

ÉCOLE DE TECHNOLOGIE SUPÉRIEURE
UNIVERSITÉ DU QUÉBEC

THESIS PRESENTED TO
ÉCOLE DE TECHNOLOGIE SUPÉRIEURE

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR
THE DEGREE OF DOCTOR OF PHILOSOPHY

Ph.D.

BY
Khalid AL-SARAYREH

IDENTIFICATION, SPECIFICATION AND MEASUREMENT,
USING INTERNATIONAL STANDARDS,

OF THE SYSTEM NON FUNCTIONAL REQUIREMENTS ALLOCATED TO REAL-
TIME EMBEDDED SOFTWARE

MONTRÉAL, AUGUST 23, 2011

© Copyright 2011 Khalid Al-Sarayreh

THIS THESIS HAS BEEN EVALUATED

BY THE FOLLOWING BOARD OF EXAMINERS

Mr. Alain Abran, Ph.D, Thesis Supervisor
Software Engineering and Information Technology Department, École de technologie
supérieure

Mrs. Christine Tremblay, Ph.D, President of the Board of Examiners
Electrical Engineering Department, École de technologie supérieure

Mr. Pierre Bourque, Ph.D, Examiner
Software Engineering and Information Technology Department, École de technologie
supérieure

Mr. Yann-Gael Guéhéneuc, Ph.D, External Examiner
Computer Engineering and Software Engineering Department, École Polytechnique de
Montréal

THIS THESIS WAS PRESENTED AND DEFENDED

BEFORE A BOARD OF EXAMINERS AND THE PUBLIC

AUGUST 23, 2011

AT ECOLE DE TECHNOLOGIE SUPERIEURE

ACKNOWLEDGMENTS

First and foremost I would like to express my gratitude to Professor Alain Abran, my thesis

supervisor at École de technologie supérieure, for his continuous support, time, advice and

patience throughout this thesis. Without his patient guidance, this work would never have

been carried out.

I am deeply grateful to my committee members Prof. Christine Tremblay, Pierre Bourque,

and Yann-Gael Guéhéneuc for their time and effort in reviewing this work.

I would like to express my thanks to Prof. Charles Simon, (the President of the COSMIC
group), who has provided me extensive feedback during my research program.

I would like to thank everyone in the Software Engineering Research Laboratory (GÉLOG),

the Department of Software Engineering and IT. Finally, I wish to express my thanks to my

family and my wife for their support and understanding throughout this long process.

IDENTIFICATION, SPÉCIFICATION ET MESURES,
À L’AIDE DE STANDARDS INTERNATIONAUX,

DES BESOINS NON FONCTIONNELS DES SYSTÈMES ALLOUÉS AUX
LOGICIELS EMBARQUÉS EN TEMPS RÉEL

Khalid Al-SARAYREH

RÉSUMÉ

Au cours de la phase de l’analyse des besoins pour le développement d’un système, l’accent
est souvent porté sur les besoins fonctionnels, tandis que les besoins non fonctionnels (Non
Functional Requirements - NFR) sont capturés par les analystes systèmes seulement à un
niveau très global : au cours de cette phase, les NFR sont décrits typiquement au niveau du
système et non au niveau du logiciel. Le détail de ces besoins non fonctionnels est souvent
précisé (c'est à dire défini au niveau de détail nécessaire) par les concepteurs du système à la
phase de l’architecture et à la phase de conception du système.

Pour le moment, il n’y a pas de consensus sur la manière de décrire et de mesurer les besoins
non fonctionnels des systèmes (system-NFR) : c’est donc un défi de les prendre en compte
dans l’estimation des efforts pour le développement des logiciels qui feront partie de ces
systèmes et dans l’évaluation de la productivité des projets de développement de ces
logiciels.

Durant la phase de l’analyse des besoins pour les logiciel, les besoins non fonctionnels des
systèmes peuvent être décrits et spécifiés comme étant les besoins fonctionnels alloués au
logiciel : ceci permet alors aux ingénieurs logiciels de développer, tester et configurer les
livrables finaux aux utilisateurs du système.

La motivation de cette recherche est de contribuer à l’effort d’amélioration des modèles
d’estimation des projets de développement logiciel en introduisant les exigences non
fonctionnelles des systèmes au sein du processus d’estimation du projet logiciel et ce au
travers d’une vue quantitative.

Le but de cette recherche est d’aider les chefs de projets, les organisations ainsi que les
chercheurs, à prendre des décisions éclairées sur les plannings des projets et sur le
développement des logiciels et ce pendant la phase initiale d’identification des besoins, des
spécifications et d’estimation des besoins non fonctionnels d’un système incluant du logiciel
embarqué. Plus précisément, cette étude a comme but de contribuer à une meilleure
définition, description et estimation de certains entrants, qui sont les besoins non fonctionnels
du système, nécessaire pour réaliser une estimation préalable des couts.

Dans les standards internationaux, un certain nombre de concepts sont utilisés afin de décrire
différents types de besoins non fonctionnels des systèmes, que ces besoins soient au niveau

V

du système, du logiciel ou du matériel. L’objectif de cette recherche est d’effectuer, le plus
en amont possible, les spécifications et la quantification des besoins fonctionnel pour le
logiciel, dérivés des besoins non fonctionnels au niveau système, en utilisant comme base les
standards de l’ingénierie du logiciel.

Pour atteindre cet objectif de recherche les deux sous-objectifs de recherche spécifiques
suivants doivent être atteints:
• Conceptions de modèles standards pour l’identification et la spécification des besoins

fonctionnels de l'utilisateur (FUR) alloués au logiciel pour répondre aux besoins non
fonctionnels du système (system-NFR).

• Mesure de la taille fonctionnelle, en utilisant le standard COSMIC ISO 19761.

des besoins fonctionnels alloués au logiciel pour répondre aux besoins non fonctionnels du
système les résultats de cette recherche sont à un ensemble de quatorze (14) modèles de
spécifications et de mesure, basés sur des standards, pour les besoins non-fonctionnels du
système qui peuvent être alloués à du logiciel embarqué temps réel.

La contribution principale de cette recherche est cet ensemble de quatorze modèles des
besoins fonctionnels des utilisateurs du logiciel basés sur des standards pour l’identification,
la spécification et la mesure des besoins non fonctionnels du système.

Mots clés: Génie logiciel, Besoins non fonctionnels (NFR), Standards internationaux ECSS,
ISO 9126 et IEEE-830, Mesure des besoins fonctionnels de l'utilisateur du logiciel, COSMIC
– ISO 19761.

IDENTIFICATION, SPECIFICATION AND MEASUREMENT,
USING INTERNATIONAL STANDARDS,

OF THE SYSTEM NON FUNCTIONAL REQUIREMENTS ALLOCATED TO
REAL-TIME EMBEDDED SOFTWARE

Khalid Al-SARAYREH

ABSTRACT

During the system requirements phase, the focus is often on the functional requirements of
the system, while non-functional requirements (NFR) are captured by system analysts at a
very global level only: in this system analysis phase, these NFR are typically described at the
system level and not at the software level. Detailing these NFR is typically left to be handled
(i.e., defined at the necessary level of detail) much later by system designers in the system
architecture and design phases.

As yet, there is no consensus on how to describe and measure the system non-functional
requirements (system-NFR); it is therefore challenging to take them into account in software
project estimation and software project productivity benchmarking.

In the software requirements engineering step, the system-NFR can be detailed and specified
as software functional user requirements (software-FUR), to allow a software engineer to
develop, test, and configure the final deliverables to the system users.

The research project motivation is to contribute to the improvement of the estimation models
of software development effort by including the system-NFR in the software estimation
process through a quantitative view of such NFR.

The goal for this research project is to help project managers, organizations, and researchers
to make informed decisions on project planning and software development projects in the
early identification, specification, and measurement of the system-NFR for the embedded
software. More specifically, this research project aims at contributing to better define,
describe, and measure the system-NFR allocated to software-FUR for real time and
embedded software..

The research objective is the early specification and measurement of software-FUR derived
from system-NFR, using as a basis the systems and software engineering standards.

To achieve this research objective the following two specific research sub-objectives must be
reached:
• Designs of standard-based generic models for the identification and specification of

software-FUR for system-NFR;

VII

• Measurement of the functional size of software-FUR for system-NFR using the COSMIC
ISO 19761 standard.

The results of this research will be a set of standard-based specification and measurement
models for system-NFR for real-time embedded software.

The main outcome of this research study is the set of fourteen (14) standard-based models of
software-FUR for the early identification, specification, and measurement of system non-
functional requirements allocated to software.

Keywords: Software Engineering, Non functional requirement (NFR), ECSS, ISO 9126 and
IEEE830 International Standards, Software-FUR Measurement, COSMIC – ISO 19761.

TABLE OF CONTENTS

Page

INTRODUCTION ...1

CHAPTER 1 LITERATURE REVIEW ...7
1.1 Introduction ..7
1.2 NFR in the academic literature ..8
1.3 NFR in international standards ..11

1.3.1 European international standards (ECSS) ..11
1.3.2 IEEE 830 standard ...12
1.3.3 ISO 9126 standard series ...13
1.3.4 ISO 19759 (SWEBOK guide) ..14
1.3.5 ISO 19761 (COSMIC method) ..15
1.3.6 Software Functional Size Measurement (FSM) ...17
1.3.7 COSMIC guideline for sizing service oriented software18

1.4 NFR ontologies ..20
1.5 Summary ..20

CHAPTER 2 RESEARCH GOAL, OBJECTIVES, AND METHODOLOGY23
2.1 Introduction ..23
2.2 Research motivation ...23
2.3 Research goal ...23
2.4 Research objectives ..24
2.5 Users of research ..24
2.6 Research input ..24
2.7 Overview of the research methodology ...25
2.8 Detailed research methodology..26

CHAPTER 3 IDENTIFICATION OF NFR CONCEPTS, AND VIEWS30
3.1 Introduction ..30
3.2 Reliability systems requirements ...31

3.2.1 ECSS: views and concepts for reliability ...31
3.2.2 IEEE: views and concepts for reliability ...32
3.2.3 ISO views and concepts for reliability ...32

3.3 Maintainability systems requirements ...34
3.3.1 ECSS: views and concepts for maintainability ..34
3.3.2 IEEE: views and concepts for maintainability ...34
3.3.3 ISO: views and concepts for maintainability ...35

3.4 Interface systems requirements ..36
3.4.1 ECSS: views and concepts for interfaces ...36

IX

3.4.2 IEEE: view and concepts for interfaces ...37
3.5 Portability systems requirements ...39

3.5.1 ECSS: view and concepts for portability ...39
3.5.2 IEEE: view and concepts for portability ..39
3.5.3 ISO standards: views and concepts for portability ..40

3.6 Operations systems requirements ..41
3.6.1 ECSS: views and concepts for operations ...42
3.6.2 IEEE: views and concepts for Operations ...43

3.7 Configuration systems requirements..43
3.7.1 ECSS: views and concepts for configuration ...43
3.7.2 ISO 19759 (SWEBOK Guide): views and concepts for configuration44

3.8 Data definitions and database systems requirements ...45
3.8.1 ECSS views and concepts for data definition and database45

3.9 Adaptation and installation: systems requirements ..47
3.9.1 ECSS: views and concepts for adaptation and installation47
3.9.2 IEEE: views and concepts for adaptation and installation48
3.9.3 ISO: views and concepts for adaptation and installation49

3.10 Design and implementation constraints (D&I) systems requirements50
3.10.1 ECSS: views and concepts for D&I constraints ..50
3.10.2 ISO 19759 (SWEBOK Guide): views and concepts for D&I52

3.11 Performance systems requirements..53
3.11.1 ECSS: views and concepts for performance ..54
3.11.2 IEEE: views and concepts for performance ...55

3.12 Security systems requirements ...57
3.12.1 ECSS: views and concepts for security ...57

3.13 Safety systems requirements ..59
3.13.1 ECSS: views and concepts for safety ...59
3.13.2 ISO: views and concepts for safety ..61
3.13.3 IEEE: views and concepts for safety ...61

3.14 Resources systems requirements ..62
3.14.1 ECSS: views and concepts for resources ...63
3.14.2 IEEE: views and concepts for resources ..64
3.14.3 ISO: views and concepts for resources ..64

3.15 Human factors system requirements ..65
3.15.1 ECSS: views and concepts for human factors ...66

3.16 Discussion and observation..68
3.16.1 ECSS standards ..68
3.16.2 IEEE standards ...69
3.16.3 ISO 9126 standards ..69
3.16.4 ISO 19759 (SWEBOK guide) ..69

3.17 Summary ..70

CHAPTER 4 RELIABILITY: IDENTIFICATION, SPECIFICATION AND
MEASUREMENT OF SOFTWARE-FUR DERIVED FROM SYSTEM-
NFR ..71

X

4.1 Introduction ..71
4.2 A standard-based model of software-FUR for system reliability NFR73

4.2.1 Mapping reliability views and vocabulary from standards73
4.2.2 Identification of the system reliability functional types allocated to software-

FUR ..74
4.2.3 Model of the functions types relationships based on system views...............83
4.2.4 Model of the functional types relationships based on COSMIC views83

4.3 A standard-based model of software-FUR for system reliability NFR using an
COSMIC-SOA ...87

4.4 Sizing of the standard-based model of software-FUR for system reliability NFR89
4.4.1 Measurement of exchange messages for system reliability89
4.4.2 Measurement of intermediary services for system reliability91
4.4.3 Measurement of the direct and indirect data movements for system

reliability. ...92
4.5 A measurement example ..94
4.6 Summary ..95

CHAPTER 5 MAINTAINABILITY: IDENTIFICATION, SPECIFICATION AND
MEASUREMENT OF SOFTWARE-FUR DERIVED FROM SYSTEM-
NFR ..97

5.1 Introduction ..97
5.2 A standard-based model of software-FUR for system maintainability-NFR99

5.2.1 Mapping maintainability views, concepts, and terms from standards99
5.2.2 Identification of system maintainability functions types allocated software-

FUR ..100
5.2.3 Model of the functions types relationships based on system views.............113

5.3 A standard-based model of software-FUR for system maintainability using SOA ...117
5.3.1 Measurements of exchange messages for system maintainability117
5.3.2 Measurement of intermediary services for system maintainability124
5.3.3 Measurements of data movements between Functional processes136
5.3.4 Indirect data movements for all function types ..138

5.4 Sizing of the standard-based model for system maintainability-NFR140
5.5 A measurement example ..142

5.5.1 Measurement of the exchange messages ...143
5.5.2 Measurement of the intermediary services ..143
5.5.3 Measurement of data movements (Function Level)144

5.6 Summary ..145

CHAPTER 6 INTERFACES: IDENTIFICATION, SPECIFICATION AND
MEASUREMENT OF SOFTWARE-FUR DERIVED FROM SYSTEM-
NFR ..147

6.1 Introduction ..147
6.2 A standard-based model of software-FUR for system interfaces NFR148

XI

6.2.1 Mapping system interface views and concepts and terms from standards ..149
6.2.2 Interface functions to be specified ...150
6.2.3 Identification of the system interface function types allocated to software-

FUR ..150
6.3 A standard-based model of software-FUR for system interfaces NFR using SOA ...156
6.4 Sizing of the standard-based model of software-FUR for system interfaces NFR157

6.4.1 Measurement of exchange messages for system interface158
6.4.2 Measurement of intermediary services for system interface159
6.4.3 Measurement of the direct and indirect data movements for system interface

 ..160
6.5 A Measurement Example ...161

6.5.1 Measurement of exchange messages ...162
6.5.2 Measurement of intermediary services ..163
6.5.3 Measurement of data movements ..163

6.6 Summary ..164

CHAPTER 7 THE OTHER ELEVEN TYPES OF SYSTEM-NFR IN ECSS:
SPECIFICATION AND MEASUREMENT MODELS166

7.1 Introduction ..166
7.2 Portability system requirements ...166

7.2.1 Mapping views and concepts for portability from ECSS, ISO, and IEEE ..167
7.2.2 Software portability functions to be specified ...168
7.2.3 Identification of the function types in software portability169
7.2.4 A standard-based model of software-FUR for system portability using

SOA..169
7.3 Operations system requirements ..171

7.3.1 Mapping system operations views and concepts from ECSS and IEEE
standards ..171

7.3.2 A standard-based model of software-FUR for system operation-NFR using
SOA..173

7.4 Configuration System requirements ..174
7.4.1 Mapping system configuration views and concepts from ECCS standards 174
7.4.2 Configuration function types and functions to be specified175
7.4.3 A standard-based model of software-FUR for system configuration-NFR

using an SOA ...176
7.5 Data definitions and database system requirements ..177

7.5.1 Mapping data definition views and concepts from ECCS standards177
7.5.2 A standard-based model of software-FUR for system data definition and

database -NFR using an SOA ..178
7.6 Adaptation and installation system requirements ..180

7.6.1 Mapping the adaptation and installation views and concepts from
standards.... ..180

7.6.2 Software adaptation and installation functions and function types to be
specified ...181

XII

7.6.3 A standard-based model of software-FUR for system adaptation and
installation-NFR using an SOA ...182

7.7 Design and implementation (D&I) constraints system requirements183
7.7.1 D&I constraints requirements and functions to be specified183
7.7.2 Model of function types relationships ..184
7.7.3 A model of D&I constraints services ...185
7.7.4 A model of D&I constraints of data movements in Software-FUR view186

7.8 Performance system requirements ...186
7.8.1 Mapping views and concepts for performance from ECSS and IEEE

standards ..187
7.8.2 Software system performance functions to be specified187
7.8.3 Identification of the function types in the performance system

requirements.... ...188
7.8.4 A standard-based model of software-FUR for system performance-NFR

using an SOA ...189
7.9 Security system requirements ..191

7.9.1 Mapping views and concepts for security from ECSS, ISO, and IEEE
standards ..191

7.9.2 Software system security functions to be specified191
7.9.3 Identification of the function types in the security192
7.9.4 A standard-based model of software-FUR for system security-NFR using an

SOA..193
7.10 Safety system requirements ...195

7.10.1 Mapping views and concepts for safety from ECSS, ISO, and IEEE
standards ..195

7.10.2 Software system safety functions to be specified ..195
7.10.3 Identification of the function types in the software safety systems

requirements ...196
7.10.4 A standard-based model of software-FUR for system safety-NFR using an

SOA..197
7.11 Resources system requirements ...198

7.11.1 Mapping views and concepts for resources from ECSS, ISO, and IEEE
standards ..198

7.11.2 Software system resources functions to be specified198
7.11.3 Identification of the function types in the resources systems requirements 199
7.11.4 A standard-based model of software-FUR for system resources-NFR using

an SOA ...200
7.12 Human factors system requirements ..202

7.12.1 Software system human factors functions to be specified202
7.12.2 Identification of the function types in the human factors202
7.12.3 A standard-based model of software-FUR for human factors-NFR using an

SOA..203
7.13 Summary ..205
CHAPTER 8 A CASE STUDY USING THE STANDARD-BASED MODEL OF

SOFTWARE-FUR FOR SYSTEM RELIABILITY-NFR206

XIII

8.1 Introduction ..206
8.2 The Valve Control System (VCS) Case Study ..206
8.3 Step 1: Addition of reliability requirements at the system level208
8.4 Step 2: Allocate system reliability-FUR to software functions to be added to VCS .209
8.5 Step 3: The specification of the ECSS-based reliability functions allocated to software

for the VCS components ..211
8.6 Step 4: Measurement of the software-FUR for the system reliability-NFR212

8.6.1 Measurement strategy phase ..212
8.6.2 COSMIC mapping phase ...212
8.6.3 COSMIC measurement phase ..213

8.7 Summary ..214

CHAPTER 9 TRACEABILITY MODEL AND OPERATIONS PROCEDURES215
9.1 Introduction ..215
9.2 System Requirement traceability matrix (RTM) in ECSS standards215
9.3 System functional & NFR traceability matrix ...218
9.4 Tractability of standard-based models of software-FUR for system-NFR220
9.5 Tractability to the standard-based model of software-FUR for system reliability-NFR

in ECSS 221
9.6 Summary ..223

CONCLUSION.. ..225

ANNEX I THE NFR TERMS, CONCEPTS AND VOCABULARY AS DEFINED IN

THE LITERATURE.

ANNEX II THE DETAILS OF 11 STANDARD-BASED MODELS OF SOFTWARE-

FUR DERIVED FROM SYSTEM-NFR.

ANNEX III THE DETAILED TRACEABILITY TO THE ECSS STANDARDS SERIES

OF THE STANDARD-BASED MODELS OF SOFTWARE-FUR

DERIVED FROM SYSTEM-NFR.

ANNEX IV THE PUBLISHED WORKS IN INTERNATIONAL CONFERENCES FOR

SEVEN (7) STANDARD-BASED MODELS OF SOFTWARE-FUR

DERIVED FROM SYSTEM-NFR.

BIBLIOGRAPHY ..231

LIST OF TABLES

Page

Table 1.1 List of the NFR in ECSS Standards ...12

Table 1.2 List of the NFR in IEEE-Std 830 - 1998 ..13

Table 1.3 List of quality characteristics in ISO 9126 ..13

Table 1.4 COSMIC guideline offers three types of data movement’s architecture ...19

Table 3.1 Reliability views, concepts, and terms in ECSS and ISO33

Table 3.2 Maintainability: views concepts and terms in the ECSS and ISO35

Table 3.3 Interface: views, concepts, and terms in ECSS and IEEE38

Table 3.4 Portability: views, concepts, and terms in the standards40

Table 3.5 Operations: view, concepts, and terms in the ECSS standards43

Table 3.6 Configuration: views, concepts, and terms in ECSS and ISO 1975944

Table 3.7 Data definitions and database: views, concepts, and terms in ECSS47

Table 3.8 Adaptation and installation: views, concepts, and terms in the standards .49

Table 3.9 D&I constraints: views, concepts, and terms in ECSS and ISO53

Table 3.10 Performance: views, concepts, and terms in ECSS56

Table 3.11 Security: views, concepts, and terms in standards58

Table 3.12 Safety: views, concepts, and terms in the standards62

Table 3.13 Resources: views, concepts, and terms in standards64

Table 3.14 Human factors: views, concepts, and terms in ECSS67

Table 4.1 Reliability: functions in ECSS, IEEE & ISO 912673

Table 4.2 System reliability functions types and related software functions74

Table 4.3 Measurement of the exchange messages for the proposed model90

Table 4.4 Measurement example for the interactions between one application

functional process and one service functional process90

Table 4.5 Measurement of the intermediary services for the proposed model91

Table 4.6 COSMIC-SOA measurement example for the intermediary services

between functional Services ..92

Table 4.7 Measurements results for direct and indirect data groups93

XV

Table 4.8 Measurements results for direct and indirect data movements95

Table 5.1 Maintainability requirements in ECSS & ISO 912699

Table 5.2 System maintainability requirements and related software functions100

Table 5.3 Measurement of the exchange messages of the application, sub

application, and services for SMFP ...118

Table 5.4 Measurement of the exchange messages of the application, sub

application, and services for SRFP ..120

Table 5.5 Measurement of the exchange messages of the application, sub

application, and services for SMP ...121

Table 5.6 Measurement of the exchange messages of the application, sub

application, and services for SSP ...122

Table 5.7 Measurement of the exchange messages of the application, sub

application, and services STP ..124

Table 5.8 Measurement of the intermediary services for SMFP126

Table 5.9 Measurement of the intermediary services for SRFP128

Table 5.10 Measurement of the intermediary services for SMP129

Table 5.11 Measurement of the intermediary services for SSP130

Table 5.12 Measurement of the intermediary services for SSP and STP132

Table 5.13 Measurement of the intermediary services for SMFP, SRFP, SMP and

STP ...135

Table 5.14 Measurement of the direct data movements for SMFP136

Table 5.15 COSMIC-SOA measurement of the direct data movements for SRFP ...137

Table 5.16 COSMIC-SOA measurement of the direct data movements for SMP138

Table 5.17 Measurement of the indirect data movements for the model139

Table 5.18 Measurement of the maintainability model (Function Level)141

Table 5.19 Measurement of the maintainability model (Service level)141

Table 5.1 Interface requirements in ECSS and IEEE ..149

Table 6.2 System interface functions that may be allocated to software-FUR150

Table 6.3 COSMIC-SOA measurement example for the interactions between a

functional process and its own functional service process158

XVI

Table 6.4 Measurement for exchange messages ..159

Table 6.5 COSMIC-SOA measurement example for the intermediary service160

Table 6.6 COSMIC-SOA measurement for intermediary services160

Table 6.7 Measurements of direct and indirect data groups for system interfaces ..161

Table 6.8 Measurement results for the interactions of three functional processes ..162

Table 6.9 Measurement results of intermediary services ...163

Table 6.10 Measurements of direct and indirect data movements for system

interfaces. ...163

Table 7.1 Portability requirements in ECSS, ISO, and IEEE167

Table 7.2 Portability types by environment ...168

Table 7.3 Portability functions that may be allocated to software168

Table 7.4 Function types for portability that may be allocated to software169

Table 7.5 System operations FUR in the ECSS standards series171

Table 7.6 Software-FUR for system configuration NFR ...174

Table 7.7 Configuration functions that may be allocated to software175

Table 7.8 Functions to address system data definition and database requirements .177

Table 7.9 System data definition requirements and related software functions178

Table 7.10 Adaptation and installation in ECSS & ISO 9126180

Table 7.11 System adaptation and installation requirements related software181

Table 7.12 System adaptation and installation functions and functions types181

Table 7.13 Software D&I functions to be specified ...183

Table 7.14 Performance requirements in ECSS and IEEE ..187

Table 7.15 System performance functions that may be allocated to software188

Table 7.16 Function types for performance functions that may be allocated to

software ..189

Table 7.17 Security requirements in ECSS, ISO, and IEEE191

Table 7.18 System security functions that may be allocated to software192

Table 7.19 Function types for security functions that may be allocated to software .193

Table 7.20 Safety requirements in ECSS, ISO, and IEEE ...195

Table 7.21 System safety functions that may be allocated to software196

XVII

Table 7.22 Function types for safety functions that may be allocated to software196

Table 7.23 Resources requirements in ECSS, ISO, and IEEE198

Table 7.24 System resources functions that may be allocated to software199

Table 7.25 Function types for the resources functions that may be allocated to

software ..199

Table 7.26 Function types for the resources functions that may be allocated to

software ..200

Table 7.27 Human factors functions that may be allocated to software202

Table 7.28 Function types for human factors functions that may be allocated to

software ..203

Table 8.1 Alignment of system reliability requirements with the standards-based .208

Table 8.2 Allocation of Reliability-FUR to the VCS Components211

Table 8.3 The measurement details for the system reliability requirements allocated

to software functions ..213

Table 9.1 Traceability of the standard-based models of software-FUR for system-

NFR ..221

Table 9.2 Traceability results from ECSS for the standard-based model of software-

FUR for system reliability-NFR from ECSS ...222

Table 9.3 Traceability results from ECSS for the standard-based model of software-

FUR for system reliability-NFR from ECSS ...223

LISTE OF FIGURES

Page

Figure 1.1 Mapping system-FUR and NFR to software-FUR7

Figure 1.2 Generic flow of data groups for a functional perspective in COSMIC –

ISO 19761 ..16

Figure 2.1 Research methodology – overview of phases ..29

Figure 4.1 Mapping system requirements into software-FUR for reliability72

Figure 4.2 System Reliability Prediction (SRP): system modelling view75

Figure 4.3 System Reliability Prediction (SRP): COSMIC modelling view.76

Figure 4.4 System Reliability Prediction Failures (SRPF): system modelling view ..77

Figure 4.5 System Reliability Prediction Failures (SRPF): COSMIC modelling78

Figure 4.6 System Reliability Prediction Faults (SRPF1): system modelling view. ..79

Figure 4.7 System Reliability Prediction Faults (SPRF1): COSMIC modelling80

Figure 4.8 System Reliability Prediction Errors (SRPE): system modelling view81

Figure 4.9 System Reliability Prediction Errors (SRPE): COSMIC modelling view .82

Figure 4.10 System modelling view for system reliability requirements......................85

Figure 4.11 A standard-based model of software-FUR for system reliability NFR86

Figure 4.12 A standard-based model of software-FUR for system reliability NFR

COSMIC modelling view (Function and Service Levels)88

Figure 5.1 Mapping system-NFR to the maintainability FUR allocated to software..98

Figure 5.2 System Modeling View of a System Maintainability Failure Procedure

(SMFP) ...102

Figure 5.3 COSMIC View of a Maintainability Failures Procedure (SMFP)103

Figure 5.4 System Modeling Maintainability of the Registered Failures Procedure

(SRFP)..105

Figure 5.5 COSMIC Modeling View of the Maintainability Registered Failures

Procedure (SRFP) (i.e., with COSMIC data movements)106

Figure 5.6 System Modeling View of a System Malfunction Procedure (SMP)107

Figure 5.7 COSMIC Modeling View of a System Malfunction Procedure (SMP) ..108

XIX

Figure 5.8 System Modeling View of System Stability Procedure (SSP)109

Figure 5.9 COSMIC Modeling View of a System Stability Procedure (SSP)110

Figure 5.10 System Modeling View of the System Testability Procedure (ST)111

Figure 5.11 COSMIC Modeling View of a System Testability Procedure (ST)112

Figure 5.12 System Modeling View for System Maintainability Requirements115

Figure 5.13 Standard-based model of software-FUR for system maintainability-NFR

(Functional Level) ..116

Figure 5.14 Exchange of data messages for sub applications (A, B, C, D)118

Figure 5.15 Interactions sub applications (E and F) with their services for SRFP119

Figure 5.16 Interactions sub applications (G and H) with their services for SMP121

Figure 5.17 Interactions sub applications (K and L) with their services for SSP122

Figure 5.18 Interactions sub applications (I and J) with their services for STP123

Figure 5.19 The intermediary services between sub application services (SA, SB, SC,

and SD) for SMFP ...125

Figure 5.20 The intermediary services for sub application (SE and SF) for SRFP127

Figure 5.21 The intermediary services between sub application for SMP129

Figure 5.22 The intermediary services between sub application for SSP130

Figure 5.23 The intermediary services between sub application services (SI and SK),

(SI and SL) and (SJ and SK), (SJ and SL) for (SSP and STP)131

Figure 5.24 The intermediary services between sub application services SK134

Figure 5.25 The intermediary services between sub application services SL134

Figure 5.26 Direct data movements between the application (SDF) and sub

applications (A, B, C, D) for SMFP...136

Figure 5.27 Direct data movements between sub applications (A, B, C, D) and sub

applications (E and F) for SRFP ..137

Figure 5.28 Direct data movements between sub applications (E and F) and sub

applications (G and H) for SMP ..138

Figure 5.29 Indirect data movements between all sub applications in all functional

types ...139

Figure 6.1 Mapping system requirements to software-FUR for an interface148

XX

Figure 6.2 System interface components (SIC): a system modeling view152

Figure 6.3 System interface components (SIC): COSMIC modeling view152

Figure 6.4 System interface specifications (SIS): a system modeling view153

Figure 6.5 System interface specifications (SIS): COSMIC modeling view154

Figure 6.6 System modeling view for the system interface requirements155

Figure 6.7 A standard-based model of software-FUR for system interfaces NFR ...156

Figure 6.8 A standard-based model of software-FUR for system interfaces NFR ...157

Figure 7.1 Standard-based model of software-FUR for system portability-NFR170

Figure 7.2 System operations functions and function types172

Figure 7.3 A standard-based model of software-FUR for system operations-NFR ..173

Figure 7.4 A standard-based model of software-FUR for system176

Figure 7.5 A standard-based model of software-FUR for system179

Figure 7.6 A standard-based model of software-FUR for system adaptation and

installation-NFR using an SOA ...182

Figure 7.7 A standard-based model of software-FUR for system D&I constraints-

NFR ..184

Figure 7.8 A model of D&I constraints requirements allocated to software185

Figure 7.9 Direct Data Movements ...186

Figure 7.10 Indirect Data Movements ...186

Figure 7.11 A standard-based model of software-FUR for ...190

Figure 7.12 A standard-based model of software-FUR for system security-NFR194

Figure 7.13 A standard-based model of software-FUR for system safety-NFR using an

SOA..197

Figure 7.14 A standard-based model of software-FUR for system resources-NFR using

SOA..201

Figure 7.15 A standard-based model of software-FUR for human factors-NFR using

SOA..204

Figure 8.1 VCS blocks diagram with its hardware and software components207

Figure 8.2 A standard-based model of FUR for system reliability-NFR210

XXI

Figure 9.1 The requirement traceability matrix (RTM) in ECSS standards and cycle

life ..217

Figure 9.2 A modified requirement traceability matrix (M-RTM) in219

LIST OF ABBREVIATIONS

ACRF Access Control Role Function

AEF Accuracy Errors Function

AF Activity Function

AF Authentication Function

AF Antivirus Function

ANSI American National Standards Institute

ARF Automatic Restart Function

BBRMAF Block of Bus Relative Memory Addresses Function

BF Bandwidth Function

BTF Backup Type Function

CCFF Configuration Control Flow Function

CDFF Configuration Data Flow Function

CDFF Correct Data Faults Function

CDTF Control Data Transfer Function

CE Cognitive Ergonomics

CF Concurrency Function

CIF Communication Interface Function

CM Configuration Management

COSMIC Common Software Measurement International Consortium

CPU Central Processing Unit

CSDF Correct System Defects Function

CTF Complex Type Function

D&I Design and Implementation Constraints

DDBMSF Distributed Data Base Management System Function

ECLSS Environment Control and Life Support Systems Design

ECSS European Cooperation on Space Standardization

EDF Encryption and Decryption Function

EDTF Error Data Tolerance Function

XXIII

EE Environmental Ergonomics

EF Event Function

EHIF Error to Handle Input Function

EPCOF Error to Produce Correct Output Function

EPKIF External PKI Function

EPOF Error to Produce Output Function

EPS Evaluation Processing Speed

ESA European Space Agency

ESF Electrical Safety Function

ESF Environmental Safety Function

FATF Fault Allocation Time Function

FCA Functional Configuration Audit

FDCF Failure Data Control Function

FDF Fault Detection Function

FDF Failure Detection Function

FDMF Failure Data Monitoring Function

FDOF Failure Data Operation Function

FF Firewall Function

FIF Failure Isolation Function

FMEA Failure Mode and Effects Analysis

FMECA Failure Mode, Effects and Criticality Analysis

FMF Failure Mechanism Function

FOF Failure Operation Function

FP Function Point

FPDCF Fault Prevention of Data Control Function

FPF Fault Prevention Function

FPSF Fault Prevention of System Function

FR Functional Requirements

FRF Fault Removal Function

FRTF Fault Recovery Tolerance Function

XXIV

FSM Functional Size Measurement

FSTF Failure System Tolerance Function

FUR Functional User Requirements

GSC General System Characterization

HCF Human Capabilities Function

HIF Hardware Interface Function

HIF Human Interface Factors

HR Hardware Resources

HTPF Host-Target Platform Function

I/O Input/Output

IBF Independence of the Browser Function

ICD Interface Control Document

ICF Independence of the Client Function

ICF Interface Customization Function

ICTPF Interface Characteristics and Task Performance Function

IDF Independence of the Database Function

IEEE Institute of Electronics Engineers

IFPUG International Function Point Users Groups

IMF Independence of the Middleware Function

INF Independence of the Network Function

IOPF Inter-Operational Function

IORF Localizing I/O Resources Function

IOSF Independence of the Operating System Function

IOTAF I/O Transmission Addresses Function

IPLVMF Independence of the Programming Language Virtual Machine Function

ISC Isolating System Calls

ISF Interface Specification Function

ISF Independence of the Server Function

ISLF Interface Specification Link Function

ISO International Organization for Standardization

XXV

ISRCF Identification of Safety Related Controls Function

ISSCF Isolating Software System Calls Function

ISTF Independence of the Storage Function

IVF Interrupt Vectors Function

KA Knowledge Area

MCSIF Memory Capacity for Software Item Function

MMTF Main Memory Time Function

MRF Memory Resources Function

MSF Mechanical Safety Function

NFR Non Functional Requirements

OO Object oriented

OPCIF Operational Control Interface Function

OPDIF Operational Data Interface Function

OPEF Operational Environment Function

OPF Operational Functions

OPFE Operational Function Event

OSF Operational Safety Function

PCA Physical Configuration Audit

PCSIF Processor Capacity for Software Item Function

PF Parameter Function

PIEF Processor Instruction Execution Function

PSF Personal Selection Function

PSF Psychology and Physiological Safety Function

RC Resource Consumption

RDF Reporting Data Function

RDF Redundant Data Function

RDTF Register Data Transfer Function

RDTF Registered Data Transfer Function

RPNF Redundant Power and Network Function

RRS Response to Reference Signals

XXVI

RTF Response Time Function

RVF Record Value Function

SA System Availability

SC System Confidentiality

SCDF Configuration Data Function

SCDF1 Control Data Function

SCRF Software Configuration Risk Function

SDC System Data Components

SDCSIF Storage Device Capacity for Software Item Function

SDD Software Design Document

SDF System Diagnostic Functions

SDI System Data Items

SDRF Software Design Risk Function

SDSF Software Data Structure Function

SDT System Data Types

SDTF Set Data Transfer with System Resources Function

SDTF Storage Device Time Function

SEF System Element Function

SEF Stability Errors Function

SEF Software Elements Function

SET System Entity Types

SF Staffing Function

SFDF System Failure Detection Function

SFIF System Failure Isolation Function

SFTF System Failure Tasks Function

SHC System Hardware Components

SHE System Hardware Environment

SI Security Integrity

SIC System Interface Components

SIE System Integrated Environment

XXVII

SIF Software Interface Function

SIOR System I/O Resources

SIS System Interface Specifications

SLF Security Login Function

SLOF System Loss Operation Function

SMDF Monitoring Data Function

SMFP System Maintainability Failure Procedure

SMP System Malfunction Procedure

SOA Service Oriented Architecture

SOPC System Operational Control

SOPD System Operational Data

SPC System Program Calls

SPDS System Product Data Schema

SR Software Resources

SRF Storage Resources Function

SRFP System Registered Failures Procedure

SROF Software Operation Risk Function

SRP System Reliability Prediction

SRPE System Reliability Prediction Error

SRPF System Reliability Prediction Failure

SRPF1 System Reliability Prediction Fault

SRSF System Redundancy Status Function

SSAF System Safety Audit Function

SSC System Software Components

SSE System Software Environment

SSF System Scalability Function

SSM System Safety Mechanism

SSP System Stability Procedure

SSR System Safety Risk

SSRI Safety Switching of Redundant Information

XXVIII

STF System Time Function

STF Simple Type Function

STF Settling Time Function

STOSF Specific Real Time Operating System Function

STP System Testability Procedure

SVF Simple Value Function

SVT System Value Types

SWEBOK Software Engineering Body of Knowledge

TECPF Tracking Error for Command Profiles Function

TF Training Function

TRF Transmission Resources Function

TT Throughput Time

UIF User Interface Function

UML Unified Modeling Language

VCS Valve Control System

VCS Valve Control System

WF Workload Function

INTRODUCTION

The terminology adopted in this thesis is closely aligned with the system and software

engineering terminology adopted jointly by the ISO and IEEE standards organizations, and in

particular in (ISO 15288 2008, ISO 12207 2008 and ISO 15979 2002).

Non functional requirements (NFR) play a critical role in system development. They may

have a considerable impact on project effort (Chung and do Prado Leite 2009) and should be

taken into account for estimation purposes and for comparing project productivity. In current

practice, NFR may be viewed, defined, interpreted, and evaluated differently by different

people in the later phases of the project (Chung, Nixon et al. 2000), particularly when they

are stated vaguely and only briefly at the system requirements phase.

NFR have received less attention in the software engineering literature and are definitely less

well understood than other cost factors (Mylopoulos, Chung et al. 1992). Furthermore,

measurement is essential if NFR are to be taken as quantitative inputs to an estimation or

productivity benchmarking process. However, not much work has been published to date on

how to measure them.

In practice, requirements are initially typically addressed at the system level (Abran and Al-

Sarayreh 2010a; Al-Sarayreh and Abran 2010b), either as high-level system functional user

requirements (system-FUR) or as high-level system non-functional requirements (system-

NFR). The latter must usually be detailed, allocated, and implemented in hardware, software

as software FUR (software-FUR) or in a specific combination of hardware and software. To

distinguish between these types of requirements, system-FUR describe the required functions

in a system, while system-NFR describe how the required functions must behave in a system.

In the ECSS (European Cooperation on Space Standardization) standards for the aerospace

industry (ECSS-S-ST-00C 2008; ECSS-E-ST-10C 2009; ECSS-Q-ST-80C 2009), ISO 9126

(ISO-9126 2004) and the IEEE 830 (IEEE-830 1998) standards, there are a number of

2

concepts provided to describe various types of candidate system-NFR at the system,

software, and hardware levels. However, these standards vary in their views, terminology,

and coverage of such system requirements.

Problem statement

In the system requirements phase, the focus is often on detailing and documenting the system

functional requirements while their allocation to the software and hardware parts of the

system being designed is being done in the system architecture phase. The NFR, in contrast,

are often captured only generically at a fairly high level and they do not include the levels of

details necessary for the system engineers to allocate them yet as specific functionalities to be

handled either by the software or the hardware, or a combination thereof.

The European standards for the aerospace industry (ECSS series), include sixteen (16) types

of NFR for embedded and real-time software as follows:

1. Reliability systems requirements;

2. Maintainability systems requirements;

3. Interfaces systems requirements;

4. Portability systems requirements;

5. Operations systems requirements;

6. Configuration systems requirements;

7. Data definitions and database systems requirements;

8. Adaptations and installations systems requirements;

9. Design and implementation constraints systems requirements;

10. Performance systems requirements;

11. Security and privacy systems requirements;

12. Safety systems requirements;

13. Resources systems requirements;

14. Human factor requirements;

15. Quality systems Requirements;

16. Other NFR requirements.

3

A number of concepts are provided in the ECSS and other standards to describe the various

types of candidate NFR at the system, software, and hardware levels.

Prior to the research work reported in this thesis, there were no standard-based models for the

identification and specification of software-FUR for implementing system-NFR based on the

various views documented in international standards and in the literature. Consequently, it

was challenging to specify and to measure these system-NFR related software-FURS, and to

take them into account quantitatively for estimation purposes in software development

projects.

This document reports on the research work carried out to develop fourteen standard-based

models for system-NFR which could be allocated to software-FUR. The availability of these

standard-based models aims to facilitate the early identification and specification of the

system-NFR and their detailed allocation as specific functions to be handled by the specified

allocation to hardware or software or a specific combination of the two. In the absence of

such standard-based and detailed models, such NFR are typically handled in practice much

later on the software development life cycle when, at system testing time, users and

developers discover that NFR have been overlooked and additional effort must be expended

to implement them.

The approach adopted in this research for the structure of these standard-based models is to

use the generic model of software functional requirements proposed in the COSMIC (ISO-

9761 2011) model, thereby allowing as well to measure the functional size of such system-

NFR requirements allocated to software and, next, to take them into account for estimation

purposes.

Thesis organization

This thesis contains nine chapters and four Annexes. The current introduction outlines the

problem statement and the organization of the thesis.

4

Chapter 1 presents an overview of the non-functional requirements (NFR), as reported in the

literature and in standards.

Chapter 2 presents the research project definition, including the research motivation, goal,

objectives and users of the research results. Chapter 2 also presents the detailed methodology

designed to tackle the research objectives, including the research phases and the research

inputs.

Chapter 3 presents a survey of the system-NFR views, concepts, and terms in the ECSS, ISO

and IEEE standards. It identifies which standards currently address aspects of the software-

FUR derived from system-FUR and system-NFR. The outcome of Chapter 3 is the

identification of the various elements that should be included in the design of standard-based

model of software-FUR for each type of system-NFR.

Chapter 4 presents a standard-based model for the functions needed to address the system’s

reliability requirements. This chapter proposes the standard-based model of software-FUR

for system reliability. This standard-based model can be considered as a kind of reference

model for the identification of system reliability requirements and can be used for their

allocation to software functions implementing such requirements.

Chapter 5 presents a standard-based model for specifying and measuring software

requirements for the functions needed to address the system’s maintainability requirements.

This chapter proposes the standard-based model of software-FUR for system maintainability.

This standard-based model can be considered as a kind of reference model for the

identification of system maintainability requirements, and can be used for their allocation to

software functions implementing such requirements.

Chapter 6 presents the system interface concepts dispersed in multiple standards and

integrates them into a standard-based model of software-FUR for system interface-NFR. The

availability of this standard-based model can facilitate the early identification and

specification of the system interface-NFR and their detailed allocation as specific system

5

interface functions to be handled by hardware or software, or to a specific combination of the

two.

Chapter 7 presents the other eleven types of system-NFR in the ECSS: specification and

measurement models. The structures of the standard-based models are based on the generic

model of software adopted by the COSMIC measurement standard: the necessary

information for measuring their functional size is then readily available. Specifically, the

standard-based models of system-NFR presented in this chapter are based on: the ECSS

standards for the description of the NFR for system and the COSMIC measurement model of

functional requirements.

Chapter 8 presents a case study using a standard-based model of software-FUR for system

reliability-NFR. This chapter uses a valve control system (VCS) as a case study to illustrate

the use of the standard-based model of software-FUR for system reliability-NFR. The

selected case study aims at the identification and classification, then measurement, of the

software-FUR for system reliability-NFR.

Chapter 9 presents the system requirements traceability matrix (RTM) in ECSS standards

with the system life cycle for hardware and software. A modified RTM is proposed in this

chapter by using the same ECSS traceability approach with some additional changes to

tackle system-FUR and system-NFR. This chapter presents also a summary of the number

of the traceability concepts and terms for the proposed fourteen standard-based models, as

well as the detailed traceability to specific sections of the ECSS standards for the proposed

reliability-NFR model.

The Conclusion chapter summarizes the results of this thesis, the contributions, and the

expected impacts for the industry as well as suggestions for future work.

Annex I presents the NFR terms, concepts and vocabulary as defined in the literature.

6

Annex II (rom Annex II-A to Annex IIK) presents the details of 11 standard-based models of

software-FUR f derived from system-NFR.

Annex III presents the detailed traceability to the ECSS standards series of the standard-

based models of software-FUR derived from system-NFR.

Annex IV (from Annex IV-A to Annex IV-G) presents the published works in international

conferences for seven (7) standard-based models of software-FUR derived from system-

NFR.

CHAPTER 1

LITERATURE REVIEW

1.1 Introduction

The non-functional requirements (NFR), are often only generically captured at a fairly high

level and they do not yet include the degree of detail that is necessary for the system

engineers to allocate such NFR as specific functionalities to be handled either by the software

or the hardware, or a specific combination of both.

In the literature, there are many published studies tackling the NFR. Some of these studies

present methods for the identification and classification of the NFR. as well as proposed

frameworks and NFR ontologies.

In practice, requirements are initially typically addressed at the system level (Abran, Al-

Sarayreh et al. 2010a), (Al-Sarayreh, Abran et al. 2010b) and (Karl 2003), either as high level

system functional user requirements (system-FUR) or as high level system non functional

requirements (system-NFR). The latter must usually be detailed, allocated, and implemented

in either hardware or software, or both, as software-FUR for example – see Figure 1.1.

Figure 1.1 Mapping system-FUR and NFR to software-FUR

To distinguish between these types of requirements, system-FUR describes the required

functions in a system, while system-NFR describes how the required functions must behave

in a system. In the software requirements engineering step, system-NFR can then be detailed

System-NFR

Software-FUR

System-FUR

8

and specified as software-FUR, to allow a software engineer to develop, test, and configure

the final deliverables to system users.

The term "functional" refers to the set of functions the system (including the software) must

offer, while the term "non functional" refers to the manner in which such functions perform.

An FUR is typically phrased with a subject and a predicate (i.e.,, noun/verb), such as: "The

system must print 5 reports". NFR, by contrast, are typically phrased with an adverb or

modifying clause, such as: "The system will print 5 reports quickly", or "The system will

print 5 reports with a high degree of reliability".

Currently, the European Cooperation on Space Standardization (ECSS) and the Institute of

Electrical and Electronics Engineers (IEEE) propose two NFR lists with some primitive

concepts and vocabularies; similarly, ISO proposes in the ISO 9126 standard, a quality model

of software products.

This chapter presents a survey of the literature consulted for this research work and is

organized as follows:

• Section 1.2 surveys the NFR in the academic literature;
• Section 1.3 surveys the NFR in international standards;
• Section 1.4 surveys the NFR ontologies.
• A summary is presented in section 1.5.

1.2 NFR in the academic literature

In the literature on systems/software engineering, there are a number of published works on

NFR. Some of the early works on NFR, such as that of (Chung 1993), presents the initial

attempts to capture knowledge in this domain. Chung’s work was followed by that of

(Mylopoulos, Chung et al. 1999) who suggested viewing all requirements as goals, each goal

being an umbrella for related requirements, both functional and NFR.

9

Chung (Chung 1993) and Andrew (Andrew 2000) aimed to make NFR more quantitative in

nature, while Andrew (Andrew 2000) found that there are often gaps between the stakeholder

vision and requirements representation.

(Chung, Nixon et al. 2000) proposed a taxonomy for NFR, indicating that it is unrealistic to

expect designers and developers to incorporate an entity that they cannot readily identify.

While taxonomies aim to be inclusive of the entire set of entities in question, these authors

suggested (Chung, Nixon et al. 2000) that a one-level or two-level taxonomy would suffice

initially and that there are over 161 identifiable types of NFR.

(Moreira, Araujo et al. 2002), (Rosa, Cunha et al. 2002), (Park and Kang 2004), and (Glinz

2005) have proposed new methods for classifying NFR early in the software development

process, while (Kaiya, Osada et al. 2004) have presented a method for identifying

stakeholders and their NFR preferences by means of case diagrams of existing systems.

(Paech, Dutoit et al. 2002) recommended that functional requirements (FR), NFR, and

architecture be tightly co-developed and addressed in a coherent and integrated manner,

suggesting that NFR be decomposable into more refined NFR and additional FR, as well as

architectural decisions.

 (Cysneiros and Leite 2004) presented a process to elicit NFR, analyze their

interdependencies, and trace those to functional conceptual models using UML by

integrating the NFR into class, sequence, and collaboration diagrams. This process also

shows how certain cases and scenarios can be adapted to deal with NFR.

More recently, (Mylopoulos 2006) promoted goal-oriented requirements engineering and

suggests a specific solution involving the establishment of an agent-oriented software

development method. Called the TROPOS project, this software method covers not only the

requirements but also the design phases and addresses the design of high-variability software

for systemss such as home care and business process design.

10

(Galster and Bucherer 2008) have proposed a taxonomy for NFR in a service-oriented

context. Their taxonomy implements three main categories of NFR: process requirements,

NFR external requirements, and NFR service requirements. The taxonomy can be applied

with individual services as well as with a service-based system as a whole. This taxonomy is

considered as a starting point and checklist when handling NFR issues in service-oriented

and particularly highly-distributed environments.

(Bharadwaj and Nair 2009) presented an approach for some of the NFR used in the FPA

method by the International Function Point Users Group (IFPUG) to determine the degree of

influence for each of them. The study shows that NFR affect the FP value while attempting

to capture the actual applicable attributes of the fourteen GSCs for a given application. This

is further complicated because the influence of NFR on the project size is also difficult to

quantify. Furthermore, several different scale types are used in the various steps and the

results of many of the steps and sub-steps of the measurement designs of the GSCs are based

on inappropriate use of mathematical properties of corresponding scale types (Abran, 2010).

More recently, (Kassab, Daneva et al. 2009) proposed some solutions for building a NFR

framework. For example, (Kassab, Daneva et al. 2009) suggested adopting a sequence of

systematic activities with the aim of identifying, specifying, and separating FR from NFR, as

well as a discussion on NFR prioritization and risk assessment. They also reported (Kassab,

Ormandjieva et al. 2008) an initial solution using the COSMIC method for determining the

functional size of NFR based on "soft goal" concepts, to deal with the problem of

quantitatively assessing the proposed NFR framework early in a project.

Recently, (Casamayor, Godoy et al. 2010) proposed a method based on a semi-supervised

learning techniques for automatic identification and classification of NFR. The method is

based on a reduced number of categorized requirements by taking advantage of the

knowledge provided by uncategorized ones, as well as certain properties of text. The learning

method also exploits feedback from users to enhance classification performance.

11

Moreover, (Supakkul, Hill et al. 2010) presented a pattern-based approach composed of four

kinds of NFR patterns for capturing and reusing knowledge of NFR patterns, problem

patterns, alternatives patterns, and selection patterns. According to these authors, the NFR

patterns may be visually represented and organized by rules specialization to create more

specific patterns, composition to build larger patterns, and of instantiation to create new

patterns using existing patterns as templates. This NFR pattern approach is based on the TJX

incident, one of the largest credit card thefts in history, as a case study.

More recently, (Bendjenna, Charrel et al. 2010) proposed a process to identify the NFR to

model them using a fuzzy cognitive map. According to these authors using a fuzzy cognitive

map to model NFR allows moving from the conventional modelling to computer-based

modelling.

Finally, (Yakkali and Subramanian 2010) proposed an approach based on minimum spanning

trees and the NFR Framework for Control and Data Acquisition (CADA) systems used to

monitor and control critical infrastructures ranging from computer networks to

manufacturing.

1.3 NFR in international standards

The software industry has been working on the description of NFR, in particular through

international standardization bodies, such as the European Cooperation on Space

Standardization (ECSS), the Institute of Electrical and Electronics Engineers (IEEE), and the

International Organization for Standardization (ISO).

1.3.1 European international standards (ECSS)

The European Cooperation for Space Standardization (ECSS) is an organization that works

to improve standardization within the European space sector. The ECSS frequently publishes

standards targeted to the contractors working for the European Space Agency (ESA) (ECSS-

ESA 2005). The ECSS standards series includes a number of NFR at the system level.

12

More specifically, (ECSS-E-40-Part-1B 2003;ECSS-Q-80B 2003; ECSS-E-40-Part-2B 2005)

for the aerospace industry includes sixteen (16) types of the NFR for embedded and real-time

software – see Table 1.1. A number of NFR-related concepts are dispersed throughout the

ECSS standards to describe, at varying levels of details, the various types of NFRs at the

system, software, and hardware levels.

Table 1.1 List of the 16 NFR types in ECSS Standards

ID Types of Non Functional Requirement
1 Reliability requirements
2 Maintainability requirements
3 Interface requirements
4 Portability requirements
5 Operations requirements
6 Software Configuration & Delivery Requirements
7 Data Definitions & Database Requirements
8 Adaptation & Installation Requirements
9 Design & Implementation Constraints requirements
10 Performance requirements
11 Security & Privacy requirements
12 Safety requirements
13 Resources requirements
14 Human Factors requirements
15 Quality requirements
16 Other Requirements

1.3.2 IEEE 830 standard

The IEEE develops its standards through a consensus development process, approved by the

American National Standards Institute (ANSI). IEEE 830 “The recommended practice for

software requirements specifications standard” (IEEE-830 1998) was developed within the

IEEE societies and the standards coordinating committees of the IEEE standards association

(IEEE-SA) standards board.

13

More specifically, (IEEE-830 1998) identifies thirteen types of NFR to be included in a

software requirements document - see Table 1.2. A number of NFR-related concepts are

dispersed throughout the IEEE standards to describe, at varying levels of detail, the various

types of candidate NFR at the system, software, and hardware levels.

Table 1.2 List of the NFR types in IEEE-Std 830 - 1998

ID Type of Non Functional Requirements
1 Performance requirements
2 Interface requirements
3 Operational requirements
4 Resource requirements
5 Verification requirements
6 Reliability requirements
7 Quality requirements
8 Acceptance requirements
9 Documentation requirements
10 Security requirements
11 Portability requirements
12 Maintainability requirements
13 Safety requirements

1.3.3 ISO 9126 standard series

The ISO 9126 series (ISO-9126 2004) proposes a model for the evaluation of the quality, and

associated metrics, of a software product. ISO 9126-1 presents the quality model of six (6)

quality characteristics and several quality sub-characteristics for internal and external quality,

which are further subdivided into sub-characteristics. These sub-characteristics are

manifested externally when the software is used as a part of a computer system, and are a

result of internal software attributes - see Table 1.3.

Table 1.3 List of quality characteristics in ISO 9126

ID Quality Characteristics and Sub characteristics

1

Functionality: is defined as a set of attributes that bear on the existence of a set
of functions and their specified properties. The functions are those that satisfy
stated or implied needs. The sub characteristics related to this quality
characteristic are: suitability, accuracy, interoperability, compliance, and security

14

Table 1.4 List of quality characteristics in ISO 9126 (Contd)

ID Quality Characteristics and Sub characteristics

2

Reliability: is defined as a set of attributes that bear on the capability of software
to maintain its level of performance under stated conditions for a stated period of
time. The quality sub characteristics related to these factors are: maturity,
recoverability, compliance and fault tolerance

3

Efficiency: is defined as a set of attributes that bear on the relationship between
the level of performance of the software and the amount of resources used, under
stated conditions. The sub characteristics related to this characteristic are: time
behaviour, resource behaviour and compliance.

4

Usability: is defined as a set of attributes that bear on the effort needed for use,
and on the individual assessment of such use, by a stated or implied set of users.
The sub characteristics related to this characteristic are: learnability,
understandability, compliance and operability

5
Maintainability: is defined as a set of attributes that bear on the effort needed to
make specified modifications. The sub characteristics related to this characteristic
are: stability, analyzability, changeability, compliance and testability

6
Portability: is defined as a set of attributes that bear on the ability of software to
be transferred from one environment to another. The sub characteristics related to
this characteristic are: installability, replaceability, conformance and adaptability

1.3.4 ISO 19759 (SWEBOK guide)

The Guide to the Software Engineering Body of Knowledge (ISO-19759 2004) (SWEBOK

Guide), written under the auspices of the IEEE Computer Society’s professional practices

committee, was initiated in 1998 to develop an international consensus in pursuing the

following objectives:

• To characterize the content of the software engineering discipline;

• To promote a consistent view of software engineering worldwide;

• To provide access to the software engineering body of knowledge;

• To clarify the place and set the boundary of software engineering with respect to other

disciplines;

• To provide a foundation for curriculum development and individual certification

material.

15

The SWEBOK Guide (ISO-19759 2004) presents the ‘Software Requirements’ knowledge

area (KA) as the first KA in the software engineering life cycle process. According to the

SWEBOK Guide, the software requirements KA is concerned with the elicitation, analysis,

specification, and validation of software requirements. It is widely acknowledged within the

software industry that software projects are critically vulnerable when these activities are

performed poorly.

In the ‘Software Requirements Fundamentals’ in the SWEBOK Guide (ISO-19759 2004)

The functional requirements describe the functions that the software is to execute whereas

the non functional requirements (NFR) are the ones that act to constrain the solution. They

can be further classified according to whether they are performance requirements,

maintainability requirements, safety requirements, reliability requirements, or one of many

other types of software requirements.

1.3.5 ISO 19761 (COSMIC method)

It is specified in ISO 14143-1(ISO-14143-1 2007) that a functional size measurement (FSM)

method must measure software-FUR. In addition, (ISO-19761 2011) – COSMIC proposes a

generic model of software-FUR that clarifies the boundary between hardware and software.

Figure 1.2 illustrates the generic flow of data from a functional perspective from hardware to

software. From this generic model of software functional requirements – see Figure 1.2, we

observe the following:

• Software is bounded by hardware. In the so-called “front-end” direction (i.e.,, the left-

hand side in Figure 1.2), software used by a human user is bounded by I/O hardware,

such as a mouse, a keyboard, a printer, or a display, or by engineered devices, such as

sensors or relays. In the so-called “back-end” direction (i.e.,, the right-hand side of Figure

1.2), software is bounded by persistent storage hardware, like a hard disk, and RAM and

ROM memory;

• The software functionality is embedded within the functional flows of data groups. Four

distinct types of data movements can characterize such data flows. In the “front end”

16

direction, two types of movements (Entry and Exit) allow the exchange of data with the

users across a ‘boundary’. In the “back end” direction, two types of movements (Read

and Write) allow the exchange of data with persistent storage hardware;

• Different abstractions are typically used for different measurement purposes. In real-time

software, the users are typically the engineered devices that interact directly with the

software; that is, the user is ‘I/O hardware’. For business application software, the

abstraction commonly assumes that the users are humans who interact directly with the

business application software across the boundary, in which case the I/O hardware is

ignored.

The COSMIC FSM method (ISO-19761 2011) is aimed at measuring the size of software

based on identifiable FUR. Once identified, those requirements are allocated to hardware and

software from the unifying perspective of a system integrating these two “components”.

Since COSMIC is aimed at sizing software and only the requirements allocated to the

software are currently considered in its measurement procedure.

Figure 1.2 Generic flow of data groups for a functional perspective in COSMIC – ISO 19761

or

Engineered

Devices

Storage Hardware

SOFTWARE

ENTRIES

EXITS

USERS

READS

WRITES

EXITS

ENTRIES

I/O Hardware

BOUNDARY

17

In this research work, the generic model of COSMIC (ISO 19761) will be used to measure

the functional size of the functions of the system-NFR allocated to software-FUR, which

functions are mentioned in other international standards such as ECSS, IEEE and Iso 9126.

For example, the IFPUG (International Function Point User Group) sizing method has been

published as an ISO Standard (ISO 20926 2003); this method attempts to capture and size

the NFR through it set of the fourteen general system characteristics (GSCs) for a given

application. This is further complicated in the IFPUG method structure since the influence of

NFR on the project size is also difficult to quantify. Furthermore, several different scale types

are used in the various steps of the IFPUG method and the results of many of the steps and

sub-steps of the measurement designs of the GSCs are based on inappropriate use of

mathematical properties of corresponding scale types (Abran, 2010).

1.3.6 Software Functional Size Measurement (FSM)

The functional size measurement (FSM) is used to measure software products from a user

perspective. FSM must be independent of technical development and implementation

decisions and it can be used to compare the productivity of different techniques and

technologies (Abran 2010).

FSM has reached a high maturity level: for example, the basic concepts and definitions of

FSM have been standardized by the International Organization for Standardization in (ISO-

14143-1 2007) while five measurement methods have been adopted by ISO as International

Standards, such as: COSMIC (ISO-19761 2011).

The COSMIC (ISO-19761 2011) standard is considered as a second generation of an FSM

method. COSMIC method has been extensively tested and its use is increasing especially in

the real-time and telecommunications; it is as well compatible with modern specification

methods such as unified modeling languages (UML), and object-oriented (OO) techniques.

COSMIC method defines the principles, rules, and a process for measuring the functional

size of a piece of software. ‘Functional size’ is a measure of the ‘amount of functionality’

provided by the software.

18

1.3.7 COSMIC guideline for sizing service oriented architectural software

COSMIC-SOA is a supplementary guideline (COSMIC 2010) for the COSMIC standard

published by the COSMIC Group in 2010. It is intended to be used by expert ‘measurers’

who have the task of measuring the functional size of software services according to the

COSMIC method. In particular, the COSMIC method defines and standardizes particular

concepts, such as layers, peer components, the unlimited size of a functional process, and that

pieces of software can be functional users of each other; these concepts are perfectly suited

for measuring SOA-based software requirements.

There are many definitions of a service-oriented architecture (SOA), such as: a flexible set of

design principles used during systems development and integration (COSMIC 2010); a

process including the definition of the architecture, components, modules, interfaces, and

data for a system to satisfy specified requirements (SoberIT: 2008).

SOA has been selected in this thesis as example of sets of more complex requirements. Of

course, there could be other types of complex requirements from different viewpoints: for

example, various types of architectures, and architecture design semantics in multi-tiered and

distributed systems.

COSMIC Guideline (COSMIC 2010) aids measurers of services when there are SOA

requirements by separating functions into distinct units, or services. These services

communicate with each other by exchanging data in a well-defined, shared format, or by

coordinating an activity between two or more services and aims to show how the COSMIC

method can be applied to measure SOA software without needing to adapt the method in any

way.

The COSMIC Guideline for SOA (COSMIC 2010) offers three types of data movements in

Table 1.4.

19

Table 1.5 COSMIC SOA guideline - Tthree types of data movements
(COSMIC 2010)

ID COSMIC-SOA Data Movements Types Generic Measurement Model

1

COSMIC-SOA exchange messages:

An application requiring commonly-used
information from another application sends
a request to the service of the application
that can handle the request or the application
may call upon its own services. Such calls
are also called ‘messages’. Each message
may consist of one or more data movements

2

COSMIC-SOA intermediary services:

When a functional process of an application
service in application A requires data that
are available via an application service in
application B, the former application service
calls upon a functional process of the
intermediary service. This service
functionality is also needed by other
applications in the overall SOA framework,
as it may itself be realized in the form of a
utility service

3

COSMIC-SOA data exchanges:
The data movements between components
in the same layer, i.e., between peer
components (where a component may be an
application or a service). It shows direct and
indirect exchanges of data between
components. If components exchange data
directly, then, for measurement purposes,
the measurer will identify Exit and/or Entry
data movements, as per the data movements
between service A (SA) and service B (SB).
An indirect exchange of data between
components means that a service in one
component writes data in a storage device,
which is subsequently read by a service in
another component. the measurer will
identify a Write data movement in service
SA and a Read in service SB

20

1.4 NFR ontologies

Ontology is a formal representation of a set of concepts within a domain and the relationships

between these concepts. It is used to reason about the properties of that domain and may be

used to define the domain (Liu 2010) .

An ontology provides a shared vocabulary that can be used to model a domain — that is,

with the types of objects and-or concepts that exist, and their properties, relations, and the

rules of the ontology meta model. The metadata can be filled in with concepts from an

ontology to model a NFR.

An ontology deals with questions concerning what entities exist or can be said to exist and

how such entities can be grouped, related within a hierarchy, and subdivided according to

similarities and differences.

The use of NFR-ontologies is still as a research in progress in the software/system-NFR

domain for the following reasons:

• The NFR-ontologies are built based on individual concepts and views, not on consensual

views as agreed upon in international standards;

• The NFR domain is hard to model and the relationships between these requirements are

often contradictory; because there is no abstract knowledge for NFR, it is hard to build a

conceptualized view for the NFR-ontology;

• The NFR-ontology is difficult to enforce during software development projects;

• The NFR-ontology does not allow measuring these NFR with the available functional

size measurement (FSM) methods such as COSMIC and FPA.

1.5 Summary

The term NFR has been used in academia and industry but there is still no common definition

for this term and the NFR domain is hard to model and viewed: the NFR are defined,

interpreted, and evaluated differently by authors and standards. The relationships between

21

these requirements are often contradictory. In practice, NFR have received less attention in

the software engineering literature, including in software estimation models..

The European ECSS series of standards for the aerospace industry includes sixteen types of

NFR for embedded and real-time software and the NFR-related concepts are dispersed

throughout the ECSS standards to describe, at varying levels of detail, the various types of

candidate NFRs at the system, software, and hardware levels.

The ECSS standards series uses a set of concepts and vocabularies to describe their 16 types

of NFR. While conducting an inventory of the entire set of NFR-related concepts and terms

described in the ECSS-E-40 and ECSS-Q-80 series and in ECSS-ESA as the integrated

standard for ECSS-E and ECSS-Q, we observed that:

• The NFR elements list in ECSS is dispersed throughout various parts and there is

therefore no integrated view of all types of NFR elements in the list.

• The NFR elements are described differently and at different levels of detail.

• There is no obvious guidance on how to measure the NFR in the ECSS standards series.

Additionally, in the ISO 9126 and IEEE 830, a number of concepts are provided to describe

various types of NFR at the system and software levels in the testing and evaluation

processes. However, these ISO and IEEE documents also vary in their views, terminology,

and coverage of these requirements.

In addition, the SWEBOK Guide (ISO-19759 2004) includes in the ‘software requirements’

KA a description of the steps to move from system-NFR to software-NFR: requirements

elicitation, requirements analysis, requirements specification, and requirements verification.

These activities could be used to build a standard-based modeling from a high-level system-

NFR to a detailed level of software-NFR such as Configuration Control and Data.

Furthermore, the basic concepts and definitions of FSM have been standardized by the

International Organization for Standardization in (ISO-14143-1 2007) and five measurement

22

methods have been adopted by ISO as International Standards. The newest method in

COSMIC (ISO-19761 2011). COSMIC method has been extensively tested and its use is

increasing especially in the real-time and telecommunications. In particular, the COSMIC

method is compatible with modern specification methods, such as UML, OO techniques and

a COSMIC-SOA guideline that developed by the COSMIC group in 2010. This guideline

aims to show how the COSMIC method can be applied to measure SOA software

requirements.

In the work reported here, preference is given to the views, concepts, and vocabulary most

widely used by the industry, as evidenced in its standardization infrastructure, rather than

those in the academic literature. Similarly, for the structuring and description of models of

FUR and for measurement purposes, the measurement views, concepts, and terminology

from the standardization infrastructure have been adopted in this research thesis, rather than

those in the literature.

CHAPTER 2

RESEARCH GOAL, OBJECTIVES, AND METHODOLOGY

2.1 Introduction

A research methodology is one of the keys to the success of a research project. It helps

ensure that the research itself is valid and the methodology used is appropriate. (Ellis and

Levy 2008) mentioned that “the problem is the axis around which the whole research effort

revolves. The statement of the problem must first be expressed with the utmost precision; it

should then be divided into more manageable sub-problems. Such an approach clarifies the

goals and directions of the entire research effort”.

This chapter describes the research project definition including: the research motivation, the

research goal, the research objectives, the users of the research ersults, key inputs to this

research work and the research methodology.

2.2 Research motivation

The research project motivation is to contribute to the improvement of the estimation models

of software development effort by including the system-NFR in the software estimation

process through a quantitative view of such NFR.

2.3 Research goal

The goal for this research project is to help the project managers, organizations, and

researchers make informed decisions during project planning and software development

projects in the early identification, specification, and measurement of the system-NFR for

embedded software. More specifically, this research project aims to contribute to better

define, describe, and measure some of the inputs, which are the system-NFR required for a

priori cost estimation.

24

2.4 Research objectives

The research objective is the early specification and measurement of software-FUR derived

from system-NFR, using as a basis the systems and software engineering standards.

To achieve this research objective the following two specific research sub-objectives must be

reached:

• Designs of standard-based models for the identification and specification of software-

FUR for system-NFR.

• Measurement of the functional size of software-FUR for system-NFR using the COSMIC

ISO 19761 standard.

The NFR measurements results should be available as early as possible in software projects

and in particular be available for a priori estimating. The results of this research will be a set

of standard-based generic requirements and measurement models for system-NFR for

embedded software.

2.5 Users of research

The users of research in this research work are people who are working on the requirements

and measurement of the software-FUR derived from system-NFR.

2.6 Research input

This research project for the specification and measurement of the software-FUR from the

system-NFR using international standards has the following key inputs:

• ECSS European international standards, 2003-2010;

• ISO 9126, 2004;

• IEEE 830, 1998;

25

• ISO 19761 (COSMIC, 2011);

• COSMIC SOA guideline 2010;

• ISO 19759 (SWEBOK Guide, 2004).

2.7 Overview of the research methodology

This section presents an overview of the research methodology designed to pursue the

research objective. This research methodology consists of five phases as seen in Figure 2.1.

Phase 1: NFR in the literature review

Phase 1 of the research methodology consists of surveying the literature on NFR, in both the

academic literature and in the international standards on systems and software engineering –

see chapter 1 and Annex I.

Phase 2: Identification of NFR concepts, terms and vocabularies in international

standards

Phase 2 of the research methodology consists of surveying the concepts, vocabularies and

terminologies from different standards for each of the 16 types of ECSS-NFR – see chapter

3.

Phase 3: Mapping and modeling of standard-based models of NFR types for software-

FUR specifications and measurement

Phase 3 of the research methodology consists of the identification, specification and

measurement of software-FUR derived from fourteen (14) types of system-NFR in the ECSS

standards – see chapters 4, 5, 6 and 7 as well as Annex II.

Phase 4: Case study-Valve Control System (VCS)

26

Phase 4 of the research methodology consists of a case study to illustrate some of the

proposed standard-based models of software-FUR derived from system-NFR – see chapter 8.

Phase 5: Traceability and Operationalization

Phase 5 of the research methodology consists of proposing a modified system requirement

traceability matrix (RTM) within the system life cycle to tackle system-FUR and system-

NFR in high and detailed levels, as well as the detailed traceability to specific sections and

pages of the ECSS standards of the proposed reliability-NFR model.

2.8 Detailed research methodologyPhase 1: NFR in the literature

It is noted from the literature survey of the NFR in chapter 1 that NFR are still hard to model

and use in software projects and NFR are defined differently by different authors. This phase

of the methodology consists of following steps:

• Step 1.1: NFR in the academic literature

This step presents a survey of the early and recent works on NFR in the academic

literature – see chapter 1.

• Step 1.2: NFR in international standards

This step presents a survey of the NFR in standards such as ECSS, ISO, IEEE and ISO

19759 (SWEBOK Guide) as well as a standard measurement method such as ISO 19761

(COSMIC method) and its supplementary COSMIC-SOA guideline. This step is a key

input for this research study – see chapter 1.

Phase 2: Identification of NFR concepts, terms and vocabularies in international

standards

This phase 2 of the methodology consists of the following steps:

• Step 2.1: ECSS views and concepts for 16 NFR types in the ECSS standard series

This step identifies the NFR related views, concepts and terms in the ECSS standards.

• Step 2.2: ISO 9126 views and concepts for some of the NFR types in the ECSS list

This step identifies the NFR related views, concepts and terms in the ISO 9126 standards.

• Step 2.3: IEEE views and concepts for some of the NFR types in the ECSS list

27

This step identifies the NFR related views, concepts and terms in the IEEE standards.

• Step 2.4: ISO 19759 (SWEBOK Guide) views and concepts for some of the NFR

types in the ECSS list

This step identifies the NFR related views, concepts and terms in the ISO 19759 for

Configuration and design and implementation constraints requirements.

Phase 3: Mapping and modeling of standard-based models of NFR types for software-

FUR specifications and measurement

This phase 3 of the methodology consists of following steps:

• Step 3.1: Identification of functions to be specified for each type of system-NFR

This step identifies the functions to be specified or corresponding functions to be

measured for each type of system-NFR in the ECSS list.

• Step 3.2: Identification of the system-NFR types allocated to software-FUR

This step identifies the function types for each type of system-NFR in the ECSS list.

• Step 3.3: Identification of the NFR relationships

This step identifies the relationships between the specified function allocated to software-

FUR of the system-NFR in the ECSS list by using the COSMIC functional modelling

view.

• Step 3.4: Model of function types relationships based on COSMIC and system views.

This step identifies a standard-based models for each type of system-NFR allocated to

software-FUR.

• Step 3.5: A standard-based measurement model of software-FUR using COSMIC-

SOA Guideline

This step uses the COSMIC-SOA Guideline to identify the service oriented architecture

requirements for the standard-based generic models of each type of the system-NFR

allocated to software-FUR.

• Step 3.6: Sizing a reference instantiation of the standard-based models of software-

FUR

This step identifies the functional measurement size for different specific instantiations

for each type of system-NFR allocated to software-FUR.

28

Phase 4: A case study- Valve Control System (VCS)

This phase of the methodology includes the case study “Valve Control system”. The selected

case study aims at the identification, specification and measurement of the standard-based

model of software-FUR for system reliability-NFR using the following steps:

• Step 4.1: Specification of the system reliability-NFR to be allocated to software.

• Step 4.2: Specification of the ECSS-based reliability allocated to software-FUR for

the VCS components.

• Step 4.3: Measurements of the system-reliability-NFR for the VCS case study.

Phase 5: Traceability and operations

This phase 5 of the methodology consists of the following steps:

• Step 5.1: Traceability model in the ECSS standard series

These step presents the traceability model used in the ECSS standards series for the

system-FUR.

• Step 5.2: Improvement for a traceability model in ECSS standard series

This step identifies some improvements for extending the ECSS traceability model in the

previous step to include system-FUR and NFR;

• Step 5.3: The traceability of the concepts, terms and vocabularies for the proposed

fourteen standard-based models

This step identifies the traceability of the functions identified in the various ECSS, IEEE

and ISO standards for the proposed fourteen standard-based models.

• Step 5.4: A detailed traceability for the standard-based model of software-FUR for

system reliability-NFR

This step identifies the detailed traceability to specific sections and pages of the ECSS

standards of the proposed reliability-NFR model.

29

Inputs Phases Output 1 Output 2

1

NFR literature review

Chapter 1

Non functional requirements in the literature

Annex

I

2
Identification of NFR
concepts, terms and
vocabularies in
international standards

Chapter 3

 NFR concepts and views in international
standards

3

Mapping and modeling
of standards-based
models of system-NFR
types for software-FUR
specifications and
measurement

Chapter 4: Reliability: identification,
specification and measurement of
software-FUR derived from system-
NFR

Chapter 5: Maintainability: identification,
specification and measurement of
software-FUR derived from system-
NFR

Chapter 6: Interfaces: identification,
specification and measurement of
software-FUR derived from system-
NFR

Chapter 7: The other 11 types of system-NFR
in ECSS: Their specification and
measurement

4
Case study
Valve Control Software

Chapter 8

A case study using a standard-based model of
software-FUR for system reliability-NFR

5
Traceability and
Operationalization

Chapter 9

Traceability models and operationalization
procedures

ECSS standards
2003-2010
ISO 9126 standard
2004,
IEEE 830 standard
1998
ISO 19761
(COSMIC, 2007)
COSMIC SOA
 Guideline 2010

ISO 19759
(SWEBOK, 2004)

Annex

II

Annex

III

Figure 2.1 Research methodology – overview of phases

CHAPTER 3

IDENTIFICATION OF NFR CONCEPTS AND VIEWS IN STANDARDS

3.1 Introduction

The NFR are typically described at the system level and not at the software level. As yet,

there is no consensus on how to describe and measure system-NFR. In current practice, they

may be viewed, defined, interpreted, and evaluated differently by different people in the later

project phases, particularly when they are stated vaguely and only briefly in the system

requirements phase (Chung and do Prado Leite 2009).

In the ECSS (European Cooperation on Space Standardization) standards for the aerospace

industry (ECSS-S-ST-00C 2008; ECSS-E-ST-10C 2009; ECSS-Q-ST-80C 2009) and

(ECSS-E-40-Part-1B 2003; ECSS-Q-80B 2003; ECSS-E-40-Part-2B 2005), ISO 9126 (ISO-

9126 2004) and IEEE 830 (IEEE-830 1998), a number of concepts are provided to describe

various types of NFR at the system, software, and hardware levels. However, these standards

vary in their views, terminology, and coverage of operations.

This chapter is organized as follows to describe the concepts and views of the 16 types of

system-NFR in the ECSS series:

Section 3.2 Reliability systems requirements.

Section 3.3 Maintainability systems requirements.

Section 3.4 Interfaces systems requirements.

Section 3.5 Portability systems requirements.

Section 3.6 Operations systems requirements.

Section 3.7 Configuration systems requirements.

Section 3.8 Data definitions and database systems requirements.

Section 3.9 Adaptations and installations systems requirements.

Section 3.10 Design and implementation constraints systems requirements.

Section 3.11 Performance systems requirements.

31

Section 3.12 Security and privacy systems requirements.

Section 3.13 Safety systems requirements.

Section 3.14 Resources systems requirements.

Section 3.15 Human factor requirements.

A summary is presented in section 3.16

3.2 Reliability systems requirements

This section presents a survey of the reliability-related views, concepts, and terms in the

ECSS (ECSS-S-ST-00C 2008; ECSS-E-ST-10C 2009; ECSS-Q-ST-80C 2009) , ISO 9126

(ISO-9126 2004), and IEEE-830 (IEEE-830 1998) standards. This section identifies which

standards currently address aspects of the software-FUR that may be derived from system

reliability FUR and NFR.

3.2.1 ECSS: views and concepts for reliability

Reliability, in the ECSS standards, shall be specified at the system level. The reliability

requirements can be met by introducing adequate redundancy features. The ECSS standards

consider reliability as the acceptable probability of system failure which is based on the

equipment reliability and availability specifications.

According to the ECSS, reliability models shall be prepared to support predictions: FMEA

(Failure Mode and Effects Analysis), FMECA (Failure Mode, Effects and Criticality

Analysis) as well as reliability testing. Demonstration shall be performed according to the

project reliability requirements in order to check the following:

1. Failure modes and effects;

2. Failure tolerance, failure detection and recovery;

3. Statistical failure data to support predictions and risk assessment;

4. Consolidated reliability assessments;

32

5. Capability of the hardware to operate with software or to be operated by a human being

in accordance with the specifications;

6. Demonstrated reliability of critical items;

7. Justification of data bases used for theoretical demonstrations.

Table 3.1 presents a list of concepts and vocabulary used in the ECSS standards to describe

system-related reliability requirements. The ECSS standards specify that reliability

requirements must be implemented in software, hardware, or a combination of the two.

3.2.2 IEEE: views and concepts for reliability

IEEE-830 (IEEE-830 1998) lists reliability as one of the thirteen (13) NFR types in their list.

IEEE-830 (IEEE-830 1998) only defines the reliability requirements as the factors required

to establish the required reliability of the software system at time of delivery; however, it

does not provide guidance on how to describe and specify the reliability requirements and it

does not provide guidance on how to measure them - see Table 3.1.

IEEE-1220 (IEEE-1220 2007) only defines the reliability requirement as the analysis of

system effectiveness for each operational scenario, without mentioning how to describe and

specify the reliability requirements.

3.2.3 ISO views and concepts for reliability

The key view on reliability in the ISO 9126 (ISO-9126 2004) series is from the perspective

of the quality of the software product: reliability is presented as a quality characteristic,

which is decomposed into quality sub-characteristics and then into proposed derived

measures to quantify those quality sub-characteristics. The inventory of related concepts and

vocabulary on software reliability, such as maturity, fault tolerance and recoverability, is

presented in Table 3.1.

33

Furthermore, (ISO-24765 2008) for the systems and software engineering vocabulary defines

the reliability as the probability that software will not cause the failure of a system for a

specified time under specified conditions. (ISO-24765 2008) uses the following concepts

with their definitions:

1. Function to identify error to input;

2. Function to identify error to output.

Table 3.1 Reliability views, concepts and terms in ECSS and ISO

ID
Standard

Organization
Key view Concepts and terms

1 ECSS
Acceptable probability of
system failure

• Component failure
• Redundancy feature
• Data parameter
• Reliability methods,

operations and mechanism
• Failure tolerance
• FMEA and FMECA
• Failure detection
• Failure isolation
• Failure recovery
• Failure data

2 ISO

The capability of the software
product to maintain a specified
level of performance when used
under specified conditions

• Maturity
• Fault tolerance
• Recoverability
• Fault Density
• Failure Resolution
• Incorrect Operation
• Availability
• Breakdown Time
• Recovery Time
• Fault Removal
• Failure Avoidance
• Restart ability
• Restorability

34

3.3 Maintainability systems requirements

This section presents a survey of the maintainability-related views, concepts, and terms in the

ECSS (ECSS-S-ST-00C 2008; ECSS-E-ST-10C 2009; ECSS-Q-ST-80C 2009), (ECSS-E-40-

Part-1B 2003; ECSS-Q-80B 2003; ECSS-E-40-Part-2B 2005) and (ECSS-ESA 2005), (ISO-

9126 2004) and (IEEE-830 1998) standards. This section identifies which standards currently

address aspects of the software-FUR which may be derived from the system maintainability

FUR and NFR.

3.3.1 ECSS: views and concepts for maintainability

Maintainability in the ECSS standards is considered part of the integrated support

requirements in system engineering, including related activities and procedures. Table 3.2

presents a list of the concepts and vocabulary used in the set of 13 ECSS standards to

describe system-related maintainability requirements. For instance, the ECSS specifies that,

for system maintainability, failure modes, effect, and criticality (FMECA) must be analyzed.

It does not specify, however, whether such requirements must be implemented in software or

hardware, or in a combination of the two.

3.3.2 IEEE: views and concepts for maintainability

IEEE-830 (IEEE-830 1998) standard lists maintainability as one of the NFR types on their

list, but does not define it, nor does it provide guidance on how to describe and specify the

maintainability requirements; neither, of course, does it provide guidance on how to measure

any of these NFR. (IEEE-14764 2006) and (IEEE-982.1 2005) only define the

maintainability requirement as the capability of the software product to be modified, without

mentioning how to describe and specify the maintainability requirements.

35

3.3.3 ISO: views and concepts for maintainability

The key view on maintainability in the ISO 9126 (ISO-9126 2004) series is from the

perspective of the quality of the software product. Maintainability is presented as a ‘quality

characteristic’ of the software, which is decomposed into quality sub characteristics and then

into proposed derived measures to quantify those quality sub characteristics. The inventory

of related concepts and vocabulary on software maintainability, such as analyzability,

changeability, etc., is presented in Table 3.2.

Table 3.2 Maintainability views concepts and terms in the ECSS and ISO standards

ID
Standard

organization
Key view Concepts and terms

1
ECSS

Part of the integrated
logistical support
requirements in system
engineering, including
activities and procedures

• Maintainability activities and
procedures

• Maintainability operations
• Environment control and life

support systems design (ECLSS)
• FMECA: failure mode, effect,

and criticality analysis
• FMEA: failure mode and effect

analysis
• Mean time‐to‐repair and system

downtime
• Fault detection and isolation

capability
• System malfunction

2
ISO

The maintainability quality
characteristic denotes the
capability of the software
product to be modified.

Modifications may include
corrections, improvements,
or adaptation of the
software to changes in
environment

• Analyzability
• Audit Trial Capability
• Failure Analysis Capability
• Status Monitoring Capability
• Diagnostic Function Support
• Changeability
• Change Efficiency
• Software Change Control

Capability
• Modifiability
• Stability

36

Table 3.2 Maintainability views concepts and terms in the ECSS and ISO standards
(Continued)

ID
Standard

organization
Key view Concepts and terms

2
ISO

The maintainability quality
characteristic denotes the capability of
the software product to be modified.

Modifications may include
corrections, improvements, or
adaptation of the software to changes
in environment

• Modification Impact
• Change Success Ratio
• Testability
• Availability of a built-

in test function
• Retest Efficiency
• Test Restart

Capability

3.4 Interface systems requirements

This section presents a survey of the interface-related views, concepts, and terms in the ECSS

and IEEE-830 standards. This section identifies which standards currently address some

aspects of the software-FUR derived from the interface system-FUR and system-NFR.

3.4.1 ECSS: views and concepts for interfaces

The ECSS standards ECSS (ECSS-S-ST-00C 2008; ECSS-E-ST-10C 2009; ECSS-Q-ST-

80C 2009) and (ECSS-E-40-Part-1B 2003; ECSS-Q-80B 2003; ECSS-E-40-Part-2B 2005)

present software interfaces as a set of NFR for real time and embedded software. In

particular, the ECSS-E-40 include the design of the external interface as part of the interface

control document (ICD), while the design of the internal interface is included as part of the

software design document (SDD). Also, (ECSS-ESA 2005) specifies that the detailed design

of the software product interfaces should be defined during the interface design phase.

In ECSS (ECSS-S-ST-00C 2008; ECSS-E-ST-10C 2009; ECSS-Q-ST-80C 2009) and

(ECSS-E-40-Part-1B 2003; ECSS-Q-80B 2003; ECSS-E-40-Part-2B 2005) and (ECSS-ESA

2005), the majority of interfaces are software-to-software interfaces, and the ECSS requires

37

that they shall be defined in the requirements baseline (i.e., the requirements baseline must

include the requirements applicable to the various elements of the system product tree).

Table 3.3 presents a list of concepts and vocabulary used in the ECSS standards to describe

system-related interface requirements. These standards specify that interface requirements

must be implemented in software or hardware, or a combination of the two.

3.4.2 IEEE: view and concepts for interfaces

Software interface requirements are also presented in (IEEE-830 1998) as NFR, and the

interface is defined through a detailed description of all inputs into, and outputs from, the

software system. In particular, (IEEE-830 1998) mentions that the interface can be analyzed

and understood through the user interfaces, the hardware interfaces, the software interfaces,

and the communications interfaces. Note that, where (IEEE-830 1998) defines an interface as

‘inputs’ or outputs’, these are considered only as collections of data movements and not

integrated into specific functional processes. (IEEE-830 1998) does not provide an analysis

or explanation of the linkage between the set of interface concepts identified- see Table 3.3.

IEEE (IEEE-830 1998) identifies the system interface functionality of the software designed

to accomplish the system requirements, and describes the interfaces that match the system for

the following types of interfaces:

1. User interface: provides the logical characteristics for communication between the

software product and its users. This includes the configuration characteristics (e.g.

required screen formats, page or window layouts, content of any reports or menus,

availability of programmable function keys, etc.) necessary to meet the software

requirements;

2. Hardware interface: provides the logical characteristics for communication between the

software product and the hardware components of the system. This includes

configuration characteristics (number of ports, instruction sets, etc.) and addresses such

matters as what devices are to be supported, how they are to be supported, and the related

38

protocols. For example, full-screen support may be specified for the terminal, as opposed

to line-by-line support;

3. Software interface: specifies other software products (e.g. a data management system, an

operating system, a mathematical package, etc.) for the user, and provides the means of

communication with other application systems (e.g. the linkage between an accounts

receivable system and a general ledger system) required by the user;

4. Communications interface: provides the user with network interconnection capability,

such as with local network protocols, etc.

Table 3.3 Interface: views, concepts and terms in ECSS and IEEE

ID
Standards

organization
Key view Concepts and terms

1
ECSS

Interface

requirements must be
implemented in
software or
hardware, or a
combination of the
two

• User interface between the system and the
product

• Interface communications in various
communication layers:
 External interfaces for telemetry,

telecommands, ranging, and data:
spacecraft-to-ground, spacecraft-to-
spacecraft, ground-to-ground

 Internal interfaces between items of on-
board equipment

• Control software interfaces, including:
 Software interfaces for system

applications
 Interface specifications through

programming languages
 Interface specifications for each layer of

socket programming, including data size
control, data direction (unidirectional or
bidirectional), data serialization,
methods, and ports

• Control Hardware interfaces:
• Physical, thermal, and electrical interfaces

2
IEEE

Interface is defined
through a detailed
description of all
inputs into, and
outputs from, the
software system

• User interfaces,
• Hardware interfaces,
• Software interfaces, and
• Communications interfaces.

39

3.5 Portability systems requirements

This section presents a survey of the portability-related views, concepts, and terms used in

international standards. It identifies which standards currently address some aspects of the

software-FUR derived from the portability system-NFR. The elements of portability are

dispersed in various system views throughout the ECSS standards, and are expressed as

either:

• System portability functional user requirements (system portability-FUR);

• System portability non functional requirements (system portability-NFR).

3.5.1 ECSS: view and concepts for portability

The ECSS standards series ECSS (ECSS-S-ST-00C 2008; ECSS-E-ST-10C 2009; ECSS-Q-

ST-80C 2009) and (ECSS-E-40-Part-1B 2003; ECSS-Q-80B 2003; ECSS-E-40-Part-2B

2005) and (ECSS-ESA 2005), includes a number of portability requirements at the system

level. Portability in the ECSS standards is considered as the capability of the system to be

transferred from one environment to another. Table 3.4 presents a list of concepts and

vocabulary used in the ECSS standards to describe system-related portability requirements.

For instance, the ECSS specifies minimum dependency on software and hardware (system

portability) and independence of the operating system from hardware and software

obsolescence. What it does not specify, however, is whether or not such requirements must

be implemented in software or hardware, or a combination of the two.

3.5.2 IEEE: view and concepts for portability

The (IEEE-830 1998) lists the portability requirements as one of the NFR on their list. The

IEEE describes portability by specifying the attributes of software that relate to the ease of

porting the software to other host machines and/or operating systems, and provides some

portability concepts – see Table 3.4.

40

3.5.3 ISO standards: views and concepts for portability

The key view on portability in the (ISO-9126 2004) is from the perspective of the quality of

the software product: portability is presented as a ‘quality characteristic’ and is then

decomposed into quality sub-characteristics and next into proposed derived measures to

quantify those quality sub-characteristics. The inventory of related concepts and vocabulary

on software portability, such as replaceability and co-existence, is presented in Table 3.4.

Portability in (ISO-24765 2008) is considered as a system or component that can be

transferred from one hardware or software environment to another. Table 3.4 presents the

concepts and vocabulary used in (ISO-24765 2008) to describe system-related portability

requirements. While ISO 24765 states that portability in a system environment refers to a

transfer between software and hardware, it does not specify whether portability requirements

must be implemented in the software or the hardware, or in a combination of the two.

Portability in (ISO-2382-1 1993) is described as a program to be executed on various types

of data processing systems. Table 3.4 presents a list of concepts and vocabulary used in

(ISO-2382-1 1993) to describe system-related portability requirements. For instance, this

standard refers to portability between a program and a sub part of the same program (sub

program) when this program is executed using different data processing systems and system

program calls (SPC) or remote procedural calls (RPC) between the program and sub program

functions, independently of the language. It does not, however, specify whether such

requirements must be implemented in the software or the hardware, or in a combination of

the two.

Table 3.4 Portability views, concepts and terms in the standards

ID
Standard

organization
Key views Concepts and terms

1 ECSS

The capability of the

system to be transferred
from one environment to
another

• Minimum system dependency
• Independent from the operating

system
• Minimum hardware dependency
• Obsolescence of hardware or software

41

Table 3.4 Portability views, concepts and terms in the standards (Continued)

ID
Standard

organization
Key views Concepts and terms

2
IEEE 830

Describe portability by specifying
the attributes of software that
relate to the ease of porting the
software to other host machines
and/or operating systems

• Percentage of components
with host-dependent code

• Percentage of code that is
host-dependent

• A proven portable language
• A particular compiler or

language subset
• A particular operating system

3
ISO 9126

The capability of the software
product to be transferred from one
environment to another
Environment may include the

organizational, hardware, or
software environment

• Sharing common resources
• Independent software in a

common environment
• Continued use of data
• Software running

concurrently with other
software

• Replaceability
• Co-existence

4
ISO 24765

A system or component can be
transferred from one hardware or
software environment to another

• Software environment
• Hardware environment

5
ISO 2382-1

A program to be executed on
various types of data processing
systems

• Language independence
• Data processing system
• Isolating software system

calls

3.6 Operations systems requirements

This section presents a survey of the operations-related views, concepts, and terms in the

ECSS and IEEE-830 standards. It identifies which standards currently address aspects of the

software-FUR derived from system operations FUR and NFR. The expected outcome is the

identification of the various elements that should be included in the design of a standard-

based framework for modeling software-FUR for system operations-NFR.

42

3.6.1 ECSS: views and concepts for operations

The ECSS standards series ECSS (ECSS-S-ST-00C 2008; ECSS-E-ST-10C 2009; ECSS-Q-

ST-80C 2009) and (ECSS-E-40-Part-1B 2003; ECSS-Q-80B 2003; ECSS-E-40-Part-2B

2005) and (ECSS-ESA 2005) includes a number of operations requirements at the system

level. Clearly, the ECSS focuses on the system-FUR for the early development phases, while

the system-NFR are typically discussed within the context of later development phases, such

as evaluation or testing.

The elements of operations are dispersed in various system views throughout various ECSS

standards, and are expressed as either:

• System operations FUR;

• System operations NFR.

Operations in the ECSS standards include any specified operations mode and mode transition

for the software, and, in the case of man-machine interaction, the intended use scenarios and

diagrams may be used to show the intended operations and related transition modes.

Moreover, operations engineering should cover all operations activities through all phases of

the life cycle; i.e., preparation, validation, execution, and disposal.

Table 3.5 presents a list of concepts and vocabulary used in the ECSS standards to describe

system-related operations requirements. For instance, the ECSS specifies that, for system

operations mode, an analysis of the operational functions (inter-operational function and

operational function event) and of the system transitions mode (operational control interface

and operational data interface) must be carried out.

The ECSS specifies that such requirements must be implemented in software or hardware, or

a combination of the two.

43

3.6.2 IEEE: views and concepts for Operations

The (IEEE-830 1998) includes operations as one of the NFR types in their list of NFR, and

considers the various modes of operation as part of the user interface. But it does not define

what an operations requirement is, nor does it provide guidance on how to describe and

specify the operations requirements. Of course, it does not provide guidance on how to

measure any of these NFR either.

Table 3.5 Operations: view, concepts and terms in the ECSS standards

ID
Standard

Organization
Key views Concepts and terms

1 ECSS
Operational and

transition modes

• Inter-operational function
• Operational function event
• Operational control interface
• Operational data interface
• System operations mode
• System transitions mode
• Operational scenario

3.7 Configuration systems requirements

This section presents a survey of the configuration-related views, concepts, and terms in the

ECSS standards ECSS (ECSS-S-ST-00C 2008; ECSS-E-ST-10C 2009; ECSS-Q-ST-80C

2009) and (ECSS-E-40-Part-1B 2003; ECSS-Q-80B 2003; ECSS-E-40-Part-2B 2005) and

(ECSS-ESA 2005) and in the SWEBOK Guide (ISO-19759 2004). It identifies which

standards or views currently address some aspects of the software-FUR derived from system-

NFR, specifically for the functional configuration requirements.

3.7.1 ECSS: views and concepts for configuration

Configuration in the ECSS standards is considered part of the “design and implementation

engineering process”, which includes control activities and data flows for the operational

44

functions and data transfers of defined items. Table 3.6 presents a list of the concepts and

vocabulary used in those standards to describe system-related configuration requirements.

For instance, ECSS standards specify that each item or element defined during the design

phase can be configured. They also specify what configuration requirements shall be

implemented in software.

3.7.2 ISO 19759 (SWEBOK Guide): views and concepts for configuration

The key view on configuration in the SWEBOK guide (ISO-19759 2004) is that of a

software with minor system views for the functional and/or physical characteristics of

hardware, firmware, or software, or a combination of these, as set forth in technical

documentation and achieved in a product – see Table 3.6.

Configuration can also be thought of as a collection of specific versions of hardware,

firmware, or software items combined according to specific procedures to serve a particular

purpose. Configuration management (CM), then, is the discipline of identifying the

configuration of a system at distinct times for the purpose of systematically controlling

changes to that configuration.

The use of the functional configuration audit (FCA) and the physical configuration audit

(PCA) can be considered as a prerequisite for the establishment of the product baseline. The

purpose of the PCA is to ensure that the design and reference documentation are consistent

with the product as built.

Table 3.6 Configuration: views, concepts and terms in ECSS and ISO 19759

ID
Standard

organization
Key view Concepts and terms

1 ECSS
Secure environment with controlled
access linked to the required physical
and functional characteristics

• Control activities of defined
configuration items:
− control flow

45

Table 3.6 Configuration: views, concepts and terms in ECSS and ISO 19759 (Continued)

ID
Standard

organization
Key view Concepts and terms

1 ECSS

Secure environment
with controlled
access linked to the
required physical
and functional
characteristics of the
system

− data flow

• Each item or component defined during the
design can be configured, such as:
− modules,
− processes and threads,
− events and communication channels between

a module and a sub software module
• Control operational functions
• Register data transfers

2 ISO 19759

Functional and/or
physical
characteristics of
hardware, firmware,
or software, or a
combination of these

• Functional characteristics of hardware,

firmware, and software
• Systematic control of changes to

configuration
• Configuration control
• Physical configuration audit (PCA)

3.8 Data definitions and database systems requirements

This section presents a survey of the data definitions and database -related views, concepts,

and terms in the ECSS standards ECSS (ECSS-S-ST-00C 2008; ECSS-E-ST-10C 2009;

ECSS-Q-ST-80C 2009) and (ECSS-E-40-Part-1B 2003; ECSS-Q-80B 2003; ECSS-E-40-

Part-2B 2005) and (ECSS-ESA 2005). This section identifies which standards currently

address aspects of the software-FUR derived from system data definition and database FUR

and NFR

3.8.1 ECSS views and concepts for data definition and database

(ECSS-E-ST-70-31C 2008) includes a number of data definition and database requirements

at the system level. Data definitions and database requirements are described in ECSS

46

standards series by data requirements and the corresponding mission data provided by a

supplier to a customer. Formally, this data is part of the user manual for the corresponding

element of the space system. Moreover, the ECSS requires these data definitions and

database requirements to be defined in the requirements baseline (i.e., the requirements

baseline must include the requirements applicable to the various elements of the system

product tree).

More specifically, data definitions and database requirements are described through the data

model requirements and the system model object. According to the ECSS standards, data

model requirements (ECSS-E-ST-70-31C 2008) are composed of:

1. System data items which include:

• System entity types (such as: event, parameter, system element, reporting data);

• System value types (such as: simple value and record value);

• System data types (simple type and complex type).

2. Product data schema which include:

• Product configuration data;

• Monitoring & data control.

A system model object refers to any object of the populated database that is uniquely

identified by a name: e.g. a system element, a reporting data, an activity or an event.

Moreover, a system model object is derived from data model requirements and data mission.

Table 3.7 presents a list of concepts and vocabulary used in the ECSS standards to describe

system-related data definition and database requirements. ECSS standards specify that data

definitions and database requirements must be implemented in software, hardware, or a

combination of the two.

47

Table 3.7 Data definitions and database views, concepts and terms in ECSS

ID
Standard

organization
concepts and terms

1 ECSS

Data model
requirements

System
Data items

System entity
types

• Event
• Parameter
• System element
• Reporting data
• Activity

System value
types

• Simple value
• Record value

System data
types

• Simple type
• Complex type

Product
data
schema

• Product configuration data
• Monitoring & data control

System
model object

• Data model requirements
• Data mission.

3.9 Adaptation and installation: systems requirements

This section presents a survey of the adaptation and installation-related views, concepts and

terms in the ECSS (ECSS-S-ST-00C 2008; ECSS-E-ST-10C 2009; ECSS-Q-ST-80C 2009)

and (ECSS-E-40-Part-1B 2003; ECSS-Q-80B 2003; ECSS-E-40-Part-2B 2005) and (ECSS-

ESA 2005), (ISO-9126 2004) and (IEEE-830 1998) standards. This section identifies which

standards currently address some aspects of the software-FUR derived from system-NFR,

specifically for the adaptation and installation software-FUR.

3.9.1 ECSS: views and concepts for adaptation and installation

The ECSS-E-40 specifies that adaptation and installation requirements should be described

or referenced; also (ECSS-ESA 2005), specifies that the supplier shall prepare the

deliverable software product for its installation in the target platform or system environment

as well as the resources and information to install shall be determined and available

containing set-up activities.

48

While the (ECSS-E-ST-10C 2009) describes the adaptation and installation requirements as

the adaptation data to specific installation for the system. ECSS-E-ST-10C 2009 identifies

the adaptation data by making reference to all unique-to-site data contained in the released

software as well as specifying all the instructions to build and install the software item,

including:

1. Procedures to regenerate executable software from the delivered source code;

2. Procedures to install the software in the target environment;

3. Procedures to verify the correct execution of the installation;

4. Adaptation data, security issues relevant to the installation.

(ECSS-Q-ST-80C 2009) mentions that the adaptation and installation requirements should be

described through approaches, methods, procedures, resources and organization to install,

commission, and check the operation of the equipment in its fixed operational environment.

Moreover (ECSS-E-ST-10C 2009) describes the installation to be performed in accordance

with the installation procedure and that the ground computer equipment and supporting

services for implementing the final system shall be selected according to the project

requirements regarding installation requirements conditions.

(ECSS-E-ST-10C 2009): the system adaptation as the resource reallocation between

software, hardware and system environment. Table 3.8 illustrates the set of concepts and

vocabulary used in the ECSS standards to describe adaptation and installation.

3.9.2 IEEE: views and concepts for adaptation and installation

The (IEEE-830 1998) lists adaptation and installation requirements as one of the NFR type.

IEEE defines adaptation and installation as requirements for any data or initialization

sequences that are specific to a given site, mission, or operational mode.

49

In particular, (IEEE-830 1998) mentions that the site or mission-related features should be

modified to adapt the software to a particular installation, but does not provide guidance on

how to describe and specify the adaptation and installation requirements.

3.9.3 ISO: views and concepts for adaptation and installation

The key view on adaptation and installation in the (ISO-9126 2004) is from the perspective

of the quality of the software product: adaptation and installation is presented as ‘sub quality

characteristics’ of the portability quality characteristic. The inventory of related ISO concepts

and vocabulary on software adaptation and installation is presented in Table 3.8.

Table 3.8 Adaptation and installation views, concepts and terms in the standards

ID
Standard

organization
Key views Concepts and terms

1
ECSS

Adaptation and installation
requirements are described
using approaches, methods,
procedures, resources and
check the operation of the
equipment in its fixed
operational environment.

• System Environments (adaptation)
− Host-Target platform
− Memory Resources
− Storage resources
− Transmission resources
− I/O resources

• Software and Data Environments
(installation)
− Registered Data Transfer
− Control Data Transfer
− Set Data Transfer with system

resources

2 ISO

Software product is adapted
to different specified
environments

Software product installed

in a specified environment

• Adaptability of hardware, software
and system environment.

• Adaptability of software data
structures.

• Ease of software installation
procedure

• Ease of setup retry when the
software is already installed

50

3.10 Design and implementation constraints (D&I) systems requirements

This section presents a survey of the design and implementation (D&I) constraints views,

concepts and terms in the ECSS (ECSS-S-ST-00C 2008; ECSS-E-ST-10C 2009; ECSS-Q-

ST-80C 2009) and (ECSS-E-40-Part-1B 2003; ECSS-Q-80B 2003; ECSS-E-40-Part-2B

2005) and (ECSS-ESA 2005), (ISO-9126 2004) and (IEEE-830 1998) standards and (ISO-

19759 2004) (SWEBOK Guide) . This section identifies which standards currently address

some aspects of the software-FUR derived from system requirements.

3.10.1 ECSS: views and concepts for D&I constraints

The elements of D&I constraints are dispersed in various system views throughout different

ECSS standards and are expressed as either:

1. System D&I constraints functional user requirements (system D&I constraints-FUR);

2. System D&I constraints non-functional requirements (system D&I constraints-NFR).

The identification of D&I constraints in the ECSS standards is derived from an analysis of

the requirements on the system and its functions. All system requirements are allocated to a

set of D&I constraints. Moreover, hardware configuration D&I constraints, software

configuration D&I constraints, and human operations D&I constraints shall be subsequently

identified from these requirements. The supplier shall transform the requirements for the

software D&I constraints into an architecture that describes its top-level structure and

identifies the software components, ensuring that all the requirements for the software D&I

constraints are allocated to its software components and later refined to facilitate detailed

design.

The software architectural design shall describe the D&I constraints within:

1. The static architecture (i.e., decomposition into software elements such as packages and

classes or modules);

51

2. The dynamic architecture, which involves active objects such as threads, tasks and

processes;

3. The mapping between the static and the dynamic architecture, and the software

behaviour.

The software D&I constraints requirements shall produce the physical model of the software

components described during the software architectural design. For embedded software D&I

constraints the following information should be included:

1. Type of D&I constraints participating to the real time behaviour, described by stating its

logical and physical characteristics with D&I;

2. Scheduling types with D&I (e.g. single or multi-threads);

3. Scheduling model with D&I (e.g. pre-emptive or not, fixed or dynamic priority based);

4. Analytical model with its D&I (e.g. rate monotonic scheduling, deadline monotonic

scheduling);

5. Tasks identification and D&I priorities;

6. Communication and synchronization with D&I;

7. Time management through D&I;

8. The dependencies of a component should be described by listing the D&I upon its use by

other components.

The ECSS-ESA document covers the tailoring of the ECSS-E-40 requirements for the

European Space Agency (ESA) software projects. In this document, the software design

includes a program design, pseudo-code and flow charts. Software D&I may specify that the

processing has to be performed using a particular algorithm and program parameters.

Table 3.9 presents a list of concepts and vocabulary used in ECSS to describe system related

D&I constraints requirements and ECSS mentions that such requirements may be

implemented in software.

52

3.10.2 ISO 19759 (SWEBOK Guide): views and concepts for D&I

According to the (ISO-19759 2004) SWEBOK Guide, “Software requirements express the

needs and constraints placed on a software product that contribute to the solution of some

real-world problem". The (ISO-19759 2004) mentions explicitly D&I constraints as non-

functional requirements in the “Software Requirements’ knowledge area (KA) and implicitly

within the context of activities for design in the ‘Software Design’ KA.

Software design is defined in (ISO-19759 2004) as both “the process of defining the

architecture, components, interfaces, and other characteristics of a system or component" and

“the result of [that] process". Furthermore software design in the software engineering life

cycle is defined as activities in which software requirements are taken as inputs for analysis

in the software design phase.

The architectural design is also described by (ISO-19759 2004) as the point at which the

requirements process overlaps with software or systems design and illustrate how

challenging it is to cleanly decouple the two tasks; software architecture is “a description of

the subsystems and components of a software system and the relationships between them”.

This means that ISO 19759 is describing the D&I constraints in the Software Requirements

KA and these D&I constraints should be reflected on the software design in the Software

Design KA.

Moreover, software design consists of two activities that fit between software requirements

analysis and software construction (ISO-19759 2004):

• Software architectural design (sometimes called top level design): describing software’s

top-level structure and organization and identifying the various components;

• Software detailed design: describing each component sufficiently to allow for its

construction.

The (ISO-19759 2004) decomposes the software D&I constraints into processes, tasks, and

threads and deals with related efficiency, atomicity, synchronization, and scheduling issues.

53

Table 3.9 presents a list of concepts and vocabulary used in the (ISO-19759 2004) to describe

system related D&I constraints. The (ISO-19759 2004) SWEBOK Guide specifies that such

requirements be implemented in software design.

Table 3.9 D&I constraints views, concepts and terms in ECSS and ISO

ID
Standard

organization
Key view Concepts and terms

1 ECSS

Design and
implementation
(D&I) constraints
applicable to
various components
of the system
product

• Software architectural D&I constraints on
modules, classes, packages

• Software detailed D&I constraints on tasks
and processes

• Physical model of the software D&I
constraints described during the software
architectural design

• The logical model of the D&I constraints
described in software architectural design

2 ISO 19759

Software
requirements
express the needs
and constraints
placed on a software
product that
contribute to the
solution of some
real-world problem

• Software architectural D&I constraints on
modules, classes, packages or top level
structure

• Software detailed D&I constraints on tasks
and processes

• Physical model of the software D&I
constraints described during the software
architectural design

• The logical model of the software D&I
constraints described within the software
architectural design

• Static and dynamic D&I constraints with
system design

3.11 Performance systems requirements

This section presents a survey of the performance requirements views, concepts and terms in

the ECSS (ECSS-S-ST-00C 2008; ECSS-E-ST-10C 2009; ECSS-Q-ST-80C 2009) and

(ECSS-E-40-Part-1B 2003; ECSS-Q-80B 2003; ECSS-E-40-Part-2B 2005) and (ECSS-ESA

2005), (ISO-9126 2004) and (IEEE-830 1998) standards. The expected outcome is the

identification of the various elements that should be included in the standard-based

54

framework for modelling software-FUR for system performance requirements.

3.11.1 ECSS: views and concepts for performance

The elements of performance requirements are dispersed in various system views throughout

different ECSS standards and are expressed as either:

1. System performance functional user requirements (system performance -FUR);

2. System performance non-functional requirements (system performance -NFR)

The (ECSS-E-40-Part-1B 2003;ECSS-Q-80B 2003; ECSS-E-40-Part-2B 2005) present

software performance as a system-NFR for embedded software – see Table 3.10.

According to (ECSS-E-ST-60-20C-Rev.1 2008) standard. Performance requirement is a

specification that the output of the system does not deviate by more than a given amount

from the target output.

According to (ECSS-E-ST-60-20C-Rev.1 2008) the performance can be measured by

evaluating processing speed, response time, resource consumption and throughput.

In (ECSS-E-ST-60-20C-Rev.1 2008) and (ECSS-E-60A 2004) the performance requirements

should assess that the controlled system performance is coherent with the control objectives

generated by the requirement engineering process and the numerical requirements defined by

the requirements analysis, furthermore, performance analysis should be conducted during all

the phases of the control development process.

The response time (ECSS-E-ST-60-20C-Rev.1 2008) is defined as minimally acceptable of

the rest time. A longer response time can cause users to think the system is down. You also

need to specify rest of time; for example, the peak minute of a day, 1 percent of interactions.

Response time degradations can be more costly or painful at a particular time of the day.

55

Response time is measured (ECSS-E-ST-60-20C-Rev.1 2008) from the time that the user

performs the action until the user receives enough feedback from the computer to continue

the task. It is the user's subjective wait time. It is not from entry to a subroutine until the first

write statement.

Performance monitoring or performance observation (ECSS-E-ST-60-20C-Rev.1 2008) is

often used in optimizing the use of software in a system. A performance monitor is generally

regarded as a facility incorporated into a processor to monitor selected characteristics to

assist in the debugging and analyzing of systems by determining a machine's state at a

particular point in time. Often, the performance monitor (ECSS-E-ST-60-20C-Rev.1 2008)

produces information relating to the utilization of a processor's instruction execution and

storage control. For example, the performance monitor can be utilized to provide information

regarding the amount of time that has passed between events in a processing system. The

information produced usually guides system architects toward ways of enhancing

performance of a given system or of developing improvements in the design of a new system.

The typical throughput refers to the number of event responses that have been completed

over a given observation interval as in (ECSS-E-ST-60-20C-Rev.1 2008).

Performance can be measured using the following concepts and terms such as: response to

reference signals (e.g. response time, settling time, and tracking error for command profiles),

accuracy and stability errors in the presence of disturbances, measurement errors (e.g.

attitude knowledge) and frequency domain requirements (e.g. bandwidth).

3.11.2 IEEE: views and concepts for performance

The (IEEE-830 1998) presents software performance requirements as a non-functional

requirement; in addition, (IEEE-830 1998) defines the performance requirements as the static

and the dynamic numerical requirements placed on the software or on human interaction with

the software as a whole. Static numerical requirements may include the number of terminals

56

to be supported, the number of simultaneous users to be supported and amount and type of

information to be handled. Static numerical requirements are sometimes identified under a

separate section entitled capacity.

Dynamic numerical requirements may include, for example, the numbers of transactions and

tasks and the amount of data to be processed within certain time periods for both normal and

peak workload conditions. All of these requirements should be stated in measurable terms –

see Table 3.10.

Table 3.10 Performance views, concepts and terms in ECSS

ID
Standard

organization
Key view Concepts and terms

1 ECSS

Performance requirement is
a specification that the
output of the system does
not deviate by more than a
given amount from the
target output

• Response to reference signals
− Response time,
− Settling time,
− Tracking error for command

profiles
• Throughput time.

− Bandwidth
− Workload

• Resource consumption
− Main memory time
− Storage device time
− processor execution time

• Evaluation processing speed
− Accuracy errors
− Stability errors
− System scalability

2
IEEE 830

Performance requirements
as static and the dynamic
numerical requirements
placed on the software or
on human interaction with
the software as a whole.

• Static numerical requirements
• Capacity
• Concurrency

• Dynamic numerical requirements
• Workload

57

3.12 Security systems requirements

This section presents a survey of the security requirements views, concepts and terms in the

ECSS (ECSS-S-ST-00C 2008; ECSS-E-ST-10C 2009; ECSS-Q-ST-80C 2009) and (ECSS-

E-40-Part-1B 2003; ECSS-Q-80B 2003; ECSS-E-40-Part-2B 2005) and (ECSS-ESA 2005),

(ISO-9126 2004) and (IEEE-830 1998) and (ISO-9126 2004) standards. The expected

outcome is the identification of the various elements that should be included in the standard-

based model of software-FUR for system security requirements.

3.12.1 ECSS: views and concepts for security

The ECSS standards series present security as a system-NFR for real-time and embedded

software – see Table 3.11 in these standards, the security requirements are described as

specifications, including related factors, which might compromise sensitive information; and

the ECSS requires that the system security shall be defined in the requirements baseline (i.e.,

the requirements base must include the requirements applicable to the various elements of the

system product tree.

In the ECSS standards, the system security is described as:

1. Access control roles for person or group of persons and access control per system or

entity;

2. Availability for redundant power or data and automatic restart;

3. System data integrity such as integrity with firewall, antivirus, external PKI (encryption

and decryption of data) and integrity with different types of system backup (such as

automatic, time interval, durability, data versioning and run-time backups).

1.12.2 IEEE: views and concepts for security

Security requirements are also presented in (IEEE-830 1998) as an NFR type : IEEE

specifies the factors that protect the software from accidental or malicious access use,

58

modification, destruction, or disclosure. Specific requirements in this area could include the

need to utilize certain cryptographically techniques; to keep specific log or history data sets;

to assign certain functions to different modules; to restrict communications between some

areas of the program and to check data integrity for critical variables – see Table 3.11.

1.12.3 ISO: views and concepts for security

The (ISO-9126 2004) lists the security as part of the software functionality to define the

software product quality. In addition, (ISO-9126 2004) defines the security as the capability

of the software product to protect information and data so that unauthorized persons or

systems cannot read or modify them and authorized persons or systems are not denied access

to them – see Table 3.11.

 Table 3.11 Security: views, concepts and terms in standards

ID
Standards

organization
key views Concepts and terms

1

ECSS

The key views of software security
requirements in ECSS standards are
described as specifications, including
related factors, which might
compromise sensitive information.
Moreover, the ECSS standards
require that the system security shall
be defined in the requirements
baseline which defines the
requirements applicable to various
elements of the system product tree

• Access control roles for the
system, person and groups

• Availability for redundant
power or data and automatic
restart man machined

• System data integrity such as
integrity with firewall,
antivirus, external PKI

2

IEEE-830

The key views of software security
requirements in the IEEE 830
standard are factors that protect the
software from accidental or malicious
access use, modification, destruction,
or disclosure

• Cryptographictechniques;
• Specific log or history data

sets
• Assign certain functions to

different modules
• Restrict communications

between some areas of the
program and

• Check data integrity for
critical variables

59

Table 3.11Security: views, concepts and terms in standards (Continued)

ID
Standards

organization
key views Concepts and terms

3

ISO 9126

The key view of software security in
ISO 9126 is described as a part of the
software functionality to define the
software product quality

• Access Auditability
• Access Controllability
• Data Corruption/

Prevention
• Data Encryption

3.13 Safety systems requirements

This section presents a survey of the safety-related views, concepts and terms in the ECSS

(ECSS-S-ST-00C 2008; ECSS-E-ST-10C 2009; ECSS-Q-ST-80C 2009) and (ECSS-E-40-

Part-1B 2003; ECSS-Q-80B 2003; ECSS-E-40-Part-2B 2005) and (ECSS-ESA 2005), (ISO-

9126 2004) and (IEEE-830 1998) and (ISO-9126 2004) standards. This section identifies

which standards currently address some aspects of the software-FUR derived from the safety

system-NFR.

3.13.1 ECSS: views and concepts for safety

The ECSS present safety as an NFR for real-time and embedded software – see Figure 3.12

in these standards, the safety requirements are described as system states where an acceptable

level of risk is not exceeded with respect to fatality, injury or occupational illness, damage to

launcher hardware or launch site facilities, damage to an element of an interfacing manned

systems, etc.

According to (ECSS-Q-ST-40C 2009), safety requirements shall be identified and traced

from the system level into the design and then allocated to the lower levels; furthermore, the

identified safety requirements shall be justified in the design and presented in an appropriate

document.

60

The (ECSS-Q-ST-40C 2009) describes the mandatory aspects for safety requirements of a

system safety programme to ensure that all safety risks associated with the design,

development, production and operations of space product are adequately identified, assessed,

minimized, controlled and finally accepted through the implementation of a safety assurance

programme.

The (ECSS-Q-ST-40C 2009) safety policy is applied by implementing a system safety

programme, supported by risk assessment, which can be summarized as follows:

1. Hazardous characteristics (system and environmental hazards) and functions with

potentially hazardous failure effects are identified and progressively evaluated by

iteratively performing systematic safety analyses;

2. The potential hazardous consequences associated with the system characteristics and

functional failures are subjected to a hazard reduction sequence whereby:

• Hazards are eliminated from the system design and operations;

• Hazards are minimized;

• Hazard controls are applied and verified.

3. The risks that remain after the application of a hazard elimination and reduction process

are progressively assessed and subjected to risk assessment, in order to:

• Show compliance with safety targets;

• Support design trade-offs;

• Identify and rank risk contributors;

• Support apportionment of project resources for risk reduction;

• Assess risk reduction progress;

• Support the safety and project decision-making process (e.g. waiver approval,

residual risk acceptance).

4. The adequacy of the hazard and risk control measures applied is formally verified in order

to support safety validation and risk acceptance;

5. Approval obtained from the relevant authorities.

61

3.13.2 ISO: views and concepts for safety

The (ISO-9126 2004) includes safety as a quality sub-characteristic to assess the level of risk

of harm to people, business, software, property or the environment in a specified context of

use. It includes the health and safety of the both the user and those affected by use, as well as

unintended physical or economic consequences – see Table 3.12.

3.13.3 IEEE: views and concepts for safety

The (IEEE-1220 2007) defines safety specifications as equipment/system design features,

performance specifications, and training that reduce the potential for human or machine

errors or failures that cause injury or death within the constraints of operational effectiveness,

time, and cost throughout the equipment/system life cycle.

It describes also the safety plan as the approach and methods for conducting safety analysis

and assessing the risk to operators, the system, the environment, or the public.

The (IEEE-1220 2007) describes software safety as falling into one or more of the following

categories:

1. Software whose inadvertent response to stimuli, failure to respond when required,

response out-of-sequence, or response in combination with other responses can result in

an accident.

2. Software that is intended to mitigate the result of an accident;

3. Software that is intended to recover from the result of an accident.

The set of key views in standards on safety requirements, as well as the set of concepts,

terminology and vocabulary to describe safety requirements are presented in Table 3.12,

including the following standards.

62

Table 3. 12 Safety: views, concepts and terms in the standards

ID
Standards

organization
Key views Concepts and terms

1 ECSS

Safety requirements shall
be identified and traced
from the system level into
the design and then
allocated to the lower
levels

• Safety control software hazards
• Safety levels of software integration
• Critical software catastrophic
• Safety software functions
• Safety failure mechanism and
• Safety switching of redundant items
• Safety audit software

2 IEEE 1220

Safety is specifications on
equipment/system design
features, performance, and
training that reduce the
potential for human or
machine errors that cause
injury or death

• Safety failures within the
constraints of operational effectiveness,
time, throughout the equipment/system
life cycle

• Safety approach and methods
• Safety analysis and assessing the risk to

operators, system, environment, or
public

3

ISO 9126

Assessing the level of
risk of harm to people,
business, software,
property or the
environment in a
specified context of use

• User health and safety
• Safety of people affected by use of

the system
• Economic damage
• Software damage

4 IEEE 830 Not clear • Check data integrity for critical
variables

5 IEEE 1228

Safety is a freedom from
software hazards.

Safety program is a
systematic approach to
reducing software risks

• Safety related software
• Software safety hazard
• Safety critical software
• Levels of software integrity

3.14 Resources systems requirements

This section presents a survey of the resources-related views, concepts and terms in the

ECSS (ECSS-S-ST-00C 2008; ECSS-E-ST-10C 2009; ECSS-Q-ST-80C 2009) and (ECSS-

E-40-Part-1B 2003; ECSS-Q-80B 2003; ECSS-E-40-Part-2B 2005) and (ECSS-ESA 2005),

63

(ISO-9126 2004) and (IEEE-830 1998) standards to identify the resources foundation in

system-NFR see- Table 3.13.

3.14.1 ECSS: views and concepts for resources

The ECSS present resources as a system-NFR for real-time and embedded software: in these

standards, the resources requirements are described as what the component needs from its

environment to perform its function with computer resources (such as: CPU load and

maximum memory size) to be considered by the supplier.

The ECSS-E-40 indicates the computer hardware resource requirements on the utilization

(e.g. processor capacity and memory capacity) available for the software item (e.g. sizing and

timing) and computer software resource requirements on the software items to be used by or

incorporated into the system (or constituent software product) (e.g. a specific real time

operating system).

The (ECSS-Q-ST-40C 2009) describes all the resource requirements related to the software

and the hardware requirements (target hardware on which the software is specified to

operate), as follows:

1. List of the requirements relevant to hardware environment in which the software is

specified to operate;

2. List of the sizing and timing requirements applicable to the software item under

specification;

3. Description of the computer software to be used with the software under specification or

incorporated into the software item (e.g. operating system and software items to be

reused);

4. Description of the real time constraints to respect (e.g. time management with respect to

the handling of input data before its loss of validity).

The (ECSS-S-ST-00C 2008) describes hardware resources by the assignable, addressable bus

paths that allow peripheral devices and system processors to communicate with each other.

64

Hardware resources typically include I/O port addresses, interrupt vectors, and blocks of bus-

relative memory addresses. Resources are assigned to each device node in the device tree

(assuming that the represented device needs resources and those resources are available).

3.14.2 IEEE: views and concepts for resources

The (IEEE-1220 2007) indicates to collect measurements, tracked and reported at pre-

established control points during each stage of development, to enable the quality system and

achievement of efficient use of resources – see Table 3.13.

3.14.3 ISO: views and concepts for resources

The (ISO-9126 2004) define the resources as the capability of the software product to use

appropriate amounts and types of resources when the software performs its function under

stated conditions. ISO 9126 identifies the resources as part of product efficiency and

describes ways to measure the software recourses through:

1. I/O resource devices;

2. Memory resources;

3. Transmission recourses.

Table 3.13 Resources: views, concepts and terms in standards

ID
Standard

organization
key views Concepts and terms

1
ECSS

The resource requirements
related to the software and
the hardware requirements
(target hardware on which
the software is specified to
operate)

• CPU load
• Maximum memory size
• Computer hardware resource

requirements
− Processor capacity for the

software items

65

Table 3.13 Resources: views, concepts and terms in standards (Continued)

ID
Standard

organization
key views Concepts and terms

1
ECSS

The resource requirements related
to the software and the hardware
requirements (target hardware on
which the software is specified to
operate)

− Memory capacity for
the software items

• Computer software
resource requirements
− Specific real time

operating system
− Software elements.

• I/O port addresses
• Interrupt vectors
• Blocks of bus-relative

memory addresses
• I/O Resource List
• I/O Resource Descriptor

2 IEEE-1220

Collected measurements, tracked,
and reported at pre-established
control points during each stage of
development to enable a quality
system and achievement of
efficient use of resources

• Not Clear

3 ISO 9126

Capability of the software product
to use appropriate amounts and
types of resources when the
software performs its function
under stated conditions

• I/O resource devices
• Memory resources
• Transmission recourses

3.15 Human factors system requirements

This section presents a survey of the human factors requirements views, concepts and terms

in the ECSS (ECSS-S-ST-00C 2008; ECSS-E-ST-10C 2009; ECSS-Q-ST-80C 2009) and

(ECSS-E-40-Part-1B 2003; ECSS-Q-80B 2003; ECSS-E-40-Part-2B 2005) standards– see

Table 3.14.

66

3.15.1 ECSS: views and concepts for human factors

The identification of human factors in the ECSS standards is derived from an analysis of the

requirements on the system and its functions. ECSS standards include the human factors as

one of 16 NFR for the embedded and real time software. Human factors engineering

(ergonomics) specifications, including those related to manual operations, human equipment

interactions, constraints on personnel, and areas requiring concentrated human attention, that

are sensitive to human errors and training.

The (ECSS-E-ST-10-11C 2008) forms part of the system engineering branch of the

Engineering area of the ECSS system. As such it is intended to assist in the consistent

application of human factors engineering to space products by specifying normative

provisions for methods, data and models to ensuring of the safety, performance and problem

avoidance in space system and payload operations. Moreover, This standard belongs to the

human factors discipline, as identified in (ECSS-E-ST-10-11C 2008) , and defines the human

factors engineering and ergonomics requirements applicable to elements and processes.

According to (ECSS-E-ST-10-11C 2008) the application of human factors (that in the space

domain includes ergonomics) to systems design enhances effectiveness and efficiency,

improves human working conditions, and diminishes possible adverse effects of use on

human health, safety and performance. Applying ergonomics to the design of systems

involves taking account of human capabilities, skills, limitations and needs.

A space system design will consider human factors and especially the two following main

aspects from the very beginning of the conceptual phase. Firstly, the human being will be

correctly taken into account in the design of the hardware, software and operations products

and, secondly, the corresponding organization and training will be addressed in parallel to the

design of the hardware and software.

67

For instance, ECSS standards provide a set of requirements for a human centered design

process applied to a space system compatible with the (ISO-13407 1999): Human centered

design processes for interactive systems. The incorporation of the human centered design

into the overall project structure shall be initiated during the feasibility phase to avoid risk of

late and costly redesign or incorrect human integration.

Human factors considerations in (ECSS-E-ST-10-11C 2008) relevant to meeting system

performance and having safety implications include:

1. Human performance (e.g., human capabilities and limitations, workload, function

allocation, hardware and software design, decision aids, environmental constraints, and

team versus individual performance);

2. Training (e.g., length of training, training effectiveness, retraining, training devices and

facilities, and embedded training);

3. Staffing (e.g., staffing levels, team composition, and organizational structure);

4. Personnel selection (e.g., minimum skill levels, special skills, and experience levels);

5. Safety and health aspects (e.g., hazardous materials or conditions, system or equipment

design, operational or procedural constraints, biomedical influences, protective

equipment, and required warnings and alarms).

Table 3.14 Human factors views, concepts and terms in ECSS

Key view Concepts and terms in ECSS

human factors
relevant to meeting
system performance
and having safety
implications

• Performance of the human factors (Cognitive ergonomics)
 Human capabilities and knowledge profiles and boundaries such

as:
− Workload
− Function Allocation
− Hardware and Software Design
− Decision Aids
− Team versus Individual Performance

 Training
− Length of Training
− Training Effectiveness
− Retraining
− Training Devices and Facilities

68

Table 3.14 Human factors views, concepts and terms in ECSS (Continued)

Key view Concepts and terms in ECSS

− Embedded Training
 Staffing

− Staffing Levels
− Team Composition
− Organizational Structure

 Personnel Selection
− Minimum Skill Levels
− Special Skills
− Experience Levels

• Safety of the human factors (Environmental ergonomics)
 Mechanical Safety
 Electrical Safety
 Environmental Safety
 Operational Safety
 Psycho/physiological Safety

• Human interface factors
 Visual, audio or tactile cues and information on interface

characteristics and task performance
 Interface customization
 Identification of safety related controls

3.16 Discussion and observation

3.16.1 ECSS standards

While conducting the survey of all non functional concepts and terms described in the ECSS-

E-40 and ECSS-Q-series and in ECSS-ESA as the integrated standard for ECSS-E and

ECSS-Q, it was observed that:

1. The various system-NFR are described differently, and at different levels of detail within

the standards contents;

2. The various system-NFR are dispersed throughout the various documents: there is

therefore, no integrated view of all types of candidate of non functional requirements;

3. There is no obvious link for each type of system-NFR in ECSS-ESA as the integrated

standard and between all other ECSS standards that describe these requirements within

their contents or within their different ECSS standards contents;

69

4. It is also to be noted that ECSS does not propose a way to measure such requirements

and, without measurement, it is challenging to take such an NFR as a quantitative input to

an estimation process or in productivity benchmarking.

3.16.2 IEEE standards

While conducting the survey of all NFR concepts and terms described in the IEEE standards,

it was observed that

1. IEEE standards do not provide guidance on how to describe and specify most of the NFR

in their list or on the NFR list in ECSS;
2. IEEE standards do not provide guidance on how to measure any of these NFR.

3.16.3 ISO 9126 standards

While conducting the survey of all quality concepts and terms described in the ISO 9126

standards, it was observed that:

1. The key view in the ISO 9126 series is from the perspective of the quality of the software

product;

2. ISO 9126 presents ‘quality characteristics’, which are decomposed into quality sub

characteristics and then into proposed derived measures to quantify those quality sub

characteristics;

3. A large number of measures are proposed in ISO 9126, but none addresses software-

FUR;

4. ISO 9126 doe not use of these concepts at the system level or looking at what functions

must be performed at the software level (i.e., FUR allocation to software) to implement

these system level NFR.

3.16.4 ISO 19759 (SWEBOK guide)

While conducting the survey of all NFR concepts and terms described in the ISO 19759

standards, it was observed that:

70

1. The key view in the ISO 19759 is from the perspective of the software level, and some

parts at the system level;

2. The D&I constraints and Configuration requirements are described in ISO 19759

differently at the software and system levels, and at different levels of details.

3.17 Summary

This chapter has presented a survey of the system-NFR views, concepts, and terms in the

ECSS, ISO, and IEEE standards. It has identified which standards currently address aspects

of the software-FUR derived from system-FUR and NFR.

The outcome of this chapter is the identification of the various elements that should be

included in the design of a standard-based framework for specifying software-FUR for

system-NFR.

In the work reported here, preference has been given to the views, concepts, and vocabulary

most widely used by the industry, as evidenced in its standardization infrastructure, rather

than those in the academic literature. Similarly, for the structuring and description of models

of FUR and for measurement purposes, the measurement views, concepts, and terminology

from the standardization infrastructure are adopted, rather than those in the literature.

CHAPTER 4

RELIABILITY: IDENTIFICATION, SPECIFICATION AND MEASUREMENT OF
SOFTWARE-FUR DERIVED FROM SYSTEM-NFR

4.1 Introduction

Currently, there exists no standard-based model of software-FUR for the identification and

specification of system reliability NFR based on the various views of reliability documented

in international standards. Consequently, it is challenging to measure these reliability-related

software-FUR and take them into account quantitatively for estimation purposes.

The European ECSS series of standards for the aerospace industry includes reliability

requirements as one of sixteen types of NFR for embedded and real time software. As

presented in chapter 3, a number of reliability related concepts are dispersed throughout the

ECSS, ISO 9126, and IEEE 830 standards to describe at varying levels of details the various

types of candidate reliability requirements at the system, software, and hardware levels.

This chapter organizes these dispersed reliability concepts into a standard-based model of

software-FUR for system reliability NFR. The availability of detailed standard-based model

of software-FUR for system reliability NFR can facilitate the early identification and

specification of the system reliability-NFR and their detailed allocation as specific reliability

functions to be handled by the specified allocation to hardware or software or in a specific

combination of both.

The approach adopted in this research for the structure of the standard-based model of

software-FUR for system reliability NFR is based on the generic model of software-FUR

proposed in the COSMIC (ISO-19761 2011) model, thereby allowing the measurement of the

functional size of such reliability requirements allocated to software and taking them into

account for estimations purposes.

72

This chapter focuses on a single type of NFR, that is, system reliability requirements, and

reports on the work carried out to define an integrated view within a standard-based model of

software-FUR for system reliability NFR.

The reliability-related views, concepts, and terms in the ECSS, ISO, and IEEE standards

identified in Chapter 3 should be included in the design of standard-based model of software-

FUR for system reliability NFR. The elements of reliability are dispersed in various system

views throughout various ECSS standards and are expressed as either – see Figure 4.1:

• System reliability functional user requirements (system reliability FUR);

• System reliability non-functional requirements (system reliability NFR).

Figure 4.1 Mapping system requirements into software-FUR for reliability

The chapter is organized as follows. Section 4.2 presents a standard-based model of

software-FUR for system reliability NFR. Section 4.3 presents a standard-based model of

software-FUR for system reliability NFR using a service-oriented architecture (SOA).

Section 4.4 presents the generic sizing of the standard-based model of software-FUR for

system reliability NFR. Section 4.5 presents a measurement example. Finally, a summary is

presented in section 4.6.

System Reliability-FUR

System Reliability-NFR

Software-FUR for
Reliability Requirements

73

4.2 A standard-based model of software-FUR for system reliability NFR

The identified terminologies and concepts of reliability requirements in chapter 3 are mapped

here into a proposed standard-based model of software-FUR for system reliability NFR.

4.2.1 Mapping reliability views and vocabulary from standards

Table 4.1 presents the system functions that are present either as system requirements in the

ECSS standard or as reliability-related concepts in ISO 9126: each of these functions could

be interpreted, and specified, as software-FUR.

Table 4.1 Reliability functions in ECSS, IEEE & ISO 9126

ID

Reliability Functions

1 Function to identify failure system tolerance
2 Function to identify fault recovery tolerance
3 Function to identify error data tolerance
4 Function to identify error to handle input
5 Function to identify error to produce output
6 Function to identify error to produce correct output
7 Function to identify fault prevention
8 Function to identify fault detection
9 Function to identify fault removal
10 Function to identify failure operation
11 Function to identify failure mechanism

Furthermore, various types of system-related reliability requirements can be derived from

ISO 9126. Table 4.2 presents four (4) system reliability function types (left-hand side

column) for system reliability requirements and corresponding software functions

(middlecolumn) that may be specified to implement such reliability functions for the system

reliability requirements.

74

Table 4.2 System reliability functions types and related software functions

ID
System reliability
functions types

Software functions for reliability
System reliability

requirements derived
from ISO 9126

1
System reliability

prediction
(SRP)

Failure system tolerance function.
Fault recovery tolerance function.
Error data tolerance function.

System prediction
tolerance

2
System reliability

prediction failures
(SRPF)

Failure operation function.
Failure mechanism function.

System
recoverability

3
System reliability
prediction faults

(SRPF1)

Fault prevention function.
Fault detection function.
Fault removal function.

System fault
tolerance

4
System reliability
prediction errors

(SRPE)

Error to handle input function.
Error to produce output function.
Error to produce correct output

function.

System maturity

4.2.2 Identification of the system reliability functional types allocated to software-FUR

This section identifies the four (4) function types and the relationships between these

function types that may be allocated to software-FUR for system reliability.

System Reliability Prediction (SRP)

System reliability prediction (SRP) is used to predict the MTBF (mean time between

failures) of items. The MTBF is determined by dividing the total cumulative operation hours

for all fielded products by the number of system failures, error data and faults recovery

occurrences. This is achieved by performing a prediction analysis method. The prediction

analysis method can be used to define the quantitative parameters for components of a

complete system. In this section according to ECSS standards, the system reliability

prediction (SRP) allocated to software should be used a prediction algorithm that allows

system architects to analyze the reliability of the system before it is built.

75

System modeling views for System Reliability Prediction (SRP)

Figure 4.2 illustrates a system modelling view of data movements for the system reliability

prediction (SRP) (function type 1):

1. System reliability prediction (SRP): uses a prediction algorithm to exchange data

movements between the failure system tolerance function (FSTF), the fault recovery

tolerance function (FRTF) and the error data tolerance function (EDTF);

2. Failure system tolerance function (FSTF): exchanges data movements with other failures

sub-system such as the failure operations and the mechanism functions in the system

reliability prediction failure (SRPF) or function type 2;

3. Fault recovery tolerance function (FRTF): exchanges data movements with other faults

sub-system such as the fault prevention and the detection and removal functions in the

system reliability prediction fault (SRPF1) or function type 3;

4. Error data tolerance function (EDTF): exchanges data movements with other error sub-

system such as the error to handle input and output functions in the system reliability

prediction error (SRPE) or function type 4.

FSTF, FRTF and EDTF contact each other through intermediary services in order to deliver

different types of data transfers (symbol in Figure 4.2).

Figure 4.2 System Reliability Prediction (SRP): system modelling view

System Reliability Prediction (SRP)
Function Type 1

 System Reliability Prediction
Failure (SRPF)

Function Type 2

System Reliability Prediction
Fault (SRPF1)

Function Type 3

System Reliability Prediction
Error (SRPE)

Function Type 4

Failure System Tolerance

Function (FSTF)

Fault Recovery Tolerance

Function (FRTF)

Error Data Tolerance Function

(EDTF)

System

Reliability
Prediction

(SRP)

76

COSMIC modelling views for System Reliability Prediction (SRP)

Figure 4.3 illustrates a COSMIC modelling view of the data movements for the system

reliability prediction (SRP) (function type 1) based on Figure 4.2:

1. SRP sends and receives a data group (i.e., Entry or Exit) to an FSTF, FRTF and EDTF;

2. FSTF, FRTF and EDTF send and receive data groups (i.e., Entry or Exit) to failures,

faults and errors functions in function types 2, 3 and 4;

3. FSTF, FRTF and EDTF send and receive data groups (i.e., Entry and Exit) between each

other using intermediary services (IS).

Figure 4.3 System Reliability Prediction (SRP): COSMIC modelling view.

System Reliability
Prediction Error (SRPE)

Function Type 4

System Reliability
Prediction Fault (SRPF1)

Function Type 3

System Reliability
Prediction Failure (SRPF)

Function Type 2

System Reliability Prediction (SRP)
Function Type1

System

Reliability

Prediction

(SRP)

Failure System Tolerance
Function (FSTF)

Fault Recovery Tolerance
Function (FRTF)

Error Data Tolerance
Function (EDTF)

ENTRY

EXIT

ENTRY

EXIT

ENTRY

EXIT

ENTRY

EXIT

ENTRY

EXIT

ENTRY

EXIT

Intermediary Service (IS)

EXIT

ENTRY

ENTRY

EXIT

EXIT

ENTRY

ENTRY

EXIT

Intermediary Service (IS)

EXIT

ENTRY

ENTRY

EXIT

EXIT

ENTRY

ENTRY

EXIT

77

System Reliability Prediction Failures (SRPF)

System reliability prediction failures (SRPF) usually depend on time, with the rate varying

over the life cycle of the system. SRPF is divided into:

1. The Failure operation function (FOF) is defined as a particular way in which an

equipment or machine failure can occur. The typical failure modes are: (1) premature

operation, (2) failure to operate at the prescribed time, (3) failure to cease operation at the

prescribed time, (4) failure during operation, and (5) degraded or excessive operational

capability;

2. The Failure mechanism function (FMF) is defined by the means or methods by which a

failure can be discovered by an operator under normal system operation or can be

discovered by the maintenance crew by some diagnostic action.

System modelling views for System Reliability Prediction Failures (SRPF)

Figure 4.4 illustrates a system modelling view of data movements for the system reliability

prediction failures (SRPF) (function type 2) which is divided into:

1. Failure operation function (FOF): exchange data movements with failure system

tolerance function (FSTF) in function type 1, see- Figure 4.2;

2. Failure mechanism function (FMF): exchange data movements with failure system

tolerance function (FSTF) in function type 1, see- Figure 4.2;

FOF and FMF contact each other through intermediary services in order to deliver different

types of data transfers (symbol in Figure 4.4).

Figure 4.4 System Reliability Prediction Failures (SRPF): system modelling view

System Reliability Prediction Failure (SRPF)
Function Type 2

Persistent

Storage

Failure Operation Function
(FOF)

Failure Mechanism Function
(FMF)

System Reliability Prediction (SRP)
Function Type 1

Failure System Tolerance
Function (FSTF)

78

COSMIC modelling views for System Reliability Prediction Failures (SRPF)

Figure 4.5 illustrates a COSMIC modelling view of the data movements for the system

reliability prediction failures (SRPF) (function type 2):

1. FOF and FMF read and write a data group (i.e., Read or Write) from a persistent

storage;

2. FOF and FMF send and receive data groups (i.e., Entry or Exit) between each other

using intermediary services.

Figure 4.5 System Reliability Prediction Failures (SRPF): COSMIC modelling view

System reliability prediction Faults (SRPF1)

A system reliability prediction fault is defined by european standards as an abnormal

condition or defect at the component, equipment, or sub-system level which may lead to a

failure. A system reliability prediction fault is divided into fault prevention, detection and

removal:

1. Fault Prevention deals with preventing faults being incorporated into a system. This can

be accomplished by the use of development methodologies and good implementation

techniques.

System Reliability Prediction Failure (SRPF)
Function Type 2

Persistent

Storage

Failure Operation Function (FOF)

Failure Mechanism Function (FMF)

Intermediary Service (IS)

EXIT

ENTRY

ENTRY

EXIT

EXIT

ENTRY

ENTRY

EXIT

WRITE

READ

WRITE

READ

System Reliability Prediction
(SRP)

Function Type 1

Failure System
Tolerance Function

(FSTF)

79

2. Fault detection and isolation is a subfield of control engineering which concerns itself

with monitoring a system, identifying when a fault has occurred and pinpointing the type

of a fault and its location.

3. Fault Removal can be sub-divided into two sub-categories: Removal during Development

and Removal during Use. Removal during development requires verification so that

faults can be detected and removed before a system is put into production. Once systems

have been put into production a system is needed to record failures and remove them via

a maintenance cycle.

System modelling views for System Reliability Prediction Faults (SRPF1)

Figure 4.6 illustrates a system modelling view of data movements for the system reliability

prediction faults (SRPF1) (function type 3) which is divided into:

1. Fault prevention function (FPF): exchanges data groups with fault recovery tolerance

function (FRTF) in a function type 1, see Figure 4.2;

2. Fault detection function (FDF): exchange data groups with fault recovery tolerance

function (FRTF) in a function type 1, see Figure 4.2;

3. Fault removal function (FRF): exchange data groups fault recovery tolerance function

(FRTF) in a function type 1, see Figure 4.2.

FPF, FDF and FRF contact each other through intermediary services in order to deliver

different types of data transfers (symbol in Figure 4.6).

Figure 4.6 System Reliability Prediction Faults (SRPF1): system modelling view.

System Reliability Prediction Fault (SRPF1)
Function Type 3

Persistent

Storage

Fault Prevention Function (FPF)

Fault Detection Function (FDF)

Fault Removal Function (FRF)

System Reliability Prediction (SRP)
Function Type 1

Fault Recovery

Tolerance Function

(FRTF)

80

COSMIC modelling views for System Reliability Prediction Faults (SRPF1)

Figure 4.7 illustrates a COSMIC modeling view of the data movements for system reliability

prediction faults (SRPF1) (function type 3):

1. FPF, FDF and FRF read and write a data group (i.e., Read or Write) from/to a persistent

storage.

2. FPF, FDF and FRF send and receive data groups (i.e., Entry or Exit) between each other

using intermediary services.

Figure 4.7 System Reliability Prediction Faults (SPRF1): COSMIC modelling view

System reliability prediction Errors (SRPE)

A system reliability prediction error is usually based on an algorithm model with a set of

satisfaction conditions; in some cases this algorithm may give very bad parameter estimates

System Reliability Prediction Fault (SRPF1)
Function Type 3

Persistent

Storage

Fault Prevention Function (FPF) WRITE

READ

Fault Detection Function (FDF) WRITE

READ

Intermediary Service (IS)

EXIT

ENTRY
ENTRY

EXIT

EXIT

ENTRY
ENTRY

EXIT

Intermediary Service (IS)

EXIT

ENTRY
ENTRY

EXIT

EXIT

ENTRY

ENTRY

EXIT

Fault Removal Function (FRF) WRITE

READ

System Reliability Prediction
(SRP)

Function Type 1

Fault Recovery

Tolerance Function

(FRTF)

81

for systems not satisfying these conditions. This kind of problems frequently happens with

reliability function errors due to the following reasons:

1. Function error to handle input in the reliability model;

2. Function error to produce output in the reliability model;

3. Function error to produce the correct output in the reliability model.

System modelling views for System Reliability Prediction Errors (SRPE)

Figure 4.8 illustrates a system modelling view of data movements for the system reliability

prediction errors (SRPE) (function type 4) which can be divided into:

1. Error to handle input function (EHIF): exchanges data movement with error data

tolerance function (EDTF) in a function type 1, see Figure 4.2;

2. Error to produce output function (EPOF): exchanges data movement with error data

tolerance function (EDTF) in a function type 1, see Figure 4.2;

3. Error to produce correct output function (EPCOF): exchanges data movement with error

data tolerance function (EDTF) in a function type 1, see Figure 4.2.

EHIF, EPOF and EPCOF contact each other through intermediary services in order to deliver

different types of data transfers (symbol in Figure 4.8).

Figure 4.8 System Reliability Prediction Errors (SRPE): system modelling view

System Reliability Prediction Error (SRPE)
Function Type 4

Persistent

Storage

Error to Handle Input Function

(EHIF)

Error to Produce Output Function

(EPOF)

Error to Produce Correct Output

Function (EPCOF)

System Reliability Prediction (SRP)
Function Type 1

Error Data Tolerance

Function (EDTF)

82

COSMIC modelling views for System Reliability Prediction Errors (SRPE).

Figure 4.9 illustrates a COSMIC modelling view of the data movements for system reliability

prediction errors (SRPE) (function type 4):

1. EHIF, EPOF and EPCOF read and write a data group (i.e., Read or Write) from-to a

persistent storage;

2. EHIF, EPOF and EPCOF send and receive data groups (i.e., Entry or Exit) between each

other using intermediary services.

Figure 4.9 System Reliability Prediction Errors (SRPE): COSMIC modelling view

System Reliability Prediction Error (SRPE)
Function Type 4

Persistent

Storage

Error to Handle Input Function

(EHIF)

WRITE

READ

Error to Produce Output Function

(EPOF)

WRITE

READ

Error to Produce Correct Output

Function (EPCOF)

WRITE

READ

Intermediary Service

EXIT

ENTRY

ENTRY

EXIT

EXIT

ENTRY

ENTRY

EXIT

Intermediary Service

EXIT

ENTRY

ENTRY

EXIT

EXIT

ENTRY

ENTRY

EXIT

System Reliability Prediction
(SRP)

Function Type 1

Error Data Tolerance

Function (EDTF)

83

4.2.3 Model of the functions types relationships based on system views

Figure 4.10 presents an overview of the relationships between the function types for system

reliability that may be allocated to software-FUR. More specifically, the system reliability

requirements model is composed of 11 functions grouped into four function types. The data

flows on the model are also divided into direct data flows and the intermediary data flows:

1. The SRP model (Function Type 1) can be used to specify the data flows between the

three sub functions types and the data flows with the other functions on the system

reliability model – see Figure 4.10;

2. The SRPF model (Function Type 2) can be used to specify the data flows between the

two sub functions types and the data flows with other functions on the system reliability

model. Function type 2 can be aligned with ISO 9126 on system recoverability– see

Figure 4.10;

3. The SRPF1 model (Function Type 3) can be used to specify the data flows between the

three sub functions and the data flows with other functions on the system reliability

model. Function type 3 can be aligned with ISO 9126 on system fault tolerance – see

Figure 4.10;

4. The SRPE model (Function Type 4) can be used to specify the data flows between the

three sub functions and the data flows with other functions on the system reliability

model. Function type 4 can be aligned with ISO 9126 on system maturity – see Figure

4.10.

4.2.4 Model of the functional types relationships based on COSMIC views

Figure 4.11 presents an overview of the relationships between the function types in the

reliability software-FUR, using COSMIC for graphical representation. More specifically:

1. The SRP model can be used to specify and measure its functional size from the

received/sent data groups from/to failure system tolerance function (FSTF), Fault

recovery tolerance function (FRTF) and Error data tolerance function (EDTF) – see

Figure 4.11;

84

2. The SRPF model can be used to specify and measure its functional size from the

received/sent data groups from/to failure operation function (FOF) and failure mechanism

function (FMF) – see Figure 4.11;

3. The SRPF1 model can be used to specify and measure its functional size from the

received/sent data groups from/to fault prevention function (FPF), Fault detection

function (FDF) and fault removal function (FRF) – see Figure 4.11;

4. The SRPE model can be used to specify and measure its functional size from the

received/sent data groups from/to error to handle input function (EHIF), error to produce

output function (EPOF) and error to produce correct output function (EPCOF) – see

Figure 4.11.

85

Figure 4.10 System modelling view for system reliability requirements

A standards-based model of software-FUR for system reliability NFR
System modelling view

System

Recoverability

ISO 9126

Quality Model

of Reliability

System Fault

Tolerance

ISO 9126

Quality Model

of Reliability

System

Maturity

ISO 9126

Quality Model

of Reliability

System Reliability Prediction
Error (SRPE): Function Type 4

System Reliability Prediction
Fault (SRPF1): Function Type 3

System Reliability Prediction Failure (SRPF)
Function Type 2

System Reliability Prediction
(SRP): Function Type 1

F
U
N
C
T
I
O
N
A
L

U
S
E
R

F
U

Persistent
Storage

Failure Operation
Function (FOF)

Failure Mechanism
Function (FMF)

Failure
System

Tolerance
 Function

(FSTF)

Fault Prevention
Function (FPF)

Fault Detection
Function (FDF)

Fault Removal
Function (FRF)

Fault
Recovery
Tolerance
 Function

(FRTF)

Error Data
 Tolerance
Function

(EDTF)

Error to Handle Input
Function (EHIF)

Error to Produce
Output Function (EPOF)

Error to Produce
Correct Output Function

(EPCOF)

1 2

3

4

86

Figure 4.11 A standard-based model of software-FUR for system reliability NFR
 (Function Level)

A standards-based model of software-FUR for system reliability NFR
COSMIC modelling view (Function Level)

System Reliability Prediction
Fault (SRPF1): Function Type 3

System Reliability Prediction
Error (SRPE): Function Type 4

System Reliability Prediction Failure (SRPF)
Function Type 2

System Reliability Prediction
(SRP): Function Type 1

F
U
N
C
T
I
O
N
A
L

U
S
E
R

F
U

Persistent

Storage

Failure Operation Function (FOF)

Failure Mechanism Function (FMF)

Failure
System

Tolerance
 Function
(FSTF)

Fault Prevention Function (FPF)

Fault Detection Function (FDF)

Fault Removal Function (FRF)

Fault
Recovery
Tolerance
 Function
(FRTF)

Error Data
 Tolerance
Function
(EDTF)

Error to Handle Input Function
(EHIF)

Error to Produce Output Function
(EPOF)

Error to Produce Correct Output
Function (EPCOF)

E

X

E

X

E

X

W
R

W
R

E

X

E

X

W
R

W
R

E

X

E

X

E

X

W
R

W
R

E

X

E

X

W
R

E

X

W
R

1 2

3

4

87

4.3 A standard-based model of software-FUR for system reliability NFR using a

COSMIC-SOA

Figure 4.11 illustrates the standard-based model of software-FUR for system reliability NFR.

Figure 4.11 is considered a high-level model of requirements and describes the important

concepts and relationships for system reliability requirements as defined in the ECSS

international standards. In this section, the standard-based model of software-FUR for system

reliability NFR using COSMIC-SOA is built in Figure 4.12 to elaborate on the model to

show a more complete picture, which includes showing what is involved in instantiating the

modeled entities in practice – for more details, see (COSMIC 2010). Figure 4.12 also

describes the detailed measurement model which can be used to specify and measure the

functionality at the service level.

The standard-based model of software-FUR for system reliability NFR using COSMIC-SOA

in Figure 4.12 provides an integrated suite of services that can be used in multiple business

domains to measure the functional size of software-FUR in an COSMIC SOA environment.

In this model, the term “service” refers to a set of related software-FUR functions. The

COSMIC-SOA guideline offers three types of data movements architecture in Table 1.4 - see

chapter 1.

88

Figure 4.12 A standard-based model of software-FUR for system reliability NFR COSMIC
modelling view (Function and Service Levels)

X E

E X

A standards-based model of software-FUR for system reliability NFR
COSMIC modelling view (Function and Service Level)

System Reliability Prediction (SRP):
Function Type 1

F
U
R

Failure
System

Tolerance
Function
(FSTF)

Fault
Recovery
Tolerance
Function
(FRTF)

Error
Data

Tolerance
Function
 (EDTF)

E

X

Failure System
Tolerance Service

(FSTS)

Fault Recovery
Tolerance Service

(FRTS)

Error Data
Tolerance Service
 (EDTS)

 (IS-2)

X
E

E
X

X
E

E
X

X E

E X

X E

E X

 (IS-1)

X
E

E
X

X
E

E
X

F
U
R

E
X

FUR

X
E

X E

E X

System Reliability Prediction Failure (SRPF)
Function Type 2

Failure Operation Function(FOF)

Failure Mechanism Function(FMF)

E

X

E
X

Failure Operation Service (FOS)
X E

E X

Failure Mechanism Service (FMS)

Persistent
Storage

WR

WR
X E

 (IS-3)

X
E

E
X

X
E

E
X

X E

E X

System Reliability Prediction
Fault (SRPF1): Function Type 3

Fault Removal Service (FRS)

Fault Prevention Function (FPF)

Fault Detection Function (FDF)

Fault Removal Function (FRF)

E
X

E

X

E

X

Fault Prevention Service (FPS)

Fault Detection Service
(FDS)

Persistent
Storage

WR

WR

Persistent
Storage

WR

X E

E X

X E

E X

X E

E X

 (IS-4)

X
E

E
X

X
E

E
X

 (IS-5)

X
E

E
X

X
E

E
X

System Reliability Prediction
Error (SRPE): Function Type 4

 Error to Handle Input Function
(EHIF)

Error to Produce Output
Function (EPOF)

Error to Produce Correct Output
Function (EPCOF)

E

X

E
X

E
X

Error to Handle Input
Service (EHIS)

Error to Produce Output
Service (EPOS)

Error to Produce Correct Output
Service (EPCOS)

Persistent
Storage

WR

WR

Persistent
Storage

WR

X E

E X

X E

E X

X E

E X

 (IS-6)

X
E

E
X

X
E

E
X

 (IS-7)

X
E

E
X

X
E

E
X

1

2

3

4

89

4.4 Sizing of the standard-based model of software-FUR for system reliability NFR

The specification of the standard-based model of software-FUR for system reliability NFR in

any specific project is a specific instantiation of the proposed model described in Figure 4.12.

When the software specification document is at the level of the movements of data groups,

then these functional requirements can be directly measured using the COSMIC

measurement rules. The measurement example presented next is illustrative of an

instantiation of the standard-based model of software-FUR for system reliability NFR in an

SOA context for a single data group for all the identified possible flows of data groups.

The measurement example in this section explains how to use the proposed standard-based

model of software-FUR for system reliability NFR to size an hypothetical model composed

of all of the kinds of software-FUR for system reliability-NFR.

4.4.1 Measurement of exchange messages for system reliability

There are eleven (11) functions types of system reliability, interacting with their own services,

for the measurement of exchange messages in the standard-based model of software-FUR for

system reliability NFR using COSMIC-SOA - see Figure 4.12. According to COSMIC-SOA

guideline (COSMIC 2010), each functional process may interact with its own service by

sending and receiving data movements (i.e., Entry and Exit).

Table 4.3 illustrates the measurement results for interactions between the system reliability

functional processes with its own service processes i.e., the first line in Table 4.3 (Failure

System Tolerance Function-FSTF) interacts with its own service process Failure System

Tolerance Service-FSTS). For each interaction between each functional process with its own

functional service process, the measurement result for this operation is equal to 4 CFP –see

Table 4.4; the total measurement result is equal to 44 (see the green shaded arrows in Figure

4.12).

90

Table 4.3 Measurement of the exchange messages for the proposed model

Id. Of

Functions
Types of Exchange Services for System Reliability Quantity of

Data MovementsApplication Functional
Process

Service Functional process

1
Failure System Tolerance

Function (FSTF)
Failure System Tolerance

Service (FSTS)
4

2
Fault Recovery Tolerance

Function (FRTF)
Fault Recovery Tolerance

Service (FRTS)
4

3
Error Data Tolerance

Function (EDTF)
Error Data Tolerance

Service (EDTS)
4

4
Failure Operation Function

(FOF)
Failure Operation Service

(FOS)
4

5
Failure Mechanism
Function (FMF)

Failure Mechanism Service
(FMS)

4

6
Fault Prevention Function

(FPF)
Fault Prevention Service

(FPS)
4

7
Fault Detection Function

(FDF)
Fault Detection Service

(FDS)
4

8
Fault Removal Function

(FRF)
Fault Removal Service

(FRS)
4

9
Error to Handle Input

Function (EHIF)
Error to Handle Input

Service (EHIS)
4

10
Error to Produce Output

Function (EPOF)
Error to Produce Output

Service (EPOS)
4

11
Error to Produce Correct

Output Function (EPCOF)
Error to Produce Correct
Output Service (EPCOS)

4

The Total of Data Movements 44 CFP

Table 4.4 Measurement example for the interactions between one application functional
process and one service functional process

Application
Functional

Process

Service
Functional
process

Data Movement Description

Data
Movement

Type
Failure System

Tolerance
Function
(FSTF)

Failure System
Tolerance
Service
(FSTS)

FSTF sends a data group to FSTS X
FSTS receives a data group from FSTF E
FSTS sends a data group to FSTF X

FSTF receives a data group from FSTS E

The Total of Data Movements 4 CFP

91

4.4.2 Measurement of intermediary services for system reliability

When a functional process service in Figure 4.12 requires data that is available via another

functional process service, the former calls upon a functional process of the intermediary

service. According to the standard-based model of software-FUR for system reliability NFR,

the types of data movements for using the intermediary service must be an Entry and Exit.

Table 4.5 illustrates the measurement results for the intermediary services based on Figure

4.12 (see the red shaded arrows in Figure 4.12). This table presents an instantiation of a

single data group for all possible flows of the data groups identified above, and listed as a

data movement example for one intermediary service in Table 4.6. For this operation

requirement the measurement results are equal to 8 CFP.

Table 4.5 Measurement of the intermediary services for the proposed model

Id. of

Intermediary
services

Types of Intermediary Services Quantity of
Data

Movements Functional Service Functional Service

IS-1
Failure System Tolerance

Service (FSTS)
Fault Recovery Tolerance

Service (FRTS)
8

IS-2
Fault Recovery Tolerance

Service (FRTS)
Error Data Tolerance Service

(EDTS)
8

IS-3
Failure Operation Service

(FOS)
Failure Mechanism Service

(FMS)
8

IS-4
Fault Prevention Service

(FPS)
Fault Detection Service

(FDS)
8

IS-5
Fault Detection Service

(FDS)
Fault Removal Service (FRS) 8

IS-6
Error to Handle Input

Service (EHIS)
Error to Produce Output

Service (EPOS)
8

IS-7
Error to Produce Output

Service (EPOS)
Error to Produce Correct
Output Service (EPCOS)

8

The Total of Data Movements 56 CFP

92

Table 4.6 COSMIC-SOA measurement example for the IS between functional Service

Intermediary Services Data Movement Description Data

Movement Type IS-1

Failure
System

Tolerance
Service
(FSTS)

Fault
Recovery
Tolerance

Service
(FRTS)

FSTF sends a data group to IS-1 X
IS-1 receives a data group from FSTF E
IS-1 sends a data group to FRTF X
FRTF receives a data group from IS-1 E
FRTS sends a data group to IS-1 X
IS-1 receives a data group from FRTF E
IS-1 sends a data group to FSTF X
FSTF receives a data group from IS-1 E

The Total of Data Movements 8 CFP
Note: IS-1 is the first intermediary service in Figure 4.12.

4.4.3 Measurement of the direct and indirect data movements for system reliability

This section is based on Figure 4.12 which illustrates the possible flows of data between

components in the same layer, i.e., between peer components (where a component may be an

application or a service). This section shows direct and indirect exchanges of data between

components – one or both forms of which may be involved when services communicate. If

components exchange data directly, the measurer will identify the Exit and/or Entry data

movements, as per the data movements between service A and service B. An indirect

exchange of data between components means that a service in one component writes data

which are subsequently read by a service in another component. In this situation, the

measurer will identify a Write data movement in the former component and a Read data

movement in the other.

Specifically, Table 4.7 illustrates the measurement results for the exchange of data

movements between the system reliability requirements model in a functional process or in

service architecture layers – see Figure 4.12. This table presents an instantiation of this

operation. The measurement results are equal to 38 CFP (see the yellow and blue shaded

arrows in Figure 4.12).

93

Table 4.7 Measurements results for direct and indirect data groups

COSMIC-SOA
Functions types

Data Movement Description
Data

MovementType

Functional User (FU)

FU sends a data group to FSTF.
FU sends a data group to FRTF.
FU sends a data group to FDTF.
FU receives a data group from FSTF
FU receives a data group from FRTF
FU receives a data group from FDTF

E
E
E
X
X
X

Failure System
Tolerance Function

(FSTF)

FSTF sends a data group to FOF
FSTF sends a data group to FMF
FSTF receives a data group from FOF
FSTF receives a data group from FMF

E
E
X
X

Fault Recovery

Tolerance
Function (FRTF)

FRTF sends a data group to FPF
FRTF sends a data group to FDF
FRTF sends a data group to FRF
FRTF receives a data group from FPF
FRTF receives a data group from FDF
FRTF receives a data group from FRF

E
E
E
X
X
X

Error Data Tolerance

Function (EDTF)

EDTF sends a data group to EHIF
EDTF sends a data group to EPOF
EDTF sends a data group to EPCOF
EDTF receives a data group from EHIF
EDTF receives a data group from EPOF
EDTF receives a data group from EPCOF

E
E
E
X
X
X

Failure Operation
Function (FOF)

FOF reads and writes a data group
from/to persistent storage.

R & W

Failure Mechanism
Function(FMF)

FMF reads and writes a data group
from/to persistent storage.

R & W

Fault Prevention
Function (FPF)

FPF reads and writes a data group from/to
persistent storage.

R & W

Fault Detection Function
(FDF)

FDF reads and writes a data group
from/to persistent storage.

R & W

Fault Removal Function
(FRF)

FRF reads and writes a data group from/to
persistent storage.

R & W

Error to Handle Input
Function (EHIF)

EHIF reads and writes a data group
from/to persistent storage.

R & W

Error to Produce Output
Function (EPOF)

EPOF reads and writes a data group
from/to persistent storage.

R & W

Error to Produce Correct
Output Function

(EPCOF)

EPCOF reads and writes a data group
from/to persistent storage.

R & W

The Total functional size 38 CFP

94

4.5 Requirements and measurement examples

This section presents two specific measurement examples of the use of the standard-based

model of software-FUR for system reliability NFR.

Example 1: Description of the requirements for a simple failure tolerance function (FTSF) to

be allocated to software:,

• Step 1: To implement the requirements for failure system tolerance function (FSTF) - see

figures 4.2, 4.4 and 4.10, a software function must collect data of actual failure operations

in the system (FOF) and data from the failure mechanisms (FMF) (a single or multiple

failure mechanism requirement(s) must have been documented in the requirements at the

system level, and allocated to the software – but is not described here for simplicity

sake).

• Step 2: once the above FTSF requirements are detailed at a lower level of software

requirements, the FTSF portion of the standard-based measurement model of the system

reliability-NFR can be used for measuring the functional size of the functions allocated to

Software-FUR.

Example 2: The set of functional requirements allocated to software for the system

reliability requirements for a specific instantiation is the following (i.e. a subset of the full

model in figure 4.2):

1. The functional user (FU) sends one data group to FSTF and another data group to FRTF;

2. The FSTF sends one data group to FOF and another data group to FMF.

Based on Figure 4.12 (arrows in yellow) and Table 4.7, the functional size measurement

results are presented in Table 4.8 for the data movements identified by the measurer for this

example. In this example, it is assumed for simplicity sake that there is a single data group

involved in the requirements.

95

Table 4.8 Measurements results for direct and indirect data movements

COSMIC-SOA
Functions

Data Movement Description
Data

Movement Type

Functional User

(FU)

FU sends a data group to FSTF.
FU sends a data group to FRTF.
FU receives a data group from FSTF
FU receives a data group from FRTF

E
E
X
X

Failure System Tolerance
Function (FSTF)

FSTF sends a data group to FOF
FSTF sends a data group to FMF
FSTF receives a data group from FOF
FSTF receives a data group from FMF

E
E
X
X

Failure Operation
Function (FOF)

FOF reads and writes a data group
from/to persistent storage.

R & W

Failure Mechanism
Function(FMF)

FMF reads and writes a data group
from/to persistent storage.

R & W

The Total Functional Size 12 CFP

4.6 Summary

This chapter has introduced the standard-based model of software-FUR for system reliability

NFR for specifying and measuring software requirements for the functions needed to address

the system’s reliability requirements.

The main contribution of this chapter is our proposed standard-based model of software-FUR

for system reliability NFR. This model can be considered as a kind of reference model for the

identification of system reliability requirements, and can be used for their allocation to

software functions implementing such requirements. System requirements allocated to

hardware have not been addressed in this chapter. Since the structure of the general model is

based on the generic model of software adopted by the COSMIC measurement standard, the

necessary information for measuring their functional size is readily available, and an example

has been presented of a specific instantiation of this model. Specifically, the standard-based

model of software-FUR for system reliability NFR presented in this chapter is based on:

96

• The ECSS standards for the description of the NFR for system reliability;

• The COSMIC measurement model of functional user requirements.

The proposed standard-based model of software-FUR for system reliability NFR is

independent of the software type and the languages in which the software-FUR will be

implemented. The proposed model provides:

• A specification model for each type, or all types, of reliability requirements: for example;

the functional requirements to be allocated to software for the system reliability

prediction.

• A specification measurement model for each type, or all types, of system reliability

requirements allocated to software-FUR.

In the absence of such standard-based model of software-FUR for system reliability NFR,

such NFR requirements are typically handled in practice much later on in the software

development life cycle when, for example, at system testing time, users and developers find

out that a number of reliability requirements have been overlooked and additional work has

to be expanded to implement them.

CHAPTER 5

MAINTAINABILITY: IDENTIFICATION, SPECIFICATION AND
MEASUREMENT OF SOFTWARE-FUR DERIVED FROM SYSTEM-NFR

5.1 Introduction

Currently, there exists no standard-based model of software-FUR for system maintainability-

NFR for the identification and specification of system maintainability requirements based on

the various views documented in international standards and in the literature. Consequently,

it is challenging to measure these maintainability-related software-FUR, and take them into

account quantitatively for estimation purposes.

The ECSS includes maintainability requirements as one of sixteen (16) types of non

functional requirement (NFR) for embedded and real time software. A number of

maintainability related concepts are dispersed throughout the ECSS, ISO 9126 (ISO-9126

2004), and IEEE (IEEE-830 1998) standards to describe at varying levels of details the

various types of candidate maintainability requirements at the system, software, and

hardware levels.

This chapter organizes these dispersed maintainability concepts into a standard-based model

of software-FUR for system maintainability-NFR. The availability and details of the model

can facilitate the early identification and specification of the system maintainability-NFR and

their detailed allocation as specific maintainability functions to be handled by the specified

allocation to hardware or software or in a specific combination of both.

The approach adopted in this research for the structure of this model is based on the generic

model of software-FUR proposed in the COSMIC – (ISO-19761 2011) model, thereby

allowing the measurement of the functional size of such maintainability requirements

allocated to software and taking them into account for estimations purposes.

98

System
Maintainability-FUR

System
Maintainability-NFR

Software-FUR
 for Maintainability Requirements

This chapter focuses on a single type of NFR, that is, system maintainability requirements,

and reports on the work carried out to define an integrated view of the standard-based model

of software-FUR for system maintainability-NFR based on international standards, including

the use of the generic COSMIC (ISO-19761 2011) model of software-FUR.

The maintainability related views, concepts and terms in the ECSS, IEEE, and ISO standards

have been identified in chapter 3 and should be included in the design of the standard-based

model of software-FUR for system maintainability-NFR. The elements of maintainability are

dispersed in a number of system views throughout various ECSS standards, and are

expressed as either – see Figure 5.1:

• System maintainability functional user requirements (system maintainability-FUR);

• System maintainability-NFR.

Figure 5.1 Mapping system-NFR to the maintainability FUR allocated to software

The chapter is organized as follows. Section 5.2 presents a standard-based model of

software-FUR for system maintainability NFR. Section 5.3 presents a standard-based model

of software-FUR for system maintainability NFR using a service-oriented architecture

(SOA). Section 5.4 presents the sizing of a standard-based model of software-FUR for

system maintainability NFR. Section 5.5 presents a measurement example. Finally, a

summary is presented in section 5.6.

99

5.2 A standard-based model of software-FUR for system maintainability-NFR

The terminologies and concepts of maintainability identified in chapter 3 are mapped here

into a proposed standard-based model of software-FUR for system maintainability NFR.

5.2.1 Mapping maintainability views, concepts, and terms from standards

During the mapping of maintainability requirements views and concepts from ISO 9126 and

ECSS, it was observed that a high level of standard-based model of software maintainability

requirements is defined by ISO, while a detailed (but disperse) view of system-

maintainability requirements is provided by ECSS.

Table 5.1 presents the system maintainability requirements that are present either as system

requirements in the ECSS standard or as maintainability-related concepts in ISO 9126. Each

of these could be interpreted, and specified, at times as software-FUR.

Table 5.1 Maintainability requirements in ECSS & ISO 9126

ID System Maintainability Requirements
1 Failure Data Operation
2 Failure Data Monitoring
3 Failure Data Control
4 System Failure Tasks
5 Failure Isolation
6 Failure Detection
7 Correct Data Faults
8 Correct System Defects
9 Fault Prevention of Data Control
10 Fault Prevention of System Functions
11 Fault Allocation Time

Furthermore, various types of system-related maintainability requirements can be derived

from ISO 9126. Table 5.2 presents various procedures (middle column) associated with the

system maintainability requirements and the corresponding software functions (right-hand

100

column) that may be specified to implement such procedures for the five types of system

maintainability requirements.

Table 5.2 System maintainability requirements and related software functions

ID
System

Maintainability
in ISO 9126

System
Maintainability

Procedures
Software functions for maintainability

1
System
Analyzability

System
Maintainability
Failure Procedure
(SMFP)

• System Diagnostic Functions (SDF)
• Failure Data Operation Function

(FDOF)
• Failure Data Monitoring Function

(FDMF)
• Failure Data Control Function

(FDCF)
• System Failure Tasks Function

(SFTF)

2
System
Analyzability &
Changeability

System Registered
Failures Procedure
(SRFP)

• Failure Detection Function (FDF)
• Failure Isolation Function (FIF)

3
System
Changeability

System Malfunction
Procedure (SMP)

• Correct Data Faults Function
(CDFF)

• Correct System Defects Function
(CSDF)

4
System
Stability

System Stability
Procedure (SSP)

• Fault Prevention of Data Control
Function (FPDCF)

• Fault Prevention of System Function
(FPSF)

5
System
Testability

System Testability
Procedure (STP)

• System Time Function (STF)
• Fault Allocation Time Function

(FATF)

5.2.2 Identification of system maintainability functions types allocated software-FUR

The section identifies the function types and the relationships between these function types

allocated to software-FUR for system maintainability.

101

System Maintainability Failure Procedure (SMFP)

Figure 5.2 illustrates a system modeling view (i.e., a high-level view) of the data movements

for the system maintainability failure procedure (SMFP) (Function Type 1) which is divided

into:

1. The set of SDF constitutes a program or software written for the express purpose of

examining the state of the hardware, or for locating problems with the hardware or

operating system environment in/on which it is running. It sends data groups to the

failure data operation, monitoring, and control functions (FDOF, FDMF, and FDCF) and

to the system failure tasks function (SFTF);

2. The FDOF is the collection of failure activities required to operate the system diagnostic

services and their execution. It reads about other services from stored information and

writes their results on the system;

3. The FDMF keeps track of services in progress, and some information is provided from

the FDOF results using intermediary services. It reads about other services from stored

information and writes their results on the system;

4. The FDCF provides or assigns tasks, or brings about changes and verifies their service

execution, to meet the deadlines and requirements. It reads about other services from

stored information and writes their results on the system. The FDCF also uses

intermediary services to connect the FDMF results, which provide some information;

5. The SFTF provides a complete description of a small unit of work. This description

consists of two parts:

• A data payload, which parameterizes the task;

• Code, which implements the task.

• SFTF reads about other services from stored information and writes their results on

the system. In Figure 5.2, the intermediary services are represented by a cross in a

small circle ().

102

System Maintainability Failure Procedure (SMFP)
Function Type 1

System

Diagnostic

Functions

(SDF)

Failure Data Operation Function

(FDOF)

Failure Data Monitoring Function

(FDMF)

Failure Data Control Function

(FDCF)

System Failure Tasks function

(SFTF)

System Registered
Failures Procedure

(SRFP)
Function Type 2

Failure

Detection
 Function

(FDF)

Failure
Isolation
Function

(FIF)

Storage
Area
(SA)

System Stability
Procedure (SSP)

Function Type 4

System Testability
Procedure (STP)

Function Type 5

The system maintainability failure procedure (SMFP) (Function Type 1) sends its results

throughout the intermediary services to be used by the system stability procedure (SSP)

(Function type 4) and system testability procedure (STP) (Function type 5).

The FDOF and FDMF in the system maintainability failure procedure (SMFP) (function type

1) send their results to FDF in the system registered failure procedure (SREP) (function type

2). The FDCF and SFTF in the system maintainability failure procedure (SMFP) (function

type 1) send their results to FIF in the system registered failure procedure (SREP) (function

type 2).

Figure 5.2 System Modeling View of a System Maintainability Failure Procedure (SMFP)

Figure 5.3 illustrates the COSMIC modeling scenario for the data movements for the System

Maintainability Failure Procedure (SMFP).

103

System Maintainability Failure Procedure (SMFP)
Function Type 1

System Registered
Failures Procedure (SRFP)

Function Type 2

Failure
Detection
 Function

(FDF)

Failure

Isolation
Function

(FIF)

System Stability
Procedure (SSP)

Function Type 4

System Testability
Procedure (STP)

Function Type 5

System

Diagnostic

Functions

(SDF)

Failure Data Operation
 Function (FDOF)

Failure Data Monitoring
Function (FDMF)

Failure Data Control Function
(FDCF)

System Failure Tasks Function
(SFTF)

ENTRY

ENTRY

ENTRY

ENTRY

WRITE

READ

Storage

Area

(SA)

WRITE

READ

WRITE

READ

WRITE

READ

The SDF sends a data group to the failure data operation, data monitoring, and data control

functions and system failure tasks function (FDOF, FDMF, FDCF and SFTF):

1. The FDOF reads data groups about other services from stored information and writes

their results as data movements on the system;

2. The FDMF reads data groups about other services from stored information and writes

their results as data movements on the system;

3. The FDCF reads data groups about other services from stored information and writes

their results as data movements on the system;

4. The SFTF reads data groups about other services from stored information and writes their

results as data movements on the system.

The FDOF, FDMF, FDCF, and SFTF send and receive data groups to connect their

functionality or service with one another by using intermediary services, which are

represented by a cross inside a small circle – see Figure 5.3.

Figure 5.3 COSMIC Modeling View of a Maintainability Failures Procedure (SMFP)
(i.e., with COSMIC data movements)

104

System Registered Failures Procedure (SRFP)

Figure 5.4 illustrates a system modeling view (i.e., a high-level view) of the data movements

for the system registered failures procedure (SRFP) (Function Type 2):

1. The failure detection function (FDF) includes the ability of the system to detect and

report a failure by saving the following results in the system:

• The system correctly indicates a safe condition;

• The system correctly indicates a malfunction requiring corrections;

• The system erroneously indicates a safe condition in the event of a malfunction;

• It provides information about data faults that could be occur.

2. The Failure Isolation Function (FIF) includes the ability of the system to identify the

failure by saving the following results in the system:

• System task operations cannot access data;

• The modified data during a transaction that has not yet been completed;

• The FIF provides information about system defects that could be occurred in the

future.

The FDF and FIF contact each other through intermediary services to decide through

different services which types of defects or faults can be appear in the system.

The FDF and FIF receive and send data movements from other function types in the

maintainability model as follows:

1. The FDF receives its functionality based on the FDOF and FDMF results from System

Maintainability Failure Procedure (SMFP) (Function Type 1) – see Figure 5.2;

2. The FIF receives its functionality based on the FDCF and SFTF results from System

Maintainability Failure Procedure (SMFP) (Function Type 1) – see Figure 5.2;

3. The FDF sends its results to be used by the correct data faults function (CDFF) to system

malfunction procedure (SMP) (Function type 3);

4. The FIF sends its results to be used by the correct system defects function (CSDF) to

system malfunction procedure (SMP) (Function type 3).

105

System Registered
Failures Procedure (SRFP)

Function Type 2

System Maintainability
Failure Procedure (SMFP)

Function Type 1

Failure Data Operation Function

(FDOF)

Failure Data Monitoring Function

(FDMF)

Failure Data Control Function

(FDCF)

System Failure Tasks function

(SFTF)

Failure Detection

 Function
(FDF)

Failure Isolation
Function

(FIF)

Storage

Area

System Malfunction
Procedure (SMP)
Function Type 3

Correct Data faults
Function (CDFF)

Correct System
Defects Function

(CSDF)

System Stability
Procedure (SSP)
Function type 4

System Testability
Procedure (STP)
Function type 5

5. The system registered failure procedure (SRFP) (Function Type 2) sends their results

throughout the intermediary services to be used by the system stability procedure (SSP)

(Function type 4) and system testability procedure (STP) (Function type 5);

6. In Figure 5.4, the intermediary services are represented by a cross in a small circle .

Figure 5.4 System Modeling Maintainability of the Registered Failures Procedure (SRFP)

Figure 5.5 illustrates a COSMIC modeling view of the data movements for the system

registered failures procedure (SRFP) (Function Type 2):

1. The Failure Detection Function (FDF) receives a data group from the FDOF and FDMF.

2. The FDF reads and/or writes a data group to/from the storage area or system buffer.

3. The FIF receives a data group from the FDCF and SFIF.

4. The FIF reads and/or writes a data group to/from the storage area or system buffer.

5. The FDF and FIF contact each other by sending and receiving a data group using

intermediary services.

6. In Figure 5.5, the intermediary services are represented by a cross in a small circle .

106

System Malfunction
Procedure (SMP)
Function Type 3

System Maintainability
Failure Procedure (SMFP)

Function Type 1

System Registered
Failures Procedure (SRFP)

Function Type 2

Failure Data Operation Function

(FDOF)

Failure Data Monitoring Function

(FDMF)

Failure Data Control Function

(FDCF)

System Failure Tasks function

(SFTF)

Failure Detection

 Function
(FDF)

Failure Isolation

Function
(FIF)

Storage

Area

Correct Data faults
Function (CDFF)

Correct System
Defects Function

(CSDF)

ENTRY

ENTRY
WRITE

READ

ENTRY

ENTRY

WRITE

READ

System Stability
Procedure (SSP)
Function type 4

System Testability
Procedure (STP)
Function type 5

Figure 5.5 COSMIC Modeling View of the Maintainability Registered Failures Procedure

(SRFP) (i.e., with COSMIC data movements)

System Malfunction Procedure (SMP)

Figure 5.6 illustrates a system modeling view (i.e., a high-level view) of the data movements

for the maintainability system malfunction procedure (SMP) (Function Type 3):

1. The Correct Data Faults Function (CDFF) is used when there is an abnormal condition at

the component, equipment, or subsystem level, which may lead to failure in the

functional unit or execution unit. The CDFF provides information about asymmetric and

symmetric data faults, a result which may be used by a next functionality in the

maintainability systems requirements allocated to software;

2. The Correct System Defects Function (CSDF) is a functionality which is used when a

reproducible or catastrophic malfunction occurs consistently under the same

circumstances. It provides information about a failure of computer software to meet

107

System Malfunction Procedure (SMP)
Function Type 3

System Registered
Failures Procedure (SRFP)

Function Type 2

Failure Detection

 Function
(FDF)

Failure Isolation

Function
(FIF)

Correct Data
faults Function

(CDFF)

Correct System
Defects Function

(CSDF)

Storage

Area

System Testability

Procedure
 (STP)

Function Type 5

System Stability

Procedure
 (SSP)

Function Type 4

requirements, a result which may be used by a next functionality in the maintainability

systems requirements allocated to software.

The CDFF and CSDF contact each other through intermediary services to decide through

various services which type of defects or faults can be appear in the system.

The CDFF and CSDF receive and send data movements from other function types in the

maintainability model as follows:

1. The CDFF receives its functionality based on the FDF and FIF results.

2. The CSFD receives its functionality based on the FIF results.

3. The CDFF and CSDF send their results throughout the intermediary services to be used

by the system stability procedure (SSP) (Function type 4) and system testability

procedure (STP) (Function type 5).

4. In Figure 5.6, the intermediary services are represented by a cross in a small circle .

Figure 5.6 System Modeling View of a System Malfunction Procedure (SMP)

Figure 5.7, illustrates a COSMIC modeling view of the data movements for the

maintainability system malfunction procedure (SMP) (Function Type 3):

1. The Correct Data Faults Function (CDFF) receives data groups from the FDF and FIF;

108

System Malfunction Procedure (SMP)
Function Type 3

System Registered
Failures Procedure (SRFP)

Function Type 2

Failure Detection

 Function
(FDF)

Failure Isolation

Function
(FIF)

Correct Data
faults Function

(CDFF)

Correct System
Defects Function

(CSDF)

Storage
Area

System Testability

Procedure
 (STP)

Function Type 5

System Stability

Procedure
 (SSP)

Function Type 4

ENTRY

WRITE

READ

ENTRY

ENTRY
WRITE

READ

2. The CDFF reads and/or writes a data group to/from a storage area or system buffer;

3. The Correct System Defect Function (CSDF) receives a data group from the FIF;

4. The CSDF reads and/or writes a data group to/from a storage area or system buffer;

5. The CDFF and CSDF contact each other by sending and receiving a data group using

intermediary services;

6. The CDFF and CSDF in function type 3 send their results throughout the intermediary

services to be used by the system stability procedure (SSP) (Function type 4) and system

testability procedure (STP) (Function type 5);

7. In Figure 5.7, the intermediary services are represented by a cross in a small circle .

Figure 5.7 COSMIC Modeling View of a System Malfunction Procedure (SMP)

(i.e., with COSMIC data movements)

System Stability Procedure (SSP)

Figure 5.8 illustrates a system modeling view (i.e., a high-level view) for the data movements

for the system stability procedure (SSP) (Function Type 4):

1. The Fault Prevention of Data Control Function (FPDCF) is used when classifying the

types of data faults being incorporated into a system. The FPDCF provides information

about system data faults, a result which may be used by other functionalities, such as

109

SDF or system registered failures and system malfunctions in the maintainability systems

allocated to software;

2. The Fault Prevention of System Function (FPSF) deals with preventing faults being

incorporated into a system. The FPSF provides information about system faults, a result

which may be used by other functionalities, such as SDF in the maintainability systems

allocated to software.

The FPSF and FPDCF contact each other through intermediary services to provide the degree

of system health. In Figure 5.8, the intermediary services are represented by a cross in a

small ().

The FPSF and FPDCF receive their functionality based on the results of the function types 1,

2, 3 and 5 using intermediary services.

Figure 5.8 System Modeling View of System Stability Procedure (SSP)

Figure 5.9 illustrates a COSMIC modeling view of the data movements for the system

stability procedure (SSP) (Function Type 4):

System Stability Procedure (SSP)
(Function Type 4):

Fault Prevention of Data
Control Function

(FPDCF)

Fault Prevention of System
Function
(FPSF)

Storage

Area

System Testability

Procedure
 (STP)

Function Type 5

System Registered
Failures Procedure (SRFP)

Function Type 2

System Malfunction Procedure
(SMP)

Function Type 3

System
Maintainability

Failure Procedure
(SMFP)

Function Type 1

110

System Stability Procedure (SSP)
(Function Type 4):

System Testability

Procedure
 (STP)

Function Type 5

System Registered
Failures Procedure (SRFP)

Function Type 2

System Malfunction Procedure
(SMP)

Function Type 3

System
Maintainability

Failure Procedure
(SMFP)

Function Type 1

Storage

Area

Fault Prevention of Data
Control Function

(FPDCF)

Fault Prevention of System
Function
(FPSF)

WRITE

READ

WRITE

READ

1. The FPDCF sending and receiving a data group using intermediary services from/to

functions types 1, 2, 3 and 5. It reads and/or writes a data group to/from a storage area or

system buffer;

2. The FPSF sending and receiving a data group using intermediary services from/to

functions types 1, 2, 3 and 5. It reads and/or writes a data group to/from a storage area or

system buffer.

The FPSF and FPDCF contact each other by sending and receiving a data group using

intermediary services. In Figure 5.9, the intermediary services are represented by a cross in a

small circle .

Figure 5.9 COSMIC Modeling View of a System Stability Procedure (SSP)

(i.e., with COSMIC data movements)

System Testability Procedure (STP)

Figure 5.10, illustrates a system modeling view (i.e., a high-level view) of the data

movements for the system testability procedure (STP) (Function Type 5):

1. The system time function (STF) is a system for describing points in time. It has two

layers: the first encodes a point in time as a real number for each event in the system, and

111

the second encodes that number as a sequence of bits or in another form. The STF

provides time information about when the maintainability failure procedure occurred and

the time of registering the failure for each event. This result may be used by other

functionalities, such as the system stability function in the maintainability systems

allocated to software;

2. The Fault Allocation Time Function (FATF) is used to provide both the execution time

and the required memory for each event in the memory. It provides information about

when the maintainability failure occurred: the time of registered failure for each event,

and, when a system malfunctions, the faults or defects that occurred. Its result may be

used by other functionalities, such as the system stability function in the maintainability

systems allocated to software.

The STF and FATF contact each other through intermediary services. In Figure 5.10, the

intermediary services are represented by a cross in a small circle .

The STF and FATF receive their functionality based on the results of function types 1, 2, and

3 in this model.

Figure 5.10 System Modeling View of the System Testability Procedure (ST)

System Testability Procedure (STP)
(Function Type 5):

System Time
Function (STF)

Fault Allocation Time
Function (FATF)

Storage Area

System Registered
Failures Procedure (SRFP)

Function Type 2

System Malfunction Procedure (SMP)
Function Type 3

System Maintainability

Failure Procedure (SMFP)
Function Type 1

112

Figure 5.11, illustrates a COSMIC modeling view of the data movements for the system

testability procedure (STP) (Function Type 5):

1. The STF receives a data group from function types 1, 2 and 3 in the maintainability

model using intermediary services. It reads and/or writes a data group to/from a storage

area or system buffer;

2. An FATF receives a data group from function types 1, 2 and 3 in the maintainability

model using intermediary services. It reads and/or writes a data group to/from a storage

area or system buffer.

The STF and FATF contact each other by sending and receiving a data group using

intermediary services. In Figure 5.11, the intermediary services are represented by a cross in

a small circle .

Figure 5.11 COSMIC Modeling View of a System Testability Procedure (ST)

(i.e., with COSMIC data movements)

System Testability Procedure (STP)
(Function Type 5):

System Registered

Failures Procedure (SRFP)
Function Type 2

System Malfunction Procedure (SMP)

Function Type 3

System Maintainability
Failure Procedure (SMFP)

Function Type 1

Storage

 Area

System Time Function

(STF)

Fault Allocation Time
Function (FATF)

WRITE

READ

WRITE

READ

113

5.2.3 Model of the functions types relationships based on system views

Figure 5.12 presents an overview of the relationships between the function types for system

maintainability that may be allocated to software-FUR. More specifically, the system

maintainability requirements model is composed of 12 functions grouped into five function

procedures types. The data flow on the model is also divided into direct data flows and the

intermediary data flows:

1. The SMFP (Function Type 1) can be used to specify the data flows between its five sub

functions and the data flows with the other functions on the system maintainability model

– see Figure 5.12;

2. The SRFP model (Function Type 2) can be used to specify the data flows between its two

sub functions and the data flows with the other functions on the system maintainability

model – see Figure 5.12;

3. The SMP model (Function Type 3) can be used to specify the data flows between its two

sub functions and the data flows with the other functions on the system maintainability

model – see Figure 5.12;

4. The SSP (Function Type 4) can be used to specify the data flows between its two sub

functions and the data flows with the other functions on the system maintainability model

– see Figure 5.12;

5. The STP model (Function Type 5) can be used to specify the data flows between its two

sub functions and the data flows with the other functions on the system maintainability

model – see Figure 5.12.

Figure 5.13 presents an overview of the relationships between the function types for system

maintainability that may be allocated to software-FUR, using COSMIC for graphical

representation. More specifically:

1. The SMFP model can be used to specify and measure its functional size from the

received/send data movements from/to SDF, FDOF, FDMF, FDCF and SFTF – see

Figure 5.13;

114

2. The SRFP model can be used to specify and measure its functional size from the

received/send data movements from/to FIF and FDF− see Figure 5.13;

3. The SMP model can be used to specify and measure its functional size from the

received/send data movements from/to CDFF and CSDF − see Figure 5.13;

4. The SS model can be used to specify and measure its functional size from the

received/send data movements from/to FPDCF and FPSF− see Figure 5.13;

5. The ST model can be used to specify and measure its functional size from the

received/send data movements from/to STF and FATF − see Figure 5.13.

115

Figure 5.12 System Modeling View for System Maintainability Requirements

System Modeling View for System Maintainability Requirements

System Malfunction
Procedure (SMP)
Function Type 3

System Registered
Failures procedure

(SRFP)
Function Type 2

System Maintainability Failure Procedures (SMFP)

 Function Type 1

System
Diagnostic
Functions

(SDF)

Failure Data Operation
Function (FDOF)

Failure Data Monitoring
Function (FDMF)

Failure Data Control
Function (FDCF)

System Failure Task
Function (SFTF)

Failure

Detection
 Function

(FDF)

Failure

Isolation
Function

(FIF)

Correct Data
Fault

Function
(CDFF)

Correct System
Defect Function

(CSDF)

Intermediary Services (IS)

System Stability procedure (SSP)
 Function Type 4

Fault Prevention of Data Control
Function (FPDCF)

Fault Prevention of System Function
(FPSF)

System Testability (ST)
Function Type 5

System Time Function

(STF)

Fault Allocation Time Function
(FATF)

1

2 3

4 5

116

Figure 5.13 Standard-based model of software-FUR for system maintainability-NFR

(Functional Level)

System Analyzability System Changeability

 System Maintainability Failure
Procedures (SMEP)

 Function Type 1

System Malfunction
Procedure (SMP)
Function Type 3

System Registered Failures
procedure (SRFP)

Function Type 2

S
Y
S
T
E
M

D
I
A
G
N
O
S
T
I
C

F
U
N
C
T
I
O
N

S
D
F

Failure Data
Operation Function

FDOF

Failure Data
Monitoring Function

FDMF

Failure Data Control
Function

FDCF

System Failure Task
Function

SFTF

Failure
Detection
 Function

FDF

Failure
Isolation
Function

FIF

Correct Data
Faults

Function
CDFF

Correct
System Defect

Function
CSDF

ENTRY

ENTRY

ENTRY

ENTRY

 ENTRY

 ENTRY

ENTRY

 ENTRY

 ENTRY

 ENTRY

ENTRY

Persistent
Storage

Data Movement
Types

Functional
Process

Intermediary
Services R, W

1
2 3

R, W

R, W

R, W

R, W

R, W

R, W

R, W

R, W

Entry

F
U

Exit

5 System Testability Procedure (STP)
Function Type 5

System Time Function (STF)

System Stability Procedure (SSP)
 Function Type 4

Fault Prevention of System
 Function (FPSF)

Fault Prevention of Data Control
 Function (FPDCF)

R, W

R, W

Fault Allocation Time
Function (FATF)

R, W

R, W

 Intermediary Service (IS)

4

117

5.3 A standard-based model of software-FUR for system maintainability using SOA

A standard-based model of software-FUR for system maintainability-NFR is considered as a

high-level model of requirements that helps explain, and position, the variety of

maintainability-related functions described at the system level in the ECSS, IEEE, and ISO

standards.

However, in practice, such a high-level model typically does not include detailed information

documenting the required data groups necessary to unambiguously identify the specific

corresponding data movements.

The standard-based model of software-FUR for system maintainability-NFR using SOA

describes the detailed measurement model which can be used to specify and measure the

functionality described in Figure 5.13.

5.3.1 Measurements of exchange messages for system maintainability

This section illustrates the standard-based model of software-FUR for system

maintainability-NFR using SOA. This model is built based on Figure 5.13 and a role of the

COSMIC-SOA explained in Table 1.4 in chapter 1.

System Maintainability Failure Procedure (SMFP)

Figure 5.14 describes the detailed measurements for the exchange of data messages between

the application level and the services level for Function Type 1 (i.e., the System

Maintainability Failure Procedure).

Table 5.3 contains the detailed measurement manual of the standard-based model of

software-FUR for system maintainability-NFR for the SDF and their sub applications A, B,

C, and D (i.e., the Maintainability Failure Procedure); in this case, they are triggered in the

118

requesting messages; the service functional process FS replies to FA and the sub applications

with messages containing the requested data or an error message.

Figure 5.14 Exchange of data messages for sub applications (A, B, C, D)

with their services for SMFP

Table 5.3 Measurement of the exchange messages of the application, sub application, and
services for SMFP

ID
Functional Process Sub

Application
CFP

Functional Process
Services

CFP

Sub
Application

A

• A functional process FDOF-
A is triggered in the
requesting messages from
service functional process
FS-A

• A functional process FDOF-
A receives data from FS-A

X

E

• A service functional process

FS-A receives a message from a
functional process FDOF-A

• The service functional process
FS-A replies to FDOF-A with a
message containing the
requested data or an error
message

E

X

Sub
Application

B

• A functional process FDMF-
B is triggered in the
requesting messages from
service functional process
FS-B

• A functional process FDMF-
B receives data from FS-B

X

E

• A service functional process

FS-B receives a message from a
functional process FDMF-B

• The service functional process
FS-B replies to FDMF-B with a
message containing the
requested data or an error
message

E

X

 E X E X E X E X
 X E X E X E X E

Sub-Application A
Failure Data

Operation Function
(FDOF-A)

Sub-Application B
Failure Data

Monitoring Function
(FDMF-B)

Sub-Application C
Failure Data Control

Function
(FDCF-C)

Sub-Application D
System Failure Tasks

Function
(SFTF-D)

Service SA
FDO

Functional Process
(FS-A)

Service SB
FDM

Functional Process
(FS-B)

Service SC
FDC

Functional Process
(FS- C)

Service SD
SFT

Functional Process
(FS- D)

119

 X E X E

 E X E X

Sub-Application E
Failure Isolation Function

(FIF-E)

Sub-Application F
Failure Detection Function

(FDF-F)

Service SE
FI

Functional Process
(FS-E)

Service SF
FD

Functional Process
(FS-F)

Table 5.3 Measurement of the exchange messages of the application, sub application, and
services for SMFP (Continued)

ID
Functional Process Sub

Application
CF
P

Functional Process
Services

CFP

Sub
Application

C

• A functional process FDCF-C
is triggered in the requesting
messages from service
functional process FS-C

• A functional process FDCF-C
receives data from FS-C

X

E

• A service functional process FS-
C receives a message from a
functional process FDCF-C

• The service functional process
FS-C replies to FDCF-C with a
message containing the requested
data or an error message

E

X

Sub
Application

D

• A functional process SFTF-D
is triggered in the requesting
messages from service
functional process FS-D

• A functional process SFTF-D
receives data from FS-D

X

E

• A service functional process FS-
D receives a message from a
functional process SFTF-D

• The service functional process
FS-D replies to SFTF-D with a
message containing the requested
data or an error message

E

X

The total functional size = 16 CFP

System Registered Failure Procedure (SRFP)

Figure 5.15 describes the detailed measurements for the exchange of data messages between

application level and services level for SRFP. Table 5.4 contains the detailed measurement

manual for the COSMIC-SOA model of system maintainability requirements for the SREP

and their sub applications E, and F; in this case, they are triggered in the requesting

messages; the service functional process FS replies to FA and the sub applications with

messages containing the requested data or an error message.

Figure 5.15 Interactions sub applications (E and F) with their services for SRFP

120

Table 5.4 Measurement of the exchange messages of the application, sub application, and
services for SRFP

ID
Functional Process Sub

Application
CFP Functional Process Services CFP

Sub
Application

E

• A functional process
FIF-E is triggered in
the requesting
messages from service
functional process FS-
E

• A functional process
FIF-E receives data
from FS-E

X

E

• A service functional process
FS-E receives a message
from a functional process
FIF-E

• The service functional
process FS-E replies to FIF-
E with a message
containing the requested
data or an error message

E

X

Sub
Application

F

• A functional process
FDF-F is triggered in
the requesting
messages from service
functional process FS-F

• A functional process
FDF-F receives data
from FS-F

X

E

• A service functional process
FS-F receives a message
from a functional process
FDF-F

• The service functional
process FS-F replies to
FDF-F with a message
containing the requested
data or an error message

E

X

The total functional size = 8 CFP

System Malfunction Procedure (SMP)

Figure 5.16 describes the detailed measurements for an exchange data message between the

application level and services level for Function Type 3 (System Malfunction Procedure).

Table 5.5 contains the detailed measurement manual for the COSMIC-SOA model of system

maintainability requirements for system malfunction procedure and their sub applications G,

and H, in this case, are triggered in the requesting messages; the service functional process

FS replies to FA and the sub applications with messages containing the requested data or an

error message.

121

Figure 5.16 Interactions sub applications (G and H) with their services for SMP

Table 5.5 Measurement of the exchange messages of the application, sub application, and
services for SMP

ID
Functional Process Sub

Application
CFP Functional Process Services

CF
P

Sub
Application

G

• A functional process
CDFF-G is triggered in
the requesting messages
from service functional
process FS-G

• A functional process
CDFF-G receives data
from FS-G

X

E

• A service functional
process FS-G receives a
message from a functional
process CDFF-G

• The service functional
process FS-G replies to
CDFF-G with a message
containing the requested
data or an error message

E

X

Sub
Application

H

• A functional process
CSDF-H is triggered in
the requesting messages
from service functional
process FS-H

• A functional process
CSDF-H receives data
from FS-H

X

E

• A service functional
process FS-H receives a
message from a functional
process CSDF-H

• The service functional
process FS-H replies to
CSDF-H with a message
containing the requested
data or an error message

E

X

The total functional size = 8 CFP

Sub-Application G
Correct Data Faults Function

(CDFF-G)

Sub-Application H
Correct System Defects Function

(CSDF-H)

Service SG
CDF

Functional Process
(FS-G)

Service SH
CSD

Functional Process
(FS-H)

X E X E
E X E X

122

System Stability Procedure (SSP)

Figure 5.17 describes the detailed measurements for the exchange data messages between the

level application and services level for Function Type 4 (System Stability Procedure).

Table 5.6 contains the detailed measurement manual for the COSMIC-SOA model of system

maintainability requirements for system stability and their sub applications K, and L, in this

case, are triggered in the requesting messages; the service functional process FS replies to FA

and the sub applications with messages containing the requested data or an error message.

Figure 5.17 Interactions sub applications (K and L) with their services for SSP

Table 5.6 Measurement of the exchange messages of the application, sub application, and
services for SSP

ID
Functional Process Sub

Application
CFP Functional Process Services CFP

Sub
Application

K

• A functional process
FBDCF-K is triggered
in the requesting
messages from service
functional process FS-
K

• A functional process
FBDCF-K receives
data from FS-K

X

E

• A service functional
process FS-K receives a
message from a functional
process FBDCF-K

• The service functional
process FS-K replies to
FBDCF-K with a message
containing the requested
data or an error message

E

X

Sub-Application K
Fault Prevention of Data Control Function

(FBDCF-K)

Sub-Application L
Fault Prevention of System Functions

(FPSF-L)

Service SK
FBDC

Functional Process
(FS-K)

Service SL
FPS

Functional Process
(FS-L)

X E X E

E X E X

123

Table 5.6 Measurement of the exchange messages of the application, sub application, and
services for SSP (Continued)

ID
Functional Process Sub

Application
CFP Functional Process Services CFP

Sub
Application

L

• A functional process
FPSF-L is triggered in
the requesting
messages from service
functional process FS-
L

• A functional process
FPSF-L receives data
from FS-L

X

E

• A service functional
process FS-L receives a
message from a functional
process FPSF-L

• The service functional
process FS-L replies to
FPSF-L with a message
containing the requested
data or an error message

E

X

The total functional size = 8 CFP

System Testability Procedure (STP)

Figure 5.18 describes the detailed measurements for exchange data messages between the

application level and services level for Function Type 5 (System Testability).

Table 5.7 contains the detailed measurement manual for the COSMIC-SOA model of system

maintainability requirements for system testability procedure and their sub applications I, and

J, in this case, are triggered in the requesting messages; the service functional process FS

replies to FA and the sub applications with messages containing the requested data or an

error message.

Figure 5.18 Interactions sub applications (I and J) with their services for STP

Sub-Application I
System Time Function

(STF-I)

Sub-Application J
Fault Allocation Time Function

(FATF-J)

Service SI
ST

Functional Process
(FS-I)

Service SJ
FAT

Functional Process
(FS-J)

 X E X
E

124

Table 5.7 Measurement of the exchange messages of the application, sub application, and
services STP

ID
Functional Process Sub

Application
CFP Functional Process Services CFP

Sub
Application

I

• A functional process
STF-I is triggered in
the requesting
messages from service
functional process FS-I

• A functional process
STF-I receives data
from FS-I

X

E

• A service functional
process FS-I receives a
message from a functional
process STF-I

• The service functional
process FS-I replies to STF-
I with a message containing
the requested data or an
error message

E

X

Sub
Application

J

• A functional process
FATF-J is triggered in
the requesting
messages from service
functional process FS-J

• A functional process
FATF-J receives data
from FS-J

X

E

• A service functional
process FS-J receives a
message from a functional
process FATF-J

• The service functional
process FS-J replies to
FATF-J with a message
containing the requested
data or an error message

E

X

The total functional size = 8 CFP

5.3.2 Measurement of intermediary services for system maintainability

When a functional process of an application service in application A requires data that are

available via an application service in application B, the former application service calls a

functional process of the intermediary service, which may complete the following tasks as a

separate utility service – for more details, see :

1. Control the handling of the request received from a service of application A;

2. Translate the ‘language’ of the message from application A into the ‘language’ of

application B (and possibly applications C, D..., if services of other applications are

involved) that must fulfill the request;

3. Call on a functional process of the application service of application B by means of the

translated message;

125

4. Receive the reply message from the functional process of application B (and possibly

reply messages from applications C, D …);

5. Translate the results into a message in the language of application A;

6. Send the reply message to (the functional process of the service of) application A;

7. Manage exceptional situations;

8. Log data about the handling of services.

The COSMIC-SOA model for maintainability requirements describes the detailed

measurement for the intermediary services. This section describes the second step of the

COSMIC model for detailed measurement for intermediary services between the application

and sub applications of the standard-based model of software-FUR for system

maintainability-NFR to identify the software-FUR services.

System Maintainability Failure Procedure (SMFP)

Figure 5.19 describes the detailed measurements for the intermediary services between the

application level and services level for Function Type 1 (SMFP) and Table 5.8 contains the

detailed measurement between intermediary services (SA, SB, SC and SD).

Figure 5.19 The intermediary services between sub application services (SA, SB, SC and SD)
for SMFP

 X E

 E X

 X E

 E X

 X E

 E X

 X E

 E X

 X E

 E X

 X E

 E X

Service
SA

FDO
Function
Process
(FS-A)

Service
SB

FDM
Function
Process
(FS-B)

Service
SC

FDC
Function
Process
(FS- C)

Service
SD
SFT

Function
Process
(FS- D)

Intermediat
e Service

IS

A&B

Intermediate
Service

IS

B&C

Intermediate
Service

IS

C&D

126

Table 5.8 Measurement of the intermediary services for SMFP

The intermediary
services for Function

Type 1
Functional Process Services CFP

The intermediary services
between FS-A and FS-B

• A service functional process FS-A sends one data group to
intermediary service (IS) between service SA and service
SB.

• Intermediary service (IS) between service SA and service SB
receives one data group from a service functional process
FS-A.

• Intermediary service (IS) between service SA and service SB
sends one data group to a service functional process FS-B.

• A service functional process FS-B receives one data group
from intermediary service (IS) between service SA and
service SB.

• A service functional process FS-B sends one data group to
intermediary service (IS) between service SA and service
SB.

• Intermediary service (IS) between service SA and service SB
receives one data group from a service functional process
FS-B.

• Intermediary service (IS) between service SA and service SB
sends one data group to a service functional process FS-A.

• A service functional process FS-A receives one data group
from intermediary service (IS) between service SA and
service SB.

X

E

X

E

X

E

X

E

Sub
Application

A

Sub
Application

B

The intermediary services
between FS-B and FS-C

• A service functional process FS-B sends one data group to
intermediary service (IS) between service SB and service SC.

• Intermediary service (IS) between service SB and service SC
receives one data group from a service functional process
FS-B.

• Intermediary service (IS) between service SB and service SC
sends one data group to a service functional process FS-C.

• A service functional process FS-C receives one data group
from intermediary service (IS) between service SB and
service SC.

• A service functional process FS-C sends one data group to
intermediary service (IS) between service SB and service SC.

• Intermediary service (IS) between service SB & service SC
receives one data group from a service functional process
FS-C.

• Intermediary service (IS) between service SB and service SC
sends one data group to a service functional process FS-B.

• A service functional process FS-B receives one data group
from intermediary service (IS) between service SB and
service SC.

X

E

X

E

X

E

X

E

Sub
Application

B

Sub
Application

C

127

Table 5.8 Measurement of the intermediary services for SMFP (Continued)

The intermediary
services for Function

Type 1
Functional Process Services CFP

The intermediary services
between FS-C and FS-D

• A service functional process FS-C sends one data group to
intermediary service (IS) between service SA and service
SD.

• Intermediary service (IS) between service SC and service SD
receives one data group from a service functional process
FS-C.

• Intermediary service (IS) between service SC and service SD
sends one data group to a service functional process FS-D.

• A service functional process FS-D receives one data group
from intermediary service (IS) between service SC and
service SD.

• A service functional process FS-D sends one data group to
intermediary service (IS) between service SC and service
SD.

• Intermediary service (IS) between service SC and service SD
receives one data group movements from a service functional
process FS-D.

• Intermediary service (IS) between service SC and service SD
sends one data group to a service functional process FS-C.

• A service functional process FS-A receives one data group
from intermediary service (IS) between service SC & service
SD.

X

E

X

E

X

E

X

E

Sub
Application

C

Sub
Application D

The total functional size = 24 CFP

System Registered Failure Procedure (SRFP)

Figure 5.20 describes the detailed measurements for intermediary services between the

application level and the services level for Function Type 2 (system Registered Failures

procedure) and Table 5.9 contains the detailed measurement between the intermediary

services (SE and SF).

Figure 5.20 The intermediary services for sub application (SE and SF) for SRFP

 X E

 E X

 X E

 E X

Service SE - FI
Functional Process

(FS-E)

Service SF - FD
Functional Process

(FS-F)

Intermediate

Service

IS

E&F

128

Table 5.9 Measurement of the intermediary services for SRFP

The intermediary services

for functional type 2
Functional Process Services CFP

The intermediary services
between FS-E and FS-F

• A service functional process FS-E sends one data
group to intermediary service (IS) between service
SE and service SF.

• Intermediary service (IS) between service SE and
service SF receives one data group from a service
functional process FS-E.

• Intermediary service (IS) between service SE and
service SF sends one data group to a service
functional process FS-F.

• A service functional process FS-F receives one data
group from intermediary service (IS) between service
SE and service SF.

• A service functional process FS-F sends one data

group to intermediary service (IS) between service
SE and service SF.

• Intermediary service (IS) between service SE and
service SF receives one data group from a service
functional process FS-F.

• Intermediary service (IS) between service SE and
service SF sends one data group to a service
functional process FS-E.

• A service functional process FS-E receives one data
group from intermediary service (IS) between service
SE and service SF.

X

E

X

E

X

E

X

E

Sub
Application

E

Sub
Application

F

The total functional size = 8 CFP

System Malfunction Procedure (SMP)

Figure 5.21 describes the detailed measurements for intermediary services between the

application level and services level for Function Type 3 (System Malfunction Procedure) and

Table 5.10 contains the detailed measurement between the intermediary services (SG and

SH).

129

Figure 5.21 The intermediary services between sub application (SG and SH) for SMP

Table 5.10 Measurement of the intermediary services for SMP

The intermediary

services for Function
Type 3

Functional Process Services CFP

The intermediary
services between FS-G

and FS-H

• A service functional process FS-G sends one data group to
intermediary service (IS) between service SG and service
SH.

• Intermediary service (IS) between service SG and service
SH receives one data group from a service functional
process FS-G.

• Intermediary service (IS) between service SG and service
SH sends one data group to a service functional process FS-
H.

• A service functional process FS-H receives one data group
from intermediary service (IS) between service SG and
service SH.

• A service functional process FS-H sends one data group to

intermediary service (IS) between service SG and service
SH.

• Intermediary service (IS) between service SG and service
SH receives one data group from a service functional
process FS-H.

• Intermediary service (IS) between service SG and service
SH sends one data group to a service functional process FS-
G.

• A service functional process FS-G receives one data group
from intermediary service (IS) between service SG and
service SH.

X

E

X

E

X

E

X

E

Sub
Applicatio

n G

Sub
Applicatio

n H

The total functional size = 8 CFP

 X E

 E X

 X E

 E X

Service SG
CDF

Functional Process
(FS-G)

Service SH
CSD

Functional Process
(FS-H)

Intermediate
Service

IS

G&H

130

System Stability Procedure (SSP)

Figure 5.22 describes the detailed measurements for intermediary services between the

application level and services level for Function Type 4 (System Stability) and Table 5.11

contains the detailed measurement of the intermediary services (SK and SL).

Figure 5.22 The intermediary services between sub application (SK and SL) for SSP

Table 5.11 Measurement of the intermediary services for SSP

The intermediary
services for Function

Type 5
Functional Process Services CFP

The intermediary
services between FS-K

and FS-L

• A service functional process FS-K sends one data group to
intermediary service (IS) between service SK and service SL.

• Intermediary service (IS) between service SK and service SL
receives one data group from a service functional process FS-
K.

• Intermediary service (IS) between service SK and service SL
sends one data group to a service functional process FS-L.

• A service functional process FS-L receives one data group
from intermediary service (IS) between service SK and service
SL.

• A service functional process FS-L sends one data group to
intermediary service (IS) between service SK and service SL.

• Intermediary service (IS) between service SK and service SL
receives one data group from a service functional process FS-
L.

• Intermediary service (IS) between service SK and service SL
sends one data group to a service functional process FS-K.

• A service functional process FS-K receives one data group
from intermediary service (IS) between service SK and service
SL.

X

E

X

E

X

E

X

E

Sub
Application

K

Sub
Application

L

The total functional size = 8 CFP

 X E

E X

 X E

E X

Intermediate
Service

IS

K&L

Service SK

FBDC
Functional Process

(FS-K)

Service SL

FPS
Functional Process

(FS-L)

131

The intermediary services between SSP and STP

Figure 5.23 describes the detailed measurements for the intermediary services between the

application levels and services level for Function Types 4 and 5 (System stability and System

testability) and Table 5.12 contains the detailed measurement between the intermediary

services (SI and SK) , (SI and SL) , (SJ and SK) and (SJ and SL) .

Figure 5.23 The intermediary services between sub application services (SI and SK), (SI and
SL) and (SJ and SK), (SJ and SL) for (SSP and STP)

E X

X E

E X

X E

Intermediate Service

IS
I&L

E X

X E

E X

X E

Intermediate Service

IS
I&K

Service SI

ST
Functional Process

(FS-I)

Service SK

FBDC
Functional Process

(FS-K)

Service SL

FPS
Functional Process

(FS-L)

Service SJ

FAT
Functional Process

(FS-J)

E X

X E

E X

X E

Intermediate Service

IS
J&L

E X

X E

E X

X E

Intermediate Service

IS
J&K

Service SK

FBDC
Functional Process

(FS-K)

Service SL

FPS
Functional Process

(FS-L)

132

Table 5.12 Measurement of the intermediary services for SSP and STP

The intermediary
services Function

Types 4 & 5
Functional Process Services CFP

The intermediary
services between FS-I

and FS-K

• A service functional process FS-I sends one data group to
intermediary service (IS) between service SI and service
SK.

• Intermediary service (IS) between service SI and service SK
receives one data group from a service functional process
FS-I.

• Intermediary service (IS) between service SI and service SK
sends one data group to a service functional process FS-K.

• A service functional process FS-K receives one data group
from intermediary service (IS) between service SI and
service SK.

• A service functional process FS-K sends one data group t to
intermediary service (IS) between service SI and service
SK.

• Intermediary service (IS) between service SI and service SK
receives one data group from a service functional process
FS-K.

• Intermediary service (IS) between service SI and service SK
sends one data group to a service functional process FS-I.

• A service functional process FS-I receives one data group
from intermediary service (IS) between service SI and
service SK.

X

E

X

E

X

E

X

E

Sub
Application

I

Sub
Application

K

The intermediary
services between FS-I

and FS-L

• A service functional process FS-I sends one data group to
intermediary service (IS) between service SI and service
SL.

• Intermediary service (IS) between service SI and service SL
receives one data group from a service functional process
FS-I.

• Intermediary service (IS) between service SI and service SL
sends one data group to a service functional process FS-L.

• A service functional process FS-L receives one data group
from intermediary service (IS) between service SI and
service SL.

• A service functional process FS-L sends one data group to
(IS) between service SI and service SL.

• Intermediary service (IS) between service SI and service SL
receives one data group from a service functional process
FS-L.

• Intermediary service (IS) between service SI and service SL
sends one data group to a service functional process FS-I.

• A service functional process FS-I receives one data group
from (IS) between service SI and service SL.

X

E

X

E

X

E

X

E

Sub
Application

I

Sub
Application

L

133

Table 5.12 Measurement of the intermediary services for SSP and STP (Continued)

The intermediary
services Function

Types 4 & 5
Functional Process Services CFP

The intermediary
services between FS-J

and FS-K

• A service functional process FS-J sends one data group to
intermediary service (IS) between service SJ and service
SK.

• Intermediary service (IS) between service SJ and service
SK receives one data group from a service functional
process FS-J.

• Intermediary service (IS) between service SJ and service
SK sends one data group to a service functional process FS-
K.

• A service functional process FS-K receives one data group
from (IS) between service SJ and service SK.

• A service functional process FS-K sends one data group to
(IS) between service SJ and service SK.

• Intermediary service (IS) between service SJ and service
SK receives one data group from a service functional
process FS-K.

• Intermediary service (IS) between service SJ and service
SK sends one data group to a service functional process FS-
J.

• A service functional process FS-J receives one data group
from (IS) between service SJ and service SK.

X

E

X

E

X

E

X

E

Sub
Application

J

Sub
Application

K

The intermediary
services between FS-J

and FS-K

• A service functional process FS-J sends one data group to
(IS) between service SJ and service SL.

• Intermediary service (IS) between service SJ and service SL
receives one data group from a service functional process
FS-J.

• Intermediary service (IS) between service SJ and service SL
sends one data group to a service functional process FS-L.

• A service functional process FS-L receives one data group
from intermediary service (IS) between service SJ and
service SL.

• A service functional process FS-L sends one data group to
(IS) between service SJ and service SL.

• Intermediary service (IS) between service SJ and service SL
receives one data group from a service functional process
FS-L.

• Intermediary service (IS) between service SJ and service SL
sends one data group to a service functional process FS-J.

• A service functional process FS-J receives one data group
from intermediary service (IS) between service SJ and
service SL.

X

E

X

E

X

E

X

E

Sub
Application

J

Sub
Application

L

The total functional size = 32 CFP

134

The intermediary services between SMFP, SRFP and SMP with STP

Figure 5.24 and Figure 5.25 describe the detailed measurements for the intermediary services

between the application level and services level for Function Types 1, 2, 3, and 5 (and Table

5.13 contains the detailed measurement between the intermediary services for SK and SL

with (SA, SB, SC, SD, SE, SF, SG and SH).

Figure 5.24 The intermediary services between sub application services SK
with (SA, SB, SC, SD, SE, SF, SG and SH)

Figure 5.25 The intermediary services between sub application services SL
with (SA, SB, SC, SD, SE, SF, SG and SH)

E X
X E

E X
 X E

Intermediate

Service IS
K&H

E X
X E

E X
X E

Intermediate

Service IS
K&G

E X
X E

E X
X E

Intermediate

Service IS
K&F

E X
X E

E X
X E

Intermediate

Service IS
K&E

E X
X E

E X
X E

Intermediate

Service IS
K&D

E X
X E

E X
X E

Intermediate

Service IS
K&C

E X
X E

E X
X E

Intermediate

Service IS
K&B

E X
X E

E X

X E

Intermediate

Service IS
K&A

Service SK
FBDC

Functional Process (FS-K)

Service SA
FDO

Functional
Process
(FS-A)

Service SB
FDM

Functional
Process
(FS-B)

Service SC
FDC

Functional
Process
(FS- C)

Service SD
SFT

Functional
Process
(FS- D)

Service SE
FI

Functional
Process
(FS-E)

Service SF
FD

Functional
Process
(FS-F)

Service SG
CDF

Functional
Process
(FS-G)

Service SH
CSD

Functional
Process
(FS-H)

E X
X E

E X
X E

Intermediate

Service IS
L&H

E X
X E

E X
X E

Intermediate
Service IS

L&G

E X
X E

E X
X E

Intermediate

Service IS
L&F

E X
X E

E X
X E

Intermediate

Service IS
L&E

E X
X E

E X
X E

Intermediate

Service IS
L&D

E X
X E

E X
X E

Intermediate

Service IS
L&C

E X
X E

E X
X E

Intermediate

Service IS
L&B

E X
X E

E X
X E

Intermediate

Service IS
L&A

Service SA
FDO

Functional
Process
(FS-A)

Service SB
FDM

Functional
Process
(FS-B)

Service SC
FDC

Functional
Process
(FS- C)

Service SD
SFT

Functional
Process
(FS- D)

Service SE
FI

Functional
Process
(FS-E)

Service SF
FD

Functional
Process
(FS-F)

Service SG
CDF

Functional
Process
(FS-G)

Service SH
CSD

Functional
Process
(FS-H)

Service SL
FPS

Functional Process (FS-L)

135

Table 5.13 Measurement of the intermediary services for SMFP, SRFP, SMP and STP

The intermediary
services for Function

Types 1, 2, 3, & 4
Functional Process Services CFP

The intermediary services
between

FS-K and FS-A
FS-K and FS-B
FS-K and FS-C
FS-K and FS-D
FS-K and FS-E
FS-K and FS-F
FS-K and FS-G
FS-K and FS-H

• A service functional process FS-K sends one data group to intermediary
services (IS) between service SK and services SA, SB, SC, SD, SE, SF,
SG, SH

• Intermediary services (IS) between service SK and services SA, SB, SC,
SD, SE, SF, SG, SH receives one data group from a service functional
process FS-K.

• Intermediary services (IS) between service SK and service SA, SB, SC,
SD, SE, SF, SG, SH sends one data group to a service functional process
FS-A, FS-B, FS-C, FS-D, FS-E, FS-F, FS-G, FS-H .

• A service functional process FS-A, FS-B, FS-C, FS-D, FS-E, FS-F, FS-
G, FS-H receives one data group from intermediary services (IS)
between service SK and services SA, SB, SC, SD, SE, SF, SG, SH.

• A service functional process FS-A, FS-B, FS-C, FS-D, FS-E, FS-F, FS-
G, FS-H sends one data group to intermediary services (IS) between
service SK and services SA, SB, SC, SD, SE, SF, SG, SH.

• Intermediary services (IS) between service SK and services SA, SB, SC,
SD, SE, SF, SG, SH receives one data group from a service functional
process FS-A, FS-B, FS-C, FS-D, FS-E, FS-F, FS-G, FS-H

• Intermediary services (IS) between service SK and services SA, SB, SC,
SD, SE, SF, SG, SH sends one data group to a service functional process
FS-K.

• A service functional process FS-K receives one data group from
intermediary services (IS) between service SK and services SA, SB, SC,
SD, SE, SF, SG, SH.

X

E

X

E

X

E

X

E

Sub
Application

K

Sub

Application
A
B
C
D
E
F
G
H

The intermediary services
between

FS-L and FS-A
FS-L and FS-B
FS-L and FS-C
FS-L and FS-D
FS-L and FS-E
FS-L and FS-F
FS-L and FS-G
FS-L and FS-H

• A service functional process FS-L sends one data group to intermediary
services (IS) between service SL and services SA, SB, SC, SD, SE, SF,
SG, SH

• Intermediary services (IS) between service SL and service SA, SB, SC,
SD, SE, SF, SG, SH receives one data group from a service functional
process FS-L.

• Intermediary services (IS) between service SL and services SA, SB, SC,
SD, SE, SF, SG, SH sends one data group to a service functional process
FS-A, FS-B, FS-C, FS-D, FS-E, FS-F, FS-G, FS-H .

• A service functional process FS-A, FS-B, FS-C, FS-D, FS-E, FS-F, FS-
G, FS-H receives one data group from intermediary service (IS) between
service SL and services SA, SB, SC, SD, SE, SF, SG, SH.

• A service functional process FS-A, FS-B, FS-C, FS-D, FS-E, FS-F, FS-
G, FS-H sends one data group to intermediary services (IS) between
service SL and services SA, SB, SC, SD, SE, SF, SG, SH.

• Intermediary service (IS) between service SL and service SA, SB, SC,
SD, SE, SF, SG, SH receives one data group from a service functional
process FS-A, FS-B, FS-C, FS-D, FS-E, FS-F, FS-G, FS-H

• Intermediary services (IS) between service SL and services SA, SB, SC,
SD, SE, SF, SG, SH sends one data group to a service functional process
FS-L.

• A service functional process FS-L receives one data group from
intermediary service (IS) between service SL and services SA, SB, SC,
SD, SE, SF, SG, SH.

X

E

X

E

X

E

X

E

Sub
Application

L

Sub

Application
A
B
C
D
E
F
G
H

The total functional size = 128 CFP

136

5.3.3 Measurements of data movements between Functional processes

Based on Figure 5.13, this section presents the possible flows of data movements between all

functions in the system maintainability requirements.

System Maintainability Failure Procedure (SMFP)

Figure 5.26 describes the detailed measurements for direct data movements of services in the

application level for Function Type1 (SMFP) and Table 5.14 contains the detailed

measurement between the SDF and sub applications (A, B, C and D).

Figure 5.26 Direct data movements between the application (SDF) and sub applications (A,
B, C, D) for SMFP

Table 5. 14 Measurement of the direct data movements for SMFP

ID Functional Process Application (direct data movements) CFP

Application

with Sub
Application
A, B, C, and

D

• Failure Data Operation Function receives at least one data group
from System Diagnostic Function.

• Failure Data Monitoring Function receives at least one data group
from System Diagnostic Function.

• Failure Data Control Function receives at least one data group from
System Diagnostic Function.

• System Failure Task Function receives at least one data group from
System Diagnostic Function.

E*

E*

E*

E*

The total functional size = 4 CFP
In the above table (*) means a variable numbers of data movements in this case.

E E E E

Functional Application
System Diagnostic

Function
SDF

Sub-Application A
Failure Data Operation

Function
(FDOF-A)

Sub-Application B
Failure Data Monitoring

Function
(FDMF-B)

Sub-Application C
Failure Data Control

Function
(FDCF-C)

Sub-Application D
System Failure Tasks

Function
(SFTF-D)

137

System Registered Failure Procedure (SRFP)

Figure 5.27 describes the detailed measurements for direct data movements of services in the

application level for Function Type 2 (SRFP) and Table 5.15 contains the detailed

measurement for the direct data movements between sub applications (A, B, C and D) and

sub applications (E and F).

Figure 5.27 Direct data movements between sub applications (A, B, C, D) and sub
applications (E and F) for SRFP

Table 5.15 COSMIC-SOA measurement of the direct data movements for SRFP

ID

Functional Process Application D (direct data movement) CFP

Sub Applications
A, B, C, and D

with Sub
Applications E

and F

• FIF-E receives at least one data group from FDOF-A
• FIF-E receives at least one data group from FDMF-B
• FDF-F receives at least one data group from FDCF-C
• FDF-F receives at least one data group from SFTF-D

E*
E*
E*
E*

The total functional size = 4 CFP

System Malfunction Procedure (SMP)

Figure 5.28 describes the detailed measurements for direct data movements of services in the

application level for SMP and Table 5.16 contains the detailed measurement for the direct

data movements between sub applications (E and F) and sub applications (G and H).

E E E E

Sub-Application E
Failure Isolation Function

(FIF-E)

Sub-Application F
Failure Detection Function

(FDF-F)

Sub-Application A
Failure Data

Operation Function
(FDOF-A)

Sub-Application B
Failure Data

Monitoring Function
(FDMF-B)

Sub-Application C
Failure Data Control

Function
(FDCF-C)

Sub-Application D
System Failure Tasks

Function
(SFTF-D)

138

Figure 5.28 Direct data movements between sub applications (E and F) and sub applications
(G and H) for SMP

Table 5.16 COSMIC-SOA measurement of the direct data movements for SMP

ID

Functional Process Application D (direct data movements) CFP

Sub
Applications

E, F, G, and H
with Sub

• CSDF-H receives at least one data group from FIF-E
• CSDF-H receives at least one data group from FIF-E
• CDFF-G receives at least one data group from FDF-F

E*
E*
E*

The total functional size 3 CFP

5.3.4 Indirect data movements for all function types

Figure 5.29 describes the detailed measurements for the indirect data movements of services

in the application level by using the same persistent storage for all the functional services and

Table 5.17 contains the detailed measurement for the indirect data movements between the

12 sub applications.

 E E E

Sub-Application E
Failure Isolation Function

(FIF-E)

Sub-Application F
Failure Detection Function

(FDF-F)

Sub-Application G
Correct Data Faults Function

(CDFF-G)

Sub-Application H
Correct System Defects Function

(CSDF-H)

139

Figure 5.29 Indirect data movements between all sub applications in all functional types

Table 5.17 Measurement of the indirect data movements for the model

ID

Functional Process Application (Indirect Data Movements) CFP

Sub
Application
A, B, C, D,
E, F, G, H,
I, J, K, and

L

• Service SA writes a data group in the persistent storage to be used

by other services in the maintainability model
• Service SA reads a data group from the persistent storage from

another service in the maintainability model
• Service SB writes a data group in the persistent storage to be used

by other services in the maintainability model
• Service SB reads a data group from the persistent storage from

another service in the maintainability model
• Service SC writes a data group in the persistent storage to be used

by other services in the maintainability model
• Service SC reads a data group from the persistent storage from

another service in the maintainability model
• Service SD writes a data group in the persistent storage to be used

by other services in the maintainability model
• Service SD reads a data group from the persistent storage from

another service in the maintainability model
• Service SE writes a data group in the persistent storage to be used

by other services in the maintainability model

W

R

W

R

W

R

W

R

W

W R W R W R W R W R W R

W R W R W R W R W R W R

Service SA
FDO

Functional
Process
(FS-A)

Service SB
FDM

Functional
Process
(FS-B)

Service SC
FDC

Functional
Process
(FS- C)

Service SD
SFT

Functional
Process
(FS- D)

Service SE
FI

Functional
Process
(FS-E)

Service SF
FD

Functional
Process
(FS-F)

Service SG
CDF

Functional
Process
(FS-G)

Service SH
CSD

Functional
Process
(FS-H)

Service SI
ST

Functional
Process
(FS-I)

Service SJ
FAT

Functional
Process
(FS-J)

Service SK
FBDC

Functional
Process
(FS-K)

Service SL
FPS

Functional
Process
(FS-L)

Persistent Storage

140

Table 5.17 Measurement of the indirect data movements for the model (Continued)

ID

Functional Process Application (Indirect Data Movements) CFP

Sub
Application
A, B, C, D,

E, F, G, H, I,
J, K, and L

• Service SE reads a data group from the persistent storage from another
service in the maintainability model

• Service SF writes a data group in the persistent storage to be used by
other services in the maintainability model

• Service SF reads a data group from the persistent storage from another
service in the maintainability model

• Service SG writes a data group in the persistent storage to be used by
other services in the maintainability model

• Service SG reads a data group from the persistent storage from another
service in the maintainability model

• Service SH writes a data group in the persistent storage to be used by
other services in the maintainability model

• Service SH reads a data group from the persistent storage from another
service in the maintainability model

• Service SI writes a data group in the persistent storage to be used by
other service in the maintainability model

• Service SI reads a data group from the persistent storage from another
service in the maintainability model

• Service SJ writes a data group in the persistent storage to be used by
other services in the maintainability model

• Service SJ reads a data group from the persistent storage from another
service in the maintainability model

• Service SK writes a data group in the persistent storage to be used by
other services in the maintainability model

• Service SK reads a data group from the persistent storage from another
service in the maintainability model

• Service SL writes a data group in the persistent storage to be used by
other services in the maintainability model

• Service SL reads a data group from the persistent storage from another
service in the maintainability model

R

W

R

W

R

W

R

W

R

W

R

W

R

W

R

The total functional size = 24 CFP

5.4 Sizing of the standard-based model for system maintainability-NFR

The specification of software-FUR for system maintainability in any specific project is a

specific instantiation of the proposed standard-based model of software-FUR for system

maintainability-NFR described in Figure 5.13. When the software specification document is

at the level of the movements of data groups, then these functional requirements can be

directly measured using the COSMIC measurement rules.

141

Table 5.18 presents the measurement results based on the detailed measurement manual

using a specific instantiation of maintainability requirements, which would have one of each

of the maintainability function types and relationships described in the previous sections and

in Figure 5.13. For example, Table 5.18 and Table 5.19 illustrate the sizing of the standard-

based model of software-FUR for system maintainability-NFR:

Table 5.18 Measurement of the maintainability model (Function Level)

Measurement of standard-based model of software-FUR for system maintainability-NFR CFP

COSMIC-SOA Direct and Indirect Data Movements
Direct Data Movements

11

1 Function Type 1 (SMFP) 4
2 Function Type 2 (SRFP) 4
3 Function Type 3 (SMP) 3

Indirect Data Movements
24 3 All Functions Types (SMFP, SRFP,SMP, SSP and STP) 24

Total Functional Size 35 CFP

Table 5.19 Measurement of the maintainability model (Service level)

Measurement of model of maintainability (Service level) CFP

A

COSMIC-SOA exchange messages (services)

48

1 Function Type 1(SMFP) 16
2 Function Type 2 (SRFP) 8
3 Function Type 3 (SMP) 8
4 Function Type 4 (SS) 8
5 Function Type 5 (ST) 8

B

COSMIC-SOA intermediary services

328

1 Function Type 1 (SMFP) 24
2 Function Type 2 (SRFP) 8
3 Function Type 3 (SMP) 8
4 Function Type 4 (SS) 8
5 Function Type 5 (ST) 8
6 Function Type 1, Function Type 2, Function Type 3, with Function

Type 5 (SMFP, SRFP and SMP with STP)
120

7 Function Type 1, Function Type 2, Function Type 3, Function Type
5 with Function Type 4 (SMFP, SRFP, SMP and STP with SSP)

152

Total Size Functional = 376 CFP

142

5.5 A measurement example

The specification of software-FUR for system maintainability requirements in any specific

project is a specific instantiation of the proposed generic model described in Figure 5.13.

When the software specifications document is at the level of the movement of data groups,

then these functional requirements can be directly measured using the COSMIC

measurement rules. This section presents a measurement example of the use of the COSMIC

generic model of system maintainability requirements allocated to software.

The measurement example in this chapter explains how to use the proposed reference

maintainability model to size a hypothetical framework with all of the kinds of software-FUR

described in the framework.

Example: The functional requirements allocated to software for the system maintainability

failures procedure (SMFP) for a specific instantiation are:

1. The SDF sends four data groups to the FDOF;

2. The SDF sends one data group to the FDMF;

3. The SDF sends one data group to the FDCF;

4. The SDF sends two data groups to the SFTF.

The next section presents the functional measurement sizing for the system Maintainability

Failure Procedure using the standard-based model of software-FUR for system

maintainability-NFR.

The Functional Measurement Solution

Based on Figure 5.13 of the standard-based model of software-FUR for system

maintainability-NFR and the COSMIC-SOA guideline for specifying data movements, the

functional size measurement method for the SMFP for this example is as follows:

143

5.5.1 Measurement of the exchange messages

1. The SDF in the application layer send four data groups to the FDOF, which means that

four (4) functional processes will interact with four (4) functional services;

2. The SDF in the application layer sends a data group to the FDMF, which means that one

(1) functional process will interact with one (1) functional service;

3. The SDF in the application layer sends a data group to the FDCF, which means that one

(1) functional process will interact with one (1) functional service;

4. The SDF in the application layer sends two (2) data groups to the SFTF, which means

that two (2) functional processes will interact with two (2) functional services;

Measurement Results

1. The number of functional services = 8;

2. Each functional process in the application layer will interact with each service. The data

movements between each functional process and service = 4 CFP;

3. The functional size for the 8 services = 8 X 4 = 32 CFP.

5.5.2 Measurement of the intermediary services

1. The FDOF has four (4) functional services, which means that four (4) FDOF functional

services need four intermediary services to contact the FDMF functional service;

2. The FDMF has one (1) functional service, which means one (1) FDMF functional service

needs one (1) intermediary service to contact the FDCF functional service;

3. The FDCF has one (1) functional service, which means that one (1) FDCF functional

service needs one (1) intermediary service to contact the SFTF functional service;

4. The SFTF has two (2) functional services, which means that two (2) SFTF functional

services need two (2) intermediary services.

Measurement Results

1. Each intermediary service includes 8 data movements or 8 CFP;

144

2. In the example, 8 intermediary services are needed – see Figure 5.13;

3. The functional measurement size for the 8 intermediary services X 8 CFP for each = 64

CFP.

5.5.3 Measurement of data movements (Function Level)

Direct data movements:

1. The SDF will send 4 data groups directly to the FDOF, each functional data movement

including one entry. The functional size = 4 CFP;

2. The SDF will send 1 data group directly to the FDMF, each functional data movement

including one entry. The functional size = 1 CFP;

3. The SDF will send 1 data group directly to the FDCF, each functional data movement

including one entry. The functional size = 1 CFP;

4. The SDF will send 2 data groups directly to the SFTF, each functional data movement

including one entry. The functional size = 1X2 = 2 CFP;

5. FU sends 1 data group and receives another one (2 CFP);

6. The total functional measurement size (direct data movement case) = 10 CFP.

Indirect data movements:

1. Each of four services for the FDOF stores its results in a system buffer to be used by

another functional service, and reads some data from the buffer to improve its work. The

functional size = 4 services X 2 (Read and Write) = 8 CFP;

2. One service for the FDMF stores its results in a system buffer to be used by another

functional service, and reads some data from the buffer to improve its work. The

functional size = 1 service X 2 (Read and Write) = 2 CFP;

3. One service for the FDCF stores its results in a system buffer to be used by another

functional service, and reads some data from the buffer to improve its work. The

functional size = 1 service X 2 (Read and Write) = 2 CFP;

145

4. Each of two services for the SFTF stores its results in a system buffer to be used by

another functional service, and reads some data from the buffer to improve its work. The

functional size = 2 services X 2 (Read and Write) = 4 CFP;

5. The total functional size = 8 + 2 + 2 + 4 16 CFP.

5.6 Summary

Maintainability is typically described initially as NFR at the system level, and, subsequently,

systems engineers must apportion these systems requirements very carefully, as either

software or hardware requirements, to conform to the maintainability requirements of the

system. Within the ECSS, ISO 9126, and IEEE standards, a number of views and concepts

are provided to describe various types of maintainability requirements at the system,

software, and hardware levels.

This chapter has collected and organized these concepts into a standard-based model of

software-FUR for system maintainability-NFR. This model corresponds to a standard-based

model for specifying software-FUR for system maintainability-NFR. This model is based on

the generic model of software proposed in COSMIC–ISO 19761, which allows measurement

of the functional size of the software maintainability requirements using this COSMIC

international standard of measurement.

The proposed standard-based model of software-FUR for system maintainability-NFR is

independent of the software type and the languages in which the software-FUR will be

implemented. This standard-based model of software-FUR for system maintainability-NFR

provides:

• A specification model for each type, or all types, of maintainability requirements. For

example, the requirements to be allocated to software for the maintainability failure

procedures for system analyzability, the registered failures and software/system

malfunctions for system changeability, and for system/software stability and testability;

146

• A specification measurement model for each type, or all types, of maintainability

requirements.

In the absence of such a standard-based model of software-FUR for system maintainability-

NFR, such NFR requirements are typically handled in practice much later on in the software

development life cycle when at system testing time, users and developers find out that a

number of maintainability requirements have been overlooked and additional work has to be

expanded to implement them.

CHAPTER 6

INTERFACES: IDENTIFICATION, SPECIFICATION AND MEASUREMENT OF
SOFTWARE-FUR DERIVED FROM SYSTEM-NFR

6.1 Introduction

Currently, there exists no standard-based model of software-FUR for system interfaces NFR

for the identification and specification of software-FUR for implementing system interfaces

requirements (system-NFR) based on the various views documented in international

standards and in the literature. Consequently, it is challenging to measure these interfaces-

related software-FUR, and take them into account quantitatively for estimation purposes.

The ECSS includes interface requirements as one of sixteen (16) types of non functional

requirement (NFR) for embedded and real time software. A number of concepts are provided

in the ECSS and IEEE standards to describe the various types of candidate system interface

requirements at the system, software, and hardware levels.

This chapter organizes these dispersed system interface concepts into a standard-based model

of software-FUR for system interfaces NFR. The availability and the detailed model can

facilitate the early identification and specification of the system interface-NFR and their

detailed allocation as specific system interface functions to be handled by that allocation to

hardware or software, or to a specific combination of the two.

The approach adopted to structuring this model is based on the generic model of software

functional requirements proposed in the COSMIC (ISO-19761 2011) model, with which the

functional size of the system interface requirements allocated to software can be measured,

and to take them into account for estimation purposes.

This chapter focuses on a single type of NFR, that is, system interfaces requirements, and

reports on the work carried out to define an integrated view for a standard-based model of

148

software-FUR for system interfaces NFR based on international standards, including the use

of the generic COSMIC (ISO-19761 2011) model of software-FUR.

The interfaces-related views, concepts and terms in the ECSS and IEEE standards have been

identified in chapter 3 and should be included in the design of a standard-based model of

software-FUR for system interfaces NFR. The elements of interfaces are dispersed in various

system views throughout a number of ECSS standards, and are expressed as either – see

Figure 6.1:

• System interface functional user requirements (system interface-FUR);

• System interface non functional requirements (system interface-NFR).

Figure 6.1 Mapping system requirements to software-FUR for an interface

The chapter is organized as follows. Section 5.2 presents a standard-based model of

software-FUR for system interfaces NFR. Section 5.3 presents a standard-based model of

software-FUR for system interfaces NFR using a service-oriented architecture (SOA).

Section 5.4 presents the sizing of the standard-based model of software-FUR for system

interfaces NFR. Section 5.5 presents a measurement example. Finally, a summary is

presented in section 5.6.

6.2 A standard-based model of software-FUR for system interfaces NFR

The terminologies and concepts of interfaces identified in chapter 3 are mapped here into a

proposed standard-based model of software-FUR for system interfaces NFR using the

generic FUR model proposed in COSMIC. This COSMIC based model then becomes a

System Interface-FUR System Interface-NFR

Software-FUR for
Interface Requirements

149

standard-based model of describing the software-FUR from system interfaces based on the

ECSS standards.

6.2.1 Mapping system interface views and concepts and terms from standards

Table 6.1 presents the interface requirements that are present either as system requirements in

the ECSS standards or as interface-related concepts in IEEE 830 (IEEE-830 1998), each of

which could at times be interpreted, and specified, as software-FUR.

We observe that the general identification of interface requirements in all these standards is

the same (e.g. user interface requirements, software and hardware interface requirements, and

interface communication requirements), while the description of the detailed requirement

views for general interface requirements differ from one standard to another.

Table 6.1 Interface requirements in ECSS and IEEE

ID
System interface

requirements
System interface

functionality
Description of system
interface functionality

1 User interface

Logical characteristics of the
interface(s) between the
system software product and
its users

What is needed to allow users
(devices and humans) to
interact with the system

2

Hardware interface

Hardware configuration

What is needed to ensure
support for the hardware and
the specific hardware
configuration by the system
(i.e., logical structure, physical
address, and expected
behavior)

3
Software interface

System applications
Interface specifications
through programming
languages
Interface specifications for
each layer of interface socket
programming

What is needed to allow
communication with other
software system components
that are not part of the
software to be designed (such
as operating system, files,
database management system,
or other application software)

150

Table 6.1 Interface requirements in ECSS and IEEE (Continued)

ID
System interface

requirements
System interface

functionality
Description of system
interface functionality

4
Communications
interface

Communication layers and
links

What is needed to allow
communication between pieces
of system software and
software embodied in other
systems or components

6.2.2 Interface functions to be specified

The system interface functions to be specified (and the corresponding entities to be

measured) are divided into two types of system interface functions that may be allocated to

software-FUR − see Table 6.2.

1. System interface components (SIC): components that permit high-level interaction

between interface functions.

2. System interface specifications (SIS): specifications that describe the level of interaction

required for interface component functions.

Table 6.2 System interface functions that may be allocated to software-FUR

ID
System interface function

types
System interface functions

1
System interface components

(SIC)

• User interface function (UIF)

• Hardware interface function (HIF)

• Software interface function (SIF)

• Communication interface function (CIF)

2
System interface specifications

(SIS)

• Interface specification function (ISF)

• Interface specification Link function (ISLF)

6.2.3 Identification of the system interface function types allocated to software-FUR

In this section, the function types allocated to software-FUR for system interfaces, and the

relationships between them are identified.

151

System Interface Components (SIC)

The system interface components (SIC) are considered to constitute a high-level control

interface between the various external parts of the system. The standard-based identifications

of system interface components (SIC) include user interfaces, hardware interfaces,

communications interfaces, and high-level parts of a software interface.

Figure 6.2 illustrates a system modeling view of data movements for the System Interface

Components (SIC):

1. User interface function (UIF): a user interface function is used to exchange data

movements between HIF, SIF, and CIF;

2. Hardware interface function (HIF): it exchanges data movements with the user interfaces

function (UIF), and with the other sub interface modules. It is used to configure the

hardware items with the other parts of the system;

3. Software interface function (SIF): it exchanges data movements with the user interfaces

function (UIF), and with the other sub interface modules. It is used to configure the

software items, with the other parts of the system;

4. Communication interface function (CIF): it exchanges data movements with the user

interfaces function (UIF), and with the sub interface modules. It is used to configure the

hardware items or other data groups, with the other parts of the system.

HIF, SIF, and CIF use intermediary services to interact with one another to deliver different

types of data interface (symbol in Figure 6.2).

HIF, SIF, and CIF send and receive data groups (i.e., Entry or Exit) from/to interface

specification function (ISF) in system interface specification (SIS) (Function Type 2).

152

Figure 6.2 System interface components (SIC): a system modeling view

Figure 6.3 illustrates a COSMIC modeling view of the data movements for the system

interface components (SIC) (Function Type 1):

1. UIF sends a data group (i.e., Entry) to an HIF, SIF, or CIF;

2. HIF, SIF, and CIF send and receive data groups (i.e., Entry or Exit) to interface

specification function (ISF) in Function Type 2;

3. HIF, SIF, and CIF send and receive data groups (i.e., Entry or Exit) between them using

intermediary services;

4. HIF, SIF, and CIF send data groups (i.e., Exit) to UIF.

Figure 6.3 System interface components (SIC): COSMIC modeling view

Interface Function Type 2
System Interface Specification (SIS)

Interface Specification

Function (ISF)

Interface Function Type 1
 System Interface Components (SIC)

Hardware Interface
Function (HIF)

Communication
Interface Function (CIF)

Software Interface
 Function (SIF)

User Interface
Function

(UIF)

Interface Function Type 2
System Interface Specification (SIS)

Interface Specification

Function (ISF)

Interface Function Type 1
 System Interface Components (SIC)

Hardware Interface
Function (HIF)

Communication
Interface Function (CIF)

Software Interface
 Function (SIF)

User Interface
Function

(UIF)

153

System Interface Specifications (SIS)

According to the ECSS, most interfaces are software-to-software; therefore, system interface

specifications may be considered to describe SIC at an internal or detailed level, e.g.

programs running on the operating system or system device driver programs. Such interfaces

are used to manage orders from HIF, SIF, and CIF to provide these components with detailed

information, such as constants, data types, types of procedures, exception specifications, and

method signatures, in order to build a network of interfaces inside the system.

Figure 6.4 illustrates a system modeling view of the data movements for the System Interface

Specifications (SIS). These specifications can be divided into:

1. Interface specifications function (ISF): it exchanges data movements for the HIF, SIF,

and CIF in system interface components (SIC) function type 1 and it exchanges data

movements for the interface specification link function (ISLF) in function type 2;

2. Interface specification link function (ISLF): it exchanges data movements for interface

specification function (ISF), and it reads and writes data from/to persistent storage.

Figure 6.4 System interface specifications (SIS): a system modeling view

Interface Function Type 2
System Interface Specification (SIS)

Interface Specification

Function (ISF)

Interface Function Type 1
System Interface Components

(SIC)

Hardware Interface
Function (HIF)

Communication
Interface Function

(CIF)

Software Interface
 Function (SIF)

Interface

Specification Link

Function (ISLF)

Persistent
Storage

154

Figure 6.5 illustrates a COSMIC modeling view of the data movements for the system

interface specifications (SIS):

1. ISF send a data group (i.e., Exit) to an HIF, SIF, or CIF in Function Type 1 (SIC);

2. ISF sends and receives data groups (i.e., Entry or Exit) with ISLF;

3. ISLF sends and receives data groups (i.e., Entry or Exit) with ISF;

4. ISLF reads and writes data groups to/from persistent storage.

Figure 6.5 System interface specifications (SIS): COSMIC modeling view

Model of the functions types relationships based on system and COSMIC

Figure 6.6 presents an overview of the relationships between the function types for system

interfaces that may be allocated to software-FUR. Specifically, the system interface

requirements model is composed of six functions grouped into two Function Types. The data

flow on the model is also divided into direct data flows and the intermediary services data

flows:

1. The SIC model (Function Type 1) can be used to specify the data flows between four sub

functions and the data flows with the other functions on the system interface model (see

Figure 6.6);

Interface Function Type 2
System Interface Specification (SIS)

Interface Specification

Function (ISF)

Interface Function Type 1
System Interface Components

(SIC)
Hardware Interface

Function (HIF)

Communication
Interface Function

(CIF)

Software Interface
 Function (SIF)

X

X

X

Interface

Specification Link

Function (ISLF)

E

X

Persistent
Storage

R
W

155

2. The SIS model (Function Type 2) can be used to specify the data flows between the two

sub functions and the data flows with the other functions on the system interface model

(see Figure 6.6).

Figure 6.6 System modeling view for the system interface requirements

Figure 6.7 presents an overview of the relationships between the function types in the

interface software-FUR, using COSMIC for graphical representation. Specifically:

1. The SIC model can be used to specify and measure the function size of the system user

interface function (UIF) from the received/sent data groups from/to the HIF, SIF, and CIF

– see Figure 6.7;

2. The SIS model can be used to specify and measure the functional size from the

received/sent data groups from/to interface specifications function (ISP), and the

interface specifications link function (ISLF) – see Figure 6.7.

Interface Function Type 2
System Interface Specification (SIS)

Interface Specification

Function (ISF)

Interface Function Type 1
System Interface Components

(SIC)

Hardware Interface

Function (HIF)

Communication

Interface Function
(CIF)

Software Interface

 Function (SIF)

X

X

X

Interface

Specification Link

Function (ISLF)

E

X

Persistent
Storage

R
W

156

Figure 6.7 A standard-based model of software-FUR for system interfaces NFR

 (Function level)

6.3 A standard-based model of software-FUR for system interfaces NFR using SOA

In this chapter, Figure 6.7 illustrates the COSMIC standard-based model of software-FUR for

system interfaces NFR. This model describes the important concepts and relationships for

system interface requirements, as defined in the ECSS and IEEE standards. In this section, a

standard-based model of software-FUR for system interfaces NFR using a service oriented

architecture (SOA) is built to show a more complete picture, which includes showing what is

involved in instantiating the modeled entities in practice – for more details, see .

Figure 6.8 illustrates a COSMIC standard-based model of software-FUR for system

interfaces NFR using an SOA. This model is built based on Figure 6.7, and on the role of the

COSMIC-SOA explained in (COSMIC 2010) .

Interface Function Type 1
System Interface Components (SIC)

Hardware Interface

Function (HIF)

Communication

Interface Function
(CIF)

Software Interface

 Function (SIF)

User
Interface
Function

(UIF)

E

E

E

X

X

X

Interface Function Type 2
System Interface Specification (SIS)

Interface

Specification

Function

(ISF)

X

Interface

Specification

 Link Function

(ISLF)

E

X

Persistent
Storage

R
W

E

X

E

X

E

157

A standards-based model of software-FUR for system interfaces NFR
(Function and Service levels)

Interface Function Type 1

System Interface Components (SIC)

Hardware Interface

Function (HIF)

Communication
Interface Function

(CIF)

Software Interface

 Function (SIF)

User
Interface
Function

(UIF)

E

E

E

X

X

X

Interface Function Type 2
System Interface Specification (SIS)

Interface

Specification

Function

(ISF)

X

Interface

Specification

 Link Function

(ISLF)

E

X

Persistent
Storage

R
W

E

X

E

X

E

X
E

E
X

IS
-2

X
E

E
X

Hardware
Interface

Service (HIS)

Software Interface
Service (SIS)

Communication
Interface Service

(CIS)

User Interface
Service

(UIS)

X
E

E
X

IS
-1

X
E

E
X

X
E

E
X

X
E

E
X

X
E

E
X

X
E

E
X

Interface
Specification
Service (ISS)

Interface specification
Link Service

(ISLS)

X
E

E
X

X
E

E
X

Figure 6.8 A standard-based model of software-FUR for system interfaces NFR

(Function and Service levels)

6.4 Sizing of the standard-based model of software-FUR for system interfaces NFR

The specification of software-FUR for system interfaces in a project is a specific instantiation

of the proposed standard-based model of software-FUR for system interfaces NFR described

in Figure 6.8. When the software specification document is at the level of the movements of

158

data groups, then these functional requirements can be directly measured using the COSMIC

measurement rules. The measurement example presented next illustrates a reference

instantiation of the specification and measurement model of software-FUR for system

interfaces in an SOA context for a single data group for all the possible flows of data groups

identified.

The measurement example in this section explains how to use the proposed reference model

of system interfaces to size a hypothetical model composed of all the kinds of software-FUR

described in the framework.

6.4.1 Measurement of exchange messages for system interface

There are six functionality types of system interfaces, each interacting with its own services,

for the measurement of exchange services for system interfaces using COSMIC-SOA – see

Figure 6.8. According to COSMIC-SOA, each functional process may interact with its own

service by sending and receiving data movements (i.e., Entry and Exit). Table 6.3 illustrates a

measurement example for the interactions between a functional process and its own

functional service process.

Table 6.3 COSMIC-SOA measurement example for the interactions between a functional
process and its own functional service process

COSMIC-SOA Types

Data Movement Description
Data

Movement
Type

Functional
Process

Functional Service

Hardware
Interface

Function (HIF)

Hardware
Interface Service

(HIS)

HIF sends a data group to HIS X
HIS receives a data group from HIF E
HIS sends a data group to HIF X
HIF receives a data group from HIS E

The total functional size 4 CFP

Table 6.4 illustrates the measurement results of the standard-based model of software-FUR

for system interfaces NFR for interactions between a system interface functional process and

159

its own service processes, i.e., a hardware interface function (HIF) interacts with its own

service process, the hardware interface service (HIS). The measurement result for this

operation is equal to 4 CFP for each interaction between a functional process and its own

functional service process. The total measurement result is equal to 24 CFP – see the yellow

shaded arrows in Figure 6.8.

Table 6.4 Measurement for exchange messages

Function
ID

Exchange Services for System Interfaces No. of
Data

Movements Functional Process Functional Service

1
User Interface Function

(UIF)
User Interface Service (UIS) 4

2
Hardware Interface Function

(HIF)
Hardware Interface Service (HIS) 4

3
Software Interface Function

(SIF)
Software Interface Service (SIS) 4

4
Communication Interface

Function (CIF)
Communication Interface Service

(CIS)
4

5
Interface specification

function
(ISF)

Interface specification Service
(ISS)

4

6
Interface specification Link

function (ISLF)
Interface specifications Link

Service (ISLS)
4

The total functional size 24 CFP

6.4.2 Measurement of intermediary services for system interface

In this section, and based on Figure 6.8, when a functional process service requires data that

are available via another functional process service, the former calls upon a functional

process of the intermediary service. According to the COSMIC-SOA model of measurement

for system interfaces, the types of data movements that can be used by the intermediary

service are Entries and Exits – see Table 1.4 in chapter 1.

Table 6.5 illustrates a measurement example for the intermediary service between a

functional process and its own functional service process.

160

Table 6.5 COSMIC-SOA measurement example for the intermediary service

COSMIC-SOA Intermediary
Service

Data Movement Description

Data
Movement

Type Functional
Service

Functional
Service

Hardware
Interface Service
(HIS)

Software
Interface Service
(SIS)

HIS sends a data group to IS-1 X
IS-1 receives a data group from HIS E
IS-1 sends a data group to SIS X
SIS receives a data group from IS-1 E
SIS sends a data group to IS-1 X
IS-1 receives a data group from SIS E
IS-1 sends a data group to HIS X
HIS receives a data group from IS-1 E

The total functional size 8 CFP
Note: IS-1 is the first intermediary service in Figure 6.8.

Table 6.6 illustrates the COSMIC-SOA measurement results for intermediary services – see

the red shaded arrows in Figure 6.8. This table presents an instantiation of a single data group

for all possible flows of the data groups identified above, and listed as a data movement

example for one intermediary service in Table 6.5. For this interface requirement, the

measurement results are equal to 8 CFP.

Table 6.6 COSMIC-SOA measurement for intermediary services

Intermediary
Service ID

Intermediary Services for System Interfaces No. of Data
Movements Functional Process Functional process

1
Hardware Interface

Service (HIS)
Software Interface Service

(SIS)
8

2
Software Interface

Service (SIS)
Communication Interface

Service (CIS)
8

The total functional size 16 CFP

6.4.3 Measurement of the direct and indirect data movements for system interface

This section is based on Figure 6.8, which illustrates the possible flows of data between

components in the same layer, i.e., between peer components (where a component may be an

application or a service). This section shows direct and indirect exchanges of data between

161

components. If components exchange data directly, the measurer will identify the Exit and/or

Entry data movements. An indirect exchange of data between components means that a

service in one component writes data which are subsequently read by a service in another

component.

Specifically, Table 6.7 illustrates the measurement results for standard-based model of

software-FUR for system interfaces NFR for the exchange data movements at function level

or in service architecture layers – see Figure 6.8. This table presents an instantiation of this

operation. The measurement results are equal to 16 CFP – see the blue shaded arrows in

Figure 6.8.

Table 6.7 Measurements of direct and indirect data groups for system interfaces

Interface Function Data Movement Description
Data Movement

Type

User Interface Function

(UIF)

• UIF sends a data group to HIF
• UIF sends a data group to SIF
• UIF sends a data group to CIF
• UIF receives a data group from HIF
• UIF receives a data group from SIF
• UIF receives a data group from CIF

E
E
E
X
X
X

Hardware Interface
Function (HIF)

• HIF sends a data group to ISF
• HIF receives a data group from ISF

E
X

Software Interface
Function (SIF)

• SIF sends a data group to ISF
• SIF receives a data group from ISF

E
X

Communication Interface
Function (CIF)

• CIF sends a data group to ISF
• CIF receives a data group from ISF

E
X

Interface specification
function (ISF)

• ISF sends a data group to ISLF
• ISF receives a data group from ISLF

E
X

Interface specification link
function (ISLF)

• ISLF reads a data group from persistent
storage (PS)

• ISLF writes a data group to (PS)
R & W

The total functional size 16 CFP

6.5 A Measurement Example

The specification of software-FUR for system interface requirements in a particular project is

a specific instantiation of the proposed model described in Figure 6.8. When the software

162

specifications document is at the level of the movements of data groups, then these functional

requirements can be directly measured using the standard-based model of software-FUR for

system interfaces NFR (Function and Service levels).

Example: The set of functional requirements allocated to software for the system interface

requirements for a specific instantiation is the following:

1. UIF, HIF, and SIF call upon their own functional services to exchange their messages;

2. HIF uses an intermediary service with SIF;

3. UIF send one data group to HIF and another data group to SIF.

The Functional Measurement Solution

Based on Figure 6.8 for the standard-based model of software-FUR for system interfaces

NFR using an SOA for specifying data movements, the measurement procedure to determine

the functional size for interfaces on function types 1 and 2 for this example is as follows:

6.5.1 Measurement of exchange messages

The functional processes (UIF, HIF, and SIF) interacting with the functional services for

UIS, HIS, and SIS in this example include the data movements shown in Figure 6.8 (arrows

shaded in yellow). With the help of Table 6.4 the functional size measurement results are

presented in Table 6.8.

Table 6.8 Measurement results for the interactions between three functional processes

Function
ID

Exchange messages for System Interfaces No. of Data
Movements Functional Process Service Process

1
User Interface Function

(UIF)
User Interface Service

(UIS)
4

2
Hardware Interface

Function (HIF)
Hardware Interface Service

(HIS)
4

3
Software Interface

Function (SIF)
Software Interface Service

(SIS)
4

The Functional Size 12 CFP

163

6.5.2 Measurement of intermediary services

The functional process services (HIS and SIS) use intermediary services to interact with

other functional process services in this example, including the data movements shown in

Figure 6.8 (red arrows). With the help of Table 6.6, the functional size measurement results

are presented in Table 6.9.

Table 6.9 Measurement results of intermediary services

Intermediary
Services ID

Intermediary Services No. of Data
Movements Functional Process Functional Process

1
Hardware Interface Service

(HIS)
Software Interface Service

(SIS)
8

The Functional Size 8 CFP

6.5.3 Measurement of data movements

Based on Figure 6.8 (blue arrows) and Table 6.7, the functional size measurement results are

presented in Table 6.10 for the data movements identified by the measurer for this example.

Table 6.10 Measurements of direct and indirect data movements for system interfaces.

Interface Functions Data Movement Description
Data

Movement

User Interface Function

(UIF)

• UIF sends a data group to HIF
• UIF sends a data group to SIF
• UIF receives a data group from HIF
• UIF receives a data group from SIF

E
E
X
X

Hardware Interface
Function (HIF)

• HIF sends a data group to ISF
• HIF receives a data group from ISF

E
X

Software Interface
Function (SIF)

• SIF sends a data group to ISF
• SIF receives a data group from ISF

E
X

Interface specification
function (ISF)

• ISF sends a data group to ISLF
• ISF receives a data group from ISLPF

E
X

Interface specifications
Link function (ISLF)

• ISLF reads a data group from persistent
storage (PS)

• ISLF writes a data group to (PS)
R & W

The functional size 12 CFP

164

6.6 Summary

The Interface requirements are typically described initially as non functional requirements at

the system level, and system engineers must subsequently apportion these system

requirements very carefully as either software or hardware requirements to conform to the

interface requirements of the system. A number of views and concepts are provided in the

ECSS and IEEE standards to describe various types of candidate interface requirements at

the system, software, and hardware levels.

This chapter has introduced a standard-based model of software-FUR for system interfaces

NFR (Function and Service levels) for specifying and measuring software requirements for

the functions needed to address the system’s interface requirements.

The main contribution of this chapter is our proposed standard-based model of software-FUR

for system interfaces NFR. This model can be considered as a kind of reference model for the

identification of system interface requirements, and can be used for their allocation to

software functions implementing such requirements. The structure of the proposed model is

based on the generic model of software adopted by the COSMIC measurement standard, the

necessary information for measuring their functional size is readily available, and an example

has been presented of a specific instantiation of this reference model.

Specifically, the standard-based model of software-FUR for system interfaces NFR presented

in this chapter is based on:

• The ECSS and IEEE standards for the description of the NFR for system interfaces;

• The COSMIC measurement model of software-FUR.

The proposed standard-based model of software-FUR for system interfaces NFR is

independent of the software type and the languages in which the software-FUR will be

implemented. The proposed standard-based model of software-FUR for system interfaces

NFR provides:

165

• A specification model for each type, or all types, of interface requirements: for example;

the requirements to be allocated to software for the system interface components;

• A specification measurement model for each type, or all types, of interface requirements.

CHAPTER 7
THE OTHER ELEVEN TYPES OF SYSTEM-NFR IN ECSS: SPECIFICATION AND

MEASUREMENT MODELS

7.1 Introduction

This chapter presents the other eleven (11) standard-based model of software-FUR for

system -NFR that can be allocated to software FUR. The detailed modeling procedures for

these standard-based models are presented in the Annex II.

This chapter is organized as follows:

Section 7.2 presents the portability system requirements.

Section 7.3 presents the operations system requirements.

Section 7.4 presents the configuration system requirements.

Section 7.5 presents the data definitions and database system requirements.

Section 7.6 presents the adaptation and installation system requirements.

Section 7.7 presents the design and implementation constraints system requirements.

Section 7.8 presents the performance system requirements.

Section 7.9 presents the security system requirements.

Section 7.10 presents the safety system requirements.

Section 7.11 presents the resources system requirements.

Section 7.12 presents the human factors requirements.

A summary is presented in section 7.13.

7.2 Portability system requirements

This section maps the portability terminologies found throughout the ECSS, IEEE, and ISO

standards from chapter 3 into a proposed standard-based model of software-FUR for system

portability-NFR, through the use of the generic model of FUR proposed in the COSMIC

model presented in chapter 1.

167

7.2.1 Mapping views and concepts for portability from ECSS, ISO, and IEEE

Based on a synthesis of the various definitions, key views and concepts presented in chapter

3 the system portability requirements are listed in Table 7.1. It is important to note that Table

7.1 includes software, data, and hardware components which are interconnected. If the

system can run on two or more kinds of devices, or with two or more kinds of operating

systems that are easily or conveniently transported, then system portability is achieved. So

we consider these components as environments for the software-FUR for the system

portability-NFR − see also Table 7.2.

Table 7.1 Portability requirements in ECSS, ISO, and IEEE

ID

System portability requirements

1 • Isolating software system calls
2 • Independence of the operating system
3 • Independence of the middleware

4 • Independence of the programming language
virtual machine

5 • Independence of browsers
6 • Client independence
7 • Server independence
8 • Storage independence
9 • Network independence
10 • Database independence

11 • Distributed data base management system
(DDBMS)

In Table 7.2, portability requirements must be identified for each environment (from

environment 1 to environment n), when required. In addition, the types of portability

requirements should be identified for each environment and must be allocated to: software

components, hardware components, and data components.

168

Table 7.2 Portability types, by environment

Environment 1 … Environment n
− Software Components in Environment 1

o Independence of the operating system
o Independence of the middleware
o Independence of the programming

language virtual machine
o Independence of browsers

− Hardware Components in Environment 1
o Independence of Client
o Independence of Server
o Independence of Storage
o Independence of Network

− Data Components in Environment 1
o Independence of Database
o Distributed data base management

system (DDBMS)

… − Software Components in Environment n
o Independence of the operating system
o Independence of the middleware
o Independence of the programming

language virtual machine
o Independence of browsers

− Hardware Components in Environment n
o Independence of Client
o Independence of Server
o Independence of Storage
o Independence of Network

− Data Components in Environment n
o Independence of Database
o Distributed data base management

system (DDBMS)

7.2.2 Software portability functions to be specified

The functions and corresponding entities to be specified and measured for software

portability are listed in Table 7.3. Portability component functions and the corresponding

entities for portability are represented by the environment of these components. Portability

environment function and the corresponding entities are represented by the capability of the

isolated software pieces in the environment to call each other.

Table 7.3 Portability functions that may be allocated to software

ID
Portability

Type
Portability functions

1 Portability
Components

• Independence of the operating system function
• Independence of the middleware function
• Independence of the programming language virtual machine function
• Independence of the browser function
• Client independence function
• Server independence function
• Storage independence function
• Network independence function
• Database independence function
• Distributed data base management system (DDBMS) function

2 Portability
Environment

• Isolating software system calls function

169

7.2.3 Identification of the function types in software portability

In this section, the portability function types are identified based on the findings of the

portability functions as identified in the previous section. The system portability

requirements allocated to software-FUR are divided into portability components and

environments; each type in this division has its own functions. The proposed portability

function types are illustrated in system and COSMIC modeling views, in order to propose a

standard-based model of software-FUR for system portability-NFR based on the proposed

system modeling view.

The proposed portability functions can be divided into four function types, three of them

specified for portability components and the fourth for portability environments. Table 7.4

illustrates these portability function types, based on the identified portability functions.

Table 7.4 Function types for portability functions that may be allocated to software

ID Function Types Portability Functions

1

System Software
Components

• Independence of the operating system function (IOSF)
• Independence of the middleware function (IMF)
• Independence of the programming language virtual machine

function (IPLVMF)
• Independence of the browser function (IBF)

2
System Data
Components

• Independence of the database function (IDF)
• Distributed data base management system function

(DDBMSF)

3

System Hardware

Components

• Independence of the client function (ICF)
• Independence of the server function (ISF)
• Independence of the storage function (ISTF)
• Independence of the network function (INF)

4 Isolating System Calls • Isolating software system calls function (ISSCF)

7.2.4 A standard-based model of software-FUR for system portability using SOA

Figure 7.1 illustrates a standard-based model of software-FUR for system portability-NFR

using an SOA. This model is built based on the proposed portability functions and function

types and the role of the COSMIC-SOA explained in (COSMIC 2010).

170

Figure 7.1 Standard-based model of software-FUR for system portability-NFR

Function Type 1 (System Software Components) Function Type 2 (System Data Components)

Function Type 4
(Isolating System Calls)

 Function Type 3: (System Hardware Components)

Portability Function Type 1
Portability Function Type 2
Portability Function Type 3
Portability Function Type 4

Boundary

Function
Process or

Service

Direct Data Movements

(E) ENTRY (X) EXIT

Indirect Data Movements

(R) READ (W) WRITE

Persistent
Storage

E
X

X
E

E
X

X
E

E
X

X
E

E
X

X
E

E
X

X
E

E
X

X
E

Isolating Software
System Calls Service (ISSCS)

Persistent

Storage

Independence of operating
system service (IOSS)

Independence of middleware
service (IMS)

Independence of programming
language virtual machine

service (IPLVMS)

Independence of browsers service
(IBS)

I
N
T
E
R
M
E
D
I
A
R
Y

Service
(IS)

E
X

X
E

E
X

X
E

E
X

X
E

E
X

X
E

E
X

X
E

E
X

X
E

R

W

R

W

R

W

R

W

Persistent

Storage

Independence of client Service
(ICS)

Independence of server service
(ISS)

Independence of storage
Service (ISTS)

Independence of Network
Service (INS)

I
N
T
E
R
M
E
D
I
A
R
Y

Service
(IS)

E
X

X
E

E
X

X
E

E
X

X
E

E
X

X
E

E
X

X
E

E
X

X
E

R

W

R

W

R

W

R

W

E
X

X
E

E
X

X
E

Persistent
Storage

Independence of database
service (IDS)

Distributed database
management system
service (DDBMSS)

R
W

R
W

E

X

X

E

E

X

X

E

Independence of
operating system
function (IOSF)

Independence
of middleware
function (IMF)

Independence of
programming language

virtual machine function
(IPLVMF)

E
X

X
E

E
X

X
E

E
X

X
E

Independence of browsers
function (IBF)

E
X

X
E

Independence of client
function (ICF)

Independence of server
function (ISF)

Independence of Storage
Function (ISTF)

Independence of Network
Function (INF)

E
X

X
E

E
X

X
E

E
X

X
E

E
X

X
E

Independence of database
function (IDF)

E
X

X
E

E
X

X
E

Distributed Database
management system
function (DDBMSF)

Isolating Software System
Calls Function (ISSCF)

E
X

X
E

IS1IS2

IS2IS3

IS3IS4

IS4IS5

IS5IS6

IS6IS7

IS7IS8

IS8IS9 IS9IS10

IS10IS11

171

7.3 Operations system requirements

This section assembles the terminologies and concepts of system operations dispersed

throughout the ECSS standards. There are two types of system-related operations

requirements that can be derived from the ECSS standards series: system operations mode,

and system transitions mode.

7.3.1 Mapping system operations views and concepts from ECSS and IEEE standards

Table 7.5 presents the two types of system operations requirements, and related functions,

which are included as system requirements in the ECSS and IEEE standards. These could, at

times, be interpreted and specified, as software FUR:

1. System operations mode: this refers to the expected operations for the executed functions

occurring in the system. The system operations mode consists of the inter-operational

functions (IOPF) and the operational function events (OPFE);

2. System transitions mode: this refers to the expected data and control operations via the

interface functionality that could occur in the system. The system transitions mode

consists of operational data interface functions (OPDIF) and operational control interface

functions (OPCIF).

Table 7.5 System operations FUR in the ECSS standards series

ID
Types of System

Operations
Operations Functions to be Specified

1
System operations mode • Inter-operational function (IOPF)

• Operational function event (OPFE)

2
System transitions mode • Operational data interface function (OPDIF)

• Operational control interface function (OPCIF)

According to ECSS standards, the functions relationships across these two modes, as

illustrated in Figure 7.2 are the following:

172

1. The inter-operational function (IOPF) in system operations mode, which are controlled

by the operational control interface function (OPCIF) in system transitions mode. This

relationship will be referred to the ‘System Operational Control’, or Function Type 1;

2. The operational function event (OPFE) in system operations mode, which sends and

receives data movements from the operational data interface function (OPDIF) in system

transitions mode. This relationship will be referred to the ‘System Operational Data’, or

Function Type 2

For example, in embedded and real-time software:

1. A system scheduler sends distribution routines which form the operational control

interface and the inter-operational functions;

2. The system device routines form the operational data interface and the operational

function events.

Figure 7.2 System operations functions and function types

In the next section, these terminologies are mapped into a proposed standard-based model of

software-FUR for system operations-NFR, using the generic FUR model proposed in

COSMIC – ISO 19761. This model is used for describing the software-FUR from system

operations requirements based on the ECSS standards.

System Transitions Mode System Operations Mode

Inter-Operational
Function (IOPF)

Operational Control Interface

Function (OPCIF)

Operational Function Event

(OPFE)

Operational Data Interface

Function (OPDIF)

Function Type 1

 System Operational Control

Function Type 2

System Operational Data

I/O
Device

Drivers

173

7.3.2 A standard-based model of software-FUR for system operation-NFR using SOA

Figure 7.3 illustrates a standard-based model of software-FUR for system operations-NFR

using an SOA. This model is built based on the proposed system operations requirements.

functions and function types and the role of the COSMIC-SOA explained in (COSMIC 2010)

Figure 7.3 standard-based model of software-FUR for system operations-NFR
 Using an SOA

174

7.4 Configuration System requirements

This section assembles the terminologies and concepts associated with the configuration

elements that are dispersed throughout the ECSS standards and the SWEBOK Guide (ISO-

19759 2004). These terminologies are mapped to a standard-based model of software-FUR for

system configuration NFR, through the use of the generic model of FUR proposed in the

COSMIC model.

7.4.1 Mapping system configuration views and concepts from ECCS standards

From a synthesis of the previous configuration-related definitions, views, and concepts in the

ECSS and the ISO 19759 standards, we can draw the following conclusions:

1. They all consider configuration as an important part of the design;

2. They all mention control configuration items or configuration elements, such as:

• Control flow for operational functions;

• The data flow register in each operational function.

The software-FUR for system configuration-NFR based on the previous mapping is

presented in Table 7.6.

Table 7.6 Software-FUR for system configuration NFR

ID Software-FUR for System Configuration NFR
1 Configuration control flow function
2 Configuration data flow function
3 Register data transfer function
4 Operational functions

Two types of configuration requirements must be identified:

1. Configuration control flows: the relationships between the operational functions for the

configuration items or elements;

175

2. Configuration data flows: partition of an application into pieces that can be configured

individually on configurable hardware or in software.

7.4.2 Configuration function types and functions to be specified

The configuration functions to be specified are divided into configuration data and control

flows – see Table 7.7:

1. The configuration data flow specifies the register data that could come into the system

view;

2. The configuration control flow specifies the expected operational functions in use in the

system.

The ECSS view of system configuration NFR is that of a secure environment, including data

flows and control flows. The ECSS view of software-FUR for system configuration NFR

within a secure environment includes:

1. Register data transfer, containing a transfer history extraction unit, which extracts transfer

history information from data subjected to data transfer each time the data transfer is

performed, the extracted transfer history information being separate from the data

subjected to data transfer in the secure environment for the system configuration NFR;

2. Operational functions, defining an area of responsibility within an operational function in

a hierarchical structure in the secure environment for the system configuration NFR.

Table 7.7 Configuration functions that may be allocated to software

Candidate
Function

Types
Configuration Type Configuration Functions

Function type
1

Configuration Data Flow Register data transfer function

Function type
2

Configuration Control Flow Operational functions

176

7.4.3 A standard-based model of software-FUR for system configuration-NFR using an

SOA

Figure 7.4 illustrates a standard-based model of software-FUR for system configuration-NFR

using an SOA. This model is built based on the system configuration requirements, functions

and function types and the role of the COSMIC-SOA explained in (COSMIC 2010).

Figure 7.4 A standard-based model of software-FUR for system
configuration-NFR using an SOA

Function Type 1 Function Type 2
Configuration Data Flows Configuration Control Flows

Functional
User
Device

Functional
User
Device

Functional
User
Device

Functional
User
Device

Register Data Transfer
Service n (RDTS n)

Register Data Transfer
Service 1 (RDTS 1) ENTRY

ENTRY

X

E

Operational Service n
(OPS n)

Operational
Service 1 (OPS 1)

Intermediary
Service

IS

EXIT

E

X

EXIT

ENTRY

ENTRY

Persistent
Storage

X

E

X

E

X

E

Intermediary
Service

IS

E

X

E

X

E

X

R

WR
W

W
R

W

R

Register Data Transfer
Function 1 (RDTF 1)

Operational
Function 1(OPF 1)

X

E

E

X

X

E

E

X

Register Data Transfer
Function n (RDTF n)

Operational Function
n (OPF n)

X

E

E

X

X

E

E

X

177

7.5 Data definitions and database system requirements

This section assembles the terminologies and concepts of data definition and database

dispersed throughout the ECSS standards. These terminologies are mapped into a proposed

standard-based model of software-FUR for system data definition and database -NFR using

the generic FUR model proposed in COSMIC. This model for describing the software-FUR

from system data definition and database requirements is based on the ECSS standards.

7.5.1 Mapping data definition views and concepts from ECCS standards

Table 7.8 presents the functions to address system data definition and database requirements

that are present as system requirements in the ECSS standard: each of these could be

interpreted, and specified, at times as software-FUR.

Table 7.8 Functions to address system data definition and database requirements

ID
Functions to address system data definition and

database requirements
1 Function to identify event
2 Function to identify parameter
3 Function to identify system element
4 Function to identify reporting data Function to identify activity
5 Function to identify simple value
6 Function to identify record value
7 Function to identify simple type
8 Function to identify complex type
9 Function to identify configuration data
10 Function to identify monitoring data
11 Function to identify control data

Various types of system-related data definition and database requirements can be derived

from the following set of concepts:

1. System data items (SDI):

• System entity types (SET);

• System value types (SVT);

178

• System data types (SDT).

2. System product data schema (SPDS).

Table 7.9 presents various typical system data definition and database functions (middle

column) for system data definition and database requirements and corresponding software

functions (right-hand side column) that may be specified to implement such data definition

and database functions for the system data definition and database requirements (and

corresponding entities to be measured).

Table 7.9 System data definition requirements and related software functions

ID Function types
System

functions for
DD and DB

Software functions for data definition and
database requirements

1

Function Type 1
System data
items (SDI)

System
entity types

(SET)

• Function to identify event (EF)
• Function to identify parameter (PF)
• Function to identify system element (SEF)
• Function to identify reporting data (RDF)
• Function to identify activity (AF)

System
value types

(SVT)

• Function to identify simple value (SVF)
• Function to identify record value (RVF)

System data
types (SDT)

• Function to identify simple type (STF)
• Function to identify complex type (CTF)

2
Function Type 2

System product data schema
(SPDS)

• Function to identify configuration data (SCDF)
• Function to identify monitoring data (SMDF)
• Function to identify control data (SCDF1)

7.5.2 A standard-based model of software-FUR for system data definition and

database -NFR using an SOA

Figure 7.5 illustrates a standard-based model of software-FUR for system data definition and

database-NFR using an SOA. This model is built based on the system data definitions and

database requirements, functions and function types and the role of the COSMIC-SOA

explained in (COSMIC 2010).

179

Figure 7.5 A standard-based model of software-FUR for system
Data definition and database -NFR using an SOA

F
u

n
ction

 T
yp

e 2: S
ystem

P

rod
u

ct D
ata S

ch
em

a
(S

P
D

S
)

System
Monitoring

Data Service
(SMDS)

System
Configuration
Data Service

(SCDS)

System
Control Data

Service
(SCDS1)

System Monitoring Data
Function (SMDF)

System Configuration Data
Function (SCDF)

System Control Data
Function (SCDF1)

E X

X E

E X

X E
IS

6
E X

X E

E X

X E
IS

7

X

E
E

X

X

E
E

X

X

E
E

X

 Function Type 1: System Data Items (SDI)

Persistent Storage

Data Type

Simple Type
Service
(STS)

Complex Type
Service
(CTS)

Value Type

Simple Value
Service
(SVS)

Record Value
Service
(RVS)

System Entity Type

Event
Service

(ES)

Parameter Service
(PS)

System Element Service
(SES)

Reporting Data
Service
(RDS)

Activity
Service
(AS)

(IS-1)

X

E
E

X

X

E
E

X

E

W

R

Parameter Function
(PF)

System Element
Function

(SEF)

X

E
E
X

Event
Function

(EF)

Reporting Data
Function
(RDF)

Activity
Function

(AF)

Simple Type Function
(STF)

Complex Type
Function

(CTF)

Simple Value
Function (SVF)

Record Value
Function
(RVF)

W

R

E X

X E

E X

X E
IS

2

E

X

E

E

X

F
U
R

E X

X E

E X

X E
IS

5

X

E
E

X

X

E
E

X

X

E
E

X

X

E
E

X

(IS-3)

X

E
E

X

X

E
E

X

X

E
E

X

X

E
E

X

(IS-4)

X

E
E

X

X

E
E

X

X

E
E

X

X E

X E

E
X

E

X

X

E
E

X

X

E
E

X

X

E
E
X

R

W
R

W

W
R

X

E
X

E

X

E

180

7.6 Adaptation and installation system requirements

This section assembles the dispersed terminologies and concepts of adaptation and

installation dispersed throughout ECSS, IEEE and ISO standards into a proposed standard-

based model of software-FUR for system adaptation and installation-NFR using an SOA

through the use of the generic model of FUR proposed in the COSMIC model. This model

can then be used for describing the software adaptation and installation requirements (i.e.,

from system-NFR into software-FUR) based on ECSS.

7.6.1 Mapping the adaptation and installation views and concepts from standards

Table 7.10 presents the system adaptation and installation requirements that are present either

as system requirements in the ECSS standards or as adaptation and installation-related

concepts in ISO 9126: each of these could be interpreted, and specified, at times as software

FUR.

Table 7.10 Adaptation and installation in ECSS & ISO 9126

ID System adaptation and installation requirements
1 Software Data Structure
2 Registered Data Transfer
3 Control Data Transfer
4 Set Data Transfer with System Resources
5 Operational Environment
6 Localizing I/O Resources
7 Host-Target Platform
8 Memory Resources
9 Storage Resources
10 Transmission Resources

Table 7.11 presents various typical procedures (left-hand side column) for system adaptation

and installation requirements and corresponding software functions (right-hand side column)

that may be specified to implement such procedures for the three types of system adaptation

and installation requirements.

181

Table 7.11 System adaptation and installation requirements related software functions

ID
System adaptation and

installation requirements
Software functions

1
System Software
Environment

• Software Data Structure
• Registered Data Transfer
• Control Data Transfer
• Set Data Transfer with System Resources

2
System Integrated
Environment

• Operational Environment
• Localizing I/O Resources

3
System Hardware Environment

• Host-Target Platform
• Memory Resources
• Storage Resources
• Transmission Resources

7.6.2 Software adaptation and installation functions and function types to be specified

The adaptation and installation functions to be specified (and corresponding entities to be

measured) are composed of ten functions that may be allocated to software adaptation and

installation requirements; the specified functions are divided into three function types (and

corresponding entities types) - see Table 7.12.

Table 7.12 System adaptation and installation functions and functions types

ID Function types Adaptation and installation functions

1
System Software
Environment (SSE)

• Software Data Structure Function (SDSF)
• Registered Data Transfer Function (RDTF)
• Control Data Transfer Function (CDTF)
• Set Data Transfer with System Resources Function

(SDTF)

2
System Integrated
Environment (SIE)

• Operational Environment Function (OPEF)
• Localizing I/O Resources Function (IORF)

3
System Hardware
Environment (SHE)

• Host-Target Platform Function (HTPF)
• Memory Resources Function (MRF)
• Storage Resources Function (SRF)
• Transmission Resources Function (TRF)

182

7.6.3 A standard-based model of software-FUR for system adaptation and installation-

NFR using an SOA

Figure7.6 illustrates a standard-based model of software-FUR for system adaptation and

installation-NFR using an SOA. This model is built based on the system adaptation and

installation requirements, corresponding functions and function types and the role of the

COSMIC-SOA explained in (COSMIC 2010) .

Figure 7.6 A standard-based model of software-FUR for system adaptation and installation-
NFR using an SOA

Function Type 3:
System Hardware Environment

 (SHE)

Storage

Resources
Service
 (SRS)

Storage Resources
Function (SRF)

Storage
Persistent

Host-Target
Platform
Service
(HTPS)

Memory

Resources
Service
 (MRS)

Transmission
Resources

Service
 (TRS)

Function Type 2:
System Integrated

Environment (SIE)

Function Type 1:
System Software Environment

(SSE)

Registered Data

Transfer Service
(RDTS)

Operational
Environment

Service
(OPES)

Set Data

Transfer with
System Resources
Service (SDTS)

Registered Data
Transfer Function

(RDTF)

Control Data
Transfer Service

(CDTS)

Software Data Structure
Function (SDSF)

FUR
or

Deviced
engineered

Persistent

Storage

Software Data
Structure

Service (SDSS)

X

E
E

X

ENTRY

EXIT

E
N
T
R
Y

E
X
I
T

 (IS-1)

X
E

E
X

X
E

E
X

E X

E X

READ

WRITE

Control Data Transfer
Function (CDTF)

E X

E X

READ

WRITE

 (IS-1)

X
E

E
X

X
E

E
X

Set Data Transfer with
System Resources
Function (SDTF)

E X

E X

READ

WRITE

Localizing
I/O

Resources
Service
(IORS)

Operational Environment
Function (OPEF)

E X

X E

E X

X E IS

2

X

E
E

X

 (IS-1)

X
E

E
X

X
E

E
X

E X

X E

E X

X E IS

2
X

E
E
X

Localizing I/O Resources
Function (IORF)

E X

X E

E X

X E IS

2

X

E
E

X

Transmission Resources
Function (TRF)

 (IS-1)

X
E

E
X

X
E

E
X

E X

X E

E X

X E
IS

2

 (IS-1)

X
E

E
X

X
E

E
X

Host-Target Platform
Function (HTPF)

Memory
Resources
Function
(MRF)

X

E
E

X

E X

X E

E X

X E IS

2

E X

X E

E X

X E IS

2

E X

E X

READ

WRITE

READ

WRITE

READ

WRITE

X

E
E

X

183

7.7 Design and implementation (D&I) constraints system requirements

This section assembles the terminologies and concepts of D&I constraints dispersed in the

ECSS standards into a proposed standard-based model of software-FUR for system of D&I

constraints-NFR using an SOA through the use of the generic model of FUR proposed in the

COSMIC model. This model can then be used for describing the software-FUR from system

D&I constraints based on ECSS and ISO 19759.

7.7.1 D&I constraints requirements and functions to be specified

The types of system D&I constraints can be derived from the physical and logical models

which include:

• The static design and its D&I constraints;

• The dynamic design and its D&I constraints;

• The mapping between both the static and the dynamic design and the D&I constraints

views;

• The behaviour of the system design before and after implementation.

The functions to be specified (and corresponding entities to be measured) are divided into

external and internal constraints functions - see Table 7.13. The internal D&I constraints

refer to the expected logical D&I constraints that could appear from the system behaviour,

while the external D&I constraints refer to the expected physical D&I constraints.

Table 7.13 Software D&I functions to be specified

D&I constraint D&I constraint types
D&I

components
Internal D&I
constraints

Internal D&I constraints on
module(s) and process(s)

• Module(s)
• Process(s)

External D&I
constraints

External D&I constraints on
channels and event(s)

• Channel(s)
• Event(s)

184

7.7.2 Model of function types relationships

Figure 7.7 presents an overview of the relationships between the function types in the D&I

constraints software-FUR using the COSMIC model for graphical representation. More

specifically:

1. The sub-model of internal D&I constraints function type 1 can be used to specify (and to

measure the functional size of) the internal D&I constraints for the processes and the

internal channels or events from the received/sent data movements from/to any other

processes and internal channels in the same module – See Figure 7.7;

2. The sub-model of external D&I constraints on channels function type 2 can be used to

specify (and to measure the functional size of) the external D&I constraints for the

external channels from the received/sent data movement from/to any other processes in

different modules – See Figure 7.7.

Figure 7.7 A standard-based model of software-FUR for system D&I constraints-NFR

System Design

P

H

Y

S

I

C

A

L

D

&

I

C

O

N

S

T

R

Function Type n
Internal D&I Constraints on

Modules

Process 1
(R, W)

Process n
(R, W)

Channels

 Or Events

E
n

try
E

xit
E

n
try

E
xit

Function Type 1
 Internal D&I Constraints on

Modules

Process 1
(R, W)

Process n
(R, W)

Channels

 Or Events

E
n

try
E

xit
E

n
try

E
xit

Entry

Entry

Entry

Entry

Function Type
2

External D&I
Constraints on

Channels

Exit

Exit

Exit

Exit

L

O

G

I

C

A

L

D

&

I

C

O

N

S

T

R

185

7.7.3 A model of D&I constraints services

This model is referred here as a generic model of software-FUR for system D&I constraints:

1. The internal D&I constraints in modules (function type 1 in Figure 7.7): Each module

may have many processes, each process may interact using an internal channel or event

(for example, through an RPC or remote procedural call) for an internal connection; in

this case the processes should be considered as a storage device for such kind of

information before data marshalling between the other processes - see also Figure 7.8;

2. The external D&I constraints on channels (function type 2 in Figure 7.7): many modules

may interact with each other through their own processes. In this case many processes in

different modules may use external channels (for example: through an RMI or a remote

method invocation) for external connection - see also Figure 7.8;

3. Process 1.1 starts sending to process 1.n in module 1 (for example process 1.1 represents

function and process 1.n represents a sub-function in the same module);

4. Process n.1 should start sending to interact process n.n in a module 2 (for example

process n.1 represent function n and process n.n represent sub-function in the same

module).

Figure 7.8 A model of D&I constraints requirements allocated to software

186

7.7.4 A model of D&I constraints of data movements in Software-FUR view

Figure 7.9 and Figure 7.10 show the possible flows of data movements between components;

the exchange of data between components could be direct or indirect exchange of data

movements to provide the functional user with services.

Figure 7.9 shows that each process (or component) in the figure could exchange the data

directly to provide services to the functional user; in this case for the measurements uses, we

identify Entry and/or Exit data movements.

Figure 7.10 shows indirect exchange of data between processes which means that a service in

one process writes data which is subsequently read by another process. In this situation this

identifies a write data movement in the next process and a read data movement by the latter.

Figure 7.9 Direct Data Movements Figure 7.10 Indirect Data Movements

7.8 Performance system requirements

This section maps the performance terminologies found throughout the ECSS and IEEE

standards from chapter 3 into a proposed standard-based model of software-FUR for system

performance -NFR using an SOA through the use of the generic model of FUR proposed in

the COSMIC model.

187

7.8.1 Mapping views and concepts for performance from ECSS and IEEE standards

Based on a synthesis of the various definitions, the key views and concepts presented in

chapter 3 on software-FUR for system performance-NFR are presented in Table 7.14.

Table 7.14 Performance requirements in ECSS and IEEE

ID System performance requirements
1 Static numerical requirements
2 Dynamic numerical requirements
3 Response to reference signals
4 Response time
5 Settling time
6 Tracking error for command profiles
7 Throughput time
8 Bandwidth
9 Workload
10 Resource consumption
11 Main memory time
12 Storage device time
13 Processor instruction execution
14 Evaluation processing speed
15 Accuracy errors
16 Stability errors
17 System scalability
17 Concurrency
18 Static numerical requirements

7.8.2 Software system performance functions to be specified

The functionality and corresponding entities to be specified (and measured) for system

performance allocated to software are listed in Table 7.15.

188

Table 7.15 System performance functions that may be allocated to software

ID System performance types System performance functions

1
Static numerical requirements

• Resource consumption
• Main memory time
• Storage device time
• Processor instruction execution
• Evaluation processing speed
• Accuracy errors
• Stability errors
• System scalability
• Concurrency

2
Dynamic numerical requirements

• Response to reference signals
• Response time
• Settling time
• Tracking error for command profiles
• Throughput time
• Bandwidth
• Workload

7.8.3 Identification of the function types in the performance system requirements

In this section, the system performance function types are identified based on the findings of

the performance functions, as discussed in the previous section. The system performance

requirements allocated to software-FUR are divided into two types of requirements: static

and dynamic numerical requirements. Each type in this division has its own functionality.

The proposed performance function types are illustrated in system and COSMIC modeling

views, in order to propose a standard-based model of software-FUR for system performance -

NFR using an SOA- see Table 7.16.

189

Table 7.16 Function types for performance functions that may be allocated to software

System
performance

types

System performance
function types

System performance functions

Static
numerical

requirements

Function type 1
Resource

consumption
(RC)

• Main memory time function (MMTF)
• Storage device time function (SDTF)
• Processor instruction execution function

(PIEF)

Function type 2
Evaluation processing

speed (EPS)

• Accuracy errors function (AEF)
• Stability errors function (SEF)
• System scalability function (SSF)
• Concurrency function (CF)

Dynamic
numerical

requirements

Function type 3
Response to reference

signals (RRS)

• Response time function (RTF)
• Settling time function (STF)
• Tracking error for command profiles function

(TECPF)

Function type 2
Throughput time

(TT)

• Bandwidth function (BF)
• Workload function (WF)

7.8.4 A standard-based model of software-FUR for system performance-NFR using an
SOA

Figure 7.11 illustrates a standard-based model of software-FUR for system performance -

NFR using an SOA. This model is built based on the proposed performance functions and

function types and the role of the COSMIC-SOA explained in (COSMIC 2010).

190

Figure 7.11 A standard-based model of software-FUR for
system performance -NFR using an SOA

Function Type 4
Throughput Time (TT)

Function Type 3
Response to Reference Signals (RRS)

Function Type 2
Evaluation Processing Speed (EPS)

Function Type 1
Resource Consumption (RC)

P
E
R
S
I
S
T
E
N
T

S
T
O
R
A
G
E

Processor
instruction

execution function
(PIEF)

Storage device
time function

(SDTF)

Main memory
time function

(MMTF)

Main memory
time service

(MMTS)

Storage device
time service

(SDTS)

Processor
instruction

execution service
(PIES)

X E

X E

E

X

E

X

X

E

X

E

X E

X E

X E

X E

E

X

E

X

X

E

X

E

W

R

W

R

W

R

Response time
service (RTS)

Settling time
service (STS)

Tracking error
for command

profiles service
(TECPS)

Response time
function (RTF)

Settling time
function (STF)

Tracking error
for command

profiles function
(TECPF)

X E

X E

X E

X E

X E

X E

E

X

E

X

X

E

X

E

E

X

E

X

X

E

X

E

P
E
R
S
I
S
T
E
N
T

S
T
O
R
A
G
E

W

R

W

R

W

R

Concurrency
function (CF)

System
scalability

function (SSF)

Accuracy
errors

function
(AEF)

Stability
errors function

(SEF)

Concurrency
service (CS)

System
scalability

service (SSS)

Accuracy
errors service

(AES)
 X E

X E

Stability
errors service

(SES)

E

X

E

X

X

E

X

E

X E

X E

X E

X E

X E

X E

E

X

E

X

X

E

X

E

E

X

E

X

X

E

X

E

P
E
R
S
I
S
T
E
N
T

S
T
O
R
A
G
E

W

R

W

R

W

R

W

R

Bandwidth
service (BS)

Workload
service (WS)

Bandwidth
function (BF)

Workload
function (WF)

X E

X E

X E

X E

E

X

E

X

X

E

X

E

W

R

W

R

I

N
T
E
R
M
E
D
I
A
R
Y

S
E
R
V
I
C
E
S

191

7.9 Security system requirements

This section maps the security terminologies found throughout the ECSS, IEEE, and ISO

standards from chapter 3 into a standard-based model of software-FUR for system security-

NFR using an SOA through the use of the generic model of FUR proposed in the COSMIC

model.

7.9.1 Mapping views and concepts for security from ECSS, ISO, and IEEE standards

Based on a synthesis of the various definitions, the key views and concepts presented in

chapter 3 on software-FUR for system security-NFR are presented in Table 7.17.

Table 7.17 Security requirements in ECSS, ISO, and IEEE

ID System security requirements
1 Confidentiality
2 Availability
3 Integrity
4 Access control role
5 Security login
6 Authentication
7 Redundant power and network
8 Redundant data
9 Automatic restart
10 Firewall
11 Antivirus
12 External PKI
13 Backup type
14 Encryption and decryption

7.9.2 Software system security functions to be specified

The functionality and corresponding entities to be specified (and measured) for system

security allocated to software are listed in Table 7.18.

192

Table 7.18 System security functions that may be allocated to software

ID
System security

types
System security functions Activity (examples)

1

Confidentiality

• Access control role function
• Per person
• Per group

• Security login function

• User name &
password

• Password change
• Smart card
• Single sign on
• Automatic login

• Authentication function

• Per person
• Per group
• Per entity
• Per system
• Smart card
• Biometrics

2 Availability

• Redundant power and network
function • Available 24 H/ 7

Days • Redundant data function
• Automatic restart function

3 Integrity

• Firewall function
• Attack detection
• Hot and cold backup
• Encryption and

decryption
Algorithm

• Antivirus function
• External PKI function
• Backup type function
• Encryption and decryption

function

7.9.3 Identification of the function types in the security

In this section, the system security function types are identified based on the findings on the

security functions, as discussed in the previous section. The system security requirements

allocated to software-FUR are divided into three types of requirements: confidentiality,

availability and integrity. Each type in this division has its own functionality. The proposed

security functional types are illustrated in system and COSMIC modeling views, in order to

propose a standard-based model of software-FUR for system security-NFR using an SOA-

see Table 7.19.

193

Table 7.19 Function types for security functions that may be allocated to software

ID
System security functional

types
System security functions

1
Function type 1

System Confidentiality
(SC)

• Access control role function (ACRF)
• Security login function (SLF)
• Authentication function (AF)

2
Function type 2

System Availability
(SA)

• Redundant power and network function (RPNF)
• Redundant data function (RDF)
• Automatic restart function (ARF)

3

Function type 3

Security Integrity
(SI)

• Firewall function (FF)
• Antivirus function (AF)
• External PKI function (EPKIF)
• Backup type function (BTF)
• Encryption and decryption function (EDF)

7.9.4 A standard-based model of software-FUR for system security-NFR using an SOA

Figure 7.12, illustrates a standard-based model of software-FUR for system security-NFR

using an SOA. This model is built based on the security system requirements, functions and

function types and the role of the COSMIC-SOA explained in (COSMIC 2010).

194

Figure 7.12 A standard-based model of software-FUR for system security-NFR

 Using an SOA

Function Type 3: Integrity

 Function Type 2: Availability Function Type 1: Confidentiality

P
E
R
S
I
S
T
E
N
T

S
T
O
R
A
G
E

Access
control role

function
(ACRF)

Security login
function
(SLF)

Authentication
function

(AF)

Access
control role

service
(ACRS)

Security
login service

(SLS)

Authenticati
on service

(AS)

E
X

E
X

X
E

X
E

E
X

E
X

X
E

X
E

X E

X E

X E

X E

X E

X E

W

R

W

R

W

R

P
E
R
S
I
S
T
E
N
T

S
T
O
R
A
G
E

Redundant power
and network

function (RPNF)

Redundant data
function (RDF)

Automatic restart
function (ARF)

Redundant
power and

network service
(RPNS)

Redundant data
service (RDS)

Automatic
restart service

(ARS)

X E

X E

X E

X E

X E

X E

E
X

E
X

X
E

X
E

E
X

E
X

X
E

X
E

W

R

W

R

W

R

Persistent Persistent
Storage Storage

Firewall
service

(FS)

Antivirus
service
(AS)

External
PKI

service
(EPKIS)

Backup
type

service
(BTS)

Encryption
and

decryption
service
(EDS)

Firewall
function

(FF)

Antivirus
function

(AF)

External
PKI

function
(EPKIF)

Backup
type

function
(BTF)

Encryption
and

decryption
function
(EDF)

X
E

X
E

X
E

X
E

X
E

X
E

X
E

X
E

X
E

X
E

X E X E

E X E X

X E X E

 E XE X

X E X E

E XE X

X E X E

E X E X

W

R

W

R

W

R

W

R

W

R

I
N
T
E
R
M
E
D
I
A
R
Y

195

7.10 Safety system requirements

This section maps the safety terminologies found throughout the ECSS, IEEE, and ISO

standards from chapter 3 into a proposed standard-based model of software-FUR for system

safety-NFR using SOA through the use of the generic model of FUR proposed in the

COSMIC model. This model can then become a framework for describing the safety

requirements (i.e., from system-NFR to software-FUR) based on the ECSS standards.

7.10.1 Mapping views and concepts for safety from ECSS, ISO, and IEEE standards

Based on a synthesis of the various definitions, the key views and concepts presented in

chapter 3 on software-FUR for system safety-NFR are presented in Table 7.20. It is

important to note that Table 7.20 includes software, data, and hardware components which

are interconnected.

Table 7.20 Safety requirements in ECSS, ISO, and IEEE

ID System safety requirements
1 Software operation risk
2 Software design risk
3 Software configuration risk
4 System loss operation
5 System failure detection
6 System failure isolation
7 System safety audit
8 System redundancy status

7.10.2 Software system safety functions to be specified

The functions and corresponding entities to be specified and measured for system safety

allocated to software are listed in Table 7.21.

196

Table 7.21 System safety functions that may be allocated to software

ID System safety types System safety functions

1

Control system hazards

• Software operation risk function
• Software design risk function
• Software configuration risk function
• System loss operation function
• System failure detection function
• System failure isolation function

2 Critical system catastrophic • System safety audit function
• System redundancy status function

7.10.3 Identification of the function types in the software safety systems requirements

In this section, the system safety function types are identified based on the findings of the

safety functions. The system safety requirements allocated to software-FUR are divided into

system safety risk and mechanism and safety switching of redundant information. Each type

in this division has its own functionality. The proposed safety function types are illustrated in

system and COSMIC modeling views, in order to propose a standard-based model of

software-FUR for system safety-NFR using an SOA.

The proposed safety functions can be divided into three function types, two of them specified

for control system hazards and the third for critical system catastrophic. Table 7.22 illustrates

these safety function types, based on the specified safety functions.

Table 7.22 Function types for safety functions that may be allocated to software

System safety

types
System safety
function types

System safety functions

Control system
hazards

Function type 1
System safety risk

(SSR)

• Software operation risk function (SROF)
• Software design risk function (SDRF)
• Software configuration risk function (SCRF)

Function type 2
System safety

mechanism (SSM)

• System loss operation function (SLOF)
• System failure detection function (SFDF)
• System failure isolation function (SFIF)

Critical system
catastrophic

Function type 3
Safety switching of

redundant information
(SSRI)

• System safety audit function (SSAF)
• System redundancy status function (SRSF)

197

7.10.4 A standard-based model of software-FUR for system safety-NFR using an SOA

Figure 7.13 illustrates a standard-based model of software-FUR for system safety-NFR using

an SOA. This model is built based on the proposed safety functions and function types and

the role of the COSMIC-SOA explained in (COSMIC 2010) .

Figure 7.13 A standard-based model of software-FUR for system safety-NFR using an SOA

Function Type 3:
Safety switching of Redundant
 Information (SSRI)

Function Type 2:
System Safety Mechanism (SSM)

Function Type 1: System Safety Risk (SSR)

Persistent Storage Persistent Storage

Software operation
risk Service (SROS)

Software design risk
service (SDRS)

Software
configuration risk
service (SCRS)

System loss operation
service (SLOS)

System failure
detection service

(SFDS)

System failure
isolation service (SFIS)

System safety
audit function

(SSAF)

System redundancy
status function

(SRSF)

Software operation risk
function (SROF)

Software design risk
function (SDRF)

Software configuration
risk function (SCRF)

X E X E

X E X E

X E X E

X EX E

X
E

X
E

X
E

X
E

X
E

X
E

System loss operation
function (SLOF)

System failure detection
function (SFDF)

System failure isolation
function (SFIF)

X
E

X
E

X
E

X
E

X
E

X
E

System
safety audit
function
(SSAF)

System
redundancy

status function
(SRSF)

X E X E

X EX E

X E X E

X E X E

X E X E

X EX E

W

R

W

R

W

R

W

R

Persistent Storage

W

R

X E

X E

X E

X E

W

R

C
O
N
T
R
O
L

S
Y
S
T
E
M
H
A
Z
A
R
D
S

CRITICAL SYSTEM CATASTROPHIC

198

7.11 Resources system requirements

This section maps the resources terminologies found throughout the ECSS, IEEE, and ISO

standards from chapter 3 into a standard-based model of software-FUR for system resources-

NFR using an SOA, through the use of the generic model of FUR proposed in the COSMIC

model. This model can then become a framework for describing the resources requirements

(i.e., from system-NFR to software-FUR) based on the standards.

7.11.1 Mapping views and concepts for resources from ECSS, ISO, and IEEE standards

Based on a synthesis of the various definitions, the key views and concepts presented in

chapter 3 on software-FUR for system resources-NFR are presented in Table 7.23.

Table 7.23 Resources requirements in ECSS, ISO, and IEEE

ID System resources requirements
1 I/O recourse addresses
2 Hardware recourses
3 Software resources
4 I/O port addresses
5 I/O recourse list
6 I/O recourse addresses
7 I/O transmission addresses
8 Block of bus relative memory addresses
9 Processor capacity for software item
10 Memory capacity for software item
11 Storage device capacity for software item
12 Interrupt vectors
13 Software elements
14 Specific real time operating system

7.11.2 Software system resources functions to be specified

The functionality and corresponding entities to be specified and measured for system

resources allocated to software are listed in Table 7.24.

199

Table 7.24 System resources functions that may be allocated to software

ID System resources types System resources functions

1
I/O recourse addresses

• I/O port addresses function
• I/O recourse list function
• I/O recourse addresses function
• I/O transmission addresses function
• Block of bus relative memory addresses function

2 Hardware recourses

• Processor capacity for software item function
• Memory capacity for software item function
• Storage device capacity for software item function
• Interrupt vectors function

3 Software recourse
• Software elements function
• Specific real time operating system function

7.11.3 Identification of the function types in the resources systems requirements

In this section, the system resources function types are identified based on the findings of the

resources functions, as discussed in the previous section. The system resources requirements

allocated to software-FUR are divided into three types of requirements: I/O recourse

addresses, hardware addresses and software addresses. Each type in this division has its own

functionality. The proposed resources function types are illustrated in system and COSMIC

modeling views, in order to propose a standard-based model of software-FUR for system

resources-NFR using an SOA- see Table 7.25.

Table 7.25 Function types for the resources functions that may be allocated to software

ID
System

resources
types

System resources
function types

System resources functions

1

I/O
resource
addresses

Function type 1
System I/O
resources

(SIOR)

• I/O port addresses function (IOPAF)
• I/O recourse list function (IORLF)
• I/O recourse addresses function (IORAF)
• I/O transmission addresses function

(IOTAF)
• Block of bus relative memory addresses

function (BBRMAF)

200

Table 7.25 Function types for the resources functions that may be allocated to software
(Continued)

ID
System

resources
types

System resources
function types

System resources functions

2
Hardware

recourses

Function type 2
Hardware resources

(HR)

• Processor capacity for software item
function (PCSIF)

• Memory capacity for software item function
(MCSIF)

• Storage device capacity for software item
function (SDCSIF)

• Interrupt vectors function (IVF)

3
Software

recourse

Function type 3
Software resources

(SR)

• Software elements function (SEF)
• Specific real time operating system function

(STOSF)

7.11.4 A standard-based model of software-FUR for system resources-NFR using an
SOA

Figure 7.14 illustrates a standard-based model of software-FUR for system resources-NFR

using an SOA. This model is built based on the resources requirements, functions and

function types and the role of the COSMIC-SOA explained in (COSMIC 2010).

201

Figure 7.14 A standard-based model of software-FUR for system resources-NFR using SOA

Function Type 3:
Software Recourses

Function Type 2:
Hardware Recourses

Function Type 1:
I/O Recourse Addresses

P
E
R
S
I
S
T
E
N
T

S
T
O
R
A
G
E

Processor capacity
for software item
function (PCSIF)

Interrupt vectors
service (IVS)

Storage device
capacity for

software item
service (SDCSIS)

Processor capacity
for software item
service (PCSIS) X E

X E

Memory capacity
for software item
service (MCSIS)

E
X

E
X

X
E

X
E

Interrupt vectors
function (IVF)

Storage device
capacity for

software item
function (SDCSIF)

Memory capacity
for software item
function (MCSIF)

X E

X E

E

X

E

X

X

E

X

E

X E

X E

E
X

E
X

X
E

X
E

X E

X E

W

R

W

R

W

R

W

R

P
E
R
S
I
S
T
E
N
T

S
T
O
R
A
G
E

I/O port addresses
function (IOPAF)

Block of bus

relative memory
addresses service

(BBRMAS)

I/O port addresses
service (IOPAS)

I/O recourse list
service (IORLS)

I/O transmission
addresses service

(IOTAS)

I/O recourse
addresses service

(IORAS)

X E

X E

Block of bus
relative memory

addresses
function

(BBRMAF)

I/O recourse list
function (IORLF)

I/O transmission
addresses function

(IOTAF)

I/O recourse
addresses function

(IORAF)

E
X

E
X

X
E

X
E

E
X

E
X

X
E

X
E

E
X

E
X

X
E

X
E

E
X

E
X

X
E

X
E

X E

X E

X E

X E

X E

X E

X E

X E

W

R

W

R

W

R

W

R

W

R

Specific real time
operating system
function (STOSF)

Specific real time
operating system
function (STOSF)

X
E

X
E

Software
elements

function (SEF)

Software
elements

function (SEF)

X
E

X
E

X E X E

E XE X

PERSISTENT
STORAGE

W

R

W

R

I
N
T
E
R
M
E
D
I
A
R
Y

S
E
R
V
I
C
E
S

202

7.12 Human factors system requirements

This section maps the human factors terminologies found throughout the ECSS standards

from chapter 3 into a proposed standard-based model of software-FUR for human factors-

NFR using an SOA, through the use of the generic model of FUR proposed in the COSMIC

model.

7.12.1 Software system human factors functions to be specified

The functionality and corresponding entities to be specified (and measured) for human

factors allocated to software are listed in Table 7.26.

Table 7. 26 Human factors functions that may be allocated to software

ID Human factors types System human factors functions

1

Cognitive ergonomics

(performance of human
factors)

• Human capabilities
• Training
• Staffing
• Personal selection

2
Environmental of ergonomics

(Safety of human factors)

• Mechanical safety
• Electrical safety
• Operational safety
• Psychology and physiological safety
• Environmental safety

3 Human interface factors

• Interface characteristics and task
performance

• Interface customization
• Identification of safety related controls

7.12.2 Identification of the function types in the human factors

In this section, the system human factors function types are identified based on the findings

of the human factors functions, as discussed in the previous section. Human factors

requirements allocated to software-FUR are divided into three types of requirements:

cognitive ergonomics, environmental of ergonomics and human factor interface

203

requirements. Each type in this division has its own functionality. The proposed human

factors function types are illustrated in COSMIC modeling views, in order to propose a

standard-based model of software-FUR for human factors-NFR using an SOA- see Table

7.27.

Table 7. 27 Function types for human factors functions that may be allocated to software

ID
System human
factors types

System human
factors function

types
System human factors functions

1

Cognitive
ergonomics

(performance of
human factors)

Function type 1
Cognitive

ergonomics
(CE)

• Human capabilities function (HCF)
• Training function (TF)
• Staffing function (SF)
• Personal selection function (PSF)

2

Environmental
ergonomics
(Safety of

human factors)

Function type 2
Environmental

ergonomics
(EE)

• Mechanical safety function (MSF)
• Electrical safety function (ESF)
• Operational safety function (OSF)
• Psychology and physiological safety

function (PSF)
• Environmental safety function (ESF)

3
Human interface

factors

Function type 3
Human interface

factors
(HIF)

• Interface characteristics and task

performance function (ICTPF)
• Interface customization function (ICF)
• Identification of safety related

controls function (ISRCF)

7.12.3 A standard-based model of software-FUR for human factors-NFR using an SOA

Figure 7.15 illustrates a standard-based model of software-FUR for human factors-NFR

using an SOA. This model is built based on the human factors requirements, functions and

function types and the role of the COSMIC-SOA explained in (COSMIC 2010) .

204

Figure 7.15 A standard-based model of software-FUR for human factors-NFR using SOA

Function Type 3

Human Interface Factors (HIF)

Function Type 2
Environmental Ergonomics (EE)

Function Type 1
Cognitive Ergonomics (CE)

Interface
characteristics and
task performance
service (ICTPS)

Interface
customization
service (ICS)

Identification of
safety related

controls service
(ISRCS)

Interface
characteristics and
task performance
function (ICTPF)

Interface
customization
function (ICF)

Identification of
safety related

controls function
(ISRCF)

X E X E

E XE X

X E X E

E XE X

X

E

E

X

X

E

E

X

X

E

E

X

P
E
R
S
I
S
T
E
N
T

S
T
O
R
A
G
E

Mechanical safety
function (MSF)

Electrical safety
function (ESF)

Operational safety
function (OSF)

Psychology and
physiological

safety function
(PSF)

Environmental
safety function

(ESF)

Mechanical safety
service (MSS)

Electrical safety
service (ESS)

Operational safety
service (OSS)

Psychology and
physiological
safety service

(PSS)

Environmental
safety service

(ESS)

X E

E X

E
X

E
X

X
E

X
E

E
X

E
X

X
E

X
E

E
X

E
X

X
E

X
E

E
X

E
X

X
E

X
E

X E

E X

X E

E X

X E

E X

X E

E X

W

R

W

R

W

R

W

R

W

R

P
E
R
S
I
S
T
E
N
T

S
T
O
R
A
G
E

Human
capabilities

function (HCF)

Training
function (TF)

Staffing
function (SF)

Personal selection
function (PSF)

Personal selection
service (PSS)

Human
capabilities

service (HCS)

Training
service (TS)

Staffing service
(SS)

X E

E X

E
X

E
X

X
E

X
E

E
X

E
X

X
E

X
E

E
X

E
X

X
E

X
E

X E

E X

X E

E X

X E

E X

W

R

W

R

W

R

W

R

I
N
T
E
R
M
E
D
I
A
R
Y

S
E
R
V
I
C
E
S

205

7.13 Summary

This chapter has presented the standard-based models of eleven (11) types of system-NFR.

The availability of these models can facilitate the early identification and specification of

these system-NFR and their detailed allocation as specific functions to be handled by the

specified allocation to hardware or software, or a specific combination of the two.

The main contribution of this chapter is our proposed eleven (11) standard-based models of

software-FUR for the eleven (11) types of system-NFR. These models can be considered as a

kind of reference models for the identification of these system-NFR, and can be used for their

allocation to software functions implementing such requirements.

The structure of the standard-based models is based on the generic model of software

adopted by the COSMIC measurement standard; the necessary information for measuring

their functional size is readily available. More specifically, the standard-based models of

system-NFR presented in this chapter are based on:

• The ECSS standards for the description of the NFR for system;

• The COSMIC measurement model of functional requirements.

CHAPTER 8
A CASE STUDY USING THE STANDARD-BASED MODEL OF SOFTWARE-FUR

FOR SYSTEM RELIABILITY-NFR

8.1 Introduction

This chapter uses the Valve Control System (VCS) (COSMIC 2006) as a case study to

illustrate the use of the standard-based model of software-FUR for system reliability-NFR.

The selected case study aims at the identification and classification, then measurement, of the

software-FUR for system reliability-NFR.

This chapter is organized as follows: Section 8.2 presents the description of the VCS case

study. Section 8.3 presents the specification of the reliability requirements at the system

level. Section 8.4 presents the allocation of these system reliability-FUR to software

functions to be added to the VCS. Section 8.5 presents the specification of the ECSS-based

reliability functions allocated to software-FUR for the VCS components. Section 8.6 presents

the measurement of the system reliability-NFR for the VCS case study. A summary is

presented in section 8.7.

8.2 The Valve Control System (VCS) Case Study

The VCS case study (COSMIC 2006) is a technology of variable valve timing used by

automotive companies: the system varies the timing of the intake valves by using the

hydraulic oil pressure to rotate the camshaft to provide optimal air flow in and out of the

engine. The valve control system is a closed loop using camshaft sensors, crankshaft sensors,

air flow meter, throttle position as well as oxygen sensors, and air fuel sensors to calculate

the engine load.

Automative companies develop real-time software with timing constraints to operate control

valves that adjust the delivery of the hydraulic pressure to move the camshaft into the

207

position that will provide the engine with high timing reliability by using a multi-purposes

logical clock for the operating cycle reference triggers.

The system functional requirements of the VCS case study are documented at a high-level in

the ISO technical report: ISO/IEC TR 14143-4 (Version 2000). This ISO document provides

various sets of reference user requirements (RUR), described in a textual formal.

A specific configuration of the VCS system functions allocated to hardware and software is

documented as a case study and has been published by the COSMIC group, together with the

measurement of the functional size of its software-FUR (COSMIC 2006). The VCS software

requirements block diagram is reproduced in Figure 8.1: the software-FUR are specified and

measured (with a software functional size of 12 CFP), while the system-NFR are neither

specified nor measured.

Figure 8.1 VCS blocks diagram with its hardware and software components
(COSMIC 2006)

The use of standard-based model of software-FUR for system reliability-NFR can be

illustrated with this VCS case study through the following steps:

1. Step 1: Specify some reliability functionality requirements at the (high) system level of

the VCS components, using the proposed standard-based system reliability model as the

reference for this type of specifications;

208

2. Step 2: Allocate these system reliability-FUR to software functions to be added to the

VCS case study;

3. Step 3: Use the proposed ECSS-based reliability functions to specify, at the detailed

level, these new software functions to be added to the VCS hardware and software

components;

4. Step 4: Measurement of the software-FUR for the system reliability-NFR for this updated

COSMIC VCS case study (COSMIC 2006).

8.3 Step 1: Addition of reliability requirements at the system level

In practice, stakeholders raise reliability requirements (R1 to R10) at the system level, such as

those listed in the left-hand column of Table 8.1. To these reliability requirements correspond

reliability functions (F1 to F11), which are described as such in the ECSS standards (right-

hand column of Table 8.1).

Table 8.1 Alignment of system reliability requirements with the standard-based
views of reliability-FUR

Stakeholder Reliability Requirements
Corresponding

ECSS Standards Reliability Functions
R1 Reliability MTBF requirements F1 Failure system tolerance function
R2 Reliability data error requirements F2 Error data tolerance function
R3 Reliability fault recovery requirements F3 Fault recovery tolerance function
R4 Reliability failure operation requirements F4 Failure operation function.
R5 Reliability failure mechanism requirements F5 Failure mechanism function
R6 Reliability fault prevention requirements F6 Fault prevention function

R7
Reliability fault detection and isolation
requirements

F7 Fault detection function

R8
Reliability fault removal during the
development requirements

F8 Fault removal function

R9
Reliability fault removal during use
requirements

F8 Fault removal function.

R10
Reliability algorithm model with a set of
satisfaction conditions or parameters
requirements

F9
F10
F11

• Error to handle input function.
• Error to produce output

function.
• Error to produce correct output

function

209

8.4 Step 2: Allocate system reliability-FUR to software functions to be added to VCS

To meet these added system reliability-NFR requirements, all the corresponding reliability

functions are allocated to new software functions to be added to the VCS components (both

hardware and hardware). Table 8.2 presents the selected mapping to the VCS components of

these added standard-based system reliability functions (Table 8.2), as follows;

1. Valve control software:

• The reliability requirements R1, R2, and R3 are allocated to the valve control

software: therefore, R2 and R3 are mapped with F1, F2, and F3 respectively – see

Figure 8.2 and Table 8.2. This means that the valve control software should be failure

tolerant, have high fault recovery and minimum error tolerance.

2. Sensors

• The reliability requirements R4 and R5 are allocated to the sensors: therefore, R4 and

R5 are mapped with F4 and F5 respectively – see Figure 8.2 and Table 8.2. This

means that the different types of sensors should include a software component

implementing failure operation and failure mechanism functions.

3. Control valve

• The reliability requirements R6, R7, R8, and R9 are allocated to the control valve.

Therefore, R6, R7, R8, and R9 are mapped with F6, F7, and F8 respectively – see

Figure 8.2 and Table 8.2. This means that the control valve used in the system should

now have some software to implement the fault detection and removal functions for

the signals received from the valve control software.

4. Clock

• The reliability requirement R10 is allocated to the clock. Therefore, R10 is mapped

with F9, F10, and F11 respectively – see Figure 8.2 and Table 8.2. This means that

the clock should now have added software functions to handle errors when it sends a

reference time to other components in the system.

210

The allocation of the 10 new VCS reliability requirements (R1 to R10), and corresponding

ECSS-based functions (F1 to F11) to the hardware and software components, is summarized

in Table 8.2.

Figure 8.2 A standard-based model of FUR for system reliability-NFR
(Function level)

R9F2

F1

F3

F4

F5

F6

F7

F8

F9

F10

F11

R2

R1

R3

R4

R5

R6

R7

R8

R10

R10

R10

211

Table 8.2 Allocation of Reliability-FUR to the VCS Components

ID
Standard-based of Reliability-

FUR
F R VCS Components

1 Failure system tolerance function F1 R1 Valve control software
2 Error data tolerance function F2 R2 Valve control software
3 Fault recovery tolerance function F3 R3 Valve control software
4 Failure operation function. F4 R4 Sensors
5 Failure mechanism function F5 R5 Sensors
6 Fault prevention function F6 R6 Control Valve
7 Fault detection function F7 R7 Control Valve
8 Fault removal function F8 R8 Control Valve
9 Fault removal function F8 R9 Control Valve
12 Error to handle input function F9 R10 Clock
10 Error to produce output function F10 R10 Clock

11
Error to produce correct output

function
F11 R10

Clock

With the above set of additional reliability system-NFR, a number of software functions must

be specified and added to the original VCS case study, as well as to the hardware components

that did not initially have any software functions allocated to them (e.g., the clock device, the

sensor devices, and the control valve, which was only receiving a signal from the ‘valve

control software’).

8.5 Step 3: The requirements of the ECSS-based reliability functions allocated to
software for the VCS components

For the purpose of this case study for this research work, the following more detailed

requirements based on the proposed standard-based model of software-FUR for system

reliability-NFR have been selected – see Figure 8.3:

• S1. All software components with their links to the components in the VCS should be

defined based on system reliability prediction (SRP), i.e., F1, F2 and F3 (Derived

Functions);

• S2. The sensors, control valve and clock components with their links allocated to

software in the VCS should be defined based on system reliability prediction failures

212

(SRPF), system reliability prediction faults (SRPF1) and system reliability prediction

Errors (SRPE), i.e., F4 to F11 (Base Functions).

8.6 Step 4: Measurement of the software-FUR for the system reliability-NFR

8.6.1 Measurement strategy phase

The measurement viewpoint in this case study is that of the software developer who is

interested in quantifying the system reliability-NFR that have been added as new software

functions that have to be developed. The measurement purpose is to measure the entire set of

the functional user requirements (FUR) of the system reliability-NFR allocated to software

for this case study using the COSMIC method (ISO 19761). The measurement scope is a

subset of the system reliability-NFR requirements that is, only functions allocated to software

and not those related to the hardware.

8.6.2 COSMIC mapping phase

When these reliability requirements are specified using the structure of the proposed

standard-based model of software-FUR for the system reliability-NFR, it is already aligned

with COSMIC model of functional user requirements and the necessary information for

measuring their functional size is readily available.

To use Figure 8.3 to measure the functional size of the valve control software based on the

proposed System-reliability-NFR, the operationalization sub-steps are:

• Reliability functions numbers are defined from: F1 to F11;

• Reliability function types for system reliability-NFR are defined from function types 1 to

4;

• Same persistent storage between system reliability functions.

213

8.6.3 COSMIC measurement phase

For the illustrative purpose of this case study, the following assumption is taken: there is a

single data group for each reliability function specified (of course, for a reliability function

specified in an industrial context, more than one data group may be needed). The total

functional size according to the ISO 19761 for all the new reliability software functions

added in this updated VCS is obtained with the addition of all data movements for each

distinct reliability function– see Figure 8.2 and Table 8.3.

Table 8.3 The measurement details for the system reliability requirements allocated to
software functions

ID
Standard-based Software-FUR for

reliability functions
F

Data Movements identified

E X R W
Size in
CFP

1 Failure system tolerance function F1 1 1 - - 2
2 Error data tolerance function F2 1 1 - - 2
3 Fault recovery tolerance function F3 1 1 - - 2
4 Failure operation function. F4 1 1 1 1 4
5 Failure mechanism function F5 1 1 1 1 4
6 Fault prevention function F6 1 1 1 1 4
8 Fault detection function F7 1 1 1 1 4
9 Fault removal function F8

2 2 2 2 8
10 Fault removal function F8
7 Error to handle input function F9 1 1 1 1 4

11 Error to produce output function
F1
0

1 1 1 1 4

12 Error to produce correct output function
F1
1

1 1 1 1 4

Functional Size 12 12 9 9 42 CFP

The bottom line of Table 14 presents the measurement results for the system reliability

functions allocated to the new software functions for the updated VCS case study: 42 CFP.

Observations:

• The software functional size for the initial VCS case study was equal to 12 CFP.

214

• The software functional size for the added software functions required to meet the system

reliability requirements is equal to 42 CFP.

• Therefore, the total software functional size of this new version of the VCS case study

(including the added reliability requirements for the specified hardware-software

configuration) is equal to 12 CFP + 42 CFP = 54 CFP.

8.7 Summary

This chapter has presented a new version of the Valve Control System case study to illustrate

the use of the proposed standard-based model of software-FUR for system-reliability

requirements. This new version of this selected case study allows the identification and

specification, as well as the measurement of the software functional size, of the system

reliability-NFR allocated to new software functions.

This chapter has also presented the specification of the ECSS-based reliability allocated to

software-FUR for the VCS components:

• S1. All software components with their links of defined components in the VCS were

specified based on system reliability prediction (SRP), i.e., F1, F2 and F3;

• S2. The sensors, control valve and clock, components with their links allocated to

software in the VCS were specified based on system reliability prediction failures

(SRPF), system reliability prediction faults (SRPF1) and system reliability prediction

Errors (SRPE), i.e., F4 to F11.

The system reliability-NFR for the VCS case study based on the specification of the ECSS-

based reliability functions allocated to software-FUR for the VCS were specified and

allocated to software and their size measured as follows:

• The functional size for S1 (software view) = 6 CFP of software functions added to the

valve control software;

• The functional size for S2 (system view) = 36 CFP of software functions added to the

other VCS hardware components.

CHAPTER 9
TRACEABILITY MODEL AND OPERATION PROCEDURES

9.1 Introduction

Requirements traceability links each single detailed requirement to its higher level of

requirements inside the requirements set. This enables the derivation of a requirement tree

which demonstrates the coherent flow-down of the requirements. For example: the ECSS

standards series defines a requirement traceability matrix for the system engineering.

Unfortunately, the ECSS matrix does not explicitly differentiate between system functional

requirements and system-NFR.

This chapter presents a requirement traceability matrix that is considered as part of the design

definition file as defined in ECSS‐E‐ST‐10C Annex G (ECSS-E-ST-10C 2009): it includes

the basic structure to perform the system functional requirements traceability and a modified

traceability matrix for the system-NFR.

This chapter is organized as follows: Section 9.2 presents the ECSS requirement traceability

matrix. Section 9.3 presents a proposed modified traceability matrix. Section 9.4 presents the

traceability to ECSS standards of our proposed standard-based models for system-NFR.

Section 9.5 presents the traceability to ECSS standards of the proposed standard-based

system reliability-NFR. A summary is presented in section 9.6.

9.2 System Requirement Traceability Matrix (RTM) in ECSS standards

Currently, the ECSS standards series defines the requirement traceability matrix (RTM) as

part of a system design definition file (DDF): the design definition file is a basic structure

referring to all information relative to the functional and physical architectures of a system

(i.e., information, necessary for its identification, manufacturing, utilization, support and

removal from service).

216

The objective of the system design definition file (DDF) is to establish the technical

definition of a system that complies with its technical requirements specification as defined

in ECSS‐E‐ST‐10‐06 Annex A (ECSS-E-ST-10-06C 2009).

More specifically, the DDF is a collection of all the documentation that establishes the

system such as: lower level technical specifications, design and interface description,

drawings, electrical schematics, specified constraints (e.g. on materials, manufacturing,

processes, and logistic) (ECSS-E-ST-10-06C 2009). The requirements traceability matrix

(RTM) in the ECSS defines the relationships between the requirements of a system defined

by a technical requirements specification and the apportioned requirements of the system’s

lower level elements.

The purpose of the RTM (ECSS-E-ST-10-06C 2009) and (ECSS-E-ST-10C 2009) is as

follows:

• To state and derive requirements allocated to system components (forward trace);

• To determine the source of requirements (backward trace);

• To trace any information that satisfies the requirements;

• To ensure that all requirements are met and to locate affected system components when

there is a requirements change.

The requirement traceability matrix (RTM) for software system in the ECSS standards

(ECSS-E-ST-10C 2009) and (ECSS-E-ST-10-06C 2009) – see Figure 9.1 – includes the

following steps:

• RTM uses a forward and backward traceability for system requirement sources:

− High level system requirements (forward tracing);

− Low level system requirements or detailed system requirements (backward tracing);

− High level system requirements imposed management constraints: e.g. an applicable

standard, an accepted lower level system constraint;

− Each high level system requirement shall be linked to at least one requirement of a

low level system requirement;

217

− When a low level system requirement is not linked to a high level system

requirement, this requirement shall be justified and an evaluation of its existence or

removal on the system shall be agreed between the customer and the supplier.

• RTM changes in the design inducing modifications of the system requirements;

RTM documented system requirements verification close-out in the ‘Verification Control

Document’ (VCD) in conformance with ECSS‐E‐ST‐10‐02 Annex B (ECSS-E-ST-10-02C

2009).

Figure 9.1 The requirement traceability matrix (RTM) in ECSS standards and cycle life

The requirements traceability matrix (RTM) using a forward trace approach for software

systems in the ECSS standards (ECSS-E-ST-10-06C 2009), (ECSS-E-ST-10C 2009) and

(ECSS-E-ST-10-02C 2009) – see Figure 9.1 – includes the following steps:

Output Impact
Report

System Requirements
Sources

High Level System
Requirements

Low Level System
Requirements

System Requirements Design
and Modification

System Requirements
Verification

Forward
 Trace

Backward
 Trace

ECSS Life Cycle Phases

HW and SW System
Specification

HW and SW Requirements
Engineering and Architectural

Design

HW Detailed
Design

SW Design
Engineering

HW Production,
SW Integration and Verification

218

• Identify the system requirements sources, starting from current practices, projects’ life

cycle and phases;

• Derive a set of requirements covering the engineering, quality and management domains;

• Adapt the identified life cycle and phases to ECSS life cycles and map the identified

engineering, quality and management requirements to the corresponding ECSS

requirements (compliance/traceability);

• Integrate, with additional ECSS requirements, where necessary, the areas not adequately

covered;

• The ECSS contains the compliant life cycle and requirements according to different

projects characteristics, e.g. criticality, funding, technology, cost, organization, etc.

In addition, the requirement traceability matrix (RTM) using a backward trace approach for

software systems in the ECSS standards (ECSS-E-ST-10-06C 2009), (ECSS-E-ST-10C

2009) and (ECSS-E-ST-10-02C 2009) – see Figure 9.1 – includes the following steps:

• Identify the ECSS hardware, software and system life cycle, phases and reviews;

• Examine all ECSS levels of the engineering, quality and management requirements and

select the set of requirements possibly of interest for a selected project;

• The selected ECSS requirements initially tailored according to different projects

characteristics, e.g. criticality, funding, technology, cost, organization, etc.

9.3 System functional & NFR traceability matrix

As mentioned in the previous section, the ECSS standards series have defined the

requirements traceability matrix (RTM) as part of a system design definition file without

direct links of the defined requirements (FUR) to their NFR.

This research study proposes a modified RTM as illustrated in Figure 9.2, using the same

steps as in the original one in the ECSS standards. The proposed modifications are as

follows:

219

• RTM has defined high and low levels of system requirements - see Figure 9.1, while in

the modified RTM such high and low level requirements can be classified as system-FUR

and system-NFR - see Figure 9.2. This part can be adapted with HW and SW

Requirements Engineering and Architectural Design in phase 2 of the ECSS life cycle;

• RTM has defined system requirement design and modification - see Figure 9.1, while in

the modified RTM such system requirements design can be classified as High and Low

levels design for system-FUR and NFR in phase 3 of the ECSS life cycle;

• RTM has defined system requirement verification - see Figure 9.1, while in the modified

RTM such system requirement verification can be specified as system-FUR and NFR

verification in phase 4 of the ECSS life cycle.

Figure 9.2 A modified requirement traceability matrix (M-RTM) in
ECSS standards and cycle life

System
Requirements

System Requirements Design and Modification

System-FUR & NFR
Verification

Foreword
Trace

Backward
 Trace

High Level Design for
System-FUR & NFR

Low Level Design for
System-FUR & NFR

High Level
System-FUR

High Level
System-NFR

Low Level
System-FUR

Low Level
System-NFR

Output Impact Report

1

2

3

4

ECSS Life Cycle Phases

HW and SW System
Specification

HW and SW Requirements
Engineering and

Architectural Design

HW Detailed
Design

SW Design
Engineering

HW Production,
 SW Integration and

Verification

220

9.4 Traceability of standard-based models to system-NFR type

This section presents the traceability to the ECSS, ISO and IEEE standards for the concepts,

terms and vocabularies included in the proposed standard-based models of software-FUR for

the system-NFR listed in the ECSS standards. The summarized results are illustrated in Table

9.1. In summary:

• The number of the terms, concepts and vocabularies from the ECSS standards for the first

fourteen (14) types of NFR requirements from the ECSS list = 153;

• The system quality requirements (requirements type fifteen (15) in the ECSS list) can be

derived from the first fourteen (14) types of system requirements - see Annex III – (while

the sixteenth type in the ECSS list ‘ other requirements’ is not defined);

• The number of the terms, concepts and vocabularies from the ISO standards = 65 (51 of

them from ISO 9126; 9 from ISO 19759; and 4 from other ISO standards);

• The number of the terms, concepts and vocabularies from the IEEE standards = 27 (19 of

them from IEEE-830 and 8 from other IEEE standards);

• The total number of terms, concepts and vocabularies from the ECSS, ISO and IEEE

standards = 245;

• The total number of the system-NFR terms, concepts and vocabularies used to build the

first fourteen models proposed in the research = 120 out of 245;

• The other terms, concepts and vocabularies) not used in the research = 125 out of 245

(Due to overlaps between the terms and concepts, or not belonging to system-NFR or out

of this research scope).

221

Table 9.1 Traceability of the standard-based models

ID NFR Type

Standards Identification
(Terms, Concepts and Vocabularies) Functions

to Specified ECSS
series

ISO
IEEE

 Total

1 System reliability requirements 10 13 - 23 11
2 System maintainability requirements 8 16 - 24 13
3 System interface requirements 10 - 4 14 6

4 System portability requirements 5

7
ISO

24765

2
ISO 2382-1

3

5 22 11

5 System operations requirements 7 - - 7 2

6 System configuration requirements 9
ISO

19759

4
- 13 2

7 System data definitions and database
requirements 20 - - 20 12

8
System adaptation and installation

requirements 10 4 - 14 10

9
System design and implementation

requirements 4
ISO

19759

5
- 9 0

10 System performance requirements 15 - 5 20 12

11
System Security and privacy

requirements 3 4 5 12 10

12 System safety requirements 7 4
IEEE

1220/1228

8
19 8

13 System resources requirements 13 3 - 16 11
14 Human factors requirements 32 - - 32 12
15 System quality Requirements
16 Other requirements

Total # of (Terms, Concepts and Vocabularies) 153 65 27 245 120

9.5 Traceability matrix to ECSS of the standard-based model of software-FUR for
system reliability-NFR

This section presents the traceability matrix to the ECSS standards for the system reliability-

NFR – see Table 9.2 which lists the ECSS standards which discusses reliability aspects,

together with their year of publication, their title as well as the related section number and

page numbers. Such a traceability matrix will be of interest, and of use, to everybody

interested in implementing in practice the standard-based models proposed in this research

222

work. It can be observed that this traceability matrix for the system reliability-NFR presents

the details corresponding to line 1 of Table 9.1.

Table 9.2 Traceability to ECSS for the standard-based model of software-FUR for system

reliability-NFR

ID ECSS standards Year ECSS standards name
Section

No.
Page
No.

1 ECSS-E-40 part 1B 2003 Software-Part 1: Principles and requirements - 33,77

2 ECSS-E-40 part 2B 2005 Software-Part 2: Document requirements
definitions (DRDs)

-
28, 35

3 ECSS-Q-30-08A 2006 Components reliability data sources and their use

-
4.7.2
4.7.2
4.7.4
A.3

6.2.7.9

7,13
22
22
22
28
44

4 ECSS-Q-80B-10 2003

6.3.6.1
6.3.6.1
7.1.7
6.2.3

53
53
56
36

5 ECSS-E-HB-50A Communication guideline 4.5.3.2.
4.7

50, 53
70

6 ECSS-E-ST-20C 2008 Electrical and electronics 6.3.4.2 59

7 ECSS-E-ST-33-01C Mechanisms 4.8.2.9
4.2.2

41
17

8 ECSS-Q-ST-30-02C 2009 Failures mode, effects and critically
analysis(FMEA/FMECA)

-
4.1
A.2

7-8
14-15
39-42

9 ECSS-Q-ST-30-09 2008 Availability analysis

3.2.12
A.4
A.2
A3
A-B

9-10
29
27
28
30

10 ECSS-Q-ST-30C 2009 Dependability

A-E
A-F
6.4.2
7.1

36
38

20-24
26

11 ECSS-E-ST-70-26C 2008 Crimping of high-reliability electrical connection 4 12

12 ECSS-E-ST-70-08C 2009 Manual soldering of high-reliability electrical
connections

A-A
101-104

13 ECSS-E-ST-70-30C 2008
Wire wrapping of high-reliability electrical
connections

4
12

14 ECSS-Q-ST-10-09C 2008 Non conformance control systems

3.2.2 9

15 ECSS-M-ST-60C 2008 Cost and schedule management

- 74

16 ECSS-E-ST-50-14C 2008 Space craft discrete interfaces
4.2.4

4.2.5.2
18
21

17 ECSS-E-ST-50-04C 2008

Space data links-Telecommands
protocols: synchronization and
channel coding

7.5.4

85

223

Table 9.3 Traceability toECSS for the standard-based model of software-FUR for system
reliability-NFR (Continued)

ID ECSS standards Year ECSS standards name
Section

No.
Page
No.

18 ECSS-E-ST-50-01C 2008
Space data links-Telemetry:
synchronization and channel coding

6.1
21

19 ECSS-E-ST-33-11C Explosive systems and device 4.2.2 17

20
ECSS-ST-35-10C

2009
Compatibility testing for liquid
propulsion components, sub systems
and systems

3.2.2
4.1.2

10
13

21 ECSS-ST-40C 2009 Software 5.4.2.1 46

22
ECSS-Q-ST-80C

2009 Software product assurance
5.2.7.2
6.3.2.4

27
52

23
ECSS-Q-ST-30-11C

2008 Derating-EEE components
5.1
5.2
5.3

13-16

9.6 Summary

This chapter has illustrated first the system requirement traceability matrix (RTM) in ECSS

standards with the system life cycle for (HW and SW) using three distinct activities as

defined in Figure 9.1:

1. Technical requirements which include (high and low level system requirements) adapted

with phase 2 of the ECSS life cycle;

2. System requirements design and modifications adapted with phase 3 of the ECSS life

cycle;

3. System requirements verifications adapted with phase 4 of the ECSS life cycle.

In the second part of this chapter and for the purpose of this research study, a modified RTM

was proposed by using the same ECSS traceability approach by ECSS with some additional

changes to tackle system-FUR and system-NFR in high and detailed levels in phase 2 of the

ECSS life cycle, High and low (detailed) levels for design requirements in phase 3 as well as

an extended verification part in phase 4 to tackle system-FUR and NFR as distinct

requirements at high level design and as grouped at low level design.

224

The third part of this chapter has presented the summarized number of the traceability based

concepts, terms and vocabularies for the proposed fourteen standard-based models, as well as

the detailed traceability to specific sections and pages of the ECSS standards of the proposed

reliability-NFR model. With this traceability to specific ECSS standards, and related

sections and page numbers illustrated for the reliability-NFR, the users of the reliability

model can find the details of each part of the proposed models in the ECSS standards, and

they can use this traceability to implement the proposed models in practice and in conformity

to the ECSS standards.

CONCLUSION

The research work presented in this thesis had one main research objective: Early

specification and measurement of software-FUR derived from system-NFR, using as a basis

the ECSS, ISO and IEEE systems and software engineering standards.

To achieve this objective, the following two specific research sub-objectives had reached:

• Designs of standard-based generic models for the identification and specification of

software-FUR for system-NFR;

• Measurement of the functional size of software-FUR for system-NFR using the COSMIC

ISO 19761 standard.

In this research study, this objective and the two sub-objectives were achieved by using three

sets of international standards (ECSS, ISO and IEEE) and ISO 19761(COSMIC method) for

the design of fourteen standard-based models of software-FUR for system-NFR: see

Chapters 4, 5, and 6 for the details of these three models (system reliability, maintainability,

and interface requirements), and Chapter 7 for the overviews of the 11 other models (system

portability, operations, configuration, data definitions and databases, adaptation and

installation, design and implementation constraints, performance, security, safety, recourses

and human factors requirements).

Contributions of the Research

The research contributions of this PhD thesis are:

• The identification of the various concepts that should be included in the design of

standard-based framework for modelling software-FUR for system-NFR based on ECSS,

ISO and IEEE standards;

• The fourteen standard-based models for the identification, specification and measurement

of software-FUR derived from system-NFR:

1. Reliability systems requirements;

226

2. Maintainability systems requirements;

3. Interfaces systems requirements;

4. Portability systems requirements;

5. Operations systems requirements;

6. Configuration systems requirements;

7. Data definitions and database systems requirements;

8. Adaptations and installations systems requirements;

9. Design and implementation constraints systems requirements;

10. Performance systems requirements;

11. Security and privacy systems requirements;

12. Safety systems requirements;

13. Resources systems requirements;

14. Human factor requirements.

• A modified requirements traceability matrix (M-RTM) used in the ECSS for system-FUR

by including the system-NFR.

A number of outcomes of this thesis have been published and-or submitted in the following

conferences and journals.

• Published:

1. Al-Sarayreh, Khalid T. and Abran, A., “A Generic Model for the Specification of

Software Interface Requirements and Measurement of their Functional Size", 8th

ACIS International Conference on Software Engineering Research, Management and

Applications - SERA 2010, Montreal, May 24-26, 2010, IEEE-CS Press, Los

Alamitos, pp. 217-222, (ISBN: 978-0-7695-4075-7), doi>10.1109/SERA.2010.35).

2. Al-Sarayreh, Khalid T., Alain Abran and Juan J. Cuadrado-Gallego, "A Standard-

based Model for the Specification and Measurement of Maintainability

Requirements", 22nd International Conference on Software Engineering and

Knowledge Engineering (SEKE 2010), Redwood City, California, USA, July 2010,

(ISBN 1-891706-26-8).

227

3. Abran, Alain, Al-Sarayreh, Khalid T. and Juan J. Cuadrado-Gallego, "Measurement

Model of Software Requirements Derived from System Portability Requirements",

9th International Conference on Software Engineering Research and Practice (SERP

2010), Las Vegas, USA, July 2010, CSREA Press 2010, (ISBN 1-60132-167-8).

4. Al-Sarayreh, Khalid T. and Alain Abran, "Measurement of Software Requirements

Derived from System Reliability Requirements", 24th European Conference on

Object-Oriented Programming (ECOOP 2010), ACM, Maribor, Slovenia, EU, 2010,

(ISBN: 978-1-4503-0539-6), doi>10.1145/1921705.1921706).

5. Alain Abran and Al-Sarayreh, Khalid T., “A Standard-based Model for the

Specification of System Design and Implementation Constraints", 17th International

Conference on European Systems and Software Process Improvements (EURO-SPI

2010), Grenoble Institute of Technology, Grenoble, France, Sept. 2010.

6. Alain Abran and Al-Sarayreh, Khalid T., “Measurement of Software Requirements

Derived from System Operations Requirements", 20th International Workshop on

Software Measurement (IWSM 2010`), Stuttgart, Germany, Nov. 2010, (ISBN: 978-

3-8322-9618-6).

7. Al-Sarayreh, Khalid T. and Alain Abran, "Specification and Measurement of System

Configuration Non Functional Requirements", 20th International Workshop on

Software Measurement (IWSM 2010), Stuttgart, Germany, Nov. 2010, (ISBN: 978-

3-8322-9618-6).

• Submitted

1. Al-Sarayreh, Khalid T., Abran, A. and Cuadrado, J, “Measurement of Software

Requirements Derived from System Maintainability Requirements", Submitted to

Journal of Software Maintenance and Evolution: Research and Practice, John Wiley

& Sons, Ltd. 2011.

2. Al-Sarayreh, Khalid T. and Abran, A., “Early Identification, Specification and

Measurement of System Non-Functional Interface Requirements", Submitted to

International Journal of Metrology and Quality Engineering, 2011.

228

3. Al-Sarayreh, Khalid T. and Abran, A., “Early Identification, Specification and

Measurement of Software Requirements Derived from System Reliability ",

Submitted to Requirement Engineering Journal (RE), Springer, 2011.

4. Al-Sarayreh, Khalid T. and Abran, A., “Software Specification Framework for

System Operations Requirements", Submitted to International Journal of Computer

and Information Science (IJCIS), IEEE-INSPECT, 2010.

5. Abran, A., Al-Sarayreh, Khalid T. and Cuadrado, J, “Software Specification

Framework of System Portability Requirements", Submitted to Journal of Software

Maintenance and Evolution: Research and Practice, John Wiley & Sons, Ltd. 2011.

Expected impacts in the industry of the proposed standard-based models of software-

FUR for system-NFR:

A) System engineers

The standard-based models of software-FUR for system-NFR proposed in this thesis can

provide system engineers with:

• An integrated reference view of system-NFR that they can use to select the NFR

necessary for a specific system to be developed (hardware-software);

• A methodology to specify these systems NFR: with the reference models, beginners may

not require years of training before they are able to specify NFR at the levels of detail

illustrated in the work reported in this thesis;

• An integrated model to be used as an input to make decisions on which of these detailed

system-NFR will be allocated to: 1- hardware, 2- software, or 3- a combination of these

for a specific context;

• Verification of system-NFR coverage and descriptions.

B) Software engineers

For software engineers, the proposed standard-based models of software-FUR for system-

NFR can also provide them with reference models that they can use to verify whether or not

the system engineers have provided them with this selection of system-NFR-derived

229

software-FUR, and at the necessary level of details. This means that the standard-based

reference models can be used as a quality technique for the following:

• Elicitation of such requirements, in the software requirements phase, referred to as ‘both

NFR and emergent properties’ in the SWEBOK Guide – ISO19759 (ISO-19759 2004);

• Achievement of this level of detailed inputs of software-FUR for system-NFR up front in

the project life cycle (that is, at the software requirements phase, rather than much later,

at the software testing phase, which is the common practice);

• The proposed standard-based models of software-FUR for system-NFR present a way to

measure these software-FUR with COSMIC – ISO 19761, to take them into account in

Function Points-based software estimation models, thereby avoiding late discovery of

mandatory software-FUR that often lead to budget overruns and missed deadlines.

Future Work

• The measurement aspects presented in this thesis have been limited to the system

requirements allocated to software. It will be interesting in future work to investigate

whether or not this measurement approach can be extended to all such requirements at the

system level: that is, to all hardware-software-manual requirements, and not only to

software requirements;

• Document the other traceabilility matrices to standards for the other 13 models (such as

table 9.3 for system reliability requirements in the chapter 9);

• Prepare a NFR specification Guidelines for each type of NFR, based on such traceability

matrices;

• Suggest improvement to international standards on software requirements, such as IEEE

830, based on this research work;

• Suggest additions to the Requirements Knowledge Area of the SWEBOK Guide (ISO

19759), based on this research work;

• Suggest improvement to the ECSS standards based on this research work;

• Suggests improvements to the COSMIC group to document guidelines for the

measurement of software-FUR derived from system-NFR

230

• Suggest improvement to the ISBSG data collection standards (www.isbsg.org) to capture

information on NFR requirements

BIBLIOGRAPHY

Abran, A. (2010). “Software Metrics and Software Metrology”, IEEE Computer Society /
Wiley, 10662 Los Vaqueros Circle, Los Alamitos,CA, P. 328.

Abran, A. and K. T. Al-Sarayreh (2010a). "Standard-based Model for the Specification of
System Design and Implementation Constraints", 17th International Conference on
European Systems and Software Process Improvements (EURO-SPI 2010), Industry
track, Grenoble Institute of Technology, Grenoble, France, Sept. 2010, P. 4.7-4.16 .

Abran, A., K. T. Al-Sarayreh, et al. (2010b). "Measurement Model of Software Requirements
Derived from System Portability Requirements", 9th International Conference on
Software Engineering Research and Practice (SERP 2010), Las Vegas, USA, P. 553-
559.

Al-Sarayreh, K. T. and A. Abran (2010c), ”A Generic Model for the Specification of
Software Interface Requirements and Measurement of Their Functional Size”, 8th
ACIS International Conference on Software Engineering Research, Management and
Applications, SERA 2010, Montreal, Canada, P. 217-223.

Al-Sarayreh, K. T., A. Abran, et al. (2010d). "A Standard-based Model for the Specification
and Measurement of Maintainability Requirements", 22nd International Conference
on Software Engineering and Knowledge Engineering (SEKE 2010), Redwood City,
California, USA, P. 153-158.

Andrew, J. R. (2000). "An Approach to Quantitative Non-Functional Requirements in
Software Development", 34th Annual Government Electronics and Information
Association Conference, P.13-20.

Bendjenna, H., P. Charrel, et al. (2010). "Identifying and Modeling Non-Functional Concerns
Relationships", Journal of Software Engineering & Applications 3(8), P. 820-826.

Bharadwaj, K. and G. Nair (2009). “Mapping General System Characteristics to Non-
Functional Requirements”, IEEE International Advance Computing Conference,
(IACC) Patiala, India, P. 1821-1825.

Casamayor, A., D. Godoy, et al. (2010). "Identification of non-functional requirements in
textual specifications: A semi-supervised learning approach", Information and
Software Technology 52(4), P. 436-445.

232

Chung, L. (1993). ”Representing and Using Non-functional Requirements for Information
System Development: A Process Oriented Approach”, Department of Computer
Science, Canada, University of Toronto. Ph.D. Thesis, also Tech. Rpt. DKBS-TR-93-
1.

Chung, L. and J. do Prado Leite (2009). “On Non-Functional Requirements in Software
Engineering. Conceptual Modeling: Foundations and Applications”, A. Borgida, V.
Chaudhri, P. Giorgini and E. Yu, Springer Berlin / Heidelberg. 5600, P. 363-379.

Chung, L., B. Nixon, et al. (2000). “Nonfunctional Requirements in Software Engineering”.
Boston, Kluwer Academic Publishing, P. 439.

COSMIC (2006). "Valve Control Software (VCS)", Software Engineering Research
Laboratory, École de Technologie Supérieure - Université du Québec (Canada).

COSMIC (2010). "The COSMIC Method v3.0.1, Guideline for Sizing SOA Software, v1.4",
The Common Software Measurement International Consortium, MPC Review.

Cysneiros, L. M. and J. C. S. d. P. Leite (2004). "Nonfunctional Requirements: From
Elicitation to Conceptual Models", IEEE Trans. Softw. Eng. 30(5), P. 328-350.

ECSS-E-40-Part-1B (2003). "Space Engineering: Software - Part 1 Principles and
Requirements", European Cooperation for Space Standardaization,The Netherlands.

ECSS-E-40-Part-2B (2005). "Space Engineeing:Software-part 2 Document Requirements
Definitions", European Cooperation for Space Standardaization, The Netherlands.

ECSS-E-60A (2004). “Space engineering: Control engineering“, Requirements & Standards
Division, Noordwijk, The Netherlands.

ECSS-E-ST-10-02C (2009). “Space engineering:Verification“, Requirements & Standards
Division, Noordwijk, The Netherlands.

ECSS-E-ST-10-06C (2009). “Space engineering: Technical requirements specification“,
Requirements & Standards Division, Noordwijk, The Netherlands.

ECSS-E-ST-10-11C (2008). “Space engineering: Human factors engineering“,
Requirements & Standards Division, Noordwijk, The Netherlands.

233

ECSS-E-ST-10C (2009). "Space engineering: System engineering general requirements",
Requirements & Standards Division Noordwijk, The Netherlands.

ECSS-E-ST-60-20C-Rev.1 (2008). “Space engineering: Stars sensors terminology and
performance specification”, Requirements & Standards Division, Noordwijk, The
Netherlands.

ECSS-E-ST-70-31C (2008). "Space Engineering: Ground systems and operations -
Monitoring and control data definition", Requirements & Standards Division
Noordwijk, The Netherlands.

ECSS-ESA (2005). "Tailoring of ECSS, Software Engineering Standards for Ground
Segments, Part C: Document Templates", ESA Board of Standardization and Control
(BSSC).

ECSS-Q-80B (2003). "Space product assurance: Software product assurance", European
Cooperation for Space Standardaization, The Netherlands.

ECSS-Q-ST-40C (2009). “Space product assurance: Safety“, Requirements & Standards
Division, Noordwijk, The Netherlands.

ECSS-Q-ST-80C (2009). "Space Product Assurance: Software Product Assurance",
Requirements & Standards Division Noordwijk, The Netherlands.

ECSS-S-ST-00C (2008). "ECSS System: Description, Implementation and General
Requirements", Requirements & Standards Division Noordwijk, The Netherlands.

Ellis, T. and Y. Levy (2008). "Framework of Problem-Based Research: A Guide for Novice
Researchers on the Development of a Research-Worthy Problem", Informing Science:
the International Journal of an Emerging Transdiscipline Volume 11, P. 17-33.

Galster, M. and E. Bucherer (2008). “A Taxonomy for Identifying and Specifying Non-
Functional Requirements in Service-Oriented Development“, IEEE Congress on
Services Honolulu, HI, P. 126-132.

Glinz, M. (2005). “Rethinking the Notion of Non-Functional Requirements“, 3rd World
Congress for Software Quality (3WCSQ 2005), Munich, Germany, P. 55-64.

IEEE-830 (1998). “IEEE Recommended Practice for Software Requirements Specifications”,

Software Engineering Standards Committe, IEEE Computer Society.

234

IEEE-982.1 (2005). "IEEE Standard Dictionary of Measures of the Software Aspects of
Dependability", Software Engineering Standards Committee, IEEE Computer
Society, New York, USA.

IEEE-1220 (2007). "IEEE Standard for Application and Management of the Systems
Engineering Proces", IEEE Computer Society, First edition.

IEEE-14764 (2006). "Standard for Software Engineering-Software Life Cycle Processes-
Maintenance", Software & Systems Engineering Standards Committee, IEEE
Computer Society.

ISO-2382-1 (1993). "Information technology - Vocabulary - Part 1: Fundamental terms",
International Standards for Business, Government and Society.

ISO-9126 (2004). "Software Engineering - Product Quality - Part 1: Quality Model 9126-1",
International Organization for Standardization,Geneva (Switzerland).

ISO-13407 (1999). “Human-centred design processes for interactive systems“, International
Organization for Standardization.

ISO-14143-1 (2007). “Information technology-Software measurement - Functional size
measurement Part 1: Definition of concepts“, International Organization for
Standardization, Geneva (Switzerland).

ISO-19759 (2004). "Software Engineering Body of Knowledge (SWEBOK)", IEEE Computer
Society.

ISO-19761 (2011). “Software Engineering - COSMIC v 3.0 - A Functional Size
Measurement Method“, International Organization for Standardization, Geneva
(Switzerland).

ISO-24765 (2008). "Systems and software engineering vocabulary", British Standards
Institution.

ISO-15288 (2008). “Systems and software engineering – System life cycles processes“,

International Organization for Standardization/International Electrotechnical
Commision, Geneva (Switzerland).

ISO-12207 (2008). “Systems and software engineering – Software life cycles processes“,

International Organization for Standardization/International Electrotechnical
Commision, Geneva (Switzerland).

235

ISO-15979 (2002). “Open end blind rivets with break pull mandrel and protruding head-
St/St“, International Organization for Standardization/CEN-CENELEC International
Requlation to Implement the ECSS, Geneva (Switzerland).

Kaiya, H., A. Osada, et al. (2004). "Identifying Stakeholders and Their Preferences about

NFR by Comparing Use Case Diagrams of Several Existing Systems", IEEE
International Conference on Requirements Engineering (RE04), P. 112-121.

Karl, E. W. (2003). “Software Requirements”, Second Edition, Microsoft Press, O'reilly, P.
544.

Kassab, M., M. Daneva, et al. (2009). “Towards an Early Software Effort Estimation Based

on Functional and Non-Functional Requirements“, International Conference on
Software Process and Product Measurement (MENSURA), Amsterdam, The
Netherlands, Springer-Verlag Berlin, Heidelberg, P. 182-198.

Kassab, M., O. Ormandjieva, et al. (2008). ”Non-Functional Requirements Size
Measurement Method (NFSM) with COSMIC-FFP“, Software Process and Product
Measurement, J. C.-G. Juan, Ren, Braungarten, R. D. Reiner and A. Alain, Springer-
Verlag: P. 168-182.

Liu, C. (2010). “Ontology-Based Conflict Analysis Method in Non-functional
Requirements“, Computer and Information Science (ICIS), 2010 IEEE/ACIS, 9th
International Conference on Information System, P. 491-496.

Moreira, A., J. Araujo, et al. (2002). “Crosscutting Quality Attributes for Requirements
Engineering“, 14th International Conference on Software Engineering and
Knowledge Engineering, Ischia, Italy, SEKE: P. 167-174.

Mylopoulos, J. (2006). “Goal-oriented Requirements Engineering“, keynote talk at the14th
IEEE International Conference on Requirements Engineering (RE’06): Part II.
Minneapolis, USA, IEEE Computer Society Press.

Mylopoulos, J., L. Chung, et al. (1992). "Representing and Using Nonfunctional
Requirements: A Process-Oriented Approach", IEEE Transactions on Software
Engineering 18: P. 483-497.

Mylopoulos, J., L. Chung, et al. (1999). “From Object-Oriented to Goal Requirements
Analysis“, Object-Oriented Modeling and Design C. ACM, ACM New york, NY, 42:
P. 31-37.

236

Paech, B., A. Dutoit, et al. (2002). “Functional requirements, non-functional requirements
and architecture specification cannot be separated -- A position paper“, International
Workshop on Requirements Engineering: Foundations for Software Quality REFSQ,
Essen, Germany, P. 37-49.

Park, D. and S. Kang (2004). “Design Phase Analysis of Software Performance Using
Aspect-Oriented Programming“, 5th Aspect-Oriented Modeling Workshop in
Conjunction with UML 2004, Lisbon, Portugal, Information and Communications
University Munji-ro, Korea: P. 305-314.

Rosa, N., P. Cunha, et al. (2002). “ProcessNFL: A language for Describing Non-Functional

Properties“, 35th Hawaii International Conference on System Sciences HICSS, USA,
IEEE Press: P. 54-63.

SoberIT: (2008). "Service-Oriented Architecture and Software Engineering", Seminar on
Enterprise Information Systems by Software Business and Engineering Institute,
Helsinki University of Technology, © 2008 Kari Hiekkanen.

Supakkul, S., T. Hill, et al. (2010). “An NFR Pattern Approach to Dealing with NFRs“,
Requirements Engineering Conference (RE), 2010 18th IEEE International, P. 179-
188.

Yakkali, H. and N. Subramanian (2010). “Efficient Design of SCADA Systems Using
Minimum Spanning Trees and the NFR Framework“, 2nd South Eastern Symposium
on System Theory. University of Texas at Tyler, USA: P. 346-351.

