
ECOLE DE TECHNOLOGIE SUPERIEURE
UNIVERSITÉ DU QUÉBEC

THESIS PRESENTED TO
ÉCOLE DE TECHNOLOGIE SUPÉRIEURE

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR
THE DEGREE OF MASTER OF ENGINEEERING

M. Eng.

BY
CADENA, Carios

EVOLUTIONARY FEATURE CREATION FOR ENSEMBLES

MONTREAL, MARCH THE 4™, 2008

I Copyright reserved by Carlos Cadena

THIS THESIS WAS EVALUATED

BY THE FOLLOWING BORAD OF EXAMINERS

M. Robert Sabourin, Thesis Supervisor
Department of automatic manufacturing engineering at École de technologie supérieure

M. Patrick Maupin, Thesis Co-supervisor (extemal)
Defence Research and Development Canada (DRDC Valcartier)

Jacques-André Landry, Président of the Board of Examiners
Department of automatic manufacturing engineering at École de technologie supérieure

M. Chrisfian Gagné, Extemal examiner
MacDonald, Dettwiler and Associates Ltd.

THIS THESIS WAS PRESENTED AND DEFENDED

BEFORE A BOARD OF EXAMINERS AND PUBLIC

FEBRUARY21,2008

AT ÉCOLE DE TECHNOLOGIE SUPÉRIEURE

ACKNOWLEDGMENTS

1 would like to thank my thesis supervisor. Prof Robert Sabourin, for giving me the

opportunity of working within his group, for his constant guidance and for his pafience ail

this time. When we were stuck, he always had a new perspective that enables us to go on.

Also, I would like to thank Patrick Maupin, thesis co-supervisor. His help throughout, gave

cohésion to the thesis in différent points. Part of this project was financed by DRDC-

Valcartier under the contact W7701-2-4425/001/QCA.

I would like to thank two people related to Open BEAGLE: Christian Gagné and Matthew

Walker. They helped me a lot to understand it and fix some issues during the development

phase. In addifion, Christian Gagné accepted to be part of the Board of Examiners.

My thanks go as well to Jacques-André Landry, who accepted to be the Président of the

Board of Examiners.

Spécial thanks go to Eulanda M. de Santos, who was always willing to help me and to

answer the 1001 questions that I formulated. In the end, she was involved in this thesis more

than she would hâve thought.

My wife Olga and my two children Alejandro and Sébastian were merely alone ail through

this time (I was virtually with them but my mind was far in the ensembles). Even though,

Olga surrounded me with love and support (emotional and financial) and my children

patiently supported not having their daddy at home so many evenings and weekends. I

dedicate to them what this thesis means and ail good things that will corne as a resuit. Thank

you for loving me.

People from Livia laboratory helped me a lot ail the way. I would like to mention Vincent

Dore, Marcelo Kapp, Albert Ko, Dominique Rivard, Jean François ConnoUy, Eric

Thibodeau, Paulo Cavalin, Paulo Radtke, Luis Da Costa, Mathias Adankon and ail others.

EVOLUTIONARY FEATUR E CREATIO N FO R ENSEMBLE S

CADENA, Carios

ABSTRACT

Evolutionary feature création for ensembles is about the génération of new attributes useful
to build classifiers and ensembles of classifiers (EoC), based on evolufionary algorithms. The
new attributes consist in transformations applied to the original raw features into a différent
space with the same or smaller cardinality, so that the subséquent classification process is
simpler to be executed and provide better results. The feature création process is intended
towards the génération of ensembles using the built classifiers.

Bot's method is based on Genetic Programming (GP) (Koza, 1992), which "builds the
features" that define the classifier. GP is used because it has the ability to discover
underlying data relationships and express them mathematically (Kishore et al, 2000)
establishing the structure and values of the solution (Guo et al., 2005). As the évolution
progresses, GP discards the raw features that are not useful to solve the problem. Thus, by
applying genetic programming we are doing feature construction and a sort of feature
sélection at the same time.

The method to generate the classifiers is based on a method proposed in (Bot, 2001) and it is
called hère Bot's method because of its author. Bot's method uses GP and consists in
creating one feature at a time and guiding the évolution of new evolved features with the aid
of the improvement in récognition rate of the proposed new feature in conjunction with the
already evolved features. Bot's method improves performance with each new evolved feature
by adding diversity and eluding the over-fitting phenomenon. We hâve improved Bot's
method in two ways: adding a global validation procédure to control the over-fitting and
setting it with the island method.

The classifiers created by building the features based on GP are called evolved classifiers and
they represent the éléments of the ensembles to be generated. We choose random subspaces
method (Ho, 1998b) to generate ensembles and we hâve proposed two stratégies to create
EoC. In the first one, we combine the votes from each evolved classifier feature by feature.
The performance obtained is slightly better than an ensemble of raw random subspaces. What
is more, the same performance level of an ensemble of raw random subspaces is attained
after some features. As a resuit, we can build EoC to assure certain performance with the
minimum number of evolved features. This reduces the complexity of the ensemble without
reducing the performance. The second strategy proposed is to create the ensembles based on
finding for each base classifier, the maximum number of evolved features before over-fitting
the optimization data set. The base classifiers hâve then différent number of evolved features
but each one provides the best récognition rate controlling at maximum the over-fitting. Also,

in this case we built ensembles with better performance than the ensemble of raw random
subspaces. Furthermore, our performance results with cardinality of 9 to 12 evolved
classifiers are close to the best ensembles reported in (Tremblay, 2004) with cardinality in
the order of 30 base classifiers.

UNE METHODE EVOLUTIONNAIR E POU R L A CONSTRUCTION D E
CARACTERISTIQUES ADAPTÉ E AUX ENSEMBLE S D E CLASSIFICATEUR S

CADENA, Carios

RESUME

La construction de caractéristiques par techniques évolutives pour la génération d'ensembles
consiste en la génération de nouveaux attributs utiles pour la mise en œuvre de classificateurs
(ou ses ensembles de classificateurs (EoC)) plus performants. Les nouveaux attributs sont
définis par des transformations appliquées aux caractéristiques initiales avec une projection
dans un autre espace de représentation de cardinalité identique ou inférieure, de sorte que la
classificafion est plus simple d'exécufion et peut fournir de meilleurs résultats. La
construction des caractéristiques est généralement destinée à la génération d'ensembles qui
utilisant les classificateurs déjà construits.

La méthode pour produire les classificateurs est basée sur la procédure proposée par (Bot,
2001) et appelée ici la méthode de Bot. La méthode utilise la programmafion génétique
(Koza, 1992) (PG), car elle a la capacité de découvrir des relations sous-jacentes dans les
données et de les exprimer mathématiquement (Kishore et al., 2000). La méthode de Bot
consiste à créer une caractéristique à la fois et d'orienter l'évolution des nouvelles
caractéristiques évoluées avec le taux de reconnaissance de la nouvelle caractéristique
proposée en collaboration avec les caractéristiques déjà évoluées. Cette méthode améliore les
performances lors de chaque nouvelle caractéristique évoluée en ajoutant de la diversité et en
évitant l'impact négatif du surapprentissage. Nous proposons deux stratégies pour améliorer
la méthode de Bot: (1) l'utilisation de la validafion globale (Radtke et al, 2006) qui permet
de raffiner le critère d'arrêt et de contrôler le surapprentissage et (2) la mise en œuvre de la
version parallèle de l'algorithme de Bot en utilisant la méthode des îles.

Les classificateurs créés par la construction des caractéristiques basée sur des évolutions de
PG sont appelés classificateurs évolués et ils représentent les éléments des ensembles. Nous
avons utilisé la méthode des sous-espaces aléatoires (Ho, 1998b) pour générer des ensembles
et nous avons proposé deux stratégies pour créer ces ensembles. Dans la première stratégie,
nous combinons les votes de chaque classificateur évolué, caractéristique par caractéristique.
La performance obtenue est légèrement supérieure à un ensemble de sous-espaces aléatoires
non évolués. En plus, le même niveau de performance qu'un ensemble de sous-espaces
aléatoires non évolués est obtenu au bout de quelques caractéristiques. Par conséquent, nous
pouvons construire des ensembles de classificateurs qui assurent un niveau satisfaisant de
performance avec un nombre minimal de caractéristiques évoluées. Cela réduit la complexité
de l'ensemble, sans réduire la performance. La deuxième stratégie proposée pour créer les
ensembles est basée sur la recherche du nombre de caractéristiques évoluées pour chaque
classificateur, de façon à contrôler le surapprentissage. Les classificateurs évolués ont donc

Vil

un nombre différent de caractéristiques, mais chacun offre le meilleur taux de reconnaissance
en contrôlant le surapprentissage. Dans ce cas, nous avons construit des ensembles avec des
performances supérieures à l'ensemble des sous-espaces aléatoire non évoluées. De plus, les
résultats expérimentaux obtenus avec des ensembles de cardinalité variant de 9 à 12, sont
proches de la meilleure performance obtenue pour les ensembles rapportés par (Tremblay,
2004), avec une cardinalité d'environ 30 classificateurs de base.

UNE METHOD E EVOLUTIONNAIR E POU R L A CONSTRUCTION D E
CARACTERISTIQUES ADAPTÉ E AUX ENSEMBLES D E CLASSIFICATEUR S

CADENA, Carios

SYNTHESE

La construction de caractéristiques par techniques évolutives pour la génération d'ensembles
consiste en la générafion de nouveaux attributs utiles pour la mise en œuvre de classificateurs
(ou ses ensembles de classificateurs (EoC, de l'anglais ensemble of classifiers)) plus
performants. Les nouveaux attributs sont définis par des transformations appliquées aux
caractéristiques initiales avec une projection dans un autre espace de représentation de
cardinalité identique ou inférieure, de sorte que la classification est plus simple d'exécufion
et peut fournir de meilleurs résultats. La construction des caractéristiques est généralement
desfinée à la génération d'ensembles utilisant les classificateurs déjà construits.

La classification est un problème important en reconnaissance de formes. Les objets d'un
problème de la reconnaissance des formes sont modélisés grâce à une base de données. Par
conséquent, l'objet d'un système de classification en reconnaissance de formes est d'assigner
une catégorie ou classe aux échanfillons de la base de données. 11 n'y a pas de méthode de
classification qui soit applicable à tous les types de problèmes de reconnaissance. Le degré
de difficulté d'un problème de classification dépend de la variabilité des caractéristiques pour
les objets dans la même catégorie relative à la différence entre les objets de différentes
catégories (Duda et al., 2001). Lorsque la complexité du problème augmente, le vecteur de
caractéristiques qui décrit la base de données devient de plus en plus complexe et la difficulté
de la tâche de classification est également augmentée. Pour tenter de résoudre ces problèmes,
les chercheurs essaient de trouver un sous-ensemble de caractéristiques qui permet d'atteindre
des résultats similaires, mais avec une réduction de la quantité de ressources et de temps
nécessaires. Nous cherchons donc un sous-ensemble de caractéristiques qui permet de
différencier les catégories. Une démarche complémentaire consiste à créer les éléments d'un
ensemble de départ, de sorte que les classificateurs montrent collectivement une meilleure
performance que le meilleur classificateur individuel.

Le deuxième chapitre décrit comment les techniques évolutives, en particulier les
algorithmes génétiques (GA) et la programmation génétique (PG), peuvent être appliquées au
problème de la sélection et de la construction de caractérisfiques. Nous montrons que la
programmation génétique est très utile pour s'attaquer au problème de la création des
caractéristiques, dans le but de générer des classificateurs. La PG est ufilisée car elle a la
capacité de découvrir des relations sous-jacentes dans les données et de les exprimer
mathématiquement (Kishore et al., 2000), puis de découvrir la structure et des valeurs de la
solufion (Guo et al., 2005). Au fur et a mesure que l'évolufion progresse, la PG rejette les
caractéristiques qui ne sont pas utiles pour résoudre le problème. Ainsi, en appliquant la PG,

IX

nous faisons à la fois la construcfion de nouvelles caractérisfiques et une sélection des
caractérisfiques de départ. Les classificateurs produits seront les éléments constitutifs des
EoC, ce qui fait l'objet du troisième chapitre.

Le troisième chapitre traite des concepts de base des EoC. Il explique différentes techniques
pour générer les ensembles comme la manipulation des exemples d'apprentissage, des
caractéristiques d'entrée ou des sorties. Nous présentons aussi différentes façons de combiner
les classificateurs de l'ensemble et l'application des techniques de sélecfion et de construction
des caractéristiques à la sélection et la construction des ensembles. Les classificateurs créés
par la construction des caractéristiques basée sur des évolutions de PG sont appelés
classificateurs évolués et ils représentent les éléments des ensembles de classificateurs. Les
EoC peuvent obtenir des résultats similaires, et parfois meilleurs que les performances d'un
classificateur unique et complexe. Nous avons choisi une approche particulièrement
intéressante pour créer des ensembles, basée sur la génération de sous-ensembles de
caractérisfiques à partir d'un ensemble de départ (Ho, 1998b). Cette méthode est appelée
sous-espaces aléatoires (RS de l'anglais random subspaces). Dans notre cas, les
classificateurs générés par RS sont évolués et ensuite combinés pour produire l'ensemble
final. Bien que l'évolution des classificateurs par RS apporte de nouvelles connaissances sur
le problème, chaque classificateur évolué n'a encore qu'une représentation partielle du
problème de reconnaissance. Leur combinaison dans un ensemble permet une augmentation
des performances par rapport à chaque classificateur individuel et aux ensembles de sous-
espaces aléatoires non évolués.

La méthode ufilisée pour produire les classificateurs est basée sur la procédure proposée par
(Bot, 2001) et appelée ici la méthode de Bot. Cette méthode, qui est le sujet du chapitre 4,
consiste à créer une caractérisfique à la fois et d'orienter l'évolufion des nouvelles
caractérisfiques évoluées avec le taux de reconnaissance de la nouvelle caractérisfique
proposée en collaboration avec les caractéristiques déjà évoluées. Cette méthode produit des
solutions avec un petit nombre de caractéristiques évoluées et des taux de reconnaissance
acceptables, en ne prenant que quelques générations pour l'évolution. La méthode de Bot
atteint de bons résultats principalement pour les raisons suivantes: la population est
réinitialisée, puisque l'évolution est lancée à nouveau pour chaque nouvelle caractéristique
évoluée, cela augmente la diversité de la population. Cette foncfionnalité empêche que
l'évolufion soit piégée dans un maximum local. En outre, l'évolufion est faite pour un certain
nombre de générations, ce qui permet de minimiser l'impact du surapprentissage. Par
conséquent, la méthode de Bot améliore les performances lors de chaque nouvelle
caractéristique évoluée en ajoutant de la diversité et en évitant l'impact négafif du
surapprentissage. Nous avons testé la méthode avec les mêmes bases de données utilisées
dans (Bot, 2001) et nous avons obtenu des résultats comparables à ceux rapportés par
l'auteur.

Le chapitre 5 présente une analyse détaillée de la méthode de Bot et propose deux stratégies
pour l'améliorer: l'utilisation de la validafion globale (Radtke et al, 2006) qui permet
l'améliorafion du critère d'arrêt de la méthode de Bot et la mise en ouvre de la version
parallèle de la méthode. Le critère d'arrêt utilisé dans la méthode de Bot détermine le moment

X

d'arrêter l'ajout de nouvelles caractéristiques évoluées en se basant sur l'augmentation des
taux de reconnaissance obtenus lors de l'ajout d'une nouvelle caractéristique. Si
l'augmentation au cours de la phase d'apprentissage est inférieure à un seuil, cette dernière
caractéristique est rejetée et le processus d'évolution est arrêté. Le seuil est calculé à partir de
l'augmentation relafive de la performance dans la base d'optimisafion au moment où la
validation est maximale. Ce critère est comparable à un mélange entre la validation à la fin
de l'optimisafion et le rejet anticipé. On dit validation à la fin de l'opfimisation, car la
comparaison est faite à la fin de l'évolution pour chaque caractéristique et rejet anticipé, car
la dernière caractéristique évoluée est rejetée si l'augmentation du taux de reconnaissance
dans l'optimisation n'est pas plus grande que le seuil. Ce critère est lourd et il ne considère
pas ce qui se produit au cours de l'évolution pour créer une caractéristique. Nous avons
appliqué la validafion globale (Radtke et al., 2006), qui assure le pouvoir de généralisation de
chaque solution (individus de la population) en testant les solutions avec un ensemble de
données de validation pour chaque générafion et chaque caractéristique évoluée. En
conséquence, nous sommes en mesure d'identifier le meilleur point d'arrêt parce qu'aucune
nouvelle amélioration n'est obtenue en validation. Nous avons testé avec succès la méthode
de validation globale avec certains des ensembles de données utilisés dans (Bot, 2001). Nous
avons remarqué que le nombre moyen de caractéristiques évoluées est plus grand que dans
la méthode originale de Bot. Une analyse détaillée des deux algorithmes est présentée en fin
de chapitre.

La deuxième amélioration présenté au chapitre 5, est basée sur la méthode des îles (Cantu-
Paz et Goldberg, 2001) pour paralléliser l'algorithme de construction de Bot. Cette méthode
consiste a faire évoluer des sous-groupes de populations isolées qui font parfois l'échange
d'individus dans un processus de migrafion (Lin et al.., 1994; Alba et Troya, 1999;
Femândez et ai, 2003; Gagne et ai, 2003). Comme les sous-groupes de populafions
explorent différentes régions de l'espace de recherche, nous obtenons différentes solutions au
problème posé. L'avantage est que nous pouvons utiliser ces solutions de différentes
manières: en sélectionnant la meilleure solution entre toutes, en générant un ensemble
composé des meilleures solufions et en ufilisant toutes les solutions différentes à la fois, au
lieu d'une solution unique. Ces trois possibilités offrent des solutions adaptées pour la
définition des ensembles de classificateurs.

Nous avons proposé deux méthodes différentes pour créer les ensembles de classificateurs
dans le sixième chapitre. Dans la première approche, nous avons choisi quelques
classificateurs à partir d'une composition de 100 sous-espaces aléatoires (RS). Les
classificateurs ont différents niveaux de performance pour bien représenter l'ensemble
original de 100 classificateurs. Chacun des classificateurs sélecfionnés est reconstruit dans un
espace évolué, puis les classificateurs évolués sont combinés à l'aide de vote à la majorité
simple comme fonction de fusion, pour générer l'ensemble. Les résultats montrent que les
performances sont améliorées avec l'ajout de chaque caractéristique. La performance obtenue
est légèrement supérieure par rapport aux classificateurs individuels et par rapport à un
ensemble de sous-espaces aléatoires non évolués. De plus, le même niveau de performance
qu'un ensemble de sous-espaces aléatoires non évolués est obtenu au bout de quelques
caractérisfiques (cela varie de 15 à 20 caractéristiques). Par conséquent, nous pouvons

XI

construire des ensembles de classificateurs qui assurent un niveau de performance acceptable
avec un nombre minimal de caractéristiques évoluées. Cela réduit la complexité de
l'ensemble, sans réduire la performance. La cardinalité de l'ensemble construit est augmentée
en raison de trois fois le nombre des classificateurs évolués car trois îles sont utilisées pour
générer les espaces de représentations reconstruits (évolués).

La deuxième méthode proposée pour créer les ensembles est basée sur la recherche du
nombre de caractéristiques évoluées pour chaque classificateur, de façon à contrôler le
surapprentissage. Les classificateurs évolués ont donc un nombre différent de
caractéristiques, mais chacun offre le meilleur taux de reconnaissance en contrôlant le
surapprentissage. Dans ce cas, nous avons construit des ensembles avec des performances
supérieures à l'ensemble des sous-espaces aléatoire non évoluées. De plus, nos ensembles de
résultats avec une cardinalité de 9 à 12, sont proches de la meilleure performance rapportée
par (Tremblay, 2004) pour les ensembles de RS, avec une cardinalité d'environ 30
classificateurs de base.

Bien que la méthode de Bot génère une transformafion de l'espace de caractéristiques
initiales à un nombre de caractéristiques évoluées, il est important aussi d'analyser le degré
d'utilisation des caractéristiques inifiales dans les solutions évoluées. Une question se pose
alors : combien de caractéristiques inifiales sont ufilisées et quelle est l'importance de chaque
élément dans les solutions. L'importance relative de chaque caractéristique dépend des
problèmes eux-mêmes, mais pour certaines bases de données, l'analyse souligne quelles sont
les plus importantes caractéristiques pour la classificafion. L'analyse de l'utilisation des
caractéristiques initiales est une première étape dans l'interprétation des arbres de décision où
les solutions sont générées par la programmation génétique. Cette analyse, rarement
présentée dans les travaux sur la programmation génétique, est une autre contribution de ce
mémoire.

Nous pouvons résumer les contributions de ce mémoire: l'amélioration d'une méthode de
génération de classificateurs basée sur la programmation génétique reposant sur deux
stratégies, et une procédure de validation globale (Radke et al, 2006) qui contrôle l'impact
négatif du surapprenfissage. Une deuxième contribufion est l'ufilisafion de la méthode des
îles pour la générafion des classificateurs évolués applicable aux ensembles de
classificateurs. Enfin, l'analyse de l'ufilisafion des caractéristiques permet, dans certains cas,
de déterminer les caractérisfiques inifiales les plus discriminantes pour la classificafion.

TABLE OF CONTENT S

Page

CHAPTER 1 INTRODUCTION 26

CHAPTER 2 FEATURE SELECTION AND CREATION WITH EVOLUTIONARY
ALGORITHMS 31

2.1 Feature subset sélection 32
2.2 Genefic Algorithms 33

2.2.1 Populafion: representafion and set up 35
2.2.2 Fitness function 35
2.2.3 Sélecfion methods 36

2.2.3.1 Proportional sélection 36
2.2.3.2 Toumament sélecfion 37
2.2.3.3 Ranking sélection 37
2.2.3.4 Generafional and Steady-state replacement 37

2.2.4 Operators 38
2.2.4.1 Crossover 38
2.2.4.2 Mutafion 39

2.3 Genetic programming 39
2.3.1 Population set up 42
2.3.2 Fitness function 43
2.3.3 Opérations in Genefic Programming 44

2.3.3.1 Mutafion operator 44
2.3.3.2 Crossover operator 45

2.4 Feature sélecfion and construcfion with genefic algorithms 46
2.5 Feature Construction with Genetic Programming 49
2.6 Sélecfion of the feature construcfion method 52

CHAPTER 3 ENSEMBLE OF CLASSIFIERS 54
3.1 Introducfion 54
3.2 Design of ensemble of classifiers 55

3.2.1 Constructing ensembles by manipulafing the training examples 55
3.2.2 Constructing ensembles by manipulating the input features 56
3.2.3 Constructing ensembles by manipulating output targets 58
3.2.4 Construcfing ensembles by manipulafing the ensemble members 59

3.3 Methods for combining classifiers 59
3.4 Ensemble of classifiers and evolufionary stratégies 60

3.4.1 Sélection of classifiers and ensembles 61
3.4.2 Feature sélecfion for ensemble génération 62
3.4.3 Ensemble of classifiers and genefic programming 63

XIII

CHAPTER 4 FEATURE CREATION FOR CLASSIFIERS WITH GENETIC
PROGRAMMING 66

4.1 Feature construcfion with Genefic Programming- Bot's algorithm 67
4.1.1 Evolution framework 68
4.1.2 Fitness funcfion 70
4.1.3 Bot's stopping criterion 71
4.1.4 Blockdiagram 72

4.2 Genetic programming tool: Open Beagle 73
4.2.1 Open BEAGLE architecture 73
4.2.2 Object oriented foundations 74
4.2.3 Generic EC framework 75
4.2.4 General opération of EC framework 76

4.3 Classifiers and fitness function 76
4.3.1 Nearest neighbour classifier (Â:-NN) 76
4.3.2 Minimal distance to means (MDM) 77
4.3.3 Fisher Linear Discriminant Analysis 77

4.4 Expérimental Protocol for Bot's method 78
4.4.1 Database description and usage 78
4.4.2 Descripfion of experiments 80

4.4.2.1 Parameters related to classifier or fitness measure 82
4.4.2.2 GP-related parameters 83

4.4.3 Results 88
4.4.3.1 Results with/c-NN classifier 88
4.4.3.2 Results with MDM classifier 90
4.4.3.3 Results with fitness based on Fisher criterion 92
4.4.3.4 Performance for unbalanced data sets 96
4.4.3.5 Représentation of data sets with one or two evolved features 96
4.4.3.6 General conclusions 100

CHAPTER 5 IMPROVEMENTS TO FEATURE CREATION FOR CLASSIFIERS 101
5.1 Analysis of some GP parameters 103

5.1.1 Population size and number of generafions 103
5.1.2 Fitness funcfion 105
5.1.3 Cross-over and mutafion probabilifies 108
5.1.4 Experiments with cross-over and mutafion probabilifies 109

5.2 Parallelizafion of optimizafion 112
5.2.1 General description of coarse-grained model 114
5.2.2 Experiments with parallelizafion with Island method 115

5.2.2.1 Analysis of results with some UCI data sets 117
5.2.2.2 Analysis of results with Ship data set 121

5.3 Over-fit control 125
5.3.1 Classification without validation 126
5.3.2 Classificafion with validation after opfimization 126
5.3.3 Global vaHdation 127
5.3.4 Global validafion applied to Bot's procédure 128

XIV

5.3.5 Analysis of over-fitfing and stopping criterion 130
5.3.6 Experiments to analyze the over-fitting 132

5.3.6.1 Comparison of results using Bot's procédure and Global
validation 133

5.3.6.2 Analysis of over-fitting with global validafion: 135
5.3.6.3 Analysis of evolufion 139
5.3.6.4 Analysis of diversity along the evolufion 141
5.3.6.5 Review of results 142

5.4 Feature sélecfion and feature creafion 144
5.4.1 Analysis of raw feature utilizafion during évolution 145
5.4.2 Raw features utilizafion in evolved features 146

5.5 General conclusions 149

CHAPTER 6 FEATURE CREATION FOR ENSEMBLES 153
6.1 Optimization of ensembles of A'-NN by random subspaces 154
6.2 Creafion of ensembles of classifiers based on GP 157

6.2.1 Re-engineering of base classifiers 158
6.2.2 Global Validation on evolved classifiers 161
6.2.3 Combination of re-engineered base classifiers 163

6.3 Expérimental protocol - Feature création for ensembles 165
6.3.1 NIST SD19 database description and usage 165

6.3.1.1 Feature set 166
6.3.1.2 Database descripfion and usage 168

6.3.2 Préparations before evolving a base classifier 170
6.3.3 General description of experiments to run 172

6.3.3.1 Sélecfion of base classifiers with différent performances 173
6.3.3.2 Sélection of an ensemble of base classifiers 176

6.3.4 Construcfion of ensembles with base classifiers of différent
performances 178
6.3.4.1 Methodology 178
6.3.4.2 Création of evolved classifiers EoIC 179

6.3.5 Construcfion of ensembles with already selected base classifiers 186
6.3.5.1 Methodology 186
6.3.5.2 Evolved Classifiers Ci 187
6.3.5.3 Over-fitting analysis and finding the best solution in validation... 189
6.3.5.4 Ensembles of the best island from each evolved classifier 194
6.3.5.5 Ensembles of intermediate island ensembles 196
6.3.5.6 Ensembles of ail islands from each evolved classifier 198
6.3.5.7 Review of results and analysis of smaller ensembles 200
6.3.5.8 Feature sélecfion and feature creafion 203

6.4 General conclusions 208

CONCLUSIONS AND RECOMMENDATIONS 211

ANNEX I STEADY-SATE REPLACEMENT 216

XV

ANNEX II BOT'S ALGORITHM 217

ANNEX III BOT'S ALGORITHM WITH VALIDATION AFTER
OPTIMIZATION 218

ANNEX IV GLOBAL VALIDATION STRATEGY (ADAPTED FROM
(Radtke et ai, 2006)) 219

ANNEX V GLOBAL VALIDATION PROCEDURE APPLIED TO BOT'S
METHOD 220

ANNEX VI RESULTS EVOLVED CLASSIFIERS OF DIFFERENT REC.
RATES 222

BIBLIOGRAPHY 223

Table 4.1

Table 4.2

Table 4.3

Table 4.4

Table 4.5

Table 4.6

Table 4.7

Table 4.8

Table 5.1

Table 5.2

Table 5.3

Table 5.4

Table 5.5

LIST OF TABLES

Page

Characterisfics of databases used by (Bot, 2001) 79

Parameters of k-NN classifier 82

GP related parameters 85

Addifional parameters to define for a GP run 87

Comparison Bot's results with the implementation in Open
BEAGLE using k-NN classifier Average Rec. Rate (%) ± standard
deviafion, using 5 repetifions and 10-fold cross-validafion 89

Comparison Bot's results against our implementation using MDM
classifier Average Rec. Rate (%) ± standard déviation, using 5
repefifions and 10-fold cross-validafion 91

Average Rec. Rate (%) ± standard déviation of Bot's algorithm with
fitness based on Fisher criterion and a /r-NN, using 5 répétitions and
10-fold cross-validafion 93

Bot's algorithm using fitness based on Fisher criterion and a MDM
classifier Average Rec. Rate (%) ± standard déviation, using 5
repetifions and 10-fold cross-validafion 94

Values for constant P for fitness function with Fisher criterion with
constant A.=0.001 107

Récognition rates for some UCI data sets using Island method 117

Average récognition rates for ship data set for Bot's algorithm with
Island method Average taken over 10 répétitions using 10-fold cross-
validation, standard déviation for Rec. Rate and number of evolved
features also indicated 123

Comparison of results when applying global validafion to Bot's
method with k-NN Five repefifions using 10-fold cross-validafion,
average and standard déviation values included for récognition rate
and number of evolved features 143

Comparison of results when applying global validafion to Bot's
method with MDM Five répétitions using 10-fold cross-validation,
average and standard deviafion values included for récognition rate
and number of evolved features 143

XVII

Table 5.6

Table 6.1

Table 6.2

Table 6.3

Table 6.4

Table 6.5

Table 6.6

Table 6.7

Table 6.8

Table 6.9

Table 6.10

Table 6.11

Table 6.12

Table 6.13

Table 6.14

Average and standard déviation of raw feature ufilization and
evolved features using the Island method using 10-fold cross-
validation and 5 répétitions 148

Results from opfimization of ensembles with GA. Extracted from
(Tremblay, 2004) 156

Différent data sets to be used during feature construction for ensembles 169

GP related parameters for evolving classifiers 172

Comparison of récognition rate and standard déviation on test set
for raw RS with /-NN classifiers and evolved classifiers 182

Récognition rate on Test set for différent EoC(1 -NN) and average
récognition rate and standard déviation for ensembles of evolved
classifiers, including cardinality 185

Average récognition rate and standard déviation in Validation and
Test for evolved RS, including number of evolved features and
comparison against raw RS with 1-NN 188

Comparison of Rec. Rates in validation: mapping from OPT and
VAL 193

Récognition rate (average and standard déviation) results of
Ensemble of Best Islands fusion with simple and weighted
majority vote, including a comparison to ensemble of raw RS 196

Récognition rate (average and standard déviation) results of
Ensemble of Intermediate ensemble, fusion with simple majority
vote, including a comparison to ensemble of raw RS 197

Récognition rate (average and standard déviation) results of
Ensemble of ail islands, fiasion with SMV and MV, including a
comparison to ensemble of raw RS 200

Review of results selected ensemble built with evolved classifiers 201

Récognition rates for ensembles of 4 evolved classifiers (12 in total)201

Results from optimization of ensembles with G A Extracted from
(Tremblay, 2004) 203

Raw features ufilizafion for evolved RS 205

LISTE DES FIGURE S

Page

Figure 2.1 One point cross-over operator in genetic algorithms (Kubalik, 2000) 38

Figure 2.2 Mutafion operator in genefic algorithms. (Kubalik, 2000) 39

Figure 2.3 Genetic programming flowchart. (Adapted from Koza,1992) 41

Figure 2.4 Représentation of a program (individual) generated by GP (Koza, 1992).42

Figure 2.5 Mutation operator 46

Figure 2.6 Crossover operafion in GP with two offspring 45

Figure 2.7 Architecture of combined feature sélection and construction

based on GA 48

Figure 4.1 Block diagram of Bot's method 73

Figure 4.2 Architecture of Open BEAGLE framework 74

Figure 4.3 Open BEAGLE generic EC framework 75

Figure 4.4 Fisher fitness values by générations and evolved features.
Australian data set 96

Figure 4.5 Analysis of representafion of Ionosphère data with one or

two evolved features 98

Figure 4.6 Evolved feature 1 for Ionosphère example 99

Figure 5.1 Recognifion rate curves for différent combination of cross-over
and mutafion 111

Figure 5.2 Dispersion of recognifion rates and Ensembles for some UCI

data sets 120

Figure 5.3 Samples of images in FLIR data set 121

Figure 5.4 Solutions for différent evolved features of Ship data set 122

Figure 5.5 Confusion matrix for classification of FLIR ship images data set 124

Figure 5.6 Global validafion procédure 129

XIX

Figure 5.7 Comparison of validafion with Bot's method and Global
Validation 134

Figure 5.8 Searching space in optimization (évolution) and mapping

into validation 137

Figure 5.9 Zoom of Figure 5.3(b) showing over-fitting for features 1 and 2 138

Figure 5.10 Distribufion of the populafion in évolution at two différent stages 140

Figure 5.11 Entropy as a measure of diversity during the évolution. Island and

panmictic 141

Figure 5.12 Ufilizafion of raw features through the evolufion- Data set Ship 146

Figure 5.13 Raw feature utilization per evolved feature on Ionosphère and

Ship data sets 147

Figure 6.1 Original ensemble, GA-based population and sélecfion of ensembles. ...156

Figure 6.2 Input set of features (generated by random subspaces) to a GP

algorithm 159

Figure 6.3 Creafion of evolved features using GP and Bot's method 160

Figure 6.4 Analysis of results of re-engineering process 162

Figure 6.5 Feature création for ensembles 164

Figure 6.6 Concavity measures for NIST-SD19 samples (Oliveira et al., 2003a). ...166

Figure 6.7 Contour measures forNlST-SD19 samples (Oliveira et al., 2003a) 167

Figure 6.8 Example of digit images from NIST-SD19 database 168

Figure 6.9 Diagram of sélection of base classifiers with différent performances 173

Figure 6.10 Ranges of sélecfion of base classifiers with différent recognifion

rates 174

Figure 6.11 Diagram of sélection of already defined ensembles 177

Figure 6.12 Diagram of Intermediate Ensemble and final ensemble 179

Figure 6.13 Recognifion rate for différent EoICj (RS86, RS14, RS02 and RS62) 180

Figure 6.14 Récognition rate for ensemble of evolved classifiers 183

XX

Figure 6.15 Récognition rate and number of evolved features for each evolved

classifier 187

Figure 6.16 Over-fitting analysis for evolved RS90 190

Figure 6.17 Over-fitfing for différent evolved features RS90 190

Figure 6.18 How to get the number of features using global validafion procédure. ...192

Figure 6.19 Diagram of formafion of Ensemble of Best Islands EoBI 194

Figure 6.20 Box-plot of ensembles built with the best island from each base

classifier 195

Figure 6.21 Box-plot of island ensembles and the final ensemble 197

Figure 6.22 Block diagram of ensembles of ail islands 198

Figure 6.23 Box-plot of ensembles composed of 15 islands 199

Figure 6.24 Raw feature utilization for evolved random subspace RS90 207

LIST OF ABBREVIATIONS

AQ-14

BMI

C4.5

DNA

EF/

EF(f)

EoBI

EoC

GA

GEFS

GP

k-NN

MDM

MLP

MOMA

NbrJJen

NIST

NISTSD19

NSGA

NSGA-II

OB

Inductive incrémental leaming program

Body-mass index

Décision tree algorithm

Deoxyribonucleic acid

Evolved Feature/

Mathematical représentation of Evolved feature/

Ensemble of Best Island

Ensemble of classifiers

Genefic Algorithm(s)

Genetic Ensemble Feature Sélecfion

Genetic Programming

k-r\earest neighbour classifier

Minimal Distance to Means classifier

Multi-layer perceptron

Multi-objective Memetic Algorithm

Number of générations

National Institute of Standards and Technology

NIST Scientific Database for hand-printed do
récognition

Non-sorting Genetic Algorithm

Fast and Elitist Non-sorting Genefic Algorithm

Open BEAGLE

XXII

0 0

Open BEAGLE

PD

RS

SBS

SBFS

SES

SFFS

STL

SMV

UCI

WMV

XML

Object oriented foundations

Open Beagle Engine Advanced Genetic Leaming Environment

Projection Distance

Random Subspace

Sequential Backward Sélection

Sequential Backward Floating Search

Sequential Forward Sélection

Sequential Forward Floating Search

Standard Template Library

Simple Majority Vote

Machine Leaming Repository (University of Califomia, Irvine)

Weighted Majority Vote

extensible Markup Language

LIST OF SYMBOLS

A/ First subset of the training data set used to generate ensembles

B/ Second subset of the training data set used to generate ensembles

C(A ,̂ N/is) Number of possible combinafions of Nus éléments out of Â , NRS < A'̂

CH/ Chromosome of individual / in population P

Ci Evolved Classifier /

C/ Classifier generated by managing samples by their class labels

D Threshold in Bot's stopping criterion

DO, Dl, D2 Example of variable sin terminal set T

E Combination ofNns raw features

EoIC/ Ensemble of Island (or intermediate) Classifier /

/ Current feature during évolution

F Function set

fa average fitness of population P

/ fitness value of individual / in population P

fmax_vai fcature number at maximal récognition rate in Validation

fit Fish Fitness measure based on Fisher criterion

fitij Fitness function for classes i andy based on Fisher criterion

g Générafion of the evolufion

h Hypothesis

//' Altemate hypothesis

O ^ Hypothesis space

H(P) Phenotypic diversity of populafion P

XXIV

I Set of éléments in Random Subspace RS of size NRS

J(.) Criterion to optimize when selecting the best subset of Ns features from N
features. i.e.: probability of correct classificafion

K Number of classes

k Number of neighbours when using k-NN classifier

L Number of times the training samples are split according to label class

M Number of individuals in population P (size of the populafion)

. / Natural number

A'' Number of raw features

Nbr Samples Number total of samples in a data set (i.e.: training)

Nfi Number of samples randomly selected in Bagging

A^^ Dimension of Random Subspace RS

Ns Number of raw features in subset vector Xs (Ns < N)

P(g) Population at génération g

P'(g) Selected population from P(g) to apply genetic opérations

Pi Probability of individual / in population P

q Number of two-class sets out of K classes

R Number of classifiers in the ensemble

RR(CO Recognifion rate of evolved classifier Ci

RR(Cropr) Recognifion rate of evolved classifier Ci in Optimization

RR(CrK^z.) Recognifion rate of evolved classifier Ci in Validation

RR(RS/) Recognifion rate of raw random subspace RS/

RS/ i-th raw random subspace of the ensemble

XXV

s Auxiliary Archive in Global validation

T Terminal set

Tfl Training subsets used in bagging

V-best Number of best solufions taken from each evolved classifier

W-best Number of best solufions taken from each island and evolved classifier

X Vector of Â raw features

Xs Vector of Ns features from X

X, Raw feature

X Empirical value set in the fitness based on Fisher criterion

P Scale constant applied when fitness measure is based on Fisher criterion

CHAPTER1

INTRODUCTION

Feature création for ensembles is about the génération of new attributes useful to build

classifiers and ensembles of classifiers. The new attributes consist in transformations applied

to the original raw features into a différent space, so that the subséquent classification is

simpler to be executed and provides better results. The feature création process is intended

towards the générafion of ensemble of classifiers (EoC).

Classification is a central problem in pattem recognifion. The objects to be classified are

described as a set of raw features also called the feature vector. The représentation of

samples as feature vectors engenders a data set. The objects of a pattem récognition problem

are modelled by means of a data set. Therefore, the purpose of a classification System in

pattem récognition is to assign a category or class to the samples of the data set. There is no

a single classificafion method that can be applied to every kind of pattem récognition

problem. Expérience in this field shows that the most effective method for developing

classifiers involves leaming from example pattems (Duda et ai, 2001). This process is called

training and it allows adjusting the parameters to differentiate between catégories of data.

The examples that are used during the leaming process are a fraction of the data set, and are

called the training set. A typical quantitative measure of the performance of a classifier

counts the amount of pattems assigned to the right category or class and is called the

récognition rate. Its counterpart is called the error rate and measures the percentage of

examples miss-classified. The utility of any classification system résides in its ability to

correctly classify unseen data, i.e. data that hâve not been used during the training process.

Another portion of the data set, called the test data, is used to assess the real classifier

performance. Even though the classifier can achieve a 100% performance during the leaming

by example process, its performance in classifying new unseen data can be less successful. In

this case, the classifier has memorized the training data set instead of leaming the "common

27

characteristics" of samples of the same category. This phenomenon is called over-fitting the

training data set and constitutes one disadvantage of the leaming from examples method.

Many researches are still trying to adjust the complexity of the classifier to avoid or reduce

the over-fitting without impacfing too much the performance of the classifier.

The degree of difficulty of a classification problem dépends on the variability in the raw

feature values for objects in the same category relative to the différence between objects of

différent catégories (Duda et ai, 2001). As the complexity of a problem increases, the feature

vector that describes the data set becomes more and more complex, as well as the difficulty

of the classification task, i.e. classificafion of images of handwritten digits or classificafion of

cancer based on micro-array DNA data. In the first case, (Oliveira et ai, 2002, Oliveira,

2003b) created a description of the digit images as vectors of 132 raw features. In the latter,

micro-array DNA data is described by thousand of characterisfics (Hong and Cho, 2006). To

manage thèse types of problems, researchers try to find out a feature subset that attains

similar classification results than the whole set of features with a reduced dimensionality

(fewer features). Différent feature subset sélection methods hâve been developed in the

pattem récognition field to provide accurate classification (Devijver and Kittler, 1982; Jain

and Zongker, 1997; Kudo and Sklansky, 2000). Some works (Ferri et ai, 1993; Kudo and

Sklansky, 2000) analyze the applicability of genetic algorithms (see above) to feature subset

sélection and conclude that they are particularly suited for problems of large dimensionality,

where most of the classical methods require prohibitive computafion time (Ferri et ai, 1993).

Genetic algorithms (GA) are evolutionary techniques inspired by natural évolution. They

work with a population of solutions instead of a single solution. Individuals can be coded as

binary string of fixed length. For the feature subset sélection problem, each position in the

string means that this spécifie feature is selected (1) to compose the feature subset or not (0).

From an inifial randomly generated population, individuals (of the populafion) go through the

processes of genetic opérations over a séquence of générations. Individuals represent a

possible solution to the problem and undergo an évolution process guided by the nofion of

individual's fitness (the performance of a possible solufion, in this case, performance of the

28

resulting feature subset). "Better" individuals tend to survive meanwhile "bad" solutions tend

to be eliminated (Pal and Wang, 1996). This process is repeated until a pre-defined number

of générations is reached or until a degree of performance is achieved.

A différent approach consists in "building the features" that define the classifier using

Genefic Programming (GP) (Koza, 1992). GP is a variation of GA in which the evolving

individuals are computer programs, instead of fixed length strings from a limited alphabet of

symbols (Koza, 1992). It has the ability to discover underlying data relationships and express

them mathematically (Kishore et ai, 2000). As the évolution progresses, GP discards the raw

features that are not useful to solve the problem. Thus, by applying genetic programming we

are doing feature constmction and a sort of feature sélection at the same time. Constmction

of functions can be done by using genetic programming because it is able to establish the

stmcture and values of the solution while GA is tied to a spécifie predefined stmcture of the

solufion (Guo et ai, 2005).

Feature création based on GP has been applied to problems in différent areas such as pattem

recognifion (Pal and Wang, 1996) and data mining (Otero et ai, 2003), to menfion a few.

The purpose of feature création is to generate features that represent in a concise form the

problem at hand. In the pattem récognition field, the generated features are used as inputs to

the classification System, in order to increase its performance. The boost in performance is

obtained because the formed attributes reveal intrinsic relations between original raw features

that typical classifiers are not able to find out.

Problem Statemen t

Methods like the combination of classifiers hâve been proposed to increase the récognition

rate over single classifier stratégies. This is the case of EoC which can obtain similar, and

sometimes better, performance than a single and complex classifier. This altemative

générâtes a trade-off between simplicity and performance (Tremblay, 2004). Several

29

approaches hâve been proposed to train EoC. A particularly interesting approach is based on

the génération of subsets of features starting from an original set. This method is called

random subspaces (RS) (Ho, 1998b). GA and genetic programming are applicable to

complex and poorly defined récognition problems. Their ufilization for this type of

optimization problems is jusfified because they generate powerful EoC. The EoC obtained

then consist of several individual classifiers who relay on a restricted number of features.

Consequently, they hâve a partial représentation of the récognition problem, which implies

that the addition of new knowledge will allow a possible increase of the individual

performance of the base classifiers of EoC, which will be reflected on an increased reliability

ofEoC.

Goals of the research

The main objective of this research is to study the evolutionary algorithms for the génération

of relevant features applicable to différent pattem récognition problems, i.e.: handwritten

digits and ship récognition problem. In particular we will use genetic programming to create

useftil features to generate classifiers and EoC. The results are to be compared to nearest

neighbours classifiers and ensemble of thèse classifiers generated by the RS method.

The spécifie objecfives are:

• To présent an overview of the application of GA and genetic programming for feature

création;

• To présent an overview of ensemble création methods;

• To présent and develop an expérimental protocol to build classifiers and EoC based on

evolutionary techniques.

30

Organization o f the documen t

The rest of this document is organized as follows. Chapter 2 provides a synopsis of the

application of GA and genetic programming to feature sélection and création in the domains

of pattem récognition and machine leaming. Chapter 3 outlines the basic theory conceming

the construction of ensembles, the methods for combining classifiers and the application of

GA and GP to generate ensembles. In Chapter 4, the method of creating one feature at a time

is presented in détail and an expérimental protocol is developed to test the method. Some

improvements to the algorithm are developed in chapter five: a spécifie mechanism to

identify the over-fitting has been implemented and tested. Moreover, différent altematives to

parallelize Bot's GP-based method are presented and one of them, called the Island method

is fùlly implemented. Practical advantages of over-fitting control and parallelizafion are

tested by means of an expérimental protocol developed for that purpose. Once the strategy of

creating features to generate classifiers is optimized, we apply it différent real world

problems such as a handwritten digit recognifion problem using the N1ST-SD19 data set with

the aim of building EoC. As in previous chapters, a spécifie expérimental protocol is also

developed for this purpose in Chapter 6. Conclusions and recommendafions are then

presented. The thesis ends with the bibliography used throughout this research.

CHAPTER 2

FEATURE SELECTIO N AN D CREATION WIT H EVOLUTIONAR Y
ALGORITHMS

Objects in Pattem Recognifion problems are defined by a set of features useful to disfinguish

différent catégories. In complex problems, a huge number of attributes are required to

differenfiate between catégories i.e.: classificafion of images of handwritten digits, which are

described by 132 features in the System proposed in (Oliveira et ai, 2002, Oliveira, 2003b)

or classification of cancer based on micro-array DNA which are described by thousand of

characterisfics (Hong and Cho, 2006). To manage thèse types of problems, researchers try to

find out a feature subset that attains similar results as when the whole set is used, but

reducing the amount of resources and time required. We are then looking for a subset of

features that permits differentiafion between catégories. A complementary approach consists

in creating features from a starting set, so that the resulting classifiers hâve a similar or better

performance.

The purpose of this chapter is to explain how evolutionary techniques, in particular GA and

genetic programming, can be applied to the problem of feature subset sélection and feature

constmction. We show why genetic programming is very useful to tackle the problem of

feature création, in order to generate classifiers. The resulting classifiers (explained in this

chapter) will be the consfituent éléments of EoC, which is the subject of Chapter 3. The

current chapter is stmctured as follows: in Secfion 2.1, we introduce the concepts related to

the feature sélection problem. Then, a short theoretic support about GA and genetic

programming is presented to facilitate the reading in Sections 2.2 and 2.3. Following

Secfions (2.4 and 2.5) describe différent methods based on genetic methods to do feature

sélection and feature création. Thus, possible altematives to use for feature création are

established. Section 2.6 jusfifies the method selected to constmct features for classifiers and

ensembles.

32

2.1 Featur e subset sélection

Objects in pattem récognition and machine leaming fields are described as set of attributes.

Thèse attributes are measurements taken of the objects. Intuitively, the more attributes used,

the better the description of the object. But this statement is not always true, because there

could be irrelevant, redundant or even useless attributes (e.g.: Insurance numbers of pafients

in médical databases to classify patient as healthy or not). Furthermore, in most real-world

problems, the relative importance or utility of each attribute is not known a pr/on.

Descriptions of complex phenomena use large number of features, which makes difficult

subséquent steps in a classification System. An intermediate step that sélects the most

important features toward classification could improve not only the final performance, but

also, the measurement process if the feature sélection phase reveals the attributes that are

ineffective for classification purposes. The problem of feature sélection can be stated as

follows (Devivjer and Kittler, 1982): given a set ofA/̂ features,

X = {x,\i^l,2,...,N} (2.1)

sélect the best subset Xs ofNs features (Ns < N)

Xs = {.V. |y = 1,2,...,Ns;xj e X} (2-2)

which represents the pattem. The best subset means the combination of A'̂ features which

optimizes a criterion funcfion J(.), ideally the probability of correct classificafion, with

respect to any other subsets

E = {0 = l,2,...,Ns}, (2.3)

of Â s measurements taken from X. Xs satisfies

33

J(Xs)^rr\axJ(E) (2.4)
E

Evaluation of ail possible C(A ,̂ Ns) subsets becomes prohibitive even for small values of N.

For A^=12, approximately 2.7 million subsets must be evaluated (Jain et al., 2000).

Différent searching algorithms for feature sélection hâve been developed in pattem

récognition and machine leaming fields. Devijver and Kittler présent a description of

conventional algorithms: branch-and-bound, sequenfial forward sélection (SES), sequential

backward sélecfion (SBS), "plus 1 - take away r" in (Devijver and Kitfier, 1982). Sequential

forward and backward floating search methods (SFFS, SBFS) and variations to some other

algorithms are analyzed and compared in (Kudo and Sklansky, 2000). Under some

assumptions, Branch-and-bound method can produce an optimal subset. The other methods

provide suboptimal sélection techniques, which handle a trade-off between optimality and

computational efficiency to make the décision (Jain et al., 2000). Jain and Zongker analysed

the mentioned methods for a problem of land use classification based on satellite images and

arrived to the conclusion that sequential forward floating search (SFFS) has a performance

close to branch-and-bound with less processing required (Jain and Zongker, 1997, Jain et al.,

2000).

Some works (Ferri et ai, 1993; Kudo and Sklansky, 2000) analyze the applicability of GA to

feature subset sélection and conclude that they are specially suited for problems of large

dimensionalities, where most of the classical methods require prohibifive quantity of

computafions (Ferri et ai, 1993).

2.2 Geneti c Algorithm s

GA as a solution to complex Systems were introduced by John Holland in 1975. They are

adaptive techniques inspired by mechanisms of natural évolution. In nature, individuals

compete between them for resources such as food, space and mates, such that, stronger

individuals tend to survive. This is called "survival of the fittesf (Srinivas and Patnaik,

34

1994), and therefore "gènes" of the stronger individuals tend to be disseminated. Genetic

information contained in individual's gènes will be inherited by his descendents. This

process happens at the reproduction stage. The cycle continues with his descendents.

In GA, individuals can be represented as a bit strings (binary représentation). A measure

called fitness function is used to assign a fitness value to each individual in the population.

Transmission of information from one génération to the other is done through "crossover"

and "mutation" opérations, inspired by their genetic équivalent in the nature. Individuals

selected for thèse genetic opérations, using their fitness values, produce new individuals

called offsprings. New individuals will face the same process and at a certain moment,

survival individuals will constitute the solution to a spécifie problem.

Algorithm 1 shows the stmcture of a Simple Genetic algorithm. For génération g=0, an initial

population P(g) is randomly created and then evaluated according to a fitness function. If the

termination criterion has not been reached, a new set of solutions is searched (next

population) by operafions of crossover and mutation. Thèse genetic opérations are applied on

selected individuals P'(g), which are evaluated against a fitness function. Then, the new

populafion for générafion g+1, P(g+1) is created as a funcfion of P(g) and P'(g). This last

loop is repeated until a stop condition is found (solution desired, approximation reached or

number of générafion reached).

Algorithm 1 : Simple Genefic Algorithm ()
_ _ _

2 Initialize populafion P(g=0);
3 Evaluate population P(g=0);
4 whil e (termination criterion not reached) do
5 g=g+l;
6 P'(g) ^ sélect solutions for next population;
7 Perform crossover and mutation opérations (P'(g));
8 Evaluate populafion P'(g);
9 P(g) = New populafion(P, P'(g));
10 end-whil e

35

The most important détails of GA are explained in the following fines. Additional

information about GA can be found in the références mentioned in this section as well as in

(Holland, 1992; Goldberg, 1989).

2.2.1 Population : représentation and set up

Information in individuals should be coded in a way that is useful for subséquent treatment.

For instance, features of individuals can be coded in a binary string. Attributes could hâve the

same length of représentation or différent, but the whole representafion of an individual must

be a fixed number of bits. Although the binary representafion is most frequenfiy used, other

représentations can be more natural for spécifie applicafion problems (Herrera et ai, 1998):

vectors of integer numbers or floating point numbers for function optimization cases, ordered

lists for schedule optimization problems, lisp expressions for evolving computer programs in

control tasks. In addition, bounds of the range of values of each attribute hâve to be

considered to find feasible solufions. If this is not the case, some attributes could take

mathematical values that hâve no meaning in the real-world problems. As mentioned before,

the initial population is a set of individuals (chromosomes) randomly selected. The number

of individuals of the population constitutes an input parameter.

2.2.2 Fitnes s functio n

For each problem to solve there should be a fitness function to optimize. The fitness function

provides a mechanism for evaluafing each individual of the population and assigns a scalar

value (Srinivas and Patnaik, 1994). The fitness funcfion normalizes the objecfive funcfion

values, which is domain dépendent, to an independent scale (for instance 0 to 1, or 0 to 100)

and therefore the value that it assigns to each individual in the population (Srinivas and

Patnaik, 1994). Fitness values of the individuals reflect which one is doser to the desired

solufion. For instance, in a maximizafion problem, if we like to compare two individuals, we

compare their fitness values and the one with greater value is doser to the desired solution.

36

2.2.3 Sélectio n method s

Sélection methods are the mechanisms to replicate the nature's principle of survival of the

fittest. The sélection method designs how to choose the individuals in the population that will

create offspring for the next génération, and how many offspring each will create (Mitchell,

1999). The sélection mechanism consists of two steps: sélection probability calculation and

sampling algorithm (Herrera et ai, 1998). In the first step, for each individual in the

population P, a probability of including a copy of the individual is calculated, also called

"expected value" of the individual. This probability is a funcfion based on the individual's

fitness value. The second phase, sampling algorithm, produces copies of individuals to form

the intermediate populafion P'. In this way, fittest individuals hâve a greater opfion of

surviving, while weaker individuals perish (Srinivas and Patnaik, 1994). We présent three

différent sélection methods and introduce the concept of replacement stratégies.

2.2.3.1 Proportiona l sélectio n

In the proportional method, a survival probability /?, is assigned to each individual /

(i=l,2, ...,M) in the populafion of size M. Individual / is represented by its chromosome CH/.

The probability is proportional to the individual's fitness value/-within the population:

/
Pi=—N ' (2.5)

1^ 2.jJj

where f ^ir^fj ^^ ^^^ average fitness value of the populafion (Srinivas and Patnaik,
7=1

1994;Heren-ae/a/., 1998).

Roulette wheel is one of the techniques used to implement proportional method. It is based

on the division of a circle in sectors with angles proportional to Inf/fa. Then, an individual is

allocated an offspring if a randomly generated number between 0 and 2;r, falls in the

corresponding sector (Srinivas and Patnaik, 1994).

37

2.2.3.2 Tournamen t sélectio n

In the simplest variant, binary toumament, two individuals are randomly selected from the

population (with or without replacement). The one with the highest fitness value is copied

into an intermediate population P' called mating pool. This procédure is repeated until the

mating pool is full (Beasley et ai, 1993). Extensions of this method randomly sélect more

than two individuals. Larger toumaments increase the sélection pressure because individuals

with low fitness values are less likely to win the toumament and conversely, individuals with

higher fitness values are more likely to win the toumament (Beasley et ai, 1993).

2.2.3.3 Ran k sélection

Individuals are sorted in order of raw fitness and a reproductive fitness value is assigned

according to the rank (Beasley et ai, 1993). Rank sélection prevents too-quickly

convergence, because the expected value of each individual dépends on its rank rather than

on its fitness value (Mitchell, 1999). Rank reduces the sélection pressure when the fitness

variance is too high ands also keeps it when the fitness variance is too low (Mitchell, 1999).

2.2.3.4 Generationa l an d Steady-state replacemen t

Along with the sélection of parents to build the next population, there is the concept of

replacement and génération gaps: what proportion of the individuals in the current population

is replaced by offspring. The concept of génération gap is related to the notions of non-

overlapping and overlapping populations. In a non-overlapping population, ail parents are

replaced by offspring and so there is no compétition between them (Sarma and De Jong,

1997). This is the conventional replacement scheme in G A and is called generational. In the

overlapping version, parents and offspring co-exist and compete between them. This

replacement scheme has been named Steady-State GA. Génération gap is referred as the

proportion of individuals in a population that are replaced in each génération (Beasley et ai,

1993). A more detailed description of steady-state G A is presented in Annex I.

38

2.2.4 Operators

Once sélection is done, the intermediate population P' is built (see Algorithm 1) and then

genetic operators' crossover and mutation are applied to produce offsprings. Thèse operators

are briefly described in the following sub-sections.

2.2.4.1 Crossove r

The crossover operator enables sharing of information in the population by combining gènes

from two parent chromosomes with the hope of producing better chromosomes (Herrera et
ai, 1998). Pairs of individuals from the mating pool P' are randomly selected to perform the

crossover opération. Each individual has a fixed length L (bits or real-valued vectors).

Similarly, the crossover point within the chromosome is randomly selected. The two parents

will produce two new individuals called offsprings with gènes to the right of the crossover

point, interchanged (Srinivas and Patnaik, 1994) as shown in Figure 2.1. If the produced

string is a bad solution, it is probable that it will be eliminated in subséquent générations. In

the other hand, good solutions will get higher possibilities of crossing with other good

solutions in the future. Crossover opération is not done in ail pairs in the mating pool. If a

randomly generated number in the range 0-1 is greater than pc (crossover rate), crossover

opération is done. There exists one point and two points crossover that follows the same

principles explained hère. Some other variants, multipoint and uniform crossover are

analyzed in (Benahmed, 2002).

Figure 2.1 One point cross-over operator in G A (Kubalik, 2000).
Information from two parents is exchanged toform two offsprings

39

2.2.4.2 Mutatio n

A common mutation operator for strings consists in inverting bits: if the number is 0, it is

changed to 1 and the opposite. Mutation is done according to a probability of mutation p^ of

each bit (bits of a string are independently mutated (Srinivas and Patnaik, 1994)). It ensures

that the probability of reaching any point in the searching space is never zéro (Beasley et ai,
1993). Mutation keeps diversity in the population (Tay et ai, 1997), because options in the

neighbourhood of good solutions are explored (altération of one bit in the chromosome). This

means that mutation is able to restore lost or unexplored genetic material into the population

and it prevents the prématuré convergence of G A to suboptimal solutions (Herrera et ai,
1998). Figure 2.2 illustrâtes the mutation principle.

original chromosome

••'

mutation

1
after mutation

Figure 2.2 Mutation operator in bit string GA. (Kubalik, 2000).
One gène (bit) is inverted. Mutation helps to generate novelty in the population

2.3 Genetic programming

Genetic Programming (GP) (Koza, 1992) works with a high level statement of a problem's

requirement and produces a computer program that solves the problem at hand (Hirsh et ai,
2000). It searches in the space of computer programs by progressivdy breeding a population

of computer programs over a séries of générations following Darwinian principles of

évolution and natural sélection (Hirsh et ai, 2000). The gênerai outline of GP is similar to

GA: the initial mn of GP proposes a group of randomly created computer programs. Then, it

évaluâtes the created programs to détermine which is better to solve the problem. GP sélects

40

probabilistically programs from the population based on a ranking established and modifies

thèse programs by executing cross-over and mutation opérations (Hirsh et ai, 2000). This

cycle is repeated until a stop criterion is met. Typical stop criteria are: optimal solution is

found or the number of générations is reached. John Koza introduced tree-based genetic

programming in his book "Genetic Programming - On the programming of computers by

means of natural sélection". Figure 2.3 shows a flowchart adapted from (Koza, 2004; Koza,

1992). For génération zéro an initial population is randomly created. If this population does

not satisfy the termination criterion, the fitness measure is applied to each of the Pop_Size

individuals in the population. Afterwards, the sélection operator is applied to choose the

individuals that take part in reproduction, cross-over and mutation opérations according to

the corresponding probabilities. This is done to produce the population for the next

génération. The new population follows the same steps of fitness measure and genetic

opérations until the termination criterion is satisfied (a pre-defined number of générations or

a solution performance).

The most important détails of genetic programming are presented in the following Unes.

Because of its similarities with GA, only the points that differ are explained in some détail.

Initially we explain the gênerai structure of individuals and then some types of fitness

functions currently used in the genetic programming literature. Sélection methods are based

on fitness values, so the descripfion from Sections 2.2.3 is also applicable to genetic

programming. Genetic opérations entail some différences against GA, and therefore they are

explained hère. Additional information about genetic programming can be found in (Koza,

1992; Banzhaf e/ ai, 1998; Langdon, 2000).

41

r gen=0 J-

gen= gen + 1

Create initial
random population

trminatn
- • ^ criterion

atisfied

Apply fitness measure to
Individuals (Indv) in the

Population

lndv=0

yes

Designate
results

r END J

^ r
Select two

individuals based
on fitness

^ '
Perform

reproduction

^ r
Copy into new
population P'

^ r

Indv = Indv + 1

^ r

no

1 r
Select genetic

opération
probabilistically

^

Cross­
over

Select two
individuals based

on fitness

^ r

Perform
cross-over

^ r
Insert two

offspring into new
population P'

^ r

Indv = Indv + 2

^ r

^ r
Select two
individuals

based on fitness

^ r

Perform
mutation

\
Insert mutant

into new
population P"

1 r

Indv = Indv + I

^ \

Figure 2.3 Genetic programming flowchart (Adapted from Koza,I992).

42

2.3.1 Population se t up

Computer programs in genetic programming are équivalent to the concept of individuals or

chromosomes used in GA. A computer program, in genetic programming, is a composition of

functions and terminais defined in advance according to the problem to solve. The terminal

set corresponds to the set of attributes used to describe the data of the problem, so it is

domain dépendent. The function set is composed of operators that can be applied to the

terminais. For instance, arithmetic operators such as addition, subtraction, multiplication and

division are of current use in image processing applications. Since, individuals in genetic

programming are a composition of functions and terminais; they are normally represented in

a tree stmcture. Figure 2.4 represents an individual in genetic programming. In this case the

terminal set T is composed by: T = {1,2, 10, 3, 4, TIME} and the function set F= {+, EF, >}.

The individual outcome is the addifion of terminal déments " 1 " , "2" and the resuit of IF

operator. If TIME is greater than 10, the resuit is 6, otherwise is 7.

Figure 2.4 Représentation of a program (individual) generated by GP (Koza, 1992).

Individuals are a composition of terminais and functions

Division opération is modified in the case of zéro as denominator. The opération is called

"protected division" and is defined as a constant (could be zéro or one) when the

denominator is zéro. For other values of denominator, protected division works as the

standard arithmetic opération. Standard logical operators are also used: AND, OR, NOT,

43

XOR. Construction of the trees must follow certain mies to produce valid outcomes. In the

case of Figure 2.4, the IF operator requires the dément on the left to be a comparative

operator and the two terminal déments on the right are numbers or variables. This is referred

as "closure property" of the function and terminal sets (Koza, 1992).

2.3.2 Fitnes s functio n

The objective function to be optimized is defined according to each problem. It is the driving

force of the évolution (Koza, 1992). Hence, the fitness function assigns a scalar value to each

individual of the population, which reflects how good the individual is to solve the problem.

In the same way, fitness values control the application of opérations that modify the

stmctures in the population (Koza, 1992). In gênerai, fitness measure must be représentative

of the domain space as a whole, because it forms the basis for generalizing the results

obtained to the entire domain space (Koza, 1992).

An example of fitness measure used throughout our expérimentations is the récognition rate.

The individual (i.e.: tree) is interpreted by using the terminal and operators sets and thus

serves as input to a classifier. The récognition rate of the classifier corresponds to the fitness

measure. There are différent measures used to quantify the individual performance: raw

fitness, standardized, adjusted and normalized (Koza, 1992). Récognition rate corresponds to

a raw fitness. Standardized fitness restâtes the fitness measure so that lower numerical values

mean better fitness values; for instance, error rate instead of récognition rate. Adjusted fitness

créâtes a function that maps the range of values to the interval 0 to 1, and bigger values are

better. In normalized fitness, the sum of population fitness equals 1, on top of the

characteristics of a standardized fitness. Additional détails can be found in (Koza, 1992).

44

2.3.3 Opération s in Genetic Programmin g

Mutation and crossover (sexual recombination) are the opérations derived from nature. In the

field of GA, the application of thèse opérations is straightforward because GA has a well

defined stmcture that is conserved during thèse opérations. In contrast, in genetic

programming, the stmcture could be changed with thèse opérations, as is presented above.

2.3.3.1 Initializatio n operato r

This operator détermines how the initial population is produced. The aim is to create the best

random trees (individuals) for the problem at hand. The initialization operators dépend on

allowed tree size parameters. Thèse parameters hâve to be careflilly set to avoid prématuré

convergence and the apparition of bloat (individuals grow uncontroUably until the maxima

allowed depth and size). The most common methods are full, grow, ramped-half and half

(Koza, 1992). The "full method" créâtes trees with each path with a length equal to the

specified depth (Koza, 1992) (path goes from root to the end-point). The "grow method"

créâtes trees of varions shapes with lengths of each path no greater than the specified length

(Koza, 1992). Ramped-half and half créâtes an equal number of trees of différent depths and,

for each depth value, 50% of the trees are created via the "full method" and 50% via the

"grow method" (Koza, 1992).

2.3.3.2 Crossove r operato r

In this opération two parents are selected based on fitness and points of crossover are

randomly and independently selected in each parent. For instance in Figure 2.5 (from (Koza,

1992)), point 2 is selected from "left parent" and point 5 in "right parent". In the crossover

opération, selected sub-trees are interchanged at independently selected points. The cross­

over opération presented hère is the version with two offspring. There are some other

versions. Resulting offspring are valid exécutable programs.

45

0.234Z-X-0.789

(a)

^^314; (^

Y + 0.314Z-X-0.789

ZY(Y + 0.314Z)

0.234Z-Y

(b)

Figure 2.5 Crossover opération in GP with two offspring.

Sub-trees randomly and independently selected at points 2 ("left parent") and 5 ("right
parent") in (a) are interchanged to produce two offspring in (b.) (Taken from (Koza, 1992))

2.3.3.3 Mutatio n operato r

The steps to perform a mutation opération are (see Figure 2.6, from (Koza, 1992)): a parent is

selected probabilistically based on its fitness measure, then a point within its tree is randomly

selected and the sub-tree at the selected point is deleted. A new sub-tree is grown at the

mutation point in the same way as done with trees for the initial random population. The

résultant tree is the offspring produced by mutation. It is a new program syntactically

exécutable (Koza, 2004).

46

(a) Parent (b) Offspring

Figure 2.6 Mutation operator.

Point 2 is picked within the selected parent for mutation opération (a). Sub-tree deleted and
a new sub-tree is grown at this point. Résultant offspring is in (b). Taken from (Koza, 1992)

2.4 Feature sélection and construction wit h genetic algorithm s

GA hâve proved to be successful in optimization problems where the searching space is large

and poorly defined. Some authors hâve analyzed the application of GA to the subset sélection

search problem. Ferri et ai made an initial study about its applicability and concluded that

they are specially suited for problems with médium size dimensionalities (20 to 49 according

to (Kudo and Sklansky, 2000)), where most of the classical methods require prohibitive

quantity of computafions (Ferri et ai, 1993). In other study, Ferri et ai, compare sequential

forward and GA methods. They found that GAs is a positive altemative because of its near-

optimal search of the space due to its inhérent randomisation mechanism, but it has a limited

applicability to very high dimensional spaces (hundreds of features) (Ferri et al., 1994). Their

results show that GA get trapped in good solutions (not optimal) because of its prématuré

convergence and no further improvement is possible (Ferri et ai, 1994). Jain and Zongker

compares GA with sequential forward floating search (SFFS) based on satellite images to

land use classification (Jain and Zongker, 1997). They found difficult to establish a fair

comparison because GA does not attempt to find the best subset of a specified number of

features, instead its search space encompasses ail subsets sizes (Jain and Zongker, 1997). In a

posterior analysis of large-scale feature subset search (50 or more features), Kudo and

47

Sklansky found contrasting results: GA is indeed very well suited for large-scale feature

problems (Kudo and Sklansky, 2000). Possible explanations for thèse différences, as

mentioned by Kudo and Sklansky, are the set of parameters used in GA runs and the

objective function that drives the GA search: for instance, the search time (or number of

générations in GA language), the population size and genetic opération probabilities. They

mentioned that certain amount of expérimentation is required to find out a suitable range of

GA's parameters. Once the right range has been set, GA's results, are superior when

compared to sequential search methods and the variability of their results is very small (Kudo

and Sklansky, 2000). Therefore, GA can be applied to sdect subset of features that improves

classification performance with a reduced number of features. That simplifies the resulting

classifiers, so they can be combined in ensembles. We présent in the following lines an

interesting approach to do feature sélection and constmction that restmctures the initial

feature space and générâtes classifiers with similar or better performance.

Vafaie applies GA to restmcture feature-based représentation spaces to différent problems

(Vafaie, 1997). Accuracy on a classifier system dépends on the input quality and classifier

quality. Input quality indicates how well the problem is represented by the initial set of

features. Classifier quality indicates the intrinsic performance of the classifier independently

of its input data. Thèse two aspects take place in the final performance of the system. Vafaie

proposed a method to restmcture the représentation space of the input data, before giving

them to the classifier, so that the overall system has a similar or better performance when

compared to a system using the original représentation (Vafaie, 1997; Vafaie and De Jong,

1995). The gênerai architecture applied is presented in Figure 2.7. An initial set of features is

used as input to the system. The system sdects a candidate feature set by means of the

application of any of the GA modules: sélection or constmction. Détermination of the

module to be used is done by the module sdector mentioned above. The output of the GA

module is evaluated by means of an évaluation function which qualifies how good the

candidate set is. This process continues with the same module until the GA converges or the

predefined number of générations is reached.

48

Initial
feature
set

— •

^

me
se

Candidate
feature set

Récognition
performance

juuie

ector
GA feature
sélection
module

GA feature
construction

module

Evaluation
function

/ ^ t o p

\ c r i t e

no

\v yes Best
P ' " g \ . feature
rion^/ set

Figure 2.7 Architecture of combined feature sélection and construction based on GA.

(Vafaie, 1997)

Convergence can be associated to the system performance. Later, the other GA module is

applied to the previous resuit obtained until a stopping criterion is reached. Vafaie uses first

the GA feature sélection module to reduce the number of features. Then, she applies the GA

feature constmction module to the resuit from feature the sélection module. The objective of

this module lies in the exploitation of interrelafionships among the selected features to

improve the overall system performance (Vafaie, 1997).

Transformation of the feature set continues until a répétition of a complète cycle feature

selection-constmction does not improve performance (Vafaie, 1997) or there is no change in

the représentation. The last feature set is called the best feature subset. Final performance of

the best subset is measured by submitting unseen data to the évaluation function or classifier

used. The system has been tested with problems with différent degrees of complexity.

Applicability to différent problems is shown and scalability is proved with small texture sets

and large eye localization data sets (Vafaie, 1997). In addition, independence of the

évaluation function is given by comparing results when using AQ-14, C4.5 and nearest

file:///crite

49

neighbour (A:-NN) algorithms (Vafaie, 1997). Unfortunately, several passes through the

System are required to generate a feature subset that manages the trade-off between réduction

of the number of features and improving or maintaining of the performance. Feature

constmction is applied each time after the feature sélection module. As a resuit, the time and

the amount of resources required to generate an improvement becomes huge when the

complexity of the problem increases.

The way in which the GA-based feature constmction module is applied, is very similar to the

GP principles. Recently, varions methods of feature constmction based on GP hâve been

published with encouraging results in récognition rate (performance) and number of features

required. The following section présents some of thèse methods.

2.5 Feature Construction with Genetic Programming

GP has been applied to feature sélection problems only in few cases (Muni et ai, 2006).

Feature constmction is inhérent to GP: it searches functions that operate on attributes of the

terminal set to solve the problem at hand. The functions used belong to the predefined

function set. As the évolution progresses, GP discards the attributes that are not useful to

solve the problem. Thus, by applying GP we are doing function constmction and a sort of

attribute sélection. GA-based feature sélection establishes the best combination of features

toward a spécifie goal (for instance, classification). On the other hand, GP searches for the

best combinafions and attributes toward classification. It discovers functional relationships

between attributes (Raymer et al., 1996), which are not easy to find with others optimization

methods. A simple example, presented in (Bot, 2001), is the body mass index (BMI) that is

used by Insurance companies to establish the risk of heart attack of clients. The BMI index is

calculated as the ratio of weight in kg to height in squared meters (British Heart Foundation

http://www.bhf ora.uk/questions/index.asp?secondlevel=l 164&thirdlevel=1337). In this

example, sélection of features height and weight is not enough to measure the risk of heart

attack; it is necessary to discover the ratio weight (kg)/ height^ (m^). Constmction of

functions can be done by using GP because it is able to establish the stmcture and values of

http://www.bhf
http://ora.uk/questions/index

50

the solution while GA is tied to a spécifie predefined stmcture of the solution (Guo et ai,

2005). Hence, GP can be a better option than GA to create classifiers based on an initial

feature space, because it is able to find out the intrinsic relations between the initial feature

set (stmcture of the solution) and the value of the solution (interprétation of the resulting

tree). We présent some of the methods to constmct features based on GP and sélect the most

appropriate to création of classifiers for ensembles.

Sherrah has developed an automatic non-parametric method for the extraction of non-linear

features using GP. This method, called Evolutionary pre-processor, automatically sdects the

number of features to extract, détermines which of the original attributes are useful for

classification, spécifies the non-linear transformation useful for the problem and chooses the

classification algorithm to use among a given set (Sherrah, 1997). Tests hâve been carried out

with nine real-world data sets taken from the Machine Leaming database repository of the

University of Califomia at Irvine, known as UCI database (Newman et ai, 1998). As a resuit

of the application of the evolutionary pre-processor, misclassification and dimensionality

were reduced. In addition, the Evolutionary Pre-processor determined automatically whether

to perform feature génération or feature sélection (Sherrah, 1997). The main disadvantage of

the evolutionary pre-processor is its computational complexity (Shertah, 1997), so the

constmction of classifiers becomes a long and complex task.

Another approach, presented in (Bot, 2001) constmcts (générâtes) new features iterativdy.

The first evolved feature is constmcted with a standard GP algorithm. Evolution for new

constmcted features considers the new feature in conjunction with the already evolved

features. The new feature is included in the solution if the performance incrément generated

is greater than a threshold. To explain the procédure, suppose that there are n-1 evolved

features and the system is evolving the n-th feature. Fitness score is calculated taking into

account the already generated n-1 features and the new one (n-th feature). If the fitness

incrément is smaller that a threshold value d, the new generated feature (n-th) is taken away

and the process stops. If fitness incrément is higher than d, the new generated feature (n-th)

contributes to the objective and is definitely included in the generated set (that now has n

51

features). TTie process continues until the increase in fitness is less than constant d. The

method is tested by classifying 16 datasets from UCI Machine Leaming Repository

(Newman et ai, 1998). MDM and k-NN classifiers are used. ResuUs show that représentation

of thèse datasets can be done with as low as 2 or 3 generated features and accuracy is equal

or better than that obtained with the k-NN alone (Bot, 2001). The best characteristic of this

method is its ability of represenfing a classifier with just a few features while maintaining its

performance. This characteristic tums this method very useftil to create classifiers for

ensembles.

Krawiec introduces a variation to the GP algorithm towards preserving useful parts within

constmcted features during GP mns. Preserving means that each individual's génotype is

split in two parts. Both sets participate in the évaluation process for new features but the

hidden part is not considered during the évolution process (Kraweic, 2002). Individuals

décide on their own, which part is hidden and which is visible for the evolutionary process.

This variation to classical GP algorithm protects important features for classification

purposes. Tests were done over several data sets including real and synthetic data. Results

show that accuracy of the classification in tests sets is improved. In some cases has

significant improvement from a statistical point of view (Krawiec, 2002). Again, the

application of this method makes the process of creating classifiers long and very

burdensome.

A différent method to generate features is presented in (Guo et ai, 2005). The authors state

that feature sélection methods hâve a limited power, because searching is done over a pre­

defined space. They used GP instead of GA, because they are able to establish the stmcture

and values of the solution. In contrast, GA is tied to a spécifie stmcture of the solution. They

provide raw vibration data recorded from a rotating machine with six différent conditions to a

GP algorithm. Created features are used as inputs to a neural network to classify the six

conditions. GP générâtes mathematical expressions guided by a fitness function that will

maximize the inter-class scatter over the intra-class scatter using the Fischer criterion (Duda

et ai, 2001). This criterion is iterativdy applied to pairs of classes. This change in the fitness

52

function présents an enormous advantage of reducing the calculation required (Guo et ai,

2005) in comparison to a fitness based on k-NN classifieirs. Results obtained show the ability

of GP to discover automatically features that make évident the différence between bearing

conditions (Guo et ai, 2005). Thèse features are expressed in the form of non-linear

mathematical expressions. This method is promising and employs a différent classifier

strategy. Unfortunately, it has been only applied to a spécifie application which does not

guarantee its benefits to other applications. The application has a small number of classes and

the resulting outcomes for each class (when interpreting the solution trees) were easily

distinguished maybe because the problem itself has a small degree of overlap between

classes.

2.6 Sélection of the feature construction method

GP and GA are searching methods applicable to feature constmction and particularly

advantageous for this type of problems. In this section we justify the sélection of the feature

constmction method to build classifiers and ensembles.

Unlike other searching techniques such as hill climbing and gradient search, genetic search

algorithms are not greedy (Koza et ai, 2005). In addition, the recombination opération

(cross-over) works in conjunction with the population in a way that makes it a good approach

for feature création.

Most of the searching and optimization techniques used in machine leaming and artificial

intelligence fields are based on greedy methods that move from a position to another position

of the searching space (the new point is only accepted if it is superior). GA and GP

sometimes accept points with inferior performance than current points (Koza et ai, 2005).

We refer hère to points because genetic mechanisms use a population of solutions, that is,

there is a paralld searching. Inferior points are accepted because exploration is based on a

probabilistic Darwinian sélecfion process (Koza et ai. 2005). In such way, best individuals

53

are not guaranteed to be selected and worst individuals are not necessarily excluded (Koza et

ai, 2005) from the searching process.

In addition to paralld search not being exclusivdy based on best individuals, genetic

methods use a mechanism to transfer the information between the différent threads so that the

gênerai view of the searching space promotes the location of the global optimum (Koza et

ai, 2005). Furthermore, genetic opérations improve the options to find the global optimum.

Mutation causes a small change in the individuals that enables restoration of lost genetic

material or extends the search to doser points that can further improve the current solution.

Cross-over is applied to performing individuals (they hâve certain positive information

toward the solution of the problem that helps them to be selected for the opération). This

interchange of information can yield a better solution. In conclusion, genetic opérations

promote the interchange of useful information, which helps finding the global optimum. This

makes genetic methods very promising for feature constmction.

GP has an additional advantage over GA because they are not tied neither restricted to the

pre-defined stmcture of the solution. GA search for a solution in the search space defined by

the stmcture of the individual's chromosome. GP is able to constmct itself the stmcture and

the values of the solution. Both mutation and cross-over opérations can aller dramatically the

stmcture of the solution towards more promising régions of the searching space. Ail thèse

reasons support our sélection of GP as the tool to use in building classifiers.

We presented différent methods to create features for classifiers in Sections 2.4 and 2.5. In

this section we support the idea of using GP to create thèse classifiers. Between the methods

presented in Section 2.5, the approach that générâtes more flexible and performing solutions

is the Bot's method. Flexible because we can choose the number of features of the solution in

terms of the performance desired.

CHAPTER 3

ENSEMBLE O F CLASSIFIER S

3.1 Introductio n

Classification within pattem récognition aims to build classifiers with high récognition rates.

Therefore, classifiers are refined by means of différent stratégies. A natural approach consists

in improving the performance of the classifier. Incrément of the classification performance is

carried out at expenses of complexity and dégradation to certain sample types or even

classes. It has been observed (Kitfier et al., 1998) that pattems misclassified by différent

classifiers do not necessarily overlap (for différent classifiers, not always the same samples

are misclassified). What happen if thèse classifiers are used at the same time to classify the

data at hand? Can the combination of classifiers yield better results than the single best

classifier? This scheme of multiple classifiers increases the complexity of the system, but it

has been proved that performance can be greatly incremented if adéquate classifiers and

parameters are chosen for the combination (Ho, 1998a; Kuncheva, 2004). To design EoC

with higher accuracy, individual classifiers hâve to be accurate and diverse (Hansen and

Salomon, 1990). Dietterich mentions that three fundamental reasons explain why it is often

possible to constmct very good ensembles: statistical, computational and representational

(Dietterich, 2000). The statistical reason bases its benefits on the idea that an operator applied

to the combination of classifier's responses minimizes the risk of picking an inaccuracy

single classifier. If a single classifier is selected and it is inaccurate, then performance is bad.

If the single classifier picked is accurate, a good response is obtained. The response of the

combination of classifiers tends to be the "average" answer, then the risk of bad responses is

minimized and combination could generate responses with similar good responses to the best

classifiers of the ensemble (Kuncheva, 2004). The computational reason relies on the idea

that many leaming algorithms perform a search on a reduce part of the searching space and

they are more susceptible to get trapped in local optima than an EoC mnning also in reduced

parts of the space but staring from many différent points in the whole searching space

(Kuncheva, 2004). Finally, weighted combinafions of classifiers can expand the space of

55

représentation giving better results than a single classifier with limited représentation

capabilities. This representational reason is based on the idea that normally there is no single

classifier that can represent the tme hypothesis while a combination of classifiers such as a

weighted sum of classifiers' hypothesis expand the space so that the combination may be a

more accurate approximation to the desired hypothesis (Dietterich, 2000).

3.2 Desig n o f ensemble o f classifier s

The main déments that take part in the design of EoC are: data, classifiers and the

combination functions. Data samples can be split between différent classifiers or the

attributes (features) within data can be divided in différent sub-sets. Classifiers used in the

ensemble can be of the same type or différent types. Différent combination functions can be

used to generate the ensemble response. According to the mode in which data samples,

classifiers types and combination functions are used, différent methods for constmcting

ensembles are derived. We summarize the following methods for constmcting ensemble of

classifiers: methods that manipulate the training examples, methods that manipulate the input

features, methods that manipulate the output targets and methods that manipulate the

members of the ensemble (Dietterich, 2000; Dos Santos, 2004).

3.2.1 Constructin g ensembles b y manipulating the training example s

The manipulation of training samples aims to generate multiple hypothèses (Dietterich,

2000). The same type of classifier is mn several times, each fime with a différent subset of

training examples and then their answers are combined. Dietterich indicates that this

technique works well on unstable leaming algorithms such as decision-trees, neural networks

and mie leaming algorithms (Dietterich, 2000). Some other techniques as linear régression,

nearest neighbour are very stable against manipulation of the training samples (Dietterich,

2000). Within this group, there are two classical approaches: Bagging and Boosting. In

bagging techniques, the classifiers are trained independently with TB différent replications of

the training set. NB samples are randomly drawn with replacement, from the original set of

56

Nbr_Samples samples (Dietterich, 2000), thus, some samples may appear more than once

and some other may not appear at ail. The ensemble is the aggregation of the TB classifiers

and ail of them participate to classify new data. The class predicted most often by the TB

classifiers is assigned to the sample tested, with fies solved arbitrarily. Breiman states in

"Bagging predictors" (Breiman, 1994) that bagging will improve accuracy with leaming

algorithms that are unstable. He refers as unstable algorithms, those in which small changes

in the data produce large changes in classifier performance (Zhang and Bhattacharyya, 2004).

Adaboost is another classical représentative algorithm of boosting method (Dietterich, 2000).

It générâtes multiple hypothèses manipulating the training samples (a set of weights are

maintained over the training set). In each itération the leaming algorithm attempts to

minimize the weighted error on the training set and retums a hypothesis. Change of weights

aims to place importance on samples that were misclassified in previous itérations and less

weights on samples correctly classified. The final classifier is constmcted by a weighted

vote of the individual classifiers, and other classifiers are weighted according to its accuracy

on the weighted training set (Dietterich, 2000).

3.2.2 Constructin g ensembles b y manipulating the input feature s

This method provides a partial view of the data to each classifier of the ensemble. Partial

view because each classifier has only a subset of the features available in the training data.

As each classifier has a reduced set of features, the effects of the curse of dimensionality

problem are also diminished (Ho, 1998a). Random Subspace (RS) method is a traditional

représentative of this group. This method relies on a stochastic process that randomly sdects

a number of features of the given set to constmct each classifier (Ho, 1998a). The stochasfic

method used, introduces independence, to a certain extent, between classifiers (Ho, 1998a).

Ho assures that constmcting systematically the classifiers as indicated and combining them,

can achieve very high accuracy.

57

The method can be formulated as follows (Ho, 1998a): given a set of Nbr_Samples examples

in an A^-dimensional space

{(x„x„x„...,x,)\x^s%\<i<N}, (3-1)

NRS -dimensional subspaces are considered

[(x^,x,,x^,...,x^)\Xj =l,JGl,Xj = 0 , y g / } , (3-2)

where I is an AOts-dement subset of {l,2,3...,A^}, and NRS < N. For each constmcted

classifier, a subspace is chosen by randomly selecting an 1 from C(N, A^^ ĵ-many choices. Ail

Nbr_Samples examples are projected onto the chosen subspace.

The method, as proposed by Ho, is a derivafion of stochastic discrimination where many

stochastically weak classifiers are combined to get nearly monotonie increase in accuracy

(Ho, 1998a; Ho, 1998b). Ho déclares that individuals classifiers constmcted in this way do

not hâve full discriminative power but the combination of thèse weak classifiers generalize

very well to unseen data of the same problem. The high accuracy reached dépends on the

statistical properties of the combination function used, but close values to the high accuracy

are obtained well before a large number of weak classifiers are combined (Ho, 1998b). The

stochastic procédure of RS introduces independence among the classifiers, thus combining

their décisions gives the ensemble its discriminative power (Ho, 1998a; Ho, 1998b).

Ho shows the ufility of RS method applying to différent classifiers and problems. In (Ho,

1998b), the RS method is applied for constmcting décision forests (mulfiple décision trees)

and it is tested on différent datasets from UCI repository (Newman et ai, 1998). She

compares the results against single-tree classifiers and other forest constmction methods.

Superiority of the method is clear when the dataset has a large number of features and

examples (Ho, 1998b). Accuracy on training data is maintained and generalization power

increases as complexity grows due to combinafion of classifiers (Ho, 1998b). Ho also built

58

ensemble of A:-NN classifiers based on RS method and tested it with a handwritten digit

dataset from U.S. Postal Services (Ho, 1998a). She showed again that accuracy is improved

nearly monotonically with the addifion of new component classifiers. The ensembles

outperforms of A'-NN classifier using the entire feature set and prototypes. Superiority of the

ensemble is maintained even when decreasing the number of training samples (Ho, 1998a).

RS method générâtes good results for problems with a relative large number of initial

features. In the case of a small number of features, Ho proposes to increase the number by

using simple fùncfions like pair-wise sums, différences and so on (Ho, 1998a).

EoC constmcted by the RS method hâve a double advantage: they only use a small number

of features from the original set and even though, they improve the performance in

comparison to an ensemble that uses the whole feature set.

Tremblay et ai, built ensembles of A-NN classifiers constmcted with RS method and then

used performance and diversity measures to optimize the creafion of ensembles of classifiers.

GA (single and mulfi-criterion) were used to search the best ensemble of A'-NN (Tremblay et

a/., 2004).

3.2.3 Constructin g ensemble s b y manipulating output target s

Previous methods presented manipulate the input pattems set in some way. A différent

approach consists in managing the original classes in modified sets. The method is presented

and reviewed in (Dietterich, 2000; Dietterich, 2002). This approach consists in managing the

original output classes in modified sets and then training one classifier. This process is

repeated L times. Classifiers are to be built to solve each new problem and, when used as an

ensemble, the original problem is consequently resolved. Following lines describe the

method (Dietterich, 2000): Suppose that the problem at hand has a large number of output

classes K. Samples in the training data are randomly split in two sets A/ and B/ and

relabdled to 0 and 1, and a classifier C/ is generated for the new labels. The original class

labels in sets A/ and B/ are conserved. This process is repeated L times, so that L new

59

classifiers are trained. The L created classifiers work as an ensemble to classify unseen data.

Each classifier gives its answer about the sample to classify. If the answer from classifier C/,

is 0, then every class in sets A/ receives a vote. Otherwise (answer from classifier C/, is 1),

every class in sets B/ receives a vote. Unseen samples are presented to ail L classifiers and

the class that receives the highest amount of votes is chosen as the class assigned to the

unseen sample by the ensemble.

3.2.4 Constructin g ensemble s b y manipulating th e ensemble member s

Manipulation of ensemble members refers to use classifiers of différent types instead of the

same type for the whole ensemble or the same type of classifiers but with différent

parameters (Dietterich, 2000). Opitz and Maclin mention that a simple ensemble of neural

networks that differ only in their random initial weights has a good performance comparable

to results obtained by using Bagging method (Opitz and Maclin, 1999).

3.3 Method s fo r combining classifier s

In the previous section, we hâve mentioned différent methods for constmcting ensembles.

Performance of ensembles is superior to single classifiers, but we hâve not indicated, in ail

cases, the functions to use when combining the component classifiers. Combination fùncfions

also dépend on the topological interconnection between classifiers. Some of the common

fùncfions are: majority voting, sum, product and weighted average (Kittler et ai, 1998). They

are applied to a paralld interconnection between classifiers. The first consists in taking as

output class for the tested sample, the class that receives the majority of votes from the

classifiers of the ensemble (Dietterich, 2000; Ho, 1998a). This is applicable in the case where

only the output class labels are available (Kittler et ai, 1998). In other cases, when real

values like posterior probabilifies are available, linear combinafions can be used: sum,

average, weighted average (Kittler et ai, 1998). Some other combination functions like

product, maximum and minimum can also be used (Kitfier et ai, 1998). Lam présents and

analysis of différent interconnection topologies and its effects on the ensemble (Lam, 2000).

60

Once topology connection and combination fùncfions are defined, the ensemble generated is

ready to be applied. Some questions relate to the number of classifier to use arise. Is it better

to utilize ail the available classifiers? Does the performance improve monotonically as the

number of component classifiers grows? Opitz and Maclin tested the impact of the number

of classifiers in the ensemble has over the performance for différent types of ensembles.

They worked with 23 datasets from UCI repository (Newman et ai, 1998) using neural

networks and décision trees as classification algorithms (Opitz and Maclin, 1999). They

conformed ensembles up to 100 classifiers and found that for bagging and boosting methods

applied to neural networks, much of the réduction in error is obtained with the first ten to

fifteen classifiers (Opitz and Maclin, 1999). When the classifiers used were décision trees,

there were needed 25 classifiers to attain a plateau. Some other questions come up: From the

pool of classifiers (i.e: the 100 in the case of Opitz and Maclin), which ones hâve to be used

to minimize the composed error of the ensemble? Do we take the 15 or 25 best classifiers?

To answer thèse questions we arrive to the problem of classifier sélection for building

ensembles. Following secfion describes with this topic.

3.4 Ensembl e o f classifiers an d evolutionary algorithm s

In preceding sections some of the classical methods for constmcting ensembles of classifiers

hâve been described. A gênerai conclusion was that the performance of the ensemble is better

than the performance of the single best base classifier. The performance of the ensemble can

be improved further in différent ways: (i) selecting some classifiers of the ensemble and

building a new ensemble to obtain similar or better results; (ii) improving the performance of

the base classifiers and obtaining, as a resuit, a new ensemble with better performance. In

both cases, the purpose is to improve the performance of the whole ensemble, but the

approach is différent. Following subsections describe thèse approaches and discuss the

interrdafion between EoC and evolutionary algorithms. In the first case, the classifiers are

already built and we search for the best combination of base classifiers, while in the second

case, we like to build base classifiers with high performance so that the resulting ensemble

yield good results.

61

3.4.1 Sélectio n of classifiers an d ensemble s

Tremblay did an exhausfive study of sélection of k-NN classifiers to optimize ensembles

generated by the RS method (Tremblay, 2004; Tremblay et ai, 2004). The target was to

sdect the ensemble of A'-NN classifiers with the highest performance and the lowest

cardinality (the ensemble with fewest classifiers is considered the simplest). Two aspects

hâve to be considered to sdect the best set of classifiers: the searching algorithm and the

sélection criteria. An initial search space is composed by 100 k-NN classifiers. Such a huge

searching space requires a searching algorithm that can explore large and poorly understood

spaces and GA hâve this ability. Having in mind that diversity is one of the conditions to

build successful ensembles, the initial sélection criteria used was to jointly maximize

performance and diversity of the ensemble and therefore multi-objective GA are used.

Ensemble's récognition rate of test data sets was used to measure the ensemble's

performance and various typical diversity measures were studied. Tremblay arrived to the

conclusion that none of the diversity measures used provides a real advantage in searching

performing ensembles. On the other hand, he found that single GA provides ensembles with

the highest performance without much scarifying the cardinality of the ensemble (Tremblay,

2004).

Différent versions of GA hâve been applied to search the best classifiers according to varied

sélection criteria. Radtke uses simple genetic and MOMA algorithms to optimize a

projection distance (PD) and a mulfiple layer perceptron neural network (MLP) classifier

(Radtke et al, 2006). Sélecfion of ensemble of classifiers was done in (Dos Santos et ai,

2006) considering not only the ensemble's performance and complexity (cardinality) but also

the over-fitting phenomenon. Again, the searching space is vast, so single and multi-

objective GA are used. When using single GA, they found that performance was the best

searching criterion to increase ensemble's performance (Dos Santos et ai, 2006). Twelve

différent diversity measures were jointly used with ensemble's performance to find out the

best searching criteria. It was found, as in other publications, that diversity alone as searching

criterion does not produce better ensembles (Dos Santos et ai, 20). In the other hand, when

62

diversity was jointly used with performance as the searching criterion (with multi-objective

GA), performance of the ensemble was improved. Anyway this performance was smaller

than the résultant ensemble when using ertor rate as searching criterion in single GA. In ail

cases, over-fitting was confrolled by creating a strategy called global validation, in which the

best solutions in a validation set are stored in an auxiliary archive génération by génération

during the optimization process (évolution of the GA). This assures to find out the best

possible performance in generalization without over-fitting the optimization dataset.

Diversity between classifiers is essential for successful ensembles. Then, the combinafion of

miscellaneous diversity measures and performance has been studied (Dos Santos et ai, 2006;

Yioetai, 2006).

3.4.2 Featur e sélection for ensemble génération

Différent approaches hâve been reported in the literature regarding the création of optimized

base classifiers so that performance of the ensemble is improved. Guerra-Salcedo and

Whitley présent in (Guerra-Salcedo and Whitley, 1999a; Guerra-Salcedo and Whitley,

1999b) a strategy to sdect feature subsets in each base classifier, based on GA, so that the

final ensemble générâtes good results. They compare four différent methods of ensemble

création. Two of them use the complète set of features (bagging and boosting) and two other

methods that use only some of the features from the original set (RS and their method). For

comparison purposes, the number of selected features is the same as the number of randomly

chosen features. In their procédure, the features to include in each base classifier, are

selected with a GA (Guerra-Salcedo and Whifiey, 1999a; Guerra-Salcedo and Whifiey,

1999b). The ensemble built that way outperforms ensembles created based only in RS

method, when the original number of features is greater than 30. When the starting number of

features is smaller than 19, the ensemble based only in the RS method provides better results.

Cunningham and Camey try to explain why this différence in performance. They say that

when the inifial number of features is greater than 30, there may be less risk of loss diversity

in searching for good quality ensemble members (Curmingham and Camey, 2000). In the

63

other hand, when the starting number of features is smaller than 19, création of base

classifiers has to take into account diversity and accuracy (Cunningham and Camey, 2000).

Opitz mentions that ensemble feature sélection is a harder than traditional feature sélection

because it is required not only to find features relevant for the particular task and the leaming

algorithm, but also find feature subsets that will promote disagreement among ensemble's

classifiers (Opitz, 1999). His algorithm called GEFS (Genefic Ensemble Feature Sélecfion)

uses GA to search feature subsets that make neural network classifiers accurate and diverse

in their prédictions (Opitz, 1999). The search of GA considers the accuracy and diversity by

including them in the fitness function. As the author mentions, surprisingly the initial

population in G A is already good, with performance comparable to popular ensemble

création techniques as bagging and boosting (in particular AdaBoost). He remarks that the

lost in performance by having individuals using only a subset of features (instead of ail set of

available features) is compensated with the diversity created between classifiers (Opitz,

1999). In (Tsymbal et ai, 2005), diversity is also an dément considered in ensemble feature

sélection. They compared four search stratégies together with RS: genetic search, hill-

climbing, ensemble forward and backward sequential sélection. They concluded that

diversity measure used influences the ensemble feature sélection process and results differ

depending on the context of use of diversity and on the data type being processed (Tsymbal

et ai, 2005).

3.4.3 Ensembl e o f classifiers an d genetic programmin g

Re-sampling techniques derived from différent ensemble methods hâve been also applied to

GP in order to improve its capabilifies. Iba has applied bagging and boosfing to GP to create

ensembles as described in (Iba, 1999): the whole GP populafion is divided in to a set of

populations and each population evolves independenfiy and the best individuals for each

subpopulation vote to form a composite tree output which will be applied to the test data

(Iba, 1999). He applies this method to three problems: régression, fime séries and price

prédiction in the financial market. In the three cases, average performance is improved for

64

ensembles of GP-based classifiers. He shows that solution trees are also smaller than those

produced by standard GP, so they assure that this is due to the re-sampling techniques used to

create the ensembles. Unfortunately there is no spécifie informafion about the way in which

the vote from each subpopulation is combined for the final answer so that the compréhension

of the effect on tress sizes would be clear.

Zhang and Bhattacharyya used GP to build base classifiers and constmct an ensemble to

classify large-scale data of about 300.000 samples (Zhang and Bhattacharyya, 2004). Base

classifiers are trained with small data sets randomly selected with replacement and the

ensemble décision is taking using majority vote. The superiority of the GP-ensemble is partly

attributed by the authors, to the diversity among base classifiers, in terms of functional form

and raw characteristics used in each classifier (Zhang and Bhattacharyya, 2004).

Folino et al. proposed a modified version of bagging in which each base classifier is trained

on a différent segment of the overall data and then they are combined to classify new data by

applying simple majority vote (Folino et ai, 2003). Training base classifiers on différent

segments (with a small number of samples compared to the original size of the data set)

produces différent classifiers. As they state in (Folino et ai, 2003), the main advantage of

their approach is to obtain comparable accuracies to a single classifier (trained with the

whole data set), but at a much lower computational cost. The classifiers of the ensemble are

built by applying Cdlular GP. In this method, each subpopulafion générâtes a classifiers

working on a segment of the training set (Folino et ai, 2003). In addition, there is sporadic

exchange of information between evolving subpopulations, represented by the better

individuals. This exchange reduces the size of the individuals (or classifiers), and

consequently the time to evaluate the fitness is also reduced (Folino et ai, 2003).

As mentioned before, diversity amongst base classifiers is important to generate successful

ensembles. Hong and Cho compare the stmcture of the classification mies to build ensembles

with diverse classifiers (Hong and Cho, 2006). The classification mies are generated using

GP and then the diversity between them is estimated with an edited distance. The set of five

65

classification mies which maximizes diversity are selected to build the final ensemble. This

method is applied to classification of cancer based on DNA micro-array data and is compared

to ensembles created by neural networks showing the improvement due to the diversity

measure (Hong and Cho, 2006).

In the cases already presented, GP was used to generate base classifiers and then the

ensemble was built by combining the GP-based classifiers. Différent stratégies were used to

choose diverse classifiers and improve the accuracy on unseen data. In the next chapter, we

présent the implemented method to generate GP-based classifiers which will be used in the

ensemble création in subséquent chapters.

CHAPTER 4

FEATURE CREATIO N FO R CLASSIFIERS WIT H GENETI C PROGRAMMIN G

Previous chapters presented an overview of the theoretical basis that will be used in this

chapter to develop a method that constmcts features for classifiers. In Chapter 2, we hâve

shown that feature subset sélection methods improve classifier performance, by diminating

redundant features and reducing the number of features used for classification. GA hâve been

very successful in feature subset sélection problems (Kudo and Sklansky, 2000; Ferri et ai,

1994; Jain and Zongker, 1997; Oliveira et ai, 2003a). The concept of feature sélecfion can be

extended for ensembles, so that base classifiers hâve feature sets that maximize the ensemble

performance (Guerra-Salcedo and Whifiey, 1999a; Guerra-Salcedo and Whitley, 1999b,

Oliveira et ai, 2003c). In the case of feature subset sélection, the résultant classifiers are

optimized and then they are used as constituents of an ensemble with the hope that the

combination générâtes a performing ensemble. Optimizafion of classifiers can be done in a

différent way, by constmcting a set of features (from an initial set), instead of selecting

features. In Chapter 2, we mentioned the example of body mass index that shows the

advantages that GP has in comparison to GA when constmcting features. Once individual

classifiers hâve been optimized, they can be combined to generate a performing ensemble.

From the feature constmction methods described in Chapter 2, the algorithm proposed in

(Bot, 2001) ahs been selected. The purpose of this algorithm is to automatically create

evolved features from an original set of features with the express aim of dimension réduction

and the addifional aim of improving the accuracy of a classifier (Bot, 2001). Bot applied his

method to two classifiers: Minimum Distance to Means (MDM) and k-NN. MDM is a weak

classifier that does not require training and assigns the class for unseen data which its mean is

doser to the tested example. GP is used because they are able to establish the stmcture and

values of the solution and, in contrast, GA is tied to a spécifie predefined stmcture of the

solution (Guo et ai, 2005). Bot tested his method with 16 datasets from UCI repository

(Newman et ai, 1998). Fitness measure used in Bot's method is based on the récognition rate

67

of the classifiers (A-NN and MDM). We also propose another fitness function that maximizes

the inter-class scatter over the intra-class scatter using the Fischer criterion (Duda et ai,

2001 ; Guo e/a/., 2005).

This chapter is organized as follows: Section 4.1 présents the main stmcture of the GP-based

feature constmcfion algorithm. We explain how the algorithm works considering the same

parameter settings used in (Bot, 2001). Further analysis and improvements are presented in

chapter 5. In this chapter, we develop an expérimental protocol to verify the quality of the

solutions generated by Bot's method with ail 16 datasets used in (Bot, 2001). The GP tool

called Open BEAGLE (Gagné and Parizeau, 2004a; Gagné and Parizeau, 2004b) was used to

develop feature constmction algorithm. This tool is briefly described in Secfion 4.2. Secfion

4.3 présents the options used to quantify the fitness function that guides the GP évolution

process: A-NN, MDM and fitness based on Fisher criterion. The expérimental protocol is

developed in Section 4.4. We include a description of data sets, a gênerai description of the

experiments, the parameter settings required, the results and their analysis, as well as some

interpretafion of the results. Finally, in Secfion 4.5, a discussion about the main topics

developed in this chapter is presented.

4.1 Featur e construction wit h Genetic Programmin g - Bot' s algorith m

The purpose of the algorithm proposed in (Bot, 2001) is to automatically create evolved

features from an original set of features with the express aim of dimensionality réduction and

the additional aim of improving the accuracy of a classifier (Bot, 2001). The automatic

constmction of evolved features is done by using GP as search strategy. Each of the evolved

features is created at a time. Initially, a standard GP is mn for Nbr_Gen générations and the

best individual from this populafion is selected and becomes the first evolved feature, noted

as EF(f=I). In this notation, EF(f) means the mathemafical expression of evolved feature f

Création of subséquent features considers the jointly performance of previous evolved

features and selected individual for the current feature, to détermine the improvement in

performance that new features offer. This process of création of evolved features continues

68

until Bot's stopping criterion is met or a pre-defined maximum number of features

Max_NbJ'eatures is reached. Bot's stopping criterion detects the moment when additional

evolved features do not engender a significant improvement in performance.

Bot's algorithm introduces a Botstopping criterion which identifies when to stop adding

new evolved features. As Bot's method is implemented with GP, we hâve to consider as well

the classical stopping criterion, referred hère as Evolstop frequenfiy used in evolutionary

methods. Evol_stop is defined in terms of an acceptable error rate (or récognition rate) level

or a pre-defined number of générations. In practice, the second criterion is more often used

because expected error rate is normally not attained within a reasonable number of

générations. As a resuit, GP is mn for a large number of générations which means a long

fime. Bot's method (Bot, 2001) tries to avoid the long and fime-consuming évolution by

creating one feature at a time and guiding the évolution of new evolved features with the aid

of the improvement in récognition rate of the proposed new feature in conjunction with the

already evolved features. This method générâtes solutions with small number of features,

with acceptable recognifion rates and taking as few as 10 générations (Bot, 2001). The

gênerai stmcture of the algorithm, the calculation of the fitness function and the stopping

criterion are described in the following subsections.

4.1.1 Evolutio n framewor k

From an initial set of raw features, GP constmcts features to improve performance of a

classifier, that is, to opfimize the original classifier built with the RS method. Constmction

of evolved features is done one at a time and the process continues until the addition of new

evolved features do not produce a considérable incrément in performance. The maximum

number of evolved features, Max_NbJ'eatures, is an input parameter that dépends on each

spécifie application. The gênerai algorithm is presented in the following page (see Algorithm

2). To create first evolved feature, noted as E¥{f=\), a standard GP is mn for Nbr Gen

generafions and the best individual from the last population P(/=l, g= Nbr Gen) is selected

and becomes EF(/=1). To explain the procédure for evolved features greater than one.

69

suppose that /-l "definite evolved features" hâve been already defined, that is EF(1), EF(2),

..., EF(/-1), with (1 < /-l < Max_NbJeatures-l). GP is mn for NbrJJen générations to

create the / evolved feature EF(i).

Algorithm 2: Bot's algorith m

Input:
Nbr_Gen : Number of générations to evolve solutions for one feature
Max_Nb_features : Maximum number of evolved features

Output:
Def_Sol : Definifive selected individual (formula) for each feature

start - Bot's algorith m

1 /= l ;EF(/ ^ l)=O;g=0 ; //EF defined as unfilled
2 Initialize populafion ?(f,g)
3 Evaluate fitness(P(/^g))
4 Run_Evol(y^l,g>0)
5 F(/^l) = Best_Indv(P(/)) //Sdected_lndv(f=0)

6 repeat
7 EFprior(/~-l) = EF(/~-l)© EF(/"-2)e.. .®EF(l)
8 g - 0
9 Initialize population ?(f,g)

10 Evaluate fitness(P(f,g),EFprior(/"-l))
11 Run_Evol(^I ,g>0)
12 Sdected_Indv(/) = Best_Indv(P(/)) //Sdectedjndv(f)

13 stop = Bot_stopping(SelectedJndv(/), EFprior(/"-1) , /)
14 i f -stop
15 EF(/) = Sdected_Indv(f)
16 EFprior(/) = EF(f) ® EFprior(/-1) // new feaUires to de added
17 / = / + !
18 else
19 Def_Sol = EFprior(/-1)= EF(f-1) ® EF(f-2) © ... ® EF(1) //no more feafiires
20 end-i f
21 unti l stop criterion met

end - Bo t procédure

Fitness calculafion (see détails in Secfion 4.1.2) for each individual in populafion P(/=/, g)

considers the individual of the current mn juxtaposed to already evolved features EF(1),

EF(2), ..., EF(/"=/-l). The juxtaposition is EFprior(^l)= EF(1)©EF(2)© ... ©EF(/=/-l).

70

The best individual is called Selected_Indv(«=/+/, g) and the Bot's stopping criterion

détermines if selected individual is definitely accepted to become EF(/=/) or not. The

selected individual is accepted when its contribution is higher than a threshold (see Section

4.1.3). In this case, the set of definite evolved features is EF(1), EF(2), ..., EF(^/) and new

evolved features can be added. When the selected individual is not accepted, évolution is

stopped. That case means that it is no valuable the incrément in performance that the selected

individual represents and so, it is discarded. The set of definite evolved features remains

EF(1), EF(2), ..., EF(/-1) becomes the final solufion and no more features are added. In

Algorithm2, the step called RunEvol (f, g>0) corresponds to a standard mnning of GP for

any feature value and générations after the initial one. Fitness évaluation within it dépends on

the number of already evolved features. The steps (4 and 11) included within Run_Evol (f,

g>0) are detailed in the full version of Bot's algorithm presented in Annex II.

4.1.2 Fitness funcfion

To explain the procédure for fitness calculation for evolved features, suppose again that /-l

"definite evolved features" hâve been already defined, that is EF(1), EF(2), ..., EF(/=/-l),

with (1 < /-l < Max_f!bJ'eatures-\). During the mnning to create the i-th evolved feature,

each individual in population P(/= /, g) can be seen as a tree or formula expressed in terms

of the mathemafical operators and raw data. Fitness measure is calculated as follows: the

formula for each individual in populafion is evaluated (using raw data values). When

replaced raw data values and executed mathematical opérations in the formula, a number is

obtained. After applying the formula to ail samples in optimization database, a vector is

formed with ail values obtained. The definifive evolved features EF(1), EF(2), ..., EF(/=/-l)

are considered to calculate the fitness of the each individual. As they are already defined,

they are (/-l) vectors. In total, there are / column vectors for each individual in the

population. Thèse / column vectors are the input to a classifier that détermines the

corresponding récognition rate generated and this is the fitness value assigned to the

individual considered. The same process presented above is repeated for every individual

(formula) in the populafion P(«= /+1, g) for each générafion, only changing the last column

71

vector (the /-th) that is, the interprétation of the individuals considered. At the end of

NbrJJen générations, the best individual (highest fitness value) is selected. This individual is

called Sdected_Indv(/=/, g= NbrjGen). To décide if the selected individual becomes a

definite evolved feature (EF(/)), the Bot's stopping criterion (détails in next secfion) is

evaluated.

Bot used two différent classifiers: MDM and A-NN (Bot, 2001). MDM is proposed in

addition to the k-NN, because of its computational simplicity (Bot, 2001). MDM classifier

calculâtes the mean of each class over ail current evolved attributes at the présent évolution

step / and assigns the class which mean is closest to the evaluated sample (Bot, 2001).

4.1.3 Bot' s stopping criterio n

Evolution is done as explained in the previous section. Bot proposed a stopping criterion

based on the relative contribution of each new feature to the récognition rate (Bot, 2001) and

its rôle is to détermine when is not acceptable to hâve an additional evolved feature for the

small incrément in performance that this new feature represents (trade-off between

performance incrément and an additional evolved feature) Then, this criterion indicates the

stage at which no more features are needed.

To explain Bot's stopping criterion we suppose that /-l "definite evolved features" hâve been

already defined, that is EF(1), EF(2), ..., EF(/=/-l), with (1 < /-l < Max_NbJeatures-l), GP

has been mn for Nbr Gen générations and the selected individual Sdected_Indv(/=/, g=

Nbr_Gen) has been chosen. If recognifion rate -calculated as explained the previous

section- is smaller that a constant value d, the Selected_Indv(n=i, g= Nbr_Gen) is taken

away and the process stops. If récognition rate is higher than d, the Selected_lndv(«=/, g=

NbrjGen) contributes to the objecfive and is included in the definite evolved feature set (that

has now / features): EF(1), EF(2), ..., EF(/=/-l), EF(/=/) . The process continues unfil

récognition rate is less than the constant d.

72

In each experiment, d is calculated as the relative incrémental récognition rate on the

optimization database for the evolved feature / max_ v̂// where recognifion rate on the

validation dataset v(f) is maximal. Therefore, /max_va/is:

/max_va/ = argmax{v(/)} (4.1)

and the threshold results:

, / (/ m a x v a /) - / (/ m a x _ v a / - l) (4 . 2)
d = .

t(J max_ val — 1)

where t(/ niax_ va/) is the optimizafion récognition rate for feature / max_ vai.

4.1.4 Blockdiagra m

Figure 4.1 shows the block diagram of Bot's method. Input data is a collecfion of examples

in an N-dimensional space according to the number of attributes of the data (we do not make

référence hère to any sampling method to built classifiers as in Chapter III). Attributes of

input data correspond to the terminal set used by the GP algorithm. With this input, GP

searches to constmct an evolved classifier. So, GP is used to optimize the classifiers. That is,

the création of evolved features with GP is the optimization of the classifier. As a resuit, the

input data to the GP algorithm is called the optimization dataset. GP as other evolutionary

algorithms, performs a guided search by qualifying each of the proposed solution

(individuals in each génération), so that we consider this framework as a wrapper approach

(Duda et ai, 2001). This is the purpose of the fitness funcfion. Qualificafion of each solution

is done by a classifier algorithm. In this case, a A-NN or a MDM are used. Thèse classifiers

hâve to use a différent dataset to avoid a biased qualification. In gênerai this set is called

training dataset.

73

DB
Bot's algorith m

GP

Original data set

N-raw features
Fitness measure
(Classifier,
Fisher)

3 Evolved
Features
EFi©EF2©EF3

Figure 4.1 Block diagram of Bot's method.

GP programming used an optimization dataset to search for evolved classifiers. Fitness is
measured by a classifier (k-NN or MDM) which used a training dataset. Validation dataset
corroborâtes the solution found during optimization and a test data set measures the
généralisation power ofthe validated solution.

Thèse classifiers hâve to use a différent dataset to avoid a biased qualification. In gênerai this

set is called training dataset.

4.2 Genetic programming tool : Open BEAGL E

As described in its website (http:/^eagle.gel.ulaval.ca/): "Open BEAGLE is a C++

Evolutionary Computation (EC) framework. It provides a high-levd software environment to

do any kind of EC, with support for tree-based GP; bit string, integer-valued vector, and real-

valued vector GA; and évolution strategy". Our purpose in this section is to présent a

succinct overview the Open BEAGLE that enables the reader to hâve the "big picture" of it.

This is a complex tool and a more ample description can be found in (Gagné and Parizeau,

2004a; Gagné and Parizeau, 2004b) and its website.

4.2.1 Open BEAGLE architectur e

The framework architecture of Open BEAGLE follows Object Oriented programming

principles (Gagné and Parizeau, 2004a; Gagné and Parizeau, 2004b). Its architecture is

74

divided in three levels. The first level, named 0 0 foundations, can be considered as an

extension of C++ and the Standard Template Library (STL) (Gagné and Parizeau, 2004b), as

shown in Figure 4.2 (taken from (Gagné and Parizeau, 2004b)). The second level,

implements the generic framework for Evolutionary Computafions (EC). In the third level,

différent EC frameworks are developed as modules (for GA, GP and Co-evolution) (Gagné

and Parizeau, 2004b).

G A (vectors) GP Co évolution

Generic EC framework

Object oriented foundations

C++ Standard Template Library (STL)

v:
Figure 4.2 Architecture ofOpen BEAGLE framework.

(taken from Gagné and Parizeau, 2004b)

4.2.2 Object oriented foundations

Classes in Open BEAGLE are derived from an abstract class called Object. Open BEAGLE

follows inheritance principles, then objects are dynamically instantiated (Gagné and

Parizeau, 2004a; Gagné and Parizeau, 2004b). Allocators are object factories that can assign,

clone, and copy spécifie types of objects Gagné and Parizeau, 2004a; Gagné and Parizeau,

2004b). Containers are dynamic arrays of object pointers that use allocators to instantiate the

objects that it has. In addifion, information about the population, like parameter values and

évolution results can be written in XML format, which can be visualized in a web browser

Gagné and Parizeau, 2004a; Gagné and Parizeau, 2004b).

75

4.2.3 Generic EC framework

It is composed of a generic stmcture of populations, an évolution system, and a set of

operators includes in an evolver (Gagné and Parizeau, 2004b). Population is arranged in four

hierarchical levels: vivarium, demes, individuals and génotypes, as presented in Figure 4.4

(taken from (Gagné and Parizeau, 2004b)). The vivarium includes the individuals présent in

the evolutionary system. It présents stafisfics on the population. A deme is a dose

enviromnent where a group of individuals evolve independently (Gagné and Parizeau,

2004b). Individuals can migrafe between demes at each génération. Individuals represent the

proposed solufion at any time. They are specified by their fitness measure and génotype

(Gagné and Parizeau, 2004b). Génotypes contain the genetic description of each individual

(for instance in GP they are defined as trees).

1

fy) f zj

Génotype

Individual

Deme

Context

Logger

Registei

Random izer

Evolution
System

Evolve

Figure 4.3 Open BEAGLE generic EC framework.
(taken from (Gagné and Parizeau, 2004b))

As shown in Figure 4.3, the framework also includes an Evolution system. In tums, it is

composed of context allocator, register, logger and randomizer. The context allocator

présents the state of the evolufion process. Register is used to centralize information about

différent parameters (which is distributed within différent déments). The logger process ail

76

messages generated by EC framework. It acts as a user interface. The randomizer générâtes

random numbers (Gagné and Parizeau, 2004b).

4.2.4 Genera l opération o f EC framewor k

The evolving process (see right hand side of Figure 4.3) consists of a séquence of operafions

iterativdy applied to demes ofthe vivarium. Each genetic operafion is defined as an operator.

The evolver has two operator sets (Gagné and Parizeau, 2004a; Gagné and Parizeau, 2004b):

bootstrap and the main-loop operators. In the bootstrap operator, the séries of opérations

applied to each deme to constmct the initial population are listed. The main-loop operator

présents the list of itérative operafions that are performed to the populafion after the initial

population.

4.3 Classifier s an d fitness functio n

Fitness is measured as the recognifion rate estimated by a classifier (A-NN or MDM) or the

inter-class scatter over the intra-class scatter using the Fischer criterion (Duda et ai, 2001;

Guo et ai, 2005).

4.3.1 Neares t neighbour classifier (A -̂NN)

The nearest neighbour classifier assigns the class to each tested sample depending on the

distance between this sample and the A nearest neighbours (A e .yK> 1). For this reason the

nearest neighbour classifier is often noted as A-NN. If A=I, the assigned class set to the tested

sample is the class ofthe closest sample on the training set. If A >I, the classifier ranks the A

nearest neighbours and counts the votes for each class between the A-selecfed neighbours.

The class with majority vote is assigned to the tested sample. As A increases, décision

boundaries between classes are smoother as décision is taken over a higher number of

neighbours.

77

4.3.2 Minimal distanc e to means (MDM)

This classifier assigns the class to each tested sample depending on the distance between this

sample and the classes' means calculated over the training data set. The class, whose mean is

closest to the tested sample, is assigned as class for the tested sample. This classifier brings

two main advantages: it does not require training apart from the calculafion of mean for each

class. Another advantage is the simplicity in computation to get the answer: only the distance

from the tested sample to each class mean. The incrément in computation is linear with the

number of tested samples (Bot, 2001). In the other hand, it is known that this classifier does

not provide an excellent récognition rate but this force the GP to search for better individuals

(Bot, 2001).

4.3.3 Fisher Linear Discriminant Analysi s

In Section 2.5 we outlined the method used in (Guo et ai, 2005). In this case, GP générâtes

mathematical expressions guided by a fitness function that maximizes the inter-class scatter

over the intra-class scatter using the Fischer criterion (Guo et ai, 2005; Duda et ai. 2001).

By the use of Fisher criterion to express the fitness function, GP tries to maximize the

différence between two-classes in an itérative process applied to pairs of classes (Guo et ai.

2005). The fitness funcfion measure for each pair of classes i,j based on the Fisher criterion

can be expressed as (Guo et ai, 2005):

KJ-

i=\

1 " 1 ' "

n- /=] m 7 = 1

n C i n \^ m (1 m

" /= ! J I y ^ i y m

(4.3)

y=' J

n-\ m-l

78

Li equafion 4.3,//y is the fitness function measure between classes / and / S represents the

examples ofthe data set, the numerator reflects the distance between classes / and y and the

denominator dénotes the range of variance within classes / and y. In the case of a number of

classes greater than 2, the Fisher criterion is decomposed in q=C(K,2)=K(K-l)/2 two-class

Fisher criterion calculations.

4.4 Expérimenta l Protocol fo r Bot's metho d

Bot applied his method to 16 data sets from UCI repository (Newman et ai, 1998). We

replicate the experiments to verify the results conceming performance and stopping criterion.

In the experiments we followed the setfings as established in (Bot, 2001) as much as

possible.

In the first subsection we briefly describe the data sets used, the normalization made to the

data and how the available data is partitioned into the four disjoint blocks for opfimization,

training, validation and test. In the second subsection, we describe the GP tool used to mn

our experiments. Following subsection describes the overall system applied and the

experiments with différent classifiers and fitness measures. Following subsecfion présents the

results and makes an analysis and a comparison to Bot's results. It includes comments about

the application of global validation procédure.

4.4.1 Databas e description an d usag e

Databases used in (Bot, 2001) are part of a Machine Leaming database repository from the

University of Califomia at Irvine (Newman et ai, 1998). Most ofthe data sets hâve two files

with the following format: "db_name.data" and "dbname.name", where "db_name" refers

to the name of each spécifie data set and the extensions ".data" means that this file contains

the data and ".name" contains a descripfion of the data set (number of instances, number of

classes, type of data contained and a brief descripfion ofthe problem). From the 16 data sets

79

used by Bot, he assures that only databases with no missing values and with numeric values

were selected (Bot, 2001). Notwithstanding, some ofthe data do not fùlfill thèse conditions.

For instance, data set "car" has categorical values and "cmc" contains binary data. In

addifion. Bot took a random subset from "waves" data set. As a resuit, not ail data sets used

in our experiments correspond 100% to the data used by Bot. Following is a list of the

databases used and their main characteristics (see Table 4.1): number of samples, raw

features and classes. The amount of instances from différent classes is not always well

balanced in some ofthe data sets, so the percentage ofthe main class is indicated. When no

number appears in this column, classes are evenly distributed or in similar percentages.

Table 4.1

Characterisfics of databases used by (Bot, 2001)

Database

Australian
Bupa
Car
Cmc
Ecoli

German
Glass

Ionosphère
Iris

Pima
Segmentation

Sonar
Teaching

Waves
Wine
Yeast

Number
of cases

690
345
1728
1473
336
1000
214
351
150
768

2310
198
151
330
178

1484

Number
of

variables
14
6
5
9
7

24
9

34
4
8
19
60
5

21
13
8

Number
of

classes
2
2
4
3
8
2
16
2
3
2
7
2
3
3
3
10

Percentage
majority
class (%)

70

43

36
64

65

53

40
31

Data is normalized to transform ail values to the range [0, 1]. Normalization is made for each

attribute by using Min-Max method. Values v(/) in the range [minA, maxA] are transformed

according to équation 4.4 to a new range [newminA, new_maxA]:

80

v(i)-mmA ^, ^ (4.4)
v(/) = * (new_ max A - new _ min A) + new _m\r\ A,

max A - min A

Usually the range [new_minA, new_maxA] is [0, 1]. In this case the équation is simplified

to:

v(/)= ^0')-"^"-^ (4.5)
rr)2i\A-rrnr\A

As shown in Table 4.1, the maximum number of instances is 2310 for the segmentation data

set. As the size of data sets is not big, we use 10-fold cross-validation. So, data is partitioned

in 10 non-overlapping blocks called folds of approximately the same size. One block for

optimization, one block for validation, another block for test and the remaining 7 blocks for

training. Since some data sets hâve an inhérent unbalance in the number of samples for

différent classes, we tried to replicate the same class distribution as in the original data set,

but this is not always possible. For instance, Ecoli data set has 336 samples with 8 classes.

One class has 143 samples (approximately 42% ofthe whole data set), meanwhile two other

classes hâve each one 2 samples. Therefore, when splitting data into folds, there will be

training folds without any samples from thèse two classes and test or validation folds that

contain one or the two samples from thèse classes. This imbalance of class distribution

produces a décrément in the performance of some folds that could affect the final results. For

thèse cases, the samples for each fold are randomly selected.

4.4.2 Descriptio n o f experiment s

Bot applied his algorithm to 16 data sets from UCI repository (Bot, 2001). The main purpose

hère is to replicate the experiments to verify the Bot's method. As a resuit, the effectiveness

of using two or three evolved features to represent a data set, instead of the whole set of raw

characterisfics, can be established. Parameters for the experiments are set according to (Bot,

2001) when the information is available. When a parameter value is not specified in (Bot,

2001), we set it to the default value defined in the GP tool used.

81

The gênerai diagram of the system was shown in Figure 4.1. The system uses GP to create

features called evolved features, so that they would be useful to classify unseen data ofthe

problem. Opfimization data is the input to the GP algorithm. Guided by the fitness function,

if searches for solufions that produce fittest individuals. Fitness is measured as the

récognition rate estimated by a classifier (A-NN or MDM) or the inter-class scatter over the

intra-class scatter using the Fisher criterion (Duda et ai, 2001; Guo et ai, 2005). In both

cases, two data sets are used: the training and the optimizafion data sets. Interpreting the

evolved individuals with the training data générâtes the prototypes for the A-NN classifier

(proximity of neighbours) or the classes' mean for MDM classifier and the mean and

variance used for Fisher criterion. Through the évolution, for every génération and evolved

feature, ail individuals in the population are interpreted according to the optimizafion data set

and this is the input to a classifier which assigns the class to each sample ofthe opfimization

data set. During the search for an evolved classifier, the overall system can generate solutions

that over fit the dataset used for this search (optimization dataset) if an adéquate validation

method is not used. Hence, another dataset is used to corroborate (validate) the solutions

proposed by the framework GP-(A-NN or MDM classifier). This set is called validation

dataset. The available data set is divided in ten disjoint folds which are used as follows: one

fold for optimization, a second fold for validation, and the remaining eight folds are used for

training. This process is repeated 10 times so that optimization and validation are applied to

différent folds each time. Final récognition rate is calculated as the average over ail folds and

replicafions.

As presented in Figure 4.1, there are two main cléments in the GP-based system: the

classifier and the GP algorithm. The parameters of the two components of the GP-classifier

wrapper hâve to be defined before the opfimization phase.

82

4.4.2.1 Parameter s related to classifier or fitness measure

Two classifiers are used to measure the fitness of individuals: A-NN (A-NN) and minimal

distance to means (MDM).

(i) Nearest Neighbour (k-NN)

Table 4.2 indicates the settings for number of neighbours and prototypes used.

Table 4.2

Parameters of k-NN classifier

Parameter

k: Number of
neighbours

Number of
prototypes

Interprétation of the parameter

Number A of neighbours considered to take the
décision about the class ofthe tested sample

Number of sample (prototypes) considered when
calculating distances

Value set

A - 3

Seven folds in 10-fold
cross-validafion case
(explanation in
Section 4.3.1)

(ii) Minimal Distance to Means (MDM)
It does not require a definifion of parameters.

(iii) Fitness measure based on Fisher criterion

The fitness function measure for each pair of classes /, j based on the Fisher criterion was

specified in equafion (4.3). This equafion is applicable for two-class problems. When the

number of classes is greater than 2, the Fisher criterion is decomposed in q=C(K,2)=K(K-
l)/2 two-class Fisher criterion calculations. Fitness measure is oriented towards the worst

case or the minimum value of ail two-class calculations, so the applicafion of this value to

other two-class pairs produces a good classificafion. The final fitness measure //RSH is

defined in (Guo et ai. 2005) as:

r, - 1 mm(fit)+ X.-Y,(fit)
9 .= 1

(4.6)

83

where / / is an array of ail two-class Fisher criteria among classes. Parameter X is

empirically set to 0.001 (Guo et ai, 2005), is a factor that considers the contribufion from the

mean value. For instance, if the minimum values for two features are similar, the one with

the largest average of values will survive. Finally, a value P is experimentally applied to re-

scale the resulting //pish values less than 100 (the maximum fitness value set during

évolution). Value of P scale is adjusted according to each data set. See further détails about

thèse parameters in Section 5.3.2.

4.4.2.2 GP-relate d parameter s

Before mnning a GP program, there are some steps that hâve to be done (Koza, 2004; Koza,

1992):

(1) Spécification ofthe set of terminais;

(2) Spécification ofthe set of fùncfions;

(3) Définition of fitness measure;

(4) Spécification of parameters to control the program mn (i.e., mutation and cross-over

probabilities for individuals, size ofthe population, etc);

(5) Termination criterion (normally expressed as maximum number of générations or

problem-resolution success measure).

The mentioned steps are explained and then their values are presented in Table 4.3 above.

Based on Bot's method (Bot, 2001), we use a set of functions composed by the standard

mathematical opérations addition, subtraction, multiplication, protected division. Protected

division avoids problems when dividing by zéro, defining it as one. The terminal set is

composed by the number of attributes o raw features for each spécifie data set; for instance

the data set called Australian has 14 raw features, so the terminal set would be: { A/ , . . . , xi4,

ephemeral random constant}, ephemeral random constant is a random floating point constant

ranging from -1.0 to 1.0. Fitness measure is taken as the récognition rate of a A-NN classifier

(or a MDM classifier) measured over the opfimization data set.

84

The main parameters to control the GP are: population size, number of générations, sélecfion

mechanism, cross-over and mutation probabilifies, the method to create the initial populafion,

the maximum tree depth and if elifism is acfivated or not. For the experiments with the 16

data sets used in (Bot, 2001), we hâve chosen the values indicated in (Bot, 2001) as shown in

Table 4.3 above. It is worth to include an explanation about two other parameters: maximum

tree depth and creafion of initial population. Maximum tree depth refers to the allowed

number of levels that any individual (tree) in the population can hâve at maximum. This

parameter tries to control the occurrence of extremdy big trees, because operafions applied to

them (interprétation, cross-over, etc.) increase the computation time. Maximum tree depth

dépends on the difficulty of the problem (Koza, 1992). Smaller tree depth value means

shorter trees and possible easier interprétation. Two additional parameters are related:

gp.init.mindepth and gp.init.maxdepth (see Table 4.4 above). They are the minimal and

maximum tree depths when trees are created. A standard maximum tree depth value of 17

has been used to solve a wide type of problems, as presented in (Koza, 1992), was also used

in (Bot, 2001) and set hère at that value. Minimal and maximum values for initial trees hâve

been defined (as indicated in Table 4.4 above) in 2 and 5 respectivdy.

The second parameter, création of initial population, is defined as ramped half-and-half (see

Table 4.3). This means that an equal number of trees of différent depths are produced and,

for each depth, value, 50% of the trees are created via the "full method" and 50% via the

"grow method" (Koza, 1992). The "fùll method" to generate the initial random population

créâtes trees with each path with a length equal to the specified depth (Koza, 1992) (path

goes from root to the end-point). The "grow method" créâtes trees of various shapes with

lengths of each path no greater than the specified length (Koza, 1992). In our case, an equal

number of trees with depths between 2 to 5 are created, that is, approximately 25 individuals

(25% of the population) are created of size 2, 25 individuals of size 3, and so on, unfil 25

individuals of size 5. From the 25 individuals of each depth, approximately half are created

with the "fùll method" and half with the "grow method". The number 25 comes from the

population size divided by the différent number of depths, which approximately is 100/4.

85

Table 4.3

GP related parameters

Objecfive

Terminal set

Function set

Fitness
measure

Parameters

Success
predicate

To find out the minimal number of mathemafical expressions that
maximize recognifion rate on optimization data set (Table 4.1)
{Variables within the set (xi,...,Xg,...,xi^ ATTR), ephemeral random constant}
Variables Xq are the raw features from each data set. N_ATTR is the
maximum number of raw features (attributes) in each data set. Variables
are normalized according to équation (4.5).
Ephemeral random constant is a random floating point constant ranging
from-1.0 to 1.0
{+, -, *, / } . Division (/) refers to protected division to avoid division by
zéro

A classifier that maps the last evolved mathematical expression in
conjunction with previous evolved mathematical expressions into any of
the dataset classes by using the opfimization data set.

Populafion size
Number of générations
Sélecfion
Cross-over probability (individual)
Mutafion probability (individual)
Création Inifial populafion
Maximum tree depth
Replacement mechanism
Elifism

100
11
Toumament sélection 7 individuals
0.9
0.1
Ramped half-and-half
17
Steady -state
Keep one individual

Individual tree representafion with 100% classification rate (over validafion
data set)

Finally, the replacement strategy chosen in (Bot, 2001) is steady-state. In this replacement

mechanism, the whole populafion is not necessarily replaced at each génération as it happens

in the conventional GA (also applicable to GP) replacement strategy called generational.

Steady-state method imitâtes what happens with many animal species in which parents and

children can live at the same fime with not defined boundaries (Langdon, 1998). This means

that off spring once created they are added immediatdy to the population and are available

for reproduction (Beasley et al., 1993). The implementafion of steady-state in Open

BEAGLE replaces one individual at a time and immediatdy adds the off spring into the

population. The system considers a génération the moment when a number of individuals

86

equal to the populafion size has been replaced. Additional information on steady state

replacement included in Secfion 2.2.3.4 and in Annex I.

Table 4.4 shows the définition and values set for additional parameters required for a GP mn.

When there is no spécifie criterion to set an initial value, the default value used in Open

BEAGLE is taken.

Table 4.4

Additional parameters to define for a GP mn

87

Parameter

Cross-over prob.
gp.cx.indpb

gp.cx.distrpb

Mutation prob.
gp. m utstd. indpb

gp. mutshrink indpb

gp.mutswap. distrpb

gp. mutswap. indpb

gp.mutstd. maxdepth

gp. init. maxdepth
gp. init.mindepth

gp.try

ec.repro.prob

Explanation

Individual crossover probability at each générafion

Probability that a crossover point is a branch (node
with sub-trees). Value of 1.0 means that ail crossover
points are branches, and value of 0.0 means that ail
crossover points are leaves.
Standard mutafion probability for an individual. A
standard mutation replaces a sub-tree with a
randomly generated one.
Shrink mutation probability for an individual. Shrink
mutation consists in replacing a branch (a node with
one or more arguments) with one of his child node.
This erases the chosen node and the other child nodes
Probability that a swap mutation point is a branch
(node with sub-trees). Value of 1.0 means that ail
swap mutation points are branches, and value of 0.0
means that ail swap mutation points are leaves. Swap
mutation consists in exchanging the primitive
associated to a node by one having the same number
of arguments.
Swap mutation probability for an individual. Swap
mutafion consists in exchanging the primifive
associated to a node by one having the same number
of arguments.
Maximum depth for standard mutafion. A standard
mutafion replaces a sub-tree with a randomly
generated one.
Maximum depth for newly initialized trees.
Minimum depth for newly initialized trees.
Maximum number of attempts to modify a GP tree in
a genetic operafion. As there are topological
constrainfs on GP trees (i.e. tree depth limit), it is
often necessary to try a genetic opération several
fimes.
Probability than an individual is reproduced as is,
without modification. This parameter is useful only
in sélection and initialization operators that are
composing a breeder tree

Initial
value

(def: 0.9)

(def: 0.9)

(def: 0.05)

(def: 0.05)

(def: 0.5)

(def: 0.05)

(def: 5)

(def: 5)
(def: 2)
(def 2)

(def: 0.1)

88

4.4.3 Result s

Experiments were mn according to the expérimental protocol detailed in preceding sections.

Two différent approaches were used to calculate the fitness measure: récognition rate of a

classifier (A-NN and MDM) and the inter-class scatter over the intra-class scatter using the

Fischer criterion (Duda et ai. 2001; Guo et ai. 2005). We présent the results of our

implementation of Bot's method using Open BEAGLE (Gagné and Parizeau, 2004b) as GP

tool and we compare them to Bot's reported results (Bot, 2001).

Experiments developed in (Bot, 2001) can be divided in three groups depending on the

classifier used. In the first case, a Minimal Distance to Means classifier (MDM) was used.

The second set of experiments employed a A-NN classifier with A=3. Finally, a classifier

called paralldepiped was the dément used in the third set of experiments. This last classifier

was replaced by a calculation of fitness function based on Fisher criterion.

4.4.3.1 Result s with Ar-NN classifier

Table 4.5 shows the results obtained from the implementafion of Bot's method with Open

BEAGLE as evolutionary tool, when fitness measure is based on A-NN classifier accuracy for

each data set (first column). The second column shows the accuracy of the A-NN classifier

alone applied to the original normalized data as reported in (Bot, 2001). This column is split

in two parts: the récognition rate expressed in percentage with the standard déviation after the

symbol "±" and the original number of features for each data set. For comparison purposes,

the results reported in (Bot, 2001), transcripf in the third column, are called "Bot's results for

k-NN". In tum, it is also divided in the same two parts. The last column présents the results

of our implementation of Bot's methods with Open BEAGLE. Results are shown in column

named "results of OB implementation with k-NN", including the recognifion rate and the

standard déviation and average number of features. Prdiminary tests were performed with

différent number of neighbours (A =1, 3 and 5) and A=3 showed the best trade-off between

performance and fime. The same value of neighbours was used in (Bot, 2001).

89

Table 4.5

Comparison Bot's results with the implementation in Open BEAGLE using A-NN classifier
Average Rec. Rate (%) ± standard deviafion, using 5 repetifions and 10-fold cross-validafion

Database

Australian

Bupa

Car

Cmc

Ecoli

German

Glass

Ionosphère

Iris

Pima

Segmentât.

Sonar

Teaching

Waves

Wine

Yeast

Â̂ -NN accuracy on

normalized original

data

Rec. Rate (%)

± Std. Dev

8 I . 2±4

49.6+7.2

84.6 + 4.5

52 ±18.5

80.8+15

64+5.8

53.92+17.1

74.92 +9.6

92.72 +6.6

70.22 +4.3

89.72+2.8

71.82+19.6

40.52+24.6

69.12+10.1

88.32+10.9

48.82+5.9

Orig.

#F

14

6

5

9

7

24

9

34

4

8

19

60

5

21

13

8

Bot's results for k-NN

Rec. Rate (%)

+ Std. Dev

83.12 + 6.89

58.4+11.53

79.1 +8.36

51.3+18.33

73.5+17.95

63 +9.36

52+18.35

80 +6.48

94.1 +7.88

69.5 ± 6.92

88.4 + 4.01

72.2+ 19.08

42.5 + 22.99

61.8+ 14.87

87.6 + 9.53

41.9+8.66

#Fave

1

1.5

1

1.5

2.6

1.2

2.7

1.3

1

1.2

2.8

2.3

1.7

2.9

1.6

2.8

Results of

implementation in OB

with Â -NN

Rec. Rate (%)

+ Std. Dev

74.35+24.68

67.94+29.97

74.26+12.36

48.63+13.76

72.18+10.01

70.86+5.36

46.29+17.96

76.57+19.96

94.66+7.25

71.27+5.21

82.46+4.71

72.80+11.30

55.33+13.62

66.06+16.58

80.00+21.46

36.76+13.49

Wave

1.4

1.7

1.7

1.8

2.7

1.9

2.8

1.4

1.8

1.75

2.4

2.8

2.3

2.7

1.4

3.2

Results presented in Table 4.5 correspond to the average best individual with validation

based on Bot's stopping criterion. The average is taken over ail 10 folds and 5 repefifions.

Results are consistent with the reported performances in (Bot, 2001).The average number of

evolved features is greater in our implementation, which générâtes a slightly better

90

performance. In most ofthe cases, results are also comparable to the original récognition rate

with a A-NN classifier when using the whole set of features. This is one ofthe key points of

this method, because it permits to obtain similar, and in some cases better, recognifion rates

with a considérable reducfion in the number of evolved features used. The GP-evolved

features obtained with Bot's method establish a convenient transformation of the original

data into a représentation of a dimensionality equals to the required evolved features and a

similar performance.

4.4.3.2 Result s with MDM classifie r

Table 4.6 compares results obtained by Bot and the implementation in Open BEAGLE when

using a Minimal Distance to Means (MDM) classifier. Experiments hâve been mn using 10-

fold cross-validafion with 5 répétitions. Average récognition rate, standard deviafion and

average number of evolved features are included. In our experiments we présent the average

performance of best individuals when validation is carried out at the end of the évolution.

Most of the cases, the results are close each other in récognition rate and average number of

features. In gênerai, the results with Open BEAGLE give a slightly higher récognition rates,

but at the same time, a higher average number of features. Thèse values dépend on the

stopping threshold d which indicates where the évolution can be stopped because enough

information from the evolved features has been retained to classify the data. With higher

average number of features -in comparison to Bot's results-, which means stopping later,

greater amount of informafion is taken and then higher récognition rates can be obtained.

Différences in performance are very small, they can be considered équivalent.

91

Table 4.6

Comparison Bot's results against our implementation using MDM classifier
Average Rec. Rate (%) ± standard déviation, using 5 répétitions and 10-fold

cross-validafion

Database

Australian

Bupa

Car

Cmc

Ecoli

German

Glass

Ionosphère

Iris

Pima

Segmentation

Sonar

Teaching

Waves

Wine

Yeast

Bot's results wit h MDM

Rec. Rate (%)

+ Std. Dev

82.5+10.01

61.7+11.51

73.1+ 8.81

52.4+ 18.08

76.1 ± 14.77

61.5+ 12.98

60.3 + 15.25

83.1+ 8.51

95.3 + 7.04

68.9 + 7.08

91+4.5

75.5+18.83

51.8+19.79

68.1 ± 13.74

88.1+7.64

46.2 + 4.89

UFave

I

1

1.2

1.6

2.6

1.1

2.1

1.3

1

1

3.1

1.3

1.6

2.3

1.8

3.9

Results of implementation in

Open BEAGLE with MDM

Rec. Rate (%)

+ Std. Dev

87.39 + 3.06

63.24+12.10

81.82 + 4.75

52.18+ 12.97

72.42+11.79

66.76 + 5.59

58.10+ 14.16

82.57 + 6.42

95.06 + 5.84

66.85 + 5.48

94.76 + 4.16

66.50 + 8.83

56.00+10.36

75.76 + 7.6

91.11+5.97

50.00+8.92

#Fave

1.3

1.4

1.7

2.8

3.1

1.3

2.2

I.I

1

1.07

1.8

1.8

1.7

2.1

1.8

4.4

92

4.4.3.3 Result s with fitness base d on Fisher criterio n

The method implemented follows the principles of Bot's algorithm with a fitness measure

based on Fisher criterion. Table 4.7 présents the original accuracy of a k-NN classifier, the

results reported in (Bot, 2001) and our results. Each of thèse three parts is divided in two

columns: récognition rate + standard déviation and average number of evolved features. This

fitness measure tries to maximize the inter-class scatter over the intra-class scatter using the

Fischer criterion. This is done with small but continuons increases along with générations as

will be shown above. As shown in équation 4.6 there are two parameters to adjust when

using this fitness measure. Parameter /l is a factor that considers the contribution from the

mean value. For instance, if the minimum values for two features are similar, the one with

the largest average of values will survive. If was empirically set to 0.001 as indicated in (Guo

et ai, 2005) because there were not considérable changes with différent values of/l. In the

other hand, the scaling factor P was introduced to maintain a level of increase of fitness

measure. For instance, in data sets with poor performance the fitness values can be very

small with even smaller changes along with générations that resuit in minimum and

sometimes negligible increase in récognition rates. With greater//pish values (see équation

4.6), progress is faster with better results at the end. In the same way, when classificafion of

some data sets is not that difficult, the parameter P helps to avoid that évolution gets trapped

very soon in a local maximum. In thèse cases, P is set to values around 20 to 30.

The fitness measure based on Fisher criterion was applied in (Guo et ai, 2005) for a large

number of generafions: 1000 (compared to the number used in our case).

Recognifion rates are very similar to values reported in (Bot, 2001) and our results when the

fitness measure is based on a A-NN. Standard déviation values are smaller (see Table 4.7),

suggesting that the inter-class scatter over the intra-class scatter increase is made and the

method is stable over différent data set partitions. As in previous cases, the average number

of evolved features is somewhat higher than values reported in (Bot, 2001). In any case

différences are not considérable.

93

Table 4.7

Average Rec. Rate (%) ± standard deviafion of Bot's algorithm with fitness based on Fisher
criterion and a A-NN, using 5 repefifions and 10-fold cross-validafion

Database

Australian

Bupa

Car

Cmc

Ecoli

German

Glass

Ionosphère

Iris

Pima

Segmentât.

Sonar

Teaching

Waves

Wine

Yeast

Â -NN accuracy on

normalized original

data

Rec. Rate (%)

+ Std. Dev

81.2+4

49.6+7.2

84.6+4.5

52.0+18.5

80.8+15

64.0+5.8

53.9+17.1

74.9+9.6

92.7+6.6

70.2+4.3

89.7+2.8

71.8+19.6

40.5+24.6

69.1+10.1

88.3+10.9

48.8+5.9

Orig.

#F

14

6

5

9

7

24

9

34

4

8

19

60

5

21

13

8

Bot's results for A-NN

Rec. Rate (%)

± Std. Dev

83.1+6.89

58.4+11.53

79.1 + 8.36

51.3+18.33

73.5+17.95

63 + 9.36

52+18.35

80 + 6.48

94.1 + 7.88

69.5 + 6.92

88.4 + 4.01

72.2+ 19.08

42.5 + 22.99

61.8+14.87

87.6 + 9.53

41.9 + 8.66

#Fave

1

1.5

1

1.5

2.6

1.2

2.7

1.3

I

1.2

2.8

2.3

1.7

2.9

1.6

2.8

Bot's method with

Fisher fitness and

A-NN classifier

Rec. Rate (%)

+ Std. Dev

88.70 + 2.04

61.46+ 1.29

77.91 + 16.26

55.94 + 9.54

77.91 + 8.65

68.12 + 3.20

58.57+12.24

82.60 + 2.60

93.45 + 5.53

72.84 + 4.56

84.76 + 7.71

76.50 + 7.83

55.68 + 5.79

67.20 + 4.56

90.69 + 3.28

55.95 + 4.82

#Fave

1.5

1.4

1.8

2.3

2.1

1.9

2.5

1.4

1.3

1.7

2.5

2.4

1.3

2.1

1.7

2.7

94

Table 4.8

Bot's algorithm using fitness based on Fisher criterion and a MDM classifier
Average Rec. Rate (%) ± standard deviafion, using 5 repetifions and 10-fold

cross-validation

Database

Australian

Bupa

Car

Cmc

Ecoli

German

Glass

Ionosphère

Iris

Pima

Segmentation

Sonar

Teaching

Waves

Wine

Yeast

Bot's results with MDM

Rec. Rate (%)

+ Std. Dev

82.5+10.01

61.7+11.51

73.1+8.81

52.4+18.08

76.1+14.77

61.5+12.98

60.3+15.25

83.1+8.51

95.3+7.04

68.9+7.08

91+4.5

75.5+18.83

51.8+19.79

68.1+13.74

88.1+7.64

46.2+4.89

UFave

1

I

1.2

1.6

2.6

1.1

2.1

1.3

1

1

3.1

1.3

1.6

2.3

1.8

3.9

Bot's method with Fisher

fitness and MDM Classifier

Rec. Rate (%)

+ Std. Dev

87.83+15.57

65.59+12.78

76.36+12.54

46.33+3.67

61.47+11.38

71.50+4.83

45.24+11.05

81.14+5.59

96.00+6.32

68.24+3.30

86.67+7.7

62.50+9.50

53.33+10.42

74.24+10.02

89.44+4.86

39.19+8.03

#Fave

I.I

1.7

1.5

2.1

1.6

2

1.5

1.5

1.1

1.3

1.9

1.1

1.3

2.7

1.1

3.1

Table 4.8 présents the results reported in (Bot, 2001) and our results when fitness measure is

based on Fisher criterion and final performance is calculated with a MDM classifier. Results

obtained when are very close to outcomes from Bot method with MDM classifier

performance as fitness measure. Average number of features is similar as well. Standard

déviation is higher with Fisher criterion as fitness measure is also higher.

95

Computation time with Fisher criterion as fitness measure is much faster than with a A-NN

classifier but a slower than MDM classifier (as fitness measure). Calculafion of fitness

measure based on Fisher criterion requires calculafion of mean and variance for each

proposed individual and a final classification. In Bot's method only mean is calculated for

each proposed individual and classificafion is done with MDM classifier as well. In both

cases computafion is linear with the number of samples and faster than A-NN classifier (Bot,

2001). We conclude that fitness measure based on maximizafion of inter-class scatter over

the intra-class scatter is an adéquate measure for the UCI data sets used. The maximization

of the inter-class scatter over the intra-class scatter using the Fisher criterion is done with

small but continuons increases as the evolufion progresses.

Analysis o f Fisher variation with générations and feature s

During training phase, the system apprehends with the évolution, i.e. after each génération

the System gains knowledge about the problem. Fitness in terms of Fisher criterion measures

the distribution ofthe interclass scatter over the intra-class scatter for any two classes (Guo et

ai, 2005). In Bot's method implementation with Fisher function as fitness measure for

Australian dataset, fitness has a slight incrément as évolution goes through new générations,

as shown in Figure 4.4. This measure générâtes a récognition rate that is calculated at the end

of the évolution cycle. Figure 4.4 illustrâtes how the fitness values change with the number

of générations and with the number of features added.

In the other hand, there is a clear incrément of Fisher fitness with the number of features.

Incrémental gain in fitness is lower as the number of features increases. This can be seen

through the projection of surface curves in the plane Generations-Features in Figure 4.4. The

séparation between lines (surface projection as lines in plane Generations-Features) increases

with the number of features. In other words, the slope of the curve is greater for evolved

features 1, 2, 3 and diminishes as the number of features increases -the slope or incrémental

fitness decreases-. As the number of generafions increase, the récognition rate also increases

but the incrément is very small.

96

Fisher Fitness by Génération and Feature - AUSTRALIAN

Features
4 6

Générations

10 1 2

Figure 4.4 Fisher fitness values by générations and evolved features. Australian data set

4.4.3.4 Performanc e for unbalanced data sets

Most of the data sets with an unbalanced number of samples between classes, as in the case

of Ecoli, produce a high standard déviation. This unbalance causes very différent récognition

rates depending if the less populated classes are included or not in some training folds. The

worst case scénario, as mentioned before, are classes with just a few samples that can be part

of optimization, validation or even test folds and not included at ail in the corresponding

training fold. Récognition rate in thèse cases is decreased in conséquence. On the other hand,

when the few samples are part of the training fold and no any sample appears in validation,

optimization or test folds, the classifier performance is also affected.

4.4.3.5 Représentatio n of data sets with one or two evolved features

One ofthe advantages of Bot's method is to constmct a small set of evolved features that are

able to represent a data set. For instance. Ionosphère data set is originally composed of 34

raw features. After constmction of evolved features, the data set can be represented with an

average of 1.1 features. Figure 4.5 maps the values ofthe data set for two evolved features

97

EF(1) and EF(2). As the average number of features is greater than 1.0, we display two

features as if they were orthogonal (or independent) in a Cartesian diagram. The aim of this

figure is to analyze the quality of the results obtained and permit a simple visualization of

Bot's method potenfial.

As can be seen in the graphie, data from class 0 (blue x's) is well separated from class 1 data

(red +'s). In fact, variance in the horizontal axe (EF(I)) is much larger that in the vertical axe

(EF(2)). Such variance suggests that Ionosphère dataset could be represented with only one

feature. In addition. Figure 4.5 gives a hint about the way to separate the two classes, for

instance with the two vertical lines (only in the axe of EF(1)).

Figure 4.5 shows a détail ofthe mapping in two features. The interval 15 < EF(1) <= 30 is

analyzed. The majority ofthe samples that are overlapped are comprised within this interval.

The two suggested vertical lines (axe of evolved feature 1) show that classes can be very well

separated and, in fact, only one feature could be used with very good results. Such a way of

mapping evolved features reflects the efficacy of Bot's method to separate classes. A

complète classification requires to détermine value of raw features (terminal set déments)

that generate 15 < EF(1) <= 30.

The first evolved features EF(1) is displayed in Figure 4.6. It is an individual with a size of

63 nodes, and a depth of 16 that achieves a fitness of 92.06% in the optimizafion data set.

The second feature is very simple, a division of raw feature 29 over raw feature 8: IN29/IN8

that is a tree size of 3 and a depth of 2, for a fitness of 92.38% (this evolved feature is not

shown). A quick analysis of EF(1) in Figure 4.6 shows that the sub-tree is (rN4 + INO) is

repeated through the tree at différent depths of EF(1), so it can be considered as a building

block of the solution . There are variants of this tree: addition of raw feature IN5 or other

sub-tree to the head ofthe main building block.

98

(N

Mapping o f Ionosphère datase t fo r evolved Features 1 and 2

"̂ +
+ "

X

+
'^t^ ++ +
: %+ ^ «^ +

• y clas s 0
-1- clas s 1

X
X

X X *

>V x "
X

X X

/
X

1 1 1 1 1 1

16 18 20 2 2 2 4
Evolved Feature 1

26 28 30

Figure 4.5 Analysis of représentation of Ionosphère data with one or two evolved features

Looking the evolved feature 1, we realize that only three raw features are involved in the

expression: INO, IN4 and IN5. And as mentioned, EF(2) is composed of rN29 and rN8.

Ionosphère data set is composed of 34 raw features fNO, INI,..., rN33 and Bot's algorithm

générâtes only two evolved features with a classification rate of 92.38%. That is a huge

réduction in the représentation with good performance results. Another point to mention is

the number of raw features used in the whole solufion. In the example presented hère, only

five raw features are used to produce the two evolved features from a starting space of 34

features (see Table 4.1). Therefore we see that the feature constmction method involves, in

this case, a sélection of the most important features at the same time. A more complète

analysis about the raw features used to build the evolved features is presented in chapter 5.

99

Individual si7Xs 63. (kpih= 16, riuicu=0.920635 (+

Figure 4.6 Evolved feature I for Ionosphère example

100

4.4.3.6 Genera l conclusion s

Replicafions of experiments developed in (Bot, 2001) were done over the same set of

databases from UCI repository (Newman et ai, 1998). Bot's method adds each new evolved

feature at a time, depending on its incrémental contribufion to the récognition rate. Bot's

method is a combination of a greedy and a global search (Bot, 2001). Greedy because each

feature is added one by one and each feature is the best found so far (Bot, 2001). It is also

global because the searching mechanism used is based on an evolutionary computation

technique, GP, which is by nature global (Bot, 2001). The algorithm also includes a stopping

criterion based on the incrément in recognifion rate provided by the new feature. The

threshold value used for comparison is calculated at the feature where the récognition rate in

validation is maximal. Since this criterion is evaluated at the end of each évolution for

Nbr_Gen générations, we can understand Bot's stopping criterion as validation at the end of

the évolution.

In addition to fitness measure based on classifier performance, we use a fitness measure

based on the interclass scatter over the classes intra-class scatter using the Fisher criterion.

Results in performance were similar in most ofthe cases and différences were not significant.

Furthermore, the différence in performance between the two classifiers (A-NN and MDM) are

not substanfial, however, the computafional load using MDM is much lower than using A-NN

as classifier, which represents a significant advantage. In gênerai, accuracy with Bot's

method is similar to the accuracy of a A-NN on the normalized data (Table 4.5) and the

number of required evolved features is small in comparison to the original number of raw

features. The average number of evolved features was in the range 1 to 7, including some

extrême cases. In a large part of cases, only three evolved features could be enough to make

an adéquate classification. In addition, the number of raw features used in the evolved

features is small. That means that the feature création process involves, at the same fime, a

feature sélection mechanism.

CHAPTER 5

IMPROVEMENTS T O FEATURE CREATIO N FO R CLASSIFIER S

In this chapter we propose three différent procédures to improve Bot's performance. The GP

algorithm mn in Chapter 4 used the same parameter setting as in (Bot, 2001), to make a fair

comparison of results. We analyze if settings for parameters such as: population size, number

of générations and probabilities of genetic opérations cross-over and mutafion, were defined

in suitable ranges. We do not try hère to optimize GP parameters (for example those

presented in Table 4.2) because this is a monumental and very time consuming task. Instead

we try to find ranges of values where the algorithm has an acceptable performance. In

Section 5.1 we explain thèse parameters and we evaluate their influence with by means of

some experiments mn for différent combinafions of cross-over and mutation probabilifies.

The second procédure developed in this chapter is based on the observation that mnning the

experiments in Chapter 4 is very consuming in time and resources, even for small data sets as

those used unfil now. We then considered some altematives to speed up the computafion of

solufions maintaining the quality of results. One way is to parallelize the GP algorithm. We

présent in Section 5.2 différent altematives, analyze them with regards to our algorithm and

decided by a method called coarse-grain or island. Once more, we tested the method with

some data sets employed in Chapter 4. Thèse test are explained, their results presented and

analyzed in Secfion 5.2.3

The third procédure is focused on the generalization power of solutions proposed. Bot's

method adds each new evolved feature at a fime, depending on its incrémental contribution to

the recognifion rate. A new evolved feature is accepted if the new relative gain is greater than

a threshold. The threshold value used for comparison is calculated at the feature where the

recognifion rate in validation is maximal. This is the stopping criterion applied in Bot's

algorithm. Since this criterion is evaluated at the end of each evolufion for NbrjGen

generafions, we can understand Bot's stopping criterion as validation at the end of the

102

évolution. We hâve to note anyway that the methods are not exactly équivalent because the

vérification is done for every evolved feature and not at the end of the whole evolutionary

process. Also, if at any evolved feature the relative incrément in récognition rate is not

greater than the threshold value, this last evolved feature is discarded. As a resuit, it is less

likely that the final solution has going too much into over-fitfing because the last feature was

completdy discarded. We said that the prompt discard ofthe feature reduces the chances of

accepting over-fitting solutions.

Even though Bot's stopping criterion tries to reduce the over-fitting towards the optimization

data set, validation is only made at the end of each evolving feature and not in between the

features. In Secfion 5.3 of this chapter, we présent a method called global validation that

allows us to identify if there is over-fitting by evaluafing the generalization power of each

individual in the population for every feature and génération by mapping them info the

validation data set and keeping trace ofthe best individual there (in validation). We présent,

différent types of validafion and explain in détail the global validation procédure, initially

proposed in (Radtke et ai, 2006). In addition we explain how to apply it to Bot's method.

We tested the global validafion procédure in some of the data sets employed in Chapter 4.

Thèse test are explained, their results presented and analyzed in Secfion 5.3.6.

As mentioned before, Bot's method créâtes evolved features based on GP and at the same

sélects the raw features that are more important in classification. We présent an analysis of

the sélection of raw features through the evolufion and at the final solutions.

Experiments were carried out on a Beowulf cluster with 25 nodes using Athlon XP 2500+

processors with 1GB of PC-2700 DDR RAM. Finally, Secfion 5.5 présents some gênerai

conclusions ofthe optimization applied to Bot' method for creating evolving features.

103

5.1 Analysi s o f some GP parameter s

In Chapter 4, the experiments were mn using the parameter settings as indicated in (Bot,

2001), to make a fair comparison of results. The individual probability cross-over was set to

0.9 and the individual probability mutafion was set to 0.1 (Bot, 2001). The analysis ofthe

best combinafion of thèse two probabilities is by itself a difficult task. Koza used the same

set of parameters for the vast majority ofthe problems analyzed in (Koza, 1992; Koza, 1994;

Koza et ai, 2005). Thus allow him to give the benefits of the results to the GP and, as he

mentions, not to an intricate tailoring of thèse parameters (Koza et ai, 2005). Furthermore,

Banzhaf e/ al. point out that GP works over a wide range of parameter settings and instead of

doing an exhaustive analysis of the best settings they give recommendafions about typical

values that hâve been applied to différent cases with posifive results (Banzhaf e/ ai, 1998).

Femândez et al. state that tuning of the parameters has to be done one at a time, even though

that gives sub optimal results, because parameters are interdependent and interact in complex

ways (Femândez et al., 2003). They investigate suitable parameter ranges, rather than

opfimal values (Femândez et ai, 2003). In this section we follow thèse suggesfions.

5.1.1 Populatio n siz e and number of générations

Population size was set to 100 individuals and we used 11 générations for each feature (Bot,

2001). It is known that bigger populafions hâve more genetic diversity, therefore explore

more areas of the search space which may lead to find out the desired solution with fewer

évaluations (Banzhaf et ai, 1998). Also, bigger populations take more time to evolve

(Banzhaf e/ ai, 1998). Populations starting at 100 individuals for "small" problems and

lOOOO individuals for difficult problems are suggested in (Banzhaf e/ ai, 1998). From his

side, Koza used populations of 500 individuals in "small" problems and increase it to

500,000 to very complex problems (Koza et al., 2005). Anyway, we hâve to remember that

he can hâve populations of thèse sizes because he uses a 1,000-nodes cluster to mn the

experiments. We use a population of 100 individuals as indicated in (Bot, 2001) and the

results were very close to those reported in (Bot, 2001). Bigger populafions could possibly

generate better results but the computafion fime will be increased in such a way that the

104

applicability of the method to greater data sets becomes compromised. The number of

générations was fixed to 11. Différent numbers of générations, from 11 to 30, were tested and

we did not see big différences in the results. The small progress reached with more

générations is easily attained with the addition of a new feature. The number of générations

used in Chapter 4, again as indicated in (Bot, 2001) is one ofthe main advantages of Bot's

algorithm. This algorithm prevents from long mns and still gives results similar to those

obtained with long mns. Consequently, we will use 11 générations per feature (thus takes

into account the génération 0 randomly generated)

In order to make it clear the référence to the diversity in the population in GP-based

evolufions we présent the définition used and the way to measure it. The measures of

diversity are concemed with the levels and types of variety on populations (Burke et ai,

2004). They can be defined over fitness values (phenotypic), individuals (trees) stmctures

(genotypic) or a combinafion of both (Burke et ai, 2004). Since the measure of success in

evolufionary algorithms is the fitness of a solution in the problem's environment (Burke et

ai, 2004), we take it to define the diversity measure used hère. Rosca defined the entropy of

a populafion as a funcfion of fitness values in if. Entropy represents the amount of disorder in

the population (Burke et ai, 2004; Rosca, 1995), so populafion entropy corresponds to

diversity within the population (Rosca, 1995). Phenotypic diversity is related to the number

of différent fitness values in the population, it is noted as H(P) and defined as:

H(P) = -Y,fitjlog(fitj), (5.1)
; = i

wherey?/y is the fraction of individuals in P having a fitnessy and // is the number of différent

fitness values in P. In gênerai, low entropy means low diversity in the population, but the

values can be interpreted in terms of the number of différent groups having the same fitness

values (Folino et ai, 2004). Thus, high entropy can be considered as a high number of small

groups, each one having the same fitness value whereas low entropy would be considered as

a large number of groups having the same fitness (Folino et ai, 2004). In the expérimental

105

part we will show how the entropy varies along the évolution. Entropy graphs will show the

diversity ofthe population when at each new evolved feature.

5.1.2 Fitnes s functio n

In Chapter 4, we worked with two différent types of fitness function. The first type was the

récognition rate of a classifier. We used A-NN and MDM classifiers. Récognition rate is

measured by applying (or interpreting) the individual selected as solution to the data set and

the new set of values is the input to the classifier which calculâtes the récognition rate level.

During the évolution, the individuals selected as solution are applied to the optimization data

set and during test, individuals is interpreted in the test data set. The interprétation of the

individuals with a data set, transforms it into a vector of values, one for each sample. The

size ofthe vector values for each sample dépends on the number of evolved features.

We see that during the évolution each of the individuals has to be interpreted to calculate its

fitness. The same occurs during the global validafion procédure. A gênerai behaviour of a GP

algorithm, is that individuals grow in size (number of nodes) and depth (number of levels of

the tree), along with the générations. So, the interprétation adds more and more time to the

fitness computation. This incrément in the size of individuals falls into what is called code

bloat. That is, individuals grow uncontroUably unfil the maxima allowed depth and size.

Thèse individuals, in gênerai, are characterized by having large portions on them that are in

close proximity of high fitness blocks of code (Banzhaf et al., 1998). Their big size and large

depth make them less vulnérable against genetic opérations. In conséquence, they obsfmcf

the évolution and a possible resuit is the stagnation of the évolution. Normally, thèse

individuals are compose of GP introns (Banzhaf et al., 1998), which is code that is not useful

(for example a+0 or a*l or a/1) but makes them more résistant against changes during the

évolution. During the analysis of our mns we hâve detected this problem and we used a

mechanism to diminish the effect of code growth. The mechanism is based on adding a

penalty within the fitness function based on the size of the individual. For a fitness function

based on récognition rate, the penalty is proportional to the inverse of the size of the

106

individual (number of nodes) and is subtracfed from the récognition rate calculated by the

classifier (see équation 5.2). To fix the proportional constant y, we tested différent values in

the range 10 to 100 and found the most appropriate value 100. This value has to be adjusted

as to avoid the uncontrollable growth without affecting too much the original resuit of the

classifier. This modification effecfively confrolled the growth in individuals because bigger

individuals with the same blocks of high fitness were penalized. It pushes the évolution

towards better and smaller solufions.

ï
/««,=ioo.

A second type of fitness function maximizes the inter-class scatter over the intra-class scatter

using the Fischer criterion (Duda et ai, 2001; Guo et ai, 2005). The fitness function measure

used was specified in équation 4.6. A constant X empirically set to 0.001 in (Guo et ai,

2005) is a factor that considers the contribution from the mean value. For instance, if the

minimum values for two features are similar, the one with the largest average of values will

survive. In addition, a value P is experimentally applied to re-scale the resulting///FISH values

less than a maximum fitness value set during évolution (100 in this case). In addition, we

hâve to add the penalization factor to avoid an uncontrollable growth of individuals. Equation

5.3 présents the équation 4.6 after applying the penalization factor. Each ofthe constants are

explained above.

I (1 3 - ^
fitrisii-,e,io=-^ min(yîO + / i - - Z (y ? 0

P q ,= 1

Tree size (5-3)

ï

Initially we tried différent values for constants \ and p and then we add the penalization

factor setting appropriately the y constant. Value of P scale is adjusted according to each data

set. Différent values for constants \ and P were tested. Values in the range 0.0001 to 0.01

for constant \ and values in the range 5 to 50 for P were tested for the data sets of Chapter 4.

After many experiments we see that setting a good set of values for constants X and p at the

107

same time is a difficult task, when Fisher based fitness is applied to Bot's method. As

mentioned in Chapter 4, the changes in Fisher based fitness values are very small along with

the increase in générations. Since Bot's method employs just 11 générations, the différence

were very small from the beginning to end of the évolution of a feature (in contrast Guo and

Nandi mn évolutions for 1000 or lOOOO générations). To change that and make stronger the

changes in fitness values, we hâve to increase the P constant. Further analysis showed that P

constant diminished the influence of X constant and it is not easy to find a very good

combination of thèse two constants, so we let À, in its default value O.OOI and show the best

set of P values in Table 5.1

Table 5.1

Values for constant P for fitness function with Fisher criterion with constant >-=0.00I

Value constant p in équation 5.2

5

10

20

Data sets

Cmc, Yeast, Glass, Teaching

German, Car, Ecoli, Sonar, Ionosphère,

Pima, Australian, Waves, Bupa, Wine

fris. Segmentation

When the fitness in Bot's method was based on Fisher criterion, individuals proposed had a

huge size in comparison to individuals generated when fitness was measured with the

recognifion rate of a classifier (A-NN or MDM). Therefore, the penalization due to

individuals' size (tree_size) is very important hère. The best value of y (=100) found before

was not longer applicable in this case. We tested différent values and found that y =1000 was

more appropriate for équation 5.3.

Setting of fitness function based on classifier accuracy is simpler and straight forward than

using the Fisher criterion, because it does not need the adjustmenf of différent constants that

dépends on each data set used. Further analysis of équation 4.3 reflects that a large value of

fit may be due to well separated clusters or to two overlapping classes with small variances

108

(Guo and Nandi, 2006). The case of overlapping increases the classificafion error. Guo and

Nandi présent in (Guo and Nandi, 2006), an altemative fitness measure in which the within-

class scatter uses a distance between any two pattems of the same class instead of the

variance. As a resuit, for subséquent experiments we only use fitness function based on the

classification error (A-NN or MDM) and not fitness based on the Fisher criterion.

5.1.3 Cross-ove r and mutation probabilitie s

Table 4.4 indicates that individual cross-over probability (gp.cx.indpb parameter) was set to

0.9 and individual mutation probability (gp.mutstd.indpb parameter) was set to 0.1. The

analysis of the best combination of thèse two probabilities is by itself a difficult task.

(Banzhaf e/ ai, 1998) indicate as a mie of thumb start with 0.9 cross-over probability and 0.1

mutation probability. Table 4.4 gives the définition of différent types of cross-over and

mutation that takes part during the évolution. We présent hère some examples of parameter

setfings to show their meaning and interdependence. For instance individual cross-over

probability of 0.9 means for a population of 100 individuals, that 90 individuals (40 pairs)

from each génération are selected (with resdection allowed) to participate in cross-over

(Koza, 1992). The parameter cross-over distribution probability (gp.cx.distrpb) refers to the

sélection of the point (within the tree) to make the cross-over. It indicates the probability that

a crossover point is a branch (node with sub-trees). A value 1.0 means that ail crossover

points are branches, and a value 0.0 means that ail crossover points are leaves (Gagné and

Parizeau, 2004a). The setting in 0.9 promotes the recombination of larger stmctures instead

of mère swapping of terminais (probability values doser to 0.0) (Koza, 1992).

Probabilities related to mutation are more varied. In the standard mutation (individual) a sub-

tree is replaced with a randomly generated one. The point to do the mutafion is selected with

the aid of the parameter gp.mutswap.distrpb, which refers to the probability that a swap

mutation point is a branch (node with sub-trees). A value 1.0 means that ail swap mutation

points are branches, meanwhile a value 0.0 means that ail swap mutation points are leaves

(Gagné and Parizeau, 2004a). This is set to 0.5 to hâve equal probabilities of mutation point

109

in branches than leaves. Two other parameters are related: the shrink mutation probability for

an individual (gp.mutshrink.indpb) that consists in replacing a branch (a node with one or

more arguments) with one of his child node. This erases the chosen node and the other child

nodes (Gagné and Parizeau, 2004a) and swap mutation probability for an individual

(gp.mutswap.indpb) that consists in exchanging the primitive associated to a node by one

having the same number of arguments (Gagné and Parizeau, 2004a). Ail thèse additional

parameters related to mutafion operator hâve been set to its default value (see Table 4.4).

As shown, searching the optimal values for ail thèse parameters becomes an optimizafion

problem by itself, so we will try to find suitable ranges for individual cross-over and

mutation probabilities.

It is worth to mention that Michalewicz and Schmidt (Michalewicz and Schmidt, 2007)

recently presented a new way to automatically and dynamically set thèse probabilities along

with the évolution. The mechanism counts the number of times that an operator produces an

off-spring that is better than ail ifs parents and the success ratio for each operator can be

calculated as the number of improved off-springs divided over ail improved off-springs. The

probabilities are set as the addition of the previous probability plus the success ratio

multiplied by a constant in the range of zéro to one. Initial probabilities are set to small

values and they will be adjusted as évolution goes. If no improved off-springs are produced,

the success ratio is not defined and probabilities are not adjusted (Michalewicz and Schmidt,

2007).

5.1.4 Experiment s wit h cross-over and mutation probabilitie s

As mentioned before we will deal hère with the individual cross-over and mutafion

probabilities and ail other genetic parameters are maintained in their default values used in

Open BEAGLE which agrées with the mies of thumb and suggestions in the literature

(Banzhaf e/ ai, 1998; Koza, 1992; Koza, 1994; Koza et al., 2005).

110

Mutation =0.05 -lON O

e 8 4
<u — ^.„««"' ^ . ^ • — • —• — • — • — ; r i i n in

eu , .••• •

1 1. 5 2.5 3 3. 5 4
Mutation =0.05 -PIM A

4.5

68.5
68

67.5
• • ' ..•• •

. •
1 1. 5 2 2. 5 3 3. 5 4

Mutation =0.05 -ECOL I

2.5 3 3. 5
Ewl\ed Features

(a) Mutation of 0.05 and différent crossover values

Mutation = 0.1 - lONO

2 2. 5 3 3. 5 4
Mutation = 0.1 -PIMA

2 2. 5 3 3. 5 4
Mutation = 0.1 -ECOLI

- cx=0. 7
•• cx=0. 8
•• cx=0. 9

(b) Mutation of 0.1 and différent crossover values

m

Mutation =0.2 - lONO

d
o:

84

82

80

^^.tiif''^*^^^^*^^^

.*•* ^*
1 t

1.5 2 2. 5 3 3. 5 4
Mutation =0.2 - PIMA

4.5

1.5 2 2. 5 3 3. 5 4

Mutation =0.2 -ECOL I

2.5 3 3. 5
Features

(c) Mutation of 0.2 and différent crossover values

Figure 5.1 Récognition rate curves for différent combination of cross-over and mutation.

We hâve selected three différent data sets used in Chapter 4 and tested the influence of

différent settings of individual cross-over and mutation probabilities. Data sets selected are

Pima, Ecoli and Ionosphère, because their différence in sizes and récognition rates achieved

with the default GP values (see Tables 4.1, 4.5 and Table 4.4 respectivdy).Figure 5.1 shows

the récognition rate values for three mutation values (0.05, O.I and 0.2). For each mutation

setting, some cross-over values are analyzed. Récognition rate displayed is the average over

10 replications, each one generated as 10-fold cross-validation. Part (a) of Figure 5.1 shows

that there is no a single combination of mutation (=0.05) and cross-over values that generate

the best results. Adéquate cross-over values ranges from 0.6 to 0.85. The best cross-over

value in this case (a) dépends on the application data set.

112

Figure 5.1(b) shows an improvement ofthe results in (a) but no single cross-over probability

is the best. Anyway, range of cross-over is increased toward the interval 0.8 to 0.9. Finally,

mutation equals to 0.2 produces results less performing than a mutation of 0.1, without a

spécifie cross-over value leading the results. We can conclude that the best mutation setting

is O.I and cross-over in the range 0.8 to 0.9 générâtes better results than other ranges. As

mentioned before, we hâve found a suitable range of values for mutation and cross-over

probabilities.

If we analyze the performance for each data set over the différent combinafions, we conclude

that Ecoli data set is not sensitive to the ranges analyzed. Ionosphère performs better for a

mutafion rate of 0.05 and a low cross-over rate (0.6) whiist Pima performs better for a

mutation of 0.1 with a cross-over of 0.8.

Since there is no a unique combination of mutafion and cross-over probabilities that

générâtes the best results, we set the mutation probability to 0.08 (in between the two best

values) and the individual cross-over probability to 0.9 for further experiments, including

new data sets to be used.

5.2 Parallelizatio n o f optimizatio n

One of the advantages that offer GA and GP over classical optimizafion techniques is that

they provide a set of solutions at a time, instead of a single solution. Thèse solutions

correspond to the population at each génération during the evolutionary process. A quick

look to the gênerai GA presented in Section 2.2 makes clear that they are in fact parallel

algorithms. The same occurs with the GP algorithm presented in Section 2.3. In their initial

times, they were implemented in sequential computers due to the lack of availability of

parallel Systems. Parallelization techniques in GA and GP are divided in three main groups:

master-slave, coarse-grained ar\d fine-grained. There are also hybrid techniques that we will

not discuss in this document.

113

In master-slave paralldism, a master processor stores the whole populations and applies

genetic opérations (Cantù-Paz, and Goldberg, 2001; Gagne et ai, 2003). At each génération,

the master processor distributes individuals to the slave processors for fitness évaluation.

Thus, the speed up in fitness évaluation dépends on the number of slaves (Gagne et ai,

2003). Therefore, parallelization of GA (or GP) using a master-slave mechanism will offer a

considérable réduction in the total time required to mn an évolution. This type of parallelism

is applicable when the fitness évaluation can be done in paralld, such as in the generational

replacement (see Secfion 2.2.3.4). Our implementation uses a steady-state replacement

strategy, so a différent parallelization altemative is necessary.

In the fine-grained model the fitness évaluation of individuals is distributed across a number

of nodes (Vincent, 2003) that form a neighbourhood and it is calculated simultaneously for

ail of them (Folino et al, 2003). Nodes are interconnected in a two dimensional mesh or in a

toroid. Sélection, reproduction and mating are decentralized (Vincent, 2003) and take place

within the neighbourhood. Information slowly diffuses across the grid, which générâtes semi-

isolated niches of individuals having similar characteristics (Folino et al, 2003).

Coarse-grained model also called island method or multiple-deme (Cantù-Paz, and Goldberg,

2001) consists in evolving isolated sub-populafions, named demes that occasionally

exchange individuals in a migration process (Lin et al., 1994; Alba and Troya, 1999;

Femândez et ai, 2003; Gagne et ai, 2003). Coarse-grained method can be applied to steady-

state replacement stratégies. Hybrid models use a coarse-grained approach at the top level

and each deme is implemented in any other form of paralld algorithm, for instance, a fine-

grained (Vincent, 2003). They try to take advantages of each parallel approach.

In a first step we analyzed the compatibility of the paralld methods with the steady-sate

replacement strategy that used in Bot's algorithm. In a second step, we consider the

deployment of this altemative in Open BEAGLE, the GP tool. To use a fine-grained

approach we hâve to create from scratch Bots' algorithm. In the other hand, coarse-grained

method can be used within Open BEAGLE with a TCP-IP based communication between

114

demes. We hâve selected to apply coarse-grained method to Bot's method. Following

subsection describes this approach.

5.2.1 Genera l description o f coarse-grained mode l

In the coarse-grain or island model, the population is divided into small number of sub-

populafions, called demes or islands, and each one evolves independently except for

occasional migration of copies of individuals between islands (Whitley et ai, 1999;

Femândez et ai, 2003). This model permits the exploration of différent régions ofthe search

space and maintains the diversity of the population thanks to the migration of individuals

(Femândez et ai, 2003). The island model requires supplementary parameters in addition to

the usual GP parameters (Femândez et ai, 2003):

• Number of sub-populafions;

• Subpopulation sizes;

• Frequency of exchange of individuals;

• Numberof exchanged individuals;

• Communication topology used.

Optimization of the parameter set to use with the island model becomes a monumental task

because they are interdependent and variation of one parameter can change the performance

ofthe overall model (Femândez et ai, 2003). As a resuit, tuning is done for each parameter

at a time (Femândez et ai, 2003) and most ofthe studies deal with two parameters and leave

ail others within reasonable ranges (Femândez et ai, 2003; Skolicki and De Jong, 2005):

number and type of migrant individuals and frequency of migrations. The other parameters

are set before hand. Some of the criteria used are mentioned hère. Number of sub-populations

or islands and number of individuals per island are a trade-off. The number of individuals per

island is defined in such a way that the whole population size (as in a panmictic population)

divided by the number of islands do not reduce too much the diversity inside each island. For

instance, populafion sizes of about 100 individuals in a panmictic version can be split into

four or five islands. That générâtes sub-population of 25 to 20 individuals in each island.

115

Communication topologies used by migrant individuals are: ring, random, two and three-

dimensional meshes. In ring topologies, migrant individuals from island A go to island B and

in tum migrants from island B go to island C and so on until migrants from the last island go

to the first island A, in a ring topology. In a random communication topology, migrant

individuals go to another island randomly selected. In mesh topologies, migrant individuals

go to différent predefined islands.

Parameters like number and type of migrant individuals and frequency of migrations are

studied in GA and GP (Femândez et ai, 2003; Skolicki and De Jong, 2005). Femândez et ai

studied the influence of the number of migrants and the frequency of migrations based on

exchange of individuals selected randomly. Their study covers some typical GP-problems as

"symbolic régression", "ant frail" and "even parity 4" and an application about field

programmable gâte array design. They found that for a small amount of migrant individuals

an exchange rate every génération is the best option. Skolicki et al. found in their

experiments with mathematical fùncfions which include local optima and a global optimum,

that migration interval seems to be a dominant factor while the migration size plays a minor

rôle with regard to the best solution (Skolicki and De Jong, 2005). In addition, they found

that migration sizes approaching the population size and large migration intervais dégrade

performance of the system. They conclude that in gênerai, the best performance is achieved

with moderate migrafion intervais and small migration sizes (Skolicki and De Jong, 2005).

5.2.2 Experiments with parallelization with Island method

The purpose ofthe experiments with island method is to test if the results are similar or better

than those obtained with sequenfial mns and the use of computafional resources. In this case,

we hâve chosen four data sets from those used in Chapter 4. In addition, we tested in a

différent data set called Ship that comprises 2545 samples with 11 raw features each one,

distributed in 8 classes.

116

We hâve mentioned that the most important factors to set up a genetic (programming or

algorithm) mn with the island method are: number of sub-populations, subpopulation sizes,

frequency of exchange of individuals, number of exchanged individuals and communication

topology used. As mentioned in Secfion 5.2.1, the number of sub-populations and

subpopulafion sizes is a trade-off itself that dépends on the available resources and can affect

the diversity level. In this case, the term diversity only refers to the genetic diversity that

large populations hâve in comparison to small populations (Banzhaf et ai, 1998). Even

though, in a hypothetical case with unlimited Computing resources, we hâve to consider the

amount of individuals in each sub-population, very small populations will reduce the genetic

diversity and it could seriously affect the performance of each island. From an initial

population of 100 individuals, we could hâve 4 islands of 25 individuals or 5 islands of 20

individuals.

Since we hâve at least 5 parameters to experiment with in order to "optimize" the island

method applied to Bot's algorithm, we decided to mn prdiminary tests with parameters set to

typical values (adapted to our Computing resources) and then adjust parameters accordingly.

In addition we had in mind the suggestions from différent experiments found in the literature

(Skolicki and De Jong, 2005; Femândez et ai. 2003; Cantù-Paz, and Goldberg, 2001; Cantù-

Paz, 2007). Initially, we use 5 islands with 50 individuals each. Islands were fully

interconnected between them (like a mesh) and migration of 2 individuals to every other

island (8 in total) with a frequency of migration of one or two générations. Recognifion rate

results were slightly lower than results with a single population of 100 individuals. There was

not a noficeable différence when using 1 or 2 générations as migrations frequencies. Skolicki

and De Jong analyzed the influence of migration size and intervais (Skolicki and De Jong,

2005) and they advise that the frequency ofthe migrations is more important than the size of

migrations. Also they found that migration sizes approaching the population size can

drastically drop the performance (Skolicki and De Jong, 2005). In conséquence, we reduced

the number of migrants to be in the range 10% to 20% of the island population: we choose

one migrant to every other island and set the frequency of migration to two generafions. This

time the performance was very close to mns with a single population of 100 individuals.

117

Given that each island evolves independently (except for the sporadic migrations), it requires

one processor dedicated to the évolution of the island. Therefore, évolutions with five

islands will severdy impact our limited Computing resources (a cluster of 24 machines). So

we decided to try évolutions with 3 interconnected islands, each one with a population of

about 30 individuals. Migration frequency was set to two générations and migrant individuals

were sent to the other two islands.

5.2.2.1 Analysi s of results with some UCI data sets

Table 5.2 shows the results of Ionosphère, Pima, Segmentation and Wine (see Table 4.1).

Table 5.2

Récognition rates for some UCI data sets using Island method

Database

Ionosphère

Pima

Segment.*

Wine

Island

I

2

3

1

2

3

I

2

3

1

2

3

Rec. Rate

Ave(%) ± Std

81.74 + 9.38

81.14 + 8.48

81.06 + 9.25

67.94 + 4.90

67.37 + 5.94

67.81 + 5.21

90.65 + 5.69

91.46 + 5.44

91.26 + 6.13

83.28+11.86

83.89+11.75

81.28+12.94

Evol. Feat

#Fave+

Std(#F;

4.12 + 2.36

4.21 +2.28

4.36+2.57

3.09+1.14

3.17+1.31

3.18+ 1.20

6.4 + 2.16

4.6 + 2.03

8.8 + 2.67

3.64 + 2.15

4.20 + 2.50

4.23 + 2.21

Raw Feature s

RawFave +

Std(Raw#F)

4.21+ 1.45

4.37+1.94

4.33+1.90

5.18+1.17

5.04+ 1.37

5.17+ 1.26

6.59. + 2.77

6.59.+ 2.77

6.45 + 3.08

3.75+ 1.62

3.88+1.66

3.72+ 1.69

Orig.

Raw

Feat.

34

8

19

13

Ensemble

Rec. Rate (%)

Ave(%) + Std

86.71+8.71

70.07 + 6.13

N/A*

89.66 + 9.70

*Since votes of Segmentation data were not recorded, no ensemble results are presented.

118

The table includes the average récognition rate, the average number of evolved features,

average the number of raw features used in the evolved features, for each island. In addition,

the fable gives the average récognition rate ofthe ensemble of islands. Columns show results

in the format average + standard déviation. In thèse experiments ten répétitions hâve been

mn each one using 10-fold cross-validafion. We use one fold for test, one fold for validation,

another for optimization and the remaining 7 folds for training. For each replication this

process is repeated 10 times so that optimization, validation and tests blocks are applied to

différent folds each time. Evolution is mn for 10 features (5 for Pima data set) using a A-NN

classifier and global validafion procédure. Results presented take the best individual found in

validation and applied to the test set for each fold and afterwards the average is calculated as

well as the standard déviation in récognition.

In addition, the individuals to migrate and the individuals fo be replaced in the receiving

island are randomly selected in order to avoid a big sélection pressure that could drive the

évolution towards local optima. It is important to mention that during the mn of

Segmentation data set, the TCP/IP communication link to one of the islands was down for a

while. That is why the name ofthe data set has been signalled with a star in Table 5.2. Even

though, évolution of the System continued and there was a gain in the récognition rate. This

shows the robustness of the parallelization with the island method.

Table 5.2 shows the average récognition rate for each island. In some cases, they are slightly

better than results shown in Table 4.5. The biggest différence résides in the average number

of evolved features called UVave. Thèse numbers are greater than those obtained in Table 4.5.

That can be caused by two factors: migration of individuals due to island method and global

validation. Migration of individuals inscris new genetic material that is useful to continue the

évolution towards a global optimum, instead of local optima. That allows the performance to

increase instead of being trapped in médium values (local optima). The second factor, global

validation, générâtes a higher number of evolved features because it stops the évolution when

there is no gain. If that happens for example after two or three générations of the evolving

feature EF4, the solution considered when applying global validation has 5 evolved features

119

(the last feature, EF5, is the solution at the second or third génération). In contrast, Bot's

method rejects the last feature if it does not fùlfill the stopping criterion and the final solufion

only has 4 evolved features.

Bot's method transforms the description of the data set, from an initial space equals to the

cardinality of the number of raw features into a smaller cardinality of size #Fave. Each

evolved feature is an équation in terms of raw features. It is interesting to know how many

raw features are used to generate the evolved features. The average number of différent raw

features and the standard déviation are shown in Table 5.2 as well as the inifial number of

raw features. It is clear that in ail cases, a huge réduction is obtained. Therefore, Bot's

algorithm makes not only feature constmction but also feature sélection at the same time. If

uses only the most important raw features to create the evolved features. A deeper analysis

about the utilization of raw features is presented in Section 5.4.

Bot's method that inserts new population at each new evolved feature combined with the

island method that inserts différent individuals (with respect to the individuals already in the

receiving island) are a bénéficiai blend that pushes the évolution to continue. Computation

resources were used in a slightly better way because we hâve used small population sizes.

We used panmictic populations of 100 individuals and islands of 30 individuals in three

nodes mnning at the same time. Therefore, the computation time was less than 1/3 the

original time required mainly due to the réduction of 10 individuals. In comparison to 100

individuals, we hâve a réduction of 10% in the number of évaluations (genetic opérations and

fitness measures).

The island method provides an additional improvement in comparison fo results obtained

with panmictic populations. Since the islands evolve independently except for with sporadic

migrations, they explore différent régions of the space, so their solutions can be used at the

same time. That is to combine the solutions of each island to form an ensemble. Décision of

the ensemble is taken by majority vote.

Dispersion of Rec. rates for Islands and Ensemble for Data set Ionosphère

120

Dispersion of Rec. rates for Islands and Ensemble for Data set Pima
R

ec
. r

at
e

(%
)

g
3

 g
 S

 i le ai a-
! ' ' 1 1 1 1

i 1 - L - ^
lsland-1 lsland- 2 lsland- 3 Ensembl e

Islands and Ensemble

80

75

Î 7 0

^ 6 5
u
V

oc 60

55

_^ - r

é è s é
I I I

-L i i - L
-1 - - u + lsland-1 lsland- 2 lsland- 3 Ensembl e

Islands and Ensemble

(a) (b)

Figure 5.2 Dispersion of récognition rates and Ensembles for some UCI data sets.

Ensemble of three islands provide a considérable gain

To the best of our knowledge, this is the first time that the best resuit from the islands is not

the solution taken, instead the best solution from each island is taken and combined into an

ensemble. Figure 5.2 shows the dispersion of récognition rate values for each island, called

Island-1, Island-2 and Island-3 and that ofthe resulting ensemble, for two ofthe data sets:

Ionosphère and Pima. As it is shown, the performance of the built ensembles has a boost in

comparison to performances of single islands. In the case of Ionosphère data set, the boost is

such that the médian value of the ensemble is even better that the third (upper) quartile for

two out of three islands. The average récognition rate of the built ensemble is presented in

the last column of Table 5.2. We hâve a gain of about 5% with respect to the average

récognition rate of each island. In the case of Pima data set, the improvement is not that big,

only 3% in the average récognition rate (see Table 5.2). Figure 5.2 (b) shows that the

distribution of récognition rate values of the Pima ensemble is as small gain with a médian

value greater than 70%. Récognition rate ofthe ensemble built for the Segmentation data set

was not calculated because the votes for some folds and répétitions were not recoded due to

the TCP/fP communication mentioned above.

121

5.2.2.2 Analysi s of results with Ship data set

We include the analysis of another data set called FLIR (Forward Looking Infra-Red) that

comprises 2545 samples, distributed in 8 classes. This data set is also known as ship because

it contains 8 différent types of ships. Figure 5.3 présents a sample image of each class in two

rows. In top row, from left to right, images of Destroyer (340), Container (455), Civilian

freighter (186) and Auxiliary oil replenishment (490). In bottom row, images of Landing

assault tanker (348), Frigate (279), Cmiser (239) and Destroyer with guided missiles (208).

Numbers in brackets indicate the amount of images in each class. Each object is

characterized by II raw features: 7 invariant moments and 4 auto-regressive parameters

(Rhéaume et ai, 2002).

Figure 5.3 Samples of images in FLIR data set

Figure 5.4 shows the typical solutions found using global validation for this data set, in this

case for a single fold and répétition. Each tree solution corresponds to one evolved feature.

Recall that EF2 and greater dépends on the solution found (in optimization) for previous

evolved features. In each case we include the tree solution and ifs fitness in the test set. It can

be seen how the récognition rate is increasing along with the addition of evolved features.

From evolved feature 4 fo 5, there is no increase in the performance: the new evolved feature

proposed by the algorithm (EF5) is a différent solution than EF4 but has the same

performance in the test data set. For the next evolved feature, EF6, the algorithm is able to

increase the performance and later it is deteriorated. The stopping point is found based on

global validation procédure.

122

(a)EFl,fitTEST^46.27%

(V)

G)
JL

(^IN6)

(b) EF2, fitTEST=69.80%

SU)

:xp

IN6

&

(c) EF3, fitTEST^76.86%

(d) EF4, fifTEST^85.88% (e) EF5, fitTEST^85.88% (f) EF6, fitTEST^91.37%

(g) EF7, fitTEST.7=90.58%
(h) EF9, fitTEST-=91.37% (i) EFIO, fitTEST^95.68%

EF8,fitTEST-8=89.41%

Figure 5.4 Solutions for différent evolved features ofShip data set

123

Applying the island method to Ship data set générâtes encouraging results. Table 5.3 shows

the récognition rate and the number of features required when using the island method which

générâtes three différent solutions and an ensemble of islands. Results reported in (Rhéaume

et ai. 2002), (Valin et al., 2006), (Jabeur and Guitouni, 2007) and (Park and Sklansky, 1990)

are also presented for comparison purposes. Methods noted as (Rhéaume et ai, 2002) and

(Valin et al., 2006) are based on the récognition rate for a A-NN with A=3 and a distance

based on the inverse ofthe inter-covariance matrix (Rhéaume et ai. 2002; Valin et al., 2006).

Table 5.3

Average récognition rates for ship data set for Bot's algorithm with Island method
Average taken over 10 répétitions using 10-fold cross-validafion, standard

déviation for Rec. Rate and number of evolved features also indicated

Data

Ship

Method

Island

Island Ensemble

(Rhéaume et ai. 2002)

(Valin et ai, 2006)

(Jabeur and Guitouni, 2007)

Rec. rate (%)

Island-1

IsIand-2

Island-3

83.80% + 5.76

82.87% + 6.55

83.23% + 6.22

88.27% + 2.88

92.88%

94.8%

89.67%

UFave

8.03+1.71

8.22+1.49

8.23+1.52

8.16+1.57

N/A

N/A

N/A

Jabeur and Guitouni hâve used 2 différent classification approaches and différent sélection

methods using a holdout method to assess the performance (Jabeur and Guitouni, 2007).

They varied the size ofthe training data set from 30% fo 80% ofthe data set and used the rest

ofthe samples for testing. The best results report a récognition rate of 89.67%. The method

used in (Park and Sklansky, 1990) consists in an automated design of linear tree classifiers

and is compared to a A-NN (A varying from 1 to 17) with Euclidean distance metric. The data

set is divided in two balanced sets (equal distribution of classes) of approximately the same

size. The reported récognition rate with the A-NN is 88.3% and it uses the whole set of 11

124

raw features. Valin et ai, made a modification by designing specialized classifiers for each

class by selecting the raw features more pertinent. Raw features 1, 6, 9, 10 are very useful

classifying classes I, 2 and 4. Raw feature 11 is important to classify classes 1, 3, 4, 5, 6 and

7 (Valin et al., 2006). Results of Section 5.4 reveal as well the importance of those raw

features.

When mnning the island method, the results are quite similar fo those obtained with a single

A-NN with Euclidean distance. Instead of using 11 raw features, an average of 8.22 evolved

features is used to represent the data set with similar récognition rates as shown in Table 5.3

along with the standard déviation. It is important of knowing how many raw features are

used to build the evolved features. This analysis is made at the end of this chapter.

Another method presented in Table 5.3 is called Island Ensemble and takes the three

solutions found with the island method and combined them to create an ensemble with a

majority vote used as combination function. The built ensemble générâtes an improvement of

about 6%. Therefore the solutions provided by the island method are complementary,

because each island searches in différent régions of the whole searching space. This

improvement shows again an additional advantage of using the island method.

\Dutput
Input\

1

2

3

4

5

6

7

8

1

79.5588

0.2637

1.7112

0.1224

0.8908

6.8929

9.6250

2.4286

2

1.2059

92.1978

4.7059

1.8776

3.7644

0.4643

2.0000

0.1429

3

0.6765

1.4505

64.7594

5.4694

4.0805

1.2500

0.3333

0.3333

4

0.4706

2.2198

19.9465

89.3878

4.4828

0.4643

0.3333

0.0476

5

0.9706

2.8132

7.5936

2.6531

82.9598

3.4286

1.5833

1.8571

6

5.8529

0.2418

0.5882

0.3265

2.2126

78.7857

2.1250

10.3810

7

8.4118

0.7912

0.3209

0.0408

0.8621

1.8214

81.6250

0.8571

8

2.8529

0.0220

0.3743

0.1224

0.7471

6.8929

2.3750

83.9524

Figure 5.5 Confusion matrix for classification ofFLIR ship images data set

file:///Dutput

125

In order to hâve a deeper view of the results we use, in this case, the confusion matrix as

shown in Figure 5.5. We can see that for the majority ofthe 8 classes, récognition rate is

between 83.95% and 92.20%. Class 6 (Frigate) is very close with 78.78% and class 3

(Civilian Freighter) seems to be the more difficult with a récognition rate of only 64.75%. In

addition, we can mention that class 3 ships are misclassified with class 4 ships (Auxiliary oil

replenishment) in a percentage of 19.94%. Other important sources of miss-classification are

indicated in Italie characters in the confusion matrix in Figure 5.5.

5.3 Over-fit control

The use of EoC helps fo increase the récognition rate. Classifiers built are based on a wrapper

approach since its response helps to guide the search for new possible solufions of the GP

algorithm. If is known that this type of approach and any supervised leaming method are

prone to over-fitting (Paris et ai, 2003). How much the over-fit affects the récognition rate of

the evolved solutions is not known a priori. We présent a classifier based on GP-

constmcfed features without any over-fit control and some stratégies to control it. A formai

définition of over-fitting presented in (Mitchell, 1997) is:

Définition 1: "'Given a hypothesis space O ^ a hypothesis h c c^ is said to over fit the

training data if there exists some alternative hypothesis h' c (J^such that h has smaller error

than h' over the training examples, but h' has a smaller error than h over the entire

distribution of instances. "

It means that the hypothesis has leamed (or has been trained) so much the training data, that

becomes loosing its ability to generalize to new data. The over-fitting is measured as the

différence of récognition rate (or error rate) when using the test data set, between the resuit

with validation after optimization and the resuit when applying global validation procédure.

126

5.3.1 Classificatio n withou t validatio n

As we hâve mentioned, the fitness function of the mentioned GP-based feature creator rests

on the ability of evolved features to classify data for a given problem. Once the evolutionary

System has been evolved using the optimization data set, performance has to be measured to

know how well the system classifies unseen data of the problem in hand. If the data set (or

part of it) used during optimization is also applied fo measure the system performance,

results are biased because the system is measured with the same data it was optimized.

Therefore, results generated by a classification algorithm without a validation strategy are not

a real estimate ofthe generalization power ofthe classification algorithm.

5.3.2 Classificatio n wit h validation afte r optimizatio n

As a standard procédure, validation is carried out in pattem récognition and data mining

field. Validation is carried out once the system is optimized. The solutions proposed by the

System at the end of the optimization process are corroborated (validate the model) by

applying them to the validation data set, i.e. only the last population is validated. As a resuit,

validation finds the best solufion (among the ones obtained during opfimization). The

solution that performs best with this set is chosen as the final solufion. The gênerai algorithm

of Bot's method with validation at the end is presented in Annex III.

The utility of an algorithm résides in its power to classify new unseen data based on the

training already acquired. The ability of generalization can be measured as the récognition

rate of the algorithm when it is applied to new unseen data. This dataset is the test set.

Performance of the GP-based System is calculated by applying the best solution of the last

population to the test set.

127

5.3.3 Globa l validatio n

It has been shown that even with the validation phase (after optimization) results are over

fitted towards the set used during the optimization phase (Radtke et ai, 2006; Dos Santos et

ai, 2006). They projected the best solution found with a GA and the Pareto-front found with

NSGA-II algorithm into the validation set and showed that best individuals in optimizafion

set had not the same performance in the validation set. There were other solutions that

perform better. This means that during the optimization process, solutions with good

generalization power were detected but not considered further. Thèse solutions were not

identified as considération was only given to best individuals at the end of the optimization

process.

To avoid that, a strategy called Global Validation (Radtke et ai, 2006), has to be set. It

measures the performance of the whole evolving population against the validation set, ranks

the individuals by performance and records the best evolved candidate measured in the

validafion dataset for each génération in a file called the auxiliary archive S. The approach

consists in verifying after each génération, the performance of ail the evolved candidates

found along the optimizafion process i.e., the whole population, but measured over the

validation dataset. Evolved candidates are ranked by fitness measure (récognition rate) on the

validation dataset and the best evolved candidate found in génération g is compared fo the

best evolved candidate found in the previous génération (g-1). If the evolved candidate at

génération g performs better than the solution retained in génération (g-1), the auxiliary

archive S is updated. Otherwise, solution at génération (g-I) is retained. In the latter case,

when the performance on the validafion set does not increase due to new solufions, we hâve

reached the stop point. Therefore, logging in every solufion is a memory of the evolufion

process and the archive S permits to defect when over fitting is produced. Results obtained

in the auxiliary archive do not modify in any way the curse ofthe évolution; they are only an

extemal measure of performance of evolved individuals in the validafion set. Annex V

shows the pseudo-code the global validation strategy.

128

5.3.4 Globa l validation applie d to Bot's procédure

In the global validation method, validation is done at every génération concurrently with the

optimizafion phase. Following lines explain how to intégrale the global validation strategy

within the Bot's algorithm and the detailed pseudo-code is presented in Annex V.

At the beginning (feature/=1 and génération g=0) an initial random population is created,

fitness is measured for each individual in the population, with the optimization data set and

with the validation data set. The individual with highest fitness measure in the validation data

is copied along with its fitness into the auxiliary archive S. This is the first individual in the

auxiliary archive. For subséquent générations, update of the auxiliary archive S works as

follows (see Figure 5.6). Suppose that /-l "definite evolved features" hâve been already

defined, that is EF(I), EF(2),..., EF(f=i-l), with (1 < / < Max_NbJeatures), GP is mnning to

create evolved feature / and the current génération is g. The additional steps that global

validation introduces fo Bot's algorithm (presented in Section 4.1) are: the projection of

evolved individuals into the validation dataset, fitness measure for the projected populafion,

ranking by fitness and auxiliary archive update. Thèse supplementary steps are executed for

each génération and each evolved feature. The other steps in Bot's method are executed as

the standard procédure. The fitness calculafion (explained in Secfion 4.1.2) for each

individual in populafion V(f=i, g) projected over the validation data, considers the individual

ofthe current génération g juxtaposed (indicated as ©) to the définitive evolved features

EF(1), EF(2),..., EF(/'=/-l). Individuals are ranked by fitness and the best individual (in

validation) is compared to the previous best individual in validation for feature /-l and

génération (g-1). If fitness is higher, the auxiliary archive S is updated with this new

individual along with the fitness value, the génération g to build the feature /. Otherwise the

auxiliary archive S is not modified and the previous individual (in validafion) continues

having the best fitness. If is worth fo point out that the définitive evolved features EF(1),

EF(2), ..., EF(/=/-l) are the output from the optimization process. They are defined as

EFpnor(A-l) in Annex V.

129

Population Fitness

gen-1

gen

Indv 1

Indv 2

t • •

Indv 100

1 Opt i

Indv 1

Indv 2

• • •

Indv 100

Interpret.
VAL

Optimization process

Interpret.
VAL

W

¥

New bes t

^^" Individua l

Figure 5.6 Global validation procédure.

Individuals from génération g are interpreted on the validation data set. They are ranked by
fitness value along with the best individual from génération (g-1), stored in the auxiliary
archive S. The individual with highest fitness value is selected and archive S updated
accordingly. Same comparison is made for ail générations

To perform the validation phase, the optimizafion dataset is changed by the validation dataset

for each génération. Once the auxiliary archive S is updated (or not), the optimization data

set is set back to continue the opfimization process as normal.The additional steps mentioned

below are repeated for each génération. Once GP has mn for NbrjOen générations, Bot's

stopping criterion is evaluated to décide if the selected best after NbrJJen becomes the

evolved feature EF(/). This stop criterion dépends on the incrémental récognition rate gain

that would be generated by the addition of the current best individual juxtaposed to the

already evolved features and is calculated over the optimization dataset. GP algorithm is mn

for Nbr_Gen générations or until the stop criterion is met. Once GP has mn for Nbr_Gen

générations, if starts the process for the next feature and this is repeated until we hâve

Max_Nb_Feature features or the Bot's stopping criterion is met. The résultant individual

from the auxiliary archive S, is selected to calculate the final récognition rate with the test

data set.

130

5.3.5 Analysi s o f over-fitting an d stopping criterio n

At the end of the optimization and validation procédures, two solufions are retained: the

individual with highest récognition rate in the last génération when using the optimization

data set and the individual with highest récognition rate on the validation data set (last

individual in the auxiliary archive S). Along with the individuals and their fitness values, the

feature and génération numbers from where thèse solutions came, are also recorded. When

comparing thèse two values of récognition rate, we only hâve two possible outcomes: the

solution in the auxiliary archive S has a better recognifion rate or the two récognition rate

values are equal. In the first case, there is over-fitting and the global validation strategy was

able to defect it. Furthermore, the global validation strategy detected the moment that over-

fitting started, because the evolved feature and génération values were recorded. In the

second case, the two individuals hâve the same fitness. After fitness comparison, tree size

and depth are evaluated in this order to reduce the possibility that différent individuals are

taken as identical. If individuals are différent in stmcture but with the same fitness, tree size

and depth, we consider the two of them are équivalent (in performance) and we make no

préférence for one or the other. Stmctural components are not verified during comparison

because we are focused in performance and the two individuals are équivalent from this

comparison point and, in addition, a stmctural comparison will increase unnecessarily the

validafion time.

As mentioned before, the global validation strategy helps to identify the right moment to stop

the évolution process and avoid or at least control the effects of over-fitfing. For instance, in

standard GP mns a maximum number of generafions for evolufion are set a priori before

starting the évolution. If the number of générations in which the best solution was found

within the auxiliary archive is very small in comparison to the number of générations used in

the GP évolution, we know that évolution could be stopped before. From this point further,

the évolution has over fitted the optimization data set, generating solutions with less

generalization power. On the other side, if the two values of number of générations are

similar, we hâve identified that the stopping criterion (set in terms of number of generafions)

131

was well defined and the global validation strategy hâve found the best individual of the

évolution.

Applicafion of a stopping criterion based on global validafion strategy is effective to control

the over-fifting as shown before. But also it can be applied to Bot's algorithm to stop the

addition of new evolved features in a more précise fashion. To explain this improvement, we

hâve to analyse in more détail the already involved stopping criteria. In Section 4.1 we

referred to two différent stopping criteria (see algorithm 2). The first one, called évolution

stopping criterion (Evol_stop) makes référence fo the classical stopping criterion of

evolutionary algorithms. In gênerai, Evol_stop criterion is met when an acceptable error rate

(or récognition rate) level is obtained or when the maximum number of générations (defined

a priori) is reached. In practice, more often the second condition is used because expected

error rate is normally not attained within a reasonable number of générations. Evolstop

criterion is evaluated for each génération ofthe évolution.

The second stopping criterion, called Bot_stopping identifies the moment where is not

advantageous to hâve an additional evolved feature because the incrément generated in

performance is inferior to the threshold d (defined in équation 4.2). As a resuit, this new

evolved feature is discarded. Botstopping criterion is evaluated after Nbr_Gen générations.

Setting the conditions of Evolstop criterion too high (setting a large number of générations

or a 100% of recognifion rate on optimization) could lead to over fit the optimizafion data. In

tum, Bot_sfopping waits for Nbr Gen générations before being evaluated and then takes the

décision about stopping. The right moment to stop can be decided in a better way by using

the global validation method because it keeps watching the solutions during évolution

(optimization) and their performance in validation. If the stopping point friggered by the

global validation occurred before completing the NbrjGen générations, the proposed best

solution can be also evaluated with the Bot_stopping criterion to décide if it is accepted or

not as the last définitive evolved feature. In this case, we hâve not waited until Nbr_Gen

générations and the proposed best solution does not over fit the optimization data. In brief,

132

the global validation strategy provides a mean to control the over-fitting and also it can

complément the Bot's stopping criterion.

There are two points fo mention respect the original Bot_stopping criterion. First, the

évaluation is done at the end of évolution for each feature. The criterion décides if the feature

is accepted or not. It means that no évaluation is done for the generafions 0 to 10(11 is the

maximum number of generafions). Consequently Bot's stopping criterion can be assimilated

to validation at the end of the évolution. It is not exactly équivalent because the vérification

is done for every evolved feature. As a second remark, we hâve to consider that if at any

evolved feature the relative incrément in récognition rate is not greater than the threshold d,

this last evolved feature is discarded. As a resuit, it is less likely that performance values

hâve going into over-fitfing or at most hâve a small amount. The prompt discarded of the

feature reduces the chances of accepting over-fitfing solutions.

We bdieve that Bot's procédure provides a validation level better than validation at the end

of the évolution and it minimizes the occurrence of over-fitting by diminating the whole last

feature without considering possible improvement achieved in between features.

5.3.6 Experiment s t o analyze the over-fittin g

The results reported in Chapter 4, were based on the stopping criterion used in Bot's

algorithm and 10-fold cross-validafion. In this section, we apply the global validation

procédure to some of the UCI problems analyzed in Chapter 4 and compare the results.

Récognition rates reported in Chapter 4 were the average of the 10 folds calculated in

validation. We hâve taken the Pima data set (see Table 4.4 for a descripfion ofthe data set) to

apply the global validation procédure.

133

5.3.6.1 Compariso n o f results usin g Bot's procédure and Global validatio n

To show the différences between Bot's stopping criterion and the stopping criterion

according to the global validafion procédure, we will use one fold. As explained in Sections

4.1 and 5.3, Bot's stopping criterion is based on the comparison of the relafive gain in

récognition rate in optimization, calculated at the feature where the récognition in validation

is maximal against the threshold d (see équation 4.2). Figure 5.6 shows the curves of

récognition rate for optimization and validation and test in solid lines. The maximal

récognition rate in validation is attained at feature 3. Therefore, the threshold d for this single

experiment is calculated as:

(5.4) ^ ^ W M _ 87,00-86,91 ^QQ0jQ35

We compare if the relative gain in optimization for each additional feature is greater than the

threshold d. So, this comparison is made from feature 2 to 5 (maximal value). If the relative

gain in optimization (see équation 5.3 and in Figure 5.6, the blue solid fine) is greater than

the threshold d, the feature / is accepted; otherwise, feature / is discarded and the final

number of evolved features are from I to /-I. It is worth to mention that threshold d is

estimated over ail the data set. In this case, we hâve taken the corresponding value from one

fold to explain how it is calculated. Figure 5.6 shows différent curves for the case of one fold.

In this particular case, it is clear that evolved features 1, 2 and 3 are accepted and feature 4 is

rejected, because there is no relafive gain as the récognition rate in optimization does not

increase from the 3"̂ to the 4' features (see Figure 5.6). The final solufion is then:

Def _ Sol = EF,® EF^ @ EF^, (5.5)

Figure 5.7 includes additional information. The blue curve with circles as markers

corresponds to the best individuals in optimizafion taken from the last génération of each

feature (Bot, 2001). The maximal récognition rate in optimization is 87.00% is obtained at

feature 3 and remains the same value thereafter (note that there is a very small improvement

from feature 2 to feature 3; it is difficult to see because ofthe scale ofthe figure).

134

Performance witti Bot-s Validation and Global Validation
90

60

—-•-
I t

At Feature=3,
validation is maximal

r4V

V

- 0 — Optimizatio n
- H — Validatio n - Bot
-A— Tes t - Bot

. . j ^ . . Globa l Validation
— 0 — Tes t - Glob.Val.

3
Features

Figure 5.7 Comparison of validation with Bot's method and Global Validation.

The validation curve with Bot's method is calculated as follows: in the last génération of

each feature, the best individual in optimization is mapped into the validation data set. This

curve is shown in black color with square markers. The maximal récognition rate is 77.91%

at feature 3 and remains in that value (note as well hère that there is a very small

improvement from feature 2 to feature 3, which is difficult to see because ofthe scale ofthe

figure). Figure 5.7 includes as well a solid red line with triangular markers. This line

corresponds to the test results, which are the mapping of FSQL info the test data set. We see

that the maximal récognition rate attained is 68.83% and it is already reached at feature 2.

Thèse are the resuit obtained for a single fold of Pima data set using the Bot's procédure and

its corresponding stopping criterion.

If we use global validation, we keep one eye in the individuals that generalize better which

are stored in the auxiliary archive S. The last individual in this archive is the one to be use to

calculate the récognition rate on the test data set. The validation curve generated with the

global validation procédure takes the very best individual in validation. This is done by

135

mapping ail individuals from évolution info the validation data set and calculating for each

one its récognition rate. The individual with the best performance is then selected. This is the

one that generalizes the best (stored in the auxiliary archive S). Then new (global) validation

curve is composed of those individuals (one for each feature). This curve is shown in dash

green line with pentagram marker. As a resuit, the archive S has ail the best individuals for

each génération and features. We use the best individuals for each feature in validafion and

apply them to the test data set. The resulting curve is shown in dash magenta line with

diamond as a marker.

We can quantify the effect of over-fitting by comparing the récognition rates in test of the

curves in Figure 5.7 in magenta and red colors. For feature 1, the différence is 6.49%. The

évolution of feature 2 has itself an over-fitfing component because the évolution of the

second feature dépends on the resuit ofthe first one (Bot's method). That is why the final

solution is expressed always as shown in équation 5.5. Since the global validation curve

(green color in Figure 5.7) increases its récognition rate, we could take it as part of the

solution. For that case, the over-fitting calculated in test is reduced to 1.29%. Then we can

continue calculating the impact of over-fitting. Based only in the validation curve created

with the global validation procédure (green curve) we can continue until feature 5, but we see

that the mapping into the test set has a décline from feature 3 to 4. Where the right point to

stop is? It is not easy to establish it based only on the validation curves at the end of each

feature. We hâve to analyze what happens during the évolution of each feature. We can do

that with the global validafion because it keeps on eye in the generalization power for the

population through every génération. This will be explained in the following subsection.

5.3.6.2 Analysi s o f over-fitting wit h global validation :

When global validafion is applied, we mapped every individual generated during the

évolution into the validation data set and find the best. We start doing that since the first

génération in feature 1. If the best individual in validation is better in subséquent générations

(and features) the auxiliary archive S is updated accordingly. However, if at any point the

136

best individual in validation is worse than the recorded, we conserve the previous best

individual (from validation). Note that best individual means hère the individuals with

highest récognition rate and the opposing for worse individuals.

With the mapping of individuals generated in optimization into the validation data set, we

keep an eye on individuals to see whether they are also the best in validation. Figure 5.8(a)

shows the final status of the évolution. The figure shows the error rate (= 100% - récognition

rate (%)) for each génération and feature. Each red diamond represents one individual of the

population. We can see five différent clouds of points corresponding to five features in the

evolufion. For each evolved feature the cloud is more or less wide, according to the

individuals' sizes (tree sizes). This allows us to show the diversity of individuals in the same

génération or feature. In each cloud there is a green diamond that corresponds to the best

individual in optimization. Dots in blue correspond to the individuals in the current

génération. As indicated before, this is the final status of the évolution (feature 5 and

génération 10). In Figure 5.8(b) we show the mapping of ail individuals from évolution into

the validation data set. Again, it is shown the error rate for each feature and the width of the

clouds correspond fo individuals' sizes. In this case the green diamond are the best

individuals in validation for each feature and the smaller black dots correspond to the

mapping of best individuals of optimizafion info this data set (validation). Hence, we can see

that best individuals in optimization are not necessarily the best in validafion. It means that

thèse individuals (best in optimization) are not the best individuals to generalize. Only the

best individuals in validation and optimization for each feature are displayed in différent

colors. Figure 5.9 shows some détails from Figure 5.8(b). It illustrâtes the occurrence of

over-fitting for features 1 and 2 (shown in the figure): the différence in récognition rate

between the best individuals in validation (green dot) and the best individual in optimization

mapped info validation (black point).

137

OPT-pima-Nol-ex237-7-1-AIIFeat.a\<

80

Feature 5 , Génération 10

20 4 0 6 0 8 0 10 0
Individuels Tree Size for Features

120

(a) Optimizafion

60

ai

VAL-pima-Nol-ex237-7-1 .avi

10
Feature 5 , Génération 10

20 4 0 6 0 8 0 10 0
Individuals Tree Size for Features

120

(b) Validation

Figure 5.8 Searching space in optimization (évolution) and mapping into validation.

138

VAL-pima-Nol-ex237-7-1 .avi

• •
• • • • •
• • • •

• • • •
• • • • • •
• • • • •

• • • • • • • • •
• • • •

•
• • •

' ^ • • 4 4 • ' • •
• • • • •
• • • • • •
^ • • • • • ^ •

4 • • • • • • •

«••44 • • • •
• • • • • • • • • •

• • • • • • • • ^ • •
• • • • • • • • • • • • •

• • • » • • • • • • • •
• • • • » • • • • • • • •

• • • • • • • •
• • • • • •

• • • • •

35

30

25

20

15

T
Over-fitting

i
Over-fitting

-10 0 5 1 0 1 5 2 0 2 5
Individuals Tree Size for Features

30 35

Figure 5.9 Zoom of Figure 5.3 (b) showing over-fitting for features 1 and 2.

Figure 5.9 makes évident that there is over-fitting, but this figure only shows that the global

validation procédure allows locating when the over-fitting appears, because the same

comparison made at the end of each feature is done for each génération in global validation.

The tme effect of this generalization power has to be seen in the test data set. As Figure

5.8(b) show over-fitting is produced since the first evolved feature. We can quantify the

effect of over-fifting by comparing the récognition rates in test ofthe curves in Figure 5.7 in

magenta and red colors as it was shown before. For this particular case, we hâve over-fitfing

from the first feature and the global validation procédure identified it. Comparing the values

in test obtained with Bot's solution and the solution selected with global validation, we see a

différence in performance of 6.49%.

Global validation showed that, in some cases, over-fitting can appear early in the évolution

towards the first feature, as shown in figures 5.8 and 5.9. Given that in Bot's method, the

139

evolved features greater than the first one dépend on ail previous evolved features, what is

the influence of over-fiUing on the whole solufion? As shown in Figure 5.9, this influence

varies from one evolved feature to another. The amount of over-fitting in the validation data

set decreases in the second evolved feature (see Figure 5.9). The évolution from one evolved

feature to the following, founds new solutions that generalize better, and they are recorded as

soon as they appear in the auxiliary archive. This is also shown because the récognition rate

obtained with global validation in the test set (dash-dot line in magenta in Figure 5.7) is

better than the red line (solid) that remains in the same récognition rate level. Even, for

evolved feature EF3, there is an increase in the performance. Therefore, we can say that over-

fifting produced at any point in the évolution makes subséquent solutions hâve an implicit

over-fitting that is confrolled and in some cases reduced, because the algorithm permits

finding new solufions that generalize better. This is conséquence of the évolution of one

feature at a time.

5.3.6.3 Analysi s o f évolution

Displaying the population during optimization and validation phases gives some insight

about the évolution and global validation process. The information related to over-fitting

provided by Figures 5.8 and 5.9 was analyzed in previous subsection. In this part, we take

snapshots ofthe evolufion at différent stages in Figure 5.10. Part (a) shows the status ofthe

evolufion at the last générafion (10) of the first evolved feature EF(1). In Figure 5.10 the

error rate is displayed for 5 evolved features used during the évolution. The red diamonds

represent the whole population. As mentioned before, populafion for each cloud represents

the population for each evolved feature. Each individual is set place in a location according

to its error rate (vertical axis) and ifs tree size (horizontal axis). The current population at

génération 10 of feature 1 is represented with blue diamonds. Green spots correspond to the

best individuals in optimization at that stage and before (feature 2 and 1 in part (b)).

140

OPT-plnia-Nol-ex237-7-l-Fl-G10-2.a\<

0 2 0 4 0 6 0 8 0 10 0 12 0
Indiyduals Tre e Siz e fo r Feature s

OPT-pima-Nokex237-7-l 19 1 a\<

Feature 2 , Génération 1

40 6 0 8 0 10 0 12 0
lndi\iiduals Tree Siz e fo r Feature s

(a) Evolution, feature 1, génération 10 (b) Evolufion, feature 2, génération I

Figure 5.10 Distribution of the population in évolution at two différent stages.

We can see in part (a) that there were individuals with very high error level (around 80%).

Population for the first feature is well distributed mainly from 18% to 65% error. The last

population in feature I is concentrated in the lower part of the first cloud, which means that

the évolution of individuals has reduced the error rate. Starting the évolution for feature 2

(see Figure 5.10 (b)), population is again randomly initiafed. That explains why there are

blue diamonds with error rates from 20% to 50%, which is greater than last population of

feature 1. The re-initiation of the population for each new feature inserts new and différent

individuals, so that diversity is injected. Given that the error rate of individuals in any feature

(greater than 1) dépends on the results from previous features, after I or 2 générations in the

new feature, the best individuals attain the same error level or even smaller. See, for instance,

that the green spot for evolved feature 2 has the same error rate than the best individuals in

the last génération of previous feature. The number of générations for each feature allows

population to progress in the standard way and the sudden change of population for each new

feature avoids having a population composed of copies of just a few good individuals. This

helps fo prevent stagnation ofthe population to local minima. As shown in Figure 5.10, the

spécifie data set (Pima) only allows a small réduction of the error rate through the evolved

features.

141

5.3.6.4 Analysi s of diversity alon g the évolution

In order to evaluate the diversity gained due to Bot's method and Island model. Figure 5.11

shows the entropy ofthe population for a single fold of Pima data set (the same used before).

Entropy is calculated according to équation 5.1. Concentrate initially on the blue line that

shows the entropy ofthe population during a panmictic population. The mn is being done for

5 evolved features. In the horizontal axe, the starting point for each evolved feature is shown

(12, 23, 34 and 45). Along the first evolved feature, the initial population inserts a population

with a high level of entropy. It decreases with the évolution, but at the starting point of each

new feature, there is a new initial population, so entropy suddenly rises to levels comparable

to the génération 0 and evolved feature 1. Again, during the évolution, entropy decreases. As

it can be seen the loss of diversity is restored thanks to the re-starting random populafion of

Bot's method for each new evolved feature without loosing what has being gain (new

evolved features take into account the previous evolved feature).

Entropy for Data set Pim a Island and NO-lsland

EF1 EF2 EF3 EF 4
Générations and Features

EF5

Figure 5.11 Entropy as a measure of diversity during the évolution. Island and panmictic.

142

The doUed red line in Figure 5.11 shows the entropy levels when the Island method is used.

It is clear that, an additional diversity is injected due fo the migrants entering each island

(each two générations). The levels of entropy (diversity) are superior along ail the évolution.

This considérable gain in diversity is due to the différent régions that are searched by each

island.

5.3.6.5 Review of results

We hâve applied the global validation procédure fo five data sets used in Chapter 4: Ecoli,

German, Ionosphère, fris and Pima. We hâve used 10 fold cross-validafion and five

répétitions with and without global validation. Data sets hâve been partitioned in 10 non-

overlapping blocks called folds of approximately the same size. One block for optimization,

one block for validation, another block for test and the remaining 7 blocks for training.

Section 4.4.1 includes additional détails conceming the data set distribution. Table 5.4

présents the average récognition rate on test data and average number of features when using

a k-NN classifier with ^ 3 . Table 5.5 shows the results when using an MDM classifier. In

both cases, we obtain better results applying the global validation procédure in three out of

five data sets, but the différences are not significant. It can be seen as well that the average

number of features with global validation is greater in ail cases but Iris data set. That

corresponds to the concept of early stopping used in Bot's algorithm to avoid over-fitting.

The Bot's stopping criterion détermines if is useful to add addifional features according to the

gain in récognition rate (in optimizafion). If considers only the final results at the end of a

feature. In contrast, global validation keeps looking the performance for every génération, so

it is able to defect over-fitting even before completing ail the générations for the first evolved

feature. fris data set is an example of this case. Only one evolved feature is required. We

observe as well that results with k-NN classifier are, in gênerai, better than those with MDM

classifier but différences are not that big.

143

Table 5.4

Comparison of results when applying global validation fo Bot's method with k-NN
Five répétitions using 10-fold cross-validafion, average and standard déviation

values included for récognition rate and number of evolved features

Database

EcoU

German

Ionosphère

Iris

Pima

Results Bot's method withou t

global validatio n

Rec. rate (%)

76.82 ± 7.24

70.30 ±3.49

80.45 ± 8.78

94.40 ± 5.26

67.14 ±7.34

#Fave

2.7 ±1.37

1.9±1.15

1.4± 1.83

1.8 ±0.83

1.75 ±1.37

Results Bot's method with globa l

validation

Rec. rate (%)

75.64 ±8.81

70.58 ±6.03

82.97 ±8.71

93.60 ± 7.84

68.13 ±4.5

#Fave

3.19 ±0.98

2.09 ±1.37

3.68 ±1.52

1.06 ±0.9

2.32 ±1.39

Table 5.5

Comparison of results when applying global validation to Bot's method with MDM
Five repefifions using 10-fold cross-validation, average and standard déviation

values included for récognition rate and number of evolved features

Database

Ecoli

German

Ionosphère

Iris

Pima

Results Bot' s method withou t

global validation

Rec. rate (%)

70.35 ± 7.94

66.84 ±5.33

75.42 ± 10.99

94.00 ± 6.76

69.53 ± 7.60

#Fave

3.1 ±1.06

1.3 ±1.88

1.1 ±1.85

1±0.88

1.07 ± 1.45

Results Bot' s method with globa l

validation

Rec. rate (%)

66.17 ± 11.67

66.30 ±5.63

76.28 ±12.51

94.40 ±6.50

69.63 ± 5.93

#Fave

2.94 ± .097

1.25 ± 1.39

1.88 ±1.38

1.02±0.83

1.79 ± 1.30

144

5.4 Featur e sélection and feature créatio n

Bot's method constmcts evolved features using GP as evolutionary tool. Each evolved

feature is a formula of the terminal and function sets. That is, Bot's method is a feature

création strategy. The purpose of the feature création is two-fold: to transform the initial raw

feature space into a reduced space of evolved features and to produce classification rates of

the same level of performance than those attained with the inifial space of raw features. In

brief, we can say that Bot's method proposed to create a compact description of a problem

that yidds similar or better performance than the initial représentation. The initial

représentation is the set of raw features that describe the problem. For instance. Ionosphère

dataset (from UCI) is represented with 24 raw features (see Table 4.1). Bot's générâtes a

compact description of 6 evolved features (in average). A k-NN classifier on the normalized

data with a cardinality of 34 produces a récognition rate of 74.9% (see Table 4.5) meanwhile

a compact representafion with 6 evolved features générâtes an average récognition rate of

81.74%. If the ensemble of islands is used, the représentation uses less than 15 evolved

features and attains an average of 86.71% in récognition rate. This example illustrâtes the

advantages provided by Bot's method.

Since each evolved feature is a formula ofthe terminal and function sets, it is important to

know from the initial raw features, how many are used to build the evolved features. If, in

average, ail the raw feature, Bot's method générâtes a transformation into a compact

description that produces similar or better performance results. Only this constitutes a

positive outcome as it has been shown before. But what about if only some of the raw

features are consistenfly used to create the evolved features? This means that Bot's

procédure is a feature création and, at the same time, a feature sélection process. This section

performs an analysis ofthe utilization of raw features for the data sets used in this chapter.

GP manages a population of individuals; each of them is a solufion to the problem at hand.

Individuals in the population are formulas where the operators (+, -, *, /, etc.) are the function

set used and the variables are the terminal set (raw features ofthe problem description). Raw

145

feafiare utilization can be analyzed from différent standpoinfs. In one side, we can analyze

how the utilization of raw features is through the évolution. In another side, we can analyze

which are the raw features that are part of the final solutions. In the former case, there could

be raw features frequently used during the evolufion that are not part of the final solution. In

the latter case, the participation of the raw features during the évolution is not considered

even if they important to generate the final solution.

5.4.1 Analysi s o f raw feature utilizatio n during évolution

To analyze the raw feature utilization through the évolution we take the evolufion during a

particular fold and replication. Figure 5.12 shows the ufilizafion of ail raw features through

the évolution for the dataset Ship. Evolution is mn for 10 evolved features and each one is

evolved during 11 générations. Ship data set is described by 11 raw features, each of them

presented in Figure 5.12. Each curve reflects how many times the raw feature has been used

during the évolution (générations and evolved features). Raw feature I, shown in blue, was

very used during évolution of evolved feature EF3 (it reaches 80 times). Also, it is clear ifs

ufilization during évolution for EF4, EF6, EF7 and EF9. The same analysis can be done with

other raw features. In gênerai, this figure reveals the importance of each raw feature during

the évolution.

The horizontal line placed at a height of 11 corresponds to the 11 raw features ofthe data set.

It is depicted to make easier the comparisons. Most of the curves are at low level of

utilization and only some of them overpass the 11 level. The red thick curve is the average

number of raw features used through the évolution. Therefore, in average, less than 11 raw

features are used during the évolution. Only for a few cases, the average overpasses or is

dose fo 11. This figure gives an idea of the real number of raw features that are required

during the évolution. It shows clearly that Bot's method is at the same time a feature creafion

and feature sélecfion method.

146

utilization of Raw Feat along the évolution for Data set Ship - Island 1

raw feat 1
raw feat 2
raw feat 3
raw feat 4
raw feat 5
raw feat 6
raw feat 7
raw feat 8
raw feat 9
raw feat 10
raw feat 11

I ave feat util .

EF2 EF 3 EF 4 EF 5 EF 6 EF 7 EF 8 EF 9 EFI O
Générations and Features

Figure 5.12 Utilization of raw features through the évolution- Data set Ship.

5.4.2 Raw features utilization in evolved features

The other approach mentioned before is an analysis of the frequency of ufilization of raw

features in the final solutions. Figure 5.13 (a) and (b) show the average of utilization of raw

features to build the evolved features for two data sets: Ionosphère and Ship. Average is

taken over 10 répétitions of 10 folds of the data set for each island and is presented as

percentage (100 in the scale if the raw feature is used in ail repefifions and folds). In the case

of Ionosphère in (a), raw features 5 and 6 are the most frequently used in the evolved

features, about 40% of cases. For Ship data set in (b), there are 5 or 6 raw features used more

than 50% ofthe cases. Raw features 1, 2, 7 and 11 are use in most ofthe cases. We can say

that in the Ionosphère case is clear the importance of a few raw features in the final solution

whereas in Ship case, most ofthe raw features take part in the final solutions.

Average Utilization {%) of raw features in Evolved Features - Ionosphère
40 U I Islan d 1

lll.ulllL iiJiii.liil.liii
s 0 5 1 0 1 5 2 0 2 5 3 0 3 5
ï 40 r • , , , _

S 0

40

7^
i.limliiiiilil.li.iiili.ni-L.I

5 1 0 1 5 2 0 2 5 3 0 3 5

.lmlllillilll.i..lil.,mlilill
10 1 5 2 0 2 5 3 0 3 5

Raw feature number

(a)

I •
Ç 0 4

Raw IsHuiM ulHb •Oon • .v*raga *nd «tandarf davMIon -

1 tolWMllI-

i L l l lT -

• r
I itend3|'

(C)

147

Average Utilization {%) of raw features In Evolved Features- Ship

1 2 3 4 5 6 7 8 9 1 0 1 1
Raw feature number

(b)

umuatlon of Raw l«atur*a avang * and alandard davMIon - Ship

I — biMidTj ^ ^-H+^^-yjp
— hten d 3]

(d)

Figure 5.13 Raw feature utilization per evolved feature on Ionosphère and Ship data sets.

To hâve a deeper view of the situation we hâve included the average and standard déviation

ofthe utilization of raw features in parts (c) and (d) of Figure 5.13. Again, raw features 4 and

5 hâve greater influence in Ionosphère (surrounded with ellipses). For the Ship case in part

(d), raw features 1, 2, 7 and 10 hâve the smallest variation around the average value. That

could be due to a consistent use of them to build the solutions through the différent

répétitions and folds.

Figure 5.13 reflects the relative importance of each raw feature in the final solutions (evolved

features). We are also interested to know how many raw features, in average, take part in the

final solutions.

http://iiJiii.liil.liii

148

Table 5.6

Average and standard déviation of raw feature ufilization and evolved features using
the Island method using 10-fold cross-validafion and 5 répétitions

Database

Ionosphère

Pima

Wine

Ship

Raw

Features

34

8

13

II

Island

1

2

3

I

2

3

1

2

3

1

2

3

Evolved Feature s

#Fave ± Std(#F;

4.12 ±2.36

4.21 ±2.28

4.36 ±2.57

3.09±1.14

3.17±I.3I

3.18 ±1.20

3.64±2.15

4.20 ±2.50

4.23 ±2.21

8.03 ±1.71

8.22 ±1.49

8.23 ±1.52

Raw Feature s

Utilization

RawFave ± Std(RawF;

4.21 ±1.45

4.37 ±1.94

4.33 ± 1.90

5.18±1.17

5.04 ±1.37

5.17±1.26

3.75 ±1.62

3.88 ±1.66

3.72 ±1.69

6.97 ±1.69

7.08 ±1.45

6.98±1.65

Table 5.6 is a comparative between the initial number of raw features, the number of evolved

features generated by Bot's method and the number of différent raw features in the evolved

features. The number of evolved features requires in ail cases is a considérable réduction in

the représentation of the data set. In addition, not ail the raw features are required to generate

the evolved features. In most cases, less than 50% ofthe raw features are used. Therefore, the

proposed method works at the same as a feature création and feature sélection methodology.

In the case of Ship data set we see that raw features 1, 2, 7 and 11 are important to classify

the dataset. This is in agreement to what Valin et ai, hâve reported (Valin et al., 2006).

149

5.5 Genera l conclusion s

Bot's method has been improved by three différent stratégies: selecting a suitable range of

values for genetic opérations of cross-over and mutation, fransforming the GP algorithm into

a coarse-grain version (also called island method) that allows small independent évolutions

that interchange some individuals and, finally including a global validation procédure that

Controls the over-fitting, The theory that supports thèse three stratégies was presented and

then some experiments were mn to show the results. Some of the conclusions that come out

are presented in the following lines.

The adjustmenf of the GP-related parameters is not an easy task. We hâve tried instead of

using some suitable ranges for some ofthe main parameters. We hâve analyzed the influence

of population size, number of générations and features (which is particular for Bot's method).

We hâve tested that an initial population of 100 individuals as set in (Bot, 2001) allows a

certain degree of diversity within the populafion. This is shown in figures 5.4 and 5.6 by the

red clouds represenfing the population for différent evolving features. The wide range in

fitness values (vertical axis) even after having evolved for some features puts in évidence the

diversity within the population. Also, individuals with the same fitness values hâve différent

size, which also reflects the diversity in the population. The number of générations was fixed

to 11 as in (Bot, 2001). Différent values, from 11 to 30 were tested and we did not find big

différences in the results. The small progress reached with more générations is easily attained

with the gain in performance due to a new feature. Thus, short évolutions are one of the

advantages of Bot's method.

Différent values of cross-over and mutation probabilities were tested and there was no a

spécifie combinafion that revealed a noticeable better performance overall. We were able to

find that a suitable range for cross-over is 0.8 fo 0.9 with mutation in the range of 0.05 to 0.1.

Therefore, we use in subséquent tests a cross-over of 0.9 and a mutafion of 0.08.

150

Bot's algorithm used a steady state replacement mechanism in which new offspring are

immediatdy introduced in the populafion and are available for reproduction. In this case, the

fitness can not be calculated for ail individuals at the same time, so parallelization based on

master-slave stratégies can not be applied fo our algorithm. We hâve then looked for the

island method. We found that it allows reducing the size of the population on each island to

30 individuals and the time computation time is also reduced to less than one third of the

time of the standard version. This is not a réduction in resources utilization because we use

three islands (or processors) instead one. The real advantage is that the islands explore

différent zones within the search space and its mechanism générâtes an improvement in the

performance of the final results. In addition, the solution is robust as the évolution can

continue even when one of the island stops the évolution (for instance a problem in the

processor mnning the évolution). This is applicable only if the intercommunicafion towards

other island is not completdy broken (as would happen in rings topologies with

unidirectional migrations). In fact, we presented one of such a case with the Segmentation

data set in which, even though one of the evolving islands was stopped for a while, the

parallelization method was able to continue and we obtained an increase of the récognition

rate in comparison to a sequential version.

In addition to the robust quality of island model of parallelization, we can use the best

solution from ail islands, which is called the single best individual or single best solution.

Instead, we can use ail three solutions, V-best solutions (with V=3). The final solution can be

calculated as a combination function ofthe three solufions. A simple combination is based on

the majority vote principle presented in Chapter 3. This combination produces improved

récognition rates as will be shown in the next chapter.

Bot's procédure générâtes features that can be used to build classifiers. The evolved features

reveal intrinsic relations between the input raw features that are difficult to found out with

other searching techniques. The combination of single solutions or classifiers into ensembles

is then an altemative to investigate. This is the subject ofthe following chapter in which we

151

apply the improved Bot's algorithm to evolve classifiers that will be combined in an

ensemble to further increase their performance

The addition of the global validation procédure provides some improvements to Bot's

method. It allows the détection of the point in the evolufion (feature and génération) where

the over-fitting starts and also permits controlling it because we store the individual that best

generalizes (testing ail the population in a différent data set, called validation) and it is used

as a final solution instead of the best solution in optimization which over-fits this data set.

We hâve seen that the average number of evolved features using the global validation

procédure is increased in comparison to the average calculated with Bot's stopping criterion.

Bot's stopping criterion is made at the end ofthe évolution for every feature and in practice,

works as an early stopping because it discards the evolved feature that do no represent a

considérable gain in optimization.

Besides, global validafion procédure shows if the number of générations and features set a

priori are suitable for our problems. If the point where global validation indicates to stop

(when over-fitting starts) the évolution is too différent in comparison to the number of

features used, we can adjust it accordingly. For instance, in the Pima data set, we see that the

average number of evolved features can be set to a maximum of 5. There is no need to await

the évolution for 10 features, because it reveals that no improvement is reached further than 5

features. In the other hand, global validation (and the island method) revealed that Wine and

Segmentation data sets can be evolved until 10 features and certain level of gain is attained.

So, we can modify an initial setting of 5 evolving features to 10. In gênerai, we can better

adjust the stopping point to obtain the best performance without over-fitting too much the

optimization data set.

Global validafion showed that, in some cases, over-fitting can appear at any point in the

évolution (see figures 5.8 and 5.9) and it affects subséquent evolving features, because they

dépend on ail previous evolved features in Bot's method. Therefore, subséquent solutions

hâve an implicit over-fitfing that is difficult fo reduce. Once detected this implicit over-

152

fitting, there is no mechanism to avoid it because the best solution in optimization can not be

changed by the best solution in validation. This would be an altération to the évolution

process. The global validation procédure must remain a mechanism that keeps an eye on the

évolution without interfering with it.

CHAPTER 6

FEATURE CREATION FO R ENSEMBLE S

We hâve mentioned before that the main éléments that take part in the design of EoC are;

data, classifiers and the combination fùncfions. Data samples can be split between différent

classifiers or the attributes (features) can be divided in différent sub-sets. Classifiers used in

the ensemble can be ail ofthe same type or mixed types. Différent combination fùncfions can

be used to generate the ensemble response (Dietterich, 2000). Our ensemble design

methodology splits the data attributes into différent subsets using the RS method, générâtes

base classifiers as a set of related evolved features (or formulas) using GP as method and

combines the generated classifiers by majority vote. The RS method was presented in

Chapter 3 and the génération of classifiers using Bot's method and GP was explained in

détail in Chapters 4 and 5.

In the standard RS method, each base classifier has a partial view of the data i.e. a subset of

the features available in the training data. This method relies on a stochastic process that

randomly sdects a number of features from the given set to constmct each classifier (Ho,

1998a). The classifier is trained with the feature sub-set randomly selected. In our case, the

classifier will be generated by constmcting evolved features from the RS applied to it. The

stochastic selected features are the input to Bot's method that générâtes a set of evolved

features (or a set of formulas) as the classifier. So, the generated classifier discovers intrinsic

relations between the input features and créâtes a set of formulas that best represents the

input RS. The new représentation only utilizes the most important raw features from the

input RS, which implies an additional réduction ofthe number of raw features used. In brief,

Bot's method unveils important features and exploits its inter-rdation to optimize the base

classifier. Then, the optimized base classifiers are to be combined using majority vote to

generate the ensemble.

154

This methodology will be applied to a practical problem to analyse the benefits of generating

base classifiers via GP towards the constmcfion of ensembles.

The first part of this chapter describes the génération and sélection of ensembles of k-NN

classifiers with the RS method in the context of isolated handwritten digit récognition, as

developed in (Tremblay, 2004). Selecting the most performing and diverse classifiers

générâtes optimized ensembles. Section 6.2 présents the re-engineering process applied to

the base classifiers based on Bot's method, focused on ensemble génération. The

expérimental protocol followed and the results are presented in Section 6.3.

6.1 Optimizatio n o f ensembles of /r-NN b y random subspace s

This section describes the optimization of ensemble of/:-NN classifiers using the RS method

in the context of a problem of isolated handwritten digit récognition, as developed in

(Tremblay, 2004). We hâve mentioned before that the main déments that take part in the

design of EoC are: data, classifiers and the combination fùncfions. The data comes from the

data set NIST SD19, which Oliveira represented as a vector of dimension 132 (Oliveira et ai,

2002). This will be described in détail in Secfion 6.3. The classifier used was a k-NN and the

combination function is majority vote. In a first set of experiments Tremblay determined the

number of base classifiers, the number of neighbours taken in each ^-NN classifier, and the

cardinality ofthe subspaces to hâve the best performance (Tremblay, 2004). It was found that

ensembles of 100 k-NN with k=\ and a cardinality of 32 features produce the best results. In

addition, Tremblay found that the ensemble gives the best performance when k-NN

classifiers were trained with data sets of 5000 samples or less (Tremblay, 2004). The

comparison of performance was made against a single k-NN and an optimized multilayer

perceptron (MLP). The spécifie input features for each k-NN classifier were randomly

selected from the original set of 132 features without replacement.

Once the 32 features for each ofthe 100 k-NN are chosen, the 100 base classifiers are set.

Afterwards, Tremblay applied différent searching methods to find out the best ensembles.

155

Each base classifier is associated to a spécifie set of 32 features, so searching methods look

for minimum number of base classifiers that maximize the ensemble performance. Two

ensembles with the same number of base classifiers could hâve différent performance

because the particular k-NN classifiers included in each ensemble are built with différent

subspaces. The stmcture of each ensemble is defined by the amount of base classifier and the

index (from 1 to 100) ofthe k-NN classifiers included. This information is the outcome from

the searching method managed by a G A (single or multi-objective) guided by the global

performance of the ensemble as objective function. In the case of a multi-objective G A,

another additional searching criterion, like diversity, is used in combination with

performance. Each individual in the GA population is a vector of 100 déments, i.e. each

component reflects the index ofthe classifier included (when the bit is 1) or not (bit in zéro).

Populafion size is 128, which means the number of candidate ensembles evaluated in each

génération. In brief, GA hâve been used to sdect ensembles of k-NN classifiers from a pool

of 100 base A'-NN classifiers in such a way that performance (ofthe ensembles created) is

maximized. Figure 6.1 represents the base classifiers, the GA-populafion and the sélection of

ensembles. According to Tremblay, as the évolution progresses, more individuals are similar

or even equal to the best one (on optimization). In the end, only a few individuals are

différent i.e. only a few ensembles are différent (Tremblay, 2004). This experiment is

replicated 30 times and the best ensemble is selected for each replication (Tremblay, 2004).

The searching methods that give best performance results in (Tremblay, 2004) are presented

in Table 6.1. The first three lines of Table 6.1 show the références values used to compare the

ensemble results: a single k-NN with 132 features, the ensemble of 100 k-NN and a MLP

network with the whole set of 132 features as input. Since each experiment is repeated 30

times, the three last lines of Table 6.1 show the best resuit for each case as reported in

(Tremblay, 2004).

156

Ind. I frid. 2

30 replications

100 /
1

1

H 1

1 - •
k-NN

lOf

3
2
1

3
2
1

2
1

0
Ind. 128

El

E2

Population

Figure 6.1 Original ensemble, GA-based population and sélection of ensembles.

Table 6.1

Results from optimization of ensembles with GA. Extracted from (Tremblay, 2004)

Method

yt-NN (132 feat.)

Ens. 100 k-NN

MLP (132 feat.)

Ranking

Simple GA

NSGA-e

Classifiers

1

100

1

76

31

24

Rec. rate on

OPT

93.23%

95.79%

96.11%

95.93%

96.82%

96.84%

Rec. rate on

VAL

93.33%

96.09%

95.91%

96.15%

96.43%

96.29%

Rec. rate on

TEST

93.34%

96.28%

95.27%

96.26%

96.41%

96.40%

From the référence values, we see that an ensemble of 100 k-NN with only 32 features each

one gives higher récognition rate than a single k-NN using the whole set of 132 features. The

best référence value comes from the MLP network that uses ail 132 input features. From the

157

results we can summarize that the optimized ensembles provide a better récognition rate with

smaller ensembles (less base classifiers).The ensembles generated by ranking reduce in

approximately 25% the number of base classifiers and maintain the récognition rate

compared to the rate ofthe ensemble of 100 k-NN classifiers. Results from single GA and a

multi-objective GA (in this case Non-dominated sorting GA NSGA) that jointly minimizes

the error rate (which is 1 - Rec. Rate) and the number of classifiers générale a réduction

between 70 to 75% in the number of classifiers and, in addition, an increase in récognition

rate. This time, the performance is better than the MLP network. Table 6.1 présents the

results in three différent data sets: Opfimization, Validation and Test. In our expérimental

protocol, we use the same data sets (see Section 6.3).

We can conclude that the création of ensembles with the RS method générâtes smaller and

more performing ensembles. Therefore, the exclusion of redundant features produced with

RS method helps to increase the récognition rate and reduces the number of required base

classifiers. We formulate the question: Is redundancy between raw features still présent in

each subspace? If so, can it be reduced? Does this réduction generate an increase in

récognition rate?

We will apply the improved Bot's method to optimize the already built classifiers with the

RS method. The optimizafion will show if the resulting classifiers produce a boost in

performance ofthe ensemble and (or) a réduction in the cardinality. This is the subject ofthe

following sections of this chapter.

6.2 Création of ensembles of classifiers based on GP

The création of ensembles of GP-based classifiers splits attribute data (also called raw

features) into différent sub-sets using the RS method, générâtes base classifiers as a set of

related evolved features (or formulas) using GP and combines the generated classifiers,

called hereafter evolved classifiers, by majority vote. Each one of the components is

described in the following paragraphs.

158

Previous section explained the RS method applied to a spécifie problem of isolated

handwritten digit récognition using the NIST SD19. Oliveira et ai, (Oliveira et ai, 2002)

created a description ofthe digit images as vectors of 132 features. This description has been

used in différent publications in the fields of pattem récognition and machine leaming with

encouraging results (Oliveira et ai, 2002; Oliveira et ai, 2003a; Dos Santos et ai, 2006; Ko

et ai, 2007; Radtke et ai. 2006; Tremblay, 2004). The RS splits the initial set of attributes in

sets of 32 randomly selected raw features. A detailed description of the data set used is

presented in the expérimental protocol.

In (Tremblay, 2004, Tremblay et ai, 2004) each ensemble is composed of a séries of A-NN

classifiers generated by RS method RS,-, /=/, ...,R, where R is the number of classifiers in the

ensemble. The feature constmction process for ensembles takes the i-th classifier RS,-,

i^l,...,R, as input to the improved Bot's method. Each subset of features is différent and

dépends on the sélection made by the RS method. The process of fransforming a RS into the

evolved classifier is called re-engineering of base classifiers and it is explained in the

following section.

6.2.1 Re-engineering of base classifiers

Figure 6.2 shows a détail of the input to the GP algorithm. Through the évolution process,

GP générâtes evolved individuals, which are équations or formulas in terms of its input

features (spécifie subset of raw features from each classifier). GP évolution seeks for

individuals that generate a high recognifion rate, by measuring the fitness of each individual

in the population. Fitness measure is associated to the performance achieved by the evolved

solutions on the optimization data set for each feature and each génération. Fitness measure

of each individual in the population is calculated by a k-NN or a MDM classifier. As

mentioned in Section 5.1.2, we will not use fitness measured based on Fisher criterion.

159

x o x i x j X5 XV, Termina l se t

RS,

^
X i X i X 4 Xf t X Y - 2

RSy

RSs e n)

GP

GP

GP

^

^

^

Evolved Classifier Ci
Def_Soli(x0, Xs)

Evolved Classifier C2
Def_Sol2(xi, X2, X4)

Evolved Classifier C}
Def_Sol3(Xi, X4, Xy.s)

RSR

^
GP

^

Evolved Classifier CR
Def Sol R(X,, XR.4 ,XR)

Figure 6.2 Input set of features (generated by random subspaces) to a GP algorithm.

The combination of the classifier and the GP algorithm is called hère the GP-classifier

wrapper. Figure 6.3 shows a typical example of evolved features created by a GP mn

according to Bot's method: the evolved classifier Ci (\ <i < R) can be represented, in this

case, as a composition of three features Def_Soli = F^Fn® EF2i®EFsi. The base classifiers

are generated applying Bot's method which uses GP to discover tacif relation between the

input variables and makes them explicit in the fùncfions that it générâtes. A fùll description

of Bot's method was presented in Chapters 3 and 4. The input to the algorithm and outputs

from it, are depicted in Figure 6.3 below. The input is constmcted as follows (Ho, 1998a):

given a set of examples in an A^-dimensional space (A'=132), NRS -dimensional subspaces are

considered (NRS =32)

[(x^,x-^,x^,...,x^)\Xj ^\,jeI,Xj =0,7 g /) . (6.1)

where I is an A''/ts-element subset of {l,2,3...,7V}, and NRS < N.

160

XO XI X 2 X3 Xr > <y

GP
Bot's method

Evolved Classifier C

C = Def _Sol(x^,x^,x^,x„...,Xy) = EF,@ EF,® EF^

where.

EF (. „ \ _ V-̂ O ' X-^) Xy,^ _

ZS/", v^Xj, A'T , A^ , . . . , A^_2 J V

X25*X7* 0.789

Xf. + .V,,
)*log(A-2o)

'10

c^r^i^Xj ,x^,x^Q,..., X^Q) — t̂ -
x,5 -sin(x,5)

0.5647
i^) + x,

Figure 6.3 Création of evolved features using GP and Bot's method.

Each evolved classifier C,- is used to classify ifs corresponding input generated by the random

subspace RSi. The advantage of this process is that the evolved function finds relations

between the input features in such a way that this new classifier C,- has a recognifion rate

similar or better than the original classifier RSi. To analyze the effectiveness of the re­

engineering procédure, we compare and analyse the récognition rates of RSj and C,- (see

Figure 6.4, above). Each random subspace RSi has associated a recognifion rate of the k-NN

classifier when the 32 features are used as input to it. This récognition rate RR(RSi) is a

single number. In the other hand, the récognition rate of the corresponding evolved classifier

d, noted hère as RR(C,), is a collection of récognition rate values according to the number of

evolved feattares used (for example in Figure 6.3, RR(C,) will be a set of three recognifion

rate values: RR(£F/), RR(EF, ® EFf2) and RR(EFj ® EF2 ® EF3).

161

6.2.2 Globa l Validation o n evolved classifier s

We suppose that the ensemble is composed of R classifiers (as shown in Figure 6.2). The

process described in Section 6.2.1 is done on each of them. For each random subspace RSj

considered, the solufion found in optimization Def_Sol=EFi® EF2® EF3 represents the

evolved classifier C,-. Each of the R evolved classifiers Q has been created by using the

optimization data set projected on the 32 input features managed by its cortesponding RS,-, by

means of the formula contained in the evolved classifier C,. As mentioned in Section 4.2,

during GP évolution (opfimization), solutions can leam so much the data presented that they

may over-fit it. Therefore, we hâve to establish mechanisms to control the over-fitting.

At a first level, no validation procédure is used (detailed explanation in Section 5.3.1). In this

case, the best individual found on the last génération of optimization process is directly used

fo calculate the récognition rate on the test set. When each of the R evolved classifiers C,- is

projected over the test set, the performance without any validation is obtained for each

evolved classifier C,- for i=l,...,R. Each ofthe R solufions may over-fit its corresponding

optimization data. To identify when the over-fitfing is produced and to control if, we

implemented the global validation procédure.

As indicated in Section 5.3.3, global validation requires that for each génération and each

feature, the individuals (evolved functions) of the population are projected onto the

validation data set and then the auxiliary archive is updated with the individual with best

performance on validation. This process is mn at the same time that the optimization process.

Global validation procédure was described in Section 5.1.3.

In the end, two evolved individuals are retained: the best individual generated in optimization

and the best individual obtained with the global validation procédure. The latter procédure

identifies the best individual in validation and the auxiliary archive contains information

about the time (which means the feature and génération numbers) when this individual was

included in the auxiliary archive S. From this moment, no further improvement is achieved.

162

so the évolution can be stopped at this point preventing the évolution from over-fit the

optimization data set. If the best individual in the optimization is compared to the best

individual in validafion, we defect the occurrence of over-fifting. Comparing the numbers of

feature and génération in the auxiliary file against the number of features used in the

évolution we can identify if the stopping criterion used in optimization was placed at the

right point or, it has already over-fitted optimization data set. See additional détails in Section

5.3.6. The best individual found in optimization (over-fitted solution) and the best individual

found with the global validation process are used to calculate the performance of the evolved

classifier C,- on the test set and perceive the différence when using global validation.

The analysis to make in this case is to compare the récognition rates of each evolved

classifier C/ without validation process (evolved classifier C,- obtained with optimization and

projected on the test set) and the récognition rate of each evolved classifier C,- obtained with

global validation. This could reveal the ranges in over-fit. See Figure 6.4 above.

Xo X i X 3 X s X\. |

A:-NN

Def_SoloPT<Xo, X],..., Xy.i) =

C y EF,OPT(XO, xi) QEF20PT<X2, xia) 0 EFJOPTIXS, x,a)

Def_SolvAL(Xo, Xi,..., XY.I)=EF,OPT(XO,XI)QEF2VAL(X2, X14)

Rec. Rate (Ci^opr)

Rec. Rate (Ci.yAi)

^-NN

U.
Test

Figure 6.4 Analysis of results of re-engineering process.
Comparison of récognition rates of input RSi against evolved classifier without global
validation Ci.opT ond evolved classifier with global validation CI.VAL

163

In conclusion, it is hoped that each new classifier C,- would be a function of a reduced set of

the 32 raw input features ofthe input classifier RS,- with a récognition rate similar RR(C/) or

sometimes better than RR(RS/).

As mentioned below, the evolufion process of a classifier RS,- for i^l,..., R is repeated for ail

R classifiers considered. It is important to note that although the process fo evolve each ofthe

R classifiers RS,-, /=/, ...,R is the same, the input feature set used during the évolution ofthe

GP algorithm is différent (a différent terminal set as shown in Figure 6.2).

6.2.3 Combinatio n o f re-engineered bas e classifier s

Once the évolution process is done and the global validafion procédure has been applied, the

set of re-engineered base classifiers can be combined to produce the ensemble. As mentioned

in Section 3.3, there are différent combination functions. We use simple majority vote. A

variant, called weighted majority vote is also used. The weight is defined as the récognition

rate of each evolved the classifier that takes part in the ensemble.

Initially, the ensemble is composed of R classifiers that hâve evolved independently. Each

evolved classifier created by the global validation procédure Ci.yAi for i=l,...,R is applied to

the test data set. In order to décide the class of each sample of this data set, every C,.K/II gives

ifs vote and the ensemble décision is taken by majority vote. It means that the class which

receives the most of the votes is assigned to the tested sample. Ties are randomly decided for

one ofthe participants. After applying it to the whole test set, the final récognition rate ofthe

ensemble is calculated. The procédure is shown in Figure 6.5.

X() X] X 3 X s Xy. i

RS . ^

\] \2 X 4 Xf e \\.2

RS2

RS

^

RSs 1 ^

« ^

GP

GP

GP

GP

Test

Ensemble of
Evolved Classifiers

164

Figure 6.5 Feature création for ensembles.

Random subspaces RSi are inputs to Bot 's algorithm, based on GP, which produces evolved
classifiers Ci (also called re-engineered classifiers). Each classifier has been built
independently. They are put together to generate the ensemble, using a combination by
majority vote on the test set.

The whole process can be summarized as follows: initially an ensemble of A-NN classifiers is

built using the RS method. This method is applied in the context of a problem of isolated

handwritten digit recognifion and it was developed in (Tremblay, 2004). The ensemble is

optimized by searching the best ensembles (with fewer base classifiers and recognifion rates

similar or higher than the original ensemble of 100 A-NN classifiers) via GA. We take one of

thèse ensembles and applied a re-engineering process to each base classifier, noted as RS,- for

i=l.....R. The re-engineering process consists in applying Bot's procédure individually to

each input RSi. Bot's method is based on GP and it créâtes a set of evolved features as

function of the raw features composing each RSj. The evolved features are noted as C„

i=l.....R. By means ofthe global validafion procédure incorporated to Bot's method, the

165

evolved feature controls the over-fitting phenomenon. Afterwards, the evolved classifiers C,.

VAL, i^l,...,R found with the global validafion procédure are applied to the test data set.

Décision ofthe ensemble is taken by majority vote.

6.3 Expérimenta l protoco l - Featur e création for ensemble s

This section describes the experiments developed to generate ensembles of classifiers. Base

classifiers are represented as evolved features generated by Bot's method that uses GP as

evolutionary mechanism. To test our ensemble création method, we hâve applied it to the

problem of isolated handwritten digit récognition, using the data set NIST SD19.

In the first subsecfion we briefly présent the NIST SD19 data set, ifs description as a vector

of 132 raw characteristics and how the data is partitioned info the four disjoint blocks for

optimization, training, validation and test. Then, the préparations to be done before evolving

each base classifier are detailed in the second subsection. In the third subsection, we make an

overview ofthe tests to mn. Finally, the results are presented and analyzed in the fourth sub­

section.

6.3.1 NIS T SD19 database description an d usag e

Feature création for ensembles is used for an applicafion of isolated handwritten digits

classification. Images of isolated handwritten digits come from the data set NIST-SD19.

Digits from 0 to 9 are considered to produce a pattem recognifion classification problem of

10 classes. Différent features are extracted from the original images to produce a

representafion as a vector. Each élément of the vector codes the value of a feature extracted

from the image. Following sub-sections explains how the vector of features is created and the

use of NIST-SDI9 segments to conform the data sets required for creating GP-based features

for ensembles.

166

6.3.1.1 Featur e se t

The initial descripfion of an isolated handwritten digit is made by a fixed size vector of 132

components, proposed by Oliveira et al. (Oliveira et ai, 2002). Vector components include

concavity and contour measurements. Digit image is divided into 6 zones as shown in Figure

6.6(a) (taken from (Oliveira et ai, 2003a)). Concavity measurements intend to find what

surrounds each pixel in the image and contour measurements extract information about slant

and number of points of borders. Concavity measurements provide 78 features as follows: the

image is divided in 6 zones and each one is characterized by 13 features, then 6x13=78. Each

set of 13 features contains information about number of black pixels in spécifie directions or

a combination. Directions used are: 4-Freeman and four auxiliary directions Si, S2, S3 and S4

as shown in Figure 6.6(b) taken from (Oliveira et ai, 2003a).

2

0 . 1

2

1 . 2

2

2 . 3

2

3 . 0

3

0

3

1

3

2

3
1
3

4

—

4
1

s ,

4

s .

4

S-.

4

s..

O 6 T
(b)

8 10

O
A

L - ^
3 -

(C)

2
(cl)

11 12

Figure 6.6 Concavity measures for NIST-SDI9 samples (Oliveira et al., 2003a).

Concavity measurements: (a) Concavities, (b) feature vector, (c) auxiliary directions.
and (d) 4-Freeman directions

167

Contour measurements extract information about slant and number of points of borders.

Figure 6.7(a) présents contour from digit 5. One of the 6 zones is expanded in this figure

taken from (Oliveira et ai, 2003a). Histogram of each of the 8-Freeman directions is

recorded in a vector as shown in Figure 6.7(b). As a resuit, there are 48 features (8 directions

and 6 zones). Values are normalized in a range 0 to 1. In addition, another feature counts the

number of pixels in each zone and is normalized between 0 and 1. This part générâtes 6 new

features.

In total a digit image is initially represented by 132 features:

78 concavity features + 54 concavity features

V J \ J
"V" "V"

6 zones * 13 feat each zone + (8 direct. * 6 z.) + 6 feat

= 13 2 features

(a)

0 2 4 4 3 4
0 1 2 3 4 5

5 1
6 7

(b)

Figure 6.7 Contour measures for NIST-SDI9 samples (Oliveira et al, 2003a).

Contour measurements: (a) Contour image and zone expanded, (b) feature vector, (c) 8-
Freeman directions

Figure 6.8 présents an example of images of isolated handwritten digits extracted from NIST-

SD19.

168

O O O C?
/ / / /

o û o ^ £7 ô
/ / / / / i

^ 2 ^c^^-i i. ^ -^ ^
3 ^ e> 3 3 ^ S ^ 3 3
^^t/cf^i^^H"^ H
. ^ jT i - ^
O é> ^ ^
7 7 7 7

S^fS^ S
.f 9 ^ f

i £ s . ^ j ' ^
^ ^ à' ^ é '
7 7-^"^ 7 T
^ ^ s e g^ 9
^ c, c, ^ <f Cf

Figure 6.8 Example of digit images from NIST-SDI9 database

A vector of 132 features is extracted from each pre-processed image to bidld the initial
représentation.

6.3.1.2 Databas e description an d usage

NIST SD-19 database contains images of digits from 0 to 9, extracted from eight handwritten

sample form (hsf) séries. It was originally divided in three sets: hsf-{0123}, hsf-7 and hsf-4.

The first set hsf-{0123} contains 195000 examples, hsf-7 contains 60089 examples and hsf-4

contains 58646 examples.

To evolve each base classifier we use the projection ofthe data over a spécifie RS as input, in

the same way as defined in (Tremblay, 2004). So, we show the partitions as used in

(Tremblay, 2004) and therefore we can compare the results. According to (Tremblay, 2004),

the best EoC was chosen by means of a stochasfic search guided by a single or multi-

objective GA with performance as the objective function (for multi objecfive GA an

additional objective is used, for instance cardinality or a measure of diversity). The training

phase in this case, used 5000 examples from hsf-{0123}. During the optimization process,

différent ensembles were obtained. This phase was carried out with 10000 examples coming

169

from hsf-{0123}. To choose the best ensemble, a validation data set of 10000 examples also

coming from hsf-{0123} was used. Finally, performance ofthe best ensemble selected was

measured with a test dataset. For this phase, datasets hsf-7 and hsf-4 were used. It is worth to

mention that the subsets from hsf-{0123} used for training, optimization and validation are

disjoint one to the others.

We use the same partition of NIST-SD19data as in (Tremblay, 2004), which is presented in

Table 6.2. Training of A-NN and GP algorithm will use the first 5000 examples from hsf-

{0123}. Optimization process to find the best evolved individual for each classifier ofthe

best ensemble will be implemented by using the same 10000 examples coming from hsf-

{0123} that were used during optimization ofthe sélection of ensembles: examples 50001-

60000. Global validation strategy will be deployed by using the same lOOOO examples from

hsf-{0123} that were used during validation ofthe sélection of ensembles (examples 60001-

70000). Finally, test of the performance of the created features for the selected ensemble will

use datasets hsf-7. In this way performance obtained with the feature constmcfion can be

compared to values obtained in the sélection process.

Table 6.2

Différent data sets to be used during feature constmction for ensembles

Partition ofNIST-SD19

Description

Training dataset: hsf-{0123}

Optimizafion dataset: hsf-{0123}

Validation dataset: hsf-{0123}

Test data set I : hsf-7

Quantity

5,000

10,000

10,000

60,089

Range

hsf-{0I23}:l-5000

hsf-{0123}:50001-60000

hsf-{0123 }:60001-70000

hsf-7: 1-60,089

170

6.3.2 Préparation s before evolvin g a base classifie r

The ensemble création technique used evolves each base classifier independently and

combines them using majority vote as a fusion mechanism. The procédure of evolving each

base classifier was referred as re-engineering of base classifiers and it consists in generating

successive evolved features according to Bot's method which uses a GP algorithm as

evolutionary technique.

In the expérimental protocol in Section 4.4, the fitness measure of individuals in the

population was measured in two différent ways: récognition rate of a classifier (A-NN or

MDM) or the inter-class scatter over the intra-class scatter using the Fischer criterion. Results

showed that performance values are very close practically in ail cases. Even though, there is

a considérable différence in the computation time required to calculate the fitness with a A-

NN and a MDM classifier. Therefore, we choose a MDM classifier to be used during the

evolutionary searching phase and qualify the evolved features with both classifiers (A-NN

and MDM) when testing the selected (validated) solutions. It is worth to mention that

solutions when mapped onto the validation set are also measured with MDM classifier. As

commented in Section 4.4.2.1, MDM classifier does not require any parameter to be set in

advance. For the A-NN classifier case, we use A=l as default value and increase it to U to

résolve fies in the testing phase.

Results from Section 5.1 show that setting optimal GP parameters is a monumental task and

we could not find an optimal cross-over and mutation probabilities pair applicable to four

différent data sets from UCI repository tested. Différent works agrée on this and emphasize

that if is more practical to set GP parameters within feasible ranges (Femândez et ai, 2003;

Koza, 1992). We hâve used a cross-over probability of 0.9 and individual mutation

probability of 0.08. This combination showed to generate results that are better than the

average in our analysis of four différent data sets from UCI repository (see Section 5.1.1).

Table 6.3 reviews the settings used for the GP mns. Other GP parameter values (see Table

4.4) hâve been set to Open BEAGLE default values.

171

Evolution of classifiers is carried out for 32 features, and 11 générations (10 générations plus

the initial random génération). The maximum number of features Max_NbJ'eatures was

established by looking the performance of the resulting evolved classifier. We tested this

parameter for 5, 10, 16 and 32 features. Performance for 5 and 10 features was poorer than

the original RS. Performance for 16 features was similar to the original RS only in a few

cases and was lower in the other cases. At 32 features, the récognition rate of evolved

classifiers was consistently similar or higher than this ofthe original RS. We also tested 48

features and its performance was not so différent than in the case of 32 features. In contrast,

the additional computation time made it not practical. An evolving classifier is built by

splitting the population between three islands that evolve at the same time and interchange

some individuals as described in Section 5.2. Each ofthe three islands has a population of 30

individuals and 2 individuals migrate every two générations to ail other islands (in total 4

migrants go to other islands and it receives 4 individuals from the neighbouring islands).

Migrant individuals are randomly selected and individuals replaced in the receiving island

are also randomly selected. This prevents from exercising a big sélection pressure that could

speed up the evolufion at expense of a possible prématuré convergence as suggested in

(Whitley et ai. 1999; Skolicki and De Jong, 2005).

In the function set, the functions sinus, cosines, logarithm and exponential hâve been added.

Thèse unary fùncfions require only one terminal élément as input and can be useful fo reduce

the size of the individuals. They hâve already used in the experiments in Chapter 5 (see

Figure 5.4).

172

Table 6.3

GP related parameters for evolving classifiers

Objective

Terminal set

Function set

Fitness
measure

Raw fitness

Parameters

Success
predicate

To find out the minimal number of mathematical expressions that
maximize récognition rate on optimization data set
32 variables within the set { (x/,...^Vç,...^/i^), ephemeral random
constant}, depending on the raw features included in each base classifier
created by RS. Variables are normalized according to équation (4.3).
Ephemeral random constants are random floating point constants ranging
from-1.0 to 1.0
{+, -, *, /, exp, log, sin, cos}. Division (f) refers to protected division to
avoid division by zéro
A classifier that maps the last evolved mathematical expression in
conjunction with previous evolved mathematical expressions into any of
the dataset classes by using the optimization data set. Penalty according to
tree size decreases the fitness measure.
Global Validation: Evolved individuals are mapped into the validation set
for each feature and each génération. Penalty also used.
The number of optimization samples correctly classified
Population size
Number of générations
Sélection
Cross-over probability (individual)
Mutation probability (individual)
Création Initial population
Maximum tree depth
Replacement mechanism
Elifism

90 in total (30 each island)
11
Toumament sélection 2 individuals
0.9
0.08
Ramped half-and-half
17
Steady -state
Keep one individual

Trees' Individual représentation with classification rate equal to 99.99%
(over validation data set). Success does not stop évolution.

6.3.3 General description o f experiments t o run

The ensemble feature création method is tested from two différent perspectives. In the first

one, we choose base classifiers with différent performance and combine them to create the

ensemble. The criterion in this case is focused on base classifiers with very différent

performance rates: from the worst to the best and then building the ensemble. The analysis of

results in this case will indicate whether the feature création for ensembles method is useful

173

or not: the performance of the ensemble is better than its components even though we use

base classifiers with poor performance. In the second approach, we use the base classifiers

that compose an EoC selected by a G A (single or multi-objective) used to maximize the

récognition rate of the ensemble (in the single GA case) or to minimize at the same time, the

error rate and the cardinality (multi-objective GA). In this case, the référence is the ensemble

performance and not their component performance. Results from the latter approach will

show if the ensembles created based on evolved classifiers bring advantages compared to

ensembles built with ^-NN classifiers applied to raw RS.

6.3.3.1 Sélectio n of base classifiers with différent performance s

From an initial pool of 100 base classifiers we selected 9 based on the récognition rate in the

optimization data set. The nine selected classifiers are used to build the ensemble. Initially

we explain how the classifiers were selected and then we explain how the ensemble was

built. Figure 6.9 shows the diagram ofthe sélection process of base classifiers.

/" B is e \
VçlassrfierJL/

^ Bas e
Vclassifierj-1

D /' Bas e
V classifie r i

(^^ ^ Vclassl f ier i+v

Base
classifier 10 0

^

(^RS28^

(^RSOS^

(' R S 0 4 ^

("RSSS^

(' R S 6 2 ^

= ^ >

-\

J

>
->

^

Classifier wit h
Worst Re c rat e

Random sélection of 3
base classifier s

(low to middie re c rate)

Random Sélection of
one base classifie r
Average Re c rat e

Random sélection of 3
base classifier s

(mid t o high rec rate)

Classifier with
Best Rec rat e

Initial pool of 10C
Base classifiers
(/(-NN generateo

byRS)

Ranked
Base classifiers
by Rec Rate in

OPT

Random Selectio r
of

Base classifier s

Base
classifiers

choser

Figure 6.9 Diagram of sélection ofbase classifiers with différent performances.

174

In order to ensure that the selected base classifiers hâve récognition rates that tmly represent

the whole initial pool the process is not fùlly random. The sélecfion process has three steps

(see Figure 6.9). In the first step, the classifiers in the pool are ranked according to the

récognition rate in the optimization data set. From the ranked set, we sdect the worst and the

best base classifiers as part of the second step. They correspond to RS28 and RS62 with

recognifion rates of 82.9% and 91.49% respecfively. Then we sdect one base classifier with

a recognifion rate close to the médian value. To do that we choose 5 base classifiers around

the médian and we randomly sélect one from thèse five classifiers. And the third step is as

follows: from the base classifiers in the range from low to middie récognition rates, we

randomly selected three. In the same way we randomly selected other three classifiers from

the range of middie to high récognition rates. Each range has been indicated by a curly

bracket in Figure 6.9. In this way we ensure that the selected base classifiers hâve really

différent récognition rates that represent the whole range.

Rec. rate in OPT-Pool of 100k-NN

ITITZ minï Minrn i nii i

1 6 1 1 16 21 26 3 1 36 4 1 46 5 1 56 6 1 6 6 7 1 76 6 1 66 9 1 9 6

Base Classifie r Numbe r (RSI)

R
at

e
(%

)
R

ec
.

Ranked Base Classifiers

r\à

(-10

90 J

^^_^^_-gj|j|j|| 1
-.méû 1 I II 1 I II 1 "̂ il II II Mil °̂ llll 1 1 III 1 III 1 78 liiiiiiinnmniiiiniiiniii

r^'P ^ ^ <S> <è^ ^ ^ <§> ^ i

Number of Base classifier

^. J \ 1 \. J
V r Y

3 class. 1 class. 3 class.

Worst

(a) (b)

Figure 6.10 Ranges of sélection ofbase classifiers with différent récognition rates.

Best

175

Figure 6.10(a) shows the initial pool ofbase classifiers with the récognition rate and Figure

6.10(b) indicates approximately the ranges of sélecfion ofbase classifiers and also the base

classifiers with worst and best récognition rate. The selected base classifiers from worst to

best in the optimizafion data set are: RS28, RS02, RS29, RS86, RS04, RS71, RS07, RSI4

and RS62 (see Figure 6.9).

Each base classifier RS,- for i=l,..., R, with R=9, is evolved by splitting the populafion into

three islands, using Bot's method for 32 features. Evolved classifiers C, are combined feature

by feature using majority vote as fusion function. As the island method générâtes solutions

for each island, we can build an intermediate ensemble with the three islands of each evolved

classifier, named Ensemble of Island Classifier / and noted as EoIC,. Thereafter, we combine

the R EoIC, for /=1,. . . , R to generate the final ensemble of evolved classifiers EoC. In the

other hand, we can combine altogether the 3*R evolved classifiers to generate the final EoC.

In the last case, each evolved island is considered as a component of the final ensemble.

Section 6.3.4 présents the results for those two cases and the analysis.

The following experiments hâve been mn: Nine base classifiers hâve been evolved based on

Bot's algorithm using the Island method. An intermediate ensemble of island classifiers is

created as solution for each base classifier. In total, 9 intermediate ensembles are created

(EoIC,, with for /=1,. . . , R^9). Thereafter, the final ensemble is generated (EoC) with nine

component ensembles. In the second approach, évolution of base classifiers based on island

method créâtes 9*3=27 evolved classifiers that are combined to generate the final ensemble.

In both cases, décision of the final ensemble is taken by majority vote feature by feature. If

means that the components of the ensemble vote to take the décision about the first evolved

feature of the ensemble, then about the second evolved feature and so on until the last

evolved feature (32). As based in Bot's algorithm, recognifion rate ofthe ensemble grows as

new features are included in the ensemble. Thus allows us fo establish a number of required

evolved features to attain a recognifion rate level.

176

6.3.3.2 Sélection of an ensemble of base classifiers

In this case, we start with an already built ensemble and we rebuild it, this time with evolved

classifiers. Tremblay used single GA and NSGA-II to search the best sub-ensemble from a

pool of 100 k-NN created with RS (Tremblay, 2004, Dos Santos et ai, 2006). The sub­

ensembles built with single GA, hâve an average of 40 classifiers (Tremblay, 2004). As

mentioned before, our process of evolving base classifiers is very consuming in fime and

resources, so we look for an ensemble of acceptable récognition rate but with a minimum

number ofbase classifiers. When the searching algorithm NSGA-II uses récognition rate and

a diversity measure (coïncident) as objectives, the cardinality of some of the resulting

ensembles is about 7 or less, which is appropriate for our purposes. Consequently, we décide

to use ensembles with thèse searching criteria. The complète procédure is as follows: from an

initial pool of 100 k-NN created with RS, NSGA-II searches for sub-ensembles with

récognition rate and coïncident diversity measure as objectives and we take the best set of

solufions in validation (Pareto front). That gives us a set of ensembles. Then, a sélection of a

single ensemble is mn in three phases as presented in Figure 6.11. In the first phase, we take

the 14 booked ensembles with cardinality less than 5 classifiers: we obtain 14 différent

ensembles. In the second sélection phase, we analyze the frequency of occurrence of the

classifiers within the ensembles. Four classifiers (RS96, RS90, RS72 and RS43) appeared in

11 of the booked ensembles. Finally, in the third phase, we randomly sélect one ensemble

from the subset of 11 ensembles that contain at least three of the most frequently used

classifiers. Figure 6.11 shows a diagram of this procédure and the outcomes at each stage.

The final selected ensemble was composed by RS43, RS91, RS95, RS96 and RS90. This

ensemble has a récognition rate of 94.68% in optimization and 95.06% in test.

In order to build the evolved ensemble we hâve to evolve each base classifier and then

combine them using majority vote. In the previous section, we built the ensemble combining

the votes feature by feature. Since over-fitting can appear at différent points through the

évolution, the ensemble of evolved classifiers combined feature by feature could suffer from

over-fitfing even using the global validation procédure.

Initial pool of
10C Base classifier s

(/(-NN generated
byRS)

f Bas e classifier

Base classifier 2

Base classifier 3

(Base classifier 10 0 j

^

NSGA-II
(Rec rat e and

Diversity
measure

(coincideni)

^

Sélection

Select
ensemble

cardinality < 5

14
ensembles

\ 7

Analysis
Frequency et

Occurrence RS

1'
ensembles

\ 7

Random sélection

^

>

J

•>

>

J

~\

>

J

177

Ensemble

Ensemble

Ensemble

Ensemble 1

i

1

14

•

•

Ensemble 1 '

Ensemble 3
Ensemble

Ensemble 1

Selected
Ensemble

(̂ RS4 3 ^

RS90

RS91

RS95

(̂ RS9 6 ^

Figure 6.11 Diagram of sélection of already defined ensembles.

To avoid this potenfial situation, we use a différent approach in this case. For each of the

evolving classifiers that compose the ensemble, we look for the last feature where solufions

do not over-fit the optimization data. Therefore, the number of features of each evolved

classifier can be différent. For instance, suppose that the ensemble is composed of two

classifiers (Ci and C2), Ci uses 17 features and C2 uses 23 features. The resulting ensemble

will combine the solutions and votes at the corresponding number of features. The number of

evolved features to use by each classifier is automatically discovered by means of the

auxiliary archive generated along the global validation procédure and they can be identified

as the earliest feature at which no further improvement in performance on the validation data

set is produced. Since évolution is based on island method, the mentioned stopping point is

178

searched for every island. Therefore, each evolved classifier to use in the ensemble will be

described by the solufion up to the stopping feature and the corresponding votes at this point.

Building the ensemble consists in combining the votes ofthe evolved classifiers as described

before. It means that evolved classifiers can hâve différent number of features, taking the

better of each one and ensuring that the ensemble (combination of evolved classifiers) is a

fusion of non over-fitted déments. As a resuit, the ensemble solufions would generalize

better.

The following experiments hâve been mn: each of the base classifier hâve been evolved

based on Bot's algorithm using the island method. For each evolved classifier we find the

stopping feature based on the auxiliary archive. The final ensemble (EoC) is generated with

ail evolved classifiers. Différent criterion can be used to combine the evolved classifiers. In a

first step we combine the best island from each evolved classifier. Best Island means the

island with highest récognition rate in validafion. In cases of récognition rate ties, the island

with the minimum number of features is then chosen. In a second step, we can take the

solutions coming from every island. In addition, we test a weighted majority vote, where the

weight of each classifier and island corresponds to its récognition rate. This is applicable

when considering ail three islands.

Results are compared to the récognition rates of the ensembles built when using k-NN

classifiers generated with ail features from RS. Following section présents the results ofthe

experiments mentioned hère with the analysis of results.

6.3.4 Constructio n o f ensembles with base classifiers o f différent performance s

6.3.4.1 Methodolog y

The base classifiers were originally built (Tremblay, 2004) as k-NN (with ^ 1) that use as

data the projection of the data set onto the spécifie RS. So, we note the original base

classifiers as RS28 to simplify the notation. From the worst to the best récognition rate in

179

optimization the base classifiers used were: RS28, RS02, RS29, RS86, RS04, RS7I, RS07,

RSI4 and RS62. Each one was evolved with Bot's algorithm and applying the island model

with the parameters indicated in Section 6.3.2 and Table 6.3 and Table 4.4 (additional

parameters). The set of three islands create an intermediate ensemble EoIC,, where index

/=I,..., R refers to the number of evolved classifiers that will compose the final ensemble.

Combination of ail three islands, by majority vote on test set, produces a récognition rate

curve as displayed in Figure 6.12 which présents the diagram ofthe intermediate ensemble

génération and then the final décision ofthe ensemble.

l classilie i 1 J ^ ^ ^ ^

f^ Bas e \ n ^ ^

l cTassilie i 9 J ^^^W

Island 3
Island 2

Island

EoIC,

EoIC;

EoIC

EoICe

E0IC9

Fina
Ensemble
décision

a. *

EF

Figure 6.12 Diagram of Intermediate Ensemble and final ensemble.
Intermediate ensembles EoICi are built with the vote ofeach island for every feature. Then

each EoICi 's vote is combined feature by feature to generate the final ensemble décision

6.3.4.2 Créatio n of evolved classifiers EoIC

Figure 6.13 shows how the récognition rate in optimization and test varies as the number of

evolved features increases, for each island. In addition, it shows the récognition rate of the

raw RS with I-NN classifier as two horizontal lines.

180

f^ec. rat e OPT and IHS T islands arv l its combinatio n

0PT-RS86 Islan d 1
TEST- RSee Isian d 1
OPT • RSae Islan d 2
TEST- RSee Isian d 2
OPT-RS86 Island s
TEST- RSee Isian d 3
Vole-lsland-RSee

Test 1-NN=8 0 17%
OPT 1-NN=e7.35%

10 1 5 2 0
Number ot Evolved Features

(a) Evolution of random subspace RS86.

Rec rat e OPT arxj TEST islands an d its combinatio n

, , t t-*--*rJ '—' -

Test 1-N N = 88 87% 1
OPT 1-N N = 8 6 27"/. |

OPT RS02 Islan d 1
TEST RS02 Island 1
OPT RS02 Islan d 2
TEST RS02 Island 2

- OP T RS02 Islan d 3
TESTRS02 Islan d 3

— • — Vote-lslan d RS02

10 1 5 2 0
Number of EvoKed Features

(c) Evolution of random subspace RS02.

Rec rat e OPT and TEST Islands af> d its combinatio n

JJ^U-^-LJ^AA

OPT RS1 4 Isian d 1
TESTRS14 islan d 1
OPT RS1 4 Islan d 2
TESTRS14 islan d 2
OPT R$1 4 Islan d 3
TESTRS14 Isian d 3
Vole-lsland-RS14

— Tos l 1-N N = 90.99%
— OP T 1-NN = 90-38%

10 1 5 2 0
Number of Ewl\<8d Features

(b) Evolution of random subspace RSI 4.

Rec rat e OPT and TEST islands an d its combinatio n

OPT RSe 2 Islan d 1
TESTRS62 Islan d 1
OPT RS6 2 Isian d 2
TEST RS62 Isian d 2

-OPT RSe 2 Isian d 2
- TEST RSe2 island s

— t — Voto-island-RS6 2

• Tes t 1-N N = 02 48%
• OP T 1-NN = 9 1 49 %

10 1 5 2 0
Number o (E\ol\«d Feature s

(d) Evolution of random subspace RS62.

Figure 6.13 Récognition rate for différent EoICi (RS86, RSI4, RS02 and RS62).

Récognition rate for every island and for the ensemble of islands by majority vote (test set).
Récognition rate on the optimization (in blue) and on the test (in red) sets for each island of

the System. Results from intermediate ensemble of islands EoICi shown in magenta color.
Results are compared to récognition rate on optimization and test when using raw random

subspaces and I-NN

The solid line represents the récognition rate in test and the dash-dotted line represents in

optimization. Combinafion of ail three islands, by majority vote on test set, produces a

récognition rate curve displayed in magenta color. Récognition rate attained at each feature is

indicated by a start marker also in magenta color. In particular. Figure 6.13(a) shows the

results ofthe evolved RS86, (b) shows results for RSI 4, (c) shows results for RS02 and (d)

shows results for RS62. It can be seen that the résultant récognition rate of the intermediate

181

ensemble EoIC/ (magenta color) is higher than the récognition rates of each island

considered independently. As shown in the magenta color curves of Figure 6.13, as the

number of evolved features increases, the récognition rate of the intermediate ensemble

EoIC/ also improves. In Figure 6.13 (a), the intermediate ensemble EoIC.̂ reaches the same

récognition rate level ofthe raw RS at about 15 evolved features. Similar results are obtained

for the other intermediate ensembles (EoIC/, /=/,..,9). One interesting case is RSI4 (see

Figure 6.13(b)), in which two out of three islands, noted as island-1 and island-2, hâve

considérable worse performance than island-3. But, performance of the intermediate

ensemble EoIC; is better than island-3 alone. This can be conséquence of the exploration of

différent régions ofthe searching space by each island and the diversity created by the island

method. Notwithstanding the low récognition rates of island-1 and island-2, they hâve

additional information that produces an increase in récognition rate when they participate in

the vote décision ofthe intermediate ensemble EoIC/.

A close look to the curves in Figure 6.13 shows that the récognition rate of individual islands

is below 50% for features between 1 to 3-5, so the ensemble combination does not generate

an improvement. This outcome agrées to one of the requirements of individual classifiers in

order fo get ensembles with better performance, as indicated in (Dietterich, 2000; Ho, 1998a)

Table 6.4 présents the results of the evolved RS for each island ensemble. We include the

récognition rate values when the solutions selected in validation are evaluated with the test

data set, the average number of evolved features in thèse solufions and the récognition rate

obtained when using raw RS with 1-NN classifiers. Since the evolufion is made for 32

features, we take the evolved features as the number where the récognition is maximal in the

validation set. The results in the test set are similar in the two cases. The improvement in our

strategy can be due to the use of the island ensemble. The results in validation and test for

each island are shown in in Armex VI.

182

Table 6.4

Comparison of récognition rate and standard deviafion on test set for
raw RS with 7-NN classifiers and evolved classifiers

RS

RS02

RS04

RS07

RS14

RS28

RS29

RS62

RS7I

RS86

Rec. Rate (%)

Evolved

classifiers

TEST

88.08±1.29

9I.61±1.85

92.50±1.62

9I.00±2.25

88.08±1.29

87.68±2.I5

93.28±1.89

90.67±1.53

90.64±1.40

#Fave

23.2±1.29

22.9±2.85

23.2±2.14

20.4±3.53

23.2±1.29

21.2±2.15

21.7±2.85

21.8±2.88

24.5±3.53

Rec. Rate (%)

TEST

Raw RS with

1-NN

88.87

89.28

91.40

90.99

85.71

87.85

92.48

89.88

90.17

Once ail the classifiers hâve been evolved, they can be combined to generate the ensemble.

In this opportunity, we hâve created intermediate ensembles of islands EoIC/ where /=1,...,

R, with R=9. The nine intermediate ensembles are generated from the random subspaces

RS28, RS02, RS29, RS86, RS04, RS7I, RS07, RSI4 and RS62. hitermediate ensembles

EoIC/ will be added one by one, starting from the worst EoICy generated from RS28 until the

best intermediate ensemble EoICp generated from RS62. Ail nine will compose the final

ensemble of evolved classifiers. Final ensembles are also created feature by feature.

Figure 6.14 shows différent steps in the création of the final ensemble: (a) with three

intermediate ensembles, (b) with four, (c) with seven and (d) with ail nine intermediate

ensembles.

183

Rec. rat e Independen t R S and Ensemble

10 1 5 2 0
Number of Ewlwd Feature s

(a) Ensemble generated with three
intermediate ensembles from RS28, RS02
and RS29. Récognition rate of the same
ensemble using 1-NN is 91.77%. meanwhile
the maximum obtained hère is 90.507% with
20 evolved features.

Rec rat e Independent R S and Ensemble

10 1 5 2 0 2 5
Number of Ewl\ed Features

(c) Ensemble generated with seven
intermediate ensembles. Récognition rate of
the same ensemble using 1-NN is 95.16%
meanwhile the maximum obtained hère is
95.55% with 21 evolved features.

Rec rat e Irnlependen t R S and Ensembl e

10 1 5 2 0
Number o t Ewlwd Feature s

(b) Ensemble generated with four
intermediate ensembles from RS28. RS02,
RS29 and RS86. Récognition rate of the
same ensemble using I-NN is 93.20%,
meanwhile the maximum obtained hère is
92.27% with 22 evolved features.

r^c rat e lnder}enden t R S an d Ensemble

i . . « « > I < > t »-«- » « « > , . > t t » » . .

-e -&<r©- t i

- o TEST-Eol(RS28)
- ô — TEST-Eol(RS02)

-S—TEST-Eol(RS29)
>' TEST-Eol(RSe6)

- S — TEST-£ol(RS04)
TEST-Eol(RS71)

•e- TEST-Eol(RS07)
-0~TEST-Eol(RS14)
- e — TEST-Eol(RS62)

• Vote-Ensembl e

Test Ensembl e of Raw RSs = 05 57%

10 1 5 2 0
Numtier o f E\ol\«d Feature s

(d) Ensemble generated with ail nine
intermediate ensembles. Récognition rate of
the same ensemble using I-NN is 95.57%
meanwhile the maximum obtained hère is
96.14% with only 21 evolved features.

Figure 6.14 Récognition rate for ensemble of evolved classifiers

Curves in Figure 6.14 show the récognition rate of some of the ensembles created. Each

figure includes the récognition rate of the déments of the ensemble and the récognition rate

of the generated ensemble and the récognition rate of the référence ensemble (created with

184

raw RSs). The curve of the ensemble is displayed as a thick line in magenta color and the

other lines correspond to the déments of the ensemble. Recognifion rates are calculated on

the test dataset and are indicated for each feature with star markers.

Figure 6.14 shows that the récognition rate of the ensemble is improved in comparison to

individual evolved classifiers. When the number of evolved features is small (1 to 3),

recognifion rate of individual evolved classifiers is well below 50% and the résultant

ensemble (for thèse small number of features) hâve a worse performance than its

components. As récognition rates of individual classifiers increase along with the number of

features, the corresponding performance of the ensemble improves and, in some cases, in a

considérable amount. It is worth to mention that RS selected were taken fo hâve différent

level of performance in optimizafion, from the worst to the best and taking as well some RS

with performance in between the previous limits. Therefore, no diversity considération was

taken into account in this sélection. As a resuit, EoC that hâve high individual récognition

rates could generate ensembles with récognition rate that are very close to that of its

déments.

Figure 6.14(a) and (b) show that ensembles of three or four evolved classifiers generate

incréments in récognition rate but they are not quite large. Moreover, we can say that the

ensemble "follows" the récognition rate of the best classifier. Even though, some of the

classifiers of the ensemble hâve a very low recognifion rate, performance of the ensemble is

not deteriorated with respect to the best classifier. Some degree of diversity between différent

RS could explain this resuit. In the other hand, when intermediate ensembles with high

performance are part of the ensemble, récognition rates are significanfly increased as shown

in

Figure 6.14(c) and (d). Parts (c) and (d), show that performance ofthe ensemble for features

greater than 10 does not augment appreciably. But the most appealing point is that

ensembles achieve a high performance with a few evolved features: it is enough to use 10-12

evolved features.

185

Table 6.5

Récognition rate on Test set for différent EoC(l-NN) and average récognition rate
and standard deviafion for ensembles of evolved classifiers, including cardinality

Ensembles and their bas e

classifiers

RS28, RS02

RS28, RS02, RS29

RS28, RS02, RS29, RS86

RS28, RS02, RS29, RS86,

RS04

RS28, RS02, RS29, RS86,

RS04, RS71

RS28, RS02, RS29, RS86,

RS04, RS71,RS07

RS28, RS02, RS29, RS86,

RS04,RS71,RS07, RS14

RS28, RS02, RS29, RS86,

RS04, RS71,RS07, RS14

and RS62

EoC(I-NN)

Rec. Rate (%)

TEST

86.72

91.77

93.20

94.39

94.54

95.16

95.28

95.57

Gard.

2

3

4

5

6

7

8

9

GP-evolved classifier s

Rec. Rate (%)

TEST

87.64±1.35

90.50±l.52

92.27±1.86

94.52±1.47

94.88±1.36

95.55±1.54

95.86±1.66

96.14±1.29

Evolved

Features

21±2.08

22±1.89

20±3.12

22±2.47

23±2.53

21±2.08

28±2.85

2U2.17

Gard.

6

9

12

15

18

21

24

27

Table 6.5 reviews our results and compares them to ensembles created with raw RS and I-

NN. Small ensembles with three or four déments and 1-NN classifiers perform better than

ensembles of evolved classifiers. As the number of déments of the ensemble increases, the

evolved classifiers produce ensembles with higher performance. The ensembles shown in

Table 6.5 increases one by one the cardinality when the déments are raw RS and increases

by three in the case of ensembles of evolved RS due to the intermediate island ensemble.

Différences in performance are not significant, but the real advantage is the number of

evolved features required fo reach this performance level that are in the range of 19 fo 23. In

case of ensembles of 1-NN classifiers, the whole set of 32 raw features is used. In the

following section there is an analysis ofthe of raw feature utilization.

186

6.3.5 Constructio n o f ensembles with already selected bas e classifier s

6.3.5.1 Methodolog y

In this case, we start with an already selected ensemble of raw RS classifiers and re-build the

ensemble but this time based on evolved classifiers. As explained in Section 6.3.3.2, the

smallest ensemble found is composed by the following classifiers: RS43, RS91, RS95, RS96

and RS90. This ensemble has a récognition rate of 94.68% in optimizafion and 95.06% in

test.

In this subsection we describe différent approaches fo build ensemble of re-engineered

classifiers. Initially we présent the récognition rates and number of features used for each

evolved classifier (and island in it), so we can compare them to the récognition rates of raw

RS and 7-NN classifiers. Building the ensemble consists in combining the votes of the

evolved classifiers with différent number of features, in such a way that the ensemble is a

fusion of non over-fitted éléments, fri the following secfion we show how fo identify the

number of evolved features for each classifier (and island) based on global validafion.

Votes from evolved classifiers can be combined in différent ways to build the ensembles. In

a first step, we combine the best island from each evolved base classifier. The term best

island means the island with highest récognition rate in validation. In cases of récognition

rate ties, the island with the minimum number of features is then chosen. In a second step, we

engender an intermediate or island ensemble. This intermediate ensemble is built with three

evolved classifiers combined with majority vote. The three evolved classifiers correspond to

the solutions from the three islands when evolving each RS. In a third phase, we take ail the

solutions coming from every island and base classifier and combine ail of them to build the

ensemble. The combination funcfion can be simple majority vote (SMV) or weighted

majority vote (WMV), where the weight of each classifier and island corresponds to its

récognition rate. WMV is applicable when considering ail the islands.

187

6.3.5.2 Evolve d Classifiers Ci

Each base classifier was evolved with Bot's algorithm and the island model with the

parameters indicated in Section 6.3.2 and in Table 6.3 and Table 4.4. The dispersion ofthe

récognition rates for each island of the evolved classifiers is presented in the upper part of

Figure 6.15.

A\erage Rec.raie and Number of Features

92

~ 9 0 g.
Q) 88

i5 8 6

1 8 4
82

32

a? 3 1
CD

t î 3 0

i 2 9
z

28

i ? A T
i-

1-1 1- 2 1- 3
RS43

f D U
1

? ï
1
i i
1-1 1- 2 1- 3

90

85

80

75

32

30

28

26

iU

1

-11-21-3
RS91

m
'[

L

'

-11-21-3
RS43 RS9 1

86

84

82

80

78

32

30

28

26

1 i]

J • *

-11-21-3
RS95

: [
L

1

-11-21-3
RS95

88

86

84

82

80

78

32

31

30

29

28

27

II J
T

,
1-11-21-3
RS96

0

1

-

0

r
+
+

1-11-21-3
RS96

90

85

80

75

70

32

31

30

29

28

W

1

1-11-21-3
RS90

m u u

u

-*- H

1-11-21-3
RS90

Figure 6.15 Récognition rate and number of evolved features for each evolved classifier.

The lower part of the figure shows the dispersion of the number of evolved features for each

classifier and island used. Recognifion rate is calculated over the test set. If can be seen that

results are very similar between islands of the same evolved classifier. The number of

evolved features required is close to the 32 raw features. Table 6.6 détails the results by

showing the récognition rate of each evolved classifier (and its islands) in validation and test.

188

Table 6.6

Average recognifion rate and standard déviation in Validafion and Test for evolved RS,
including number of evolved features and comparison against raw RS with 1 -NN

RS

RS43

RS90

RS91

RS95

RS96

Island

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

Rec. rate (%)

VAL

83.I1±I.32

8I.94±4.40

82.44±4.42

85.25±2.05

83.67±3.52

82.2U10.99

79.67±5.02

82.60±0.94

77.61±12.61

73.52±3.17

72.33±3.45

72.47±3.78

75.75±3.48

76.72±1.15

76.45±1.08

Rec. rate (%)

TEST

90.47 ± 0.94

89.85 ±3.08

90.04 ±1.36

90.37 ±1.55

89.94 ± 1.25

89.19 ±6.84

89.71 ± 1.08

89.89 ±0.93

81.11 ±5.06

83.13 ±3.29

89.92 ± 2.04

83.50 ±1.97

85.14 ±2.82

89.94 ± 1.25

89.19 ±6.84

Evolved

Features

31.10±1.52

31.20±1.23

30.00±2.26

31.20±1.23

31.10±0.99

30.10±2.76

31.20±1.62

29.80±2.20

3I.80±0.42

31.80±0.42

30.50±2.37

30.90±2.47

30.60±1.71

30.40±1.84

31.40±0.96

Rec. rate (%)

Raw RS and

1-NN

TEST

90.13

91.56

91.04

84.92

91.56

In addition. Table 6.6 présents the number of evolved features and the récognition rate of raw

RS and 1 -NN classifiers. There is a big différence between récognition rates in validation and

test. Recall that during the évolution (and therefore the validation) the classifier used is an

MDM and in the test phase a k-NN is used. The test récognition rates for each island are

close but inferior to those of raw RS and 1 -NN classifiers. The average number of evolved

features is very high, reflecting the complexity of the classification problem. Each of the

http://82.2U10.99

189

evolved features is a formula ofthe raw features ofthe spécifie RS. In Section 6.3.5.8 we

show an analysis ofthe ufilizafion of raw features for each evolved classifier.

6.3.5.3 Over-fittin g analysi s an d finding th e best solution i n validation

The global validation procédure is used to analyze the impact of over-fitfing on the

optimization ofbase classifiers and to find out the best solution in validafion and apply it to

the test data set. When global validation is applied, we mapped every individual generated

during the évolution into the validation data set and find the best. Figure 6.16 shows this

mapping at the end of the evolufion process (11 generafions for each of the 32 evolved

features) for random subspace RS90. The figure displays the error rate (= 100% - récognition

rate (%)) for each génération and feature. Each point in the population is represented as a red

diamond. In this case there are 32 clouds of points corresponding to 32 evolved features. For

each feature the cloud is more or less wide, according to the individuals' sizes (tree sizes).

This allows us to show the diversity of individuals in the same génération or feature. In each

cloud there is a green diamond that corresponds to the best individual in validation and a

black dot that corresponds to the best individual in optimization mapped into the validafion

data set. Hence we can see that best individuals in optimization are not necessarily the best in

validation. It means that thèse individuals (best in optimization) are not the best individuals

to generalize. The différence in performance between thèse two individuals reflects the

occurrence of over-fitting. The purple ellipse shows the présence of over-fitting for some

evolved features.

Figure 6.17 is a zoom of Figure 6.16 in the ellipse région. We can see that evolved feature 8

has no over-fifting because the best individual in opfimization mapped info validafion (black

spot) is locafed in the same place as the best individual in validation (green diamond); that is,

individuals hâve the same performance and the same tree size. Evolved features 9, 10 and 11

hâve a différent behaviour and the over-fitfing is detected. This is made évident by the

différent location ofthe best individual in validafion and the best in optimization mapped into

validation, as detailed in Figure 6.17.

190

70

60

Er
ro

r r
at

e
ê

S

30

20

10

0
F

- 1

-

-

1

1 •

':

= ! •

H-
9

t
t

i
F3

GP-VAl-RSOO-t-thkS-leal-linal a\i

,1 • 1 ' " 1 J 1 ; 1 ' . 1 • ' . 1 ' 1 '

. • > • - ' ' : ' . ' ' ' " . ' .

• • • » ' ' , '

* ' ' * *

^ . . • * • '

V j ; : : • •

Feat Fea t Fea t Fea t
8 9 1 0 1 1

1 . i . i , i . 1 . i . i . i .

F5 F 7 F 9 F1 1 F1 3 F1 5 F1 7 F1 9
hdiMduals Tre e Size Ibr Feature s

1

<

•

,

U.
i

F21

1 - , 1 - .

: / *
•

r .

* 1 * .

t

: Ii t

1 . i .

F23 F2 5

. 1

•

1

. •

i ï

i

F27

.

:

i
F29

1 • •

-

«

\ *

t
1 «

) » .

1
F31

Figure 6.16 Over-fitting analysis for evolved RS90.

18.5

18

17.5

(U

15

I

^ 16. 5

16

15.5
15

0

î
NO over-fittin g

Blacl(small point :
Best Indv . in OPT
mapped
into VAL dS

GP-VAL-RS90-1-thk5-feat-final.avi

6^

V
0 0

There i s
-" Over-fitting

Tiiere i s
Over-fitting

i_
Transparent square :
Best Indv . Globa l
Validation

Œ/

-O^

0

>v

Tiiere i s
Over-fitting • 'D

F8 F9 F1 0
individuals Tree Size for Features

F i l

Figure 6.17 Over-fitting for différent evolved features RS90.

191

The amount of over-fifting, as explained in Section 5.3, is measured as the différence in

performance between the best individual in opfimization mapped onto the test set and the

best individual in validation mapped onto the test set (for the same evolved feature). For

evolved feature 9, the différence in performance in the test set is 0.91%; for feature 10 the

différence is 0.65% and for feature 11 the différence is of 0.36%.

Once the base classifiers hâve been evolved, we hâve to find out the best solution in

validation and apply it to the test data set. The best solution corresponds to the individual

from the population with highest récognition rate in validation. We also hâve to find ouf the

number of features that were required fo produce this individual. The auxiliary file indicates

the last point from where no further improvement in récognition rate is produced. In Figure

6.17 we can see that for each new evolved feature the best individual in validation (green

diamond) has a lower error rate, so that the stopping point has to be locafed afterwards. Ail

this information is collecfed by the global validation procédure. Figure 6.18 shows a détail of

the récognition rate of the best individuals for each génération in optimization, the best

individuals in validation and the global validation with the auxiliary archive. The

optimization curve (blue) shows an increase in performance as the number of features

increases. The performance of the best individual in validation (green curve) changes but the

trend is increasing with the features. We can see that the auxiliary archive from global

validation (magenta color) updates the best individuals in validafion at the moment that they

are produced. This happens until the second génération of evolved feature 25" .̂ From this

point the performance of the best individual in validation starts to deteriorafe, in

conséquence, global validation refains the best individual selected at the second génération of

evolved feature EF25. This corresponds to the point indicated in Figure 6.18. The same

procédure is applied to each island for every evolved classifier

192

Détermination of number of Evolved Features - Global Validation

0)

ci

861-

85.8

85.6

85.4

85.2

85

84.8

84.6

84.4

84.2

84

~i I r n 1 1 r > ^

''
- Bes t Indv. EVOLUTIO N

- Bes t Indv. VALIDATIO N
- GLOBA L VALIDATIO N

Stopping point : Second génération after EF25

EF22 EF2 3 EF2 4 EF2 5 EF2 6 EF2 7 EF2 8 EF2 9 EF3 0 EF3 1 EF3 2
Evolved Featur e numbe r

Figure 6.18 How to get the number of features using global validation procédure.

Table 6.7 shows the average récognition rates of the best solution in optimization mapped

into the validation data set and the best solufion recorded in the auxiliary archive during the

global validation procédure. Average différences reflect the existence of over-fitfing.

Différences in récognition rate are not big with a maximum of about 0.29%.

Solufions found are applied to the test data to obtain the récognition rates in test as well as

the votes of each evolved classifier. It is worth to menfion that each solution is a composition

of ail solutions from evolved feature one until the last feature found with the global

validafion method. For instance, if stopping point is at feature 25, the solution is EFi ®EF2

® ... ® EF25. Votes for ail 25 features are also recorded.

193

Table 6.7

Comparison of Rec. Rates in validation: mapping from OPT and VAL

RS

RS43

RS90

RS9I

RS95

RS96

Island

I

2

3

1

2

3

1

2

3

1

2

3

1

2

3

Rec. rate (%)

Best OPT in VAL

82.98±1.33

81.78±4.43

82.30±4.45

85.10±2.14

83.42±3.46

82.09±10.94

79.53±4.98

82.30±1.04

77.45±12.56

73.41±3.10

72.16±3.43

72.27±3.97

75.55±3.49

76.53±1.18

76.28±1.10

Rec. rate (%)

VAL

83.I1±I.32

8I.94±4.40

82.44±4.42

85.25±2.05

83.67±3.52

82.21±10.99

79.67±5.02

82.60±0.94

77.61±I2.61

73.52±3.17

72.33±3.45

72.47±3.78

75.75±3.48

76.72±1.15

76.45±1.08

Différence

Rec. Rate

O.I3±0.09

0.16±0.08

0.14±0.08

O.I6±0.15

0.25±0.19

0.12±0.12

O.I4±0.12

0.29±0.24

0.16±0.I4

0.10±0.09

O.I8±0.12

0.19±0.27

0.21±0.15

O.I9±0.13

0.17±0.12

As shown in Figure 6.17, the over-fitting varies along with the evolved features, so it can

decrease or increase from an evolved feature to the next. Each new evolved feature is

generated with a new évolution, which can be interpreted as a new search space because the

référence from which the new évolution starts considers the resuif to which it has arrived in

previous evolved features. Since the évolution is re-started at each new evolved feature, the

population that performs the search is composed as well, of new individuals. As a resuit, we

can interpret that the over-fitting generated during the évolution of any feature is not "fully

carried" to the next évolution (next feature). The degree of influence of over-fitting from

previous evolved features into the new one is minimized as évolution in Bot's uses a

194

restrained number of générations for each evolved feature (11 génération in our case). As a

resuit, the possibility of memorization of the data set is minimized because the optimizafion

period is short. We can summarize saying that Bot's algorithm implements itself a way to

find better solutions or solutions that generalize better for each new evolved feature. This

means, the method provides a mechanism to control the over-fitting by changing the

searching space and the population for each new evolved feature and using évolutions for a

small number of générations.

In the following sections we présent the results obtained when using various types of

members of the ensemble and différent combination fianction: ensembles of best islands,

ensembles of intermediate ensembles and ensemble of ail islands using simple majority vote

(SMV) or weighted majority vote (WMV).

6.3.5.4 Ensemble s of the best island from each evolved classifier

We take the best island for each evolved classifier and generate an ensemble by combining

them with simple majority vote (SMV) as shown in Figure 6.19. This process is repeated 10

times.

l.̂ clatwfwr f- J ^ ^ ^

Best Islan c Islant j 3

Best Islan c Islan d 'c

Best Islan c Islani J

1 Islan c 3
1 Islan a

Islanc '

Best Islan c Islan d 't

Best Islan c Islan d '

Final décision
Ensemble o(Besl

Islands
EoB

Figure 6.19 Diagram of formation of Ensemble of Best Islands EoBI.

195

Figure 6.20(a) shows a box-plot diagram of the best islands for every evolved classifier and

the resulting ensemble of Best Island (EoBI). This diagram represents the distribution of

récognition rate values for each evolved classifier and the ensemble, for ail répétitions. The

récognition rate ofthe ensemble of 5 evolved classifiers is a considérable improvement if we

compared it fo the performance of each of its components. The mean récognition rate of the

ensemble of best islands fi-om evolved classifier (EoBI) with simple majority vote (SMV) is

95.28% ± 0.14 meanwhile the récognition rate of the ensemble of raw RS and I-NN
classifier is 95.06%. To facilitate the comparison, this level has been indicated in Figure

6.20(a). As Figure 6.20(a) shows the range of différent values for the ensemble of evolved

classifiers is very small, so this ensemble consistently outperforms that of 1-NN classifiers.

The right-most part of Figure 6.20 shows the ensemble EoBI with weighted majority vote

(WMV). The mean récognition rate value for this case is 95.37% ±0.12. Performance in both

cases is very similar. Récognition rate values generated with weighted majority vote are less

spread than with simple majority vote. Figure 6.20(b) is a zoom of part (a) that reflects the

différence recognifion levels between the original ensemble of 1-NN, EoBI(SMV) and

EoBI(WMV). Results are reviewed in Table 6.8 above that shows the improvement obtained

in récognition rate. In this case, ail the ensembles hâve a cardinality of 5 base classifiers.

Rec rat e Best Island s and Final Er̂ semble

S 8 8

-TÉL.

Rec Rate Ensemble of Raw RS = 05 06%

" Ç

RS43 RS0 1 RSe S RS0 6 RS9 0 SM V WM V
Best Island (Bl) fro m RS and EoBI

06

955

o;
05

045
RS43

Rec rat e Best Islands and Final Ensemble

-J
y^

Rec Rate Ensemble or Raw RS = 05 06%

J,

RSS1 RS9 5 RSO e RSO O SM V
Besl Islan d (Bl) fro m RS and EoBI

•
^

WMV

(a) (b)

Figure 6.20 Box-plot of ensembles built with the best island from each base classifier.

196

Table 6.8

Récognition rate (average and standard deviafion) results of Ensemble of Best Islands
fusion with simple and weighted majority vote, including a comparison to ensemble

of raw RS

RS

RS43

RS90

RS91

RS95

RS96

Average Rec. rate (%) and standard déviation

Single Best

Island

9I.15±0.57

91.53±0.76

90.41±0.55

85.07±1.32

86.66±0.77

Ensemble SMV

95.28 ±0.14

Ensemble

WMV

95.37 ±0.12

Gard.

Ensemble

5

Rec. rate (%)

Ensemble of

RawRS

95.06

6.3.5.5 Ensemble s of intermediate island ensembles

For each evolved base classifier we generate an island ensemble. This island ensemble is

created with the three islands used during the optimization process and they are combined

with simple majority vote. The final ensemble is composed of five island ensembles, which

are also called intermediate ensembles. Combination function is again simple majority vote.

The block diagram of this type of ensemble is the same as the one presented in Figure 6.12.

Récognition rate results of the island ensembles and the final ensemble are presented as box-

plots in Figure 6.21. If we compared the récognition rate values ofthe island ensembles to

those of ensemble of best islands, the latter is slightly better. Anyhow différences are not

significant. What happens with the final ensembles? The final ensemble built with island

ensembles performs slightly better. Its mean récognition rate is 95.43%. Even though

récognition rate ranges of the ensemble déments are lower, the island ensembles generate

more "diverse" opinions (or votes) than those of best islands. This is clear as in the case of

ensemble of the best island, the vote from the best island is the only information that comes

from the evolved classifier. Since the island method is based on différent searching spaces

197

Rec. lat e Inteim ensembles and Fina l Ensemble

95

94

03

_ 9 2
as
I, 0 1
Ê

Roc late Ensemble ot Row RS = 05 00% — « -

Eol(RS43) EoKRSOt) EoKRS95) EoHRSM) Eol(RSeO) SM V
F^ndom Sut>-space

Rec rat e Interm ensembles end Flru l Ensemble

Rec rate Ensemble ot Raw RS = 66 00%

Eol(RS43) Eol(RS01) EoHRSOS) EoKRSOe) Eol(RSSO) SM V
Random Sub-s[)ace

(a) (b)

Figure 6.21 Box-plot of island ensembles and the final ensemble.

covered by each island, other islands from the same RS having lower récognition rates still

provide useful information for the décision ofthe final ensemble. Figure 6.2 l(b) présents a

détail of the ensemble range of values in comparison to the ensemble level obtained with raw

RS and 1 -NN classifier. This figure shows the improvement in récognition rate obtained with

the island or intermediate ensemble.

Table 6.9

Récognition rate (average and standard déviation) results of Ensemble of Intermediate
ensemble, fusion with simple majority vote, including a comparison to ensemble

of raw RS

RS

RS43

RS90

RS91

RS95

RS96

Rec. rate ("/o) and standard déviation

Intermediate

ensemble

92.30±0.52

92.25±0.58

91.66±0.34

87.30±1.12

88.00±0.59

Ensemble SMV

95.43 ±0.15

Card.
Ensemble

15

Ensemble of Raw RS

Rec. rate (%)

95.06

Card.

Ensemble

5

198

Results are reviewed in Table 6.9 above, which shows the improvement obtained in

récognition rate. The ensemble of intermediate ensemble has a cardinality of 15 meanwhile

the ensemble of raw RS only uses of 5 base classifiers. Up to hère we hâve taken two

différent approaches. In the first one, we only consider one island (the best) from each

evolved base classifier; later we take information of ail three islands in the form of an

intermediate ensemble also called island ensemble. The average récognition rate of the final

ensemble is slightly increased. Next step is to build the ensemble taking into considération

the vote of ail islands of each evolved base classifier. This corresponds to the third step

mentioned before.

6.3.5.6 Ensemble s of ail islands from each evolved classifier

In this case we build directly the final ensemble considering the vote of ail islands of each

evolved base classifier. Then we hâve an ensemble of 15 evolved base classifiers as depicted

in Figure 6.22. Figure 6.23 is the box-plot of the récognition rate for each island and the

resulting ensembles when using simple and weighted majority vote.

f 8» < ^
V dassifie r ^ J

Fina
Ensemble
décision

Figure 6.22 Block diagram of ensembles ofall islands.

199

95

00

? 8 5

ir 8 0

75

70

+

+

RS43

Rec. raie Ail blarvls an d Fina l Er^semble

' ' ' „ . ^ . . ,r , „ « „ ^ , 1 " ^

480 ^ ^

r\
+

T

RS91 RS0 6 RSO e RSO O SM V WMV
Random Stit>spac e

968

066

ee.4

962

^ 0 6

95 e
ex:

956

95.4

95.2

94.8

Rec. rate Ail Islands an d Fina l Ensemble

Rec rate Ensemble of Raw RS = 05.06%

,
RS43 RS9 1 RS9 6 RS0 6 RSG O

Random Sub-space

J ^ ¥* •

, , SMV WMV

(a) (b)

Figure 6.23 Box-plot of ensembles composed ofl5 islands

Each three consécutive columns correspond to the récognition rate values of a particular

evolved classifier (for instance columns 4, 5 and 6 are the three island of random subspace

RS9I). Last two columns correspond to the récognition rate values achieved by the ensemble

when using SMV and WMV respectivdy. In this case, the ensemble's mean performance

reaches 96.06% ±0.12 for SMV and 96.10% ±0.10 for WMV. Again, dispersion of

récognition rate values obtained with the ensemble is very small. Therefore, their responses

are very similar for the 10 répétitions. It can be concluded that every island provides

"différent information" that helps to increase the performance of the ensemble. Différent

information is the resuit of diversity between islands and between différent RS. Results are

reviewed in Table 6.10 above, which shows the improvement obtained in récognition rate.

The ensemble of ail islands has a cardinality of 15 meanwhile the ensemble of raw RS only

uses of 5 base classifiers.

200

Table 6.10

Récognition rate (average and standard déviation) results of Ensemble ofall islands, fusion
with SMV and MV, including a comparison fo ensemble of raw RS

RS

RS43

RS90

RS91

RS95

RS96

Island

1

2

3

1

2

3

1

2

3

I

2

3

1

2

3

Ensemble of ail islands

Average Rec. rate (%) and std. déviation

Islands

90.47 ± 0.94

89.85 ±3.08

90.04 ± 1.36

90.37 ± 1.55

89.94 ± 1.25

89.19 ±6.84

89.71 ±1.08

89.89 ±0.93

81.11 ±5.06

83.13 ±3.29

89.92 ± 2.04

83.50 ±1.97

85.14 ±2.82

89.94 ±1.25

89.19 ±6.84

Ensemble

SMV

96.06±0.12

Ensemble

WMV

96.10±0.10

Card.

15

Ensemble of raw

RS

Rec. rate

(%)

95.06

Card.

5

6.3.5.7 Revie w of results and analysis of smaller ensembles

Table 6.11 reviews the results of this section and compares them to ensembles built with 1-

NN classifiers only based on RS. Best values are shown in bold. The ensembles built with

evolved classifiers outperform ensembles based on 1-NN classifiers, in more than 1%, for the

201

two fusion methods tested: simple and weighted majority vote. The average number of

evolved features required to achieve thèse récognition rate levels is very close to the original

number (32).

Table 6.11

Review of results selected ensemble built with evolved classifiers

Fusion

method

SMV

WMV

Best Island Island Ensemble AU islands.

Récognition rat e (%) and standard déviation

95.28 ±0.14

95.37 ±0.12

95.43 ±0.15 96.06 ±0.12

96.10 ±0.10

1-NN

Rec. rate (%)

95.06

Table 6.12

Récognition rates for ensembles of 4 evolved classifiers (12 in total)

Combinations

1

2

3

4

5

RS43

(%)

X

X

X

X

RS91

(%)

X

X

X

X

RS95

(%)

X

X

X

X

RS96

(%)

X

X

X

X

RS90

(%)

X

X

X

X

Rec. rate (%)

95.58 ±0.12

96.09±0.13

95.60±0.I2

95.93±0.11

95.66±0.11

From Figure 6.20 and Figure 6.23, we see that some classifiers ofthe ensemble hâve very

low performance in comparison to the others. In this subsection we investigate the impact of

removing one evolved classifier from the ensemble. We verify ail possible combinations of 4

evolved classifiers out of 5 available. Décision of the ensemble is weighted majority vote.

Figure 6.23 shows that RS95 has the lowest performance of ail base classifiers considered,

followed by RS96. Table 6.12 shows the five différent combinations of ensembles of 4

202

evolved classifiers out of 5 (12 out of 15 evolved classifiers considering the islands). The

evolved classifiers (with their 3 islands) that are included in the ensemble are indicated with

an X in the corresponding row. For instance, the ensemble with evolved classifiers {RS43,

RS91, RS95, RS90} générâtes a mean récognition rate of 96.09%. We conclude that RS95 is

very useful in the ensemble, that is, it provides diversity to the ensemble so the récognition

rate is improved. The recognifion rate obtained with the ensemble of {RS43, RS91, RS95,

RS90} is better than the ensemble of five base classifiers considering ail islands in each one

and with a simple majority vote as combination funcfion. In tum, its performance is inferior

to the weighted majority vote of the same ensemble {RS43, RS91, RS95, RS90}. But

definitely, results from Table 6.12 show that ensembles built are very performing and with a

reduced number ofbase classifiers.

We reproduce in Table 6.13 the récognition rates ofthe best sélection methods on the test set

used in (Tremblay, 2004). We show in bold, the optimized ensembles with better

performance than our best ensembles. The ensembles obtained with the method of feature

création for ensembles hâve récognition rates very close to the results in Table 6.13. The

main différence is the number of base classifiers. The smallest comparable ensemble from

Table 6.13 has 31 base classifiers and our ensembles only hâve 9 or 12 evolved classifiers

(when considering ail the islands). Therefore, it is very promising that adding new base

classifiers could increase even more the performance of the ensemble. Furthermore, the

resulting ensembles hâve confrolled at maximum the over-fitfing by means of the global

validation mechanism. The following section provides an analysis about the raw feature

utilization. From Table 6.14, we can calculate that each evolved classifier, in average, utilizes

27.24 raw features. As a resuit, the whole ensemble would be composed of an average of

27.24x5=137 raw features. The ensemble of raw RS and 1-NN classifiers uses 32x5=160 raw

features. Therefore, proposed ensemble of evolved classifiers uses, in average, only the

85.62% of raw features used by raw RS.

203

Table 6.13

Results from optimization of ensembles with GA
Extracted from (Tremblay, 2004)

Method

Â:-NN (132 feat.)

Ens. 100 k-NN

MLP (132 feat.)

Ranking

Simple GA

NSGA-e

Classifiers

1

100

1

76

31

24

Rec. rate on

TEST

93.34%

96.28%

95.27%

96.26%

96.41%

96.40%

6.3.5.8 Featur e sélection and feature création

We hâve mentioned before (Section 5.4) and revealed with the results shown (Chapters 4, 5

and 6) that Bot's method créâtes a compact représentation of a problem that yidds similar or

better results in classification than the initial représentation. This compact représentation is a

set of evolved features, each one being a formula ofthe input raw features and a functions set

(+, -, *, /, sin, cos, log and exp). The compact représentation is one ofthe advantages of Bot's

method. The subset of raw features to be used dépends in some degree of the problem itself

and the ability of the method presented is to discover which is the best combination between

the formulas generated and the most discriminating raw features to use instead of handling ail

of them. As shown in Chapter 5, the proposed method is able to sdect the raw features to use

in conjunction with the generated formulas. That is, the algorithm performs at the same time

feature création and feature sélection. Effectiveness of any raw feature can be analyzed fi-om

two perspectives that are complementary. In the first one, we ask if the raw feature used or

not in the evolved features and, in the second perspective, if the raw feature is use, how

important is it to fi-om the performance point of view. In the former we are interested to know

if the raw feature is used independently of the number of times it appears in the solutions. In

204

this case we pay attention to the feature sélection side. In the latter perspective, we are

interested in recording how many times the raw feature is used, which may be related to the

relative importance ofthe selected raw feature.

Table 6.14 présents the average and standard déviation results ofthe raw feature ufilizafion

for five evolved RS, considering in each case the 3 islands. Evolved classifiers considered in

this case are those used in the ensemble of Section 6.3.5.4. The input for the évolution of

each RS was a set of 32 raw features. The dispersion of number of evolved features for each

RS was presented in Figure 6.15. In average, 30 evolved features (90 in total considering ail

three islands) are required to represent an evolved RS. But how many raw features are

needed? From Table 6.14 we calculate that in average 27.24 ± 0.87 différent raw features out

of 32 were used in the final solutions. It means that the cardinality of the RS (32) is

appropriate and going down to RS of 16 raw features could not be very représentative of the

original data set. We now analyze which are the most important raw features by looking their

présence through 10 replicafions ofthe évolution of RS classifiers.

From the sélection perspective we analyze in how many ofthe 10 replicafions, a raw feature

is used at least one time in the evolved features. In fact, it means that this particular raw

feature has to be "selected" to build the evolved classifier. If a raw is consistently used

through most ofthe repetifions (or ail of them), we know that this raw feature is an important

component of the evolved features (solutions). In this way, we establish in average how

many différent raw features are used to generate the evolved features. This information is

presented in Table 6.14 as raw feature utilizafion.

Table 6.14

Raw features ufilization for evolved RS

205

Random

Subspace

RS43

RS90

RS91

RS95

RS96

Island

1

2

3

1

2

3

1

2

3

I

2

3

I

2

3

Features

#Fave±Std(#F;

3I.10±1.52

31.20±1.23

30.00±2.26

31.20±1.23

31.10±0.99

30.10±2.76

3I.20±I.62

29.80±2.20

31.80±0.42

3I.80±0.42

30.50±2.37

30.90±2.47

30.60±1.71

30.40±1.84

31.40±0.96

Raw Feature s

Utilization

RawFave ± Std(RawF;

27.70±2.49

28.00±1.24

27.50±2.01

26.90±1.66

25.80±2.25

25.90±1.79

27.70±0.82

26.60±1.95

28.70±1.25

27.40±2.99

26.90±2.23

28.40±2.60

27.00±2.35

26.20±1.47

27.90±1.66

Figure 6.24(a) shows the average and standard déviation of raw feature ufilization for each

raw feature from the "sélection" perspective (it shows if raw feature was selected at least one

time in each répétition). Figure 6.24(b) shows a box-plot of the total number of times each

raw feature is used in the evolved features. This figure makes the différence between

"selected" features, to emphasise the most important raw features from classificafion

perspective. It shows how many times a raw feature was part ofthe evolved features.

206

Figure 6.24 exemplifies three différent cases (ellipses fo point ouf them). For instance raw

features 27, 28 and 29 for island 1 as indicated in the red ellipse hâve an average raw

utilization of 1 and a zéro standard déviation because they are selected in ail 10 repetifions as

part of the evolved features formulas. Figure 6.24(b) reveals that thèse raw features are used

just a few times in each répétition, because the médian is very low and the inter-quartile

distance is small. The blue ellipse in Island-2 shows a différent situation for raw feature 8.

Even though the average raw utilization is also 1 with zéro standard déviation (Figure 6.24

(a)), the box-plot reveals that this raw feature is highly used in some of the répétitions and

not just a few fimes. We conclude that raw features 27, 28 and 29 for Island-1 hâve to be

selected but raw feature 8 must be selected and it is an important component of the solution.

We can go fiarther saying that in the individuals (trees) of the solution, the raw feature 8 is

part of a building block.

1
0.8
0.6
0.4

u 0. 2
H I
v>

ai

ra

î '
2 0. 8
o 0. 6

0)
D)
re
> <

Raw features utilization - average and standard déviation values - RS90

1 7 \ / \ T / \
K / Y

' \
- L - ^

1 1

-p
y ^ - f - / \ .

-*-. *-

^ ^

Islan u 1

-p -
"

-
.

10 15 20 25

10 15 20

1

0.5

0

\ T / \
-

"̂
1 1 1

10 1 5 2 0
Raw feature numbe r

25

(a)

30 35

; ^

-
rt / [Ma

1

-p - j -

Island i

1

1

- J - 1

•

-
30 35

Island 3

35

207

Raw feature utilization in al! Evolved Features • RS90

20

10

0

1 + 1

"t" 4-
-1-

1

1

1

+

1

-t-
+

1

-r

1

Island 1

\u
E 1 10 15 20 25 30

c 2 0
o

S 1 0
£
™ 0
.2 1
i
ra

Â "T r

Û il̂ y
4 ^ è ' r a

10

20

10

0 g ^ g ^ a îiii 5 T à ^ $

Island 2

^ i 8 o ^ ^
30

Island 3

^B^^i^
10 1 5 2 0

Raw feature numbe r
30

(b)

Figure 6.24 Raw feature utilization for evolved random subspace RS90.

The yellow ellipse in Figure 6.24 shows another case where the box-plot provides additional

information to interpret the importance of a raw feature that has to be selected (information

provided by the average and standard déviation graphie).

Similar graphies are produced for ail other evolved classifiers RS43, RS91, RS95, and RS96,

confirming the right cardinality ofthe input RS.

208

6.4 Genera l conclusion s

One of the advantages of our method résides in ability of Bot's algorithm (developed with

GP) to discover intrinsic relations between initial raw features that are not évident and can

not be exploited only by selecting some of the initial raw features and using them without

any transformation. The new useful features are created one by one to increase the

performance of base classifiers and in conséquence improve the récognition rate of the

generated ensembles.

Global validafion procédure also points ouf where the évolution should be stopped because

no further improvement is produced in validafion. The curves in Figure 6.18 illustrate how

we use the global validation procédure fo defect the stopping point, which is the number of

evolved features and consequently the solution found. This solution ensures that the level of

over-fifting is confrolled and thus the solution chosen still has a good generalization power.

Since the method only used a few générations for each feature, the total computational time

is lower than conventional applications of GP. In addition, the reinsertion of an initial

population randomly created at the beginning of the évolution of a new feature improves the

diversity of the population. Moreover, the application of island method during the évolution

emphasizes the search over différent spaces generating more performing solufions and at the

same time increasing the diversity and avoiding the stagnation ofthe évolution.

We proposed two différent methods fo create EoC. Each base classifier corresponds fo an

evolved classifier built with the improved Bot's algorithm. In the first one, we combined the

votes from each base feature by feature. The results show that performance is improved

along with the addition of new features. For ensembles of five or more classifiers, our

approach based on evolved classifiers, outperforms the corresponding ensembles of 1-NN

classifiers. Hence, the optimizafion of the classifiers adds usefial informafion fo build more

performing ensembles. What is more, a certain level of performance is attained after some

features (this varies from 12 fo 15 features). As a resuit, we can build EoC to assure certain

209

performance with the minimum number of evolved features. Thus reduces the complexity of

the ensemble without reducing the performance. We obtain an average performance of

96.14% for an ensemble of 9 base classifiers evolved for 21 features meanwhile the

corresponding ensemble of 1-NN classifiers attains 95.57% in the test set, in short we

outperforms in 0.57%. When we compare our results with the overall best results reported in

(Tremblay, 2004) and reproduced in Table 6.13, the performance of our approach is only

0.27% less than the best ensemble of 1-NN classifiers. Solutions reported in (Tremblay,

2004) were searched with simple GA and with NSGA in a pool of 100 1-NN classifiers. In

the first case, Tremblay's solution had 31 classifiers and in the second case, 24 classifiers. In

our approach 27 classifiers were used to build the ensemble. In addifion, the input RS used

hâve différent levels of performance: very good, médium and very poor performances.

Finally, we only use 21 evolved features to attain this level of performance.

The second method proposed to create the ensembles was based on finding for each base

classifier the maximum number of evolved features before over-fitting the opfimization data

set. The base classifiers bave then différent number of evolved features but each one provides

the best récognition rate controlling at maximum the over-fitfing. We take a spécifie

ensemble selected in (Tremblay, 2004). The ensembles built used simple majority vote and

weighted majority vote and we obtain average récognition rate of 96.06% and 96.10%

respectivdy. The corresponding ensemble of 1-NN classifiers obtained 95.067% in the test

set. We outperforms for more than 1%. Once more, our approach makes évident that the

features built for ensembles add useful information that makes them very promising. When

comparing our results to the best ensembles reported in (Tremblay, 2004), we only are 0.30%

down but instead of using 24 or 31 classifiers, our ensemble is composed of only 15

classifiers (3 from each evolved classifier).

The proposed method to evolve classifiers for ensembles créâtes a compact représentation of

a problem in such a way that his représentation yidds similar or better results in

classification than the initial representafion. In addifion, we hâve shown that the evolved

210

features used some of the raw features. The subset of raw features to be used dépends to

some degree of the problem itself and the ability of the method presented is to discover

which is the best combinafion between the formulas generated and the most discriminating

raw features to use instead of handling ail of them. That is, the algorithm performs at the

same fime, feature création and feature sélection.

CONCLUSIONS AN D RECOMMENDATION S

This thesis proposed a re-engineering method of base classifiers for ensembles. The original

base classifiers, used as input to our system, were built by the RS method, so each one has a

partial representafion of the récognition problem. The re-engineering process applied to each

base classifier consisted in creating "evolved features" from ifs partial représentation. The

création of evolved features consisted in discovering intrinsic relations between the original

features, called raw features, in such a way that the resulting evolved classifiers hâve a better

performance in classificafion. The combination of evolved base classifiers created ensembles

with higher récognition rates. This approach was tested in a complex pattem récognition

problem: récognition of isolated handwritten digits fi-om NIST-SD19 data set.

The génération of intrinsic relations between raw features was made using GP, which is

capable of finding the appropriate stmcture and values of the solufion. The création of

solutions in such a way is not possible with other optimizafion techniques.

A séries of différent experiments were mn to test each stage of our system. Initially we tested

the ability of our method to represent some UCI data set in a condensed set of evolved

features with good récognition rate levels. Bot's method of creating evolved features one at a

time was successfially tested over 16 data sets from UCI repository by means of a wrapper

approach based in GP and a classifier. Two classifiers were tested with positive results in

UCI data sets: nearest neighbour (/:-NN), minimum distance fo means (MDM). Recognifion

rate calculated by classifiers was the fitness measure used to guide the search of the GP

algorithm. In average, the UCI data sets analyzed were well represented by 3 to 4 evolved

features with récognition rates comparables to those obtained when the whole set of raw

features is used.

In a second set of experiments, global validafion procédure was incorporated and it provided

représentations with higher generalization power as shown with some of the UCI data sets

tested. This improvement was possible because of the control of over-fitting during the

212

optimizafion process. Furthermore, the auxiliary archive used in global validation allowed

the correct identification of the stopping point during the évolution before going into over-

fitting. We found that the evolutionary process générâtes over-fitting towards the

optimization data set used, but Bot's algorithm implements itself a way to find better

solutions or solutions that generalize better for each new evolved feature. This means, the

algorithm provides a mechanism to control the over-fitting by changing the searching space

and the population for each new evolved feature and using évolutions for a small number of

générations. The two first factors reduce the chances of getting trapped in a local maximum

during the évolution. And the small number of génération during each évolution decreases

the possibility of over-fitting. On top of that, Bot's algorithm combined with global

validation procédure permit to precisdy establish the moment to stop the évolution and the

addition of new evolved features. The analysis of results of the global validation procédure

points out that the influence of over-fitting due to the evolutionary process is high in some of

the UCI data sets analyzed and it does not influenced that much the evolved RS analyzed

fi-om the NIST SD19 data set.

Since Bot's method only uses a few générations for each feature, the total computational time

is lower than conventional applications of GP. In addifion, the reinsertion of an initial

population randomly created at the beginning of the evolufion of a new evolved feature

improves the diversity of the population. Bot's method was further improved by using a

parallelization strategy based on island method. The island method provided an improvement

not related to the computational time. The computation time is équivalent to a mn using a

panmictic population. The gain in performance résides in the parallel exploration of différent

zones of the searching space. What is more, the island method proved to be robust as the

évolution can continue even when one of the island stops evolving (for instance, due fo a

problem in the processor managing mnning the évolution). In addition to the robust quality

of island model of parallelization, the use of a combination of the outcomes from every

island (called V-best solutions) showed an improvement over single best solutions. The

ensemble created in such a way has a better performance than its components because of the

diversity of each solution, due to the exploration of différent zones in the searching space.

213

We proposed two différent methods to create EoC and tested them in complex problem of

isolated handwritten digit récognition. Each base classifier corresponds to an evolved

classifier built with the improved Bot's algorithm. In the first one, we combine the votes

from each evolved classifier feature by feature. The results show that performance is

improved along with the addition of new features. What is more, a certain level of

performance is attained after some features (from 15 to 20 features out of 32 inifial features).

As a resuit, we can build EoC to assure certain performance with the minimum number of

evolved features. Thus reduces the complexity of the ensemble without reducing the

performance. We obtained a performance of 96.10% for an ensemble of 9 evolved classifiers

along 21 features.

The second method proposed to create the ensembles was based on finding for each base

classifier, the maximum number of evolved features before over-fitting the optimization data

set. The evolved classifiers hâve then différent number of evolved features but each one

provides the best recognifion rate controlling at maximum the over-fitting. In this case we

were able to built ensembles with performances comparable to those reported in (Tremblay,

2004), but with as few as 9 or 12 base classifiers.

Following are the recommendafions to further improve the system:

Improve the control of over-fitting by splitting the validation data set in différent disjoint

partitions. The number of partitions dépends on the number of evolved feature to use.

Validation for the first evolved feature is made by applying the global validation procédure

with the first validation partition. If over-fitting occurs during the evolufion of the first

feature, the best individual in optimization is replaced with the best individual found with the

first validation partition in order to compute subséquent evolving features. The same

procédure is repeated until the évolution of the last feature. With this mechanism the over-

fitting can be reduced. The disadvantage is the stratification of the validation set into smaller

partitions that may be are not as représentative of the whole data set as the validation set

complète. In addition, the generalization power claimed by each evolved feature based on a

214

validation partition dépends on how représentative of the whole data set is the particular

partition.

Include a variant in Bot's algorithm that re-starts a new feature search when the last one was

discarded because its low récognition rate improvements. During the création of evolved

features, the incrémental contribufion is measured and compared to a threshold fo décide if if

is worth to hâve an additional evolved feature because of its contribution. If the incrémental

contribution (in optimizafion) is not higher than the threshold, this evolved feature EF(/) is

discarded and the évolution process is stopped. The variant is applied in case of a first

discard of the evolved feature FF(f). Once tentative feature is discarded, a new evolved

feature EF(/) is created in a second phase. After comparison against the threshold, two

altematives can be taken. If the gain of new EF(/) is greater than the threshold, this second

evolved feature EF(/) is accepted as usual and évolution continues. If again, the contribution

of the second time evolved feature EF(/) is smaller than threshold, then the new contribution

is compared to the contribufion of previous evolved feature EF(/). In case of being greater a

last chance is given to create a définitive evolved feature EF(/). If the contribution of the

second fime evolved feature EF(/) is inferior to the discarded first evolved feature EF(/), then

this second time evolved feature EF(/) is also discarded and the évolution is stopped. In the

last case, if is clear that new attempts to create a new evolved feature will not produce a

considérable gain.

Include the automatic control of genetic operator probabilities as presented in (Michalewicz

and Schmidt, 2007). The mechanism counts the number of times that an operator produces an

off-spring that is better than ail its parents and the success ratio for each operator can be

calculated as the number of improved off-springs divided over ail improved off-springs. The

probabilities are set as the addifion of the previous probability plus the success ratio

multiplied by a constant in the range of zéro fo one. Initial probabilifies are set fo small

values and they will be adjusted as évolution goes. If no improved off-springs are produced,

the success ratio is not defined and probabilities are not adjusted (Michalewicz and Schmidt,

2007).

215

Another possible improvement is fo constmct the ensembles of classifiers based on the W-

best evolved formulas, instead of only taking the single best formula from each island and

evolved classifier. During the évolution ofthe classifiers, the optimizafion phase is similar to

the one presented and the global validafion procédure refains in the auxiliary archive S, the

W-best individuals from each sub-population evolved. At the end of évolution, the W-best

evolved individuals (on the validation data set) from each sub-population are taken to be part

of the ensemble of evolved classifiers. Therefore, ensembles of R input classifiers with V

sub-populations will be composed by R*V*Wevolved classifiers. This opfion could improve

the diversity of opinions of the ensemble when taking the décision of the samples in the test

set.

We hâve evolved each base classifier independently. In order to consider the différent

information fi-om each RS, they can be evolved sequentially. In this variant, the fitness

function considers the décision ofall base classifiers evolved or not. This intends to guide the

searching as funcfion of the global response of ail the déments of the ensemble. A natural

extension to this approach would be the évolution in parallel of ail the base classifiers. Thèse

two options are just mentioned fi-om a theoretical perspective because the computafional

demands would be massive and the computational time extremdy long.

ANNEXI

STEADY-SATE REPLACEMEN T

The concept of génération gap is related to the notions of non-overlapping and overlapping
populafions. In a non-overlapping populafion, ail parents are replaced by offspring and so
there is non compétence between them (Sarma and De Jong, 1997). This is the conventional
replacement scheme in GA and is called generational. In the overlapping version, parents
and offspring co-exist and compete between them. This replacement scheme has been named
Steady-State GA. Génération gap is referred as the proportion of individuals in a population
that are replaced in each génération (Beasley et ai, 1993).

To work with the Steady-State replacement G A, sélections of individuals to be parents and
the individuals to be replaced (to make room for the offspring) hâve to be addressed. Some of
the possible schemes are (Beasley et ai, 1993):
• Sélection of parents according to fitness, and sélection of replacement at random
• Sélection of parents at random, and sélection of replacement by inverse fitness
• Sélection of parents and replacements according to fitness/inverse fitness

Depending on the GA-system and applications, a scheme or other is applied. A différence
between a conventional, generational GA and a steady state GA is that populafion stafisfics
are recomputed after each mating in steady state GA and new offspring are immediatdy
available for reproduction (Beasley et ai, 1993). A comparison between the two replacement
stratégies was carried on (Sarma and De Jong, 1997). Sarma and De Jong found that that the
main différence is a higher genetic drift (allde loss') in steady state, especially when small
population sizes are used with low génération gap values (Sarma and De Jong, 1997) (a
small number of individuals replaced in each génération). Previous conclusions are based on
the assumption that the steady state uses a uniform ddetion. If this is not the case, the
balance between exploration and exploitation is altered (Sarma and De Jong, 1997).

Analysis about the replacement mechanism has been made for GA, but it is also applicable in
GP.

' In biology the concrète realization of a gène is called an allele and represents the logical entity on top of the
molecular level Wagner and Affenzeller, 2005). In the context of GAs describes the basic entity that represents
genetic information and forms chromosomes. For instance in binary encoding an allele can e.g. be a bit at a
spécifie position ofthe individual's bit string (Wagner and Affenzeller, 2005).

ANNEX II

BOT'S ALGORITH M

>
Run_Evol(.)
(/=l,g>0)

Input:
Nbr Gen : Number of generafions fo evolve solutions for one feature
Max_Nb_features : Maximum number of evolved features

Output:
DefSol : Définitive selected individual (formula) for each feature

start - Bot's algorith m
1 /= l ;EF0t I)= tD;g=O;
2 Initialize population F(f,g)
3 Evaluate fitness(P(/^g))

4 fo r g=l to NbrjGen
P'(f,g) = select_parents(P(f,g))
Perform genetic operafions(P'(/',g)) : reprod., x-over, mut.
Evaluate fitness(P'(/',g))
?(f,g+\) = Newjopulation(?'(f,g), P(Ag))

end fo r
5 F(/^l) = Best_hidv(P(/)) //Sdected_hidv(f^O)
6 repea t
7 EFprior(/~-1) = EF(/̂ -1) ® EF(f-2) 0 ... 0 EF(1)
8 g=0
9 Initialize population F(f,g)

10 Evaluate fitness(P(f,g),EFprior(/:i))
11 fo r g =1 to Nbr_Gen "̂

P'(f,g) = sdect_parents(P(f,g))
Perform genetic operations(P'(f,g)) : reprod., x-over, mut.
Evaluate fitness(P'(f,g), EFprior(f-l))
P(f,g+1) = New_population(P'(f,g), P(f,g))

end fo r
12 Sdected_hidv(/) = Best_hidv(P(/)) // Sdected_hidv(f)
13 stop = Bot_stopping(Sdected_Indv(/), EFprior(/^-l),/)
14 if -stop
15 EF(f) = Selected_hidv(f)
16 EFprior(f) = EF(f) 0 EFprior(f-l) //new features to de added

17 / = / + l
18 else
19 Def_So l = EFprior(f-1)= EF(f-1) 0 EF(f-2) © ... © EF(1) //no more features
20 end-i f
21 until stop criterion met
end - Bo t procédure

>
Run_Evol(.)
{f>hg>0)

ANNEX II I

BOT'S ALGORITHM WIT H VALIDATIO N AFTE R OPTIMIZATIO N

Input:
Nbr_Gen : Number of générations to evolve solutions for one feature
Max_Nb_features : Maximum number of evolved features

Output:
Def_Sol : Définitive selected individual (formula) for each feature

start - Bot's algorith m
1 /=l;EF(^l)=O;g=0;
2 Initialize population P(f,g)
3 Evaluate fitness(P(/^g))
4 Run_Evol(/^l,g>0)
5 F(/^l) = Best_Indv(P(/)) //Sdected_Indv(f^O)

6 repea t
7 EFprior(^l) = EF(/~-l)© EF(f-2)®...®EF(\)
8 g=0
9 Initialize population F(f,g)

10 Evaluate fitness(P(f,g), EFprior(A-1))
11 Run_Evol(/>l,g>0)
12 Selected_hidv(/) = Best_hidv(P(/)) //Sdecfed_hidv(f)

13 stop = Bot_stopping(Selected_hidv(/), EFprior(/̂ -1) , /)
14 i f -stop
15 EF(f) = Sdected_hidv(f)
16 EFprior(/) = EF(f) © EFprior(^l) // new feafiares to de added
17 /=/+l
18 els e
19 Def_So l = EFprior(/^-l)=EF(f-l)© EF(/'-2)© .. .©EF(1) //no more features
20 end-i f
21 unti l stop criterion met
22 Change OPT dB with VAL dB
23 Evaluate fitness(P(f= MaxJNbJeatures, g= NbrjGen), EFprior(/'-l))
24 Best_Indv_VAL(P(/^ Max_NbJeatures, g= Nbr_Gen)) =

Best_hidv(P(/^ Max_NbJeatures, g= Nbr_Gen))
25 Change VAL dB with TEST dB
26 Calculate Rec. rate { Best_hidv_VAL(P(/^ MaxNbJeatures, g= Nbr_Gen)) }
end - Bo t procédure with Validation afte r Optimizatio n

ANNEXIV

GLOBAL VALIDATION STRATEG Y
(ADAPTED FRO M (Radtk e et ai, 2006))

Global Validation strateg y - adapted fi-om (Radtke et ai, 2006)

Input: Empty auxiliary archive S
Output: Auxiliary archive S with the best evolved individual in the Validation set for

each génération
1 Initialize Auxiliary archive S=0;
2 Generate Inifial population
3 Fitness measure:
4 Fitness évaluation (VAL dataset);
5 Rank Individuals
6 Update Auxiliary archive S
7 whil e -nons top
8 Generate evolved individuals : evolved(gen)
9 Fitness évaluation;

10 Rank Individuals;
11 Updat e Auxiliary archive S:
12 Fitness évaluation (VAL dataset);
13 Rank Individual s ;
14 Update auxiliary archive S with best individual between individual from
15 génération g and génération (g-7);
16 end-Updat e
17 g = g + i ;
18 Verify stop_criterion;
19 en d -whil e

ANNEX V

GLOBAL VALIDATION PROCEDUR E APPLIE D TO BOT'S METHO D

Input:
NbrjGen : Number of générations to evolve solufions for one feature
Max_Nb_features : Maximum number of evolved features

Output:
Def_Sol_OPT : Définitive selected individual in OPT for each feature
S : { def . sel . indi\'\A\xz\s i (gen)(VAL), FeatJVal, Gen_Val}
Rr-opT : Recog. Rate of Best Indv. in OPT applied to TEST dataset
Rr-VAL : Recog. Rate of Best Indv. in VAL applied to TEST dataset

start - Bot's algorith m
1 /=l;EF(^l)=0;g=O;
2 Initialize Auxiliary archive S= 0
2 Initialize population F(f,g)
3 Evaluate fitness(P(/^g))
4 RvKL(f,g) = Apply Vif,g) interchanging OPT dB with VAL dB
5 Evaluate fitness(PvAL(/^g))
6 Update S with Best_hidv_VAL(PvAL(/;g))
7 hiterchange back VAL dB with OPT dB
8 fo r g=l to NbrJJen
9 RunEvol (f, g>0)

10 F\AL{f,g) = Apply F'(f,g) interchanging OPT dB with VAL dB
11 Evaluat e fitness(P'vAL(/;g))
12 Updat e Auxiliary archive S:
13 i f fit(Best_VAL(PvAL(/;g)) > fit(Best_VAL(PvAL(/;g-i))
14 updat e S with Best_VAL(PvAL(/;^))
15 fvAL=/; gVAL = g
16 end-i f
17 end-updat e S
18 Interchang e bac k VAL dB with OPT dB
19 P(f,g+l) = New_population(P'(f,g), P(f,g))
20 en d fo r
21 F(;^l) = Best_hidv(P(/)) //Sdected_hidv(f=0)
22 for f=l to Max_Nb_features //f: feature
23 EFprior(/^-l) = EF(/^-l)® EF(f-2)®...®EF(l)
24 g=0
25 Inifialize population P(f,g)
26 Evaluate fitness(P(f,g),EFprior(/^-l))
27 F\AL(f,g) = Apply F'if,g) interchangin g OPT dB with VAL dB
28 Evaluat e fitness(P'vAL(/;^),EFprior(/~-l))
29 Updat e Auxiliary archiv e S:

221

30 if fit(Best_VAL(PvAL(/;g)) > fit(Best_Indv_VAL(PvAL(A-/,^ Nbr_Gen))
31 update S with Best Indv_VAL(PvAL(/;^))
33 fvAL=/ ; gVAL = g

34 end-if
35 end-update S
36 Interchange back VAL dB with OPT dB
37 for g =1 to Nbr_Gen
38 RunEvol (f, g>0)
39 P'vAL(/;g) = Apply r{f,g) interchanging OPT dB with VAL dB
40 Evaluate fitness(P'vAL(/;g), EFprior(f-l))
41 Update Auxiliary archive S:
42 if fit(Best_VAL(PvAL(/;g)) > fit(Best_Indv_VAL(PvAL(/^-/,W)
43 update S with Best_Indv_VAL(PvAL(/;g))
4 4 fvAL=/ ; gVAL^g
45 end-if
46 end-update S
47 Interchange back VAL dB with OPT dB
48 P(f,g+1) = Newjopulafion(P'(f,g), P(f,g))
49 end for
50 Sdeded_hidv(/) = Best_hidv(P(/)) // Selected_Indv(f)
51 Bot_stopping(Selected_hidv(/), EFprior(A-l),/):
52 Def_Sol = EFprior(f-l)= EF(f- l)0 EF(f-2)© .. .©EF(1) //no more feat.
53 end-forf=l to Max_Nb_features
54 Change OPT dB with TEST dB
55 Rr-opT = Rec_rate{Def_Sol = EF(f-l)© EF(f-2)® ... ©EF(1)}
56 Def_Sol_VAL = Best_lnd_\ALiFyAL{fvAL,gvAL)) © EF(fvAL- 1)0 ... 0 EF(1)
57 Change VAL dB with TEST dB
58 Rr-vAL =Rec_rate { Def_Sol_VAL }
59 Designate results:

{ Best_Indv_VAL(PvAL(/'K4L,^Mi)) © EF(fyAL-\)® ...®EF{l),fvAL,gyAL}

end - Bot procédure with Global Validation

ANNEX VI

RESULTS EVOLVED CLASSIFIERS OF DIFFERENT REC. RATES

RS

RS02

RS04

RS07

RS14

RS28

RS29

RS62

RS71

RS86

Island

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

Rec. Rate (%) VAL

74.14±4.14

79.1U0.94

76.49±3.76

75.72±4.26

81.12i:2.15

80.64±3.45

83.04±4.52

81.95±6.37

84.13±3.28

82.67±2.26

78.73±9.64

83.59±2.33

80.01±6.72

79.15±8.72

81.17±3.49

75.42±4.15

80.06±2.54

79.08±2.04

86.72±2.94

88.06±1.85

87.05±2.15

81.27±1.76

85.42±1.35

86.82±2.33

84.36±2.93

83.47±4.33

82.50±5.04

Rec. Rate (%) TEST

87.36±2.01

88.81±0.56

87.68±1.97

87.73±2.59

90.05±1.03

88.09±1.85

88.12±4.62

90.36±5.46

90.66±1.87

88.84±2.60

84.60±6.23

90.41±2.35

87.08±5.59

84.42±5.41

85.76±2.07

83.51±2.02

85.18±1.50

84.19±1.44

92.12±2.28

92.23±2.38

92.31±1.97

87.85±1.10

89.60±1.95

89.86±2.08

89.56±1.38

88.43±3.43

88.09±3.51

UFave

18.66±2.83

26.33±1.72

25.20±1.23

21.50±1.69

23.83±1.54

22.13±1.46

26.50±2.76

20.83±5.33

28.13±1.27

22.83±1.81

28.66±1.98

24.83±3.16

22.83±2.78

22.13±2.26

30.00±2.43

26.33±2.85

22.33±2.24

23.66±2.20

2.83±2.78

22.33±2.88

22.53±2.08

17.83±3.04

20.33±2.15

22.33±1.27

21.13±2.59

25.13±1.15

23.83±1.36

Rec. Rate (%) 1-NN

88.87

89.28

91.40

90.99

85.71

87.85

92.48

89.88

90.17

http://79.1U0.94

BIBLIOGRAPHY

Alba, Enrique and José M. Troya, "A survey of paralld distributed genetic algorithms",
Complexity, vol.4, no.4, p.31-52, Mar./Apr. 1999.

Banzhaf, W. and Peter Nordin and Robert E. Keller and Frank D. Francone, Genetic
Programming: An Introduction; On the Automatic Evolution of Computer Programs
and its Applications. Morgan Kaufmann, San Francisco, CA, USA. 1998.

Beasley, D. and D. R. Bull, and R. R. Martin, "An Overview of Genetic Algorithms: Part I,
Fundamentals". University Computing, vol. 15, no. 2, pp. 58-69, 1993.

Benahmed, Nadia. « Optimisation de Réseaux de Neurones pour la Reconnaissance de
Chiffres Manuscrits Isolés : Sélection et Pondération des Primitives par Algorithmes
Génétiques ». Masfer's thesis. École de technologie supérieure, 2002.

Bot, Martijn C.J., "Feature Extraction for the k-Nearest Neighbour Classifier with Genetic
Programming". EuroGP 2001, Lecture Notes in Computer Science, vol 2038, pp. 256-
267,2001.

Burke, E.K. and Gustafson, S. and Kendall, G., "Diversity in genetic programming: an
analysis of measures and corrélation with fitness," Evolutionary Computation, IEEE
Transactions on, vol.8, no.l, pp. 47-62, Feb. 2004.

Cantti-Paz, E. and D. E. Goldberg, "Efficient parallel genetic algorithms: Theory and
practice," Computer Methods in Applied Mechanics and Engineering, 2000.

CantiJ-Paz, E., "Parameter setting in paralld Genefic Algorithms", Studies in Computational
Intelligence (SCI), 54, 259-276, 2007.

Cunningham, Padraig and John Camey, "Diversity versus Quality in Classification
Ensembles Based on Feature Sélection", Machine Leaming , llth European
Conférence on Machine Leaming, Barcelona, Catalonia, Spain, May 31 - June 2,
2000, Proceedings ECML 2000: 109-116.

P.A. Devijver and J. Kittler, Pattem Récognition, a Statistical Approach, Prentice Hall,
Englewood Cliffs, London, 1982.

Dos Santos, E. "PhD Thesis proposai" École de technologie supérieure, Université du
Québec, Montréal, Québec, Canada, August, 2004.

Dos Santos, E.M. and Sabourin, R. and Maupin, P., "Single and Mulfi-Objective Genefic
Algorithms for the Sélection of Ensemble of Classifiers", IEEE World Congress on

224

Computational Intelligence (WCCI2006) - International Joint Conférence on Neural
Networks (IJCNN 2006), Vancouver, BC, July 16-21, 2006.

Duda, Richard and Peter Hart and David Stork, Pattem Classification, Second édition 2001.

Femândez de Vega, Francisco and Marco Tomassini and Leonardo Vanneschi, "An
Empirical Study of Multipopulation Genefic Programming", Genetic Programming
andEvolvable Machines 4(1): 21-51, 2003.

Ferri, F. J. and V. Kadirkamanathan, and J. Kittler, "Feature subset search using genetic
algorithms". In Proceedings of the lEE/IEEE Works hop on Natural Algorithms in
Signal Processing (NASP 93), pages 23/1-23/7, 1993.

Ferri, F. J. and P. Pudil and M. Hatef and J. Kittler, "Comparative study of techniques for
large-scale feature sélection". In Pattem Récognition in Practice IV, Multiple
Paradigms, Comparative Studies and Hybrid Systems, eds. E. S. Gelsema and L. S.
Kanal. Amsterdam: Elsevier, pp. 403-413, 1994.

Folino, G. and Pizzuti C. and G. Spezzano, "Ensemble Techniques for Parallel
Genefic Programming based Classifiers", EUROGP 2003, LCNS Springer-
Verlag, 2003.

Folino, G. and C. Pizzuti and G. Spezzano and L. Vanneschi and M. Tomassini. "Diversity
analysis in cdlular and multipopulation genetic programming". In Ruhul Sarker and
Robert Reynolds and Hussein Abbass and Kay Chen Tan and Bob McKay and Daryl
Essam and Tom Gedeon editors, Proceedings of the 2003 Congress on Evolutionary
Computation CEC2003. pages 305-311, Canberra, 2003. IEEE Press.

Gagné, Christian and Marc Parizeau and Marc Dubreuil, "Distributed BEAGLE: An
Environment for Parallel and Distributed Evolutionary Computafions". In
Proceedings of the 17th Annual International Symposium on High Performance
Computing Systems and Applications (HPCS), 2003, Sherbrooke (QC), 2003.

Gagné, Christian and Parizeau, Marc, 2004a, "Open BEAGLE Manual", Technical report
RT-LVSN-2003-01-V213-R1, April 13 2004.

Gagné, Christian and Parizeau, Marc, 2004b, "Genericify in Evolutionary Computation
Software Tools: Principles and Case-Study", Technical report RT-LVSN-2004-01,
October 28 2004.

Goldberg, David E., Genetic Algorithms in Search, Optimization and Machine Leaming,
Addison-Wesley Longman Publishing Co., hic, Boston, MA, 1989.

Guerra-Salcedo, C and L.D. Whitley, (1999a) "Genetic approach fo feature sélection for
ensemble création," In: W. Banzhaf J. Daidam, A.E. Eiben, M.H. Garzon, V.

225

Honavar, M. Jakiela, R.E. Smith (Eds.), Proceedings of the 1999 International
Conférence on Genetic and Evolutionary Computation, (GECCO-99), Orlando, FL,
Morgan Kaufiilann, San Mateo, CA, pp. 236-243, 1999.

Guerra-Salcedo, C. and Whitley, D. (1999b), "Feature Sélection Mechanisms for Ensemble
Création: a Genetic Search Perspective," In Data Mining with Evolutionary
Algorithms: Research Directions, AAAI Press, Orlando, Florida, pp 13-17, 1999.

Guo, Hong and L.B. Jack and A.K. Nandi, "Feature génération using genetic programming
with application to fault classification", IEEE Transactions on SMC- Part B:
Cybernetics, Vol 35, Nol, Febmary 2005.

Guo, Hong and Asoke K. Nandi, "Breast cancer diagnosis using genetic programming
generated feature," In Pattem Récognition, Volume 39, Issue 5, , May 2006, Pages
980-987.

Herrera, Francisco and Manuel Lozano and José L. Verdegay, "Tackling Real-Coded Genetic
Algorithms: Operators and Tools for Behavioural Analysis" In Artificial Intelligence,
Rev. 12(4): 265-319, 1998.

Hirsh, Haym and Wolfgang Banzhaf and John R. Koza and Conor Ryan and Lee Spector and
Christian Jacob "Genetic Programming", In IEEE Intelligent Systems, Vol 15 No3,
pp74-84, 2000.

Ho, T. K., "Nearest Neighbours in Random Subspaces", Proceedings of the 2nd Intl.
Workshop on Statistical Techniques in Pattern Récognition, pp. 640-648, Sydney
Australia, August 1998b.

Ho, T. K., "The random subspace method for constmcting décision forests," IEEE
Transactions on Pattern Analysis and Machine Intelligence, 20(8):832~844, 1998a.

Holland, John H., Adaptation in natural and artificial Systems, MIT Press, Cambridge, MA,
1992.

Hong, Jin-Hyuk Hong and Sung-Bae Cho, "The classification of cancer based on DNA micro
array data that uses diverse ensemble genetic programming", Artificial Intelligence In
Medicine, 36(l):43-58, 2006.

Ko, A. and Sabourin, R.and Britto Jr. A. and Oliveira, L., "Pair wise Fusion Matrix for
Combining Classifiers", Pattern Récognition, vol. 40, 2007, pp. 2198-2210.

Iba, H. "Bagging, Boosting, and Bloating in Genefic Programming", GECCO-99:
Proceedings of the Genetic and Evolutionary Computation Conférence, Morgan
Kaufmann, 1999.

226

Jain, Anil and Douglas Zongker, "Feature Sélection: Evaluation, Application, and Small
Sample Performance," IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 19, no. 2, pp. 153-158, Feb., 1997.

Jain, Anil and Robert P.W. Duin and Jianchang Mao, "Statistical Pattem Récognition: A
Review," IEEE Tran. on Pattern Analysis and Machine Intelligence, vol 22, No 1,
Jan. 2000.

Jabeur, K. and Guitouni, A., "Automated leaming multi-criferia classifiers for FLER ship
imagery classification," In Proceedings of International Conférence on Information
Fusion, Québec, CA, 2007.

Koza, John R. Genetic Programming: On the Programming of Computers by Means of
Natural Sélection, Cambridge, MA: The MfF Press. 1992.

Koza, John, R., "Introduction to Genetic Programming: Tutorial", In GECCO-2004
Proceedings of the Genetic and Evolutionary Computation Conférence, Seattle June
27, 2004.

Koza, J. and Keane, M. and Streeter, M. and Mydlowec, W. and Vu, J. and Lanza, G.
Genetic Programming IV: Routine Human-Competitive Machine Intelligence,
Springer, 2005 Second édition.

Krawiec, Krzysztof, "Genetic Programming-based Constmction of Features for Machine
Leaming and Knowledge Discovery Tasks", Genetic Programming and Evolvable
Machines 3(4): 329-343, 2002.

Kubalik, J. "Evolutionary techniques - Foundations of Artificial Intelligence", On-line 28 p.
http://cvber.felk.cvut.cz/gersfner/HUT2000/ga/ga.ppt, consulted on December 19,
2006.

Kudo, M. and Sklansky, J., "Comparison of algorithms that sélect features for pattem
classifiers," In Pattern Récognition, v33. p. 25-41.

Langdon, W. B., Genetic Programming and Data Structures: Genetic Programming + Data
Structures = Automatic Programming!, Kluwer Académie Publishers, 1998.

Lin, S. C. and W. F. Punch and E. D. Goodman, "Coarse-grain parallel genetic algorithms:
Categorization and a new approach," hi Sixth IEEE SPDP, pp. 28-37, 1994.

Michalewicz, Z. and Schmidt, M., "Parameter Control in Practice," In Parameter Setting in
Evolutionary Algorithms, Lima, C , Lobo, F., and Michalewicz, Z. (Editors), Springer
Séries Studies in Computational Intelligence, 2007.

http://cvber.felk.cvut.cz/gersfner/HUT2000/ga/ga.ppt

227

Mitchell, T.M., Machine Learning, McGraw Hill Science/Engineering/Math, Ist édition,
March 1997.

Mitchell, M., An Introduction to Genetic Algorithms, MIT Press, Cambridge, MA, USA,
1999

Muni, Durga Prasad and Nikhil R. Pal and J. Das, "Genetic Programming for Simultaneous
feature Sélection and Classifier Design," IEEE Transactions on Systems, Man and
Cybemetics-B, No. 1, Vol. 36, Feb. 2006.

Newman, D.J. and Hetfich, S. and Blake, CL. and Merz, C.J. 1998, "UCI Repository of
machine leaming databases", on-line
htfp://www.ics.uci.edu/~mleam/MLRepositorv.hfml. Irvine, CA: University of
Califomia, Department of Informafion and Computer Science. Consulted on Jan.
26th, 2007.

Oliveira, L.S., Sabourin, R., Bortolozzi, F., and Suen, C.Y. "Automatic Récognition of
Handwritten Numerical Strings: A Récognition and Vérification Strategy," In IEEE
Transactions on Pattern Analysis and Machine Intelligence, Vol. 24, N. 11, Pages
1438-1454, IEEE Computer Society Press, 2002.

Oliveira, L.S., Sabourin, R., Bortolozzi, F. et Suen, C.Y., 2003a, "A Methodology for
Feature Sélection Using Mulfi-Objective Genetic Algorithms for Handwritten Digit
String Récognition", In the International Journal of Pattem Récognition and
Artificial Intelligence (IJPRAI), Vol 17, No. 6, pp 903-929, 2003.

Oliveira, L.S. 2003b "Automatic Récognition of Handwritten Numerical Strings", Doctoral
Dissertation, Montréal, École de technologie supérieure, 2003.

Oliveira, L.S., Sabourin, R., Bortolozzi, F. et Suen, C.Y., 2003c, Feature Sélecfion for
Ensembles : A Hierarchical Mulfi-Objective Genetic Algorithm Approach, In the
Proceedings of the 7th International Conférence on Document Analysis and
Récognition - ICDAR2003, pp.676-680, Edinburgh, Scotland, 3-6 August 2003.

Opitz, D., "Feature sélection for ensembles," In Proceedings of the Sixteenth National
Conférence on Artificial Intelligence. Menlo Park, CA: AAAI Press, 1999, pp. 379—
384.

Opitz, D. and R. Maclin, "Popular ensemble methods: An empirical study," In Journal of
Artificial Intelligence Research, 11:169-198,1999.

Otero, Femando E. B. and Monique M. S. Silva and Alex A. Freitas and Julio C. Nievola.
"Genetic Programming for Attribute Constmcfion in Data Mining". In Genetic
Programming, Proceedings of EuroGP'2003 Conor Ryan and Terence Soûle and

http://www.ics.uci.edu/~mleam/MLRepositorv.hfml

228

Maarten Keijzer and Edward Tsang and Riccardo Poli and Emesto Costa editors, ,
volume 2610, pages 384-393, Essex, 2003. Springer-Veriag.

Pal, S. K. and P. P. Wang, Genetic Algorithms for Pattern Récognition. CRC Press, Inc.
1996.

Park, Y. and J. Sklansky, "Automated design of linear tree classifiers", Pattern Récognition,
v.23n.l2,p.l393-1412, 1990.

Paris, Gregory and Denis Robilliard and Cyril Fonlupt, "Exploring Overfiffing in Genetic
Programming" In Pierre Liardet and Pierre Collet and Cyril Fonlupt and Evelyne
Lutton and Marc Schoenauer editors. Evolution Artificielle, 6th Intemafional
Conférence, volume 2936, pages 267-277, Marseilles, France, 2003.

Radtke, P. and Wong, T. and Sabourin, R., "An Evaluation of Over-Fit Control Stratégies for
Mulfi-Objective Evolutionary Opfimization," IEEE World Congress on
Computational Intelligence (WCCI 2006) - International Joint Conférence on Neural
Networks (IJCNN 2006), Vancouver, BC, July 16-21, 2006.

Raymer, M. L. and W. F. Punch, E. D. Goodman, and L. A. Kuhn, "Genetic Programming
for Improved Data Mining — Application fo the Biochemistry of Protein
Interactions", Genetic Programming 96, pg 375-381, July 1996.

Rhéaume, F., Joussdme, A-L, Grenier, D., Bossé, E., and Valin, P., "New Initial Basic
Probability Assignments for Mulfiple Classifiers", in SPIE Aerosense 2002, Orlando,
Florida, April 1-5 2002, Oriando, Florida, pp. 319-328.

Rosca, J. P. "Entropy-driven adaptive représentation," In Rosca, J. P., editor, Proceedings of
the Workshop on Genetic Programming: From Theory to Real- World Applications
(NRL TR 95.2, University of Rochester), pages 23—32, 1995.

Robilliard, Denis and Cyril Fonlupt. "Backwarding : An Overfitting Control for Genetic
Programming in a Remofe Sensing Applicafion". In Artificial Evolution 5th
International Conférence. Evolution Artificielle, EA 2001, P. Collet and C. Fonlupt
and J.-K. Hao and E. Lutton and M. Schoenauer editors. volume 2310, pages 245-
254, Ed. Springer Verlag Creusot, France, 2001.

Sarma , Jayshree and Kenneth De Jong , "Génération Gap Methods," In The Handbook of
Evolutionary Computation. D. Fogd T. Baeck and Z. Michalewicz edifor(s). Pages
C2.7:l-C2.7:6. lOP Publishing and Oxford University Press.

Sherrah, Jamie R. ; Bogner, Robert E. and Bouzerdoum, Abdesselam, "The Evolufionary
Pre-Processor: Automatic Feature Exfraction for Supervised Classification using
Genefic Programming", in Genetic Programming 1997: Proceedings of the Second
Annual Conférence, 1997, pp 304-312.

229

Skolicki, Z., De Jong, K., "The influence of migration sizes and infervals on island models",
Proceedings of Genetic and Evolutionary Computation Conférence, Washington DC,
2005.

Srinivas, M. and Lalif M. Patnaik, "Genetic algorithms: A Survey," Computer, v.27 n.6,
p.17-26, June 1994.

Tremblay, G., « Optimisation d'Ensembles de Classifieurs non Paramétriques avec
Aprentissage par Représentation Partielle de l'Information » Masfer's thesis. École
de technologie supérieure, 2004.

Tremblay, G. and Sabourin, R. and Maupin, P., "Optimizing Nearest Neighbour in Random
Subspaces using a Mulfi-Objective Genetic Algorithm," 17th International
Conférence on Pattem Récognition (ICPR2004), Cambridge, U.K., 23-26 August
2004, pp 208-211.

Tsymbal, Alexey and Mykola Pechenizkiy and Padraig Curmingham, "Diversity in search
stratégies for ensemble feature sélection," Information Fusion, Volume 6, Issue 1,
Diversity in Multiple Classifier Systems, March 2005, Pages 83-98.

Vafaie, H. and De Jong, K., "Genetic Algorithms as a tool for restmcturing feature space
représentations," Proceedings ofthe seventh International Conférence on Tools with
Artificial Intelligence, Herdon, VA 1995.

Vafaie, H. "Using Genetic Algorithms for Restmcturing Feature-based Représentation
Spaces," George Mason University, Fairfax, VA., Ph.D. Thesis, Department, School
of Information Technology and Engineering, 1997.

Vincent, Jonathan, "Numerical optimisation using genetic algorithms", 2003. On-line
http://dec.boumemouth.ac.uk/staff/ivincent/teaching/ec/numerical optimisationusin
g_genetic_algorithms.pdf, Consulted on July 19, 2007.

Wagner, S. and Affenzeller, M., "The Allele Meta-Model - Developing a Common Language
for Genefic Algorithms," Artificial Intelligence and Knowledge Engineering
Applications: A Bioinspired Approach, Lecture Notes in Computer Science 3562, pp.
202-211. Springer-Veriag, 2005.

Whitley, D. and S. Rana and R. B. Heckendom, "The island model genetic algorithm: On
separability, population size and convergence," In Journal of Computing and
Information Technology, 7(l):33-47, 1999.

Zhang, Yifeng and Siddhartha Bhattacharyya, "Genetic programming in classifying large-
scale data: an ensemble method,"]n Information Sciences, 163(1-3): 85-101, 2004.

http://dec.boumemouth.ac.uk/staff/ivincent/teaching/ec/numerical

