (AF) 

2 
Function type 2 

System Availability 
(SA) 

• Redundant power and network function (RPNF) 
• Redundant data function (RDF) 
• Automatic restart function (ARF) 

3 

 
Function type 3 

Security Integrity 
(SI) 

• Firewall function (FF) 
• Antivirus function (AF) 
• External PKI function (EPKIF) 
• Backup type function (BTF) 
• Encryption and decryption function (EDF) 

 

7.9.4 A standard-based model of software-FUR for system security-NFR using an SOA 
 

Figure 7.12, illustrates a standard-based model of software-FUR for system security-NFR 

using an SOA. This model is built based on the security system requirements, functions and 

function types and the role of the COSMIC-SOA explained in (COSMIC 2010). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



194 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7.12 A standard-based model of software-FUR for system security-NFR 

 Using an SOA 
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7.10 Safety system requirements 

 

This section maps the safety terminologies found throughout the ECSS, IEEE, and ISO 

standards from chapter 3 into a proposed standard-based model of software-FUR for system 

safety-NFR using SOA through the use of the generic model of FUR proposed in the 

COSMIC model. This model can then become a framework for describing the safety 

requirements (i.e., from system-NFR to software-FUR) based on the ECSS standards.  

 

7.10.1 Mapping views and concepts for safety from ECSS, ISO, and IEEE standards 

 

Based on a synthesis of the various definitions, the key views and concepts presented in 

chapter 3 on software-FUR for system safety-NFR are presented in Table 7.20. It is 

important to note that Table 7.20 includes software, data, and hardware components which 

are interconnected.  

 

Table 7.20 Safety requirements in ECSS, ISO, and IEEE 
 

ID System safety requirements
1 Software operation risk 
2 Software design risk 
3 Software configuration risk 
4 System loss operation 
5 System failure detection 
6 System failure isolation 
7 System safety audit 
8 System redundancy status 

 

7.10.2 Software system safety functions to be specified 

 

The functions and corresponding entities to be specified and measured for system safety 

allocated to software are listed in Table 7.21.  
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Table 7.21 System safety functions that may be allocated to software 
 

ID System safety types System safety functions 

1 

 
 
 

Control system hazards 
 
 

• Software operation risk function 
• Software design risk function 
• Software configuration risk function 
• System loss operation function 
• System failure detection function 
• System failure isolation function 

2 Critical system catastrophic • System safety audit function 
• System redundancy status function 

 

7.10.3 Identification of the function types in the software safety systems requirements  

 

In this section, the system safety function types are identified based on the findings of the 

safety functions. The system safety requirements allocated to software-FUR are divided into 

system safety risk and mechanism and safety switching of redundant information. Each type 

in this division has its own functionality. The proposed safety function types are illustrated in 

system and COSMIC modeling views, in order to propose a standard-based model of 

software-FUR for system safety-NFR using an SOA. 

 

The proposed safety functions can be divided into three function types, two of them specified 

for control system hazards and the third for critical system catastrophic. Table 7.22 illustrates 

these safety function types, based on the specified safety functions. 

 
Table 7.22 Function types for safety functions that may be allocated to software 

 
System safety 

types 
System safety 
function types 

System safety functions 

 
 

Control system 
hazards 

Function type 1 
System safety risk 

(SSR) 

• Software operation risk function (SROF) 
• Software design risk function (SDRF) 
• Software configuration risk function (SCRF) 

Function type 2 
System safety 

mechanism (SSM) 

• System loss operation function (SLOF) 
• System failure detection function (SFDF) 
• System failure isolation function (SFIF) 

Critical system 
catastrophic 

Function type 3 
Safety switching of 

redundant information 
(SSRI) 

• System safety audit function (SSAF) 
• System redundancy status function (SRSF) 
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7.10.4 A standard-based model of software-FUR for system safety-NFR using an SOA 

 

Figure 7.13 illustrates a standard-based model of software-FUR for system safety-NFR using 

an SOA. This model is built based on the proposed safety functions and function types and 

the role of the COSMIC-SOA explained in (COSMIC 2010) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.13 A standard-based model of software-FUR for system safety-NFR using an SOA 
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7.11 Resources system requirements 

 

This section maps the resources terminologies found throughout the ECSS, IEEE, and ISO 

standards from chapter 3 into a standard-based model of software-FUR for system resources-

NFR using an SOA, through the use of the generic model of FUR proposed in the COSMIC 

model. This model can then become a framework for describing the resources requirements 

(i.e., from system-NFR to software-FUR) based on the standards.  

 

7.11.1 Mapping views and concepts for resources from ECSS, ISO, and IEEE standards 

 

Based on a synthesis of the various definitions, the key views and concepts presented in 

chapter 3 on software-FUR for system resources-NFR are presented in Table 7.23. 

 

Table 7.23 Resources requirements in ECSS, ISO, and IEEE 
 

ID System resources requirements 
1 I/O recourse addresses 
2 Hardware recourses 
3 Software resources 
4 I/O port addresses 
5 I/O recourse list 
6 I/O recourse addresses 
7 I/O  transmission addresses 
8 Block of bus relative memory addresses  
9 Processor capacity for software item 
10 Memory capacity for software item 
11 Storage device capacity for software item 
12 Interrupt vectors 
13 Software elements 
14 Specific real time operating system 

 

7.11.2 Software system resources functions to be specified 

 

The functionality and corresponding entities to be specified and measured for system 

resources allocated to software are listed in Table 7.24. 
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Table 7.24 System resources functions that may be allocated to software 
 

ID System resources types System resources functions 

1 
I/O recourse addresses 
 

• I/O port addresses function 
• I/O recourse list function 
• I/O recourse addresses function 
• I/O  transmission addresses function 
• Block of bus relative memory addresses function 

2 Hardware recourses 

• Processor capacity for software item function 
• Memory capacity for software item function 
• Storage device capacity for software item function 
• Interrupt vectors function 

3 Software recourse  
• Software elements function 
• Specific real time operating system function 

 

7.11.3 Identification of the function types in the resources systems requirements 

 

In this section, the system resources function types are identified based on the findings of the 

resources functions, as discussed in the previous section. The system resources requirements 

allocated to software-FUR are divided into three types of requirements: I/O recourse 

addresses, hardware addresses and software addresses. Each type in this division has its own 

functionality. The proposed resources function types are illustrated in system and COSMIC 

modeling views, in order to propose a standard-based model of software-FUR for system 

resources-NFR using an SOA- see Table 7.25. 

 

Table 7.25 Function types for the resources functions that may be allocated to software 
 

ID 
System 

resources 
types 

System resources 
function types 

System resources functions 

1 

I/O 
resource 
addresses 

 

Function type 1 
System I/O  
resources 

(SIOR) 

• I/O port addresses function (IOPAF) 
• I/O recourse list function (IORLF) 
• I/O recourse addresses function (IORAF) 
• I/O  transmission addresses function 

(IOTAF) 
• Block of bus relative memory addresses 

function (BBRMAF) 
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Table 7.25 Function types for the resources functions that may be allocated to software 
(Continued) 

 

ID 
System 

resources 
types 

System resources 
function types 

System resources functions 

2 
Hardware 

recourses 

Function type 2 
Hardware resources 

(HR) 

• Processor capacity for software item 
function (PCSIF) 

• Memory capacity for software item function 
(MCSIF) 

• Storage device capacity for software item 
function (SDCSIF) 

• Interrupt vectors function (IVF) 

3 
Software 

recourse 

Function type 3 
Software resources 

(SR) 

• Software elements function (SEF) 
• Specific real time operating system function 

(STOSF) 
 

7.11.4 A standard-based model of software-FUR for system resources-NFR using an 
SOA 

 

Figure 7.14 illustrates a standard-based model of software-FUR for system resources-NFR 

using an SOA. This model is built based on the resources requirements, functions and 

function types and the role of the COSMIC-SOA explained in (COSMIC 2010). 
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Figure 7.14 A standard-based model of software-FUR for system resources-NFR using SOA 
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7.12 Human factors system requirements 

 

This section maps the human factors terminologies found throughout the ECSS standards 

from chapter 3 into a proposed standard-based model of software-FUR for human factors-

NFR using an SOA, through the use of the generic model of FUR proposed in the COSMIC 

model. 

 

7.12.1 Software system human factors functions to be specified 

 

The functionality and corresponding entities to be specified (and measured) for human 

factors allocated to software are listed in Table 7.26. 

 

Table 7. 26 Human factors functions that may be allocated to software 
 

ID Human factors types System human factors functions 

1 

 
Cognitive ergonomics 

(performance of human 
factors) 

 

• Human capabilities 
• Training 
• Staffing 
• Personal selection 

2 
Environmental of ergonomics 

( Safety of human factors) 
 

• Mechanical safety 
• Electrical safety 
• Operational safety 
• Psychology and physiological safety 
• Environmental safety 

3 Human interface factors 

• Interface characteristics and task 
performance 

• Interface customization 
• Identification of safety related controls 

 

7.12.2 Identification of the function types in the human factors  

 

In this section, the system human factors function types are identified based on the findings 

of the human factors functions, as discussed in the previous section. Human factors 

requirements allocated to software-FUR are divided into three types of requirements: 

cognitive ergonomics, environmental of ergonomics and human factor interface 
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requirements. Each type in this division has its own functionality. The proposed human 

factors function types are illustrated in COSMIC modeling views, in order to propose a 

standard-based model of software-FUR for human factors-NFR using an SOA- see Table 

7.27. 

 

Table 7. 27 Function types for human factors functions that may be allocated to software 
 

ID 
System human 
factors types 

System human 
factors function 

types 
System human factors functions 

1 

Cognitive 
ergonomics 

(performance of 
human factors) 

Function type 1 
Cognitive 

ergonomics 
(CE) 

 
• Human capabilities function (HCF) 
• Training function (TF) 
• Staffing function (SF) 
• Personal selection function (PSF) 

 

2 

Environmental 
ergonomics 
( Safety of 

human factors) 

Function type 2 
Environmental 

ergonomics 
(EE) 

 

 
• Mechanical safety function (MSF) 
• Electrical safety function (ESF) 
• Operational safety function (OSF) 
• Psychology and physiological safety 

function (PSF) 
• Environmental safety function (ESF) 

 

3 
Human interface 

factors 

Function type 3 
Human interface 

factors 
(HIF) 

 
• Interface characteristics and task 

performance function (ICTPF) 
• Interface customization function (ICF) 
• Identification of safety related 

controls function (ISRCF) 
 

 

7.12.3 A standard-based model of software-FUR for human factors-NFR using an SOA 

 

Figure 7.15 illustrates a standard-based model of software-FUR for human factors-NFR 

using an SOA. This model is built based on the human factors requirements, functions and 

function types and the role of the COSMIC-SOA explained in (COSMIC 2010) . 
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Figure 7.15 A standard-based model of software-FUR for human factors-NFR using SOA 
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7.13 Summary 

 

This chapter has presented the standard-based models of eleven (11) types of system-NFR. 

The availability of these models can facilitate the early identification and specification of 

these system-NFR and their detailed allocation as specific functions to be handled by the 

specified allocation to hardware or software, or a specific combination of the two.  

 

The main contribution of this chapter is our proposed eleven (11) standard-based models of 

software-FUR for the eleven (11) types of system-NFR. These models can be considered as a 

kind of reference models for the identification of these system-NFR, and can be used for their 

allocation to software functions implementing such requirements.  

 

The structure of the standard-based models is based on the generic model of software 

adopted by the COSMIC measurement standard; the necessary information for measuring 

their functional size is readily available. More specifically, the standard-based models of 

system-NFR presented in this chapter are based on: 

• The ECSS standards for the description of the NFR for system; 

• The COSMIC measurement model of functional requirements. 

 



 

CHAPTER 8 
A CASE STUDY USING THE STANDARD-BASED MODEL OF SOFTWARE-FUR 

FOR SYSTEM RELIABILITY-NFR 

8.1 Introduction 

 

This chapter uses the Valve Control System (VCS) (COSMIC 2006) as a case study to 

illustrate the use of the standard-based model of software-FUR for system reliability-NFR. 

The selected case study aims at the identification and classification, then measurement, of the 

software-FUR for system reliability-NFR. 

 

This chapter is organized as follows: Section 8.2 presents the description of the VCS case 

study. Section 8.3 presents the specification of the reliability requirements at the system 

level. Section 8.4 presents the allocation of these system reliability-FUR to software 

functions to be added to the VCS. Section 8.5 presents the specification of the ECSS-based 

reliability functions allocated to software-FUR for the VCS components. Section 8.6 presents 

the measurement of the system reliability-NFR for the VCS case study. A summary is 

presented in section 8.7.    

 

8.2 The Valve Control System (VCS) Case Study  

 

The VCS case study (COSMIC 2006) is a technology of variable valve timing used by 

automotive companies: the system varies the timing of the intake valves by using the 

hydraulic oil pressure to rotate the camshaft to provide optimal air flow in and out of the 

engine. The valve control system is a closed loop using camshaft sensors, crankshaft sensors, 

air flow meter, throttle position as well as oxygen sensors, and air fuel sensors to calculate 

the engine load. 

 

Automative companies develop real-time software with timing constraints to operate control 

valves that adjust the delivery of the hydraulic pressure to move the camshaft into the 
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position that will provide the engine with high timing reliability by using a multi-purposes 

logical clock for the operating cycle reference triggers.  

 

The system functional requirements of the VCS case study are documented at a high-level in 

the ISO technical report: ISO/IEC TR 14143-4 (Version 2000). This ISO document provides 

various sets of reference user requirements (RUR), described in a textual formal.  

 

A specific configuration of the VCS system functions allocated to hardware and software is 

documented as a case study and has been published by the COSMIC group, together with the 

measurement of the functional size of its software-FUR (COSMIC 2006). The VCS software 

requirements block diagram is reproduced in Figure 8.1:  the software-FUR are specified and 

measured (with a software functional size of 12 CFP), while the system-NFR are neither 

specified nor measured. 

Figure 8.1 VCS blocks diagram with its hardware and software components 
(COSMIC 2006) 

 

The use of standard-based model of software-FUR for system reliability-NFR can be 

illustrated with this VCS case study through the following steps: 

1. Step 1: Specify some  reliability functionality requirements at the (high) system level of 

the VCS components, using the proposed standard-based system reliability model as the 

reference for this type of specifications;  
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2. Step 2: Allocate these system reliability-FUR to software functions to be added to the 

VCS case study;  

3.  Step 3: Use the proposed ECSS-based reliability functions to specify, at the detailed 

level, these new software functions to be added to the VCS hardware and software 

components; 

4. Step 4: Measurement of the software-FUR for the system reliability-NFR for this updated 

COSMIC VCS case study (COSMIC 2006). 

 

8.3 Step 1: Addition of reliability requirements at the system level 

 

In practice, stakeholders raise reliability requirements (R1 to R10) at the system level, such as 

those listed in the left-hand column of Table 8.1. To these reliability requirements correspond 

reliability functions (F1 to F11), which are described as such in the ECSS standards (right-

hand column of Table 8.1). 

 

Table 8.1 Alignment of system reliability requirements with the standard-based  
views of reliability-FUR 

 

Stakeholder Reliability Requirements 
Corresponding  

ECSS Standards Reliability Functions 
R1 Reliability MTBF requirements F1 Failure system tolerance function 
R2 Reliability data error requirements F2 Error data tolerance function 
R3 Reliability fault recovery requirements F3 Fault recovery tolerance function 
R4 Reliability failure operation requirements F4 Failure operation function. 
R5 Reliability failure mechanism requirements F5 Failure mechanism function 
R6 Reliability fault prevention requirements F6 Fault prevention function 

R7 
Reliability fault detection and isolation 
requirements 

F7 Fault detection function 

R8 
Reliability fault removal during the 
development requirements 

F8 Fault removal function 

R9 
Reliability fault removal during use 
requirements 

F8 Fault removal function. 

R10 
Reliability algorithm model with a set of 
satisfaction conditions or parameters 
requirements 

F9 
F10
F11

• Error to handle input function. 
• Error to produce output 

function. 
• Error to produce correct output 

function 
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8.4 Step 2: Allocate system reliability-FUR to software functions to be added to VCS  

 

To meet these added system reliability-NFR requirements, all the corresponding reliability 

functions are allocated to new software functions to be added to the VCS components (both 

hardware and hardware). Table 8.2 presents the selected mapping to the VCS components of 

these added standard-based system reliability functions (Table 8.2), as follows; 

1. Valve control software:  

• The reliability requirements R1, R2, and R3 are allocated to the valve control 

software: therefore, R2 and R3 are mapped with F1, F2, and F3 respectively – see 

Figure 8.2 and Table 8.2. This means that the valve control software should be failure 

tolerant, have high fault recovery and minimum error tolerance. 

2. Sensors 

• The reliability requirements R4 and R5 are allocated to the sensors: therefore, R4 and 

R5 are mapped with F4 and F5 respectively – see Figure 8.2 and Table 8.2. This 

means that the different types of sensors should include a software component 

implementing failure operation and failure mechanism functions. 

3. Control valve 

• The reliability requirements R6, R7, R8, and R9 are allocated to the control valve. 

Therefore, R6, R7, R8, and R9 are mapped with F6, F7, and F8 respectively – see 

Figure 8.2  and Table 8.2. This means that the control valve used in the system should 

now have some software to implement the fault detection and removal functions for 

the signals received from the valve control software. 

4. Clock 

• The reliability requirement R10 is allocated to the clock. Therefore, R10 is mapped 

with F9, F10, and F11 respectively – see Figure 8.2  and Table 8.2. This means that 

the clock should now have added software functions to handle errors when it sends a 

reference time to other components in the system. 
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The allocation of the 10 new VCS reliability requirements (R1 to R10), and corresponding 

ECSS-based functions (F1 to F11) to the hardware and software components, is summarized 

in Table 8.2.  

 

Figure 8.2 A standard-based model of FUR for system reliability-NFR  
(Function level) 
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Table 8.2 Allocation of Reliability-FUR to the VCS Components 
 

ID 
Standard-based of Reliability-

FUR 
F R VCS Components 

1 Failure system tolerance function F1 R1 Valve control software 
2 Error data tolerance function F2 R2 Valve control software 
3 Fault recovery tolerance function F3 R3 Valve control software 
4 Failure operation function. F4 R4 Sensors 
5 Failure mechanism function F5 R5 Sensors 
6 Fault prevention function F6 R6 Control Valve  
7 Fault detection function F7 R7 Control Valve 
8 Fault removal function F8 R8 Control Valve 
9 Fault removal function F8 R9 Control Valve 
12 Error to handle input function F9 R10 Clock 
10 Error to produce output function F10 R10 Clock 

11 
Error to produce correct output 

function 
F11 R10 

Clock  

 

With the above set of additional reliability system-NFR, a number of software functions must 

be specified and added to the original VCS case study, as well as to the hardware components 

that did not initially have any software functions allocated to them (e.g., the clock device, the 

sensor devices, and the control valve, which was only receiving a signal from the ‘valve 

control software’). 

 

8.5 Step 3: The requirements of the ECSS-based reliability functions allocated to 
software for the VCS components 

 

For the purpose of this case study for this research work, the following more detailed 

requirements based on the proposed standard-based model of software-FUR for system 

reliability-NFR have been selected – see Figure 8.3: 

• S1. All software components with their links to the components in the VCS should be 

defined based on system reliability prediction (SRP), i.e., F1, F2 and F3 (Derived 

Functions); 

• S2. The sensors, control valve and clock components with their links allocated to 

software in the VCS should be defined based on system reliability prediction failures 
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(SRPF), system reliability prediction faults (SRPF1) and system reliability prediction 

Errors (SRPE), i.e., F4 to F11 (Base Functions). 

 

8.6 Step 4: Measurement of the software-FUR for the system reliability-NFR 

 

8.6.1 Measurement strategy phase 

 

The measurement viewpoint in this case study is that of the software developer who is 

interested in quantifying the system reliability-NFR that have been added as new software 

functions that have to be developed. The measurement purpose is to measure the entire set of 

the functional user requirements (FUR) of the system reliability-NFR allocated to software 

for this case study using the COSMIC method (ISO 19761).  The measurement scope is a 

subset of the system reliability-NFR requirements that is, only functions allocated to software 

and not those related to the hardware. 

 

8.6.2 COSMIC mapping phase 

 

When these reliability requirements are specified using the structure of the proposed 

standard-based model of software-FUR for the system reliability-NFR, it is already aligned 

with COSMIC model of functional user requirements and the necessary information for 

measuring their functional size is readily available. 

 

To use Figure 8.3 to measure the functional size of the valve control software based on the 

proposed System-reliability-NFR, the operationalization sub-steps are: 

• Reliability functions numbers are defined from: F1 to F11; 

• Reliability function types for system reliability-NFR are defined from function types 1 to 

4; 

• Same persistent storage between system reliability functions.  
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8.6.3 COSMIC measurement phase 

 

For the illustrative purpose of this case study, the following assumption is taken: there is a 

single data group for each reliability function specified (of course, for a reliability function 

specified in an industrial context, more than one data group may be needed). The total 

functional size according to the ISO 19761 for all the new reliability software functions 

added in this updated VCS is obtained with the addition of all data movements for each 

distinct reliability function– see Figure 8.2 and Table 8.3. 

 

Table 8.3 The measurement details for the system reliability requirements allocated to 
software functions 

 

ID 
Standard-based  Software-FUR for 

reliability functions 
F 

Data Movements identified 

E X R W 
Size in 
CFP 

1 Failure system tolerance function F1 1 1 - - 2 
2 Error data tolerance function F2 1 1 - - 2 
3 Fault recovery tolerance function F3 1 1 - - 2 
4 Failure operation function. F4 1 1 1 1 4 
5 Failure mechanism function F5 1 1 1 1 4 
6 Fault prevention function F6 1 1 1 1 4 
8 Fault detection function F7 1 1 1 1 4 
9 Fault removal function F8 

2 2 2 2 8 
10 Fault removal function F8 
7 Error to handle input function F9 1 1 1 1 4 

11 Error to produce output function 
F1
0 

1 1 1 1 4 

12 Error to produce correct output function 
F1
1 

1 1 1 1 4 

Functional Size 12 12 9 9 42 CFP
 

The bottom line of Table 14 presents the measurement results for the system reliability 

functions allocated to the new software functions for the updated VCS case study: 42 CFP.  

 

Observations:  

• The software functional size for the initial VCS case study was equal to 12 CFP.  
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• The software functional size for the added software functions required to meet the system 

reliability requirements is equal to 42 CFP. 

• Therefore, the total software functional size of this new version of the VCS case study 

(including the added reliability requirements for the specified hardware-software 

configuration) is equal to 12 CFP + 42 CFP = 54 CFP.   

 

8.7 Summary 

 

This chapter has presented a new version of the Valve Control System case study to illustrate 

the use of the proposed standard-based model of software-FUR for system-reliability 

requirements. This new version of this selected case study allows the identification and 

specification, as well as the measurement of the software functional size, of the system 

reliability-NFR allocated to new software functions. 

 

This chapter has also presented the specification of the ECSS-based reliability allocated to 

software-FUR for the VCS components: 

• S1. All software components with their links of defined components in the VCS were 

specified based on system reliability prediction (SRP), i.e., F1, F2 and F3; 

• S2. The sensors, control valve and clock, components with their links allocated to 

software in the VCS were specified based on system reliability prediction failures 

(SRPF), system reliability prediction faults (SRPF1) and system reliability prediction 

Errors (SRPE), i.e., F4 to F11. 

 

The system reliability-NFR for the VCS case study based on the specification of the ECSS-

based reliability functions allocated to software-FUR for the VCS were specified and 

allocated to software and their size measured as follows: 

• The functional size for S1 (software view) = 6 CFP of software functions added to the 

valve control software; 

• The functional size for S2 (system view) = 36 CFP of software functions added to the 

other VCS hardware components. 



 

CHAPTER 9 
TRACEABILITY MODEL AND OPERATION PROCEDURES 

9.1 Introduction 

 
Requirements traceability links each single detailed requirement to its higher level of 

requirements inside the requirements set. This enables the derivation of a requirement tree 

which demonstrates the coherent flow-down of the requirements. For example: the ECSS 

standards series defines a requirement traceability matrix for the system engineering. 

Unfortunately, the ECSS matrix does not explicitly differentiate between system functional 

requirements and system-NFR.  

 

This chapter presents a requirement traceability matrix that is considered as part of the design 

definition file as defined in ECSS‐E‐ST‐10C Annex G (ECSS-E-ST-10C 2009): it includes 

the basic structure to perform the system functional requirements traceability and a modified 

traceability matrix for the system-NFR. 

 

This chapter is organized as follows: Section 9.2 presents the ECSS requirement traceability 

matrix. Section 9.3 presents a proposed modified traceability matrix. Section 9.4 presents the 

traceability to ECSS standards of our proposed standard-based models for system-NFR. 

Section 9.5 presents the traceability to ECSS standards of the proposed standard-based 

system reliability-NFR.  A summary is presented in section 9.6. 

 

9.2 System Requirement Traceability Matrix (RTM) in ECSS standards 

 

Currently, the ECSS standards series defines the requirement traceability matrix (RTM) as 

part of a system design definition file (DDF): the design definition file is a basic structure 

referring to all information relative to the functional and physical architectures of a system 

(i.e., information, necessary for its identification, manufacturing, utilization, support and 

removal from service).  



216 

The objective of the system design definition file (DDF) is to establish the technical 

definition of a system that complies with its technical requirements specification as defined 

in ECSS‐E‐ST‐10‐06 Annex A (ECSS-E-ST-10-06C 2009).  

 

More specifically, the DDF is a collection of all the documentation that establishes the 

system such as: lower level technical specifications, design and interface description, 

drawings, electrical schematics, specified constraints (e.g. on materials, manufacturing, 

processes, and logistic) (ECSS-E-ST-10-06C 2009). The requirements traceability matrix 

(RTM) in the ECSS defines the relationships between the requirements of a system defined 

by a technical requirements specification and the apportioned requirements of the system’s 

lower level elements.  

 

The purpose of the RTM (ECSS-E-ST-10-06C 2009) and (ECSS-E-ST-10C 2009) is as 

follows: 

• To state and derive requirements allocated to system components (forward trace);  

• To determine the source of requirements (backward trace);  

• To trace any information that satisfies the requirements;  

• To ensure that all requirements are met and to locate affected system components when 

there is a requirements change.  

 

The requirement traceability matrix (RTM) for software system in the ECSS standards 

(ECSS-E-ST-10C 2009) and (ECSS-E-ST-10-06C 2009) – see Figure 9.1 – includes the 

following steps: 

• RTM uses a forward and backward traceability for system requirement sources:  

− High level system requirements (forward tracing); 

− Low level system requirements or detailed system requirements (backward tracing);  

− High level system requirements imposed management constraints: e.g. an applicable 

standard, an accepted lower level system constraint; 

− Each high level system requirement shall be linked to at least one requirement of a 

low level system requirement; 
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− When a low level system requirement is not linked to a high level system 

requirement, this requirement shall be justified and an evaluation of its existence or 

removal on the system shall be agreed between the customer and the supplier.  

• RTM changes in the design inducing modifications of the system requirements;  

 

RTM documented system requirements verification close-out in the ‘Verification Control 

Document’ (VCD) in conformance with ECSS‐E‐ST‐10‐02 Annex B (ECSS-E-ST-10-02C 

2009). 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

Figure 9.1 The requirement traceability matrix (RTM) in ECSS standards and cycle life  
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• Identify the system requirements sources, starting from current practices, projects’ life 

cycle and phases; 

• Derive a set of requirements covering the engineering, quality and management domains; 

• Adapt the identified life cycle and phases to ECSS life cycles and map the identified 

engineering, quality and management requirements to the corresponding ECSS 

requirements (compliance/traceability); 

• Integrate, with additional ECSS requirements, where necessary, the areas not adequately 

covered; 

• The ECSS contains the compliant life cycle and requirements according to different 

projects characteristics, e.g. criticality, funding, technology, cost, organization, etc. 

 

In addition, the requirement traceability matrix (RTM) using a backward trace approach for 

software systems in the ECSS standards (ECSS-E-ST-10-06C 2009), (ECSS-E-ST-10C 

2009) and (ECSS-E-ST-10-02C 2009) – see Figure 9.1 – includes the following steps: 

• Identify the ECSS hardware, software and system life cycle, phases and reviews; 

• Examine all ECSS levels of the engineering, quality and management requirements and 

select the set of requirements possibly of interest for a selected project; 

• The selected ECSS requirements initially tailored according to different projects 

characteristics, e.g. criticality, funding, technology, cost, organization, etc. 

 

9.3 System functional & NFR traceability matrix  

 

As mentioned in the previous section, the ECSS standards series have defined the 

requirements traceability matrix (RTM) as part of a system design definition file without 

direct links of the defined requirements (FUR) to their NFR. 

 

This research study proposes a modified RTM as illustrated in Figure 9.2, using the same 

steps as in the original one in the ECSS standards. The proposed modifications are as 

follows: 
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• RTM has defined high and low levels of system requirements - see Figure 9.1, while in 

the modified RTM such high and low level requirements can be classified as system-FUR 

and system-NFR - see Figure 9.2. This part can be adapted with HW and SW 

Requirements Engineering and Architectural Design in phase 2 of the ECSS life cycle; 

• RTM has defined system requirement design and modification - see Figure 9.1, while in 

the modified RTM such system requirements design can be classified as High and Low 

levels design for system-FUR and NFR in phase 3 of the ECSS life cycle; 

• RTM has defined system requirement verification - see Figure 9.1, while in the modified 

RTM such system requirement verification can be specified as system-FUR and NFR 

verification in phase 4 of the ECSS life cycle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.2 A modified requirement traceability matrix (M-RTM) in  
ECSS standards and cycle life 
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9.4 Traceability of standard-based models to system-NFR type  

 

This section presents the traceability to the ECSS, ISO and IEEE standards for the concepts, 

terms and vocabularies included in the proposed standard-based models of software-FUR for 

the system-NFR listed in the ECSS standards. The summarized results are illustrated in Table 

9.1. In summary: 

• The number of the terms, concepts and vocabularies from the ECSS standards for the first 

fourteen (14) types of NFR requirements from the ECSS list = 153; 

• The system quality requirements (requirements type fifteen  (15) in the ECSS list) can be 

derived from the first fourteen (14) types of system requirements - see Annex III – (while 

the sixteenth type in the ECSS list ‘ other requirements’ is not defined);   

• The number of the terms, concepts and vocabularies from the ISO standards = 65 (51 of 

them from ISO 9126; 9 from ISO 19759; and 4 from other ISO standards); 

• The number of the terms, concepts and vocabularies from the IEEE standards = 27 (19 of 

them from IEEE-830 and 8 from other IEEE standards);  

• The total number of terms, concepts and vocabularies from the ECSS, ISO and IEEE 

standards = 245; 

• The total number of the system-NFR terms, concepts and vocabularies used to build the 

first fourteen models proposed in the research = 120 out of 245; 

• The other terms, concepts and vocabularies) not used in the research = 125 out of 245 

(Due to overlaps between the terms and concepts, or not belonging to system-NFR or out 

of this research scope).  
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Table 9.1 Traceability of the standard-based models 
 

ID NFR Type 

Standards Identification  
(Terms, Concepts and Vocabularies) Functions 

to Specified ECSS 
series 

ISO  
IEEE 

 Total 

1 System reliability requirements 10 13 - 23 11 
2 System maintainability requirements 8 16 - 24 13 
3 System interface requirements 10 - 4 14 6 

4 System portability requirements 5 

7 
ISO 

24765 

2 
ISO 2382-1 

3 

5 22 11 

5 System operations requirements 7 - - 7 2 

6 System configuration requirements 9 
ISO 

19759 

4 
- 13 2 

7 System data definitions and database 
requirements 20 - - 20 12 

8 
System adaptation and installation 

requirements 10 4 - 14 10 

9 
System design and implementation 

requirements 4 
ISO 

19759 

5 
- 9 0 

10 System performance requirements 15 - 5 20 12 

11 
System Security and privacy 

requirements 3 4 5 12 10 

12 System safety requirements 7 4 
IEEE 

1220/1228 

8 
19 8 

13 System resources requirements 13 3 - 16 11 
14 Human factors requirements 32 - - 32 12 
15 System quality Requirements      
16 Other requirements      

Total # of (Terms, Concepts and Vocabularies) 153 65 27 245 120 
 

9.5 Traceability matrix to ECSS of the standard-based model of software-FUR for 
system reliability-NFR  

 

This section presents the traceability matrix to the ECSS standards for the system reliability-

NFR – see Table 9.2 which lists the ECSS standards which discusses reliability aspects, 

together with their year of publication, their title as well as the related section number and 

page numbers. Such a traceability matrix will be of interest, and of use, to everybody 

interested in implementing in practice the standard-based models proposed in this research 
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work. It can be observed that this traceability matrix for the system reliability-NFR presents 

the details corresponding to line 1 of Table 9.1.  

  
Table 9.2 Traceability  to ECSS for the standard-based model of software-FUR for system 

reliability-NFR 
 

ID ECSS standards Year ECSS standards name 
Section 

No. 
Page 
No. 

1 ECSS-E-40 part 1B 2003 Software-Part 1: Principles and requirements - 33,77 

2 ECSS-E-40 part 2B 2005 Software-Part 2: Document requirements 
definitions (DRDs) 

- 
28, 35 

3 ECSS-Q-30-08A 2006 Components reliability data sources and their use 

- 
4.7.2 
4.7.2 
4.7.4 
A.3 

6.2.7.9 

7,13 
22 
22 
22 
28 
44 

4 ECSS-Q-80B-10 2003  

6.3.6.1 
6.3.6.1 
7.1.7 
6.2.3 

53 
53 
56 
36 

5 ECSS-E-HB-50A   Communication guideline 4.5.3.2. 
4.7 

50, 53 
70 

6 ECSS-E-ST-20C 2008 Electrical and electronics 6.3.4.2 59 

7 ECSS-E-ST-33-01C  Mechanisms 4.8.2.9 
4.2.2 

41 
17 

8 ECSS-Q-ST-30-02C 2009 Failures mode, effects and critically 
analysis(FMEA/FMECA) 

- 
4.1 
A.2 

7-8 
14-15 
39-42 

9 ECSS-Q-ST-30-09 2008 Availability analysis 

3.2.12 
A.4 
A.2 
A3 
A-B 

9-10 
29 
27 
28 
30 

10 ECSS-Q-ST-30C 2009 Dependability 

A-E 
A-F 
6.4.2 
7.1 

36 
38 

20-24 
26 

11 ECSS-E-ST-70-26C 2008 Crimping of high-reliability electrical connection 4 12 

12 ECSS-E-ST-70-08C 2009 Manual soldering of high-reliability electrical 
connections 

A-A 
101-104 

13 ECSS-E-ST-70-30C 2008 
Wire wrapping of high-reliability electrical 
connections 
 

4 
12 

14 ECSS-Q-ST-10-09C 2008 Non conformance control systems 
 

3.2.2 9 

15 ECSS-M-ST-60C 2008 Cost and schedule management 
 

- 74 

16 ECSS-E-ST-50-14C 2008 Space craft discrete interfaces 
4.2.4 

4.2.5.2 
18 
21 

17 ECSS-E-ST-50-04C 2008 

Space data links-Telecommands 
protocols: synchronization and 
channel coding 
 

7.5.4 

85 
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Table 9.3 Traceability toECSS for the standard-based model of software-FUR for system 
reliability-NFR (Continued) 

 

ID ECSS standards Year ECSS standards name 
Section 

No. 
Page 
No. 

18 ECSS-E-ST-50-01C 2008 
Space data links-Telemetry: 
synchronization and channel coding 

6.1 
21 

19 ECSS-E-ST-33-11C  Explosive systems and device 4.2.2 17 

20 
ECSS-ST-35-10C 

2009 
Compatibility testing for liquid 
propulsion components, sub systems 
and systems 

3.2.2 
4.1.2 

10 
13 

21 ECSS-ST-40C 2009 Software 5.4.2.1 46 

22 
ECSS-Q-ST-80C 

2009 Software product assurance 
5.2.7.2 
6.3.2.4 

27 
52 

23 
ECSS-Q-ST-30-11C 

2008 Derating-EEE components 
5.1 
5.2 
5.3 

13-16 

 

9.6 Summary 

 

This chapter has illustrated first the system requirement traceability matrix (RTM) in ECSS 

standards with the system life cycle for (HW and SW) using three distinct activities as 

defined in Figure 9.1: 

1. Technical requirements which include (high and low level system requirements) adapted 

with phase 2 of the ECSS life cycle; 

2. System requirements design and modifications adapted with phase 3 of the ECSS life 

cycle; 

3. System requirements verifications adapted with phase 4 of the ECSS life cycle.  

 

In the second part of this chapter and for the purpose of this research study, a modified RTM 

was proposed by using the same ECSS traceability approach by ECSS with some additional 

changes to tackle system-FUR and system-NFR in high and detailed levels in phase 2 of the 

ECSS life cycle, High and low (detailed) levels for design requirements in phase 3 as well as 

an extended verification part in phase 4 to tackle system-FUR and NFR as distinct 

requirements at high level design and as grouped at low level design. 
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The third part of this chapter has presented the summarized number of the traceability based 

concepts, terms and vocabularies for the proposed fourteen standard-based models, as well as 

the detailed traceability to specific sections and pages of the ECSS standards of the proposed 

reliability-NFR model.  With this traceability to specific ECSS standards, and related 

sections and page numbers illustrated for the reliability-NFR, the users of the reliability 

model can find the details of each part of the proposed models in the ECSS standards, and 

they can use this traceability to implement the proposed models in practice and in conformity 

to the ECSS standards. 

 



 

CONCLUSION 

The research work presented in this thesis had one main research objective: Early 

specification and measurement of software-FUR derived from system-NFR, using as a basis 

the ECSS, ISO and IEEE systems and software engineering standards.  

 

To achieve this objective, the following two specific research sub-objectives had reached: 

• Designs of standard-based generic models for the identification and specification of 

software-FUR for system-NFR; 

• Measurement of the functional size of software-FUR for system-NFR using the COSMIC 

ISO 19761 standard. 

 

In this research study, this objective and the two sub-objectives were achieved by using three 

sets of international standards (ECSS, ISO and IEEE) and ISO 19761(COSMIC method) for 

the design of fourteen standard-based models of software-FUR for system-NFR: see 

Chapters 4, 5, and 6 for the details of these three models (system reliability, maintainability, 

and interface requirements), and Chapter 7 for the overviews of the 11 other models (system 

portability, operations, configuration, data definitions and databases, adaptation and 

installation, design and implementation constraints, performance, security, safety, recourses 

and human factors requirements).  

 

Contributions of the Research 

 

The research contributions of this PhD thesis are: 

• The identification of the various concepts that should be included in the design of 

standard-based framework for modelling software-FUR for system-NFR based on ECSS, 

ISO and IEEE standards; 

• The fourteen standard-based models for the identification, specification and measurement 

of software-FUR derived from system-NFR:  

1. Reliability systems requirements; 
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2. Maintainability systems requirements; 

3. Interfaces systems requirements; 

4. Portability systems requirements; 

5. Operations systems requirements; 

6. Configuration systems requirements; 

7. Data definitions and database systems requirements; 

8. Adaptations and installations systems requirements; 

9. Design and implementation constraints systems requirements; 

10. Performance systems requirements; 

11. Security and privacy systems requirements; 

12. Safety systems requirements; 

13. Resources systems requirements; 

14. Human factor requirements. 

• A modified requirements traceability matrix (M-RTM) used in the ECSS for system-FUR 

by including the system-NFR. 

  

A number of outcomes of this thesis have been published and-or submitted in the following 

conferences and journals. 

• Published: 

1. Al-Sarayreh, Khalid T. and Abran, A., “A Generic Model for the Specification of 

Software Interface Requirements and Measurement of their Functional Size", 8th 

ACIS International Conference on Software Engineering Research, Management and 

Applications - SERA 2010, Montreal, May 24-26, 2010, IEEE-CS Press, Los 

Alamitos, pp. 217-222, (ISBN:  978-0-7695-4075-7), doi>10.1109/SERA.2010.35). 

2. Al-Sarayreh, Khalid T., Alain Abran and Juan J. Cuadrado-Gallego, "A Standard-

based Model for the Specification and Measurement of Maintainability 

Requirements", 22nd International Conference on Software Engineering and 

Knowledge Engineering (SEKE 2010), Redwood City, California, USA, July 2010, 

(ISBN 1-891706-26-8). 
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3. Abran, Alain, Al-Sarayreh, Khalid T. and Juan J. Cuadrado-Gallego, "Measurement 

Model of Software Requirements Derived from System Portability Requirements",  

9th International Conference on Software Engineering Research and Practice (SERP 

2010), Las Vegas, USA, July 2010,  CSREA Press 2010, (ISBN 1-60132-167-8).               

4. Al-Sarayreh, Khalid T. and Alain Abran, "Measurement of Software Requirements 

Derived from System Reliability Requirements",  24th European Conference on 

Object-Oriented Programming (ECOOP 2010), ACM, Maribor, Slovenia, EU, 2010, 

(ISBN: 978-1-4503-0539-6), doi>10.1145/1921705.1921706). 

5. Alain Abran and Al-Sarayreh, Khalid T., “A Standard-based Model for the 

Specification of System Design and Implementation Constraints",  17th International 

Conference on European Systems and Software Process Improvements (EURO-SPI 

2010), Grenoble Institute of Technology, Grenoble, France, Sept. 2010. 

6. Alain Abran and Al-Sarayreh, Khalid T., “Measurement of Software Requirements 

Derived from System Operations Requirements", 20th International Workshop on 

Software Measurement (IWSM 2010`), Stuttgart, Germany, Nov. 2010, (ISBN:  978-

3-8322-9618-6).  

7. Al-Sarayreh, Khalid T. and Alain Abran, "Specification and Measurement of System 

Configuration Non Functional Requirements", 20th International Workshop on 

Software Measurement (IWSM 2010), Stuttgart, Germany, Nov. 2010, (ISBN:  978-

3-8322-9618-6). 

• Submitted 

1. Al-Sarayreh, Khalid T., Abran, A. and Cuadrado, J, “Measurement of Software 

Requirements Derived from System Maintainability Requirements", Submitted to 

Journal of Software Maintenance and Evolution: Research and Practice, John Wiley 

& Sons, Ltd. 2011. 

2. Al-Sarayreh, Khalid T. and Abran, A., “Early Identification, Specification and 

Measurement of System Non-Functional Interface Requirements", Submitted to 

International Journal of Metrology and Quality Engineering, 2011. 
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3. Al-Sarayreh, Khalid T. and Abran, A., “Early Identification, Specification and 

Measurement of Software Requirements Derived from System Reliability ", 

Submitted to Requirement Engineering Journal (RE), Springer, 2011. 

4. Al-Sarayreh, Khalid T. and Abran, A., “Software Specification Framework for 

System Operations Requirements", Submitted to International Journal of Computer 

and Information Science (IJCIS), IEEE-INSPECT, 2010. 

5. Abran, A., Al-Sarayreh, Khalid T. and Cuadrado, J, “Software Specification 

Framework of System Portability Requirements", Submitted to Journal of Software 

Maintenance and Evolution: Research and Practice, John Wiley & Sons, Ltd. 2011. 

 

Expected impacts in the industry of the proposed standard-based models of software-

FUR for system-NFR: 

 

A) System engineers 

The standard-based models of software-FUR for system-NFR proposed in this thesis can 

provide system engineers with:  

• An integrated reference view of system-NFR that they can use to select the NFR 

necessary for a specific system to be developed (hardware-software); 

• A methodology to specify these systems NFR: with the reference models, beginners may 

not require years of training before they are able to specify NFR at the levels of detail 

illustrated in the work reported in this thesis; 

• An integrated model to be used as an input to make decisions on which of these detailed 

system-NFR will be allocated to: 1- hardware, 2- software, or 3- a combination of these 

for a specific context; 

• Verification of system-NFR coverage and descriptions. 

 

B) Software engineers 

For software engineers, the proposed standard-based models of software-FUR for system-

NFR can also provide them with reference models that they can use to verify whether or not 

the system engineers have provided them with this selection of system-NFR-derived 
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software-FUR, and at the necessary level of details. This means that the standard-based 

reference models can be used as a quality technique for the following:  

• Elicitation of such requirements, in the software requirements phase, referred to as ‘both 

NFR and emergent properties’ in the SWEBOK Guide – ISO19759 (ISO-19759 2004);  

• Achievement of this level of detailed inputs of software-FUR for system-NFR up front in 

the project life cycle (that is, at the software requirements phase, rather than much later, 

at the software testing phase, which is the common practice); 

• The proposed standard-based models of software-FUR for system-NFR present a way to 

measure these software-FUR with COSMIC – ISO 19761, to take them into account in 

Function Points-based software estimation models, thereby avoiding late discovery of 

mandatory software-FUR that often lead to budget overruns and missed deadlines. 

 

Future Work 

• The measurement aspects presented in this thesis have been limited to the system 

requirements allocated to software. It will be interesting in future work to investigate 

whether or not this measurement approach can be extended to all such requirements at the 

system level: that is, to all hardware-software-manual requirements, and not only to 

software requirements; 

• Document the other traceabilility matrices to standards for the other 13 models (such as 

table 9.3 for  system reliability requirements in the chapter 9); 

• Prepare a NFR specification Guidelines for each type of NFR, based on such traceability 

matrices; 

• Suggest improvement to international standards on software requirements, such as IEEE 

830, based on this research work;  

• Suggest additions to the Requirements Knowledge Area of the SWEBOK Guide (ISO 

19759), based on this research work; 

• Suggest improvement to the ECSS standards based on this research work; 

• Suggests improvements to the COSMIC group to document guidelines for the 

measurement of software-FUR derived from system-NFR 
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• Suggest improvement to the ISBSG data collection standards (www.isbsg.org) to capture 

information on NFR requirements 
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