
Pour de meilleurs résultats, ouvrez ce porte-documents PDF dans
Adobe Reader 9, ou dans Adobe Acrobat 9, ou version ultérieure.

Télécharger tout de suite Adobe Reader

http://www.adobe.com/go/reader_download_fr

Appendix I: Related work in NFR: an overview

Appendix I-A: Quality Models and Quality Standards

Some organizations try to standardise software quality (Non-Functional Requirements) by defining models combining and relating software quality characteristics and sub characteristics.

There are a number of quality models in software engineering literature, each one of these quality models consists of a number of quality characteristics (or factors, as called in some models). These quality characteristics could be used to evaluate the quality of the software product from the view of that characteristic. These models can be classified into three types of models:

· Hierarchical Models such as McCall's Model (1976), Boehm's Model (1978), FURPS Model (1987), and Dromey's Model (1996).

· Non-hierarchical Models such as Bayesian Belief Networks and Star Model.

· Furthermore, there are quality standards such as ISO 9126 (2004), IEEE-Std 830 – 1993 and ECSS-Q-80B (European International Standards).

Hierarchical Models

1. McCall's Model (1977):

McCall's model for software quality is one of the most quoted quality models in the software engineering literature. It has been presented in 1977 by Jim McCall (McCall, Richards et al. 1977) . McCall attempts to bridge the gap between users and developers by focusing on a number of software quality factors that reflect both the users’ views and the developers’ priorities (McCall, Richards et al. 1977).

McCall combines eleven criteria around product operations, product revisions, and product transitions. The main idea behind McCall's model is to assess the relationships among external quality factors and product quality criteria see Figure 1.

McCall’s quality model consists of 11 quality factors to describe the external view of the software (from the users’ view), 23 quality criteria to describe the internal view of the software (from the developer’s view) and a set of ‘metrics’ which are defined and used to provide a scale and method for measurement. See figure 1, presents the three major perspectives and their corresponding quality factors and quality criteria.

The layers of quality model in McCall are defined as:

a. Quality Factors.

b. Quality Criteria.

c. Metrics.

The main objective of the McCall’s quality model is that the quality factors structure should provide a complete software quality view (Kitchenham and Pfleeger 1996). The actual quality metric is computed by answering ‘yes’ and “no” questions.

[image: image1.png]

Figure 1: McCall’s Quality Model

2. Boehm's Model (1978):

Boehm’s quality model (Boehm 1978) and (Boehm, Brown et al. 1976) is introduced to quantitatively evaluate the quality of software. This model attempts to qualitatively define the quality of software by a predefined set of attributes and metrics. It consists of high-level characteristics, intermediate-level characteristics and lowest level (primitive) characteristics which contribute to the overall quality level (see Figure 2)

Figure 2: shows the contents of the Boehm’s quality model in the three levels, high level, intermediate-level and lowest-level characteristics. In addition, it is noted that there is a number of the lowest-level characteristics which can be related to more than one intermediate-level characteristics, for example, the ‘Self Containedness’ primitive characteristic could be related to the ‘reliability’ and ‘portability’ primitive characteristics (Boehm, Brown et al. 1976).

In the intermediate level characteristic, there are seven quality characteristics that together represent the qualities anticipated from a software system (Boehm, Brown et al. 1976).

The primitive characteristics can be used to provide the foundation for defining quality metrics; this use is one of the most important goals established by Boehm when he has constructed his quality model; one or more metrics are supposed to measure a given primitive characteristic. (Boehm 1978) defined the ‘metric’ as “a measure of extent or degree to which a product possesses and exhibits a certain (quality) characteristic.”

Figure 2: Boehm’s Quality Model

3. FURPS Model (1987):

The FURPS model proposed by Robert Grady 1992 and Hewlett-Packard Co, it has been later extended by IBM Rational Software (Jacobson, Booch et al. 1999), FURPS decomposes characteristics in two different categories of requirements:

a. Functional requirements (F): Defined by input and expected output.

b. Non-functional requirements (URPS): Usability, reliability, performance, supportability.

FURPS quality model composed of the following characteristics, (Grady and Robert 1992)

• Functionality: it may include feature sets, capabilities, and security.

• Usability: it may include human factors, aesthetics, and consistency in the user interface, online and context sensitive help, wizards and agents, user documentation, and training materials.

• Reliability: it may include frequency and severity of failure, recoverability, predictability, accuracy, and mean time between failures (MTBF).

• Performance: it imposes conditions on functional requirements such as speed, efficiency, availability, accuracy, throughput, response time, recovery time, and resource usage.

• Supportability: it may include testability, extensibility, adaptability, maintainability, compatibility, configurability, serviceability, installability, and localizability.

4. Dromey's Model (1996):

This quality model has been presented by Dromey (1995; 1996). It is a product based quality model that recognizes that quality evaluation differs for each product and that a more dynamic idea for modeling the process is needed to be wide enough to be applied to different systems (Dromey, 1995).

Dromey identified six steps to build his model (Dromey 1995):

a. Choose a set of high-level attributes that you need to use for your evaluation.

b. Make a list of all the components or modules in the system.

c. Identify quality-carrying properties for each component. (That is, qualities of the component that has the most impact on the product properties from the list created in last step).

d. Decide on how each property affects the quality attributes.

e. Evaluate the model.

f. Identify and resolve weaknesses in with feedback loop.

Non-hierarchical Models

1. Bayesian Belief Networks:

A BBN is a graphical network whose nodes are probabilistic variables and whose edges are the causal or influential links among the variables. Associated with each node is a set of conditional probability functions that model the uncertain relationship among a node and its parents (Bankman 2000).

Using the BBN has some benefits (Bankman 2000):

a. BBN enable reasoning under uncertainty and combine the advantages of an intuitive visual representation with a sound mathematical basis in Bayesian probability.

b. With BBN, it is possible to articulate expert beliefs about the dependencies between different variables and to propagate consistently the impact of evidence on the probabilities of uncertain outcomes, such as future system reliability.

c. BBN allow an injection of scientific rigour when the probability distributions associated with individual nodes are simply “expert opinions".

d. A BBN will derive all the implications of the beliefs that are input to it; some of these will be facts that can be checked against the project observations, or simply against the experience of the decision makers themselves.

e. The ability to represent and manipulate complex models that might never be implemented using conventional methods2

[image: image7.png]

Figure 3: BBN Software Quality Model

2. Star Model :

The Star model is introduced as follows: “The software quality Star is a conceptual model for presenting different perspectives of software quality. The model is based on the acquirer and supplier as defined in ISO/IEC 12207 ".

There are three significant elements in the Star: The procurer (acquirer), the producer (supplier), and the product, see Figure 4. The procurer enters in a contract with the producer to create a software product. This contract clearly specifies the quality characteristics of the product. The procurer's perspective of the producer organization is that they use the best project management techniques available and that they engage in first-rate processes to create a quality product. The procurer's perspective of the product is that it must be acceptable by the user community and that it can be serviced and maintained by their professionals (Fitzpatrick 2001).

The model considers that the acquirer be the lead party in any contractual arrangement because it is the acquirer's users and technical support professionals who dictate the success or failure of the software product. Also, it is the acquirer who dictates the profile and maturity of the supplier organization (Fitzpatrick 2001).

 “The model accommodates the producer's perspective of software quality and focuses on the maturity of the producer organization as software developers and the development processes that they used to create quality software products".

[image: image2.emf]

Figure 4: Star Model.

Quality in international Standards

1. ISO/IEC 9126 (2004):

The ISO 9126 is a model from the International Organization for Standardization (ISO) about the evaluation of the software product. ISO 9126 contains four parts (ISO/IEC-9126 2004) :

• Part 1: Quality model (ISO/IEC-9126 2004) part-1 defines a quality model as a framework which explains the relationship between different approaches to quality. This quality model also defines the software qualities in a hierarchical and structured manner. The quality model is explained with the help of 6 main characteristics and several sub characteristics. The main characteristics are as follows: see Figure 5.

· Functionality is defined as a set of attributes that bear on the existence of a set of functions and their specified properties. The functions are those that satisfy stated or implied needs. The sub factors related to these factors are suitability, accuracy, interoperability, compliance, and security.

· Reliability is defined as a set of attributes that bear on the capability of software to maintain its level of performance under stated conditions for a stated period of time. The sub factors related to these factors are maturity, recoverability, compliance and fault tolerance.

· Efficiency is a set of attributes that bear on the relationship between the level of performance of the software and the amount of resources used, under stated conditions. The sub factors related to these factors are time behaviour, resource behaviour and compliance.

· Usability is a set of attributes that bear on the effort needed for use, and on the individual assessment of such use, by a stated or implied set of users. The sub factors related to these factors are learnability, understandability, compliance and operability.

· Maintainability is a set of attributes that bear on the effort needed to make specified modifications. The sub factors related to this factor are stability, analyzability, changeability, compliance and testability.

· Portability is a set of attributes that bear on the ability of software to be transferred from one environment to another. The sub factors related to this factor are installability, replaceability, conformance and adaptability.

• Part 2: External metrics (ISO/IEC-9126 2004) part 2 - External metrics are those which are applicable to running software. External quality is characteristics which are measured by the dynamic properties of the code when executed such as response time. External quality determines quality in use.

• Part 3: Internal metrics (ISO/IEC-9126 2004) part 3- Internal metrics are those which do not rely on software execution. The internal quality is a characteristic which is measured by the static properties of the code, such as inspection. The internal quality determines the external quality.

• Part 4: Quality in use metrics (ISO/IEC-9126 2004) part 4- Quality in use metrics are only available when the final product is used in real conditions. So this is a user’s view of quality.

Figure 5: ISO/IEC 9126

2. IEEE-Std 830 –1993

The IEEE-Std 830 lists 13 non-functional requirements to be included in a Software Requirements Document- see Table 1.

Table 1: The ‘IEEE-Std 830 - 1993’ list of 13 non-functional requirements

		IEEE-Std 830 – 1993’ lists

		1

		Performance requirements

		2

		Interface requirements

		3

		Operational requirements

		4

		Resource requirements

		5

		Verification requirements

		6

		Reliability requirements

		7

		Quality requirements

		8

		Acceptance requirements

		9

		Documentation requirements

		10

		Security requirements

		11

		Portability requirements

		12

		Maintainability requirements

		13

		Safety requirements

3. ECSS-E-40 part 1B/2B and ECSS-Q-80B

Furthermore the GELOG LAB at Ecole de Technologie Supérieure (University of Quebec) is carrying research work on non-functional requirements to design measures for the non-functional characteristics of software – see Table 2. Based on the list by ECSS-E-40 part 1B/2B and ECSS-Q-80B

Table 2: Non-Functional Requirements ECSS-E-40 part 1B/2B and ECSS-Q-80B

		Name of the Non-functional Requirements

		1

		Performance

		2

		Interface

		3

		Operations

		4

		Resources

		5

		Design & Implementation Constraints

		6

		Security & Privacy

		7

		Portability

		8

		Quality

		9

		Reliability

		10

		Maintainability

		11

		Safety

		12

		Software Configuration & Delivery Requirements

		13

		Data Definitions & Database Requirements

		14

		Human Factors

		15

		Adaptation & Installation Requirements

		16

		Other Requirements

Appendix I-B: A synthesis of Existing Quality Models and Standards in Appendix I to specify the Non-Functional Requirements:

a. Quality Definitions:

Summarised standard definitions for quality characteristics from previous quality models and quality standards these definitions are sorted alphabetically.

· Accessibility: “is the degree to which the user interface of something enables users with common or specified (e.g., auditory, visual, physical, or cognitive) disabilities to perform their specified tasks" (Firesmith. 2003).

· Accuracy: “The capability of the software product to provide the right or agreed results or effects with the needed degree of precision" (ISO/IEC-9126 2004). Also, “the precision of computations and control" [72], “the attributes of software that bear on the provision of right or agreed results or effects" [78]. “closeness of the agreement between the result of a measurement and a true value of the measurand” [VIM]

· Adaptability: “The capability of the software product to be adapted for different specified environments without applying actions or means other than those provided for this purpose for the software considered" (ISO/IEC-9126 2004).

· Adaptivity: “suggests that the system should be designed to the needs of different types of users" (Aaby. 2007).

· Ambiguity: “This characteristic relates with requirements with potential multiple meanings [44].

· Analyzability: “The capability of the software product to be diagnosed for deficiencies or causes of failures in the software, or for the parts to be modified to be identified" (ISO/IEC-9126 2004) .

· Attractiveness: “The capability of the software product to be attractive to the user"(ISO/IEC-9126 2004) . Also attractiveness “is achieved through layout, graphics, color, and dynamic elements" (Aaby. 2007).

· Auditability: “The ease with which conformance to standards can be checked" [72].

· Augmentability:” The ability of the model to accommodate expansion in component computational functions or data storage requirements" [6].

· Availability:” is the degree to which a work product is operational and available for use" (Firesmith. 2003).

· Behavior: “Time behaviour: The capability of the software product to provide appropriate response and processing times and throughput rates when performing its function" (ISO/IEC-9126 2004). “Resource behaviour: The attributes of software related with measuring the amount of resources required to perform its function” (ISO/IEC-9126 2004).

· Branding: “is the degree to which a work product (e.g., application, component, or document) successfully incorporates the brand of the customer organization's business enterprise" (Firesmith. 2003).

· Capacity: “is the minimum number of things (e.g., transactions, storage) that can be successfully handled." (Firesmith. 2003).

· Configurability:” is the degree to which something can be configured into multiple forms “ (Firesmith. 2003).

· Changeability: “The capability of the software product to enable a specified modification to be implemented" (ISO/IEC-9126 2004).

· Co-existence: “The capability of the software product to co-exist with other independent software in a common environment sharing common resources" (ISO/IEC-9126 2004).

· Compatibility: “is the degree to which a system or a component can be used and functions correctly under specified conditions of the physical environment(s) in which it is intended to operate" (Firesmith. 2003).

· Completeness: “The degree to which full implementation of required function has been achieved" [72].

· Compliance: “Attributes of software that makes the software adhere to application-related standards of conventions or regulations in laws and similar prescriptions" [78].

· Communication commonality: “The degree to which standard interfaces, protocols and bandwidths are used" [72].

· Communicativeness:”Does the model facilitate the specification of inputs? Does it provide outputs whose form and content, are easy to assimilate and useful?" [6]

· Completeness:” Are all model inputs used within the model? Are there no dummy sub models referenced?" [6]

· Conformance: “Attributes of software that make the software adhere to standards or conventions relating to portability" [78].

· Conciseness:” The compactness of the program in terms of lines of code" [72]. Also “Attributes of software to provide the implementation of a function with minimum amount of code" [85].

· Configurability:”The ability to organize and control elements of the software configuration" [72].

· Consistency:”The use of uniform design and documentation techniques throughout the software development project" [72].

· Correctability:” is the ease with which minor defects can be corrected between major releases while the application or component is in use by its users" (Firesmith. 2003).

· Correctness:” is the degree to which a work product and its outputs are free from defects once the work product is delivered" (Firesmith. 2003).

· Currency:” is the degree to which data remain current (i.e., up to date, not obsolete)" (Firesmith. 2003).

· Data Commonality:”The use of standard data structures and types throughout the program" [72].

· Effectiveness:”The capability of the software product to enable users to achieve specified goals with accuracy and completeness in a specified context of use" (ISO/IEC-9126 2004) .

· Efficiency:”The capability of the software product to provide appropriate performance, relative to the amount of resources used, under stated conditions" (ISO/IEC-9126 2004).

· Error tolerance:” The damage that occurs when the program encounters an error" [72].

· Expendability:”The degree to which architectural, data or procedural design can be extended" [72].

· Extendibility:” The attributes related to the modification of a component or a system in case of increase of the storage or of the functional capacity” [77].

· Extensibility:”is the ease with which an application or component can be enhanced in the future to meet changing requirements or goals" (Firesmith. 2003).

· Fault Tolerance:”The capability of the software product to maintain a specified level of performance in cases of software faults or of infringement of its specified interface" (ISO/IEC-9126 2004).

· Flexibility:”Effort required modifying an operational program" [36].

· Functionality :”The capability of the software product to provide functions which meet stated and implied needs when the software is used under specified conditions" (ISO/IEC-9126 2004).

· Generality:” The breadth of potential application of program components" [72].

· Hardware independence:” The degree to which the software is decoupled from the hardware on which it operates" [72].

· Installability:”The capability of the software product to be installed in specified environment" (ISO/IEC-9126 2004).

· Instrumentation:”The degree to which the program monitors its own operation and identifies errors that do occur" [72].

· Integrity:”The extent to which access to software or data by unauthorized persons can be controlled" [36, 72].

· Interoperability:”The capability of the software product to interact with one or more specified systems" (ISO/IEC-9126 2004).

· Learnability:”The capability of the software product to enable the user to learn its application" (ISO/IEC-9126 2004).

· Maintainability:”The capability of the software product to be modified. Modifications may include corrections, improvements or adaptation of the software to change in environment, and in requirements and functional specifications" (ISO/IEC-9126 2004).

· Maturity:”The capability of the software product to avoid failure as a result in the software" (ISO/IEC-9126 2004). Also” the attributes of software that bears on the frequency of failure by faults in the software" [78].

· Modularity:”The functional independence of program components" [72].

· Operability:”The capability of the software product to enable the user to operate and control it" (ISO/IEC-9126 2004).

· Performance:”Performance is the degree to which timing characteristics are adequate" (Firesmith. 2003). Or is measured by evaluating processing speed, response time, resource consumption, throughput, and efficiency" [72].

· Personalization:”is the degree to which each individual user can be presented with a unique user-specific experience" (Firesmith. 2003).

· Portability:” The capability of the software product to be transferred from one environment to another" (ISO/IEC-9126 2004).

· Readability:”Readability is characterized by clear, concise code that is immediately understandable" [5].

· Recoverability:”The capability of the software product to re-establish a specified level of performance and recover the data directly affected in the case of failure" (ISO/IEC-9126 2004).

· Reliability:”The capability of the software product to maintain a specified level of performance when used under specified conditions" (ISO/IEC-9126 2004).

· Replaceability:”The capability of the software product to be used in place of another specified software product for the same purpose in the same environment" (ISO/IEC-9126 2004).

· Responsiveness:” is the ability of a system to meet its objectives for response time or throughput. In end-user systems, responsiveness is typically defined from a user perspective" [82].

· Resource utilization:”The capability of the software product to use appropriate amounts and types of resources when the software performs its function under stated conditions" (ISO/IEC-9126 2004).

· Reusability:” is the ease with which an existing application or component can be reused" (Firesmith. 2003).

· Robustness:” is the degree to which an executable work product continues to function properly under abnormal conditions or circumstances" (Firesmith. 2003).

· Safety:”The capability of the software product to achieve acceptable levels of risk of harm to people business, software, property or the environment in specified context of use" (ISO/IEC-9126 2004).

· Satisfaction:”The capability of the software product to satisfy users in specified context of use"(ISO/IEC-9126 2004) .

· Scalability:”is the ease with which an application or component can be modified to expand its existing capacities" (Firesmith. 2003).

· Security :”The capability of the software product to protect information and data so that unauthorized persons or systems cannot read or modify them and authorized persons or systems are not denied access to them" (ISO/IEC-9126 2004).

· Self containedness:”is related to the facility of the software product for initializing core storage prior to use and for proper positioning of input/output devices prior to use" [6].

· Simplicity:”The degree to which a program can be understood without difficulty" [72].

· Software system independence:”The degree to which the program is independent of non-standard programming language features, operating system characteristics and other environmental constraints" [72].

· Stability:”The capability of the software product to avoid unexpected effects from modifications of the software" (ISO/IEC-9126 2004).

· Suitability:”The capability of the software product to provide an appropriate set of functions for specified tasks and user objectives" (ISO/IEC-9126 2004).

· Testability:”The capability of the software product to enable modified software to be validated"(ISO/IEC-9126 2004) .

· Traceability:”The ability to trace a design representation or actual program component back to requirements" [72].

· Trustability:”refers to the system's ability to provide users with information about service correctness" (Aaby. 2007).

· Understandability:” The capability of the software product to enable the user to understand whether the software is suitable, and how it can be used for particular tasks and conditions of use" (ISO/IEC-9126 2004).

· Usability:”The capability of the software product to be understood, learned, used and attractive to the user, when used under specified conditions" (ISO/IEC-9126 2004).

b. Interrelations between Quality Characteristics

· Adaptability: Directly related with Expandability.

· Completability: Directly related with Functionality, Reliability, Usability, and Maintainability.

· Computability: Directly related with Functionality and Reliability.

· Correctness: Directly related with Reliability, Usability , Maintainability, Testability and Flexibility

· Efficiency: Directly related with Field Performance.

Inverse related with Execution, Software system independence, Integrity, Usability, Maintainability Testability, Flexibility, Portability, Reusability, Completeness, Consistency, Traceability, and Interoperability.

· Expandability: Directly related with Augmentability, Extendability and Extensibility.

· Flexibility: Directly related with Computablability, Completeness, Expandability, Generality, Modularity, Self Documentation, Correctness, Reliability, Usability, Maintainability and Testability.

Inverse related with Performance, Reusability and Efficiency.

· Installability: Directly related with Availability.

· Integrity: Directly related with Access audit, Access control and Usability.

Inverse related with Flexibility, Reusability, Interoperability, and Efficiency.

· Interoperability: Directly related with Performance, Enhancement Costs, Communication Communality, Data Commonality, Modularity and Portability.

Inverse related with Efficiency and Integrity.

· Maintainability: Directly Related with Completeness , Structuredness , Effectiveness, Conciseness , Consistency , Modularity , Self documentation , Simplicity, Correctness , Testability , Modifiability , Flexibility, Portability, Reusability ,, Usability, Reliability, Documentation and Validity .

Inverse related with Testability, Flexibility, Portability, Reusability and Efficiency.

· Performance: Directly related with installability.

Inverse related with Reliability and Maintainability.

· Portability: Reusability, Interoperability, Interoperability, and Efficiency.

Directly related with Hardware independence, Modularity, Self Documentation, Software system independence, Maintainability and Testability.

· Reliability: Directly related with Computablability , Completeness , Accuracy , Consistency , Error tolerance , Simplicity , Correctness, Generality, Installability, Maintainability , Availability, Usability , Testability , Flexibility and completeness.

Inverse related with Reusability.

· Reusability: Directly related with Generality, Hardware independence, Modularity, Self documentation, Software system independence, Reliability, Usability, Testability, Maintainability, Flexibility and Portability.

Inverse related with Efficiency, Reliability and Integrity.

· Testability: Directly related with Instrumentation, Modularity, Self Documentation, Simplicity, Correctness, Maintainability, Flexibility, Portability, and Reusability.

Inverse related with Reusability and Efficiency.

· Understandability: Direct related with Readability, Complexity, Generality and Modularity.

· Usability: Directly related with Completeness, Effectiveness, Communicativeness, Operability, Correctness, Reliability, Installability, Maintainability, Documentation, availability and Integrity.

Inverse related with Efficiency, Maintainability, Testability, Flexibility and Performance.

c. Mapping Quality Models

		Non-Functional Requirements

		ECSS

		IEEE

		McCall

		Boehm

		ISO 9126

		Performance

		·

		·

		

		

		

		Interface

		·

		·

		

		

		

		Operations

		·

		·

		·

		

		

		Resources

		·

		·

		

		

		·

		Design & Implementation Constraints

		·

		

		

		

		

		Security & Privacy

		·

		·

		

		

		·

		Portability

		·

		·

		·

		·

		·

		Quality

		·

		·

		

		

		·

		Reliability

		·

		·

		·

		·

		·

		Maintainability

		·

		·

		·

		·

		·

		Safety

		·

		·

		

		

		

		Software Configuration & Delivery Requirements

		·

		

		

		

		

		Data Definitions & Database Requirements

		·

		

		

		

		

		Human Factors

		·

		

		

		

		

		Adaptation & Installation Requirements

		·

		

		

		

		·

		Other Requirements

		·

		

		

		

		

		Verification requirements

		

		·

		

		

		

		Acceptance requirements

		

		·

		

		

		

		Documentation requirements

		

		·

		

		

		

		Usability

		

		

		·

		·

		·

		Integrity

		

		

		·

		·

		

		Testability

		

		

		·

		·

		·

		Efficiency

		

		

		·

		·

		·

		Correctness

		

		

		·

		

		

		Accuracy

		

		

		·

		·

		·

		Simplicity

		

		

		·

		

		

		Expandability/ Modifiability

		

		

		·

		·

		

		SW & HW System independence

		

		

		·

		·

		

		Access Control & Audit

		

		

		·

		·

		

		Traceability

		

		

		·

		

		

		I/O Volume & Rate

		

		

		·

		

		

		Error Tolerance

		

		

		·

		

		·

		Comms. & Data Commonality

		

		

		·

		·

		

		Training

		

		

		·

		

		

		Simplicity/ Understand ability

		

		

		·

		·

		

		Modality

		

		

		·

		

		

		Generality

		

		

		·

		

		

		Consistency

		

		

		·

		·

		

		Completeness

		

		

		·

		·

		

		Self-Descriptiveness

		

		

		·

		·

		

		Interoperability

		

		

		·

		·

		·

		Instrumentation

		

		

		·

		

		

		Conciseness

		

		

		·

		·

		

		Flexibility

		

		

		

		

		

		Legibility

		

		

		

		·

		

		Structuredness

		

		

		

		·

		

		Self Contentedness

		

		

		

		·

		

		Augment ability

		

		

		

		·

		

		Accountability

		

		

		

		·

		

		Effectiveness

		

		

		

		

		

		Scalability

		

		

		

		

		

		Availability

		

		

		

		

		

		Extensibility

		

		

		

		

		

		Software tools

		

		

		

		

		

		Open Source

		

		

		

		

		

		Resilience

		

		

		

		

		

		Supportability

		

		

		

		

		

		Compatibility

		

		

		

		

		

		Stability

		

		

		

		

		

		Suitability

		

		

		

		

		·

		Compliance

		

		

		

		

		·

		Maturity

		

		

		

		

		

		Recoverability

		

		

		

		

		

		Learnability

		

		

		

		

		

		Attractiveness

		

		

		

		

		

		Time Behaviour

		

		

		

		

		·

		Analyzability

		

		

		

		

		·

		Change ability

		

		

		

		

		·

		Co-existence

		

		

		

		

		

		Replaceability

		

		

		

		

		

d. The Non-Functional Requirements for Embedded Software

		Characteristics

		Description

		Performance

		The attributes are execution time and throughput

		Interface

		It is represented by user interface requirements, communication interface, software interface, and hardware interface requirements.

		Operations

		The ease of operation and control by users

		Resources

		The amount of resources used and the duration of such use in performing its function

		Design & Implementation Constraints

		Software Design: represented by language, structure, libraries

Implémentation: languages, quality, version control

		Security & Privacy

		Ability to prevent unauthorized access, whether accidental or deliberate, to programs and Data

		Portability

		The capacity to which software can operate in another environment.

		Quality

		Represented by the determination of the size of software.

		Reliability

		The ability of a system or component to perform its required functions under stat condition for a specific period of time and Represented by maturity, fault tolerance, and recoverability.

		Maintainability

		Represented by regression testing, quality control, bug tracking, version control

		Safety

		Represented by a safety level against undesirable access to the system.

		Software Configuration & Delivery Requirements

		Represented by all control activities of configuration items.

		Data Definitions & Database Requirements

		Represented by:

 Atomicity: Either the entire transaction must be executed or none of it.

Consistency: After the transaction executed the database must remain in a consistent state

 Durability: Completed transactions are never lost

Isolation: The transaction must perform as in a single user environment.

		Human Factors

		Represented by identifying the contribution of the human factor requirements to the size of a software from early requirements phases .

		Adaptation & Installation Requirements

		The opportunity for its adaptation to different specified environments

The effort needed to install the software in a specified environment

		Usability

		Represented by usability vs. cost

		Testability

		The effort needed for validating the modified software

		Efficiency

		Represented by efficiency vs. cost

		Accuracy

		The provision of right or agreed results or effects

		Error Tolerance

		Ability to maintain a specified level of performance in cases of software faults or

unexpected inputs

		Simplicity/ Understandability

		The effort required for a user to recognize the logical concept and its applicability

		Interoperability

		Software’s ability to interact with specified systems

		Stability

		The risk of unexpected effect of modifications

		Suitability

		The presence and appropriateness of a set of functions for specified tasks

		Compliance

		Adherence to application-related standards, conventions, regulations in laws and protocols.

		Maturity

		Attributes of software that bear on the frequency of failure by faults in software

		Recoverability

		Capability and effort needed to re-establish level of performance and recover affected data after possible failure

		Learnability

		The effort required for a user to learn its application, operation, input and output

		Attractiveness

		The capability of the software to be attractive to the user

		Time Behavior

		The speed of response and processing times and throughput rates in performing its

Function

		Analyzability

		The effort needed for diagnosis of deficiencies or causes of failures, or for identification parts to be modified

		Change Ability

		The effort needed for modification fault removal or for environmental change

		Co-Existence

		The capability of a software product to co-exist with other independent software in

common environment

		Replaceability

		The opportunity and effort of using it in the place of other software in a particular

Environment

Appendix I-C: A Survey of Estimation Models:

1. Introduction to A priori and a posteriori

In the software engineering literature, there is a lot of work claiming to address early estimation, but a closer look at these papers indicates that they are in practice using an a posteriori context as an a priori context.

On one hand, there are many early estimation methods could be used in a priori contexts such as the ones listed by (Kitchenham, Lawrence et al. 2002) for example: Average, CA-Estimacs, Comparison, Proportion, Widget counting and Delphi methods. While Nelson (Nelson 1966) introduced early estimating model; could be used in a priori context.

On the other hand, there are many other estimating techniques and models constructed and developed from information available after the completion of projects (Abran 2009) such models should be qualified as a posteriori estimation models, such as COCOMO (Boehm 1981) , SLIM (Putnam and Myers 1991) , Checkpoint (Jones 1997) , PRICE-S (Park 1988) , SEER (Jensen 1983) , Walston-Felix Model 1971 (Kaur, Singh et al. 2008) , Bailey-Basili Model 1981 (Kaur, Singh et al. 2008) , Boeing Model (black 1971) , Doty Model for KLOC (herd 1977), Albrecht and Gaffney Model (J. E. Gaffney and Cruickshank 1992) , Kemmerer Model (Mukhopadhyay and Kekre 1992) .

There are only a few studies for finding the estimated cost of projects in the early stages followed a priori context in software engineering, for example (Kitchenham, Lawrence et al. 2002) . The majority of the estimation models built based on effort after the completion of the projects or the comparison with other similar projects for example ONTOCOM by (Simperl and Tempich 2005) , The authors introduced a priori cost model, but move on to an posteriori approach to complete their estimation .

1.2 A priori estimation models

Formerly, software managers must determine well in advance a priori estimation effort to deliver projects on time and on budget in a context of fixed-price contract to meet the market demands Figure 1.

Figure 1: Typical Context of A priori Estimation Model.

 Unfortunately, software organizations typically use an estimation approach based either on informal personal or organizational experience, or on a posteriori estimation model developed internally, or developed by an outside consultancy.

For instance, if the estimation model is used very early on in the life cycle when only scanty information is available such as at the pre-feasibility stage, then most of the input numbers are ‘guestimates’ and are not derived from the application of rigorous measurement procedures; these ‘guestimates’ are indeed numbers, but with very little strengths in terms of accuracy, repeatability and reproducibility. Of course, the estimate (eg. the output number) produced by an estimation model based on these ‘guestimates’ in inputs cannot produced anything but ‘guestimates’ as output, with a level of ‘goodness’ that cannot of course be greater than the quality of the inputs (Abran 2009).

Even later on, such as with the use of the estimation model at the Requirements Phase, the users of the results of these estimation models must be aware of the level of quality of the numbers in inputs; if for instance, the software functional size is measured with a measurement method from a specification document that has been extensively reviewed for quality control, then this input to the estimation model will have strong properties in terms of measurement results (Abran 2009) .

However, if the size of the software is obtained through an approximation technique from a sketchy description of the expected software functions at the beginning of the requirement phase, then the number obtained as the functional size will have as well a very limited level of accuracy, repeatability and reproducibility; this, in turns, will influence the quality of the outcomes of the estimation process; numbers will come out of the estimation models, but how good are they? (Abran 2009)

1.3 A posteriori estimation models

Software engineers as well as managers who are using a posteriori estimation models should also be aware of the quality of these a posteriori estimation models Figure 1. These estimation models are typically being built using data from completed projects, that is, when all of the inputs are known with certainly, some with nominal descriptions such as the development platform, some quantified using measurement methods such as actual lines of code, or functional size of the software delivered (Abran 2009) .

The inputs to these a posteriori models have some certainties: they have been measured very accurately; however, this does not guarantee that the outcomes of the estimation will have the same ‘certainty’. This is certainly not the typical case with the a posteriori models currently available in software engineering (Abran 2009) .

Figure 2: Typical Context of A posteriori Estimation Model

Estimation is indeed a very immature domain of knowledge in software engineering where most of the technical estimation techniques and models proposed to practitioners have never been verified independently on past projects; and for many of the models that have been built with past projects, most still have a fairly low degree of accuracy in their estimation.

The performance of such estimation, using the criteria from academia to assess the a posteriori estimation models is quite far from the management expectations; for instance, the typical expectation for a good estimation model in the literature is that an a posteriori model produce estimates that are within the range of (20% percent for (80% percent of the projects used as inputs to built these models (Abran 2009) .

Furthermore, a number of estimation models are proposed to the industry without even have been built and verified against past completed projects. Even though they include a lot of numbers, most of them are based strictly on unverified and undocumented intuitive guesses, often referred to as ‘expert’s opinions’.

1.4 The Confusion use of a priori and a posteriori Context

Many estimation models are built and based on data from past projects; this corresponds to an 'a posteriori' context; however, these models are used typically in an 'a priori' context and early in the development life cycle. However, there is confusion in some published studies as well as some used estimating tools like ONTOCOM, COTS, and COCOMO about the concept of a priori and a posteriori contexts, Figure 3 illustrates the confusion use of a priori throughout a posteriori context.

Furthermore, few independent studies of a number of the a posteriori estimation models have indicated that they typically performed fairly poorly, and this in a context where all inputs to these models did not have any uncertainty associated with them. Can it be reasonable expected that these same a posteriori models, together with inputs that are themselves mere guestimates', (Abran 2009).

Figure 3: The confusion use of A priori Estimation throughout A posteriori Context.

1.5 Estimation Process of A priori Model

The estimation process is an important part of the planning process. It is used to derive the project plan: like process, environment, workers in the project, and project quality.

Software cost estimation model estimate the total effort and schedule based on the effort estimation process.

Abran in his book (Abran 2009) , list estimation process with the following steps:

· Identification of the inputs to specific project to be estimated

· Utilization of a posteriori models as simulation models.

· Adjustment process to take into account variables and information not included in the simulation process

· Identification uncertainty factors and risk assessment.

· Decision making at the project and portfolio levels.

· Feedback and improvement to the a priori estimation process.

‘A high-level view of the estimation process is presented in Figure 4, with its inputs and output. This estimation process can be further decomposed into two major sub-processes: a productivity simulation sub-process and an adjustment sub-process.

The productivity simulation sub-process includes a productivity simulation model which takes as input Measures of Resources, Process and Products and provides as an output Simulation Results. The adjustment sub-process takes the simulation results as input, together with information on uncertainty factors and risk assessment results and it provides as output the Outcome of the full estimation process’ (Abran 2009) .

Figure 4: Estimating Process (Abran 2009)

(Kitchenham, Lawrence et al. 2002) has listed some of the reasons that affected the accuracy of estimations in industry:

· Estimators in industry assume their estimates are poor may be because there have been few empirical studies of actual estimation processes.

· We are not aware of any published data that record the contemporary estimates used when projects were undertaken.

· For example, Hughes (1997) investigated how people in industry construct estimates, but he did not present any information about how accurate they were.

· Empirical studies are usually based on demonstrating the value of some algorithmic estimating method or data-intensive tool (for examples, see Boehm, 1981; Kemerer, 1987; Sheppard and Schofield, and 1997). Thus, it is easy for estimators in industry to believe that if they do not use algorithmic models or data-intensive estimation processes their estimates will be inaccurate.

There are two models to measure the estimate accuracy that are popular in the cost estimation community, these models are:

· The mean magnitude relative error (MMRE)

MMRE = [image: image4.png] where n is the number of projects

· The Pred (25) statistics: Pred (25) is the proportion of project estimates within 25% of the actuals. For example, if Pred (25) is 0.60, then 60% of the estimates are within 25% of the actuals.

2 Algorithmic and Non-Algorithmic Cost modeling

2.1 Algorithmic Cost Modeling: The algorithmic methods are based on mathematical models that produce cost estimation; algorithmic models may be analytical or empirical.

2.1.1 Non-Linear Regression Model: A model based on historical cost information that relates some software independent variable (usually its size) to the project cost factors used. An estimate is made and the model predicts the effort required. Cost is estimated as a mathematical function of product, project and process attributes whose values are estimated by project managers using a non linear function such as the exponential function:

Effort = A × sizeB × M

where A is an organization-dependent constant, B reflects the effort for projects and M is a multiplier reflecting product, process and people attributes.

The product attribute most commonly used for cost estimation is code size; but they use different values for A, B and M. The equation does not need to be exponential.

2.1.2 Linear Regression Model: Linear regression models are easy to understand and use. Linear regression technique is often selected over more complex estimation techniques such as analogy-based and neural network techniques which have not been shown to better explain the size-effort relationship in software projects on the types of data sets available for such studies.

A linear model of the relationship between effort and size is represented by the following formula:.

Y (effort in hours) = Size x Unit cost + A

· Size = measured, for example, in number of Function Points (FP)

· Unit Cost = number of hours per Function Point (Hours/FP)

A = can be interpreted either as the fixed cost in hours, or the error term in the model In terms of units, this equation gives then (when function points are used as size units):

Y (effort) = (FP x Hours)/FP + hours = hours

2.1.3 Quadratic Models: used for more complex shapes of models: Y (Effort) = A + Bx + Cx2

2.2 Non-Algorithmic Cost Modeling: The Non-algorithmic methods are based on analytical models that produce cost estimation.

4. A priori and A posteriori Estimating Techniques

a. A priori estimating techniques

The following estimating techniques are considered to be used in a priori context (in addition all of the a priori techniques in this paper are non-algorithmic.

· Average Method: This method averages two or more of the estimates prepared for the project using the other methods. The initial choice of estimating methods is made by the Project Manager and the Independent Estimator. Then, some or all of the estimates are averaged, again based on the expertise of the Project Manager and the Independent Estimator

· CA-Estimacs Method: This method is based on a commercial software tool, CA-Estimacs 7.0, that queries the user for project characteristics and applies information from a historical database to develop an estimate. The tool has not been calibrated with the history of the corporate projects; estimates are made based on the database supplied with the tool. The estimate is expressed both in hours and in function points. The input questions vary according to whether the project is client/server, object-oriented, real-time, information engineering, maintenance or generic. The independent estimator answers the questions of the tool after consulting with the project manager. The independent estimator helps the project manager to answer the questions consistently.

· Comparison Method: This method compares the target project to other completed projects that were similar in scope and type. A reference project is chosen, and its actual hours are used as a basis for the target project estimate.

· Proportion Method: This method uses estimates or actual from one or more phases of an existing project. Then, the current estimate is generated by extrapolating to the total development hours using a standard distribution percentage (such as 3–6% for vision and strategy, 12–18% for business systems design, and 3–7% for integration).

· Widget counting Method: This method identifies widgets (repeated characteristics of system development) for the project, counting the number of each and assigning a complexity factor. Past history is used to suggest the number of hours required to produce each widget. The widget estimates are summed. Then, effort for supporting tasks is added to the widget estimate to determine total project hours. Predefined widgets include design, test plans, code, code reviews, unit tests and test reviews.

· Expert Judgments: Non-algorithmic method; this method involves consulting one or more experts. The experts provide estimates using their own methods and experience. Expert-consensus mechanisms such as Delphi technique will be used to resolve the inconsistency in the estimates.

The Delphi technique works generally as follows:

a. The coordinator presents each expert with a specification and a form to record estimates.

b. Each expert fills in the form individually (without discussing with others) and is allowed to ask the coordinator questions.

c. The coordinator prepares a summary of all estimates from the experts (including mean or median) on a form requesting another iteration of the experts’ estimates and the rationale for the estimates.

d. Repeat steps 2 and 3 in as many rounds as appropriate.

A modification of the Delphi technique is proposed by Boehm and Fahquhar

· Nelson Model :gives a linear model for estimating the effort needed for a software development project

E =a0 [image: image6.png]ixi

Here, the ai, i= 0… n are constants, and xi, i = 1,… , n, denote the factors that impact the effort needed.

b. A posteriori estimating techniques

The following estimating techniques are considered used in a posteriori context. In addition a posteriori techniques in section 5.2.1 and 5.2.2 are considered as algorithmic, while the techniques in section 5.2.3 in this paper are considered as non-algorithmic.

5. The Beginnings of software Cost Estimation Models(A posteriori and Algorithmic).

The late 1970s was a high point of new models such as SLIM (Putnam and Myers 1991), Checkpoint, PRICE-S, SEER and COCOMO. The majority of these researchers started working at the same time on developing models of cost estimation. They all faced the same problems like: software grew in size and in complexity, making it very difficult to estimate accurately the cost of software development.

Table 1 presents a summary of the parameters used and activities covered by four models: SLIM, Checkpoint, PRICE-S and SEER-SEM.

		Group

		Factor

		SLIM

		Checkpoint

		PRICE-S

		SEER-SEM

		Size Attributes

		Source Instructions

		·

		·

		·

		·

		

		Function Points

		·

		·

		·

		·

		

		OO-related metrics

		·

		·

		·

		·

		Program

Attributes

		Domain

		·

		·

		·

		·

		

		Complexity

		·

		·

		·

		·

		

		Language

		·

		·

		·

		·

		

		Reuse

		·

		·

		·

		·

		

		Reliability

		UD

		UD

		·

		·

		Computer

Attributes

		Resource Constraints

		·

		UD

		·

		·

		

		Platform instability

		UD

		UD

		UD

		·

		Personnel

Attributes

		ability

		·

		·

		·

		·

		

		Stability

		UD

		UD

		UD

		UD

		

		Experience

		·

		·

		·

		·

		Project

Attributes

		Tools and Techniques

		·

		·

		·

		·

		

		Breakage

		·

		·

		·

		·

		

		Schedule Constraints

		·

		·

		·

		·

		

		Process Maturity

		·

		·

		UD

		·

		

		Team consistency

		UD

		·

		·

		·

		

		Security Issues

		UD

		UD

		UD

		·

		

		Multisite Development

		UD

		·

		·

		·

		Levels in life cycle

		Inception

		·

		·

		·

		·

		

		Elaboration

		·

		·

		·

		·

		

		Construction

		·

		·

		·

		·

		

		Maintenance

		·

		·

		·

		·

		Activities

Covered

		Inception

		·

		·

		·

		·

		

		Elaboration

		·

		·

		·

		·

		

		Construction

		·

		·

		·

		·

		

		Transition and Maintenance

		·

		·

		·

		·

Table 1: Factors Explicitly Considered by various Cost Models (Boehm and Abts 2000)

UD (Undefined): indicates that it was not possible to determine from the available literature whether a corresponding factor is considered in a given model.

i. Recent Models of software Cost Estimation (A postiriori and Algorithmic).

		Measure of Software Size

		A posteriori/Algorithmic Model

		Effort

		Line of Code(LOC)

		Walston-Felix Model

· Produced by IBM-FSD Model, 1977

· Used by IBM to estimate programs

· Some statistical concerns

		E = 5.2(KLOC)0.91

		

		Bailey-Basili Model

· Produced by Bailey-Basili, 1981

· Statistical analysis of factors and size.

		E = 5.5+0.73(KLOC)1.16

		

		Boeing Model (simple)

· Produced by Black et al., 1977

· Similar to COCOMO, but simpler

· Out of use

· Poor estimates

		E = 3.2(KLOC)1.05

		

		Doty Model for KLOC > 9

· Produced by Herd 1977

· Extended the SDC Model

· Problems with stability

		E = 5.288(KLOC)1.047

		Function Point (FP)

		Albrecht and Gaffney Model

		E = -13.39 + 0.0545(FP)

		

		Kemerer Model

		E = 60.62 + 7.728(FP)

		

		Matson, Barnett & Mellichamp Model

		E = 585.7 + 15.12(FP)

Table 2: A posteriori Model /Algorithmic

ii. Recent Models of software Cost Estimation (A postiriori and Non-Algorithmic).

· Analogy Costing: this technique is applicable when other projects in the same application domain have been completed. The cost of a new project is estimated by analogy with these completed projects.

· Parkinson’s Law: the work expands to fill the time available. The cost is determined by available resources rather than by objective assessment. If the software has to be delivered in 12 months and five people are available, the effort required is estimated to be 60 person months.

· Pricing to Win: the software cost is estimated to be whatever the customer has available to spend on the project; the estimated effort depends on the customer’s budget and not on the software functionality.

However, when detailed information is lacking it may be the only appropriate strategy: the project cost is agreed on the basis of an outline proposal and the development is constrained by that cost; a detailed specification may be negotiated or an evolutionary approach used for system development.

· Top-down: start at the system level and assess the overall system functionality and how this is delivered through sub-systems, Usable without knowledge of the system architecture and the components that might be part of the system. Takes into account costs such as integration, configuration management and documentation. It can underestimate the cost of solving difficult low-level technical problems (Wieczorek 2001).

· Bottom-up: Start at the component level and estimate the effort required for each component. Add these efforts to reach a final estimate, Usable when the architecture of the system is known and components identified; this can be an accurate method if the system has been designed in detail; it may underestimate the costs of system level activities such as integration and documentation (Wieczorek 2001).

6. The Strengths and the Weaknesses of a posteriori Cost Estimation Models:

(Dillibabu and Krishnaiah 2005), (Sommerville 2004), reviewed the literature and presented the major software cost estimation models with their strengths and weaknesses, see Table 1.

		Models

		Strengths

		Weaknesses

		Algorithmic Model,

		Objective, repeatable results, analogy formula, efficient, good for sensitivity analysis & objectively calibrated to experience

		Subjective inputs, calibrated to past, not to the future & assessment of exceptional circumstances,

 Algorithms are suitable for specific software development

		Expert Judgment

		Assessment of representativeness, interactions, exceptional circumstances, Relatively cheap estimation method. Can be accurate if experts have direct experience of similar systems

		No better than the expertise of the individual participants, biases & incomplete recall. Very inaccurate if there are no experts, sometimes questionable; may not be consistent.

		Analogy

		Based on representative experience,

Accurate if project data available.

		Impossible if no comparable
project has been tackled. Needs systematically maintained cost database. Similar projects may not exist; historical data may not be accurate.

		Parkinson’s

Law

		Correlates to some experience, often win the contract

		May reinforce poor practices,

System is usually unfinished

		Pricing to win

		Often gets the contract

		Generally produces large overruns

		Top-down, Albrecht and Gaffney, 1983

		System level focus and efficient, Require minimal project detail, Faster and easier than bottom-up method

		Less detailed basis. perform the estimate early in the life cycle

		Bottom-up, Albrecht and Gaffney, 1983

		More detailed basis and more stable

		May overlook system level cost & requires more effort. Difficult to perform the estimate early in the life cycle

Table 1: Cost Estimation Models: Strengths and Weaknesses (Dillibabu and Krishnaiah 2005)

References

Aaby., A. (2007). "Software: A Fine Art. Creative Commons Attribution-NonCommercial License,." Lecture Notes.

Abran (2009). "Software Functional Size Book." University Du Quebec , Ecole Du Technology Superior , Montreal, Canada. Draft Version.

Bankman, I. N. (2000). "Handbook of medical imaging: processing and analysis " Published by Academic Press, ISBN 0120777908, 9780120777907 chapter 20(Google Book).

Boehm (1981). "Software Engineering Economics." Prentice Hall PTR, Upper Saddle River, NJ.

Boehm, Brown, et al. (1976). "quantitative evaluation of software quality." International Conference on Software Engineering, Proceedings of the 2nd international conference on Software engineering(2nd):592-605, http://portal.acm.org.

Boehm, B. and C. Abts (2000). "Software Development Cost Estimation Approaches – A Survey1." University of Southern California.

Boehm, B. W. (1978). "Characteristics of software quality." Amsterdam New York: North-Holland Pub. Co.; American Elsevier.

Dillibabu, R. and K. Krishnaiah (2005). "Cost estimation of a software product usingCOCOMO II.2000 model – a case study." International Journal of Project Management , elsevier: 297-307.

Dromey, R. G. (1995). "A model for software product quality." IEEE Transactions on Software Engineering, vol. 21, no 2, p. 146-162.

Firesmith., D. G. (2003). "Common concepts underlying safety, security, and survivability engineering. ." Technical Report CMU/SEI-2003-TN-033, Software Engineering Institute.

Fitzpatrick, R. (2001). "The Software Quality Star: A conceptual model for the software quality curriculum " Dublin Institute of Technology http://www.se-hci.org/bridging/interact/Fitzpatrick.pdf.

Grady and Robert (1992). "Practical Software Metrics for Project Management and Process Improvement." Englewood Cliffs (NJ), USA: Prentice Hall, 282 p.

ISO/IEC-9126 (2004). "Software Engineering - Product Quality - Part 1: Quality Model. 9126-1, Geneva (Switzerland): International Organization for Standardization,."

J. E. Gaffney, J. and R. D. Cruickshank (1992). A general economics model of software reuse. Proceedings of the 14th international conference on Software engineering. Melbourne, Australia, ACM.

Jacobson, I., G., Booch, et al. (1999). "The Unified Software Development Process." Boston (MA), USA: Addison-Wesley Professional.

Jensen (1983). "An improved macrolevel software development resource estimation model." 5th ISPA Conference April 1983: 88-92.

Jones (1997). "Applied Software Measurement." McGraw Hill.

Kaur, J., S. Singh, et al. (2008). "Comparative Analysis of the Software Effort Estimation Models." PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY VOLUME 36.

Kitchenham, Lawrence, et al. (2002). "An empirical study of maintenance and development estimation accuraccy." The Journal of Systems and Software, Elsevier Science Inc 64: 57-77.

Kitchenham, B. and S. L. Pfleeger (1996). "Software Quality: the Elusive Target." IEEE Software, vol.13, no 1, p. 33-43. vol. 13(no 1): p. 12-21.

McCall, Richards, et al. (1977). "Factors in Software Quality." USA: US Rome Air Development Center Reports, US Department of Commerce Volumes I, II, and III.

Mukhopadhyay, T. and S. Kekre (1992). "Software Effort Models for Early Estimation of Process Control Applications" IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 18, NO. 10, P. 915-924

Nelson, E. (1966). "Management Handbook for the Estimation of Computer Programming Costs." Systems Development Corporation.

Park (1988). "The Central Equations of the PRICE Software Cost Model, 4th COCOMO Users." Group Meeting.

Putnam and Myers (1991). "Measures for Excellence: Reliable Software on Time, within Budget." Prentice Hall Professional Technical

Putnam, L. H. and W. Myers (1991). "Measures for Excellence: Reliable Software on Time, within Budget." Prentice Hall Professional Technical

Simperl and Tempich (2005). "ONTOCOM: A Cost Estimation Model for Ontology Engineering." Book chapter, Springer Berlin Heidelberg

Sommerville, I. (2004). "Software Engineering." Pearson Addison Wesley 7th edition (Chapter 26).

Wieczorek, I. (2001). "Improved Software Cost Estimation. A Robust and Interpretable Modelling Method and a Comprehensive Empirical Investigation." Ph.D. Theses in Experimental Software Engineering 7(Fraunhofer IRB Verlag).

Communicativeness

I/O volume

I/O Rate

Access Control

Access Audit

Storage Efficiency

Execution Efficiency

Traceability

Completeness

Accuracy

Error Tolerance

Consistency

Conciseness

Instrumentation

Expandability

Generality

Self-Descriptiveness

Modality

Machine-Independence

SW System independence

Comms. Commonality

Data Commonality

Interoperability

Portability

Reusability

Flexibility

Testability

Maintainability

Reliability

Correctness

Efficiency

Integrity

I

Usability

Product Transition

Product Operation

Product Revision

Augment ability

Conciseness

Legibility

Structuredness

Self-Descriptive

Communicativeness

Accessibility

Device Efficiency

Accountability

Consistency

Robustness Integrity

I

Completeness

Accuracy

Self-Contentedness

Device Independent

Reliability

Efficiency

Usability

Testability

Understandability

Modifiability

Portability

Maintainability

As-is utility

General Utility

Input Guest mates Procedure

New Measurement Design

(Software Size)

A priori Estimating

(Efforts)

Goodness

 Information

A priori Estimating Context

Uncertainty of Risks

Range of Fixed Price Contract on

Time

Budget

&

Level of Accuracy

A posteriori Estimating Context

Certainty of Risks

Range of Fixed Price Contract on

Time

Budget

&

Low of Accuracy

Input Parameters from

Completed or in completed Projects

Measurement Design

(Software Size)

A posteriori Estimating

(Efforts)

A priori Estimating Context

Certainty of Risks

Range of Fixed Price Contract on

Time

Budget

&

Expert judgements

Input Parameters from

completed or in complete projects

New Measurement Design

(Software Size)

A posteriori Estimating

(Effort)

Audit Report

Reliability

Productivity Simulation Model

Simulation Results

Uncertainty Factors:

High Project Assumptions (e.g.: Project Drivers)

Risks Assessment

Measures

Adjustment

Process

Confidence

Report

Estimation Outcomes

Resource

Process

Product

1

Appendix II-F

A Standards-Based Model for the Specification of System Design and Implementation Constraints

Abstract

The European standards series for the aerospace industry (ECSS) include the software design and implementation (D&I) constraints as one of sixteen non-functional requirements for the embedded and real time software. Design and implementation (D&I) constraints are typically described at the system and software levels and within the ECSS standards, there are numbers of concepts and terms used to describe various types of candidate D&I constraints. This paper collects and organizes these concepts into a generic standards-based reference model of the requirements at the software level. The structure of this reference model is based on the generic model of software functional requirements proposed in the COSMIC – ISO 19761, in that way allowing the measurement of the functional size of such requirements implemented through software.

Keywords

Design and implementation constraints (D&I), Non functional requirements – NFR, Functional size, COSMIC – ISO 19761, ECSS International Standards, Software Measurement and SWEBOK Guide (ISO 19759).

1 Introduction

 Non-functional requirements (NFR) play a critical role in system development, including as selection criteria for choosing among alternative designs and ultimate implementations. NFR may also have a considerable impact on project effort, and should be taken into account for estimation purposes and when comparing project productivity.

 Typically, these non functional requirements are described at the system level, and not at the software level, and there is no consensus yet on how to describe and to measure such system NFR. In practice, NFR may be viewed, defined, interpreted, and evaluated differently by different people, particularly when they are stated briefly and vaguely
 ADDIN EN.CITE

[1-3]
. It is challenging to take the NFR into account in software estimation and software benchmarking: the NFR have received less attention in the software engineering literature and are definitely less well understood than other costs factors [3]. Without measurement, it is challenging to take NFR as quantitative inputs into an estimation process and productivity benchmarking.

 In the practice, the requirements are initially addressed typically at the system level
 ADDIN EN.CITE

[4-7]
 as either high-level system functional user requirement (system-FUR) or high level system non-functional requirements (system-NFR); such high level requirements must typically next be detailed and allocated to functions which may be implemented in either or both hardware and software, as software FUR (software-FUR) for instance.

 For example, a system-FUR will describe what are the required functions needed in a system, while a system-NFR will describe how the required functions must behave in a system [8-10]; in the software requirements engineering step, such system-NFR may next be detailed and specified as software-FUR to allow a software engineer to develop, test and configure the final deliverables to system users.

 “Functional” refers to the set of functions the system (including the software) is to offer, while "non-functional" refers to the manner in which such functions are performed. Functional user requirements (FUR) are typically phrased with subject or predicate constructions (i.e. noun/verb) such as: "The system design must include some of the software components to implement various parts/features of the system device". Non-functional requirements (NFR) are typically phrased with adverbs or modifying clauses, such as: “The system design must highly reuse existing software components behaviours that implement various parts/features of the system design".

 Within the ECSS European standard for the aerospace industry
 ADDIN EN.CITE

[11-14]
 and the SWEBOK Guide [15], a number of concepts are provided to describe various types of candidate design and implementation (D&I) constraints at both the system, software and hardware levels. However, these standards vary in their views, terminology and coverage of D&I requirements.

 Currently, there exists no generic model for the identification and specification of software-FUR for implementing system D&I constraints (system-NFR) from the various views documented in international standards and in the literature. Consequently, it is challenging as well to measure these D&I constraints-related software-FUR and to take them into account quantitatively for estimation purposes.

 The motivation of this research project is to contribute to better define, describe and measure some of the NFR inputs required for adequate a priori cost estimation of software projects. The measurement scope in this paper is to identify separately all functionality allocated to D&I constraints for embedded and real time software, whether software has yet to be built or it has already been delivered.

 The focus of this paper is on a single type of NFR that is, system D&I constraints. This paper reports on the work carried out to define an integrated view of software-FUR for system D&I constraints on the basis of international standards, and on the use of the generic COSMIC – ISO 19761 [15] model of software-FUR to measure their functional size.

 This paper is organized as follows. Section 2 presents the structured view of software functional user requirements (software-FUR) in ISO 19761. Section 3 identifies the standards describing D&I constraints requirements. Section 4 presents a standard-based definition of a generic model of requirements for software to implement system D&I constraints. Section 5 presents a measurement example. Finally, a discussion is presented in section 6.

2 A generic View of Software-FUR in ISO

 In the collection of ISO standards, it is specified in the ISO 14143-1 [16] that a functional size measurement method must measure the software functional user requirements (FUR). In addition, ISO 19761 – COSMIC [15] proposes a generic model of software-FUR that clarifies the boundary between hardware and software. Fig. 1 illustrates the generic flow of data from a functional perspective from hardware to software. From this generic model of software functional requirements in Fig. 1 the followings can be observed:

· Software is bounded by hardware. In the so-called “front-end” direction (i.e. center in Fig. 1), software used by a human user is bounded by I/O hardware such as a mouse, a keyboard, a printer or a display, or by engineered devices such as sensors or relays. In the so-called “back-end” direction (i.e. right-hand side of Fig. 1), software is bounded by persistent storage hardware like a hard disk and RAM and ROM memory.

· The software functionality is embedded within the functional flows of data groups. Such data flows can be characterized by four distinct types of data movements. In the “front end” direction, two types of movements (ENTRIES and EXITS) allow the exchange of data with the users across a ‘boundary’. In the “back end” direction, two types of movements (READS and WRITES) allow the exchange of data with the persistent storage hardware.

· Different abstractions are typically used for different measurement purposes. In real-time software, the users are typically the engineered devices that interact directly with the software that is the users are the ‘I/O hardware’. For business application software, the abstraction commonly assumes that the users are one or more humans who interact directly with the business application software across the boundary; the ‘I/O hardware’ is ignored.

As an FSM method, COSMIC is aimed at measuring the size of software based on identifiable FUR. Once identified, those requirements are allocated to hardware and software from the unifying perspective of a system integrating these two “components”. Since COSMIC is aimed at sizing software, only those requirements allocated to the software are considered in its measurement procedure.

[image: image1.emf]

Fig. 1. Generic flow of data groups through software from a functional perspective in COSMIC – ISO 19761

3 Identification of Standards for Describing D&I Constraint Requirements

 This section presents a survey of the D&I constraints views, concepts and terms in the ECSS standards. This section identifies which standards currently address some aspects of the software-FUR derived from system requirements. The expected outcome is the identification of the various elements that should be included in the design of a standard-based framework for modelling software-FUR for system D&I constraints.

3.1 D&I Requirements in ECSS standards

 The elements of D&I constraints are dispersed in various system views throughout different ECSS standards and are expressed as either – see Fig. 2:

· System D&I constraints functional user requirements (system D&I constraints-FUR)

· System D&I constraints non-functional requirements (system D&I constraints-NFR)

[image: image2.emf]

Fig. 2. Mapping system-requirements into software-FUR for D&I constraints

 The identification of D&I constraints in the ECSS standards is derived from an analysis of the requirements on the system and its functions. All system requirements are allocated to a set of D&I constraints. Moreover, hardware configuration D&I constraints, software configuration D&I constraints, and human operations D&I constraints shall be subsequently identified from these requirements. The supplier shall transform the requirements for the software D&I constraints into an architecture that describes its top-level structure and identifies the software components, ensuring that all the requirements for the software D&I constraints are allocated to its software components and later refined to facilitate detailed design.

 The software architectural design shall describe the D&I constraints within:

· The static architecture (i.e. decomposition into software elements such as packages and classes or modules),

· The dynamic architecture, which involves active objects such as threads, tasks and processes, and

· The mapping between the static and the dynamic architecture, and the software behaviour.

The software D&I constraints requirements shall produce the physical model of the software components described during the software architectural design. For embedded software D&I constraints the following information should be included:

· Type of D&I constraints participating to the real time behaviour, described by stating its logical and physical characteristics with D&I,

· Scheduling types with D&I (e.g. single or multi-threads),

· Scheduling model with D&I (e.g. pre-emptive or not, fixed or dynamic priority based),

· Analytical model with its D&I (e.g. rate monotonic scheduling, deadline monotonic scheduling),

· Tasks identification and D&I priorities,

· Communication and synchronization with D&I,

· Time management through D&I,

· The dependencies of a component should be described by listing the D&I upon its use by other components.

 The ECSS-ESA document [17] covers the tailoring of the ECSS-E-40 requirements for the European Space Agency (ESA) software projects. In this document, the software design includes a program design, pseudo-code and flow charts. Software D&I may specify that the processing has to be performed using a particular algorithm and program parameters.

 Table 1 presents a list of concepts and vocabulary used in ECSS to describe system related D&I constraints requirements and ECSS mentions that such requirements may be implemented in software.

Table 1. D&I constraints view and vocabulary in ECSS

		Key view

		Concepts and Vocabulary

		Design and implementation (D&I) constraints applicable to various components of the system product

		· Software architectural D&I constraints on modules, classes, packages.

· Software detailed D&I constraints on tasks and processes.

· Physical model of the software D&I constraints described during the software architectural design.

· The logical model of the D&I constraints described during the software architectural design.

 While conducting the survey of all the D&I constraints concepts and terms described in the ECSS-E-40 and ECSS-Q-series and in ECSS-ESA as the integrated standard for ECSS-E and ECSS-Q, it was observed that:

· These various D&I constraints are described differently, and at different levels of detail within the system design;

· The D&I constraints within the system design are dispersed throughout the various documents: there is, therefore, no integrated view of all types of candidate D&I constraints requirements;

· There is no obvious link for the D&I constraints requirements in ECSS-ESA as the integrated standard and between all other ECSS standards that describe D&I constraints requirements within their system design or within their different ECSS standards contents.

· With regards to European standards, software D&I constraints requirements can be measured within:

· Static architectural D&I constraints, including modules, classes and packages. and

· Dynamic architectural D&I constraints including tasks and processes.

· It is also to be noted that ECSS does not propose a way to measure such D&I constraints requirements and, without measurement, it is challenging to take such an NFR as a quantitative input to an estimation process or in productivity benchmarking.

3.2 D&I Constraints Requirements in the SWEBOK Guide

 According to the SWEBOK Guide (ISO 19759) [15] ; “Software requirements express the needs and constraints placed on a software product that contribute to the solution of some real-world problem". ISO 19759 mentions explicitly D&I constraints as non-functional requirements in the “Software Requirements’ knowledge area (KA) and implicitly within the context of activities for design in the ‘Software Design’ KA.

 Software design is defined in ISO 19759 [15] as both “the process of defining the architecture, components, interfaces, and other characteristics of a system or component" and “the result of [that] process". Furthermore software design in the software engineering life cycle is defined as activities in which software requirements are taken as inputs for analysis in the software design phase.

 The architectural design is also described by ISO 19759 as the point at which the requirements process overlaps with software or systems design and illustrate how challenging it is to cleanly decouple the two tasks; software architecture is “a description of the subsystems and components of a software system and the relationships between them”. This means that ISO 19759 is describing the D&I constraints in the Software Requirements KA and these D&I constraints should be reflected on the software design in the Software Design KA.

 Moreover, software design consists of two activities that fit between software requirements analysis and software construction:

· Software architectural design (sometimes called top level design): describing software’s top-level structure and organization and identifying the various components.

· Software detailed design: describing each component sufficiently to allow for its construction.

 ISO 19759 is decomposing the software D&I constraints into processes, tasks, and threads and deals with related efficiency, atomicity, synchronization, and scheduling issues.

 Table 2 presents a list of concepts and vocabulary used in the ISO 19759 to describe system related D&I constraints. The SWEBOK Guide specifies that such requirements be implemented in software design.

Table 2. ISO 19759 views and vocabulary for D&I constraints

		Key view

		Concepts and Vocabulary

		Software requirements express the needs and constraints placed on a software product that contribute to the solution of some real-world problem

		· Software architectural D&I constraints on modules, classes, packages or top level structure.

· Software detailed D&I constraints on tasks and processes.

· Physical model of the software D&I constraints described during the software architectural design.

· The logical model of the software D&I constraints described within the software architectural design.

· Static and dynamic D&I constraints with system design.

 While conducting the survey of all the D&I constraints concepts and terms within system design described in ISO 19759, it was observed that:

· These various D&I constraints are described with system design elements differently, and at different levels of details;

· Measures can be used to assess or to quantitatively estimate various aspects of a software design’s size, structure, or quality.

· Most measures that have been proposed generally depend on the approach used for producing the design.

· These measures are classified into two broad categories:

· Function-oriented (structured) D&I constraints measures: the D&I constraints structures obtained mostly through functional decomposition; generally represented as a structure chart (sometimes called a hierarchical diagram) from which various measures can be computed.

· Object-oriented D&I constraints measures: the design’s overall structure is often represented as a class diagram, from which various measures can be computed. Measures on the properties of each class’s internal content can also be computed.

4 A Standard-Based Generic Model of Software-Fur for D&I Constraints Requirements

 This section identifies first the terminologies and concepts of D&I constraints dispersed throughout ECSS series and ISO 19759 and assembles next these terminologies into a proposed model of D&I constraints software-FUR, through the use of the generic model of FUR proposed in the COSMIC model. This COSMIC-based generic model can then become a framework for describing the software-FUR from system D&I constraints based on ECSS and ISO 19759.

4.1 D&I Constraints Requirements and Functions to be specified

 The types of system D&I constraints can be derived from the physical and logical models; these models include:

· The static design and its D&I constraints,

· The dynamic design and its D&I constraints,

· The mapping between both the static and the dynamic design and its D&I constraints views,

· The behaviour of the system design before and after implementation.

The functions to be specified (and corresponding entities to be measured) are divided into external and internal constraints functions - see table 4. The Internal D&I constraints refer to the expected logical D&I constraints that could appear from the system behaviour, while the External D&I constraints refer to the expected physical D&I constraints.

Table 3. Software D&I functions

		Internal D&I constraints

		Internal D&I constraints on module(s)

		· Module(s)

· Process(s)

· Channel(s)

· Event(s)

		External D&I constraints

		External D&I constraints on channels

		· Module(s)

· Process(s)

· Channel(s)

· Event(s)

4.2 Relationships across Function Types

This section identifies the function types and functional relationships in the software-FUR for system D&I constraints requirements.

		D&I constraints functional type 1: Internal D&I constraints on modules.

· Any Process 1 to n can send and receive at least one data group to/from any internal channel or events in the same design module.

· Any internal channel or events can send and receive at least one data group to/from any other process in the same design module.

Fig. 3. Internal D&I constraints on modules

		D&I constraints functional type 2: External D&I constraints on channels

· Any process in module 1or n can send and receive at least one data group to/from any external channel.

· Any external channel can send and receive at least one data group to/from any other process the different modules.

Fig. 4. External D&I constraints on channels

4.3 Model of Function Types Relationships

 Using the COSMIC model for graphical representation, Figure 5 presents an overview of the relationships between the functional types in the D&I constraints software-FUR. More specifically:

· The sub-model of internal D&I constraints functional type 1 can be used to specify (and to measure the functional size of) the internal D&I constraints for the processes and the internal channels or events from the received/send data movements from/to any other processes and internal channels in the same module – See figure 5.

· The sub-model of external D&I constraints on channels functional type 2 can be used to specify (and to measure the functional size of) the external D&I constraints for the external channels from the received/send data movement from/to any other processes in different modules – See figure 5.

[image: image3.emf]

Fig. 5. COSMIC generic model of D&I constraints requirements allocated to software

4.3.1 A Generic D&I constraints requirements services in the Service Oriented Architecture in system-FUR view

This model is referred here as a generic model of software-FUR for system D&I constraints.

· The internal D&I constraints in modules (functional type 1 in Fig. 5): Each module may have many processes, each process may interact using an internal channel or event (for example, through an RPC or remote procedural call) for an internal connection; in this case the processes should be considered as a storage device for such kind of information before data marshalling between the other processes - see also Fig. 6

· The external D&I constraints on channels (functional type 2 in Fig. 5): many modules may interact with each other through their own processes. In this case many processes in different modules may use external channels (for example: through an RMI or a remote method invocation) for external connection - see also Fig. 6

· Process 1.1 starts sending to process 1.n in module 1 (for example process 1.1 represents function and process 1.n represents a sub-function in the same module).

· Process n.1 should start sending to interact process n.n in a module 2 (for example process n.1 represent function n and process n.n represent sub-function in the same module).

[image: image4.emf]

Fig. 6: Generic D&I constraints requirements allocated to software

4.3.2 A Generic D&I constraints requirements data movements of data exchanges between components in Software-FUR view

Fig. 7 and 8 below shows the possible flows of data movements between components, the exchanged of data between components could be direct or indirect exchange movements of data movements to provide the functional user with services.

Fig. 7 shows each process or (component) in the figure could be exchange the data directly to provide services to the functional user, so in this case for the measurements uses, we identify Entry and/or Exit data movements.

Fig. 8 shows indirect exchange of data between a processes which means that a service in one process writes data which is subsequently read by another process. In this situation identify a Write data movement in the next process and a Read data movement by the latter.

[image: image5.emf]

		Fig.7: Direct Data Movements

		 Fig. 8: Indirect Data Movements

5 Discussion

 This paper has introduced a procedure for specifying and measuring the software requirements for the internal and external D&I constraints needed to address the system non functional requirements for system D&I constraints.

 The main contribution of this paper is the proposed generic Model of software-FUR for system D&I constraints based on ECSS, ISO and IEEE standards. This generic model can be considered as a kind of reference model for the identification of system D&I constraints requirements and their allocation to software functions implementing such requirements. System requirements allocated to hardware have not been addressed in this paper.

 Since the structure of the generic model is based on the generic model of software adopted by the COSMIC measurement standard, the necessary information for measuring their functional size is readily available and an example has been presented of a specific instantiation of this reference model.

 The model is independent of the software type and the languages in which the software FUR will be implemented. The proposed generic D&I constraints model (i.e. reference model) provides:

· A specification model for each type, or all types, of D&I constraints requirements.

· A specification measurement model for each type, or all types, of D&I constraints requirements.

 Future work includes documentation of the traceability of the elements of this generic model to the detailed elements of the ECSS standard as well verification of this generic model to ensure full coverage of design and implementation constraints requirements.

 There is no claim that this current version of the generic model of design and implementation constraints requirements covers the full domain of D&I constraints as found in practice and as discussed in the software design literature outside of standards. Discussions with group of experts are necessary to ensure its usefulness across various communities and to develop a consensus on further refinements of such a generic model which could be proposed eventually as a candidate for standardization.

References

1.
L. Chung and J. Cesar Prado Leite, "On Non-Functional Requirements in Software Engineering", in "Conceptual Modeling: Foundation and Applications, Essays in Honor of John Mylopoulos", Springer, 2009.

2.
L. Chung, B. Nixon, E. Yu, J. Mylopoulos, "Non-Functional Requirements in Software Engineering", Springer, Heidelberg,1999.

3.
J. Mylopoulos, L. Chung, B. Nixon, "Representing and Using Nonfunctional Requirements: A Process-Oriented Approach", IEEE Transactions on Software Engineering, vol. 18, pp. 483-497, 1992.

4.
M. Shaw, "Larger Scale Systems Require Higher-Level Abstractions: Software Specification and Design", IEEE Computer Society, vol. 14, pp. 143-146, 1989.

5.
A. M. Davis, "Software requirements: objects, functions, and states"; Prentice-Hall, Inc., 1993.

6.
I. Jacobson, G., Booth, J.,Rumbaugl, "Excerpt from the Unified Software Development Process: The Unified Process", IEEE Software, vol. 16, pp. 96-102, 1999.

7.
K. Wiegers, "Software Requirements", 2nd edition, Microsoft Press, 2003.

8.
G. Roman, "A Taxonomy of Current Issues in Requirements Engineering", IEEE Computer, pp. 14-21, 1985.

9.
B. W. Boehm, "Characteristics of software quality", Amsterdam, New York, North-Holland Pub. Co. , American Elsevier, 1978.

10.
A. I. Antón, "Goal identification and refinement in the specification of software-based information systems", PhD Thesis, Georgia Institute of Technology, 1997.

11.
ECSS-E-40-Part-1B, "Space Engineering: Software - Part 1 Principles and Requirements", European Cooperation for Space Standardization,The Netherlands, 2003.

12.
ECSS-E-40-Part-2B, "Space Engineeing: Software- part 2 Document Requirements Definitions", European Cooperation for Space Standardization, The Netherlands, 2005.

13.
ECSS-Q-80B, "Space product assurance: Software product assurance", European Cooperation for Space Standardization, The Netherlands, 2003.

14.
ECSS-E-ST-10C, "Space engineering: System engineering general requirements", Requirements & Standards Division Noordwijk, The Netherlands, 2009.

15.
ISO-19759, "Software Engineering Body of Knowledge (SWEBOK)", IEEE Computer Society, & ISO, 2004.

16.
ISO/IEC-14143-1, "Information Technology - Software Measurement - Functional Size Measurement Part 1: Definition of Concepts", International Organization for Standardization, Geneva (Switzerland), 1998.

17.
ECSS-ESA, "Tailoring of ECS: Software Engineering Standards for Ground Segments, Part C: Document Templates", ESA Board of Standardization and Control (BSSC), 2005.

External Channels

Process 1

in Module n

Process1

in Module 1

Internal Channels or Events

Process n

Process 1

Appendix II-K

Early Identification, Specification and Measurement of Software Requirements Derived From Human Factors Requirements

In the system requirements phase, the focus is often on detailing and documenting the system functional requirements and on their allocation to the software and hardware parts of the system being designed. The non-functional requirements, in contrast, are often captured only generically at a fairly high level and they do not include the levels of details necessary for the system engineers to allocate yet such non functional requirements as specific functionalities to be handled either by the software or the hardware, or a specific combination of both. The European ECSS series of standards for the aerospace industry includes Human factors requirements as one of sixteen types of non functional requirement (NFR) for embedded and real time software. A number of Human factors related concepts are dispersed throughout the ECSS standards to describe at varying levels of details the various types of candidate Human factors requirements at the system, software, and hardware levels. This paper organizes these dispersed Human factors concepts into a generic standards-based reference model of system Human factors requirements. The availability of this generic, and detailed, reference model can facilitate the early identification and specification of the system Human factors-NFR and their detailed allocation as specific Human factors functions to be handled by the specified allocation to hardware or software or in a specific combination of both. In the absence of such a generic and detailed model, such NFR requirements are typically handled in practice much later on in the software development life cycle when at system testing time, users and developers find out that a number of Human factors requirements have been overlooked and additional work has to be expanded to implement them. The approach adopted in this research for the structure of this reference NFR model is based on the generic model of software functional requirements proposed in the COSMIC – ISO 19761 model, thereby allowing the measurement of the functional size of such Human factors requirements allocated to software and taking them into account for estimations purposes.

Keywords: Software Engineering, Non functional requirement (NFR), Human factors Requirements, ECSS International Standards, Human factors Measurement, COSMIC – ISO 19761.

1. Introduction

In practice, during the system requirements gathering phase, the focus is often on the functional requirements of the system, while non functional requirements are often captured by system analysts at a very global level: detailing these non functional requirements is typically left to be handled (i.e. defining them at the necessary level of detail) much later by system designers in the system architecture and design phases. Non functional requirements (NFR) play a critical role in system development. They may have a considerable impact on project effort, and should be taken into account for estimation purposes and in comparing project productivity.

In the system analysis phase, the NFR are typically described at the system level and not at the software level. As yet, there is no consensus on how to describe and measure system NFR. In current practice, they may be viewed, defined, interpreted, and evaluated differently by different people in the later project phases, particularly when they are stated vaguely and only briefly in the system requirements phase
 ADDIN EN.CITE
[1-3]
 . It is challenging, therefore, to take them into account in software estimation and software productivity benchmarking, particularly as they have received less attention in the software engineering literature and are definitely less well understood than other cost factors [4] . Of course, measurement is essential if NFRs are to be taken as quantitative inputs to an estimation or productivity benchmarking process but not much work has been published to date on how to measure such NFR.

In practice, requirements are initially typically addressed at the system level , either as high level system functional user requirements (system FUR) or as high level system non functional requirements (system NFR)
 ADDIN EN.CITE
[5-7]
. The latter must usually be detailed, allocated, and implemented in hardware, software (as software FUR - “soft-FUR” for instance – see Figure 1) or in a specific combination of hardware or software.

To distinguish between these types of requirements, system FUR describes the required functions in a system, while system NFR describes how the required functions must behave in a system. In the software requirements engineering step, system NFR can then be detailed and specified as software FUR, to allow a software engineer to develop, test, and configure the final deliverables to system users.

The term "functional" refers to the set of functions the system (including the software) has to offer, while the term "non functional" refers to the manner in which such functions perform. An FUR is typically phrased with a subject and a predicate (i.e. noun/verb), such as: "The system must print 5 reports". NFR, by contrast, are typically phrased with an adverb or modifying clause, such as: "The system will print 5 reports quickly," or "The system will print 5 reports with a high degree of Human factors".

[image: image5.emf]

Fig. 1 Mapping system FUR and NFR to software FUR

In the ECSS (European Cooperation on Space Standardization) standards for the aerospace industry
 ADDIN EN.CITE
[8-13]
, a number of concepts are provided to describe various types of candidate Human factors requirements at the system, software, and hardware levels. However, these standards vary in their views, terminology, and coverage of data definition and database.

Currently, there exists no generic model for the identification and specification of software FUR for implementing system Human factors requirements (system NFR) based on the various views documented in international standards and in the literature. Consequently, it is challenging to measure these Human factors-related software FUR, and take them into account quantitatively for estimation purposes.

This paper focuses on a single type of NFR, that is, system Human factors requirements, and reports on the work carried out to define an integrated view of software FUR for system Human factors NFR based on international standards, including the use of the generic COSMIC – ISO 19761 [14] model of software FUR.

The paper is organized as follows. Section 2 presents the related work. Section 3 presents the view of software FUR in ISO 19761. Section 4 identifies the standards that describe Human factors requirements. Section 5 presents a standards-based definition of a generic model of requirements for software to implement system Human factors NFR. Section 6 presents a standard generic measurement model of software FUR using a service-oriented architecture (SOA) for system data definition and database. Section 7 presents the sizing of a reference instantiation of the generic model of Human factors software FUR. Section 8 presents a measurement example. Finally, a discussion and our conclusion are presented in section 9.

2. Related work

In the literature, there are some early works on NFR in systems/software engineering. For instance, in 1993, Chung [15] presented one of the initial attempts to capture knowledge in this domain. His work was followed by that of Mylopoulos et al. [16], who suggested viewing all requirements as goals, each goal being an umbrella for related functional and non functional requirements. Chung et al. [17] and Andrew [18] aimed to make NFR more quantitative in nature, while Andrew [18]observed that there are often gaps between the stakeholder vision and requirements representation. Chung et al. [17] proposed a taxonomy for NFR indicating that it is unrealistic to expect designers and developers to incorporate an entity that they cannot readily identify. While taxonomies aim to be inclusive of the entire set of entities in question, these authors suggested in [17] that a one- or two-level taxonomy would suffice initially, and that there are over 161 identifiable types of NFR.

Paech et al. [19] recommended that functional requirements (FR), NFR, and architecture be tightly co developed and addressed in a coherent and integrated manner, suggesting that NFR be decomposable into more refined NFR and additional FR, as well as architectural decisions.

Moreira et al.[20] , Rosa et al. [21] , Park et al.[22] , and Glinz [23] have proposed new methods for classifying NFR early in the software development process, while Kaiya et al. [24] have presented a method to identify stakeholders and their NFR preferences by using use case diagrams of existing systems.

More recently, Mylopoulos [16] promoted Goal-Oriented Requirements Engineering, and suggested a specific solution involving the establishment of an Agent-Oriented Software Development Method, called the Tropos project, which covers not only the requirements, but also the design phases, and addresses the design of high-variability software for applications such as home care software and business process design.

More recently still, Kassab et al. [25-26] proposed some solutions for an NFR framework: for example, a sequence of systematic activities with a view to early consideration of identifying, specifying, and separating FR from NFR, as well as a discussion on NFR prioritization and risk assessment. They also report in [26] on an initial solution for determining the functional size of NRF based on "Soft-Goal" concepts, using the COSMIC method, to deal with the problem of quantitatively assessing the NFR modelling process early in a project.

In parallel with the work of researchers, the software industry has been working on the description of NFR, in particular through international standardization bodies, such as the European Cooperation on Space Standardization (ECSS), the Institute of Electrical and Electronics Engineers (IEEE), and the International Organization for Standardization (ISO).

In the ECSS standards for the aerospace industry
 ADDIN EN.CITE
[8-13]
 , a system Human factors requirement is identified as one of sixteen types of NFR, and the research reported here focuses strictly on these NFR. However, these standards vary in their views, terminology, and coverage of Human factors requirements. Currently, there exists no generic model for the identification and specification of software FUR for implementing system Human factors requirements (system NFR) based on the various views documented in these international standards and in the literature. Consequently, it is challenging to measure the system Human factors-related software FUR, and take them into account quantitatively for estimating software projects.

In the work reported here, preference has been given to the views, concepts, and vocabulary most widely used by the industry, as evidenced in its standardization infrastructure, rather than those in the academic literature. Similarly, for the structuring and description of models of FUR and for measurement purposes, the measurement views, concepts, and terminology from the standardization infrastructure have been adopted, rather than those in the literature.

This paper focuses on a single type of NFR, that is, system Human factors requirements, and reports on the work carried out to define an integrated view of software FUR for system Human factors NFR on the basis of international standards, including the use of the generic COSMIC – ISO 19761 [14] model of software FUR as the template for the description of measurable functional requirements , thereby allowing the measurement of the functional size of such requirements allocated to software and taking them into account for estimations purposes. This approach has been used to build other types of NFR, such as design and implementation constraints, configuration, interfaces and Human factors requirements
 ADDIN EN.CITE
[27-33]
.

3. A generic ISO view of software FUR

It is specified in ISO 14143-1 [34] of the collection of ISO standards that a functional size measurement (FSM) method must measure software FUR. In addition, ISO 19761 – COSMIC [14] proposes a generic model of software FUR that clarifies the boundary between hardware and software. Figure 2 illustrates the generic flow of data from a functional perspective from hardware to software. From this generic model of software functional requirements in Figure 2, we observe the following:

· Software is bounded by hardware. In the so-called “front-end” direction (i.e. the left-hand side in Figure 2), software used by a human user is bounded by I/O hardware, such as a mouse, a keyboard, a printer, or a display, or by engineered devices, such as sensors or relays. In the so-called “back-end” direction (i.e. the right-hand side of Figure 2), software is bounded by persistent storage hardware, like a hard disk, and RAM and ROM memory.

· The software functionality is embedded within the functional flows of data groups. Such data flows can be characterized by four distinct types of data movements. In the “front end” direction, two types of movements (ENTRIES and EXITS) allow the exchange of data with the users across a ‘boundary’. In the “back end” direction, two types of movements (READS and WRITES) allow the exchange of data with the persistent storage hardware.

· Different abstractions are typically used for different measurement purposes. In real-time software, the users are typically the engineered devices that interact directly with the software; that is, the users are the ‘I/O hardware’. For business application software, the abstraction commonly assumes that the users are one or more humans who interact directly with the business application software across the boundary; i.e. the ‘I/O hardware’ is ignored.

 [image: image1.emf]

Fig. 2 Generic flow of data groups through software from a functional perspective in COSMIC – ISO 19761

As an FSM method, COSMIC is aimed at measuring the size of software based on identifiable FUR. Once identified, those requirements are allocated to hardware and software from the unifying perspective of a system integrating these two “components”. Since COSMIC is aimed at sizing software, only requirements allocated to the software are currently considered in its measurement procedure.

4. Identification of standards describing system Human factors requirements

This section presents a survey of the Human factors-related views, concepts, and terms in the ECSS standards
 ADDIN EN.CITE
[8-13]
. This section identifies which standards currently address aspects of the software FUR derived from system Human factors FUR and NFR – see Fig. 3.

 The expected outcome is the identification of the various elements that should be included in the design of a standards-based framework for modelling software FUR for system data definition and database. The elements of Human factors are dispersed in various system views throughout various ECSS standards and are expressed as either:

· System Human factors functional user requirements (system Human factors FUR) or

· System Human factors non-functional requirements (system Human factors NFR)

[image: image6.png]

Fig. 3: Mapping system requirements into software FUR for Human factors

4.1. ECSS views and concepts for Human factors requirements

The European Cooperation for Space Standardization (ECSS) is an organization which works to improve standardization within the European space sector. The ECSS frequently publishes standards targeted to the contractors working for the European Space Agency (ESA). The ECSS standards series
 ADDIN EN.CITE
[8-13]
 includes a number of Human factors requirements at the system level. It can be observed that ECSS focuses on the system-FUR for the early development phases while the System NFR are typically discussed within the context of later development phases such as the evaluation or testing phases.

[35] Standard forms part of the System engineering branch of the Engineering area of the ECSS system. As such it is intended to assist in the consistent application of human factors engineering to space products by specifying normative provisions for methods, data and models to ensuring of the safety and performance, and problem avoidance in space system and payload operations. Moreover, This Standard belongs to the human factors discipline, as identified in ECSS-E-ST-10, and defines the human factors engineering and ergonomics requirements applicable to elements and processes.

According to these European standards [35] the application of human factors (that in the space domain includes ergonomics) to systems design enhances effectiveness and efficiency, improves human working conditions, and diminishes possible adverse effects of use on human health, safety and performance. Applying ergonomics to the design of systems involves taking account of human capabilities, skills, limitations and needs.

A space system design will consider human factors and especially the two following main aspects from the very beginning of the conceptual phase. Firstly the human being will be correctly taken into account in the design of the hardware, software and operations products and secondly the corresponding organization and training will be addressed in parallel to the design of the hardware and software.

For instance, ECSS standards provide a set of requirements for a human centered design process applied to a space system compatible with the ISO Standard 13407:1999: Human centered design processes for interactive systems. The incorporation of the human centered design into the overall project structure shall be initiated during the feasibility phase to avoid risk of late and costly redesign or incorrect human integration.

Human factors considerations relevant to meeting system performance and having safety implications [35] include:

· Human performance (e.g., human capabilities and limitations, workload, function allocation, hardware and software design, decision aids, environmental constraints, and team versus individual performance)

· Training (e.g., length of training, training effectiveness, retraining, training devices and facilities, and embedded training)

· Staffing (e.g., staffing levels, team composition, and organizational structure)

· Personnel selection (e.g., minimum skill levels, special skills, and experience levels)

· Safety and health aspects (e.g., hazardous materials or conditions, system or equipment design, operational or procedural constraints, biomedical influences, protective equipment, and required warnings and alarms).

Table 1. Human factors view and vocabulary in ECSS

		Key view

		Concepts and Vocabulary

		human factors considerations relevant to meeting system performance and having safety implications

		· Performance of the human factors (Cognitive ergonomics)

· Human capabilities and knowledge profiles and boundaries such as:

· Workload

· Function Allocation

· Hardware and Software Design

· Decision Aids

· Team versus Individual Performance

· Training

· Length of Training,

· Training Effectiveness

· Retraining

· Training Devices and Facilities

· Embedded Training

· Staffing

· Staffing Levels,

· Team Composition

· Organizational Structure

· Personnel Selection

· Minimum Skill Levels

· Special Skills

· Experience Levels

· Safety of the human factors (Environmental ergonomics)

· Mechanical Safety

· Electrical Safety

· Environmental Safety

· Operational Safety

· Psycho‐physiological Safety

· Human interface factors

· Visual, audio or tactile cues and information on interface characteristics and task performance,

· Interface customization, and

· Identification of safety related controls.

5. A standards-based definition of a generic model of software FUR for system Human factors requirements

This section maps the Human factors terminologies found throughout the ECSS standards into a proposed model of software-FUR for system Human factors-NFR, through the use of the generic model of FUR proposed in the COSMIC model in Fig. 3. This COSMIC-based generic model can then become a framework for describing the Human factors requirements (i.e. from system-NFR to software-FUR) based on the ECSS standards.

5.1 Software system Human factors functions to be specified

Based on a synthesis of the various definitions, the key views and concepts presented in chapter 3 on software-FUR for system Human factors-NFR are presented in Table 2. It is important to note that Table 2 includes software, data, and hardware components which are interconnected.

Table 2: system Human factors functions that may be allocated to software

		human factors types

		System human factors functions

		Cognitive ergonomics (performance of human factors)

		· Human capabilities

· Training

· Staffing

· Personal selection

		Environmental of ergonomics

(Safety of human factors)

		· Mechanical safety

· Electrical safety

· Operational safety

· Psychology and physiological safety

· Environmental safety

		Human interface factors

		· Interface characteristics and task performance

· Interface customization

· Identification of safety related controls

5.2 Identification of the functional types in the Human factors

In this section, the system human factors functional types are identified based on the findings of the human factors functions, as discussed in the previous section. Human factors requirements allocated to software-FUR are divided into three types of requirements: cognitive ergonomics, environmental of ergonomics and human factor interface requirements; each type in this division has its own functionality. The proposed human factors functional types are illustrated in COSMIC modeling views, in order to propose a COSMIC reference model of human factors requirements allocated to software based on the proposed COSMIC modeling view.

Table 3: Functional types for human factors functions that may be allocated to software

		System human factors types

		System human factors functional types

		System human factors functions

		Cognitive ergonomics (performance of human factors)

		Functional type 1

Cognitive ergonomics

(CE)

		· Human capabilities function (HCF)

· Training function (TF)

· Staffing function (SF)

· Personal selection function (PSF)

		Environmental ergonomics

(Safety of human factors)

		Functional type 2

Environmental ergonomics

(EE)

		· Mechanical safety function (MSF)

· Electrical safety function (ESF)

· Operational safety function (OSF)

· Psychology and physiological safety function (PSF)

· Environmental safety function (ESF)

		Human interface factors

		Functional type 3

Human interface factors

(HIF)

		· Interface characteristics and task performance function (ICTPF)

· Interface customization function (ICF)

· Identification of safety related controls function (ISRCF)

5.3 System Human factors Model using COSMIC-SOA (Functional service level)

In this section, the system Human factors model using COSMIC-SOA is built in Figure 4 to elaborate on the model to show a more complete picture, which includes showing what is involved in instantiating the modeled entities in practice – for more details, see
 ADDIN EN.CITE
[36-39]
 and describes the detailed measurement model, which can be used to specify and measure the functionality at service level.

There are many definitions of a service-oriented architecture (SOA), such as: a flexible set of design principles used during systems development and integration [36]; a process including the definition of the architecture, components, modules, interfaces, and data for a system to satisfy specified requirements [38-39].

The system Human factors model using COSMIC-SOA in Figure 4 provides a loosely integrated suite of services that can be used in multiple business domains to measure the functional size of software FUR in an SOA environment [36]. In this model, the term “service” refers to a set of related software FUR functions as well as separating functions into distinct units, or services.

These services communicate with each other by exchanging data in a well-defined, shared format, or by coordinating an activity between two or more services [36].

The COSMIC-SOA guideline offers three types of data movements architecture in (Table 4) based on [36]:

Table 4: COSMIC-SOA guideline offers three types of data movement’s architecture [36]

		COSMIC-SOA exchange messages: An application requiring commonly used information from another application sends a request to the service of the application that can handle the request, or the application may call upon its own services. Such calls are also called ‘messages’. Each message may consist of one or more data movements [36].

		[image: image7.png]

		COSMIC-SOA intermediary services: When a functional process of an application service in application A requires data that are available via an application service in application B, the former application service calls upon a functional process of the intermediary service. This service functionality is also needed by other applications in the overall SOA framework, as it may itself be realized in the form of a utility service [36]

		[image: image8.png]

		COSMIC-SOA data exchanges: The data movements between components in the same layer, i.e. between peer components (where a component may be an application or a service). It shows direct and indirect exchanges of data between components. If components exchange data directly, then, for measurement purposes, the measurer will identify Exit and/or Entry data movements, as per the data movements between service A (SA) and service B (SB). An indirect exchange of data between components means that a service in one component writes data in a storage device, which is subsequently read by a service in another component. the measurer will identify a Write data movement in service SA and a Read in service SB.

		

5.4 COSMIC reference architectural model using an SOA for system Human factors

Fig. 4 illustrates a COSMIC reference architectural model using an SOA for system Human factors requirements. This model is built based on the proposed Human factors functions and functional types and the role of the COSMIC-SOA explained in [36].

[image: image2.emf]

Fig. 4 COSMIC reference architectural model of system Human factors requirements allocated to software

6 Sizing a Reference Instantiation of the Generic Model of Software FUR for System Human factors Requirements

The specification of software FUR for system Human factors requirements in any specific project is a specific instantiation of the proposed generic model described in Figure 4. When the software specification document is at the level of the movement of data groups, then these functional requirements can be directly measured using the COSMIC measurement rules. The measurement example presented next is illustrative of a reference instantiation of the generic COSMIC specification and measurement model of software FUR for system Human factors requirements in an SOA context for a single data group for all the identified possible flows of data groups.

 The measurement example in this section explains how to use the proposed reference model of system Human factors requirements to size a hypothetical framework composed of all of the kinds of software FUR described in the framework see-figure 5.

[image: image3]

Figure 5: instantiation of the generic COSMIC specification and measurement model of

software FUR for system Human factors

6.1 Measurement of exchange services for system Human factors functionality using COSMIC-SOA

There are 12 functionality types of system Human factors requirements, interacting with their own services, for the measurement of exchange services for system Human factors using COSMIC-SOA, see Figure 5. According to COSMIC-SOA, each functional process may interact with its own service by sending and receiving data movements (i.e. Entry and Exit – see table 4).

The COSMIC-SOA measurement results for the interactions between the system Human factors functional processes with its own service processes. The measurement result for this operation is equal to 4 CFP for each interaction between each functional process with its own functional service process”. The total measurement result for the 12 functionality types is equal to 48 CFP (see figure 5).

6.2 Measurement of intermediary services for system Human factors services using COSMIC-SOA

In this section - and based on Figure 5, when a functional process service requires data that is available via another functional process service, the former calls upon a functional process of the intermediary service. According to the COSMIC-SOA model of measurement for system operations, the types of data movements for using the intermediary service must be Entry and Exit – see table 4.

The COSMIC-SOA measurement results for intermediary services based on figure 5. The instantiation of a single data group for all possible flows of the data groups identified above, and listed as a data movement example for one intermediary service: for this requirement the measurement results are equal to 8 CFP. The total measurement results are equal to 528 CFP.

6.3 Measurement of the direct and indirect data movements for system Human factors services using COSMIC-SOA

This section is based on Figure 5 which illustrates the possible flows of data between components in the same layer, i.e. between peer components (where a component may be an application or a service). This section shows direct and indirect exchanges of data between components – one or both forms of which may be involved when services communicate. If components exchange data directly, the measurer will identify the Exit and/or Entry data movements, as per the data movements between service A and service B. An indirect exchange of data between components means that a service in one component writes data which are subsequently read by a service in another component. In this situation, the measurer will identify a Write data movement in the former component and a Read data movement in the other.

Specifically, The instantiation of this operation. The total measurement results are equal to 24 CFP (see figure 5).

7 Discussion and Conclusion

Human factors requirements are typically described initially as non functional requirements at the system level, and system engineers must subsequently apportion these system requirements very carefully as either software or hardware requirements to conform to the Human factors requirements of the system. Within the ECSS standards, a number of views and concepts are provided to describe various types of candidate Human factors requirements at the system, software, and hardware levels.

 This paper has introduced a standards-based framework for specifying and measuring software requirements for the functions needed to address the system’s Human factors requirements.

 The main contribution of this paper is our proposed generic model of software FUR for system Human factors requirements. This generic model can be considered as a kind of reference model for the identification of system Human factors requirements, and can be used for their allocation to software functions implementing such requirements. System requirements allocated to hardware have not been addressed in this paper. Since the structure of the generic model is based on the generic model of software adopted by the COSMIC measurement standard, the necessary information for measuring their functional size is readily available, and an example has been presented of a specific instantiation of this reference model.

 Specifically, the generic model of Human factors requirements presented in this paper is based on:

· The ECSS standards for the description of the NFR for system Human factors requirements ;

· The COSMIC measurement model of functional requirements.

The proposed specification and measurement model is independent of the software type and the languages in which the software FUR will be implemented. The proposed generic model for Human factors requirements (i.e. reference model) provides:

· A specification model for each type, or all types, of Human factors requirements: for example, the requirements to be allocated to software for the system data items and the product data schema.

· A measurement model for each type, or all types, of Human factors requirements.

The generic model of system Human factors requirements proposed in this paper can provide system engineers with:

· An integrated reference view of system Human factors requirements that they can use to select the Human factors requirements necessary for a specific system to be developed (hardware-software-manual).

· A methodology to specify these Human factors NFR: with this reference model, beginners would not require years of training before being able to specify these at the levels of detail illustrated in the work reported in this paper.

· An integrated model to be used as an input to make decisions on which of these detailed Human factors NFR will be allocated to hardware, or software, or combinations of these for a specific context.

For software engineers, the proposed generic model of system Human factors requirements can also provide them with:

· A reference model that they can use to verify whether or not the system engineers have provided them with the right selection of system NFR-derived FUR, and at the necessary level of detail.

This means that this standard-based reference model can be used as a quality technique for the following:

· Verification of system Human factors requirements coverage and descriptions;

· As a technique, at the software requirements phase, to elicit such requirements, referred to as ‘both non functional requirements and emergent properties’ in the SWEBOK Guide – ISO19759 [40] to achieve this level of detailed inputs of Human factors requirements up front in the project life cycle (that is, at the software requirements phase, rather than much later, at the software testing phase..

The proposed reference model for Human factors requirements presents a way to measure these FUR with COSMIC – ISO 19761, to take them into account in FSM-based software estimation models, thereby avoiding late discovery of mandatory FUR that lead to budget overruns and missed deadlines.

 The measurement aspects presented in this paper have been limited to the system requirements allocated to software. It will be interesting in future work to investigate whether or not this measurement approach can be extended to all such requirements at the system level (that is, to all hardware-software-manual requirements, and not only to software requirements).

REFERENCES

1.
Noguera, M., et al., Ontology-driven analysis of UML-based collaborative processes using OWL-DL and CPN. Science of Computer Programming, 2010. 75(8): p. 726-760.

2.
Chung, L. and J. do Prado Leite, On Non-Functional Requirements in Software Engineering, in Conceptual Modeling: Foundations and Applications, A. Borgida, et al., Editors. 2009, Springer Berlin / Heidelberg. p. 363-379.

3.
Ma, W., L. Chung, and K. Cooper, Assessing Component’s Behavioral Interoperability Concerning Goals, in On the Move to Meaningful Internet Systems: OTM 2008 Workshops, R. Meersman, Z. Tari, and P. Herrero, Editors. 2008, Springer Berlin / Heidelberg. p. 452-462.

4.
Nary, S. An NFR-Based Framework for Establishing Traceability between Enterprise Architectures and System Architectures. 2006.

5.
Chung, L. and N. Subramanian, System and software architectures. Science of Computer Programming, 2005. 57(1): p. 1-4.

6.
Chung, L. and N. Subramanian, Adaptable system/software architectures. Journal of Systems Architecture, 2004. 50(7): p. 365-366.

7.
Yiqiao, W. Self-Repair through Reconfiguration: A Requirements Engineering Approach. 2009.

8.
ECSS-E-40-Part-1B, Space Engineering: Software - Part 1 Principles and Requirements. European Cooperation for Space Standardaization,The Netherlands, 2003.

9.
ECSS-E-40-Part-2B, Space Engineeing:Software-part 2 Document Requirements Definitions. European Cooperation for Space Standardaization, The Netherlands, 2005.

10.
ECSS-ESA, Tailoring of ECSS, Software Engineering Standards for Ground Segments, Part C: Document Templates. ESA Board of Standardization and Control (BSSC), 2005.

11.
ECSS-E-ST-10C, Space engineering: System engineering general requirements. Requirements & Standards Division Noordwijk, The Netherlands, 2009.

12.
ECSS-Q-ST-80C, Space Product Assurance: Software Product Assurance. Requirements & Standards Division Noordwijk, The Netherlands, 2009.

13.
ECSS-E-ST-70-31C, Space Engineering: Ground systems and operations -Monitoring and control data definition. Requirements & Standards Division Noordwijk, The Netherlands, 2008.

14.
ISO/IEC-19761, Software Engineering - COSMIC v 3.0 - A Functional Size Measurement Method. International Organization for Standardization, Geneva (Switzerland), 2003.

15.
Chung, K.L., “Representing and Using Non-functional Requirements for Information System Development: A Process Oriented Approach”,Ph.D. Thesis, also Tech. Rpt. DKBS-TR-93-1. Department of Computer Science, University of Toronto, 1993.

16.
John, M. Goal-Oriented Requirements Engineering, Part II. 2006.

17.
Chung, L., et al., Nonfunctional Requirements in Software Engineering. Kluwer Academic Publishing, 2000.

18.
Andrew, J., An Approach to Quantitative Non-Functional Requirements in Software Development. Proceedings of the 34th Annual Government Electronics and Information Association Conference, 2000.

19.
Paech, B., et al., Functional requirements, non-functional requirements and architecture specification cannot be separated -- A position paper. REFSQ, 2002.

20.
Moreira, A., J. Araujo, and I. Brito, Crosscutting Quality Attributes for Requirements Engineering

14th International Conference on Software Engineering and Knowledge Engineering, Ischia, Italy, 2002: p. 167-174.

21.
Rosa, N.S., P.R. Cunha, and J. F., “G.R.R.: ProcessNFL: A language for Describing Non-Functional Properties”. 35th HICSS, IEEE Press, 2002.

22.
Park, D. and S. Kang, Design Phase Analysis of Software Performance Using Aspect-Oriented Programming. 5th Aspect-Oriented Modeling Workshop in Conjunction with UML 2004, Lisbon, Portugal, 2004.

23.
Glinz, M., “Rethinking the Notion of Non-Functional Requirements”. 3rd World Congress for Software Quality, Munich, Germany, 2005.

24.
Kaiya, H., K. Osada, and Kayjiri, Identifying Stakeholders and Their Preferences about NFR by Comparing Use Case Diagrams of Several Existing Systems. IEEE Int. Conf. on Requirements Engineering (RE04), 2004: p. 112-121.

25.
Kassab, M., M. Daneva, and O. Ormandjieva., Towards an Early Software Effort Estimation Based on Functional and Non-Functional Requirements. International Conference on Software Process and Product Measurement (MENSURA), Amsterdam, The Netherlands, 2009.

26.
Kassab, M., et al., Non-Functional Requirements Size Measurement Method (NFSM) with COSMIC-FFP, in Software Process and Product Measurement, J.C.-G. Juan, et al., Editors. 2008, Springer-Verlag. p. 168-182.

27.
Abran, A. and K.T. Al-Sarayreh, Standards-Based Model for the Specification of System Design and Implementation Constraints 17th International Conference on European Systems and Software Process Improvements (EURO-SPI 2010), Industry track, Grenoble Institute of Technology, Grenoble, France, Sept. 2010, 2010.

28.
Abran, A. and K.T. Al-Sarayreh, Measurement of Software Requirements Derived from System Operations Requirements. 20th International Workshop on Software Measurement (IWSM 2010`), Stuttgart, Germany, 2010.

29.
Abran, A., K.T. Al-Sarayreh, and J.J. Cuadrado-Gallego, Measurement Model of Software Requirements Derived from System Portability Requirements 9th International Conference on Software Engineering Research and Practice (SERP 2010), Las Vegas, USA, 2010.

30.
Al-Sarayreh, K.T. and A. Abran. A Generic Model for the Specification of Software Interface Requirements and Measurement of Their Functional Size. in 8th ACIS International Conference on Software Engineering Research, Management and Applications, SERA 2010. 2010. Montreal, Canada.

31.
Al-Sarayreh, K.T. and A. Abran, Measurement of Software Requirements Derived from System Reliability Requirements 24th European Conference on Object-Oriented Programming (ECOOP 2010), Maribor, Slovenia, EU, 2010, 2010.

32.
Al-Sarayreh, K.T. and A. Abran, Specification and Measurement of System Configuration Non Functional Requirements 20th International Workshop on Software Measurement (IWSM 2010), Stuttgart, Germany, 2010.

33.
Al-Sarayreh, K.T., A. Abran, and J.J. Cuadrado-Gallego, A Standards-based Model for the Specification and Measurement of Maintainability Requirements. 22nd International Conference on Software Engineering and Knowledge Engineering (SEKE 2010), Redwood City, California, USA, 2010.

34.
ISO/IEC-14143-1, Information technology-Software measurement - Functional size measurement Part 1: Definition of concepts. International Organization for Standardization, Geneva (Switzerland),, 1998.

35.
ECSS-E-ST-10-11C, Space engineering: Human factors engineering Noordwijk, The Netherlands, European Cooperation for space standardization, 2008.

36.
COSMIC, The COSMIC Method v3.0.1, Guideline for Sizing SOA Software, v1.4. The Common Software Measurement International Consortium, MPC Review, 2010.

37.
OASIS, Reference Architecture for Service Oriented Architecture Version 1.0. OASIS ® 1993–2008, 2008.

38.
SoberIT:, Service-Oriented Architecture and Software Engineering. Seminar on Enterprise Information Systems by Software Business and Engineering Institute, Helsinki University of Technology, © 2008 Kari Hiekkanen

2008.

39.
OASIS-SOA, Reference Model for Service Oriented Architecture. http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=soa-rm, 2006.

40.
ISO-19759, Software Engineering Body of Knowledge (SWEBOK). IEEE Computer Society, 2004.

[image: image4.png]

System NFR

Software FUR

System FUR

System Human factors FUR

System Human factors NFR

Software FUR for Human factors

1

6

8

Appendix II-E

Software Specification Framework for System Adaptation and

Installation Requirements

Abstract— In the system requirements phase, the non functional requirements are often captured only generically at a fairly high level, and they do not include the levels of details necessary for the system engineers to allocate such non functional requirements as specific functionalities to be handled either by the software or the hardware, or a specific combination of the two. The European standards for the aerospace industry (ECSS series) include system adaptation and installations requirements as one of sixteen types of non functional requirements (NFR) for embedded and real-time software. A number of concepts are provided in the ECSS, ISO 9126 and IEEE standards to describe the various types of candidate adaptation and installation requirements at the system, software, and hardware levels. This paper collects and organizes these adaptation and installation-related descriptions into a generic model for the specification of software adaptation and installation requirements, and to measure their functional size for estimation purposes using the COSMIC ISO 19761 standard.

 Keywords - Adaptation and installation requirements; Non functional requirements (NFR); Functional size; International Standards; COSMIC – ISO 19761; Software Adaptation and installation measurement.

I. Introduction

Non functional requirements (NFR) play a critical role during system development, including as selection criteria for choosing among alternative designs and ultimate implementations. NFR may also considerably impact project effort, and should be taken into account for estimation purposes and when comparing project productivities. Typically, NFR are initially described at the system level, and there is no consensus yet on how to describe and measure them at the software level.

 In practice, NFR may be viewed, defined, interpreted and evaluated differently by different people [1], particularly when they are stated briefly and vaguely. NFRs can also be relative, since their interpretation and importance may vary, depending on the particular system being considered [2-3]. In addition, NFRs can often interact with one another: attempts to achieve one NFR, for example, can hurt or help the achievement of others [2, 4].

To achieve the system NFR described typically at a fairly high level, the system engineers must next specify what has to be allocated at either the hardware or at the software level. While a number of researchers are investigating the field of NFR, standards organizations have attempted over the years to identify lower levels of information in terms of requirements that must be implemented through hardware and software. In related work, the requirements are initially addressed typically at the system level
 ADDIN EN.CITE

[4-6]
, and as either high-level system functional user requirement (system-FUR) or high level system non-functional requirements (system-NFR); such high level requirements must typically next be detailed and allocated to specific-related functions which may be implemented in either or both hardware and software, as software FUR (Soft-FUR) for instance – see Figure 1.

Figure 1. Mapping system into software-FUR

 For example, a system-FUR will describe what are the required functions needed in a system, while a system-NFR will describe how the required functions must behave in a system and; in the software requirements engineering step, such system-NFR may next be detailed and specified as software-FUR to allow a software engineer to develop, test and configure the final deliverables to system users
 ADDIN EN.CITE

[7-9]
.

 "Functional" refers to the set of functions the system is to offer, while "non-functional" refers to the manner in which such functions are performed. Functional user requirements (FUR) are typically phrased with subject or predicate constructions, or noun/verb, such as: "The system must print 5 reports". Non-functional requirements (NFR) are typically phrased with adverbs or modifying clauses, such as: "The system will print 5 reports quickly" or "The system with print 5 reports with high reliability".

 Currently, there exists no generic model for the identification and specification of software adaptation and installation requirements from the various views documented in international standards and in the literature. Consequently, it is challenging as well to measure them and to take them into account quantitatively for estimation purposes.

 This paper is organized as follows. Section 2 presents a related work. Section 3 presents a generic view of software-FUR in ISO. Section 4 identifies the standards describing adaptation and installation requirements. Section 5 presents a standard-based definition of a generic model of a software adaptation and installation requirements. Section 6 presents the sizing of a reference instantiation of the generic model of adaptation and installation. Finally, a conclusion is presented in section 7.

II. Related work

In the literature, there are some published works on NFR in systems/software engineering. For instance, Mylopoulos [10] promoted Goal-Oriented Requirements Engineering, and suggested a specific solution involving the establishment of an Agent-Oriented Software Development Method, called the Tropos project, which covers not only the requirements, but also the design phases, and addresses the design of high-variability software for applications such as home care and business process design.

Some of the early works in the literature on NFR, such as Chung in 1993 [11], present the initial attempts to capture knowledge in this domain. His work was followed by that of Mylopoulos et al. [12], who suggested viewing all requirements as goals, each goal being an umbrella for related requirements, both functional and non functional. Chung et al. [2] and Andrew [13] aimed to make NFR more quantitative in nature, while Andrew [13] found that there are often gaps between the stakeholder vision and requirements representation. Chung et al. [14] proposed a taxonomy for NFR, indicating that it is unrealistic to expect designers and developers to incorporate an entity that they cannot readily identify. While taxonomies aim to be inclusive of the entire set of entities in question, these authors suggested in [14] that a one- or two-level taxonomy would suffice initially, and that there are over 161 identifiable types of NFR.

In parallel with the work of researchers, the software industry has been working on the description of NFR, in particular through international standardization bodies, such as the European Cooperation on Space Standardization (ECSS)
 ADDIN EN.CITE

[15-17]
, the Institute of Electrical and Electronics Engineers (IEEE) [18], and the International Organization for Standardization (ISO) [19].

In the ECSS standards for the aerospace industry [20], a system adaptation and installation requirement is identified as one of sixteen types of NFR, and the research reported here focuses strictly on these NFR. In addition, in the ISO 9126 [19] and IEEE 830 [18] standards, a number of concepts are provided to describe various types of candidate system adaptation and installation requirements at the system and software levels in the testing and evaluation processes.

In the work reported here, preference has been given to the views, concepts, and vocabulary most widely used by the industry, as evidenced in its standardization infrastructure, rather than those in the academic literature. Similarly, for the structuring and description of models of FUR and for measurement purposes, the measurement views, concepts, and terminology from the standardization infrastructure have been adopted, rather than those in the literature.

This paper focuses on a single type of NFR, that is, system adaptation and installation requirements, and reports on the work carried out to define an integrated view of software FUR for system adaptation and installation NFR on the basis of international standards, including the use of the generic COSMIC – ISO 19761 [21] model of software FUR as the template for the description of measurable functional requirements.

III. A generic view of software-fur in ISO

 In the collection of ISO standards, it is specified in the ISO 14143-1 [22] that a functional size measurement method must measure the software-FUR. In addition, ISO 19761 – COSMIC [21] proposes a generic model of software-FUR that clarifies the boundary between hardware and software. Figure 2 illustrates the generic flow of data from a functional perspective from hardware to software. From this generic model of software requirements in Figure 2 the followings can be observed:

· Software is bounded by hardware. In the so-called “front-end” direction (i.e. left-hand side in Figure 2) software used by a human user is bounded by I/O hardware such as a mouse, a keyboard, a printer or a display, or by engineered devices such as sensors or relays. In the so-called “back-end” direction (i.e. right-hand side of Figure 2), software is bounded by persistent storage hardware like a hard disk and RAM and ROM memory.

· The functional flow of data groups can be characterized by four distinct types of movement. In the “front end” direction, two types of movement (ENTRIES and EXITS) allow the exchange of data with the users across a ‘boundary’. In the “back end” direction, two types of movement (READS and WRITES) allow the exchange of data with the persistent storage hardware.

· Different abstractions are typically used for different measurement purposes. In real-time software, the users are typically the engineered devices that interact directly with the software that is, the users are the ‘I/O hardware’. For business application software, the abstraction commonly assumes that the users are one or more humans who interact directly with the business application software across the boundary; the ‘I/O hardware’ is ignored.

Figure 2. Generic flow of data groups through software from a functional perspective in COSMIC – ISO 19761

As an FSM method, COSMIC is aimed at measuring the size of software based on identifiable Functional User Requirements. Once identified, those requirements are allocated to hardware and software from the unifying perspective of a system integrating these two “components”. Since COSMIC is aimed at sizing software, only those requirements allocated to the software are considered.

IV. Identification Of Standards Describing Adaptation And Installation Requirements

This section presents a survey of the adaptation and installation-related views, concepts and terms in the ECSS
 ADDIN EN.CITE

[15-17, 20, 23-24]
, ISO 9126 [19] and IEEE-830 [18] standards. This section identifies which standards currently address some aspects of the software-FUR derived from system-NFR, specifically for the adaptation and installation software-FUR – see Figure 3. The expected outcome is the identifications of the various elements that should be included in the design of a standard-based framework for modelling software FUR for adaptation and installation requirements. In these standards, the elements of adaptation and installation are dispersed in various system views throughout different ECSS standards and are expressed as either:

· System adaptation and installation functional user requirements (system adaptation and installation-FUR)

· System adaptation and installation non-functional requirements (system adaptation and installation-NFR)

Figure 3. Mapping system into software-FUR for

 Adaptation and installation

A. ECSS: views and concepts for adaptation and installation

The ECSS standards of the European Space Agency [15-16] and [17] present the adaptation and installation as a set of NFRs for real-time and embedded software. In particular, the ECSS-E-40 [15] specifies that adaptation and installation requirements should be described or referenced; also [16] specifies that the supplier shall prepare the deliverable software product for its installation in the target platform or system environment as well as the resources and information to install shall be determined and available containing set-up activities. While [20] describes adaptation and installation requirements as adaptation data to specific installation. [24] identifies the adaptation data by making reference to all unique-to-site data contained in the released software as well as specifying all the instructions to build and install the software item, including:

· Procedures to regenerate executable software from the delivered source code

· Procedures to install the software in the target environment

· Procedures to verify the correct execution of the installation

· Adaptation data, security issues relevant to the installation.

While [17] mentions the adaptation and installation should be described through approaches, methods, procedures, resources and organization to install, commission, and check the operation of the equipment in its fixed operational environment.

 Moreover [24] describes the installation to be performed in accordance with the installation procedure and the ground computer equipment and supporting services for implementing the final system shall be selected according to the project requirements regarding installation requirements conditions. [20] Indicates to adaptation as resource reallocation between software, hardware and system environment.

 Table 1 illustrates the set of concepts and vocabulary which used In the ECSS standards to describe adaptation and installation.

Table 1: Adaptation and installation in the ECSS standards

		Key view

		concepts and vocabulary

		Adaptation and installation requirements are described using approaches, methods, procedures, resources and check the operation of the equipment in its fixed operational environment.

Adaptation and installation to the target platform, system environment, resources and information containing set-up activities.

		· System Environments (adaptation)

· Host-Target platform

· Memory Resources

· Storage resources

· Transmission resources

· I/O resources

· Software and Data Environments (installation)

· Registered Data Transfer

· Control Data Transfer

· Set Data Transfer with system resources

 While conducting this inventory of adaptation and installation concepts and terms described in the ECSS-E-40
 ADDIN EN.CITE

[15-16, 20]
 and ECSS-Q-80 [17, 24] series and in ECSS-ESA [23] as the integrated standard for ECSS-E and ECSS-Q, it was observed that:

· The adaptation and installation elements are dispersed throughout various parts, and there is therefore no integrated view of all types of candidate adaptation and installation;

· These various adaptation and installation elements are described differently, and at different levels of detail;

· There is no obvious guidance on how to measure the adaptation and installation as NFR.

B. IEEE: views and concepts for adaptation and installation

IEEE 830 [18] lists adaptation and installation requirements as one of the NFR type, IEEE defines adaptation and installation as requirements for any data or initialization sequences that are specific to a given site, mission, or operational mode. In particular, IEEE-830 mentions that the site or mission-related features should be modified to adapt the software to a particular installation, but does not provide guidance on how to describe and specify the adaptation and installation requirements; of course, it does not provide guidance on how to measure any of these NFR either.

C. ISO 9126: views and concepts for adaptation and installation

 The key view on adaptation and installation in the ISO 9126 [19] is from the perspective of the quality of the software product: adaptation and installation is presented as ‘sub quality characteristics’ from a portability, which are considered in ISO 9126 as a quality characteristic. The inventory of related concepts and vocabulary on software adaptation and installation is presented in Table 2.

Table 2: Adaptation and installation in the ISO 9126 standards

		Key view

		concepts and vocabulary

		software product is adapted to different specified environments

 software product installed in a specified environment

		· Adaptability of hardware, software and system environment.

· Adaptability of software data structures.

· Ease of software installation procedure

· Ease of setup retry when the software is already installed

A large number of measures are proposed in ISO 9126, but none addresses software FUR, only the adaptation and installation NFR of the software itself. However, nothing precludes the use of these concepts at the system level or looking at what functions must be performed at the software level (i.e. FUR allocation to software) to implement these system level NFR.

V. A standard-based definition of a generic model of adaptation and installation

 This section identifies first, and assembles next, the dispersed terminologies and concepts of adaptation and installation dispersed throughout ECSS, IEEE and ISO standards into a proposed model of adaptation and installation software-FUR – see Figure 3, through the use of the generic model of FUR proposed in the COSMIC model. This COSMIC-based generic model can then become a framework for describing the software adaptation and installation requirements (i.e. from system-NFR into software-FUR) based on ECSS.

A. Mapping the adaptation and installation views and concepts from standards

Table 3 presents the system adaptation and installation requirements that are present either as system requirements in the ECSS and IEEE standards or as adaptation and installation-related concepts in ISO 9126: each of these could be interpreted, and specified, at times as software FUR.

Table 3: Adaptation and installation in ECSS & ISO 9126

		System adaptation and installation requirements

		· Software Data Structure

· Registered Data Transfer

· Control Data Transfer

· Set Data Transfer with System Resources

· Operational Environment

· Localizing I/O Resources

· Host-Target Platform

· Memory Resources

· Storage Resources

· Transmission Resources

 Table 4 presents various typical procedures (leftt-hand side column) for system adaptation and installation requirements and corresponding software functions (right-hand side column) that may be specified to implement such procedures for the three types of system adaptation and installation requirements.

Table 4: System adaptation and installation requirements and related software functions

		System adaptation and installation Requirements

		Software functions

		System Software

Environment

		· Software Data Structure

· Registered Data Transfer

· Control Data Transfer

· Set Data Transfer with System Resources

		System Integrated

Environment

		· Operational Environment

· Localizing I/O Resources

		System Hardware Environment

		· Host-Target Platform

· Memory Resources

· Storage Resources

· Transmission Resources

B. Software adaptation and installation functions and function types to be specified

The adaptation and installation functions to be specified (and corresponding entities to be measured) are composed of ten functions that may be allocated to software adaptation and installation requirements; the specified functions are divided into three function types (and corresponding entities types) - see table 5.

Table 5: System adaptation and installation functions and functions types

		Function types

		Adaptation and installation functions

		Function Type 1

System Software

Environment (SSE)

		· Software Data Structure Function (SDSF)

· Registered Data Transfer Function (RDTF)

· Control Data Transfer Function (CDTF)

· Set Data Transfer with System Resources Function (SDTF)

		Function Type 2

System Integrated

Environment (SIE)

		· Operational Environment Function (OPEF)

· Localizing I/O Resources Function (IORF)

		Function Type 3

System Hardware Environment (SHE)

		· Host-Target Platform Function (HTPF)

· Memory Resources Function (MRF)

· Storage Resources Function (SRF)

· Transmission Resources Function (TRF)

C. COSMIC modelling views for function types of system adaptation and installation requirements

This section illustrates the COSMIC modelling views for the proposed function types of adaptation and installation requirements allocated to software-FUR.

1) COSMIC modelling view for function type 1: System Software Environment (SSE)

A COSMIC modelling view of the data movements for the system software environment (SSE) is illustrating in Figure 4, on the basis of this figure:

· FUR or a deviced engineered send and receive data groups to/from SDSF.

· SDSF sends and receives data groups to/from RDTF.

· RDTF, CDTF and SDTF send and receive data groups to connect their service functionalities with each other on function type 1 using intermediary services ().

· RDTF, CDTF and SDTF read data groups about other services from persistent storage and write their results as data movements to same persistent storage on the system.

· The intermediary services (shaded gray) for SDSF and SDTF from other adaptation and installation function types can be used.

Figure 4. System Software Environment: COSMIC modelling view

2) COSMIC modelling view for function type 2: System Integrated Environment (SIE)

A COSMIC modelling view of the data movements for the system Integrated environment (SIE) is illustrating in Figure 5, on the basis of this figure:

· OPEF and IORF send and receive data groups to connect their service functionalities with each other on function type 2 using intermediary services ().

· The intermediary services (shaded gray) for OPEF and IORF from other adaptation and installation function types can be used.

· The two intermediary services (shaded gray) which used in figure 4 and 5; each two from different figures are considered the same one.

Figure 5. System Integrated Environment: COSMIC modelling view

3) COSMIC modelling view for function type 3: System Hardware Environment (SHE)

A COSMIC modelling view of the data movements for the system Hardware environment (SHE) is illustrating in Figure 6, on the basis of this figure:

· TRF, HTPF, MRF and SRF send and receive data groups to connect their service functionalities with each other on function type 3 using intermediary services ().

· HTPF, MRF and SRF read data groups about other services from persistent storage and write their results as data movements to same persistent storage on the system.

· TRF send and receive data groups to connect their service functionalities with IORF on function type 2 using intermediary services ().

Figure 6. System Hardware Environment: COSMIC modelling view

As mentioned in this paper the intermediary service [25] used when a functional process of an application service in application A requires data that is available via an application service in application B, the former application service calls a functional process of the intermediary service, in this paper this symbol () used to represent the intermediary service – see Figure 7.

Figure 7.Application services and interconnecting

 intermediary service [25]

4) Consolidation of the functional relationships in the system adaptation and installation

 Figure 8 presents a consolidated view of the relationships between the three functions types in the system adaptation and installation, using the COSMIC model for graphical representation. More specifically:

· The sub-model of the adaptation and installation Function type 1 can be used to specify (and to measure the functional size of) the system software environment (SSE) (represented inside the boundary in Figure 8).

· The sub-model of the adaptation and installation Function type 2 can be used to specify (and to measure the functional size of) the system Integrated environment (SIE)-see Figure 8.

· The sub-model of the adaptation and installation Function type 3 can be used to specify (and to measure the functional size of) the system hardware environment (SHE) - see Figure 8.

This model is referred here as a generic model of adaptation and installation software-FUR.

Figure 8.COSMIC reference model of system adaptation and installation requirements allocated to software

VI. SIZING A REFERENCE INSTANTIATION OF THE GENERIC MODEL OF SYSTEM ADAPTATION AND INSTALLATION REQUIREMENTS

 The specification of adaptation and installation-software-FUR in any specific project is a specific instantiation of the proposed generic model of adaptation and installation-software-FUR as described in Figure 8. When the specification document is at the level of the movements of data groups, then adaptation and installation requirements can be directly measured using the COSMIC measurement rules.

 Table 6 presents next the measurement results using COSMIC of a specific instantiation of adaptation and installation requirements which would have one of each of the entities and relationships described in section V and Figure 8 (note: for measurement purposes, the adaptation and installation functional type represents the entity to be measured).

For example, for a software data structure function in (function type 1):

· A software data structure function RECEIVES a data group from a registered data transfer function.

· A software data structure function SENDS a data group to group from a registered data transfer function.

This requirement corresponds to a COSMIC Entry and to a COSMIC Exit data movement, for a functional size of two COSMIC Function Points, or 2 CFP. The corresponding total functional size of this specific instantiation would therefore consider 16 data movements of one data group, which would then gives a functional size of 16 CFP with the COSMIC ISO 19761 standard - see Table 6, bottom line.

In Figure 8, The COSMIC reference model of system adaptation and installation requirements allocated to software is used 11 intermediary services between each two functions that be defined in figure 8. In Figure 7 presents a measurement for each intermediary services which equal 8 CFP, in Figure 8 we have 11 intermediary services multiplied 8 CFP the total functional size of the measured intermediary services is 88 CFP, while the total functional size for the total COSMIC reference model is 88 + 16 = 104 CFP.

Table 6: Adaptation & Installation Functional Size Measurement with respect to the Generic Reference Model of Software-FUR

		Functional type

		Data Movement Description

		Data

Movement

Type

		FUR or Deviced Engineered

		· FUR sends a data group to SDSF

		E

		

		· FUR receives a data group from SDSF

		X

		Software Data Structure Function (SDSF)

		· SDSF sends a data group to RDTF

		E

		

		· SDSF receives a data group from RDTF

		X

		Registered Data Transfer Function (RDTF)

		· RDTF reads and writes a data group to/from a persistent storage

		R & W

		Control Data Transfer Function (CDTF)

		· CDTF reads and writes a data group to/from a persistent storage

		R & W

		Set Data Transfer with System Resources Function (SDTF)

		· SDTF reads and writes a data group to/from a persistent storage

		R & W

		Host-Target Platform Function (HTPF)

		· HTPF reads and writes a data group to/from a persistent storage

		R & W

		Memory Resources Function (MRF)

		· MRF reads and writes a data group to/from a persistent storage

		R & W

		Storage Resources Function (SRF)

		· SRF reads and writes a data group to/from a persistent storage

		R & W

		The Total Size in COSMIC

		16 CFP

VI. CONCLUSION

 This paper has introduced a procedure for specifying and measuring software requirements needed to address the system’s adaptation and installation requirements.

 The main contribution of this paper is our proposed generic model of software FUR for system adaptation and installation. This generic model can be considered as a kind of reference model for the identification of system adaptation and installation requirements and their allocation to software functions implementing such requirements. System requirements allocated to hardware have been addressed in this paper. Since the structure of the generic model is based on the generic model of software adopted by the COSMIC measurement standard, the necessary information for measuring their functional size is readily available.

 Specifically, the generic model of adaptation and installation presented in this paper is based on:

· the ECSS standards for the description of the NFR for system adaptation and installation ; and

· The COSMIC measurement model of functional requirements.

The model is independent of the software type and the languages in which the software FUR will be implemented. The proposed generic adaptation and installation model (i.e. reference model) provides:

· A specification model for each type, or all types, of adaptation and installation requirements: for example, the requirements to be allocated to software for the system software environment and system hardware environment.

· A specification measurement model for each type, or all types, of adaptation and installation requirements.

Future work includes documentation of the traceability of the elements of this generic model to the detailed elements of the ECSS standards, as well verification of this generic model to ensure full coverage of adaptation and installation requirements. Discussions with groups of experts will be necessary to ensure its usefulness across various communities and to develop a consensus on further refinements of such a generic model which could be proposed eventually as a candidate for standardization.

REFERENCES

[1]
L. Chung and J. do Prado Leite, "On Non-Functional Requirements in Software Engineering", in Conceptual Modeling: Foundations and Applications. vol. 5600, A. Borgida, et al., Eds., ed: Springer Berlin / Heidelberg, 2009, pp. 363-379.

[2]
L. Chung, B. Nixon, E. Yu, J. Mylopoulos, "Non-Functional Requirements in Software Engineering", Springer, Heidelberg, 1999.

[3]
N. Subramanian and L. Chung, "Towards standardization of adaptable software architectures", Computer Standards & Interfaces, vol. 25, pp. 211-213, 2003.

[4]
L. Chung and N. Subramanian, "System and software architectures", Science of Computer Programming, vol. 57, pp. 1-4, 2005.

[5]
M. Noguera, V. Hurtado, M. L. Rodríguez, L. Chung, and J. L. Garrido, "Ontology-driven analysis of UML-based collaborative processes using OWL-DL and CPN," Science of Computer Programming, vol. 75, pp. 726-760, 2010.

 [6]
W. Ma, L. Chung, and K. Cooper, "Assessing Component’s Behavioral Interoperability Concerning Goals," in On the Move to Meaningful Internet Systems: OTM 2008 Workshops, Lecture Notes in Computer Science, Springer Berlin / Heidelberg, pp. 452-462, 2008.

[7]
K.T. Al-Sarayreh and A. Abran, "A Generic Model for the Specification of Software Interface Requirements and Measurement of Their Functional Size," 8th ACIS International Conference on Software Engineering Research, Management and Applications, SERA 2010, Montreal, Canada, pp. 217-222, 2010

[8]
K. T. Al-Sarayreh and A. Abran, "Measurement of Software Requirements Derived from System Reliability Requirements," 24th European Conference on Object-Oriented Programming (ECOOP 2010), ACM Digital Library, Maribor, Slovenia, 2010

[9]
A. Abran and K. T. Al-Sarayreh, "Standards-Based Model for the Specification of System Design and Implementation Constraints," In: Industrial Proceedings, 17th European Systems & Software Process Improvement and Innovation, EuroSPI 2010 Conference, Grenoble (France), Publisher: Delta, Denmark, pp. 4.7-4.16, Sept. 1-3, 2010.

[10]
M. John, "Goal-Oriented Requirements Engineering, Part II," 14th IEEE International Requirements Engineering Conference (RE'06), pp. 1-5, 2006.

[11]
K. L. Chung, "Representing and Using Non-functional Requirements for Information System Development: A Process Oriented Approach",Ph.D. Thesis, also Tech. Rpt. DKBS-TR-93-1", Department of Computer Science, University of Toronto, 1993.

[12]
J. John and B. Nixon, "From Object-Oriented to Goal Requirements," Transactions of the ACM, Orlando, USA, pp. 821-828, 1999

[13]
J. Andrew, "An Approach to Quantitative Non-Functional Requirements in Software Development," 34th Annual Government Electronics and Information Association Conference, 2000.

[14]
L. Chung, B. Nixon, E. Yu, and J. Mylopoulos, "Nonfunctional Requirements in Software Engineering," Kluwer Academic Publishing, 2000.

[15]
ECSS-E-40-Part-1B, "Space Engineering: Software - Part 1 Principles and Requirements", European Cooperation for Space Standardaization,The Netherlands, 2003.

[16]
ECSS-E-40-Part-2B, "Space Engineeing:Software-part 2 Document Requirements Definitions", European Cooperation for Space Standardaization, The Netherlands, 2005.

[17]
ECSS-Q-80B, "Space product assurance: Software product assurance", European Cooperation for Space Standardaization, The Netherlands, 2003.

[18]
IEEE-Std-830, "IEEE Recommended Practice for Software Requirements Specifications", 1998.

[19]
ISO/IEC-9126, "Software Engineering - Product Quality - Part 1: Quality Model 9126-1", International Organization for Standardization,Geneva (Switzerland), 2004.

[20]
ECSS-E-ST-10C, "Space engineering: System engineering general requirements", Requirements & Standards Division Noordwijk, The Netherlands, 2009.

[21]
ISO/IEC-19761, "Software Engineering - COSMIC v 3.0 - A Functional Size Measurement Method", International Organization for Standardization, Geneva (Switzerland), 2003.

[22]
ISO/IEC-14143-1, "Information technology-Software measurement - Functional size measurement Part 1: Definition of concepts", International Organization for Standardization, Geneva (Switzerland), 1998.

[23]
ECSS-ESA, "Tailoring of ECSS, Software Engineering Standards for Ground Segments, Part C: Document Templates", ESA Board of Standardization and Control (BSSC), 2005.

[24]
ECSS-Q-ST-80C, "Space Product Assurance: Software Product Assurance", Requirements & Standards Division Noordwijk, The Netherlands, 2009.

[25]
COSMIC, "The COSMIC Method v3.0.1, Guideline for Sizing SOA Software, v1.4", The Common Software Measurement International Consortium, MPC Review, 2010.

 ADDIN

System-FUR

System-NFR

Software-FUR

or

Engineered

Devices

Storage Hardware

SOFTWARE

ENTRY

EXIT

USER

READ

WRITE

EXIT

ENTRY

I/O Hardware

BOUNDARY

System adaptation and installation-FUR

System adaptation and installation-NFR

Software adaptation and installation-FUR

Function Type 1:

 System Software Environment (SSE)

Set Data Transfer with System Resources Function (SDTF)

Registered Data Transfer Function (RDTF)

Control Data Transfer Function (CDTF)

Software Data Structure Function (SDSF)

FUR

or

Deviced engineered

Persistent Storage

ENTRY

EXIT

ENTRY

EXIT

READ

WRITE

READ

WRITE

READ

WRITE

Function Type 2:

 System Integrated Environment (SIE)

Operational Environment Function (OPEF)

Localizing I/O Resources Function (IORF)

Function Type 3:

 System Hardware Environment (SHE)

Storage Resources Function (SRF)

Host-Target Platform Function (HTPF)

Memory Resources Function (MRF)

Transmiss-ion Resources Function (TRF)

Persistent Storage

READ

WRITE

READ

WRITE

READ

WRITE

Intermediary

Service

Functional Service

Application B

Functional Service Application A

E

X

E

X

Boundary

E

X

E

X

Boundary

Function Type 2:

 System Integrated Environment (SIE)

Operational Environment Function (OPEF)

Localizing I/O Resources Function (IORF)

Function Type 1:

System Software Environment (SSE)

Set Data Transfer with System Resources Function (SDTF)

Registered Data Transfer Function (RDTF)

Control Data Transfer Function (CDTF)

Software Data Structure Function (SDSF)

FUR

or

Deviced engineered

Persistent Storage

ENTRY

EXIT

ENTRY

EXIT

READ

WRITE

READ

WRITE

READ

WRITE

Function Type 3:

System Hardware Environment (SHE)

Storage Resources Function (SRF)

Host-Target Platform Function (HTPF)

Memory Resources Function (MRF)

Transmission Resources Function (TRF)

Persistent Storage

READ

WRITE

READ

WRITE

READ

WRITE

Appendix II-A

Software Specifications and Measurement Framework for

System Configuration Requirements

Abstract: In the system requirements phase, the non functional requirements are often captured only generically at a fairly high level, and they do not include the levels of details necessary for the system engineers to allocate such non functional requirements as specific functionalities to be handled either by the software or the hardware, or a specific combination of the two. The European standards for the aerospace industry (ECSS series) include system configuration requirements as one of sixteen types of non functional requirements (NFR) for embedded and real-time software. A number of concepts are provided in the ECSS and IEEE standards to describe the various types of candidate configuration requirements at the system, software, and hardware levels. This paper organizes these dispersed configuration concepts into a generic standards-based reference model of system configuration requirements. The availability of this generic, and detailed, reference model can facilitate the early identification and specification of the system configuration NFR and their detailed allocation, as specific configuration functions, to hardware or software, or to a specific combination of the two. The approach adopted in this research for the structure of this reference NFR model is based on the generic model of software functional requirements proposed in the COSMIC – ISO 19761 model, and so permits the measurement of the functional size of such configuration requirements allocated to software, and taking them into account for estimation purposes.

Keywords: Software Engineering, Non functional requirements NFR, Configuration requirements, ECSS international standards, ISO 19759 (SWEBOK), Configuration measurements,Functional Size, ISO 19761(COSMIC).

Introduction

Non functional requirements (NFR) play a critical role during system development, including as selection criteria for choosing among alternative designs and ultimate implementations. NFR may also considerably impact project effort, and should be taken into account for estimation purposes and when comparing project productivities. Typically, NFR are initially described at the system level, and there is no consensus yet on how to describe and measure them at the software level.

In practice, NFR may be viewed, defined, interpreted, and evaluated differently by different people, particularly when they are stated briefly and imprecisely [1-3] Therefore, it is a challenge to take them into account in software estimation and software benchmarking: NFR have received less attention in the literature than other cost factors in software engineering, and are definitely less well understood [4-5]. Without measurement, it is not easy to take NFR as quantitative inputs to an estimation process or to productivity benchmarking.

In practice, requirements are typically initially addressed at the system level [6-8], as either high-level system functional user requirements (system FUR) or high-level system non functional requirements (system NFR). Such high-level requirements must usually be detailed next, and allocated to specific related functions, which may be implemented in both hardware and software, or both, as software FUR, for instance – see Figure 1.

 (
System
FUR
Software
FUR
System
NFR
Software
NFR
Other NFR Aspects
NFR
FR
Level 1
Level
2
Level
3
)

Figure 1. Mapping system-FUR and system-NFR to software-FUR and other NFR aspects

Figure 1 appears that the NFR can be defined into three levels, at level 1 system-NFR are identified and specified for the prime importance of the system-NFR to software success, at level 2 the NFR is defined and specified for the software itself, while at level 3 other NFR aspects can be defined such as an organization constraints. Later on all of these NFR should be detailed and allocated to software-FUR.

On the basis of Figure 1 system FUR will describe the functions required in a system, while system NFR will describe how the required functions must behave in a system. In the software requirements engineering step [9-10], such system NFR may be detailed next and specified as software FUR, to allow a software engineer to develop, test, and configure the final deliverables to system users.

The term functional user requirements"FUR" used in Figure1 refers to the set of functions the system is to offer, while the non functional requirements term "NFR" refers to the manner in which such functions are performed. Moreover the system term in Figure 1 means set of detailed methods, procedures, and routines established or formulated to carry out a specific activity, perform a duty, or solve a problem; while the software term used is divided commonly into two main categories: (1) System software: controls the basic and invisible to the user functions of a system and comes usually preinstalled with the machine. (2) Application software: handles large numbers of common and specialized tasks a user wants to perform.

 As a summary for Figure 1; FURs are typically phrased with subject or predicate constructions, or a noun/verb, such as: “The system configuration has to register 5 personal computers to be connected with a shared printer” (i.e. the system configuration specifies the elements that define and/or prescribe the components of the system). NFR are typically phrased with adverbs or modifying clauses, such as: “The system configuration has to register 5 personal computers to be connected with a shared printer with high accessibility or controllability."

As a motivation of the research study, the functional aspects of software configuration-related FUR are measured by different measurement standards such as COSMIC, FPA and IFPUG, while some measurement methods such as IFPUG and FPA include configuration-related NFR under so-called “adjustment factors”, however it resulted in models that were not formally valid. For the importance of the functional aspects of system configuration-related NFR motivated this research paper to propose a framework on the basis of the COSMIC modeling theory.

Currently, there is no generic model for the identification and specification of software FUR for system configuration NFR from the various views documented in international standards or in the literature. Consequently, it is a challenge to measure them and take them into account quantitatively for estimation purposes.

This paper reports on the work carried out to define an integrated view of software FUR for system configuration NFR on the basis of international standards, and on the use of a generic model of software FUR for system configuration NFR to measure their functional size using the COSMIC standard [11], independently of software development and implementation methodologies and technologies.

This paper is organized as follows. Section 2 presents the related work. Section 3 presents the generic view of software FUR in ISO 19761. Section 4 identifies the standards describing a configuration as either system NFR or as functional requirements for software and hardware. Section 5 presents a standards-based definition of a generic model of requirements for system configuration NFR. Section 6 presents a standard reference architectural model for system configuration requirements using an SOA. Section 7 presents the process of sizing a reference architectural model for system configuration. Section 8 presents a measurement example and, Section 9 a discussion and conclusion.

Related work

In the literature, there are some early works on NFR in systems/software engineering. For instance, in 1993, Chung [12] presented one of the initial attempts to capture knowledge in this domain. His work was followed by that of Mylopoulos et al.[13] , who suggested that all requirements be viewed as goals: each goal would be an umbrella for related functional and non functional requirements. Chung et al. and Andrew [14-15] aimed to make NFR more quantitative in nature, while Andrew [15] found that there are often gaps between the stakeholder vision and requirements representation. Chung et al [16] proposed a taxonomy for NFR, indicating that it is unrealistic to expect designers and developers to incorporate an entity that they cannot readily identify. While taxonomies aim to be inclusive of the entire set of entities in question, Chung et al. suggested in [16] that a one- or two-level taxonomy would suffice initially, and that there are over 161 identifiable NFR.

Paech et al.[17] recommended that FR (Functional Requirements), NFR, and architecture be tightly co-developed and addressed in a coherent and integrated manner, suggesting that NFRs be decomposable into more refined NFR and additional FR, as well as architectural decisions.

 Moreira et al. [18] , Rosa et al. [19] , Park et al. [20] , and Glinz [21] have proposed new methods for the classification of NFR early in the software development process, while Kaiya et al.[22] have presented a method to identify stakeholders and their NFR preferences by using use case diagrams of existing systems.

More recently, Mylopoulos [8] has promoted Goal-Oriented Requirements Engineering, and suggested a specific solution, involving the establishment of an Agent-Oriented Software Development Method, called the Tropos project, which covers not only requirements but also design phases, and addresses the design of high-variability software for applications such as home care software and business process design.

In parallel with the work of researchers, the industry has worked on the description of NFR, in particular through international standardization bodies, such as the European Cooperation on Space Standardization (ECSS), the Institute of Electrical and Electronics Engineers (IEEE), and the International Organization for Standardization (ISO).

In the ECSS standards for the aerospace industry [23-28], a system Configuration requirement is identified as one of sixteen types of NFR, and the research reported there focuses strictly on system Configuration NFR. In addition, in the SWEBOK guide [29] standard, a number of explicit concepts are provided to describe various types of candidate system Configuration requirements at the system and software levels in the testing and evaluation process for overall operational processes.

However, these standards vary in their views, terminology, and coverage of Configuration. Currently, there exists no generic model for the identification and specification of software FUR for implementing system Configuration requirements (system NFR) based on the various views documented in these international standards and in the literature. Consequently, it is challenging to measure the system Configuration-related software FUR, and take them into account quantitatively for estimating software projects.

In the work reported here, preference has been given to the views, concepts, and vocabulary most widely used by industry through its standardization infrastructure, rather than those in the literature. Similarly, for the structuring and description of models of FUR and for measurement purposes, the measurement views, concepts, and terminology from the standardization infrastructure have been adopted, rather than those in the literature.

This paper focuses on a single type of NFR, that is, system Configuration requirements, and reports on the work carried out to define an integrated view of software FUR for system Configuration NFR, as a reference NFR model, on the basis of international standards. The approach adopted in this research for the structure of this reference NFR model is based on the generic model of software functional requirements proposed in the COSMIC – ISO 19761 model , thereby allowing the measurement of the functional size of such configuration requirements allocated to software and taking them into account for estimations purposes. This approach has been used to build other types of NFR, such as design and implementation constraints, Configuration, interfaces and reliability requirements [30-36].

A Generic view of software FUR in the ISO standards

In ISO 14143-1 of the collection of ISO standards [37] , it is specified that a functional size measurement method must measure the software functional user requirements (FUR). In addition, ISO 19761 – COSMIC [11] proposes a generic model of software FUR that clarifies the boundary between hardware and software. Figure 2 illustrates the generic flow of data from hardware to software from a functional perspective. From this generic model of software functional requirements, the following can be observed:

· Software is bounded by hardware. In the so-called “front-end” direction (i.e. left-hand side in Figure 2), software used by a human user is bounded by I/O hardware, such as a mouse, a keyboard, a printer, or a display, or by engineered devices, such as sensors or relays. In the so-called “back-end” direction (i.e. right-hand side of Figure 2), software is bounded by persistent storage hardware, like a hard disk and RAM and ROM memory.

· Software functionality is embedded within the functional flows of data groups. Such data flows can be characterized by four distinct types of data movements. In the “front end” direction, two types of movements (ENTRIES and EXITS) allow the exchange of data with the users across a ‘boundary’. In the “back end” direction, two types of movements (READS and WRITES) allow the exchange of data with the persistent storage hardware.

· Different abstractions are typically used for different measurement purposes. In real-time software, the users are typically the engineered devices that interact directly with the software, that is, the users are the ‘I/O hardware’. For business application software, the abstraction commonly assumes that the users are one or more humans who interact directly with the business application software across the boundary; the ‘I/O hardware’ is ignored in this case.

As an FSM method, COSMIC is aimed at measuring the size of software based on identifiable FUR. Once identified, those requirements are allocated to hardware and software from the unifying perspective of a system integrating these two “components”. Since COSMIC is aimed at sizing software, only those requirements allocated to the software are considered in its measurement procedure.

[image:]

Figure 2. Generic flow of data groups through software from a functional perspective in COSMIC – ISO 19761

Identification of standards for describing configuration requirements

This section presents a survey of the configuration-related views, concepts, and terms in the ECSS standards [23-28] and in the SWEBOK Guide (ISO 19759) [29] .

It identifies which standards or views currently address some aspects of the software FUR derived from system NFR, specifically for the functional configuration requirements see Figure 3. Figure 3 is considered as an extended view or instantiation case for system/software configuration from Figure 1. The expected outcome is the identification of the various elements that should be included in the design of a standards-based framework for specifying software FUR for system configuration NFR.

The elements of configuration are dispersed in system views throughout the various ECSS standards, and are expressed as either:

· System configuration functional user requirements (system configuration FUR);

· System configuration non functional requirements (system configuration NFR).

 (
System
Configuration-FUR
System
Configuration-NFR
Software
Configuration -FUR
)

Figure 3. Mapping system requirements to software FUR for configuration requirements

Configuration requirements in the ECSS standards

Configuration in the ECSS standards is considered part of the “design and implementation engineering process”, which includes control activities and data flows for the operational functions and data transfers of defined items. Table 1 presents a list of the concepts and vocabulary used in those standards to describe system-related configuration requirements. For instance, ECSS standards specify that each item or element defined during the design phase can be configured. They also specify what configuration requirements shall be implemented in software.

Table 2. ECSS configuration requirements view and vocabulary

		Key view

		Concepts and vocabulary

		Secure environment with controlled access linked to the required physical and functional characteristics of the system

		· Control activities of defined configuration items:

· control flow

· data flow

· Each item or component defined during the design can be configured, such as:

· modules,

· processes and threads,

· events and communication channels between a module and a sub software module

· Control operational functions

· Register data transfers

While conducting a survey of all the configuration concepts and terms described in ECSS-E-40 and the ECSS-Q series and in ECSS-ESA as the integrated standard for ECSS-E and ECSS-Q, it was observed that:

· These various configuration elements are described differently, and at different levels of detail;

· The configuration elements are dispersed throughout the various documents, so there is no integrated view of all types of candidate configuration requirements; and

· There is no obvious link between the configuration requirements in ECSS-ESA as the integrated standard and all the other ECSS standards that describe configuration requirements in their contents.

Configuration requirements in the SWEBOK guide (ISO 19759)

The key view on configuration in the SWEBOK guide [29] is that of a software and with minor system view with the functional and/or physical characteristics of hardware, firmware, or software, or a combination of these, as set forth in technical documentation and achieved in a product. Configuration can also be thought of as a collection of specific versions of hardware, firmware, or software items combined according to specific procedures to serve a particular purpose. Configuration management (CM), then, is the discipline of identifying the configuration of a system at distinct times for the purpose of systematically controlling changes to that configuration.

The use of the functional configuration audit (FCA) and the physical configuration audit (PCA) can be considered as a prerequisite for the establishment of the product baseline. The purpose of the PCA is to ensure that the design and reference documentation are consistent with the product as built.

Table 2. SWEBOK Guide (ISO 19759) configuration view and vocabulary

		Key view

		Concepts and vocabulary

		Functional and/or physical characteristics of hardware, firmware, or software, or a combination of these

		· Functional characteristics of hardware, firmware, and software

· Configuration identification

· Systematic control of changes to configuration

· Configuration control

· Physical configuration audit (PCA)

· Configuration status accounting

· Configuration audits

A survey of all the configuration concepts and terms described in the SWEBOK Guide has revealed the following:

· The configuration is described using both software as overall views and some system views.

· The configuration elements are described at different levels of detail.

· There is a measurement view in the configuration knowledge area but not used (ISO 19761) COSMIC measurement method presented in this paper.

A standards-based framework of software-FUR for system configuration

This section first identifies, and then assembles, the terminologies and concepts associated with the configuration elements that are dispersed throughout the ECSS standards and the SWEBOK Guide. These terminologies are mapped to a proposed model of software FUR for system configuration NFR (see Figure 3), through the use of the generic model of FUR proposed in the COSMIC model. This COSMIC-based generic model can then become a framework for describing the software FUR from system configuration NFR based on the ECSS standards.

From on a synthesis of the previous configuration-related definitions, views, and concepts in the ECSS and the ISO 19759 standards, we can draw the following conclusions:

· Configuration identification is identifying the attributes that define every NFR-aspect of configuration items.

· Configuration items are a (hardware and/or software) that has an end-user purpose.

· These attributes are recorded in configuration documentation and baseline.

· These attributes forces control configuration changes be effected in the events of these attributes are changed.

· Configuration change control is a set of stages required to change a configuration item's attributes and to re-baseline them.

· Configuration status accounting is record and report on the configuration baselines associated with each configuration item.

· Configuration audits are broken into functional and physical configuration audits. A functional configuration audit ensures that functional and performance attributes of a configuration item are achieved, while a physical configuration audit ensures that a configuration item is installed in accordance with the requirements of its detailed design documentation.

· They all mention (ECSS and ISO 19759) to control configuration items or configuration elements for system, are included the following:

· Control flow for operational functions;

· The data flow register in each operational function.

The software FUR for system configuration NFR based on the previous mapping are presented in Table 4.

Table 4. Software FUR for system configuration NFR

		Software FUR for System Configuration NFR

		· Configuration control flow function

· Configuration data flow function

· Register data transfer function

· Operational functions

Two types of system configuration requirements must be identified:

· System configuration control flows: the relationships between the operational functions for the configuration items or elements. System configuration control flows:

· Does not manage or pass data between components.

· It functions as a task coordinator

· In control flow tasks requires completion (Success., failure or completion)

· Synchronous in nature, this means, task requires completion before moving to next task. If the tasks are not connected with each other but still they are synchronous in nature.

· Tasks can be executed both parallel and serially

· Three types of system control flow elements

· Containers : provides structures in the packages

· Tasks: provides functionality in the packages

· Precedence Constraints: connects containers, executables and tasks into an ordered control flow and control the sequence execution for tasks and also specify the conditions that tasks and containers run.

· It is possible to include nested containers as Architecture supports nesting of the containers. Control flow can include multiple levels of nested containers.

· System configuration data flows: partition of an application into pieces that can be configured individually on configurable hardware or in software. System configuration data flows:

· Passes data between other components.

· Transformations work together to manage and process data. This means first set of data from the source may be in the final destination step while at the same time other set of data is still flowing. All the transformations are doing work at the same time.

· Three types of Data Flow components

· Sources: extracts data from the various sources (Database, Text Files etc)

· Transformations: cleans, modify, merge and summarizes the data

· Destinations: Loads data into destinations like database, files or in memory datasets

The entities and functional relationships of the software FUR for system configuration NFR can then be identified.

Configuration functional types and functions and to be specified

The configuration functions to be specified are divided into configuration data and control flows – see Table 5:

· The configuration data flow specifies the register data that could come into the system view;

· The configuration control flow specifies the expected operational functions in use in the system.

The ECSS view of system configuration NFR is that of a secure environment, including data flows and control flows. The ECSS view of software FUR for system configuration NFR within a secure environment includes:

· Register data transfer, containing a transfer history extraction unit, which extracts transfer history information from data subjected to data transfer each time the data transfer is performed, the extracted transfer history information being separate from the data subjected to data transfer in the secure environment for the system configuration NFR;

· Operational functions, defining an area of responsibility within an operational function in a hierarchical structure in the secure environment for the system configuration NFR.

Table 5. Configuration functions that may be allocated to software

		Candidate Functional Types

		Configuration Type

		Configuration Functions

		Functional type 1

		Configuration Data Flow

		Register data transfer function

		Functional type 2

		Configuration Control Flow

		Operational functions

Functional type 1: configuration data flows

Figure 4 illustrates a system modeling view of data movements for configuration data flows (Functional Type 1). It includes:

· Register data transfer (RDT), which includes information about:

· a transfer history extraction unit;

· data subjected to data transfer each time the data transfer is performed;

· data registers to store the data;

· the need for RDT to occasionally copy/move data from one register to another to make space for new data;

· This data transfer between registers is called “register data transfer”.

· Register data transfer functions (RDTF): receive a data flow from a functional or device user.

· These data should be stored in registers to enable comparison with a data transfer history.

· The RDTF sends these results to operational functions to initiate internal configuration for the system.

A set of RDTF interacts through intermediary services, indicated as an () symbol in figure 4, in order to deliver different types of data transfer.

[image:]

Figure 4. System modeling view of configuration data flows

Figure 5 illustrates a COSMIC modeling view of data movements for configuration data flows (Functional Type 1):

· A functional or device user sends a data group to RDTF1and/or RDTFn.

· RDTF1 to RDTFn read a data group from a stored data transfer history in a persistent storage area.

· RDTF1 to RDTFn write a data group to a persistent storage area to be used by another data transfer.

· RDTF1 to RDTFn send their results to other functionality.

· RDTF1 to RDTFn contact each other through the intermediary services.

[image:]

Figure 5. COSMIC modeling view of configuration data flows

Functional type 2: Configuration control flows

Figure 6 illustrates a system modeling view of data movements for configuration control flows (Functional Type 2):

· Operational function (OPF):

· OPF provides output in a useful format.

· OPF1 to OPFn: receive data movements from the register data transfers.

· An OPF1 to OPFn define the executing procedure.

· The OPF1 to OPFn contact each other through intermediary services ().

[image:]

Figure 6. System modeling view of configuration control flows

Figure 7 illustrates the COSMIC modeling view of the data movements for the configuration control flows (Functional Type 2):

· OPF1 to OPFn receive a data group from RDTF1 to RDTFn.

· OPF1 to OPFn read a data group from a stored data transfer in a storage area.

· OPF1 to OPFn write a data group to a storage area to be used for other OPFs.

· OPF1 to OPFn send their results to a functional or device user.

· Functional or device users may contact each other through the intermediary services.

[image:]

Figure 7. COSMIC modeling view of configuration control flows

Identification of the functional relationships in the software FUR for system configuration NFR

Figure 8 presents an overview of the relationships between the functional types for system configuration that may be allocated to software FUR. Specifically, the system configuration requirements model is composed of two functional types. The data flow on the model is also divided, in this case into direct data flows and the intermediary data flow.

· The sub model of configuration Functional Type 1 can be used to specify the data flows between different numbers of register data transfer functions for configuration data flows and for data flows with other functions of the configuration model – see Figure 8.

· The sub model of configuration Functional Type 2 can be used to specify the data flows between different numbers of operational functions for configuration control flows and for data flows with other functions on the configuration model – see Figure 8.

[image:]

Figure 8. System modeling view of system configuration requirements

Figure 9 presents a conceptual view of the relationships between embedded software and non functional configuration requirements. In classic embedded software, data flows and control flows are tightly coupled, and execute in lock-step. In distributed embedded software and heterogeneous applications, the links between data flows and control flows are loosened. A data flow configuration consists of a set of registers, data transfers, and control operational functions.

Figure 9 also presents an overview of the relationships between the functional types (entity types) in the software FUR for the configuration NFR, using the COSMIC model for graphical representation.

More specifically, Figure 9 presents an integration of the system and COSMIC modeling views, as follows:

· The white area represents the functionality in the system configuration data flows.

· The shaded area represents the functionality in the system configuration control flows.

In addition, in Figure 9:

· The left-hand side represents Functional Type 1, i.e. configuration data flows.

· The right-hand side represents Functional Type 2, i.e. configuration control flows.

This integrated model is referred to in this paper as a generic model of software FUR for system configuration. It can be used to specify the functional requirements derived from the system configuration requirements, as well as to measure their functional size with the COSMIC -- ISO 19761 standards.

1

 (
Boundary
Functional
Process
Intermediary Service
Direct Data Movement

ENTRY/EXIT
Ind
irect Data Movement

READ/WRITE
Storage
Area
IS
R W
System Configuration
 Data Flows
System Configuration Control Flows
 Configuration
Data Flow

Configuration
Control Flow
 Functional Type 1 Functional Type 2
Functional
User
Device
Functional
User
Device
Functional
User
Device
Functional
User
Device
Register Data Transfer
Function
n
RDTF n
Register Data Transfer
 Function
1
RDTF 1
ENTRY
ENTRY
Intermediary Service
IS
EXIT
ENTRY
ENTRY
EXIT
EXIT
ENTRY
ENTRY
EXIT
Operational
 Function n
OPF n
Operational
 Function
1
OPF 1
Intermediary Service
IS
EXIT
EXIT
ENTRY
ENTRY
EXIT
EXIT
ENTRY
ENTRY
EXIT
EXIT
ENTRY
ENTRY
R W
R W
R W
R W
)

Figure 9. COSMIC reference model for system configuration requirements allocated to software

A Standard generic measurement model of system configuration using an SOA

In this paper, Figure 9 illustrates the COSMIC reference model of configuration requirements allocated to software. This reference model describes the important concepts and relationships for system configuration requirements, as defined in the ECSS international standards.

In this section, a COSMIC reference architectural model using a service-oriented architecture (SOA) is built in Figure 13 to elaborate on the model to show a more complete picture, which includes showing what is involved in instantiating the modeled entities in practice – for more details on SOA sizing with COSMIC see [38].

There are many definitions of an SOA, such as:

· A flexible set of design principles used during systems development and integration [38] ;

· A process including the definition of the architecture, components, modules, interfaces, and data for a system to satisfy specified requirements [39-40].

The COSMIC reference architectural model using an SOA provides a loosely integrated suite of services that can be used in multiple business domains to measure the functional size of software FUR in an SOA environment [38]. In this model, the term “service” refers to a set of related software FUR functions.

This COSMIC reference architectural model also aids measurers of services by separating functions into distinct units, or services. These services communicate with each other by exchanging data in a well-defined, shared format, or by coordinating an activity between two or more services.

The SOA for COSMIC offers three types of data architecture movements based on [38]:

· COSMIC-SOA exchange messages

· COSMIC-SOA intermediary services

· COSMIC-SOA data exchanges between system components, divided into:

· Direct exchange data movements, and

· Indirect exchange data movements.

COSMIC-SOA Exchange Messages

The COSMIC reference model of system configuration is composed of a set of functions – see Figure 9. These functions, according to the SOA, provide functional users with a set of services by exchanging messages in the application layer and a service between two peer pieces of software FUR.

In an SOA, an application requiring commonly used information from another application sends a request to the service of the application that can handle the request, or the application may call on its own services. Such calls are also called “messages”. Each message may consist of one or more data movements [38] .

The model for a common form of exchange of messages between an application and a service is shown in Figure 10 [38] , which uses the COSMIC reference model of Configuration requirements allocated to software for the exchange of data between two peer pieces of software.

[image:]

Figure 10. The interactions between an application and a service [38]

COSMIC-SOA Intermediary Services

When a functional process of an application service in application (A) requires data that are available via an application service in application (B), the former application service calls on a functional process of the intermediary service. This service functionality is also needed by other applications in the overall SOA framework, as it may itself be realized in the form of a utility service [38] – see Figure 11.

[image:]

Figure 11. Application services and an interconnecting intermediary service [38]

COSMIC-SOA Data Exchanges between System Components

Figure 12 [38] shows the possible flows of data movements between components in the same layer, i.e. between peer components (where a component may be an application or a service). It shows direct and indirect exchanges of data between components – one or both forms may be involved when services communicate. If components exchange data directly, then, for measurement purposes, the measurer will identify Exit and/or Entry data movements, as per the data movements between service A (SA) and service B (SB). An indirect exchange of data between components means that a service in one component writes data in a storage device, which is subsequently read by a service in another component. In this situation, the measurer will identify a Write data movement in service SA and a Read data movement in service SB.

[image:]

Figure 12. Direct and indirect exchange of data between services in peer components [38].

COSMIC Reference Architectural Model using an SOA for System Configuration

The COSMIC reference model of system configuration requirements allocated to software in Figure 9 is considered a high-level model of requirements, while a COSMIC reference architectural model using an SOA, as depicted in Figure 13, describes the detailed measurement model, which can be used to specify and measure the functionality described in Figure 9.

Figure 13 illustrates a COSMIC reference architectural model using an SOA for system configuration requirements. This model is built based on Figure 9 and the role of the COSMIC-SOA explained in [38].

 (

 Functional Type 1

Functional Type 2

Configuration Data Flows

Configuration Control Flows
Boundary
Functional
Process
Intermediary Service
Direct Data Movement

ENTRY/EXIT
Ind
irect Data Movement

READ/WRITE
Storage
Area
IS
R W
Functional
User
Device
Functional
User
Device
Functional
User
Device
Functional
User
Device
Register Data Transfer
Service
 n
(RDTS n)
Register Data Transfer

Service

1
(RDTS 1)
ENTRY
ENTRY
X
E
Operational
Service
 n
(OPS n)
Operational

Service

1
(OPS 1)
Intermediary
 Service
IS
EXIT
E
X
EXIT
ENTRY
ENTRY
Persistent Storage
X
E
X
E
X
E
Intermediary
 Service
IS
E
X
E
X
E
X

R

W
R
E
W
X
W
E
R
X
 W
 R
Register Data Transfer
 Function
1
(RDTF 1)
Operational
 Function
1
(OPF 1)
X
E
E
X
X
E
E
X
Register Data Transfer
Function n
(RDTF n)
Operational Function n
(OPF n)
X
E
E
X
X
E
E
X
)

Figure 13. COSMIC reference architectural model using an SOA for configuration requirements allocated to software

Sizing a Reference Instantiation of the Framework

The specification of software FUR for system configuration in any specific project is a specific instantiation of the proposed generic model described in Figure 13. When the software specification document is at the level of the movement of data groups, then these functional requirements can be directly measured using the COSMIC measurement rules. The measurement example presented next illustrates a reference instantiation of the generic COSMIC specification and measurement model of software FUR for system configuration in an SOA context for a single data group for all the possible flows of data groups identified.

Measurement of exchange services for system configuration functionality using COSMIC-SOA.

There are two types of system configuration functionality, with their own services interacting, for the measurement of exchange services for system Configuration functionality using COSMIC-SOA:

· Register data transfer functions (from RDTF1 to RDTFn) interacting with register data transfer services from (RDTS1 to RDTSn).

· Operational functions (from OPF1 to OPFn) interacting with operational services (from OPS1 to OPSn).

· According to COSMIC-SOA, each functional process may interact with its own service by sending and receiving data groups, i.e. Entry and Exit – see Figure 10.

The data movements between each functional process and functional service are shaded in green -- see Figure 13.

	Table 6 illustrates the COSMIC-SOA measurement results for the interactions between register data transfer function 1 (RDTF1) and its own service, i.e. register data transfer service 1 (RDTS1). The measurement result for this operation is equal to 4 CFP for each interaction between RDTF1 and RDTS1, and so on for (RDTFn and RDTSn).

Table 6. COSMIC-SOA measurement for the interactions (i.e. exchange of messages)

between RDTF1 and RDTS1.

		Functionality

		Data Movement Description

		Data Movement Type

		RDTF1

		RDTS 1

		· RDTF1 sends a data group to RDTS1

		X

		

		

		· RDTS1 receives a data group from RDTF1

		E

		

		

		· RDTS1 sends a data group to RDTF1

		X

		

		

		· RDTF1 receives a data group from RDTS1

		E

		The Total FSM

		4 CFP

Table 7 illustrates the COSMIC-SOA measurement results for interactions between operational function 1 (OPF1) with its own service, i.e. operational service 1 (OPS1). The measurement result for this operation is equal to 4 CFP for each interaction between OPF1 and OPS1, and so on for (OPFn and OPSn).

Table 7. COSMIC-SOA measurement for the interactions between OPF1 and OPS1.

		Functionality

		

Data Movement Description

		Data

Movement

Type

		OPF1

		OPS1

		· OPF1 sends a data group to OPS1

		X

		

		

		· OPS1 receives a data group from RDTF1

		E

		

		

		· OPS1 sends a data group to OPF1

		X

		

		

		· OPF1 receives a data group from OPS1

		E

		The Total FSM

		4 CFP

Measurement of Intermediary Services for System Configuration Services using COSMIC-SOA

In this section and based on Figure 13, when a functional process service requires data that are available via another functional process service, the former calls on a functional process of the intermediary service. More specifically:

· Each two register data transfer services (i.e. from RDTS1 to RDTSn) can call on one intermediary service between them. For example, with (RDTS1 and RDTS2) or (RDTS2 and RDTS3), each pair can call on one intermediary service between them.

· Each two operational services (i.e. from OPS1 to OPSn) can call on one intermediary service between them. For example, with (OPS1 and OPS2) or (OPS2 and OPS3), each pair can call on one intermediary service between them.

· According to the COSMIC-SOA model of measurement for system configuration, there is no intermediary service between register data transfer services and operational services.

· According to the COSMIC-SOA model of measurement for system configuration, the types of data movements for using the intermediary service must be Entry and Exit – see Figure 10.

· The data movements between each two functional services are shaded in red -- see Figure 13.

Table 8 illustrates the COSMIC-SOA measurement results for one intermediary service between register data transfer service 1 (RDTS1) and register data transfer service 2 (RDTS2). This table presents an instantiation of a single data group for all possible flows of the data groups identified above, and listed as a data movement in Table 8 for this configuration requirement. The measurement results are equal to 8 CFP.

Table 8. COSMIC-SOA measurement for an intermediary service between 2 register data transfer services

		Functionality

		

Data Movement Description

		Data

Movement Type

		RDTS1

		RDTS 2

		· RDTS1 sends a data group to intermediary service 1 & 2 (IS1&2).

		X

		

		

		· IS1&2 receives a data group from RDTS1

		E

		

		

		· IS1&2 sends a data group to RDT2

		X

		

		

		· RDTS2 receives a data group from IS1&2

		E

		

		

		· RDTS2 sends a data group to IS1&2

		X

		

		

		· IS1&2 receives a data group from RDTS2

		E

		

		

		· IS1&2 sends a data group to RDTS1

		X

		

		

		· RDTS1 receives a data group from IS1&2

		E

		The Total FSM

		8 CFP

Table 9 illustrates the COSMIC-SOA measurement results for one intermediary service between operational service 1 (OPS1) and operational service 2 (OPS2). This table presents an instantiation of a single data group for each possible flow of the data groups identified above, and listed as a data movement in Table IX for this configuration requirement. The measurement results are equal to 8 CFP.

Table 9. COSMIC-SOA measurement for an intermediary service between 2 operational services

		Functionality

		

Data Movement Description

		Data

Movement Type

		OPS1

		OPS2

		· OPS1 sends a data group to intermediary service 1 & 2 (IS1&2).

		X

		

		

		· IS1&2 receives a data group from OPS1

		E

		

		

		· IS1&2 sends a data group to OPS2

		X

		

		

		· OPS2 receives a data group from IS1&2

		E

		

		

		· OPS2 sends a data group to IS1&2

		X

		

		

		· IS1&2 receives a data group from OPS2

		E

		

		

		· IS1&2 sends a data group to OPS1

		X

		

		

		· OPS1 receives a data group from IS1&2

		E

		The Total FSM

		8 CFP

Measurement of the direct and indirect data movements for system configuration services using COSMIC-SOA

This section is based on Figure 13, which illustrates the possible flows of data between components in the same layer, i.e. between peer components (where a component may be an application or a service). This section shows direct and indirect exchanges of data between components – one or both forms of which may be involved when services communicate. If components exchange data directly, the measurer will identify the Exit and/or Entry data movements, as per the data movements between service A and service B. An indirect exchange of data between components means that a service in one component writes data which are subsequently read by a service in another component. In this situation, the measurer will identify a Write data movement in the former component and a Read data movement in the other.

More sspecifically, Table 10 illustrates COSMIC-SOA measurement results for the exchange of data movements between the system configuration requirements model in a functional process or in service architecture layers – see Figures 9 and 13. This table presents an instantiation of this configuration. The measurement results are equal to 14 CFP, assuming 4 functionalities. (The data movements are shaded in blue in the system configuration model -- see Figure 13).

Table 10. COSMIC-SOA measurements for direct and indirect data groups for system configuration

		Functionality

		

Data Movement Description

		Data

Movement

Type

		User or Engineered Device

		· Users send a data group to RDTF1 and/or to RDTFn

		2 E

		Configuration Data Flow

		· RDTF1 to RDTFn send a data group to OPF1 to OPFn

· RDTF1 to RDTFn read and write a data group to persistent storage.

		2 E

2 R & 2W

		Configuration Control Flow

		· OPF1 to OPFn send a data group to User or Device.

· OPF1 to OPFn read and write a data group to persistent storage.

		2 E

2 R & 2 W

		The Total FSM

		14 CFP

A Measurement Examples

This section presents specific measurement examples of the use of the COSMIC generic model of system configuration requirements allocated to software. The measurement example in this section explains how to use the proposed reference model of system configuration to size a hypothetical framework composed of all of the kinds of software FUR described in the proposed specification framework.

Measurement Example for Educational Use:

Example: The set of functional requirements allocated to software for the system configuration requirements for a specific instantiation is the following:

· The RDTF1, RDTF2, OPF1, and OPF2 are calls of their own functional services to exchange their messages.

· RDTS1 uses an intermediary service with RDTS2.

· OPS1 uses an intermediary service with OPS2.

· The functional user (or engineered device) sends one data group to RDTS1 and one data group to RDTS2.

· OPF1 and OPF2 send one data group each to the functional user (or engineered device).

The Functional Measurement Solution

Based on Figure 13 for the COSMIC reference architectural model using an SOA for the system configuration requirements allocated to software for specifying data movements, the measurement procedure to determine the functional size for configuration on Functional Types 1 and 2 for this example is as follows:

Use COSMIC-SOA for the Measurement of Exchange Messages.

The 4 functional processes (RDTF1, RDTF2, OPF1, and OPF2) interacting with the functional services for (RDTS1, RDTS2, OPS1, and OPS2) in this example include the data movements in green arrows in Figure 13 and, with the help of Tables 6 and 7, the measurement results for the functional size is equal to 16 CFP are presented in Table 11.

Table 11. COSMIC-SOA measurement results for the interactions between 4 functional processes, as defined in the example.

		COSMIC-SOA Types of Exchange Services for System Configuration

		Quantity of Data Movements

		Functional Process

		Service Process

		

		Register Data Transfer Function 1 (RDTF1)

		Register Data Transfer Service 1 (RDTS1)

		4

		Register Data Transfer Function 2 (RDTF2)

		Register Data Transfer Service 2 (RDTS2)

		4

		Operational Function 1 (OPF1)

		Operational Service 1 (OPS1)

		4

		Operational Function 2 (OPF2)

		Operational Service 2 (OPS2)

		4

		Total Functional Size

		16 CFP

Use COSMIC-SOA for the Measurement of Intermediary Services.

The 2 functional process services (RDTS1 and OPS1) use intermediary services for interacting with other functional process services (RDTS2 and OPS2 respectively). In this example, these include the following data movements (red arrows in Figure 13) and, with the help of Tables 8 and 9, the results of the measurement functional size results are presented in Table 12.

Table XII. COSMIC-SOA measurement results of intermediary services between 4 functional processes, as defined in the example.

		COSMIC-SOA Types of Intermediary Services between Functional Processes for System Configuration

		Quantity of Data Movements

		Functional Process

		Functional process

		

		Register Data Transfer Service 1 (RDTS1)

		Register Data Transfer Service 2 (RDTS2)

		8

		Operational Service 1 (OPS1)

		Operational Service 2 (OPS2)

		8

		Total Functional Size

		16 CFP

Use of COSMIC-SOA to Exchange Data Movements between Components

Based on Figure 13 (blue arrows) and Table 10, the measurement functional size results are presented in Table 13 for the direct and indirect data movements identified by the measurer for this example.

Table 13. COSMIC-SOA measurements for direct and indirect data movements for system configuration

		Functionality

		Data Movement Description for System Configuration

		Data

Movement Type

		User or Engineered Device

		· Functional user (or engineered device) sends a data group to RDTF1.

· Functional user (or engineered device) sends a data group to RDTF2.

		E

E

		Configuration Data Flow

		· RDTF1 sends a data group to OPF1.

· RDTF2 sends a data group to OPF2.

· RDTF1 reads and writes a data group to persistent storage.

· RDTF2 reads and writes a data group to persistent storage.

		E

E

R & W

R & W

		Configuration Control Flow

		· OPF1 sends a data group to the functional user or (engineered device).

· OPF2 sends a data group to the functional user or (engineered device).

· OPF1 reads and writes a data group to persistent storage.

· OPF2 reads and writes a data group to persistent storage.

		E

E

R & W

R & W

		Total Functional Size

		14 CFP

The Total Functional Size for this Example

In summary:

· The functional measurement size for the exchange messages = 16 CFP;

· The functional measurement size for the intermediary services = 16 CFP;

· The functional measurement size for the direct and indirect data movements = 14 CFP.

Therefore, the Total Functional Size for this example, based on Figure 13 and Tables XI, XII, and XIII, is equal to 46 CFP.

Discussion and Conclusion

Configuration requirements are typically described initially as non functional requirements at the system level, and system engineers must subsequently apportion these system requirements very carefully as either software or hardware requirements to conform to the configuration requirements of the system. A number of views and concepts are provided in the ECSS guide and the SWEBOK Guide to describe various types of candidate configuration requirements at the system, software, and hardware levels.

 This paper has introduced a standards-based framework for specifying and measuring software requirements for the functions needed to address the system’s configuration requirements.

 The main contribution of this paper is our proposed Generic Model of Software FUR for System Configuration-NFR. This Generic Model can be considered as a kind of reference model for the identification of system configuration requirements, and can be used for their allocation to software functions implementing such requirements. System requirements allocated to hardware have not been addressed in this paper. Since the structure of the generic model is based on the generic model of software adopted by the COSMIC measurement standard, the necessary information for measuring their functional size is readily available, and an example has been presented of a specific instantiation of this reference model.

 Specifically, the Generic Model of configuration presented in this paper is based on:

· The ECSS standards for the description of the NFR for system configuration; and

· The COSMIC measurement model of functional requirements.

The proposed specification and measurement model is independent of the software type and the languages in which the software FUR will be implemented. The proposed Generic Model for configuration (i.e. reference model) provides:

· A specification model for each type, or all types, of configuration requirements: for example, the requirements to be allocated to software for the system configuration data and control flows; and

· A specification measurement model for each type, or all types, of configuration requirements.

The Generic Model of Software FUR for System Configuration proposed in this paper can provide system engineers with:

· An integrated reference view of system configuration requirements that they can use to select the configuration requirements necessary for a specific system to be developed (hardware, software, manual);

· A methodology to specify these configuration NFR: with this reference model, beginners may not require years of training before being able to specify these at the levels of detail illustrated in the work reported in this paper;

· An integrated model to be used as input to make decisions on which of these detailed configurations NFR will be allocated to: 1) hardware, 2) software, or 3) a combination of these for a specific context.

For software engineers, the proposed generic model of system configuration requirements can also provide them with:

· A reference model that they can use to verify whether or not the system engineers have provided them with the right selection of system NFR-derived FUR, and at the necessary level of detail.

This means that this standards-based reference model can be used as a quality technique for the following:

· verification of system configuration requirements coverage and descriptions;

· as a technique, in the software requirements phase, to elicit such requirements, referred to as ‘both non functional requirements and emergent properties’ in the SWEBOK Guide – ISO19759 ;

· To achieve this level of detailed inputs-requirements up front in the project life cycle, that is, in the software requirements phase, rather than much later in the software testing phase, this is the common practice.

· As a way to measure these FUR with COSMIC – ISO 19761, and take them into account in FP-based software estimation models, thereby avoiding late discovery of mandatory FUR, which leads to budget overruns and missed deadlines.

The measurement aspects presented in this paper have been limited to the system requirements allocated to software. It will be interesting in future work to investigate whether or not this measurement approach can be extended to all such requirements at the system level (that is, to all hardware, software, and manual requirements, and not only to software requirements).

References

1. M. Noguera, M. V. Hurtado, M. L. Rodríguez, L. Chung and J. L. Garrido, "Ontology-driven analysis of UML-based collaborative processes using OWL-DL and CPN", Science of Computer Programming, vol. 75, pp. 726-760, 2010.

2. L. Chung and J. do Prado Leite, "On Non-Functional Requirements in Software Engineering", in Conceptual Modeling: Foundations and Applications, Lecture Notes in Computer Science, Springer Berlin / Heidelberg, vol. 5600, pp. 363-379, 2009.

3. W. Ma, L. Chung and K. Cooper, "Assessing Component’s Behavioral Interoperability Concerning Goals", in On the Move to Meaningful Internet Systems: OTM 2008 Workshops, Lecture Notes in Computer Science, Springer Berlin / Heidelberg, pp. 452-462, 2008.

4. S. Nary, "An NFR-Based Framework for Establishing Traceability between Enterprise Architectures and System Architectures", pp. 21-28, 2006.

5. L. Chung and N. Subramanian, "System and software architectures", Science of Computer Programming, vol. 57, Issue 1, pp. 1-4, 2005.

6. L. Chung and N. Subramanian, "Adaptable system/software architectures," Journal of Systems Architecture, vol. 50, Issue 7, pp. 365-366, 2004.

7. W. Yiqiao, "Self-Repair through Reconfiguration: A Requirements Engineering Approach", 2009, pp. 257-268.

8. M. John, "Goal-Oriented Requirements Engineering, Part II",14th IEEE International Requirements Engineering Conference (RE'06), pp. 1-5, 2006.

9. N. Subramanian and L. Chung, "Towards standardization of adaptable software architectures", Computer Standards & Interfaces, vol. 25, pp. 211-213, 2003.

10. B. Cheng, R. de Lemos, H. Giese, P. Inverardi, J. Magee, J. Andersson, B. Becker, N. Bencomo, Y. Brun, B. Cukic, G. Di Marzo Serugendo, S. Dustdar, A. Finkelstein, C. Gacek, K. Geihs, V. Grassi, G. Karsai, H. Kienle, J. Kramer, M. Litoiu, S. Malek, R. Mirandola, H. Müller, S. Park, M. Shaw, M. Tichy, M. Tivoli, D. Weyns and J. Whittle, "Software Engineering for Self-Adaptive Systems: A Research Roadmap", Lecture Notes in Computer Science in Software Engineering for Self-Adaptive Systems. vol. 5525, Springer Berlin / Heidelberg, pp. 1-26, 2009.

11. ISO/IEC-19761, "Software Engineering - COSMIC v 3.0 - A Functional Size Measurement Method", International Organization for Standardization, Geneva (Switzerland), 2003.

12. K. L. Chung, "“Representing and Using Non-functional Requirements for Information System Development: A Process Oriented Approach”,Ph.D. Thesis, also Tech. Rpt. DKBS-TR-93-1", Department of Computer Science, University of Toronto, 1993.

13. M. John, B. Nixon, "From Object-Oriented to Goal Requirements", Transactions of the ACM, Orlando, USA, pp. 821-828, 1999.

14. L. Chung and J. P. Leite, "On Non-Functional Requirements in Software Engineering", in Conceptual Modeling: Foundation and Applications, Essays in Honor of John Mylopoulos, Springer-Verlag, Berlin, Heidelberg, pp. 363-379, 2009.

15. J. Andrew, "An Approach to Quantitative Non-Functional Requirements in Software Development", 34th Annual Government Electronics and Information Association Conference, 2000.

16. L. Chung, B. Nixon, E. Yu, J. Mylopoulos, "Nonfunctional Requirements in Software Engineering", Kluwer Academic Publishing, 2000.

17. B. Paech, A. Dutoit, D. Kerkow, A. Von Kneth, "Functional requirements, non-functional requirements and architecture specification cannot be separated -- A position paper", Requirements Engineering: Foundations for Software Quality (REFSQ), Essen, Germany, 2002.

18. A. Moreira, J. Araujo, I. Brito, "Crosscutting Quality Attributes for Requirements Engineering", in 14th International Conference on Software Engineering and Knowledge Engineering, Ischia, Italy, pp. 167-174, 2002.

19. N. S. Rosa, P. Cunha, G. Justo, "Process NFL: A language for Describing Non-Functional Properties", 35th Annual Hawaii International Conference on System Sciences (HICSS’02), volume 9, page 282b, Hawaii, U.S.A, 2002.

20. D. Park and S. Kang, "Design Phase Analysis of Software Performance Using Aspect-Oriented Programming", 5th Aspect-Oriented Modeling Workshop in Conjunction with UML 2004, Lisbon, Portugal, 2004.

21. M. Glinz,"Rethinking the Notion of Non-Functional Requirements", in the 3rd World Congress for Software Quality, Munich, Germany, 2005.

22. H. Kaiya, A. Osada, K. Kayjiri, "Identifying Stakeholders and Their Preferences about NFR by Comparing Use Case Diagrams of Several Existing Systems, Proceedings of the Requirements Engineering Conference, 12th IEEE International, Washington, DC, USA p.112-121, September 06-10, 2004

23. ECSS-E-40-Part-1B, "Space Engineering: Software - Part 1 Principles and Requirements", European Cooperation for Space Standardaization,The Netherlands, 2003.

24. ECSS-E-40-Part-2B, "Space Engineeing:Software-part 2 Document Requirements Definitions", European Cooperation for Space Standardaization, The Netherlands, 2005.

25. ECSS-E-ST-10C, "Space engineering: System engineering general requirements", Requirements & Standards Division Noordwijk, The Netherlands, 2009.

26. ECSS-E-ST-32C-Rev.1, "Space Engineering: Structural General Requirements", Requirements & Standards Division Noordwijk, The Netherlands, 2008.

27. ECSS-M-ST-40C-Rev.1, "Space Project: Management Configuration and Information Management", Requirements & Standards Division Noordwijk, The Netherlands, 2009.

28. ECSS-Q-ST-80C, "Space Product Assurance: Software Product Assurance", Requirements & Standards Division Noordwijk, The Netherlands, 2009.

29. ISO-19759, "Software Engineering Body of Knowledge (SWEBOK)", IEEE Computer Society, 2004.

30. K. T. Al-Sarayreh and A. Abran, "A Generic Model for the Specification of Software Interface Requirements and Measurement of Their Functional Size", in 8th ACIS International Conference on Software Engineering Research, Management and Applications, SERA 2010, Montreal, Canada, pp. 217-222, 2010.

31. K. T. Al-Sarayreh and A. Abran and L. Santaillo, "Measurement of Software Requirements Derived from System Reliability Requirements", in workshop on advances in Functional Size measurement and Effort Estimation, FSM’10 , pages 1:1-6, Newyork, NY, USA, 2010. ACM.

32. K. T. Al-Sarayreh and A. Abran, "Specification and Measurement of System Configuration Non Functional Requirements", in 20th International Workshop on Software Measurement & International Conference on Software Measurement, IWSM/Metrikon/Mensura, Stuttgart, Germany, pp. 141-156, 2010.

33. A. Abran, K. T. Al-Sarayreh, J. J. Cuadrado-Gallego "Standards-based Model for the Specification and Measurement of Maintainability Requirements", in 22nd International Conference on Software Engineering and Knowledge Engineering (SEKE 2010), Redwood City, California, USA, pp. 153-158, 2010.

34. K. T. Al-Sarayreh, A. Abran, J. J. Cuadrado-Gallego "Measurement Model of Software Requirements Derived from System Portability Requirements", in 9th International Conference on Software Engineering Research and Practice (SERP 2010), Las Vegas, USA, pp. 553-559, 2010.

35. A. Abran and K. T. Al-Sarayreh, "Measurement of Software Requirements Derived from System Operations Requirements", 20th International Workshop on Software Measurement & International Conference on Software Measurement,IWSM/Metrikon/Mensura,Stuttgart, Germany, pp. 101-114, 2010.

36. A. Abran and K. T. Al-Sarayreh, "Standards-Based Model for the Specification of System Design and Implementation Constraints", In: Industrial Proceedings, 17th European Systems & Software Process Improvement and Innovation, EuroSPI 2010 Conference, Grenoble (France), Publisher: Delta, Denmark, pp. 4.7-4.16. Sept. 1-3, 2010.

37. ISO/IEC-14143-1, " Information technology - Software measurement - Functional size measurement Part 1: Definition of concepts", International Organization for Standardization, Geneva (Switzerland), 2007

38. COSMIC, "The COSMIC Method v3.0.1, Guideline for Sizing SOA Software, v1.4", The Common Software Measurement International Consortium, MPC Review, 2010.

39. SoberIT:, "Service-Oriented Architecture and Software Engineering", Seminar on Enterprise Information Systems by Software Business and Engineering Institute, Helsinki University of Technology, © 2008 Kari Hiekkanen, 2008.

20

image2.emf

image3.emf

image4.emf

image5.emf

image6.emf

image7.emf

image8.png

image9.png

image10.emf

image1.emf

Appendix II-C

Early Identification, Specification and Measurement of Software Requirements Derived From System Data Definition and Database Requirements

In the system requirements phase, the focus is often on detailing and documenting the system functional requirements and on their allocation to the software and hardware parts of the system being designed. The non-functional requirements, in contrast, are often captured only generically at a fairly high level and they do not include the levels of details necessary for the system engineers to allocate yet such non functional requirements as specific functionalities to be handled either by the software or the hardware, or a specific combination of both. The European ECSS series of standards for the aerospace industry includes data definition and database requirements as one of sixteen types of non functional requirement (NFR) for embedded and real time software. A number of data definition and database related concepts are dispersed throughout the ECSS standards to describe at varying levels of details the various types of candidate data definition and database requirements at the system, software, and hardware levels. This paper organizes these dispersed data definition and database concepts into a generic standards-based reference model of system data definition and database requirements. The availability of this generic, and detailed, reference model can facilitate the early identification and specification of the system data definition and database -NFR and their detailed allocation as specific data definition and database functions to be handled by the specified allocation to hardware or software or in a specific combination of both. In the absence of such a generic and detailed model, such NFR requirements are typically handled in practice much later on in the software development life cycle when at system testing time, users and developers find out that a number of data definition and database requirements have been overlooked and additional work has to be expanded to implement them. The approach adopted in this research for the structure of this reference NFR model is based on the generic model of software functional requirements proposed in the COSMIC – ISO 19761 model, thereby allowing the measurement of the functional size of such data definition and database requirements allocated to software and taking them into account for estimations purposes.

Keywords: Software Engineering, Non functional requirement (NFR), Data definition and database Requirements, ECSS International Standards, Data definition and database Measurement, COSMIC – ISO 19761.

1. Introduction

In practice, during the system requirements gathering phase, the focus is often on the functional requirements of the system, while non functional requirements are often captured by system analysts at a very global level: detailing these non functional requirements is typically left to be handled (i.e. defining them at the necessary level of detail) much later by system designers in the system architecture and design phases. Non functional requirements (NFR) play a critical role in system development. They may have a considerable impact on project effort, and should be taken into account for estimation purposes and in comparing project productivity.

In the system analysis phase, the NFR are typically described at the system level and not at the software level. As yet, there is no consensus on how to describe and measure system NFR. In current practice, they may be viewed, defined, interpreted, and evaluated differently by different people in the later project phases, particularly when they are stated vaguely and only briefly in the system requirements phase
 ADDIN EN.CITE
[1-3]
 . It is challenging, therefore, to take them into account in software estimation and software productivity benchmarking, particularly as they have received less attention in the software engineering literature and are definitely less well understood than other cost factors [4] . Of course, measurement is essential if NFRs are to be taken as quantitative inputs to an estimation or productivity benchmarking process but not much work has been published to date on how to measure such NFR.

In practice, requirements are initially typically addressed at the system level , either as high level system functional user requirements (system FUR) or as high level system non functional requirements (system NFR)
 ADDIN EN.CITE
[5-7]
. The latter must usually be detailed, allocated, and implemented in hardware, software (as software FUR - “soft-FUR” for instance – see Figure 1) or in a specific combination of hardware or software.

To distinguish between these types of requirements, system FUR describes the required functions in a system, while system NFR describes how the required functions must behave in a system. In the software requirements engineering step, system NFR can then be detailed and specified as software FUR, to allow a software engineer to develop, test, and configure the final deliverables to system users.

The term "functional" refers to the set of functions the system (including the software) has to offer, while the term "non functional" refers to the manner in which such functions perform. An FUR is typically phrased with a subject and a predicate (i.e. noun/verb), such as: "The system must print 5 reports". NFR, by contrast, are typically phrased with an adverb or modifying clause, such as: "The system will print 5 reports quickly," or "The system will print 5 reports with a high degree of reliability".

Fig. 1 Mapping system FUR and NFR to software FUR

In the ECSS (European Cooperation on Space Standardization) standards for the aerospace industry
 ADDIN EN.CITE
[8-13]
, a number of concepts are provided to describe various types of candidate data definition and database requirements at the system, software, and hardware levels. However, these standards vary in their views, terminology, and coverage of data definition and database.

Currently, there exists no generic model for the identification and specification of software FUR for implementing system data definition and database requirements (system NFR) based on the various views documented in international standards and in the literature. Consequently, it is challenging to measure these data definition and database-related software FUR, and take them into account quantitatively for estimation purposes.

This paper focuses on a single type of NFR, that is, system data definition and database requirements, and reports on the work carried out to define an integrated view of software FUR for system data definition and database NFR based on international standards, including the use of the generic COSMIC – ISO 19761 [14] model of software FUR.

The paper is organized as follows. Section 2 presents the related work. Section 3 presents the view of software FUR in ISO 19761. Section 4 identifies the standards that describe data definition and database requirements. Section 5 presents a standards-based definition of a generic model of requirements for software to implement system data definition and database NFR. Section 6 presents a standard generic measurement model of software FUR using a service-oriented architecture (SOA) for system data definition and database. Section 7 presents the sizing of a reference instantiation of the generic model of data definition and database software FUR. Section 8 presents a measurement example. Finally, a discussion and our conclusion are presented in section 9.

2. Related work

In the literature, there are some early works on NFR in systems/software engineering. For instance, in 1993, Chung [15] presented one of the initial attempts to capture knowledge in this domain. His work was followed by that of Mylopoulos et al. [16], who suggested viewing all requirements as goals, each goal being an umbrella for related functional and non functional requirements. Chung et al. [17] and Andrew [18] aimed to make NFR more quantitative in nature, while Andrew [18]observed that there are often gaps between the stakeholder vision and requirements representation. Chung et al. [17] proposed a taxonomy for NFR indicating that it is unrealistic to expect designers and developers to incorporate an entity that they cannot readily identify. While taxonomies aim to be inclusive of the entire set of entities in question, these authors suggested in [17] that a one- or two-level taxonomy would suffice initially, and that there are over 161 identifiable types of NFR.

Paech et al. [19] recommended that functional requirements (FR), NFR, and architecture be tightly co developed and addressed in a coherent and integrated manner, suggesting that NFR be decomposable into more refined NFR and additional FR, as well as architectural decisions.

Moreira et al.[20] , Rosa et al. [21] , Park et al.[22] , and Glinz [23] have proposed new methods for classifying NFR early in the software development process, while Kaiya et al. [24] have presented a method to identify stakeholders and their NFR preferences by using use case diagrams of existing systems.

More recently, Mylopoulos [16] promoted Goal-Oriented Requirements Engineering, and suggested a specific solution involving the establishment of an Agent-Oriented Software Development Method, called the Tropos project, which covers not only the requirements, but also the design phases, and addresses the design of high-variability software for applications such as home care software and business process design.

More recently still, Kassab et al. [25-26] proposed some solutions for an NFR framework: for example, a sequence of systematic activities with a view to early consideration of identifying, specifying, and separating FR from NFR, as well as a discussion on NFR prioritization and risk assessment. They also report in [26] on an initial solution for determining the functional size of NRF based on "Soft-Goal" concepts, using the COSMIC method, to deal with the problem of quantitatively assessing the NFR modelling process early in a project.

In parallel with the work of researchers, the software industry has been working on the description of NFR, in particular through international standardization bodies, such as the European Cooperation on Space Standardization (ECSS), the Institute of Electrical and Electronics Engineers (IEEE), and the International Organization for Standardization (ISO).

In the ECSS standards for the aerospace industry
 ADDIN EN.CITE
[8-13]
 , a system data definition and database requirement is identified as one of sixteen types of NFR, and the research reported here focuses strictly on these NFR. However, these standards vary in their views, terminology, and coverage of data definition and database requirements. Currently, there exists no generic model for the identification and specification of software FUR for implementing system data definition and database requirements (system NFR) based on the various views documented in these international standards and in the literature. Consequently, it is challenging to measure the system data definition and database -related software FUR, and take them into account quantitatively for estimating software projects.

In the work reported here, preference has been given to the views, concepts, and vocabulary most widely used by the industry, as evidenced in its standardization infrastructure, rather than those in the academic literature. Similarly, for the structuring and description of models of FUR and for measurement purposes, the measurement views, concepts, and terminology from the standardization infrastructure have been adopted, rather than those in the literature.

This paper focuses on a single type of NFR, that is, system data definition and database requirements, and reports on the work carried out to define an integrated view of software FUR for system data definition and database NFR on the basis of international standards, including the use of the generic COSMIC – ISO 19761 [14] model of software FUR as the template for the description of measurable functional requirements , thereby allowing the measurement of the functional size of such requirements allocated to software and taking them into account for estimations purposes. This approach has been used to build other types of NFR, such as design and implementation constraints, configuration, interfaces and reliability requirements
 ADDIN EN.CITE
[27-33]
.

3. A generic ISO view of software FUR

It is specified in ISO 14143-1 [34] of the collection of ISO standards that a functional size measurement (FSM) method must measure software FUR. In addition, ISO 19761 – COSMIC [14] proposes a generic model of software FUR that clarifies the boundary between hardware and software. Figure 2 illustrates the generic flow of data from a functional perspective from hardware to software. From this generic model of software functional requirements in Figure 2, we observe the following:

· Software is bounded by hardware. In the so-called “front-end” direction (i.e. the left-hand side in Figure 2), software used by a human user is bounded by I/O hardware, such as a mouse, a keyboard, a printer, or a display, or by engineered devices, such as sensors or relays. In the so-called “back-end” direction (i.e. the right-hand side of Figure 2), software is bounded by persistent storage hardware, like a hard disk, and RAM and ROM memory.

· The software functionality is embedded within the functional flows of data groups. Such data flows can be characterized by four distinct types of data movements. In the “front end” direction, two types of movements (ENTRIES and EXITS) allow the exchange of data with the users across a ‘boundary’. In the “back end” direction, two types of movements (READS and WRITES) allow the exchange of data with the persistent storage hardware.

· Different abstractions are typically used for different measurement purposes. In real-time software, the users are typically the engineered devices that interact directly with the software; that is, the users are the ‘I/O hardware’. For business application software, the abstraction commonly assumes that the users are one or more humans who interact directly with the business application software across the boundary; i.e. the ‘I/O hardware’ is ignored.

 [image: image1.emf]

Fig. 2 Generic flow of data groups through software from a functional perspective in COSMIC – ISO 19761

As an FSM method, COSMIC is aimed at measuring the size of software based on identifiable FUR. Once identified, those requirements are allocated to hardware and software from the unifying perspective of a system integrating these two “components”. Since COSMIC is aimed at sizing software, only requirements allocated to the software are currently considered in its measurement procedure.

4. Identification of standards describing system data definition and database requirements

This section presents a survey of the data definition and database -related views, concepts, and terms in the ECSS standards
 ADDIN EN.CITE
[8-13]
. This section identifies which standards currently address aspects of the software FUR derived from system data definition and database FUR and NFR – see Fig. 3.

 The expected outcome is the identification of the various elements that should be included in the design of a standards-based framework for modelling software FUR for system data definition and database. The elements of data definition and database are dispersed in various system views throughout various ECSS standards and are expressed as either:

· System data definition and database functional user requirements (system data definition and database FUR) or

· System data definition and database non-functional requirements (system data definition and database NFR)

Fig. 3: Mapping system requirements into software FUR for data definition and database

4.1. ECSS views and concepts for data definition and database requirements

The European Cooperation for Space Standardization (ECSS) is an organization which works to improve standardization within the European space sector. The ECSS frequently publishes standards targeted to the contractors working for the European Space Agency (ESA). The ECSS standards series
 ADDIN EN.CITE
[8-13]
 includes a number of data definition and database requirements at the system level. It can be observed that ECSS focuses on the system-FUR for the early development phases while the System NFR are typically discussed within the context of later development phases such as the evaluation or testing phases.

Data definition and database are described in ECSS standards series by data requirements and the corresponding mission data provided by a supplier to a customer. Formally, this data is part of the user manual for the corresponding element of the space system. Moreover, the ECSS requires these data definitions and database to be defined in the requirements baseline (i.e. the requirements baseline must include the requirements applicable to the various elements of the system product tree).

More specifically, data definitions and database requirements are described through the data model requirements and the system model object. According to ECSS standards, data model requirements [13] are composed of:

· System data items which include:

1. System entity types (such as: event, parameter, system element, reporting data, activity);

2. System value types (such as: simple value and record value);

3. System data types (simple type and complex type).

· Product data schema which include:

1. Product configuration data;

2. Monitoring & data control.

A system model object refers to any object of the populated database that is uniquely identified by a name: e.g. a system element, a reporting data, an activity or an event. Moreover, a system model object is derived from data model requirements and data mission.

Table 1 presents a list of concepts and vocabulary used in the ECSS standards to describe system-related data definition and database requirements. ECSS standards are specifying that data definition and database requirements must be implemented in software, hardware, or a combination of the two.

 While conducting the survey of all the data definition and database concepts and terms described in the ECSS-E-40 [8-9] and ECSS-Q [12, 35]series and in ECSS-ESA [10] as the integrated standard for ECSS-E and ECSS-Q, it was observed that:

· These various data definition and database elements are described differently, and at different levels of detail.

· The data definition and database elements are dispersed throughout the various documents: there is, therefore, no integrated view of all types of candidate data definition and database requirements.

· There is no obvious link between the data definition and database requirements in ECSS-ESA as the integrated standard and all the other ECSS standards that describe data definition and database requirements.

Table 1: Data definition and database view and vocabulary in ECSS

		The set of concepts and vocabulary

		Data model requirements

		System Data items

		System entity types

		· Event

· Parameter

· System element

· Reporting data

· Activity

		

		

		System value types

		· Simple value

· Record value

		

		

		System data types

		· Simple type

· Complex type

		

		Product data schema

		· Product configuration data

· Monitoring & data control

		System model object

		· Data model requirements

· Data mission.

It is also to be noted that the ECSS does not propose a way to measure such software data definition and database requirements and, without measurement, it is challenging to take such an NFR either as a quantitative input to an estimation process or in productivity benchmarking.

5. A standards-based definition of a generic model of software FUR for system data definition and database requirements

This section identifies and assembles the terminologies and concepts of data definition and database dispersed throughout the ECSS standards. These terminologies are mapped next into a proposed model of software FUR for system data definition and database using the generic FUR model proposed in COSMIC– see Fig. 3. This COSMIC based generic model then becomes a framework for describing the software FUR from system data definition and database requirements based on the ECSS standards.

5.1. Mapping data definition and database views and vocabulary from ECCS standards

Table 2 presents functions to address system data definition and database requirements that are present as system requirements in the ECSS standard: each of these could be interpreted, and specified, at times as software FUR.

Table 2: Functions to address system data definition and database requirements

		Functions to address system data definition

and database requirements

		· Function to identify event

· Function to identify parameter

· Function to identify system element

· Function to identify reporting data Function to identify activity

· Function to identify simple value

· Function to identify record value

· Function to identify simple type

· Function to identify complex type

· Function to identify configuration data

· Function to identify monitoring data

· Function to identify control data

Various types of system-related data definition and database requirements can be derived from the following set of concepts:

· System data items

(a) System entity types

(b) System value types

(c) System data types

· System product data schema

Table 3 presents various typical system data definition and database functions (middle column) for system data definition and database requirements and corresponding software functions (right-hand side column) that may be specified to implement such data definition and database functions for the system data definition and database requirements (and corresponding entities to be measured).

Table 3: System data definition and database requirements and related software functions

		Functional types of System data definition and database requirements

		System functions for data definition and database

		Software functions for data definition and database

		Functional Type 1

System data items (SDI)

		System entity types

(SET)

		· Function to identify event (EF)

· Function to identify parameter (PF)

· Function to identify system element (SEF)

· Function to identify reporting data (RDF)

· Function to identify activity (AF)

		

		System value types (SVT)

		· Function to identify simple value (SVF)

· Function to identify record value (RVF)

		

		System data types

(SDT)

		· Function to identify simple type (STF)

· Function to identify complex type (CTF)

		Functional Type 2

System product data schema (SPDS)

		· Function to identify configuration data (SCDF)

· Function to identify monitoring data (SMDF)

· Function to identify control data (SCDF1)

5.2. Identification of the system data definition and database functional types allocated to software-FUR.

This section identifies the functional types and the relationships between these functional types allocated to software FUR for system data definition and database requirements.

5.2.1. Functional type 1: System data items (SDI).

According to ECSS standards, data definitions are described through system data items (SDI) which are composed of entity types, value types and data types. Based on entity types may include the following:

· Events which define as an occurrence of a condition or group of conditions of operational significance. Events are widely used within the space system to trigger the execution of functions (e.g. acquisition of signal can initiate telemetry processing tasks at the ground station).

· Parameters are the lowest level of elementary information that has a meaning for monitoring and control of the space system. A compound parameter is a record comprised of any sequence of parameters, arrays of parameters and sub‐records . For example, a complete telemetry packet, or part thereof, may be represented as a compound parameter. The parameters within a compound parameter are normally interpreted together (e.g. when interpreting the contents of an anomaly report).

· Reporting data is used for assessing the functioning of the space system and the information that a system element provides, irrespective of how this information is used. Reporting data can comprise measurements which reflect the state of the associated system element or an output product whose purpose is to be used by another system element (e.g. manoeuvre parameters provided by the flight dynamics system).

· System element: representation within the space system model of a functional element of the space system.

· Activity: space system monitoring and control function.

Moreover, value types may include simple and record values. While the data types may be simple or complex types.

Figure 4 illustrates a system modelling view of data movements for the system data items (SDI) (functional type 1).

The system data items (SDI) are specified as a set of requirements:

· The left part of figure 4 corresponds to an entity type which is uniquely identified by a name. Inside each entity type, there are two main types of data movements:

· The first and the lowest level is used as a Parameter Function (PF)(i.e. Student number =10);

· The second type of data movements is used as a system element function (SEF) (i.e. (Student number and student name).

· SEF provide three types of functions based on the data definition architecture; these functions are composed of a set of compound arguments or parameters based on the referenced components or SEF in this case.

· Event Function (EF) is set conditions between parameters and it executes these parameters into records or array of data records.

· Reporting data function (RDF) is assessing the executed functions.

· Activity function (AF) is monitoring and controlling the set of executed functions with their constraints.

· The middle part of figure 4 contains the definition of the data type: i.e. a description and any applicable constraints. The data types for each entity type should be defined as a second part of constructing a new data definition by signed simple and complex type functions (STF) and (CTF); STF is exchange a data with the parameters functions (PF), while CTF is exchange a data with the SEF.

· The right part of figure 4 contains the value type for the assigned entity types throughout moving their contents with data types:

· Simple value function (SVF), SVF is constrained by STF

· Record value function (RVF), RVF is constrained by CTF

It can be observed that:

· PF, SEF, STF, CTF, SVF and RVF are used as intermediary services () to exchange their contents.

· STF, CTF, SVF and RVF can store their contents in a persistent storage.

· STF, CTF, SVF and RVF send data to other functions.

Figure 4: System data items (SDI): system modelling view

Figure 5 illustrates next a COSMIC modelling view of the data movements for system data items (SDI) (functional type 1).

· FUR sends a data group (i.e. Entry) to a PF and/or a SEF.

· PF sends and receives data groups (i.e. Entry or Exit) to SEF and STF using intermediary services.

· SEF sends and receives data groups (i.e. Entry or Exit) with other sub functions: EF, RDF and AF.

· SEF sends and receives data groups (i.e. Entry or Exit) to CTF using intermediary services.

· STF and CTF send and receive data groups (i.e. Entry or Exit) between each other using intermediary services.

· SVF and RVF send and receive data groups (i.e. Entry or Exit) between each other using intermediary services.

· STF and CTF send and receive data groups (i.e. Entry or Exit) to SVF and RVF.

· STF and CTF read and write data groups from/to persistent storage.

· SVF and RVF read and write data groups from/to persistent storage.

Figure 5: System data items (SDI): COSMIC modelling view

5.2.2. Functional type 2: System product data schema (SPDS).

According to the ECSS standards, database requirements are described through a system product data schema (SPDS) which includes a system configuration data function (SCDF1), a system monitoring data function (SMDF) and a system control data function (SCDF). According to the nature of the product (i.e. the product data schema) corresponds to a subset of the identified data model, supplemented by product‐specific entity and value types. The product data schema is used for the exchange of a specified data and is suitable for communication, interpretation and processing by computers.

Figure 6 illustrates a system modelling view of the data movements for the system product data schema (SPDS) (functional type 2).

The system product data schema (SPDS) is providing three types of functions:

· System configuration data function (SCDF): storing system configuration data is a central concern of modern application development. Most users expect to be able to set their individual preferences for using an application, and that information has to be stored somewhere with a readable format in order to perform routine operations. i.e. UNIX systems favor rc files (such as foo.rc) stored in the user's home directory. Older Windows™ systems denoted configuration files with INI (foo.ini) and stored them in the same directory as the program. The early Macs stored preferences in the Preferences folder within the System folder. Today, Windows config data will be stored in the registry.

· System monitoring data function (SMDF): monitor and record activity in a database and then generate alerts for anything unusual. The purpose of SMDF is to ensure the security of corporate databases and intended to decrease insider misuse of databases, enforce separation of duties for database administrators (DBAs), and mitigate certain types of external attacks.

· System Control data function (SCDF1): control a database buffer requirements, override predefined buffer sizes, and manage performance.

It can be observed in Figure 6 that:

· (SMDF) and (SCDF1) are performing their functionality from the stored data after system configuration data function (SCDF) is performed.

· SCDF, SMDF and SCDF1 use intermediary services between each other to exchange their data.

· SCDF, SMDF and SCDF1 use the stored data from the system data items in figure 5.

Figure 6: System product data schema (SPDS): system modelling view

Figure 7 illustrates a COSMIC modelling view of the data movements for system product data schema (SPDS) (functional type 2).

· SCDF sends and receives data groups (i.e. Entry or Exit) to SMDF using intermediary services.

· SMDF sends and receives data groups (i.e. Entry or Exit) to SCDF1 using intermediary services.

· SCDF, SMDF and SCDF1 read and write data groups from/to persistent storage in figure 5.

Figure 7: System product data schema (SPDS): COSMIC modelling view

5.3. Model of the functional types relationships based on system and COSMIC Views

Figure 8 presents an overview of the relationships between the function types for system data definition and database requirements that may be allocated to software FUR. More specifically, the system data definition and database requirements model is composed of 12 functions grouped into two functional types. The data flows in the model are also divided into direct data flows and the intermediary data flows.

· The sub model of system data definition and database (Functional Type 1) can be used to specify the data flows between 9 functions for the system data items (SDI) and the data flows with other functions on the system data definition and database model – see Figure 8.

· The sub model of system data definition and database (Functional Type 2) can be used to specify the data flows between three functions for the system product data schema (SPDS) and the data flows with other functions on the system data definition and database requirements model – see Figure 8.

Figure 8. System modelling view: for system data definition and database requirements.

Figure 9 presents an overview of the relationships between the function types in the data definition and database software FUR, using COSMIC for graphical representation. More specifically:

· The sub model of the data definition and database Functional Type 1 can be used to specify (and measure the functional size of) the system data items (SDI) from the received/sent data groups from/to the parameter functions (PF), the system element functions (SEF), the event functions (EF), the reporting data functions (RDF), the activity functions (AF), the simple and complex types functions (STF and CTF), the simple value functions (SVF) and the record value functions (RVF) – see Fig. 9.

· The sub model of the Data definition and database Functional Type 2 can be used to specify (and measure the functional size of) the system product data schema (SPDS) from the received/sent data groups from/to system configuration, monitoring and controlling data functions – see Fig. 9.

Figure 9. COSMIC reference model of system data definition and database requirements allocated to software.

6. A standard generic measurement model of software using an SOA for system data definition and database requirements

In this paper, Figure 9 illustrates the COSMIC reference model of data definition and database requirements allocated to software. This reference model describes the important concepts and relationships for system data definition and database requirements as defined in the ECSS international standards.

In this section, a COSMIC reference architectural model using an SOA (Service Oriented Architecture) is built in Figure 13 to elaborate on the model to show a more complete picture, which includes showing what is involved in instantiating the modelled entities in practice – for more details, see [36].

There are many definitions of a service-oriented architecture (SOA), such as: a flexible set of design principles used during systems development and integration[37] ; a process including the definition of the architecture, components, modules, interfaces, and data for a system to satisfy specified requirements .

The COSMIC reference architectural model using an SOA in Figure 13 provides a loosely integrated suite of services that can be used in multiple business domains to measure the functional size of software FUR in an SOA environment [36] . In this model, the term “service” refers to a set of related software FUR functions.

The above COSMIC reference architectural model also aids measurers of services by separating functions into distinct units, or services. These services communicate with each other by exchanging data in a well-defined, shared format, or by coordinating an activity between two or more services [36] .

The COSMIC reference model of system data definition and database requirements allocated to software in Figure 9 is considered a high-level model of requirements, while a COSMIC reference architectural model using an SOA, as depicted in Figure 13, describes the detailed measurement model, which can be used to specify and measure the functionality described in Figure 9.

 The SOA for COSMIC offers three types of data architecture movements based on [36]:

· COSMIC-SOA exchange messages.

· COSMIC-SOA intermediary services.

· COSMIC-SOA data exchanges between system components, divided into:

· Direct exchange data movements, and

· Indirect exchange data movements.

6.1. COSMIC-SOA exchange messages for system data definition and database

The COSMIC reference model of system data definition and database is composed of a set of functions – see Figure 9. These functions, according to the SOA, provide functional users with a set of services by exchanging messages in the application layer and a service between two peer pieces of software FUR.

In an SOA, an application requiring commonly used information from another application sends a request to the service of the application that can handle the request, or the application may call upon its own services. Such calls are also called ‘messages’. Each message may consist of one or more data movements [36] .

The model for a common form of exchange of messages between an application and a service is shown in Figure 10 [36] , which uses the COSMIC reference model of data definition and database requirements allocated to software for the exchange of data between two peer pieces of software .

Fig. 10 The interactions between an application and a service [36]

6.2. COSMIC-SOA intermediary services for system data definition and database

When a functional process of an application service in application A requires data that are available via an application service in application B, the former application service calls upon a functional process of the intermediary service. This service functionality is also needed by other applications in the overall SOA framework, as it may itself be realized in the form of a utility service [36] – see Figure 11.

Fig. 11 Application services and an interconnecting intermediary service [36]

6.3. COSMIC-SOA data exchanges between system data definition and database

Figure 12 [36] shows the possible flows of data movements between components in the same layer, i.e. between peer components (where a component may be an application or a service). It shows direct and indirect exchanges of data between components – one or both forms may be involved when services communicate. If components exchange data directly, then, for measurement purposes, the measurer will identify Exit and/or Entry data movements, as per the data movements between service A (SA) and service B (SB). An indirect exchange of data between components means that a service in one component writes data in a storage device, which is subsequently read by a service in another component. In this situation, the measurer will identify a Write data movement in service SA and a Read data movement in service SB.

Fig. 12 Direct and indirect exchange of data between services in peer components [36] .

6.4. COSMIC reference architectural model using an SOA for system data definition and database requirements

Figure 13 illustrates a COSMIC reference architectural model using an SOA for system data definition and database requirements. This model is built based on Figure 9 and the role of the COSMIC-SOA explained in [36] .

Fig13: COSMIC reference architectural model using SOA for system data definition database allocated to software.

7. Sizing a Reference Instantiation of the Generic Model of Software FUR for System Data Definition and Database Requirements

The specification of software FUR for system data definition and database requirements in any specific project is a specific instantiation of the proposed generic model described in Figure 13. When the software specification document is at the level of the movement of data groups, then these functional requirements can be directly measured using the COSMIC measurement rules. The measurement example presented next is illustrative of a reference instantiation of the generic COSMIC specification and measurement model of software FUR for system data definition and database requirements in an SOA context for a single data group for all the identified possible flows of data groups.

 The measurement example in this section explains how to use the proposed reference model of system data definition and database requirements to size a hypothetical framework composed of all of the kinds of software FUR described in the framework.

7.1. Measurement of exchange services for system data definition and database functionality using COSMIC-SOA

There are 12 functionality types of system data definition and database requirements, interacting with their own services, for the measurement of exchange services for system data definition and database using COSMIC-SOA, see Figure 13. According to COSMIC-SOA, each functional process may interact with its own service by sending and receiving data movements (i.e. Entry and Exit – see Figure 10).

Table 4 illustrates the COSMIC-SOA measurement results for the interactions between the system data definition and database functional processes with its own service processes (i.e. the parameter function (PF) interacts with its own service process: Parameter Service (PS)).The measurement result for this operation is equal to 4 CFP for each interaction between each functional process with its own functional service process”; see also Table 6. The total measurement result for the 12 functionality types is equal to 48 CFP (see the green shaded arrows in figure 13).

Table 4: COSMIC-SOA measurement for the interactions between 12 functional processes.

		Id. of Functions

		COSMIC-SOA Types of exchange services for system data definition and database requirements

		Quantity of Data Movements

		

		Functional Process

		Service process

		

		1

		Parameter Function (PF)

		Parameter Service (PS)

		4

		2

		System Element Function (SEF)

		System Element Service (SES)

		4

		3

		Event Function (EF)

		Event Service (ES)

		4

		4

		Reporting Data Function (RDF)

		Reporting Data Service (RDS)

		4

		5

		Activity Function (AF)

		Activity Service (AS)

		4

		6

		Simple Type Function (STF)

		Simple Type Service (STS)

		4

		7

		Complex Type Function (CTF)

		Complex Type Service (CTS)

		4

		8

		Simple Value Function (SVF)

		Simple Value Service (SVS)

		4

		9

		Record Value Function (RVF)

		Record Value Service (RVS)

		4

		10

		System Configuration Data Function (SCDF)

		System Configuration Data Service (SCDS)

		4

		11

		System Monitoring Data Function (SMDF)

		System Monitoring Data Service (SMDS)

		4

		12

		System Control Data Function

(SCDF1)

		System Control Data Service

(SCDS1)

		4

		The Total of Data Movements

		48 CFP

Based on the COSMIC service using service oriented services (SOA), different services can interact each other (see- table 5) to exchange functional process services for data definition and database requirements- see figure 13.

Table 5: COSMIC-SOA measurement for the interactions between different functional services.

		Id. of Service

		COSMIC-SOA Types of exchange services for system data definition and database requirements

		Quantity of Data Movements

		

		Functional Process

		Service process

		

		1

		Simple Value Service (SVS)

		System Configuration Data Service (SCDS)

		4

		2

		Simple Value Service (SVS)

		System Monitoring Data Service (SMDS)

		4

		3

		Simple Value Service (SVS)

		System Control Data Service

(SCDS1)

		4

		4

		Record Value Service (RVS)

		System Configuration Data Service (SCDS)

		4

		5

		Record Value Service (RVS)

		System Monitoring Data Service (SMDS)

		4

		6

		Record Value Service (RVS)

		System Control Data Service

(SCDS1)

		4

		7

		System Element Service (SES)

		Event Service (ES)

		

		8

		System Element Service (SES)

		Reporting Data Service (RDS)

		

		9

		System Element Service (SES)

		Activity Service (AS)

		

		The Total of Data Movements

		24

Table 6: COSMIC-SOA measurement example for the interactions between one functional process with its own service process.

		COSMIC-SOA Types

		Data Movement Description

		Data

Movement

Type

		Functional Process

		Service process

		

		

		Parameter Function

(PF)

		Parameter Service

(PS)

		· PF sends a data group to PS

		X

		

		

		· PS receives a data group from PF

		E

		

		

		· PS sends a data group to PF

		X

		

		

		· PF receives a data group from PS

		E

7.2. Measurement of intermediary services for system data definition and database services using COSMIC-SOA

In this section - and based on Figure 13, when a functional process service requires data that is available via another functional process service, the former calls upon a functional process of the intermediary service. According to the COSMIC-SOA model of measurement for system operations, the types of data movements for using the intermediary service must be Entry and Exit – see Figure 11.

Table 7 illustrates the COSMIC-SOA measurement results for intermediary services based on figure 13 (see the red shaded arrows in figure 13). This table presents an instantiation of a single data group for all possible flows of the data groups identified above, and listed as a data movement example for one intermediary service in Table 8: for this requirement the measurement results are equal to 8 CFP. The total measurement results is equal to 56 CFP (see the red shaded arrows in figure 13).

Table 7: COSMIC-SOA measurement model for intermediary services in figure 13.

		Id. of intermediary services

		COSMIC-SOA Types of intermediary services between functional processes for System Data definition and database

		Quantity of Data Movements

		

		Functional Process

		Functional process

		

		1

		Parameter Service (PS)

		System Element Service (SES)

		8

		2

		Parameter Service (PS)

		Simple Type Service (STS)

		8

		3

		System Element Service (SES)

		Complex Type Service (CTS)

		8

		4

		Simple Type Service (STS)

		Complex Type Service (CTS)

		8

		5

		Simple Value Service (SVS)

		Record Value Service (RVS)

		8

		6

		System Configuration Data Service (SCDS)

		System Monitoring Data Service (SMDS)

		8

		7

		System Monitoring Data Service (SMDS)

		System Control Data Service

(SCDS1)

		8

		The Total of Data Movements

		56 CFP

Table 8: COSMIC-SOA measurement example for the intermediary service between one functional process with own service process.

		COSMIC-SOA Intermediary Services

		Data Movement Description

		Data

Movement

Type

		Service process

		Service process

		

		

		Parameter Service (PS)

		System Element Service (SES)

		· PS sends a data group to IS-1

		X

		

		

		· IS-1 receives a data group from PS

		E

		

		

		· IS-1 sends a data group to SES

		X

		

		

		· SES receives a data group from IS-1

		E

		

		

		· SES sends a data group to IS-1

		X

		

		

		· IS-1 receives a data group from SES

		E

		

		

		· IS-1 sends a data group to PS

		X

		

		

		· PS receives a data group from IS-1

		E

Note: IS-1 is the first intermediary service in Figure 13.

7.3. Measurement of the direct and indirect data movements for system data definition and database services using COSMIC-SOA

This section is based on Figure 13 which illustrates the possible flows of data between components in the same layer, i.e. between peer components (where a component may be an application or a service). This section shows direct and indirect exchanges of data between components – one or both forms of which may be involved when services communicate. If components exchange data directly, the measurer will identify the Exit and/or Entry data movements, as per the data movements between service A and service B. An indirect exchange of data between components means that a service in one component writes data which are subsequently read by a service in another component. In this situation, the measurer will identify a Write data movement in the former component and a Read data movement in the other.

Specifically, Table 9 illustrates COSMIC-SOA measurement results for the exchange of data movements between the system data definition and database requirements model in a functional process or in service architecture layers – see Figures 9 and 13. This table presents an instantiation of this operation. The total measurement results are equal to 20 CFP (see the yellow shaded arrows in figure 13).

Table 9: COSMIC-SOA measurements for direct and indirect data groups for system data definition and database requirements.

		 COSMIC-SOA

Functions

		Data Movement Description

		Data

Movement

Type

		Functional user (FUR) or Device Engineered (DE)

		· FUR or DE sends a data group to PF.

· FUR or DE sends a data group to SEF.

		E

E

		Simple Type Function (STF) & Simple Value Function (SVF)

		· STF sends a data group to SVF

· SVF receives a data group from STF

		E

X

		Complex Type Function (CTF) & Record Value Function (RVF)

		· CTF sends a data group to RVF

· RVF receives a data group from CTF

		E

X

		Simple Type Function (STF)

		· STF reads and writes a data group from/to persistent storage.

		R & W

		Complex Type Function (CTF)

		· CTF reads and writes a data group from/to persistent storage.

		R & W

		Simple Value Function (SVF)

		· SVF reads and writes a data group from/to persistent storage.

		R & W

		Record Value Function (RVF)

		· RVF reads and writes a data group from/to persistent storage.

		R & W

		System Configuration Data Function (SCDF)

		· SCDF reads and writes a data group from/to persistent storage.

		R & W

		System Monitoring Data Function (SMDF)

		· SMDF reads and writes a data group from/to persistent storage.

		R & W

		System Control Data Function (SCDF1)

		· SCDF1 reads and writes a data group from/to persistent storage.

		 R & W

		The Total functional size

		20 CFP

8. A measurement example

The specification of software FUR for system data definition and database requirements in any specific project is a specific instantiation of the proposed generic model described in Figure 13. When the software specifications document is at the level of the movement of data groups, then these functional requirements can be directly measured using the COSMIC measurement rules.

8.1. Theoretical measurement example for educational uses.

This section presents a specific theoretical measurement example of the use of the COSMIC generic model of system data definition and database requirements allocated to software for educational uses for students and trainers.

Example: The set of functional requirements allocated to software for the system data definition and database requirements for a specific instantiation is the following:

· The PF, SEF, EF and STF call their own functional services to exchange their messages.

· The FS uses an intermediary service with SES.

· The FS uses an intermediary service with STF.

· The FUR sends one data group to PF and another data group to SEF.

The Functional Measurement Solution

Based on Figures 13 for the COSMIC reference architectural model using SOA for system data definition and database requirements allocated to software for specifying data movements, the measurement procedure to determine the functional size for data definition and database requirements on Functional Types 1 and 2 for this example is as follows:

· Use COSMIC-SOA for the measurement of exchange messages.

The functional processes (PF, SEF, EF and STF) interacting with the functional services for (PS, SES, ES and STS) in this example include the following data movements (arrows are shaded in green in Figure 13) and with the help of table 4, the results of the measurement functional size results are presented in table 10, with a functional size of 16 CFP.

Table 10: COSMIC-SOA measurement results for the interactions between 4 functional processes as defined in the example.

		Id. of Functions

		COSMIC-SOA types of exchange services for system data definition and database requirements

		Quantity of Data Movements

		

		Functional Process

		Service process

		

		1

		Parameter Function (PF)

		Parameter Service (PS)

		4

		2

		System Element Function (SEF)

		System Element Service (SES)

		4

		3

		Event Function (EF)

		Event Service (ES)

		4

		4

		Simple Type Function (STF)

		Simple Type Service (STS)

		4

		The Total Functional Size

		16 CFP

· Use COSMIC-SOA for the measurement of intermediary services.

The functional process services (PS and SES) use intermediary services to interact with other functional process services. PS and STS, respectively in this example, include the following data movements (red arrows in Figure 13) and with the help of table 7, the results of the measurement functional size results are presented in table 11 and are equal to 16 CFP.

Table 11: COSMIC-SOA measurement results of intermediary services between 4 functional processes as defined in the example.

		Id. of intermediary services

		COSMIC-SOA types of intermediary services between functional processes for system data definition and database requirements

		Quantity of Data Movements

		

		Functional Process

		Functional process

		

		1

		Parameter Service (PS)

		System Element Service (SES)

		8

		2

		Parameter Service (PS)

		Simple Type Service (STS)

		8

		The Total of Functional Size

		16 CFP

· Use COSMIC-SOA data movements for the measurement of data exchanges between components

Based on figure 13 (arrows in yellow) and Table 9, the functional size measurement results are presented in Table 12 for the data movements identified by the measurer for this example and are equal to 4 CFP.

Table 12 COSMIC-SOA measurements for direct and indirect data movements for system data definition and database requirements

		COSMIC-SOA

Functions

		Data Movement Description

		Data

Movement

Type

		Functional user (FUR) or Device Engineered (DE)

		· FUR or DE sends a data group to PF.

· FUR or DE sends a data group to SEF.

		E

E

		System Element Function (SEF)

		· SEF sends a data group to EF

· SEF receives a data group from EF

		E

X

		The Total functional size

		4 CFP

· The total functional size for this example

· The functional measurement size for the functional services = 16 CFP;

· The functional measurement size for the intermediary services = 16 CFP;

· The functional measurement size for the direct and indirect data movements for the functional services = 4 CFP

Therefore, the total functional size for this example, based on Figure 13 and tables 9, 10 and 11, is equal to 36 CFP.

8.2. Practical measurement example from a case study

The non functional requirements can be defined into different levels, for example there is a NFR in the project level and software product quality level as well as there a NFR in the system level, the proposed generic model in this paper is defined the system-NFR; this system-NFR can be used in the feasibility study if the NFR requirements are defined in the data repository such as ISBSG and Promise data, moreover the proposed generic model can be also used for a measured project by using COSMIC method.

The illustrated example in this section is to measure the system NFR for the data definition and database requirements for the already measured case study using the COSMIC measurement method based on identified functional processes for the C-registration system; the functionalized measurement project is found on the following site http://www.cosmicon.com/portal/public/CRS_RUP_Case_%20Study_version_Jan_04_2007_web_%20version_update_feb_2008.pdf).

The C-Registration System is a case study which presents the result of applying the COSMIC measurement method. The set of requirements for the C-Registration System is documented in the Rational Unified Process (RUP Version 2003.06.00.65) document as an example of a Web site project. The C-Registration System will enable students to register for courses on-line. It will also allow professors to select their teaching courses and to maintain student grades.

In this case study, the authors identified the C-Registration Functional requirements (FR) and the total functional size is obtained with the addition of all data movements, that is 107 CFP, as indicated at the bottom of Table 13.

Table 13. Functional size of the Course Registration case study [36]

		Functional processes

		Data Movements

		CFP

		

		E

		X

		R

		W

		

		Logon

		1

		1

		1

		

		3

		Add a professor

		1

		2

		1

		1

		5

		Modify a professor

		2

		2

		1

		1

		6

		Delete a professor

		2

		2

		1

		1

		6

		Select Courses in Teach

		4

		5

		

		

		9

		Add a student

		1

		1

		1

		1

		4

		Modify a student

		2

		2

		1

		1

		6

		Delete a student

		2

		2

		1

		1

		6

		Create a schedule

		5

		5

		1

		2

		13

		Modify a schedule

		5

		6

		2

		2

		15

		Delete a schedule

		2

		4

		2

		1

		9

		Close a registration

		2

		6

		2

		1

		11

		Submit Grades

		4

		5

		2

		1

		12

		View report card

		1

		3

		2

		

		6

		14

		33

		43

		17

		13

		107

The non-functional requirements for this case study are not defined yet. For instance the data definitions and database requirements are not discussed and are left as future work.

In this paper, there are 2 COSMIC reference models in figures 9 and 13: the COSMIC reference model in Figure 9 is built based on the functional process level and in figure 13, on the service process level; these models are independently built for all kinds of data definitions and data base requirements.

To use the proposed generic model in this paper for the already measured projects using COSMIC measurement method, there are three steps:

1. The project functionality should be already sized using COSMIC measurement method based on the number of functional processes or (services if applicable) in the project.

· For example: In The C-Registration system (The number of functional processes =14)

2. The total functional size for the FUR should be defined for the functionalized project.

· For example: the total functional size for the C-registration system equal 107 CFP.

3. The purpose of the proposed COSMIC reference model in this paper is to identify the functional size of the non functional requirements for data definition and database requirements for a measured project; as follows:

· For example: the C-Registration system is measured in the functional processes level (service level was not considered in the C-registration system by their authors). So figure 9 and table 9 can be used at the functional process level, while figure 13 is used on the service level.

· Based on figure 9 and table 9 the total functional size of the system data definition and database-NFR = 20 CFP.

· In C-Registration system, the authors identified 14 Functional processes-see table 13.

· We can measure of the system data definition and database-NFR For each functional process of the 14 functional processes; which equal for each one is 20CFP.

· So we should iterate our measurement 14 times based on the identified functional processes in the project or (20 CFP iterated 14 times), which means the total functional size = 280 CFP.

· Or we can use this formula to calculate the System-NFR.:

System-NFR = The total functional size of Generic Model x No. of Functional Processes in the project

The total size of the functional processes

20 x 14 / 107 = 2.5 CFP or equivalent to 3 CFP

· The result of the used formula is equal 3 CFP; this number is considered as the functional size of the system-NFR for data definition and database requirements.

9. Discussion and Conclusion

Data definition and database requirements are typically described initially as non functional requirements at the system level, and system engineers must subsequently apportion these system requirements very carefully as either software or hardware requirements to conform to the data definition and database requirements of the system. Within the ECSS standards, a number of views and concepts are provided to describe various types of candidate data definition and database requirements at the system, software, and hardware levels.

 This paper has introduced a standards-based framework for specifying and measuring software requirements for the functions needed to address the system’s data definition and database requirements.

 The main contribution of this paper is our proposed generic model of software FUR for system data definition and database requirements. This generic model can be considered as a kind of reference model for the identification of system data definition and database requirements, and can be used for their allocation to software functions implementing such requirements. System requirements allocated to hardware have not been addressed in this paper. Since the structure of the generic model is based on the generic model of software adopted by the COSMIC measurement standard, the necessary information for measuring their functional size is readily available, and an example has been presented of a specific instantiation of this reference model.

 Specifically, the generic model of data definition and database requirements presented in this paper is based on:

· The ECSS standards for the description of the NFR for system data definition and database requirements ;

· The COSMIC measurement model of functional requirements.

The proposed specification and measurement model is independent of the software type and the languages in which the software FUR will be implemented. The proposed generic model for data definition and database requirements (i.e. reference model) provides:

· A specification model for each type, or all types, of data definition and database requirements: for example, the requirements to be allocated to software for the system data items and the product data schema.

· A measurement model for each type, or all types, of data definition and database requirements.

The generic model of system data definition and database requirements proposed in this paper can provide system engineers with:

· An integrated reference view of system data definition and database requirements that they can use to select the data definition and database requirements necessary for a specific system to be developed (hardware-software-manual).

· A methodology to specify these data definition and database NFR: with this reference model, beginners would not require years of training before being able to specify these at the levels of detail illustrated in the work reported in this paper.

· An integrated model to be used as an input to make decisions on which of these detailed data definition and database NFR will be allocated to hardware, or software, or combinations of these for a specific context.

For software engineers, the proposed generic model of system data definition and database requirements can also provide them with:

· A reference model that they can use to verify whether or not the system engineers have provided them with the right selection of system NFR-derived FUR, and at the necessary level of detail.

This means that this standard-based reference model can be used as a quality technique for the following:

· Verification of system data definition and database requirements coverage and descriptions;

· As a technique, at the software requirements phase, to elicit such requirements, referred to as ‘both non functional requirements and emergent properties’ in the SWEBOK Guide – ISO19759 [38] to achieve this level of detailed inputs of data definition and database requirements up front in the project life cycle (that is, at the software requirements phase, rather than much later, at the software testing phase..

The proposed reference model for data definition and database requirements presents a way to measure these FUR with COSMIC – ISO 19761, to take them into account in FSM-based software estimation models, thereby avoiding late discovery of mandatory FUR that lead to budget overruns and missed deadlines.

 The measurement aspects presented in this paper have been limited to the system requirements allocated to software. It will be interesting in future work to investigate whether or not this measurement approach can be extended to all such requirements at the system level (that is, to all hardware-software-manual requirements, and not only to software requirements).

REFERENCES

1.
Noguera, M., et al., Ontology-driven analysis of UML-based collaborative processes using OWL-DL and CPN. Science of Computer Programming, 2010. 75(8): p. 726-760.

2.
Chung, L. and J. do Prado Leite, On Non-Functional Requirements in Software Engineering, in Conceptual Modeling: Foundations and Applications, A. Borgida, et al., Editors. 2009, Springer Berlin / Heidelberg. p. 363-379.

3.
Ma, W., L. Chung, and K. Cooper, Assessing Component’s Behavioral Interoperability Concerning Goals, in On the Move to Meaningful Internet Systems: OTM 2008 Workshops, R. Meersman, Z. Tari, and P. Herrero, Editors. 2008, Springer Berlin / Heidelberg. p. 452-462.

4.
Nary, S. An NFR-Based Framework for Establishing Traceability between Enterprise Architectures and System Architectures. 2006.

5.
Chung, L. and N. Subramanian, System and software architectures. Science of Computer Programming, 2005. 57(1): p. 1-4.

6.
Chung, L. and N. Subramanian, Adaptable system/software architectures. Journal of Systems Architecture, 2004. 50(7): p. 365-366.

7.
Yiqiao, W. Self-Repair through Reconfiguration: A Requirements Engineering Approach. 2009.

8.
ECSS-E-40-Part-1B, Space Engineering: Software - Part 1 Principles and Requirements. European Cooperation for Space Standardaization,The Netherlands, 2003.

9.
ECSS-E-40-Part-2B, Space Engineeing:Software-part 2 Document Requirements Definitions. European Cooperation for Space Standardaization, The Netherlands, 2005.

10.
ECSS-ESA, Tailoring of ECSS, Software Engineering Standards for Ground Segments, Part C: Document Templates. ESA Board of Standardization and Control (BSSC), 2005.

11.
ECSS-E-ST-10C, Space engineering: System engineering general requirements. Requirements & Standards Division Noordwijk, The Netherlands, 2009.

12.
ECSS-Q-ST-80C, Space Product Assurance: Software Product Assurance. Requirements & Standards Division Noordwijk, The Netherlands, 2009.

13.
ECSS-E-ST-70-31C, Space Engineering: Ground systems and operations -Monitoring and control data definition. Requirements & Standards Division Noordwijk, The Netherlands, 2008.

14.
ISO/IEC-19761, Software Engineering - COSMIC v 3.0 - A Functional Size Measurement Method. International Organization for Standardization, Geneva (Switzerland), 2003.

15.
Chung, K.L., “Representing and Using Non-functional Requirements for Information System Development: A Process Oriented Approach”,Ph.D. Thesis, also Tech. Rpt. DKBS-TR-93-1. Department of Computer Science, University of Toronto, 1993.

16.
John, M. Goal-Oriented Requirements Engineering, Part II. 2006.

17.
Chung, L., et al., Nonfunctional Requirements in Software Engineering. Kluwer Academic Publishing, 2000.

18.
Andrew, J., An Approach to Quantitative Non-Functional Requirements in Software Development. Proceedings of the 34th Annual Government Electronics and Information Association Conference, 2000.

19.
Paech, B., et al., Functional requirements, non-functional requirements and architecture specification cannot be separated -- A position paper. REFSQ, 2002.

20.
Moreira, A., J. Araujo, and I. Brito, Crosscutting Quality Attributes for Requirements Engineering, 14th International Conference on Software Engineering and Knowledge Engineering, Ischia, Italy, 2002: p. 167-174.

21.
Rosa, N.S., P.R. Cunha, and J. F., “G.R.R.: ProcessNFL: A language for Describing Non-Functional Properties”. 35th HICSS, IEEE Press, 2002.

22.
Park, D. and S. Kang, Design Phase Analysis of Software Performance Using Aspect-Oriented Programming. 5th Aspect-Oriented Modeling Workshop in Conjunction with UML 2004, Lisbon, Portugal, 2004.

23.
Glinz, M., “Rethinking the Notion of Non-Functional Requirements”. 3rd World Congress for Software Quality, Munich, Germany, 2005.

24.
Kaiya, H., K. Osada, and Kayjiri, Identifying Stakeholders and Their Preferences about NFR by Comparing Use Case Diagrams of Several Existing Systems. IEEE Int. Conf. on Requirements Engineering (RE04), 2004: p. 112-121.

25.
Kassab, M., M. Daneva, and O. Ormandjieva., Towards an Early Software Effort Estimation Based on Functional and Non-Functional Requirements. International Conference on Software Process and Product Measurement (MENSURA), Amsterdam, The Netherlands, 2009.

26.
Kassab, M., et al., Non-Functional Requirements Size Measurement Method (NFSM) with COSMIC-FFP, in Software Process and Product Measurement, J.C.-G. Juan, et al., Editors. 2008, Springer-Verlag. p. 168-182.

27.
Abran, A. and K.T. Al-Sarayreh, Standards-Based Model for the Specification of System Design and Implementation Constraints 17th International Conference on European Systems and Software Process Improvements (EURO-SPI 2010), Industry track, Grenoble Institute of Technology, Grenoble, France, Sept. 2010, 2010.

28.
Abran, A. and K.T. Al-Sarayreh, Measurement of Software Requirements Derived from System Operations Requirements. 20th International Workshop on Software Measurement (IWSM 2010`), Stuttgart, Germany, 2010.

29.
Abran, A., K.T. Al-Sarayreh, and J.J. Cuadrado-Gallego, Measurement Model of Software Requirements Derived from System Portability Requirements 9th International Conference on Software Engineering Research and Practice (SERP 2010), Las Vegas, USA, 2010.

30.
Al-Sarayreh, K.T. and A. Abran. A Generic Model for the Specification of Software Interface Requirements and Measurement of Their Functional Size. in 8th ACIS International Conference on Software Engineering Research, Management and Applications, SERA 2010. 2010. Montreal, Canada.

31.
Al-Sarayreh, K.T. and A. Abran, Measurement of Software Requirements Derived from System Reliability Requirements 24th European Conference on Object-Oriented Programming (ECOOP 2010), Maribor, Slovenia, EU, 2010, 2010.

32.
Al-Sarayreh, K.T. and A. Abran, Specification and Measurement of System Configuration Non Functional Requirements 20th International Workshop on Software Measurement (IWSM 2010), Stuttgart, Germany, 2010.

33.
Al-Sarayreh, K.T., A. Abran, and J.J. Cuadrado-Gallego, A Standards-based Model for the Specification and Measurement of Maintainability Requirements. 22nd International Conference on Software Engineering and Knowledge Engineering (SEKE 2010), Redwood City, California, USA, 2010.

34.
ISO/IEC-14143-1, Information technology-Software measurement - Functional size measurement Part 1: Definition of concepts. International Organization for Standardization, Geneva (Switzerland),, 1998.

35.
ECSS-Q-80B, Space product assurance: Software product assurance. European Cooperation for Space Standardaization, The Netherlands, 2003.

36.
COSMIC, The COSMIC Method v3.0.1, Guideline for Sizing SOA Software, v1.4. The Common Software Measurement International Consortium, MPC Review, 2010.

37.
OASIS, Reference Architecture for Service Oriented Architecture Version 1.0. OASIS ® 1993–2008, 2008.

38.
ISO-19759, Software Engineering Body of Knowledge (SWEBOK). IEEE Computer Society, 2004.

[image: image2.png]

System NFR

Software FUR

System FUR

E

X

F

U

R

System Control Data

Function (SCDF1)

System Configuration Data Function (SCDF)

System Monitoring Data

Function (SMDF)

Persistent Storage

PERSISTENT

STORAGE

Persistent Storage

FUR

System data definition and database FUR

System data definition and database NFR

Software FUR for data definition and database Requirements

Functional Type 1: System Data Items (SDI)

Persistent Storage

Data Type

Simple Type

Function

(STF)

Complex Type

Function

(CTF)

Value Type

Simple Value

Function

(SVF)

Record Value

Function

(RVF)

System Entity Type

Event Function

(EF)

Parameter Function

(PF)

System Element Function

(SEF)

Reporting Data

Function

(RDF)

Activity

Function

(AF)

 Functional Type 1: System Data Items (SDI)

E

Data Type

Simple Type

Function

(STF)

Complex Type

Function

(CTF)

Value Type

Simple Value

Function

(SVF)

Record Value

Function

(RVF)

System Entity Type

Event Function

(EF)

Parameter Function

(PF)

System Element Function

(SEF)

E

Reporting Data

Function

(RDF)

E

X

Activity

Function

(AF)

R

F

U

R

X

E

X

E

E

 (IS)

X

E

E

X

X

E

E

X

E X

IS

X E

E X

X E

E X

IS

X E

E X

X E

 (IS)

X

E

E

X

X

E

E

X

 (IS)

X

E

E

X

X

E

E

X

X

X

E

W

R

W

Functional Type 2: System Product Data Schema (SPDS)

System Monitoring Data

Function (SMDF)

System Configuration Data Function (SCDF)

System Control Data

Function (SCDF1)

Functional Type 2: System Product Data Schema (SPDS)

System Monitoring Data Function

(SMDF)

System Configuration Data Function

(SCDF)

System Control Data Function

(SCDF1)

E X

IS

X E

E X

X E

E X

IS

X E

E X

X E

R

W

W

R

W

R

FUR

Activity

Function

(AF)

Reporting Data

Function

(RDF)

System Element Function

(SEF)

Parameter Function

(PF)

Event Function

(EF)

System Entity Type

Record Value

Function

(RVF)

Simple Value

Function

(SVF)

Value Type

Complex Type

Function

(CTF)

Simple Type

Function

(STF)

Data Type

Persistent

 Storage

Functional Type 1: System Data Items (SDI)

R

W

X E

E X

X E

IS

E X

X E

E X

X E

IS

E X

System Control Data Function

(SCDF1)

System Configuration Data Function

(SCDF)

System Monitoring Data Function

(SMDF)

Functional Type 2: System Product Data Schema (SPDS)

R

Persistent Storage

F

U

R

E

XX

E

X

E

W

R

W

E

X

X

E

X

X

E

E

X

X

E

 (IS)

E

X

X

E

E

X

X

E

 (IS)

X E

E X

X E

IS

E X

X E

E X

X E

IS

E X

E

X

X

E

E

X

X

E

 (IS)

E

R

Activity

Function

(AF)

X

E

Reporting Data

Function

(RDF)

E

System Element Function

(SEF)

Parameter Function

(PF)

Event Function

(EF)

System Entity Type

Record Value

Function

(RVF)

Simple Value

Function

(SVF)

Value Type

Complex Type

Function

(CTF)

Simple Type

Function

(STF)

Data Type

 Functional Type 1: System Data Items (SDI)

E

Functional

User

X

Boundary

Applications A

Functional Process FA

Service S

Functional Process FS

E

X

E

X

Boundary

Intermediary

Service

Service (S2)

Application B

E

X

E

X

Boundary

Service (S1)

Application A

E

X

E

X

Boundary

Service

SA

Service

SB

E

Functional

User

X

Boundary

Persistent Storage

W

X

E

X

Boundary

E

R

Functional Type 2: System

 Product Data Schema

(SPDS)

 Functional Type 1: System Data Items (SDI)

Persistent Storage

Data Type

Simple Type

Service

(STS)

Complex Type

Service

(CTS)

Value Type

Simple Value

Service

(SVS)

Record Value

Service

(RVS)

System Entity Type

Event Service

(ES)

Parameter Service

(PS)

System Element Service

(SES)

E

Reporting Data

Service

(RDS)

E

X

X

E

Activity

Service (AS)

E

X

X

E

E

X

X

E

E

E

 (IS-1)

X

E

E

X

X

E

E

X

E

X

X

E

E

X

X

E

 (IS-3)

E

X

X

E

E

X

X

E

 (IS-4)

X

X

E

W

R

Parameter Function

(PF)

System Element Function

(SEF)

X

E

E

X

E

X

X

E

Event Function

(EF)

Reporting Data

Function

(RDF)

Activity

Function

(AF)

X E

X E

E

X

X

E

E

X

X

E

Simple Type Function

(STF)

E

X

X

E

Complex Type

Function

(CTF)

E

X

X

E

Simple Value

Function (SVF)

E

X

X

E

Record Value

Function

(RVF)

E

X

X

E

W

R

E X

X E

E X

X E

IS

2

IS

5

X E

E X

X E

E X

System Monitoring Data Service (SMDS)

System Configuration Data Service

(SCDS)

E

X

X

E

System Control Data Service

(SCDS1)

R

W

R

W

W

R

System Monitoring Data Function (SMDF)

System Configuration Data Function (SCDF)

System Control Data Function (SCDF1)

E

X

X

E

X

E

E

X

E X

X E

E X

X E

IS

6

IS

7

X E

E X

X E

E X

Functional Type 2

System Product

 Data Schema

 (SPDS)

R

W

W

X

E

X

E

X

E

X

E

1

24

International Journal of Computer & Information Science (IJCIS)

8

Appendix II-D

Software Specification Framework for System Operations Requirements

Abstract

 In the system requirements phase, the focus is often on detailing and documenting the system functional requirements and on their allocation to the software and hardware parts of the system being designed. The non functional requirements, in contrast, are often captured only generically and at a fairly high level, without the degree of detail necessary for the system engineers to allocate them as specific functionalities to be handled either by software or hardware, or a specific combination of the two. The ECSS, which is a European series of standards for the aerospace industry includes system operations requirements as one of sixteen types of non functional requirements (NFR) for embedded and real-time software. A number of concepts are provided in the ECSS and IEEE standards to describe the various types of candidate operations requirements at the system, software, and hardware levels. This paper organizes these dispersed operations concepts into a generic standards-based reference model of system operations requirements. The availability of this generic, and detailed, reference model can facilitate the early identification and specification of the system operations NFR and their detailed allocation as specific operations functions to be handled by the specified allocation to hardware or software, or in a specific combination of the two. In the absence of such a generic and detailed model, these NFR are typically handled in practice much later on in the software development life cycle, when, at system testing time, users and developers find out that a number of operations requirements have been overlooked and additional effort has to be expended to implement them. The approach adopted in this paper for the structure of this reference NFR model is based on the generic model of software functional requirements proposed in the COSMIC – ISO 19761 model, and so allows the measurement of the functional size of operations requirements allocated to software and taking this size into account for estimations purposes.

Keywords: Operations requirements, Non functional requirements–NFR, Functional size, COSMIC–ISO 19761, ECSS and IEEE Standards, operations measurement.

1. Introduction

 In practice, during the system requirements gathering phase, the focus is often on the functional requirements (FR)

of the system, while non functional requirements are often captured by system analysts at a very global level, with a lack of attention to detail: detailing these non functional requirements is typically left to be handled (i.e. defined at the necessary level of detail) much later by system designers in the architecture and design phases.

Non functional requirements (NFR) play a critical role in system development. They may have a considerable impact on project effort, and should be taken into account for estimation purposes and in comparing project productivity. In the system analysis phase, the NFR are typically described at the system level
 ADDIN EN.CITE

[1-7]
 and not at the software level. As yet, there is no consensus on how to describe and measure system NFR. In current practice, they may be viewed, defined, interpreted, and evaluated differently by different people in the later project phases, particularly when they are stated vaguely and only briefly in the system requirements phase
 ADDIN EN.CITE

[8-10]
. It is challenging, therefore, to take them into account in software estimation and software productivity benchmarking, particularly as they have received less attention in the software engineering literature and are definitely less well understood than other cost factors [10]. Of course, measurement is essential if NFRs are to be taken as quantitative inputs to an estimation or productivity benchmarking process.

In practice, requirements are initially typically addressed at the system level
 ADDIN EN.CITE

[11-17]
, either as high level system functional user requirements (system FUR) or as high level system non functional requirements (system NFR). The latter must usually be detailed, allocated, and implemented in either hardware or software, or both, as software FUR (“soft FUR”), for instance – see Figure 1.

To distinguish between these types of requirements, system FUR describes the required functions in a system, while system NFR describes how the required functions must behave in a system. In the software requirements engineering step, system NFR can then be detailed and specified as software FUR, to allow a software engineer to develop, test, and configure the final deliverables to system users.

The term "functional" refers to the set of functions the system (including the software) has to offer, while the term "non functional" refers to the manner in which such functions perform. An FUR is typically phrased with a subject and a predicate (i.e. noun/verb), such as: "The system must print 5 reports." NFR, by contrast, are typically phrased with an adverb or modifying clause, such as: "The system will print 5 reports quickly," or "The system will print 5 reports with a high degree of reliability."

In the ECSS (European Cooperation on Space Standardization) standards for the aerospace industry
 ADDIN EN.CITE

[18-21]
 and the IEEE 830 standard [22], a number of concepts are provided to describe various types of candidate operations requirements at the system, software, and hardware levels. However, these standards vary in their views, terminology, and coverage of operations.

[image: image1.emf]

Figure 1: Mapping system FUR and NFR to software FUR

Currently, there exists no generic model for the identification and specification of software FUR for implementing system operations requirements (system NFR) based on the various views documented in international standards and in the literature. Consequently, it is challenging to measure these operations-related software FUR, and take them into account quantitatively for estimation purposes.

This paper focuses on a single type of NFR, that is, system operations requirements, and reports on the work carried out to define an integrated view of software FUR for system operations NFR based on international standards, including the use of the generic COSMIC – ISO 19761 [23] model of software FUR.

The paper is organized as follows. Section 2 presents the related work. Section 3 presents the view of software FUR in ISO 19761. Section 4 identifies the standards that describe operations requirements. Section 5 presents a standards-based definition of a generic model of requirements for software to implement system operations NFR. Section 6 presents a standard generic measurement model of software FUR using a service-oriented architecture (SOA) for system operations requirements. Section 7 presents the sizing of a reference instantiation of the generic model of operations software FUR. Section 8 presents a measurement example. Finally, a discussion and our conclusion are presented in section 9.

2. Related Work

In the literature, there are some early works on NFR in systems/software engineering
 ADDIN EN.CITE

[1-7]
. For instance, in 1993, Chung [24] presented one of the initial attempts to capture knowledge in this domain. His work was followed by that of Mylopoulos et al. [25], who suggested viewing all requirements as goals, each goal being an umbrella for related functional and non functional requirements. Chung et al. and Andrew [24, 26] aimed to make NFR more quantitative in nature, while Andrew [27] found that there are often gaps between the stakeholder vision and requirements representation. Chung et al. [28] proposed a taxonomy for NFR indicating that it is unrealistic to expect designers and developers to incorporate an entity that they cannot readily identify. While taxonomies aim to be inclusive of the entire set of entities in question, these authors suggested in [28] that a one- or two-level taxonomy would suffice initially, and that there are over 161 identifiable types of NFR.

Paech et al. [29] recommended that functional requirements (FR), NFR, and architecture be tightly co-developed and addressed in a coherent and integrated manner, suggesting that NFR be decomposable into more refined NFR and additional FR, as well as architectural decisions. Moreira et al. [30], Rosa et al. [31], Park et al. [32], and Glinz [33] have proposed new methods for classifying NFR early in the software development process, while Kaiya et al. [34] have presented a method to identify stakeholders and their NFR preferences by using use case diagrams of existing systems.

More recently, Mylopoulos [35] promoted Goal-Oriented Requirements Engineering, and suggested a specific solution involving the establishment of an Agent-Oriented Software Development Method, called the Tropos project, which covers not only the requirements, but also the design phases, and addresses the design of high-variability software for applications such as home care software and business process design.

More recently still, Kassab et al. [36-38] proposed some solutions for an NFR framework: for example, a sequence of systematic activities with a view to early consideration of identifying, specifying, and separating FR from NFR, as well as a discussion on NFR prioritization and risk assessment. They also report in [36-38] on an initial solution for determining the functional size of NRF based on "Soft-Goal" concepts, using the COSMIC method, to deal with the problem of quantitatively assessing the NFR modeling process early in a project.

In parallel with the work of researchers, the software industry has been working on the description of NFR, in particular through international standardization bodies, such as the European Cooperation on Space Standardization (ECSS), the Institute of Electrical and Electronics Engineers (IEEE), and the International Organization for Standardization (ISO). In the ECSS standards for the aerospace industry
 ADDIN EN.CITE

[18-21]
, a system operations requirement is identified as one of sixteen types of NFR, and the research reported here focuses strictly on these NFR. In addition, in the ISO 9126 [39] and IEEE 830 [22] standards, a number of implicit concepts are provided to describe various types of candidate system operations requirements at the system and software levels in the testing and evaluation processes.

However, these standards vary in their views, terminology, and coverage of operations. Currently, there exists no generic model for the identification and specification of software FUR for implementing system operations requirements (system NFR) based on the various views documented in these international standards and in the literature. Consequently, it is challenging to measure the system operations-related software FUR, and take them into account quantitatively for estimating software projects.

In the work reported here, preference has been given to the views, concepts, and vocabulary most widely used by the industry, as evidenced in its standardization infrastructure, rather than those in the academic literature. Similarly, for the structuring and description of models of FUR and for measurement purposes, the measurement views, concepts, and terminology from the standardization infrastructure have been adopted, rather than those in the literature.

This paper focuses on a single type of NFR, that is, system operations requirements, and reports on the work carried out to define an integrated view of software FUR for system operations NFR on the basis of international standards, including the use of the generic COSMIC – ISO 19761 [23] model of software FUR as the template for the description of measurable functional requirements.

3. A generic ISO View of Software FUR

It is specified in ISO 14143-1 [40] of the collection of ISO standards that a functional size measurement (FSM) method must measure software FUR. In addition, ISO 19761 – COSMIC [41] proposes a generic model of software FUR that clarifies the boundary between hardware and software. Figure 2 illustrates the generic flow of data from a functional perspective from hardware to software. From this generic model of software functional requirements in Figure 2, we observe the following:

· Software is bounded by hardware. In the so-called “front-end” direction (i.e. the left-hand side in Figure 2), software used by a human user is bounded by I/O hardware, such as a mouse, a keyboard, a printer, or a display, or by engineered devices, such as sensors or relays. In the so-called “back-end” direction (i.e. the right-hand side of Figure 2), software is bounded by persistent storage hardware, like a hard disk, and RAM and ROM memory.

· The software functionality is embedded within the functional flows of data groups. Such data flows can be characterized by four distinct types of data movements. In the “front end” direction, two types of movements (ENTRIES and EXITS) allow the exchange of data with the users across a ‘boundary’. In the “back end” direction, two types of movements (READS and WRITES) allow the exchange of data with the persistent storage hardware.

· Different abstractions are typically used for different measurement purposes. In real-time software, the users are typically the engineered devices that interact directly with the software; that is, the users are the ‘I/O hardware’. For business application software, the abstraction commonly assumes that the users are one or more humans who interact directly with the business application software across the boundary; i.e. the ‘I/O hardware’ is ignored.

[image: image2.emf]

Figure 2: Generic flow of data groups through software from a functional perspective in COSMIC – ISO 19761

As an FSM method, COSMIC is aimed at measuring the size of software based on identifiable FUR. Once identified, those requirements are allocated to hardware and software from the unifying perspective of a system integrating these two “components”. Since COSMIC is aimed at sizing software, only requirements allocated to the software are currently considered in its measurement procedure.

4. Identification of Standards for Describing System Operations Requirements

 This section presents a survey of the operations-related views, concepts, and terms in the ECSS and IEEE-830 standards. It identifies which standards currently address aspects of the software FUR derived from system operations FUR and NFR – see Figure 3.

[image: image3.emf]

Figure 3: Mapping system requirements to software

FUR for operations requirements

The expected outcome is the identification of the various elements that should be included in the design of a standards-based framework for modeling software FUR for system operations.

4.1 Operations Requirements in the ECSS Standards

The European Cooperation for Space Standardization (ECSS) is an organization which works to improve standardization within the European space sector. The ECSS frequently publishes standards targeting the contractors working for the European Space Agency (ESA). The ECSS standards series includes a number of operations requirements at the system level. Clearly, the ECSS focuses on the system FUR for the early development phases, while the system NFR are typically discussed within the context of later development phases, such as evaluation or testing.

The elements of operations are dispersed in various system views throughout various ECSS standards, and are expressed as either:

· System operations FUR, or

· System operations NFR.

Operations in the ECSS standards include any specified operations mode and mode transition for the software, and, in the case of man-machine interaction, the intended use scenarios and diagrams may be used to show the intended operations and related transition modes. Moreover, operations engineering should cover all operations activities through all phases of the life cycle; i.e. preparation, validation, execution, and disposal.

An analysis of the overall operations requirements in the ECSS standard series has revealed that these standards list the system and software operations FUR early in the development process. Later on, the system operations NFR are used in the evaluation and testing phases. This paper refines these system operations NFR in order to take them into account much earlier in the development cycle: in a feasibility study and at the software requirements phase.

Table 1 presents a list of concepts and vocabulary used in the ECSS standards to describe system-related operations requirements. For instance, the ECSS specifies that, for system operations mode, an analysis of the operational functions (inter-operational function and operational function event) and of the system transitions mode (operational control interface and operational data interface) must be carried out. The ECSS specifies that such requirements must be implemented in software or hardware, or a combination of the two.

A survey of all the operations concepts and terms described in the ECSS-E-40 and ECSS-Q series and in the ECSS-ESA standard (i.e. the integrated standard for ECSS-E and ECSS-Q) reveals that:

· The various operations elements are described differently, and at different levels of detail;

· The operations elements are dispersed throughout the various documents; there is, therefore, no integrated view of all the types of candidate operations requirements;

· There is no obvious link between the operations requirements in ECSS-ESA [42] as the integrated standard and the other ECSS standards that describe operations requirements.

Table 1: ECSS operations requirements view and concepts

		Key views

		Concepts and vocabulary

		Operational and transition modes

		· Inter-operational function

· Operational function event

· Operational control interface

· Operational data interface

· System operations mode

· System transitions mode

· Operational scenario

We can also note that the ECSS does not propose a way to measure such operations requirements when allocated to software, and, without measurement, it is challenging to take such NFR either as quantitative input to an estimation process or in productivity benchmarking.

4.2 Operations Requirements in IEEE-830

IEEE-830 [22] includes operations as one of the NFR types in their list of NFR, and considers the various modes of operation as part of the user interface. But it does not define what an operations requirement is, nor does it provide guidance on how to describe and specify the operations requirements. Of course, it does not provide guidance on how to measure any of these NFR either.

4.3 High-Level View of Operations Requirements in the ECSS Standards Series

This section assembles the terminologies and concepts of system operations dispersed throughout the ECSS and IEEE standards. There are two types of system-related operations requirements that can be derived from the ECSS standards series: system operations mode, and system transitions mode.

Table 2 presents the two types of system operations requirements, and related functions, which are included as system requirements in the ECSS and IEEE standards. These could at times be interpreted, and specified, as software FUR:

· System operations mode: this refers to the expected operations for the executed functions occurring in the system. The system operations mode consists of the inter-operational functions (IOPF) and the operational function events (OPFE).

· System transitions mode: this refers to the expected data and control operations via the interface functionality that could occur in the system. The system transitions mode consists of operational data interface functions (OPDIF) and operational control interface functions (OPCIF).

Table 2: System operations FUR in the ECSS standards series

		Types of System Operations

		Operations Functions to be Specified

		System operations mode

		· Inter-operational function (IOPF)

· Operational function event (OPFE)

		System transitions mode

		· Operational data interface function (OPDIF)

· Operational control interface function (OPCIF)

According to ECSS standards [43], the functional relationships across these two modes, as illustrated in Figure 4, are the following:

· The inter-operational functions (in operations mode), which are controlled by the operational control interface function (in transitions mode). This relationship will be referred to in this paper as the ‘System Operational Control’, or Functional Type 1.

· The operational function events (in operations mode), which send and receive data movements from the operational data interface function (in transitions mode). This relationship will be referred in this paper as the ‘System Operational Data’, or Functional Type 2

For example, in embedded and real-time software [43]:

· A system scheduler sends distribution routines which form the operational control interface and the inter-operational functions; and

· The system device routines form the operational data interface and the operational function events.

[image: image4.emf]

Figure 4: System operations functions and functional types in the ECSS standards series

In the next section, these terminologies are mapped into a proposed model of operations software FUR, using the generic FUR model proposed in COSMIC – ISO 19761. This COSMIC-based generic model will be used as a framework for describing the software FUR from system operations requirements based on the ECSS standards.

5. System and COSMIC Modeling for Operations Requirements

5.1 Functional Type 1: System Operational Control

Operational control is defined as the use of an element or elements of the control flow to perform a specific mission. System operational control directs the assigned authority to accomplish specific missions or tasks, which are usually limited by the function.

System operational control includes:

· Operational control interface (OPCI),

· Inter-operational functions (IOPF), which are considered part of the system operations mode.

i) System Modeling View for System Operational Control.

Figure 5 illustrates a system modeling view (i.e. a high-level view) of the data movements for system operations control (Functional Type 1):

· Operational control interface (OPCI): used by interacting users or devices to send data flows to inter-operational functions (IOPF) in the system operations mode.

· Inter-operational function (IOPF): receives information and transforms it into variables, and then classifies the variables with their data in order to send the data to the next functional type, see Figure 7.

· The individuals in a set of IOPF contact one another through intermediary services to allow different types of data movement (symbol [image: image5.emf]

 in Figure 5).

· A set of IOPF sends additional data flows to a set of operational function events (OPFE) in Functional Type 2 in Figure 7.

[image: image6.emf]

Figure 5: System operational control: system modeling view

ii) COSMIC Modeling View for System Operational Control

Figure 6 illustrates a COSMIC modeling view of the data movements for the system operational control (Functional Type 1):

· A functional user (which may include a device) may send a data group (i.e. an EXIT) to an operational control interface function (OPCIF).

· An OPCIF, based on the number of commands, may send a data group (i.e. an EXIT) for each inter-operational function (IOPF) from 1 to n.

· Inter-operational functions (IOPF1 to n) may receive a set of data groups (i.e. an ENTRY) from an OPCIF.

· Inter-operational functions (IOPF1 to n) may interact (i.e. an EXIT-ENTRY) with each other through intermediary services.

· Each inter-operational function (IOPF1 to n) may send-receive a data group (i.e. an EXIT-ENTRY) to-from an operational function event (OPFE1 to n) in Functional Type 2 – see also Figure 8.

[image: image7.emf]

Figure 6: System operational function: COSMIC modeling view

5.2 Functional Type 2: System Operational Data

i) System Modeling View for System Operational Data

System operational data are designed to integrate the internal and external data from multiple sources into a single instruction for the system through an operational data interface from-to the operational function event (OPFE).

System operational data include information about:

· The operational data interface, and

· The stored information used by an operational function event (OPFE).

Figure 7 illustrates a system modeling view (i.e. high-level view) of the data movements for the system operational data (Functional Type 2):

· An operational function event (OPFE) receives a request from an inter-operational function (IOPF) in order to provide output in a useful format.

· An operational function event (OPFE) reads and writes, through an operational data interface, (OPDI) data information based on the inter-operational function request.

· A set of operational function events (OPFE) links, through the intermediary services (symbol [image: image8.emf]

 in Figure 7), some added valued in their functionality.

[image: image9.emf]

Figure 7: System operational data: system modeling view

ii) COSMIC Modeling View for System Operational Data

Figure 8 illustrates a COSMIC modeling view of the data movements for the system operational data (Functional Type 2):

· An operational function event (OPFE 1 to n) may send data groups to an inter-operational function from (IOPF 1 to n) – see Figure 5.

· Operational function events (OPFE 1 to n) may use intermediary services to link some of their added information.

· An operational function event (OPFE 1 to n) may send and receive a data group through an operational data interface function (OPDIF).

· An operational data interface function (OPDIF) may read and write the requested data from a storage device.

[image: image10.emf]

Figure 8: COSMIC modeling view for system operational data

5.3 Integrated View of the Functional Relationships for System Operations NFR

This section presents an integration of the system and COSMIC modeling views presented in sections 5.1.2 and 5.2.2 (see Figure 9):

· The shaded area represents the functionality in the system operations mode.

· The white area represents the functionality in the system transition model.

In addition, in Figure 9:

· The left-hand side represents Functional Type 1, i.e. the system operational mode.

· The right-hand side represents Functional Type 2, i.e. the system operational data.

This integrated model is referred to in this paper as a generic model of software FUR for system operations. It can be used to specify the functional requirements derived from the system operations requirements, as well as to measure their functional size with the COSMIC ISO 19761 standard.

6. A Standard Generic Measurement Model of Software FUR Using an SOA for System Operations Requirements

In this paper, Figure 9 illustrates the COSMIC reference model of operations requirements allocated to software. This reference model describes the important concepts and relationships for system operations requirements as defined in the ECSS international standards.

[image: image11.emf]

Figure 9: COSMIC reference model of operations requirements allocated to software

In this section, a COSMIC reference architectural model using an SOA is built in Figure 13 to elaborate on the model to show a more complete picture, which includes showing what is involved in instantiating the modeled entities in practice – for more details, see
 ADDIN EN.CITE

[44-47]
.

There are many definitions of a service-oriented architecture (SOA), such as:

· a flexible set of design principles used during systems development and integration [44];

· a process including the definition of the architecture, components, modules, interfaces, and data for a system to satisfy specified requirements [46-47].

The COSMIC reference architectural model using an SOA in Figure 13 provides a loosely integrated suite of services that can be used in multiple business domains to measure the functional size of software FUR in an SOA environment [44]. In this model, the term “service” refers to a set of related software FUR functions.

The above COSMIC reference architectural model also aids measurers of services by separating functions into distinct units, or services. These services communicate with each other by exchanging data in a well-defined, shared format, or by coordinating an activity between two or more services [44].

The COSMIC reference model of system operations requirements allocated to software in Figure 9 is considered a high-level model of requirements, while a COSMIC reference architectural model using an SOA, as depicted in Figure 13, describes the detailed measurement model, which can be used to specify and measure the functionality described in Figure 9.

The SOA for COSMIC offers three types of data architecture movements based on [44]:

· COSMIC-SOA exchange messages.

· COSMIC-SOA intermediary services.

· COSMIC-SOA data exchanges between system components, divided into: direct exchange data movements, and indirect exchange data movements.

6.1 COSMIC-SOA Exchange Messages for System Operations

The COSMIC reference model of system operations is composed of a set of functions – see Figure 9. These functions, according to the SOA, provide functional users with a set of services by exchanging messages in the application layer and a service between two peer pieces of software FUR.

In an SOA, an application requiring commonly used information from another application sends a request to the service of the application that can handle the request, or the application may call upon its own services. Such calls are also called ‘messages’. Each message may consist of one or more data movements [44].

The model for a common form of exchange of messages between an application and a service is shown in Figure 10 [44], which uses the COSMIC reference model of operations requirements allocated to software for the exchange of data between two peer pieces of software [44].

[image: image12.emf]

Figure 10: The interactions between an application and a service [44]

6.2 COSMIC-SOA Intermediary Services for System Operations

When a functional process of an application service in application A, requires data that are available via an application service in application B, the former application service calls upon a functional process of the intermediary service. This service functionality is also needed by other applications in the overall SOA framework, as it may itself be realized in the form of a utility service [44] – see Figure 11.

[image: image13.emf]

Figure 11: Application services and an interconnecting intermediary service [44]

6.3 COSMIC-SOA Data Exchanges between System Operations

Figure 12 [44] shows the possible flows of data movements between components in the same layer, i.e. between peer components (where a component may be an application or a service). It shows direct and indirect exchanges of data between components – one or both forms may be involved when services communicate. If components exchange data directly, then, for measurement purposes, the measurer will identify Exit and/or Entry data movements, as per the data movements between service A (SA) and service B (SB). An indirect exchange of data between components means that a service in one component writes data in a storage device, which is subsequently read by a service in another component. In this situation, the measurer will identify a Write data movement in service SA and a Read data movement in service SB.

[image: image14.emf]

Figure 12: Direct and indirect exchange of data between services in peer components [44].

6.4 COSMIC Reference Architectural Model Using an SOA for System Operations

Figure 13 illustrates a COSMIC reference architectural model using an SOA for system operations requirements. This model is built based on Figure 9 and the role of the COSMIC-SOA explained in [44].

7 Sizing a Reference Instantiation of the Generic Measurement Model of Software FUR for System Operations

The specification of software FUR for system operations in any specific project is a specific instantiation of the proposed generic model described in Figure 13. When the software specification document is at the level of the movement of data groups, then these functional requirements can be directly measured using the COSMIC measurement rules. The measurement example presented next is illustrative of a reference instantiation of the generic COSMIC specification and measurement model of software FUR for system operations in an SOA context for a single data group for all the identified possible flows of data groups. The measurement example in this section explains how to use the proposed reference model of system operations to size a hypothetical framework composed of all of the kinds of software FUR described in the framework.

[image: image15.emf]

Figure 13: COSMIC reference architectural model using an SOA for operations requirements allocated to software

7.1 Measurement of Exchange Services for System Operations Functionality Using COSMIC-SOA

There are two types of system operations functionality, with their own services interacting, for the measurement of exchange services for system operations functionality using COSMIC-SOA:

· Inter-operational functions from (IOPF1 to IOPFn) interacting with inter-operational services from (IOP-S1 to IOP-Sn).

· Operational function events from (OPFE1 to OPFEn) interacting with operational event services from (OPE-S1 to OPE-Sn).

· Each inter-operational service must have the same corresponding operational event service; for instance, IOP-S1 must have OPE-S1.

· According to COSMIC-SOA, each functional process may interact with its own service by sending and receiving data movements, i.e. Entry and Exit – see Figure 10.

Table 3 illustrates the COSMIC-SOA measurement results for interactions between the inter-operational function 1 (IOPF1) with its own service, i.e. inter-operational service 1 (IOP-S1). The measurement result for this operation is equal to 4 CFP for each interaction between IOPF1 and IOP-S1.

Table 3: COSMIC-SOA measurement for the interactions between IOPF1 and IOP-S1

		COSMIC-SOA

 Types

		Data Movement Description

		Data

Movement

Type

		IOPF1

		IOP-S1

		· Inter-operational function 1 (IOPF1) sends a data group to inter-operational service 1 (IOP-S1)

		X

		

		

		· Inter-operational service 1 (IOP-S1) receives a data group from inter-operational function 1 (IOPF1)

		E

		

		

		· Inter-operational service 1 (IOP-S1) sends a data group to inter-operational function 1 (IOPF1)

		X

		

		

		· Inter-operational function 1 (IOPF1) receives a data group from inter-operational service 1 (IOP-S1)

		E

Table 4 illustrates the COSMIC-SOA measurement results for the interactions between the inter-operational function n (IOPFn) with its own service, i.e. inter-operational service n (IOP-Sn). The measurement result for this operation is equal to 4 CFP for each interaction between IOPFn and IOP-Sn (n: represents to each data movement of interaction between a functional process and a functional service).

Table 4: COSMIC-SOA measurement for the interactions between each IOPFn and IOP-Sn

		COSMIC-SOA

Types

		Data Movement Description

		Data

Movement

Type

		IOPFn

		IOP-Sn

		· Inter-operational function n (IOPFn) sends a data group to inter-operational service n (IOP-Sn).

		X

		

		

		· Inter-operational service n (IOP-Sn) receives a data group from inter-operational function n (IOPFn).

		E

		

		

		· Inter-operational service n (IOP-Sn) sends a data group to inter-operational function n (IOPFn).

		X

		

		

		· Inter-operational function n (IOPFn) receives a data group from inter-operational service n (IOP-S1).

		E

Table 5 presents the COSMIC-SOA data movements considered for measuring an interaction between the operational event function 1 (OPEF1) and its own service or operational event service 1 (OPE-S1), the measurement result for this operation being equal to 4 CFP for each interaction between OPEF1 and OPE-S1.

Table 5: COSMIC-SOA measurement for the interactions between

OPEF1 and OPE-S1

		COSMIC-SOA

 Types

		Data Movement Description

		Data

Movement

Type

		OPEF1

		OPE-S1

		· Operational event function 1 (OPEF1) sends a data group to operational event service 1 (OPE-S1).

		X

		

		

		· Operational event service 1 (OPE-S1) receives a data group from operational event function 1 (OPEF1).

		E

		

		

		· Operational event service 1 (OPE-S1) sends a data group to operational event function 1 (OPEF1).

		X

		

		

		· Operational event function 1 (OPEF1) receives a data group from operational event service 1 (OPE-S1).

		E

Table 6 presents the COSMIC-SOA data movements considered for measuring the interactions between the operational event function n (OPEF n) and its own service or operational event service n (OPE-Sn). The measurement result for this operation is equal to 4 CFP for each interaction between OPEF n and OPE-Sn (n represents each time a functional process interacts with a functional service).

Table 6: COSMIC-SOA measurement for the interactions between each OPEFn and OPE-Sn

		COSMIC-SOA

 Types

		Data Movement Description

		Data

Movement

Type

		OPEFn

		OPE-Sn

		· Operational event function n (OPEFn) sends a data group to operational event service n (OPE-Sn).

		X

		

		

		· Operational event service n (OPE-Sn) receives a data group from operational event function n (OPEFn).

		E

		

		

		· Operational event service n (OPE-Sn) sends a data group to operational event function n (OPEFn).

		X

		

		

		· Operational event function n (OPEFn) receives a data group from operational event service n (OPE-Sn).

		E

7.2 Measurement of Intermediary Services for System Operations Services Using COSMIC-SOA

In this section and based on Figure 13, when a functional process service requires data that is available via another functional process service, the former calls upon a functional process of the intermediary service. Specifically:

· Each two inter-operational services from (IOP-S1 to IOP-Sn) can call upon one intermediary service between them. For example, with (IOP-S1and IOP-S2) or (IOP-S2 and IOP-S3), each pair can call upon one intermediary service between them.

· Each two operational event services from (OPE-S1 to OPE-Sn) can call upon one intermediary service between them. For example, with (OPE-S1 and OPE-S2) or (OPE-S2 and OPE-S3), each pair can call upon one intermediary service between them.

· According to the COSMIC-SOA model of measurement for system operations, there are no intermediary services between inter-operational services and operational event services.

· According to the COSMIC-SOA model of measurement for system operations, the types of data movements for using the intermediary service must be Entry and Exit – see Figure 10.

Table 7 illustrates the COSMIC-SOA measurement results for one intermediary service between inter-operational service 1(IOP-S1) and inter-operational service 2 (IOP-S2). This table presents an instantiation of a single data group for all possible flows of the data groups identified above, and listed as a data movement in Table 8 for this operation requirement. The measurement results are equal to 8 CFP.

Table 7: COSMIC-SOA measurement for an intermediary service between two inter-operational services

		COSMIC-SOA

 Types

		Data Movement Description

		Data

Movement

Type

		IOP-S1

		IOP-S2

		· Inter-operational service 1 (IOP-S1) sends a data group to intermediary service 1&2 (IS1&2).

		X

		

		

		· Intermediary services 1&2 receive a data group from inter-operational service 1 (IOP-S1).

		E

		

		

		· Intermediary services 1&2 send a data group to inter-operational service 2 (IOP-S2).

		X

		

		

		· Inter-operational service 2 (IOP-S2) receives a data group from intermediary services 1&2.

		E

		

		

		· Inter-operational service 2 (IOP-S2) sends a data group to intermediary services 1&2.

		X

		

		

		· Intermediary services 1&2 receive a data group from inter-operational service 2 (IOP-S2).

		E

		

		

		· Intermediary services 1&2 send a data group to operational service 1 (IOP-S1).

		X

		

		

		· Inter-operational service 1 (IOP-S1) receives a data group from intermediary services 1&2 (IS1&2).

		E

Table 8 illustrates the COSMIC-SOA measurement results for one intermediary service between the operational event service 1(OPE-S1) and operational event service 2 (OPE-S2). This table presents an instantiation of a single data group for each possible flow of the data groups identified above, and listed as a data movement in Table 9 for this operation requirement. The measurement results are equal to 8 CFP.

Table 8: COSMIC-SOA measurement for the intermediary services between two operational event services

		COSMIC-SOA

 Types

		Data Movement Description

		Data

Movement

Type

		OPE-S1

		OPE-S2

		· Operational event service 1 (OPE-S1) sends a data group to intermediary services 1&2 (IS1&2).

		X

		

		

		· Intermediary services 1&2 receive a data group from operational event service 1 (OPE-S1).

		E

		

		

		· Intermediary services 1&2 send a data group to operational event service 2 (OPE-S2).

		X

		

		

		· Operational event service 2 (OPE-S2) receives a data group from intermediary services 1&2.

		E

		

		

		· Operational event service 2 (OPE-S2) sends a data group to intermediary services 1&2.

		X

		

		

		· Intermediary services 1&2 receive a data group from operational event service 2 (OPE-S2).

		E

		

		

		· Intermediary services 1&2 send a data group to operational event service 1 (OPE-S1).

		X

		

		

		· Operational event service 1 (OPE-S1) receives a data group from intermediary services 1&2 (IS 1&2).

		E

7.3 Measurement of the Direct and Indirect Data Movements for System Operations Services Using COSMIC-SOA

This section is based on Figure 13, which illustrates the possible flows of data between components in the same layer, i.e. between peer components (where a component may be an application or a service). This section shows direct and indirect exchanges of data between components – one or both forms of which may be involved when services communicate. If components exchange data directly, the measurer will identify the Exit and/or Entry data movements, as per the data movements between service A and service B. An indirect exchange of data between components means that a service in one component writes data which are subsequently read by a service in another component. In this situation, the measurer will identify a Write data movement in the former component and a Read data movement in the other.

Specifically, Table 9 illustrates COSMIC-SOA measurement results for the exchange of data movements between the system operations requirements model in a functional process or in service architecture layers – see Figures 9 and 13. This table presents an instantiation of this operation. The measurement results are equal to 21 CFP.

Table 9: COSMIC-SOA measurements for direct and indirect data groups for system operations

		COSMIC-SOA Types

		Data Movement Description

		Data

Movement

Type

		User or Engineered Device

		· User or engineered device sends a data group to an I/O device.

· User or engineered device receives a data group from an I/O device.

		E

X

		I/O Device

		· I/O device sends a data group to the operational control interface.

· I/O device sends a data group to the operational data interface.

· I/O device receives a data group from the operational data interface.

		E

E

X

		Operational Control

Interface Function

(OPCIF)

		· Operational control interface sends a data group to the inter-operational service 1(IOP-S1).

· Operational control interface sends a data group to the inter-operational service n(IOP-Sn).

		E

E

		Inter-Operational Service 1

(IOP-S1)

		· Inter-operational service 1(IOP-S1) sends a data group to operational event service 1(OPE-S1).

· Operational event service 1(OPE-S1) receives a data group from inter-operational service 1(IOP-S1).

		X

E

		Operational Event Service 1

(OPE-S1)

		· Operational event service 1(OPE-S1) sends a data group to inter-operational service 1(IOP-S1).

· Inter-operational service 1(IOP-S1) receives a data group from operational event service 1(OPE-S1).

		X

E

		Inter-operational service n

(IOP-Sn)

		· Inter-operational service n (IOP-Sn) sends a data group to operational event service n (OPE-Sn).

· Operational event service n (OPE-Sn) receives a data group from inter-operational service n(IOP-Sn)

		X

E

		Operational Event Service n

(OPE-Sn)

		· Operational event service n (OPE-Sn) sends a data group to inter-operational service n (IOP-Sn).

· Inter-operational service n(IOP-Sn) receives a data group from operational event service n (OPE-Sn).

		X

E

		Operational Data

Interface Function

(OPDIF)

		· Operational data interface receives a data group from operational event service 1(OPE-S1).

· Operational data interface receives a data group from operational event service n (OPE-Sn).

· Operational data interface sends a data group to operational event service 1(OPE-S1).

· Operational data interface sends a data group to operational event service n (OPE-Sn).

· Operational data interface reads and writes a data group from/to persistent storage.

		E

E

X

X

R and W

		Total Cosmic Functional Size

		21 CFP

8 A Measurement Example

The specification of software FUR for system operations requirements in any specific project is a specific instantiation of the proposed generic model described in Figure 13. When the software specifications document is at the level of the movement of data groups, then these functional requirements can be directly measured using the COSMIC measurement rules. This section presents a specific measurement example of the use of the COSMIC generic model of system operations requirements allocated to software.

Example: The set of functional requirements allocated to software for the system operations requirements for a specific instantiation is the following:

· The OPCI sends one data group to IOP-Service 1.

· The OPCI sends one data group to IOP-Service 2.

· IOP-Service 1 sends a data group to OPE-Service 1.

· IOP-Service 2 sends a data group to OPE-Service 2.

· OPE-Service 1 sends a data group to the OPDI.

· OPE-Service 2 sends a data group to the OPDI.

Based on Figures 9 and 13 for the COSMIC generic model of system operations requirements allocated to software, and on the COSMIC-SOA for specifying data movements, the measurement procedure to determine the functional size for operations on Functional Types 1 and 2 for this example is as follows:

8.1 Use COSMIC-SOA for the Measurement of Exchange Messages.

The functional process interacting with the functional service in this example includes the following data movements:

· IOPF1 in the application layer sends a data group to IOP-Service 1, which means that one functional process will interact with one functional service; size = 1 CFP.

· IOPF2 in the application layer sends a data group to IOP-Service 2, which means that one functional process will interact with one functional service; size = 1 CFP.

· OPEF1 in the application layer sends a data group to OPE-Service 1, which means that one functional process will interact with one functional service; size = 1 CFP.

· OPEF2 in the application layer sends a data group to OPE-Service 2, which means that one functional process will interact with one functional service; size = 1 CFP.

The number of functional services = 4;

· Each functional process in the application layer will interact with each service; the data movements between each functional process and service = 4 CFP (see section 7.1)

· Therefore, the total functional size for all services = 4 X 4 = 16 CFP.

8.2 Use COSMIC-SOA for the Measurement of Intermediary Services.

The intermediary services interacting with each functional service in this example include the following data movements:

· IOP-Service 1 has one functional service, and IOP-Service 2 also has one functional service; IOP-Services 1 and 2 need one intermediary service to contact each other – see Figure 13;

· OPE-Service 1 has one functional service, and the OPE-Service 2 also has one functional service; OPE-Services 1 and 2 need one intermediary service to contact each other – see Figure 13.

· Therefore, each intermediary service includes 8 data movements or 8 CFP (see section 7.2). In this example, 2 intermediary services are needed – see Figure 13;

· Therefore, the functional size for the 2 intermediary services is 8 CFP each, for a subtotal of 16 CFP.

8.3 Use COSMIC-SOA Data Movements of Data Exchange between Components.

Table 10 presents the list of direct data movements identified by the measurer for this example – see section 7.3.

Table 10 COSMIC-SOA measurements for direct data movements for system operations

		Types

		Direct Data Movement Description

		DMT

		User or Engineered Device

		· User or engineered device sends a data group to an I/O device.

· User or engineered device receives a data group from an I/O device.

		E

X

		I/O Device

		· I/O device sends a data group to an operational control interface.

· I/O device sends a data group to an operational data interface.

· I/O device receives a data group from an operational data interface.

		E

E

X

		Operational Control

Interface Function

(OPCIF)

		· Operational control interface sends a data group to inter-operational service 1(IOP-S1).

· Operational control interface sends a data group to inter-operational service n(IOP-S2).

		E

E

		Inter-Operational Service 1

(IOP-S1)

		· Inter-operational service 1(IOP-S1) sends a data group to operational event service 1(OPE-S1).

· Operational event service 1(OPE-S1) receives a data group from inter-operational service 1(IOP-S1).

		X

E

		Operational Event Service 1

(OPE-S1)

		· Operational event service 1(OPE-S1) sends a data group to inter-operational service 1(IOP-S1).

· Inter-operational service 1(IOP-S1) receives a data group from operational event service 1(OPE-S1).

		X

E

Table 10 COSMIC-SOA measurements for direct data movements for system operations (Contd)

		Types

		Direct Data Movement Description

		DMT

		Inter-Operational Service 2

(IOP-S2)

		· Inter-operational service 2 (IOP-S2) sends a data group to operational event service 2 (OPE-S2).

· Operational event service 2 (OPE-S2) receives a data group from inter-operational service 2 (IOP-S2)

		X

E

		Operational Event Service 2

(OPE-S2)

		· Operational event service 2 (OPE-S2) sends a data group to inter-operational service 2 (IOP-S2).

· Inter-operational service 2 (IOP-S2) receives a data group from operational event service 2 (OPE-S2).

		X

E

		Operational Data

Interface Function

(OPDIF)

		· Operational data interface receives a data group from operational event service 1(OPE-S1).

· Operational data interface receives a data group from operational event service 2 (OPE-S2).

· Operational data interface sends a data group to operational event service 1(OPE-S1).

· Operational data interface sends a data group to operational event service n (OPE-S2).

		E

E

X

X

		Total COSMIC Functional Size 19 CFP

Table 11 presents the list of indirect data movements identified by the measurer for this example – see section 7.3.

Table 11: COSMIC-SOA measurements for indirect data movements for system operations

		Types

		Indirect Data Movement Description

		DMT

		Operational Data

Interface Function

(OPDIF)

		· Operational data interface reads a data group from persistent storage for OPE-S1.

· Operational data interface writes a data group to persistent storage for OPE-S1.

· Operational data interface reads a data group from persistent storage for OPE-S2.

· Operational data interface writes a data group to persistent storage for OPE-S2.

		R

W

R

W

		Total Cosmic Functional Size 4 CFP

8.4 The Total Size for this Example

From the measurement steps A, B, and C. above:

· The functional measurement size for the functional services = 16 CFP;

· The functional measurement size for the intermediary services = 16 CFP;

· The functional measurement size for the direct and indirect data movements for the functional services = 19 CFP + 4 CFP = 23 CFP.

Therefore, the Total Functional Size for this example, based on Figure 13 and sections 7.1, 7.2, and 7.3, is equal to 55 CFP.

9 Discussion and Conclusion

Operations requirements are typically described initially as non functional requirements at the system level, and system engineers must subsequently apportion these system requirements very carefully as either software or hardware requirements to conform to the operations requirements of the system. Within the ECSS and IEEE standards, a number of views and concepts are provided to describe various types of candidate operations requirements at the system, software, and hardware levels.

This paper has introduced a standards-based framework for specifying and measuring software requirements for the functions needed to address the system’s operations requirements.

The main contribution of this paper is our proposed Generic Model of software FUR for system operations. This Generic Model can be considered as a kind of reference model for the identification of system operations requirements, and can be used for their allocation to software functions implementing such requirements. System requirements allocated to hardware have not been addressed in this paper. Since the structure of the General Model is based on the generic model of software adopted by the COSMIC measurement standard, the necessary information for measuring their functional size is readily available, and an example has been presented of a specific instantiation of this reference model.

Specifically, the Generic Model of operations presented in this paper is based on:

· The ECSS standards for the description of the NFR for system operations;

· The COSMIC measurement model of functional requirements.

The proposed specification and measurement model is independent of the software type and the languages in which the software FUR will be implemented. The proposed Generic Model for operations (i.e. reference model) provides:

· A specification model for each type, or all types, of operations requirements: for example, the requirements to be allocated to software for the system operational control, modes, and data;

· A specification measurement model for each type, or all types, of operations requirements.

The Generic Model of System Operations Requirements proposed in this paper can provide system engineers with:

· An integrated reference view of system operations requirements that they can use to select the operations requirements necessary for a specific system to be developed (hardware-software-manual).

· A methodology to specify these operations NFR: with this reference model, beginners would not require years of training before being able to specify these at the levels of detail illustrated in the work reported in this paper.

· An integrated model to be used as an input to make decisions on which of these detailed operations NFR will be allocated to 1: hardware, or 2: software, or 3: combinations of these for a specific context.

For software engineers, the proposed Generic Model of System Operations Requirements can also provide them with:

· A reference model that they can use to verify whether or not the system engineers have provided them with the right selection of system NFR-derived FUR, and at the necessary level of detail. This means that this standard-based reference model can be used as a quality technique for the following:

· Verification of system operations requirements coverage and descriptions;

· As a technique, at the software requirements phase, to elicit such requirements, referred to as ‘both non functional requirements and emergent properties’ in the SWEBOK Guide – ISO19759 [48];

· To achieve this level of detailed inputs-requirements up front in the project life cycle; that is, at the software requirements phase, rather than much later, at the software testing phase, which is the common practice;

· As a way to measure these FUR with COSMIC – ISO 19761, and take them into account in FP-based software estimation models, thereby avoiding late discovery of mandatory FUR that lead to budget overruns and missed deadlines.

The measurement aspects presented in this paper have been limited to the system requirements allocated to software. It will be interesting in future work to investigate whether or not this measurement approach can be extended to all such requirements at the system level (that is, to all hardware-software-manual requirements, and not only to software requirements).

References

[1]
K. T. Al-Sarayreh and A. Abran, "A Generic Model for the Specification of Software Interface Requirements and Measurement of Their Functional Size", in 8th ACIS International Conference on Software Engineering Research, Management and Applications, SERA 2010, Montreal, Canada, pp. 217-222, 2010.

[2]
K. T. Al-Sarayreh and A. Abran, "Measurement of Software Requirements Derived from System Reliability Requirements", in 24th European Conference on Object-Oriented Programming (ECOOP 2010), ACM Digital Library, Maribor, Slovenia, EU, 2010.

[3]
K. T. Al-Sarayreh and A. Abran, "Specification and Measurement of System Configuration Non Functional Requirements", in 20th International Workshop on Software Measurement, Joined International Conference on Software Measurement, IWSM/Metrikon/Mensura, Stuttgart, Germany,pp. 141-156, 2010.

[4]
A. Abran, K. T. Al-Sarayreh, J. J. Cuadrado-Gallego "Standards-based Model for the Specification and Measurement of Maintainability Requirements", in 22nd International Conference on Software Engineering and Knowledge Engineering (SEKE 2010), Redwood City, California, USA, pp. 153-158, 2010.

[5]
K. T. Al-Sarayreh, A. Abran, J. J. Cuadrado-Gallego "Measurement Model of Software Requirements Derived from System Portability Requirements", in 9th International Conference on Software Engineering Research and Practice (SERP 2010), Las Vegas, USA, pp. 553-559, 2010.

[6]
A. Abran and K. T. Al-Sarayreh, "Measurement of Software Requirements Derived from System Operations Requirements", 20th International Workshop on Software Measurement Joined International Conference on Software Measurement, IWSM/Metrikon/Mensura, Stuttgart, Germany,pp. 101-114, 2010.

[7]
A. Abran and K. T. Al-Sarayreh, "Standards-Based Model for the Specification of System Design and Implementation Constraints", In: Industrial Proceedings, 17th European Systems & Software Process Improvement and Innovation, EuroSPI 2010 Conference, Grenoble (France), Publisher: Delta, Denmark, pp. 4.7-4.16. Sept. 1-3, 2010.

[8]
L. Chung and J. P. Leite, "On Non-Functional Requirements in Software Engineering, in Conceptual Modeling: Foundation and Applications, Essays in Honor of John Mylopoulos", 2009.

[9]
L. Chung, B.Nixon, E.Yu, J. Mylopoulos, "Non-Functional Requirements in Software Engineering", Springer, Heidelberg, 1999.

[10]
J. Mylopoulos, L.Chung, B.Nixon,, "Representing and Using Nonfunctional Requirements: A Process- Oriented Approach", IEEE Transactions on Software Engineering, vol. 18, pp. 483-497, 1992.

[11]
M. Shaw, "Larger Scale Systems Require Higher-Level Abstractions", Software Specification and Design, IEEE Computer Society, vol. 14, pp. 143-146, 1989.

[12]
A. M. Davis, "Software requirements: objects, functions, and states", Prentice-Hall, Inc., 1993.

[13]
I. Jacobson, G., Booth, J.,Rumbaugl, "Excerpt from the Unified Software Development Process: The Unified Process", IEEE Software, vol. 16, pp. 96-102, 1999.

[14]
K. Wiegers, "Software Requirements", 2nd edition. Microsoft Press, 2003.

[15]
G. Roman, " A Taxonomy of Current Issues in Requirements Engineering", IEEE Computer, pp. 14-21, 1985.

[16]
B. W. Boehm, "Characteristics of software quality", Amsterdam, New York: North-Holland Pub. Co. , American Elsevier, 1978.

[17]
A. I. Antón, "Goal identification and refinement in the specification of software-based information systems", PhD Thesis, Georgia Institute of Technology, 1997.

[18]
ECSS-E-40-Part-1B, "Space Engineering: Software - Part 1 Principles and Requirements", European Cooperation for Space Standardaization,The Netherlands, 2003.

[19]
ECSS-E-40-Part-2B, "Space Engineeing:Software- part 2 Document Requirements Definitions", European Cooperation for Space Standardaization, The Netherlands, 2005.

[20]
ECSS-Q-80B, "Space product assurance: Software product assurance", European Cooperation for Space

 Standardaization, The Netherlands, 2003.

[21]
ECSS-E-ST-10C, "Space engineering: System engineering general requirements", Requirements & Standards Division Noordwijk, The Netherlands, 2009.

[22]
IEEE-Std-830, "IEEE Recommended Practice for Software Requirements Specifications", 1993.

[23]
ISO/IEC-19761, "Software Engineering - COSMIC v 3.0 - A Functional Size Measurement Method", International Organization for Standardization, Geneva (Switzerland), 2003.

[24]
L. Chung, "Representing and Using Non-functional Requirements for Information System Development: A Process Oriented Approach, Ph.D. Thesis, also Tech. Rpt. DKBS-TR-93-1", Department of Computer Science, University of Toronto, 1993.

[25]
J. Mylopoulos, L. Chung, E. Yu, "From Object-Oriented to Goal oriented Requirements analysis", Transactions of the ACM, 1999.

[26]
J. Stephan, "Introducing Measurable Quality Requirements: A Case Study", Fourth IEEE International Symposium on Requirements Engineering, pp. 172-177 , 1999.

[27]
J. Andrew, "An Approach to Quantitative Non-Functional Requirements in Software Development", Proceedings of the 34th Annual Government Electronics and Information Association Conference, 2000.

[28]
L. Chung, B. Nixon, E. Yu, J. mylopoulos, "Nonfunctional Requirements in Software Engineering", Kluwer Academic Publishing, 2000.

[29]
B. Paech, A. Dutoit, D. Kerkow, A. Von Kneth, "Functional requirements, non-functional requirements and architecture specification cannot be separated -- A position paper", REFSQ, 2002.

[30]
A. Moreira, J. Araujo, I. Brito, "Crosscutting Quality Attributes for Requirements Engineering", 14th International Conference on Software Engineering and Knowledge Engineering, Ischia, Italy, pp. 167-174, 2002.

[31]
N. S. Rosa, P. Cunha, G. Justo, "Process NFL: A language for Describing Non-Functional Properties", 35th HICSS, IEEE Press, 2002.

[32]
D. Park and S. Kang, "Design Phase Analysis of Software Performance Using Aspect-Oriented Programming", 5th Aspect-Oriented Modeling Workshop in Conjunction with UML 2004, Lisbon, Portugal, 2004.

[33]
M. Glinz, "“Rethinking the Notion of Non-Functional Requirements”," 3rd World Congress for Software Quality, Munich, Germany, 2005.

[34]
H. Kaiya, A. Osada, K. Kayjiri, "Identifying Stakeholders and Their Preferences about NFR by Comparing Use Case Diagrams of Several Existing Systems", IEEE Int. Conf. on Requirements Engineering (RE04), pp. 112-121, 2004.

[35]
J. Mylopoulos, "Goal-oriented Requirements Engineering", Keynote at the 14th IEEE International Conference on Requirements Engineering, IEEE Computer Society Press, 2006.

[36]
Kassab, M., M. Daneva, O. Ormandjieva, "Towards an Early Software Effort Estimation Based on Functional and Non-Functional Requirements." International Conference on Software Process and Product Measurement (MENSURA), Amsterdam, the Netherlands, 2009.

[37]
M. Kassab, O. Ormandjieva, M. Daneva, A. Abran, "Non-Functional Requirements: Size Measurement and Testing with COSMIC-FFP", International Conference on Software Process and Product Measurement (MENSURA), 2007

 [38]
M. Kassab, O. Ormandjieva, M. Daneva, "Towards a Scope Management of Non-Functional Requirements in Requirements Engineering", International Conference on Software Process and Product Measurement (MENSURA), 2008.

 [39]
ISO/IEC-9126, "Software Engineering - Product Quality - Part 1: Quality Model 9126-1", International Organization for Standardization, Geneva (Switzerland), 2004.

[40]
ISO/IEC-14143-1, " Information technology - Software measurement - Functional size measurement Part 1: Definition of concepts", International Organization for Standardization, Geneva (Switzerland), 1998

[41]
ISO/IEC 19761, "Software Engineering - COSMIC v 3.0 - A Functional Size Measurement Method", International Organization for Standardization, Geneva (Switzerland), 2003.

[42]
ECSS-ESA, "Tailoring of ECSS, Software Engineering Standards for Ground Segments, Part C: Document Templates, ESA Board of Standardization and Control (BSSC)", 2005.

[43]
ECSS-S-ST-00C, "ECSS System: Description, Implementation and General Requirements", Requirements & Standards Division Noordwijk, The Netherlands, 2008.

[44]
COSMIC, "The COSMIC Method v3.0.1, Guideline for Sizing SOA Software", v1.4, The Common Software Measurement International Consortium, MPC Review, 2010.

[45]
OASIS, "Reference Architecture for Service Oriented Architecture Version 1.0", OASIS ® 1993–2008, 2008.

[46]
SoberIT, "Service-Oriented Architecture and Software Engineering", Seminar on Enterprise Information Systems by Software Business and Engineering Institute, Helsinki University of Technology, © 2008 Kari Hiekkanen, 2008.

[47]
OASIS-SOA, "Reference Model for Service Oriented Architecture",http://www.oasisopen.org/committees/tc_hom.php?wg_abbrev=soa-rm, 2006.

[48]
ISO-19759, "Software Engineering Body of Knowledge (SWEBOK)," IEEE Computer Society, 2004.

PAGE

1

Appendix II-I

Early Identification, Specification and Measurement of Software Requirements Derived From System Performance Requirements

In the system requirements phase, the focus is often on detailing and documenting the system functional requirements and on their allocation to the software and hardware parts of the system being designed. The non-functional requirements, in contrast, are often captured only generically at a fairly high level and they do not include the levels of details necessary for the system engineers to allocate yet such non functional requirements as specific functionalities to be handled either by the software or the hardware, or a specific combination of both. The European ECSS series of standards for the aerospace industry includes Performance requirements as one of sixteen types of non functional requirement (NFR) for embedded and real time software. A number of Performance related concepts are dispersed throughout the ECSS standards to describe at varying levels of details the various types of candidate Performance requirements at the system, software, and hardware levels. This paper organizes these dispersed Performance concepts into a generic standards-based reference model of system Performance requirements. The availability of this generic, and detailed, reference model can facilitate the early identification and specification of the system Performance-NFR and their detailed allocation as specific Performance functions to be handled by the specified allocation to hardware or software or in a specific combination of both. In the absence of such a generic and detailed model, such NFR requirements are typically handled in practice much later on in the software development life cycle when at system testing time, users and developers find out that a number of Performance requirements have been overlooked and additional work has to be expanded to implement them. The approach adopted in this research for the structure of this reference NFR model is based on the generic model of software functional requirements proposed in the COSMIC – ISO 19761 model, thereby allowing the measurement of the functional size of such Performance requirements allocated to software and taking them into account for estimations purposes.

Keywords: Software Engineering, Non functional requirement (NFR), Performance Requirements, ECSS International Standards, Performance Measurement, COSMIC – ISO 19761.

1. Introduction

In practice, during the system requirements gathering phase, the focus is often on the functional requirements of the system, while non functional requirements are often captured by system analysts at a very global level: detailing these non functional requirements is typically left to be handled (i.e. defining them at the necessary level of detail) much later by system designers in the system architecture and design phases. Non functional requirements (NFR) play a critical role in system development. They may have a considerable impact on project effort, and should be taken into account for estimation purposes and in comparing project productivity.

In the system analysis phase, the NFR are typically described at the system level and not at the software level. As yet, there is no consensus on how to describe and measure system NFR. In current practice, they may be viewed, defined, interpreted, and evaluated differently by different people in the later project phases, particularly when they are stated vaguely and only briefly in the system requirements phase
 ADDIN EN.CITE
[1-3]
 . It is challenging, therefore, to take them into account in software estimation and software productivity benchmarking, particularly as they have received less attention in the software engineering literature and are definitely less well understood than other cost factors [4] . Of course, measurement is essential if NFRs are to be taken as quantitative inputs to an estimation or productivity benchmarking process but not much work has been published to date on how to measure such NFR.

In practice, requirements are initially typically addressed at the system level , either as high level system functional user requirements (system FUR) or as high level system non functional requirements (system NFR)
 ADDIN EN.CITE
[5-7]
. The latter must usually be detailed, allocated, and implemented in hardware, software (as software FUR - “soft-FUR” for instance – see Figure 1) or in a specific combination of hardware or software.

To distinguish between these types of requirements, system FUR describes the required functions in a system, while system NFR describes how the required functions must behave in a system. In the software requirements engineering step, system NFR can then be detailed and specified as software FUR, to allow a software engineer to develop, test, and configure the final deliverables to system users.

The term "functional" refers to the set of functions the system (including the software) has to offer, while the term "non functional" refers to the manner in which such functions perform. An FUR is typically phrased with a subject and a predicate (i.e. noun/verb), such as: "The system must print 5 reports". NFR, by contrast, are typically phrased with an adverb or modifying clause, such as: "The system will print 5 reports quickly," or "The system will print 5 reports with a high degree of Performance".

[image: image5.emf]

Fig. 1 Mapping system FUR and NFR to software FUR

In the ECSS (European Cooperation on Space Standardization) standards for the aerospace industry
 ADDIN EN.CITE
[8-13]
, a number of concepts are provided to describe various types of candidate Performance requirements at the system, software, and hardware levels. However, these standards vary in their views, terminology, and coverage of data definition and database.

Currently, there exists no generic model for the identification and specification of software FUR for implementing system Performance requirements (system NFR) based on the various views documented in international standards and in the literature. Consequently, it is challenging to measure these Performance-related software FUR, and take them into account quantitatively for estimation purposes.

This paper focuses on a single type of NFR, that is, system Performance requirements, and reports on the work carried out to define an integrated view of software FUR for system Performance NFR based on international standards, including the use of the generic COSMIC – ISO 19761 [14] model of software FUR.

The paper is organized as follows. Section 2 presents the related work. Section 3 presents the view of software FUR in ISO 19761. Section 4 identifies the standards that describe Performance requirements. Section 5 presents a standards-based definition of a generic model of requirements for software to implement system Performance NFR. Section 6 presents a standard generic measurement model of software FUR using a service-oriented architecture (SOA) for system data definition and database. Section 7 presents the sizing of a reference instantiation of the generic model of Performance software FUR. Section 8 presents a measurement example. Finally, a discussion and our conclusion are presented in section 9.

2. Related work

In the literature, there are some early works on NFR in systems/software engineering. For instance, in 1993, Chung [15] presented one of the initial attempts to capture knowledge in this domain. His work was followed by that of Mylopoulos et al. [16], who suggested viewing all requirements as goals, each goal being an umbrella for related functional and non functional requirements. Chung et al. [17] and Andrew [18] aimed to make NFR more quantitative in nature, while Andrew [18]observed that there are often gaps between the stakeholder vision and requirements representation. Chung et al. [17] proposed a taxonomy for NFR indicating that it is unrealistic to expect designers and developers to incorporate an entity that they cannot readily identify. While taxonomies aim to be inclusive of the entire set of entities in question, these authors suggested in [17] that a one- or two-level taxonomy would suffice initially, and that there are over 161 identifiable types of NFR.

Paech et al. [19] recommended that functional requirements (FR), NFR, and architecture be tightly co developed and addressed in a coherent and integrated manner, suggesting that NFR be decomposable into more refined NFR and additional FR, as well as architectural decisions.

Moreira et al.[20] , Rosa et al. [21] , Park et al.[22] , and Glinz [23] have proposed new methods for classifying NFR early in the software development process, while Kaiya et al. [24] have presented a method to identify stakeholders and their NFR preferences by using use case diagrams of existing systems.

More recently, Mylopoulos [16] promoted Goal-Oriented Requirements Engineering, and suggested a specific solution involving the establishment of an Agent-Oriented Software Development Method, called the Tropos project, which covers not only the requirements, but also the design phases, and addresses the design of high-variability software for applications such as home care software and business process design.

More recently still, Kassab et al. [25-26] proposed some solutions for an NFR framework: for example, a sequence of systematic activities with a view to early consideration of identifying, specifying, and separating FR from NFR, as well as a discussion on NFR prioritization and risk assessment. They also report in [26] on an initial solution for determining the functional size of NRF based on "Soft-Goal" concepts, using the COSMIC method, to deal with the problem of quantitatively assessing the NFR modelling process early in a project.

In parallel with the work of researchers, the software industry has been working on the description of NFR, in particular through international standardization bodies, such as the European Cooperation on Space Standardization (ECSS), the Institute of Electrical and Electronics Engineers (IEEE), and the International Organization for Standardization (ISO).

In the ECSS standards for the aerospace industry
 ADDIN EN.CITE
[8-13]
 , a system Performance requirement is identified as one of sixteen types of NFR, and the research reported here focuses strictly on these NFR. However, these standards vary in their views, terminology, and coverage of Performance requirements. Currently, there exists no generic model for the identification and specification of software FUR for implementing system Performance requirements (system NFR) based on the various views documented in these international standards and in the literature. Consequently, it is challenging to measure the system Performance-related software FUR, and take them into account quantitatively for estimating software projects.

In the work reported here, preference has been given to the views, concepts, and vocabulary most widely used by the industry, as evidenced in its standardization infrastructure, rather than those in the academic literature. Similarly, for the structuring and description of models of FUR and for measurement purposes, the measurement views, concepts, and terminology from the standardization infrastructure have been adopted, rather than those in the literature.

This paper focuses on a single type of NFR, that is, system Performance requirements, and reports on the work carried out to define an integrated view of software FUR for system Performance NFR on the basis of international standards, including the use of the generic COSMIC – ISO 19761 [14] model of software FUR as the template for the description of measurable functional requirements , thereby allowing the measurement of the functional size of such requirements allocated to software and taking them into account for estimations purposes. This approach has been used to build other types of NFR, such as design and implementation constraints, configuration, interfaces and Performance requirements
 ADDIN EN.CITE
[27-33]
.

3. A generic ISO view of software FUR

It is specified in ISO 14143-1 [34] of the collection of ISO standards that a functional size measurement (FSM) method must measure software FUR. In addition, ISO 19761 – COSMIC [14] proposes a generic model of software FUR that clarifies the boundary between hardware and software. Figure 2 illustrates the generic flow of data from a functional perspective from hardware to software. From this generic model of software functional requirements in Figure 2, we observe the following:

· Software is bounded by hardware. In the so-called “front-end” direction (i.e. the left-hand side in Figure 2), software used by a human user is bounded by I/O hardware, such as a mouse, a keyboard, a printer, or a display, or by engineered devices, such as sensors or relays. In the so-called “back-end” direction (i.e. the right-hand side of Figure 2), software is bounded by persistent storage hardware, like a hard disk, and RAM and ROM memory.

· The software functionality is embedded within the functional flows of data groups. Such data flows can be characterized by four distinct types of data movements. In the “front end” direction, two types of movements (ENTRIES and EXITS) allow the exchange of data with the users across a ‘boundary’. In the “back end” direction, two types of movements (READS and WRITES) allow the exchange of data with the persistent storage hardware.

· Different abstractions are typically used for different measurement purposes. In real-time software, the users are typically the engineered devices that interact directly with the software; that is, the users are the ‘I/O hardware’. For business application software, the abstraction commonly assumes that the users are one or more humans who interact directly with the business application software across the boundary; i.e. the ‘I/O hardware’ is ignored.

 [image: image1.emf]

Fig. 2 Generic flow of data groups through software from a functional perspective in COSMIC – ISO 19761

As an FSM method, COSMIC is aimed at measuring the size of software based on identifiable FUR. Once identified, those requirements are allocated to hardware and software from the unifying perspective of a system integrating these two “components”. Since COSMIC is aimed at sizing software, only requirements allocated to the software are currently considered in its measurement procedure.

4. Identification of standards describing system Performance requirements

This section presents a survey of the Performance-related views, concepts, and terms in the ECSS standards
 ADDIN EN.CITE
[8-13]
. This section identifies which standards currently address aspects of the software FUR derived from system Performance FUR and NFR – see Fig. 3.

 The expected outcome is the identification of the various elements that should be included in the design of a standards-based framework for modelling software FUR for system data definition and database. The elements of Performance are dispersed in various system views throughout various ECSS standards and are expressed as either:

· System Performance functional user requirements (system Performance FUR) or

· System Performance non-functional requirements (system Performance NFR)

[image: image6.png]

Fig. 3: Mapping system requirements into software FUR for Performance

4.1. ECSS views and concepts for Performance requirements

The European Cooperation for Space Standardization (ECSS) is an organization which works to improve standardization within the European space sector. The ECSS frequently publishes standards targeted to the contractors working for the European Space Agency (ESA). The ECSS standards series
 ADDIN EN.CITE
[8-13]
 includes a number of Performance requirements at the system level. It can be observed that ECSS focuses on the system-FUR for the early development phases while the System NFR are typically discussed within the context of later development phases such as the evaluation or testing phases.

According to ECSS standards series, performance requirement is a specification that the output of the system does not deviate by more than a given amount from the target output.

According to ECSS standards; the performance can be measured by evaluating processing speed, response time, resource consumption and throughput.

[35] [36] the performance requirements should assess that the controlled system performance is coherent with the control objectives generated by the requirement engineering process and the numerical requirements defined by the requirements analysis, furthermore, performance analysis should be conducted during all the phases of the control development process.

The response time [37] that is minimally acceptable the rest of the time. A longer response time can cause users to think the system is down. You also need to specify rest of the time; for example, the peak minute of a day, 1 percent of interactions. Response time degradations can be more costly or painful at a particular time of the day.

Response time is measured [37] from the time that the user performs the action until the user receives enough feedback from the computer to continue the task. It is the user's subjective wait time. It is not from entry to a subroutine until the first write statement.

Performance monitoring or performance observation [36] is often used in optimizing the use of software in a system. A performance monitor is generally regarded as a facility incorporated into a processor to monitor selected characteristics to assist in the debugging and analyzing of systems by determining a machine's state at a particular point in time. Often, the performance monitor [36] produces information relating to the utilization of a processor's instruction execution and storage control. For example, the performance monitor can be utilized to provide information regarding the amount of time that has passed between events in a processing system. The information produced usually guides system architects toward ways of enhancing performance of a given system or of developing improvements in the design of a new system.

The typical throughput refers to the number of event responses that have been completed over a given observation interval [38].

Performance requirements to measure the software time domain requirements such as: response to reference signals (e.g. response time, settling time, and tracking error for command profiles), accuracy and stability errors in the presence of disturbances, measurement errors (e.g. attitude knowledge) and frequency domain requirements (e.g. bandwidth).

4.2 IEEE: views and concepts for Performance requirements

[39] presents software performance requirements as a non-functional requirement; in addition, IEEE-830 defines the performance requirements as static and the dynamic numerical requirements placed on the software or on human interaction with the software as a whole. Static numerical requirements may include the number of terminals to be supported; the number of simultaneous users to be supported and amount and type of information to be handled. Static numerical requirements are sometimes identified under a separate section entitled capacity. Dynamic numerical requirements may include, for example, the numbers of transactions and tasks and the amount of data to be processed within certain time periods for both normal and peak workload conditions. All of these requirements should be stated in measurable terms.

Table 1: Performance requirements views, concepts and vocabulary in

International standards

		Standard name

		Key view

		Concepts and Vocabulary

		ECSS standard

		Performance requirement is a specification that the output of the system does not deviate by more than a given amount from the target output

		· Response to reference signals

· Response time,

· Settling time,

· Tracking error for command profiles

· Throughput time.

· Bandwidth

· Workload

· Resource consumption

· Main memory time

· Storage device time

· processor instruction execution

· Evaluation processing speed

· Accuracy errors

· Stability errors

· System scalability

		IEEE 830

standard

		Performance requirements as static and the dynamic numerical requirements placed on the software or on human interaction with the software as a whole.

		· Static numerical requirements

· Capacity

· Concurrency

· Dynamic numerical requirements

· Workload

5. A standards-based definition of a generic model of software FUR for system Performance requirements

This section maps the Performance terminologies found throughout the ECSS, IEEE, and ISO standards into a proposed model of software-FUR for system Performance-NFR, through the use of the generic model of FUR proposed in the COSMIC model in Fig. 3. This COSMIC-based generic model can then become a framework for describing the Performance requirements (i.e. from system-NFR to software-FUR) based on the ECSS standards.

5.1 Mapping views and concepts for Performance from ECSS, ISO, and IEEE standards

Based on a synthesis of the various definitions, the key views and concepts presented in chapter 3 on software-FUR for system Performance-NFR are presented in Table 2. It is important to note that Table 2 includes software, data, and hardware components which are interconnected.

Table 2: Performance requirements in ECSS, ISO, and IEEE

		System performance requirements

		· Static numerical requirements

· Dynamic numerical requirements

· Response to reference signals

· Response time

· Settling time

· Tracking error for command profiles

· Throughput time

· Bandwidth

· Workload

· Resource consumption

· Main memory time

· Storage device time

· Processor instruction execution

· Evaluation processing speed

· Accuracy errors

· Stability errors

· System scalability

· Concurrency

5.2 Software system Performance functions to be specified

The functionality and corresponding entities to be specified (and measured) for system Performance allocated to software are listed in Table 3.

Table 3: system Performance functions that may be allocated to software

		System performance types

		System performance functions

		Static numerical requirements

		· Resource consumption

· Main memory time

· Storage device time

· Processor instruction execution

· Evaluation processing speed

· Accuracy errors

· Stability errors

· System scalability

· Concurrency

		Dynamic numerical requirements

		· Response to reference signals

· Response time

· Settling time

· Tracking error for command profiles

· Throughput time

· Bandwidth

· Workload

5.3 Identification of the functional types in the Performance

In this section, the system performance functional types are identified based on the findings of the performance functions, as discussed in the previous section. The system performance requirements allocated to software-FUR are divided into two types of requirements: static and dynamic numerical requirements; each type in this division has its own functionality. The proposed performance functional types are illustrated in system and COSMIC modeling views, in order to propose a COSMIC reference model of performance requirements allocated to software based on the proposed COSMIC modeling view.

Table 4: Functional types for performance functions that may be allocated to software

		System performance types

		System performance functional types

		System performance functions

		Static numerical requirements

		Functional type 1

Resource consumption

(RC)

		· Main memory time function (MMTF)

· Storage device time function (SDTF)

· Processor instruction execution function (PIEF)

		

		Functional type 2

Evaluation processing speed (EPS)

		· Accuracy errors function (AEF)

· Stability errors function (SEF)

· System scalability function (SSF)

· Concurrency function (CF)

		Dynamic numerical requirements

		Functional type 3

Response to reference signals (RRS)

		· Response time function (RTF)

· Settling time function (STF)

· Tracking error for command profiles function (TECPF)

		

		Functional type 2

Throughput time

(TT)

		· Bandwidth function (BF)

· Workload function (WF)

5.4 System Performance Model using COSMIC-SOA (Functional service level)

In this section, the system Performance model using COSMIC-SOA is built in Figure 4 to elaborate on the model to show a more complete picture, which includes showing what is involved in instantiating the modeled entities in practice – for more details, see
 ADDIN EN.CITE
[40-43]
 and describes the detailed measurement model, which can be used to specify and measure the functionality at service level.

There are many definitions of a service-oriented architecture (SOA), such as: a flexible set of design principles used during systems development and integration [40]; a process including the definition of the architecture, components, modules, interfaces, and data for a system to satisfy specified requirements [42-43].

The system Performance model using COSMIC-SOA in Figure 4 provides a loosely integrated suite of services that can be used in multiple business domains to measure the functional size of software FUR in an SOA environment [40]. In this model, the term “service” refers to a set of related software FUR functions as well as separating functions into distinct units, or services.

These services communicate with each other by exchanging data in a well-defined, shared format, or by coordinating an activity between two or more services [40].

The COSMIC-SOA guideline offers three types of data movements architecture in (Table 5) based on [40]:

Table 5: COSMIC-SOA guideline offers three types of data movement’s architecture [40]

		COSMIC-SOA exchange messages: An application requiring commonly used information from another application sends a request to the service of the application that can handle the request, or the application may call upon its own services. Such calls are also called ‘messages’. Each message may consist of one or more data movements [40].

		[image: image7.png]

		COSMIC-SOA intermediary services: When a functional process of an application service in application A requires data that are available via an application service in application B, the former application service calls upon a functional process of the intermediary service. This service functionality is also needed by other applications in the overall SOA framework, as it may itself be realized in the form of a utility service [40]

		[image: image8.png]

		COSMIC-SOA data exchanges: The data movements between components in the same layer, i.e. between peer components (where a component may be an application or a service). It shows direct and indirect exchanges of data between components. If components exchange data directly, then, for measurement purposes, the measurer will identify Exit and/or Entry data movements, as per the data movements between service A (SA) and service B (SB). An indirect exchange of data between components means that a service in one component writes data in a storage device, which is subsequently read by a service in another component. the measurer will identify a Write data movement in service SA and a Read in service SB.

		

5.5 COSMIC reference architectural model using an SOA for system Performance

Fig. 4 illustrates a COSMIC reference architectural model using an SOA for system Performance requirements. This model is built based on the proposed Performance functions and functional types and the role of the COSMIC-SOA explained in [40].

[image: image2.emf]

Fig. 4 COSMIC reference architectural model of system Performance requirements allocated to software

6 Sizing a Reference Instantiation of the Generic Model of Software FUR for System Performance Requirements

The specification of software FUR for system Performance requirements in any specific project is a specific instantiation of the proposed generic model described in Figure 4. When the software specification document is at the level of the movement of data groups, then these functional requirements can be directly measured using the COSMIC measurement rules. The measurement example presented next is illustrative of a reference instantiation of the generic COSMIC specification and measurement model of software FUR for system Performance requirements in an SOA context for a single data group for all the identified possible flows of data groups.

 The measurement example in this section explains how to use the proposed reference model of system Performance requirements to size a hypothetical framework composed of all of the kinds of software FUR described in the framework see-figure 5.

[image: image3]

Figure 5: instantiation of the generic COSMIC specification and measurement model of

software FUR for system Performance

6.1 Measurement of exchange services for system Performance functionality using COSMIC-SOA

There are 12 functionality types of system Performance requirements, interacting with their own services, for the measurement of exchange services for system Performance using COSMIC-SOA, see Figure 5. According to COSMIC-SOA, each functional process may interact with its own service by sending and receiving data movements (i.e. Entry and Exit – see table 5).

The COSMIC-SOA measurement results for the interactions between the system Performance functional processes with its own service processes. The measurement result for this operation is equal to 4 CFP for each interaction between each functional process with its own functional service process”. The total measurement result for the 12 functionality types is equal to 48 CFP (see figure 5).

6.2 Measurement of intermediary services for system Performance services using COSMIC-SOA

In this section - and based on Figure 5, when a functional process service requires data that is available via another functional process service, the former calls upon a functional process of the intermediary service. According to the COSMIC-SOA model of measurement for system operations, the types of data movements for using the intermediary service must be Entry and Exit – see table 5.

The COSMIC-SOA measurement results for intermediary services based on figure 5. The instantiation of a single data group for all possible flows of the data groups identified above, and listed as a data movement example for one intermediary service: for this requirement the measurement results are equal to 8 CFP. The total measurement results are equal to 528 CFP.

6.3 Measurement of the direct and indirect data movements for system Performance services using COSMIC-SOA

This section is based on Figure 5 which illustrates the possible flows of data between components in the same layer, i.e. between peer components (where a component may be an application or a service). This section shows direct and indirect exchanges of data between components – one or both forms of which may be involved when services communicate. If components exchange data directly, the measurer will identify the Exit and/or Entry data movements, as per the data movements between service A and service B. An indirect exchange of data between components means that a service in one component writes data which are subsequently read by a service in another component. In this situation, the measurer will identify a Write data movement in the former component and a Read data movement in the other.

Specifically, The instantiation of this operation. The total measurement results are equal to 32 CFP (see figure 5).

7 Discussion and Conclusion

Performance requirements are typically described initially as non functional requirements at the system level, and system engineers must subsequently apportion these system requirements very carefully as either software or hardware requirements to conform to the Performance requirements of the system. Within the ECSS standards, a number of views and concepts are provided to describe various types of candidate Performance requirements at the system, software, and hardware levels.

 This paper has introduced a standards-based framework for specifying and measuring software requirements for the functions needed to address the system’s Performance requirements.

 The main contribution of this paper is our proposed generic model of software FUR for system Performance requirements. This generic model can be considered as a kind of reference model for the identification of system Performance requirements, and can be used for their allocation to software functions implementing such requirements. System requirements allocated to hardware have not been addressed in this paper. Since the structure of the generic model is based on the generic model of software adopted by the COSMIC measurement standard, the necessary information for measuring their functional size is readily available, and an example has been presented of a specific instantiation of this reference model.

 Specifically, the generic model of Performance requirements presented in this paper is based on:

· The ECSS standards for the description of the NFR for system Performance requirements ;

· The COSMIC measurement model of functional requirements.

The proposed specification and measurement model is independent of the software type and the languages in which the software FUR will be implemented. The proposed generic model for Performance requirements (i.e. reference model) provides:

· A specification model for each type, or all types, of Performance requirements: for example, the requirements to be allocated to software for the system data items and the product data schema.

· A measurement model for each type, or all types, of Performance requirements.

The generic model of system Performance requirements proposed in this paper can provide system engineers with:

· An integrated reference view of system Performance requirements that they can use to select the Performance requirements necessary for a specific system to be developed (hardware-software-manual).

· A methodology to specify these Performance NFR: with this reference model, beginners would not require years of training before being able to specify these at the levels of detail illustrated in the work reported in this paper.

· An integrated model to be used as an input to make decisions on which of these detailed Performance NFR will be allocated to hardware, or software, or combinations of these for a specific context.

For software engineers, the proposed generic model of system Performance requirements can also provide them with:

· A reference model that they can use to verify whether or not the system engineers have provided them with the right selection of system NFR-derived FUR, and at the necessary level of detail.

This means that this standard-based reference model can be used as a quality technique for the following:

· Verification of system Performance requirements coverage and descriptions;

· As a technique, at the software requirements phase, to elicit such requirements, referred to as ‘both non functional requirements and emergent properties’ in the SWEBOK Guide – ISO19759 [44] to achieve this level of detailed inputs of Performance requirements up front in the project life cycle (that is, at the software requirements phase, rather than much later, at the software testing phase..

The proposed reference model for Performance requirements presents a way to measure these FUR with COSMIC – ISO 19761, to take them into account in FSM-based software estimation models, thereby avoiding late discovery of mandatory FUR that lead to budget overruns and missed deadlines.

 The measurement aspects presented in this paper have been limited to the system requirements allocated to software. It will be interesting in future work to investigate whether or not this measurement approach can be extended to all such requirements at the system level (that is, to all hardware-software-manual requirements, and not only to software requirements).

REFERENCES

1.
Noguera, M., et al., Ontology-driven analysis of UML-based collaborative processes using OWL-DL and CPN. Science of Computer Programming, 2010. 75(8): p. 726-760.

2.
Chung, L. and J. do Prado Leite, On Non-Functional Requirements in Software Engineering, in Conceptual Modeling: Foundations and Applications, A. Borgida, et al., Editors. 2009, Springer Berlin / Heidelberg. p. 363-379.

3.
Ma, W., L. Chung, and K. Cooper, Assessing Component’s Behavioral Interoperability Concerning Goals, in On the Move to Meaningful Internet Systems: OTM 2008 Workshops, R. Meersman, Z. Tari, and P. Herrero, Editors. 2008, Springer Berlin / Heidelberg. p. 452-462.

4.
Nary, S. An NFR-Based Framework for Establishing Traceability between Enterprise Architectures and System Architectures. 2006.

5.
Chung, L. and N. Subramanian, System and software architectures. Science of Computer Programming, 2005. 57(1): p. 1-4.

6.
Chung, L. and N. Subramanian, Adaptable system/software architectures. Journal of Systems Architecture, 2004. 50(7): p. 365-366.

7.
Yiqiao, W. Self-Repair through Reconfiguration: A Requirements Engineering Approach. 2009.

8.
ECSS-E-40-Part-1B, Space Engineering: Software - Part 1 Principles and Requirements. European Cooperation for Space Standardaization,The Netherlands, 2003.

9.
ECSS-E-40-Part-2B, Space Engineeing:Software-part 2 Document Requirements Definitions. European Cooperation for Space Standardaization, The Netherlands, 2005.

10.
ECSS-ESA, Tailoring of ECSS, Software Engineering Standards for Ground Segments, Part C: Document Templates. ESA Board of Standardization and Control (BSSC), 2005.

11.
ECSS-E-ST-10C, Space engineering: System engineering general requirements. Requirements & Standards Division Noordwijk, The Netherlands, 2009.

12.
ECSS-Q-ST-80C, Space Product Assurance: Software Product Assurance. Requirements & Standards Division Noordwijk, The Netherlands, 2009.

13.
ECSS-E-ST-70-31C, Space Engineering: Ground systems and operations -Monitoring and control data definition. Requirements & Standards Division Noordwijk, The Netherlands, 2008.

14.
ISO/IEC-19761, Software Engineering - COSMIC v 3.0 - A Functional Size Measurement Method. International Organization for Standardization, Geneva (Switzerland), 2003.

15.
Chung, K.L., “Representing and Using Non-functional Requirements for Information System Development: A Process Oriented Approach”,Ph.D. Thesis, also Tech. Rpt. DKBS-TR-93-1. Department of Computer Science, University of Toronto, 1993.

16.
John, M. Goal-Oriented Requirements Engineering, Part II. 2006.

17.
Chung, L., et al., Nonfunctional Requirements in Software Engineering. Kluwer Academic Publishing, 2000.

18.
Andrew, J., An Approach to Quantitative Non-Functional Requirements in Software Development. Proceedings of the 34th Annual Government Electronics and Information Association Conference, 2000.

19.
Paech, B., et al., Functional requirements, non-functional requirements and architecture specification cannot be separated -- A position paper. REFSQ, 2002.

20.
Moreira, A., J. Araujo, and I. Brito, Crosscutting Quality Attributes for Requirements Engineering

14th International Conference on Software Engineering and Knowledge Engineering, Ischia, Italy, 2002: p. 167-174.

21.
Rosa, N.S., P.R. Cunha, and J. F., “G.R.R.: ProcessNFL: A language for Describing Non-Functional Properties”. 35th HICSS, IEEE Press, 2002.

22.
Park, D. and S. Kang, Design Phase Analysis of Software Performance Using Aspect-Oriented Programming. 5th Aspect-Oriented Modeling Workshop in Conjunction with UML 2004, Lisbon, Portugal, 2004.

23.
Glinz, M., “Rethinking the Notion of Non-Functional Requirements”. 3rd World Congress for Software Quality, Munich, Germany, 2005.

24.
Kaiya, H., K. Osada, and Kayjiri, Identifying Stakeholders and Their Preferences about NFR by Comparing Use Case Diagrams of Several Existing Systems. IEEE Int. Conf. on Requirements Engineering (RE04), 2004: p. 112-121.

25.
Kassab, M., M. Daneva, and O. Ormandjieva., Towards an Early Software Effort Estimation Based on Functional and Non-Functional Requirements. International Conference on Software Process and Product Measurement (MENSURA), Amsterdam, The Netherlands, 2009.

26.
Kassab, M., et al., Non-Functional Requirements Size Measurement Method (NFSM) with COSMIC-FFP, in Software Process and Product Measurement, J.C.-G. Juan, et al., Editors. 2008, Springer-Verlag. p. 168-182.

27.
Abran, A. and K.T. Al-Sarayreh, Standards-Based Model for the Specification of System Design and Implementation Constraints 17th International Conference on European Systems and Software Process Improvements (EURO-SPI 2010), Industry track, Grenoble Institute of Technology, Grenoble, France, Sept. 2010, 2010.

28.
Abran, A. and K.T. Al-Sarayreh, Measurement of Software Requirements Derived from System Operations Requirements. 20th International Workshop on Software Measurement (IWSM 2010`), Stuttgart, Germany, 2010.

29.
Abran, A., K.T. Al-Sarayreh, and J.J. Cuadrado-Gallego, Measurement Model of Software Requirements Derived from System Portability Requirements 9th International Conference on Software Engineering Research and Practice (SERP 2010), Las Vegas, USA, 2010.

30.
Al-Sarayreh, K.T. and A. Abran. A Generic Model for the Specification of Software Interface Requirements and Measurement of Their Functional Size. in 8th ACIS International Conference on Software Engineering Research, Management and Applications, SERA 2010. 2010. Montreal, Canada.

31.
Al-Sarayreh, K.T. and A. Abran, Measurement of Software Requirements Derived from System Reliability Requirements 24th European Conference on Object-Oriented Programming (ECOOP 2010), Maribor, Slovenia, EU, 2010, 2010.

32.
Al-Sarayreh, K.T. and A. Abran, Specification and Measurement of System Configuration Non Functional Requirements 20th International Workshop on Software Measurement (IWSM 2010), Stuttgart, Germany, 2010.

33.
Al-Sarayreh, K.T., A. Abran, and J.J. Cuadrado-Gallego, A Standards-based Model for the Specification and Measurement of Maintainability Requirements. 22nd International Conference on Software Engineering and Knowledge Engineering (SEKE 2010), Redwood City, California, USA, 2010.

34.
ISO/IEC-14143-1, Information technology-Software measurement - Functional size measurement Part 1: Definition of concepts. International Organization for Standardization, Geneva (Switzerland),, 1998.

35.
ECSS-E-60A, Space Engineering: Control Engineering. Requirements & Standards Division, Noordwijk, The Netherlands, 2004.

36.
ECSS-E-ST-60-20C, Space Engineering: Stars sensors terminology and performance specification. Requirements & Standards Division, Noordwijk, The Netherlands, 2008.

37.
ECSS-E-ST-60-10C, Space Engineering: Control Performance. Requirements & Standards Division, Noordwijk, The Netherlands 2008.

38.
Sun Microsystems, I., THROUGHPUT COMPUTING: Changing the Economics and Ecology of the Data Center with Innovative SPARC Technology. 4150 Network Circle, Santa Clara, CA 95054 USA, 2005.

39.
IEEE-Std-830, IEEE Recommended Practice for Software Requirements Specifications. 1993.

40.
COSMIC, The COSMIC Method v3.0.1, Guideline for Sizing SOA Software, v1.4. The Common Software Measurement International Consortium, MPC Review, 2010.

41.
OASIS, Reference Architecture for Service Oriented Architecture Version 1.0. OASIS ® 1993–2008, 2008.

42.
SoberIT:, Service-Oriented Architecture and Software Engineering. Seminar on Enterprise Information Systems by Software Business and Engineering Institute, Helsinki University of Technology, © 2008 Kari Hiekkanen

2008.

43.
OASIS-SOA, Reference Model for Service Oriented Architecture. http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=soa-rm, 2006.

44.
ISO-19759, Software Engineering Body of Knowledge (SWEBOK). IEEE Computer Society, 2004.

[image: image4.png]

System NFR

Software FUR

System FUR

System Performance FUR

System Performance NFR

Software FUR for Performance

1

14

James Sinclair, Michael Cardew-Hall

Appendix II-B

Software Specification Framework for System Portability Requirements

Abstract

In a system requirements phase, the non functional requirements are often captured only generically at a fairly high level, and they do not include the levels of detail necessary for the system engineers to allocate such requirements as specific functionalities to be handled either by the software or the hardware, or a specific combination of the two. The European ECSS series of standards for the aerospace industry includes portability requirements as one of sixteen types of non functional requirements (NFR) for embedded and real-time software. A number of portability-related concepts are dispersed throughout the ECSS, IEEE-830, ISO 9126, ISO 24765, and ISO 2382-1 standards to describe, at varying levels of detail, the various types of candidate portability requirements at the system, software, and hardware levels. This paper organizes these dispersed portability concepts into a generic standards-based reference model of system portability requirements. The availability of this generic, and detailed, reference model can facilitate the early identification and specification of the system portability NFR and their detailed allocation as specific portability functions to be handled by the specified allocation to hardware or software, or a specific combination of the two. In the absence of such a generic and detailed model, such NFR are typically handled in practice much later on in the software development life cycle when, at system testing time, users and developers discover that a number of portability requirements have been overlooked and additional effort has to be expended to implement them. The approach adopted in this research for the structure of this reference NFR model is based on the generic model of software functional requirements proposed in the COSMIC – ISO 19761 model, which allows the functional size of such portability requirements allocated to software to be measured and taken into account for estimation purposes.

Keywords

Software Engineering, Requirements Engineering, non functional requirements–NFR, portability requirements, functional size, COSMIC–ISO 19761, ECSS International Standards, Software Portability Measurement, ISO 9126, IEEE 830.

1. Introduction

In the system requirements phase, the focus is often on detailing and documenting the system functional requirements and their allocation to the software and hardware parts of the system being designed. Non functional requirements (NFR) play a critical role in system development, including as selection criteria for choosing among alternative designs and ultimate implementations. NFR may also have a considerable impact on project effort, and should be taken into account for estimation purposes and when comparing project productivities.

Typically, these NFR are described at the system level, not at the software level, and there is as yet no consensus on how to describe and measure them. In practice, they may be viewed, defined, interpreted, and evaluated differently by different people, particularly when they are stated briefly and vaguely
 ADDIN EN.CITE

[1-3]
. It is a challenge, therefore, to take NFR into account in software estimation and software benchmarking, and they are definitely less well understood than other cost factors
 ADDIN EN.CITE

[2, 4-5]
. Without measurement, it is not an easy matter to take them as quantitative inputs to an estimation process or to productivity benchmarking.

In practice, requirements are initially addressed at the system level
 ADDIN EN.CITE

[6-8]
, either as high level system functional user requirements (system-FUR) or as high level system NFR (system-NFR). Normally, such high-level requirements must then be detailed and allocated to specifics-related functions, which may be implemented in hardware or software as software functional user requirements (software-FUR), for instance – see Fig. 1.

System-FUR describe the functions required in a system, while system-NFR describe how those functions must behave in the system
 ADDIN EN.CITE

[9-10]
. In the software requirements engineering step, system-NFR may then be detailed and specified as software-FUR, to allow a software developer to develop, test, and configure the final deliverables to system users.

Functional requirements are the functions that the system (including the software) is to offer, while NFR detail the manner in which those functions are performed. FURs are described using subject or predicate constructions (i.e. noun/verb), such as: "The system can run on two or more kinds of devices or with two or more kinds of operating systems." NFR are described using adverbs or modifying clauses, such as: “The system can run on two or more kinds of devices, or with two or more kinds of operating systems, that are easily or conveniently transported."

Fig. 1 Mapping system requirements to software FUR

Within the ECSS European standard for the aerospace industry
 ADDIN EN.CITE

[11-15]
, ISO 9126 [16], IEEE-830 [17], ISO 24765 [18], and ISO 2382-1 [19], a number of concepts are provided to describe various types of candidate portability requirements at the system, software, and hardware levels. However, these standards vary in their views, terminology, and portability coverage.

Currently, there exists no generic model for the identification and specification of software-FUR for implementing system portability requirements (system portability-NFR) from the various views documented in international standards and in the literature. Consequently, it is also challenging to measure these portability-related software-FUR and take them into account quantitatively for estimation purposes.

This paper focuses on a single type of NFR, that is, system portability requirements. It reports on the work carried out to define an integrated view of software-FUR for system portability-NFR based on international standards. The approach adopted in this research for the structure of this reference NFR model is based on the generic model of software functional requirements proposed in the COSMIC – ISO 19761 [20] model, and so allows the functional size of such requirements allocated to software to be measured and taken into account for estimation purposes. This approach has been used to build other types of NFR, such as design and implementation constraints, operations, interfaces, and reliability requirements
 ADDIN EN.CITE

[21-27]
.

The paper is organized as follows. Section 2 presents related work. Section 3 presents the generic view of software-FUR, as provided in ISO 19761. Section 4 identifies the standards that describe the portability requirements. Section 5 presents a standards-based definition of a generic model of requirements for software-FUR for system portability-NFR. Section 6 presents a standard generic measurement model of software-FUR using a Service Oriented Architecture (SOA) for the system portability requirements. Section 7 presents the sizing of a reference instantiation of the generic models of software-FUR for the system portability requirements. Section 8 presents a measurement example. Finally, a discussion and a conclusion are presented in section 9.

2. Related Work

In the literature, there are some published works on NFR in systems/software engineering. For instance, Moreira et al. [28], Rosa et al. [29], Park et al. [30], and Glinz [31] have proposed new methods for classifying NFR early in the software development process, while Kaiya et al. [32] have presented a method for identifying stakeholders and their NFR preferences by means of use case diagrams of existing systems.

Paech et al. [33] recommended that functional requirements (FR), NFR, and architecture be tightly co-developed and addressed in a coherent and integrated manner, suggesting that NFR be decomposable into more refined NFR and additional FR, as well as architectural decisions.

More recently, Mylopoulos [34] promoted Goal-Oriented Requirements Engineering, and suggested a specific solution involving the establishment of an Agent-Oriented Software Development Method, called the Tropos project, which covers not only the requirements, but also the design phases, and addresses the design of high-variability software for applications such as home care and business process design.

More recently still, Kassab et al. [35] proposed some solutions for an NFR framework; for example, a sequence of systematic activities with a view to early consideration of identifying, specifying, and separating FR from NFR, as well as a discussion on NFR prioritization and risk assessment. They also report in [36] on an initial solution for determining the functional size of NFR based on "soft goal" concepts, using the COSMIC method, to deal with the problem of quantitatively assessing the NFR modeling process early in a project.

Some of the early works in the literature on NFR, such as Chung in 1993 [37], present the initial attempts to capture knowledge in this domain. His work was followed by that of Mylopoulos et al. [38], who suggested viewing all requirements as goals, each goal being an umbrella for related requirements, both functional and non functional. Chung et al. and Andrew [37, 39] aimed to make NFR more quantitative in nature, while Andrew [39] found that there are often gaps between the stakeholder vision and requirements representation. Chung et al. [40] proposed a taxonomy for NFR, indicating that it is unrealistic to expect designers and developers to incorporate an entity that they cannot readily identify. While taxonomies aim to be inclusive of the entire set of entities in question, these authors suggested in [40] that a one- or two-level taxonomy would suffice initially, and that there are over 161 identifiable types of NFR.

In parallel with the work of researchers, the software industry has been working on the description of NFR, in particular through international standardization bodies, such as the European Cooperation on Space Standardization (ECSS), the Institute of Electrical and Electronics Engineers (IEEE), and the International Organization for Standardization (ISO).

In the ECSS standards for the aerospace industry
 ADDIN EN.CITE

[11-15]
, a system portability requirement is identified as one of sixteen types of NFR, and the research reported here focuses strictly on these NFR. In addition, in the ISO 9126 [16] and IEEE 830 [17] standards, a number of implicit concepts are provided to describe various types of candidate system portability requirements at the system and software levels in the testing and evaluation processes.

However, these standards vary in their views, terminology, and coverage of portability. Currently, there exists no generic model for the identification and specification of software FUR for implementing system portability requirements (system NFR) based on the various views documented in these international standards and in the literature. Consequently, it is challenging to measure the system portability-related software FUR, and take them into account quantitatively for estimating software projects.

In the work reported here, preference has been given to the views, concepts, and vocabulary most widely used by the industry, as evidenced in its standardization infrastructure, rather than those in the academic literature. Similarly, for the structuring and description of models of FUR and for measurement purposes, the measurement views, concepts, and terminology from the standardization infrastructure have been adopted, rather than those in the literature.

This paper focuses on a single type of NFR, that is, system portability requirements, and reports on the work carried out to define an integrated view of software FUR for system portability NFR on the basis of international standards, including the use of the generic COSMIC – ISO 19761 [20] model of software FUR as the template for the description of measurable functional requirements.

3. A generic view of software Functional User Requirements in ISO 19761

It is specified in ISO 14143-1 [41] of the collection of ISO standards that a functional size measurement (FSM) method must measure software FUR. In addition, COSMIC – ISO 19761 [20] proposes a generic model of software FUR that clarifies the boundary between hardware and software. Figure 2 illustrates the generic flow of data from hardware to software from a functional perspective. From this generic model of software functional requirements, shown in Figure 2, we observe the following:

· Software is bounded by hardware. In the so-called “front-end” direction (i.e. the left-hand side in Figure 2), software used by a human user is bounded by I/O hardware, such as a mouse, a keyboard, a printer, or a display, or by engineered devices, such as sensors or relays. In the so-called “back-end” direction (i.e. the right-hand side of Figure 2), software is bounded by persistent storage hardware, like a hard disk, and RAM and ROM memory.

· The software functionality is embedded within the functional flows of data groups. Such data flows can be characterized by four distinct types of data movements. In the “front end” direction, two types of movements (ENTRIES and EXITS) allow the exchange of data with the users across a ‘boundary’. In the “back end” direction, two types of movements (READS and WRITES) allow the exchange of data with the persistent storage hardware.

· Different abstractions are typically used for different measurement purposes. In real-time software, the users are typically the engineered devices that interact directly with the software; that is, the users are the ‘I/O hardware’. For business application software, the abstraction commonly assumes that the users are one or more humans who interact directly with the business application software across the boundary; i.e. the I/O hardware is ignored.

As an FSM method, COSMIC is aimed at measuring the size of software based on identifiable FUR. Once identified, those requirements are allocated to hardware and software from the unifying perspective of a system integrating these two “components”. Since COSMIC is aimed at sizing software, only requirements allocated to the software are currently considered in its measurement procedure.

Fig. 2 Generic flow of data groups through software from a functional perspective in COSMIC –COSMIC – ISO 19761

4. Identification of Standards Describing Portability Requirements

This section presents a survey of the portability-related views, concepts, and terms used in international standards. It identifies which standards currently address some aspects of the software-FUR derived from system-NFR, specifically for the system portability-NFR (see Fig. 3. The expected outcome is the identification of the various elements that should be included in the design of a standards-based framework for modeling software-FUR for system portability-NFR.

 The elements of portability are dispersed in various system views throughout the ECSS standards, and are expressed as either:

· System portability functional user requirements (system portability-FUR),

· System portability non functional requirements (system portability-NFR).

Fig. 3 Mapping system requirements to software-FUR for portability

4.1. ECSS standards: view and concepts for portability

The European Cooperation for Space Standardization (ECSS) is an organization which works to improve standardization within the European space sector. The ECSS publishes standards targeted to contractors working for the European Space Agency (ESA). The ECSS standards series includes a number of portability requirements at the system level. It can be observed that the ECSS focuses on the system-FUR for the early development phases, while the system-NFR are typically discussed in the context of later development phases, such as evaluation or testing.

Portability in the ECSS standards is considered as the capability of the system to be transferred from one environment to another. Table 1 presents a list of concepts and vocabulary used in the ECSS standards to describe system-related portability requirements. For instance, the ECSS specifies minimum dependency on software and hardware (system portability) and independence of the operating system from hardware and software obsolescence. What it does not specify, however, is whether or not such requirements must be implemented in software or hardware, or a combination of the two.

Table 1

 Portability view and vocabulary in the ECSS standards series

		Key view

		Concepts and vocabulary

		The capability of the system to be transferred from one environment to another

		· Minimum system dependency

· Independent operating system

· Minimum hardware dependency

· Obsolescence of hardware or software

· Technical specification of components

While conducting a survey of all the portability concepts and terms described in the ECSS-E-40 and ECSS-Q-series, and in ECSS-ESA as the integrated standard for ECSS-E and ECSS-Q, we observed that:

· These various portability elements are described differently, and at different levels of detail;

· The portability elements are dispersed throughout the various documents: there is, therefore, no integrated view of all types of candidate portability requirements;

· There is no obvious link for the portability requirements between the ECSS-ESA standard as the integrated standard and all the other ECSS standards that describe portability requirements.

4.2. IEEE-830: view and concepts for portability

IEEE-830 [17] lists portability as one of the NFR on their list. The IEEE describes portability by specifying the attributes of software that relate to the ease of porting the software to other host machines and/or operating systems, and provides some portability concepts – see Table 2. However, the IEEE does not provide guidance on how to describe or specify portability requirements, nor, of course, does it provide guidance on how to measure any of these NFR.

Table 2

 Portability view and vocabulary in the IEEE standards

		Key view

		Concepts and vocabulary

		Describe portability by specifying the attributes of software that relate to the ease of porting the software to other host machines and/or operating systems

		· Percentage of components with host-dependent code

· Percentage of code that is host-dependent

· A proven portable language

· A particular compiler or language subset

· A particular operating system

4.3. ISO 9126: views and concepts for portability

The key view on portability in the ISO 9126 series is from the perspective of the quality of the software product: portability is presented as a ‘quality characteristic’ and is then decomposed into quality sub-characteristics and next into proposed derived measures to quantify those quality sub-characteristics. The inventory of related concepts and vocabulary on software portability, such as replaceability and co-existence, is presented in Table 3.

Table 3

Portability view and vocabulary in ISO 9126

		Key views

		Concepts and vocabulary

		· The capability of the software product to be transferred from one environment to another

· Environment may include the organizational, hardware, or software environment

		· Sharing common resources

· Independent software in a common environment

· Continued use of data

· Function inclusiveness

· Software running concurrently with other software

· Replaceability

· Co-existence

While a large number of measures have been proposed in ISO 9126, these measures do not address software-FUR, but rather the system portability-NFR of the software itself. However, nothing prevents the use of some of these concepts at the system level, or looking at what functions must be performed at the software level (i.e. FUR allocated to software) to implement these system-level NFR.

4.4. ISO 24765: view and concepts for portability

Portability in ISO 24765 [18] is considered as a system or component that can be transferred from one hardware or software environment to another. Table 4 presents the concepts and vocabulary used in ISO 24765 to describe system-related portability requirements. While ISO 24765 states that portability in a system environment refers to a transfer between software and hardware, it does not specify whether portability requirements must be implemented in the software or the hardware, or in a combination of the two. Moreover, ISO 24765 does not provide guidance on how to describe or specify portability requirements, nor, of course, does it provide guidance on how to measure any of these NFR.

Table 4

Portability view and vocabulary in ISO 24765

		Key view

		Concepts and vocabulary

		A system or component can be transferred from one hardware or software environment to another.

		· Software environment

· Hardware environment

4.5. ISO 2382-1: view and concepts for portability

Portability in ISO 2382-1 [19] is described as a program to be executed on various types of data processing systems. Table 5 presents a list of concepts and vocabulary used in ISO 2382-1 to describe system-related portability requirements. For instance, this standard refers to portability between a program and a sub part of the same program (sub program) when this program is executed using different data processing systems and system program calls (SPC) or remote procedural calls (RPC) between the program and sub program functions, independently of the language. It does not, however, specify whether such requirements must be implemented in the software or the hardware, or in a combination of the two. Moreover, ISO 2382-1 does not provide guidance on how to describe or specify the portability requirements, nor, of course, does it provide guidance on how to measure any of these NFR.

Table 5

Portability view and vocabulary in ISO 2382-1

		Key view

		Concepts and vocabulary

		A program to be executed on various types of data processing systems

		· Language independence

· Data processing system

· Isolating software system calls

5. A standards-based definition of a generic model of software-fur for system portability requirements

This section maps the portability terminologies found throughout the ECSS, IEEE, and ISO standards into a proposed model of software-FUR for system portability-NFR, through the use of the generic model of FUR proposed in the COSMIC model in Fig. 3. This COSMIC-based generic model can then become a framework for describing the portability requirements (i.e. from system-NFR to software-FUR) based on the ECSS standards.

5.1. Mapping views and concepts for portability from ECSS, ISO, and IEEE standards

Based on a synthesis of the various definitions, the key views and concepts presented in the previous sections on software-FUR for system portability-NFR are presented in Table 6. It is important to note that Table 6 includes software, data, and hardware components which are interconnected. If the system can run on two or more kinds of devices, or with two or more kinds of operating systems that are easily or conveniently transported, then system portability is achieved. So we consider these components as environments for the software-FUR for the system portability-NFR (see also Table 7.

Table 6

Portability requirements in ECSS, ISO, and IEEE

		System portability requirements

		· Isolating software system calls

· Independence of the operating system

· Independence of the middleware

· Independence of the programming language virtual machine

· Independence of browsers

· Client independence

· Server independence

· Storage independence

· Network independence

· Database independence

· Distributed data base management system (DDBMS)

5.2. Types of portability requirements

Portability requirements must be identified for each environment (from environment 1 to environment n), when required. Next, the types of portability requirements should be identified for each environment and must be allocated to: software components, hardware components, and data components – see Table 7.

Table 7

Portability types, by environment

		Environment 1

		…

		Environment n

		· Software Components in Environment 1

· Independence of the operating system

· Independence of the middleware

· Independence of the programming language virtual machine

· Independence of browsers

· Hardware Components in Environment 1

· Independence of Client

· Independence of Server

· Independence of Storage

· Independence of Network

· Data Components in Environment 1

· Independence of Database

· Distributed data base management system (DDBMS)

		…

		· Software Components in Environment n

· Independence of the operating system

· Independence of the middleware

· Independence of the programming language virtual machine

· Independence of browsers

· Hardware Components in Environment n

· Independence of Client

· Independence of Server

· Independence of Storage

· Independence of Network

· Data Components in Environment n

· Independence of Database

· Distributed data base management system (DDBMS)

5.3. Software portability functions to be specified

The functionality and corresponding entities to be specified (and measured) for software portability are listed in Table 8. Portability component functionality and the corresponding entities for portability are represented by the environment of these components. Portability environment functionality and the corresponding entities are represented by the capability of the isolated software pieces in the environment to call each other.

Table 8

Portability functions that may be allocated to software

		Portability Type

		Portability functions

		Portability Components

		· Independence of the operating system function

· Independence of the middleware function

· Independence of the programming language virtual machine function

· Independence of the browser function

· Client independence function

· Server independence function

· Storage independence function

· Network independence function

· Database independence function

· Distributed data base management system (DDBMS) function

		Portability Environment

		· Isolating software system calls function

5.4. Identification of the functional types in software portability

In this section, the portability functional types are identified based on the findings of the portability functions, as discussed in the previous section. The system portability requirements allocated to software-FUR are divided into portability components and environments; each type in this division has its own functionality. The proposed portability functional types are illustrated in system and COSMIC modeling views, in order to propose a COSMIC reference model of portability requirements allocated to software based on the proposed system modeling view.

The proposed portability functions can be divided into four functional types, three of them specified for portability components and the fourth for portability environments. Table 9 illustrates these portability functional types, based on specified portability functions.

 Table 9

Functional types for portability functions that may be allocated to software

		Functional Types

		Functional Type

Name

		Portability Functions

		Portability

Functional Type 1

		System Software Components

		· Independence of the operating system function (IOSF)

· Independence of the middleware function (IMF)

· Independence of the programming language virtual machine function (IPLVMF)

· Independence of the browser function (IBF)

		Portability

Functional Type 2

		System Data Components

		· Independence of the database function (IDF)

· Distributed data base management system function (DDBMSF)

		Portability

Functional Type 3

		System Hardware Components

		· Independence of the client function (ICF)

· Independence of the server function (ISF)

· Independence of the storage function (ISTF)

· Independence of the network function (INF)

		Portability

Functional Type 4

		Isolating System Calls

		· Isolating software system calls function (ISSCF)

5.4.1 System and COSMIC views for Portability Functional Type 1

Functional Type 1 (System Software Components) may consist of four main functions: Independence of the operating system function (IOSF), Independence of the middleware function (IMF), Independence of the programming language virtual machine function (IPLVMF), and Independence of the browser function (IBF). The relationships between these functionalities are many-to-many, using intermediary services to complete their functionalities.

Figure 4 illustrates a system modeling view (i.e. a high-level view) of the data movements for the Portability Functional Type 1 (System Software Components):

· Independence of the operating system function (IOSF) defined as a set of routine and program functionalities that control a system's resources and provides access to its services, i.e. Windows XP, Linux, and Macintosh OS X.

· Independence of the middleware function (IMF), used to connect system software components, and contains a set of services that allows multiple functional processes to be run on one or more machines to interact. Middleware independence sits "in the middle", between application software programs that may be working on different independent operating systems, i.e. DCOM, CORBA.

· Independence of the programming language virtual machine function (IPLVMF), provides support for the execution of the complete independence of one operating system (OS) or more in the same machine, i.e. JVM.

· Independence of the browser function (IBF), defined as a user interface on a system machine that permits the navigation of objects on the application layer, i.e. IE (Internet Explorer).

IOSF, IMF, IPLVMF, and IBF use:

· Intermediary services (symbol in Fig. 4:) for the interaction of their functional services, to provide the functional user with their functionality;

· The same persistent storage to share their system resources data for the intermediary services used.

Fig. 4 System Software Components: System Modeling View

Fig. 5 illustrates a COSMIC modeling view of the data movements for the system software components (Functional Type 1):

· IOSF, IMF, IPLVMF, and IBF send and receive data groups to connect their service functionalities with another one using an intermediary service.

· IOSF, IMF, IPLVMF, and IBF read data groups about other services from persistent storage and write their results as data movements to the same persistent storage on the system.

· The persistent storage and the intermediary services for IOSF, IMF, IPLVMF, and IBF from other Portability Functional Types can be used.

Fig. 5 System Software Components: COSMIC Modeling View

5.4.2 System and COSMIC views for Portability Functional Type 2

Functional Type 2 (System Data Components) may consist of two main functions: Independence of database function (IDF), and the distributed database management system function (DDBMSF). The relationships between these functionalities are many-to-many, using intermediary services to complete their functionalities. Fig. 6 illustrates a system modeling view (i.e. a high-level view) of the data movements for Portability Functional Type 2 (System Data Components):

· Independence of database function (IDF), consists of an organized collection of data for one or more uses. The functionality provided by IDF to functional users allows them access to data creation and maintenance, and search, among other things.

· Distributed database management system function (DDBMSF), consists of managing databases stored on multiple computers in a network. A distributed database is a set of databases stored on multiple computers that typically appear on the database. Consequently, an application can simultaneously access and modify the data in several databases in a network.

IDF and DDBMSF use:

· Intermediary services (symbol in Fig. 6:) for the interaction of their functional services, to provide the functional user with its functionality.

· The same persistent storage to share their system resources data for the intermediary services used.

Fig. 6 System Data Components: System Modeling View

Fig. 7 illustrates a COSMIC modeling view of the data movements for the system data components (Functional Type 2).

· IDF and DDBMSF send and receive data groups to connect their service functionalities with others using an intermediary service.

· IDF and DDBMSF read data groups about other services from persistent storage, and write their results as data movements to the same persistent storage on the system.

· The persistent storage and the intermediary services for IDF and DDBMSF from other portability functional types can be used.

Fig. 7 System Data Components: COSMIC Modeling View

5.4.3 System and COSMIC views for Portability Functional Type 3

Functional Type 3 (System Hardware Components) may consist of four main functions: independence of client function (ICF), independence of server function (ISF), independence of storage function (ISTF), and independence of network function (INF). The relationships between these functionalities are many-to-many, using intermediary services to complete their functionalities. Fig. 8 illustrates a system modeling view (i.e. a high-level view) of the data movements for Portability Functional Type 3 (System Hardware Components). System hardware components are composed of two logical parts: the server that provides services, and the client that requests them. The two parts can run on the same or on separate machines on a network, allowing users to access a server resource from their personal machine.

· Middleware is usually used to provide access to servers not running on the same machine as the client. It performs the task of networking between the components of a client-server system, and so must be run on both the client and the server. It provides all that is required to move a request from a client to a server and to return the server's response to the client. Middleware often facilitates communication between different types of computer systems, which in turn provides cross-platform client-server computing and allows many types of clients to access the same data.

ICF, ISF, ISTF, and INF use:

· Intermediary services (symbol in Fig. 8:), the functional services of which interact to provide the functional user with its functionality;

· The same persistent storage to share their system resources data for the intermediary services used.

Fig. 8 System Hardware Components: System Modeling View

Fig. 9 illustrates a COSMIC modeling view of the data movements for the system hardware components (Functional Type 3).

ICF, ISF, ISTF, and INF:

· Send and receive data groups to connect their service functionalities with another service functionality using an intermediary service;

· Read data groups about other services from persistent storage and write their results as data movements to the same persistent storage on the system;

· Can use the persistent storage and intermediary services from other portability functional types.

Fig. 9 System Hardware Components: COSMIC Modeling View

5.4.4 System and COSMIC views for portability Functional Type 4

Functional Type 4 (Isolating System Calls) may consist of one functionality: that is, isolating software system calls functions (ISSCF). The relationships between this functionality and other functionalities in Functional Types 1 and 3 respectively are many-to-many, using intermediary services to complete their functionalities. Fig. 10 illustrates a system modeling view (i.e. a high-level view) of the data movements for the Portability Functional Type 4 (Isolating System Calls):

· Isolating software system calls function (ISSCF), consists of the functionality mechanism used by an application to request a service from the operating system. ISSCF often uses a special machine code instruction which causes the processor to change mode. This allows the OS to perform restricted actions, such as accessing hardware devices or memory management.

· ISSCF uses intermediary services (symbol in Fig. 10:) for their functional services interaction.

Fig. 10 Isolating System Calls: System Modeling View

5.4.5 Identification of the functional relationships in software portability

Fig. 11 presents an overview of the relationships between the functional types for system portability that may be allocated to software-FUR. Specifically, the system portability requirements model is composed of 11 functions grouped into four functional types. The data flow on the model is divided as well, into indirect data flows and intermediary data flows.

· The sub model of portability (Functional Type 1) can be used to specify the data flows between the four functions for the system software components and the data flows with other functions on the system portability model – see Fig. 11.

· The sub model of portability (Functional Type 2) can be used to specify the data flows between two functions for the system data components and the data flows with other functions on the system portability model – see Fig. 11.

· The sub model of portability (Functional Type 3) can be used to specify the data flows between the four functions for the system hardware components and the data flows with other functions on the system portability model – see Fig. 11.

· The sub model of portability (Functional Type 4) can be used to specify the data flows between the three System Portability Functional Types 1, 2, and 3 – see Fig. 11.

Fig. 11 System modeling view for system portability requirements

Fig. 12 presents an overview of the relationships between the functional types in the portability software-FUR, using COSMIC for graphical representation. Specifically:

· The sub model of Portability Functional Type 1 can be used to specify (and measure the functional size) of the system software components from the received/sent data groups from/to the IOSF, IMF, IPLVMF, and IBF – see Fig. 12.

· The sub model of Portability Functional Type 2 can be used to specify (and measure the functional size of) the system data components from the received/sent data groups from/to the IDF and DDBMSF) – see Fig. 12.

· The sub model of Portability Functional Type 3 can be used to specify (and measure the functional size) of the system hardware components from the received/sent data groups from/to the ICF, ISF, ISTF, and INF – see Fig. 12.

· The sub model of Portability Functional Type 4 can be used to specify (and measure the functional size) of the ISC from the received/sent data groups from/to the ISSCF – see Fig. 12.

Fig. 12 COSMIC reference model of system portability requirements allocated to software

6. A standard generic measurement model of software-FUR using an SOA for system portability requirements

Fig. 12 illustrates the COSMIC reference model of portability requirements allocated to software. This reference model describes the important concepts and relationships for system portability requirements, as defined in the ECSS international standards.

In this section, a COSMIC reference architectural model using a Service Oriented Architecture (SOA) is built in Fig. 16 to elaborate on the model to show a more complete picture, which includes showing what is involved in instantiating the modeled entities in practice – for further details, see
 ADDIN EN.CITE

[42-45]
.

There are many definitions of an SOA, such as: a flexible set of design principles used during systems development and integration [42]; or a process including the definition of the architecture, components, modules, interfaces, and data for a system to satisfy specified requirements [44-45]. The COSMIC-SOA reference architectural model using an SOA in Fig. 16 provides a loosely integrated suite of services that can be used in multiple business domains to measure the functional size of software-FUR in an SOA environment [42]. In this model, the term “service” refers to a set of related software-FUR functions.

This COSMIC-SOA reference architectural model also helps measurers of services by separating functions into distinct units, or services. These services communicate with each other by exchanging data in a well-defined, shared format, or by coordinating an activity between two or more services [42].

The COSMIC reference model of system portability requirements allocated to software in Fig. 12 is considered a high-level model of requirements, while a COSMIC reference architectural model using an SOA, as will be depicted later in Fig. 16, describes the detailed measurement model that can be used to specify and measure the functionality described in Fig. 16.

The SOA for COSMIC offers three types of data architecture movements based on [42]:

· COSMIC-SOA exchange messages.

· COSMIC-SOA intermediary services.

· COSMIC-SOA data exchanges between system components, divided into:

· Direct exchange data movements, and

· Indirect exchange data movements.

6.1. COSMIC-SOA exchange messages for system portability

The COSMIC reference model of system portability is composed of a set of functions – see Fig. 12. These functions, according to the SOA, provide functional users with a set of services by exchanging messages in the application layer and a service between two peer pieces of software-FUR.

In an SOA, an application requiring commonly used information from another application sends a request to the service of the application that can handle the request, or the application may call upon its own services. Such a call is also called a “message”. Each message may consist of one or more data movements [42].

The model for a common form of exchange of messages between an application and a service is shown in Fig. 13 [42]. It uses the COSMIC reference model of portability requirements allocated to software for the exchange of data between two peer pieces of software [42].

Fig. 13 The interactions between an application and a service [42]

6.2. COSMIC-SOA intermediary services for system portability

When a functional process of an application service in application A requires data that are available via an application service in application B, the former application service calls upon a functional process of the intermediary service. This service functionality is also needed by other applications in the overall SOA framework, as it may itself be realized in the form of a utility service [42] – see Fig. 14.

Fig. 14 Application services and an interconnecting intermediary service [42]

6.3. COSMIC-SOA data exchanges for system component portability

Fig. 15 [42] shows the possible flows of data movements between components in the same layer, i.e. between peer components (where a component may be an application or a service). It shows direct and indirect exchanges of data between components – one or both forms may be involved when services communicate. If components exchange data directly, then, for measurement purposes, the measurer will identify Exit and/or Entry data movements, as per the data movements between service A (SA) and service B (SB). An indirect exchange of data between components means that a service in one component writes data to a storage device, which is subsequently read by a service in another component. In this situation, the measurer will identify a Write data movement in service SA and a Read data movement in service SB.

Fig. 15 Direct and indirect exchanges of data between services in peer components [42]

6.4. COSMIC reference architectural model using an SOA for system portability

Fig. 16 illustrates a COSMIC reference architectural model using an SOA for system portability requirements. This model is built based on Fig. 12 and the role of the COSMIC-SOA explained in [42] and in Figs. 13 to 15.

Fig. 16 COSMIC reference architectural model of system portability requirements allocated to software

7. Sizing a Reference Instantiation of the Generic Model of Software-FUR for System portability

The specification of software-FUR for system portability in any specific project is a specific instantiation of the proposed generic model described in Fig. 16. When the software specification document is at the level of the movement of data groups, then these functional requirements can be directly measured using the COSMIC measurement rules. The measurement example presented next is illustrative of a reference instantiation of the generic COSMIC specification and measurement model of software-FUR for system portability in an SOA context for a single data group for all the possible types of flows of data groups identified.

The measurement example in this section explains how to use the proposed reference model of system portability to size a hypothetical framework composed of all of the kinds of software-FUR described in the framework.

7.1. Measurement of exchange services for system portability functionality using COSMIC-SOA

There are eleven functional types of system portability, each interacting with its own services, for the measurement of exchange services for system portability using COSMIC-SOA – see Fig. 16. According to COSMIC-SOA, each functional process may interact with its own services by sending and receiving data movements, i.e. Entry and Exit – see Fig. 16.

Table 10 illustrates the COSMIC-SOA measurement results for interactions between the system portability functional processes with its own service processes. For example, the functional process IOSF interacts with its own service process, IOSS. The measurement result for this operation is equal to 4 CFP for each interaction between each functional process and its own functional service process – see Table 11. The total measurement result for the 11 functional processes is equal to 44 CFP (see the yellow shaded arrows in Fig. 16).

Table 10

COSMIC-SOA measurement for the interactions between the 11 functional processes

		Function ID

		COSMIC-SOA Types of exchange services for System Portability

		Number of Data Movements

		

		Functional Process

		Service Process

		

		1

		Independence of operating system function (IOSF)

		Independence of operating system service (IOSS)

		4

		2

		Independence of middleware function (IMF)

		Independence of middleware service (IMS)

		4

		3

		Independence of programming language virtual machine function (IPLVMF)

		Independence of programming language virtual machine service (IPLVMS)

		4

		4

		Independence of browsers function (IBF)

		Independence of browsers service (IBS)

		4

		5

		Independence of Database function (IDF)

		Independence of database service (IDS)

		4

		6

		Distributed database management system function (DDBMSF)

		Distributed data base management system service (DDBMSS)

		4

		7

		Independence of client function (ICF)

		Independence of client service (ICS)

		4

		8

		Independence of server function (ISF)

		Independence of server service (ISS)

		4

		9

		Independence of storage function (ISTF)

		Independence of storage service (ISTS)

		4

		10

		Independence of network function (INF)

		Independence of network service (INS)

		4

		11

		Isolating software system calls function (ISSCF)

		Isolating software system calls service (ISSCS)

		4

		Total Data Movement Size

		44 CFP

Table 11

COSMIC-SOA measurement example for the interactions between one functional service process

		COSMIC-SOA Types

		Data Movement Description

		Data

Movement

Type

		Functional Process

		Service Process

		

		

		Independence of operating system function (IOSF)

		Independence of operating system service (IOSS)

		· IOSF sends a data group to IOSS

		X

		

		

		· IOSS receives a data group from IOSF

		E

		

		

		· IOSS sends a data group to IOSF

		X

		

		

		· IOSF receives a data group from IOSS

		E

7.2. Measurement of intermediary services for system portability services using COSMIC-SOA

In this section, and based on Fig. 16, when a functional process service requires data that are available via another functional process service, the former calls upon a functional process of the intermediary service. According to the COSMIC-SOA model of measurement for system portability, the types of data movements required for using the intermediary service are the Entry and the Exit – see Fig. 14.

Tables 12 to 15 illustrate the COSMIC-SOA measurement results for intermediary services for portability Functional Types 1 to 4 (see the red shaded arrows in Fig. 16). These tables present an instantiation of the data movements of a single data group for all the possible flows of the data groups identified in Fig. 16 to achieve a high level of portability between components, while Table 16 provides a COSMIC-SOA measurement example for the intermediary service between a functional process and its own service process.

Based on the portability model in Fig. 16, the total number of intermediary services for Functional Types 1 to 4 is equal to:

· 6, between Portability Functional Type 1 process services, as illustrated in Table 12.

· 1, between Portability Functional Type 2 process services, as illustrated in Table 13.

· 6, between Portability Functional Type 3 process services, as illustrated in Table 14.

· 10, between Portability Functional Type 4 process services, as illustrated in Table 15.

Based on the portability design in Fig. 16, intermediary service IS1IS2 is equivalent to IS2IS1 by means of a transitive relationship, and similarly for the other intermediary services.

Table 16 illustrates a measurement example of the data movements for one intermediary service of Functional Type 1 in Fig. 16 (red shaded arrows). For this portability requirement, the measurement results are equal to 8 CFP (the first line in Table 12 for IS1IS2, for example).

Table 12

COSMIC-SOA: measurement of intermediary services for Portability Functional Type 1 in Fig. 16

		Intermediary Service

ID

		COSMIC-SOA Types of intermediary services between functional processes for System Portability Functional Type 1

		Number of Data Movements

		

		Functional Process

		Functional Process

		

		IS1IS2 or

IS2IS1

		Independence of operating system service (IOSS)

		Independence of middleware service (IMS)

		8

		IS1IS3 or

IS3IS1

		Independence of operating system service (IOSS)

		Independence of programming language virtual machine service (IPLVMS)

		8

		IS1IS4 or

IS4IS1

		Independence of operating system service (IOSS)

		Independence of browsers service (IBS)

		8

		IS2IS3 or

IS3IS2

		Independence of middleware service (IMS)

		Independence of programming language virtual machine service (IPLVMS)

		8

		IS2IS4 or

IS4IS2

		Independence of middleware service (IMS)

		Independence of browsers service (IBS)

		8

		IS3IS4 or

IS4IS3

		Independence of programming language virtual machine service (IPLVMS)

		Independence of browsers service (IBS)

		8

		Total Data Movement Size

		48 CFP

Table 13

COSMIC-SOA: measurement for intermediary services for Portability Functional Type 2 in Fig. 16

		Intermediary Service

ID

		COSMIC-SOA Types of intermediary services between functional processes for System Portability Functional Type 2

		Number of Data Movements

		

		Functional Process

		Functional Process

		

		IS4IS5 or

IS5IS4

		Independence of database service (IDS)

		Distributed data base management system service (DDBMSS)

		8

		Total Data Movement Size

		8 CFP

Table 14

COSMIC-SOA: measurement for intermediary services for Portability Functional Type 3 in Fig. 16

		Intermediary Service

ID

		COSMIC-SOA Types of intermediary services between functional processes for System Portability Functional Type 3

		Number of Data Movements

		

		Functional Process

		Functional Process

		

		IS5IS6 or

IS6IS5

		Independence of Client Service (ICS)

		Independence of Server Service (ISS)

		8

		IS5IS7 or

IS7IS5

		Independence of client service (ICS)

		Independence of storage service (ISTS)

		8

		IS5IS8 or

IS8IS5

		Independence of client service (ICS)

		Independence of network service (INS)

		8

		IS6IS7 or

IS7IS6

		Independence of server service (ISS)

		Independence of storage service (ISTS)

		8

		IS6IS8 or

IS8IS6

		Independence of server service (ISS)

		Independence of network service (INS)

		8

		IS7IS8 or

IS8IS7

		Independence of storage service (ISTS)

		Independence of network service (INS)

		8

		Total Data Movement Size

		48 CFP

Table 15

COSMIC-SOA: measurement for intermediary services for portability Functional Type 4 in Fig. 16

		Intermediary Service

ID

		COSMIC-SOA Types of intermediary services between functional processes for System Portability Functional Type 4

		Number of Data Movements

		

		Functional Process

		Functional Process

		

		IS8IS9

		Isolating software system calls service (ISSCS)

		Independence of operating system service (IOSS)

		8

		IS8IS9

		Isolating software system calls service (ISSCS)

		Independence of middleware service (IMS)

		8

		IS8IS9

		Isolating software system calls service (ISSCS)

		Independence of programming language virtual machine service (IPLVMS)

		8

		IS8IS9

		Isolating software system calls service (ISSCS)

		Independence of browsers service (IBS)

		8

		IS9IS10

		Isolating software system calls service (ISSCS)

		Independence of database service (IDS)

		8

		IS9IS10

		Isolating software system calls service (ISSCS)

		Distributed data base management system service (DDBMSS)

		8

		IS10IS11

		Isolating software system calls service (ISSCS)

		Independence of client service (ICS)

		8

		IS10IS11

		Isolating software system calls service (ISSCS)

		Independence of server service (ISS)

		8

		IS10IS11

		Isolating software system calls service (ISSCS)

		Independence of storage service (ISTS)

		8

		IS10IS11

		Isolating software system calls service (ISSCS)

		Independence of network service (INS)

		8

		Total Data Movement Size

		80 CFP

Table 16

COSMIC-SOA measurement example for the intermediary service between one functional process with its own functional service process

		COSMIC-SOA Intermediary Services

		Data Movement Description

		Data

Movement

Type

		Service process

		Service process

		

		

		Independence of Operating System Service

(IOSS)

		Independence of Middleware Service

(IMS)

		· IOSS sends a data group to IS1IS2

		X

		

		

		· IS1IS2 receives a data group from IOSS

		E

		

		

		· IS1IS2 sends a data group to IMS

		X

		

		

		· IMS receives a data group from IS1IS2

		E

		

		

		· IMS sends a data group to IS1IS2

		X

		

		

		· IS1IS2 receives a data group from IMS

		E

		

		

		· IS1IS2 sends a data group to IOSS

		X

		

		

		· IOSS receives a data group from IS1IS2

		E

Note: IS1IS2 is the first intermediary service in Fig. 16

7.3. Measurement of direct and indirect data movements for system portability services using COSMIC-SOA

This section is based on Fig. 16, which illustrates the possible flows of data between components in the same layer, i.e. between peer components (where a component may be an application or a service). This section shows direct and indirect exchanges of data between components – one or both forms of which may be involved when services communicate. If components exchange data directly, the measurer will identify the Exit and/or Entry data movements, as per the data movements between service A and service B. An indirect exchange of data between components means that a service in one component writes data which are subsequently read by a service in another component. In this situation, the measurer will identify a Write data movement in the former component and a Read data movement in the other.

Specifically, Table 17 illustrates COSMIC-SOA measurement results for the exchange of data movements between the system portability requirements model in a functional process or in service architecture layers – see Figs. 12 and 16. This table presents an instantiation of this operation. The measurement results are equal to 20 CFP (see the green shaded arrows in Fig. 16).

Table 17

COSMIC-SOA measurements for direct and indirect data groups for system portability

		 COSMIC-SOA

Functions

		Data Movement Description

		Data

Movement

Type

		Independence of operating System Function (IOSF)

		· IOSF reads and writes a data group from/to persistent storage.

		R & W

		Independence of middleware Function (IMF)

		· IMF reads and writes a data group from/to persistent storage.

		R & W

		Independence of programming Language Virtual Machine Function (IPLVMF)

		· IPLVMF reads and writes a data group from/to persistent storage.

		R & W

		Independence of browsers Function (IBF)

		· IBF reads and writes a data group from/to persistent storage.

		R & W

		Independence of Database Function (IDF)

		· IDF reads and writes a data group from/to persistent storage.

		R & W

		Distributed Data Base Management System Function (DDBMSF)

		· DDBMSF reads and writes a data group from/to persistent storage.

		R & W

		Independence of Client Function (ICF)

		· ICFF reads and writes a data group from/to persistent storage.

		R & W

		Independence of Server Function (ISF)

		· ISF reads and writes a data group from/to persistent storage.

		 R & W

		Independence of Storage Function (ISTF)

		· ISTF reads and writes a data group from/to persistent storage.

		R & W

		Independence of Network function (INF)

		· INF reads and writes a data group from/to persistent storage.

		R & W

		Total Data Movement Size

		20 CFP

8. A Measurement Example

The specification of software-FUR for system portability requirements in any project is a specific instantiation of the proposed generic model described in Fig. 16. When the software specifications document is at the level of the movement of data groups, then these functional requirements can be measured using the COSMIC measurement rules. This section presents a specific measurement example of the use of the COSMIC generic model of system portability requirements allocated to software.

Example: The set of functional requirements allocated to software for the system portability requirements for a specific instantiation is the following:

· The IOSF, IMF, ICF, and ISF call on their own functional services to exchange their messages.

· The IOSS uses an intermediary service with IMS.

· The ICS uses an intermediary service with ISS.

· The IOSF, IMF, ICF, and ISF write/read for data groups to/from a persistent storage.

The Functional Measurement Solution

Based on Fig. 16 for the COSMIC reference architectural model, using an SOA for system portability requirements allocated to software for specifying data movements, the measurement procedure to determine the functional size for portability on Functional Types 1, 3, and 4 for this example is as follows:

· Use COSMIC-SOA for the measurement of exchange messages.

The functional processes (IOSF, IMF, ICF, ISF, and ISSCF) interacting with the functional services for (IOSS, IMS, ICS, ISS, and ISSCS) in this example include the following data movements (yellow shaded arrows in Fig. 16) and with the help of Table 10, the results of the measurement functional size results are presented in Table 18.

Table 18

COSMIC-SOA measurement results for the interactions between the 4 functional processes as defined in the example

		Function

ID

		COSMIC-SOA Types of exchange services for System Portability

		Number of Data Movements

		

		Functional Process

		Service Process

		

		1

		Independence of operating system function (IOSF)

		Independence of operating system service (IOSS)

		4

		2

		Independence of middleware function (IMF)

		Independence of middleware service (IMS)

		4

		3

		Independence of client function (ICF)

		Independence of client service (ICS)

		4

		4

		Independence of server function (ISF)

		Independence of server service (ISS)

		4

		Total Functional Size

		16 CFP

· Use COSMIC-SOA for the measurement of intermediary services.

The functional process services (IOSS and IMS) use intermediary services to interact with other functional process services. Similarly, ICS and ISS, respectively in this example, include the following data movements (red arrows in Fig. 16) and with the help of Tables 12 and 14, the results of the measurement functional size results of 16 CFP are presented in Table 19.

Table 19

COSMIC-SOA measurement results of intermediary services between 4 functional processes, as defined in the example

		Intermediary Service

ID

		COSMIC-SOA Types of intermediary services between functional processes for System Portability

		Number of Data Movements

		

		Functional Process

		Functional Process

		

		1

		Independence of operating system service (IOSS)

		Independence of middleware service (IMS)

		8

		2

		Independence of client service (ICS)

		Independence of server service (ISS)

		8

		Total Functional Size

		16 CFP

· Use COSMIC-SOA data movements of data exchange between components.

Based on Fig. 16 (arrows in green) and Table 17, the functional size measurement results are presented in Table 20 for the data movements identified by the measurer for this example.

Table 20

 COSMIC-SOA measurements for direct and indirect data movements for system portability

		COSMIC-SOA

Functions

		Data Movement Description

		Data

Movement

Type

		Independence of operating System Function (IOSF)

		· IOSF reads and writes a data group from/to persistent storage.

		R & W

		Independence of middleware Function (IMF)

		· IMF reads and writes a data group from/to persistent storage.

		R & W

		Independence of Client Function (ICF)

		· ICF reads and writes a data group from/to persistent storage.

		R & W

		Independence of Server Function (ISF)

		· ISF reads and writes a data group from/to persistent storage.

		R & W

		Total Functional Size

		8 CFP

· The total functional size for this example

· The functional measurement size for the functional services (i.e. exchange of messages) = 16 CFP (Table 18);

· The functional measurement size for the intermediary services = 16 CFP (Table 19);

· The functional measurement size for indirect data movements for the functional services = 8 CFP (Table 20).

· Therefore, the total functional size for this example, based on Fig. 16, is 40 CFP.

9. Discussion and Conclusion

Portability requirements are typically described initially as non functional requirements (NFR) at the system level, and system engineers must subsequently apportion these system requirements very carefully as either software or hardware requirements to conform to the portability requirements of the system. Within the ECSS, ISO, and IEEE standards, a number of views and concepts are provided to describe various types of candidate portability requirements at the system, software, and hardware levels.

This paper has introduced a standards-based framework for specifying and measuring software requirements for the functions needed to address the system’s portability requirements.

The main contribution of this paper is our proposed generic model of software-FUR for system portability. This model can be considered as a kind of reference model for the identification of system portability requirements, and can be used for their allocation to software functions implementing such requirements.

Since the structure of this generic model is based on the model of software-FUR adopted by the COSMIC measurement standard, the necessary information for measuring their functional size is readily available, and an example has been presented of a specific instantiation of this reference model. The generic model of portability requirements presented in this paper is based on:

· The ECSS standards for the description of the NFR for system portability;

· The COSMIC measurement model of software functional requirements.

The proposed specification and measurement model is independent of the software type and the languages in which the software-FUR will be implemented. This proposed generic model for portability (i.e. reference model) provides:

· A specification model for each type, or all types, of portability requirements: for example, the requirements to be allocated to software for the system portability (hardware and software) components.

· A specification measurement model for each type, or all types, of portability requirements.

The Generic Model of System portability requirements proposed in this paper can provide system engineers with:

· An integrated reference view of system portability requirements that they can use to select the portability requirements necessary for a specific system to be developed (hardware-software).

· A methodology to specify these portability NFR: with this reference model, beginners may not require years of training before they are able to specify NFR at the levels of detail illustrated in the work reported in this paper.

· An integrated model to be used as an input to make decisions on which of these detailed portability NFR will be allocated to: 1- hardware, 2- software, or 3- a combination of these for a specific context.

For software engineers, the proposed generic model of system portability requirements can also provide them with a reference model that they can use to verify whether or not the system engineers have provided them with the right selection of system NFR-derived software-FUR, and at the necessary level of detail. This means that this standards-based reference model can be used as a quality technique for the following:

· Verification of system portability requirements coverage and descriptions;

· Elicitation of such requirements, in the software requirements phase, referred to as ‘both NFR and emergent properties’ in the SWEBOK Guide – ISO19759 [46];

· Achievement of this level of detailed inputs of portability requirements up front in the project life cycle (that is, at the software requirements phase, rather than much later, at the software testing phase, which is the common practice).

The proposed reference model for portability requirements presents a way to measure these software-FUR with COSMIC – ISO 19761, to take them into account in function point-based software estimation models, thereby avoiding late discovery of mandatory software-FUR that often lead to budget overruns and missed deadlines.

The measurement aspects presented in this paper have been limited to the system requirements allocated to software. It will be interesting in future work to investigate whether or not this measurement approach can be extended to all such requirements at the system level (that is, to all hardware-software-manual requirements, and not only to software requirements).

REFERENCES

[1]
M. Noguera, M. V. Hurtado, M. L. Rodríguez, L. Chung, and J. L. Garrido, "Ontology-driven analysis of UML-based collaborative processes using OWL-DL and CPN," Science of Computer Programming, vol. 75, pp. 726-760, 2010.

[2]
L. Chung and J. do Prado Leite, "On Non-Functional Requirements in Software Engineering," in Conceptual Modeling: Foundations and Applications, Lecture Notes in Computer Science, Springer Berlin / Heidelberg, vol. 5600, pp. 363-379, 2009.

[3]
W. Ma, L. Chung, and K. Cooper, "Assessing Component’s Behavioral Interoperability Concerning Goals," in On the Move to Meaningful Internet Systems: OTM 2008 Workshops, Lecture Notes in Computer Science, Springer Berlin / Heidelberg, pp. 452-462, 2008.

[4]
S. Nary, "An NFR-Based Framework for Establishing Traceability between Enterprise Architectures and System Architectures," pp. 21-28, 2006.

[5]
L. Chung and N. Subramanian, "System and software architectures," Science of Computer Programming, vol. 57, Issue 1, pp. 1-4, 2005.

 [6]
L. Chung and N. Subramanian, "Adaptable system/software architectures," Journal of Systems Architecture, vol. 50, Issue 7, pp. 365-366, 2004.

[7]
W. Yiqiao, "Self-Repair through Reconfiguration: A Requirements Engineering Approach," pp. 257-268, 2009.

[8]
M. John, "Goal-Oriented Requirements Engineering, Part II," 14th IEEE International Requirements Engineering Conference (RE'06), pp. 1-5, 2006.

[9]
N. Subramanian and L. Chung, "Towards standardization of adaptable software architectures," Computer Standards & Interfaces, vol. 25, pp. 211-213, 2003.

[10]
B. Cheng, R. de Lemos, H. Giese, P. Inverardi, J. Magee, J. Andersson, B. Becker, N. Bencomo, Y. Brun, B. Cukic, G. Di Marzo Serugendo, S. Dustdar, A. Finkelstein, C. Gacek, K. Geihs, V. Grassi, G. Karsai, H. Kienle, J. Kramer, M. Litoiu, S. Malek, R. Mirandola, H. Müller, S. Park, M. Shaw, M. Tichy, M. Tivoli, D. Weyns, and J. Whittle, "Software Engineering for Self-Adaptive Systems: A Research Roadmap," Lecture Notes in Computer Science in Software Engineering for Self-Adaptive Systems. vol. 5525, Springer Berlin / Heidelberg, pp. 1-26, 2009.

[11]
ECSS-E-40-Part-1B, Space Engineering: Software -- Part 1 Principles and Requirements, European Cooperation for Space Standardization,The Netherlands, 2003.

[12]
ECSS-E-40-Part-2B, Space Engineeing:Software-part 2 Document Requirements Definitions, European Cooperation for Space Standardization, The Netherlands, 2005.

[13]
ECSS-ESA, Tailoring of ECSS, Software Engineering Standards for Ground Segments, Part C: Document Templates, ESA Board of Standardization and Control (BSSC), 2005.

[14]
ECSS-E-ST-10C, Space engineering: System engineering general requirements, Requirements & Standards Division Noordwijk, The Netherlands, 2009.

[15]
ECSS-Q-ST-80C, Space Product Assurance: Software Product Assurance, Requirements & Standards Division Noordwijk, The Netherlands, 2009.

[16]
ISO/IEC-9126, Software Engineering -- Product Quality -- Part 1: Quality Model 9126-1, International Organization for Standardization,Geneva (Switzerland), 2004.

[17]
IEEE-Std-830, IEEE Recommended Practice for Software Requirements Specifications, 1998.

[18]
ISO 24765, "Systems and software engineering vocabulary," British Standards Institution, 2008.

[19]
ISO 2382-1, "Information technology -- Vocabulary -- Part 1: Fundamental terms," International Standards for Business, Government and Society, 1993.

[20]
ISO/IEC 19761, Software Engineering -- COSMIC v 3.0 -- A Functional Size Measurement Method, International Organization for Standardization, Geneva (Switzerland), 2003.

[21]
A. Abran and K. T. Al-Sarayreh, "Standards-Based Model for the Specification of System Design and Implementation Constraints," In: Industrial Proceedings, 17th European Systems & Software Process Improvement and Innovation, EuroSPI 2010 Conference, Grenoble (France), Publisher: Delta, Denmark, pp. 4.7-4.16, Sept. 1-3, 2010.

[22]
A. Abran and K. T. Al-Sarayreh, "Measurement of Software Requirements Derived from System Operations Requirements," 20th International Workshop on Software Measurement & International Conference on Software Measurement, IWSM/Metrikon/Mensura,Stuttgart, Germany, pp. 101-114, 2010.

[23]
K. T. Al-Sarayreh, A. Abran, and J. J. Cuadrado-Gallego, "Measurement Model of Software Requirements Derived from System Portability Requirements," 9th International Conference on Software Engineering Research and Practice (SERP 2010), Las Vegas, USA, pp. 553-559, 2010.

[24]
K. T. Al-Sarayreh and A. Abran, "A Generic Model for the Specification of Software Interface Requirements and Measurement of Their Functional Size," 8th ACIS International Conference on Software Engineering Research, Management and Applications, SERA 2010, Montreal, Canada, pp. 217-222, 2010.

[25]
K. T. Al-Sarayreh and A. Abran, "Measurement of Software Requirements Derived from System Reliability Requirements," 24th European Conference on Object-Oriented Programming (ECOOP 2010), ACM Digital Library, Maribor, Slovenia, 2010.

[26]
K. T. Al-Sarayreh and A. Abran, "Specification and Measurement of System Configuration Non Functional Requirements," 20th International Workshop on Software Measurement & International Conference on Software Measurement, IWSM/Metrikon/Mensura, Stuttgart, Germany, pp. 141-156, 2010.

[27]
A. Abran, K. T. Al-Sarayreh, and J. J. Cuadrado-Gallego "Standards-based Model for the Specification and Measurement of Maintainability Requirements," 22nd International Conference on Software Engineering and Knowledge Engineering (SEKE 2010), Redwood City, California, USA, pp. 153-158, 2010.

[28]
A. Moreira, J. Araujo, and I. Brito, "Crosscutting Quality Attributes for Requirements Engineering," 14th International Conference on Software Engineering and Knowledge Engineering, Ischia, Italy, pp. 167-174, 2002.

 [29]
N. S. Rosa, P. Cunha, and G. Justo, "Process NFL: A language for Describing Non-Functional Properties," 35th Annual Hawaii International Conference on System Sciences (HICSS’02) Hawaii, USA, vol. 9, p. 282b, 2002.

[30]
D. Park and S. Kang, "Design Phase Analysis of Software Performance Using Aspect-Oriented Programming," 5th Aspect-Oriented Modeling Workshop in Conjunction with UML 2004, Lisbon, Portugal, 2004.

[31]
M. Glinz, "Rethinking the Notion of Non-Functional Requirements," 3rd World Congress for Software Quality, Munich, Germany, 2005.

[32]
H. Kaiya, A. Osada, and K. Kayjiri, "Identifying Stakeholders and Their Preferences about NFR by Comparing Use Case Diagrams of Several Existing Systems," 12th IEEE International Requirements Engineering Conference, September 6-10, 2004, Washington, DC, USA, pp. 112-121, 2004.

[33]
B. Paech, A. Dutoit, D. Kerkow, and A. Von Kneth, "Functional requirements, non-functional requirements and architecture specification cannot be separated -- A position paper," Requirements Engineering: Foundations for Software Quality (REFSQ), Essen, Germany, 2002.

[34]
J. Mylopoulos, "Goal-oriented Requirements Engineering," Keynote at the 14th IEEE International Conference on Requirements Engineering, IEEE Computer Society Press, 2006.

[35]
Kassab, M., M. Daneva, and O. Ormandjieva, "Towards an Early Software Effort Estimation Based on Functional and Non-Functional Requirements," International Workshop on Software Measurement & International Conference on Software Process and Product Measurement (MENSURA), Amsterdam, The Netherlands, 2009.

[36]
M. Kassab, O. Ormandjieva, M. Daneva, and A. Abran, “Non-Functional Requirements Size Measurement Method (NFSM) with COSMIC-FFP,” Software Process and Product Measurement, Springer-Verlag, pp. 168-182, 2008.

[37]
K. L. Chung, "Representing and Using Non-functional Requirements for Information System Development: A Process Oriented Approach," Ph.D. thesis, also Tech. Rpt. DKBS-TR-93-1, Department of Computer Science, University of Toronto, 1993.

[38]
M. John and B. Nixon, "From Object-Oriented to Goal Requirements," Transactions of the ACM, Orlando, USA, pp. 821-828, 1999.

 [39]
J. Andrew, "An Approach to Quantitative Non-Functional Requirements in Software Development," 34th Annual Government Electronics and Information Association Conference, 2000.

 [40]
L. Chung, B. Nixon, E. Yu, and J. Mylopoulos, "Nonfunctional Requirements in Software Engineering," Kluwer Academic Publishing, 2000.

[41]
ISO/IEC-14143-1, Information technology -- Software measurement -- Functional size measurement Part 1: Definition of concepts, International Organization for Standardization, Geneva (Switzerland), 1998.

[42]
COSMIC, "The COSMIC Method v3.0.1, Guideline for Sizing SOA Software, v1.4," The Common Software Measurement International Consortium, MPC Review, 2010.

[43]
OASIS, Reference Architecture for Service Oriented Architecture Version 1.0, OASIS ® 1993-2008, 2008.

[44]
SoberIT, "Service-Oriented Architecture and Software Engineering," Seminar on Enterprise Information Systems by Software Business and Engineering Institute, Helsinki University of Technology, 2008.

[45]
OASIS-SOA, Reference Model for Service Oriented Architecture, http://www.oasis-open.org, 2006.

[46]
ISO-19759, Software Engineering Body of Knowledge (SWEBOK), International Organization for Standardization, Geneva (Switzerland), 2004.

System-FUR

Software-FUR

System-NFR

or

Engineered

Devices

Storage Hardware

SOFTWARE

ENTRIES

EXITS

USERS

READS

WRITES

EXITS

ENTRIES

I/O Hardware

BOUNDARY

System Portability-NFR

Software-FUR for System Portability

System Portability-FUR

Independence of operating system function (IOSF)

Independence of middleware function (IMF)

Independence of programming language virtual machine function (IPLVMF)

Independence of browsers function (IBF)

Persistent Storage

Functional Type 1 (System Software Components)

Independence of operating system function (IOSF)

Independence of middleware function (IMF)

Independence of programming language virtual machine function (IPLVMF)

Independence of browsers function (IBF)

Persistent Storage

Intermediary Service

(IS)

X

E

X

E

E

X

E

X

X

E

X

E

E

X

E

X

X

E

X

E

E

X

E

X

R

W

R

W

R

W

R

W

Independence of database function (IDF)

Distributed database management system function (DDBMSF).

Persistent Storage

Functional Type 2 (System Data Components)

Independence of database function (IDF)

Distributed database management system function (DDBMSF).

Persistent Storage

Intermediary Service

(IS)

X

E

X

E

E

X

E

X

R

W

R

W

Independence of client function (ICF)

Independence of server function (ISF)

Independence of storage function (ISTF)

Independence of network function (INF)

Persistent Storage

Functional Type 3 (System Hardware Components)

Independence of client function (ICF)

Independence of server function (ISF)

Independence of storage function (ISTF)

Independence of network function (INF)

Persistent Storage

Intermediary Service

(IS)

X

E

X

E

E

X

E

X

X

E

X

E

E

X

E

X

X

E

X

E

E

X

E

X

R

W

R

W

R

W

R

W

Functional Type 4 (Isolating System Calls)

Isolating software system calls function

(ISSCF)

Persistent Storage

 Functional Type 1 Functional Type 2

 Functional Type 3

 Functional Type 4

Persistent Storage

Persistent Storage

Independence of operating system function (IOSF)

Independence of middleware function (IMF)

Independence of programming language virtual machine function (IPLVMF)

Independence of browsers function (IBF)

Independence of database function (IDF)

Distributed database management system function (DDBMSF)

Isolating software system calls function

(ISSCF)

Independence of client function (ICF)

Independence of server function (ISF)

Independence of storage function (ISTF)

Independence of network function (INF)

Persistent Storage

Functional Type 1 (System Software Components)

 Functional Type 2

 (System Data Components)

 Functional Type 4

 (Isolating System Calls)

Functional Type 3 (System Hardware Components)

E

X

X

E

E

X

X

E

E

X

X

E

E

X

X

E

Isolating software system calls function

(ISSCF)

Persistent Storage

Independence of operating system function (IOSF)

Independence of middleware function (IMF)

Independence of programming language virtual machine function (IPLVMF)

Independence of browsers function (IBF)

I

N

T

E

R

M

E

D

I

A

R

Y

Service

(IS)

E

X

X

E

E

X

X

E

E

X

X

E

E

X

X

E

E

X

X

E

E

X

X

E

R

X

W

E

R

X

W

E

R

X

W

E

R

X

W

E

Persistent Storage

Independence of client function (ICF)

Independence of server function (ISF)

Independence of storage function (ISTF)

Independence of Network Function (INF)

I

N

T

E

R

M

E

D

I

A

R

Y

Service

(IS)

E

X

X

E

E

X

X

E

E

X

X

E

E

X

X

E

E

X

X

E

E

X

X

E

R

X

W

E

R

X

W

E

R

X

W

E

R

X

W

E

E

X

X

E

E

X

X

E

Persistent Storage

Independence of database function (IDF)

Distributed database management System Function (DDBMSF)

R

W

R

W

E

X

X

E

E

X

X

E

Intermediary

Service

Portability Functional Type 1

Portability Functional Type 2

Portability Functional Type 3

Portability Functional Type 4

Boundary

Functional Process

Direct Data Movements

(E) ENTRY (X) EXIT

Indirect Data Movements

(R) READ (W) WRITE

Persistent Storage

E

X

X

E

E

X

X

E

E

Functional

User

X

Boundary

Applications A

Functional Process FA

Service S

Functional Process FS

E

X

E

X

Boundary

Intermediary

Service

Service (S2)

Application B

E

X

E

X

Boundary

Service (S1)

Application A

E

X

E

X

Boundary

Service

SA

Service

SB

Persistent Storage

W

X

E

X

Boundary

E

R

E

Functional

User

X

Boundary

Functional Type 1 (System Software Components) Functional Type 2 (System Data Components)

 Functional Type 4

 (Isolating System Calls)

Functional Type 3

(System Hardware Components)

Intermediary

Service

Portability Functional Type 1

Portability Functional Type 2

Portability Functional Type 3

Portability Functional Type 4

Boundary

Functional Process or Service

Direct Data Movements

(E) ENTRY (X) EXIT

Indirect Data Movements

(R) READ (W) WRITE

Persistent Storage

E

X

X

E

E

X

X

E

E

X

X

E

E

X

X

E

E

X

X

E

E

X

X

E

Isolating Software

System Calls Service

(ISSCS)

Persistent Storage

Independence of operating system service (IOSS)

Independence of middleware service (IMS)

Independence of programming language virtual machine service (IPLVMS)

Independence of browsers service (IBS)

I

N

T

E

R

M

E

D

I

A

R

Y

Service

(IS)

E

X

X

E

E

X

X

E

E

X

X

E

E

X

X

E

E

X

X

E

E

X

X

E

R

X

W

E

R

X

W

E

R

X

W

E

R

X

W

E

Persistent Storage

Independence of client Service (ICS)

Independence of server service (ISS)

Independence of storage Service (ISTS)

Independence of Network Service (INS)

I

N

T

E

R

M

E

D

I

A

R

Y

Service

(IS)

E

X

X

E

E

X

X

E

E

X

X

E

E

X

X

E

E

X

X

E

E

X

X

E

R

X

W

E

R

X

W

E

R

X

W

E

R

X

W

E

E

X

X

E

E

X

X

E

Persistent Storage

Independence of database service (IDS)

Distributed database management system service (DDBMSS)

R

W

R

W

E

X

X

E

E

X

X

E

Independence of operating system function (IOSF)

Independence of middleware function (IMF)

Independence of programming language virtual machine function (IPLVMF)

E

X

X

E

E

X

X

E

E

X

X

E

Independence of browsers function (IBF)

E

X

X

E

Independence of client function (ICF)

Independence of server function (ISF)

Independence of Storage Function (ISTF)

Independence of Network Function (INF)

E

X

X

E

E

X

X

E

E

X

X

E

E

X

X

E

Independence of database function (IDF)

E

X

X

E

E

X

X

E

Distributed Database management system function (DDBMSF)

Isolating Software System Calls Function

(ISSCF)

E

X

X

E

IS1IS2

IS2IS3

IS3IS4

IS4IS5

IS5IS6

IS6IS7

IS7IS8

IS8IS9

IS9IS10

IS10IS11

2

Journal of Information Science © CILIP 2007

27

Appendix II-J

Early Identification, Specification and Measurement of Software Requirements Derived From System Resources Requirements

In the system requirements phase, the focus is often on detailing and documenting the system functional requirements and on their allocation to the software and hardware parts of the system being designed. The non-functional requirements, in contrast, are often captured only generically at a fairly high level and they do not include the levels of details necessary for the system engineers to allocate yet such non functional requirements as specific functionalities to be handled either by the software or the hardware, or a specific combination of both. The European ECSS series of standards for the aerospace industry includes Resources requirements as one of sixteen types of non functional requirement (NFR) for embedded and real time software. A number of Resources related concepts are dispersed throughout the ECSS standards to describe at varying levels of details the various types of candidate Resources requirements at the system, software, and hardware levels. This paper organizes these dispersed Resources concepts into a generic standards-based reference model of system Resources requirements. The availability of this generic, and detailed, reference model can facilitate the early identification and specification of the system Resources-NFR and their detailed allocation as specific Resources functions to be handled by the specified allocation to hardware or software or in a specific combination of both. In the absence of such a generic and detailed model, such NFR requirements are typically handled in practice much later on in the software development life cycle when at system testing time, users and developers find out that a number of Resources requirements have been overlooked and additional work has to be expanded to implement them. The approach adopted in this research for the structure of this reference NFR model is based on the generic model of software functional requirements proposed in the COSMIC – ISO 19761 model, thereby allowing the measurement of the functional size of such Resources requirements allocated to software and taking them into account for estimations purposes.

Keywords: Software Engineering, Non functional requirement (NFR), Resources Requirements, ECSS International Standards, Resources Measurement, COSMIC – ISO 19761.

1. Introduction

In practice, during the system requirements gathering phase, the focus is often on the functional requirements of the system, while non functional requirements are often captured by system analysts at a very global level: detailing these non functional requirements is typically left to be handled (i.e. defining them at the necessary level of detail) much later by system designers in the system architecture and design phases. Non functional requirements (NFR) play a critical role in system development. They may have a considerable impact on project effort, and should be taken into account for estimation purposes and in comparing project productivity.

In the system analysis phase, the NFR are typically described at the system level and not at the software level. As yet, there is no consensus on how to describe and measure system NFR. In current practice, they may be viewed, defined, interpreted, and evaluated differently by different people in the later project phases, particularly when they are stated vaguely and only briefly in the system requirements phase
 ADDIN EN.CITE
[1-3]
 . It is challenging, therefore, to take them into account in software estimation and software productivity benchmarking, particularly as they have received less attention in the software engineering literature and are definitely less well understood than other cost factors [4] . Of course, measurement is essential if NFRs are to be taken as quantitative inputs to an estimation or productivity benchmarking process but not much work has been published to date on how to measure such NFR.

In practice, requirements are initially typically addressed at the system level , either as high level system functional user requirements (system FUR) or as high level system non functional requirements (system NFR)
 ADDIN EN.CITE
[5-7]
. The latter must usually be detailed, allocated, and implemented in hardware, software (as software FUR - “soft-FUR” for instance – see Figure 1) or in a specific combination of hardware or software.

To distinguish between these types of requirements, system FUR describes the required functions in a system, while system NFR describes how the required functions must behave in a system. In the software requirements engineering step, system NFR can then be detailed and specified as software FUR, to allow a software engineer to develop, test, and configure the final deliverables to system users.

The term "functional" refers to the set of functions the system (including the software) has to offer, while the term "non functional" refers to the manner in which such functions perform. An FUR is typically phrased with a subject and a predicate (i.e. noun/verb), such as: "The system must print 5 reports". NFR, by contrast, are typically phrased with an adverb or modifying clause, such as: "The system will print 5 reports quickly," or "The system will print 5 reports with a high degree of Resources".

[image: image5.emf]

Fig. 1 Mapping system FUR and NFR to software FUR

In the ECSS (European Cooperation on Space Standardization) standards for the aerospace industry
 ADDIN EN.CITE
[8-13]
, a number of concepts are provided to describe various types of candidate Resources requirements at the system, software, and hardware levels. However, these standards vary in their views, terminology, and coverage of data definition and database.

Currently, there exists no generic model for the identification and specification of software FUR for implementing system Resources requirements (system NFR) based on the various views documented in international standards and in the literature. Consequently, it is challenging to measure these Resources-related software FUR, and take them into account quantitatively for estimation purposes.

This paper focuses on a single type of NFR, that is, system Resources requirements, and reports on the work carried out to define an integrated view of software FUR for system Resources NFR based on international standards, including the use of the generic COSMIC – ISO 19761 [14] model of software FUR.

The paper is organized as follows. Section 2 presents the related work. Section 3 presents the view of software FUR in ISO 19761. Section 4 identifies the standards that describe Resources requirements. Section 5 presents a standards-based definition of a generic model of requirements for software to implement system Resources NFR. Section 6 presents a standard generic measurement model of software FUR using a service-oriented architecture (SOA) for system data definition and database. Section 7 presents the sizing of a reference instantiation of the generic model of Resources software FUR. Section 8 presents a measurement example. Finally, a discussion and our conclusion are presented in section 9.

2. Related work

In the literature, there are some early works on NFR in systems/software engineering. For instance, in 1993, Chung [15] presented one of the initial attempts to capture knowledge in this domain. His work was followed by that of Mylopoulos et al. [16], who suggested viewing all requirements as goals, each goal being an umbrella for related functional and non functional requirements. Chung et al. [17] and Andrew [18] aimed to make NFR more quantitative in nature, while Andrew [18]observed that there are often gaps between the stakeholder vision and requirements representation. Chung et al. [17] proposed a taxonomy for NFR indicating that it is unrealistic to expect designers and developers to incorporate an entity that they cannot readily identify. While taxonomies aim to be inclusive of the entire set of entities in question, these authors suggested in [17] that a one- or two-level taxonomy would suffice initially, and that there are over 161 identifiable types of NFR.

Paech et al. [19] recommended that functional requirements (FR), NFR, and architecture be tightly co developed and addressed in a coherent and integrated manner, suggesting that NFR be decomposable into more refined NFR and additional FR, as well as architectural decisions.

Moreira et al.[20] , Rosa et al. [21] , Park et al.[22] , and Glinz [23] have proposed new methods for classifying NFR early in the software development process, while Kaiya et al. [24] have presented a method to identify stakeholders and their NFR preferences by using use case diagrams of existing systems.

More recently, Mylopoulos [16] promoted Goal-Oriented Requirements Engineering, and suggested a specific solution involving the establishment of an Agent-Oriented Software Development Method, called the Tropos project, which covers not only the requirements, but also the design phases, and addresses the design of high-variability software for applications such as home care software and business process design.

More recently still, Kassab et al. [25-26] proposed some solutions for an NFR framework: for example, a sequence of systematic activities with a view to early consideration of identifying, specifying, and separating FR from NFR, as well as a discussion on NFR prioritization and risk assessment. They also report in [26] on an initial solution for determining the functional size of NRF based on "Soft-Goal" concepts, using the COSMIC method, to deal with the problem of quantitatively assessing the NFR modelling process early in a project.

In parallel with the work of researchers, the software industry has been working on the description of NFR, in particular through international standardization bodies, such as the European Cooperation on Space Standardization (ECSS), the Institute of Electrical and Electronics Engineers (IEEE), and the International Organization for Standardization (ISO).

In the ECSS standards for the aerospace industry
 ADDIN EN.CITE
[8-13]
 , a system Resources requirement is identified as one of sixteen types of NFR, and the research reported here focuses strictly on these NFR. However, these standards vary in their views, terminology, and coverage of Resources requirements. Currently, there exists no generic model for the identification and specification of software FUR for implementing system Resources requirements (system NFR) based on the various views documented in these international standards and in the literature. Consequently, it is challenging to measure the system Resources-related software FUR, and take them into account quantitatively for estimating software projects.

In the work reported here, preference has been given to the views, concepts, and vocabulary most widely used by the industry, as evidenced in its standardization infrastructure, rather than those in the academic literature. Similarly, for the structuring and description of models of FUR and for measurement purposes, the measurement views, concepts, and terminology from the standardization infrastructure have been adopted, rather than those in the literature.

This paper focuses on a single type of NFR, that is, system Resources requirements, and reports on the work carried out to define an integrated view of software FUR for system Resources NFR on the basis of international standards, including the use of the generic COSMIC – ISO 19761 [14] model of software FUR as the template for the description of measurable functional requirements , thereby allowing the measurement of the functional size of such requirements allocated to software and taking them into account for estimations purposes. This approach has been used to build other types of NFR, such as design and implementation constraints, configuration, interfaces and Resources requirements
 ADDIN EN.CITE
[27-33]
.

3. A generic ISO view of software FUR

It is specified in ISO 14143-1 [34] of the collection of ISO standards that a functional size measurement (FSM) method must measure software FUR. In addition, ISO 19761 – COSMIC [14] proposes a generic model of software FUR that clarifies the boundary between hardware and software. Figure 2 illustrates the generic flow of data from a functional perspective from hardware to software. From this generic model of software functional requirements in Figure 2, we observe the following:

· Software is bounded by hardware. In the so-called “front-end” direction (i.e. the left-hand side in Figure 2), software used by a human user is bounded by I/O hardware, such as a mouse, a keyboard, a printer, or a display, or by engineered devices, such as sensors or relays. In the so-called “back-end” direction (i.e. the right-hand side of Figure 2), software is bounded by persistent storage hardware, like a hard disk, and RAM and ROM memory.

· The software functionality is embedded within the functional flows of data groups. Such data flows can be characterized by four distinct types of data movements. In the “front end” direction, two types of movements (ENTRIES and EXITS) allow the exchange of data with the users across a ‘boundary’. In the “back end” direction, two types of movements (READS and WRITES) allow the exchange of data with the persistent storage hardware.

· Different abstractions are typically used for different measurement purposes. In real-time software, the users are typically the engineered devices that interact directly with the software; that is, the users are the ‘I/O hardware’. For business application software, the abstraction commonly assumes that the users are one or more humans who interact directly with the business application software across the boundary; i.e. the ‘I/O hardware’ is ignored.

 [image: image1.emf]

Fig. 2 Generic flow of data groups through software from a functional perspective in COSMIC – ISO 19761

As an FSM method, COSMIC is aimed at measuring the size of software based on identifiable FUR. Once identified, those requirements are allocated to hardware and software from the unifying perspective of a system integrating these two “components”. Since COSMIC is aimed at sizing software, only requirements allocated to the software are currently considered in its measurement procedure.

4. Identification of standards describing system Resources requirements

This section presents a survey of the Resources-related views, concepts, and terms in the ECSS standards
 ADDIN EN.CITE
[8-13]
. This section identifies which standards currently address aspects of the software FUR derived from system Resources FUR and NFR – see Fig. 3.

 The expected outcome is the identification of the various elements that should be included in the design of a standards-based framework for modelling software FUR for system data definition and database. The elements of Resources are dispersed in various system views throughout various ECSS standards and are expressed as either:

· System Resources functional user requirements (system Resources FUR) or

· System Resources non-functional requirements (system Resources NFR)

[image: image6.png]

Fig. 3: Mapping system requirements into software FUR for Resources

4.1. ECSS views and concepts for Resources requirements

The European Cooperation for Space Standardization (ECSS) is an organization which works to improve standardization within the European space sector. The ECSS frequently publishes standards targeted to the contractors working for the European Space Agency (ESA). The ECSS standards series
 ADDIN EN.CITE
[8-13]
 includes a number of Resources requirements at the system level. It can be observed that ECSS focuses on the system-FUR for the early development phases while the System NFR are typically discussed within the context of later development phases such as the evaluation or testing phases.

The [35] [36] and [37] present resources as a system NFR for real-time and embedded software: in these standards, the resources requirements are described as what the component needs from its environment to perform its function and define the limits of software budgets associated with computer resources (such as: CPU load and maximum memory size) to be considered by the supplier.

ECSS-E-40 part 1B as well as ECSS-E-40 part 2B Indicates to computer hardware resource requirements on the utilization (e.g. processor capacity and memory capacity) available for the software item (e.g. sizing and timing).Moreover indicates to Computer software resource requirements on the software items to be used by or incorporated into the system (or constituent software product) (e.g. a specific real time operating system).

Subsequently, [37] indicates to the resources as important part in the software life cycle to assure from the suitability and for the availability of resources to implement it by all functions involved in its application.

[38] describe all the resource requirements related to the software and the hardware requirements (target hardware on which the software is specified to operate), as follows:

· List of the requirements relevant to hardware environment in which the software is specified to operate.

· List of the sizing and timing requirements applicable to the software item under specification.

· Description of the computer software to be used with the software under specification or incorporated into the software item (e.g. operating system and software items to be reused).

· Description of the real time constraints to respect (e.g. time management with respect to the handling of input data before its loss of validity).

[39] describes hardware resources by the assignable, addressable bus paths that allow peripheral devices and system processors to communicate with each other. Hardware resources typically include I/O port addresses, interrupt vectors, and blocks of bus-relative memory addresses. Resources are assigned to each device node in the device tree (assuming that the represented device needs resources and those resources are available).

4.2 IEEE: views and concepts for Resources requirements

IEEE-1220 2005 indicates to collected measurements, tracked, and reported at pre-established control points during each stage of development to enable the of a quality system and achievement of efficient use of resources.

4.3 ISO: views and concepts for resources requirements

ISO 9126 2002 define the resources as the capability of the software product to use appropriate amounts and types of resources when the software performs its function under stated conditions.

ISO 9126 identifies the resources as part of product efficiency and ISO standards describes away to measure the software recourses through the follows:

· I/O resource devices

· Memory resources

· Transmission recourses

Table 1: Resources requirements views, concepts and vocabulary in

International standards

		Standard name

		Standards key views

		The set of concepts and vocabulary to describe resources requirements

		ECSS Standards

		The resource requirements related to the software and the hardware requirements (target hardware on which the software is specified to operate),

		· CPU load

· Maximum memory size

· Computer hardware resource requirements

· Processor capacity for the software items

· Memory capacity for the software items

· Computer software resource requirements

· Specific real time operating system

· Software elements.

· I/O port addresses,

· Interrupt vectors

· Blocks of bus-relative memory addresses

· I/O Resource List

· I/O Resource Descriptor

		IEEE-1220 Standards

		Collected measurements, tracked, and reported at pre-established control points during each stage of development to enable a quality system and achievement of efficient use of resources.

		· Not Clear

		ISO 9126 Standard

		Capability of the software product to use appropriate amounts and types of resources when the software performs its function under stated conditions.

		· I/O resource devices

· Memory resources

· Transmission recourses

		IEEE-830 Standards

		Not Clear

		· Not Clear

5. A standards-based definition of a generic model of software FUR for system Resources requirements

This section maps the Resources terminologies found throughout the ECSS, IEEE, and ISO standards into a proposed model of software-FUR for system Resources-NFR, through the use of the generic model of FUR proposed in the COSMIC model in Fig. 3. This COSMIC-based generic model can then become a framework for describing the Resources requirements (i.e. from system-NFR to software-FUR) based on the ECSS standards.

5.1 Mapping views and concepts for Resources from ECSS, ISO, and IEEE standards

Based on a synthesis of the various definitions, the key views and concepts presented in chapter 3 on software-FUR for system Resources-NFR are presented in Table 2. It is important to note that Table 2 includes software, data, and hardware components which are interconnected.

Table 2: Resources requirements in ECSS, ISO, and IEEE

		System resources requirements

		· I/O recourse addresses

· Hardware recourses

· Software resources

· I/O port addresses

· I/O recourse list

· I/O recourse addresses

· I/O transmission addresses

· Block of bus relative memory addresses

· Processor capacity for software item

· Memory capacity for software item

· Storage device capacity for software item

· Interrupt vectors

· Software elements

· Specific real time operating system

5.2 Software system Resources functions to be specified

The functionality and corresponding entities to be specified (and measured) for system Resources allocated to software are listed in Table 3.

Table 3: system Resources functions that may be allocated to software

		System resources types

		System resources functions

		I/O recourse addresses

		· I/O port addresses function

· I/O recourse list function

· I/O recourse addresses function

· I/O transmission addresses function

· Block of bus relative memory addresses function

		Hardware recourses

		· Processor capacity for software item function

· Memory capacity for software item function

· Storage device capacity for software item function

· Interrupt vectors function

		Software recourse

		· Software elements function

· Specific real time operating system function

5.3 Identification of the functional types in the Resources

In this section, the system resources functional types are identified based on the findings of the resources functions, as discussed in the previous section. The system resources requirements allocated to software-FUR are divided into two types of requirements: static and dynamic numerical requirements; each type in this division has its own functionality. The proposed resources functional types are illustrated in system and COSMIC modeling views, in order to propose a COSMIC reference model of resources requirements allocated to software based on the proposed COSMIC modeling view.

Table 4: Functional types for resources functions that may be allocated to software

		System resources types

		System resources functional types

		System resources functions

		I/O resource addresses

		Functional type 1

System I/O resources

(SIOR)

		· I/O port addresses function (IOPAF)

· I/O recourse list function (IORLF)

· I/O recourse addresses function (IORAF)

· I/O transmission addresses function (IOTAF)

· Block of bus relative memory addresses function (BBRMAF)

		Hardware recourses

		Functional type 2

Hardware resources

(HR)

		· Processor capacity for software item function (PCSIF)

· Memory capacity for software item function (MCSIF)

· Storage device capacity for software item function (SDCSIF)

· Interrupt vectors function (IVF)

		Software recourse

		Functional type 3

Software resources

(SR)

		· Software elements function (SEF)

· Specific real time operating system function (STOSF)

5.4 System Resources Model using COSMIC-SOA (Functional service level)

In this section, the system Resources model using COSMIC-SOA is built in Figure 4 to elaborate on the model to show a more complete picture, which includes showing what is involved in instantiating the modeled entities in practice – for more details, see
 ADDIN EN.CITE
[40-43]
 and describes the detailed measurement model, which can be used to specify and measure the functionality at service level.

There are many definitions of a service-oriented architecture (SOA), such as: a flexible set of design principles used during systems development and integration [40]; a process including the definition of the architecture, components, modules, interfaces, and data for a system to satisfy specified requirements [42-43].

The system Resources model using COSMIC-SOA in Figure 4 provides a loosely integrated suite of services that can be used in multiple business domains to measure the functional size of software FUR in an SOA environment [40]. In this model, the term “service” refers to a set of related software FUR functions as well as separating functions into distinct units, or services.

These services communicate with each other by exchanging data in a well-defined, shared format, or by coordinating an activity between two or more services [40].

The COSMIC-SOA guideline offers three types of data movements architecture in (Table 5) based on [40]:

Table 5: COSMIC-SOA guideline offers three types of data movement’s architecture [40]

		COSMIC-SOA exchange messages: An application requiring commonly used information from another application sends a request to the service of the application that can handle the request, or the application may call upon its own services. Such calls are also called ‘messages’. Each message may consist of one or more data movements [40].

		[image: image7.png]

		COSMIC-SOA intermediary services: When a functional process of an application service in application A requires data that are available via an application service in application B, the former application service calls upon a functional process of the intermediary service. This service functionality is also needed by other applications in the overall SOA framework, as it may itself be realized in the form of a utility service [40]

		[image: image8.png]

		COSMIC-SOA data exchanges: The data movements between components in the same layer, i.e. between peer components (where a component may be an application or a service). It shows direct and indirect exchanges of data between components. If components exchange data directly, then, for measurement purposes, the measurer will identify Exit and/or Entry data movements, as per the data movements between service A (SA) and service B (SB). An indirect exchange of data between components means that a service in one component writes data in a storage device, which is subsequently read by a service in another component. the measurer will identify a Write data movement in service SA and a Read in service SB.

		

5.5 COSMIC reference architectural model using an SOA for system Resources

Fig. 4 illustrates a COSMIC reference architectural model using an SOA for system Resources requirements. This model is built based on the proposed Resources functions and functional types and the role of the COSMIC-SOA explained in [40].

[image: image2.emf]

Fig. 4 COSMIC reference architectural model of system Resources requirements allocated to software

6 Sizing a Reference Instantiation of the Generic Model of Software FUR for System Resources Requirements

The specification of software FUR for system Resources requirements in any specific project is a specific instantiation of the proposed generic model described in Figure 4. When the software specification document is at the level of the movement of data groups, then these functional requirements can be directly measured using the COSMIC measurement rules. The measurement example presented next is illustrative of a reference instantiation of the generic COSMIC specification and measurement model of software FUR for system Resources requirements in an SOA context for a single data group for all the identified possible flows of data groups.

 The measurement example in this section explains how to use the proposed reference model of system Resources requirements to size a hypothetical framework composed of all of the kinds of software FUR described in the framework see-figure 5.

[image: image3]

Figure 5: instantiation of the generic COSMIC specification and measurement model of

software FUR for system Resources

6.1 Measurement of exchange services for system Resources functionality using COSMIC-SOA

There are 11 functionality types of system Resources requirements, interacting with their own services, for the measurement of exchange services for system Resources using COSMIC-SOA, see Figure 5. According to COSMIC-SOA, each functional process may interact with its own service by sending and receiving data movements (i.e. Entry and Exit – see table 5).

The COSMIC-SOA measurement results for the interactions between the system Resources functional processes with its own service processes. The measurement result for this operation is equal to 4 CFP for each interaction between each functional process with its own functional service process”. The total measurement result for the 12 functionality types is equal to 44 CFP (see figure 5).

6.2 Measurement of intermediary services for system Resources services using COSMIC-SOA

In this section - and based on Figure 5, when a functional process service requires data that is available via another functional process service, the former calls upon a functional process of the intermediary service. According to the COSMIC-SOA model of measurement for system operations, the types of data movements for using the intermediary service must be Entry and Exit – see table 5.

The COSMIC-SOA measurement results for intermediary services based on figure 5. The instantiation of a single data group for all possible flows of the data groups identified above, and listed as a data movement example for one intermediary service: for this requirement the measurement results are equal to 8 CFP. The total measurement results are equal to 440 CFP.

6.3 Measurement of the direct and indirect data movements for system Resources services using COSMIC-SOA

This section is based on Figure 5 which illustrates the possible flows of data between components in the same layer, i.e. between peer components (where a component may be an application or a service). This section shows direct and indirect exchanges of data between components – one or both forms of which may be involved when services communicate. If components exchange data directly, the measurer will identify the Exit and/or Entry data movements, as per the data movements between service A and service B. An indirect exchange of data between components means that a service in one component writes data which are subsequently read by a service in another component. In this situation, the measurer will identify a Write data movement in the former component and a Read data movement in the other.

Specifically, The instantiation of this operation. The total measurement results are equal to 32 CFP (see figure 5).

7 Discussion and Conclusion

Resources requirements are typically described initially as non functional requirements at the system level, and system engineers must subsequently apportion these system requirements very carefully as either software or hardware requirements to conform to the Resources requirements of the system. Within the ECSS standards, a number of views and concepts are provided to describe various types of candidate Resources requirements at the system, software, and hardware levels.

 This paper has introduced a standards-based framework for specifying and measuring software requirements for the functions needed to address the system’s Resources requirements.

 The main contribution of this paper is our proposed generic model of software FUR for system Resources requirements. This generic model can be considered as a kind of reference model for the identification of system Resources requirements, and can be used for their allocation to software functions implementing such requirements. System requirements allocated to hardware have not been addressed in this paper. Since the structure of the generic model is based on the generic model of software adopted by the COSMIC measurement standard, the necessary information for measuring their functional size is readily available, and an example has been presented of a specific instantiation of this reference model.

 Specifically, the generic model of Resources requirements presented in this paper is based on:

· The ECSS standards for the description of the NFR for system Resources requirements ;

· The COSMIC measurement model of functional requirements.

The proposed specification and measurement model is independent of the software type and the languages in which the software FUR will be implemented. The proposed generic model for Resources requirements (i.e. reference model) provides:

· A specification model for each type, or all types, of Resources requirements: for example, the requirements to be allocated to software for the system data items and the product data schema.

· A measurement model for each type, or all types, of Resources requirements.

The generic model of system Resources requirements proposed in this paper can provide system engineers with:

· An integrated reference view of system Resources requirements that they can use to select the Resources requirements necessary for a specific system to be developed (hardware-software-manual).

· A methodology to specify these Resources NFR: with this reference model, beginners would not require years of training before being able to specify these at the levels of detail illustrated in the work reported in this paper.

· An integrated model to be used as an input to make decisions on which of these detailed Resources NFR will be allocated to hardware, or software, or combinations of these for a specific context.

For software engineers, the proposed generic model of system Resources requirements can also provide them with:

· A reference model that they can use to verify whether or not the system engineers have provided them with the right selection of system NFR-derived FUR, and at the necessary level of detail.

This means that this standard-based reference model can be used as a quality technique for the following:

· Verification of system Resources requirements coverage and descriptions;

· As a technique, at the software requirements phase, to elicit such requirements, referred to as ‘both non functional requirements and emergent properties’ in the SWEBOK Guide – ISO19759 [44] to achieve this level of detailed inputs of Resources requirements up front in the project life cycle (that is, at the software requirements phase, rather than much later, at the software testing phase..

The proposed reference model for Resources requirements presents a way to measure these FUR with COSMIC – ISO 19761, to take them into account in FSM-based software estimation models, thereby avoiding late discovery of mandatory FUR that lead to budget overruns and missed deadlines.

 The measurement aspects presented in this paper have been limited to the system requirements allocated to software. It will be interesting in future work to investigate whether or not this measurement approach can be extended to all such requirements at the system level (that is, to all hardware-software-manual requirements, and not only to software requirements).

REFERENCES

1.
Noguera, M., et al., Ontology-driven analysis of UML-based collaborative processes using OWL-DL and CPN. Science of Computer Programming, 2010. 75(8): p. 726-760.

2.
Chung, L. and J. do Prado Leite, On Non-Functional Requirements in Software Engineering, in Conceptual Modeling: Foundations and Applications, A. Borgida, et al., Editors. 2009, Springer Berlin / Heidelberg. p. 363-379.

3.
Ma, W., L. Chung, and K. Cooper, Assessing Component’s Behavioral Interoperability Concerning Goals, in On the Move to Meaningful Internet Systems: OTM 2008 Workshops, R. Meersman, Z. Tari, and P. Herrero, Editors. 2008, Springer Berlin / Heidelberg. p. 452-462.

4.
Nary, S. An NFR-Based Framework for Establishing Traceability between Enterprise Architectures and System Architectures. 2006.

5.
Chung, L. and N. Subramanian, System and software architectures. Science of Computer Programming, 2005. 57(1): p. 1-4.

6.
Chung, L. and N. Subramanian, Adaptable system/software architectures. Journal of Systems Architecture, 2004. 50(7): p. 365-366.

7.
Yiqiao, W. Self-Repair through Reconfiguration: A Requirements Engineering Approach. 2009.

8.
ECSS-E-40-Part-1B, Space Engineering: Software - Part 1 Principles and Requirements. European Cooperation for Space Standardaization,The Netherlands, 2003.

9.
ECSS-E-40-Part-2B, Space Engineeing:Software-part 2 Document Requirements Definitions. European Cooperation for Space Standardaization, The Netherlands, 2005.

10.
ECSS-ESA, Tailoring of ECSS, Software Engineering Standards for Ground Segments, Part C: Document Templates. ESA Board of Standardization and Control (BSSC), 2005.

11.
ECSS-E-ST-10C, Space engineering: System engineering general requirements. Requirements & Standards Division Noordwijk, The Netherlands, 2009.

12.
ECSS-Q-ST-80C, Space Product Assurance: Software Product Assurance. Requirements & Standards Division Noordwijk, The Netherlands, 2009.

13.
ECSS-E-ST-70-31C, Space Engineering: Ground systems and operations -Monitoring and control data definition. Requirements & Standards Division Noordwijk, The Netherlands, 2008.

14.
ISO/IEC-19761, Software Engineering - COSMIC v 3.0 - A Functional Size Measurement Method. International Organization for Standardization, Geneva (Switzerland), 2003.

15.
Chung, K.L., “Representing and Using Non-functional Requirements for Information System Development: A Process Oriented Approach”,Ph.D. Thesis, also Tech. Rpt. DKBS-TR-93-1. Department of Computer Science, University of Toronto, 1993.

16.
John, M. Goal-Oriented Requirements Engineering, Part II. 2006.

17.
Chung, L., et al., Nonfunctional Requirements in Software Engineering. Kluwer Academic Publishing, 2000.

18.
Andrew, J., An Approach to Quantitative Non-Functional Requirements in Software Development. Proceedings of the 34th Annual Government Electronics and Information Association Conference, 2000.

19.
Paech, B., et al., Functional requirements, non-functional requirements and architecture specification cannot be separated -- A position paper. REFSQ, 2002.

20.
Moreira, A., J. Araujo, and I. Brito, Crosscutting Quality Attributes for Requirements Engineering

14th International Conference on Software Engineering and Knowledge Engineering, Ischia, Italy, 2002: p. 167-174.

21.
Rosa, N.S., P.R. Cunha, and J. F., “G.R.R.: ProcessNFL: A language for Describing Non-Functional Properties”. 35th HICSS, IEEE Press, 2002.

22.
Park, D. and S. Kang, Design Phase Analysis of Software Performance Using Aspect-Oriented Programming. 5th Aspect-Oriented Modeling Workshop in Conjunction with UML 2004, Lisbon, Portugal, 2004.

23.
Glinz, M., “Rethinking the Notion of Non-Functional Requirements”. 3rd World Congress for Software Quality, Munich, Germany, 2005.

24.
Kaiya, H., K. Osada, and Kayjiri, Identifying Stakeholders and Their Preferences about NFR by Comparing Use Case Diagrams of Several Existing Systems. IEEE Int. Conf. on Requirements Engineering (RE04), 2004: p. 112-121.

25.
Kassab, M., M. Daneva, and O. Ormandjieva., Towards an Early Software Effort Estimation Based on Functional and Non-Functional Requirements. International Conference on Software Process and Product Measurement (MENSURA), Amsterdam, The Netherlands, 2009.

26.
Kassab, M., et al., Non-Functional Requirements Size Measurement Method (NFSM) with COSMIC-FFP, in Software Process and Product Measurement, J.C.-G. Juan, et al., Editors. 2008, Springer-Verlag. p. 168-182.

27.
Abran, A. and K.T. Al-Sarayreh, Standards-Based Model for the Specification of System Design and Implementation Constraints 17th International Conference on European Systems and Software Process Improvements (EURO-SPI 2010), Industry track, Grenoble Institute of Technology, Grenoble, France, Sept. 2010, 2010.

28.
Abran, A. and K.T. Al-Sarayreh, Measurement of Software Requirements Derived from System Operations Requirements. 20th International Workshop on Software Measurement (IWSM 2010`), Stuttgart, Germany, 2010.

29.
Abran, A., K.T. Al-Sarayreh, and J.J. Cuadrado-Gallego, Measurement Model of Software Requirements Derived from System Portability Requirements 9th International Conference on Software Engineering Research and Practice (SERP 2010), Las Vegas, USA, 2010.

30.
Al-Sarayreh, K.T. and A. Abran. A Generic Model for the Specification of Software Interface Requirements and Measurement of Their Functional Size. in 8th ACIS International Conference on Software Engineering Research, Management and Applications, SERA 2010. 2010. Montreal, Canada.

31.
Al-Sarayreh, K.T. and A. Abran, Measurement of Software Requirements Derived from System Reliability Requirements 24th European Conference on Object-Oriented Programming (ECOOP 2010), Maribor, Slovenia, EU, 2010, 2010.

32.
Al-Sarayreh, K.T. and A. Abran, Specification and Measurement of System Configuration Non Functional Requirements 20th International Workshop on Software Measurement (IWSM 2010), Stuttgart, Germany, 2010.

33.
Al-Sarayreh, K.T., A. Abran, and J.J. Cuadrado-Gallego, A Standards-based Model for the Specification and Measurement of Maintainability Requirements. 22nd International Conference on Software Engineering and Knowledge Engineering (SEKE 2010), Redwood City, California, USA, 2010.

34.
ISO/IEC-14143-1, Information technology-Software measurement - Functional size measurement Part 1: Definition of concepts. International Organization for Standardization, Geneva (Switzerland),, 1998.

35.
ECSS-E-40-Part-1B, Space Engineering: Software - Part 1 Principles and Requirements, , in European Cooperation for Space Standaraization,Netherlands

2003.

36.
ECSS-E-40-Part-2B, Space Engineeing:Software- part 2 Document Requirements Definitions,. European Cooperation for Space Standaraization,Netherlands

2005.

37.
ECSS-Q-80B, Space product assurance: Software product assurance,. European Cooperation for Space Standaraization,Netherlands

2003.

38.
ECSS-E-ST-40C, Space engineering: Software. Requirements & Standards Division Noordwijk, The Netherlands, 2009.

39.
ECSS-S-ST-00C, ECSS system: Description, implementation and general requirements. Requirements & Standards Division, Noordwijk, The Netherlands, 2008.

40.
COSMIC, The COSMIC Method v3.0.1, Guideline for Sizing SOA Software, v1.4. The Common Software Measurement International Consortium, MPC Review, 2010.

41.
OASIS, Reference Architecture for Service Oriented Architecture Version 1.0. OASIS ® 1993–2008, 2008.

42.
SoberIT:, Service-Oriented Architecture and Software Engineering. Seminar on Enterprise Information Systems by Software Business and Engineering Institute, Helsinki University of Technology, © 2008 Kari Hiekkanen

2008.

43.
OASIS-SOA, Reference Model for Service Oriented Architecture. http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=soa-rm, 2006.

44.
ISO-19759, Software Engineering Body of Knowledge (SWEBOK). IEEE Computer Society, 2004.

[image: image4.png]

System NFR

Software FUR

System FUR

System Resources FUR

System Resources NFR

Software FUR for Resources

1

14

Appendix II-H

Early Identification, Specification and Measurement of Software Requirements Derived From System Safety Requirements

In the system requirements phase, the focus is often on detailing and documenting the system functional requirements and on their allocation to the software and hardware parts of the system being designed. The non-functional requirements, in contrast, are often captured only generically at a fairly high level and they do not include the levels of details necessary for the system engineers to allocate yet such non functional requirements as specific functionalities to be handled either by the software or the hardware, or a specific combination of both. The European ECSS series of standards for the aerospace industry includes safety requirements as one of sixteen types of non functional requirement (NFR) for embedded and real time software. A number of safety related concepts are dispersed throughout the ECSS standards to describe at varying levels of details the various types of candidate safety requirements at the system, software, and hardware levels. This paper organizes these dispersed safety concepts into a generic standards-based reference model of system safety requirements. The availability of this generic, and detailed, reference model can facilitate the early identification and specification of the system safety-NFR and their detailed allocation as specific safety functions to be handled by the specified allocation to hardware or software or in a specific combination of both. In the absence of such a generic and detailed model, such NFR requirements are typically handled in practice much later on in the software development life cycle when at system testing time, users and developers find out that a number of safety requirements have been overlooked and additional work has to be expanded to implement them. The approach adopted in this research for the structure of this reference NFR model is based on the generic model of software functional requirements proposed in the COSMIC – ISO 19761 model, thereby allowing the measurement of the functional size of such safety requirements allocated to software and taking them into account for estimations purposes.

Keywords: Software Engineering, Non functional requirement (NFR), Safety Requirements, ECSS International Standards, Safety Measurement, COSMIC – ISO 19761.

1. Introduction

In practice, during the system requirements gathering phase, the focus is often on the functional requirements of the system, while non functional requirements are often captured by system analysts at a very global level: detailing these non functional requirements is typically left to be handled (i.e. defining them at the necessary level of detail) much later by system designers in the system architecture and design phases. Non functional requirements (NFR) play a critical role in system development. They may have a considerable impact on project effort, and should be taken into account for estimation purposes and in comparing project productivity.

In the system analysis phase, the NFR are typically described at the system level and not at the software level. As yet, there is no consensus on how to describe and measure system NFR. In current practice, they may be viewed, defined, interpreted, and evaluated differently by different people in the later project phases, particularly when they are stated vaguely and only briefly in the system requirements phase
 ADDIN EN.CITE
[1-3]
 . It is challenging, therefore, to take them into account in software estimation and software productivity benchmarking, particularly as they have received less attention in the software engineering literature and are definitely less well understood than other cost factors [4] . Of course, measurement is essential if NFRs are to be taken as quantitative inputs to an estimation or productivity benchmarking process but not much work has been published to date on how to measure such NFR.

In practice, requirements are initially typically addressed at the system level , either as high level system functional user requirements (system FUR) or as high level system non functional requirements (system NFR)
 ADDIN EN.CITE
[5-7]
. The latter must usually be detailed, allocated, and implemented in hardware, software (as software FUR - “soft-FUR” for instance – see Figure 1) or in a specific combination of hardware or software.

To distinguish between these types of requirements, system FUR describes the required functions in a system, while system NFR describes how the required functions must behave in a system. In the software requirements engineering step, system NFR can then be detailed and specified as software FUR, to allow a software engineer to develop, test, and configure the final deliverables to system users.

The term "functional" refers to the set of functions the system (including the software) has to offer, while the term "non functional" refers to the manner in which such functions perform. An FUR is typically phrased with a subject and a predicate (i.e. noun/verb), such as: "The system must print 5 reports". NFR, by contrast, are typically phrased with an adverb or modifying clause, such as: "The system will print 5 reports quickly," or "The system will print 5 reports with a high degree of Safety".

[image: image4.emf]

Fig. 1 Mapping system FUR and NFR to software FUR

In the ECSS (European Cooperation on Space Standardization) standards for the aerospace industry
 ADDIN EN.CITE
[8-13]
, a number of concepts are provided to describe various types of candidate safety requirements at the system, software, and hardware levels. However, these standards vary in their views, terminology, and coverage of data definition and database.

Currently, there exists no generic model for the identification and specification of software FUR for implementing system safety requirements (system NFR) based on the various views documented in international standards and in the literature. Consequently, it is challenging to measure these safety-related software FUR, and take them into account quantitatively for estimation purposes.

This paper focuses on a single type of NFR, that is, system safety requirements, and reports on the work carried out to define an integrated view of software FUR for system safety NFR based on international standards, including the use of the generic COSMIC – ISO 19761 [14] model of software FUR.

The paper is organized as follows. Section 2 presents the related work. Section 3 presents the view of software FUR in ISO 19761. Section 4 identifies the standards that describe safety requirements. Section 5 presents a standards-based definition of a generic model of requirements for software to implement system safety NFR. Section 6 presents a standard generic measurement model of software FUR using a service-oriented architecture (SOA) for system data definition and database. Section 7 presents the sizing of a reference instantiation of the generic model of safety software FUR. Section 8 presents a measurement example. Finally, a discussion and our conclusion are presented in section 9.

2. Related work

In the literature, there are some early works on NFR in systems/software engineering. For instance, in 1993, Chung [15] presented one of the initial attempts to capture knowledge in this domain. His work was followed by that of Mylopoulos et al. [16], who suggested viewing all requirements as goals, each goal being an umbrella for related functional and non functional requirements. Chung et al. [17] and Andrew [18] aimed to make NFR more quantitative in nature, while Andrew [18]observed that there are often gaps between the stakeholder vision and requirements representation. Chung et al. [17] proposed a taxonomy for NFR indicating that it is unrealistic to expect designers and developers to incorporate an entity that they cannot readily identify. While taxonomies aim to be inclusive of the entire set of entities in question, these authors suggested in [17] that a one- or two-level taxonomy would suffice initially, and that there are over 161 identifiable types of NFR.

Paech et al. [19] recommended that functional requirements (FR), NFR, and architecture be tightly co developed and addressed in a coherent and integrated manner, suggesting that NFR be decomposable into more refined NFR and additional FR, as well as architectural decisions.

Moreira et al.[20] , Rosa et al. [21] , Park et al.[22] , and Glinz [23] have proposed new methods for classifying NFR early in the software development process, while Kaiya et al. [24] have presented a method to identify stakeholders and their NFR preferences by using use case diagrams of existing systems.

More recently, Mylopoulos [16] promoted Goal-Oriented Requirements Engineering, and suggested a specific solution involving the establishment of an Agent-Oriented Software Development Method, called the Tropos project, which covers not only the requirements, but also the design phases, and addresses the design of high-variability software for applications such as home care software and business process design.

More recently still, Kassab et al. [25-26] proposed some solutions for an NFR framework: for example, a sequence of systematic activities with a view to early consideration of identifying, specifying, and separating FR from NFR, as well as a discussion on NFR prioritization and risk assessment. They also report in [26] on an initial solution for determining the functional size of NRF based on "Soft-Goal" concepts, using the COSMIC method, to deal with the problem of quantitatively assessing the NFR modelling process early in a project.

In parallel with the work of researchers, the software industry has been working on the description of NFR, in particular through international standardization bodies, such as the European Cooperation on Space Standardization (ECSS), the Institute of Electrical and Electronics Engineers (IEEE), and the International Organization for Standardization (ISO).

In the ECSS standards for the aerospace industry
 ADDIN EN.CITE
[8-13]
 , a system safety requirement is identified as one of sixteen types of NFR, and the research reported here focuses strictly on these NFR. However, these standards vary in their views, terminology, and coverage of safety requirements. Currently, there exists no generic model for the identification and specification of software FUR for implementing system safety requirements (system NFR) based on the various views documented in these international standards and in the literature. Consequently, it is challenging to measure the system safety-related software FUR, and take them into account quantitatively for estimating software projects.

In the work reported here, preference has been given to the views, concepts, and vocabulary most widely used by the industry, as evidenced in its standardization infrastructure, rather than those in the academic literature. Similarly, for the structuring and description of models of FUR and for measurement purposes, the measurement views, concepts, and terminology from the standardization infrastructure have been adopted, rather than those in the literature.

This paper focuses on a single type of NFR, that is, system safety requirements, and reports on the work carried out to define an integrated view of software FUR for system safety NFR on the basis of international standards, including the use of the generic COSMIC – ISO 19761 [14] model of software FUR as the template for the description of measurable functional requirements , thereby allowing the measurement of the functional size of such requirements allocated to software and taking them into account for estimations purposes. This approach has been used to build other types of NFR, such as design and implementation constraints, configuration, interfaces and Safety requirements
 ADDIN EN.CITE
[27-33]
.

3. A generic ISO view of software FUR

It is specified in ISO 14143-1 [34] of the collection of ISO standards that a functional size measurement (FSM) method must measure software FUR. In addition, ISO 19761 – COSMIC [14] proposes a generic model of software FUR that clarifies the boundary between hardware and software. Figure 2 illustrates the generic flow of data from a functional perspective from hardware to software. From this generic model of software functional requirements in Figure 2, we observe the following:

· Software is bounded by hardware. In the so-called “front-end” direction (i.e. the left-hand side in Figure 2), software used by a human user is bounded by I/O hardware, such as a mouse, a keyboard, a printer, or a display, or by engineered devices, such as sensors or relays. In the so-called “back-end” direction (i.e. the right-hand side of Figure 2), software is bounded by persistent storage hardware, like a hard disk, and RAM and ROM memory.

· The software functionality is embedded within the functional flows of data groups. Such data flows can be characterized by four distinct types of data movements. In the “front end” direction, two types of movements (ENTRIES and EXITS) allow the exchange of data with the users across a ‘boundary’. In the “back end” direction, two types of movements (READS and WRITES) allow the exchange of data with the persistent storage hardware.

· Different abstractions are typically used for different measurement purposes. In real-time software, the users are typically the engineered devices that interact directly with the software; that is, the users are the ‘I/O hardware’. For business application software, the abstraction commonly assumes that the users are one or more humans who interact directly with the business application software across the boundary; i.e. the ‘I/O hardware’ is ignored.

 [image: image1.emf]

Fig. 2 Generic flow of data groups through software from a functional perspective in COSMIC – ISO 19761

As an FSM method, COSMIC is aimed at measuring the size of software based on identifiable FUR. Once identified, those requirements are allocated to hardware and software from the unifying perspective of a system integrating these two “components”. Since COSMIC is aimed at sizing software, only requirements allocated to the software are currently considered in its measurement procedure.

4. Identification of standards describing system safety requirements

This section presents a survey of the safety-related views, concepts, and terms in the ECSS standards
 ADDIN EN.CITE
[8-13]
. This section identifies which standards currently address aspects of the software FUR derived from system safety FUR and NFR – see Fig. 3.

 The expected outcome is the identification of the various elements that should be included in the design of a standards-based framework for modelling software FUR for system data definition and database. The elements of safety are dispersed in various system views throughout various ECSS standards and are expressed as either:

· System safety functional user requirements (system safety FUR) or

· System safety non-functional requirements (system safety NFR)

[image: image5.png]

Fig. 3: Mapping system requirements into software FUR for safety

4.1. ECSS views and concepts for safety requirements

The European Cooperation for Space Standardization (ECSS) is an organization which works to improve standardization within the European space sector. The ECSS frequently publishes standards targeted to the contractors working for the European Space Agency (ESA). The ECSS standards series
 ADDIN EN.CITE
[8-13]
 includes a number of safety requirements at the system level. It can be observed that ECSS focuses on the system-FUR for the early development phases while the System NFR are typically discussed within the context of later development phases such as the evaluation or testing phases.

The [35] [36] and [37] present a safety as a non-functional requirement for real-time and embedded software: in these standards, the safety requirements are described as system states where an acceptable level of risk is not exceeded with respect to fatality, injury or occupational illness, damage to launcher hardware or launch site facilities, damage to an element of an interfacing manned systems, etc.

According to [38], safety requirements shall be identified and traced from the system level into the design and then allocated to the lower levels; furthermore, the identified safety requirements shall be justified in the design and presented in an appropriate document.

[38] Describes the mandatory aspects for safety requirements of a system safety programme to ensure that all safety risks associated with the design, development, production and operations of space product are adequately identified, assessed, minimized, controlled and finally accepted through the implementation of a safety assurance programme.

The [38] safety policy is applied by implementing a system safety programme, supported by risk assessment, which can be summarized as follows:

· Hazardous characteristics (system and environmental hazards) and functions with potentially hazardous failure effects are identified and progressively evaluated by iteratively performing systematic safety analyses;

· The potential hazardous consequences associated with the system characteristics and functional failures are subjected to a hazard reduction sequence whereby:

· Hazards are eliminated from the system design and operations;

· Hazards are minimized;

· Hazard controls are applied and verified.

· The risks that remain after the application of a hazard elimination and reduction process are progressively assessed and subjected to risk assessment, in order to:

· Show compliance with safety targets;

· Support design trade-offs;

· Identify and rank risk contributors;

· Support apportionment of project resources for risk reduction;

· Assess risk reduction progress;

· Support the safety and project decision-making process (e.g. waiver approval, residual risk acceptance).

· The adequacy of the hazard and risk control measures applied are formally verified in order to support safety validation and risk acceptance;

· Approval obtained from the relevant authorities.

4.2 ISO 9126: views and concepts for safety requirements

[39] Includes safety as quality sub-characteristics to assess the level of risk of harm to people, business, software, property or the environment in a specified context of use. It includes the health and safety of the both the user and those affected by use, as well as unintended physical or economic consequences.

4.3 IEEE: views and concepts for safety requirements

[40] Defines safety specifications as equipment/system design features, performance specifications, and training that reduce the potential for human or machine errors or failures that cause injury or death within the constraints of operational effectiveness, time, and cost throughout the equipment/system life cycle.

It describes also the Safety Plan as the approach and methods for conducting safety analysis and assessing the risk to operators, the system, the environment, or the public. The IEEE-1220 describes software safety as falling into one or more of the following categories:

· Software whose inadvertent response to stimuli, failure to respond when required, response out-of-sequence, or response in combination with other responses can result in an accident

· Software that is intended to mitigate the result of an accident

· Software that is intended to recover from the result of an accident

The set of key views in standards on safety requirements, as well as the set of concepts, terminology and vocabulary to describe safety requirements are presented in 1, including the following standards: [41], [42], [40], [39] and [43].

Table 1: Safety requirements views, concepts and vocabulary in

International standards

		Standards name

		Key views in standards

		The set of concepts and vocabulary to describe safety requirements

		ECSS Standards

		Safety requirements shall be identified and traced from the system level into the design and then allocated to the lower levels

		· Safety control software hazards,

· Safety levels of software integration

· Critical software catastrophic,

· Safety software functions,

· Safety failure mechanism and

· Safety switching of redundant items.

· Safety audit software

		IEEE 1220

		Safety is specifications on equipment/system design features, performance, and training that reduce the potential for human or machine errors that cause injury or death.

		· Safety failures within the

· constraints of operational effectiveness, time, and cost throughout the equipment/system life cycle

· Safety approach and methods

· Safety analysis and assessing the risk to operators, the system, the environment, or the public.

		ISO 9126

		Assessing the level of risk of harm to people, business, software, property or the environment in a specified context of use

		· User health and safety

· Safety of people affected by use of the system

· Economic damage

· Software damage

		IEEE 830

		Not clear

		· Check data integrity for critical variables

		IEEE 1228

		Safety is a freedom from software hazards.

Safety program is a systematic approach to reducing software risks.

		· Safety related software

· Software safety hazard

· Safety critical software

· Levels of software integrity

5. A standards-based definition of a generic model of software FUR for system safety requirements

This section maps the safety terminologies found throughout the ECSS, IEEE, and ISO standards into a proposed model of software-FUR for system safety-NFR, through the use of the generic model of FUR proposed in the COSMIC model in Fig. 3. This COSMIC-based generic model can then become a framework for describing the safety requirements (i.e. from system-NFR to software-FUR) based on the ECSS standards.

5.1 Mapping views and concepts for safety from ECSS, ISO, and IEEE standards

Based on a synthesis of the various definitions, the key views and concepts presented in chapter 3 on software-FUR for system safety-NFR are presented in Table 2. It is important to note that Table 2 includes software, data, and hardware components which are interconnected.

Table 2: Safety requirements in ECSS, ISO, and IEEE

		System safety requirements

		· Software operation risk

· Software design risk

· Software configuration risk

· System loss operation

· System failure detection

· System failure isolation

· System safety audit

· System redundancy status

5.2 Software system safety functions to be specified

The functionality and corresponding entities to be specified (and measured) for system safety allocated to software are listed in Table 3.

Table 3: system safety functions that may be allocated to software

		System safety types

		System safety functions

		Control system hazards

		· Software operation risk function

· Software design risk function

· Software configuration risk function

· System loss operation function

· System failure detection function

· System failure isolation function

		Critical system catastrophic

		· System safety audit function

· System redundancy status function

5.3 Identification of the functional types in the safety

In this section, the system safety functional types are identified based on the findings of the safety functions, as discussed in the previous section. The system safety requirements allocated to software-FUR are divided into system safety risk and mechanism and safety switching of redundant information; each type in this division has its own functionality. The proposed safety functional types are illustrated in system and COSMIC modeling views, in order to propose a COSMIC reference model of safety requirements allocated to software based on the proposed COSMIC modeling view.

The proposed safety functions can be divided into three functional types, two of them specified for control system hazards and the third for critical system catastrophic. Table 4 illustrates these safety functional types, based on specified safety functions.

Table 4: Functional types for safety functions that may be allocated to software

		System safety types

		System safety functional types

		System safety functions

		Control system hazards

		Functional type 1

System safety risk

(SSR)

		· Software operation risk function (SROF)

· Software design risk function (SDRF)

· Software configuration risk function (SCRF)

		

		Functional type 2

System safety mechanism

(SSM)

		· System loss operation function (SLOF)

· System failure detection function (SFDF)

· System failure isolation function (SFIF)

		Critical system catastrophic

		Functional type 3

Safety switching of redundant information

(SSRI)

		· System safety audit function (SSAF)

· System redundancy status function (SRSF)

5.4 System Safety Model using COSMIC-SOA (Functional service level)

In this section, the system Safety model using COSMIC-SOA is built in Figure 4 to elaborate on the model to show a more complete picture, which includes showing what is involved in instantiating the modeled entities in practice – for more details, see
 ADDIN EN.CITE
[44-47]
 and describes the detailed measurement model, which can be used to specify and measure the functionality at service level.

There are many definitions of a service-oriented architecture (SOA), such as: a flexible set of design principles used during systems development and integration [44]; a process including the definition of the architecture, components, modules, interfaces, and data for a system to satisfy specified requirements [46-47].

The system Safety model using COSMIC-SOA in Figure 4 provides a loosely integrated suite of services that can be used in multiple business domains to measure the functional size of software FUR in an SOA environment [44]. In this model, the term “service” refers to a set of related software FUR functions as well as separating functions into distinct units, or services.

These services communicate with each other by exchanging data in a well-defined, shared format, or by coordinating an activity between two or more services [44].

The COSMIC-SOA guideline offers three types of data movements architecture in (Table 4) based on [44]:

Table 4: COSMIC-SOA guideline offers three types of data movement’s architecture [44]

		COSMIC-SOA exchange messages: An application requiring commonly used information from another application sends a request to the service of the application that can handle the request, or the application may call upon its own services. Such calls are also called ‘messages’. Each message may consist of one or more data movements [44].

		[image: image6.png]

		COSMIC-SOA intermediary services: When a functional process of an application service in application A requires data that are available via an application service in application B, the former application service calls upon a functional process of the intermediary service. This service functionality is also needed by other applications in the overall SOA framework, as it may itself be realized in the form of a utility service [44]

		[image: image7.png]

		COSMIC-SOA data exchanges: The data movements between components in the same layer, i.e. between peer components (where a component may be an application or a service). It shows direct and indirect exchanges of data between components. If components exchange data directly, then, for measurement purposes, the measurer will identify Exit and/or Entry data movements, as per the data movements between service A (SA) and service B (SB). An indirect exchange of data between components means that a service in one component writes data in a storage device, which is subsequently read by a service in another component. the measurer will identify a Write data movement in service SA and a Read in service SB.

		

5.5 COSMIC reference architectural model using an SOA for system safety

Fig. 4 illustrates a COSMIC reference architectural model using an SOA for system safety requirements. This model is built based on the proposed safety functions and functional types and the role of the COSMIC-SOA explained in [44].

[image: image2.emf]

Fig. 4 COSMIC reference architectural model of system Safety requirements allocated to software

6 Sizing a Reference Instantiation of the Generic Model of Software FUR for System Safety Requirements

The specification of software FUR for system safety requirements in any specific project is a specific instantiation of the proposed generic model described in Figure 4. When the software specification document is at the level of the movement of data groups, then these functional requirements can be directly measured using the COSMIC measurement rules. The measurement example presented next is illustrative of a reference instantiation of the generic COSMIC specification and measurement model of software FUR for system safety requirements in an SOA context for a single data group for all the identified possible flows of data groups.

 The measurement example in this section explains how to use the proposed reference model of system safety requirements to size a hypothetical framework composed of all of the kinds of software FUR described in the framework see-figure 5.

Figure 5: instantiation of the generic COSMIC specification and measurement model of

software FUR for system safety

6.1 Measurement of exchange services for system safety functionality using COSMIC-SOA

There are 11 functionality types of system safety requirements, interacting with their own services, for the measurement of exchange services for system safety using COSMIC-SOA, see Figure 5. According to COSMIC-SOA, each functional process may interact with its own service by sending and receiving data movements (i.e. Entry and Exit – see table 4).

The COSMIC-SOA measurement results for the interactions between the system safety functional processes with its own service processes. The measurement result for this operation is equal to 4 CFP for each interaction between each functional process with its own functional service process”. The total measurement result for the 11 functionality types is equal to 44 CFP (see figure 5).

6.2 Measurement of intermediary services for system safety services using COSMIC-SOA

In this section - and based on Figure 5, when a functional process service requires data that is available via another functional process service, the former calls upon a functional process of the intermediary service. According to the COSMIC-SOA model of measurement for system operations, the types of data movements for using the intermediary service must be Entry and Exit – see table 4.

The COSMIC-SOA measurement results for intermediary services based on figure 5. The instantiation of a single data group for all possible flows of the data groups identified above, and listed as a data movement example for one intermediary service: for this requirement the measurement results are equal to 8 CFP. The total measurement results are equal to 176 CFP.

6.3 Measurement of the direct and indirect data movements for system safety services using COSMIC-SOA

This section is based on Figure 5 which illustrates the possible flows of data between components in the same layer, i.e. between peer components (where a component may be an application or a service). This section shows direct and indirect exchanges of data between components – one or both forms of which may be involved when services communicate. If components exchange data directly, the measurer will identify the Exit and/or Entry data movements, as per the data movements between service A and service B. An indirect exchange of data between components means that a service in one component writes data which are subsequently read by a service in another component. In this situation, the measurer will identify a Write data movement in the former component and a Read data movement in the other.

Specifically, The instantiation of this operation. The total measurement results are equal to 22 CFP (see figure 5).

7 Discussion and Conclusion

Safety requirements are typically described initially as non functional requirements at the system level, and system engineers must subsequently apportion these system requirements very carefully as either software or hardware requirements to conform to the safety requirements of the system. Within the ECSS standards, a number of views and concepts are provided to describe various types of candidate safety requirements at the system, software, and hardware levels.

 This paper has introduced a standards-based framework for specifying and measuring software requirements for the functions needed to address the system’s safety requirements.

 The main contribution of this paper is our proposed generic model of software FUR for system safety requirements. This generic model can be considered as a kind of reference model for the identification of system safety requirements, and can be used for their allocation to software functions implementing such requirements. System requirements allocated to hardware have not been addressed in this paper. Since the structure of the generic model is based on the generic model of software adopted by the COSMIC measurement standard, the necessary information for measuring their functional size is readily available, and an example has been presented of a specific instantiation of this reference model.

 Specifically, the generic model of safety requirements presented in this paper is based on:

· The ECSS standards for the description of the NFR for system safety requirements ;

· The COSMIC measurement model of functional requirements.

The proposed specification and measurement model is independent of the software type and the languages in which the software FUR will be implemented. The proposed generic model for safety requirements (i.e. reference model) provides:

· A specification model for each type, or all types, of safety requirements: for example, the requirements to be allocated to software for the system data items and the product data schema.

· A measurement model for each type, or all types, of safety requirements.

The generic model of system safety requirements proposed in this paper can provide system engineers with:

· An integrated reference view of system safety requirements that they can use to select the safety requirements necessary for a specific system to be developed (hardware-software-manual).

· A methodology to specify these safety NFR: with this reference model, beginners would not require years of training before being able to specify these at the levels of detail illustrated in the work reported in this paper.

· An integrated model to be used as an input to make decisions on which of these detailed safety NFR will be allocated to hardware, or software, or combinations of these for a specific context.

For software engineers, the proposed generic model of system safety requirements can also provide them with:

· A reference model that they can use to verify whether or not the system engineers have provided them with the right selection of system NFR-derived FUR, and at the necessary level of detail.

This means that this standard-based reference model can be used as a quality technique for the following:

· Verification of system safety requirements coverage and descriptions;

· As a technique, at the software requirements phase, to elicit such requirements, referred to as ‘both non functional requirements and emergent properties’ in the SWEBOK Guide – ISO19759 [48] to achieve this level of detailed inputs of safety requirements up front in the project life cycle (that is, at the software requirements phase, rather than much later, at the software testing phase..

The proposed reference model for safety requirements presents a way to measure these FUR with COSMIC – ISO 19761, to take them into account in FSM-based software estimation models, thereby avoiding late discovery of mandatory FUR that lead to budget overruns and missed deadlines.

 The measurement aspects presented in this paper have been limited to the system requirements allocated to software. It will be interesting in future work to investigate whether or not this measurement approach can be extended to all such requirements at the system level (that is, to all hardware-software-manual requirements, and not only to software requirements).

REFERENCES

1.
Noguera, M., et al., Ontology-driven analysis of UML-based collaborative processes using OWL-DL and CPN. Science of Computer Programming, 2010. 75(8): p. 726-760.

2.
Chung, L. and J. do Prado Leite, On Non-Functional Requirements in Software Engineering, in Conceptual Modeling: Foundations and Applications, A. Borgida, et al., Editors. 2009, Springer Berlin / Heidelberg. p. 363-379.

3.
Ma, W., L. Chung, and K. Cooper, Assessing Component’s Behavioral Interoperability Concerning Goals, in On the Move to Meaningful Internet Systems: OTM 2008 Workshops, R. Meersman, Z. Tari, and P. Herrero, Editors. 2008, Springer Berlin / Heidelberg. p. 452-462.

4.
Nary, S. An NFR-Based Framework for Establishing Traceability between Enterprise Architectures and System Architectures. 2006.

5.
Chung, L. and N. Subramanian, System and software architectures. Science of Computer Programming, 2005. 57(1): p. 1-4.

6.
Chung, L. and N. Subramanian, Adaptable system/software architectures. Journal of Systems Architecture, 2004. 50(7): p. 365-366.

7.
Yiqiao, W. Self-Repair through Reconfiguration: A Requirements Engineering Approach. 2009.

8.
ECSS-E-40-Part-1B, Space Engineering: Software - Part 1 Principles and Requirements. European Cooperation for Space Standardaization,The Netherlands, 2003.

9.
ECSS-E-40-Part-2B, Space Engineeing:Software-part 2 Document Requirements Definitions. European Cooperation for Space Standardaization, The Netherlands, 2005.

10.
ECSS-ESA, Tailoring of ECSS, Software Engineering Standards for Ground Segments, Part C: Document Templates. ESA Board of Standardization and Control (BSSC), 2005.

11.
ECSS-E-ST-10C, Space engineering: System engineering general requirements. Requirements & Standards Division Noordwijk, The Netherlands, 2009.

12.
ECSS-Q-ST-80C, Space Product Assurance: Software Product Assurance. Requirements & Standards Division Noordwijk, The Netherlands, 2009.

13.
ECSS-E-ST-70-31C, Space Engineering: Ground systems and operations -Monitoring and control data definition. Requirements & Standards Division Noordwijk, The Netherlands, 2008.

14.
ISO/IEC-19761, Software Engineering - COSMIC v 3.0 - A Functional Size Measurement Method. International Organization for Standardization, Geneva (Switzerland), 2003.

15.
Chung, K.L., “Representing and Using Non-functional Requirements for Information System Development: A Process Oriented Approach”,Ph.D. Thesis, also Tech. Rpt. DKBS-TR-93-1. Department of Computer Science, University of Toronto, 1993.

16.
John, M. Goal-Oriented Requirements Engineering, Part II. 2006.

17.
Chung, L., et al., Nonfunctional Requirements in Software Engineering. Kluwer Academic Publishing, 2000.

18.
Andrew, J., An Approach to Quantitative Non-Functional Requirements in Software Development. Proceedings of the 34th Annual Government Electronics and Information Association Conference, 2000.

19.
Paech, B., et al., Functional requirements, non-functional requirements and architecture specification cannot be separated -- A position paper. REFSQ, 2002.

20.
Moreira, A., J. Araujo, and I. Brito, Crosscutting Quality Attributes for Requirements Engineering

14th International Conference on Software Engineering and Knowledge Engineering, Ischia, Italy, 2002: p. 167-174.

21.
Rosa, N.S., P.R. Cunha, and J. F., “G.R.R.: ProcessNFL: A language for Describing Non-Functional Properties”. 35th HICSS, IEEE Press, 2002.

22.
Park, D. and S. Kang, Design Phase Analysis of Software Performance Using Aspect-Oriented Programming. 5th Aspect-Oriented Modeling Workshop in Conjunction with UML 2004, Lisbon, Portugal, 2004.

23.
Glinz, M., “Rethinking the Notion of Non-Functional Requirements”. 3rd World Congress for Software Quality, Munich, Germany, 2005.

24.
Kaiya, H., K. Osada, and Kayjiri, Identifying Stakeholders and Their Preferences about NFR by Comparing Use Case Diagrams of Several Existing Systems. IEEE Int. Conf. on Requirements Engineering (RE04), 2004: p. 112-121.

25.
Kassab, M., M. Daneva, and O. Ormandjieva., Towards an Early Software Effort Estimation Based on Functional and Non-Functional Requirements. International Conference on Software Process and Product Measurement (MENSURA), Amsterdam, The Netherlands, 2009.

26.
Kassab, M., et al., Non-Functional Requirements Size Measurement Method (NFSM) with COSMIC-FFP, in Software Process and Product Measurement, J.C.-G. Juan, et al., Editors. 2008, Springer-Verlag. p. 168-182.

27.
Abran, A. and K.T. Al-Sarayreh, Standards-Based Model for the Specification of System Design and Implementation Constraints 17th International Conference on European Systems and Software Process Improvements (EURO-SPI 2010), Industry track, Grenoble Institute of Technology, Grenoble, France, Sept. 2010, 2010.

28.
Abran, A. and K.T. Al-Sarayreh, Measurement of Software Requirements Derived from System Operations Requirements. 20th International Workshop on Software Measurement (IWSM 2010`), Stuttgart, Germany, 2010.

29.
Abran, A., K.T. Al-Sarayreh, and J.J. Cuadrado-Gallego, Measurement Model of Software Requirements Derived from System Portability Requirements 9th International Conference on Software Engineering Research and Practice (SERP 2010), Las Vegas, USA, 2010.

30.
Al-Sarayreh, K.T. and A. Abran. A Generic Model for the Specification of Software Interface Requirements and Measurement of Their Functional Size. in 8th ACIS International Conference on Software Engineering Research, Management and Applications, SERA 2010. 2010. Montreal, Canada.

31.
Al-Sarayreh, K.T. and A. Abran, Measurement of Software Requirements Derived from System Reliability Requirements 24th European Conference on Object-Oriented Programming (ECOOP 2010), Maribor, Slovenia, EU, 2010, 2010.

32.
Al-Sarayreh, K.T. and A. Abran, Specification and Measurement of System Configuration Non Functional Requirements 20th International Workshop on Software Measurement (IWSM 2010), Stuttgart, Germany, 2010.

33.
Al-Sarayreh, K.T., A. Abran, and J.J. Cuadrado-Gallego, A Standards-based Model for the Specification and Measurement of Maintainability Requirements. 22nd International Conference on Software Engineering and Knowledge Engineering (SEKE 2010), Redwood City, California, USA, 2010.

34.
ISO/IEC-14143-1, Information technology-Software measurement - Functional size measurement Part 1: Definition of concepts. International Organization for Standardization, Geneva (Switzerland),, 1998.

35.
ECSS-E-40-Part-1B, Space Engineering: Software - Part 1 Principles and Requirements, , in European Cooperation for Space Standaraization,Netherlands

2003.

36.
ECSS-E-40-Part-2B, Space Engineeing:Software- part 2 Document Requirements Definitions,. European Cooperation for Space Standaraization,Netherlands

2005.

37.
ECSS-Q-80B, Space product assurance: Software product assurance,. European Cooperation for Space Standaraization,Netherlands

2003.

38.
ECSS-Q-ST-40C, Space product assurance " safety " Requirements & Standards Division Noordwijk, The Netherlands, 2009.

39.
ISO/IEC-9126, Software Engineering - Product Quality - Part 1: Quality Model.

9126-1, Geneva (Switzerland): International Organization for Standardization,. 2004.

40.
IEEE-1220™-2005, IEEE Standard for Application and Management of the Systems Engineering Process. IEEE Computer Society, First edition, 2007.

41.
ECSS-E-ST-10C, System engineering general requirements. European Cooperation for Space Standaraization,Netherlands

2009.

42.
IEEE-Std-830, IEEE Recommended Practice for Software Requirements Specifications. 1993.

43.
IEEE-1228, IEEE Standard for Software Safety Plans. Software Engineering Standards Committeeof the IEEE Computer Society, 1994.

44.
COSMIC, The COSMIC Method v3.0.1, Guideline for Sizing SOA Software, v1.4. The Common Software Measurement International Consortium, MPC Review, 2010.

45.
OASIS, Reference Architecture for Service Oriented Architecture Version 1.0. OASIS ® 1993–2008, 2008.

46.
SoberIT:, Service-Oriented Architecture and Software Engineering. Seminar on Enterprise Information Systems by Software Business and Engineering Institute, Helsinki University of Technology, © 2008 Kari Hiekkanen

2008.

47.
OASIS-SOA, Reference Model for Service Oriented Architecture. http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=soa-rm, 2006.

48.
ISO-19759, Software Engineering Body of Knowledge (SWEBOK). IEEE Computer Society, 2004.

[image: image3.png]

System NFR

Software FUR

System FUR

System Safety FUR

System Safety NFR

Software FUR for Safety

1

15

Appendix II-G

Early Identification, Specification and Measurement of Software Requirements Derived From System Security Requirements

In the system requirements phase, the focus is often on detailing and documenting the system functional requirements and on their allocation to the software and hardware parts of the system being designed. The non-functional requirements, in contrast, are often captured only generically at a fairly high level and they do not include the levels of details necessary for the system engineers to allocate yet such non functional requirements as specific functionalities to be handled either by the software or the hardware, or a specific combination of both. The European ECSS series of standards for the aerospace industry includes security requirements as one of sixteen types of non functional requirement (NFR) for embedded and real time software. A number of security related concepts are dispersed throughout the ECSS standards to describe at varying levels of details the various types of candidate security requirements at the system, software, and hardware levels. This paper organizes these dispersed security concepts into a generic standards-based reference model of system security requirements. The availability of this generic, and detailed, reference model can facilitate the early identification and specification of the system security-NFR and their detailed allocation as specific security functions to be handled by the specified allocation to hardware or software or in a specific combination of both. In the absence of such a generic and detailed model, such NFR requirements are typically handled in practice much later on in the software development life cycle when at system testing time, users and developers find out that a number of security requirements have been overlooked and additional work has to be expanded to implement them. The approach adopted in this research for the structure of this reference NFR model is based on the generic model of software functional requirements proposed in the COSMIC – ISO 19761 model, thereby allowing the measurement of the functional size of such security requirements allocated to software and taking them into account for estimations purposes.

Keywords: Software Engineering, Non functional requirement (NFR), Security Requirements, ECSS International Standards, Security Measurement, COSMIC – ISO 19761.

1. Introduction

In practice, during the system requirements gathering phase, the focus is often on the functional requirements of the system, while non functional requirements are often captured by system analysts at a very global level: detailing these non functional requirements is typically left to be handled (i.e. defining them at the necessary level of detail) much later by system designers in the system architecture and design phases. Non functional requirements (NFR) play a critical role in system development. They may have a considerable impact on project effort, and should be taken into account for estimation purposes and in comparing project productivity.

In the system analysis phase, the NFR are typically described at the system level and not at the software level. As yet, there is no consensus on how to describe and measure system NFR. In current practice, they may be viewed, defined, interpreted, and evaluated differently by different people in the later project phases, particularly when they are stated vaguely and only briefly in the system requirements phase
 ADDIN EN.CITE
[1-3]
 . It is challenging, therefore, to take them into account in software estimation and software productivity benchmarking, particularly as they have received less attention in the software engineering literature and are definitely less well understood than other cost factors [4] . Of course, measurement is essential if NFRs are to be taken as quantitative inputs to an estimation or productivity benchmarking process but not much work has been published to date on how to measure such NFR.

In practice, requirements are initially typically addressed at the system level , either as high level system functional user requirements (system FUR) or as high level system non functional requirements (system NFR)
 ADDIN EN.CITE
[5-7]
. The latter must usually be detailed, allocated, and implemented in hardware, software (as software FUR - “soft-FUR” for instance – see Figure 1) or in a specific combination of hardware or software.

To distinguish between these types of requirements, system FUR describes the required functions in a system, while system NFR describes how the required functions must behave in a system. In the software requirements engineering step, system NFR can then be detailed and specified as software FUR, to allow a software engineer to develop, test, and configure the final deliverables to system users.

The term "functional" refers to the set of functions the system (including the software) has to offer, while the term "non functional" refers to the manner in which such functions perform. An FUR is typically phrased with a subject and a predicate (i.e. noun/verb), such as: "The system must print 5 reports". NFR, by contrast, are typically phrased with an adverb or modifying clause, such as: "The system will print 5 reports quickly," or "The system will print 5 reports with a high degree of Security".

[image: image4.emf]

Fig. 1 Mapping system FUR and NFR to software FUR

In the ECSS (European Cooperation on Space Standardization) standards for the aerospace industry
 ADDIN EN.CITE
[8-13]
, a number of concepts are provided to describe various types of candidate security requirements at the system, software, and hardware levels. However, these standards vary in their views, terminology, and coverage of data definition and database.

Currently, there exists no generic model for the identification and specification of software FUR for implementing system security requirements (system NFR) based on the various views documented in international standards and in the literature. Consequently, it is challenging to measure these security-related software FUR, and take them into account quantitatively for estimation purposes.

This paper focuses on a single type of NFR, that is, system security requirements, and reports on the work carried out to define an integrated view of software FUR for system security NFR based on international standards, including the use of the generic COSMIC – ISO 19761 [14] model of software FUR.

The paper is organized as follows. Section 2 presents the related work. Section 3 presents the view of software FUR in ISO 19761. Section 4 identifies the standards that describe security requirements. Section 5 presents a standards-based definition of a generic model of requirements for software to implement system security NFR. Section 6 presents a standard generic measurement model of software FUR using a service-oriented architecture (SOA) for system data definition and database. Section 7 presents the sizing of a reference instantiation of the generic model of security software FUR. Section 8 presents a measurement example. Finally, a discussion and our conclusion are presented in section 9.

2. Related work

In the literature, there are some early works on NFR in systems/software engineering. For instance, in 1993, Chung [15] presented one of the initial attempts to capture knowledge in this domain. His work was followed by that of Mylopoulos et al. [16], who suggested viewing all requirements as goals, each goal being an umbrella for related functional and non functional requirements. Chung et al. [17] and Andrew [18] aimed to make NFR more quantitative in nature, while Andrew [18]observed that there are often gaps between the stakeholder vision and requirements representation. Chung et al. [17] proposed a taxonomy for NFR indicating that it is unrealistic to expect designers and developers to incorporate an entity that they cannot readily identify. While taxonomies aim to be inclusive of the entire set of entities in question, these authors suggested in [17] that a one- or two-level taxonomy would suffice initially, and that there are over 161 identifiable types of NFR.

Paech et al. [19] recommended that functional requirements (FR), NFR, and architecture be tightly co developed and addressed in a coherent and integrated manner, suggesting that NFR be decomposable into more refined NFR and additional FR, as well as architectural decisions.

Moreira et al.[20] , Rosa et al. [21] , Park et al.[22] , and Glinz [23] have proposed new methods for classifying NFR early in the software development process, while Kaiya et al. [24] have presented a method to identify stakeholders and their NFR preferences by using use case diagrams of existing systems.

More recently, Mylopoulos [16] promoted Goal-Oriented Requirements Engineering, and suggested a specific solution involving the establishment of an Agent-Oriented Software Development Method, called the Tropos project, which covers not only the requirements, but also the design phases, and addresses the design of high-variability software for applications such as home care software and business process design.

More recently still, Kassab et al. [25-26] proposed some solutions for an NFR framework: for example, a sequence of systematic activities with a view to early consideration of identifying, specifying, and separating FR from NFR, as well as a discussion on NFR prioritization and risk assessment. They also report in [26] on an initial solution for determining the functional size of NRF based on "Soft-Goal" concepts, using the COSMIC method, to deal with the problem of quantitatively assessing the NFR modelling process early in a project.

In parallel with the work of researchers, the software industry has been working on the description of NFR, in particular through international standardization bodies, such as the European Cooperation on Space Standardization (ECSS), the Institute of Electrical and Electronics Engineers (IEEE), and the International Organization for Standardization (ISO).

In the ECSS standards for the aerospace industry
 ADDIN EN.CITE
[8-13]
 , a system security requirement is identified as one of sixteen types of NFR, and the research reported here focuses strictly on these NFR. However, these standards vary in their views, terminology, and coverage of security requirements. Currently, there exists no generic model for the identification and specification of software FUR for implementing system security requirements (system NFR) based on the various views documented in these international standards and in the literature. Consequently, it is challenging to measure the system security-related software FUR, and take them into account quantitatively for estimating software projects.

In the work reported here, preference has been given to the views, concepts, and vocabulary most widely used by the industry, as evidenced in its standardization infrastructure, rather than those in the academic literature. Similarly, for the structuring and description of models of FUR and for measurement purposes, the measurement views, concepts, and terminology from the standardization infrastructure have been adopted, rather than those in the literature.

This paper focuses on a single type of NFR, that is, system security requirements, and reports on the work carried out to define an integrated view of software FUR for system security NFR on the basis of international standards, including the use of the generic COSMIC – ISO 19761 [14] model of software FUR as the template for the description of measurable functional requirements , thereby allowing the measurement of the functional size of such requirements allocated to software and taking them into account for estimations purposes. This approach has been used to build other types of NFR, such as design and implementation constraints, configuration, interfaces and Security requirements
 ADDIN EN.CITE
[27-33]
.

3. A generic ISO view of software FUR

It is specified in ISO 14143-1 [34] of the collection of ISO standards that a functional size measurement (FSM) method must measure software FUR. In addition, ISO 19761 – COSMIC [14] proposes a generic model of software FUR that clarifies the boundary between hardware and software. Figure 2 illustrates the generic flow of data from a functional perspective from hardware to software. From this generic model of software functional requirements in Figure 2, we observe the following:

· Software is bounded by hardware. In the so-called “front-end” direction (i.e. the left-hand side in Figure 2), software used by a human user is bounded by I/O hardware, such as a mouse, a keyboard, a printer, or a display, or by engineered devices, such as sensors or relays. In the so-called “back-end” direction (i.e. the right-hand side of Figure 2), software is bounded by persistent storage hardware, like a hard disk, and RAM and ROM memory.

· The software functionality is embedded within the functional flows of data groups. Such data flows can be characterized by four distinct types of data movements. In the “front end” direction, two types of movements (ENTRIES and EXITS) allow the exchange of data with the users across a ‘boundary’. In the “back end” direction, two types of movements (READS and WRITES) allow the exchange of data with the persistent storage hardware.

· Different abstractions are typically used for different measurement purposes. In real-time software, the users are typically the engineered devices that interact directly with the software; that is, the users are the ‘I/O hardware’. For business application software, the abstraction commonly assumes that the users are one or more humans who interact directly with the business application software across the boundary; i.e. the ‘I/O hardware’ is ignored.

 [image: image1.emf]

Fig. 2 Generic flow of data groups through software from a functional perspective in COSMIC – ISO 19761

As an FSM method, COSMIC is aimed at measuring the size of software based on identifiable FUR. Once identified, those requirements are allocated to hardware and software from the unifying perspective of a system integrating these two “components”. Since COSMIC is aimed at sizing software, only requirements allocated to the software are currently considered in its measurement procedure.

4. Identification of standards describing system security requirements

This section presents a survey of the security-related views, concepts, and terms in the ECSS standards
 ADDIN EN.CITE
[8-13]
. This section identifies which standards currently address aspects of the software FUR derived from system security FUR and NFR – see Fig. 3.

 The expected outcome is the identification of the various elements that should be included in the design of a standards-based framework for modelling software FUR for system data definition and database. The elements of security are dispersed in various system views throughout various ECSS standards and are expressed as either:

· System security functional user requirements (system security FUR) or

· System security non-functional requirements (system security NFR)

[image: image5.png]

Fig. 3: Mapping system requirements into software FUR for security

4.1. ECSS views and concepts for security requirements

The European Cooperation for Space Standardization (ECSS) is an organization which works to improve standardization within the European space sector. The ECSS frequently publishes standards targeted to the contractors working for the European Space Agency (ESA). The ECSS standards series
 ADDIN EN.CITE
[8-13]
 includes a number of security requirements at the system level. It can be observed that ECSS focuses on the system-FUR for the early development phases while the System NFR are typically discussed within the context of later development phases such as the evaluation or testing phases.

The [35] [36] and [37] present security as a system NFR for real-time and embedded software: in these standards, the security requirements are described as specifications, including related factors, which might compromise sensitive information; and the ECSS requires that the system security shall be defined in the requirements baseline (i.e. the requirements base must include the requirements applicable to the various elements of the system product tree [35].

In the ECSS standards, the system security is described as:

· Access control roles for person or group of persons and access control per system or entity.

· Availability for redundant power or data and automatic restart.

· System data integrity such as integrity with firewall, antivirus, external PKI (encryption and decryption of data) and integrity with different types of system backup (such as automatic, time interval, durability, data versioning and run-time backups) see table 1.

4.2 IEEE: views and concepts for security requirements

Security requirements are also presented in [38] as a NFR : IEEE standard specifies the factors that protect the software from accidental or malicious access use, modification, destruction, or disclosure. Specific requirements in this area could include the need to utilize certain cryptographically techniques; to keep specific log or history data sets; to assign certain functions to different modules; to restrict communications between some areas of the program and to check data integrity for critical variables see table 1.

4.3 ISO: views and concepts for security requirements

ISO 9126 lists the security as part of the software functionality to define the software product quality. In addition, ISO 9126 defines the security as the capability of the software product to protect information and data so that unauthorized persons or systems cannot read or modify them and authorized persons or systems are not denied access to them see table 1.

Analysis of the used set of concepts, terminology and key views of security requirements in ECSS, IEEE-830 and ISO 9126 standards to identify the security foundation in system-NFR.

Table 1: Security requirements views, concepts and vocabulary in

International standards

		Standards name

		Standards key views

		The set of concepts and vocabulary to describe security requirements

		ECSS Standards

		The key views of software security requirements in ECSS standards are described as specifications, including related factors, which might compromise sensitive information. Moreover, the ECSS standards require that the system security shall be defined in the requirements baseline which defines the requirements applicable to various elements of the system product tree.

		European standards use the set of the following concepts and vocabulary to describe security requirements:

· Access control roles for the system, person and groups

· Availability for redundant power or data and automatic restart man machined.

· System data integrity such as integrity with firewall, antivirus, external PKI.

		IEEE-830 Standards

		The key views of software security requirements in the IEEE 830 standard [38] are factors that protect the software from accidental or malicious access use, modification, destruction, or disclosure.

		The IEEE 830 standard [38] uses the set of the following concepts and vocabulary to describe security requirements:

· Cryptographically techniques;

· Specific log or history data sets;

· Assign certain functions to different modules;

· Restrict communications between some areas of the program and

· Check data integrity for critical variables.

		ISO 9126 Standard

		The key view of software security in ISO 9126 is described as a part of the software functionality to define the software product quality.

		ISO 9126 (ISO 9126 2002) uses the set of the following concepts and vocabulary to describe software security:

· Access Auditability

· Access Controllability

· Data Corruption/ Prevention

· Data Encryption

5. A standards-based definition of a generic model of software FUR for system security requirements

This section maps the security terminologies found throughout the ECSS, IEEE, and ISO standards into a proposed model of software-FUR for system security-NFR, through the use of the generic model of FUR proposed in the COSMIC model in Fig. 3. This COSMIC-based generic model can then become a framework for describing the security requirements (i.e. from system-NFR to software-FUR) based on the ECSS standards.

5.1 Mapping views and concepts for security from ECSS, ISO, and IEEE standards

Based on a synthesis of the various definitions, the key views and concepts presented in chapter 3 on software-FUR for system security-NFR are presented in Table 2.

Table 2: Security requirements in ECSS, ISO, and IEEE

		System security requirements

		· Confidentiality

· Availability

· Integrity

· Access control role

· Security login

· Authentication

· Redundant power and network

· Redundant data

· Automatic restart

· Firewall

· Antivirus

· External PKI

· Backup type

· Encryption and decryption

5.2 Software system security functions to be specified

The functionality and corresponding entities to be specified (and measured) for system security allocated to software are listed in Table 3.

Table 3: system security functions that may be allocated to software

		System security types

		System security functions

		Activity (examples)

		Confidentiality

		· Access control role function

		· Per person

· Per group

		

		· Security login function

		· User name & password

· Password change

· Smart card

· Single sign on

· Automatic login

		

		· Authentication function

		· Per person

· Per group

· Per entity

· Per system

· Smart card

· Biometrics

		Availability

		· Redundant power and network function

		· Available 24 H/ 7 Days

		

		· Redundant data function

		

		

		· Automatic restart function

		

		Integrity

		· Firewall function

		· Attack detection

· Hot and cold backup

· Encryption and decryption Algorithm

		

		· Antivirus function

		

		

		· External PKI function

		

		

		· Backup type function

		

		

		· Encryption and decryption function

		

5.3 Identification of the functional types in the security

In this section, the system security functional types are identified based on the findings of the security functions, as discussed in the previous section. The system security requirements allocated to software-FUR are divided into three types of requirements: confidentiality, availability and integrity; each type in this division has its own functionality. The proposed security functional types are illustrated in system and COSMIC modeling views, in order to propose a COSMIC reference model of security requirements allocated to software based on the proposed COSMIC modeling view.

Table 4: Functional types for security functions that may be allocated to software

		System security types

		System security functional types

		System security functions

		Confidentiality

		Functional type 1

System Confidentiality

(SC)

		· Access control role function (ACRF)

· Security login function (SLF)

· Authentication function (AF)

		Availability

		Functional type 2

System Availability

(SA)

		· Redundant power and network function (RPNF)

· Redundant data function (RDF)

· Automatic restart function (ARF)

		Integrity

		Functional type 3

Security Integrity

(SI)

		· Firewall function (FF)

· Antivirus function (AF)

· External PKI function (EPKIF)

· Backup type function (BTF)

· Encryption and decryption function (EDF)

5.4 System Security Model using COSMIC-SOA (Functional service level)

In this section, the system Security model using COSMIC-SOA is built in Figure 4 to elaborate on the model to show a more complete picture, which includes showing what is involved in instantiating the modeled entities in practice – for more details, see
 ADDIN EN.CITE
[39-42]
 and describes the detailed measurement model, which can be used to specify and measure the functionality at service level.

There are many definitions of a service-oriented architecture (SOA), such as: a flexible set of design principles used during systems development and integration [39]; a process including the definition of the architecture, components, modules, interfaces, and data for a system to satisfy specified requirements [41-42].

The system Security model using COSMIC-SOA in Figure 4 provides a loosely integrated suite of services that can be used in multiple business domains to measure the functional size of software FUR in an SOA environment [39]. In this model, the term “service” refers to a set of related software FUR functions as well as separating functions into distinct units, or services.

These services communicate with each other by exchanging data in a well-defined, shared format, or by coordinating an activity between two or more services [39].

The COSMIC-SOA guideline offers three types of data movements architecture in (Table 4) based on [39]:

Table 4: COSMIC-SOA guideline offers three types of data movement’s architecture [39]

		COSMIC-SOA exchange messages: An application requiring commonly used information from another application sends a request to the service of the application that can handle the request, or the application may call upon its own services. Such calls are also called ‘messages’. Each message may consist of one or more data movements [39].

		[image: image6.png]

		COSMIC-SOA intermediary services: When a functional process of an application service in application A requires data that are available via an application service in application B, the former application service calls upon a functional process of the intermediary service. This service functionality is also needed by other applications in the overall SOA framework, as it may itself be realized in the form of a utility service [39]

		[image: image7.png]

		COSMIC-SOA data exchanges: The data movements between components in the same layer, i.e. between peer components (where a component may be an application or a service). It shows direct and indirect exchanges of data between components. If components exchange data directly, then, for measurement purposes, the measurer will identify Exit and/or Entry data movements, as per the data movements between service A (SA) and service B (SB). An indirect exchange of data between components means that a service in one component writes data in a storage device, which is subsequently read by a service in another component. the measurer will identify a Write data movement in service SA and a Read in service SB.

		

5.5 COSMIC reference architectural model using an SOA for system security

Fig. 4 illustrates a COSMIC reference architectural model using an SOA for system security requirements. This model is built based on the proposed security functions and functional types and the role of the COSMIC-SOA explained in [39].

[image: image2.emf]

Fig. 4 COSMIC reference architectural model of system Security requirements allocated to software

6 Sizing a Reference Instantiation of the Generic Model of Software FUR for System Security Requirements

The specification of software FUR for system security requirements in any specific project is a specific instantiation of the proposed generic model described in Figure 4. When the software specification document is at the level of the movement of data groups, then these functional requirements can be directly measured using the COSMIC measurement rules. The measurement example presented next is illustrative of a reference instantiation of the generic COSMIC specification and measurement model of software FUR for system security requirements in an SOA context for a single data group for all the identified possible flows of data groups.

 The measurement example in this section explains how to use the proposed reference model of system security requirements to size a hypothetical framework composed of all of the kinds of software FUR described in the framework see-figure 5.

6.1 Measurement of exchange services for system security functionality using COSMIC-SOA

There are 11 functionality types of system security requirements, interacting with their own services, for the measurement of exchange services for system security using COSMIC-SOA, see Figure 5. According to COSMIC-SOA, each functional process may interact with its own service by sending and receiving data movements (i.e. Entry and Exit – see table 4).

The COSMIC-SOA measurement results for the interactions between the system security functional processes with its own service processes. The measurement result for this operation are equal to 4 CFP for each interaction between each functional process with its own functional service process”. The total measurement result for the 11 functionality types is equal to 44 CFP (see figure 5).

6.2 Measurement of intermediary services for system security services using COSMIC-SOA

In this section - and based on Figure 5, when a functional process service requires data that is available via another functional process service, the former calls upon a functional process of the intermediary service. According to the COSMIC-SOA model of measurement for system operations, the types of data movements for using the intermediary service must be Entry and Exit – see table 4.

The COSMIC-SOA measurement results for intermediary services based on figure 5. The instantiation of a single data group for all possible flows of the data groups identified above, and listed as a data movement example for one intermediary service: for this requirement the measurement results are equal to 8 CFP. The total measurement results are equal to 432 CFP.

6.3 Measurement of the direct and indirect data movements for system security services using COSMIC-SOA

This section is based on Figure 5 which illustrates the possible flows of data between components in the same layer, i.e. between peer components (where a component may be an application or a service). This section shows direct and indirect exchanges of data between components – one or both forms of which may be involved when services communicate. If components exchange data directly, the measurer will identify the Exit and/or Entry data movements, as per the data movements between service A and service B. An indirect exchange of data between components means that a service in one component writes data which are subsequently read by a service in another component. In this situation, the measurer will identify a Write data movement in the former component and a Read data movement in the other.

Specifically, The instantiation of this operation. The total measurement results are equal to 24 CFP (see figure 5).

7 Discussion and Conclusion

Security requirements are typically described initially as non functional requirements at the system level, and system engineers must subsequently apportion these system requirements very carefully as either software or hardware requirements to conform to the security requirements of the system. Within the ECSS standards, a number of views and concepts are provided to describe various types of candidate security requirements at the system, software, and hardware levels.

 This paper has introduced a standards-based framework for specifying and measuring software requirements for the functions needed to address the system’s security requirements.

 The main contribution of this paper is our proposed generic model of software FUR for system security requirements. This generic model can be considered as a kind of reference model for the identification of system security requirements, and can be used for their allocation to software functions implementing such requirements. System requirements allocated to hardware have not been addressed in this paper. Since the structure of the generic model is based on the generic model of software adopted by the COSMIC measurement standard, the necessary information for measuring their functional size is readily available, and an example has been presented of a specific instantiation of this reference model.

 Specifically, the generic model of security requirements presented in this paper is based on:

· The ECSS standards for the description of the NFR for system security requirements ;

· The COSMIC measurement model of functional requirements.

The proposed specification and measurement model is independent of the software type and the languages in which the software FUR will be implemented. The proposed generic model for security requirements (i.e. reference model) provides:

· A specification model for each type, or all types, of security requirements: for example, the requirements to be allocated to software for the system data items and the product data schema.

· A measurement model for each type, or all types, of security requirements.

The generic model of system security requirements proposed in this paper can provide system engineers with:

· An integrated reference view of system security requirements that they can use to select the security requirements necessary for a specific system to be developed (hardware-software-manual).

· A methodology to specify these security NFR: with this reference model, beginners would not require years of training before being able to specify these at the levels of detail illustrated in the work reported in this paper.

· An integrated model to be used as an input to make decisions on which of these detailed security NFR will be allocated to hardware, or software, or combinations of these for a specific context.

For software engineers, the proposed generic model of system security requirements can also provide them with:

· A reference model that they can use to verify whether or not the system engineers have provided them with the right selection of system NFR-derived FUR, and at the necessary level of detail.

This means that this standard-based reference model can be used as a quality technique for the following:

· Verification of system security requirements coverage and descriptions;

· As a technique, at the software requirements phase, to elicit such requirements, referred to as ‘both non functional requirements and emergent properties’ in the SWEBOK Guide – ISO19759 [43] to achieve this level of detailed inputs of security requirements up front in the project life cycle (that is, at the software requirements phase, rather than much later, at the software testing phase..

The proposed reference model for security requirements presents a way to measure these FUR with COSMIC – ISO 19761, to take them into account in FSM-based software estimation models, thereby avoiding late discovery of mandatory FUR that lead to budget overruns and missed deadlines.

 The measurement aspects presented in this paper have been limited to the system requirements allocated to software. It will be interesting in future work to investigate whether or not this measurement approach can be extended to all such requirements at the system level (that is, to all hardware-software-manual requirements, and not only to software requirements).

REFERENCES

1.
Noguera, M., et al., Ontology-driven analysis of UML-based collaborative processes using OWL-DL and CPN. Science of Computer Programming, 2010. 75(8): p. 726-760.

2.
Chung, L. and J. do Prado Leite, On Non-Functional Requirements in Software Engineering, in Conceptual Modeling: Foundations and Applications, A. Borgida, et al., Editors. 2009, Springer Berlin / Heidelberg. p. 363-379.

3.
Ma, W., L. Chung, and K. Cooper, Assessing Component’s Behavioral Interoperability Concerning Goals, in On the Move to Meaningful Internet Systems: OTM 2008 Workshops, R. Meersman, Z. Tari, and P. Herrero, Editors. 2008, Springer Berlin / Heidelberg. p. 452-462.

4.
Nary, S. An NFR-Based Framework for Establishing Traceability between Enterprise Architectures and System Architectures. 2006.

5.
Chung, L. and N. Subramanian, System and software architectures. Science of Computer Programming, 2005. 57(1): p. 1-4.

6.
Chung, L. and N. Subramanian, Adaptable system/software architectures. Journal of Systems Architecture, 2004. 50(7): p. 365-366.

7.
Yiqiao, W. Self-Repair through Reconfiguration: A Requirements Engineering Approach. 2009.

8.
ECSS-E-40-Part-1B, Space Engineering: Software - Part 1 Principles and Requirements. European Cooperation for Space Standardaization,The Netherlands, 2003.

9.
ECSS-E-40-Part-2B, Space Engineeing:Software-part 2 Document Requirements Definitions. European Cooperation for Space Standardaization, The Netherlands, 2005.

10.
ECSS-ESA, Tailoring of ECSS, Software Engineering Standards for Ground Segments, Part C: Document Templates. ESA Board of Standardization and Control (BSSC), 2005.

11.
ECSS-E-ST-10C, Space engineering: System engineering general requirements. Requirements & Standards Division Noordwijk, The Netherlands, 2009.

12.
ECSS-Q-ST-80C, Space Product Assurance: Software Product Assurance. Requirements & Standards Division Noordwijk, The Netherlands, 2009.

13.
ECSS-E-ST-70-31C, Space Engineering: Ground systems and operations -Monitoring and control data definition. Requirements & Standards Division Noordwijk, The Netherlands, 2008.

14.
ISO/IEC-19761, Software Engineering - COSMIC v 3.0 - A Functional Size Measurement Method. International Organization for Standardization, Geneva (Switzerland), 2003.

15.
Chung, K.L., “Representing and Using Non-functional Requirements for Information System Development: A Process Oriented Approach”,Ph.D. Thesis, also Tech. Rpt. DKBS-TR-93-1. Department of Computer Science, University of Toronto, 1993.

16.
John, M. Goal-Oriented Requirements Engineering, Part II. 2006.

17.
Chung, L., et al., Nonfunctional Requirements in Software Engineering. Kluwer Academic Publishing, 2000.

18.
Andrew, J., An Approach to Quantitative Non-Functional Requirements in Software Development. Proceedings of the 34th Annual Government Electronics and Information Association Conference, 2000.

19.
Paech, B., et al., Functional requirements, non-functional requirements and architecture specification cannot be separated -- A position paper. REFSQ, 2002.

20.
Moreira, A., J. Araujo, and I. Brito, Crosscutting Quality Attributes for Requirements Engineering

14th International Conference on Software Engineering and Knowledge Engineering, Ischia, Italy, 2002: p. 167-174.

21.
Rosa, N.S., P.R. Cunha, and J. F., “G.R.R.: ProcessNFL: A language for Describing Non-Functional Properties”. 35th HICSS, IEEE Press, 2002.

22.
Park, D. and S. Kang, Design Phase Analysis of Software Performance Using Aspect-Oriented Programming. 5th Aspect-Oriented Modeling Workshop in Conjunction with UML 2004, Lisbon, Portugal, 2004.

23.
Glinz, M., “Rethinking the Notion of Non-Functional Requirements”. 3rd World Congress for Software Quality, Munich, Germany, 2005.

24.
Kaiya, H., K. Osada, and Kayjiri, Identifying Stakeholders and Their Preferences about NFR by Comparing Use Case Diagrams of Several Existing Systems. IEEE Int. Conf. on Requirements Engineering (RE04), 2004: p. 112-121.

25.
Kassab, M., M. Daneva, and O. Ormandjieva., Towards an Early Software Effort Estimation Based on Functional and Non-Functional Requirements. International Conference on Software Process and Product Measurement (MENSURA), Amsterdam, The Netherlands, 2009.

26.
Kassab, M., et al., Non-Functional Requirements Size Measurement Method (NFSM) with COSMIC-FFP, in Software Process and Product Measurement, J.C.-G. Juan, et al., Editors. 2008, Springer-Verlag. p. 168-182.

27.
Abran, A. and K.T. Al-Sarayreh, Standards-Based Model for the Specification of System Design and Implementation Constraints 17th International Conference on European Systems and Software Process Improvements (EURO-SPI 2010), Industry track, Grenoble Institute of Technology, Grenoble, France, Sept. 2010, 2010.

28.
Abran, A. and K.T. Al-Sarayreh, Measurement of Software Requirements Derived from System Operations Requirements. 20th International Workshop on Software Measurement (IWSM 2010`), Stuttgart, Germany, 2010.

29.
Abran, A., K.T. Al-Sarayreh, and J.J. Cuadrado-Gallego, Measurement Model of Software Requirements Derived from System Portability Requirements 9th International Conference on Software Engineering Research and Practice (SERP 2010), Las Vegas, USA, 2010.

30.
Al-Sarayreh, K.T. and A. Abran. A Generic Model for the Specification of Software Interface Requirements and Measurement of Their Functional Size. in 8th ACIS International Conference on Software Engineering Research, Management and Applications, SERA 2010. 2010. Montreal, Canada.

31.
Al-Sarayreh, K.T. and A. Abran, Measurement of Software Requirements Derived from System Reliability Requirements 24th European Conference on Object-Oriented Programming (ECOOP 2010), Maribor, Slovenia, EU, 2010, 2010.

32.
Al-Sarayreh, K.T. and A. Abran, Specification and Measurement of System Configuration Non Functional Requirements 20th International Workshop on Software Measurement (IWSM 2010), Stuttgart, Germany, 2010.

33.
Al-Sarayreh, K.T., A. Abran, and J.J. Cuadrado-Gallego, A Standards-based Model for the Specification and Measurement of Maintainability Requirements. 22nd International Conference on Software Engineering and Knowledge Engineering (SEKE 2010), Redwood City, California, USA, 2010.

34.
ISO/IEC-14143-1, Information technology-Software measurement - Functional size measurement Part 1: Definition of concepts. International Organization for Standardization, Geneva (Switzerland),, 1998.

35.
ECSS-E-40-Part-1B, Space Engineering: Software - Part 1 Principles and Requirements, , in European Cooperation for Space Standaraization,Netherlands

2003.

36.
ECSS-E-40-Part-2B, Space Engineeing:Software- part 2 Document Requirements Definitions,. European Cooperation for Space Standaraization,Netherlands

2005.

37.
ECSS-Q-80B, Space product assurance: Software product assurance,. European Cooperation for Space Standaraization,Netherlands

2003.

38.
IEEE-Std-830, IEEE Recommended Practice for Software Requirements Specifications. 1993.

39.
COSMIC, The COSMIC Method v3.0.1, Guideline for Sizing SOA Software, v1.4. The Common Software Measurement International Consortium, MPC Review, 2010.

40.
OASIS, Reference Architecture for Service Oriented Architecture Version 1.0. OASIS ® 1993–2008, 2008.

41.
SoberIT:, Service-Oriented Architecture and Software Engineering. Seminar on Enterprise Information Systems by Software Business and Engineering Institute, Helsinki University of Technology, © 2008 Kari Hiekkanen

2008.

42.
OASIS-SOA, Reference Model for Service Oriented Architecture. http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=soa-rm, 2006.

43.
ISO-19759, Software Engineering Body of Knowledge (SWEBOK). IEEE Computer Society, 2004.

[image: image3.png]

System NFR

Software FUR

System FUR

System Security FUR

System Security NFR

Software FUR for Security

1

14

[bookmark: _Toc296419213]Table 1 Traceability to ECSS for the standards-based model of software-FUR for system reliability-NFR

		ID

		ECSS standards

		Year

		ECSS standards name

		Section No.

		Page No.

		1

		ECSS-E-40 part 1B

		2003

		Software-Part 1: Principles and requirements

		-

		33,77

		2

		ECSS-E-40 part 2B

		2005

		Software-Part 2: Document requirements definitions (DRDs)

		-

		28, 35

		3

		ECSS-Q-30-08A

		2006

		Components reliability data sources and their use

		-

4.7.2

4.7.2

4.7.4

A.3

6.2.7.9

		7,13

22

22

22

28

44

		4

		ECSS-Q-80B-10

		2003

		

		6.3.6.1

6.3.6.1

7.1.7

6.2.3

		53

53

56

36

		5

		ECSS-E-HB-50A

		

		Communication guideline

		4.5.3.2.

4.7

		50, 53

70

		6

		ECSS-E-ST-20C

		2008

		Electrical and electronics

		6.3.4.2

		59

		7

		ECSS-E-ST-33-01C

		

		Mechanisms

		4.8.2.9

4.2.2

		41

17

		8

		ECSS-Q-ST-30-02C

		2009

		Failures mode, effects and critically analysis(FMEA/FMECA)

		-

4.1

A.2

		7-8

14-15

39-42

		9

		ECSS-Q-ST-30-09

		2008

		Availability analysis

		3.2.12

A.4

A.2

A3

A-B

		9-10

29

27

28

30

		10

		ECSS-Q-ST-30C

		2009

		Dependability

		A-E

A-F

6.4.2

7.1

		36

38

20-24

26

		11

		ECSS-E-ST-70-26C

		2008

		Crimping of high-reliability electrical connection

		4

		12

		12

		ECSS-E-ST-70-08C

		2009

		Manual soldering of high-reliability electrical connections

		A-A

		101-104

		13

		ECSS-E-ST-70-30C

		2008

		Wire wrapping of high-reliability electrical connections

		4

		12

		14

		ECSS-Q-ST-10-09C

		2008

		Non conformance control systems

		3.2.2

		9

		15

		ECSS-M-ST-60C

		2008

		Cost and schedule management

		-

		74

		16

		ECSS-E-ST-50-14C

		2008

		Space craft discrete interfaces

		4.2.4

4.2.5.2

		18

21

		17

		ECSS-E-ST-50-04C

		2008

		Space data links-Telecommands protocols: synchronization and channel coding

		7.5.4

		85

[bookmark: _Toc296419214]

Table 2 Traceability toECSS for the standards-based model of software-FUR for system reliability-NFR (Continued)

		ID

		ECSS standards

		Year

		ECSS standards name

		Section No.

		Page No.

		18

		ECSS-E-ST-50-01C

		2008

		Space data links-Telemetry: synchronization and channel coding

		6.1

		21

		19

		ECSS-E-ST-33-11C

		

		Explosive systems and device

		4.2.2

		17

		20

		ECSS-ST-35-10C

		2009

		Compatibility testing for liquid propulsion components, sub systems and systems

		3.2.2

4.1.2

		10

13

		21

		ECSS-ST-40C

		2009

		Software

		5.4.2.1

		46

		22

		ECSS-Q-ST-80C

		2009

		Software product assurance

		5.2.7.2

6.3.2.4

		27

52

		23

		ECSS-Q-ST-30-11C

		2008

		Derating-EEE components

		5.1

5.2

5.3

		13-16

ECSS, ISO 9126 and IEEE standards finding for modeling

system maintainability requirements

Maintainability as described by ECSS standards

		ECSS standards

		Maintainability, as described in ECSS standards

		ECSS-E-40-Part-2B 2005 [31]

		Software maintainability requirements shall be applicable to the software item.

		ECSS-E-ST-10C 2009 [33]

		A maintainability requirement is considered part of the integrated logistical support requirements in system engineering, and includes activities and procedures, e.g. operational allowable envelopes, accessibility, tooling, support materials, parts availability, and deliveries.

		ECSS-E-ST-32C-Rev.1 2008 [43]

		The maintenance program includes a maintenance protocol and measurable parameters for all operations and during all project phases, including at least the following:

· Mean time‐to‐repair and limited life,

· Fault detection and isolation capability,

· Spares requirements, and

· Ground storage requirements.

		ECSS-E-ST-33-01C 2009 [44]

		The maintenance mechanism shall be documented in specific mechanism specifications (SMS), including maintainability requirements activities and procedures. The SMS for maintainability requirements includes the following:

· Fault identification and repair,

· Failure modes, and

· Environment for maintainability operation.

		ECSS-E-ST-34C 2008 [45]

		Maintainability issues are given particular importance in environment control and life support systems design (ECLSS). ECLSS includes the maintenance modes of operations, such as faults, failures, and error modes.

		ECSS-Q-ST-40C 2009 [46]

		The software maintainability requirements (SRS) shall list any maintainability requirement applicable to the software item.

		ECSS-E-ST-70C 2008 [47]

ECSS-M-ST-40C-Rev.1 2009 [48]

		Maintainability requirements address critical elements of hardware and software, and indications on maintainability-related factors.

		ECSS-Q-ST-10-09C 2008 [49]

		A maintainability requirement is considered as a non conformance item, which can have an impact on the customer’s requirements.

		ECSS-Q-ST-20C 2008 [50]

		The supplier shall ensure that maintenance activities be planned and performed, in order to prove that maintainability requirements are satisfied in the real operational environment.

		ECSS-Q-ST-30C 2009 [51]

		Maintainability requirements shall be apportioned to set maintainability requirements for lower-level products to conform to the maintenance concept and maintainability requirements of the system, and the maintainability analysis shall identify maintainability-critical items.

		ECSS-E-40-Part-1B 2003 [30]

		The maintenance process contains the activities and tasks of the maintainer. The objective is to modify an existing software product while preserving its integrity. This process includes the migration and retirement of the software product. The process ends with the retirement of the software product.

		ECSS-E-40-Part-1B 2003 [30]

		The maintainer manages the maintenance process at the project level following the management process, which is instantiated for software in this process. This process consists of the following activities:

· Process implementation,

· Problem and modification analysis,

· Modification implementation,

· Conducting of maintenance reviews,

· Software migration, and

· Software retirement.

		ECSS-Q-ST-30-02C 2009 [52]

		Maintainability adopts the functional approach, such as ‘failure modes and effects analysis’ (FMEA) or ‘failure modes, effects and criticality analysis’ (FMECA) at all levels. When any design or process changes are made, the FMEA/FMECA is updated, and the effects of new failure modes introduced by the changes are carefully assessed.

Although FMEA/FMECA is primarily a reliability task, it provides information and support to maintainability, maintenance planning, and ‘failure detection, isolation, and recovery’ (FDIR) design. The FMEA/FMECA results are used by several disciplines to ensure the consistency, and avoid the proliferation, of requirements and the duplication of effort within the same program.

		ECSS-Q-ST-30-09C 2008 [53]

		Downtime is relevant to corrective maintenance, preventive maintenance, logistics, and administrative delays.

		ECSS-Q-ST-80C 2009 [54]

		Maintainability requirements shall be used to specify the quality model; in addition, it shall also be defined as a non functional requirement because it is essential to satisfy the requirements baseline.

		ECSS-S-ST-00C [55]

		The ECSS system: description, implementation, and general requirements list the maintainability requirements and maintenance support performance as important parts of system dependability, besides availability and reliability.

Maintainability as described in ISO 9126

		ISO 9126 series

		Maintainability, as described in ISO 9126

		

ISO 9126-1

		Maintainability is a quality characteristic defined as the capability of the software product to be modified. Modifications may include corrections, improvements, or adaptations of the software to changes in environment, and in requirements and functional specifications. ISO 9126 defines maintainability as composed of the following quality sub characteristics: analyzability, changeability, stability, and testability.

· [bookmark: _Toc327343245][bookmark: _Toc356035979][bookmark: _Toc358101063]Analyzability: The capability of the software product to be diagnosed for deficiencies or causes of failures in the software, or for the identification of the parts to be modified.

· [bookmark: _Toc327343246][bookmark: _Toc356035980][bookmark: _Toc358101064]Changeability: The capability of the software product to enable a specified modification to be implemented.

· [bookmark: _Toc327343247][bookmark: _Toc356035981][bookmark: _Toc358101065]Stability: The capability of the software product to avoid unexpected effects from modifications of the software.

· [bookmark: _Toc327343248][bookmark: _Toc356035982][bookmark: _Toc358101066]Testability: The capability of the software product to enable modified software to be validated.

· Maintainability compliance: The capability of the software product to adhere to standards or conventions relating to maintainability

		

ISO 9126-2

		External maintainability (from the ISO 9126 perspective)

· Analyzability

· Audit Trial Capability

· Failure Analysis Capability

· Status Monitoring Capability

· Changeability

· Change Efficiency

· Software Change Control Capability

· Stability

· Change Success Ratio

· Testability

· Availability of a built-in test function

· Retest Efficiency

		

ISO 9126-3

		Internal maintainability (from the ISO 9126 perspective)

· Analyzability

· Diagnostic Function Support

· Changeability

· Modifiability

· Stability

· Modification Impact

· Testability

· Test Restart Capability

[bookmark: _Toc296419213]Table 1 Traceability to ECSS for the standards-based model of software-FUR for system Interface-NFR

		ID

		ECSS standards

		Year

		ECSS standards name

		Section No.

		Page No.

		1

		ECSS-E-40 part 1B

		2003

		Software-Part 1: Principles and requirements

		4.2.4

4.4

5.1

5.2.2

5.3.4

		23

26

31

32-41

42

		2

		ECSS-E-40 part 2B

		2005

		Software-Part 2: Document requirements definitions (DRDs)

		5

7

		27, 34

42

		4

		ECSS-Q-80B-10

		2003

		Space Product Assurance: Software Product Assurance

		5.2.2

6.1.3

		23

33

		5

		ECSS-E-HB-50A

		2008

		Communication guidelines

		4.20

		120-122

		6

		ECSS-E-ST-10C

		2009

		System engineering general requirements

		5.6.4

Annex-M

		32

81

[bookmark: _Toc296419213]Table 1 Traceability to ECSS for the standards-based model of software-FUR for system Data identification and Database-NFR

		ID

		ECSS standards

		Year

		ECSS standards name

		Section No.

		Page No.

		1

		ECSS-E-40 part 1B

		2003

		Software-Part 1: Principles and requirements

		5.4.2

		44

		2

		ECSS-E-40 part 2B

		2005

		Software-Part 2: Document requirements definitions (DRDs)

		5(O)

		35

		3

		ECSS-E-ST-70-31C

		2008

		Ground systems and operations, monitoring and control data definitions

		5.1

5.5

6

		20

24-37

38-126

		4

		ECSS-E-ST-10C

		2009

		System engineering general requirements

		5.9

		95

Specification and Measurement of System Configuration

IWSM/MetriKon 2010 1

Specification and Measurement of System Configuration Non

Functional Requirements

Khalid T. Al-Sarayreh, Alain Abran

Software Engineering Department, University of Quebec (ETS)

1100 Notre-Dame West Montréal, Québec H3W 1T8, Canada

khalid.al-sarayreh.1@ens.etsmtl.ca, alain.abran@etsmtl.ca

Abstract:

The European ECSS-E-40 series of standards for the aerospace industry includes

configuration as one of 16 types of non functional requirements (NFR) for

embedded and real-time software. Configuration requirements are typically de-

scribed at the system level as non functional requirements, and a number of

concepts and terms are provided in the ECSS series to describe various types of

candidate configurations. This paper collects and organizes these configuration

related descriptions into a generic model for the specification of software

functional user requirements (software FUR) for system configuration NFR, and

for measuring their functional size for estimation purposes using the COSMIC ISO

19761 standard.

Keywords

Configuration Requirements, Non functional requirements – NFR, Functional size,

COSMIC – ISO 19761, ECSS International standards.

1 Introduction

Non functional requirements (NFR) play a critical role during system
development, including as selection criteria for choosing among alternative
designs and ultimate implementations. NFR may also considerably impact project
effort, and should be taken into account for estimation purposes and when
comparing project productivities. Typically, NFR are initially described at the
system level, and there is no consensus yet on how to describe and measure them
at the software level.

In practice, NFR may be viewed, defined, interpreted, and evaluated differently
by different people, particularly when they are stated briefly and imprecisely [1-
3]. Therefore, it is a challenge to take them into account in software estimation
and software benchmarking: NFR have received less attention in the literature
than other cost factors in software engineering, and are definitely less well
understood [3]. Without measurement, it is not easy to take NFR as quantitative
inputs to an estimation process and to productivity benchmarking.

mailto:khalid.al-sarayreh.1@ens.etsmtl.ca

mailto:alain.abran@etsmtl.ca

Khalid T. Al-Sarayreh, Alain Abran

2 Software Measurement Conference

In practice, requirements are typically initially addressed at the system level [4-
7] as either high-level system functional user requirement system FUR or high-
level system non functional requirements system NFR. Such high-level re-
quirements must usually be detailed next and allocated to specific-related func-
tions, which may be implemented in both hardware and software, or both, as
software FUR [8-12], for instance – see Fig. 1.

For example, system FUR will describe the functions required in a system, while
system NFR will describe how the required functions must behave in a system
[13-15]. In the software requirements engineering step, such system NFR may be
detailed next and specified as software FUR to allow a software engineer to
develop, test, and configure the final deliverables to system users.

"Functional" refers to the set of functions the system is to offer, while "non
functional" refers to the manner in which such functions are performed. FUR are
typically phrased with subject or predicate constructions, or noun/verb, such as:
“The system configuration has to register 5 personal computers to be connected
with a shared printer” (i.e. the system configuration specifies the elements that
define and/or prescribe the components of the system). NFR are typically phrased
with adverbs or modifying clauses, such as: “The system configuration has to
register 5 personal computers to be connected with a shared printer with high
accessibility or controllability".

Fig. 1. Mapping system-FUR and -NFR into software-FUR

Currently, there is no generic model for the identification and specification of
software FUR for system configuration NFR from the various views documented
in international standards and in the literature. Consequently, it is a challenge to
measure them and take them into account quantitatively for estimation purposes.
This paper reports on the work carried out to define an integrated view of
software FUR for system configuration NFR on the basis of international
standards, and on the use of a generic model of software FUR for system
configuration NFR to measure their functional size using the COSMIC standard
[16], independently of software development and implementation methodologies
and technologies.

This paper is organized as follows. Section 2 presents the generic view of
software FUR in ISO 19761. Section 3 identifies the standards describing a

Specification and Measurement of System Configuration

IWSM/MetriKon 2010 3

configuration as either system NFR or as functional requirements for software
and hardware. Section 4 presents a standards-based definition of a generic model
of requirements for system configuration NFR. Section 5 presents a procedure for
describing and measuring their functional size, and a discussion is presented in
section 6.

2 A generic view of software-FUR in ISO

In the collection of ISO standards, it is specified in the ISO 14143-1 [17] that a
functional size measurement method must measure the software functional user
requirements (FUR). In addition, ISO 19761 – COSMIC [18] proposes a gener-
ic model of software-FUR that clarifies the boundary between hardware and
software. Fig. 2 illustrates the generic flow of data from a functional perspec-
tive from hardware to software. From this generic model of software functional
requirements in Fig. 2 the followings can be observed:

 Software is bounded by hardware. In the so-called “front-end” direction (i.e.
left-hand side in Fig. 2), software used by a human user is bounded by I/O
hardware such as a mouse, a keyboard, a printer or a display, or by engi-
neered devices such as sensors or relays. In the so-called “back-end” direc-
tion (i.e. right-hand side of Fig. 2), software is bounded by persistent storage
hardware like a hard disk and RAM and ROM memory.

 The software functionality is embedded within the functional flows of data
groups. Such data flows can be characterized by four distinct types of data
movements. In the “front end” direction, two types of movements (EN-
TRIES and EXITS) allow the exchange of data with the users across a
„boundary‟. In the “back end” direction, two types of movements (READS
and WRITES) allow the exchange of data with the persistent storage hard-
ware.

 Different abstractions are typically used for different measurement purposes.
In real-time software, the users are typically the engineered devices that inte-
ract directly with the software that is the users are the „I/O hardware‟. For
business application software, the abstraction commonly assumes that the
users are one or more humans who interact directly with the business appli-
cation software across the boundary; the „I/O hardware‟ is ignored.

As an FSM method, COSMIC is aimed at measuring the size of software based
on identifiable FUR. Once identified, those requirements are allocated to hard-
ware and software from the unifying perspective of a system integrating these
two “components”. Since COSMIC is aimed at sizing software, only those re-
quirements allocated to the software are considered in its measurement proce-
dure.

Khalid T. Al-Sarayreh, Alain Abran

4 Software Measurement Conference

Fig. 2. Generic flow of data groups through software from a functional perspective in COS-

MIC – ISO 19761

3 Identification of standards for describing configuration requirements

This section presents a survey of the configuration-related views, concepts, and
terms in the ECSS standards [19-22], Vincenti view of design [23] and in the
SWEBOK Guide (ISO 19759) [18].
This section identifies which standards or views currently address some aspects
of the software FUR derived from system NFR, specifically for the functional

configuration requirements see Fig. 3. The expected outcome is the
identification of the various elements that should be included in the design of a
standards-based framework for specifying software FUR for system configuration
NFR.
The elements of configuration are dispersed in various system views throughout
different ECSS standards, and are expressed as either:

 System configuration functional user requirements (system configuration
FUR);

 System configuration non functional requirements (system configuration
NFR).

Fig. 3. Mapping system-requirements into software-FUR for Configuration requirements

Specification and Measurement of System Configuration

IWSM/MetriKon 2010 5

3.1 Configuration requirements in ECSS standards

Configuration in the ECSS standards is considered part of the “design and im-
plementation engineering process”, including control activities and data flows for
the operational functions and data transfers of defined items. Table 1 presents a
list of concepts and the vocabulary used in those standards to describe system-
related configuration requirements. For instance, ECSS standards specify that

each item or element defined during the design can be configured. They also
specify what configuration requirements shall be implemented in software.

Key views Concepts and vocabulary

Secure environment with

controlled access linked

with required physical and

functional characteristics of

the system

 Control activities of defined configuration items.

 Control flow

 Data flow

 Each item or component defined during the design can be

configured such as:

 Modules,

 Processes and threads,

 Events and communication channels between a mod-

ules and a sub software module

 Control operational functions

 Register data transfers

Table 1. Configuration requirements view and vocabulary in ECSS

While conducting a survey of all the configuration concepts and terms described
in the ECSS-E-40 and ECSS-Q-series and in ECSS-ESA as the integrated stan-
dard for ECSS-E and ECSS-Q, it was observed that:

 These various configuration elements are described differently, and at differ-
ent levels of detail;

 The configuration elements are dispersed throughout the various documents,
and so there is no integrated view of all types of candidate configuration re-
quirements;

 There is no obvious link between the configuration requirements in ECSS-
ESA as the integrated standard and all the other ECSS standards that de-
scribe configuration requirements in their contents.

3.2 Configuration requirements in the SWEBOK Guide (ISO 19759)

The key view on configuration in the SWEBOK Guide (ISO 19759) is that of a
system with functional and/or physical characteristics of hardware, firmware, or
software, or a combination of these, as set forth in technical documentation and
achieved in a product. Configuration can also be thought of as a collection of

Khalid T. Al-Sarayreh, Alain Abran

6 Software Measurement Conference

specific versions of hardware, firmware, or software items combined according to
specific procedures to serve a particular purpose. Configuration management
(CM), then, is the discipline of identifying the configuration of a system at dis-
tinct points in time for the purpose of systematically controlling changes to the
configuration.

The use of the functional configuration audit (FCA) and the physical configura-
tion audit (PCA) can be considered as a prerequisite for the establishment of the
product baseline. The purpose of the PCA is to ensure that the design and refer-
ence documentation are consistent with the product as built.

Key views Concepts and vocabulary

Functional and/or physical char-

acteristics of hardware, firmware,

or software, or a combination of

these

 Functional characteristics of hardware, firmware,

and software.

 Systematic control of changes to the configuration

 Configuration control

 Physical configuration audit (PCA)

Table 2. Configuration view and vocabulary in the SWEBOK

While conducting the survey of all the configuration concepts and terms de-
scribed in the SWEBOK Guide, it was observed that:

 The configuration is described using both system and software views.

 The configuration elements are described at different levels of detail.

 There is no detailed measurement view in the configuration knowledge area.

3.3 Configuration requirements in Vincenti view of design

The key view on configuration as a non functional requirement in the Vincenti
[23] view of design is from the engineering perspective of the quality of the sys-
tem device. Configuration is presented as part of the fundamental design concepts
in engineering. The inventory of related concepts and vocabulary on system NFR
configuration is presented in Table 3.

For example, when Vincenti [23] defines the control volume analysis method as
part of normal configuration, he is actually describing the operational functions of
each item defined in the device; and each defined item should be configured.
Therefore, Vincenti concludes that the normal configuration and operational func-
tions are closely related, because both form a normal design. Similarly, for the
propeller example in his book, Vincenti defines the propeller data as part of the
configuration:

Specification and Measurement of System Configuration

IWSM/MetriKon 2010 7

 The term „propeller‟ refers to „a revolving shaft with spiral blades that cause a
ship or an aircraft to move by the backward thrust of water or air‟1: from the
perspective of this research, this corresponds to registered data transfers
between a set of operational functions in the system.

While conducting the survey of configuration concepts and terms described in
the Vincenti view of design, it was observed that:

 Vincenti describes configuration at a highly abstract level as a philosophical
view from past experience and the growth of engineering knowledge in the
aeronautic field.

 This view could be applied to system and software configuration.

Key view Concepts and vocabulary

The general shape and arrangement that, by

general agreement, best embody the opera-

tional principle.

 Control volume analysis method

 Propeller data

Table 3. Configuration view and vocabulary in Vincenti [23]

4 A standard based generic model of software-FUR for system configu-

ration requirements

This section first identifies, and then assembles, the concepts and vocabularies
associated with configuration elements dispersed throughout the ECSS standards,
the SWEBOK Guide, and Vincenti‟s view of design. These concepts and
vocabularies are mapped into a proposed model of software FUR for system
configuration NFR – see Fig. 3, through the use of the generic model of FUR
proposed in the COSMIC model. This COSMIC-based generic model can then
become a framework for describing the software FUR from system configuration
NFR based on the ECSS standards.

Based on the synthesis of the previous configuration-related definitions, views
and concepts in ECSS standards, the SWEBOK guide, and Vincenti, we can con-
clude that:

 They all consider configuration as an important part of the design.

 They all mention control configuration items or configuration elements such
as:

 Control flow for operational functions;

 Data flow registered in each operational function.

1 From the World Lingo translator (online dictionary used by Google and Yahoo).

Khalid T. Al-Sarayreh, Alain Abran

8 Software Measurement Conference

The set of software FUR for system configuration NFR based on the previous
mapping is presented in Table 4.

No. Software FUR for System Configuration NFR

1.

2.

3.

4.

Configuration control flow function

Configuration data flow function

Register data transfer function

Operational functions

Table 4. Software FUR for system configuration NFR

Two types of configuration requirements must be identified:

 Configuration control flows: the relationships between the operational
functions for the configuration items or elements;

 Configuration data flows: partition of an application into pieces that can be
configured individually on configurable hardware or in Software.

The entities and functional relationships of the software FUR for system
configuration NFR can then be identified.

4.1 Configuration functions to be specified

The configuration functions to be specified are divided into external and internal
configuration – see Table 5: The external configuration specifies the registered
data that could come into the system view, while the internal configuration
specifies the expected operational functions in use in the system.
The ECSS view of system configuration NFR is that of a secure environment
including data and control flows. The ECSS view of software FUR for system
configuration NFR within a secure environment includes:

 Registered data transfer, which contains a transfer history extraction unit,
which extracts transfer history information from data subjected to data transfer
each time the data transfer is performed, the extracted transfer history
information being separate from the data subjected to data transfer in the secure
environment for the system configuration NFR;

 Operational functions, which define an area of responsibility within an
operational function in a hierarical structure in the secure environment for the
system configuration NFR.

In an embedded system, for example, the execution of an interrupt control flow is
initiated by hardware. In the case of an Interrupt request (IRQ) signal, the CPU
interrupts the current executing control flow and branches into an IRQ handler
function. This function must not block, as doing so might freeze the system. If an
IRQ handler needs to access some resource that is currently in use by a thread (or

Specification and Measurement of System Configuration

IWSM/MetriKon 2010 9

some other IRQ handler), it cannot wait for the resource to be released. Therefore,
every OS needs some mechanism to delay the execution of the interrupt code, or
at least those parts of it accessing the resource, until the resource is available.

To solve the problem in this example, a secure environment for the system
configuration NFR should not allow the blocking of IRQ handling function,
because the interrupt should be registered before data transfer: more specifically,
the problem in this example comes from the emergent properties between the
functional and non functional requirements, which also reflect the problem on the
NFR-configuration.

An IRQ line is a hardware line over which devices can send interrupt signals to
the microprocessor. When, for example, a new device is added to a PC, these IRQ
cases sometimes need to be reconfigured.

Configuration Types Configuration Functions

External configuration function Registered data transfer function

Internal configuration function

 Operational functions

Table 5. Configuration functions that may be allocated to software

4.2 Identification of the function types in software FUR from system

configuration NFR

Function Type 1: Configuration data flow

 Register data transfer 1 sends a data group to register data transfer 2.

 Register data transfer 2 receives a data group from register data transfer 1.

 Register data transfer 2 sends a data group to register data transfer n.

 Register data transfer n receives a data group from register data transfer 2.

 Fig. 4: Configuration data flow

Function Type 2: Configuration control flow

 The operational function 1 sends and receives a data group to/from opera-
tional function 2.

 The operational function 2 sends and receives a data group to/from opera-
tional function n.

Register data

transfer 1

Register data

transfer 2

1 1
Register data

transfer n

1 1

http://www.webopedia.com/TERM/I/PC.html

Khalid T. Al-Sarayreh, Alain Abran

10 Software Measurement Conference

 Fig. 5: Configuration control flow

Function Type 3: Configuration flow

 Register data transfer 1 to n sends a data group with at least one and possi-
bly more operational functions;

 Operational function 1 to n receives a data group from register data trans-
fer 1 to n;

 Control flow (function type 2) sends a data group to register data transfer 2

(function type 1) see Figure 6, after having executed all operational func-
tions for Register data transfer 1, to order Register data transfer 2 to accept
any data group from Register data transfer 1.

 Fig. 6: Configuration flow.

4.3 Identification of the functional relationships in the software FUR for

system configuration NFR

Fig. 7 presents a conceptual view of the relationships between embedded soft-
ware and non functional configuration requirements. In classic embedded soft-
ware, data flow and control flow are tightly coupled, and execute in lock-step

[24]. In distributed embedded software and heterogeneous applications, the links

between data flow and control flow are loosened [24]. A data flow configuration
consists of a set of registers, data transfers, and control operational functions [25].

Fig. 7 also presents an overview of the relationships between the entity types in
the software FUR for the configuration NFR, using the COSMIC model for
graphical representation.

More specifically:

 The sub model of function type 1 can be used to specify the external confi-
guration for the data flow (and to measure its functional size) throughout the
registered data transfers – see the unshaded area in Figure 7.

 The sub model of function type 2 can be used to specify the internal
configuration for the control flow (and to measure its functional size)
throughout the operational functions – see the shaded area in Figure 7.

Operational

function 1

Operational func-

tion 2
Operational func-

tion n

Configuration Data flow

(Function Type 1)

Register data transfer 1...n

Configuration Control flow

(Function Type 2)

Operational functions 1…n

Specification and Measurement of System Configuration

IWSM/MetriKon 2010 11

 The model of function type 3 can be used to specify the configuration flow for

the configuration control and data flow (and to measure its functional size)
see Figure 7.

This model is referred to here as a COSMIC reference model of software FUR for
system configuration NFR.

 Fig. 7: COSMIC reference model of configuration requirements allocated to software

F
U
R

Configuration Flow (Function Type 3)

Configuration Data Flow

(Function Type 1)

Configuration Control Flow

 (Function Type 2)

P
E
R
S
I
S
T
E
N
T

S
T
O
R
A
G
E

External Measurements

Internal Measurements

Boundary Intermediary
Service

Register Data

Transfer

1.1

Register Data

Transfer

2.1

E
x
it E

n
try

Register Data

 Transfer

n.1

E
x
it E

n
try

Operational Function 2.1 Entry

Write

Read

Operational Function 2.n Entry

Write

Read

Operational Function n.1 Entry

Write

Read

Operational Function n.n Entry

Write

Read

Operational Function 1.1 Entry

Write

Read

Operational Function 1.n Entry

Write

Read

Data Movement
E, X, R, W

Exit Entry

Khalid T. Al-Sarayreh, Alain Abran

12 Software Measurement Conference

5 Sizing a Reference Instantiation of the Generic Model of Software-FUR

for System Configuration

The specification of software FUR for system configuration NFR in any specif-
ic project is a specific instantiation of the proposed generic model, as described
in Figure 7 (from left to right). When the specification document is at the level
of the movements of data groups, then these configuration requirements cans be
directly measured using the COSMIC measurement rules.
Table 6 presents the measurement results, using COSMIC, of a specific instan-
tiation of configuration requirements which would have one of each of the func-
tions and relationships described in section 4 and Figure 7. For example, for
configuration data flow (function type 1): Register data transfer sends one data
group to an operational function. This requirement corresponds to one COSMIC
Entry data movement, for a functional size of 1 CFP. The corresponding total
functional size of this specific generic instantiation would therefore consist of at
least 15 data movements of one data group, for a total functional size of 15 CFP

with the COSMIC ISO 19761 standard see Table 6, bottom line.

Example of a functional size measurement of software FUR for system
configuration NFR.

Functional

Processes

Data Movement Description

Data

Movement

Type

Configuration

data flow

 Each Register data transfer sends one data group

to another Register data transfer.

 Each another Register data transfer receives one

data group from Register data transfer

 Each Register data transfer entry one data group to

each operational function.

X

E

E

Configuration

control flow

 One operational function reads and writes one data

group for each Register data transfer.

 Each operational function sends and receives one

data group to/from another operational function or

(intermediary service).

R, W

4E, 4X

Configuration

flow

 FUR or Deviced Engineered sends one data group

to the Configuration data flow

 FUR or Deviced Engineered receives one data

group from the Configuration Control flow.

E

X

Total Cosmic Functional Size 15 CFP

Table 6. Example of a functional size measurement of software FUR for system configuration NFR

The intermediary used, when operational function 1 for example, requires data
that is available via operational function 2, the former application service calls a
functional process of the intermediary service – see Fig 8.

Specification and Measurement of System Configuration

IWSM/MetriKon 2010 13

 Fig. 8: operational functions and interconnecting intermediary service

6 Discussion

This paper has introduced a procedure for specifying and measuring the re-
quirements of the software FUR for the internal and external system configura-
tion needed to address the system NFR for configuration.

The software FUR for system Configuration NFR procedure is considered an in-
tegral part of design requirements. There is a close relationship between configu-
ration NFR and software FUR for system-operational NFR

Each software FUR for system configuration NFR has at least one Register data
transfer function and possibly more, and one or more control operational func-
tions.
The main contribution of this paper is the proposed Generic Model of software
FUR for system configuration NFR. This generic model is considered as a kind
of reference model for the measurement of the functional size of system confi-
guration NFR, and is based on:

 The ECSS standards, the SWEBOK Guide, and Vincenti‟s view of design
for the description of the software FUR for the system configuration NFR.

 The COSMIC model of software functional requirements.

The model is independent of the software type and the languages in which soft-
ware FUR for system configuration NFR will be implemented.

The proposed generic configuration model (i.e. reference model) provides:

 A specification model for each type, or all types, of software FUR for confi-
guration NFR: for example, the measurement for data flows (such as the
Register data transfer function for configuration items) and control flows
(such as operational functions on configuration items).

 A specification measurement model for each type, or all types, of configura-
tion requirements as non functional requirements.

Future work includes verification of this generic model to ensure full coverage
of configuration requirements as non functional requirements, and verification
with groups of experts to develop a consensual generic model which could be
proposed as a candidate for standardization.

Intermediary

Service
Operational

Function 2

E

X E

X

Boundary

Operational

Function 1

E

X E

X

Boundary

Khalid T. Al-Sarayreh, Alain Abran

14 Software Measurement Conference

References

[1] L. Chung and P. Leite, "On Non-Functional Requirements in Software

Engineering in Conceptual Modeling: Foundation and Applications,
Essays in Honor of John Mylopoulos", 2009.

[2] L. Chung, B.Nixon, E.Yu, J. Mylopoulos, "Non-Functional Requirements
in Software Engineering", Springer, Heidelberg, 1999.

[3] J. Mylopoulos, L.Chung, B.Nixon, "Representing and Using
Nonfunctional Requirements: A Process- Oriented Approach", IEEE
Transactions on Software Engineering, vol. 18, pp. 483-497, 1992.

[4] M. Shaw, "Larger Scale Systems Require Higher-Level Abstractions",
Software Specification and Design, IEEE Computer Society, vol. 14, pp.
143-146, 1989.

[5] A. M. Davis, "Software requirements: objects, functions, and states",
Prentice-Hall, Inc., 1993.

[6] I. Jacobson, G. Booth, J.Rumbaugl, "Excerpt from the Unified Software
Development Process: The Unified Process", IEEE Software, vol. 16, pp.
96-102, 1999.

[7] K. Wiegers, "Software Requirements", 2nd edition, Microsoft Press,
2003.

[8] K. T. Al-Sarayreh and A. Abran, "A Generic Model for the Specification
of Software Interface Requirements and Measurement of Their
Functional Size", 8th ACIS International Conference on Software
Engineering Research, Management and Applications, SERA 2010,
Montreal, Canada, 2010, pp. 217-222.

[9] K. T. Al-Sarayreh and A. Abran, "Measurement of Software
Requirements Derived from System Reliability Requirements", 24th
European Conference on Object-Oriented Programming (ECOOP 2010),
Maribor, Slovenia, EU, 2010.

[10] K. T. Al-Sarayreh, A. Abran, J. Cuadrado, "A Standards-based Model for
the Specification and Measurement of Maintainability Requirements",
22nd International Conference on Software Engineering and Knowledge
Engineering (SEKE 2010), Redwood City, California, USA, 2010.

[11] A. Abran, K. T. Al-Sarayreh, J. Cuadrado, "Measurement Model of
Software Requirements Derived from System Portability Requirements",
9th International Conference on Software Engineering Research and
Practice (SERP 2010), Las Vegas, USA, 2010.

[12] A. Abran and K. T. Al-Sarayreh, "Standards-Based Model for the
Specification of System Design and Implementation Constraints ", 17th
International Conference on European Systems and Software Process
Improvements (EURO-SPI 2010), Industry track, Grenoble Institute of
Technology, Grenoble, France, Sept. 2010.

Specification and Measurement of System Configuration

IWSM/MetriKon 2010 15

[13] G. Roman, " A Taxonomy of Current Issues in Requirements
Engineering", IEEE Computer, pp. 14-21, 1985.

[14] B. W. Boehm, "Characteristics of software quality", Amsterdam, New
York, North-Holland Pub. Co. , American Elsevie., 1978.

[15] A. I. Antón, "Goal identification and refinement in the specification of
software-based information systems", PhD Thesis, Georgia Institute of
Technology, 1997.

[16] ISO/IEC-19761, "Software Engineering - COSMIC v 3.0 - A Functional
Size Measurement Method", International Organization for
Standardization, Geneva (Switzerland), 2003.

[17] ISO/IEC-14143-1, " Information technology - Software measurement -
Functional size measurement Part 1: Definition of concepts",
International Organization for Standardization, Geneva (Switzerland),
1998

[18] ISO-19759, "Software Engineering Body of Knowledge (SWEBOK) ",
IEEE Computer Society, 2004.

[19] ECSS-E-40-Part-1B, "Space Engineering: Software - Part 1 Principles
and Requirements", European Cooperation for Space
Standardaization,The Netherlands, 2003.

[20] ECSS-E-40-Part-2B, "Space Engineeing:Software- part 2 Document
Requirements Definitions", European Cooperation for Space
Standardaization, The Netherlands, 2005.

[21] ECSS-Q-80B, "Space product assurance: Software product assurance",
European Cooperation for Space Standardaization, The Netherlands,
2003.

[22] ECSS-ESA, "Tailoring of ECSS, Software Engineering Standards for
Ground Segments, Part C: Document Templates", ESA Board of
Standardization and Control (BSSC), 2005.

[23] W. G. Vincenti, "What engineers know and how they know it",
Baltimore, London, The Johns Hopkins University Press, 1990.

[24] P. Schaumont, K.Sakiyama, A.Hodjat, "Embedded Software Integration
For Coarse-Grain Reconfigurable Systems", International Parallel And
Distributed Processing Symposium ,IEEE, 2004.

[25] D. W. Lewis, "Fundamentals of Embedded Software: Where C and
Assembly Meet", Prentice Hall Professional Technical, 2002.

Abstract

The European standards series for the aerospace industry (ECSS) include the software de-
sign and implementation (D&I) constraints as one of sixteen non-functional requirements for
the embedded and real time software. Design and implementation (D&I) constraints are typi-
cally described at the system and software levels and within the ECSS standards, there are
numbers of concepts and terms used to describe various types of candidate D&I constraints.
This paper collects and organizes these concepts into a generic standards-based reference
model of the requirements at the software level. The structure of this reference model is based
on the generic model of software functional requirements proposed in the COSMIC – ISO
19761, in that way allowing the measurement of the functional size of such requirements im-
plemented through software.

Keywords
Design and implementation constraints (D&I), Non functional requirements – NFR, Functional
size, COSMIC – ISO 19761, ECSS International Standards, Software Measurement and
SWEBOK Guide (ISO 19759).

1 Introduction

 Non-functional requirements (NFR) play a critical role in system development, including as
selection criteria for choosing among alternative designs and ultimate implementations. NFR may also
have a considerable impact on project effort, and should be taken into account for estimation purposes
and when comparing project productivity.
 Typically, these non functional requirements are described at the system level, and not at the
software level, and there is no consensus yet on how to describe and to measure such system NFR.
In practice, NFR may be viewed, defined, interpreted, and evaluated differently by different people,
particularly when they are stated briefly and vaguely [1-3]. It is challenging to take the NFR into
account in software estimation and software benchmarking: the NFR have received less attention in
the software engineering literature and are definitely less well understood than other costs factors [3].
Without measurement, it is challenging to take NFR as quantitative inputs into an estimation process
and productivity benchmarking.
 In the practice, the requirements are initially addressed typically at the system level [4-7] as either
high-level system functional user requirement (system-FUR) or high level system non-functional re-
quirements (system-NFR); such high level requirements must typically next be detailed and allocated
to functions which may be implemented in either or both hardware and software, as software FUR
(software-FUR) for instance.

A Standards-Based Model for the
Specification of System Design and

Implementation Constraints
Alain Abran, Khalid T. Al-Sarayreh

Software Engineering Department, École de technologie supérieure (ETS)- University of Quebec

1100 Notre-Dame west, Montréal, Québec H3W 1T8, Canada

alain.abran@etsmtl.ca, khalid.al-sarayreh.1@ens.etsmtl.ca

mailto:alain.abran@etsmtl.ca

mailto:khalid.al-sarayreh.1@ens.etsmtl.ca

A Standards-Based Model for the Specification of Design Constraints

 For example, a system-FUR will describe what are the required functions needed in a system,
while a system-NFR will describe how the required functions must behave in a system [8-10]; in the
software requirements engineering step, such system-NFR may next be detailed and specified as
software-FUR to allow a software engineer to develop, test and configure the final deliverables to
system users.
 “Functional” refers to the set of functions the system (including the software) is to offer, while
"non-functional" refers to the manner in which such functions are performed. Functional user require-
ments (FUR) are typically phrased with subject or predicate constructions (i.e. noun/verb) such as:
"The system design must include some of the software components to implement various
parts/features of the system device". Non-functional requirements (NFR) are typically phrased with
adverbs or modifying clauses, such as: “The system design must highly reuse existing software
components behaviours that implement various parts/features of the system design".
 Within the ECSS European standard for the aerospace industry [11-14] and the SWEBOK Guide
[15], a number of concepts are provided to describe various types of candidate design and
implementation (D&I) constraints at both the system, software and hardware levels. However, these
standards vary in their views, terminology and coverage of D&I requirements.
 Currently, there exists no generic model for the identification and specification of software-FUR for
implementing system D&I constraints (system-NFR) from the various views documented in
international standards and in the literature. Consequently, it is challenging as well to measure these
D&I constraints-related software-FUR and to take them into account quantitatively for estimation
purposes.
 The motivation of this research project is to contribute to better define, describe and measure some
of the NFR inputs required for adequate a priori cost estimation of software projects. The
measurement scope in this paper is to identify separately all functionality allocated to D&I constraints
for embedded and real time software, whether software has yet to be built or it has already been
delivered.
 The focus of this paper is on a single type of NFR that is, system D&I constraints. This paper
reports on the work carried out to define an integrated view of software-FUR for system D&I
constraints on the basis of international standards, and on the use of the generic COSMIC – ISO
19761 [15] model of software-FUR to measure their functional size.
 This paper is organized as follows. Section 2 presents the structured view of software functional
user requirements (software-FUR) in ISO 19761. Section 3 identifies the standards describing D&I
constraints requirements. Section 4 presents a standard-based definition of a generic model of
requirements for software to implement system D&I constraints. Section 5 presents a measurement
example. Finally, a discussion is presented in section 6.

2 A generic View of Software-FUR in ISO

 In the collection of ISO standards, it is specified in the ISO 14143-1 [16] that a functional size
measurement method must measure the software functional user requirements (FUR). In addition,
ISO 19761 – COSMIC [15] proposes a generic model of software-FUR that clarifies the boundary be-
tween hardware and software. Fig. 1 illustrates the generic flow of data from a functional perspective
from hardware to software. From this generic model of software functional requirements in Fig. 1 the
followings can be observed:

 Software is bounded by hardware. In the so-called “front-end” direction (i.e. center in Fig. 1), soft-
ware used by a human user is bounded by I/O hardware such as a mouse, a keyboard, a printer
or a display, or by engineered devices such as sensors or relays. In the so-called “back-end” di-
rection (i.e. right-hand side of Fig. 1), software is bounded by persistent storage hardware like a
hard disk and RAM and ROM memory.

 The software functionality is embedded within the functional flows of data groups. Such data flows
can be characterized by four distinct types of data movements. In the “front end” direction, two
types of movements (ENTRIES and EXITS) allow the exchange of data with the users across a
„boundary‟. In the “back end” direction, two types of movements (READS and WRITES) allow the
exchange of data with the persistent storage hardware.

 Different abstractions are typically used for different measurement purposes. In real-time software,
the users are typically the engineered devices that interact directly with the software that is the us-
ers are the „I/O hardware‟. For business application software, the abstraction commonly assumes
that the users are one or more humans who interact directly with the business application software

A Standards-Based Model for the Specification of Design Constraints

across the boundary; the „I/O hardware‟ is ignored.
As an FSM method, COSMIC is aimed at measuring the size of software based on identifiable FUR.
Once identified, those requirements are allocated to hardware and software from the unifying perspec-
tive of a system integrating these two “components”. Since COSMIC is aimed at sizing software, only
those requirements allocated to the software are considered in its measurement procedure.

Fig. 1. Generic flow of data groups through software from a functional perspective in COSMIC – ISO 19761

3 Identification of Standards for Describing D&I Constraint
Requirements

 This section presents a survey of the D&I constraints views, concepts and terms in the ECSS
standards. This section identifies which standards currently address some aspects of the software-
FUR derived from system requirements. The expected outcome is the identification of the various
elements that should be included in the design of a standard-based framework for modelling software-
FUR for system D&I constraints.

3.1 D&I Requirements in ECSS standards

 The elements of D&I constraints are dispersed in various system views throughout different ECSS
standards and are expressed as either – see Fig. 2:

 System D&I constraints functional user requirements (system D&I constraints-FUR)

 System D&I constraints non-functional requirements (system D&I constraints-NFR)

Fig. 2. Mapping system-requirements into software-FUR for D&I constraints

 The identification of D&I constraints in the ECSS standards is derived from an analysis of the
requirements on the system and its functions. All system requirements are allocated to a set of D&I
constraints. Moreover, hardware configuration D&I constraints, software configuration D&I constraints,
and human operations D&I constraints shall be subsequently identified from these requirements. The
supplier shall transform the requirements for the software D&I constraints into an architecture that
describes its top-level structure and identifies the software components, ensuring that all the require-
ments for the software D&I constraints are allocated to its software components and later refined to
facilitate detailed design.
 The software architectural design shall describe the D&I constraints within:

 The static architecture (i.e. decomposition into software elements such as packages and classes
or modules),

 The dynamic architecture, which involves active objects such as threads, tasks and processes,
and

 The mapping between the static and the dynamic architecture, and the software behaviour.

A Standards-Based Model for the Specification of Design Constraints

The software D&I constraints requirements shall produce the physical model of the software compo-
nents described during the software architectural design. For embedded software D&I constraints the
following information should be included:

 Type of D&I constraints participating to the real time behaviour, described by stating its logical and
physical characteristics with D&I,

 Scheduling types with D&I (e.g. single or multi-threads),

 Scheduling model with D&I (e.g. pre-emptive or not, fixed or dynamic priority based),

 Analytical model with its D&I (e.g. rate monotonic scheduling, deadline monotonic scheduling),

 Tasks identification and D&I priorities,

 Communication and synchronization with D&I,

 Time management through D&I,

 The dependencies of a component should be described by listing the D&I upon its use by other
components.

 The ECSS-ESA document [17] covers the tailoring of the ECSS-E-40 requirements for the
European Space Agency (ESA) software projects. In this document, the software design includes a
program design, pseudo-code and flow charts. Software D&I may specify that the processing has to
be performed using a particular algorithm and program parameters.
 Table 1 presents a list of concepts and vocabulary used in ECSS to describe system related D&I
constraints requirements and ECSS mentions that such requirements may be implemented in soft-
ware.

Table 1. D&I constraints view and vocabulary in ECSS

Key view Concepts and Vocabulary

Design and implementa-
tion (D&I) constraints ap-
plicable to various compo-
nents of the system prod-
uct

 Software architectural D&I constraints on modules, classes, packages.

 Software detailed D&I constraints on tasks and processes.

 Physical model of the software D&I constraints described during the software
architectural design.

 The logical model of the D&I constraints described during the software archi-
tectural design.

 While conducting the survey of all the D&I constraints concepts and terms described in the ECSS-
E-40 and ECSS-Q-series and in ECSS-ESA as the integrated standard for ECSS-E and ECSS-Q, it
was observed that:

 These various D&I constraints are described differently, and at different levels of detail within the
system design;

 The D&I constraints within the system design are dispersed throughout the various documents:
there is, therefore, no integrated view of all types of candidate D&I constraints requirements;

 There is no obvious link for the D&I constraints requirements in ECSS-ESA as the integrated
standard and between all other ECSS standards that describe D&I constraints requirements within
their system design or within their different ECSS standards contents.

 With regards to European standards, software D&I constraints requirements can be measured
within:

 Static architectural D&I constraints, including modules, classes and packages. and

 Dynamic architectural D&I constraints including tasks and processes.

 It is also to be noted that ECSS does not propose a way to measure such D&I constraints re-
quirements and, without measurement, it is challenging to take such an NFR as a quantitative
input to an estimation process or in productivity benchmarking.

3.2 D&I Constraints Requirements in the SWEBOK Guide

 According to the SWEBOK Guide (ISO 19759) [15] ; “Software requirements express the needs
and constraints placed on a software product that contribute to the solution of some real-world prob-
lem". ISO 19759 mentions explicitly D&I constraints as non-functional requirements in the “Software
Requirements‟ knowledge area (KA) and implicitly within the context of activities for design in the
„Software Design‟ KA.
 Software design is defined in ISO 19759 [15] as both “the process of defining the architecture,
components, interfaces, and other characteristics of a system or component" and “the result of [that]

A Standards-Based Model for the Specification of Design Constraints

process". Furthermore software design in the software engineering life cycle is defined as activities in
which software requirements are taken as inputs for analysis in the software design phase.
 The architectural design is also described by ISO 19759 as the point at which the requirements
process overlaps with software or systems design and illustrate how challenging it is to cleanly de-
couple the two tasks; software architecture is “a description of the subsystems and components of a
software system and the relationships between them”. This means that ISO 19759 is describing the
D&I constraints in the Software Requirements KA and these D&I constraints should be reflected on
the software design in the Software Design KA.
 Moreover, software design consists of two activities that fit between software requirements analy-
sis and software construction:

 Software architectural design (sometimes called top level design): describing software‟s top-level
structure and organization and identifying the various components.

 Software detailed design: describing each component sufficiently to allow for its construction.

 ISO 19759 is decomposing the software D&I constraints into processes, tasks, and threads and
deals with related efficiency, atomicity, synchronization, and scheduling issues.
 Table 2 presents a list of concepts and vocabulary used in the ISO 19759 to describe system
related D&I constraints. The SWEBOK Guide specifies that such requirements be implemented in
software design.

Table 2. ISO 19759 views and vocabulary for D&I constraints

Key view Concepts and Vocabulary

Software requirements ex-
press the needs and con-
straints placed on a soft-
ware product that contribute
to the solution of some real-
world problem

 Software architectural D&I constraints on modules, classes, packages or
top level structure.

 Software detailed D&I constraints on tasks and processes.

 Physical model of the software D&I constraints described during the soft-
ware architectural design.

 The logical model of the software D&I constraints described within the soft-
ware architectural design.

 Static and dynamic D&I constraints with system design.

 While conducting the survey of all the D&I constraints concepts and terms within system design
described in ISO 19759, it was observed that:

 These various D&I constraints are described with system design elements differently, and at
different levels of details;

 Measures can be used to assess or to quantitatively estimate various aspects of a software de-
sign‟s size, structure, or quality.

 Most measures that have been proposed generally depend on the approach used for producing
the design.

 These measures are classified into two broad categories:

 Function-oriented (structured) D&I constraints measures: the D&I constraints structures ob-
tained mostly through functional decomposition; generally represented as a structure chart
(sometimes called a hierarchical diagram) from which various measures can be computed.

 Object-oriented D&I constraints measures: the design‟s overall structure is often represented
as a class diagram, from which various measures can be computed. Measures on the proper-
ties of each class‟s internal content can also be computed.

4 A Standard-Based Generic Model of Software-FUR for D&I
Constraints Requirements

 This section identifies first the terminologies and concepts of D&I constraints dispersed
throughout ECSS series and ISO 19759 and assembles next these terminologies into a proposed
model of D&I constraints software-FUR, through the use of the generic model of FUR proposed in the
COSMIC model. This COSMIC-based generic model can then become a framework for describing the
software-FUR from system D&I constraints based on ECSS and ISO 19759.

A Standards-Based Model for the Specification of Design Constraints

4.1 D&I Constraints Requirements and Functions to be specified

 The types of system D&I constraints can be derived from the physical and logical models; these
models include:

 The static design and its D&I constraints,

 The dynamic design and its D&I constraints,

 The mapping between both the static and the dynamic design and its D&I constraints views,

 The behaviour of the system design before and after implementation.
The functions to be specified (and corresponding entities to be measured) are divided into external
and internal constraints functions - see table 4. The Internal D&I constraints refer to the expected
logical D&I constraints that could appear from the system behaviour, while the External D&I
constraints refer to the expected physical D&I constraints.

Table 3. Software D&I functions

Internal D&I constraints Internal D&I constraints on module(s)

 Module(s)

 Process(s)

 Channel(s)

 Event(s)

External D&I constraints External D&I constraints on channels

 Module(s)

 Process(s)

 Channel(s)

 Event(s)

4.2 Relationships across Function Types

This section identifies the function types and functional relationships in the software-FUR for system
D&I constraints requirements.

D&I constraints functional type 1: Internal D&I constraints on modules.

 Any Process 1 to n can send and receive at least one data group to/from any internal channel or
events in the same design module.

 Any internal channel or events can send and receive at least one data group to/from any other
process in the same design module.

Fig. 3. Internal D&I constraints on modules

D&I constraints functional type 2: External D&I constraints on channels

 Any process in module 1or n can send and receive at least one data group to/from any external
channel.

 Any external channel can send and receive at least one data group to/from any other process
the different modules.

Fig. 4. External D&I constraints on channels

4.3 Model of Function Types Relationships

 Using the COSMIC model for graphical representation, Figure 5 presents an overview of the
relationships between the functional types in the D&I constraints software-FUR. More specifically:

 The sub-model of internal D&I constraints functional type 1 can be used to specify (and to meas-
ure the functional size of) the internal D&I constraints for the processes and the internal channels
or events from the received/send data movements from/to any other processes and internal chan-
nels in the same module – See figure 5.

Process1
in Module 1

Process 1
in Module n

External Channels

Process 1 Process n Internal Channels or

Events

A Standards-Based Model for the Specification of Design Constraints

 The sub-model of external D&I constraints on channels functional type 2 can be used to specify
(and to measure the functional size of) the external D&I constraints for the external channels from
the received/send data movement from/to any other processes in different modules – See figure 5.

Fig. 5. COSMIC generic model of D&I constraints requirements allocated to software

4.3.1 A Generic D&I constraints requirements services in the Service Oriented
Architecture in system-FUR view

This model is referred here as a generic model of software-FUR for system D&I constraints.

 The internal D&I constraints in modules (functional type 1 in Fig. 5): Each module may have many
processes, each process may interact using an internal channel or event (for example, through an
RPC or remote procedural call) for an internal connection; in this case the processes should be
considered as a storage device for such kind of information before data marshalling between the
other processes - see also Fig. 6

 The external D&I constraints on channels (functional type 2 in Fig. 5): many modules may interact
with each other through their own processes. In this case many processes in different modules
may use external channels (for example: through an RMI or a remote method invocation) for ex-
ternal connection - see also Fig. 6

 Process 1.1 starts sending to process 1.n in module 1 (for example process 1.1 represents func-
tion and process 1.n represents a sub-function in the same module).

 Process n.1 should start sending to interact process n.n in a module 2 (for example process n.1
represent function n and process n.n represent sub-function in the same module).

 Fig. 6: Generic D&I constraints requirements allocated to software

A Standards-Based Model for the Specification of Design Constraints

4.3.2 A Generic D&I constraints requirements data movements of data ex-
changes between components in Software-FUR view

Fig. 7 and 8 below shows the possible flows of data movements between components, the
exchanged of data between components could be direct or indirect exchange movements of data
movements to provide the functional user with services.

Fig. 7 shows each process or (component) in the figure could be exchange the data directly to provide
services to the functional user, so in this case for the measurements uses, we identify Entry and/or
Exit data movements.

Fig. 8 shows indirect exchange of data between a processes which means that a service in one
process writes data which is subsequently read by another process. In this situation identify a Write
data movement in the next process and a Read data movement by the latter.

Fig.7: Direct Data Movements Fig. 8: Indirect Data Movements

5 Discussion

 This paper has introduced a procedure for specifying and measuring the software requirements for
the internal and external D&I constraints needed to address the system non functional requirements
for system D&I constraints.
 The main contribution of this paper is the proposed generic Model of software-FUR for system D&I
constraints based on ECSS, ISO and IEEE standards. This generic model can be considered as a
kind of reference model for the identification of system D&I constraints requirements and their
allocation to software functions implementing such requirements. System requirements allocated to
hardware have not been addressed in this paper.
 Since the structure of the generic model is based on the generic model of software adopted by the
COSMIC measurement standard, the necessary information for measuring their functional size is rea-
dily available and an example has been presented of a specific instantiation of this reference model.
 The model is independent of the software type and the languages in which the software FUR will

be implemented. The proposed generic D&I constraints model (i.e. reference model) pro-
vides:
 A specification model for each type, or all types, of D&I constraints requirements.

 A specification measurement model for each type, or all types, of D&I constraints requirements.
 Future work includes documentation of the traceability of the elements of this generic model to the
detailed elements of the ECSS standard as well verification of this generic model to ensure full cover-
age of design and implementation constraints requirements.
 There is no claim that this current version of the generic model of design and implementation
constraints requirements covers the full domain of D&I constraints as found in practice and as
discussed in the software design literature outside of standards. Discussions with group of experts are
necessary to ensure its usefulness across various communities and to develop a consensus on further
refinements of such a generic model which could be proposed eventually as a candidate for
standardization.

A Standards-Based Model for the Specification of Design Constraints

References

1. L. Chung and J. Cesar Prado Leite, "On Non-Functional Requirements in Software Engineering",
in "Conceptual Modeling: Foundation and Applications, Essays in Honor of John Mylopoulos",
Springer, 2009.

2. L. Chung, B. Nixon, E. Yu, J. Mylopoulos, "Non-Functional Requirements in Software
Engineering", Springer, Heidelberg,1999.

3. J. Mylopoulos, L. Chung, B. Nixon, "Representing and Using Nonfunctional Requirements: A
Process-Oriented Approach", IEEE Transactions on Software Engineering, vol. 18, pp. 483-497,
1992.

4. M. Shaw, "Larger Scale Systems Require Higher-Level Abstractions: Software Specification and
Design", IEEE Computer Society, vol. 14, pp. 143-146, 1989.

5. A. M. Davis, "Software requirements: objects, functions, and states"; Prentice-Hall, Inc., 1993.
6. I. Jacobson, G., Booth, J.,Rumbaugl, "Excerpt from the Unified Software Development Process:

The Unified Process", IEEE Software, vol. 16, pp. 96-102, 1999.
7. K. Wiegers, "Software Requirements", 2nd edition, Microsoft Press, 2003.
8. G. Roman, "A Taxonomy of Current Issues in Requirements Engineering", IEEE Computer, pp.

14-21, 1985.
9. B. W. Boehm, "Characteristics of software quality", Amsterdam, New York, North-Holland Pub.

Co. , American Elsevier, 1978.
10. A. I. Antón, "Goal identification and refinement in the specification of software-based information

systems", PhD Thesis, Georgia Institute of Technology, 1997.
11. ECSS-E-40-Part-1B, "Space Engineering: Software - Part 1 Principles and Requirements",

European Cooperation for Space Standardization,The Netherlands, 2003.
12. ECSS-E-40-Part-2B, "Space Engineeing: Software- part 2 Document Requirements Definitions",

European Cooperation for Space Standardization, The Netherlands, 2005.
13. ECSS-Q-80B, "Space product assurance: Software product assurance", European Cooperation

for Space Standardization, The Netherlands, 2003.
14. ECSS-E-ST-10C, "Space engineering: System engineering general requirements", Requirements

& Standards Division Noordwijk, The Netherlands, 2009.
15. ISO-19759, "Software Engineering Body of Knowledge (SWEBOK)", IEEE Computer Society, &

ISO, 2004.
16. ISO/IEC-14143-1, "Information Technology - Software Measurement - Functional Size

Measurement Part 1: Definition of Concepts", International Organization for Standardization,
Geneva (Switzerland), 1998.

17. ECSS-ESA, "Tailoring of ECS: Software Engineering Standards for Ground Segments, Part C:
Document Templates", ESA Board of Standardization and Control (BSSC), 2005.

Alain Abran is a Professor and the Director of the Software Engineering Research Laboratory at the
École de Technologie Supérieure (ETS) – Université du Québec. Dr. Abran has more than 20 years
of industry experience in information systems development and software engineering. Dr. Abran holds
a Ph.D. in Electrical and Computer Engineering (1994) from École Polytechnique de Montréal (Cana-
da) and master degrees in Management Sciences (1974) and Electrical Engineering (1975) from Uni-
versity of Ottawa. He was the co-executive editor of the Guide to the Software Engineering Body of
Knowledge project – SWEBOK – ISO 19759. He has also been actively involved in software engineer-
ing standards as the international secretary for ISO/IEC JTC1 SC7 - Software and System Engineer-
ing in 2001-2003; he is also the chairman of the Common Software Measurement International Con-
sortium (COSMIC).

Khalid T. Al-Sarayreh received the B.S. degree in Computer Science from Mu‟tah University, Jordan,
the MSc in Computer Engineering (Embedded Systems) from Yarmouk University, Jordan, PhD in
Computer Information Systems from the Arab Academy for Financial and Banking Sciences, Jordan.
PhD. Student in Software Engineering in university of Quebec (ETS) from 2008 Canada. During 2002-
2005, he stayed in the KADDB,. From 2005 to 2006, he was an Assistant Professor at the Jordan
University. Since 2006-2008, He is as an Assistant Professor at the Faculty of Information Technol-
ogy, Applied Science University/ His research interests includes: Software Real-Time Embedded Sys-
tems, Computer Networks, non-functional requirements for embedded systems and Applied Artificial
Intelligence.

http://www.swebok.org/

http://www.swebok.org/

A Generic Model for the Specification of Software Interface Requirements and
Measurement of their Functional Size

Khalid T. Al-Sarayreh

Software Engineering Department, (ETS)
University of Quebec

1100 Notre-Dame West, Montréal, Québec H3W 1T8
Canada

khalid.al-sarayreh.1@ens.etsmtl.ca

Alain Abran

Software Engineering Department, (ETS)
 University of Quebec

1100 Notre-Dame West, Montréal, Québec H3W 1T8
Canada

alain.abran@etsmtl.ca

Abstract—The European ECSS-E-40 series of standards for
the aerospace industry includes interfaces as one of 16
types of non functional requirement (NFR) for embedded
and real-time software. An interface is typically described
at the system level as a non functional requirement, and a
number of concepts and terms are provided in that series to
describe various types of candidate interfaces. This paper
collects and organizes these interface-related descriptions
into a generic model for the specification of software
interface requirements, and to measure their functional size
for estimation purposes using the COSMIC ISO 19761
standard.

 Keywords-Interface requirements; Non functional
requirements (NFR); Functional size; COSMIC – ISO
19761; ECSS International Standards; Software interface
measurement.

I. INTRODUCTION

 Non functional requirements (NFR) are vital to the
quality and success of software systems. Identification
and specification of NFRs early in the software life cycle
are therefore of prime importance in defining a
comprehensive specification, and subsequent evaluation,
of software product quality. Similarly, these software-
related NFRs should be taken into account when
estimating software projects.
 In practice, NFR may be viewed, defined, interpreted,
and evaluated differently by different people,
particularly when they are stated briefly and vaguely [1],
[2]. NFRs can also be relative, since their interpretation
and importance may vary, depending on the particular
system being considered [2]. In addition, NFRs can often
interact with one another: attempts to achieve one NFR,
for example, can hurt or help the achievement of others
[3].
 To achieve the system NFR described typically at a
fairly high level, the system engineers must next specify
what has to be allocated at either the hardware or at the
software level.
 While a number of researchers are investigating the
field of NFR, standards organizations have attempted
over the years to identify lower levels of information in
terms of requirements that must be implemented through
hardware and software. In related works, the
requirements are initially addressed typically at the
system level [4], [5], [6] and [7] as either high-level
system functional user requirement (system-FUR) or
high level system non-functional requirements (system-
NFR); such high level requirements must typically next

be detailed and allocated to specific-related functions
which may be implemented in either or both hardware
and software, as software FUR (Soft-FUR) for instance –
see Figure 1.
 For example, a system-FUR will describe what are
the required functions needed in a system, while a
system-NFR will describe how the required functions
must behave in a system [8], [9], [10], [11], and [12]; in
the software requirements engineering step, such system-
NFR may next be detailed and specified as software-
FUR to allow a software engineer to develop, test and
configure the final deliverables to system users.
 "Functional" refers to the set of functions the system
is to offer, while "non-functional" refers to the manner in
which such functions are performed. Functional user
requirements (FUR) are typically phrased with subject or
predicate constructions, or noun/verb, such as: "The
system must print 5 reports". Non-functional
requirements (NFR) are typically phrased with adverbs
or modifying clauses, such as: "The system will print 5
reports quickly" or "The system with print 5 reports with
high reliability".

Figure 1. Mapping system into software-FUR

 Currently, there exists no generic model for the
identification and specification of software interface
requirements from the various views documented in
international standards and in the literature.
Consequently, it is challenging as well to measure them
and to take them into account quantitatively for
estimation purposes.
 This paper reports on the work carried out to define
an integrated view of software interface requirements on
the basis of international standards, and on the use of a
generic model of interface software-FUR to measure
their functional size using the COSMIC measurement
standard, independently of software development and
implementation methodologies and technologies.
 This paper is organized as follows. Section 2
presents a generic view of software-FUR in ISO. Section
3 identifies the standards describing interfaces

System-
FUR

System-
NFR

Software-FUR

2010 Eighth ACIS International Conference on Software Engineering Research, Management and Applications

978-0-7695-4075-7/10 $26.00 © 2010 IEEE

DOI 10.1109/SERA.2010.16

239

2010 Eighth ACIS International Conference on Software Engineering Research, Management and Applications

978-0-7695-4075-7/10 $26.00 © 2010 IEEE

DOI 10.1109/SERA.2010.35

217

Authorized licensed use limited to: ECOLE DE TECHNOLOGIE SUPERIEURE. Downloaded on June 21,2010 at 17:05:41 UTC from IEEE Xplore. Restrictions apply.

requirements. Section 4 presents a standard-based
definition of a generic model of a software interfaces
requirements. Section 5 presents the sizing of a reference
instantiation of the generic model an interface-software-
FUR. Finally, a discussion is presented in section 6.

II. A GENERIC VIEW OF SOFTWARE-FUR IN ISO

 In the collection of ISO standards, it is specified in
the ISO 14143-1 [13] that a functional size measurement
method must measure the software-FUR. In addition,
ISO 19761 – COSMIC [14] proposes a generic model of
software-FUR that clarifies the boundary between
hardware and software. Figure 2 illustrates the generic
flow of data from a functional perspective from
hardware to software. From this generic model of
software requirements in Figure 2 the followings can be
observed:
 Software is bounded by hardware. In the so-called

“front-end” direction (i.e. left-hand side in Figure 2)
software used by a human user is bounded by I/O
hardware such as a mouse, a keyboard, a printer or a
display, or by engineered devices such as sensors or
relays. In the so-called “back-end” direction (i.e.
right-hand side of Figure 2), software is bounded by
persistent storage hardware like a hard disk and
RAM and ROM memory.

 The functional flow of data groups can be
characterized by four distinct types of movement.
In the “front end” direction, two types of movement
(ENTRIES and EXITS) allow the exchange of data
with the users across a ‘boundary’. In the “back
end” direction, two types of movement (READS
and WRITES) allow the exchange of data with the
persistent storage hardware.

 Different abstractions are typically used for different
measurement purposes. In real-time software, the
users are typically the engineered devices that
interact directly with the software that is, the users
are the ‘I/O hardware’. For business application
software, the abstraction commonly assumes that the
users are one or more humans who interact directly
with the business application software across the
boundary; the ‘I/O hardware’ is ignored.

Figure 2. Generic flow of data groups through software from a
functional perspective in COSMIC – ISO 19761

 As an FSM method, COSMIC is aimed at measuring
the size of software based on identifiable Functional
User Requirements. Once identified, those requirements
are allocated to hardware and software from the unifying
perspective of a system integrating these two
“components”. Since COSMIC is aimed at sizing
software, only those requirements allocated to the
software are considered.

III. IDENTIFICATION OF STANDARDS

DESCRIBING INTERFACES REQUIREMENTS

 This section presents a survey of the interface-related
views, concepts and terms in the ECSS and IEEE-830
standards. This section identifies which standards
currently address some aspects of the software-FUR
derived from system-NFR, specifically for the Interfaces
software-FUR – see Figure 3. The expected outcome is
the identifications of the various elements that should be
included in the design of a standard-based framework for
modelling software FUR for interfaces.
 The ECSS standards of the European Space Agency
[15], [16], and [17] present the software interfaces as a
set of NFRs for real-time and embedded software. In
particular, the ECSS-E-40 series [18] includes the design
of the external interface as part of the interface control
document (ICD), while the design of the internal
interface is included as part of the software design
document (SDD); [18] also specifies that the detailed
design of the software product interfaces should be
defined during the interface design phase.
 In these standards, the majority of interfaces are
software-to-software interfaces, and the ECSS requires
that they shall be defined in the requirements baseline
(i.e. the requirements base must include the requirements
applicable to the various elements of the system product
tree [15]). The elements of interfaces are dispersed in
various system views throughout different ECSS
standards and are expressed as either:
 System interface functional user requirements

(interface system-FUR)
 System interface non-functional requirements

(interface system-NFR)

Figure 3. Mapping system into software-FUR for interfaces
 In the ECSS standards the following set of concepts
and vocabulary are used to describe interfaces:
 Application software,
 Hardware configuration,
 Interface communication,
 Interface specifications through programming

languages,

or

Engineered
Devices

Storage

SOFTWAR

ENTRY

EXIT

Front
end »

USER

READ

WRITE

Back
end »

EXIT

ENTRY

I/O

BOUNDARY Interface System-
FUR

Interface System-
NFR

Interface
Software-FUR

240218

Authorized licensed use limited to: ECOLE DE TECHNOLOGIE SUPERIEURE. Downloaded on June 21,2010 at 17:05:41 UTC from IEEE Xplore. Restrictions apply.

 Database management system,
 Hardware interfaces.

 While conducting this inventory of interface
concepts and terms described in the ECSS-E-40 and
ECSS-Q-80 series and in ECSS-ESA as the integrated
standard for ECSS-E and ECSS-Q, it was observed that:
 The interface elements are dispersed throughout

various parts, and there is therefore no integrated
view of all types of candidate interfaces;

 These various interface elements are described
differently, and at different levels of detail;

 There is no obvious link in ECSS-ESA between the
interface control documents (ICD), where the
external interfaces are defined, and the interfaces in
the software design document (SSD), where the
internal interfaces are defined.

 There is no obvious guidance on how to measure the
interface as NFR.

 Software interface requirements are also presented in
IEEE 830 [19] as NFR, and the interface is defined
through a detailed description of all inputs into, and
outputs from, the software system. In particular, IEEE-
830 [19] mentions that the interface can be analyzed and
understood through the user interfaces, the hardware
interfaces, the software interfaces, and the
communications interfaces. It is to be noted that when
IEEE-830 defines an interface as ‘inputs’ or outputs’,
these are considered only as collections of data
movements and not integrated into specific functional
processes. IEEE 830 does not provide an analysis or
explanations linking the identified set of interface
concepts
 It is also to be noted that neither ECSS nor IEEE-830
proposes a way to measure such software interfaces
requirements, and that, without measurement, it is
challenging to take such NFRs as quantitative inputs to
an estimation process or in productivity benchmarking.

IV. A STANDARD-BASED DEFINITION OF A
GENERIC MODEL OF SOFTWARE

INTERFACES REQUIREMENTS

 This section identifies first, and assembles next, the
dispersed terminologies and concepts of interfaces
dispersed throughout ECSS, IEEE and ISO standards
into a proposed model of interface software-FUR – see
Figure 3, through the use of the generic model of FUR
proposed in the COSMIC model. This COSMIC-based
generic model can then become a framework for
describing the software interface requirements (i.e. from
system-NFR into software-FUR) based on ECSS.

A. Definition of a software interface

The following definition has been adopted in this
research:
 Software interface: a layer of utility software that

sits between application software and systems to
transparently integrate distinct technologies.

According to (ECSS-Q-40-04A Part 1) an internal
interface could also include hardware and system
requirements.

1) Types of interface requirements

Four types of interface requirements can be identified:
 Functional user interface requirements: what is

needed to allow users (devices and humans) to
interact with the system;

 Communication interface requirements: what is
needed to allow communication with other systems
or components between two pieces of software;

 Software interface requirements: what is needed to
allow communication with other software system
components that are not within the software to be
designed (such as operating system, files, database
management system, or other applications software);

 Hardware interface requirements: what is needed to
ensure support for the hardware and the specific
hardware configuration by the system (i.e. logical
structure, physical address, and expected behaviour)

2) Interface functionality to be specified (entities)

 The interface functionality to be specified (and
corresponding entities to be measured [20]) is divided
into external and internal functionality - see Table I. At
times, this interface functionality may be within different
layers of software requirements.

TABLE I: Software Interface Functionality (Entities)

Interface
Functionality Type Interface Functionality

External Interface
functionality

 Software application (GUI for example)
 Hardware configuration
 Communication links

Internal Interface
functionality

 Interface specifications
 Software modules
 Socket (API for example)

B. Identification of the relationships across the

software interface functionality

This sub-section identifies the component types and
functional relationships in the software interfaces.

1) Identification of the interface functionality types
in software

 Interface Functional Type 1: Hardware
Configuration and Software Modules

Each functional process in a hardware configuration
can interact with at least one, and perhaps more,
software modules - see Figure 4.

Figure 4. Hardware configuration and software modules

1

Software Modules Hardware
Configuration

241219

Authorized licensed use limited to: ECOLE DE TECHNOLOGIE SUPERIEURE. Downloaded on June 21,2010 at 17:05:41 UTC from IEEE Xplore. Restrictions apply.

 Interface Functional Type 2: Software
Applications and Software Modules

Each functional process in a software application
interacts with at least one, and perhaps more, software
modules - see Figure 5.

Figure 5. Software application and software modules

 Interface Functional Type 3: Communication
Links and Software Modules

Each functional process in a communication link
interacts with at least one, and perhaps more, software
modules - see Figure 6.

Figure 6. Communication link and software modules

 Interface Functional Type 4:

The internal interface is restricted to the software-to-
software interface between two software components
within the same software item - see Figure 7.
 Each functional process of an interface

specification link can input an entry, and output
an exit from data groups (DG1, DG2…DGn).

 An Interface specification link receives data from
a set of data socket groups, then reads and writes
these data using an interface method.

 An Interface specification link sends or exits
these data to a software module.

Figure 7. Software-software interface

2) Consolidation of the functional relationships in
the software interfaces

 Figure 8 presents a consolidated view of the
relationships between the functional types in the
software interfaces, using the COSMIC model for
graphical representation. More specifically:
 The sub-model of Interface Functional type 1 can be

used to specify (and to measure the functional size
of) the external interface between the hardware
configuration and the internal interface (represented
inside the boundary in Figure 8).

 The sub-model of Interface Functional type 2 can be
used to specify (and to measure the functional size

of) the external interface between the software
application and the internal interface.

 The sub-model of Interface Functional type 3 can be
used to specify (and to measure the functional size
of) the external interface between the
communication links and the internal interface.

 The sub-model of Interface Functional type 4 can be
used to specify (and to measure the functional size
of) the internal interface between the specification
link and the software module(s) and between the set
of data sockets data groups of the interface (inside
the boundary in Figure 8).

This model is referred here as a generic model of
interface software-FUR.

TABLE II: Interface Functional Size Measurement with respect to the
Generic Reference Model of Interface-Software-FUR

Interface

Functional
type

Data Movement Description

Data
Movement

Type

Hardware
Configuration

 A software module RECEIVES a
data group hardware configuration E

 A software module SENDS a data
group to a hardware configuration X

Software
Application

 Software module RECEIVES a
data group from a software
application

E

 Software module SENDS a data
group to a software application X

Communicatio
-n Links

 A software module RECEIVES a
data group from a communication
link.

E

 A software module SENDS a data
group to a communication link X

Software
Module

 A software module RECEIVES a
data group from the interface
specification link.

E

 A software module READS a data
group from an interface component R

 A software module WRITES a data
group to an interface component
(Functions, Modules, and Code)

W

 Either a software module SENDS a
data group to an interface
specification (inside the boundary)

X

 A software module SENDS a data
group to a hardware configuration X

 A software module SENDS a data
group to a software application X

 A software module SENDS a data
group to a communication link. X

Interface
Specification
Link
(Socket
Interface
Programming)

 An interface specification link
RECEIVES a data group from the
data socket

E

 An interface specification link
READS a data group from the data
socket

R

 An interface specification link
WRITES a data group using a
method on a port

W

 An interface specification link
SENDS a data group to software
programming

X

Data Groups
(Data Socket)

 A data socket RECEIVES a data
Group from the interface
specification

E

 A data socket SENDS a data group
to the interface specification X

The Total Size in COSMIC

19 CFP

1

Software Modules Software
Application

1

Software Modules Communication
Link

1

Interface
Specification

Link

Software
Module

The Set of
Data Socket

Groups
1 11 1

Read and write DG1 through an interface
method

1

242220

Authorized licensed use limited to: ECOLE DE TECHNOLOGIE SUPERIEURE. Downloaded on June 21,2010 at 17:05:41 UTC from IEEE Xplore. Restrictions apply.

V. SIZING A REFERENCE INSTANTIATION OF THE GENERIC
MODEL OF AN INTERFACE-SOFTWARE-FUR

 The specification of interface-software-FUR in any
specific project is a specific instantiation of the proposed
generic model of interface-software-FUR as described in
Figure 8. When the specification document is at the level
of the movements of data groups, then these interface
requirements can be directly measured using the
COSMIC measurement rules.
 Table II presents next the measurement results using
COSMIC of a specific instantiation of interface
requirements which would have one of each of the
entities and relationships described in section IV and
Figure 8 (note: for measurement purposes, the ‘interface
functional type represents the entity to be measured).

For example, for a hardware configuration (functional
type 1):
 A software module RECEIVES a data group from a

hardware configuration.
 A software module SENDS a data group to a

hardware configuration.

 This requirement corresponds to a COSMIC Entry
and to a COSMIC Exit data movement, for a functional
size of two COSMIC Function Points, or 2 CFP. The
corresponding total functional size of this specific
instantiation would therefore consider 19 data
movements of one data group, which would then gives a
functional size of 19 CFP with the COSMIC ISO 19761
standard - see Table II, bottom line.

VI. DISCUSSION

 This paper has introduced a procedure for specifying
and measuring the requirements of the software for the
internal and external interfaces needed to address the
system’s non functional requirements for interfaces.
 The main contribution of this paper is our proposed
Generic Model of Interface software functional user
requirements. This generic model is considered as a kind
of reference model for specifying interface-Software-
FUR from system Interface-NFR, as well as for
measuring the functional size of software interfaces. It is
based on:
 The ECSS and IEEE 830 standards for the

description of interfaces requirements; and
 The COSMIC generic model of software FURS

The model is independent of the software type and the
programming languages in which these interfaces will be
implemented.
The proposed generic interface model (i.e. reference
model) provides:
 A specification model for each type, or all types, of

interface requirements: for example, software
interfaces for application programming,
communication links, and hardware configuration.

 A specification measurement model for each type,
or all types, of interface requirements.

Future work includes verification and evaluation of this
generic model to ensure full coverage of interface
requirements, and verification with group of experts to
develop a consensual generic model which could be
proposed as a candidate for standardization.

External interface Boundary Internal Interface

 Figure 8. COSMIC reference model of the requirements for software interfaces

Interface Functional Type 4

Interface Specifications
Links

[Socket Interface
Programming]

(DG 2, Method (), Port)
Layer 2 of Socket programming

(DG n, Method (), Port)
Layer n of Socket programming

ENTRY

EXIT

ENTRY
EXIT (DG 1, Method (), Port)

Layer 1 of Socket programming

Software
Modules

ENTRY

EXIT

WRITE READ

The Set of Data Socket
Data Groups

Data Socket1

Data Group 1

Data Group 2

Data Group 3

Data Group n

Hardware
Configuration

Interface

Functional Type 1

Communication
Links

Interface

Functional Type 3

Software
Application

Interface

 Functional Type 2

ENTRY
EXIT

ENTRY
EXIT

ENTRY
EXIT

W
R
I
T
E

R
E
A
D

Interface
Components

243221

Authorized licensed use limited to: ECOLE DE TECHNOLOGIE SUPERIEURE. Downloaded on June 21,2010 at 17:05:41 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] L. Chung and J. C. S. d. P. Leite, "On Non-Functional
Requirements in Software Engineering", in
"Conceptual Modeling: Foundation and Applications,
Essays in Honor of John Mylopoulos", 2009.

[2] L. Chung, B.Nixon, E.Yu, J. Mylopoulos, "Non-
Functional Requirements in Software Engineering",
Springer, Heidelberg, 1999.

[3] J. Mylopoulos, L.Chung, B.Nixon, "Representing and
Using Nonfunctional Requirements: A Process-
Oriented Approach", IEEE Transactions on Software
Engineering vol. 18, pp. 483-497, 1992.

[4] A. I. Antón, "Goal identification and refinement in the
specification of software-based information systems",
PhD Thesis, Georgia Institute of Technology, 1997.

[5] A. M. Davis, "Software requirements: objects,
functions, and states", Prentice-Hall, Inc., 1993.

[6] I. Jacobson, G. Booth, J. Rumbaugh, "Excerpt from the
Unified Software Development Process: The Unified
Process", IEEE Software, vol. 16, pp. 96-102, 1999.

[7] K. Wiegers, "Software Requirements", 2nd edition.
Microsoft Press, 2003.

[8] G. Roman, "A Taxonomy of Current Issues in
Requirements Engineering", IEEE Computer, pp. 14-21,
1985.

[9] J. Mostow, "A Problem Solver for Making Advice
Operational", National Conference on Artificial
Intelligence (AAAI-83), AAAI, Menlo Park, Calif, pp.
279-283, 1983.

[10] B. W. Boehm, "Characteristics of software quality",
Amsterdam, New York: North-Holland Pub. Co.,
American Elsevier, 1978.

[11] R. Thayer, " Software System Engineering: Tutorial",
IEEE Computer, pp. 68-73, 2.

[12] M. Shaw, "Larger Scale Systems Require Higher-Level
Abstractions", Software Specification and Design,
IEEE Computer Society, vol. 14 pp. 143-146, 1989.

[13] ISO/IEC-14143-1, "Information technology - Software
measurement - Functional size measurement Part 1:
Definition of concepts", International Organization for
Standardization, Geneva (Switzerland), 1998.

[14] ISO/IEC-19761, "Software Engineering - COSMIC v
3.0 - A Functional Size Measurement Method",
International Organization for Standardization, Geneva
(Switzerland), 2003.

[15] ECSS-E-40-Part-1B, "Space Engineering: Software -
Part 1 Principles and Requirements", European
Cooperation for Space Standardization, The
Netherlands 2003.

[16] ECSS-E-40-Part-2B, "Space Engineeing:Software- part
2 Document Requirements Definitions", European
Cooperation for Space Standardization, The
Netherlands, 2005.

[17] ECSS-Q-80B, "Space product assurance: Software
product assurance", European Cooperation for Space
Standardization, The Netherlands, 2003.

[18] ESA, "Tailoring of ECSS Software Engineering
Standards for Ground Segments in ESA Part C:
Document Templates", European space agency /
agence spatiale européenne, Paris Cedex (France), June
2005.

[19] IEEE-Std-830, "IEEE Recommended Practice for
Software Requirements Specifications", 1993.

[20] A. Abran, "Software Metrics and Software Metrology",
Wiley Interscience & IEEE CS Press, to be published
in 2010.

244222

Authorized licensed use limited to: ECOLE DE TECHNOLOGIE SUPERIEURE. Downloaded on June 21,2010 at 17:05:41 UTC from IEEE Xplore. Restrictions apply.

Specification and Measurement of System Operations

IWSM/MetriKon 2010 1

Specification and Measurement Derived from System Operations

Non Functional Requirements

Alain Abran, Khalid T. Al-Sarayreh

Software Engineering Department, University of Quebec (ETS)

1100 Notre-Dame West Montréal, Québec H3W 1T8, Canada

alain.abran@etsmtl.ca, khalid.al-sarayreh.1@ens.etsmtl.ca

Abstract:

An operation is typically described initially as a non functional requirement at the

system level. Systems engineers must subsequently apportion these system re-

quirements very carefully as either software or hardware requirements to conform

to the operations requirements of the system. A number of concepts are provided in

the ECSS and IEEE standards to describe the various types of candidate

operations requirements at the system, software, and hardware levels. This paper

organizes these concepts into a generic standards-based reference model of the

requirements at the software level for system operations. The structure of this

reference model is based on the generic model of software requirements proposed

in the COSMIC – ISO 19761 model, thereby allowing the measurement of the func-

tional size of such operations requirements implemented through software.

Keywords

Operations Requirements, Non functional requirements – NFR, Functional size,

COSMIC – ISO 19761, ECSS International Standards, IEEE-830 standard,

Software Operations Measurement

1 Introduction

Non-functional requirements (NFR) play a critical role in system development,
including as selection criteria for choosing among alternative designs and
ultimate implementations. NFR may also have a considerable impact on project
effort, and should be taken into account for estimation purposes and when
comparing project productivity.

Typically, these NFR are described at the system level and not at the software
level, and there is no consensus yet on how to describe and measure these system
NFR. In practice, NFR can be viewed, defined, interpreted, and evaluated differ-
ently by different people, particularly when they are stated vaguely and only
briefly [1-3]. Therefore, it is challenging to take them into account in software
estimation and software benchmarking: NFR have received less attention in the
software engineering literature and are definitely less well understood than other
cost factors [3] . Without measurement, it is challenging to take them as
quantitative inputs into an estimation process and productivity benchmarking.

mailto:alain.abran@etsmtl.ca

mailto:khalid.al-sarayreh.1@ens.etsmtl.ca

Alain Abran, Khalid T. Al-Sarayreh

2 Software Measurement Conference

In practice, the requirements are initially typically addressed at the system level
[4-10] either as high-level system functional user requirements (system FUR) or
as high-level system non-functional requirements (system NFR). The latter must
usually be detailed, allocated and implemented in either hardware or software,
or both, as software FUR [11-15], for instance – see Fig. 1.

For example, a system FUR will describe the required functions in a system,
while a system NFR will describe how the required functions must behave in a
system. In the software requirements engineering step, system NFR can then be
detailed and specified as software FUR to allow a software engineer to develop,
test, and configure the final deliverables to system users.

The term "functional" refers to the set of functions the system (including the
software) has to offer, while the term "non-functional" refers to the manner in
which such functions are performed. FUR is typically phrased with subject or
predicate constructions (i.e. noun/verb), such as: "The system must print 5 re-
ports". NFR, by contrast, are typically phrased with adverbs or modifying clauses,
such as: "The system will print 5 reports quickly" or "The system will print 5 re-
ports with a high degree of reliability".

Fig. 1. Mapping system-FUR and -NFR into software-FUR

In the ECSS (European Cooperation on Space Standardization) standards for the
aerospace industry [16-19] and IEEE 830 [20] standards, a number of concepts
are provided to describe various types of candidate operations requirements at the
system, software, and hardware levels. However, these standards vary in their
views, terminology, and coverage of operations.

Currently, there exists no generic model for the identification and specification of
software FUR for implementing system operations requirements (system NFR)
based on the various views documented in international standards and in the
literature. Consequently, it is challenging to measure these operations-related
software FUR, and take them into account quantitatively for estimation purposes.

This paper focuses on a single type of NFR, that is, system operations
requirements, and reports on the work carried out to define an integrated view of
software FUR for system operations NFR, on the basis of international standards

Specification and Measurement of System Operations

IWSM/MetriKon 2010 3

including the use of the generic COSMIC – ISO 19761 [21] model of software
FUR.

The paper is organized as follows. Section 2 presents the view of software FUR
in ISO 19761. Section 3 identifies the standards describing operations
requirements. Section 4 presents a standards-based definition of a generic model
of requirements for software to implement system operations NFR. Section 5
presents the sizing of a reference instantiation of the generic model of operations
software FUR. Finally, a discussion is presented in section 6.

2 A generic view of software-FUR in ISO

In the collection of ISO standards, it is specified in the ISO 14143-1 [22] that a
functional size measurement method must measure the software functional user
requirements (FUR). In addition, ISO 19761 – COSMIC [23] proposes a gener-
ic model of software-FUR that clarifies the boundary between hardware and
software. Fig. 2 illustrates the generic flow of data from a functional perspec-
tive from hardware to software. From this generic model of software functional
requirements in Fig. 2 the followings can be observed:

 Software is bounded by hardware. In the so-called “front-end” direction (i.e.
left-hand side in Fig. 2), software used by a human user is bounded by I/O
hardware such as a mouse, a keyboard, a printer or a display, or by engi-
neered devices such as sensors or relays. In the so-called “back-end” direc-
tion (i.e. right-hand side of Fig. 2), software is bounded by persistent storage
hardware like a hard disk and RAM and ROM memory.

 The software functionality is embedded within the functional flows of data
groups. Such data flows can be characterized by four distinct types of data
movements. In the “front end” direction, two types of movements (EN-
TRIES and EXITS) allow the exchange of data with the users across a
„boundary‟. In the “back end” direction, two types of movements (READS
and WRITES) allow the exchange of data with the persistent storage hard-
ware.

 Different abstractions are typically used for different measurement purposes.
In real-time software, the users are typically the engineered devices that inte-
ract directly with the software that is the users are the „I/O hardware‟. For
business application software, the abstraction commonly assumes that the
users are one or more humans who interact directly with the business appli-
cation software across the boundary; the „I/O hardware‟ is ignored.

As an FSM method, COSMIC is aimed at measuring the size of software based
on identifiable FUR. Once identified, those requirements are allocated to hard-
ware and software from the unifying perspective of a system integrating these
two “components”. Since COSMIC is aimed at sizing software, only those re-

Alain Abran, Khalid T. Al-Sarayreh

4 Software Measurement Conference

quirements allocated to the software are considered in its measurement proce-
dure.

Fig. 2. Generic flow of data groups through software from a functional perspective in

 COSMIC – ISO 19761

3 Identification of standards for describing system operations require-

ments

This section presents a survey of the operations-related views, concepts, and
terms in the ECSS and IEEE-830 standards. This section identifies which stan-
dards currently address aspects of the software FUR derived from system opera-
tions FUR and NFR – see Fig. 3.
The expected outcome is the identification of the various elements that should be
included in the design of a standards-based framework for modelling software
FUR for system operations. The elements of operations are dispersed in various
system views throughout various ECSS standards and are expressed as either:

 System operations functional user requirements (operations system FUR), or

 System operations non-functional requirements (operations system NFR)

Fig. 3. Mapping system-requirements into software-FUR for operation requirements

System Operations-FUR System Operations-NFR

Software Operations-FUR

Specification and Measurement of System Operations

IWSM/MetriKon 2010 5

3.1 Operations requirements in ECSS standards

Operations in the ECSS standards include any specified operations mode and
mode transition for the software and, in case of man-machine interaction, the in-
tended use scenarios and diagrams may be used to show the intended operations
and related modes-transitions. Moreover, Operations engineering should be cov-
ering all operations activities through all phases of the life-cycle; i.e. operations
preparation, operations validation, operation execution and disposal.

Table 1 presents a list of concepts and vocabulary used in the ECSS standards to
describe system-related operations requirements. For instance, the ECSS specifies
that, for system operations, analysis of operational functions and the transition
mode (operational control interface and operational data interface) must be car-
ried out. ECSS specify such requirements must be implemented in software,
hardware, or a combination of the two.

Key views Concepts and vocabulary

Operational mode and tran-

sition mode

 Operational Functions

 Operational Control interface

 Operational data interface

 Operational mode

 Transition mode

 Operational scenario

Table 1. Operation requirements view and vocabulary in ECSS

While conducting the survey of all the operations concepts and terms described in
the ECSS-E-40 and ECSS-Q series and in ECSS-ESA as the integrated standard
for ECSS-E and ECSS-Q, it was observed that:

 These various operations elements are described differently, and at different
levels of detail;

 The operational elements are dispersed throughout the various documents:
there is, therefore, no integrated view of all types of candidate operations re-
quirements;

 There is no obvious link between the operations requirements in ECSS-ESA
[24] as the integrated standard and all the other ECSS standards that describe
operations requirements.

 Functional description: a brief description of what the operation achieves
and a list of cautions and warnings that apply to the operation.

It is also to be noted that the ECSS does not propose a way to measure such
software operations requirements, and, without measurement, it is challenging

Alain Abran, Khalid T. Al-Sarayreh

6 Software Measurement Conference

to take such an NFR either as a quantitative input to an estimation process or in
productivity benchmarking.

3.2 Operations requirements in the IEEE-830

IEEE-830 [20] lists operations as one of the NFR type in their list and considers
the various modes of operations as part of the user interfaces, but does not de-
fine it, nor does it provide guidance on how to describe and specify the opera-
tions requirements; of course, it does not provide guidance on how to measure
any of these NFR either.

4 A standard based generic model of software-FUR for system opera-

tions requirements

This section identifies and assembles the concepts and vocabularies of operations
dispersed throughout the ECSS and IEEE standards. These concepts are mapped
next into a proposed model of operations software FUR – see Fig. 3, using the
generic FUR model proposed in COSMIC. This COSMIC-based generic model
then becomes a framework for describing the software FUR from system
operations requirements based on the ECSS standards.

The initial generic model of software-FUR for system operations is not to
develop a model for all the elements that could compose the security
requirements, but only the elements that may be allocated to software and only
those elements that are currently described in the standards selected in the first
phase of the research.

Moreover, this research work is not attempting to measure quality attributes, and
not attempting to develop measurement methods to define quality targets not to
evaluate how such quality targets have been attained. The objective of this
research work is to define the non functional requirements that translate into
functional requirements allocated to software.

4.1 Mapping System Operations Views and Vocabulary from Standards

Table 2 presents the system operations requirements that are present as system re-
quirements in the ECSS and IEEE standards in which these could be interpreted
and specified, at times, as software FUR.

Table 2. System operations–FUR

System operations requirements

1. Operational functions

2. Operational data interface

3. Operational control interface

Specification and Measurement of System Operations

IWSM/MetriKon 2010 7

Types of operations requirements:
Next, two types of system-related operations requirements can be derived:

 System operations mode

 System transition mode

4.2 Software Operation Functions to be specified

The operations functions to be specified (and corresponding entities to be
measured) are divided into external and internal operation functions that may be

allocated to software see Table 3. External operations refer to the expected
control and data operations via the interface that could occur in the system, while
internal operations refer to the expected operations for the executed functions
occurring in the system.

Operational types Functions type

Internal operation function Operational functions

External operation function Operational data interface function

 Operational control interface function

Table 3. Software operation functions

4.3 Identification of the function types in software-FUR for system

operations requirements

This section identifies the function types and functional relationships in the
software-FUR for system operations requirements.

Operation Function Type 1: System Operational Control

 The control operational interface function sends at least one data group to
the operational functions.

 The operational functions receive a data group from control operational in-
terface

Fig. 4. System Operational Control

Operation Function Type 2: System Operational Modes

 Operational functions 1 to n send and receive a data group to/from each oth-
er.

Control Operational In-

terface Function

Operational Functions

Alain Abran, Khalid T. Al-Sarayreh

8 Software Measurement Conference

Fig. 5. System Operational Modes

Operation Function Type 3: System Operational Data

 The operational functions send and receive at least one data group to/from
the operation data interface function.

Fig. 6: System Operational Data

4.4 Identification of the functional relationships in the software FUR for

system operations NFR

Figure 8 presents an overview of the relationships between the function types in
the system operation FUR, using COSMIC for graphical representation.
Specifically:

 The sub model of the operation function type 1 can be used to specify and
measure the functional size of the external operation function for the system
operational control from the received/send data groups from/to the control
operational interface function and operational functions – see Figure 8.

 The sub model of the operation function type 2 can be used to specify and
measure the functional size of the internal operation function for the system
operational modes from the received/send data groups between operational

functions, using their intermediary services see Figure 8.

 The sub model of the operation functions type 3 can be used to specify and
measure the functional size of the external operation function for the system
operational data from the received/send data groups from/to the operational
data interface function and operational functions – see Figure 8.

As mentioned in this paper the intermediary service used when a functional
process of an application service in application A requires data that is available
via an application service in application B, the former application service calls a
functional process of the intermediary service, in this paper this symbol ()
used to represent the intermediary service – see Fig 7 and Fig. 8.

Fig. 7: Application services and interconnecting intermediary service

Operational Function 1

Operational Function n

Operational

Functions

Operational Data Interface

Function

Intermediary

Service
Service (S2)
Application B

E

X E

X

Boundary

Service (S1)
Application A

E

X E

X

Boundary

Specification and Measurement of System Operations

IWSM/MetriKon 2010 9

This model is referred to here as a generic model of software FUR for system
operations.

Fig. 8. COSMIC reference model of operations requirements allocated to software

5 Sizing a Reference Instantiation of the Generic Model of Software-FUR

for System Operations

The specification of software FUR for system operations in any specific project
is a specific instantiation of the proposed generic model described in Figure 8.
When the software specification document is at the level of the movements of
data groups, then these functional requirements can be directly measured using
the COSMIC measurement rules.

Table 4 presents the measurement results using a specific instantiation of opera-
tions requirements which would have one of each of the operational function
types and relationships described in section 4 and Figure 8. For example, for
system operational control (Operation Function Type 1):

 The control operational interface function sends one data group to operation
functions.

System Operational Model

System Operation Mode

 (Functional Type 2)

IO Drivers (Transition Mode)

System Operational data

(Functional Type 3)

System Operational

Control

(Functional Type 1)

Control
Operational

Interface

Operational

Data
Interface

Operational Function
 1

Operational Function

 2

Operational Function
 n

ENTRY

ENTRY

ENTRY

Storage

Area

ENTRY

ENTRY

ENTRY

EXIT

EXIT

EXIT

WRITE

READ

E
N
T
R
Y

E
N
T
R
Y

E
X
I
T

External Operations

Internal Operations

Boundary Intermediary

 Service ENTRY, EXIT

READ, WRITE

Data Movement

Alain Abran, Khalid T. Al-Sarayreh

10 Software Measurement Conference

 The operational functions receive one data group from the control opera-
tional interface

The above requirements correspond to 2 COSMIC Exit and Entry data
movements, for a functional size of 2 COSMIC Function Points (i.e. 2 CFP).

The corresponding total functional size of this specific instantiation of Figure 8
would therefore correspond to 19 data movements (of one data group each),
which would then give a functional size of 19 CFP for this specific instantia-
tion, using the COSMIC ISO 19761 measurement standard - see the bottom
line of Table 4.

Operations

Function Types

Data Movement Description

Data

Movement

Type

System

Operational

Control

The control operational interface function sends a

data group to the operation functions.

X

For each process

Operational functions receive one data group from

the control operational interface

E

For each process

The control operational interface function sends and

receives data group to/from the I/O device.

E & X

For each process

System

Operational modes

Operational functions 1 to n send and receive data

groups to/from each other by using intermediary

service.

4E & 4X

For each process

Operational functions 1 to n send and receive data

groups from control operational interface function

R & W

For each process

System

Operational Data

Operational data interface function send and

receives data groups to/from the operational

functions

E & X

For each process

Operational data interface function read and writes

data groups to/from the operational functions

R & W

For each process

Operational data interface function receives data

groups from the I/O device.

E

For each process

Total Cosmic Functional Size (with one data group per process) 19 CFP

Table 4. Functional Size of a specific instantiation of the generic model of
 software-FUR for system operations

To use a generic model of system operations, for example, assume an I/O device
send an operational command to execute, this command for instance needs for 2
operational functions in the system to complete this command, Find the
functional size measurement for the operation.

Table 5, illustrates,the measurement solution of the instantiation case of the above
example based on on figure 8 and table 4:

Specification and Measurement of System Operations

IWSM/MetriKon 2010 11

1. The I/O device sends one data
movements to the control

operational interface function.

X 1
CFP

2. The control operational
interface function receive
one data movements from
I/O device

E 1
CFP

3. The control operational interface
function sends 2 data movements,
the first one operational function 1
and the sencond one to operational
function 2

2X

2
CFP

4. The operational function 1
and operational functional 2,
each one send a data
movement to operational
data interface.

2 E 2
CFP

5. The operational data interface read
and write data movement to/from
operational function 1

R
 &
W

2
CFP

6. The operational data
interface read and write data
movement to/from
operational function 2

R

 &
W

2
CFP

7. The operational function 1 and 2
contact each other using
intermediary service

4 X

4 E

8
CFP

8. The operational data
interface send the results to
the I/O device

X 1
CFP

Table 5. Measurement results using the COSMIC generic model of system operations

The measurement results for the instantiation case for the above example is 19
CFP for the all kinds of COSMIC data movements; This measurement result is
composed of 8 Exits, 7 Entries, 2 Read and 2 Writes.

6 Discussion

This paper has introduced a procedure for specifying and measuring software
requirements for the internal and external operations needed to address the sys-
tem‟s operations requirements.
The main contribution of this paper is our proposed Generic Model of software
FUR for system operations. This generic model can be considered as a kind of
reference model for the identification of system operations requirements and
their allocation to software functions implementing such requirements. System
requirements allocated to hardware have not been addressed in this paper. Since
the structure of the generic model is based on the generic model of software
adopted by the COSMIC measurement standard, the necessary information for
Measuring their functional size is readily available, and an example has been
presented of a specific instantiation of this reference model.
Specifically, the generic model of operations presented in this paper is based
on:

 the ECSS standards for the description of the NFR for system operations;

 The COSMIC measurement model of functional user requirements.
The model is independent of the software type and the languages in which the
software FUR will be implemented. The proposed generic operations model (i.e.
reference model) provides:

Alain Abran, Khalid T. Al-Sarayreh

12 Software Measurement Conference

 A specification model for each type, or all types, of operations requirements:
for example, the requirements to be allocated to software for the system op-
erational control, modes and data.

 A specification measurement model for each type, or all types, of operations
requirements.

The target of this paper is not the quality requirements as stated in the upcoming
series, but the non functional requirements as stated in the ECSS series.

The developing group of the ISO 25000 series has not yet synchronized their
work in progress with other existing industry standards and that such synchro-
nization will be required in the future and should have been addressed by those
developing these standards.

Future work includes documentation of the traceability of the elements of this
generic model to the detailed elements of the ECSS standards, as well verifica-
tion of this generic model to ensure full coverage of operations requirements.
Discussions with groups of experts will be necessary to ensure its usefulness
across various communities and to develop a consensus on further refinements
of such a generic model which could be proposed eventually as a candidate for
standardization.

References

1. Chung, L. and J. P. Leite, "On Non-Functional Requirements in Software
Engineering" , in "Conceptual Modeling: Foundation and Applications,
Essays in Honor of John Mylopoulos", 2009, Springer, Verlag Berlin
Heidelberg, p. 363-379.

2. Chung, L., B.Nixon, E.Yu, J. Mylopoulos, " Non-Functional
Requirements in Software Engineering", Springer, Heidelberg, 1999.

3. Mylopoulos, J., L.Chung, B.Nixon, "Representing and Using
Nonfunctional Requirements: A Process- Oriented Approach", IEEE
Transactions on Software Engineering, 1992. 18(6): p. 483-497.

4. Shaw, M., "Larger Scale Systems Require Higher-Level Abstractions",
Software Specification and Design, IEEE Computer Society, 1989. 14 (
3), p. 143-146.

5. Davis, A.M., " Software requirements: objects, functions, and states",
1993, Prentice-Hall, Inc. 521.

6. Jacobson, I., G., Booth, J.,Rumbaugl, "Excerpt from the Unified Software
Development Process: The Unified Process", IEEE Software, 1999.
16(3), p. 96-102

7. Wiegers, K., "Software Requirements", 2nd edition, Microsoft Press,
2003.

Specification and Measurement of System Operations

IWSM/MetriKon 2010 13

8. Roman, G., "A Taxonomy of Current Issues in Requirements
Engineering", IEEE Computer, 1985, p. 14-21.

9. Boehm, B.W., "Characteristics of software quality", Amsterdam, New
York, North-Holland Pub. Co. , American Elsevier, 1978.

10. Antón, A.I., "Goal identification and refinement in the specification of
software-based information systems", PhD Thesis, Georgia Institute of
Technology, 1997.

11. Al-Sarayreh, K.T. and A. Abran. "A Generic Model for the Specification
of Software Interface Requirements and Measurement of Their
Functional Size", 8th ACIS International Conference on Software
Engineering Research, Management and Applications, SERA10, 2010.
Montreal, Canada.

12. Al-Sarayreh, K.T. and A. Abran, "Measurement of Software
Requirements Derived from System Reliability Requirements", 24th
European Conference on Object-Oriented Programming (ECOOP 2010),
Maribor, Slovenia, EU, 2010.

13. Al-Sarayreh, K.T., A. Abran, and J.J. Cuadrado-Gallego, "A Standards-
based Model for the Specification and Measurement of Maintainability
Requirements", 22nd International Conference on Software Engineering
and Knowledge Engineering (SEKE 2010), Redwood City, California,
USA, 2010.

14. Abran, A., K.T. Al-Sarayreh, and J.J. Cuadrado-Gallego, "Measurement
Model of Software Requirements Derived from System Portability
Requirements", 9th International Conference on Software Engineering
Research and Practice (SERP 2010), Las Vegas, USA, 2010.

15. Abran, A. and K.T. Al-Sarayreh, "Standards-Based Model for the
Specification of System Design and Implementation Constraints", 17th
International Conference on European Systems and Software Process
Improvements (EURO-SPI 2010), Industry track, Grenoble Institute of
Technology, Grenoble, France, Sept. 2010.

16. ECSS-E-40-Part-1B, "Space Engineering: Software - Part 1 Principles
and Requirements", in European Cooperation for Space
Standardaization,The Netherlands, 2003.

17. ECSS-E-40-Part-2B, "Space Engineeing:Software- part 2 Document
Requirements Definitions", European Cooperation for Space
Standardaization, The Netherlands, 2005.

18. ECSS-Q-80B, "Space product assurance: Software product assurance",
European Cooperation for Space Standardaization, The Netherlands,
2003.

19. ECSS-E-ST-10C, "Space engineering: System engineering general
requirements", Requirements & Standards Division Noordwijk, The
Netherlands, 2009.

Alain Abran, Khalid T. Al-Sarayreh

14 Software Measurement Conference

20. IEEE-Std-830, " IEEE Recommended Practice for Software
Requirements Specifications", 1993.

21. ISO/IEC-19761, "Software Engineering - COSMIC v 3.0 - A Functional
Size Measurement Method", International Organization for
Standardization, Geneva (Switzerland), 2003.

22. ISO/IEC-14143-1, "Information technology - Software measurement -
Functional size measurement Part 1: Definition of concepts",
International Organization for Standardization, Geneva (Switzerland),
1998

23. ISO-19759, "Software Engineering Body of Knowledge (SWEBOK)",
IEEE Computer Society, 2004.

24. ECSS-ESA, "Tailoring of ECSS, Software Engineering Standards for
Ground Segments, Part C: Document Templates", ESA Board of
Standardization and Control (BSSC), 2005.

A Standards-based Model for the Specification of

Portability Requirements

Khalid T. Al-Sarayreh
1
, Alain Abran

2
 and Juan J. Cuadrado-Gallego

3

1,2
Software Engineering Department, University of Quebec (ETS)

1100 Notre-Dame west, Montréal, Québec H3C 1K3, Canada
3
Departamento de Ciencias de la Computación, Universidad de Alcalá

28805 Alcalá de Henares, Madrid, Spain

Abstract - The European ECSS-E-40 standard for the

aerospace industry includes portability as one of 16 types of

non functional requirements. Portability requirements are

typically described at the system level as non functional

requirements, which may lead to specific portability-related

functions to be implemented by software. According to the

ECSS series of standards, portability is the capability of

software to be transferred from one environment to another.

ECSS standards and other international standards, such as

ISO 9126 and IEEE-830, describe portability requirements

using sets of concepts, terminologies, and views. This paper

collects the concepts related to portability and organizes them

into a generic model of functional requirements for software-

FUR for system portability-NFR, which corresponds to a

standards-based framework for modeling software-FUR for

the portability requirements. This generic model may also be

used to measure the functional size of software-FUR for

system portability-NFR using the COSMICISO 19761

measurement standard.

Keywords: Portability requirements, Non functional

requirements–NFR, Functional size, COSMIC–ISO 19761,

ECSS International Standards, Software Portability

Measurement, ISO 9126 and IEEE 830.

1 Introduction

 Non functional requirements (NFR) play a critical role

in system development, including as selection criteria for

choosing among different alternative designs and ultimate

implementations. NFR may also have a considerable impact

on project effort and should be taken into account for

estimation purposes and when comparing project productivity.

 Typically, these NFR are described at the system level,

not at the software level, and there is no consensus yet on how

to describe and measure them. In practice, they may be

viewed, defined, interpreted, and evaluated differently by

different people, particularly when they are stated briefly and

vaguely [1-3] . Therefore it is a challenge to take NFR into

account in software estimation and software benchmarking,

and they are definitely less well understood than other cost

factors [3]. Without measurement, it is not an easy matter to

take them as quantitative inputs to an estimation process or to

productivity benchmarking.

 In practice, requirements are initially addressed at the

system level [4-7] as either high level system functional user

requirements (system-FUR) or as high level system non

functional requirements (system-NFR). Normally, such high-

level requirements must then be detailed and allocated to

specifics-related functions, which may be implemented in

both hardware and software, or both, as software functional

user requirements (software-FUR). For example, system-FUR

describe the functions required in a system, while system-

NFR will describe how those functions must behave in the

system [8-11]. In the software requirements engineering step,

system-NFR may then be detailed and specified as software-

FUR, to allow a software developer to develop, test, and

configure the final deliverables to system users.

 Functional requirements are the functions that the

system (including the software) will offer, while non

functional requirements detail the manner in which those

functions are performed. FUR are described using subject or

predicate constructions (i.e. noun/verb), such as: "The system

can run on two or more kinds of devices or with two or more

kinds of operating systems". NFR are described using adverbs

or modifying clauses, such as: “The system can run on two or

more kinds of devices, or with two or more kinds of operating

systems, that are easily or conveniently transported".

 Within the ECSS European standard for the aerospace

industry [12-16], ISO 9126 [17], IEEE-830 [18], ISO 24765

[19] and ISO 2382-1 [20], a number of concepts are provided

to describe various types of candidate portability requirements

at both the system, software, and hardware levels. However,

these standards vary in their views, terminology, and

portability coverage.

 Currently, there exists no generic model for the

identification and specification of software-FUR for

implementing system portability requirements (system

portability-NFR) from the various views documented in

international standards and in the literature. Consequently, it

is also challenging to measure this portability-related

software-FUR and take them into account quantitatively for

estimation purposes.

 This paper focuses on a single type of NFR, that is,

system portability requirements. It reports on the work carried

out to define an integrated view of software-FUR for system

portability-NFR on the basis of international standards, and on

the use of the generic COSMIC–ISO 19761 [21] model of

software-FUR.

 The paper is organized as follows. Section 2 presents the

structured view of software-FUR as provided in ISO 19761.

Section 3 identifies the standards that describe the software-

FUR for system portability-NFR. Section 4 presents a

standards-based definition of a generic model of requirements

for software-FUR for system portability-NFR. Finally, a

discussion is presented in section 5.

2 A generic view of software-FUR in ISO

 ISO 14143-1 [22] specifies that a functional size

measurement (FSM) method must measure software-FUR. In

addition, COSMIC–ISO 19761 proposes a generic model of

software-FUR that clarifies the boundary between hardware

and software. Fig. 1 illustrates the generic flow of data from a

functional perspective from hardware to software. From this

figure, the following can be observed:

 Software is bounded by hardware. In the so-called “front-

end” direction (i.e. center in Fig. 1), software used by a

human is bounded by I/O hardware, such as a mouse, a

keyboard, a printer, or a display, or by engineered

devices, such as sensors or relays. In the so-called “back-

end” direction (i.e. right-hand side of Fig. 1), software is

bounded by persistent storage hardware, like a hard disk

and RAM and ROM memory.

 The functional flow of data groups can be characterized

by four distinct types of movements. In the “front end”

direction, two types of movements (ENTRIES and

EXITS) allow the exchange of data with users across a

„boundary‟. In the “back end” direction, two types of

movements (READS and WRITES) allow the exchange

of data with the persistent storage hardware.

Fig. 1: Generic flow of data groups through software from a

functional perspective in COSMIC – ISO 19761

 Different abstractions are typically used for different

measurement purposes. In real-time software, the users

are generally the engineered devices that interact directly

with the software, that is, the users „are‟ the I/O

hardware. For business application software, the

abstraction commonly assumes that the users are one or

more humans who interact directly with the business

application software across the boundary; the I/O

hardware is ignored.

 As an FSM method, COSMIC is aimed at measuring the size

of software based on identifiable FUR. Once identified, those

requirements are allocated to hardware and software from the

unifying perspective of a system integrating these two

“components”. Since COSMIC is aimed at sizing software-

FUR, only those functional requirements allocated to the

software are considered.

3 Identification of standards describing

portability requirements

 This section presents a survey of the portability-related

views, concepts, and terms in international standards. It

identifies which standards currently address some aspects of

the software-FUR derived from system-NFR, specifically for

the system portability-NFR see Fig. 2. The expected

outcome is the identification of the various elements that

should be included in the design of a standards-based

framework for modeling software-FUR for system portability-

NFR.

 The elements of portability are dispersed in various

system views throughout different ECSS standards and are

expressed as either:

 System portability functional user requirements (system

portability-FUR),

 System portability non functional requirements (system

portability-NFR).

Fig. 2: Mapping system into software-FUR for portability

3.1 ECSS: views and concepts for portability

 Portability in the ECSS standards is considered as the

capability of the system to be transferred from one

environment to another. Table 1 presents a list of concepts and

vocabulary used in the ECSS standards to describe system-

related portability requirements. For instance, the ECSS

specifies minimum dependency on software and hardware

(system portability) and independence of the operating system

from hardware and software obsolescence. The ECSS does

not specify, however, whether such requirements must be

or

Engineered

Devices

Storage Hardware

SOFTWARE

ENTRIES

EXITS

Front

end »

USERS

READS

WRITES

Back

end »

EXITS

ENTRIES

I/O Hardware

BOUNDARY

System Portability-FUR System Portability-NFR

Software-FUR for System

Portability

implemented in software or hardware or in a combination of

both.

Table 1: Portability view and vocabulary in ECSS

Key view Concepts and vocabulary

The capability

of system to be

transferred

from one

environment to

another

 Minimum System Dependency

 Independence of Operating System

 Minimum Hardware Dependency

 Obsolescence of Hardware or Software

 Technical Specification of Components

 While conducting a survey of all the portability concepts

and terms described in the ECSS-E-40 and ECSS-Q-series

and in ECSS-ESA as the integrated standard for ECSS-E and

ECSS-Q, we observed that:

 These various portability elements are described

differently, and at different levels of detail;

 The portability elements are dispersed throughout the

various documents: there is, therefore, no integrated view

of all types of candidate portability requirements;

 There is no obvious link for the portability requirements

between the ECSS-ESA standard as the integrated

standard and all the other ECSS standards that describe

portability requirements.

3.2 IEEE-830: views and concepts for portability

 IEEE-830 [18] lists portability as one of the NFR on their

list. The IEEE describes portability by specifying the

attributes of software that relate to the ease of porting the

software to other host machines and/or operating systems, and

provides a procedure for system portability – see Table 2.
However, IEEE does not provide guidance on how to describe

or specify portability requirements, nor, of course, does it

provide guidance on how to measure any of these NFR.

Table 2: Portability view and vocabulary in IEEE

Key view Concepts and vocabulary

Describe the portability

by specifying the

attributes of software that

relate to the ease of

porting the software to

other host machines

and/or operating systems

 Percentage of components with

host-dependent code;

 Percentage of code that is host

dependent;

 A proven portable language;

 A particular compiler or

language subset;

 A particular operating system.

3.3 ISO 9126: views and concepts for portability

 The key view on portability in the ISO 9126 series is from

the perspective of the quality of the software product:

portability is presented as a „quality characteristic‟ and is

decomposed next into quality sub-characteristics and next into

proposed derived measures to quantify such quality sub-

characteristics. The inventory of related concepts and

vocabulary on software maintainability is presented in Table

3, such as replaceability and co-existence.

Table 3: Portability view and vocabulary in ISO 9126

Key views Concepts and vocabulary

 The capability of the

software product to be

transferred from one

environment to another.

 Environment may

include organizational,

hardware or software

environment.

 Sharing common resources

 Independence software in a

common environment

 Continued Use of Data

 Function Inclusiveness

 Software Concurrently with other

Software

 Replaceability

 Co-existence

 While a large number of measures have been proposed in

ISO 9126, these measures do not address software-FUR, but

rather the system portability-NFR of the software itself.

However, nothing prevents using some of these concepts at

the system level, or looking at what functions must be

performed at the software level (i.e. FUR allocated to

software) to implement these system-level NFR.

3.4 ISO 24765: views and concepts for portability

 Portability in ISO 24765 [19] is considered as a system

or component that can be transferred from one hardware or

software environment to another. Table 4 presents a list of

concepts and vocabulary used in ISO 24765 to describe

system-related portability requirements. For instance, while

ISO 24765 states that portability in a system environment

refers to a transfer between software and hardware, it does not

specify whether portability requirements must be

implemented in the software or the hardware, or in a

combination of the two.

 Moreover, ISO 24765 does not provide guidance on how

to describe or specify portability requirements, nor, of course,

does it provide guidance on how to measure any of these

NFR.

Table 4: Portability view and vocabulary in ISO 24765

Key view Concepts and vocabulary

A system or component can

be transferred from one

hardware or software

environment to another

 Software Environment

 Hardware Environment

3.5 ISO 2382-1: views and concepts for portability

 Portability in ISO 2382-1 [20] is described as a program to

be executed on various types of data processing systems.

Table 5 presents a list of concepts and vocabulary used in ISO

2382-1 to describe system-related portability requirements.

For instance, this standard refers to portability between a

program and a sub part of the same program (sub program)

when this program is executed using different data processing

systems and system program calls (SPC) or remote procedural

calls (RPC) between the program and sub program functions,

independently of the language. It does not, however, specify

whether such requirements must be implemented in the

software or the hardware, or a combination of the two.

Moreover, ISO 2382-1 does not provide guidance on how to

describe or specify the portability requirements, nor, of

course, does it provide guidance on how to measure any of

these NFR.

Table 5: Portability view and vocabulary in ISO 2382-1

Key view Concepts and vocabulary

A program to be

executed on various

types of data

processing systems

 Language independency

 Data processing system

 Isolating software system calls

4 A standard-based definition of a generic

model of software-FUR for system

portability requirements

 This section maps the portability terminologies found

throughout the ECSS, IEEE, and ISO standards into a

proposed model of software-FUR for system portability-NFR

through the use of the generic model of FUR proposed in the

COSMIC model. This COSMIC-based generic model can

then become a framework for describing the portability

requirements (i.e. from system-NFR into software-FUR)

based on the ECSS standards.

4.1 Mapping views and concepts
 Based on a synthesis of the various definitions, the key

views and concepts presented in the previous sections on

software-FUR for system portability-NFR are presented in

Table 6.

 It is important to note that Table 6 includes software, data,

and hardware components which are interconnected. If the

system can run on two or more kinds of devices, or with two

or more kinds of operating systems that are easily or

conveniently transported, then system portability is achieved.

So we consider these components as environments for the

software-FUR for the system portability-NFR.

Table 6: Portability Requirements in ECSS, ISO & IEEE

System portability requirements

 Isolating software system calls

 Independence of operating system

 Independence of middleware

 Independence of programming language virtual machine

 Independence of browsers

 Client independence

 Server independence

 Storage independence

 Network independence

 Database independence

 Distributed data base management system (DDBMS)

4.2 Types of portability requirements

 Portability requirements must be identified for each

environment (from environment 1 to environment n), when

required. Next, the types of portability requirements should be

identified for each environment and must be allocated to:

software components, hardware components, and data

components – see Table 7.

Table 7: Portability types, by environment

Environment 1 … Environment n

 Software Components in

Environment 1

o Independence operating

system

o Independence middleware

o Independence of
programming language

virtual machine

o Independence of browsers

 Hardware Components in

Environment 1

o Client independence

o Server independence

o Storage independence

o Network independence

 Data Components in

Environment 1

o Database independence

o Distributed data base

management system

(DDBMS)

…

 Software Components in

Environment n

o Independence operating

system

o Independence middleware

o Independence
programming language

virtual machine

o Independence of browsers

 Hardware Components in

Environment n

o Client independence

o Server independence

o Storage independence

o Network independence

 Data Components in

Environment n

o Database independence

o Distributed data base

management system

(DDBMS)

4.2.1 Software portability functions to be specified

 The functionality and corresponding entities to be

specified (and measured) for software portability are listed in

Table 8. External functionality and its corresponding entities

for portability are represented by the environment of these

components. Internal functionality and its corresponding

entities are represented by the software isolated pieces

capabilities inside the environment to call each other.

Table 8: Portability functions that may be allocated to software

Portability

Type
Portability Functions

External

Portability

 Independence of operating system function

 Independence of middleware function

 Independence of programming language

virtual machine function

 Independence of browsers function

 Client independence function

 Server independence function

 Storage independence function

 Network independence function

 Database independence function

 Distributed data base management system

(DDBMS) function

Internal

Portability
 Isolating software system calls

4.2.2 Identification of the functional types in software

portability

This section identifies the component types and functional

relationships in the software portability.

 Function Type 1: Software Components – Fig. 3

 A distributed browser function receives or sends at least

one data group from/to a programming language virtual

machine function.

 A programming language virtual machine function

receives or sends at least one data group from/to an

independence operating system function.

 An independence operating system function receives or

sends at least one data group from/to independence

middleware function.

 Independence middleware function receives or sends at

least one data group from/to an independence operating

system function.

Fig. 3: Software components

 Function Type 2: Data Components– Fig. 4

 A database independence function receives or sends at

least one data group from/to a DDBMS function.

 A DDBMS receives or sends at least one data group

from/to a database independence function.

Fig. 4: Data components

 Function Type 3: Hardware Components– Fig. 5

 A client independent function receives or sends at least

one data group from/to an independence server function.

 A server independent function receives or sends at least

one data group from/to an independence network

function.

 A network independent function receives or sends at least

one data group from/to independence storage function.

 A storage independent function receives or sends a least

one data group from/to an independence client function.

Fig. 5: Hardware components

 Function Type 4: Isolating Software System Calls –

Fig. 6

 Software components receive or send at least one data

group from/to isolating software system calls function.

 Software components receive or send at least one data

group from/to data components.

Fig. 6: Isolating Software System Calls

 Isolating software system calls receives or send at least

one data group from/to a target common platform.

 A target common platform function receives or sends at

least one data group from/to hardware components.

4.3 Functional relationships in the software portability

 Figure 7 presents an overview of the relationships

between the functional types in the software portability-

FUR, using the COSMIC model for graphical

representation. Specifically:

 The sub model of Functional Type 1 can be used to

specify the external portability (and measure its

functional size) for the software components from the

received/sent data movements from/to an independence

operating system, independence middleware, a

programming language virtual machine, and distributed

browser functions – see Fig. 7.

 The sub model of Functional Type 2 can be used to

specify the external portability (and measure its

functional size) for the data components from the

received/sent data movements from/to a database

independence and a DDBMS functions – see Fig. 7.

 The sub model of Functional Type 3 can be used to

specify the external portability (and measure its

functional size) for the hardware components from the

received/sent data movements from/to a client, a server,

storage, and network independence functions – see Fig. 7.

 The sub model of Functional Type 4 can be used to

specify the internal portability (and measure its functional

size) for the isolating software system calls from the

received/sent data movements from/to a target common

platform and software components – see Fig. 7.

We refer to this model as a generic model of software-FUR

for system portability.

Database Independence

Function

DDBMS Function

Client Independence Function

Storage independence

Function

Server independence Function

Network Independence

Function

Target Common Platform

Function

Isolating Software System Calls

Software Components

Data Components

Hardware Components

Independence Operating

System Function

Independence

Middleware Function

Programming Language

Virtual machine Function

Distributed Browser

Function

5 Discussion

 This paper has introduced a procedure for specifying the

requirements of the software-FUR for the system portability-

NFR needed to address the system-NFR for portability. The

main contribution of this paper is our proposed generic model

of portability requirements. This generic model is considered

as a kind of reference model for the measurement of the

functional size of software-FUR for system portability-NFR.

It is based on:

 ECSS, IEEE, and ISO standards for the description of

software-FUR for system portability-NFR; and

 The COSMIC measurement model of requirements.

 The model is independent of software type and the

languages in which the portability requirements will be

implemented.

 The proposed generic portability model (i.e. reference

model) provides:

 A specification model for each type, or all types, of

portability requirements.

Fig. 7: COSMIC reference model of portability requirements allocated to software

 A specification measurement model for each type, or all

types, of portability requirements.

It is important to note that the design measurement procedure

for software-FUR for system portability-NFR has been

developed to apply the COSMIC measurement method to the

system portability requirements in order to obtain the

functional size of the software-FUR for system portability-

NFR in the early stages of the system development process.

 Future work includes verification of this generic model to

ensure full coverage of portability requirements, and

verification with a group of experts to develop a consensual

generic model which could be proposed as a candidate for

standardization.

Internal Portability

External Portability

Hardware Components

(Function Type 3)

Client Independence Function
 (R, W)

Server Independence Function
 (R, W)

Storage Independence Function
 (R, W)

Network Independence Function
(R, W)

E
N

T
R

Y

E
X

IT

E
N

T
R

Y

E
X

IT

ENTRY

EXIT

ENTRY

EXIT

(Function Type 4)

Isolating Software

System Calls

(R, W)

Software Components

(Function Type 1)

Independence Operating System Function
(R, W)

Independence Middleware Function
(R, W)

Programming Language Virtual Machine

Function (R, W)

Distributed Browsers Function (R, W)

E
N

T
R

Y

E
X

IT

E
N

T
R

Y

E
X

IT

E
N

T
R

Y

E
X

IT

Entry

EXIT

Entry

EXIT

Entry

EXIT

Entry

EXIT

Data Components

(Function Type 2)

Database Independence Function
 (R, W)

Distributed Database management System

(DDBMS) Function (R, W)

E
N

T
R

Y

E
X

IT

ENTRY / EXIT

Target Common Platform Function

E
N

T
R

Y

E
X

IT

Entry

EXIT

Internal Portability

External Portability

Data Group

REFERENCES

[1] L. Chung and J. Cesar Prado Leite, "On Non-Functional

Requirements in Software Engineering", in "Conceptual

Modeling: Foundation and Applications, Essays in Honor of

John Mylopoulos", Springer, 2009.

[2] L. Chung, B. Nixon, E. Yu, J. Mylopoulos, "Non-Functional

Requirements in Software Engineering", Springer,

Heidelberg, 1999.

[3] J. Mylopoulos, L. Chung, B. Nixon,, "Representing and

Using Nonfunctional Requirements: A Process-Oriented

Approach", IEEE Transactions on Software Engineering, vol.

18, pp. 483-497, 1992.

[4] A. I. Antón, "Goal identification and refinement in the

specification of software-based information systems", PhD

Thesis, Georgia Institute of Technology, 1997.

[5] A. M. Davis, "Software requirements: objects, functions, and

states", Prentice-Hall, 1993.

[6] I. Jacobson, G.Booth, J.Rumbaugl, "Excerpt from the Unified

Software Development Process: The Unified Process", IEEE

Software, vol. 16, pp. 96-102, 1999.

[7] K. Wiegers, "Software Requirements", 2nd edition,

Microsoft Press, 2003.

[8] G. Roman, "A Taxonomy of Current Issues in Requirements

Engineering", IEEE Computer, pp. 14-21, 1985.

[9] J. Mostow, "A Problem Solver for Making Advice

Operational", National Conference on Artificial Intelligence

(AAAI-83). AAAI, Menlo Park, Calif, pp. 279-283, 1983.

[10] B. W. Boehm, "Characteristics of software quality", North-

Holland Pub. Co., American Elsevier, 1978.

[11] M. Shaw, "Larger Scale Systems Require Higher-Level

Abstractions", Software Specification and Design, IEEE

Computer Society, vol. 14, pp. 143-146, 1989.

[12] ECSS-E-40-Part-1B, "Space Engineering: Software - Part 1

Principles and Requirements", European Cooperation for

Space Standardization,The Netherlands, 2003.

[13] ECSS-E-40-Part-2B, "Space Engineeing: Software - Part 2

Document Requirements Definitions", European Cooperation

for Space Standardization, The Netherlands, 2005.

[14] ECSS-Q-80B, "Space product assurance: Software product

assurance", European Cooperation for Space Standardization,

The Netherlands, 2003.

[15] ECSS-E-ST-40C, "Space engineering: Software

Requirements & Standards Division", Noordwijk, The

Netherlands, 2009.

[16] ECSS-ESA, "Tailoring of ECSS Software Engineering

Standards for Ground Segments, Part C: Document

Templates, ESA Board of Standardization and Control

(BSSC)", 2005.

[17] ISO/IEC-9126, "Software Engineering - Product Quality -

Part 1: Quality Model", International Organization for

Standardization, Geneva (Switzerland), 2004.

[18] IEEE-830, "IEEE Recommended Practice for Software

Requirements Specifications", IEEE, 1993.

[19] ISO-24765, "Systems and software engineering vocabulary",

British Standards Institution, 2008.

[20] ISO-2382-1, "Information technology - Vocabulary - Part 1:

Fundamental terms", International Standards for Business,

Government and Society, 1993.

[21] ISO-19761, "Software Engineering - COSMIC v 3.0 - A

Functional Size Measurement Method", ISO, Geneva

(Switzerland), 2003.

[22] ISO/IEC-14143-1, " Information technology - Software

measurement - Functional size measurement Part 1:

Definition of concepts", ISO, Geneva (Switzerland), 1998.

Measurement of Software Requirements Derived from System

Reliability Requirements

 Khalid T. Al- Sarayreh Alain Abran Luca Santillo

Software Engineering Department Software Engineering Department Software Engineering Department

 University of Quebec University of Quebec University of Quebec

 1100 Notre-Dame west, Montréal 1100 Notre-Dame west, Montréal 1100 Notre-Dame west, Montréal

 H3W 1T8, Canada H3W 1T8, Canada H3W 1T8, Canada

 khalid.al-sarayreh.1@ens.etsmtl.ca alain.abran@etsmtl.ca

luca.santillo@gmail.com

ABSTRACT

Reliability is typically described initially as a non functional

requirement at the system level. Systems engineers must

subsequently apportion these system requirements very

carefully as either software or hardware requirements to

conform to the reliability requirements of the system. A

number of concepts are provided in the ECSS, ISO 9126, and

IEEE standards to describe the various types of candidate

reliability requirements at the system, software, and hardware

levels. This paper organizes these concepts into a generic

standards-based reference model of the requirements at the

software level for system reliability. The structure of this

reference model is based on the generic model of software

requirements proposed in the COSMIC – ISO 19761 model,

thereby allowing the measurement of the functional size of

such reliability requirements implemented through software.

Keywords—Reliability Requirements, Non functional

requirements – NFR, Functional size, COSMIC – ISO 19761,

ECSS International Standards, Reliability Measurement.

1. INTRODUCTION

 Non-functional requirements (NFR) play a critical role in

system development, including as selection criteria for

choosing among alternative designs and ultimate

implementations. NFR may also have a considerable impact on

project effort, and should be taken into account for estimation

purposes and when comparing project productivity.

 Typically, these NFR are described at the system level and

not at the software level, and there is no consensus yet on how

to describe and measure these system NFR. In practice, NFR

can be viewed, defined, interpreted, and evaluated differently

by different people, particularly when they are stated vaguely

and only briefly [1-3]. Therefore, it is challenging to take them

into account in software estimation and software benchmarking:

NFR have received less attention in the software engineering

literature and are definitely less well understood than other cost

factors [3]. Without measurement, it is challenging to take

them as quantitative inputs into an estimation process and

productivity benchmarking.

 In practice, the requirements are initially typically

addressed at the system level [4-10] either as high-level system

functional user requirements (system FUR) or as high-level

system non-functional requirements (system NFR).

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

The latter must usually be detailed, allocated and implemented

in either hardware or software, or both, as software FUR, for

instance – see Fig. 1.

 For example, a system FUR will describe the required

functions in a system, while a system NFR will describe how

the required functions must behave in a system. In the software

requirements engineering step, system NFR can then be

detailed and specified as software FUR to allow a software

engineer to develop, test, and configure the final deliverables to

system users.

 The term "functional" refers to the set of functions the

system (including the software) has to offer, while the term

"non-functional" refers to the manner in which such functions

are performed. FUR is typically phrased with subject or

predicate constructions (i.e. noun/verb), such as: "The system

must have a storage cluster (computer server and connection)

for reliability purposes”. NFR, by contrast, are typically

phrased with adverbs or modifying clauses, such as: “The

system must have high-availability on a storage cluster

(computer servers and connection) for reliability purposes".

Fig. 1: Mapping system requirements into software-FUR

 In the ECSS (European Cooperation on Space

Standardization) standards for the aerospace industry [11-14],

the ISO 9126 [15], ISO 24765 [16], IEEE 830 [17] and IEEE

1220 [18] standards, a number of concepts are provided to

describe various types of candidate reliability requirements at

the system, software, and hardware levels. However, these

standards vary in their views, terminology, and coverage of

reliability.

 Currently, there exists no generic model for the

identification and specification of software FUR for

implementing system reliability requirements (system NFR)

based on the various views documented in international

standards and in the literature. Consequently, it is challenging

to measure these reliability-related software FUR, and take

them into account quantitatively for estimation purposes.

 This paper focuses on a single type of NFR, that is, system

reliability requirements, and reports on the work carried out to

define an integrated view of software FUR for system

reliability, on the basis of international standards including the

use of the generic COSMIC – ISO 19761 [19] model of

software FUR.

 The paper is organized as follows. Section 2 presents the

view of software FUR in ISO 19761. Section 3 identifies the

standards describing reliability requirements. Section 4

System FUR System NFR

Software FUR

mailto:khalid.al-sarayreh.1@ens.etsmtl.ca

mailto:alain.abran@etsmtl.ca

presents a standards-based definition of a generic model of

requirements for software to implement system reliability NFR.

Section 5 presents the sizing of a reference instantiation of the

generic model of reliability software FUR. Finally, a discussion

is presented in section 6.

2. GENERIC VIEW OF SOFTWARE FUR IN

ISO

 ISO 14143-1 [20] specifies that a functional size

measurement (FSM) method must measure the software

functional user requirements (FUR). In addition, the COSMIC

– ISO 19761 [19] model proposes a generic model of software

FUR that clarifies the boundary between hardware and

software. Fig. 2 illustrates the generic flow of data from

hardware to software from a functional perspective. From this

generic model of software FUR, depicted in Fig. 2, the

following observations can be made:

 Software is bounded by hardware. In the so-called “front

end” direction (i.e. center of Fig. 2), software used by a

human is bounded by I/O hardware such as a mouse, a

keyboard, a printer, or a display, or by engineered devices

such as sensors or relays. In the so-called “back end”

direction (i.e. the right-hand side of Fig. 2), software is

bounded by persistent storage hardware like a hard disk,

or RAM or ROM memory.

 Software functionality is embedded within the functional

flows of data groups. Such data flows can be characterized

by four distinct types of data movements. In the “front

end” direction, two types of movements (ENTRIES and

EXITS) allow the exchange of data with users across a

boundary. In the “back end” direction, two types of

movements (READS and WRITES) allow the exchange

of data with the persistent storage hardware.

 Different abstractions are typically used for different

measurement purposes. In real-time software, the users

are typically the engineered devices that interact directly

with the software, that is, the users are considered the I/O

hardware. For business application software, the

abstraction commonly assumes that the user is one or

more humans who interact directly with the business

application software across the boundary; the I/O

hardware is ignored.

Fig. 2: Generic flow of data groups through software from

a functional perspective in COSMIC – ISO 19761

 As an FSM method, COSMIC is aimed at measuring the

size of software based on identifiable FUR. Once identified,

those requirements are allocated to hardware and software from

the unifying perspective of a system integrating these two

“components”. Since COSMIC is aimed at sizing software,

only those requirements allocated to the software are

considered in its measurement procedure.

3. IDENTIFICATION OF STANDARDS

DESCRIBING RELIABILITY

This section presents a survey of the reliability-related views,

concepts, and terms in the ECSS, ISO, and IEEE standards.

This section identifies which standards currently address

aspects of the software FUR derived from system reliability

FUR and NFR – see Fig. 3.

 The expected outcome is the identification of the various

elements that should be included in the design of a standards-

based framework for modelling software FUR for system

reliability. The elements of reliability are dispersed in various

system views throughout various ECSS standards and are

expressed as either:

 System reliability functional user requirements (system

reliability FUR), or

 System reliability non-functional requirements (system

reliability NFR)

Fig. 3: Mapping system requirements into software FUR

for reliability

3.1 ECSS views and concepts for reliability

 Reliability in the ECSS standards shall be specified at the

system level. These reliability requirements can be met by

introducing adequate redundancy features. The ECSS standards

consider reliability as acceptable probability of system failure

which is based on the equipment reliability and availability

specifications.

 According to the ECSS reliability models shall be prepared

to support predictions, FMEA (Failure Mode and Effects

Analysis), FMECA (Failure Mode, Effects and Criticality

Analysis) as well as reliability testing. Demonstration shall be

performed according to the project reliability requirements in

order to check the following:

 Failure modes and effects,

 Failure tolerance, failure detection and recovery,

 Statistical failure data to support predictions and risk

assessment,

 Consolidated reliability assessments,

 Capability of the hardware to operate with software or to

be operated by a human being in accordance with the

specifications,

 Demonstrated reliability of critical items, and

 Justification of data bases used for theoretical

demonstrations.

Table 1 presents a list of concepts and vocabulary used in the

ECSS standards to describe system-related reliability

requirements. ECSS standards are specifying that reliability

requirements must be implemented in software, hardware, or a

combination of the two.

 While conducting the survey of all the reliability concepts

and terms described in the ECSS-E-40 and ECSS-Q series and

in ECSS-ESA [21] as the integrated standard for ECSS-E and

ECSS-Q, it was observed that:

 These various reliability elements are described

differently, and at different levels of detail.

or

Engineered

Devices

Storage Hardware

SOFTWARE

ENTRIES

EXITS

Front
end »

USERS

READS

WRITES

Back
end »

EXITS

ENTRIES

I/O Hardware

BOUNDARY

System reliability FUR System reliability NFR

Software FUR for

Reliability Requirements

 The reliability elements are dispersed throughout the

various documents: there is, therefore, no integrated

view of all types of candidate reliability requirements.

 There is no obvious link between the reliability

requirements in ECSS-ESA [21] as the integrated standard

and all the other ECSS standards that describe reliability

requirements.

Table 1: Reliability view and vocabulary in ECSS

Key views Concepts and Vocabulary

Acceptable

probability

of system

failure

 Component failure

 Redundancy feature

 Data parameter

 Reliability methods, operations and

mechanism

 Failure tolerance

 FMEA and FMECA

 Failure detection

 Failure isolation

 Failure recovery

 Failure data

It is also to be noted that the ECSS does not propose a way to

measure such software reliability requirements, and, without

measurement, it is challenging to take such an NFR either as a

quantitative input to an estimation process or in productivity

benchmarking.

3.2 IEEE views and concepts for reliability

 IEEE-830 [17] lists reliability as one of the NFR type in

their list. IEEE-830 only defines the reliability requirements as

the factors required to establish the required reliability of the

software system at time of delivery; however, it does not

provide guidance on how to describe and specify the reliability

requirements and it does not provide guidance on how to

measure any of these NFR either.

 IEEE-1220 [18] only defines the reliability requirement as

the analysis of system effectiveness for each operational

scenario, without mentioning how to describe and specify the

reliability requirements.

3.3 ISO views and concepts for reliability

 The key view on reliability in the ISO 9126 series is from

the perspective of the quality of the software product:

reliability is presented as a „quality characteristic‟, which is

decomposed into quality sub characteristics and then into

proposed derived measures to quantify those quality sub

characteristics. The inventory of related concepts and

vocabulary on software reliability, such as maturity, fault

tolerance and recoverability, is presented in Table 2.

A large number of measures are proposed in ISO 9126,

but none addresses software-FUR, only the reliability NFR of

the software itself. However, nothing precludes the use of these

concepts at the system level or looking at what functions must

be performed at the software level (i.e. FUR allocation to

software) to implement these system level NFR.

Furthermore, ISO 24765 [16] for the systems and software

engineering vocabulary defines the reliability as the probability

that software will not cause the failure of a system for a

specified time under specified conditions. ISO 24765 uses the

following concepts with their definitions:

 Function to identify error to input.

 Function to identify error to output.

Table 2: Reliability view & vocabulary in ISO 9126

Key view Concepts and Vocabulary

The capability

of the software

product to

maintain a

specified level

of performance

when used

under specified

conditions

 Maturity

 Fault tolerance

 Recoverability

 Fault Density

 Failure Resolution

 Incorrect Operation

 Availability

 Breakdown Time

 Recovery Time

 Fault Removal

 Failure Avoidance

 Restart ability

 Restorability

4 A STANDARDS-BASED DEFINITION OF A

GENERIC MODEL OF SOFTWARE FUR FOR

SYSTEM RELIABILITY REQUIREMENTS

 This section identifies and assembles the terminologies and

concepts of reliability dispersed throughout the ECSS, IEEE,

and ISO standards. These terminologies are mapped next into a

proposed model of software FUR for system reliability using

the generic FUR model proposed in COSMIC– see Fig. 2,.

This COSMIC-based generic model then becomes a framework

for describing the software FUR from system reliability

requirements based on the ECSS standards.

4.1 Mapping reliability views and vocabulary

from standards

 Table 3 presents the system reliability requirements that are

present either as system requirements in the ECSS standard or

as reliability-related concepts in ISO 9126: each of these could

be interpreted, and specified, at times as software FUR.

Table 3: Reliability in ECSS, IEEE & ISO 9126

Functions to address system reliability requirements

 Function to identify error to handle input.

 Function to identify error to produce output.

 Function to identify error to produce correct output

 Function to identify fault prevention

 Function to identify fault detection

 Function to identify fault removal

 Function to identify failure operation.

 Function to identify failure mechanism

4.2 Types of reliability requirements
 Various types of system-related reliability requirements can

be derived from the following set of concepts:
 System prediction tolerance

 System maturity

 System fault tolerance

 System recoverability

Table 4 presents various typical system reliability functions

(middle column) for system reliability requirements and

corresponding software functions (right-hand side column) that

may be specified to implement such reliability functions for the

system reliability requirements.

Table 4: System reliability requirements and related

software functions

System

Reliability

Requirements

derived from

ISO 9126

System

reliability

functions

Software functions for

reliability

System

prediction

tolerance

Reliability
Models

 Failure system component

tolerance

 Fault recovery tolerance

 Error data component

tolerance

System

maturity

Reliability

Assessment
#1

 Error to handle input.

 Error to produce output.

 Error to produce correct output

System fault

tolerance

Reliability
Assessment

#2

 Fault prevention

 Fault detection

 Fault removal

System
recoverability

Reliability

Assessment

#3

 Failure operation.

 Failure mechanism

4.2.1 Reliability functions to be specified

 The reliability functions to be specified (and corresponding

entities to be measured) are divided into external and internal

reliability functions that may be allocated to software see

Table 5:

 External reliability refers to the reliability prediction for

faults, failures and errors that could occur in the system.

 Internal reliability refers to the reliability assessments for

faults, failures and errors occurring in the system.

Table 5: Reliability functions that may be allocated to

software

Types of reliability

functions
Reliability Functions

External

Reliability

 Error tolerance

 Fault tolerance

 Failure tolerance

Internal Reliability

 Error to handle input.

 Error to produce output.

 Error to produce correct output

 Fault prevention

 Fault detection

 Fault Removal

 Failure operation.

 Failure mechanism

4.2.2 Relationships across reliability function

types in software
 This section identifies the function types and functional

relationships in the software FUR for system reliability.

Function Type 1: Reliability models –Fig. 4
 Reliability prediction function sends at least one data

group to error tolerance function or/and fault tolerance

function or/and failure tolerance.

 Fault tolerance function sends/receives at least one data

group to/from error tolerance function.

 Fault tolerance function sends/receives at least one data

group to/from failure tolerance function.

Fig. 4: Reliability models

Function Type 2: System Maturity
 Error to handle input, error to produce output and error

to produce correct output functions send/receive at least

one data group to/from each other‟s – Fig. 5.

Fig. 5: System Maturity

Function Type 3: System Tolerance

 Fault prevention, fault detection and fault removal

functions send/receive at least one data group to/from

each other‟s – Fig. 6.

Fig. 6: System Tolerance

Function Type 4: System Recoverability
 Failure operation and failure mechanism functions

send/receive at least one data group to/from each others

– Fig. 7.

Fig.7: System Recoverability

4.2.3 Model of the functional relationships

Figure 8 presents an overview of the relationships between the

function types in the reliability software FUR, using COSMIC

for graphical representation. More specifically:

 The sub model of the Reliability Function Type 1 can be

used to specify (and measure the functional size of) the

external reliability functions for the reliability prediction

models function type from the received/sent data

movements from/to error, fault and failure tolerance

functions – see Fig. 8:

 The sub model of the Reliability Function Type 2 can be

used to specify (and measure the functional size of) the

internal reliability for the system maturity function type

from the received/sent data movements from/to the error

to handle-produce input and output functions see Fig. 8.

 The sub model of the Reliability Function Type 3 can be

used to specify and measure the functional size of the

internal reliability for the system fault tolerance function

type from the received/sent data movements from/to fault

prevention, detection and removal functions see Fig. 8.

Error to Handle

Input function

Error to Produce

Output function

Error to Produce

Correct Output function

Failure Operation

function

Failure Mechanism

function

Reliability Prediction

function

Error Tolerance function

Fault Tolerance function

Failure Tolerance function

Fault Prevention

function

Fault Detection

function

Fault Removal

function

 The sub model of the Reliability Function Type 4 can be

used to specify and measure the functional size of the

internal reliability for system recoverability function type

from the received/sent data movements from/to failure

operation and failure mechanism functions see Fig. 8.

This model is referred to here as a generic model of software

FUR for system reliability.

Fig. 8: COSMIC generic model for system reliability requirements allocated to software

5 SIZING A REFERENCE INSTANTIATION OF

THE GENERIC MODEL OF SOFTWARE

FUR FOR SYSTEM RELIABILITY
 The specification of software FUR for system reliability in

any specific project is a specific instantiation of the proposed

generic model described in Fig. 8. When the software

specification document is at the level of the movements of

data groups, then these functional requirements can be

directly measured using the COSMIC measurement rules.

 Table 6 presents the measurement results using a specific

instantiation of reliability requirements which would have

one of each of the reliability function types and relationships

described in section 4 and Fig. 8. For example, for a

reliability model (Function Type 1) – upper section of Table

6:

 The error tolerance function receives one data movement

from the reliability prediction function (1 Entry).

 The error tolerance function sends one data movement to

the error to handle input function, the error to produce

output function and the error to produce correct output

function in system maturity (3 Exits).

 The error tolerance function receives/sends one data

movement from/to the fault tolerance function (1 Entry +

1 Exit).

 The fault tolerance function received one data movement

from the reliability prediction function (1 Entry).

 The fault tolerance function sends one data movement to

the fault prevention, fault detection and fault removal

functions in the system tolerance functional type (3 Exits).

 The fault tolerance function receives/sends one data

movement from/to the failure tolerance function (1 Entry

+ 1 Exit).

 The failure tolerance function received one data movement

from the reliability prediction function (1 Entry).

 The failure tolerance function sends one data movement to

the failure operation and failure mechanism functions in

system recoverability (2 Exits).

The above requirements correspond to 15 COSMIC data

movements, for a functional size of 15 COSMIC Function

Points (i.e. 15 CFP).

 The corresponding total functional size of this specific

instantiation of Fig. 8 would therefore correspond to 45 data

movements (of one data group each) – see table 6, which

would then give a functional size of 45 CFP for this specific

instantiation, using the COSMIC ISO 19761 measurement

standard - see the bottom line of Table 6.

Table 6: Functional Size of a specific instantiation of the

reference model of software FUR for system reliability

6 DISCUSSION

 This paper has introduced a procedure for specifying and

measuring software requirements for the internal and external

reliability needed to address the system‟s reliability

requirements.

 The main contribution of this paper is our proposed

Generic Model of software FUR for system reliability. This

generic model can be considered as a kind of reference model

for the identification of system reliability requirements and

their allocation to software functions implementing such

requirements. System requirements allocated to hardware have

not been addressed in this paper. Since the structure of the

generic model is based on the generic model of software

adopted by the COSMIC measurement standard, the necessary

information for measuring their functional size is readily

available, and an example has been presented of a specific

instantiation of this generic model.

 Specifically, the generic model of reliability presented in

this paper is based on:

 the ECSS standards for the description of the NFR for

system reliability; and

 The COSMIC measurement model of functional

requirements.

The model is independent of the software type and the

languages in which the software FUR will be implemented.

The proposed generic reliability model (i.e. reference model)

provides:

 A specification model for each type, or all types, of

reliability requirements: for example, the requirements to

be allocated to software for the reliability models system

maturity, system tolerance and system recoverability.

 A specification measurement model for each type, or all

types, of reliability requirements.

Future work includes documentation of the traceability of the

elements of this generic model to the detailed elements of the

ECSS standards, as well verification of this generic model to

ensure full coverage of reliability requirements. Discussions

with groups of experts will be necessary to ensure its

usefulness across various communities and to develop a

consensus on further refinements of such a generic model

which could be proposed eventually as a candidate for

standardization.

REFERENCES

[1] L. Chung and P. Leite, 2009, "On Non-Functional Requirements

in Software Engineering", in "Conceptual Modeling: Foundation

and Applications, Essays in Honor of John Mylopoulos",
Springer.

[2] L. Chung, B.Nixon, E.Yu, J. Mylopoulos, 1999, "Non-
Functional Requirements in Software Engineering" Springer,

Heidelberg.

[3] J. Mylopoulos, L.Chung, B.Nixon, 1992, "Representing and

Using Nonfunctional Requirements: A Process-Oriented

Approach", IEEE Transactions on Software Engineering, vol.

18, pp. 483-497.
[4] M. Shaw, 1989, "Larger Scale Systems Require Higher-Level

Abstractions", Software Specification and Design, IEEE

Computer Society, vol. 14, pp. 143-146.
[5] A. M. Davis, 1993, "Software requirements: objects, functions,

and states", Prentice-Hall, Inc.

[6] I. Jacobson, G., Booth, J. Rumbaugl, 1999, "Excerpt from the
Unified Software Development Process: The Unified Process",

IEEE Software, vol. 16, pp. 96-102.

[7] K. Wiegers, 2003, "Software Requirements", 2nd edition,
Microsoft Press.

[8] G. Roman, 1985, "A Taxonomy of Current Issues in

Requirements Engineering", IEEE Computer, pp. 14-21.
[9] B. W. Boehm, 1978, "Characteristics of software quality",

American Elsevier, North-Holland Pub. Co., Amsterdam, New

York,.

[10] A. I. Antón, 1997, "Goal identification and refinement in the

specification of software-based information systems", PhD

Thesis, Georgia Institute of Technology.
[11] ECSS-E-40-Part-1B, 2003, "Space Engineering: Software - Part

1 Principles and Requirement", European Cooperation for Space

Standardization,The Netherlands.
[12] ECSS-E-40-Part-2B, 2005, "Space Engineeing:Software- part 2

Document Requirements Definitions", European Cooperation

for Space Standardization, The Netherlands.
[13] ECSS-Q-80B, 2003, "Space product assurance: Software

product assurance", European Cooperation for Space

Standardization, The Netherlands.
[14] ECSS-E-ST-10C, 2009, "Space engineering: System

engineering general requirements," Requirements & Standards

Division Noordwijk, The Netherlands.
[15] ISO/IEC-9126, 2004, " Software Engineering - Product Quality

Model", International Organization for Standardization, Geneva

(Switzerland).

[16] ISO-IEC-24765, 2008, "Systems and software engineering

vocabulary", British Standards Institution.

[17] IEEE-Std-830, 1993, "IEEE Recommended Practice for
Software Requirements Specifications", IEEE.

[18] IEEE-1220, 2007, "IEEE Standard for Application and

Management of the Systems Engineering Process", IEEE
Computer Society, First edition.

[19] ISO/IEC-19761, 2003, "ISO 19761: Software Engineering -

COSMIC v 3.0 - A Functional Size Measurement Method",
International Organization for Standardization, Geneva

(Switzerland).
[20] ISO/IEC-14143-1, 1998, "ISO 14143-1: Information technology

- Software measurement - Functional size measurement Part 1:

Definition of concepts", International Organization for
Standardization, Geneva (Switzerland).

[21] ECSS-ESA, 2005, "Tailoring of ECSS, Software Engineering

Standards for Ground Segments, Part C: Document Templates",

ESA Board of Standardization and Control (BSSC).

Measurement Model of Software Requirements Derived from System

Maintainability Requirements

Alain Abran
1
,

Khalid T. Al-Sarayreh

2
, Juan J. Cuadrado-Gallego

3

1,2
Software Engineering Department, University of Quebec (ETS)

1100 Notre-Dame west, Montréal, Québec H3C 1K3, Canada
3
Departamento de Ciencias de la Computación, Universidad de Alcalá

28805 Alcalá de Henares, Madrid, Spain

1
alain.abran@etsmtl.ca,

 2
khalid.al-sarayreh.1@ens.etsmtl.ca,

 3
jjcg@uah.es

Abstract—Maintainability is typically described initially

as a non functional requirement at the system level. Systems

engineers must subsequently apportion these system

requirements very carefully as either software or hardware

requirements to conform to the maintainability requirements

of the system. A number of concepts are provided in the

ECSS, ISO 9126, and IEEE standards to describe the

various types of candidate maintainability requirements at

the system, software, and hardware levels. This paper

organizes these concepts into a generic standards-based

reference model of the requirements at the software level for

system maintainability. The structure of this reference

model is based on the generic model of software

requirements proposed in the COSMIC – ISO 19761 model,

thereby allowing the measurement of the functional size of

such maintainability requirements implemented through

software.

Keywords—Maintainability Requirements, Non

functional requirements – NFR, Functional size, COSMIC –

ISO 19761, ECSS International Standards, Software

Maintainability Measurement.

1. Introduction

 Non-functional requirements (NFR) play a critical

role in system development, including as selection

criteria for choosing among alternative designs and

ultimate implementations. NFR may also have a

considerable impact on project effort, and should be

taken into account for estimation purposes and when

comparing project productivity.

 Typically, these NFR are described at the system

level and not at the software level, and there is no

consensus yet on how to describe and measure these

system NFR. In practice, NFR can be viewed, defined,

interpreted, and evaluated differently by different

people, particularly when they are stated vaguely and

only briefly [1-3]. Therefore, it is challenging to take

them into account in software estimation and software

benchmarking: NFR have received less attention in

the software engineering literature and are definitely

less well understood than other cost factors [3].

Without measurement, it is challenging to take them

as quantitative inputs into an estimation process and

productivity benchmarking.

 In practice, the requirements are initially typically

addressed at the system level [4-10] either as high-

level system functional user requirements (system

FUR) or as high-level system non-functional

requirements (system NFR). The latter must usually

be detailed, allocated and implemented in either

hardware or software, or both, as software FUR, for

instance.

 For example, a system FUR will describe the

required functions in a system, while a system NFR

will describe how the required functions must behave

in a system. In the software requirements engineering

step, system NFR can then be detailed and specified

as software FUR to allow a software engineer to

develop, test, and configure the final deliverables to

system users.

 The term "functional" refers to the set of functions

the system (including the software) has to offer, while

the term "non-functional" refers to the manner in

which such functions are performed. FUR is typically

phrased with subject or predicate constructions (i.e.

noun/verb), such as: "The system must print 5

reports". NFR, by contrast, are typically phrased with

adverbs or modifying clauses, such as: "The system

will print 5 reports quickly" or "The system will print

5 reports with a high degree of reliability".

 In the ECSS (European Cooperation on Space

Standardization) standards for the aerospace industry

[11-14], the ISO 9126 [15] and IEEE 830 [16]

standards, a number of concepts are provided to

describe various types of candidate maintainability

requirements at the system, software, and hardware

levels. However, these standards vary in their views,

terminology, and coverage of maintainability.

 Currently, there exists no generic model for the

identification and specification of software FUR for

implementing system maintainability requirements

(system NFR) based on the various views documented

in international standards and in the literature [1-14].

Consequently, it is challenging to measure these

maintainability-related software FUR, and take them

into account quantitatively for estimation purposes.

 This paper focuses on a single type of NFR, that is,

system maintainability requirements, and reports on

the work carried out to define an integrated view of

software FUR for system maintainability NFR, on the

basis of international standards including the use of

the generic COSMIC – ISO 19761 [17] model of

software FUR.

 The paper is organized as follows. Section 2

presents the view of software FUR in ISO 19761.

Section 3 identifies the standards describing

mailto:alain.abran@etsmtl.ca

mailto:khalid.al-sarayreh.1@ens.etsmtl.ca

mailto:jjcg@uah.es

maintainability requirements. Section 4 presents a

standards-based definition of a generic model of

requirements for software to implement system

maintainability NFR. Finally, a discussion is

presented in section 5.

2. A Generic view of software FUR in ISO

 ISO 14143-1 [18] specifies that a functional size

measurement (FSM) method must measure the

software functional user requirements (FUR). In

addition, the COSMIC – ISO 19761 [17] model

proposes a generic model of software FUR that

clarifies the boundary between hardware and

software. Fig. 1 illustrates the generic flow of data

from hardware to software from a functional

perspective. From this generic model of software

FUR, depicted in Fig. 1, the following observations

can be made:

 Software is bounded by hardware. In the so-

called ―front end‖ direction (i.e. center of Fig. 1),

software used by a human is bounded by I/O

hardware such as a mouse, a keyboard, a printer,

or a display, or by engineered devices such as

sensors or relays. In the so-called ―back end‖

direction (i.e. the right-hand side of Fig. 1),

software is bounded by persistent storage

hardware like a hard disk, or RAM or ROM

memory.

 Software functionality is embedded within the

functional flows of data groups. Such data flows

can be characterized by four distinct types of data

movements. In the ―front end‖ direction, two

types of movements (ENTRIES and EXITS)

allow the exchange of data with users across a

boundary. In the ―back end‖ direction, two types

of movements (READS and WRITES) allow the

exchange of data with the persistent storage

hardware.

Fig. 1: Generic flow of data groups through software from

a functional perspective in COSMIC – ISO 19761

 Different abstractions are typically used for

different measurement purposes. In real-time

software, the users are typically the engineered

devices that interact directly with the software,

that is, the users are considered the I/O hardware.

For business application software, the abstraction

commonly assumes that the user is one or more

humans who interact directly with the business

application software across the boundary; the I/O

hardware is ignored.

 As an FSM method, COSMIC is aimed at

measuring the size of software based on identifiable

FUR. Once identified, those requirements are

allocated to hardware and software from the unifying

perspective of a system integrating these two

―components‖. Since COSMIC is aimed at sizing

software, only those requirements allocated to the

software are considered in its measurement procedure.

3. Identification of standards describing

maintainability requirements

 This section presents a survey of the

maintainability-related views, concepts, and terms in

the ECSS, ISO 9126, and IEEE-830 standards. This

section identifies which standards currently address

aspects of the software FUR derived from system

maintainability FUR and NFR – see Fig. 2. The

expected outcome is the identification of the various

elements that should be included in the design of a

standards-based framework for modelling software

FUR for system maintainability. The elements of

maintainability are dispersed in various system views

throughout various ECSS standards and are expressed

as either:

 System maintainability functional user

requirements (system maintainability FUR), or

 System maintainability non-functional

requirements (system maintainability NFR)

Fig. 2: Mapping system NFR into software FUR for

maintainability

3.1 ECSS: views and concepts for maintainability

 Maintainability in the ECSS standards is

considered as part of the integrated support

requirements in system engineering, including related

activities and procedures. Table 1 presents a list of

concepts and vocabulary used in the ECSS standards

to describe system-related maintainability

requirements. For instance, the ECSS specifies that,

for system maintainability, analysis of failure modes,

effects, and criticality (FMECA) must be carried out.

ECSS does not specify, however, if such requirements

must be implemented in software, hardware, or a

combination of the two.

 While conducting the survey of all the

maintainability concepts and terms described in the

ECSS-E-40 and ECSS-Q series and in ECSS-ESA as

the integrated standard for ECSS-E and ECSS-Q, it

was observed that:

 These various maintainability elements are

described differently, and at different levels of

detail;

or

Engineered
Devices

Storage Hardware

SOFTWARE

ENTRY

EXIT

S

Front
end

»

USER

S

READ

S

WRITE

S

Back
end

»

EXIT

S

ENTRY

I/O

Hardware

BOUNDARY

System maintainability

FUR

System maintainability

NFR

Software maintainability

FUR

 The maintainability elements are dispersed

throughout the various documents: there is,

therefore, no integrated view of all types of

candidate maintainability requirements;

 There is no obvious link between the

maintainability requirements in ECSS-ESA [19] as

the integrated standard and all the other ECSS

standards that describe maintainability

requirements.

Table 1: Maintainability view and vocabulary in ECSS

Key view Concepts and Vocabulary

Part of the

integrated

support

requirements

in system

engineering,

including

activities and

procedures

 Maintainability activities and

procedure.

 Maintainability operations

 Environment control and life

support systems design (ECLSS)

 Failure modes, effects, and

criticality analysis (FMECA)

 Failure modes and effects analysis

(FMEA)

 Mean-time-to-repair and System

down-time

 Fault detection and isolation

capability

 System malfunction.

 It is also to be noted that the ECSS does not

propose a way to measure such software

maintainability requirements, and, without

measurement, it is challenging to take such an NFR

either as a quantitative input to an estimation process

or in productivity benchmarking.

3.2 IEEE: views and concepts for maintainability

 IEEE-830 [16] lists maintainability as one of the

NFR type, but does not define it, nor does it provide

guidance on how to describe and specify the

maintainability requirements; of course, it does not

provide guidance on how to measure any of these

NFR either.

 IEEE-14764 [20] and IEEE-982.1 [21] only define

the maintainability requirement as the capability of

the software product to be modified, without

mentioning how to describe and specify the

maintainability requirements.

3.3 ISO9126: views and concepts for

maintainability

 The key view on maintainability in the ISO 9126

series is from the perspective of the quality of the

software product: maintainability is presented as a

‗quality characteristic‘, which is decomposed into

quality sub characteristics and then into proposed

derived measures to quantify those quality sub

characteristics. The inventory of related concepts and

vocabulary on software maintainability, such as

analyzability, changeability, is presented in Table 2.

Table 2: Maintainability view & vocabulary in ISO 9126

Key views Concepts and Vocabulary

Maintainability

quality

characteristic:

The capability

of the software

product to be

modified.

Modifications

may include

corrections,

improvements,

or adaptation

of the software

to changes in

environment

 Analysability

 Audit Trial Capability

 Failure Analysis Capability

 Status Monitoring Capability

 Diagnostic Function Support

 Changeability

 Change Efficiency

 Software Change Control

Capability

 Modifiability

 Stability

 Modification Impact

 Change Success Ratio

 Testability

 Availability of Built-in Test

Function

 Retest Efficiency

 Test Restart Ability

 A large number of measures are proposed in ISO

9126, but none addresses software FUR, only the

maintainability NFR of the software itself. However,

nothing precludes the use of these concepts at the

system level or looking at what functions must be

performed at the software level (i.e. FUR allocation to

software) to implement these system level NFR.

4. A standards-based definition of a generic

model of software-FUR for system

maintainability requirements

 This section identifies and assembles the

terminologies and concepts of maintainability

dispersed throughout the ECSS, IEEE, and ISO

standards. These terminologies are mapped next into a

proposed model of maintainability software FUR

using the generic FUR model proposed in COSMIC.

This COSMIC-based generic model then becomes a

framework for describing the software FUR from

system maintainability requirements based on the

ECSS standards.

4.1 Mapping maintainability views and vocabulary

from standards

 Table 3 presents the system maintainability

requirements that are present either as system

requirements in the ECSS standard or as

maintainability-related concepts in ISO 9126: each of

these could be interpreted, and specified, at times as

software FUR.

4.2 Types of maintainability requirements

 Next, four types of system-related maintainability

requirements can be derived:
 System Analyzability

 System Changeability

 System Stability

 System Testability

Table 3: Maintainability in ECSS & ISO 9126

System Maintainability Requirements

Failure Data Operation

Failure Data Monitoring

Failure Data Control

System Failure Tasks

Failure Isolation

Failure Detection

Correct Data Faults

Correct System Defects

Fault Prevention of Data Control

Fault Prevention of System Functions

Fault Allocation Time

 Table 4 presents various typical procedures (middle

column) for system maintainability requirements and

corresponding software functions (right-hand side

column) that may be specified to implement such

procedures for the four types of system

maintainability requirements.

Table 4: System maintainability requirements and related

software functions

System

Maintainability

Requirements

Software

Procedure for

System

Maintainability

Software functions

System

Analysability

Maintainability

Procedure

System Diagnostic

Function

Failure Data

Operation

Failure Data

Monitoring

Failure Data

Control

System Failure

Tasks

System

Analysability &

Changeability

Registered

Failures

Failure Isolation

Failure Detection

System

Changeability

System

Malfunction

Correct Data

Faults

Correct System

Defects

System

Testability

System Time

Fault Allocation

Time

System

Stability

Fault Prevention of

Data Control

Fault Prevention of

System Function

4.3 Software maintainability functions to be

specified

 The maintainability functions to be specified (and

corresponding entities to be measured) are divided

into external and internal maintainability function that

may be allocated to software see Table 5: External

maintainability refers to the expected failures that

could occur in the system, while internal

maintainability refers to the expected correction of the

failures occurring in the system.

Table 5: Maintainability functions allocated to software

Type Maintainability functions

External

Maintainability

 Failure Data Operation function

 Failure Data Monitoring

function

 Failure Data Control function

 System Failure Tasks function

 Failure Isolation function

 Failure Detection function

Internal

Maintainability

 Correct Data Faults function

 Correct System Defects function

 Fault Prevention of Data Control

function

 Fault Prevention of System

Functions

 System Time function

 Fault Allocation Time function

4.4 Identification of the maintainability function

types

 This section identifies the function types and

functional relationships in the software FUR for

system maintainability.

Maintainability Function Type 1: Failure

Procedure - Fig. 3

 The system diagnostic function sends a data

group to the failure data operation, monitoring,

control, and system failure tasks.

 Failure data operation, monitoring, control, and

system failure tasks functions send a data group to

each other.

Fig. 3: Maintainability failure procedure

Maintainability Function Type 2: Registered

failures – Fig. 4

 Failure detection function sends/receives a data

group to/from failure isolation function and vice

versa.

Figure 4: Registered failures

Maintainability Function Type 3: System

malfunction – Fig. 5

 Correct data faults function sends/receives a data

group to/from correct system defects function,

and vice versa.

Figure 5: System malfunction

Failure detection Failure isolation

System diagnostic function

Failure data operation Failure data monitoring

Failure data control System failure tasks

Correct data faults Correct system defects

Maintainability Function Type 4: System stability

– Fig. 6

 Fault prevention of data control function

sends/receives a data group to/from fault

prevention of system functions, and vice versa.

Fig.6: System stability

Maintainability Function Type 5: System

testability – Fig. 7

 The system time function sends/receives a data

group to/from fault allocation time, and vice

versa.

 The system time and fault allocation time

function sends/receives a data group to/from

system stability function, and vice versa.

Fig.7: System testability

4.5 Identification of the functional relationships

 Fig. 8 presents an overview of the relationships

between the function types in the maintainability

software FUR, using COSMIC for graphical

representation. Specifically:

 The sub model of the Maintainability Function

Type 1 can be used to specify and measure the

functional size of the external maintainability for

the maintainability failure procedure from the

received/sent data movements from/to registered

failures and system stability function – see Fig. 8.

 The sub model of the Maintainability Function

Type 2 can be used to specify and measure the

functional size of the external maintainability for

the registered failure from the received/sent data

movements from/to registered failures and system

malfunctions and stability functions see Fig. 8.

 The sub model of the Maintainability Function

Type 3 can be used to specify and measure the

functional size of the internal maintainability for

the system malfunction Maintainability Function

type from the received/sent data movements

from/to registered failures and system stability

functions see Fig. 8.

 The sub model of the Maintainability Function

Type 4 can be used to specify and measure the

functional size of the internal maintainability for

the system stability Maintainability Function type

from the received/sent data movements from/to

malfunction system, system testability and

system failure procedure see Fig. 8.

 The sub model of the Maintainability Function

Type 5 can be used to specify and measure the

functional size of the internal maintainability for

the system testability entity type from the

received/sent data movement from/to stability

functions see Fig. 8.

This model is referred to here as a generic model of

software FUR for system maintainability.

Fig. 8: COSMIC reference model of maintainability requirements allocated to software

Fault prevention of

data control

Fault prevention of

system functions

System time Fault allocation time

System stability

5 Discussion

 This paper has introduced a procedure for specifying

and measuring software requirements for the internal

and external maintainability needed to address the

system‘s maintainability requirements.

 The main contribution of this paper is our proposed

Generic Model of software FUR for system

maintainability. This generic model can be considered

as a kind of reference model for the identification of

system maintainability requirements and their allocation

to software functions implementing such requirements.

System requirements allocated to hardware have not

been addressed in this paper. Since the structure of the

generic model is based on the generic model of software

adopted by the COSMIC measurement standard, the

necessary information for measuring their functional

size is readily available.

 Specifically, the generic model of maintainability

presented in this paper is based on:

 the ECSS standards for the description of the NFR

for system maintainability; and

 The COSMIC measurement model of functional

requirements.

The model is independent of the software type and

the languages in which the software FUR will be

implemented. The proposed generic maintainability

model (i.e. reference model) provides:

 A specification model for each type, or all types, of

maintainability requirements: for example, the

requirements to be allocated to software for the

maintainability failure procedures for system

analyzability, the registered failures and

software/system malfunction for system

changeability, and for system/software stability and

testability.

 A specification measurement model for each type,

or all types, of maintainability requirements.

Future work includes documentation of the traceability

of the elements of this generic model to the detailed

elements of the ECSS standards, as well verification of

this generic model to ensure full coverage of

maintainability requirements. Discussions with groups

of experts will be necessary to ensure its usefulness

across various communities and to develop a consensus

on further refinements of such a generic model which

could be proposed eventually as a candidate for

standardization.

REFERENCES

[1] L. Chung and J. Cesar Prado Leite, "On Non-Functional

Requirements in Software Engineering", in "Conceptual

Modeling: Foundation and Applications, Essays in

Honor of John Mylopoulos", Springer, 2009.

[2] L. Chung, B. Nixon, E. Yu, J. Mylopoulos, "Non-

Functional Requirements in Software Engineering",

Springer, Heidelberg, 1999.

[3] J. Mylopoulos, L. Chung, B. Nixon, "Representing and

Using Nonfunctional Requirements: A Process-Oriented

Approach", IEEE Transactions on Software Engineering

vol. 18, pp. 483-497, 1992.

[4] M. Shaw, "Larger Scale Systems Require Higher-Level

Abstractions", Software Specification and Design, IEEE

Computer Society, vol. 14, pp. 143-146, 1989.

[5] A. M. Davis, "Software requirements: objects, functions,

and states", Prentice-Hall,1993.

[6] I. Jacobson, G., Booth, J.,Rumbaugl, "Excerpt from the

Unified Software Development Process: The Unified

Process", IEEE Software, vol. 16, pp. 96-102, 1999.

[7] K. Wiegers, "Software Requirements", 2nd edition,

Microsoft Press, 2003.

[8] G. Roman, "A Taxonomy of Current Issues in

Requirements Engineering", IEEE Computer, pp. 14-21,

1985.

[9] B. W. Boehm, "Characteristics of software quality",

North-Holland Pub. Co. , American Elsevier, 1978.

[10] A. I. Antón, "Goal identification and refinement in the

specification of software-based information systems",

PhD Thesis, Georgia Institute of Technology, 1997.

[11] ECSS-E-40-Part-1B, "Space Engineering: Software -

Part 1 Principles and Requirements", European

Cooperation for Space Standardization,The Netherlands,

2003.

[12] ECSS-E-40-Part-2B, "Space Engineeing:Software-part 2

Document Requirements Definitions", European

Cooperation for Space Standardization, The

Netherlands, 2005.

[13] ECSS-Q-80B, "Space product assurance: Software

product assurance", European Cooperation for Space

Standardization, The Netherlands, 2003.

[14] ECSS-E-ST-10C, "Space engineering: System

engineering general requirements", Requirements &

Standards Division, Noordwijk, The Netherlands, 2009.

[15] ISO/IEC-9126, "Software Engineering - Product Quality

- Part 1: Quality Model ", International Organization for

Standardization, Geneva (Switzerland), 2004.

[16] IEEE-Std-830, "IEEE Recommended Practices for

Software Requirements Specifications", IEEE, 1993.

[17] ISO/IEC-19761, "Software Engineering - COSMIC v

3.0 - A Functional Size Measurement Method",

International Organization for Standardization, Geneva

(Switzerland), 2003.

[18] ISO/IEC-14143-1, " Information technology-Software

measurement - Functional size measurement Part 1:

Definition of concepts", International Organization for

Standardization, Geneva (Switzerland), 1998.

[19] ECSS-ESA, "Tailoring of ECSS, Software Engineering

Standards for Ground Segments, Part C: Document

Templates", ESA Board of Standardization and Control

(BSSC), 2005.

[20] ISO/IEC-14764, "Standard for Software Engineering—

Software Life Cycle Processes—Maintenance", ISO,

Geneva (Switzerland), 2006.

[21] IEEE-982.1, "IEEE Standard Dictionary of Measures of

the Software Aspects of Dependability", Software

Engineering Standards Committee, IEEE Computer

ociety, New York, USA, 2005.

