
ÉCOLE DE TECHNOLOGIE SUPÉRIEURE
UNIVERSITÉ DU QUÉBEC

THESIS PRESENTED TO
ÉCOLE DE TECHNOLOGIE SUPÉRIEURE

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR
THE DEGREE OF DOCTOR OF PHILOSOPHY

Ph.D.

BY
Malik QASAIMEH

AUDITING FOR ISO 9001 REQUIREMENTS IN THE CONTEXT OF AGILE
SOFTWARE PROCESSES

MONTRÉAL, SEPTEMBER 1, 2012

© Copyright 2012 Malik QASAIMEH

II

© Copyright reserved

It is forbidden to reproduce, save or share the content of this document either in whole or in parts. The reader
who wishes to print or save this document on any media must first get the permission of the author.

III

THIS THESIS HAS BEEN EVALUATED

BY THE FOLLOWING BOARD OF EXAMINERS

Mr. Alain Abran, Ph.D, Thesis Supervisor
Software Engineering and Information Technology Department, École de technologie
supérieure

Mr. Nicolas Constantin, Ph.D, President of the Board of Examiners
Electrical Engineering Department, École de technologie supérieure

Mrs. Ghizlane El Boussaidi, Ph.D, Examiner
Software Engineering and Information Technology Department, École de technologie
supérieure

Mr. Hamid Mcheick, Ph.D, External Examiner
Computer Science and Software Engineering Department, Universite du Quebec a
Chicoutimi

THIS THESIS WAS PRESENTED AND DEFENDED

BEFORE A BOARD OF EXAMINERS AND THE PUBLIC

17 AUGUST, 2012

AT ECOLE DE TECHNOLOGIE SUPERIEURE

IV

V

ACKNOWLEDGMENT

I would like to seize this opportunity to express my gratitude to all who have helped me in

my graduate studies. First and foremost, I would like to thank my advisor, Professor Alain

Abran, for his incredible support in all stages of my doctoral study. His kindness,

encouragement, wise advice, knowledge, and professionalism have made working with him a

great pleasure and honor. His professionalism and positive attitude towards research passed

on to me a sound technical knowledge to the area of software engineering that will

accompany me wherever I go. He nicely devoted so much of his time through face to face

meetings and very fast email feedbacks to help me succeed in my graduate studies. I could

not have asked for a better adviser to direct me through my doctoral studies. Also, I would

like to thank everyone in the Software Engineering Research Laboratory (GÉLOG) and the

Department of Software Engineering and IT for their support.

I would like to acknowledge the Compass Group at Montréal and the internal awards

committee in ETS for their financial support and graduate fellowships.

I am deeply grateful to my committee members Prof. Nicolas Constantin, Prof. Ghizlane El

Boussaidi, and Prof. Hamid Mcheick for their time and effort in reviewing this work.

A great love to my parents, my father (Prof. Ghazi) the source of strength and wisdom in my

life, my mother (Ghazieh) whom I need to spend my entire life to honor and thank. You have

shown me the joy of intellectual pursuit ever since I was a child. Thanks to my sisters (Dr.

Dania and Ghaida) and to my brothers (Dr. Motaz, Dr. Mohammad, Raji and Salem) for their

moral support. Last but not least, my deep appreciation to all my friends (especially Dr.

Mohammad Ameen Qasaimeh, Dr. Khalid Al Makhadmeh and Eng. Derar Rizk), roommates

and ex-roommates in Montréal.

VI

VII

AUDITING FOR ISO 9001 REQUIREMENTS IN THE CONTEXT OF AGILE
SOFTWARE PROCESSES

Malik QASAIMEH

ABSTRACT

ISO 9001 demands of (software) organizations that a rigorous demonstration of their
software processes be implemented and a set of guidelines followed at various levels of
abstraction. What these organizations need to show, in other words, is that their software
processes have been designed and implemented in a way that allows for a level of
configuration and operation that complies with ISO 9001 requirements.

For software organizations needing ISO 9001 certification, it is important that they establish
a software process life cycle that can manage the requirements imposed by this certification
standard. However, software organizations that develop their software products using the
agile software processes, such as Extreme Programming (agile-XP), face a number of
challenges in their effort to demonstrate that their process activities conform to ISO 9001
requirements, major ones being: product construction, traceability, and measurement. Agile
software organizations must provide evidence of ISO 9001 conformity, and they need to
develop their own procedures, tools, and methodologies to do so.

As yet, there is no consensus on how to audit the agile software organization to ensure that
their software processes have been designed and implemented in conformity with ISO 9001
requirements. Moreover, it is challenging to ensure that such lightweight documentation
methodologies meet these requirements for certification purposes.

The motivation of this research is to help software organizations that use agile software
processes in their effort to meet the ISO 9001 certification requirements. This research
project is also aimed at helping IS auditors extract auditing evidence that demonstrates
conformity to the ISO 9001 requirements that must be met by agile software organizations.
Extreme programming (agile-XP) has been selected for improvement as a candidate agile
process. This selection was based on the literature indicating a higher adoption of agile-XP
over other agile software processes.

The goal of this research project is to improve the ability of the agile-XP process to meet the
auditing requirements of ISO 9001. The goal of the research also focuses on helping agile
software organizations in their effort to become ISO 9001 certified.

The main objective of this research project is to design an auditing model that covers the
measurement and traceability requirements of ISO 9001. The auditing model should provide
IS auditors with auditing evidence that the software projects developed with the agile-XP
process have fulfilled the requirements of ISO 9001. The objective also proposes several sub

VIII

processes to enhance the early planning activities of agile-XP according to ISO 9001
requirements.

To achieve these objectives, the main phases of the research methodology are: Investigation
of the capability of agile-XP to achieve the requirements of ISO 9001 software process
certification; modification of the early phases of agile-XP (i.e. release planning phase) using
CMMI-DEV; and design of an auditing model for ISO 9001 traceability and measurement
requirements.

The main outcome of this research study, which is an auditing model that is aligned with the
principles of agile-XP and focuses on ISO 9001 traceability and measurement requirements
to provide the IS auditors with a methodological approach for the auditing process. The
auditing model has been assessed based on case studies selected from the literature.

Keywords: Agile Software Process Improvements, Certification Process, Auditing,
Evaluation Theory, ISO 9001, ISO 90003, Software Process Improvement, Engineering
Design.

IX

AUDIT DES REQUIS ISO 9001 DANS LE CONTEXTE DES PROCESSUS
LOGICIELS AGILES

Malik QASAIMEH

RÉSUMÉ

ISO 9001 exige des organisations une démonstration rigoureuse de la mise en œuvre de leurs
processus logiciels et un suivi d’un ensemble de lignes directrices à différents niveaux
d'abstraction. En d'autres termes, ce que ces organisations ont besoin de démontrer c'est que
leurs processus logiciels ont été conçus et mis en œuvre d'une manière qui permette un
niveau de configuration et de fonctionnement qui est conforme à la norme ISO 9001.

Pour les organisations de logiciels qui ont besoin de la certification ISO 9001, il est
important d'établir un processus de cycle de vie logiciel qui permet de gérer les exigences
imposées par la présente norme de certification. Toutefois, les organisations de logiciels qui
développent leurs produits logiciels en utilisant les processus logiciels agiles comme
l'Extreme Programming (XP-agile) font face à un certain nombre de défis dans leurs efforts
pour démontrer que leurs activités de processus sont conformes aux exigences d’ISO 9001.
Les plus importants exigences ISO 9001 sont reliées à la construction du produit logiciel, la
traçabilité et la mesure. Les processus dits Agile doivent fournir la preuve de la conformité
ISO 9001, et ils doivent développer leurs propres procédures, outils et méthodologies pour ce
faire.

Pour l'instant, il n'y a pas de consensus sur la façon de vérifier les organisations de type agile
pour s'assurer que leurs processus logiciels ont été conçus et mis en œuvre en conformité
avec les exigences ISO 9001. Il est donc difficile de prendre en compte des méthodologies de
documentation du processus légers (par exemple logiciel agile agile-XP) pour démontrer que
les exigences ISO 9001 ont été rencontrées.

La motivation de cette recherche est d'aider les organisations de logiciels qui suivent des
processus logiciels agiles à répondre aux exigences de certification ISO 9001. Ce projet de
recherche vise également à aider les vérificateurs logiciels pour extraire des preuves d'audit
qui démontrent la conformité aux exigences ISO 9001 des organisations de logiciels agiles.
Extreme programming (XP-agile) a été choisi pour être amélioré comme un processus agile
candidat. La sélection est basée sur la littérature indiquant une plus grande adoption de agile-
XP parmi les autres processus de développement logiciel agile.

X

Le but de ce projet de recherche est d'améliorer le processus Agile-XP pour rencontrer les
exigences de vérification de la norme ISO 9001. L'objectif de la recherche vise également à
aider les organisations de logiciels agiles dans leurs efforts pour devenir certifié ISO 9001.

Un premier objectif de ce projet de recherche est de concevoir un modèle d'audit qui couvre
l'exigence de mesure et de traçabilité de l'ISO 9001. Le modèle de vérification devrait fournir
aux auditeurs des preuves d'audit que les projets de logiciels développés avec agilité-XP
processus ont rempli les exigences de la norme ISO 9001. Le second objectif vise à proposer
plusieurs sous-processus pour améliorer les activités de planification au début de agile-XP et
selon les exigences ISO 9001.

Pour atteindre ces objectifs, les principales phases de la méthodologie de recherche sont:
Etude de la capacité de agile-XP pour atteindre les exigences de la certification ISO 9001 des
processus logiciels; Modification de la phase précoce de agile-XP (i.e. la phase de
planification) à l'aide du modèle CMMI-DEV; conception d'un modèle d'audit ISO 9001
pour rencontrer les exigences de traçabilité et de mesure.

Le principal résultat de cette étude est un modèle d’audit qui est aligné avec les principes de
souplesse-XP et se concentre sur la norme ISO 9001, et en particulier sur la traçabilité et les
exigences de mesure de fournir des auditeurs est une approche méthodologique pour le
processus de vérification. Le résultat de cette recherche a été évalué sur la base de neuf
études de cas identifiées dans la littérature.

Mots-clés: Agile amélioration des processus logiciels, processus de certification, Audit,
théorie de l'évaluation, ISO 9001, ISO 90003, l'amélioration des processus logiciels, de
conception technique.

XI

TABLE OF CONTENTS

Pages

INTRODUCTION ...1

CHAPTER 1 AGILE SOFTWARE PROCESS IN THE LITERATURE REVIEW7
1.1 Introduction ..7
1.2 Software process and software life cycle model ..8

1.2.1 ISO-IEEE viewpoint ..8
1.3 Agile software development ..11
1.4 Related work on agile software processes and ISO 9001 ..12

1.4.1 Vitoria (2004)...12
1.4.2 Vriens (2003) ...12
1.4.3 Wright (2003)...12
1.4.4 Maurer et al. (2002) ...13

1.5 Agile software process in systematic reviews ...13
1.5.1 Jalali and Wohlin (2011) ..13
1.5.2 Diaz et al. (2011) ...20

1.6 Statistical evidence on agile software adoption ...26
1.6.1 Industry based evidences ...26
1.6.2 Academic based evidences ..28

1.7 Agile software processes..30
1.7.1 Extreme Programming (XP) ..30
1.7.2 Scrum ...32
1.7.3 Feature-Driven Development (FDD) ...33
1.7.4 Adaptive Software Development (ASD) ...35
1.7.5 Crystal Methodologies ...36

1.8 Comparison of agile processes based on software design and projects requirements .38
1.9 Experiments classification of agile literature ...41
1.10 Summary ..46

CHAPTER 2 ISO 9001 AND AUDITING PRINCIPLES ..49
2.1 Introduction ..49
2.2 Adoption of ISO 9001 in software organizations ..51
2.3 Evolution of auditing practices ..56
2.4 Auditing for certification ...57
2.5 ISO 9001 ..60
2.6 Summary ..62

CHAPTER 3 RESEARCH GOAL, OBJECTIVES, AND METHODOLOGY65
3.1 Introduction ..65
3.2 Research motivation ...65
3.3 Research goal ...65
3.4 Research objectives ..66

XII

3.5 Research inputs ..66
3.6 Research users ..67
3.7 Overview of the research methodology ...67
3.8 Detailed research methodology..69

CHAPTER 4 ANALYSIS OF AGILE-XP FROM ISO 9001 PERSPECTIVE77
4.1 Introduction ..77
4.2 Analysis scope and design ...78

4.2.1 Analysis scope ...78
4.2.2 Design process for the analysis ..79

4.3 Mapping results ..82
4.3.1 Planning of product realization ..82
4.3.2 Requirements phase ...85
4.3.2.1 ISO Requirements during software requirement gathering activity85
4.3. 3 Construction phase ...88
4.3.4 Design and development verification and validation91

4.4 Summary.. ...95

CHAPTER 5 EXTENDING AGILE-XP USER STORIES TO MEET ISO 9001

FORMALITY REQUIREMENTS ..97
5.1 Introduction ..97
5.2. Terminology ...98

5.2.1 System ..98
5.2.2 System feature and system function from the XP viewpoint98

5.3 Design for user stories extension ...99
5.4 Proposed sub processes ..103

5.4.1 Identify the source of the user story ...103
5.4.2 Categories of non functional requirements ..110
5.4.3 Identify the user story relationships ...113
5.4.4 Prioritizing the user stories ..116

5.5 Extended user story for XP ..125
5.6 Summary and Discussion ...127

CHAPTER 6 AN AUDIT MODEL FOR ISO 9001 TRACEABILITY REQUIREMENTS

IN AGILE-XP ENVIRONMENTS ...131
6.1 Introduction ..131
6.2 Analysis of traceability requirements in ISO 9001 ..132

6.2.1 Support for change management ...133
6.2.2 Cost management ...134
6.2.3 Process improvements ...135

6.3 Design process ...137
6.3.1 Evaluation fundamentals ..137

6.4 Design of the Auditing Model ...141
6.4.1 Scope delimitation ...141
6.4.2 Design of the audit criteria and yardsticks ...141

XIII

6.5 Summary ..147

CHAPTER 7 EXTENDING THE AUDITING MODEL BY COVERING THE ISO 9001

MEASUREMENT REQUIREMENTS ...149
7.1 Introduction ..149
7.2 Analysis of measurement requirements in ISO 9001 ..150

7.2.1 Analysis of section 8.2.1: customer satisfaction ..150
7.2.2 Analysis of section 8.2.3 of ISO 9001: measurement of processes152
7.2.3 Analysis of ISO 9001 section 8.2.4: measurement of products156
7.2.4 ISO 9001 section 8.2.2: Internal Auditing ...157

7.4 Existing agile measurement and estimation techniques...161
7.5 Design process ...165

7.5.1 Engineering design process ..165
7.5.2 Design formulation ..166
7.5.3 Subdivision of design component ..171
7.6.1 A: Auditing criteria for measurement plans ...176
7.6.2 B: Auditing criteria for measurement development180
7.6.3 C: Auditing criteria for measurement management185

7.6 Summary ..187

CHAPTER 8 CASE STUDIES ..189
8.1 Introduction ..189
8.2 Classification of auditing evidences ..191
8.3 Case studies: agile traceability audit ..192

8.3.1 Context and scope ..192
8.3.2 Traceability audit of Case ATR (Espinoza, Garbajosa)196
8.3.3 Auditing for the five case studies based on yardstick TR #6 (Traceability item

relationships) ..204
8.4 Case studies: agile measurement audit ..208

8.4.1 Context and scope ..208
8.4.2 Preliminary considerations ...212
8.4.3 Measurement audit of Case BMR (Mahnic, Zabkar)213
8.4.4 Auditing of measurement case studies for yardstick MR #5 (Measurement

data and models) ..221
8.4.3 Auditing summary of agile measurement case studies222

8.5 Summary ..227

CONCLUSION ..229

BIBLIOGRAPHY ..237

XIV

XV

LIST OF TABLES

Pages

Table 1.1 Agile distribution in Global Software Engineering (GSE) ----------------------- 16

Table 1.2 Agile distribution of research type in the area of Global Software Engineering

(GSE)………………………………………………………………….……….16

Table 1.3 Location & Agile practices in Agile-Distribution settings ------------------------ 18

Table 1.4 IBM rational methods group survey --- 27

Table 1.5 Comments on the agile surveys -- 29

Table 1.6 Comparison of agile processes based on the project and design requirements - 40

Table 1.7 Summarization and classification of the experiments ----------------------------- 43

Table 4.1 ISO 9001 planning phase mapping -- 85

Table 4.2 ISO 9001 Requirement gathering and validation mapping ----------------------- 88

Table 4.3 Classification of Review Methods --- 89

Table 4.4 ISO 9001 Construction phase mapping --- 91

Table 4.5 ISO 9001 Construction phase mapping --- 94

Table 5.1 Derived XP sub processes -- 102

Table 5.2 ISO 9126 quality characteristics --- 111

Table 5.3 Examples of non functional capability categories ------------------------------- 113

Table 5.4 AHP scale -- 121

Table 5.5 Pairwise matrix for the selected criteria -- 122

Table 5.6 Pairwise matrix for the cost criterion --- 122

Table 5.7 Pairwise matrix for time criterion --- 123

Table 5.8 Pairwise matrix for the risk criterion -- 123

Table 6.1 ISO 9001 obligations and CMMI KPAs corresponding to process ------------- 136

Table 7.1 Agile estimation techniques and their weaknesses from measurement and

auditing perspectives --- 164

Table 7.2 Examples of publications work based on ISO 15939 ----------------------------- 173

Table 7.3 Questions based context analysis for auditing evidences extraction ----------- 178

Table 7.4 Examples of base measures and derived measures in the CMMI model ------- 182

XVI

Table 8.1 Selected case studies for the agile (XP) traceability audit ----------------------- 195

Table 8.2 Traceability audit of case ATR--- 198

Table 8.3 Traceability audit of case BTR --- 200

Table 8.4 Traceability audit of case CTR --- 201

Table 8.5 Traceability audit of case DTR--- 202

Table 8.6 Traceability audit of case ETR --- 203

Table 8.7 Audit based on yardstick TR #6 --- 205

Table 8.8 Summary of evidences in the selected case studies ------------------------------ 207

Table 8.9 Selected case studies for the audit of agile (XP) measurement ----------------- 210

Table 8.10 Measurement audit of case BMR -- 216

Table 8.11 Measurement audit of case AMR -- 218

Table 8.12 Measurement audit of Case CMR -- 219

Table 8.13 Measurement audit of Case DMR --- 220

Table 8.14 Audit based on Yardstick MR #5 -- 222

Table 8.15 Existence of evidence in the selected case studies ------------------------------- 226

XVII

LIST OF FIGURES

Pages

Figure 1.1 ISO 12207:2008 processes (ISO/IEC 12207:2008 -Reprinted with permission

from IEEE, Copyright 2008 by IEEE, 3 Park Avenue, New York, NY 10016-

5997 USA, All rights reserved) -- 9

Figure 1.2 SWEBOK ‘software engineering process’ knowledge area ---------------------- 10

Figure 1.3 The extent of use of different agile process reported in --------------------------- 27

Figure 1.4 Extreme programming - XP -- 30

Figure 1.5 Scrum process -- 32

Figure 1. 6 Steps of FDD --- 34

Figure 1.7 ASD process activities --- 35

Figure 1.8 Crystal methodologies --- 37

Figure 2.1 ISO 9126 quality approach -- 50

Figure 2.2 Maturity distributions of Danish organizations without ISO 9001 certification,

Hass, Johansen et al. (1998) -- 52

Figure 2.3 Maturity distributions of Danish organizations with ISO 9001 certification, -- 52

Figure 2.4 Generic auditing model -- 59

Figure 2.5 ISO 9001 Time line -- 61

Figure 3.1 Detailed research methodology -- 75

Figure 4.1 ISO 9001, clause 7 --- 79

Figure 4.2 ISO 12207 focused processes --- 80

Figure 4. 3 Mapping process & phases -- 81

Figure 4.4 Validation and verification process -- 91

Figure 5.1 Relationship between system features and system functions in XP ----------- 99

Figure 5.2 Methodology for deriving the XP sub-processes -------------------------------- 101

Figure 5.3 User story sources – the various types of contributors ------------------------- 105

Figure 5.4 Government side contributors -- 109

Figure 5.5 Logical dependency -- 114

Figure 5.6 Data dependency -- 114

XVIII

Figure 5.7 Temporal dependency --- 115

Figure 5.8 Resource dependency --- 115

Figure 5.9 Procedure for prioritizing the user stories in XP using the AHP ------------- 118

Figure 5.10 AHP diagram for user story selection -- 120

Figure 5.11 A priority hierarchy -- 124

Figure 5.12 Calculation of user stories priority -- 125

Figure 5.13 Extended user story -- 126

Figure 6.1 Components of an evaluation procedure Lopez (2000) -------------------------- 138

Figure 6.2 Design process for the audit model--- 140

Figure 6.3 The structure of the proposed auditing model ------------------------------------ 142

Figure 7.1 Relations of ISO 9001section 8.2.1” Customer satisfaction” to other sections in

ISO 9001 --- 151

Figure 7.2 Relations of ISO 9001 section 8.2.3 “Measurement of processes” to other

sections in ISO 9001 --- 154

Figure 7.3 Relation of ISO 9001section 8.5.2 “corrective action” to the ISO standards - 156

Figure 7.4 Relation of ISO 9001 section 8.2.3 “Measurement of processes” to other

sections in ISO 9001 --- 157

Figure 7.5 Relations of ISO 9001 section 8.2.2 “Internal auditing” to other sections in ISO

9001 -- 159

Figure 7.6 An example of a burn down chart -- 163

Figure 7.7 Vincenti's levels of engineering design -- 166

Figure 7.8 The elicitation of auditing audit criteria --- 169

Figure 7.9 The structure of the measurement auditing model ------------------------------- 170

Figure 7.10 Auditing model design levels --- 175

XIX

LIST OF ABBREVIATIONS

AHP Analytic Hierarchy Process

APLE Agile Product Line Engineering

ASD Adaptive Software Development

ATAM An Evaluation Theory Perspective of the Architecture Tradeoff Analysis Method

BPMN Business Process Modeling Notation

CMMI Capability Maturity Model Integration

COBIT Control Objectives for Information and related Technology

COCOMO Constructive Cost Model

COSMIC Common Software Measurement International Consortium

CPI Cost Performance Index.

DE Domain Engineering

DSDM Dynamic Systems Development Method

ECSS European Cooperation on Space Standardization

EEML Extended Enterprise Modeling Language

FDA Food and Drug Administration

FDD Feature Driven Development

FSM Software Functional Size Measurement

GQM Goal Question Metric

HIPAA Health Insurance Portability and Accountability Act

IBM International Business Machines

IEEE Institute of Electrical and Electronics Engineers

XX

IS Information System

ISA International Standard of Auditing

ISACA Information Systems Audit and Control Association

ISBSG International Software Benchmarking Standard Group

ISO International Organization for Standardization

KAs knowledge Areas

KPA Key Process Area

KPIA Key Process Indicator Areas

MPS-BR Model for Brazilian Software Process Improvement

QFD Quality Function Deployment

QMS Quality Management System

RD Requirement Development

REQM Requirement Management

RM Risk management

SCM Software Configuration Management

SEI Software Engineering Institute

SLCM Software Life Cycle Model

SOMF Service-Oriented Modeling Framework

SOX Sarbanes-Oxley

SPLE Software Product Line Engineering

SPM Software Process Model

SWEBOK Software Engineering Body of Knowledge

TQS Thai Quality Software

XXI

UML Unified Modeling Language

US User Story

USP User Story Point

VSEs Very Small Entities

WSEAS World Scientific and Engineering Academy and Society

XP Extreme Programming

INTRODUCTION

Customers expect from their software vendors a product that can perform the desired

functionality while maintaining the required quality attributes and characteristics, such as

maintainability, reliability, usability, and efficiency. However, developing quality software is

not an easy task and requires that the software development organizations continuously

improve their processes and strategies. An important standard designed to guide

organizations to develop a quality product is ISO 9001. This research work focuses on

improving the audit ability of agile software processes (e.g. agile-XP), in particular from the

ISO 9001 perspective. The problem statement underlying this thesis and the structure of the

thesis are detailed next.

Problem Statement

The origins of ISO 9001 can be traced back to the manufacturing sector; however, this

quality standard is now being applied to many other types of organizations, including health

care. Since the standard is neither industry nor product specific, it may be used by any

organization which needs to provide a high quality product or service. The development of

software has also become an important endeavor in ISO member countries, and the ISO has

developed and released a set of software engineering guidelines to serve as a roadmap to

enable software development organizations to become ISO 9001 certified. These guidelines

are contained in the ISO 90003 publication, and organizations that need to be ISO 9001

certified can use it when audited to show evidence that they have implemented the ISO 9001

requirements. However, ISO 90003 does not recommend any tool, methodology, or software

process to software organizations that can be implemented to support the certification

requirements.

The ISO is not itself a certification body. A certification body is a third-party agency that is

responsible for auditing an organization’s activities to ensure their ability to comply with

specific standards such as ISO 9001. Certification bodies usually charge for their services. If

no major non conformity is found, the certification body will issue a certificate based on a

2

specified auditing scope (e.g. product construction). Small- to mid-sized software

organizations (such as agile software organizations) tend to find the certification process with

ISO 9001 costly. Such costs include consulting fees, training programs, auditing costs, and

registration.

ISO 9001 impacts the entire range of software life cycle activities, including software

planning, software requirement gathering and analysis, software construction activities, the

software life cycle traceability process, and the measurement process. To address all these

activities, software organizations that need to become ISO 9001 certified find themselves in a

position where they need to develop myriad tools and technique to demonstrate that their

software processes are in conformity with the quality standard. A common methodology is to

have in place a certification team (i.e. software analysts), which is responsible for

understanding which ISO 9001 clauses impact the organization’s business processes,

including software process activities. This team must also assess the development team, to

demonstrate that the software products are being developed according to ISO 9001

requirements. In essence, this means providing documented evidence that clarifies how and

when a particular design decision has been implemented. The collection of evidence

constitutes a very important foundation on which the IS auditors base their audit results and

conclusion.

Prior to our undertaking the research reported in this thesis, there was no model or

framework designed to help agile software organizations in their effort to become ISO 9001

certified. Consequently, it was challenging for them to provide the IS auditors with audit

evidence demonstrating they were meeting the ISO 9001 requirements.

This document reports on the research carried out to enhance the audit ability of software

organizations that have adopted a lightweight software life cycle model, such as agile-XP,

and decide to obtain ISO 9001 certification. The enhancement has been achieved by

modifying the early phase of agile-XP to accommodate important information related to ISO

3

9001. The enhancement process also focuses on the development of an auditing model for

process traceability and process measurement.

Thesis organization

This thesis contains ten chapters (including the introduction and the conclusion). In this

current chapter, we outline the structure of the thesis, as follows.

Chapter 1 presents an analysis of the literature related to agile software process deployment

and improvement, and focuses on identifying evidence concerning the adoption of agile

software processes in the context of software organizations. This chapter also provides a

comparison of agile software processes, based on key requirements for software

development, as to understand their strength and weaknesses.

Chapter 2 presents an overview of auditing practices and the ISO 9001 certification process

in the context of software organizations, and focuses on identifying the potential advantages

for software organizations in becoming ISO 9001 certified. This chapter also presents an

analysis of several studies and surveys that report on the implementation of ISO 9001 in

software organizations.

Chapter 3 presents the definition of our research project, including the research motivation,

goal, and objectives, as well as the users of the research results. This chapter also presents

our detailed methodology, which is designed to tackle the research objectives, including the

research phases and research inputs.

Chapter 4 identifies the main ISO 9001 requirements that have a direct impact on the

software process life cycle model, which is mainly based on ISO 12207 terminologies. This

chapter also presents an analysis of the strength and weaknesses of agile-XP in terms of

meeting ISO 9001 requirements. Our conclusions with respect to the capabilities of agile-XP

are then presented.

Chapter 5 provides a modification of the structure of traditional user stories, in order to

supply the ISO 9001 auditor of agile-XP with sufficient evidence that the data they require

4

have been collected, and to enable traceability for the requirements throughout the earliest

phases of agile-XP (i.e. the release planning phase). This modification is applied following

the design of four sub processes (activities) aligned with agile-XP release planning phase.

These sub processes are: 1) identification of the user story resources; 2) identification of a

non functional requirements category; 3) identification of user story relationships; and 4)

identification of user story priorities.

Chapter 6 presents an analysis of the ISO 9001 traceability requirements with the objective of

developing an auditing model aligned with agile-XP. This model focuses on identifying a set

of auditing criteria that supports the ISO 9001 traceability requirements. The model uses

evaluation theory principles as a framework on which to build the proposed auditing model.

This chapter also presents the engineering design principles used as a basis for building the

proposed auditing model.

Chapter 7 presents an extension for the auditing model to support the ISO 9001 measurement

requirements. This chapter also presents an analysis with respect to ISO 9001 measurement

requirements with the objective of developing an auditing model aligned with agile-XP. The

extension consists of three major categories of auditing criteria, which focus on the evidence

that can be extracted to demonstrate process conformity with the ISO 9001 measurement

requirements.

Chapter 8 presents the case studies selected for an auditing process involving five traceability

approaches and four measurement approaches in the area of agile software processes. This

chapter also extracts the auditing evidence from the selected agile approaches to assess their

conformity to ISO 9001 traceability and measurement requirements.

The concluding chapter summarizes the results of this thesis, as well as its contributions and

limitations, and suggestions for future work.

CHAPTER 1

AGILE SOFTWARE PROCESS IN THE LITERATURE REVIEW

1.1 Introduction

Software development practices have evolved significantly since the term software

engineering was popularized by F. L. Bauer during the NATO Software Engineering

Conference in 1968. There exist today a large number of software process life cycle models

that have been introduced and studied to a great extent, but up to date none has proven to be

the golden life cycle model and each model has its own advantages and disadvantages.

Agile software processes challenges the traditional way of software development and project

management. In rapidly changing environments, changing requirements and tight schedule

constraints require software developers to understand the main features of agile software

processes. The objective of this chapter is to identify the adoption level of different agile

software processes in both academia and industry. Additionally, several agile software

processes will be presented and compared to provide an understanding of the main

similarities and differences between the selected agile software processes.

This chapter presents a survey and analysis of the related literature and is organized as

follows:

• Section 1.2 provides an overview of the common software processes in ISO 12207 and

SWEBOK;

• Section 1.3 provides an overview of the agile software process;

• Section 1.4 discusses the related work on agile software processes and ISO 9001;

• Section 1.5 discusses the systematic reviews in agile software process;

• Section 1.6 provides statistical evidences on agile software adoption’ and compare

different practices of agile software processes;

8

• Section 1.7 provides summarization for the practices of agile software processes;

• Section 1.8 compares the agile software processes;

• Section 1.9 provides classification for the twenty experiment in the area of agile software

processes;

• A summary is presented in section 1.10.

1.2 Software process and software life cycle model

1.2.1 ISO-IEEE viewpoint

ISO-IEEE12207:2008 is an international standard that establishes a common framework for

software life cycle processes. It defines a process as “A set of interrelated activities, which

transform inputs into outputs”, and a life cycle model as a “framework of processes and

activities concerned with the life cycle that may be organized into stages, which also acts as a

common reference for communication and understanding of the process terminologies”.

From the ISO 12207 perspective, “the life of a system or a software product can be modelled

by a life cycle model consisting of stages. Models may be used to represent the entire life

from concept to disposal or to represent the portion of the life corresponding to the current

project. The life cycle model is comprised of a sequence of stages that may overlap and/or

iterate, as appropriate for the project's scope, magnitude, complexity, changing needs and

opportunities. Each stage is described with a statement of purpose and outcomes. The life

cycle processes and activities are selected and employed in a stage to fulfil the purpose and

outcomes of that stage”.

The processes of ISO 12207:2008 have been classified into two categories: system context

processes and software specific processes. The system context processes are: agreement

processes, project processes, technical processes, and organizational project-enabling

processes. The software specific processes are: software implementation processes, software

support processes and software reuse processes. Each process has its sub processes, as shown

9

in figure 1.1. The main objective of ISO12207:2008 is to provide the software development

team with common definitions and terminologies throughout the software life cycle.

Figure 1.1 ISO 12207:2008 processes (ISO/IEC 12207:2008 -Reprinted with permission
from IEEE, Copyright 2008 by IEEE, 3 Park Avenue, New York, NY 10016-5997 USA, All

rights reserved)

The SWEBOK Guide - ISO TR 19759 Abran, Moore et al. (2004) defines ten knowledge

areas (KAs) within the field of software engineering: requirements, design, construction,

testing, maintenance, configuration management, engineering management, engineering

process, engineering tools and methods, and quality. All software organizations are expected

to implement the best practices listed in all those KAs, or in a subset of them. The knowledge

area on ‘software engineering process’ lists and describes the following topics: process

10

implementation and change, process definition, process assessment and process and product

measurement- See figure 1.2.

Figure 1.2 SWEBOK ‘software engineering process’ knowledge area
Abran, Moore et al. (2004)

IEEE-610-1991 defines the software life cycle model (SLCM) as a “set of operations that is

repeated regularly in the same sequence, possibly with variations in each repetition”.

In the field of software engineering, there are many software life cycle models that are

available in the literature; however, each model has its own characteristics, advantages and

disadvantages.

11

Software life cycle models have been classified into two main categories. One is called plan-

driven development or traditional software development models and the other is called

lightweight development models or agile software development. The next sections will focus

on the details of agile software development.

1.3 Agile software development

A study has been conducted by Baskerville, Levine et al. (2002) to identify the factors that

influence the development practices in nine development organizations. This study has

identified three main factors:

• Demand for rush to market;

• Operating in a different type of market environment;

• Lack of experience developing such products.

The study of Baskerville, Levine et al. (2002) has concluded that the software organizations

should enhance their software processes by integrating the following practices:

• Customers should be intensely involved in development and guiding the construction and

design of the product.

• Prototyping should be heavily used in understanding requirements.

• The application should be evolving through frequent releases.

Agile processes have been proposed to overcome the inflexibility issues of traditional

processes. They have been developed by practitioners based on their experience working on

several software development projects Cao (2006); Nerur, Mahapatra et al. (2005). Although

existing agile processes can differ in the way they approach software development, they all

share one key characteristic which consists of favouring close collaboration between

software development and business teams via face-to-face communication, as opposed to

putting an emphasis on written documentation (Highsmith, 2000) (Nerur, Mahapatra et al.,

2005).

12

1.4 Related work on agile software processes and ISO 9001

A number of authors have studied the relationships between agile software processes and

ISO 9001 requirements. The focuses of these authors differ based on the selected ISO 9001

provision or set of requirements investigated. This section is a summary of the related

research work.

1.4.1 Vitoria (2004)

Vitoria (2004) studies the ISO 9001 and TickIT standard and analyzes how it has been used

in two case studies with agile projects. Vitoria reports for these two projects that 33% of ISO

9001 requirements could not be applied in an XP project, 24% could be partially applied,

20% could be applied in full, while 23% were not relevant to the scope of the projects.

1.4.2 Vriens (2003)

Vriens (2003) discusses CMM, ISO 9001 and their relationships to XP and Scrum: he

observes that most of the ISO 9001 requirements are independent of development methods

used and are covered by the existing processes. This author reports on his experience of

getting certified for both CMM Level 2 and ISO 9001:2000 on a time scale of 2 years by

using agile methodologies.

1.4.3 Wright (2003)

Wright (2003) describes a successful certification story for an XP organization. This author

describes how the organization managed the large team through the practice of XP and

highlights the tools used to support the project team to handle the ISO 9001 requirements:

this author focus is only on some selected ISO 9001 requirements and he highlights their

corresponding XP support activities.

13

1.4.4 Maurer et al. (2002)

In a study evaluating the success of XP principles in Web development, Maurer and Martel

(2002) report an average increase of 66% in new lines of code produced, a 302% increase in

the number of new methods developed and a 283% increase in the number of classes

implemented.

1.5 Agile software process in systematic reviews

This section summarizes the findings of two recent systematic reviews in the area of agile

software processes. The importance of those studies is highlighted next:

• These recent studies have been published in 2011.

• These studies have identified and analyzed the findings of many other research papers

(i.e. each study summarizes the findings of more than 10 papers in the area of agile

software process).

• The studies follow a disciplined approach based on Kitchenham (2007) to identify,

analyze and interpret all the available evidences related to research goals.

• Instead of focusing on the agile software process success in developing small and

medium software projects, these studies reveal the status of agile software process in

developing large software (e.g. Global project development and Software Product Line

Engineering) where multiple collaborations between the project stakeholders are needed

and efficient software practices are required.

1.5.1 Jalali and Wohlin (2011)

1.5.1.1 Goal of this study

In this study, Jalali and Wohlin (2011) carry out a Systematic Review (SR) to investigate the

application of agile methods and practices in Global Software Engineering (GSE) in existing

research.

The authors conducted peer-reviewed research produced between the years 1999 and 2009.

The authors note that the majority of existing research report industrial experience on

14

adjustments of agile practices for application in GSE. The authors claim the results are

supported with examples of usage of agile software processes in different areas of GSE. The

authors suggest that a need exists to develop a thorough, extensive framework for application

of agile software processes in GSE.

1.5.1.2 Methodology of this study

The authors developed the research questions, search terms and keywords. In parallel, the

authors selected a list of key papers as a reference for validation of results and search terms.

The research questions were:

Research question 1: What has been reported in the target literature about agile software

process and practices in GSE?

Research question 2: Which Agile practices in which GSE settings, and under which

circumstances, have been successfully applied?

The authors defined two sets of search keywords, one for agile software processes, and one

for distributed development. Search strings were combinations of search keywords using OR

& AND operators. The search was conducted for agile software processes of SCRUM, XP,

and lean software development. The set of GSE search keywords were different synonyms

and spellings of GSE, distributed development, global teams and outsource.

The data sources included databases ACM Portal, IEEE Xplore, Compendex, and Scopus.

The research considered literature done in English language in the interval 1999-2009. The

search was limited to the title, abstract and keywords sections of papers.

The papers were categorized into relevant, irrelevant and maybe relevant categories. For

more objective decision making, the two authors/researchers made their decisions separately.

Papers with at least one’ irrelevant’ vote, and one ‘maybe relevant’ vote were excluded.

Papers with two ‘maybe relevant’ votes were included for further investigation. Only unique

papers were considered. Finally, 81 studies were selected out of initially 534 papers.

15

The authors used MS Excel in data extraction and collection. The authors classified the

papers according to the research type into the following categories:

• Evaluation research: Practical implementation and analysis of the outcome.

• Validation research: Lab studies of novel techniques.

• Solution proposal: Elaborate discussion of a solution to a problem.

• Philosophical papers: Focus is on the concepts of a framework.

• Experience papers: Personal experience on practical implementation of a solution.

• Opinion papers: Reflection of personal opinion.

Further analysis was based on the full text of each paper. Classifications of papers were

carried out, with respect to research methodology, empirical background, findings,

participants and context.

1.5.1.3 Findings of this study

Table 1.1 presents the number of papers found in each data source per each year. The results

suggest a higher interest on Agile GSE in last 5 years.

Table 1.2 presents the number of papers in each research type over the years of the study.

The majority of the literature is on experience reports. The authors note the need for more

philosophical, evaluation and validation studies to establish a more solid basis for the area of

agile software processes and GSE.

16

Table 1.1 Agile distribution in Global Software Engineering (GSE)
Jalali and Wohlin (2001)

Year 2001 200

2

2003 2004 2005 2006 2007 2008 2009

ACM 2 2 3 2

IEEE 1 2 1 2 6 15 9

Compendex 1 1 2 4 4 2 2

Inspec 1 5 1 3 2 1

AIS 1 2

Scopus 1 4

Total 1 2 10 6 12 14 20 17

Table 1.2 Agile distribution of research type in the area of Global Software Engineering
(GSE)

Research Type 2002 2003 2004 2005 2006 2007 2008 2009

Evaluation 1 3 3 3 4

Validation 1 1 1 2

Solution 1 1 1 3 1 1

Philosophical 2

Experience 1 5 4 2 9 14 7

Opinion 1 2 3 1 3

17

Successful applications

In total, the authors reported 53 successful examples out of the 81 papers. The most used

Agile-distribution combinations were found to be Agile-offshore, XP-distributed teams and

Agile-distributed teams.

Countries involved: Asian countries like India and Malaysia were found to be popular

outsourcing destinations. Collaboration between USA and India constitutes a large portion of

the reviewed literature. Distributed development within USA has also been found popular.

Research methods: 88% of successful examples were case studies, while only 2% were

based on an experiment. The research method could not be identified for 6% of the papers.

Contribution and Analysis:

• 70% of the papers were problem reports and lesson learned.

• 11% present recommendations for implementing the agile software processes in a global

context.

• In 6% of papers, the authors present the best applied agile practices in their organizations.

• 4% of papers investigated industrial case studies and their analysis results.

• Implementations of tools to help Agile-distributed development were presented in 4% of

papers.

• Finally, 4% focused on comparisons between performances of Agile and collocated

development.

Details of successful cases: in answer to research question 2, in most of successful cases

teams were distributed globally, working for long periods of time (>7 months) on small to

med size projects (≤20 to ≤50 people). Results are summarized in Table 1.3.

18

Table 1.3 Location & Agile practices in Agile-Distribution settings

Agile software
process

Distribution
settings

Most successful Agile practices
reported

Location
Location-
Outsource

Authors’
Notes

XP-Offshore “Retrospectives” USA-India
XP- Outsource “Continuous Integration”,

“unit/integration testing”, “simple
design”

USA-China

XP-Distributed
team

“SCRUM/ iterations” “Stand-up
Meetings”

USA Insufficient
details

XP-Virtual team “stand up meetings”, “automated
testing”, “pair programming”,

“onsite/proxy customer” “enough
documentation”

 Only 1 paper.
Countries not

specified

Scrum-Offshore “Sprint/ iterations”, “Retrospectives”,
“Sprint review/demo”

USA-China USA-
India

Scrum-Outsource “pair programming”, “one team/sit
together”, “Scrum of Scrum”

“Continuous/automated builds”

USA

SCRUM-SCRUM-
Distributed team

“Stand-up meetings” “backlog”. USA

Agile-Offshore “Spring planning” USA
Agile- Outsource “Continuous Integration” Denmark, Russia
Agile-Distributed

team
“Stand-up meetings"

Sprint/iterations”
India

Agile- Open
source

"Stand-up meetings" "pair
programming" "sprint/iterations"

"test-driven development"
"unit/integration testing"

Italy,
Norway

The authors devised a ranking system for measuring success rates and location rates. If a

specific agile practice is reported in N projects, each success-or specified location- counts for

1nth. For example, if 1 success and 1 failure are reported for an Agile-GSE combination, the

success rate is 0.5.

Successful Agile practices: The authors highlight that “standup Scrum meetings”,

“Sprint/iterations”, “continuous integration” and “sprint planning” are the most used agile

practices .

19

Efficient Agile method distribution type combination: The authors identify Extreme

programming- globally distributed team as the most used agile software process in the

context of GSE. The authors list all identified combinations as follows, ranked by their

frequency of usage:

1. XP–Distributed team: 9

2. Agile–Offshore: 7.5

3. Scrum–Distributed team: 7

4. Scrum–Offshore: 6.5

5. Agile–Distributed team: 6

6. Scrum–Outsource: 4.5

7. XP–Offshore: 3

8. XP–Outsource: 3

9. Agile–Open source: 2

10. Agile–Outsource: 1.5

11. Agile–Virtual team: 1

12. XP–Unclear: 1

13. XP–Virtual team: 1

14. Pair programming–Distributed team: 1

The authors highlight the insufficiency in some research methods, analysis of challenges and

obstacles in Agile-GSE combinations, and observed repetitions in reviewed literature. Based

on these observations, the authors suggest additional evaluation & validation research, and

that joint analysis of challenges in Agile-GSE combinations between academia and industry

are needed. The authors also suggest establishing a universal database of reports by

practitioners as an aid for this purpose.

20

1.5.2 Diaz et al. (2011)

1.5.2.1 Goal of this study

Diaz, Pérez et al. (2011) carried out a systematic review of existing research on the

integration of Software Product Line Engineering (SPLE) and Agile Software processes in

what is known as Agile Product Line Engineering (APLE).

Agile software processes and practices are flexible in response to unpredictable changes,

rather than being limited by rigid plans. Agile software processes exploit change for the

competitive advantage of customers. However, scalability of agile software processes,

especially in large software line projects, poses challenges in its application.

The development of SPLE consists of two phases: Domain Engineering (DE), and

Application Engineering (AE). DE consists of creating reusable assets. DE determines the

scope of the SPLE and handles commonalities and variability. AE consists of developing

products through systematic reuse of core-assets by knowledge of commonalities and

variability points.

To carry a systematic literature review on APLE the authors identified important challenges

on integration of the SPLE model with agile software processes. The authors found only 39

studies directly related to APLE.

1.5.1.2 Methodology of this study

The authors point out that the methodology execution is nonlinear, involves iteration,

feedback and refinement. The authors defined these phases in their methodology:

21

Planning the review

The review objective was to identify current APLE approaches and experiences. The authors

developed a review protocol which defines search questions, search strategy, evaluation

criteria and methods of data extraction and evidence synthesis.

Research Questions:

• RQ1: What are the reasons, and when is it advantageous combining SPLE and agile

software process?

• RQ2: How do the principles of SPLE and agile software process match?

• RQ3: How is APLE positioned with respect to business strategic objectives?

• RQ4: Which current approaches combine SPLE and agile software process satisfying AE

activities?

• RQ5: Which current approaches combine SPLE and agile software process satisfying DE

activities?

• RQ6: What are the challenges and gaps in current APLE during DE activities?

• RQ7: Which current APLE approaches satisfy both DE and AE activities?

• RQ8: Are there successful industrial experiences putting APLE into practice?

Search Strategy

The authors defined the search space and search strings. The search space included electronic

databases (ACM Digital library, IEEE Xplore, SpringerLink, EI Compendex, Inspec, ISI

Web of Knowledge, ScienceDirect), and conference proceedings (SPLC (Software Product

Line Conference), XP (Extreme Programming), Agile Conference, APLE (Workshop on

Agile Software Product Line Engineering)). The search was conducted to extract a collection

of primary studies. The review material included primary studies, references in primary

studies, and other possibly relevant works of their authors, obtained through direct contact by

e-mail and DBLP searches.

22

For the search of electronic databases, the authors defined two sets of keywords: a set

included keywords of agile software process and the other set included keywords of SPLE.

Acronyms, synonyms and abbreviations of the keywords were included in the search. The

search strings were OR & AND combinations of these keywords.

Evaluation Criteria

The authors included scientific material (papers, experience reports, summaries of

workshops, panels and poster sessions) written in English, produced until June 2010. The

authors excluded studies that include Agility as a synonym for flexibility; and studies with

‘poor arguments’, which they defined as based on general opinion or poor arguments.

For assessment of studies quality, the authors adopt the quality criteria defined for the

Critical Appraisal Skill Program (CASP) and the criteria proposed by Dyba and Dingsøy

(2008). The authors pinpoint the main issues covered by the criteria: rigor, credibility, and

relevance.

Data extraction

The authors stated they developed forms to store key concepts of the objectives, findings and

conclusion of each study, in answer to their research questions. In their synthesis of evidence,

the authors organized the key concepts and findings, for comparisons across studies.

The search produced over 536 primary studies. Secondary searches added 32 citations

increasing the number to 568. The authors excluded duplicate studies reducing the number to

370 studies. Applying the evaluation criteria, authors shortlisted 52 studies, only 39 of which

passed the authors’ quality assessment.

23

1.5.2.3 Findings of this study

In this step, the authors provide answers to their research questions.

RQ1: What are the reasons, and when is it advantageous combining SPLE and agile software

process?

The main reasons concluded by the authors from several studies are:

1. To cut down long term investment in the DE phase: upfront long term investment provides

flexibility in SPLE; however, it is resource-consuming and risky since these long term

investment products might be outdated.

2. To deal with volatile business situations: when market stability decreases, SPLE design

and long term lack flexibility. Agile software process has been found as a promising

alternative.

3. To deal with lack of required knowledge about DE: as SPL developers might lack the

required knowledge for DE and prediction of future changes, agile software process small-

scale, iterative approach, is not dependent on long term predictions of market conditions,

offers a solution and reduces risks.

RQ2: How do the principles of SPLE and agile software process match?

Various studies compared SPLE and agile software process, and found that both pursue

common goals but using different strategies. While SPLE emphasizes change prediction and

architecture definition, agile software process emphasizes incremental development and close

iterations with customers. Agile software process promotes minimal investment in upfront

design and architecture. The authors found studies which present similarities and differences

between the two approaches; and some studies map and tailor both approaches together.

Focusing on the principles, the authors suggest the possibility of SPLE-Agile integration, to

analyze the most significant among commonalities in a family of products tomeet changing

customer requirements.

RQ3: How is APLE positioned with respect to business strategic objectives?

24

The authors found a number of studies that tackle this question. While some studies

recommended using SPLE in strategic level and agile software process for technical level,

some studies call for adaptation of agile software process on the strategic level for more

flexibility.

RQ4: Which current approaches combine SPLE and agile software process satisfying AE

activities?

The authors found papers that explain the importance of release matrix and Configuration

Management (CM) in integration of SPLE and Agile. The authors review a number of studies

of different approaches, and contributions in identifying challenges.

RQ5: Which current approaches combine SPLE and agile software process satisfying DE

activities?

The authors pointed out the implementation of mechanisms to combine SPLE and agile

software process in order to satisfy DE activities such as: mechanisms for supporting effort

estimation, traceability, and synchronization between platform and product teams (DE and

AE teams, respectively).

RQ6: What are the challenges and gaps in current APLE during DE activities?

The authors pointed out some attempts to address applicability of APLE in DE. The authors

provide explanation of these attempts, but also notice the lack of findings, conclusions and

clear explanations of models and implementations.

RQ7: Which current APLE approaches satisfy both DE and AE through Agile principles?

The authors pointed out the challenge inherent in combining SPL & Agile in both AE and

DE. The authors notice that a single interesting study discusses agile organization applying

SPLE, while all other studies introduce Agile into SPL for flexibility. The study presents a

bottom-up approach and iterative design of SPL. The authors notice that further work is

needed in this regard.

25

RQ8: Are there successful industrial experiences putting APLE into practice?

The authors present detailed reviews of some empirical studies which introduced examples of

SPL-Agile integration in enterprises and organizations. The authors highlight the findings,

conclusions and recommendations of these papers.

From their review, the authors highlighted the variety of reasons for combination of SPL and

Agile, and the need of further work in APLE practice. The authors identified advantages of

APLE application as described next.

• Agile software process may be used when SPL developers lack the knowledge in DE.

Iterative APLE can be used in a rapidly changing product lifecycle.

• Agile software process improves feedback between design phases of SPLE.

The authors categorized about 30 studies on application of APLE, depending on the area

(DE or AE), and challenges faced/solved. The authors categorized contributions and

approaches as follows:

1. Five studies address the challenges of agile software process and SPL combination, and

provide industrial case studies in applying XP and SCRUM in SPL.

2. Three studies address support mechanisms for agile software process such as requirements

change management, features modelling, product-line scoping and requirements

engineering. The authors pointed out a lack of studies on traceability management in

process activities such as requirements and design.

3. Two studies address the challenges of SPLE architecture to support agile software process

incremental design, but do not provide case studies.

4. Five studies present successful industrial case studies, tool support and specific activities

for the entire APLE process.

The findings suggest that further research is required in agile-SPLE integration and

framework developments. Results highlight the feasibility of APLE in AE. Twelve papers

26

address APLE application in AE and various activities. Four papers identify challenges in

synchronization between platform and product teams, and definition of traceability among

SPL artifacts.

The authors pointed out a lack of evidence on applicability of agile software process in DE

activities. 15 papers provide solutions in DE activities. The authors highlight the existing

challenges in APLE architecture and traceability. The authors also suggested quality

specification and mechanisms for trade-offs between SPL upfront long-term design and agile

software process.

1.6 Statistical evidence on agile software adoption

This section presents a summary of the recent industrial studies and research papers that

investigated the deployment of agile software process in software organizations.

1.6.1 Industry based evidences

An online survey conducted by MethodsAnd-Tools.com in 2005 to provide information

about the rate of adoption of agile development indicates about 40% of the 232 participants

organizations had adopted agile software processes and another 20% were evaluating them in

pilot projects to evaluate their capability for future adaptation.

The same survey conducted on February 2008 with 502 participants, comparing the 2008 and

2005 results, indicates that the level of the agile movement had increased and only 13% of

the organizations were not aware of any agile software practices. Full deployment numbers

had doubled in 2008 to reach 17%, compared to 8% in 2005 and the total rate of various

adoption levels is 56% compared to 41% in 2005. The conclusion drawn is that the

importance of the agile approach is growing in the software development organizations and

many software organizations are moving to deploy agile software process instead of

traditional software model.

IBM Rational Methods Group conducted a survey on March 2006 to analyze the status of

different agile software processes such as XP, SCRUM, FDD and DSDM. The survey made

27

online was based on a previous survey made by Shine Technologies. The survey is not

limited to one geographical location to collect evidences from global and local software

organizations to analyze their adoption as well as their understanding to agile software

practices. There were 4232 participants, divided based on the size of the software

organizations as of table 1.4.

Table 1.4 IBM rational methods group survey

Size # Respondent Percentage
1-10 people 1353 32%

11 to 50 877 21%
51 to 100 422 10%

101 to 200 332 8%
201 to 500 310 7%

501 to 1000 232 5%
1000 to 2000 142 3%

2000+ 564 13%

Figure 1.3: presented the answers of the participants to a multiple choice question: “which

agile process your organization is using”?

Figure 1.3 The extent of use of different agile process reported in
Ambler (2006)

Figure 1.3 shows that the XP was the most widely used at almost 40%. The IBM Rational

Methods Group report states that “it is no surprise that XP and Scrum are popular options”.

28

1.6.2 Academic based evidences

Vijayasarathy and Turk (2008) reports on an online survey to find the percentage of adoption

of agile software process and to investigate the factors that influence their adoption as well as

to determine the agile software processes that are commonly in use. Data were collected from

Yahoo discussion groups that focus on agile software process and the feedback represents a

sample from 17 different countries (USA, Canada, India, United Kingdom, Australia,

Colombia, Mexico and New Zealand, etc.). There were 198 participating software

professionals with an average of 15.5 (median = 15.0) years of experience with software

development and 3.9 (median = 3.0) years of agile experience. The survey findings can be

summarized as follows:

• 90% of the participants of this survey had a basic understanding of agile development

practices and 81% were either using or planning to use agile methods in their

organizations.

• XP is reported to be used the most extensively, ranking 5.4 on a 7-point scale. Followed

by Scrum and Agile Modeling with rankings of 3.5 and 3.4, respectively. AUP (the Agile

Unified Process) came in last with a ranking of 1.9.

Schindler (2008) conducted a study to analyze the responses of a total set of 400 software

development organizations. The organizations were classified based on team size (micro,

small, medium and large). The distribution of the participating organizations is: 19.0% micro,

28.6% small, 11.9% medium and 40.5% large organizations. The survey started on 29th of

July and ended on 25th of August 2008 and was conducted via telephone. The main findings

of this study can be summarized as follows:

• A majority of the interview participants (77%) claimed to have a basic understanding

about agile software development methods.

29

• When participants were asked to name the agile process used by them, Extreme

Programming (XP) was mentioned by 46% and Scrum by 32.8%. The sample indicates

that XP was used by 53.2% of the developers and by 38.9% of the project managers.

Scrum was mentioned by 29.8% of the developers and 33.3% of the project managers.

• 44.3% of the total participants, (42.6%) developers and (52.8%) managers, mentioned that

their organization was trying to adopt agile software development.

All the mentioned industrial surveys and papers concur that some software organizations

have successfully deployed agile software process such as XP or some practices of agile

process such as pair programming, agile modeling, test driven development, etc. The above

studies have different viewpoints i.e. industrial viewpoints or academic viewpoints. Table 1.5

shows the main strengths and weaknesses identified in each of these surveys.

Table 1.5 Comments on the agile surveys

Survey author Comments

Methods And-
Tools (2005,

2008)

Little information is provided regarding the methodology used for
collecting and analysing the obtained data.
The survey is biased to sample of software organizations that
already have interest in agile software development.
Less information is given regarding the essence and the quality of
sample that has been conducted.

IBM Rational
Methods Group

(2006)

Data has been collected using online multiple choice questions.
Little information is provided regarding the expertise of the
participants.
Little information is provided regarding the size and the
complexity of the projects that have used the agile software
processes.

Vijayasarathy
(2008)

The data was collected using yahoo discussion groups that focused
on agile software processes.
The survey is biased to a sample and participants who most likely
have an expertise in agile software processes.

Schindler (2008) The data represent the response of one geographic area i.e. Austria

30

1.7 Agile software processes

In the next sub sections, a description of agile processes is provided with the discussion

focused on Extreme Programming (XP), Scrum, Feature Driven Development (FDD),

Adaptive System development (ASD) and Crystal methodologies.

1.7.1 Extreme Programming (XP)

Extreme Programming (XP) is one of the first proposed agile processes. The XP process was

proposed in 1996; XP is an incremental approach that mainly focuses on the most important

parts of the product, as defined by the client (Abrahamsson, Salo et al, 2002).

Figure 1.4 Extreme programming - XP

Figure 1.4 illustrates the set of practices which in total creates the XP process. The XP

process starts in the exploration phase where the development team starts collecting the

31

requirements and writing them down in cards called the user stories. In this exploration

phase, the team studies the feasibility of the whole project, selects the suitable architectural

design, and selects tools and languages that will be used during the project. This exploration

phase is followed by a planning phase, sometimes referred to as planning the game. During

this planning phase, estimation of the project schedule is performed, and a customer

evaluates the written stories and prioritizes them for the coming releases. The XP tracker and

the coach then estimate the time and effort needed to complete the first release

(Abrahamsson, Salo et al, 2002).

Analysis is done at the beginning of each iteration by generating an iteration plan. Customer

prioritizes the chosen user stories for the current release and the upcoming iterations based on

business understanding. After that, the programmers break the user stories down into a

number of tasks and estimate the required time and resources for each task. During each

iteration, the programmers reprioritize the user stories considering technical factors, and

create the design which should be as simple as possible for the current iteration.

The programming in XP is done in pairs; it is more a hybrid design, programming, testing

rather than pure programming, during which one programmer is writing the code and the

other is reviewing the code consistency. Refactoring then is performed to ensure that the

code is robust and optimized as much as possible (Abrahamsson, Salo et al, 2002). Since the

code in XP is a collective ownership, refactoring can be done by the same pairs or by a

different pairs with an objective to simplify and improve the code internal structure without

changing the code functionality.

XP is a test driven development method that relies on a repetition of a very short

development cycle. XP requires writing a test case for each story to define an improvement

to the implementation that can finally pass the test case.

XP requires two other types of testing; integration testing which is done at the end of each

iteration, by integrating the result of the last iteration with the previous ones, and then

32

ensuring that the overall system is bug free. Finally the acceptance test is done by the

customer to ensure the correctness of the stories and the whole system (Abrahamsson, Salo et

al, 2002).

Using XP, the resulting implementation is owned by all team members. This collective

ownership of the artifacts of the system allows the programmers to make modifications to

parts of the code that have been created by others. The main advantage of this practice is to

speed up the development process such that when programmers detect a fault in the code

they have the right to fix it. A coding standard is used to make sure that the development

team uses the same design and coding conventions (Abrahamsson, Salo et al, 2002).

1.7.2 Scrum

Scrum is an iterative incremental framework for managing software system development and

each system feature is delivered in 30 day sprints. It inherits many of the features of the

traditional iterative and incremental approaches.

Figure 1.5 Scrum process
Cao (2006)

33

Figure 1.5 illustrates the Scrum process. The Scrum process starts with a planning phase,

during which a backlog list is developed to define the functionality of one or more releases of

the system along with the risks associated with each release. The appropriate risk controls are

also determined. The product backlog lists contain the total work of the project to be done.

After that, a sprint planning meeting takes place. It usually starts every 15 to 30 days after the

planning phase. During this meeting, customers, users, managers, and developers discuss the

objectives of the next sprint release and the sprint backlog lists to be completed.

One of the practices that is required by Scrum (and that many agile teams are adopting) is the

short daily meeting. During this meeting the team discusses the progress each team member

has made since the last meeting and the impediments or problems that have been identified.

Scrum recommends other interested stakeholders to attend the meeting, but prevents them

from speaking in those meetings. This is done to keep the meeting short. The project is led by

a Scrum master who is often a project manager and whose job is to remove all impediments

the team identified during Scrum meetings.

One of the important aspects of Scrum is continuous integration of project artifacts and test

code coverage. Also the Scrum methodology is based on regular review sessions after

completion of each sprint to discuss the project progress (tasks finished, impediments and

product backlog) with the project manager and the customer. Those sprint review sessions

are used to provide progress feedback to various stakeholders involved in the project

Abrahamsson, Salo et al. (2002).

1.7.3 Feature-Driven Development (FDD)

The Feature-Driven Development (FDD) approach focuses on the software features of the

system as the main driver of the development process. It differs significantly from the other

agile processes by putting a strong emphasis on planning and upfront design. Those designs

became primary driver for the rest of project life-cycle.

34

Figure 1. 6 Steps of FDD
(Cao 2006)

Figure 1.6 illustrates the FDD lifecycle. The first step of FDD is to develop a model of the

application based on stakeholder’s assumptions, requirements and desired quality

characteristics. The next step is to create a feature list. Each feature should be small enough

to be implemented fast (from few hours up-to a 2 weeks).

Each team is typically working in parallel and once the feature is complete, tested and

verified, the team is disbanded, In contrast to Extreme Programming where the whole team

owns all the features of the project, FDD assigns a feature to a “feature owner” who acts as

team leader and is responsible for the code that implements the feature.

The FDD process utilizes rigorous inspection guidelines in order to find defects in the

system. It also enforces coding standards. It also encourages regular builds on a daily or

weekly basis in order to add newly designed features to the baseline system. Since features

are developed in parallel, it is important to have a configuration management system that

allows proper integration of the changes made to the system.

One of the unique aspects of FDD is how it manages and tracks feature completion process

and the status of project. Project progress is measured on the number of designed,

implemented, verified and tested features and each feature is measured based on its score.

35

The score is computed by assigning a completion status, ranging from 0 (yet to be

implemented) to 1 (feature complete, verified, tested and integrated).

1.7.4 Adaptive Software Development (ASD)

Adaptive software development (ASD) grew out of rapid-prototyping and is defined as “a

complex adaptive process that involves interaction between agents (stockholders),

environment (organization) and the product (software)” (Abrahamsson, Salo et al, 2002).

ASD is based on continuous adaptation of the process – a methodology that accepts the

continuous change as a norm. The ASD process consists of three lifecycle phases: Speculate,

Collaborate and Learn. ASD is a dynamic lifecycle that ensures teams are constantly

learning, changing and adapting to the emergent state of the project. The Speculate cycle is a

planning phase where the team decides what items they should work on. The objective of

collaboration cycle is towards transfer of knowledge between software developers. The

Learning phase is carried out after each iteration in order to improve the developer’s

expertise as well as to enhance the quality of the work.

Figure 1.7 ASD process activities
Cao (2006)

Figure 1.7 depicts the main phases of the ASD process. ASD starts with a project initiation

phase. During this phase the project mission statement is established, which is defined to

36

guide the overall process. It must be clear and well organized. The project normally starts

with unclear requirements but after each adaptive loop the overall mission becomes clearer.

ASD is a feature-oriented approach rather than task-oriented. The main focus is always on

the features of the systems rather than the tasks needed to implement these features. During

the concurrent component engineering phase, the developers may work in parallel to

implement one or more features at the same time. One of the most important aspects of ASD

is the quality review phase where the customers, developers and managers meet to discuss

and assess the overall quality of the work performed. The review phase session, known as the

joint application development session (JAD), is important for demonstrating the functionality

of the system developed as well as to keep the project within the boundaries of the mission

statement. Finally, a quality assurance and release phase is held at the end of the project to

fix all problems regarding the quality of the work performed.

1.7.5 Crystal Methodologies

The Crystal methodologies are a set of processes that can be applied to different projects

depending on the size and the complexity of a project. The framework in Figure 1.8 includes

the factors that influence the selection of a particular methodology. The X-axis indicates staff

size while the Y-axis represents the system criticality. The more critical the project, the more

rigorous and formal processes are required. Crystal methodologies define four levels of

critically:

• Life (L): A system failure is critical and may cause loss of life.

• Essential money (E): A system failure may cause loss of money.

• Discretionary money (D): A system failure may cause loss of money but can be fixed by

referring to the system’s user manual.

• Comfort (C): A system failure may cause a loss of customer comfort.

Crystal methodologies put an emphasis on a set of policy standards that govern the way the

project is managed. These standards are common among all crystal methodologies and

37

include incremental delivery of releases, progress tracking, direct user involvement

(Abrahamsson, Salo et al, 2002).

Figure 1.8 Crystal methodologies
Cao (2006)

Different processes are assigned a different color that represents the heaviness of the process.

Currently two crystal methodologies have been defined: Crystal clear and Crystal orange.

Crystal clear is designed for small projects with a maximum of six developers as shown in

figure 1.8. It can be used for different levels of criticality. For example, the D6 category

indicates the use of the crystal clear with a critical level of discretionary money.

The developers should be located in a shared space to improve the communication between

them. Developers can use any tool to improve the overall work: in other words, Crystal clear

keeps the choices open for developers to choose the appropriate tools. The documentation in

Crystal clear is very light. The requirements are expressed using UML use cases. The first

38

incremental cycle must not exceed three months and a workshop meeting is usually held after

each delivery.

Crystal orange is targeted for a project with a maximum of 40 developers. The project

duration is usually between one to two years. The Crystal orange methodology is suitable for

a project of category D40 and may extend to E40 if necessary. Due to lack of rigorous

verification techniques, the crystal orange methodology is not appropriate for life critical

projects. Similar to crystal clear, developers are encouraged to work in a shared space.

Crystal orange requires more documentation than Crystal clear. For example, the

requirements should be expressed in a natural language and the design documents are

expressed using formal specifications such as state chart diagrams. The first incremental

delivery must not exceed four months and more formal testing methods are encouraged in

Crystal orange.

1.8 Comparison of agile processes based on software design and projects requirements

This section discusses how different agile software processes address common software

project requirements – See table 1.6.

1. Customer Involvement

Customer involvement is a key practice in all agile processes, as shown in table 1.6. Agile

processes consider customers as an integral part of the development process. For example,

XP, Crystal methodologies, and Scrum require on-site visits to customer’s venues to allow

end users to verify and prioritize the requirements during the requirements phase. The

involvement of customers is also reflected during acceptance testing, where most agile

processes require these tests to be written and executed by customers.

39

2. Documentation

The agile processes studied in this report vary in the level and the type of documentation they

provide. For example, XP uses user stories to capture the software features that need to be

implemented. Scrum’s main documentation consists of product and sprint backlog lists. FDD

and Crystal methodologies use UML diagrams such as use cases, class diagrams, and object

models to document the design. Test cases have also been used by XP and Crystal

methodologies as documentation artifacts – See table 1.6.

3. Verification and Validation

Every agile process places strong emphasis on the correctness and quality of the software

artifacts. But methodologies differ in how much verification is required and what validation

and verification activities to perform. This allows teams to choose a methodology that would

satisfy customer’s quality requirements. If the application is used in safety critical

environment such as medical, industry safety monitoring or military, then more extensive

testing would be performed.

Automated verification and validation with unit tests is used in agile methodologies to check

that the software product meets requirements and specifications and that it fulfills its

intended purpose. Some methodologies like XP are test driven such that each release should

pass test cases that are developed to improve the release functionality. In addition to unit

testing, regression testing is used in Scrum.

Other quality review techniques are also used; for example FDD requires design and code

inspections. Scrum requires a sprint review in the end of each iteration, and ASD

recommends to do code quality reviews - See table 1.6.

40

4. Team Management

Team management is important for organizing the team from many perspectives, such as

team size, team communication and the use of standardized procedures (e.g., design

conventions), etc. Team size is one of the important factors that may affect the selection of

the development process. Although agile processes emphasize a face-to-face communication

instead of formal documentation, the number of developers considered is a serious obstacle

to the effectiveness of the communication. Except Crystal orange, all other agile processes

suggest at most 20 persons per team - See table 1.6.

Table 1.6 Comparison of agile processes based on the project and design requirements

Agile
Process

Customer Involvement

Documentation

Verification and

Validation

Team

Management

XP

User stories written by
customer who is part of

the project team

 User stories
Test cases

Acceptance test

Test driven -
development
Unit testing

Integration Testing
Acceptance Testing

1 – 10 teams
5 -9 people per

team
Coding standards

is mandatory

Scrum

Backlog written by a
customer who is part of

the project team
Review meeting with

customer presence

Product backlog list
Sprint backlog test

Sprint review
Unit testing

Integration testing
Regression Testing

1 – 5 teams
16 -20 people per

team

FDD

Customer only reviews
the feature list.(Does not
require a customer on the

project site)

Overall model design
User cases and class

diagrams
List of features

Design Inspection
Unit Testing

Code Inspection

1 – 10 teams
2 -4 people per

team

ASD

Customer presence at
frequent quality review

meetings
Quality review phase

Project data sheet
Project outline

Quality review 1 – 20 teams
10 - 40 people per

team

Crystal
Clear

Direct user involvement
Short release

Test cases
User model

Object model

Automated unit test
Automated regression

test

1 –10 teams per
project (2-4 per

team)

Crystal
Orange

Direct user involvement
Short release

Object models
User manual
Test cases

Feature description

Automated regression
test

Formal testing
External testing

Coding standards
is mandatory

1 –20 teams per
project (10-40per

team)

41

Team communication is considered as the second factor in team management. Agile

processes tend to be people-oriented processes by allowing team members to take appropriate

decisions when required without being restricted by any procedure or technique.

The use of code standard guidelines has been proposed in XP and Crystal methodologies to

facilitate exchange of information among team members. This facilitate that these processes

favor collective ownership of the system artifacts. In other words, any member can modify

the code or design of someone else. In such cases, standard coding guidelines facilitate the

collaborative work.

1.9 Experiments classification of agile literature

This section provides an experiment classification for twenty papers published in the area of

agile software process development and improvement from 2001 to 2009. The classification

is based on the approach of Zelkowitz and Wallace (1997). In 1997 Zelkowitz mentioned that

“Computer science is a relatively new field, with most academic departments formed during

the late 1960s and 1970s. A strong experimental model of the field has not developed; at

least as computer science folklore explains it”.

The research of agile software process improvement and development has started after the

“Agile Manifesto” introduced in 2001. This section provides classification for some of the

experiments in the area of agile process. Zelkowitz and Wallace (1997) classified the

research experiment models in the area of software engineering into three main categories.

• Observational method: Researchers collect the relevant data as a project develops. There

is relatively little control over the development process. This method consists of multiple

models: project monitoring, case study, assertion, and field study.

• Historical method: Researchers collects data from projects that have already been

completed. The data already exists; it is only necessary to analyze what has already been

collected. This method consists of multiple models: literature search, legacy data, lessons

learned, and static analysis.

42

• Controlled method: Provides multiple instances of an observation in order to provide

statistical validity of the results. This method consists of multiple models: replicated

synthetic environment, dynamic analysis, and simulation.

Table 1.7 summarizes and classifies the experiments of the selected papers based on the

categories of Zelkowitz and Wallace (1997) and the following comments can be made:

The research model will be classified as assertion if the researcher provides no experiment to

support his/her conclusions or the researcher provide only preliminary test before a more

formal validation for the research approach An assertion experiment found in 4 papers out of

20. The assertion model found on papers #1, #2, #5 and #9.

For example in paper number #5 Nerur, Mahapatra et al. (2005) the authors discussed the

possible challenges that software organizations could find in their process to migrating to

implement the agile software development. The author provide no experiments to support his

findings and conclusion: rather the discussion is based only on the author experience in the

area of agile software processes. The research model will be classified as a case study if the

experiment specifies the monitoring and the data collection technique over the time of the

project development. The main characteristic of this experiment model is that that the project

is to be undertaken whether data is to be collected or not. "With a relatively minimal addition

to the costs to the project, valuable information can be obtained on the various attributes

characterizing its development" Zelkowitz and Wallace (1997). Case study experiment is

found in 7 papers out of 20. The case study model is found in paper #6, #7, #10, #15, #16,

#17, #20. For example the authors of paper #6 Canfora, Cimitile et al. (2005) provide an

experiment model to empirically study on the productivity of the pair programming in XP

environment. The authors provide design for the experiment, data collection and analysis

technique. The experiment was executed with the collaboration of students at master of

technologies of software who require taking a programming course as a graduation

requirement.

43

Table 1.7 Summarization and classification of the experiments

NO. Authors Publication
year

Paper title Publisher Experiment
type

1 Turk et al. 2004 Assumptions
underlying agile

software-development
processes

Journal Of
Database

Management

Assertion

2 Conboy and
Fitzgerald

2004 Toward a conceptual
framework of agile
methods: A study of
agility in different

disciplines

Proceedings of the
2004 acm

Workshop on
Interdisciplinary

Software
Engineering

Research

Assertion

3 Wang et al. 2009 Where agile research
goes: starting from a 7-

year retrospective
(report on agile

research workshop at
XP 2009)

ACM Software
Engineering Notes

Literature
Search

4 Chandra et al. 2009 Identifying some
important success
factors in adopting

agile software
development practices

Journal of Systems
and Software

Field study

5 Nerur et al. 2005 Challenges of
migrating to agile

methodologies

Communications of
the ACM

Assertion

6 Canfora et al. 2005 Empirical study on the
productivity of the pair

programming

Lecture Notes in
Computer Science,

Springer

Case study

7 Cockburn and
Williams

2001 The costs and benefits
of pair programming

Extreme
Programming

Examined, Boston,
MA: Addison

Wesley

Case study

8 Lindstrom
and Jeffries

2004 Extreme programming
and agile software

development
methodologies

Information
Systems

Management

No
experiment

9 Maurer and
Martel

2002 Extreme programming:
rapid development for
web-based application,

IEEE Internet
Computing

Assertion

44

Table 1.7 Summarization and classification of the experiments (Continued)

NO. Authors Publication
year

Paper title Publisher Experiment
type

10 Boehm and
Turner

2003 Using risk to balance
agile and plan-driven

methods

IEEE Computer Society Case study

11 VIjayasarathy
and Turk

2008 Agile Software
development: A
Survey of early

adopters

Journal of Information
Technology
Management

Field study

12 Salo and
Abrahamsson

2008 Agile methods in
European embedded

software development
organisations: a survey
on the actual use and
usefulness of extreme

programming and
scrum

Institution of
Engineering and

Technology Journal

Field study

13 Schindler 2008 Agile software
development methods

and practices in
austrian IT-industry

results of an empirical
study

International
Conferences on
Computational
Intelligence for

Modelling, Control and
Automation

Field study

14 Wright 2003 Achieving ISO 9001
certification for an XP

company

Lecture Notes in
Computer Science

Project
monitoring

15 Vriens 2003 Certifying for CMM
level 2 and ISO9001

with XP@Scrum

Proceedings of the
Conference on Agile

Development

Case study

16 Alegria, and
Bastarrica

2006 Implementing CMMI
using a combination of

agile methods

CLEI Electronic journal, Case study

17 Stelzer et al. 1996 Software process
improvement via ISO
9000? results of two

surveys among
European software

houses

Proceedings of the 29th
Hawaii International

Conference on System
Sciences

Case study

18 Dybå andr
Dingsøyr

2008 Empirical studies of
agile software

development: A
systematic review

Information and
Software Technology

Replicated
Experiment.

19 Chow and
Cao

2008 A survey study of
critical success factors

in agile software
projects, Journal of

Systems and Software

Journal of Systems and
Software

Field study

20 Rumpe and
Schröder

2002 Quantitative survey on
extreme programming

projects

International Conference
on Extreme

Programming and
Flexible Processes in
Software Engineering

Case study

45

The students have different scientific background (engineering, mathematics, and physics).

The course provides the basic education in computer engineering (operating systems,

programming languages, network, database, and software engineering) and the students

attend theoretical classes and lab sessions, they develop a large and complex project in

connection with software organizations.

The main different between a case study model and a project monitoring model is that data

collection is focused on a specific goal for the project. A certain attribute is studied (e.g.,

reliability, cost) and data is collected to assess that attribute. This model is found on paper

#14.

The main characteristic of the experiment model of field study is that an outside group will

monitor the collection of relevant data. The data that can be collected is limited, but designed

to achieve specific goals. Zelkowitz and Wallace (1997) mentioned that this model can be

viewed as a cross between the project monitoring method, where any data is collected and the

case study, where specific data is collected. Field study is found in 5 papers out of 20. The

filed study model has been found in paper #4, #11, #2, #13 and #19.

The main characteristic of replicated experiment model is that the authors can use well

known method to design his/her experiment, beside the authors should design inclusion and

exclusion criteria for the subject under investigation. Only one paper (i.e. # 18) was based on

replicated experiment model. This model has been used in paper # 18 where the authors

provide a systematic review for agile software development. The goal was to investigate

what is known about the benefits and limitations as well the strength of evidences of agile

software processes. The authors design this experiment based on the approach of systematic

review in software engineering Kitchenham (2007). The authors have also developed an

inclusion and exclusion criteria for the reviewed research data.

46

1.10 Summary

Agile software processes have been proposed to overcome the inflexibility of traditional

software processes (e.g. waterfall process) which put an emphasis on fully elaborated

documents as completion criteria for the requirements and design phases. Agile software

processes are based on iterative and incremental development, adaptive planning and

informal (i.e. face-to-face) communications rather than formal documentation. This chapter

has analyzed several research studies and surveys related to the topic of agile software

process and its implementation in software organizations. The following comments can

summarize the findings of this chapter:

• Agile software processes differ from the traditional software process. The traditional

software processes follow liners and strict order of the development activities such that the

development team should be able to complete all the development activities for a certain

development phase (e.g. the requirements phase) before they can move to the next

development phase (e.g. the design phase). Agile software processes have been designed

to shorten the software development lifecycle with small working deliveries that are fully

functional and can be used before the overall project is complete.

• Many agile software processes have been proposed, such as: Extreme programming (XP),

Scrum, Crystal Methods, Adaptive Software Development (ASD), Dynamic System

Delivery Model (DSDM), and Feature-Driven Development (FDD). Based on the

analysed literature in this chapter it has been found that XP is one of the most deployed

and widely used agile software processes.

• Prototyping, iterative development, smaller team members, and direct involvement of the

customer are among of the main similarities of the agile software process studied in this

chapter. Some differences have been found on the team management of agile software

processes. For example, XP consist of 1 to 10 teams and 5 to 9 developers per team, where

Scrum consists of 1 to 5 teams and 16 to 20 developers per team.

• Several research papers have studied the improvement and the implementation of agile

software processes for complex software project such as global project development and

47

software product line engineering.. A recommendation for focused research efforts and the

development of tools to support the implementation of agile software processes in the

context of large and complex software projects has been found in the literature.

• Less research papers have been found on the topic of the implementation of ISO 9001 in

the context of agile software organizations. The lack of documentation for the agile

processes, traceability analysis and planned activities for validation/verification and

measurement process were among of the main drawbacks for agile software process to

support the ISO 9001 requirements.

49

CHAPTER 2

ISO 9001 AND AUDITING PRINCIPLES

2.1 Introduction

ISO 9001 is a Quality Management Standard (QMS) that provides a set of generic quality

requirements for the industrial organizations, and it can be applied to the software process

life cycle Kevin (2003). Researchers Hass, Johansen et al. (1998), Ferreira, Santos et al.

(2007), Makdee and Praneetpolgrang (2005) and Fuller (2006) have studied the implication

of ISO 9001 certification on quality improvement for software organizations by

implementing certain requirements throughout all the software development phases, like

design, development, production, installation, and maintenance.

The term quality has been defined in IEEE-610.12:1992 as “The degree to which a system,

component, or process meets specified requirements”. The same definition is also in ISO

90003:2008. The ISO 9126:2001 has defined the quality as the totality of characteristics of

an entity that bear on its ability to satisfy stated needs. ISO 9126:2001 considers software

product quality from three different viewpoints: internal quality, external quality and quality

in-use.

• Internal quality is “the totality of the characteristics of the software product from an

internal view”.

• External quality is “the totality of the characteristics of the software product from an

external view”.

• Quality in-use is “the user’s view of the quality of the software product when it is used

in a specific environment and a specific context of use”.

50

The quality of a software product is highly related to the process selected to develop the

software product: for example ISO 9126 directly associates the software process quality and

the software product quality as shown in figure 2.1. The quality of the software product is

directly influenced by the quality of the process used to develop it. Another approach is

defined by the Capability Maturity Model (CMM), which is in use in many organizations.

The CMM provides a framework for process improvement that consists of "key process

areas" influential in various aspects of the development process and resultant software

quality.

Figure 2.1 ISO 9126 quality approach

It has been indicated in Boehm and Turner (2003) that it is hard to find a general purpose

software process in an organization and if the organization fails to identify the appropriate

software process model this often results in customer dissatisfaction, flawed software

products, projects over budget and overdue project completion.

This chapter is organized as follows:

Section 2.2 presents the results of survey evidences on ISO 9001 and software

organizations.

Section 2.3 presents an overview of auditing practices.

Section 2.4 describes the main auditing activities to achieve certification for ISO 9001.

Section 2.5 provides an overview of ISO 9001.

Section 2.6 presents a summary.

51

2.2 Adoption of ISO 9001 in software organizations

This section focuses on summarizing the papers and industrial surveys that explore the

impact of the adoption of ISO 9001 in software organizations. It will assist in gaining an

insight about the implications of ISO 9001 certification on the software organizations.

According to a 1996 survey by Bradstreet and Irwin, 10,648 ISO 9001 certificates were

issued in North America with ISO 9001-registered organizations in the software category

which accounting for only 5.2 percent of the total number of registered organizations in that

geographic area. Business services and electronic and electrical equipment were the two

industrial sectors holding the most ISO 9001 certificates in the software category in 1996.

The research conducted by Hass, Johansen et al. (1998) provides information about the

importance of ISO 9001 certification for the software organizations in order to improve the

software development processes. The research is based on the BOOTSTRAP methodology

and the CMM (capability maturity model). A numerical scale from 1 to 5 was defined based

on CMM for determining the maturity level of the organizations processes. Through this

methodology, 25 Danish owned software organizations operating in US were assessed

during April 1996 to September 1997. The organizations have been divided into one group

of 12 organizations with an ISO 9001 certificate and another group of 13 organizations

without an ISO 9001 certificate.

The maturity level of the Danish organizations was evaluated in terms of the maturity levels

scale based on CMMI - See figures 2.2 and 2.3.

52

Figure 2. 2 Maturity distributions of Danish organizations without ISO 9001 certification,
Hass, Johansen et al. (1998)

Figure 2.3 Maturity distributions of Danish organizations with ISO 9001 certification,
Hass, Johansen et al. (1998)

Software
organizations

without ISO 9001

Software
organizations with

ISO 9001

53

• The maturity distribution of the organizations with an ISO 9001 certification has been

improved. Along with this, it has been noted that ISO 9001 certified organization have

more employees specially those who are dedicated for quality assurance, process control

and configuration and change management.

• Non-certified organizations are unable in reaching the maturity level of the certified

organizations in both software process methodologies and project management.

• It was also observed that most of the organizations have maturity distribution

approximately equals to 1.25 for non-certified with ISO 9001 and 2.5 for certified with

ISO 9001.

• The data also reveals that the software quality management and other software related

processes of the ISO certified organizations improved, compared with ISO non certified

organizations (Hass, Johansen et al, 1998).

The research conducted by Ferreira, Santos et al. (2007) is mainly focused towards the

improvement approach for the Brazilian company called BL Informatica with respect to the

establishment of the software processes in compliance to the ISO 9001 standard and the

maturity models, such as MPS.BR (Model for Brazilian Software Process Improvement)

and CMMI (Capability Maturity Model Integration). The process of improving software

development was evaluated in term of quality aspects, customer satisfaction, reduction of

processing time and cost performance index, where the cost performance index is defined as

the ratio of earned value to actual cost of work performed.

The improvement plan of the software processes was based on the international standards

and quality models. The maturity levels were assessed based on CMMI and MPS.BR. The

process area was represented based on ISO 9001. The return on investments for the projects

was measured in quantitative terms. It reveals that (Ferreira, Santos et al, 2007):

1- During the first phase of the software improvement process, around 44% of the time

allocated for the projects is expended on the rework and adjustment activities. Quality

assurance framework reduced the rework time.

54

2- Implementing the ISO 9001 requirements enable the organization to reach CMMI level 3.

A noticeable improvement was found in the software development methodologies -

specially the verification and validation process. The development team was better aware of

identification of defects during the product life cycle phase, which induced benefits for the

organization.

3- The cost performance index (CPI) of the company has improved with the implementation

of the different phases of the software processes as per the ISO 9001.

The research conducted by Makdee and Praneetpolgrang (2005) is based on the assessment

of the effectiveness of the Thai software organizations certified to the international

standards of ISO 9001: 2000 and TQS (Thai Quality Software). Field surveys were carried

through interviews and a questionnaire accompanied by analysis of data from the software

producers and software developers. The organization process effectiveness was assessed

based on four factors: financial satisfaction, customer satisfaction, internal business process

and learning growth. The interviews were conducted with 56 organizations producing and

developing software (23 organizations having ISO 9001: 2000 certification and 33

organizations having TQS certification).The effectiveness of the organizations having ISO

9001: 2000 and TQS certification were compared.

- ISO certified organizations represent higher effectiveness as compared to TQS certified

organizations in terms of quality and customer satisfaction.

- ISO certified organizations are more focused towards customer satisfaction than TQS

certified organizations.

- Learning and growth perspective of both kinds of organizations were found equivalent

effectiveness, which implies that innovation was considered by both (i.e. ISO certified and

TQS certified) organizations.

Up to 88.2% of the professionals agreed that ISO certified organizations represent higher

effectiveness as compared to TQS certified organizations in terms of software

documentation, processes of the organization and sales services.

55

The PhD thesis of Griesemer (1999) is based on a field survey of the software development

organizations in the USA. The method of data collection used by the researcher is a mailed

survey, accompanied by telephone interviews where applicable. The study compared the

software development organizations who have received ISO 9001 certification during 1992-

1995 and in 1996 to the non-certified software organizations. The major findings of this

study are summarized next:

- Differences were found in term of software process improvement. These differences

include monitoring of process, process improvement goals and risk management Griesemer

(1999).

- Differences in software development and software productivity have been identified by

ISO 9001 certified software organizations. ISO 9001 software organizations have become

more efficient in terms of job satisfaction and budget constraints and the software process

productivity. “These findings indicate obtaining ISO 9001 certification is significant within

a software development organization” Griesemer (1999).

- The customer satisfaction levels were improved by the US organizations having ISO 9001

certification.

A more recent PhD thesis by Fuller (2006) is based on the comparison of the US market

(North American organizations that attained ISO 9001 certification during 1990 to 1999)

and Japanese market (Japanese organizations that attained ISO 9001 certification during

July 1994 to October 2000) with respect to the certification of the software engineering

processes. The survey methodology is used by the researcher for conducting the study. For

assessing the consequences of certification of the software engineering processes, data was

collected from the stock exchange listings. The organizations of both markets were also

compared on the basis of the CMM model. The major findings of the study are:

- Positive response for the US organizations and negative response for the Japanese

organizations having ISO 9001 certification: cost of production for US organizations was

56

reduced and less quality improvement and marketing advantages have been indicated by

Japanese firms.

- US firms rely on benefits with respect to the marketing and quality aspects of the

products, while Japanese firms rely on legal contract related benefits Fuller (2006).

- The Canadian organizations were selected from the database. The major findings reveal

that investing in the certification process will increase competitiveness in the market,

improve the software process activities and reduce the cost of production. Therefore, these

benefits must be considered within the software development organization Fuller (2006).

It can be interpreted from the above described evidences from the industrial surveys and

papers that the adoption of ISO 9001 in software organizations is beneficial with respect to

the enhancement of the quality specifications, customer satisfaction, motivation and job

satisfaction and standardization of software development processes and improvement.

2.3 Evolution of auditing practices

The term audit came into general use after World War II, when the military issued a

standard and specifications for developing complex products and systems. The term

auditing was introduced to refer to a set of inspection activities conducted in large

manufacturing companies (in the electronics industry, for example) and in high risk

manufacturing sectors (in the nuclear, food, and pharmaceutical industries, for example)

Chorafas (2008).

In 1970, the United States Government Accountability Office (GAO) indicated that auditing

in federal agencies needed to be conducted in a more comprehensive manner. Moreover, the

GAO was advocating entirely different auditing practices, addressing companies and

organizations from various perspectives. For example, according to the GAO, auditing

practices should not be limited to the review or examination of financial statements by

accountants, and should include investigation of:

57

 The organization’s level of compliance with laws and regulations;

 The efficiency of all the activities conducted within the organization;

 The effectiveness of the activities in achieving their objectives.

In 1980, special standards and new laws were created to ensure more frequent and better

auditing practices to cover all organizational sectors and their related activities. Later, in

1990, the amount of federal government auditing increased, and new laws and regulations

were mandated to focus on additional issues, including performance, management,

compliance, and the effectiveness of the auditing activities themselves. As a result, federal

government audit practices have become a key element in meeting the government’s

responsibilities and providing a degree of confidence that is understood by all parties.

Recently, auditors have begun to scrutinize business process controls to determine the level

of adherence of organizations to industrial standards and federal laws. The premise is that,

although a financial statement audit is important, it provides incomplete information, since

software systems can also affect the organization’s business processes. IT auditing should

therefore be initiated to covers all aspects of IT practices, with a view to examining the

organization in terms of its adherence to industrial standards and federal laws Chambers and

Rand (2010).

IT auditing should not be confused with financial auditing, even though there may be some

overlaps in the work of the two groups of auditors. IT auditing provides an examination of

computers, databases, and software systems. It is a professional discipline involving several

different techniques for independently reviewing IT processes (e.g. software processes), as

well as IT applications (e.g. financial records databases).

2.4 Auditing for certification

Auditing is a systematic and independent examination for determining whether or not an

organization’s activities (i.e. business processes) are in conformity with the requirements of

58

a specific standard or set of rules, and whether or not those activities have been effectively

implemented and are suitable for achieving their predefined objectives Paul, Curtiss et al.

(2009). The activities may be carried out at various levels, such as: organization, system,

process, project, or product. This paper focuses on ISO 9001 auditing activities conducted at

the software process level. On the other hand, certification is a written assurance that a

product or process conforms to specified criteria.

The above generic definition of auditing embodies several important points:

• It is an independent process, in that auditors collect and evaluate evidence, and the

results, based on their findings, are unaffected by the client or the organization. The role

of an auditor in this case is similar to that of a judge who collects and evaluates evidence

based on the law.

• It is conducted to evaluate whether or not an organization’s internal controls are

performing as they are supposed to. The primary objective of the auditing process is to

establish whether or not these internal controls have been implemented effectively.

• Auditors examine, analyze, and judge the internal controls to determine whether or not

they are suitable for achieving their predefined objectives.

• It is a systematic examination, which means that it is carried out in a methodical

manner. It is also a planned activity performed systemically on the organization’s

activities.

Auditors begin by extracting from ISO 9001 the specific information that will be considered

later as the basis for the auditing process. This basis corresponds to the set of recognized

best practices that the organization should implement in order to comply with ISO 9001

requirements. The evidence is a set of facts that objectively confirms how those best

practices have been implemented and to what extent they have achieved their objective. The

results of comparing the audit basis to the evidence are called observations. Those

observations should be subjected to several analysis cycles before they are summarized into

what are called findings – See figure 2.4.

59

Figure 2.4 Generic auditing model
 Paul, Curtiss et al. (2009)

The difference between an observation and a finding is that an observation consists of raw

data which need exhaustive examination and analysis before they are useful to stakeholders,

governments, or senior management. A finding is the result of investigating observations: it

is the most important piece of information, and constitutes the final result of the auditing

process. Finally, an audit conclusion is prepared and reported to all interested parties.

For many software organizations investing in quality improvement by implementing the

requirement and guidelines of a quality model or standard can bring many advantages such

as increasing the customer satisfaction and enhancing the value of the product among

competitors. Fuller (2006) mentioned that for software organizations investment in quality

60

improvements based on recognized quality standards can help the organization to organize,

control, and improve the development and maintenance of a software system.

For software organization to formally demonstrate that it has implemented the requirements

of a specific quality standard such as ISO 9001, it has to show a certificate. Certification

requires an audit of the processes by an independent third party who declares that the

process meets a defined standard. Many studies have argued that improving the software

processes to meet the certification level can reduce the development cost Fuller (2006),

Griesemer (1999).

2.5 ISO 9001

ISO 9001 is an international standard that specifies the Quality Management Standard

(QMS) requirements for generic product categories. The standard was first established in

1984 and has evolved in 1994, 2001 and 2008- See figure 2.5. A major shift has been made

in 2001 and 2008 and the standard has become a process-oriented rather than product-

oriented: in other words, it involves establishing processes to ensure that quality is built into

the product. On the other hand, software improvement models such SEI-CMM (Software

Engineering Institute - Capability Maturity Model) and software process models have

evolved with a goal to increase the customer satisfaction and the final quality of the product.

61

Figure 2.5 ISO 9001 Time line

ISO 9001:2008 requires organizations to explicitly commit to establishing a QMS and

setting its basis. Organizations are asked to analyze their activities and processes, identify

the interactions between the different procedures, and decide on the improvements to be

made. Also, ISO 9001:2008 outlines the importance of documentation management

procedures. This standard refers to a set of requirements to create and control the products

and services of an organization to enhance customer satisfaction. ISO 9001:2008 consists of

four major requirements:

• Management responsibilities: Provide requirements for top management to develop a

quality management system and make a commitment to the organization’s stakeholders.

62

• Resource management: Provide requirements to support all the resources needed to

efficiently operate the organization and enhance customer satisfaction. This includes

human resources, infrastructure, and work environment.

• Product realization: Provide requirements that support product development activities.

This includes product planning, product design and development, control of monitoring

and measuring equipment, and product purchasing.

• Measurement analysis and improvement: Provide a requirement to gather, analyze, and

improve the product-related activities. This requires an analysis of key data gathered

during audit and customer feedback to improve the final product.

ISO considers software development and maintenance important and a technical report

guide (ISO 90003) was developed in 1991 and improved later in 2003 to help software

organizations in their effort to obtain ISO certification. In ISO 90003, the engineering

process is made up of several phases with defined inputs and outputs of a primary goal to

ensure that the most efficient engineering and business practices can be implemented by the

software organization.

Some software organizations have successfully obtained ISO 9001 certification through the

guidance of ISO 90003 Fuller (2006), while it has been reported that software organizations

were only a small part of the overall scope of the business that were certified Fuller (2006).

2.6 Summary

ISO 9001 provides common requirements for the industries and organizations worldwide

that consider the best practices of ISO standardization. The objective of ISO 9001 is to

improve and standardize the organization processes using common criteria (i.e.

requirements) regardless of the organization geographical location, business policy and size.

This chapter analyzed several research studies and surveys that report on the

implementation of ISO 9001 in software organizations. The following comments can

summarize the findings of this chapter:

63

• ISO 9001 is not designed to standardize the practices of specific type of organizations.

The standard can be implemented by any organization including software organizations

that consider to target the ISO 9001 certification or to improve their quality activities

based on the recognized practices of ISO 9001.

• Since the software industry is important to ISO, ISO has developed a guidance

document (ISO 90003) to serve as a guide for the application of the ISO 9001 standard

to the development, supply, and maintenance of software.

• Some software organizations have successfully achieved the ISO 9001 certification.

Increased market competitiveness, improved software process activities and reduced

cost of production were among the reported advantages of achieving the ISO 9001

certification in software organizations.

• The certification process of ISO 9001 requires auditors (i.e. third party bodies) to

provide independent confirmation that organizations meet the requirements of ISO

9001. Audits are essential to verify the existence of evidences showing the conformance

of organization processes to specific ISO requirements and to assess how processes have

been implemented.

Finally, it has been noted that both ISO 9001 and ISO 9003 have not specified any process

model for the organization. Therefore, software organizations can implement the process

model (i.e. traditional process model or agile process model) that fits their business needs,

beside of being interested in ISO 9001 certification. This research thesis focus is to help

software organizations that implement the agile software processes to achieve ISO 9001

certification.

65

CHAPTER 3

RESEARCH GOAL, OBJECTIVES, AND METHODOLOGY

3.1 Introduction

A research methodology is one of the keys to the success of a research project. It helps

ensure the validity of research activities and results. Ellis and Levy (2008) mention that

“most research problems are too large or too complex to be solved without subdividing

them. The strategy therefore, is to divide and conquer. Almost every problem can be broken

down into smaller units from a research standpoint, these units are easier to address and

resolve”.

This chapter describes the research project definition including: the research motivation, the

research goal, the research objectives, the key inputs to this research work, the users of the

research results and the research methodology.

3.2 Research motivation

The motivation of this research is to help the software organizations that follow agile

software process in their efforts for meeting the ISO 9001 certification requirements. This

research project aims also to help the IS-auditors to extract auditing evidences that

demonstrate the conformance to ISO 9001 requirements of software organizations with

agile software processes.

3.3 Research goal

Obtaining a major certification, such as ISO 9001, can provide marketing and quality

advantages to software organizations. However, software organizations which have adopted

66

agile software processes such as XP usually provide less documentation during the

development of a software product making it challenging to demonstrate conformity with

ISO 9001. The goal of this research project is to improve the agile-XP process in supporting

the auditing requirements of ISO 9001. As well, the goal of the research is to help the agile

software organizations in their efforts to become ISO 9001 certified.

3.4 Research objectives

To achieve this research goal, the following specific research objectives must be achieved:

• Identify gaps between agile-XP and ISO 9001, by highlighting the main strengths and

weaknesses of agile-XP in handling the ISO 9001 requirements.

• Propose sub processes to enhance the early planning activities of agile-XP according to

ISO 9001 requirements.

• Design an auditing model that covers the measurement and traceability requirements of

ISO 9001. The auditing model should provide the IS auditors with auditing evidences

that the software projects developed with an agile-XP process have fulfilled the

requirements of ISO 9001.

• Verify the applicability of the auditing model on agile traceability and agile

measurement approaches.

3.5 Research inputs

The next list highlights the main input models and frameworks that will be used to achieve

the research objectives:

• ISO 9001:2008 (Quality management systems- Requirements);

• ISO 90003:2003 (Software engineering- Guidelines for the application of ISO 9001 to

computer software);

• Vincenti's engineering design Vincenti (1990);

67

• SWEBOK Guide (2004): The generally accepted body of knowledge on software

engineering - the SWEBOK Guide - (ISO-TR-19759 2004);

• An Evaluation Theory Perspective of the Architecture Tradeoff Analysis Method –

ATAM Lopez (2000);

• ISO 12207:2008 Systems and software engineering – Software life cycle processes;

• CMMI for Development, Version 1.3;

• Standards, Guidelines and Procedures for information system auditing, (ISACA, 2010).

3.6 Research users

The users of research in this research work are people who are working on agile process

improvement and software process certification and who can benefit from the research

outcomes:

• Project managers: to address the main weaknesses and strengths of agile-XP processes

for developing a software system that conforms to ISO 9001 requirements.

• Software developers who need to utilize the agile-XP auditing model for developing the

software system in conformance with ISO 9001.

• IS auditors who need to extract the auditing evidences from agile process to assure that

the software organization with an XP process conforms to ISO 9001.

3.7 Overview of the research methodology

This section presents an overview of the research methodology designed to pursue the

research objective.

Phase 1: Agile processes in the literature review

Phase 1 of the research methodology will consist of surveying the differences and

similarities among different agile processes, and to study their level of adoption in software

68

organizations from both academic based studies and industrial based studies. This phase

also consists of surveying different process improvement models. See chapter 1.

Phase 2: ISO 9001 and auditing principles.

Phase 2 of the research methodology will consist of understanding the impact of ISO 9001

on software organizations, as well as of revealing evidences from the literature of the ISO

9001 adoption level in software organizations. This phase also includes the understanding of

the main principles of ISO 9001 auditing process and the review of several software process

improvement models. See chapter 2.

Phase 3: Investigation of the capability of agile-XP to achieve the requirements of ISO

9001 software process certification.

Phase 3 of the research methodology will consist of extracting the ISO 9001 requirements

that are related to software process life cycle, and to map them to the agile-XP to evaluate

the inability of agile-XP for handling the ISO 9001 requirements. See chapter 4.

Phase 4: Modifying the early phase of agile-XP (i.e. release planning phase) using

CMMI-DEV.

Phase 5 of the research methodology will consist mainly in designing an extension to the

agile- XP user stories. The extension will be designed based on CMMI-DEV model. More

precisely, the extension will be based on “Requirement Development”, “Requirement

Management” and “Risk Management” CMMI-DEV process areas. See chapter 5.

Phase 5: Design of an auditing model for ISO 9001 traceability requirements.

Phase 5 of the research methodology will investigate of the fundamentals of evaluation

theory for the design process of auditing criteria and yardsticks for ISO 9001 traceability

requirements. This phase will also use the principles and guidelines of Vincenfi`s

engineering design, SWEBOK and CMMI-DEV models. See chapter 6.

69

Phase 6: Design of an agile-XP auditing model for ISO 9001 measurement

requirements.

Phase 6 of the research methodology will consist mainly of extending the auditing model as

to cover the ISO 9001 measurement requirements. This phase also will consist of designing

an additional auditing criteria and yardsticks based on guidelines of Vincenfi`s engineering

design, SWEBOK and CMMI-DEV models. See chapter 7.

Phase 7: Case studies from the literature.

Phase 7 of the research methodology will consist mainly of selected case studies of different

traceability agile systems and measurement agile systems. The objective of this phase is to

evaluate the applicability of the design model for auditing an agile traceability system and

agile measurement systems to assure their conformance with ISO 9001 traceability

requirements. See chapter 8.

3.8 Detailed research methodology

To achieve the objective of this research, several software improvement models and best

practices from the domain of software engineering and from other disciplines outside

software engineering have been investigated. The selected models and frameworks will be

used to provide a methodological process for each research phase. This section provides a

detailed description of the main phases of the research methodology. This research

methodology consists of seven phases as seen in figure 3.1.

Phase 1: Agile processes in the literature review

The objective of this phase is to develop an in-depth understanding of different agile

software practices and to select an agile process that is suitable to the research objective.

This phase of the methodology consists of following steps:

70

Phase 1.1: Analysis of agile software processes

This step has identified and analyzes five different agile software processes: Extreme

programming (XP), scrum, feature driven development (FDD), adaptive software

development (ASD), and Crystal methodology.

Phase 1.2: Comparison of agile software processes

A comparison between agile software processes has been conducted to facilitate the

understanding of their principles and practices. This step involved the development of a

general software project requirements framework and identification of the similarities and

differences between agile software processes.

Phase 1.3: Selection of agile software process

A selection of agile processes has been performed based on the outcome of the previous

step and the adoption level of the candidate agile software processes found in the literature,

from both academic and industrial surveys.

Phase 2: ISO 9001 and auditing principles

The objective of this phase was to develop an understanding of ISO 9001 impact on

software organizations and to identify the level of adoption of ISO 9001 in software

organizations. This phase of the methodology consists of the following steps:

 Phase 2.1: Survey Evidences on ISO 9001 and Software organizations

This step summarized several papers and industrial surveys to understand the adoption of

ISO 9001 in software organizations. This step will provide insights on the implications and

the adoption level of ISO 9001 in software organizations.

Phase 2.2: Auditing for ISO 9001 Certification

This step provided details of the auditing processes, practices and activities that are usually

preformed by IS-auditors to assess the software organization in conforming to ISO 9001

standard.

71

Phase 3: Analysis of agile-XP from ISO 9001 perspective

The gap between the practices of agile-XP and ISO 9001 requirements has been identified

in this phase. This phase consists of the following steps:

Phase 3.1: Extraction of requirements from ISO 9001 and the guidelines from ISO

90003 that are related to software process life cycle.

This step has used ISO 12207 as a filter interface between ISO 9001 & ISO 90003, and XP.

Phase 3.2: Grouping of the ISO 9001 requirements based on their related support

process found in ISO 12207.

Phase 3.3: Analysis and report of the findings

This step identifies the activities of agile-XP that can support or handle the extracted

requirements from ISO 9001 and ISO 90003. It is important also to report on agile-XP

activities limitations and weaknesses in handling the ISO 9001 requirements.

Phase 4: Modification of the early phase of agile-XP (i.e. release planning phase) using

CMMI-DEV.

This phase has focused on proposing different sub processes aligned with the agile-XP

release planning phase. These sup-processes will contribute together to extend the agile-XP

user stories to provide important information for the ISO 9001 IS-auditors. This phase of the

methodology consists of the following steps:

Phase 4.1: Identification of ISO 9001 needed information at early process phases.

This step will focus on the analysis of ISO 9001 customer requirements and ISO 9001

planning requirements. The findings of the phase 3 are also considered as an essential input

for this step.

72

Phase 4.2: Proposal of XP-Agile Sub processes based on CMMI-DEV

Four different agile-XP sub processes have been proposed with the guidance of CMMI-

DEV. These sub processes are: 1) identification of the source of the user story; 2)

categorization of the non-functional requirements; 3) identification of the user story

relationships; and 4) prioritization of user stories.

Phase 4.3: Integration in XP-agile user stories

This step focuses on the integration of the information collected based on the proposed sub

processes into XP-agile user stories.

Phase 5: Design of an agile- XP auditing model for ISO 9001 traceability requirements

The Evaluation theory along with the best practices found on CMMI-DEV, SWEBOK and

Vincenti's engineering design will be investigated to develop an auditing model for agile

XP. The auditing model will focus on the ISO 9001 traceability requirements. This phase of

the methodology consists of the following steps:

Phase 5.1: ISO 9001 Traceability requirements

An analysis of traceability requirements has been conducted in this step. This will allow for

better understanding of the main obligations that are required by the software organization

to implement the requirements at this stage.

Phase 5.2: Modeling with the Evaluation theory

The principles of the evaluation theory have been applied at this step to formulate the

essential elements of the agile-XP auditing model. The auditing model will be composed of

two major auditing criteria: engineering criteria and management criteria. Furthermore, each

will be refined into an auditing criterion and an auditing yardstick.

73

Phase 6: Design of an agile-XP auditing model for ISO 9001 measurement

requirements.

An extension of phase 5 has been conducted in this phase. This phase of the methodology

consists of the following steps:

Phase 6.1: ISO 9001 Measurement requirements

An analysis of ISO 9001 measurement requirements has been conducted in this step.

Several relations between the ISO 9001 measurement requirements and other ISO

requirements has been defined in this step to enable for a better understanding of ISO 9001

measurement requirements.

Phase 6.2: Modeling with the Vincenti engineering design

The principles of the Vincenti engineering design has been applied in this step to extend the

elements of the agile-XP auditing model. The auditing model has been composed of three

major auditing criteria: auditing criteria for measurement plan, auditing criteria for

measurement development and auditing criteria for measurement management.

Furthermore, each has been refined into an auditing criterion and /or an auditing yardstick.

Phase 7: Case studies different agile traceability and measurement systems.

This phase focused on the selection and development of case studies that are applicable to

verify the validity of the auditing model. This phase of the methodology consists of the

following steps:

Phase 7.1: Context and Scope

This step focused on the identification of the case studies that are suitable to verify the

validity of the auditing model. The case studies has been selected from the literature and

composed of two sets, first set is five agile traceability systems and the second set is four

agile measurement systems. The selected case studies are not limited to XP.

74

Phase 7.2: Collection and analysis of auditing evidences

This step focused on collecting the audit evidences from the selected case studies. The audit

evidences has been collected based on the auditing criteria and yardstick. This step also

focused on the analysis of the collected evidences. The analysis has been accomplished with

the support of standards, guidelines and procedures for information system auditing

(ISACA, 2010).

75

Figure 3.1 Detailed research methodology

77

CHAPTER 4

ANALYSIS OF AGILE-XP FROM ISO 9001 PERSPECTIVE

4.1 Introduction

This chapter presents an analysis of agile-XP from the ISO 9001 and ISO 90003

perspectives. The focus is to extract the requirements related to the ISO product realization

process and to determine the strengths and weaknesses of agile-XP in handling those

requirements.

The factors that affect the software certification process have been defined by Yahaya,

Deraman et al. (2009) as: the personnel factor, the process factor, and the product factor.

These three factors are also known as the certification triangle:

• The personnel factor focuses on skills, experience, knowledge, team commitment, user

involvement, and management responsibility.

• The process factor includes three basic activities, which are those related to

development, management, and support.

• The product factor includes tools, devices, and the software system.

Of the three factors that affect the certification process (process, product, and personnel),

this chapter focuses on the process factor. It presents an analysis of the agile-XP approach

from the ISO 9001 and ISO 90003 perspectives, and reports on the strengths and

weaknesses of agile-XP for supporting the requirements of ISO 9001 and the guidelines of

ISO 90003. The motivation of this chapter is to identify enhancement opportunities to agile-

XP to support the extracted ISO 9001 requirements and ISO 9003 guidelines.

78

This chapter is organized as follows:

Section 4.2 presents the scope and the design process of the chapter analysis.

Section 4.3 presents an analysis for the ISO 9001 requirements that are related to software

process life cycle. The section also presents the mapping results for the extracted ISO 9001

requirements to agile-XP.

Finally the summary of the main findings is presented in section 4.4

4.2 Analysis scope and design

This section explains the proposed design process for the analysis to achieve the chapter

objectives.

4.2.1 Analysis scope

This chapter focuses on extracting the requirements from clause 7 of ISO 9001: the product

realization process. Figure 4.1 shows the sub-clauses that need to be mapped to agile-XP.

These items are ticked, while the unselected clauses are tagged with an “x”. The focus here

is to extract the requirements related to a software process life cycle (i.e. Requirements

gathering and evaluation, design and development, design review, and design verification

and validation).

79

Figure 4.1 ISO 9001, clause 7

4.2.2 Design process for the analysis

The definition of ISO 12207 for the software life cycle model is used to determine the ISO

9001 requirements and the ISO 90003 guidelines that need to be addressed. ISO 12207

defines the software life cycle model as “a framework containing the processes, activities,

and tasks involved in the development and maintenance of a software product, spanning the

life of the system from the definition of its requirements to the termination of its use” (ISO

80

12207). Based on this definition, the ISO 12207 process model is used to facilitate the

extraction of ISO 9001 and ISO 90003-related requirements. Moreover, ISO 90003 states

that an organization may choose to use the processes or sub processes from ISO 12207 to

support the requirements of software process certification. The ISO 9001 and ISO 90003

certification requirements are next extracted based on their related support processes from

ISO 12207, and then mapped to agile-XP. The items highlighted in Figure 4.2 are the

processes that need to be mapped for this study.

Figure 4.2 ISO 12207 focused processes

ISO 90003 does not recommend any software process model, but rather suggests certain

phases that should be considered, such as the determination of software-related

requirements, design and development, validation and verification, and customer feedback

(joint review in ISO 12207).

81

This section presents the process used for mapping the selected ISO standards to agile-XP –

see Figure 4.3. The steps of this mapping process are described next.

Figure 4. 3 Mapping process & phases

• Phase 1 – Document analysis :

ISO 9001 and ISO 90003 specify a set of requirements to provide confidence to

customers and other stakeholders that specified quality requirements will be met. To

stay within the scope of this study, the ISO 12207 model is used to extract all the

activities from ISO 9001 and ISO 90003 that are related to software life cycle (i.e.

82

requirements phase, design and implementation phase, verification and validation

phase).

• Phase 2 – Mapping:

The objective of this step is to identify the activities, principles, and procedures involved

in agile-XP that can meet the requirements extracted from Phase 1. This mapping phase

examines the capability of agile-XP to meet ISO 9001 and ISO 90003 requirements.

• Phase 3 – Conclusion:

During this step, a conclusion is drawn as to whether or not the extracted ISO activities

can be supported by agile-XP.

4.3 Mapping results

The mapping results of the following ISO requirements are discussed below.

4.3.1 Planning of product realization

4.3.1.1 ISO requirements: planning stage

A software project plan should “describe the technical and management approach to be

followed for a project.” IEEE Standard 610.12-1990. According to this standard, the plan

typically describes the work to be done, the resources required, the methods to be used, the

procedures to be followed, the schedules to be met, and the way the project will be

organized.

ISO 9001 requires the details of the design activities and when they will be carried out.

Several quality-related design activities have to be clarified at this point: i.e. reviews, as

well as validation and verification activities, have to be mapped to their related development

stages. According to Meridji (2010) in manufacturing and engineering, the term design does

not mean the same thing as the software design phase in software engineering. Meridji

83

(2010) has compared the design principles described in Vincenti (1990) and the design

principles described in SWEBOK Guide. The analysis concludes that design in engineering

according to Vincenti is not limited to design as described in the SWEBOK Guide, but goes

beyond, in that it is composed of the whole of the software engineering life cycle.

ISO 90003 gives more specific guidelines to be applied to software development planning.

Those related to software process can be classified in three categories.

• Development activities: The development plan should clearly identify the software

processes or software engineering methodologies needed for every software project. At

this stage, the developer needs to identify the activities involved in the development

phases. The development activities will include:

 Identification of the required inputs and outputs for each phase.

 Identification of the practices and procedures used to verify that the software

development phases are being followed and that the product has been tested in various

phases.

• Management activities: The development plan should include various activities to

define how the project is to be managed. The management activities will include:

 Identification of the deliverables schedule. Once the schedule has been drawn up, the

time, resources, and budget for each deliverable can be determined.

 Identification of the organizational and technical interfaces. This includes identification

of the development team structure and of the role and responsibilities of each developer.

This is important when the software product is developed in a collective ownership

manner, which is the way the agile-XP approaches the software development process.

 Identification of any regulatory requirements that may affect the software process or

product.

• Methods and tools activities: The development plan should identify methods to ensure

that all the development activities are carried out in a methodological manner. This will

include: Identification of tools and techniques for development. Developers may use

tools or methodologies in requirement analysis, design, coding and testing. These tools

should be clearly specified in the plan.

84

The above-mentioned requirements can be supported by the ISO 12207 processes in section

5.3.1 on process implementation. Sections 5.3.1.1 and 5.3.1.4 support and guide the

developers through several activities that can support the ISO 9001 and ISO 90003

requirements. For example, section 5.3.1.1 requires developers to select and define the

software life cycle model that is appropriate for the scope of the project.

4.3.1.2 Mapping to agile-XP

Planning is an integrated part of agile-XP processes Beck (1999). In agile projects, such as

XP, planning and re-planning are regular activities before and during each iteration.

Planning in agile-XP can be classified in two levels.

Level 1 (Planning game) – before the release: The goal of the planning game is to

maximize the value of a software product. It is a vital activity performed before each

software release to decide what is to be included in each release. As indicated in Frank and

Karam (2006), three phases are included in the agile-XP planning game:

• Exploration: This phase involves several activities called “moves”. The first move

involves writing the user story. The second move focuses mainly on estimating the time

required for completing each story, as well as determining a story’s required acceptance

criteria. During this phase, the developers discuss the tools or techniques required for

developing the story. The third move is to split the story into parts, if it could not be

estimated as a whole.

• Commitment: This phase involves sorting the stories into three categories of functional

requirements: essential, important, and nice to have.

• Steering: The main goal of this phase is to update the plan. Basically, this phase is

performed during the iterations where the developers need to update the plan regularly.

Level 2 (Iterative planning) − during the iterations. Iterative planning is aimed at

scheduling the tasks that need to be performed in the next iteration. For example, the plan is

checked to detect any duplicate programming task; if such duplications are found, they are

85

removed. Many agile-XP practices support iterative planning (e.g. daily stand-up meeting,

onsite customer) - See table 4.1.

Table 4.1 ISO 9001 planning phase mapping

ISO 9001 Requirements ISO 12207 support
activity

Mapping to agile-
XP

ISO Requirements in the
planning phase (section 4.3.1.1)

Development activities

Management activities

Methods and tools activities

Process implementation:
ISO 12207 in section 5.3.1

-Planning game

-Iterative planning

4.3.2 Requirements phase

4.3.2.1 ISO Requirements during software requirement gathering activity

As stated in the SWEBOK Guide Abran, Moore et al. (2004), a software requirements

specification “establishes the basis for agreement between customers and contractors or

suppliers on what the software product is to do, as well as what it is not expected to do.”

This process is equivalent to the ISO 9001 and ISO 90003 requirement in section 7.3.2

“design and development input”: both require the developers to identify all the functional

and non functional requirements that are related to the software product. Developers should

take into account other requirements affecting the software, such as national standards,

company standards, etc. The experience gained from other, previous designs should be

taken into account as well.

The ISO 90003 guidelines document elaborates more specific activities to be applied at this

stage, such as the following:

• Method for tracing the requirement changes during iterative development, and a method

for recording the changes.

86

• Traceability matrices for tracing the requirements to the final product.

• Details (provided by the developer) about any other software interfaces or tools and

algorithms needed during development.

The above requirements can be supported by the process of ISO 12207 in section 5.3.4 on

software requirements analysis, specifically section 5.3.4.1, which supports and guides the

developers on the types of requirements that can be identified (e.g. safety requirements,

security requirements, etc.).

4.3.2.2 Mapping to agile-XP

The main technique for software requirement specification in agile-XP is the “user stories”.

These user stories focus mainly on clarifying the functional requirements and non functional

requirements during software development. According to XP.org1 user stories provide a

high level description of user requirements and when developers start the implementation

they start up with a face to face meeting with customers to obtain detailed descriptions for

the user stories. User stories usually do not provide details of specific technology, data base

layout, and algorithms intended to be used during the development -Table 4.2 illustrates the

mapping results between the ISO 9001 requirements during software requirement gathering

activity and the agile-XP.

1 Information based on www. Extremeprogramming.org

87

4.3.2.3 ISO requirements during software requirement validation activity

The SWEBOK Guide Abran, Moore et al. (2004) makes the following statement: “Perhaps

the most common means of requirements validation is by inspection or reviews of the

requirements document(s). A group of reviewers is assigned a brief period to look for errors,

mistaken assumptions, lack of clarity, and deviation from standard practice.” ISO 9001 and

ISO 90003 point out the importance of requirements review/validation in section 7.3.2, by

stressing that developers should review the requirements to verify that they are not

ambiguous and do not conflict with one another.

More activities related to software requirement analysis are determined in ISO 90003:

 Developers should use a suitable method for evaluation of the requirements.

 Requirements should be evaluated in the presence of customers and in a closed meeting.

All the ambiguous and inconsistent requirements should be recorded.

The requirements above can be supported by the software requirements analysis process of

ISO 12207, specifically section 5.3.4.2, which provides criteria to help the developers in

reviewing and validating the requirements. This will ensure the consistency of the

requirements, as well as their implementation feasibility.

4.3.2.4 Mapping to agile-XP

Agile-XP includes several tools for validating the requirements in order to resolve the

ambiguity and to keep the requirements consistent. The customer acceptance test is used to

keep the requirements specifications unambiguous. Prototyping practices performed in the

presence of onsite customers is another tool for keeping the requirements clear and

unambiguous. The presence of customers allows the development team to obtain real-time

feedback. Table 4.2 illustrates the mapping results between the ISO 9001 requirements

during software requirements validation activity and the agile-XP.

88

Table 4.2 ISO 9001 Requirement gathering and validation mapping

ISO Requirements ISO 12207 support
activity

Mapping to agile-XP

ISO Requirements in the Software
Requirements phase (4.3.2.1):
Identification of all the functional
and non functional requirements
that are related to the software
product.

Software
Requirement
Analysis (Section
5.3.4.1)

− User story

ISO Requirements in the Software
Requirements Validation phase
(4.3.2.3)
Developers should use a suitable
method for evaluation of the
requirements.
Requirements should be evaluated
in the presence of customers and in
a closed meeting.

Software
Requirement
Analysis
(Section 5.3.4.2)

− Customer acceptance test
− Prototyping
− Onsite customer

4.3. 3 Construction phase

4.3.3. 1 Design and development review

Wiegers (2002) classify different types of reviews that may be used during the software

review process. These reviews have been classified from less formal to most formal based

on tools and technique used in each review method. The reviews methods have been

classified by Wiegers (2002) as shown in table 4.3.

89

Table 4.3 Classification of Review Methods

Less

Formal

More

Formal

Pass Around

Several copies of the working product delivered to several
reviewers to collate their feedback.

Peer Desk
Check

More formal methods such as: defect checklists, analysis
methods, and standard record forms.

Walkthrough

Walkthroughs typically do not follow a defined procedure, do
not specify entry or exit criteria, require no reporting, and
generate no quantitative data.

Team
Review

Team Review: typically planned and structured but are less
formal and less rigorous than inspections.

Inspection

Inspection is the most formal review methods which usually
follows a well defined procedure which includes an organized
examination or formal evaluation exercise.

4.3.3.2 ISO Requirements during design and development review activity

ISO 9001 and ISO 90003 do not recommend any specific review method, and allow the

organizations to choose a review method based on the software project requirements.

ISO 9001 and ISO 90003 include several requirements at this stage. The objectives of the

ISO 9001 and ISO 90003 review phases can be summarized as follows:

• To ensure that the methods meant to be used during the planning phase were, in fact,

used during the development phase.

• To ensure that the software requirements are fulfilled by the software product.

ISO 9001 and ISO 90003 require developers to identify any problem with the software

developed, and to evaluate, document, and recommend solutions to current problems. It is

also important at this stage to verify whether or not the software functionality can be traced

back to specific requirements. The degree of formality of the selected review method should

be relevant to the complexity of the software product.

According to ISO 90003, the review of design and development should be performed in

accordance with a predefined plan. The plan should identify the elements, such as:

90

• What needs to be reviewed and what the team responsibilities are.

• The purpose of the review process and the tools and techniques used at this stage.

• Identification of the steps needed to resolve any anomalies found during the review.

The above requirements can be supported by the ISO 12207 joint review process.

Specifically, section 6.6 provides criteria to help the developers review and evaluate the

software product. A joint review process is carried out by the project manager and the

technical developers, as well as the customer and/or supplier. The joint review process

guides the developers to establish suitable review stages in accordance with a planned

arrangement.

4.3.3.2 Mapping to agile-XP

Agile-XP includes several activities that support the ISO 9001 and ISO 90003 review

requirements. The XP activities that support design and code reviews can be clarified as

follows:

• One of the main agile-XP principles supporting the design and code review is “pair

programming”, which has been defined as “two people working at one machine, with

one keyboard and one mouse” (Beck, 1999). It has been reported by researchers that pair

programming leads to a better design and fewer defects, and increases the level of

confidence for adding and changing the system Canfora, Cimitile, et al. (2005). Table

4.4 illustrates the mapping results between the ISO 9001 requirements during design and

development review activity and the agile-XP

Pair programming requires one programmer to develop the code, while another programmer

monitors the flow and structure of the code. Once a weakness or a need for enhancement is

found, it is fixed right away by the programmers. Cockburn and Williams (2001) show that,

when pair programming is being used, there is a 15% reduction in the number of bugs and a

decrease from 30% to 15% in the number of failed test cases.

91

Table 4.4 ISO 9001 Construction phase mapping

ISO Requirements ISO 12207 support
activity

Mapping to agile-XP

ISO requirement at Design and
Development Review.

Identifying of any problem with
the software developed, and to
evaluate, document, and
recommend solutions to current
problems.

Joint review process
(Section 6.6)

- Pair programming

4.3.4 Design and development verification and validation

Validation and verification is an integral part of any software development life cycle.

Verification and validation techniques are used to identify and remove defects introduced

during the software development process (Dolores and Fujii, 1989). Researchers have

introduced many validation and verification techniques that could be used to improve the

quality and the functionality of software products.

Figure 4.4 Validation and verification process

92

For the purpose of this analysis the definitions of validation and verification in SWEBOK

are used to facilitate the extraction of ISO 9001 and 90003 requirements Abran, Moore et

al. (2004): “verification is an attempt to ensure that the product is built correctly, in the

sense that the output products of an activity meet the specifications imposed on them in

previous activities”. Verification is used to help the developers to ensure building the

product in the right way, where validation is defined as an attempt to ensure that the right

product is built, that is, the product fulfills its specific intended purpose. Figure 4.4

illustrates the difference between validation and verification.

4.3.4.1 ISO Requirements during design and development verification and validation

activities

ISO 9001 requires that both validation and verification be performed in accordance with a

predefined planned arrangement. It does not elaborate on specific techniques or procedures

for verifying and validating the software product: ISO 9001 is not designed specifically for

software products, but rather to fit the need for manufacturing an industrial product. The

requirements in ISO 9001 are defined as:

• The results of the validation and verification process should be recorded. The design and

development problems found should be identified and tracked.

• The verification process should be performed at various design stages to ensure that the

product meets the specified requirements. IEEE standard 610.12-1990 defines

verification as an evaluation process “to determine whether the products of a given

development phase satisfy the conditions imposed at the beginning of that phase.”

• The validation process should be performed at the end of the development process and

before the delivery of product to the user. IEEE standard 610.12-1990 defines the

validation as an evaluation process” during or at the end of the development process to

determine whether the product satisfies specified requirements”.

ISO 90003 specifies that software verification should occur before validation. It elaborates

more guidelines at this stage, which can be classified as follows:

93

• Developers should select the suitable verification method based on the size and

complexity of the software project. The review methods that were discussed in section

4.4.3.1, Design and Development Review, can be used during the verification process as

well. Moreover, other verification techniques, such as prototyping, simulations, and

testing, are recommended in ISO 90003 as verification techniques that can be used

based on the project complexity.

• The final version of a software product should be validated before running the customer

acceptance test. This validation should take place in conditions that simulate the real

environment in which the software product will operate.

• Validation can be performed by testing to validate the software at several levels, from

individual software components to a complete software product. ISO 90003

recommends several testing techniques, such as unit testing, integration testing,

qualification testing, acceptance testing, and regression testing.

• Any problems and anomalies found during the validation process should be recorded,

and the appropriate steps taken to resolve them.

The above requirements can be supported by the ISO 12207 process as described in

section 6.4, Verification process, and more specifically in section 6.4.2, which guides

developers on several verification activities that can be used during the software life

cycle. This includes design verification, code verification, and integration verification.

Also, section 6.5, Validation process supports the ISO 90003 validation guidelines

though systematic steps to ensure that these validation guidelines are reflected during

the validation process.

4.3.4.2 Mapping to agile-XP

XP includes several testing practices during the software life cycle, which can be classified

as follows:

• Unit testing: The unit test is performed during the agile-XP life cycle to verify

individual programming units or software components (i.e. classes). For every class in

the system, developers should write a test case that verifies the functionality of that

94

class. When a change has been made to a class, the developers should update the

corresponding test case and then test the modified class.

• Integration testing: when a new class is coded and ready to be integrated into the system,

developers have to verify the whole of the current system after integration. Thus, all the

previous and current test units must run correctly during the integration process.

• Acceptance testing: acceptance tests are usually specified by the customer to verify that

the overall system can meet the specified requirements. The test is performed on a story

basis; the story is considered to be complete if it passes the entire specified customer

acceptance test. Ideally, acceptance tests should be automated, either by using the unit

testing framework or a separate acceptance testing framework.

Table 4.5 illustrates the mapping results between the ISO requirements during design and

development verification and validation activities and agile-XP.

Table 4.5 ISO 9001 Construction phase mapping

ISO Requirements ISO 12207 support
activity

Mapping to agile-
XP

ISO requirements at Design and
Development Verification and
Validation (Section 4.3.4.1):

The verification process should
be performed at various design
stages to ensure that the product
meets the specified requirements
The validation process should be
performed at the end of the
development process and before
the delivery of product to the user

Verification process
(Section 6.4)

and
Validation process

(Section 6.5)

- Unit testing
- Integration testing
-Acceptance testing

95

4.4 Summary

This chapter has investigated the capability of agile-XP to implement the software process

related to the requirements in ISO 9001 and the guidelines in ISO 90003. The requirements

of ISO 9001 and guidelines of ISO 90003 have been extracted using the ISO 12207

terminology. Agile-XP supports partially the ISO 9001 extracted requirements and

following comments can be made:

• The main technique for documenting user requirements in agile-XP is the user story.

However, the user story provides fewer details than what is specified by ISO 9001 and

ISO 90003. For example, it records a high-level description of user requirements and

keeps the details for face-to-face communication with the user during the iterations.

Moreover, the user story does not take into account the system requirements or any of

the technical details needed during development. Also, it is not clear how agile-XP can

trace the requirements back to the final product.

• User stories are mainly written in a natural language and formal specifications are not

provided by user stories, thus requirement are evaluated by prototypes and on-site

customers. Formal evaluations such as model validations are not supported by agile-XP.

• ISO 9001 requires that developers select suitable review methods during the design and

development process. The level of formality of the selected review method should be

relevant to the project complexity. Agile-XP reviews are mainly based on pair

programming, where modifications are made based on the programmers' decisions and

no documentation is provided. The reviewing activities in agile-XP lack any formal

reviewing methods, such as inspection and walkthrough, and so it fails to provide the

ISO 9001-required documents at this stage.

• Agile-XP does not record the appropriate steps for resolving the anomalies found during

unit testing; integration testing and acceptance testing. The testing activities in agile-XP

are mainly based on test cases and do not provide documented evidence to ISO 9001

auditors on how these testing activities have been planned, scheduled, and carried out

96

throughout the software life cycle. As a result, it fails to satisfy the ISO 9001

requirements at this stage.

CHAPTER 5

EXTENDING AGILE-XP USER STORIES TO MEET ISO 9001 FORMALITY
REQUIREMENTS

5.1 Introduction

The advantages of ISO 9001 certification are understood by some software organizations

Fuller (2006). Recently, however, the market penetration of the documentation-light agile

software processes (e.g. extreme programming – XP) has been increasing Schindler

(2008), Vijayasarathy and Turk (2008). "Agile development processes have a different

perspective compared to traditional development processes which follow a more linear or

waterfall model for performing tasks. One of the differences is that a detailed

requirements specification may be missing during a large part of the project or even the

whole project duration. Some other differences include the use of stories as a source for

requirements. Stories include many details and may be more ambiguous than the

conventional requirements specification. A story may also be coarser grained than the

traditional requirements specification" Espinoza and Garbajosa (2011).

This chapter proposes four sub processes (activities) aligned with the XP release planning

phase. These sub processes are: 1) identification of the user story source; 2) identification

of a non functional requirements category; 3) identification of user story relationships; and

4) identification of user story priorities. The aim of these sub processes is to modify the

structure of traditional user stories in order to provide the ISO 9001 auditor of XP with

sufficient evidence that the data they require have been collected, and to provide

traceability for the requirements throughout the earliest phase of XP (i.e. the release

planning phase).

98

This chapter is organized as follows:

Section 5.2 clarifies the main terms and definitions that will be used in this chapter.

Section 5.3 presents the design process for the user stories extension.

Section 5.4 describes in detail each of the proposed sub processes.

 Section 5.5 describes the main structure of the extended user story based on the proposed

sub processes.

Section 5.6 presents a summary and discusses the potential benefits of this work from the

ISO 9001 viewpoint.

5.2. Terminology

This section presents the definitions of the terms that will be used in this chapter.

5.2.1 System

A system is defined by ISO 15288:2008 as a combination of interacting elements

organized to achieve one or more stated purposes. An element is a discrete part of the

system that can be implemented to fulfill specified requirements, and can be hardware,

software, data, humans, or processes (e.g. processes for providing a service to users). In

this context, the system is viewed as a collection of interacting elements organized to

accomplish a specific function, or set of functions, within a specific environment.

5.2.2 System feature and system function from the XP viewpoint

The differences between a system feature and a system function are poorly defined in the

literature. In XP, a user story is designed to specify a goal from the user viewpoint and to

specify a feature from the system viewpoint. As a result, user stories often represent user

needs, which will ultimately include both essential and nice-to-have features. The

collection of those features will be integrated later in the process life cycle into system

elements to provide a function to the system. Every XP iteration provides the system with

functionality, based on the collection of features originally implemented based on the user

99

stories. For example, Add User, Grant Privilege to User, Delete User, and List Users are

system features that can be represented at the requirements level by means of a user story.

The result of implementing user stories is a system function, such as a ‘user administration

system’. Figure 5.1 illustrates the concepts of feature, function, and system from the XP

perspective.

Figure 5.1 Relationship between system features and system functions in XP

5.3 Design for user stories extension

The CMMI for development, version 1.2 (CMMI-DEV, v1.2), includes some process areas

for identifying and managing software requirements, and contains useful guidelines and best

practices for specifying them. In the context of this chapter, three different CMMI process

100

areas (i.e. requirement development, requirement management, and risk management) have

been analyzed to derive a set of sub processes that could be aligned with the exploration

phase of XP release planning – see Figure 5.2.

The objectives of these sub processes can be summarized as follows:

 Provide the basic metadata for managing the information gathered during XP release

planning.

 Set a standard for the information and the data gathered during XP release planning;

this will allow a relationship to be defined between user stories.

 Provide structured user stories that can present more information concerning

dependencies between user stories and other artifacts of the XP development life cycle.

 Provide standardization across XP processes to support user story management.

Standardizing user story cards, for example, will help raise the visibility of the process

of capturing both functional and non functional requirements.

 Provide more information about stakeholders and the source of user stories; this will

allow better decisions to be made, development times to be reduced, customer

satisfaction to be improved, and the basic information for supporting XP traceability to

be provided.

101

Figure 5.2 Methodology for deriving the XP sub-processes

102

Table 5.1 shows each process area and the process goals that have been investigated, as

well as the related derived XP sub processes. Mapping here is not one to one such that,

multiple process goals from different CMMI key process area (KPA) have been

investigated to derive one XP sub process.

Table 5.1 Derived XP sub processes

CMMI
Process Areas
Investigated

Process Goal Derived XP Sub processes

Requirement

development

(RD)

Elicit needs

Develop customer requirements

Establish a definition of

required functionality

Analyze requirements to

achieve balance

The following Sub processes have

been derived based on the (RE)

process goal:

- Nonfunctional

requirements

categorization

- User story prioritization

Requirement

management

(REQM)

Understand requirements

Obtain commitment to

requirements

Manage changes to

requirements

The following Sub processes have

been derived based on the

(REQM) process goal:

- Identify source of user

stories

- User story relationships

Risk

management

(RM)

Determine risk sources and

categories

Identify risks

Evaluate, categorize, and

prioritize risks

The following Sub processes have

been derived based on the

(REQM) process goal:

- Identify source of user

stories

- Identify user story

relationships

- Prioritize user stories

103

5.4 Proposed sub processes

5.4.1 Identify the source of the user story

The requirements engineering process focuses on stakeholder needs. The goal is to

identify all the people, organizations, and other systems that have a direct or indirect

impact on the user stories elicited. Much software has proved unsatisfactory because it has

stressed the requirements of one group of stakeholders at the expense of those of others.

Hence, software is delivered which is difficult to use or which subverts the cultural or

political structures of the customer organization.

The software engineer needs to identify, represent, and manage the ‘viewpoints’ of many

different types of stakeholders” Abran, Moore et al. (2004). Software development teams

should understand the sources that directly or indirectly influence the creation of user

stories, in order to be able to trace each story back to its original source in the case of an

improvement or change request. Therefore, the <<STORY CONTRIBUTOR>> is defined

as individuals, including the customers or clients who pay for the system, the developers

who design, construct, and maintain the system, and the users who interact with the

system to get their work done, as well as other systems or organizations that need to

collaborate with the system. The schema proposed by Glinz and Wieringa (2007) has been

used to identify the <<STORY CONTRIBUTOR>> from the ISO 9001 perspective. The

authors Glinz and Wieringa (2007) suggest a list (provided below) of candidate

stakeholders who may contribute to the progress of any software project, i.e. people who:

 manage, introduce, operate, or maintain the system after its deployment;

 are involved in developing the system, including architects, developers, testers, quality

engineers, or project managers;

 are responsible for the business or process that the system supports;

 have a financial interest (for example, they paid for it or are responsible for selling it);

104

 constrain the system as regulators (for example, through the laws and international

software standards such as ISO 9001 that may impact the system).

Usually, the <<STORY CONTRIBUTOR>> varies according to the nature of the system

being developed; for example, the system may be intended to provide special services

inside the organization, such as a payroll system or documentation management system, or

perhaps the system is related to public services, such as air traffic control. ISO 9001

requires these <<STORY CONTRIBUTORS>> to be clearly identified and categorized.

Therefore, to improve the accuracy of the user story, it has been proposed that its source,

i.e. the <<STORY CONTRIBUTOR>>, belongs to one or more contributor types – see

Figure 5.3 – which have been developed based on Abran, Moore et al. (2004), Glinz and

Wieringa (2007) and ISO 9001:

- Customer side contributors,

- Development side contributors, and

- Government side contributors.

<<STORY CONTRIBUTORS>> are assumed to provide the features of their system that

could affect the various levels of the system, such as the process level, the product level,

and the project level. While this list is not exhaustive, it does provide guidance to help in

identifying the source of the user stories – see Figure 5.3.

105

Figure 5.3 User story sources – the various types of contributors

• Customer side contributors

 Software users: Those with a direct interest in the functions provided by the proposed

new system or services. Software users are valuable sources of knowledge of the

features that the system is designed to implement. They can provide insights into how

the system should operate.

 Investors: Those responsible for providing the required funding for the proposed

system, including the organizations responsible for developing the system or an

external party wishing to invest in the system. These contributors may have their own

features that they consider would better implement the system’s user stories. Usually,

features provided by investors are related to system efficiency and to the performance

106

of the system. The investors play an important role in balancing, and scoping, costs

and perceived benefits.

 Software buyers: Those who purchase large and complex software (such as air traffic

control system or online banking system), and who could be different from the users of

the software. System features from these contributors are derived from their own

expectations on how to better support user needs.

• Development side contributors

 Project managers: Those responsible for managing the technical aspects of the project

(e.g. the development process) and its non technical aspects (e.g. budget and

development time). Requirements and constraints from project managers are focused

as much on bringing discipline to the delivery schedule as to moving the project on to

successful completion within the specified budget. Requirements from project

managers are usually related to regulating the workflow of the project and focus less

on system features.

 Maintenance and service staff: Those whose main responsibility is to keep the system

operating after it has been delivered to the system users. Requirements from these

contributors are focused on a set of controls designed to better maintain the system

later.

 Developers and the quality assurance team: Those whose main responsibility is to

design, implement, and test the system, and to verify that all the system user stories

from all the story contributors have been implemented efficiently. They focus on the

overview at the application level, rather than at the component level or individual

programming task level. Therefore, they may contribute stories to the system

concerning controls and indicators for monitoring and measuring the various

characteristics and sub characteristics of system quality.

• Government side contributors

 Regulatory authorities and standards bodies: To ensure the compliance of

organizations with codes of practice, government regulations, etc., such as Sarbanes-

107

Oxley (SOX), the Food and Drug Administration (FDA), and the Health Insurance

Portability and Accountability Act (HIPAA). It is the responsibility of every

organization to develop its own business processes to address them, and the SWEBOK

Guide recognizes that a software development process might be a part of such a

business process Abran, Moore et al. (2004). The SWEBOK Guide also points out that

there is broad acceptance that software development success is highly dependent on

the software requirement activities. Therefore, user stories should be able to capture

and manage the requirements (functional and non functional) from the government

side contributors. At the business process level, organizations react to the regulatory

authorities and standards bodies by developing what are called internal controls (i.e.

policies and procedures). “Software is often required to support a business process, the

selection of which may be conditioned by the structure, culture, and internal politics of

the organization” Abran, Moore et al. (2004). An organizational policy can be

described as a formal statement that guides and steers production methodologies, and

so every organization must ensure that their policies comply with the rules of the

authority that governs it. An organizational procedure is a series of steps required to

implement the organization’s policies. It is essential, therefore, that software

developers analyze the applicable rules for implementing the organization’s internal

controls. From the software engineering perspective, these internal controls are

translated into application support software and control support software – see Figure

5.4.

• Application support software is software that provides a specific set of user-level

functions, such as a reporting system or an employment management system.

• Control support software is software that automates the organizational policies and

procedures, or provides technical services to the organization.

108

Control support software includes control components, which can be classified as follows:

• Application level control component: a control element implemented and integrated

into the system for a specific automated service; for example, services to ensure that

all goods shipped are invoiced.

• Process level control component: a control element implemented and integrated into

the system to support the overall business process; it includes adequate security

functionality to prevent unauthorized access to secure applications.

• Technical level control component: a control element implemented to support the

organization at the operational level; for example, implement the organization’s

internal policies or procedures, or to ensure that policies and procedures are

implemented by the operational system and business processes.

To this end, user stories should capture the sources of the requirements from the

government side contributors for the regulatory authorities and standards bodies, in order

to ensure that a software system is capable of meeting government and business

requirements, and to provide the ISO 9001 certifying authority with evidence that data

from those sources have been collected.

109

Figure 5.4 Government side contributors

110

5.4.2 Categories of non functional requirements

The goal of this section is to provide formal evidence that the non functional requirements

have been gathered from the user stories and categorized based on their respective groups

(a related work on the standards-based specification of non functional requirements can be

found in (Abran, Al-Sarayreh et al, 2010), (Al-Sarayreh, Abran et al, 2010).

During XP release planning, the <<STORY CONTRIBUTOR>> informally states the non

functional requirements that need to be considered for each user story. Every <<STORY

CONTRIBUTOR>> sees the problem from a different perspective. As users often do not

know which quality attributes they would like to see included, they can express their non

functional requirements orally (Tracy, Sarah et al, 2008). Developers must therefore be

able to understand and categorize those non functional requirements and map them to the

corresponding quality attribute(s) in order to comprehend the entire problem domain.

To enhance the ability of user stories to capture non functional requirements during the

early phases of XP, a semi structured format is proposed for defining them. This allows

developers to identify the category to which the non functional requirements of each user

story belong, as well as to provide a flexible format for both the functional and non

functional requirements. The set of quality attributes is represented in the format

{Q1,Q2,....Qn}, and the sub quality attributes associated with the non functional

requirements required by a user story in the format {SQ1,SQ2,....SQn}. Also, there are

many quality models that address the quality attributes and non functional requirements of

software systems, such as the European Cooperation on Space Standardization (ECSS),

Boehm, McCall, and ISO 9126 models. The ISO 9126 quality model refers to six quality

characteristics, subdivided into twenty-seven quality sub characteristics for the internal

and external quality of a software product – see Table 5.2.

111

Table 5.2 ISO 9126 quality characteristics

Characteristics Sub characteristics

Functionality Suitability

Accuracy

Interoperability

Compliance

Security

Reliability Maturity

Recoverability

Fault Tolerance

Usability Learnability

Understandability

Operability

Efficiency Time behavior

Resource behavior

Maintainability Stability

Analyzability

Changeability

Testability

Portability Installability

Conformance

Replaceability

Adaptability

112

AS a <<STORY CONTRIBUTOR>>, I want the system to <<DO REQUIREMENTS>>

AND incorporate <<NON FUNCTIONAL CAPABILITIES>>, which belong to

Quality characteristics {Q1, Q2.......,Qn} AND

Sub quality characteristics {SQ1, SQ2,..........SQm} respectively

Each user story is primarily associated with a <<NON FUNCTIONAL CAPABILITY>>

entity that represents the category of non functional requirement intended for each story.

Information related to the user story <<NON FUNCTIONAL CAPABILITY>> should be

obtained during exploration phase of agile-XP where the information related to the product is

collected. In agile-XP these information are collected during a face to face session with the

user.

The purpose of a <<NON FUNCTIONAL CAPABILITY>> entity is to keep the user story

as lightweight as possible, but at the same time to provide evidence for an ISO 9001

auditor that non functional requirements have been obtained during the early phases of

XP. The <<NON FUNCTIONAL CAPABILITY>> category could represent one or more

quality characteristics and sub quality characteristics belonging to the non functional

requirements stipulated by the <<STORY CONTRIBUTOR>>. Table 5.3 shows examples

of non functional capability categories.

113

Table 5.3 Examples of non functional capability categories

5.4.3 Identify the user story relationships

Based on the description of system features and system functionality in the previous

section, we next define the relationships between dependent user stories. For example, a

user story “j” that depends on another user story “i” is called dependent, and is denoted

<US,j>. Such a pair of dependent user stories will be read as follows: <US,j> depends on

<US,i>. The dependencies between user stories are then classified into four categories:

logical dependencies, data dependencies, temporal dependencies, and resource

dependencies. This classification is based on the user story features that require

implementation.

• A logical dependency occurs when the feature implemented by a user story X cannot

be executed before the feature implemented by user story Y, because they are logically

dependent. This can be the case if user story X provides services or interfaces to user

story Y. For ex-ample, in an employment management system, the employee will not

Example <<NON FUNCTIONAL

CAPABILITY>>

The customer must place an order within

two minutes of registering.

Performance

The customer must be able to access

their account 24 hours a day, 7 days a

week.

Availability

"Update Customer" will be available to

users during 98% of normal working

hours.

Reliability

Up to 200 new sites per year may start to

use "Update Customer".

Scalability

114

be granted access to perform restricted operations unless he has been approved as a

legitimate employee. This can be read as follows: <US,j> logically depends on

<US,i>. This relation can be represented as in Figure 5.5.

Figure 5.5 Logical dependency

• A data dependency occurs if the feature implemented by user story X cannot be

executed before the feature implemented by user story Y, because they are data

dependent. This can be the case if user story X provides input data for user story Y.

For example, sorting the entries in the database should be performed after this entry

has been stored. This can be read as follows: <US,j> data depend on <US,i>. This

relation can be represented as in Figure 5.6.

Figure 5.6 Data dependency

• A temporal dependency occurs if the feature implemented by user story X cannot be

executed before the feature implemented by user story Y, because they are time-

dependent. In this case, feature x specifies the time frame for an event to occur, for a

process to be completed, or a condition to hold true, for example, in order for feature y

115

to start processing. Temporal dependencies can be found in designing the user stories

of a real-time system, where the system features must execute respecting strict

response time constraints. This can be read as follows: <US,j> depends temporally on

<US,i>. This relation can be represented as in Figure 5.7.

Figure 5.7 Temporal dependency

• A resource dependency occurs if the feature implemented by user story X cannot

be executed before the feature implemented by user story Y, because they are

resource dependent. In this case, the system consists of several concurrent threads

(i.e. features) which are competing for limited resources (i.e. hardware resources or

software resources). User stories should be analyzed first, so that precautions can

be taken to ensure fairness. This can be read as follows: <US,j> resource depends

on <US,i>. This relation can be represented as in Figure 5.8.

Figure 5.8 Resource dependency

116

5.4.4 Prioritizing the user stories

Prioritization is the process of making a choice among multiple options Karlsson,

Berander et al. (2008). It is also considered an important activity in requirements

engineering, as it helps developers analyze requirements in order to rank them according

to their importance from the perspective of the requirements analyzer or the stakeholder

who is involved in the requirements elicitation activity Lehtola and Kauppinen (2004).

Requirement prioritization processes can be categorized into methods-based solutions and

negotiation-based solutions. Methods-based solutions are aimed at assigning quantitative

values to the requirements, such as the binary priority list methods in Bebensee, Weerd et

al. (2010), while negotiation-based solutions focus on resolving conflicts by brokering an

agreement between stakeholders on ranking requirements using a method

selection framework designed for the purpose, such as the Negotiation Constellations in

Fricker and Grünbacher (2008).

In XP, user stories are usually prioritized before each iteration during the exploration

phase of release planning, specifically in the Planning Game activity, in which the on-site

customer classifies the user stories into three groups: “those without which the system will

not function,” “those that are less essential, but provide significant business value,” and

“those [it] would be nice to have” (Abrahamsson, Solo et al, 2000). This XP activity can

be considered as a type of negotiation-based solution that is less formal from the ISO 9001

perspective and which normally provides evidence that criteria have been met by the on-

site customer on sorting the user stories into their corresponding categories. Therefore, we

propose that the AHP (Analytic Hierarchy Process) be integrated into the XP Planning

Game, for the following reasons:

• The AHP combines the advantages of both the methods-based solutions and the

negotiation-based solutions, in that the developers, along with any <<STORY

CONTRIBUTORS>>, can set the criteria for ranking the user stories into “important”

and “less important” stories, based on qualitative and quantitative analysis Forman and

117

Selly (1996).

• The AHP provides formal evidence that the user stories have been evaluated using

criteria which have been determined to support the priority given by the <<STORY

CONTRIBUTOR>> to the various alternatives (such as time, costs, risks, etc.).

• The result of the AHP is highly correlated to the criteria and to the <<STORY

CONTRIBUTOR>> viewpoint of what is “important “and “less important”. Therefore,

developers should establish criteria that balance the goals of the project from different

business value perspectives.

Figure 5.9 depicts the procedure for prioritizing the user stories in XP using the AHP

method.

118

Figure 5.9 Procedure for prioritizing the user stories in XP using the AHP

• Selection of user stories for prioritization

The AHP process begins by defining a set of alternatives from which a decision maker

wants to choose (e.g. selection of faculty members, assessment of financial management

models, etc.) Grandzol (2005). There is a variety of methods available for generating those

alternatives, such as a brainstorming session, a literature review, or the outcome of a

specific process, such as release planning in XP, where the developers, in consultation

with the customer, come up with a set of user stories that need to be implemented in

subsequent iterations.

At the beginning of each iteration of the exploration phase in XP release planning, the

119

developer gets together with the customer for a planning meeting. In that meeting, they go

over the features the customer wants to implement in that iteration, breaking each feature

down into individual engineering tasks. In this step, the developers are required to

determine the set of user stories that need to become input for AHP prioritization.

• Building up criteria for comparison purposes

The AHP allows developers to model the user story ranking as a hierarchical structure, as

shown in Figure 5.10. Using AHP, the definition of criteria is based on the decision

maker’s viewpoint of what is important from his perspective in evaluating and prioritizing

the alternatives. In the context of this chapter, each <<STORY CONTRIBUTOR>> can

generate his own criteria for ranking the set of user stories. Therefore, the customer side

contributors, the development side contributors, and the government side contributors can

all generate criteria that can be used to consider different aspects of user story evaluation,

such as financial benefits, strategic benefits, competitors, the ability to adhere to standards

or regulations, the ability to sell, etc. Next, we give some examples of criteria for

developing user stories that consider cost, time, and risk:

120

Figure 5.10 AHP diagram for user story selection

 Cost is often expressed in terms of the number of hours spent developing the software.

It is determined by considering the criticality of the requirements and the quality

required Berander and Andrews (2005).

 Cost is often calculated in terms of hours, which is directly related to time. Time is in

turn influenced by factors such as degree of parallelism in development, training

needs, the need to develop support infrastructure, the need to meet industry standards,

etc. Berander and Andrews (2005).

 There is a degree of risk in every project. Risk management is a process for planning

ways to handle the risks that may cause difficulties in development. Among the risks

that may be encountered are those related to performance, financial managements, and

scheduling, for example. Calculating the risk per requirement enables engineers to

forecast the potential risk at project level Berander and Andrews (2005).

121

• Pair-wise matrix generation using the AHP style

Using the AHP pairwise comparison process, weights or priorities are assigned to a set of

human judgments based on the AHP scale in Table 5.4. While it is difficult to justify

weights that are arbitrarily assigned, it is relatively easy to justify judgments and the basis

for those judgments Forman and Selly (1996).

The concept of pairwise comparison for prioritizing user stories works as follows:

developers begin by computing the priority of their criteria, which are cost, time, and risk

in this context. The first step is to generate a pairwise matrix by comparing these three

criteria, according to the scale in Table 5.4.

Table 5.4 AHP scale

Intensity of importance Definition

1 Equally important

3 One moderately more important

than the other

5 Much more important

7 Very much more important

9 Extremely important

122

Assume that the following relationships have been determined for these criteria:

 Cost is much more important than Time (degree of importance: 5).

 Cost is moderately more important than Risk (degree of importance: 3).

 Risk is very much more important than Time (degree of importance: 7).

Then, the following pairwise matrix will be generated – see Table 5.5.

Table 5.5 Pairwise matrix for the selected criteria

Suppose the developers intended to rank three different user stories: <US1>, < US2>, and

< US3>. The pair-wise matrix for each criterion should be generated as in Tables 5.6, 5.7,

and 5.8.

Table 5.6 Pairwise matrix for the cost criterion

123

Table 5.7 Pairwise matrix for time criterion

Table 5.8 Pairwise matrix for the risk criterion

• Eigenvalue computation

The AHP obtains the weight vector (priority vector) by calculating the eigenvector for the

largest eigenvalue of matrix A. This can be obtained using formula (1) where w is the

eigenvector and λ is the eigenvalue corresponding to that vector.

Aw = λw ..(1)

124

By solving (1) for A criteria, A cost, A time, and A risk, the priority hierarchy will be generated

as in Figure 5.11.

Figure 5.11 A priority hierarchy

US1priority, US2 priority, and US3 priority can be obtained as of Figure 5.12.

125

Figure 5.12 Calculation of user stories priority

5.5. Extended user story for XP

This chapter has introduced an extension to the user story to help XP software developers

in specifying important information for the ISO 9001 requirements that should be gathered

in the earlier phases of software process development. The main content of the extended

user story will be as follows – see Figure 5.13.

126

Figure 5.13 Extended user story

• Requirements: Identification of the user’s functional requirements.

• User story sources: Identification of user story sources: <<customer side

contributor>>, <<development side contributor>>, and/or <<government side

contributor>>.

• Non functional capability: Identification of the non functional category that

represents one or more quality attributes and sub quality attributes belonging to the

non functional requirements needed by the <<STORY CONTRIBUTOR>>.

A plain to indicate the user functional requirements

127

• Story relationships: Dependencies between the user stories are identified and

classified into logical dependencies, data dependencies, temporal dependencies, and

resource dependencies.

• Priority ranking: The priority of each user story is calculated based on the AHP

method. The <<STORY CONTRIBUTOR>> can generate a priority list for user

stories based on predefined criteria.

5.6. Summary and Discussion

The main contribution of this chapter is the proposed sub process, aligned with XP release

planning, for deriving the extended user story. The following comments illustrate the

advantages of the proposed extended user story from the ISO 9001 perspective:

• Formality: ISO 9001 auditors need documented evidence at every phase of the

development process to clarify that processes are compliant with ISO 9001. The

extended user story that we propose here will provide formal evidence that the sources

of each user story have been identified. It will also provide formal evidence that each

user story has been prioritized from the <<STORY CONTRIBUTOR>> viewpoint.

This can be supported by showing documented evidence that every <<STORY

CONTRIBUTOR>> generated comparison criteria and pairwise matrices, as well as

documented evidence of the final numerical values of the priorities assigned for each

user story.

• Change management: The extended user story can also provide support for better XP

change management. For example, the identification of user story relationships and

dependencies will improve the developer’s ability to specify the impact of change

requests on the system. Developers will be able to understand what types of

dependencies exist between user stories: a change in <US,i> will generate a change in

<US,j>, based on the kind of relationship that has been identified.

• Process visibility: The visible process has been characterized as the ability to define

contact points between customers and organizations, where customers are allowed, or

128

even required, to interact with the process activities Yang and Vandenbosch (1998).

The theory of visibility claims that organizations can improve their competitive

advantage by deliberately managing the degree of visibility of their processes. Also,

XP supports process visibility by mandating that on-site customers participate during

the XP life cycle. The proposed sub processes allow for process visibility from the

development perspective by allowing the developers to trace back every user story to

its source and allowing the development team to rank user stories from the <<STORY

CONTRIBUTOR>> viewpoint. This will enhance process visibility for both customers

and developers.

• Traceability: The implementation of traceability requires software developers to

identify the deliverables and artifacts of the software life cycle and provide

information about the relationships between those deliverables at an early stage of the

software project. This can be accomplished once the system has been divided into

modules and the information flow (interaction) between these modules has been

determined. The extended user story can support traceability by providing early

information about the interaction of user stories based on the defined relationships of

user stories (i.e. logical dependencies, data dependencies, temporal dependencies, and

resource dependencies). Moreover, for large software systems that include multiple

interrelated software modules, the developers can build a dependency graph that

identifies the various types of interactions between the user stories.

• Accountability: Software project managers are responsible for ensuring that the

software life cycle has been executed in conformity with ISO 9001, even before the

software organization is audited by external ISO 9001 auditors. The proposed sub

processes will allow software project managers to ensure that the software

development activities are being performed in conformity with ISO 9001. For

example, at any time in the software life cycle, the project manager can identify the

source of user stories by referring to their <<STORY CONTRIBUTOR>> category.

Moreover, the software project managers can find documented evidence about the non

functional requirements that have been gathered during the software life cycle. The

pair-wise matrices and the relationship of user stories can also provide documented

129

evidence for software project managers as to how the user stories interact in the system

and the priority ranking for each user story.

130

131

CHAPTER 6

AN AUDIT MODEL FOR ISO 9001 TRACEABILITY REQUIREMENTS IN AGILE-
XP ENVIRONMENTS

6.1. Introduction

Among the important challenges reported in the agile process (e.g. XP) literature is the

traceability of the user requirements during the development process Espinoza and Garbajosa

(2011), Ghazarian (2008), (Lee, Guadagno et al, 2003). Software traceability is defined in

ISO 12207:2008 as “the degree to which a relationship can be established between two or

more products of the development process, especially products having a predecessor-

successor or master-subordinate relationship to one another.” Ramesh and Jarke (2001)

defines requirement traceability as “a characteristic of a system in which the requirements are

clearly linked to their sources and to the artifacts created during the system development life

cycle based on these requirements.” In agile development, verifying that the requirements

have been implemented, designed, and tested in the final product depends mainly on

undocumented test cases and user accepted tests, without documented evidence having been

provided on how these requirements have been traced through the project life cycle. This

creates challenges for software auditors, in terms of ensuring that the processes are in

conformity with a specific standard, such as ISO 9001. For example, according to Cohn and

Ford (2003) a manager cannot track progress in agile projects in the same way as in plan-

driven projects. In plan-driven projects manager simply asks whether or not the necessary

documents have been produced.

Software development-related documents constitute valuable audit evidence for Information

Systems (IS) auditors. However, this is not the only type of evidence that can be obtained by

the auditors: the standards, guidelines and procedures for information system auditing

(ISACA, 2010) point out that other audit evidence types are also important, such as observed

processes and the existence of physical items, activity and control logs, and system

132

flowcharts. In addition, analysis of the information through comparisons, simulations,

calculations, and reasoning can also be used as audit evidence.

This chapter proposes a design of an auditing model for agile software processes (e.g. XP)

based on evaluation theory, which can provide IS auditors with a methodological approach to

the auditing process. The motivation for this work is to help auditors obtain evidence in

conformity to ISO 9001. The proposed model is aimed at providing evidence of process

traceability based on the observation of techniques and mechanisms intended to implement

the traceability requirements. The proposed auditing model is designed from an engineering

perspective, as we based it on an investigation of the principles of engineering design

Vincenti (1990), Abran, Moore et al. (2004), Meridji (2010) and on the CMMI-DEV

guidelines for requirement management and traceability for each audit yardstick.

This chapter is organized as follows:

Section 6.2 presents an analysis of traceability requirements in ISO 9001 and their potential

advantages in software organizations.

Section 6.3 presents the design process for the auditing model and reviews the evaluation

theory.

Section 6.4 presents the formulation of the auditing criteria and the yardsticks.

Finally, section 6.5 presents the summary of the chapter.

6.2. Analysis of traceability requirements in ISO 9001

ISO 9001 is a quality management standard that identifies a set of requirements designed to

ensure consistency in terms of the activities, techniques, and methods used in the

organization. As a result, it provides a set of requirements for the process of gathering

customer needs and for creating a product that achieves customer satisfaction.

In non software organizations, such as pressure vessel manufacturers, for example, it is

common for a particular material to be monitored throughout all the manufacturing stages,

133

and for the changes it undergoes to be recorded. In this way, the final component can be

traced back to the original material. For ISO 9001, the material must be uniquely identified

and the changes recorded to show evidence of traceability.

For software systems, traceability of the software process is a major requirement that has

been described in ISO 9001 and in ISO 90003 in clause 7.5. Even though ISO 90003 does

not elaborate on the techniques for achieving the traceability of a software process, nor does

it recommend a specific method for doing so, the ISO 90003 guidelines for the application of

ISO 9001 for software state that traceability is usually implemented through configuration

management: “Throughout the product life cycle, there should be a process to trace the

components of a software item or product, and this process may vary in scope, according to

contract or marketplace requirements, from being able to place a certain change request in a

specific release, to recording the destination and usage of each variant of the product.”

The reasons for implementing traceability analysis are not discussed in either ISO 9001 or in

the guidelines document. However, the advantages of doing so for a quality management

system are described in the next sections.

6.2.1 Support for change management

Software projects are subject to dynamic changes at the technical level, such as changing

software project requirements or replacing development tools, or at the managerial level,

such as changing the development schedule or making changes because of budget

constraints. According to Kowalczykiewicz and Weiss (2002), for larger and more complex

software projects, change management practices are challenging without a traceability

mechanism in place, because, at some point, the increasing number of people involved in the

project and its growing size will significantly aggravate the communication difficulties

between project management and developers.

The process of change management should be formalized, so that every change request

follows a sequence of activities, starting with the initiation of a request for a change

134

(assignment of a number to the change process and acceptance of the change by the team

manager) and ending with the implementation and testing of the change request.

Kowalczykiewicz and Weiss (2002) maintains that the change management process should

be supported with tracking techniques, so that every change request can be tracked

throughout the project life cycle.

From a development team point of view, the traceability mechanism will allow the team to

keep their system updated, because every requested change will be handled individually, and

all the related artifacts that have been affected by the change request will be updated at the

same time; for example, if a change has been made to improve a module N, then developers

should ensure that all the related artifacts that have a relationship with module N are

modified as well, such as a modification to the associated test cases and a modification of the

requirements related to module N.

From the ISO 9001 point view, support of traceability at the project level implies support of

software maintainability, because project and maintenance teams will easily understand the

relationships and dependencies between the project components and artifacts, and they will

have the opportunity to more effectively modify the software system based on updated

customer requirements.

6.2.2 Cost management

The change request must first be analyzed and translated into software terms, a process

known as impact analysis. It is performed after a change request enters the software

configuration management process. The objectives of impact analysis are Abran, Moore et

al. (2004):

• Determination of the scope of the change, in order to plan and implement work;

• Development of accurate estimates of the resources needed to perform the work;

• Analysis of the costs/benefits of the requested change;

135

• Communication to others of the complexity of the change.

A quality management system requires project managers to perform an impact analysis when

a change is requested by the customer. The impact analysis statement will help the

development team estimate the budget needed to implement the change request before

beginning the change process. The statement will be analyzed by both the project manager

and the customer. According to Abran, Moore et al. (2004), the software change request is

impacted by many factors, such as:

• Application type;

• Novelty of the software;

• Software maintenance staff availability;

• Hardware characteristics;

• Quality of the software design, construction, the documentation, and testing.

Abran, Moore et al. (2004) also point out that the software development team should have

knowledge of the structure and content of the software system before they begin

implementing the requested change. They gain this knowledge by identifying all the systems

and software products affected by a software change request, and estimating the resources

needed to accomplish the change. This initial knowledge will be enhanced by the availability

of traceability mechanisms that will enable developers and software managers to better

estimate the cost of changing the content of the system. It will also make it easier to

determine the risk associated with implementing the change.

6.2.3 Process improvements

Organizations are complex systems with processes that run concurrently and interact.

Improving those processes requires discipline on the part of organizations and a defined

reference model to systematically consider their process and project management strategies,

as shown in Table 6.1.

136

The focus of ISO 9001:2008 is on process quality improvement, and a set of requirements

and guidelines (in ISO 90003) is defined to help organizations set up their improvement

program goals in alignment with their business objectives. Table 1 set out the improvement

areas in ISO 9001 at both the process and project levels, and their corresponding CMMI key

process areas (KPAs).

Table 6.1 ISO 9001 obligations and CMMI KPAs corresponding to process
and project improvement areas

ISO 9001 and ISO 90003 obligations at the process and project levels

Organizational process planning

Defined team responsibilities, authority, and communication procedures

Project resource management

Product realization planning

Production and service provision

Process control and monitoring

Project measurement and data analysis for improvement purposes

CMMI Process management KPAs CMMI Project management KPAs

•Organizational Process Focus

•Organizational Process Definition

•Organizational Training

•Organizational Process Performance

•Organizational Innovation and

Deployment

•Project Planning

•Project Monitoring and Control

•Supplier Agreement Management

•Integrated Project Management

•Risk Management

•Integrated Teaming

•Integrated Supplier Management

•Quantitative Project Management

137

In terms of the relationships between software process improvement and traceability

techniques, the SWEBOK Guide Abran, Moore et al. (2004) points out that the tools and

techniques intended to manage the tracking of software documentation and that of software

releases can also contribute to improving software process. Briefly stated, traceability for

process improvement can:

• Positively impact the communication procedures shared by the process improvement team

members, and improve the availability of the software project status throughout all the

development phases.

• Facilitate tracking of the sources and causes of defects arising during the software process

life cycle, and help address them in a timely manner.

• Help to quickly determine the requirements affected by potential changes to the source

code and to any associated test cases.

6.3. Design process

In this section, we present our design for an audit model for software process traceability,

focusing on ISO 9001 and the agile software processes. The design process for this model is

based on the work of Lopez (2000): ‘An Evaluation Theory Perspective of the Architecture

Tradeoff Analysis Method – ATAM’. The use of evaluation theory in the domain of software

engineering has been investigated by Lopez (2003) and Zarour (2009), with a view to helping

software engineering researchers develop their evaluation criteria, procedures, and

conclusions. Those concepts are used in the research reported here for developing our

auditing model for ISO 9001 traceability requirements.

6.3.1 Evaluation fundamentals

To design an evaluation procedure, the researcher should consider the components proposed

in Lopez (2000) and presented in Figure 6.1. We use these components to design an audit

138

model to evaluate ISO 9001 traceability and to select a case study that demonstrates the

applicability of our audit model – see Figure 6.1.

Figure 6.1 Components of an evaluation procedure - Lopez (2000)

The components of an evaluation procedure are highly interrelated with the target, and the

delimitation of the target is the first evaluation component that could impact the selection of

the evaluation method. Lopez (2000) has classified the evaluation methods into objective-

oriented evaluation, management-oriented evaluation, consumer-oriented evaluation,

expertise-oriented evaluation, adversary-oriented evaluation, and participant-oriented

evaluation.

The design of our audit model considers the steps of an evaluation procedure as described by

Lopez (2000):

139

• Target: the object under evaluation;

• Criteria: the characteristics of the target that are to be evaluated;

• Yardstick: the ideal target against which the real target is to be compared;

• Data gathering techniques: the techniques needed to assess each criterion under analysis;

• Synthesis techniques: the techniques used to organize and synthesize the information

obtained with the assessment techniques, the results of which are compared to the

yardstick.

• Evaluation process: A series of activities and tasks by means of which an evaluation is

performed.

For our purposes here, the design of an audit model can be considered as a type of hybrid

approach that combines the principles of management-oriented evaluation Lopez (2000) and

adversary-oriented evaluation Lopez (2000), because it is aimed at providing useful

information to aid in decision making and at providing a balanced examination of all sides of

controversial issues.

Once the target is known and delimited, its characteristics must be identified for evaluation

purposes Lopez (2000), Zarour (2009). All the characteristics and their ideal values, which

indicate the nature of the target under ideal conditions, make up what is known as the

yardstick or standard.

Data about the real target should be obtained using particular data gathering techniques, and

assigning a value (data, information set, numerical, etc.) to each criterion. The data, once

collected, are organized into an appropriate structure and compared against the yardstick by

applying synthesis techniques. This comparison yields the results of the evaluation. Finally,

all the above components are linked through the evaluation process Lopez (2000). Figure 6.2

presents the main process for designing an audit model for ISO 9001 traceability

requirements based on the evaluation described in Lopez (2000).

140

Figure 6.2 Design process for the audit model

141

6.4 Design of the auditing model

6.4.1 Scope delimitation

For agile software processes (e.g. XP), implementing a traceability technique can help

software developers and project managers in tracking the status of the software project and

responding efficiently to change requests. The objective of this chapter is to design an

auditing model for traceability requirements in agile-XP using evaluation theory. ISO 9001 is

the main target standard for deriving the auditing model. The process for designing this

auditing model takes as its inputs the guidelines of CMMI and the SWEBOK, as well as

Vincenti’s engineering design concepts for identifying audit criteria.

The aim of the traceability auditing model is to help ISO 9001 software auditors to audit the

agile software processes for traceability requirements for agile-XP. It can also be useful for

auditing traditional software processes.

6.4.2 Design of the audit criteria and yardsticks

As stated by Lopez (2000), criteria can be elicited either using a mandatory standard that

implicitly contains the criteria to be applied in the evaluation, or, if no such standard has been

defined, the auditors should refer to any relevant study of targets, relevant standards, or

ideals that might be relevant to the target in question. In our research work here, the

mandatory standard is ISO 9001.

The development of an audit model for agile process traceability could not be achieved

without support from other relevant software engineering standards, such as CMMI and the

engineering design concepts in Vincenti (1990). The structure of the proposed auditing

model is presented in Figure 6.3.

142

Figure 6.3 The structure of the proposed auditing model

143

6.4.2.1 Engineering criteria

The list of the audit criteria presented next is based on the concepts of theoretical tools and

the operational principles of engineering in Vincenti (1990), Meridji (2010), Zarour (2009).

(A) Design of the traceability method for agile

The main objective of an agile software traceability method is to provide the software

developers and project managers with a tool that supports their development tasks. Vincenti’s

classifications of theoretical engineering tools have enabled us to see what kinds of

engineering tools have been used in the design of traceability methods. In Vincenti (1990),

these tools are used by engineers to help them with the design process. They include

intellectual concepts for thinking about designs, as well as mathematical methods, theories,

and formulas, which can be simple or complex, for performing design calculations.

The following are the audit yardsticks identified for each criterion:

Yardstick #1:

Intellectual concepts, which represent the design ideas people have in mind, are expressed in

natural language. These concepts are subject to the qualitative reasoning of engineers, before

quantitative analysis and design calculations are performed.

Yardstick #2:

Mathematical models, which are useful for quantitative analysis and design, can be either

simple or complex. This scientific knowledge must be reformulated to make it applicable to

providing engineering knowledge about the design.

(B) Coverage of the traceability method

The set of operational principles underlying an engineering design is classified as a

fundamental design concept in Vincenti (1990). These principles define the essential

fundamental concept of a device (in this context, a traceability method) and provide a high-

144

level description of the design objectives, either of the whole design or of each design

component. Thus, designers provide either a complete engineering design for the problem in

the domain, or a design component that partially addresses the problem in the domain based

on the objectives of the operational principles.

The following are the audit yardsticks for this criterion:

Yardstick #3:

Full operational principles: The engineering design of a traceability method considers

different life cycle phases, such as requirement specifications, architecture, detailed design,

source code, and testing phases.

Yardstick #4:

Partial operational principles: The engineering design of the traceability method focuses on

the relationships between entities developed in the same phase of the process life cycle; for

example, the artifacts produced during the requirements phase (e.g. the user stories in XP).

6.4.2.2 Management Criteria

In both CMMI and the SWEBOK Guide, traceability management activities are described as

a part of the configuration management process area. The SWEBOK Guide describes

configuration management as a software engineering knowledge area focused on

systematically controlling changes to the configuration, and on maintaining the integrity and

traceability of the configuration throughout the system life cycle. The viewpoint of a

configuration management system in the SWEBOK Guide is not limited to a software

product, but rather covers the functional and/or physical characteristics of hardware,

firmware, or software.

CMMI describes configuration management as a supporting process at maturity level 2,

which focuses on identification, control, status reporting, and auditing for the traceability

items. These items are intended to describe any artifact produced during the software life

145

cycle, such as requirements specifications, architectural design, source code, test cases, and

so on.

The audit criteria presented next are based on the concepts of configuration management

described in the SWEBOK Guide and CMMI.

(A) identification of the traceability method

In the SWEBOK Guide, identification of a software traceability item is considered a

fundamental step in the construction of a software system that can be controlled and traced

during the software process life cycle. At the same time, both the SWEBOK Guide and

CMMI stress the importance of assigning unique identifiers to traceability items and

developing a strategy for labeling software items and describing their relationships.

The following are the audit yardsticks for this criterion:

Yardstick #5:

Traceability item identification: The traceability method should consider the related

traceability identification activities, which include mechanisms for identifying and labeling

the traceability items and/or establishing identification schemes that automatically assign

unique identifiers to each traceability item.

Yardstick #6:

Traceability item relationships: The proposed schemas for the identification of the

relationships and dependencies between the traceability items are considered within a

specific development phase or within the entire software life cycle.

146

Yardstick #7:

Traceability role identification: The traceability method assigns privileges to the software

project stakeholders to access or modify the software items in the project baseline or to

monitor the status of the software project according to their role in the project. The aim is to

comply with the best practices for building a traceability management system in CMMI, and

identifying the owner responsible for each traceability item is one of those practices.

(B) Monitoring of the traceability method

Status monitoring and updating of the software project is a requirement for designing a

software life cycle traceability mechanism. As discussed in section 6.2, it helps software

developers and project managers determine the status of the software project and gauge the

impact of changes to the cost, resources, and duration of the project.

The following are the audit yardsticks for this criterion:

Yardstick #8:

Traceability documentation: The information produced during the software life cycle to

support the traceability method is reported. The documentation in this case is different from

that produced during the software process life cycle, such as software requirements or test

cases.

The traceability method produces the required documentation, which covers the entire

software life cycle and provides project stakeholders with useful information regarding

project status. This information can take the form of ad hoc queries to answer specific

questions, or the periodic production of design reports. Examples of such documentation are

traceability logs, the history of traceability items, and the relationship of traceability items,

and so on.

147

Yardstick #9:

Documentation access: Traceability documentation and items should be stored in repositories

in such a way that software stakeholders are able to access and retrieve them at any stage of

the development process. The storage and retrieval mechanisms are evaluated, and the right

of access that has been granted based on the role of the traceability stakeholders to assess

them is monitored.

6.5 Summary

This chapter has proposed an auditing model for ISO 9001 traceability requirements for agile

software processes, in particular for XP. This model can help software organizations in their

effort to achieve ISO 9001 certification and help software auditors to extract auditing

evidence that demonstrates the ability of a software organization to implement the ISO 9001

traceability requirements. The design methodology for the proposed auditing model is based

on evaluation theory. The model consists of two major categories of auditing criteria:

engineering criteria and management criteria. Each auditing criterion consists of several

auditing yardsticks, which focus on the evidence that can be extracted to demonstrate process

conformity to the ISO 9001 traceability requirements.

CHAPTER 7

EXTENDING THE AUDITING MODEL BY COVERING THE ISO 9001
MEASUREMENT REQUIREMENTS

7.1 Introduction

The measurement requirements of ISO 9001 are sparsely described by the standard. Many

sections and sub sections of ISO 9001 highlights the importance of measurement and

analysis: for example, section 7 “Product realization”, mentions the importance of

measurement and analysis during the design and development of new products. Section 8

‘Measurement, analysis and improvement’ is the main section where the ISO 9001 describes

the requirements of measurement for the purpose of the development of a quality

management system. This section impacts many other ISO 9001 sections such as section 7

“Product realization”, section 5.4.2 “Quality management system planning”, section 4.1

"General requirements", etc.

This chapter intends to extend the auditing model that has been proposed in chapter 6. First,

this chapter analyzes the ISO 9001 requirements of measurement and introduces two types of

relation (i.e. implicit relation and explicit relation) to highlight the impact of ISO 9001

measurement requirements on the development activities of a software system. Second, this

chapter proposes a set of auditing criteria and auditing yardsticks that can help the XP

development team to comply with ISO 9001 measurement requirements. The proposed

auditing criteria and auditing yardsticks are also indented to help the IS-auditors to assure

that the XP activities had been implemented in conformance to ISO 9001 measurement

requirements.

This chapter is organized as follows:

Section 7.2 presents an analysis of ISO 9001 measurement requirements.

Section 7.3 highlights the main finding of the analysis outcome.

Section 7.4 provides description of the current agile measurement techniques.

150

Section 7.5 describes the design process of the extension for auditing model proposed in

chapter 6.

Finally a summary is presented in section 7.6.

7.2 Analysis of measurement requirements in ISO 9001

The requirements of measurement in ISO 9001:2008 cover multiple activities of the quality

management system such as customer satisfaction, process quality attributes and product

quality attributes. In ISO 9001:2008 these requirements are presented in four different

subsections:

ISO 9001-Section 8.2.1: Customer satisfaction.

ISO 9001-Section 8.2.2: Internal auditing.

ISO 9001-Section 8.2.3: Measurement of processes.

ISO 9001-Section 8.2.4: Measurement of products.

7.2.1 Analysis of section 8.2.1: customer satisfaction

The ISO 9001 highlights the importance of customer satisfaction as one of the measurement

factors for the performance of quality management system. Thus the software organizations

are required to provide methods and techniques for the gathering and analysis of the

customer feedback data. The output of ISO 9001 section 8.2.1 on Customer Satisfaction will

become essential to the project managers for continuous improvement, corrective actions,

and management review.

ISO 9001 Section 8.2.1 describes the management responsibilities at an abstract level and

more elaboration can be found in other ISO 9001 subsections. For example, ISO 9001 section

5.5.2 “Management representative” identifies the role of project management more clearly

by requiring the project managers to ensure the promotion of awareness of customer

requirements throughout the organization. The importance of customer communication

procedures are also highlighted in ISO 9001 section “5.5.3 internal communication” where

151

the organization is required to ensure that the appropriate communication processes are

established between project stakeholders.

Obviously the relations of ISO 9001 section 8.2.1 to the mentioned examples are implicit; the

section does not directly refer to any other sections within the standard, but the goal of this

section could not be possible without the existence of relations to the other parts of ISO 9001

sections and subsection. Figure 7.1 illustrates the implicit relation between ISO 9001 Section

8.2.1 and other sections and subsections in ISO 9001.

Figure 7.1 Relations of ISO 9001section 8.2.1” Customer satisfaction” to other sections in
ISO 9001

152

ISO 90003 elaborates more on useful resources for the project managers to extract the related

measurement data, which could provide them with a feedback related to customer

satisfaction. This data can be obtained by;

1- Analysis of help desk controls related to the customer feedback on the product quality

and the product performance.

2- Quality-in-use measurement results derived from the direct customer feedback (i.e.

customer interview,) and indirect customer feedback (i.e. Surveys that tackle multiple

users).

3- Number of software releases that needed to be maintained and fixed after the initial

delivery.

Regarding quality-in-use measurements, ISO 90003 makes a direct relation to ISO 9126-4 to

clarify the type of quality-in-use measurements that can be collected whereas ISO 9126-4

categorizes the quality in-use into four sub-characteristics; effectiveness, productivity, safety

and satisfaction.

7.2.2 Analysis of section 8.2.3 of ISO 9001: measurement of processes

Even though ISO 9001 does not clearly define the differences between the activities of

process measurement and process monitoring, ISO 9001 emphasizes the importance of

monitoring and measurement techniques at the process level during the development of a

product.

The SWEBOK Guide defines the term “process measurement” as the collection, analysis and

interpretation of quantitative information about the process. Measurement at this level is

performed to identify the strengths and weaknesses of processes, and to evaluate processes

after they have been implemented and/or changed. On the other hand, the “process

monitoring” is meant to cover all activities that steer the implementation of projects by

continuous assessment of their possibility to achieve expected goals. The activities that could

153

be involved during the process monitoring can be summarized next as Abran, Moore el al.

(2004);

1- Continuously assessment of adherence to the various plans at predetermined intervals.

2- Analysis of the outputs and completion conditions for each task.

3- Evaluation of deliverables in terms of their required characteristics (for example, via

verification, reviews and audits).

4- Effort expenditure, schedule adherence and costs to date are investigated, and resource

usage is examined. The project risk profile is revisited, and adherence to quality

requirements is evaluated.

The requirements of ISO 9001 at this stage have explicit and implicit relations to other

sections and sub-sections. For example, ISO 9001 section "7.6 Control of monitoring and

measuring equipment" mention that the organization shall determine measurement to be used

and measuring tools needed to provide evidence of conformity for the process of

measurement for product. It is also mention that the purpose of the monitoring and

measurement is to demonstrate the “ability of the processes to achieve planned result”: this

implies implicit relations to ISO 9001 sections “5.4.2 Quality management system planning”,

“7.1 Planning of product realization” and “7.3.1 Design and development planning”. It is also

mentioned that when planning results are not achieved, an appropriate corrective action

should be involved to ensure the product conformity to the previously stated goals in the

initial plan. This implies an explicit relation to ISO 9001 section 8.5.2 “Corrective action”

and ISO 9001 section 8.5.3 “Preventive action”. The importance of this explicit relation

comes from the objectives of ISO 9001 sections 8.5.2 and 8.5.3 in the domain of process

measurement and monitoring such that, the organization is required to evaluate the needs of

appropriate action to correct and prevent the reoccurrence of nonconformities in the

previously stated plans. Figure 7.2 illustrates the implicit relations of ISO 9001 section 8.2.3

to other sections and subsections in ISO 9001.

154

In ISO 90003, more elaboration is provided on useful resources for the extraction of related

measurement data, which could provide the project managers with a feedback concerning the

monitoring and measurement of processes. This data can be obtained after the analysis of:

• The planned and actual process activities.

• The planned and actual cost activities.

• The planned quality level and the output measures of selected quality characteristics of

the process. It is noticed that ISO 9001 does not specify the acceptable level of quality or

the process quality characteristics that could be measured to provide such useful

information.

Figure 7.2 Relations of ISO 9001 section 8.2.3 “Measurement of processes” to other sections
in ISO 9001

155

The “corrective action” section of ISO 90003 also states the importance of configuration

management to manage changes in the software product. ISO 9001 and ISO 90003 Section

8.5.2 states an explicit relation to section 7.2.8 “Software Problem Resolution Process” of

ISO 12207:2008 where the objective is to ensure that all discovered problems are identified,

analyzed, managed and controlled to resolution. ISO 12207 Section 7.2.8 was selected by

ISO 9001 as a reference model that can support the activities of section 8.5.2 at this level: it

has been noted that section 7.2.8 focuses on a set of recommendations that can be

implemented to support the corrective action of ISO 9001.

ISO 90003 mention that “corrective action” can be supported through the implementation of

configuration management. A detailed activity that could be involved during the

configuration management can be found in SWEBOK Abran, Moore et al. (2004). The

software configuration management (SCM) KPA of SWEBOK is composed of six different

sub-areas, which are:

1) Management of the SCM process.

2) Software configuration identification.

3) Software configuration control.

4) Configuration status accounting.

5) Software configuration auditing.

6) Software release management and delivery.

The sub-areas of configuration management are described in details in Chapter 7 of

SWEBOK. These sub-areas provide a discipline to identify the configuration of software at

distinct points in time for the purpose of systematically controlling changes to the

configuration and maintaining the integrity and traceability of the configuration throughout

the system life cycle. As a result, Chapter 7 of SWEBOK is a suggested relation to Section

8.5.2 of ISO 9001. Figure 7.3 illustrates the relation of section 8.5.2 “corrective action” to the

ISO standards.

156

Figure 7.3 Relation of ISO 9001section 8.5.2 “corrective action” to the ISO standards.

7.2.3 Analysis of ISO 9001 section 8.2.4: measurement of products

ISO 9001 section 8.2.4 requires the organization to “monitor and measure the product

characteristics”. These characteristic should be measured to “verify that the product

requirements have been met”. The term “verify” has been used clearly in the requirement

sentence in this section: it should be not confused with the meaning of other terms such as

“verification” and that is used frequently in software engineering to determine specific

activities that are performed at the process level of software development.

From the software engineering perspective, the use of the term “verify” in this section can be

interpreted as in Al-Qutaish (2007) such that a software measurement has been seen to help

the developers in:

• Understanding the software development process better.

• Providing common terminology for key controlling elements of the process.

• Identifying complex software elements.

• Estimating and scheduling better.

• Evaluating the competitive position better.

• Understanding where automation is needed.

157

• Identifying engineering practices which lead to the highest quality and productivity.

• Making critical decisions earlier in the development process.

• Eliminating fundamental causes of defects.

• Encouraging the use of software engineering techniques.

• Encouraging the definition of long-term software development strategy based upon a

measured understanding of current needs and practices.

The requirements of ISO 9001 Section 8.2.4 have an explicit relation with several stages of

ISO 9001 section 7 “product realization “, such as sub-sections 7.3.1 “Design and

development planning” and “7.1 Planning of product realization”. Figure 7.4 illustrates the

relation of section 8.2.4 to other sections and subsections in ISO 9001.

Figure 7.4 Relation of ISO 9001 section 8.2.3 “Measurement of processes” to other sections
in ISO 9001

7.2.4 ISO 9001 section 8.2.2: Internal Auditing

The role of internal auditing is defined in section 8.2.2 in the ISO 9001. The standard

characterizes the internal auditing process in term of the organization resources, scope and

planning activities. The set of requirements in ISO 9001 section 8.2.2 specifies that the

158

internal auditing should be performed by the organization itself at planned intervals to

determine whether the organization processes and activities confirm to the following points:

The activities described in ISO 9001 section 7, such as the planning of product realization,

determination of requirements related to the product, review of the requirements related to

the product, verification and validation has been audited. The internal auditing is conducted

at this level to ensure that the organization process has implemented the requirements of ISO

9001 in this section and this is found as an explicit relation between section 8.2.2 and section

7.1 of ISO 9001 - See figure 7.5.

• Section 4.1 "General requirements" of quality management system such that the internal

auditing is performed at this level to ensure that the requirements of this section have

been carried out as specified i.e. the processes, methods, resources for implementing the

quality management system have been performed as described in the plan. ISO 9001

section 8.2.2 implies an implicit relation to ISO 9001 section 4.1 - See figure 7.5.

• Any other quality management system requirements established by the organization in

response to the ISO 9001 obligations such as Quality objectives (5.4.1), Quality

management system planning (5.4.2) and Quality policy (5.3). See figure 7.5 that

clarifies the relations of section 8.2.2 to other sections in ISO 9001 - See figure 7.5.

The main difference between internal and external auditing is their domain of interest. The

external auditing focuses on the organization activities that have been implemented in

accordance to a specific standard (e.g. ISO 9001). This also may be an important concern for

the internal auditors; but the focus is on the conformance of the organization processes to

their own plans and policies.

Internal auditors may derive recommendations from auditing results for outlining the process

of improvements in the software organization. Internal auditors may also participate with

external auditors to achieve their work. This may enhance the accuracy of the audit result as

well as reduce the auditing fees. Auditing can be classified into three different types (Paul,

Curtiss et al. 2009);

159

• First party audit: First party audit is performed within an organization to assess its

strengths and weaknesses against their own policies and strategies and/or against external

standards such as ISO 9001. The first party audit is a type of internal audit that is

conducted by auditors employed by the organization.

• Second party audit: Second party audit is a type of external auditing which is usually

conducted by an external organization on behalf of the organization being audited.

Second party audit is more formal than first party audit because it is initiated with a

contract which specifies the role of second party auditors.

• Third party audit: The third party audit is considered as a type of external auditing. The

key element of the third party audit is the independence from the organization being

audited. The result of the third party audit has many outcomes such as organization

certification, organization license approved, and/or penalties issued by the third party. For

example, organization should be audited by third party agencies to verify their level of

adherence to the ISO 9001 requirements.

Figure 7.5 Relations of ISO 9001 section 8.2.2 “Internal auditing” to other sections in ISO
9001

160

7.3 Discussion on ISO 9001 measurement requirements.

• ISO 9001 section 8.2 of ISO 9001 neither specifies nor recommends any measurement

techniques to be used by the organization; the standard determines a set of requirements

to help the organizations (including software organizations) to develop their own

measurement program aligned with an organization’s goals and objectives.

• ISO 9001 section 8.2 consists of several implicit and explicit relations to other sections in

the standard. These relations highlight the importance of the measurement activities for

the organization and specify links between different levels of measurement activities

inside the organization. For example, top management may be interested in a specific set

of measurements such as customer satisfaction and effort estimation. On the other hand,

developers may be interested in obtaining the measures that are related to the

development process level such as performance measurement, reliability measurement

etc. The identified relations will help for maintaining the measurement activities at

different levels aligned with an organization’s goals and objectives.

• Neither ISO 9001 section 8.2 nor any of ISO 9001 referred sections suggest the collection

of measures at the product or process levels. ISO 90003, on the other hand, suggests

measurement of certain attributes at the product level, such as functionality,

maintainability, efficiency, portability, usability and reliability. Furthermore, ISO 90003

refers to ISO 9126 which specifies a set of quality characteristics that can be measured at

product level.

• ISO 9001 does not specify any requirements for external auditing; however, the

requirements of internal auditing have been described at a high level to standardize the

activities in industrial organizations. For example, the ISO 9001 internal auditing

requirements may cover different auditing activities such as IT auditing, financial

auditing and quality auditing.

• The measurement requirements of ISO 9001 are integrated into the system and software

development. This can be notable after tracking the existing relationships between the

different subsections of ISO 9001.

161

7.4 Existing agile measurement and estimation techniques

This section discusses from the viewpoint of ISO 9001 several measurement and estimation

techniques proposed for agile software processes. This section also discusses the weaknesses

of those techniques from an auditing perspective.

• Planning poker: This technique has been introduced first by Grenning (2002). Planning

poker is used to estimate effort or size of tasks in agile software development and more

precisely in XP Cohn (2005). All the project stakeholders can participate in the planning

poker such as programmers, testers, designers and analysts. At the start of planning

poker, each estimator is given a deck of cards. Each card has written on it one estimate.

Each estimator may, for example, be given a deck of cards that reads 0, 1, 2, 3, 5, 8, 13,

20, 40, and 100.The session moderator presents a short description about the user stories

which need to be estimated. Then each individual lays a card face down representing

their estimate. The selected number by each individual usually represents the User Story

Point (USP). USP can be interpreted as an evaluation-estimation of the efforts required to

implement the story. Then the estimation process is repeated until a consensus is reached.

• Velocity: In an agile software process such as XP and Scrum, the term “Velocity" is used

to measure the effort invested to produce software Cohn (2005). Calculation of

"Velocity" is based on the historical data obtained from several previous iterations, such

that it can be calculated by averaging the estimates delivered of features per iteration.

Project managers can specify several measurement units, such as USP, days, ideal days,

or hours. "Velocity can be calculated as a weighted historical average favouring recent

iterations (as these are most representative of the current rate of progress looking

forward) or as a simple average of the most recent two or three iterations" Karlesky and

Vander (2008).

Karlesky and Vander (2008) claims that by using velocity, project managers can estimate

the amount of work and resources available, lessons are learned from past projects which

have completion difficulties and requests for budget extension, delivery date, and

162

resources. Priorities and corrective actions can be adjusted before the over estimation can

appear during the development processes of a software systems.

• Burn down chart: Burn down chart is a graphical representation of the amount of work

that still needs to be completed before the end of a project, which is usually calculated as

the sum of the estimated remaining effort for all tasks defined in each iteration

(COSMIC, 2011). The charts are usually showing the work remaining in the project,

determining team velocity, and estimating how many iterations it will require to complete

the project. The charts are represented by Y-axis that can track the story points, ideal

days, hours, etc. X-axis remaining against project iterations or days in each iteration. See

figure 7.6 of an example of a Burn down chart. The X-axis represents the iteration

number while the Y-axis represents the story points completed and the total story points

in the project.

163

Figure 7.6 An example of a burn down chart

The drawbacks of the above agile estimation techniques can be seen from the measurement

and auditing perspectives in Table 7.1.

164

Table 7.1 Agile estimation techniques and their weaknesses from measurement and auditing
perspectives

Agile
techniques

Measurement perspectives ISO 9001 Auditing perspectives

Planning
poker

The USP value cannot be
considered as a reliable measure
of a User Story size simply
because in practice it is a value
representing the relative effort to
develop the User Story, not a
measure of its size (COSMIC,
2011). USP is not an objective
product size unit, does not
comply with basic metrology
concepts and cannot be defined
as a standard software sizing
measure (COSMIC, 2011).

USP estimated by the planning poker is
not based on defined or documented
estimation criteria. Each estimator will
assign the estimation value that reflects
his point view on how to predict the
efforts needed for developing the user
stories. This practice will provide fewer
evidences for ISO 9001 to assure that
the estimation has been preformed
based on an engineering approach.

Velocity Cannot be used as a benchmark
value because its USP
component is not a standard
measure, so velocity cannot be
considered as a standard
measure (COSMIC, 2011).

The calculation of project velocity is
based on historical data which can
provide an estimate for new set of
backlog User Stories. This historical
data is also a valuable resource for ISO
9001 auditors. However, it has been
noted in (COSMIC, 2011) that not all
teams collect or have access to
historical data, and they often rely on an
estimate of their upcoming velocity to
perform their preliminary project
estimate.

Burn down
chart

As the agile project accepts the
changes of requirements
frequently during the
development, the changes
should be updated every time
new user stories are added or
removed from the product
backlog.

Multiple versions of the Burn down
chart may be required to assure that the
project team has conducted their
estimation to reflect the changes of
project requirements along the
development process.

165

7.5 Design process

In the context of this section, the design process for the auditing model will be clarified using

the concepts of engineering design process in Vincenti (1990), Meridji (2010).

7.5.1 Engineering design process

According to Vincenti, the engineering “design concept” denotes both the content of a set of

plans and the processes by which those plans are produced" Vincenti (1990).

In Vincenti's view, design is an iterative and complex process, which consists of plans for the

production of a single entity such as an engineering device; these plans are produced, and

finally, the release of these plans for production. Devices are defined as single, relatively

compact entities, such as airplanes, electric generators, turret lathes, and so forth. In the

context of this report, devices refer to the auditing model and its components such as the

auditing criteria and auditing yardsticks.

Vincenti also mentions that design is a multilevel and hierarchical process. The designer

starts by taking the problem as input. The design hierarchy starts from the project definition

level, located at the upper level of the hierarchy where problems are abstract and

unstructured. At level 2, the project is divided into its major components. At level 3, each

component is subdivided. At level 4, the subcomponents from level 4 may further be divided

into specific design components based on the design needs. At the lower levels, design

components are well defined and structured. Finally, the overall design level, the layout and

the proportions of the device are set to meet the project definition The design process is

iterative, both up and down and horizontally throughout the hierarchy. Figure 7.7 shows the

Vincenti's levels of design that will be used for designing the auditing model.

166

Figure 7.7 Vincenti's levels of engineering design

7.5.2 Design formulation

The Vincenti principles of engineering design have been inspired from the domain of

aeronautical engineering. However, Vincenti has mentioned that this classification is not

specific to the aeronautical engineering domain and a transformation can be made for design

and analysis purposes to any other engineering domain. For example, the work presented in

Meridji (2010) proposes some pioneering work in modeling Vincenti’s engineering

principles, and utilizes Vincenti’s engineering domain areas as constituting criteria for

investigating software engineering from an engineering perspective. Also, Zarour (2009)

presents the use of Vincenti’s engineering principles for the development of evaluation

methods as to evaluate the software assessment methods from engineering perspective. In the

context of this chapter, the hierarchical levels of engineering design - see figure 7.7 - will be

167

used as a modeling guidelines for designing the main components of the auditing criteria and

auditing yardstick, for ISO 9001 measurement requirements in the agile-XP environment.

7.5.2.1 Project definition

The objective of this chapter is to design an auditing model for ISO 9001 measurement

requirements, following the principles of engineering design defined by Vincenti. Also, ISO

9001 has been identified as the main target standard for deriving the auditing model

components (i.e. auditing criteria and yardsticks). The design process for this auditing model

takes as its inputs the guidelines of CMMI, SWEBOK and ISO 15939 for the identification

of design process for audit criteria and yardsticks.

The aim of the measurement auditing model is to help the ISO 9001 software auditors audit

the agile software processes for measurement requirements.

7.5.2.2 Major Design Component

Defining the major design component is the second level of design based on Vincenti’s

hierarchy of engineering design. The major design component for this chapter is to elicit the

auditing criteria for the ISO 9001 requirements. The auditing criteria is defined as the major

area of interest for the software process auditor where it is expected to reveal audit evidences

to assure that certain activities have been planned, executed and/or evaluated. It is important

at this level of design to determine the main standard (i.e. ISO 9001) and supplementary

documents that will be used to complete the auditing criteria of ISO 9001 measurement

requirements.

Based on Lopez (2000), criteria elicitation can be made using a mandatory standard that

contains implicitly the criteria to be applied. For measurement auditing criteria, the

mandatory standard is ISO 9001, more precisely the measurement requirements of ISO 9001.

However, after the analysis of Sections 8.2.1, 8.2.3, and 8.2.4 in ISO 9001 it has been noted

that deriving the auditing criteria for the ISO 9001 measurement requirements would be

168

difficult without a support from other related software engineering based models, such as

CMMI, SWEBOK and ISO 15939. For this purpose, Lopez (2000) mentions that several

criteria elicitation techniques can be used such as:

1- Functional analysis: Detailed analysis of the obligatory standard as to gain in depth

description for the obligatory standard requirements.

2- Needs assessment: A designer may refer to any study of the needs, wants, market

preferences, standards, or ideals that might be relevant to the target.

3- Complex logical analysis: when the definition needs more clarifications in order to figure

out its implications. This is more often the case when the criterion is complex and may

need to be decomposed into several yardsticks. The analysis is a complex inferential

process starting from data and definitions.

169

Figure 7.8 shows the main source documents for criteria elicitation and techniques to define

the auditing criteria for ISO 9001 measurement requirements.

Figure 7.8 The elicitation of auditing audit criteria

Next is the description of auditing criteria/creation and their related yardstick - see figure 7.9.

 Criteria elicitation methods

Target standards (i.e. ISO 9001)

Professional standards (i.e. CMMI, ISO 15939 and
SWEBOK)

Scientific standard (e.g. An Evaluation Theory Perspective
of the Architecture Tradeoff Analysis Method – ATAM,

(López, 2000))

Standards

Analysis techniques

Functional analysis

Needs assessment

Complex logic analysis

Audit Criteria 1, Audit Criteria 2 Audit Criteria N

170

Figure 7.9 The structure of the measurement auditing model

N
or

m
al

co
nf

ig
ur

at
io

n
of

m
ea

su
re

m
en

t

de
ve

lo
pm

en
t

A
u

d
it

in
g

cr
it

er
ia

 f
or

m
ea

su
re

m
en

t
m

an
ag

em
en

t

A
u

d
it

in
g

cr
it

er
ia

 f
or

m
ea

su
re

m
en

t
d

ev
el

op
m

en
t

A
u

d
it

in
g

cr
it

er
ia

 f
or

m
ea

su
re

m
en

t
p

la
n

A
ud

it
in

g

ya
rd

st
ic

k
#1

1

A
ud

it
in

g

ya
rd

st
ic

k
#9

A
ud

it
in

g

ya
rd

st
ic

k
#5

A
u

di
ti

ng

ya
rd

st
ic

k
#4

A
u

di
ti

ng

ya
rd

st
ic

k
#1

A
u

d
it

in
g

m
od

el

N
or

m
al

te
ch

no
lo

gy
 o

f

m
ea

su
re

m
en

t

de
ve

lo
pm

en
t

O
pe

ra
ti

on
al

pr
in

ci
pl

es
 o

f

m
ea

su
re

m
en

t

de
ve

lo
pm

en
t A
u

di
ti

ng

ya
rd

st
ic

k
#6

A
ud

it
in

g

ya
rd

st
ic

k
#7

A
ud

it
in

g

ya
rd

st
ic

k
#8

A
ud

it
in

g

ya
rd

st
ic

k
#2

A
ud

it
in

g

ya
rd

st
ic

k
#3

A
ud

it
in

g

ya
rd

st
ic

k
#1

0

171

7.5.3 Subdivision of design component

The previous section has mainly focused on identifying the main components of the design

based on Vincenti hierarchy of engineering design, and by defining the main standards that

will be used for the elicitation for the auditing criteria. This section focuses on describing

those auditing criteria and their related auditing yardstick. The auditing yardstick will be

defined in this context as a specific area of interest for the IS auditor to extract detailed

information concerning the auditing criteria. Each auditing criterion is composed of 1 to N

yardsticks.

Based on Lopez (2000), the following principles will be applied for the process of designing

the auditing yardsticks:

• The yardstick should be developed from the standards described in figure 7.8. The

general structure of the auditing criterion and auditing yardstick should be obtained using

the analysis techniques described in figure 7.8.

• The yardstick must contain specifications for specific defined criterion /criteria.

• For each criterion, whenever possible, the yardstick must define the specifications

structured as pairs [criterion, yardstick/information].

The ISO 15939:2007 has been selected to derive the main measurement auditing criteria - see

figure 7.10. The basis of this selection is the following:

• Scope alignment: from the analysis of ISO 9001 measurement requirements, this

standard is intended to guide the measurement program inside the organization rather

than focusing on a specific measurement technique. ISO 15939 details different phases

during the measurement process, such as: Establishing & sustaining measurement

commitment, Plan the measurement process, Performing the measurement process and

Measurement evaluation.

172

• Field of application: ISO 15939 mentions several circumstances in which this standard

is useful for the software organizations. For example, the standard can be used by

“suppliers to implement a measurement process to address specific project or the

organization information requirements”. Beside, the standard is useful to be used by

“acquirer (or third-party agents)” for evaluating conformance of the supplier’s

measurement process to specific measurement requirements. This standard will be used

in this context for deriving the main measurement auditing criteria, and to define the

process and product measurement information that are useful for the software

organization that implement the agile process (i.e. XP), in order to achieve the ISO 9001

certification. Those auditing criteria will be useful to the IS auditor to extract the audit

evidences that assure the process conformance. Agile software organizations can also

implement their measurement process to address specific technical and/or project

measurement techniques related to the auditing criteria.

• Standard reputation: The purpose of this standard is claimed to "define a measurement

process applicable to system and software engineering and management disciplines”. The

process is described through a model that defines the activities of the measurement

process required to adequately specify what measurement information are required, how

measurement and analysis results are to be applied, and how to validate the analysis

results. “The measurement process is flexible, tailorable, and adaptable to the needs of

different users". As a result, the standard has been used in several areas of software

engineering and some examples are described in table 7.2. Moreover, a publication of

International Standards, such as ISO 15939, requires approval by at “least 75 % of the

national bodies casting a vote”.

However, a limitation noted of ISO 15939 is that “the measurement process should be

appropriately integrated with the organizational quality system. Not all aspects of internal

audits and non-compliance reporting are covered explicitly in this International Standard, as

they are assumed to be in the domain of the quality system”. As a result, some other

173

standards beside ISO 15939 have been used in designing the auditing criteria and yardsticks,

such as SWEBOK (ISO 19759) and CMMI models.

Table 7.2 Examples of publications work based on ISO 15939

Work

authors

Work Title Role of ISO 15939 in the work Work type and

year

Alain

Abran et,

al.

Analysis of the

ISO 9126 on

Software Product

Quality

Evaluation from

the Metrology

and ISO 15939

Perspectives

The concept and terminologies

described by ISO 15939 is used

as a basis for analyzing ISO

9126 on area of product quality

evaluation

WSEAS

Transactions on

Computers, 2006

Luc

Bégnoche,

et, al.

A Measurement

Approach

Integrating ISO

15939, CMMI

and the ISBSG

The ISO 15939 has been used as

a supportive tool to design an

approach that supports software

engineering measurement

program

 Software

Measurement

European Forum,

2007

Alain

Abran

et, al.

An Information

Model for

Software Quality

Measurement

with

ISO Standards

The measurement information

model of ISO 15939 on software

measurement process has been

used to assess the maturity for

the concepts of measurement

primitives and quality measures,

and highlights some of their

weaknesses to recommend

future improvement for those

concepts.

International

Conference on

Software

Development, 2005

174

Table 7.2 Examples of publications work based on ISO 15939 (Continued)

Work

authors

Work Title Role of ISO 15939 in the

work

Work type and

year

Dias

Belchior

et, al.

Measurement
Process: A Mapping
Among CMMI-SW,
ISO 15939, IEEE Std
1061, Six Sigma and
PSM.

Presents a mapping of
several measurement
processes: CMMI-SW, ISO
15939, IEEE Std 1061, and
Six Sigma, which aim to
investigate the similarities
and the gaps among these
approaches along with the
focus on software projects.

International
Conference on
Service Systems and
Service
Management, 2006

Verbo, E A Methodology
Based on ISO 15939
to Elaborate Data
Quality Measurement
Plans

This work presents a
methodology called
(MEPLAMECAL) which
aims to develop plans for
quality measurement. The
development of
MEPLAMECA is mainly
based on ISO 15939.

IEEE Latin America
Transactions, 2009

175

Figure 7.10 Auditing model design levels

176

The next sections present the description of the auditing criteria identification and their

related yardstick.

7.6.1 A: Auditing criteria for measurement plans

In the context of measurement process, the SWEBOK and ISO 15939 stress the importance

of planning at the beginning of the measurement process. The same is found in CMMI model

where the planning for measurement is classified as a support process at maturity level 2

which improves the corrective and preventive actions. The mentioned standards highlight the

importance of early planning for software process, as to specify the objectives of the

measurement program and to align the identified information needs within the organization

objectives, i.e. improving quality, reduce cost, enhance the infrastructure security etc.

According to CMMI the software process models, such as agile-XP, can take advantages of

measurement planning to:

• Track actual progress and performance against established plans and objectives.

• Establish for ongoing program for continuous process improvement.

• Manage budget for development project more efficiently.

• Benchmark the current process, tools and techniques.

Auditing criterion at this phase focuses on investigation of evidences to assure that activities

of planning have been carried during the measurement process. The key point of this

auditing criterion is to provide a link between the development team of agile-XP software

processes and IS auditors, to understand what evidences they need at this phase, and how

evidences can provide them with facts.

177

The following are the audit yardsticks for this criterion:

Yardstick #1:

Identification of the measurement context: The measurement plan should identify the context

of the measurement process. This can be accomplished by defining the focus of measurement

process to the intended goal of organization improvement. For example, the SWEBOK

mentions several improvement goals at the organizational level, such as the organizational

processes, application domains, technology, and organizational interfaces. The SEWBOK

mentions that “it is important to make this context explicit and to articulate the assumptions

that it embodies and the constraints that it imposes”.

For agile-XP process which imposes lightweight documentation methodology, the

measurement context can be identified by briefly answering several questions based on goal-

question-metric (GQM) style. (We do not claim this is a complete set of questions, but it

provides an example of questions that can reveal important information for this yardstick).

Table 7.3 is designed based on Statz (2005).

178

Table 7.3 Questions based context analysis for auditing evidences extraction

Measurement

Context

Impact of the measurement program to the organization improvement

Financial How much will it cost for designing the measurement program?

What financial benefits will be achieved by implementing the measurement

program?

Which financial overhead will be avoided?

Customer

satisfaction

How the measurement program can impact the customer satisfaction?

Which area of customer interest will be improved?

How the measurement program will reduce the overhead of customer

support?

Business

process

improvement

How can the measurement program reduce the cost toward quality

products?

How can the measurement program improve the organization productivity?

How can the measurement program reduce time to market?

How can the measurement program improve the internal business process?

How can the measurement program utilize the organization resources?

Training and

learning

benefits

Will the measurement program enhance the management capability?

Will the measurement program enhance the project stakeholder

satisfaction?

Will the measurement program increase the collaboration and feedbacks

between the project stakeholders?

To reduce the documentation for agile software process for this auditing criterion the

approach of Alali and Issa (2011) can be useful, which is mainly based on the identification

of special patterns from the text and then classify those patterns based on defined categories.

Another suggestion that could reduce the documentation is videotaping the development

sessions of measurement context discussion.

179

Yardstick #2:

Role Assignment: This yardstick is focused on identifying the measurement team roles and

the responsibilities of each team member. This yardstick has been derived from ISO 15939

that mentions “Individuals shall be assigned responsibility for the measurement process

within the organization”. On the other hand, CMMI model mentions that when the

organization establishes a measurement program, the measurement plan should include a

specific role for each team member, as to ensure that analysis will properly address the

identified information needs.

The agile-XP can take advantages of the role assignment proposed by ISO 15939, as

described next.

• Measurement user: Individual or organization that uses the information products.

• Measurement analyst: individual or organization that is responsible for the planning,

performance, evaluation and improvement of measurement.

• Measurement librarian: individual or organization that is responsible for managing the

measurement data stores.

Yardstick #3:

Resources and budget constraints: The plan for the measurement process should be integrated

with the main business improvement plan. For example, the CMMI model suggests several

activities in business improvement plan such as:

• Identify major milestones: Milestones can be classified as event based or calendar based.

If it is calendar based, it will be difficult to change later during the project progress.

Those defined milestones should also be reviewed once the measurement plan is defined

as to keep the measurement process aligned with the project scope and time constraints.

• Identify schedule assumptions: Assumptions are judgments and forecasting of several

development activities’ duration and required resources. With assumptions, little data is

available for estimations based on engineering methodologies. CMMI mentions that:

"When schedules are initially developed, it is common to make assumptions about the

duration of certain activities".

180

• Identify constraints: The CMMI defines the constraints as factors that limit the flexibility

of development and design. For agile-XP, this can include team expertise, customer

involvement, project size, project criticality (e.g. safety critical systems), requirement

changes etc.

• Identify task dependencies: The dependencies between project tasks and/or services

should be defined. CMMI mentions that an ordered sequence of task dependencies for the

software project can minimize the project duration. For agile-XP, several dependencies

can be defined at this level, such as: logical dependency, data dependency, temporal

dependency and resource dependency Qasaimeh and Abran (2011).

7.6.2 B: Auditing criteria for measurement development

This auditing criteria focus is to help the IS Auditors of agile-XP in finding evidences of the

development activities for the measurement process. The objective is to design auditing

yardsticks that specify the kinds of actions that can be taken during the design as well as

auditing the measurement process.

The design process is defined by SWEBOK as “the process of defining the architecture,

components, interfaces, and other characteristics of a system or component". Design in the

software engineering life cycle is an activity in which a software specification document is

taken as input into the software design phase. "Software requirements express the needs and

constraints placed on a software product that contribute to the solution of some real-world

problem" Abran, Moore et al. (2004).

For the design of these auditing criteria, several standards and guideline principles will be

used to complete the design process, such as Vincenti principles of engineering design,

SWEBOK and ISO 15939. The auditing criteria for measurement development will be

divided into four criteria, which are mainly based on Vincenti “fundamental design concept”.

According to the analysis of Meridji (2010) for Vincenti design principles, the fundamental

design concepts are composed of four elements: operational principles, normal configuration,

181

normal technology and concepts in people's minds. At the beginning of the design process,

these concepts exist only in the designer's mind.

The auditing criterion of the measurement process presented next focuses on the principles of

these four concepts by designing their associated yardsticks.

• Operational principles of measurement development

For the IS Auditor, the operational principles define essential the fundamental concepts of the

measurement process. The operational principles must be known by the designers first, and

subsequently to the IS Auditors as to find the evidences for this auditing criterion. Generally,

as mentioned by Vincenti, the operational principles specify how the different parts of the

designed device fulfill special functions in combination with overall operation to achieve the

purpose. Vincenti (1990) defined the operational principles as “how the device works". Next

are the auditing yardsticks which are associated with this auditing criterion.

Yardstick #4:

Identification of measures: software measures are classified into base measures and derived

measures, which are used to construct the software quality measures Al Qutaish (2007). This

auditing yardstick is focused to investigate the classification of measures that have been

specified for the agile-XP project. As explained by the CMMI model, data for the base

measures are obtained by direct measurement, whereas data for derived measures come from

other measures, typically by combining two or more base measures. In other words, the base

measures could be calculated based on the attribute itself and without using any other

measures, while derived measures could be calculated based only on other measures. Table

7.4 presents a list of base measures and derived measures suggested by the CMMI model.

The list can be used by the IS auditor of an agile-XP project.

182

Table 7.4 Examples of base measures and derived measures in the CMMI model

Examples of base measures Examples of derived measures

Measures of work product size (e.g.,

number of pages, number of lines of code)

Earned value

Measures of effort and cost (e.g., number

of person hours)

Schedule performance index

Information security measures (e.g.,

number of system vulnerabilities identified)

Defect density (e.g number of

confirmed defects/ software size

Customer satisfaction survey scores (e.g.,

survey scores)

Peer review coverage

Process productivity (e.g. number of tasks

completed)

Reliability measures (e.g., mean time to

failure)

Error time (i.e. time required to correct the

code errors)

Information security measures (e.g.,

percentage of system vulnerabilities

mitigated)

Table 7.4 contains some examples of base measures and derived measures that can be useful

for the IS auditors to investigate. The IS auditors can extract those measures either directly or

indirectly from the measurement objectives of the agile-XP project. More examples of base

measures and derived measures can be found in Al Qutaish (2007).

Yardstick #5:

Measurement data and models: The CMMI mentions that "Existing sources of data may have

been identified when specifying the measures. Appropriate collection mechanisms may exist

whether or not pertinent data have already been collected".

This yardstick investigates the existence of mechanisms for the data collection used during

the measurement development. This can provide the IS auditors for agile-XP with evidences

that a specific mechanism/method has been developed to collect the measurement data.

Several measurement data collection methods can be inspected in this yardstick such as:

183

 Qualitative data collection methods

 Web based questionnaires

 Paper based questionnaires

 Computer based Interviewing

 Face to face interviewing

Modeling artifacts of measurement data is also a valuable resourse of evidence, especially for

the measurement design based on modeling measurement methods such as COSMIC – ISO

19761; an example of modeling artifact that is important for this yardstick is listed next:

 Identification of functional processes

 Data movement diagrams

 Identification of data groups

 Identification of measurement functions

 Activity diagrams

 Collaboration diagrams

 Data flow diagrams

 Decision tables and diagrams

Yardstick #6:

Measurement results: the focus of this auditing yardstick is the investigation of the existence

of appropriate data analysis and presentation techniques for better understanding of

measurement results. The SEWBOK Guide mentions that measurement users can also

participate in reviewing the data to ensure the accuracy of data and that they can be presented

in a reasonable manner. Examples of analysis and presentation techniques in CMMI for

investigation of the measurement results of agile-XP are listed next.

 Presentation techniques (e.g., pie charts, bar charts, histograms, radar charts, line graphs,

scatter plots, tables).

 Descriptive statistics (e.g., arithmetic mean, median, mode).

184

 The modeling techniques presented in yardstick#5 are also a valuable resource of

auditing evidences.

• Normal configuration of measurement development

The normal configuration of a device means “the general shape and arrangement that are

commonly agreed to best embody the operational principles” Vincenti (1990). In his thesis,

Zarour (2009) adds that for production of any device or product, it should consist of a set of

sub-devices or sub-products, to support the overall design of the product; and this is what

concerns the normal configuration. In the context of this chapter, the normal configuration

represents the supplementary techniques that have been designed to support the measurement

development. Next are the auditing yardsticks which are associated with this auditing

criterion.

Yardstick #7:

Traceability of measurement data: This yardstick focuses on the investigation of the

existence of techniques for tracing the measurement data throughout the measurement

process. The importance of measurement traceability techniques has been highlighted by

CMMI model as a tool for identification of the measures that have been already addressed in

the measurement plan.

Yardstick #8:

Prioritization of measurement data: This yardstick focus is the investigation of the existence

of techniques for prioritizing the measurement data throughout the measurement process.

CMMI mentioned that it is important to develop a prioritization technique throughout the

measurement development, as to improve the accuracy of measurement data and enhance the

measurement evaluation.

• Normal technology of measurement development

"The improvement of the accepted tradition or its application under new or more

stringent conditions" is known as ‘normal technology’ Vincenti (1990). For measurement

185

development, auditing criteria is to investigate the measurement technology/methods

used for the design of techniques or procedures for measurement development. Next are

the auditing yardsticks which are associated with this auditing criterion.

Yardstick #9:

Identification of measurement design: This yardstick focuses in the investigation of the

classification of measurement design that has been used by the measurement team. Vincenti

(1990) has classified the engineering design into:

 Normal design: The main features that characterize the normal design is “evolutionary

rather than revolutionary” and “The designer knows at the outset of how the device works

and what its customary features are”. The measurement design will be considered to be a

normal design if it is based on known measurement methods such as Common Software

Measurement International Consortium (COSMIC), Constructive Cost Model

(COCOMO) and Constructive Systems Engineering Cost Model (COSYSMO).

 Radical design: The main features which characterize the radical design are “The

designer has never seen such a device before and cannot presume that it will succeed”

and “the designer is not familiar with the device itself”. The measurement design will be

considered to be a radical design if it does not follow the guidelines of any measurement

model and the measurement methods are designed based on team experiences.

7.6.3 C: Auditing criteria for measurement management

The measurement management auditing criteria focus is to identify the auditing yardstick that

can reveal evidences at the measurement management level. The measurement management

team includes the project leaders’, and the project stockholders who impose important

decisions to improve the measurement process, such as decisions on the selected

measurement tools, tanning and maintenance. The measurement management auditing

criteria is composed of the following yardsticks.

Yardstick #10:

186

Evaluation of measurement process and results: The measurement result is the output of the

analysis and manipulation that has been made on measurement data to achieve results that are

useful for project stakeholders. This yardstick is also important to investigate evaluation

methodologies (i.e. criteria), for the measurement process and results. SWEBOK and the

CMMI model have not specified any evaluation criteria. Recommendations for evaluation

criteria have been found in ISO 15393 as the following:

• Timeliness

• Efficiency

• Defect containment

• Customer satisfaction

• Process compliance

For IS auditors of agile-XP, it is important to find evidences that the measurement process

and results have been evaluated. Existence of such evaluation criteria can provide more

evidences for important measurement activities such as customer involvement, team

expertise and/or tools selection process.

Yardstick #11:

Result communication: This auditing yardstick is focused to investigate the existence of an

appropriate scheduling and presentation procedures to discuss the measurement result with

the project stakeholders. This will include any procedure that assists the project stakeholders

to understand the measurement results and keep the project stakeholders informed about the

measurement results periodically. CMMI indicates some information that can beneficial for

this yardstick such as:

 How and why measures were specified.

 How data were obtained.

 How to interpret results based on the data analysis methods.

 How results address information needs.

 Providing training on the appropriate use and understanding of measurement results.

187

7.6. Summary

This chapter has proposed an extension to the auditing model proposed in chapter 6. This

model can help software organizations in their effort to achieve ISO 9001 certification and

help software auditors to extract auditing evidence that demonstrates the ability of a software

organization to implement the ISO 9001 measurement requirements. The design process for

the auditing model extension is based on Vincenti engineering design, evaluation theory,

CMMI_DEV and SWEBOK. The model consists of three major categories of auditing

criteria: measurement plan criteria, measurement development criteria and measurement

management criteria. Each auditing criterion consists of several auditing yardsticks which

focus on the evidences that can be extracted to demonstrate process conformity with ISO

9001 measurement requirements.

189

CHAPTER 8

CASE STUDIES

8.1 Introduction

The International Standard of Auditing ISA (2009) defines audit evidence as "all the

information used by the auditor in arriving at conclusions on which the audit opinion is

based." The audit evidence is described by the ISA as "proofs, facts and information about

something to convince the auditors that something is true, fair or false. It gives auditors

reasonable assurance and not absolute assurance about something." This standard was

designed for auditing financial systems and financial records, and examples of auditing

evidence are: counting records, internal and external documents, and physical observations.

For information systems, auditors usually look for evidence of the existence of internal

controls. The Control Objectives for Information and related Technology ISACA (2008)

defines internal IT controls as specific activities performed by persons or systems designed to

ensure that business objectives are met. As indicated by Control Objectives for Information

and related Technology (COBIT), internal IT controls can be implemented at different levels

(organization, process, and product) to support business objectives, such as process activity

integrity, reliability, and compliance.

The case studies presented in this chapter are based on the proposals found in the literature

for the traceability of agile software processes and the measurement of agile software

processes. The main limitations for evaluating this research project based on industrial case

studies are summarized next:

190

• Geographical area interest: The agile software processes are still new methodologies

for software organizations in general, and it is difficult to find software organizations in

Montréal area that had adopted the agile software process and which had got ISO

9001certification.

• Time and budget constraint: The evaluation of the proposed auditing models requires a

close collaboration and training for the development team in order to setup the basic

requirements for the development of certified agile software process: this requires time

availability for both the trainer (i.e. the research team) and the trainee (i.e. the

development team). Furthermore, a complete evaluation may require more than one

project to be audited as to cover all the auditing yardsticks that have been proposed for

the traceability auditing model and the measurement auditing model.

The limitations above have been avoided by selecting the case studies based on the literature

found for both agile measurement and agile traceability, such that the research team was not

limited to any geographical area, and budget constraint.

This chapter presents two set of case studies:

1. The first set of case studies consists of five different agile traceability approaches.

2. The second set of case studies consists of four different agile measurement approaches.

Each approach that is related to agile traceability has been denoted as (Case_ alphabet_TR).

The alphabet is used for sequence ordering and “TR” is to indicate that the case study belongs

to agile traceability. On the other hand, each approach that is related to agile measurement

has been denoted as (Case_ alphabet_MR). The alphabet is used for sequence ordering and

“MR” is used to indicate that the case studies belong to agile measurement.

This chapter is organized as follows:

Section 8.2 presents classification of auditing evidences.

191

Section 8.3 presents the selected agile traceability approaches (five case studies) and presents

the analysis of each case study based on the auditing model proposed in chapter 6.

Section 8.4 presents the selected agile measurement approaches (four case studies) and

presents the analysis of each case study based on the auditing model proposed in chapter 7.

Section 8.5 presents the chapter summary.

8.2 Classification of auditing evidences

The auditing evidences can be in different forms, such as diagrams of UML, structured

development artifacts, low level design artifacts and/ or simple text that provide details of the

design planning activities, data collection management, analysis of collected data, etc.

Therefore, the evidences will be classified into three main categories:

• Textual evidence: Can be described as supporting proof in certain text format. In this

case, the designer is expected to provide reasons or explanations for their opinion. This

provides readable information for the auditors but it is inheriting the disadvantages of

natural language such as inconsistency and misunderstanding. Therefore, this type of

evidence needs a certain degree of expertises from the auditors to clarify whether the

evidences are clearly stated or not.

• Modeling evidence: Can be described as supporting proof in certain modeling format. In

this case, the designer is expected to provide low level clarification or identification for

their design component. This provides visual information for the auditors. In software

engineering several modeling languages can be used by the designer to provide such type

of evidences such as Unified Modeling Language (UML), Business Process Modeling

Notation (BPMN), Service-Oriented Modeling Framework (SOMF), Extended Enterprise

Modeling Language (EEML), mathematical modeling and notations.

• Graphical evidence: Can be described as supporting proof in certain visual formal. In

this case, the designer is expected to provide low level clarification or identification for

the outcome of their design. This will also provide the auditors with visual information.

In software engineering several graphical representations can be used by the designer to

192

provide such type of evidences, such as bar graphs, line graphs, pie charts, scatter plots,

photographs, and line charts. Burn down chart is an example of this type of evidence that

is used in the context of agile software processes.

8.3 Case studies: agile traceability audit

8.3.1 Context and scope

To study the applicability of the auditing model proposed in chapter 6, five case studies have

been selected to be compatible with the scope defined in chapter 6. The selection of these

case studies is based on the following steps and criteria – see Table 8.1:

 A search was conducted of IEEE Xplore and ScienceDirect-Elsevier for any paper

proposing a methodology, technique, or framework to enhance the traceability of an agile

software process.

 The following terms were used in browsing the content of IEEE Xplore, ScienceDirect-

Elsevier:

− Agile AND traceability

− XP AND traceability

− Agile AND configuration management

− XP AND configuration management

 A title and abstract analysis was performed to select the papers that discuss XP

traceability. Note that some authors discuss the principles of XP, but refer to them as

agile principles (i.e. they do not specify which agile process they are improving, and

selected XP as a candidate process without referring to it by name).

 All the papers that discuss agile traceability in general, without proposing a methodology,

technique, or framework for managing traceability, were discarded.

 As some authors discuss the same proposed traceability approach in a number of different

research articles, only their most recently published article was selected.

193

XP was proposed by Kent Beck in 1999, and very few papers discuss agile software process

traceability or XP traceability prior to 2003. As a result, the case studies that have been

identified were published between 2003 and 2011.

The main characteristics of the five selected proposals for traceability agile process are

described next- See table 8.1:

• Case ATR (Espinoza, Garbajosa): Case ATR was published in the Journal of Innovations

in Systems and Software Engineering. The proposal is part of a PhD thesis in software

engineering which aims to improve the traceability of agile software processes. The title

of the PhD thesis is “An advanced traceability schema to improve supporting life cycle

process”. The study has been held in Technical University of Madrid under the

supervision of Prof. Juan Garbajosa. The proposed model has been evaluated in the

context of hardware drive unit testing, agile software process and software product line

engineering. Case ATR has been cited five times since 2011 based on Google scholar.

• Case BTR (Lee, et al): Case BTR was published in the proceedings of the 2nd

International Workshop on Traceability in Emerging Forms of Software Engineering.

The tool proposed by Case B TR is part of a master thesis in computer science which

aims to enhance the workflow of agile software processes. The title of the master thesis

is “FLUID: knowledge creation for emergent workflows”. The study has been held in

DePaul University under the supervision of Prof. Xiaoping Jia. Case BTR has been cited

thirteen times since 2003 based on Google scholar.

• Case CTR (Ghazarian): Case CTR was published in the proceedings of the 8th

International Conference on Applied Computer Science. The proposal is part of a PhD

thesis which aims to support the software maintenance through mechanism for

establishing traceability relations between the system requirements and its code

elements. The title of the PhD thesis is “A design rule based constructive approach to

building traceable software”. The study has been held at Toronto University under the

supervision of Prof. Dave Wortman. Case CTR has been cited six times since 2008 based

on Google scholar.

194

• Case DTR (Ratanotayanon, et al): Case CTR was published in the proceedings of the

2009 Agile Conference. Case CTR is part of a project developed at the University of

California called Zelda. The objective of Zelda is to design and implement a plug-in for

Eclipse to create, visualize and maintain links between concerns and their

implementation across software artifacts. Case DTR has been cited three times since 2009

based on Google scholar.

• Case ETR (Yaser, Maurer): Case CTR was published in the proceedings of the 2009 Agile

Conference. The proposal is part of a PhD thesis which aims to make it possible for agile

organizations to address variability in a product line without affecting agility values and

principles. The title of this research project is “Agile Product Line Engineering”. The

project has been developed under the supervision of Prof. Frank Maurer at University of

Calgary.

The audit of agile traceability case studies refers to the set of mechanisms, techniques,

approaches and/or documentations that are implemented to support the traceability method

pertaining to an internal control for agile software process traceability. For all the five case

studies in this section, the evidences were gathered using the information system audit

procedure described by the standards, guidelines and procedures for information system

auditing ISACA (2010), as follows:

• Observation of traceability processes and the existence of the components of the

traceability method.

• Documentary audit evidence, such as results of the traceability method execution, and

records of the method performance.

• Representations of the method, such as written analyses, and descriptions of the

traceability method and traceability method flowcharts.

195

Table 8.1 Selected case studies for the agile (XP) traceability audit

 Authors Case title Case objective Case Date

Case
ATR

Espinoza,
Garbajosa

A Study to Support
Agile Methods More
Effectively Through

Traceability

To propose a model, called the
traceability meta model (TmM),
to support the traceability of XP
by developing three features of

the TmM which are user-
definable traceability links, roles,
and linkage rules. The proposed
model is aimed at improving and

enhancing XP maintainability
processes.

March,
2011

Case
BTR

Lee, et al

An Agile Approach
to Capturing

Requirements and
Traceability

To propose a tool, called Echo, to
capture user stories, and any

informal information generated
during the development phases,

and restructure that information to
better support XP traceability and

change management.

October,

2003

Case
CTR

Ghazarian

Traceability Patterns:
An Approach to
Requirement-
Component

Traceability in Agile
Software

Development

To propose a conceptual model
that captures a traceability pattern
in XP. The approach focuses on
providing traceability through
mapping the user stories to the
source code components after

defining certain design
constraints, such as the location,
naming, and content constraints.

November,

2008

Case
DTR

Ratanotayan

on et al

Supporting Program
Comprehension in
Agile with Links to

User Stories

To propose Zelda, an Eclipse
plug-in tool designed to work

with XP to support the traceability
of source codes generated using

agile software processes by
helping developers create links

from user stories to source code,
and test cases.

August,

2009

Case
ETR

Yaser and

Maurer

Extreme Product
Line Engineering:

Managing Variability
& Traceability via

Executable
Specifications

To propose an approach for
managing XP variability and
traceability using executable

specifications.

August,

2009

196

8.3.2 Traceability audit of Case ATR (Espinoza, Garbajosa)

The identification of evidences existence in Case ATR (Espinoza, Garbajosa) are presented in

Table 8.2. The process focuses on providing links between the traceability yardsticks to its

supporting type and location of evidences found in Case ATR.

• Yardstick TR #1 (Identification of design intellectual concepts): This yardstick

investigates the intellectual concepts of the traceability design. The design will be

classified as intellectual concepts if it represents the ideas people have in mind: chapter 6

presents the details about this yardstick. Case ATR supports for textual and modeling

evidences for this yardstick. More precisely this evidence is found in section 4.1 “TmM

extended from SEMDM” and figure 4 "Traceability methodology, represented with the

Traceability Conglomerate class".

• Yardstick TR #2 (Identification of design mathematical models): This yardstick

investigates the mathematical models of the traceability design. The design will be

classified as mathematical modeling if it describes the traceability design using the

mathematical concepts and notations. Case ATR has no evidence for this yardstick.

• Yardstick TR #3 (Full operational principles): The traceability design will be

considered to support full operational principles if the design covers the artifact

traceability for different life cycle phases. Case ATR supports this yardstick with textual

and modeling evidences. More precisely this evidence is found in section 4.4 “TmM

usage process” and in figure 5 "TmM core (part I): Twp".

• Yardstick TR #4 (Partial operational principles): The traceability design will be

considered to support full operational principles if the design focuses on the relationships

between entities developed in the same phase. Case ATR supports this yardstick with

modeling evidences. More precisely this evidence is found in figure 5 "TmM core (part

I): Twu".

• Yardstick TR #5 (Traceability item identification): This yardstick investigates the

identification activities for the traceability items (i.e. artifacts). Case ATR supports this

yardstick with textual and modeling evidences. More precisely these evidences are found

197

in section 4.3 “TmM core: templates and resources”, in figure 5 “TmM core (part I):

Twp” and in figure 5 “TmM core (part I): Twu”.

• Yardstick TR #6 (Traceability item relationships): This yardstick investigates for the

identified dependencies between the traceability items within a specific development

phase or within the entire software life cycle. Case ATR supports this yardstick with

textual and modeling evidences found in section 4.3 TmM core: templates and resources

and in figure 4 traceability methodology, represented with the traceability conglomerate

class.

• Yardstick TR #7 (Traceability role identification): This yardstick investigates the

privileges assigned for the project stakeholders to access or modify the traceability items.

Case ATR supports this yardstick with modeling evidences. More precisely these

evidences are found in figure 5 “TmM core (part I): Tp” and in figure 7 "TmM usage

process".

• Yardstick TR #8 (Traceability documentation): This yardstick investigates the

documentation produced to support the traceability design. The traceability

documentation provides the project stakeholders with useful information regarding

project status. Case ATR supports this yardstick with textual and modeling evidences.

More precisely these evidences are found in 4.3 "TmM core templates and resources" and

in figure 6 "TmM core (part II): traceability resources represented with classes".

• Yardstick TR #9 (Documentation access): This yardstick investigates the design of

documentation access method. This includes the storage and retrieval mechanisms and

the right of access that has been granted based on the stakeholders role. Case ATR

supports this yardstick with modeling evidences. More precisely these evidences are

found in figure 4 “Traceability methodology, represented with the traceability

conglomerate class” and in figure 7 “TmM usage process”.

198

Table 8.2 Traceability audit of case ATR

 Case ATR (Espinoza, Garbajosa)

 Evidence
Status

Evidence
Type

Evidence
Location

Page number

Yardstick TR# 1
(Identification of
design intellectual

concepts)

Evidence
exists

Modeling and
textual

evidences

Section 4.1
and figure 4

Page # 67

Yardstick TR # 2
(Identification of

design
mathematical

models)

Evidence
does not

exist

Not applicable Not applicable Not
applicable

Yardstick TR #3
(Full operational

principles)

Evidence
exists

Modeling and
textual

evidences

Section4.4 and figure
5

Page # 61

Yardstick TR #4
(Partial operational

principles)

Evidence
exists

Modeling
evidences

Figure 5 Page # 60

Yardstick TR #5
(Traceability item

identification)

Evidence
exists

Modeling and
textual

evidences

Section 4.3 and
figure 5

Page # 60
Page #61

Yardstick TR #6
(Traceability item

relationships)

Evidence
exists

Modeling and
textual

evidences

Section 4.3 and
figure 4

Page # 59
Page # 60

Yardstick TR #7
(Traceability role

identification)

Evidence
exists

Modeling
evidence

Figure 5 and
figure 7

Page # 61
Page # 62

Yardstick TR #8
(Traceability

documentation)

Evidence
Exists

Modeling and
textual

evidences

Section 4.3 and
figure 6

Page # 59
Page # 61

Yardstick TR #9
(Documentation

access)

Evidence
exists

Modeling
evidences

Figure 4 and
figure 7

Page # 59
Page # 62

Case BTR fully supports five traceability auditing yardsticks out of nine. The fully suppored

traceability auditing yardsticks are yardstick TR#1 (Identification of design intellectual

concepts), yardstick TR #4 (Partial operational principles), yardstick TR#5 (Traceability item

identification), yardstick TR#6 (Traceability item relationships) and yardstick TR#8

(Traceability documentation). Case BTR partially supports yardstick TR#9 (Documentation

199

access). No auditing evidence was found to support yardstick TR# 2 (Identification of design

mathematical models), yardstick TR #3 (Full operational principles) and yardstick TR #7

(Traceability role identification). Table 8.3 shows the auditing evidences type and location

found in Case BTR.

Case CTR fully supports five traceability auditing yardsticks out of nine. The fully supported

traceability auditing yardsticks are yardstick TR#1 (Identification of design intellectual

concepts), yardstick TR#4 (Partial operational principles), yardstick TR#5 (Traceability item

identification) yardstick TR#6 (Traceability item relationships), and yardstick TR#8

(Traceability documentation). No auditing evidence was found to support yardstick TR#2

(Identification of design mathematical models), yardstick TR#3 (Full operational principles),

yardstick TR#7 (Traceability role identification) and yardstick TR#9 (Documentation access).

Table 8.4 shows the auditing evidences type and location found in Case CTR.

Case DTR fully supports five traceability auditing yardsticks out of nine. The fully supported

traceability auditing yardsticks are yardstick TR #1 (Identification of design intellectual

concepts), yardstick TR #3 (Full operational principles), Yardstick TR #5 (Traceability item

identification), Yardstick TR#6 (Traceability item relationships), Yardstick TR #8 (Traceability

documentation). Case DTR partially supports yardstick TR#9 (Documentation access). No

auditing evidences was found to supports yardstick TR#2 (Identification of design

mathematical models), yardstick TR#4 (Partial operational principles), and yardstick TR#7

(Traceability role identification). Table 8.5 shows the auditing evidences type and location

found in Case DTR.

Case ETR fully supports three traceability auditing yardsticks out of nine. The fully supported

traceability auditing yardsticks are yardstick TR #1 (Identification of design intellectual

concepts), yardstick TR#4 (Partial operational principles) and yardstick TR #5 (Traceability

item identification). No auditing evidence was found to support yardstick TR#2 (Identification

of design mathematical models), yardstick TR #3 (Full operational principles), Yardstick TR#6

(Traceability item relationships), yardstick TR#7 (Traceability role identification),

200

yardstickTR#8 (Traceability documentation) and yardstick TR#9 (Documentation access).

Table 8.6 shows the auditing evidences type and location found in Case ETR.

Table 8.3 Traceability audit of case BTR

Case BTR (Lee et al.)

 Evidence
Status

Evidence
Type

Evidence
Location

Page
number

Yardstick TR# 1
(Identification of

design intellectual
concepts)

Evidence
exists

Textual
evidence

Section 4.3 “Prototype
Architecture and

Implementation” and figure 4.

page #4
page #5

Yardstick TR # 2
(Identification of

design
mathematical

models)

Evidence
does not

exist

Not
applicable

Not applicable Not
applicable

Yardstick TR #3
(Full operational

principles)

Evidence
does not

exist

Not
applicable

Not applicable Not
applicable

Yardstick TR #4
(Partial operational

principles)

Evidence
exists

Textual
evidence

and
modeling

"Prototype Architecture and
Implementation" and section 5

"Future work"

page #5
page #7

Yardstick TR #5
(Traceability item

identification)

Evidence
exists

Modeling
and textual
evidences

Section 4.3 “Prototype
Architecture and

Implementation” and figure 4.

page #4
page #5

Yardstick TR #6
(Traceability item

relationships)

Evidence
exists

Modeling
and textual
evidences

Section 4.3 “Prototype
Architecture and

Implementation” and figure 4.

page #4
page #5

Yardstick TR #7
(Traceability role

identification)

Evidence
does not

exist

Not
applicable

Not applicable Not
applicable

Yardstick TR #8
(Traceability

documentation)

Evidence
exists

Modeling
and textual
evidences

Figure 6
Figure 7
Figure 8

page #5
page #9

Yardstick TR #9
(Documentation

access)

Evidence
partially

exists

Modeling
and textual
evidences

Section 4.3 “Prototype
Architecture and

Implementation” and figure 4.

page #4
page #5

201

Table 8.4 Traceability audit of case CTR

Case CTR (Ghazarian)

 Evidence
Status

Evidence
Type

Evidence
Location

Page
number

Yardstick TR # 1
(Identification of

design intellectual
concepts)

Evidence
exists

Textual
evidence

Section 4
"Traceability patterns"

page #238

Yardstick TR # 2
(Identification of

design
mathematical

models)

Evidence
does not

exist

Not
applicable

Not applicable Not
applicable

Yardstick TR #3
(Full operational

principles)

Evidence
does not

exist

Not
applicable

Not applicable Not
applicable

Yardstick TR #4
(Partial operational

principles)

Evidence
exists

Modeling
evidences

Figure 1 page #239

Yardstick TR #5
(Traceability item

identification)

Evidence
exists

Modeling
and textual
evidences

Section 4
"Traceability patterns"

and figure 1

page #238
page #239

Yardstick TR #6
(Traceability item

relationships)

Evidence
exists

Modeling
and textual
evidences

Section 4
"Traceability patterns"

and figure 1

page #238
page #239

Yardstick TR #7
(Traceability role

identification)

Evidence
does not

exist

Not
applicable

Not applicable Not
applicable

Yardstick TR #8
(Traceability

documentation)

Evidence
exists

Modeling
and textual
evidences

Section 4
"Traceability patterns"

and figure 2

page #238
page #240

Yardstick TR #9
(Documentation

access)

Evidence
does not

exist

Not
applicable

Not applicable Not
applicable

202

Table 8.5 Traceability audit of case DTR

Case DTR (Ratanotayanon et al.)

 Evidence
Status

Evidence
Type

Evidence
Location

Page
number

Yardstick TR # 1
(Identification of
design intellectual

concepts)

Evidence
exists

Textual and
modeling
evidences

Section IV “Zelda”
and figure 3

page #28
page #29

Yardstick TR # 2
(Identification of

design
mathematical

models)

Evidence
does not

exist

Not
applicable

Not applicable Not
applicable

Yardstick TR #3
(Full operational

principles)

Evidence
exist

Textual
evidences

Section II “Supporting
program comprehension
with links to user stories”

page #27

Yardstick TR #4
(Partial

operational
principles)

Evidence
does not

exist

Not
applicable

Not applicable Not
applicable

Yardstick TR #5
(Traceability item

identification)

Evidence
exists

Modeling
and textual
evidences

Section III-B "Updating
link locations" and figure

2

page #27
page #28

Yardstick TR #6
(Traceability item

relationships)

Evidence
exists

Modeling
and textual
evidences

Section III-B "Link
Recording"

figure 1

page #27
page #28

Yardstick TR #7
(Traceability role

identification)

Evidence
does not

exist

Not
applicable

Not applicable Not
applicable

Yardstick TR #8
(Traceability

documentation)

Evidence
exists

Modeling
and textual
evidences

Section III-B "Link
Recording"

figure 1

page #27
page #28

Yardstick TR #9
(Documentation

access)

Evidence
partiality

exist

Modeling
and textual
evidences

Section IV “Zelda”
and figure 3

page #28
page #29

203

Table 8.6 Traceability audit of case ETR

Case ETR (Ghanam, Maurer)

 Evidence
Status

Evidence
Type

Evidence
Location

Page number

Yardstick TR # 1
(Identification of

design intellectual
concepts)

Evidence
exists

Textual
evidences

Section 2.1
"Organizing test

artifacts"

Page #42

Yardstick TR # 2
(Identification of

design mathematical
models)

Evidence
does not

exist

Not
applicable

Not applicable Not applicable

Yardstick TR #3
(Full operational

principles)

Evidence
does not

exist

Not
applicable

Not applicable Not applicable

Yardstick TR #4
(Partial operational

principles)

Evidence
exists

Textual
evidences

Section 2.2
"Introducing
variability"

Page #43

Yardstick TR #5
(Traceability item

identification)

Evidence
exists

Modeling
and textual
evidences

Section 2.2
"Introducing

variability" and
figure 1

Page #43

Yardstick TR #6
(Traceability item

relationships)

Evidence
does not

exist

Not
applicable

Not applicable Not applicable

Yardstick TR #7
(Traceability role

identification)

Evidence
does not

exist

Not
applicable

Not applicable Not applicable

Yardstick TR #8
(Traceability

documentation)

Evidence
does not

exist

Not
applicable

Not applicable Not applicable

Yardstick TR #9
(Documentation

access)

Evidence
does not

exist

Not
applicable

Not applicable Not applicable

204

8.3.3 Auditing for the five case studies based on yardstick TR #6 (Traceability item
relationships)

This yardstick investigates the existence of techniques developed for the identification of the

relationships and dependencies between the traceability items. In this section the process of

identifying the existence of evidences for the yardstick TR #6 is clarified. This process

focuses on providing links between the yardstick TR#6 to its supporting type and location of

evidences found in Case BTR, Case CTR, Case DTR and Case ETR . Yardstick TR #6 for Case

ATR has been analyzed in the previous section. Table 8.7 describes the auditing results of

traceability case studies for yardstick TR #6.

Case BTR supports Yardstick TR #6 with both modeling and textual evidences. Case BTR

developed a navigation technique to provide various accesses to traceability items. The

Navigation technique is based on annotation mechanisms to build access rules between

traceability items. The textual and modeling evidences are found in section 4.3 "prototype

architecture and implementation" and in figure 4 "prototype architecture".

Case CTR supports Yardstick TR #6 with both modeling and textual evidences. Case CTR

developed a clustering technique to identify the relationships and dependences between the

traceability items. This clustering technique is based on “location constraint”, “naming

constraint” and “content constraints”. The textual and modeling evidences are found in

section 4 "Traceability Patterns" and figure 1 "conceptual model of traceability patterns".

Case DTR supports Yardstick TR #6 with both modeling and textual evidences. Case DTR

created a tool to identify and store links by integrating together different parts of traceability

items. To facilitate in recording links, the tool provides an interface to communicate to a user

story management tool. The textual and modeling evidences are found in 3.1 "link recording"

and in figure 1 "model of links data".

Case ETR does not have evidence to support Yardstick TR #6.

205

Table 8.7 Audit based on yardstick TR #6

Audit for Yardstick TR #6 (Traceability item relationships)

 Case B
(Lee et al.)

Case C
(Ghazarian)

Case D
(Ratanotayanon et

al.)

Case E
(Ghanam,
Maurer)

Evidence
Status

Evidence
exists

Evidence exists Evidence exists Evidence does
not exist

Evidence
Type

Modeling and
textual

evidences

Modeling and
textual

evidences

Modeling and
textual evidences

Not
applicable

Evidence
Location

Section 4.3
and figure 4

Section 4 and
figure 1

Section 3.1
 figure 1

Not
applicable

Page
number

page #4
page #5

page #238
page #239

Page # 27
Page # 28

Not
applicable

The auditing criteria in table 8.8 consists first of engineering criteria that are decomposed

into design of the traceability method and coverage of the traceability method. Second, the

management criteria are decomposed into identification of the traceability method and

monitoring of the traceability method.

Table 8.8 shows a summary of the traceability auditing results for five the case studies based

on the auditing model proposed in chapter 6 to determine whether or not they can provide

evidence of the implementation of the audit yardsticks.

The following comments can be made based on the evidence gathered- See table 8.8:

• The traceability method in Case ATR implements a meta model for agile process

traceability based on the ISO-24744:2007 meta model, which was designed based on the

UML architecture and notation. Case B was also designed based on the UML architecture

and notation. Both cases ATR and Case BTR therefore provide evidence of intellectual

concept design rather than mathematical model design; similarly for Cases CTR, DTR, and

ETR.

• Case BTR shows partial evidence of operational principles, as the traceability approach

only covers the requirements phase; similarly for Case CTR, since it shows support for

206

traceability for the requirements, design, and coding phases. No evidence was found to

the traceability in the planning, testing, validation, and verification phases for both Case

BTR and Case CTR.

• For Case BTR, there is partial support for the documentation access audit yardstick, since

a mechanism was implemented in this case for accessing and retrieving the traceability

items produced during the requirements phase, but there is no evidence of right of access

mechanisms. The same is true for Case DTR.

• No evidence was found for traceability role identification in Case BTR, and the project

stakeholders have the same right to access, modify, and retrieve the traceability items.

The same is true for Case DTR.

• Little evidence was found of support for the audit model in Case ETR. The approach

presented in Case ETR was implemented to support traceability between the coding and

testing phases in XP.

• For Case ETR, no evidence was found for traceability item relationship identification or

traceability role identification. Nor was evidence found of traceability documentation,

such as traceability logs, the history of traceability items, and the relationships among

traceability items, and so on. No evidence was found supporting documentation access or

access rights either.

207

Table 8.8 Summary of evidences in the selected case studies

 Case ATR

(Espinoza,
Garbajosa)

Case BTR
(Lee et al.)

Case CTR
(Ghazarian)

Case DTR
(Ratanotayano

n et al.)

Case ETR
(Ghanam,
Maurer)

Engineering criteria
 Design of the traceability method

Yardstick TR # 1
(Identification of
design intellectual

concepts)

Evidence
exists

Evidence
exists

Evidence
exists

Evidence exists Evidence
exists

Yardstick TR # 2
(Identification of

design
mathematical

models)

Evidence does
not exist

Evidence
does not

exist

Evidence
does not

exist

Evidence does
not exist

Evidence
does not

exist

 Coverage of the traceability method
Yardstick TR #3
(Full operational

principles)

Evidence
exists

Evidence
does not

exist

Evidence
does not

exist

Evidence exists Evidence
does not

exist
Yardstick TR #4

(Partial operational
principles)

Evidence
exists

Evidence
exists

Evidence
exists

Evidence does
not exist

Evidence
exists

Management criteria

 Identification of the traceability method
Yardstick TR #5

(Traceability item
identification)

Evidence
exists

Evidence
exists

Evidence
exists

Evidence
exists

Evidence
exists

Yardstick TR #6
(Traceability item

relationships)

Evidence
exists

Evidence
exists

Evidence
exists

Evidence
exists

Evidence
does not

exist

Yardstick TR #7
(Traceability role

identification)

Evidence
exists

Evidence
does not

exist

Evidence
does not

exist

Evidence does
not exist

Evidence
does not

exist

 Monitoring of the traceability method
Yardstick TR #8

(Traceability
documentation)

Evidence
exists

Evidence
exists

Evidence
exists

Evidence
exists

Evidence
does not

exist
Yardstick TR #9
(Documentation

access)

Evidence
exists

Evidence
partially

exists

Evidence does
not exist

Evidence
partially exists

Evidence
does not

exist

208

8.4 Case studies: agile measurement audit

8.4.1 Context and scope

To study the applicability of the auditing model proposed in chapter 7, four case studies have

been selected to be compatible with the scope defined in chapter 7. See Table 8.9. The

selection of these case studies is based on the following steps and criteria:

 A search was conducted of IEEE Xplore and ScienceDirect-Elsevier for any paper

proposing a methodology, technique, or framework to enhance the measurements of an

agile software process.

 The objective is to select an agile measurement proposal that is mature enough to be

considered as a measurement program for the agile process, such that: the proposal will be

given a priority for selection if the following conditions are found.

− It covers the activities for measurement planning

− It covers activities for measurement design

− It covers activities for measurement management

 The following terms were used in browsing the content of IEEE Xplore, Science Direct-

Elsevier:

− Agile AND measurement program

− XP AND measurement program

− Agile AND measurement techniques OR method.

− XP AND measurement techniques OR method.

 A title and abstract analysis was performed to select the papers that discuss agile

measurement. Note that some authors discuss different agile processes such as XP and

Scum, but refer to them as agile process (i.e. they do not specify which agile process they

are improving, and selected XP as a candidate process without referring to it by name).

 It has been observed that authors discuss the principle of Scrum as a candidate process

for the purpose of agile measurement. A detailed analysis of the proposal reveals that the

authors mixed the principles of Scrum with authors’ agile software processes such as XP.

209

 All the papers that discuss agile measurement in general, without proposing a

methodology, technique, or framework for managing the measurement process, were

discarded.

 As some authors discuss the same proposed agile measurement approach in a number of

different research articles, only their most recently published article was selected.

 Any paper focus to measure the agility of the process has been discarded. On the other

hand there was no restriction on the focus or the goal of the agile measurement technique

(i.e. No restriction on which process attributes are intended to be measured or which

methodology has been used to achieve the proposed measurement goal).

For the four case studies in this section, the evidences were gathered using the information

system audit procedure described by the standards, guidelines and procedures for information

system auditing (ISACA,2010), as follows:

• Observation of measurement processes and the existence of the components of the

measurement method.

• Documentary audit evidence, such as results of the measurement method execution, and

records of the method evaluation.

• Representations of the measurement results, such as written analyses, and descriptions of

the measurement method flowcharts.

210

Table 8.9 Selected case studies for the audit of agile (XP) measurement

 Authors Case title Case objective Case
Date

Case A

MR

Ktata,

Lévesque

Designing
and

implementin
g a

measurement
program for

Scrum
teams: what

do agile
developers
really need
and want?

To propose a measurement program for
agile software process in software

organization. The goal of this project is to
allow teams and individuals to improve

their development process and to provide
better product quality and control over the

project. The Goal Question Metric
approach (GQM) has been used to

identify a set of indicators. The indicators
have been prioritized based on the

improvement area that all stakeholders
agree upon.

May
2010

Case B

MR

Mahnic,
Zabkar

Introducing

CMMI
Measurement

and
Practices into
Scrum-based

Software
Development

Process

To develop a measurement program for
agile software process based on CMMI
measurement and analysis key process
area (KPA). The agile software process

has been modeled using the entity-
relationship notation. After the authors

have established the measurement
objective a collection of "base" and

“derived" measure has been selected. A
procedure for data collection, analysis and

storage is also identified.

June,
2007

Case C

MR

Gustafsson

Model of
Agile

Software
Measurement

: A Case
Study

To propose a measurement model for
performance measurement and process

optimization measurement in agile
software process environment. The model
is also evaluated on a web game software

organization in Sweden. The author
identifies a set of process indicators and

then proposes a set of metrics to be
applied in the agile software process

environment.

June,
2011

Case D

MR

Fehlmann

Six Sigma
for Agile
Teams

To propose a measurement technique for
agile software processes based on the

methods used in Six Sigma and COSMIC
for Software Functional Size

Measurement (FSM). The author
mentions that the proposed approach has
been inspired by the work presented in

IWSM / MetriKon / Mensura conference
in Stuttgart 2010.

March,
2011

211

The main characteristics of the four selected proposals for measurement agile processes are
described next:

• Case AMR (Ktata, Lévesque): Case AMR was published in the proceedings of the third C*

Conference on Computer Science and Software Engineering. Case AMR has been

developed at University of Quebec under the supervision of Prof. Ghislain Lévesque. The

author also has an industrial experience in agile organizations such as Pyxis Technologies

and Agile Tour Montreal. Case AMR has been validated based on an industrial experiment

and cited 3 times since 2010.

• Case BMR (Mahnic, Zabkar): Case BMR has been published in the International journal of

Mathematics and Computers in Simulation. Case BMR has been developed as a research

collaboration between Prof. Viljan Mahnic and Prof. Natasa Zabkar at University of

Ljubljana, Ljubljana, Slovenia. Both authors have several publications in the area of agile

software process improvement.

• Case CMR (Gustafsson): Case CMR is a master thesis at Chalmers University of

Technology, Sweden and defended in June 2011 under the supervision of prof. Robert

Feldt. Case CMR is part of a project called “Agile and Lean Software Practices"

established by Prof. Robert Feldt which aims to develop techniques to improve the agile

processes in the context of software engineering practices. The group consists of several

researchers at the PhD and master levels. Case CMR has been also evaluated based on

industrial experiment.

• Case D MR (Fehlmann): Case DMR has been published in the International Conference on

the Modern art of Software. Case DMR is authored by Dr. Thomas Fehlmann who is the

founder of euro project office. The mission of this office is to provide the software

organizations with several assistance including software measurement and agile training.

Since 2005 several publications has been authored by Dr. Thomas Fehlmann in the area

of agile software processes improvement.

212

8.4.2 Preliminary considerations

• During the search process for the case studies applicable to this research project the

priority was given to research proposals that discuss a design of process for measurement

program that is aligned with the principles of agile software process. A Measurement

program is defined by ISO 15939 as the process for establishing, planning, performing

and evaluating measurement within an overall project, enterprise or organizational

measurement structure. The second priority was given to research proposals that discuss

the design of a measurement method, measurement function and/or measurement

procedure.

• Generally, the papers that have proposed solution for agile measurement have been

published between the years of 2006 to 2011. This reflects the awareness since 2006 to

integrate solutions into agile software practices and to investigate opportunities for

improvement, manage workloads, reduce overtime, and improve communications in agile

environment.

• In his book Hazzan and Dubinsky (2008) have claimed that techniques that have been

proposed for measurements in traditional software process are also valid in agile software

development “after adjustment and refinement”. The search process for this case study is

also confirming this claim. Most of the measurement solutions found for agile software

process are based on measurement models that have been proposed for traditional

software, such as COSMIC (ISO 19761), ISO 15939 and CMMI.

• It should be noted that the objective of this set of four case studies it is to check for the

existence of auditing evidences that support the auditing criteria and auditing yardsticks

that have been developed in chapter 7. Evaluation of the performance and/or maturity of

the proposed solution are considered out scope of this section. As well, any information

that is not covered by the auditing criteria and auditing yardsticks will not be considered.

"Auditors are not expected to address all the information that may exist" (ISA, 500).

213

8.4.3 Measurement audit of Case BMR (Mahnic, Zabkar)

This section presents the process for identifying the existence of each evidence for the Case

BMR. This process focuses on providing links between the measurement yardsticks to its

supporting type and location of evidences found in Case BMR. Table 8.10 describes the

auditing results of Case BMR (Mahnic, Zabkar).

• Yardstick MR #1 (Identification of the measurement context): This yardstick focus is to

investigate the existence of evidences that identify the context, goal and/or objective of the

measurement process. Case BMR supports this yardstick with textual evidence. More

precisely this evidence was found in section III-A "establish measurement objectives" of

Case BMR. More clarification and details of this evidence is found in table I “stakeholders

goals” in Case BMR.

• Yardstick MR #2 (Role assignment): This yardstick focuses on identifying the

measurement team roles and the responsibilities of each team member. Case BMR supports

this yardstick with modeling evidence. More precisely, this evidence was found in section

V “Database tables” in Case BMR. More clarification and details of this evidence was

found in table IV “Project tables”. These rational tables are designed to clarify the roles

and relationships among projects, teams and employees, and include recording of

administrative days and absence type. For each administrative day the number of hours the

employee was not at work is recorded.

• Yardstick MR #3 (Resources and budget constraints): This yardstick focuses on

identifying the major project milestones, the schedule assumptions, and task dependencies

and constraint. Case BMR supports this yardstick with modeling evidence. More precisely,

this evidence is found in section V “Database tables” in Case BMR. More clarification and

details of this evidence was found in table V “Release tables” and table VI “Measurement

tables”. These rational tables are designed to identify several release attributes such as

release ID#, release description, sprint description, sprint begin date, sprint end date,

sprint length, sprint estimated date, team ID, project ID and so on. Table VI

“Measurement tables” also consists of several measurement attributes such as measure ID,

214

measure name, measure description, release ID, measure ID, date, measurement result,

task ID, measure ID#, date#, measurement result, and so on.

• Yardstick MR #4 (Identification of measures): This auditing yardstick investigates the

classification of measures that have been specified for the agile measurement design. Case

BMR supports this yardstick with textual evidences. More precisely this evidence was

found in section III-A "Establish measurement objectives" of Case BMR. More

clarification and details of this evidence was found in table I “Base measures” in Case

BMR.

• Yardstick MR #5 (Measurement data and models): This yardstick investigates the

existence of mechanisms for the data collection and modeling used during the

measurement development. Case BMR supports this yardstick with textual and modeling

evidences. More precisely the textual evidence was found in section III-D “Specify

analysis procedures “of Case BMR. The objective of section III-D “Specify analysis

procedures “ is to classify the measurement data into derived measures or “indicators”

help for analyzing software process performance in comparison to target values set by the

software organization. The modeling evidence was found in section III-E “measuring

earned value “of Case BMR. Several mathematical equations have been proposed to

compute the schedule performance and cost performance.

• Yardstick MR #6 (Measurement results): The focus of this auditing yardstick is the

investigation of the existence of appropriate data analysis and presentation techniques for

better understanding of the measurement technique and results. Case BMR supports this

yardstick with modeling evidence. This modeling evidence is found in figure 2

“Measurement repository design” of section IV “Repository design”. On the other hand no

evidence has been found to indicate the presentation method for the measurement results.

• Yardstick MR #7 (Traceability of measurement data): This yardstick focuses on the

investigation of the existence of techniques for tracing the measurement data throughout

the measurement process. Case BMR supports this yardstick with modeling evidence to

clarify the traceability of measurement data. This modeling evidence is found in table V

“Release tables” and table VI “Measurement tables”. These rational tables have been

215

designed to clarify the relations between the measurement data obtained for each specific

project release.

• Yardstick MR #8 (Prioritization of measurement data): This yardstick focus is the

investigation of the existence of techniques for prioritizing the measurement data

throughout the measurement process. No evidence has been found in Case BMR to support

this yardstick.

• Yardstick MR #9 (Identification of measurement design): This yardstick focuses on the

investigation of the classification of measurement design. Textual evidences are found in

Case BMR to support this yardstick. The design of Case BMR is based on known software

methodology for designing techniques for measurement processes (i.e. CMMI). These

evidences are found in section III-A “Establish measurement objectives”, section III-B

“Specify measures” and section III-C “Specify data collection and storage procedures”.

• Yardstick MR #10 (Evaluation of measurement process and results): This yardstick is

to investigate the evaluation methodologies (i.e. criteria), used to evaluate for the

measurement process and results. No evidence is found in Case BMR to support this

yardstick.

• Yardstick MR #11 (Result communication): This auditing yardstick investigates the

existence of an appropriate scheduling and presentation procedures to discuss the

measurement result with the project stakeholders. Modeling evidences are found in Case

BMR to support this yardstick. More clarification and details of this evidence are found in

table V “Release tables” and table VI “Measurement tables”. These tables can help the

project stakeholders to be informed about the measurement results periodically and to

assess them to understand the measurement results.

216

Table 8.10 Measurement audit of case BMR

Case BMR (Mahnic, Zabkar)

 Evidence
Status

Evidence
Type

Evidence
Location

Page
number

Yardstick MR # 1
(Identification of the

measurement context)

Evidence
exists

Textual
evidence

Section III-A
Table I

Page # 67

Yardstick MR # 2 (Role
assignment)

Evidence
exists

Modeling
evidence

Section V
Table IV

Page # 71

Yardstick MR #3
(Resources and budget

constraints)

Evidence
exists

Modeling
evidence

Section V
Table V and

Table VI

Page # 71

Yardstick MR #4
(Identification of measures)

Evidence
exists

Textual
evidence

Section III-A
Table II
Table II

Page # 67

Yardstick MR #5
(Measurement data and

models)

Evidence
exists

Modeling and
Textual

evidences

Section III-D
and Section

III-E

Page # 68
69

Yardstick MR #6
(Measurement results)

Evidence
partially exists

Modeling
evidence

Section IV
Figure 2

Page # 70

Yardstick MR #7
(Traceability of

measurement data)

Evidence
exists

Modeling
evidence

Section V
Table V and

Table VI

Page # 71

Yardstick MR #8
(Prioritization of

measurement data)

Evidence does
not

exists

Not applicable Not applicable Not
applicable

Yardstick MR #9
(Identification of

measurement design)

Evidence
exists

Textual
evidence

Section III-A,
section III-B
and Section

III- C

Page # 67
68

Yardstick MR #10
(Evaluation of measurement

process and results)

Evidence does
not exists

Not applicable Not applicable Not
applicable

Yardstick MR #11
(Result communication)

Evidence exist Modeling
evidence

Table and
table VI

Page # 71

Case AMR fully supports five measurement auditing yardsticks out of eleven. The fully

supported measurement auditing yardsticks are yardstick are yardstick MR#1 (Identification of

the measurement context), yardstick MR#4 (Identification of measures), yardstick MR#5

(Measurement data and models), yardstick MR #8 (Prioritization of measurement data), and

217

yardstick MR#9 (Identification of measurement design). Case AMR partially supports yardstick

MR#2 (Role assignment). No auditing evidence was found to support yardstick MR #3

(Resources and budget constraints), yardstick MR #6 (Measurement results), yardstick MR#7

(Traceability of measurement data), yardstick MR #10 (Evaluation of measurement process

and results), and yardstick MR #11 (Result communication). Table 8.11 shows the auditing

evidences type and location found in Case AMR.

Case CMR fully supports six measurement auditing yardsticks out of eleven. The fully

supported measurement auditing yardsticks are yardstick MR#1 (Identification of the

measurement context), yardstick MR#4 (Identification of measures), yardstick MR#5

(Measurement data and models), yardstick MR #6 (Measurement results), yardstick MR#9

(Identification of measurement design), and yardstick MR #10 (Evaluation of measurement

process and results). Case CMR partially supports yardstick MR#2 (Role assignment). No

auditing evidence was found to support yardstick MR #3 (Resources and budget constraints),

yardstick MR#7 (Traceability of measurement data), yardstick MR #8 (Prioritization of

measurement data) and yardstick MR #11 (Result communication). Table 8.12 shows the

auditing evidences type and location found in Case CMR.

Case DMR fully supports six measurement auditing yardsticks out of eleven. The fully

supported measurement auditing yardsticks are yardstick MR #3 (Resources and budget

constraints), yardstick MR#4 (Identification of measures), yardstick MR#5 (Measurement data

and models), yardstick MR #6 (Measurement results), yardstick MR #8 (Prioritization of

measurement data) and yardstick MR#9 (Identification of measurement design). No auditing

evidence was found to support MR#1 (Identification of the measurement context), yardstick

MR#2 (Role assignment), MR#7 (Traceability of measurement data), yardstick MR #10

(Evaluation of measurement process and results), and yardstick MR #11 (Result

communication). Table 8.13 shows the auditing evidences type and location found in Case

DMR.

218

Table 8.11 Measurement audit of case AMR

 Case AMR (Ktata, Lévesque)

 Evidence
Status

Evidence
Type

Evidence
Location

Page
number

Yardstick MR # 1
(Identification of the

measurement context)

Evidence
exists

Textual
evidence

Section 3.4 "Measurement
program approach",
4.2 "Looking for the
managing indicators

needed"

page #103
page #104

Yardstick MR # 2
(Role assignment)

Evidence
partially

exists

Textual
evidence

Section 2.1” Introduction to
agility and Scrum”

Page # 102

Yardstick MR #3
(Resources and budget

constraints)

Evidence
does not

exist

Not
applicable

Not applicable Not
applicable

Yardstick MR #4
(Identification of

measures)

Evidence
exists

Textual
evidence

And
modeling

Section 3.4 "Measurement
program approach", 4.2

"Looking for the managing
indicators
needed"

page #103
page #104

Yardstick MR #5
(Measurement data and

models)

Evidence
exists

Modeling
and Textual
evidences

Section 4.2 "Looking for the
managing indicators

needed", Table 1,2,3,4,5, and
6

page #104
page #105

Yardstick MR #6
(Measurement results)

Evidence
does not

exist

Not
applicable

Not applicable” Not
applicable

Yardstick MR #7
(Traceability of

measurement data)

Evidence
does not

exists

Not
applicable

Not applicable Not
applicable

Yardstick MR #8
(Prioritization of

measurement data)

Evidence
Exists

Modeling
and Textual
evidences

Section 4.2 "Looking for the
managing indicators

needed", Table 1,2,3,4,5, and
6

page #104
page #105

Yardstick MR #9
(Identification of

measurement design)

Evidence
exists

Textual
evidence

Section 3.3 "GQM
considerations"

Page # 103

Yardstick MR #10
(Evaluation of

measurement process
and results)

Evidence
does not

exists

Not
applicable

Not applicable Not
applicable

Yardstick MR #11
(Result

communication)

Evidence
does not

exist

Not
applicable

Not applicable Not
applicable

219

Table 8.12 Measurement audit of Case CMR

Case CMR (Gustafsson)

 Evidence
Status

Evidence
Type

Evidence
Location

Page
number

Yardstick MR # 1
(Identification of the

measurement context)

Evidence
exists

Textual
evidence

and graphical
evidence

Section III
"Research

methodology",
figure 1 and 2

page #11

Yardstick MR # 2 (Role
assignment)

Evidence
partially

exists

Textual
evidence

phase 1 and 2 of
section IV "Results

and analysis"

Page # 12
Page # 13

Yardstick MR #3
(Resources and budget

constraints)

Evidence
does not

exist

Not applicable Not applicable Not
applicable

Yardstick MR #4
(Identification of measures)

Evidence
exists

Textual
evidence

phase 5 of section
IV "Results and

analysis"

page #17

Yardstick MR #5
(Measurement data and

models)

Evidence
exists

Textual
evidences

Section 5 "Data
collection and

analysis"

page #19

Yardstick MR #6
(Measurement results)

Evidence
exists

graphical
evidence

Figure 7 and
Figure 8

page #19

Yardstick MR #7
(Traceability of

measurement data)

Evidence
does not

exist

Not applicable Not applicable Not
applicable

Yardstick MR #8
(Prioritization of

measurement data)

Evidence
does not

exist

Not applicable Not applicable Not
applicable

Yardstick MR #9
(Identification of

measurement design)

Evidence
exists

Textual
evidence

Section III
"research

methodology"

Page # 11

Yardstick MR #10
(Evaluation of measurement

process and results)

Evidence
Exists

Textual
evidence

Phase 3 of section
III "research

methodology"

Page # 11

Yardstick MR #11
(Result communication)

Evidence
does not

exist

Not applicable Not applicable Not
applicable

220

Table 8.13 Measurement audit of Case DMR

Case DMR (Fehlmann)

 Evidence
Status

Evidence
Type

Evidence
Location

Page
number

Yardstick MR # 1
(Identification of the

measurement context)

Evidence
does not

exist

Not applicable Not applicable Not
applicable

Yardstick MR # 2 (Role
assignment)

Evidence
does not

exist

Not applicable Not applicable Not
applicable

Yardstick MR #3
(Resources and budget

constraints)

Evidence
exists

Not applicable Not applicable Not
applicable

Yardstick MR #4
(Identification of

measures)

Evidence
exists

Textual
evidence

Section 3.3
"estimate effort

needed for
Implementing user

stories"

page #3

Yardstick MR #5
(Measurement data and

models)

Evidence
exists

Textual
evidences and

modeling
evidences

Section 5 "blending
six sigma with

agile" and figure 1

page #5
page#6

Yardstick MR #6
(Measurement results)

Evidence
exists

Textual
evidences and

modeling
evidences

Section 5 "detailed
story items" and

figure 2

page# 8 and
page #9

Yardstick MR #7
(Traceability of

measurement data)

Evidence
does not exist

Not applicable Not applicable Not
applicable

Yardstick MR #8
(Prioritization of

measurement data)

Evidence
exists

Textual
evidences

Section 5.1 “using
QFD for user story

prioritisation”

page #7

Yardstick MR #9
(Identification of

measurement design)

Evidence
exists

Textual
evidences

Section 4
“measuring non-

functional
requirements”

Page # 3

Yardstick MR #10
(Evaluation of

measurement process
and results)

Evidence
does not exist

Not applicable Not applicable Not
applicable

Yardstick MR #11
(Result communication)

Evidence
exists

Textual and
modeling
evidences

Section 5.3 "using
QFD as a

communication
tool" and figure 2.

Page #7
Page # 8

221

8.4.4 Auditing of measurement case studies for yardstick MR #5 (Measurement data and
models)

This yardstick investigates the existence of mechanisms for the data collection used during

the measurement development. In this section the process of identifying the existence of

evidences for the yardstick MR #5 are clarified. The process focuses on providing links

between the yardstick MR #5 to its supporting type and location of evidences found in Case

AMR, Case CMR and Case DMR. Yardstick MR #5 for Case BMR has been analysed in the

previous section. Table 8.14 describe the analysis results of yardstick MR #5.

Case AMR supports Yardstick MR #5 with both modeling and textual evidences. Case AMR

developed “semi-structure interviews” based on GQM template for gathering and modeling

the measurement data. The evidences are found in section 3.4 “measurement program

approach” and section 4.2 “looking for the managing indicators needed”. The modeling

evidences are found by using the GQM template for modeling the measurement data. This is

also described in section 3.4 “measurement program approach” and section 4.2 “looking for

the managing indicators needed”.

Case CMR supports yardstick MR #5 with textual and graphical evidences. In Case CMR the

data were collected by letting the developers fill out the required fields in an Excel sheet

located on a shared server. The textual and graphical evidences are found in section 5 "Data

collection and analysis", figure 7 "Sampling the root cause" and figure 8 "preventive actions

that would have found the bug".

Case DMR for textual and modeling evidences for yardstick MR #5. In Case DMR measurement

data has been specified using the approach of COSMIC. Sequence diagrams have been

created to provide common understanding among developers and sponsors. The textual and

modeling evidences have been found in section 4 "measuring non-functional requirements"

and Figure1 "Buglione-Trudel matrix".

222

Table 8.14 Audit based on Yardstick MR #5

Yardstick MR #5 (Measurement data and models)

 Case AMR
(Ktata, Lévesque)

Case CMR
(Gustafsson)

Case DMR
(Fehlmann)

Evidence
Status

Evidence exists Evidence exists Evidence exists

Evidence
Type

modeling and textual
evidences

textual and graphical
evidences

modeling and textual
evidences

Evidence
Location

Section 3.4
Section 4.2

Section 5
Figure 7
Figure 8

Section 4
Figure1

Page
number

Page # 103
Page #105

page # 19 Page #3
Page#6

8.4.3 Auditing summary of agile measurement case studies

Case AMR (Ktata, Lévesque): Case AMR supports the auditing criteria for measurement

plans by identifying the context of the measurement program using the Goal Question

Measurement approach (GQM). The GQM has been used to state explicit measurement goals

and to analyze the measurement data. Role Assignment is not fully supported since there is

no evidence on how the measurement team has been managed (i.e. Measurement user,

Measurement analyst and/or Measurement librarian) but it has been noted that the product

owner has assigned a responsibly for integrating the measurement activities with regular

project activities. No evidence has been identified on how the resources and budget for the

measurement team has been managed.

The auditing criteria for measurement development have been supported mainly by

identifying a set of measures which has been derived from the GQM. The measures are next

classified into team dynamic indicators, process and project related indicators, Customer

related improvement indicators and internal quality indicators. The measurement data have

been collected through face to face interviews with the project stakeholders. The

223

measurement data has been presented using decision tables. There is no evidence of

presenting or manipulation for the measurement result but a cause-effect diagram has been

proposed to trigger conversations that would result in a team sharing their concerns and

issues and coming to a shared view. No evidence has been found on traceability of the

measurement data.

The normal technology of measurement development is a normal design since the

measurement method is mainly based on GQM. No evidence has been found on how the

measurement results were evaluated, including the presentation procedures to the project

stakeholders- See table 8.15.

Case BMR (Mahnic, Zabkar): Case BMR supports the auditing criteria for measurement

plans by identifying the goal and context of the measurement program using the guidelines of

the CMMI model. The measurement program context is set into: timely information on

project performance, quality improvement, job satisfaction, and efficient impediments

resolution and customer satisfaction. The role assignment of the team was managed using

relational tables. These tables describe the relationships among projects, teams and

employees. Each team has an ID and each employee as an ID and an employee description.

The dependencies between the measurement tasks were defined using release tables. Each

release table identifies the release, task, and task status and task type. This practice is a

partial support for auditing criteria for measurement plans.

The auditing criteria for measurement development have been supported mainly by

identifying a set of measures based on the guidelines of CMMI model. Examples of the

identified measures are: the number of errors reported by the user in a fixed period after

release, the number of tasks completed during the iterations, the number of errors found

during the iterations review meeting.

The measurement data was obtained during the planning meeting such that the following

basic information was identified: the iteration length, the number of the team members,

224

percentage of each team member’s engagement in the project, and costs of each team

member’s engineering hour.

Evidence has been found to support the traceability of measurement data by the existence of

the following measurement tables: task measurement results, release measurement results

and sprint measurement results. And each table is associated with Measure ID#, Date# and

Measurement Result. No evidence has been found on how the measurement data was

prioritized.

The normal technology of measurement development is a normal design since the

measurement method is mainly based on CMMI model. No evidence has been found on how

the measurement result was evaluated - See table 8.15.

Case CMR (Gustafsson): Case CMR supports the auditing criteria for measurement plans by

identifying the goal and context of the measurement program using a set of identified key

process indicator areas (KPIA). The context of Case CMR is to improve the following

organizational practices: product quality, product delivery, development cost, service level

and product planning. The measurement user for Case CMR was Bwin Games: a web game

software company based in Sweden. No evidence has been found on how the measurement

responsibilities were assigned to the measurement team. No evidence has been found on how

the resources and budget of the measurement cost was managed.

The Auditing criteria for measurement development have been supported mainly by

identifying a set of measures based on the interviews with the top management and based on

the identified measurement context. Examples of the identified measures are: the financial

measures, production measures, lean measure. No evidence has been found of traceability of

the measurement data and no evidence has been found for management data prioritization.

No evidence has been found on how the measurement result was evaluated or the

presentation procedures to the project stakeholders. Evidence of evaluation of measurement

225

results and communication has been found as a part of the design of the measurement model

- See table 8.15.

Case DMR (Fehlmann): Case DMR presents measurement methods for “making agile

development processes lean and measurable”. The objective of Case DMR was not to propose

a measurement program for agile software process but to focus on a measurement

improvement method for the agile software process. The objectives of Case DMR make it less

convenient to support for auditing criteria for measurement plans. The auditing criteria for

measurement development have been supported mainly by identifying the data movements

based on the guidelines of COSMIC model. The goal of the identified data movements is to

estimate effort needed for implementing user stories. The measurement data was modeled

using data movement diagrams and prioritized using QFD Quality Function Deployment

(QFD). The measurement result was presented using "Buglione-Trudel Matrix". No evidence

has been found for traceability of measurement data.

The normal technology of measurement development is a normal design since the

measurement method is mainly based COSMIC and Six Sigma. No evidence has been found

for evaluation of the measurement process and result- See table 8.15.

Table 8.15 consist of three main auditing criteria which are auditing criteria for measurement

plan, auditing criteria for measurement development, and auditing criteria for measurement

management. Table 8.15 illustrates the auditing results for the case studies based on proposed

auditing model in chapter 7.

226

Table 8.15 Existence of evidence in the selected case studies

 Case AMR
(Ktata,

Lévesque)

Case BMR
(Mahnic,
Zabkar)

Case CMR
(Gustafsson)

Case DMR
(Fehlmann)

 Auditing criteria for measurement plan

Yardstick MR # 1
(Identification of the

measurement context)

Evidence exists Evidence exists Evidence exists Evidence does not
exist

Yardstick MR # 2
(Role assignment)

Evidence partially
exists

Evidence exists Evidence partially
exists

Evidence does not
exist

Yardstick MR #3
(Resources and budget

constraints)

Evidence does not
exist

Evidence exists Evidence does not
exist

Evidence does not
exist

Auditing criteria for measurement development

 Operational principles of measurement development

Yardstick MR #4
(Identification of

measures)

Evidence exists Evidence
exists

Evidence exists Evidence exists

Yardstick MR #5
(Measurement data

and models)

Evidence exists Evidence
exists

Evidence exists Evidence exists

Yardstick MR #6
(Measuremen

t results)

Evidence does not
exist

Evidence
partially
Exists

Evidence exists Evidence exists

 Normal technology of measurement development

Yardstick MR #7
(Traceability of
measurement data)

Evidence does not
exist

Evidence
exists

Evidence does not
exist

Evidence exists

Yardstick MR #8
(Prioritization of

measurement data)

Evidence exists Evidence does
not

exist

Evidence does not
exist

Evidence exists

 Normal configuration of measurement development

Yardstick MR #9
(Identification of

measurement design)

Evidence exists Evidence
exists

Evidence exists Evidence exists

Auditing criteria for measurement management

Yardstick MR #10
(Evaluation of
measurement process
and results)

Evidence does not
exist

Evidence does
not exist

Evidence exists Evidence does
not exist

Yardstick MR #11
(Result
communication)

Evidence does not
exist

Evidence
exists

Evidence does not
exist

Evidence exists

227

8.5 Summary

Five different case studies have been audited based on the proposed model to investigate

whether or not they conform to the ISO 9001 traceability requirements. The evidence

gathered shows at least partial support for the requirements in each case study; however no

case study has been demonstrated as supporting fully the auditing yardsticks.

Four different case studies have been audited based on the proposed model to investigate

whether or not they conform to the ISO 9001 measurement requirements. The evidence

gathered shows at least partial support for the requirements in each case study; however no

case study has been demonstrated as supporting fully the auditing yardsticks.

CONCLUSION

The goal of this research project was to improve the agile-XP process in supporting the

auditing requirements of ISO 9001, as well as to help agile software organizations in their

effort to become ISO 9001 certified.

To achieve this goal, the following research objectives were specified:

• Identify gaps between agile-XP and ISO 9001, by highlighting the main strengths and

weaknesses of agile-XP in handling the ISO 9001 requirements.

• Propose several sub processes to enhance the early planning activities of agile-XP

according to ISO 9001 requirements.

• Design an auditing model that covers the measurement and traceability requirements of

ISO 9001, and is capable of providing IS auditors with auditing evidence that the

software projects developed using an agile-XP process have fulfilled the requirements of

ISO 9001.

• Verify the applicability of the auditing model based on agile traceability and the agile

measurement approaches.

The research objectives were achieved using several engineering models and frameworks:

ISO 9001:2008, ISO 90003:2003, Vincenti's engineering design Vincenti (1990), SWEBOK

guide Abran, Moore et al. (2004), ISO 12207:2008, CMMI for development, version 1.2,

standards, guidelines and procedures for information system auditing, ISACA (2010), and the

evaluation theory perspective of the Architecture Trade-off Analysis Method – ATAM López

(2000). Defining the various concepts of the evaluation theory and Vincenti’s engineering

principles while developing the proposed auditing model helped us produce a rigorous and

comprehensive research methodology.

ISO 12207 and CMMI, which integrate software engineering and systems engineering into

product engineering best practices, were valuable tools for interpreting the ISO 9001

requirements from an engineering and software engineering perspective, and allowed us to

230

focus on proposing an auditing model for agile software processes (e.g. agile-XP) that is

aligned with software engineering best practices.

Research Contributions

The research contributions of this study are classified into seven categories:

1. Literature of the agile software process: Analysis of several studies and surveys related

to the topic of the agile software process and its implementation in the context of software

organizations. This research also analyzed the characteristics of many agile processes and

compared them based on key requirements for a software development project. This

comparison can help project managers and software engineers select the agile process that

best suits the requirements of their software projects.

2. ISO 9001 and related auditing principles: Analysis of several studies and surveys that

report on the implementation of ISO 9001 in software organizations. This work also

outlined the potential advantages of ISO 9001 certification for software organizations. The

auditing principles for ISO 9001 certification were clarified.

3. Analysis of agile-XP from the ISO 9001 and ISO 90003 perspectives: This involves

extracting the requirements related to the ISO 9001 product realization process and

identifying the strengths and weaknesses of agile-XP in handling those requirements. The

extraction of ISO 9001 requirements and ISO 90003 guidelines was based on ISO 12207

terminologies.

4. Extension to agile-XP user stories: Proposed extensions to the user story, based on four

sub processes related to the CMMI-DEV model, are the following: 1) identification of the

source of the user story; 2) categorization of the non functional requirements; 3)

identification of the user story relationships; and 4) prioritization of the user stories. These

sub processes are aligned with the agile-XP release planning phase, and enhance the

ability of user stories to accumulate the information that is mandatory for achieving ISO

9001 certification. However, the usefulness of the proposed sub processes has not been

validated based on industial or controlled experiment.

231

5. An audit model for ISO 9001 traceability requirements: Development of an auditing

model for ISO 9001 traceability requirements that is applicable in agile software process

environments (e.g. agile-XP). The design of the auditing model is based on evaluation

theory, and includes the use of several auditing “yardsticks” derived from the principles of

engineering design, the SWEBOK Guide, and the CMMI-DEV guidelines for requirement

management and traceability. The objective of this model is help software organizations in

their effort to achieve ISO 9001 certification and help software auditors extract auditing

evidence that demonstrates the ability of a software organization to implement the ISO

9001 traceability requirements.

6. An audit model for ISO 9001 measurement requirements: Development of an auditing

model for ISO 9001 measurement requirements that is applicable in agile software process

environments. Several engineering models have been analyzed to develop auditing criteria

that support the ISO 9001 measurement requirements, such as Vincenti’s engineering

design, evaluation theory, CMMI-DEV, and the SWEBOK. The model consists of three

major categories of auditing criteria: measurement plan criteria, measurement

development criteria and measurement management criteria. Each auditing criterion

consists of several auditing yardsticks which focus on the evidence that can be extracted to

demonstrate process conformity to ISO 9001 measurement requirements.

7. Audit of case studies: Demonstration for the applicability of the proposed auditing

models based on five case studies from the literature related to agile software traceability

and four case studies from the literature related to agile software measurement. This

includes the development of criteria to search and select papers proposing a methodology,

technique, or framework to enhance the agile traceability and agile measurement process.

For all the cases studied in this research, the auditing evidence was gathered using the

information system audit procedure described by the standards, guidelines, and procedures

for information system auditing ISACA, (2010).

A number of outcomes of this thesis have been published/submitted in the following journals

or conferences and workshops:

232

 Malik Qasaimeh, and Alain Abran, "Extending Extreme Programming User Stories to

Meet ISO 9001 Formality Requirements,” Journal of Software Engineering and

Applications, vol. 4, no.11, pp. 626-638, 2011.

 Malik Qasaimeh, Alain Abran “An Audit Model for ISO 9001 Traceability Requirements

in Agile (XP) Environments," Submitted to the Journal of Software, (JSW, ISSN 1796-

217) (Submitted-2012).

 Malik Qasaimeh, Alain Abran, "Investigation of the Capability of XP to Support The

Requirements of ISO 9001 Software Process Certification," 8th ACIS International

Conference on Software Engineering Research, Management and Applications, pp. 239-

247, Montreal, 26-29 May, 2010.

 Malik Qasaimeh, Alain Abran, "Agile process Support for Certification Requirement: The

case of XP and ISO 9001," (invited talk) at the International Summer Research

Symposium on Software Engineering Measurement, Montreal, Canada, August 2010.

 Malik Qasaimeh, Hossein Mehrfard, Abdelwahab Hamou-Lhadj, “Comparing Agile

Software Processes Based on the Software Development Project Requirements,” IEEE

International Conference on Innovation in Software Engineering, Vienna, 10-12

December, 2008.

Future work

The research presented in this thesis can lead to further work to improve our understanding

of the ISO certification process and our experience of the process in the context of agile

software organizations. In this thesis, several engineering models and frameworks have been

investigated to enhance the early practices of agile-XP to accommodate important

information for ISO 9001 auditors. For instance, auditing models for ISO 9001 traceability

and measurement have been developed to help ISO 9001 auditors find auditing evidence in

the context of agile software processes.

Accordingly, future work can be pursued based on the results and the methodologies used in

this thesis:

233

• Engineering perspective of agile software processes: Agile software processes are

relatively new software process life cycle models in the domain of software engineering.

The agile software process was introduced in February 2001, after a group of software

developers in Snowbird (Utah) met to discuss lightweight development methods for

software construction. The result of this meeting was the publication of the “Manifesto

for Agile Software Development” to define the approach, now known as the agile

software process. The literature provides evidence of the success of agile software

processes (e.g. agile-XP) in the development of small and medium-sized software

projects, but little is known about how the activities of the agile software process are

aligned with engineering principles. Possible topics for future research work include:

 Identification of the engineering principles for software process development in the

context of the SWEBOK Guide Abran, Moore et al. (2004).

 Identification of the engineering principles for product development in the context of

Vincenti’s engineering design Vincenti (1990).

 Development of engineering criteria to evaluate the software process life cycle within the

software engineering domain.

 Identification of the strengths and/or weaknesses of agile software process to support the

engineering criteria.

 Revisions with additional experts could be conducted to further strengthen the

development of the engineering criteria and to sustain the identification of the strength

and/or weaknesses of agile software processes.

• Domain extension: The auditing models developed in this research focus on providing

auditing criteria for ISO 9001, clause 7, "Product realization," and clause 8,

"Measurement, analysis and improvement." Clauses 7 and 8 have been found to have a

direct impact on software process development. However, this research has not directly

considered other ISO 9001 clauses that impact the organization’s business processes, but

rather focuses on the certification of the organization’s processes for developing software

system in the agile environment. Possible topics for future research work include:

234

 Analysis and extraction of ISO 9001 requirements that impact the organization’s business

process.

 Extending the auditing models using evaluation theory and other software engineering

models, such as CMMI, to cover the business processes of agile software organizations.

This extension could allow ISO 9001 auditors to extract auditing evidence to assess the

conformity of business processes in agile software organizations.

 Alignment with ISO 29110-3: ISO 29110-3:2009 "Software Engineering – Lifecycle

Profiles for Very Small Entities (VSE) – Part 3: Assessment guide" identifies a set of

guidelines for VSE to address the requirements for performing assessment in VSE. The

ISO defines a VSE as an entity (enterprise, organization, department, or project) having

up to 25 employees. ISO 29110-3:2009 states that VSE are often cut off from some

economic activities because of the difficulty of relating ISO standards to their business

needs and of justifying the application of the standards to their business practices. ISO

29110-3:2009 also states that ISO standards do not address the needs of VSE, and that

conforming to these standards is difficult. Accordingly, the auditing models proposed in

this research work can be aligned with the guidelines of ISO 29110-3, which is to provide

the agile-based VSE with a tool to assess their conformity to ISO 9001.

 Validation subjectivity: Forer (1949) highlights the problem of subjective validation in

scientific research as that of a bias according to which researchers will consider the

information correct if it has personal meaning or significant to them. The validation

process for the proposed auditing models has been carried out to simulate an auditing

process in software organizations where the auditors develop the audit conclusions based

on the existence of evidence that supports the scope and objectives of the audit. Auditors

should use their expertise and understanding of the organization’s processes to judge

whether or not the auditing evidence is sufficient. “The evidence can be considered

sufficient if it supports all the material questions the audit objective and scope” ISACA

(2010). From a scientific research perspective, this may lead to subjectivity in the

235

validation process. To reduce the level of subjectivity, the following further research

steps could be conducted with more time and resources:

 Validation to the extended used story: This thesis has proposed four sup processes to

be aligned with the early practise of agile-XP. A controlled experiment based on an

industrial practise in agile organizations is recommended to validate the usefulness of the

proposed sub process.

 Validity threat: The case studies that have been selected to evaluate the proposed

auditing models have been carried out by the same researchers who designed the auditing

models. This might introduce biases in the process for the evaluation of the proposed

auditing models. To cope with this problem, the validation of the auditing models could

be performed by external experts to assess the usability of the proposed auditing models

in the area of ISO 9001 auditing and agile software processes. In this situation, the same

case studies can be audited by bodies external to the research team.

 Usability of the auditing models: To evaluate the usability of the proposed auditing

models in the context of agile software organization that wish to become an ISO 9001

certified. The auditing models could be validated by designing experiments for software

products developed using agile software processes in an organization aiming to become

ISO 9001 certified. This will also allow for both agile software developers and IS-

auditors to assess the usability of the proposed auditing models.

236

237

BIBLIOGRAPHY

Abrahamson, P., O. Salo, J. Ronkainen, J. Warsta. (2002). “Agile Software Development
Methods, Review and Analysis”, VTT Publications 478. Espo, Finland, P. 107.

Abran, A., J. Moore. (2004). “Guide to the software engineering body of knowledge”, IEEE
Computer Society Press, pp. 1-228.

Abran A., K.T. Al-Sarayreh, J. J. Cuadrado-Gallego. (2010). “Measurement Model of
Software Requirements Derived from System Maintainability Requirements”, Twenty-
Second International Conference on Software Engineering and Knowledge
Engineering, San Francisco, pp.153-158.

Abran, A., R.E. Al-Qutaish, J. J. Cuadrado-Gallego. (2004). "Analysis of the ISO 9126 on

Software Product Quality Evaluation from the Metrology and ISO 15939
Perspectives", WSEAS Transactions on Computers, World Scientific and
Engineering Academy and Society, Athens, Greece, 5(11), pp.2778-2786.

Alain A., R. E. Al-Qutaish, J. Desharnais, N. Habra. (2005). "An Information Model for

Software Quality Measurement with ISO Standards, International Conference on
Software Development, Reykjavik, Iceland, pp. 104-116.

Alali A.I. and Issa A.A. (2011). “Towards Well Documented and Designed Agile Software

Development", Proceeding of Modeling and Simulation, Calgary, AB, Canada.

Alegria J. and Bastarrica M. (2006). “Implementing CMMI Using a Combination of Agile

Methods”. CLEI Electric Journal, 7(1), pp. 20-35.

Al-Qutaish, R. (2007). “SPQMM: A Software Product Quality Maturity Model Using
ISO/IEEE Standards, Metrology, and Sigma Concepts”, PhD thesis, École de
Technologie Supérieure, Université du Québec, Montréal, Canada.

Al-Sarayreh K.T and Abran A. (2010). “A Generic Model for the Specification of Software

Interface Requirements and Measurement of their Functional Size”, Eighth ACIS
International Conference on Software Engineering Research Management and
Applications, Montreal, Canada, 2010, pp. 217-222.

Ambler S. (2006). “Agile survey results summary”, http://trailridgeconsulting

.com/surveys/agile-adoption-rates-2006. Html, last access 24/02/2010.

Angelina, E. and G. Juan (2011). “Study to support agile methods more effectively through

traceability”, Computer Science Innovations in Systems and Software Engineering,
7(1), pp. 53-69.

238

Baskerville, R., L. Levine, J. Pries-Heje, B. Ramesh, S. Slaughter. (2001). “How Internet
Software Companies Negotiate Quality”, IEEE Computer, 34(5), pp. 51-57.

Bebensee, Th., I. Weerd, S. Brinkkemper.(2010). “Binary Priority List for Prioritizing

Software Requirements”, 6th International Working Conference on Requirements
Engineering: Foundation for Software Quality, pp. 67-78.

Beck, K. (1999). “Extreme programming explained: Embrace change”, Addison Wesley

Professional, 1st edition, pp. 1- 224.

Bégnoche, L., A. Abran, L. Buglione.(2007). "A Measurement Approach Integrating ISO

15939, CMMI and ISBSG", 4th Software Measurement European Forum”, Rome,
Italy, pp. 26-34.

Berander, P. and Andrews, A. (2005). “Requirements Prioritization in Engineering and

Managing Software Requirements”, Springer Verlag, Berlin, Germany, pp. 69-94.

Boehm, B. and Turner, R. (2003). “Using Risk to Balance Agile and Plan-Driven Methods.

IEEE Computer”, 36(6), pp.57-66.

Canfora, V. and A. Cimitile. (2005). “Empirical Study on The Productivity of the Pair

Programming”. Lecture Notes in Computer Science. Springer-Verlag, Berlin, pp. 92-
99.

Cao, D. B. (2006). “An Empirical Investigation of Critical Success Factors in Agile Software

Development Projects”. PhD thesis, Capella University, USA.

Misra, C.S., V. Kumar, U. Kuma.(2009). “Identifying Some Important Success Factors In

Adopting Agile Software Development Practices”, Journal of Systems and Software,
82(11), P.1869-1890.

Chambers, A. and G. Rand, (2010). "Operational Auditing: Auditing Business and IT

Processes”, Wiley, 2nd Edition, 2010.

Chorafas, N. (2008). "IT auditing and Sarbanes-Oxley Compliance: Key Strategies for

Business Improvement", Auerbach Publications, 1st Edition.

Chow, T. and D. Cao. (2008). “A survey study of critical success factors in agile software

projects”, Journal of Systems and Software, 81(6), pp. 961-971.

Cockburn, A. and L. Williams. (2001). “The Costs and Benefits of Pair Programming in

Extreme Programming Examined”, Addison Wesley, Boston, MA, pp. 223–243.

239

Cohn, M. (2005). “Agile Estimating and Planning”, Prentice Hall PTR, Upper Saddle River,
NJ. 1st Edition. pp.398.

Cohn, M., and D. Ford. (2003). "Introducing an Agile Process to an Organization", IEEE

Computer, 36(6), pp.74-78.

Conboy, K., and B. Fitzgerald. (2004). “Toward a Conceptual Framework of Agile Methods:

A study of Agility in Different Disciplines”, Proceedings of the 2004 ACM workshop
on Interdisciplinary Software Engineering Research, Newport Beach, USA, pp. 37-
44.

COSMIC (2011). "Guideline for the use of COSMIC FSM to manage agile projects, V 1.0",

The Common Software Measurement International Consortium. Last accessed
22/5/2012::http://www.cosmicon.com/portal/public/COSMIC_Agile_Projects_Guidel
ine_v10.pdf.

Diaz J., J. Pérez, PP. Alarcón, J. Garbajosa. (2011). "Agile Product Line Engineering—A

Systematic Literature Review", Journal of Software Maintenance and Evolution:
Research and Practice, 41(8), pp. 921-941.

Dolores, R. and R. Fujii. (1989). “Software Verification and Validation: An Overview”, IEEE

Software, 6(3), pp.10-17.

Dyba, T. and T. Dingsøy. (2008). “Empirical Studies of Agile Software Development: A

Systematic Review”, Information and Software Technology, 50 (9), pp. 833-859.

Ellis, T. and Y. Levy. (2008). "Framework of Problem-Based Research: A Guide for Novice

Researchers on the Development of a Research-Worthy Problem", International
Journal of an Emerging Transdiscipline, Volume 11, pp. 17-33.

Espinoza, A. and J. Garbajosa. (2011). “Study to Support Agile Methods More Effectively

through Traceability”, Computer Science Innovations in Systems and Software
Engineering, 7(1), pp. 53-69.

Fehlmann, TH. (2011). " Six Sigma for Agile Teams", International Conference on the

Modern Art of Software, Zurich, Switzerland, pp. 1-11.

Ferreira, A., G. Santos , G. Santos, R.Cerqueira, M. Montoni, A. Barreto, A. Oliveira, S.

Barreto, A. Rocha. (2007). “Applying ISO 9001:2000, MPS, BR and CMMI to
Achieve Software Process Maturity: BL informatica’s pathway”. 29th Int. Conference
on Software Engineering, Minneapolis, USA, pp. 642-651.

Forer, B.R. (1949). "The Fallacy of Personal Validation: A classroom Demonstration of

Gullibility", Journal of Abnormal Psychology, 44, pp. 118-121.

240

Forman, E. and Selly, M. A. (1996). “Decision by Objectives”, 1996, George Washington
University, Washington, DC, USA.

Frank, F. and O. Karam. (2006). “Essentials of Software Engineering”, Jones and Bartlett

Publishers, Canada, pp. 1-320.

Fricker, S. and P. Grünbacher. (2008). "Negotiation Constellations: Method Selection

Framework for Requirements Negotiation", Intl. Working Conference on
Requirements Engineering: Foundation for Software Quality, Montpellier, France.

Fuller, G. K. (2006). “Antecedents and Consequences of Certification of Software

Engineering Processes”, PhD Thesis, University of British Columbia, Canada.

Ghanam, .Y and F. Maurer. (2009). "Extreme Product Line Engineering: Managing

Variability & Traceability via Executable Specifications", Agile Conference,
Chicago, IL, pp. 41 - 48.

Ghazarian, A. (2008). “Traceability Patterns: An Approach to Requirement Component

Traceability in Agile Software Development”, 8th WSEAS International Conference
on Applied Computer Science, Venice, Italy, pp. 236-241.

Glinz, M. and Wieringa R. (2007). “Stakeholders in Requirements Engineering", IEEE

Software, 24(2), 2007, pp.18-21.

Grandzol, J. (2005). “Improving the Faculty Selection Process in Higher Education: A Case

for the Analytic Hierarchy”, Process Association for Institutional Research, 6(1), pp.
1-13.

Grenning, J. (April 2002). "Planning Poker", Renaissance Software Consulting, Retrieved

2008-08-31.

Griesemer, J. (1999). “A Field Study of the Impact of ISO 9001 on Software Development in

the United States”, PhD thesis, Pace University, United State of America.

Hass A. M., J. Johansen, J. Pries-Heje. (1998). “Does ISO 9001 increase software

development maturity”, 24th EUROMICRO Conference, Vasteras, Sweden, pp. 860-
866.

Hazzan, O. and Y. Dubinsky. (2008). "Agile Software Engineering", Springer, 1st Edition,

P.303.

Highsmith, J. (2000). “Adaptive software development: A collaborative approach to

managing complex systems”, Dorset House, New York, 2000, pp. 1-392.

241

IEEE (1990). “Standard Glossary of Software Engineering Terminology”, IEEE Std. 610.12
1990, New York (NY), USA: the Institute of Electrical and Electronics Engineers, pp. 1-83.

ISA (2009). "International Standard on Auditing 500-Audit Evidence", International

Federation of Accountants, New York, USA.

ISACA (2008). "Control Objectives for Information and related Technology", Information

Systems Audit and Control Association, Rolling Meadows, IL, USA.

ISACA (2010). "IT Standards, Guidelines, and Tools and Techniques for Audit and

Assurance and Control Professionals", Information Systems Audit and Control
Association, Rolling Meadows, IL, USA.

ISO-19761 (2011). “Software Engineering - COSMIC v 3.0 - A Functional Size Measurement

Method“, International Organization for Standardization, Geneva (Switzerland).

ISO-12207 (2008). “Systems and Software Engineering – Software Life Cycles Processes“,

International Organization for Standardization/International Electrotechnical
Commission, Geneva (Switzerland).

ISO-15288 (2008). “Systems and software engineering – System life cycles processes“,

International Organization for Standardization/International Electrotechnical
Commission, Geneva (Switzerland).

ISO-9126 (2004). "Software Engineering - Product Quality - Part 1: Quality Model 9126-1",

International Organization for Standardization, Geneva (Switzerland).

ISO 90003 (2004). “Software Engineering - Guidelines for the Application of ISO 9001:2000

to Computer Software. ISO/IEC 90003”, International Organization for
Standardization, Geneva, Switzerland, pp. 1-54.

ISO 15939 (2002). “Software Engineering - Software Measurement Process”. ISO/IEC

15939, International Organization for Standardization, Geneva, Switzerland, pp.1-37.

Jalali, S. and C. Wohlin. (2011). "Global Software Engineering and Agile Practices: a

Systematic Review", Journal of Software Maintenance and Evolution: Research and
Practice, DOI: 10.1002/smr.561.

Josyleuda M., M. Oliveira, A. Belchior. (2005). "Measurement Process: A Mapping Among

CMMI-SW, ISO/IEC 15939, IEEE Std 1061, Six Sigma and PSM", International
Conference on Service Systems and Service Management, Troyes, France, pp. 810-
815.

242

Karlesky, M. and M. Vander. (2008). “Agile Project Management (or Burning your Gantt
Charts)”, Embedded Systems Conference Boston (Boston, Massachusetts), P. 247-
267.

Karlsson, L., B. Regnell, P. Berander, C. Wohlin. (2008). “Requirements Prioritization: An

Experiment on Exhaustive Pair-Wise Comparison versus Planning Game
Partitioning”, Empirical Assessment in Software Engineering Conference, Keele,
UK, 2008, P. 122-131.

Kitchenham, B. (2007). “Guidelines for Performing Systematic Literature Reviews in

Software Engineering”, Joint Technical Report, Keele University, EBSE-2007-01,
July 2007.

Kevin, R. (2003). "ISO 9001:2000 A Practical Quality Manual Explained", ASQ Quality

Press, USA, pp. 1-296.

Kowalczykiewicz, K. and D.Weiss. (2002). “Traceability: Taming Uncontrolled Change in

Software Development”, 4th National Software Engineering Conference, Tarnowo
Podgorne, Poland.

Ktata. O and G. Lévesqu. (2010). "Designing and implementing a measurement program for

Scrum teams: what do agile developers really need and want?, Proceedings of the
Third C* Conference on Computer Science and Software Engineering, ACM, New
York, NY, USA, pp.101-107.

Lee, C., L. Guadagno, X. Jia. (2003). "An Agile Approach to Capturing Requirements

Traceability", 2nd International Workshop on Traceability in Emerging Forms of
Software Engineering , Canada, pp.104-110.

Lehtola, L. and M. Kauppinen. (2004). “Requirements Prioritization Challenges in

Practice”, Springer-Verlag, Berlin Heidelberg, pp.497-508.

Lindstrom, L. and R. Jeffries. (2004). “Extreme Programming and Agile Software

Development Methodologies”, Information Systems Management, pp.41–52.

Lopez, M. (2000). “An Evaluation Theory Perspective of the Architecture Tradeoff Analysis

Method (ATAM)”, CMU/SEI-20Q0-TR-012, Pittsburgh, PA.

Lopez, M. (2003). "Application of an Evaluation Framework for Analyzing the Architecture

Tradeoff Analysis Method", Journal of Systems and Software, 68(3), pp.233-241.

Mahnic. V and N. Zabkar. (2007). "Introducing CMMI Measurement and Analysis Practices

into Scrum-Based Software Development Process”, International Journal of
Mathematics and Computers in Simulation", 1(1), pp. 65-72.

243

Makdee, B. and P. Praneetpolgrang. (2005). “Roadmap in Development of Quality Model for
Thai Software”. 3rd International Conference on Information and Communications
Technology, Egypt, Cairo, pp.829-836.

Maurer, F. and S. Martel. (2002). “Extreme programming: Rapid Development for Web-

based Application”, IEEE Internet Computing, 6(1), pp. 86-90.

Meridji, K.(2010). "Analysis of Software Engineering Principles from an Engineering

Perspective", Ph.D. dissertation, École de technologie supérieure, Montréal (Canada),
2010.

Nerur S., R. Mahapatra, G. Mangalaraj. (2005). “Challenges of migrating to agile

methodologies”. Communications of the ACM, 48(5), P. 72-78.

Qasaimeh, M. and A. Abran. (2011). "Extending Extreme Programming User Stories to Meet

ISO 9001 Formality Requirements”, Journal of Software Engineering and
Applications, Vol.4, No.11, pp.626-638.

Qasaimeh, M. and A. Abran. (2010). “Investigation of the capability of XP to support the

requirements of ISO 9001 software process certification”, Eighth ACIS International
Conference on Software Engineering Research Management and Applications,
Montreal, Canada, pp. 239-247.

Ramesh, B. and M. Jarke. (2001). “Towards Reference Models for Requirements

Traceability”, IEEE Transactions on Software Engineering, 27(1), pp. 58-93.

Rumpe, B. and A. Schröder. (2002). “Quantitative Survey on Extreme Programming

Projects”. Third International Conference on Extreme Programming and Flexible
Processes in Software Engineering, Alghero, Italy, pp. 95-100.

Salo, O. and P. Abrahamsson. (2008). “Agile Methods in European Embedded Software

development Organizations: A Survey on the Actual Use and Usefulness of Extreme
Programming and Scrum", Institution of Engineering and Technology Software, 2(1),
pp. 58-64.

Schindler, C. (2008). “Agile Software Development Methods and Practices in Austrian it

Industry Results of an Empirical Study”, International Conferences on Computational
Intelligence for Modeling, Control and Automation, Vienna, Austria, pp. 321-326.

Statz, J. (2005), "Measurement for process improvement v1.0", Technical Report, Practical

Software and Systems Measurement Center, New Jersey, USA.

Stelzer, D., W. Melli, et al. (1996). “Software Process Improvement via ISO 9000: Results of

Two Surveys Among European Software Houses”. Proceedings of the 29th Hawaii
International Conference on System Sciences, Maui, Hawaii, pp. 704-710.

244

Tracy, H., B. Sarah, J. Verner, D. Wilson. (2008). “The Impact of Staff Turnover on
Software Projects: The Importance of Understanding What Makes Software
Practitioners Tick”, ACM conference on Computer personnel doctoral consortium
and research, New York, NY, USA, pp. 30-39.

Turk, D., R. France, B. Rumpe. (2004). “Assumptions Underlying Agile Software-

Development Processes”. Journal of Database Management, 16(4), pp. 62-87.

Verbo E., I. Caballero, R. Perez, C. Calero, M. Piattini. (2009). "MEPLAMECAL: A

Methodology Based on ISO/IEC 15939 to Elaborate Data Quality Measurement
Plans", IEEE Latin America Transactions, 7(3), pp.361-368.

Vijayasarathy, L. and Turk D. (2008). “Agile Software Development: A Survey of Early

Adopters”. Journal of Information Technology Management, 19(2), pp. 1-8.

Vincenti W. G. (1990), “What Engineers Know and How They Know It”, The John Hopkins

University Press, Baltimore, London, pp.336.

Vitoria, D. (2004). “Aligning XP with ISO 9001:2000-TickIT guide 5.0”, Master Thesis

Software Engineering”, Blekinge Institute of Technology, Sweden.

Vriens, C.H. (2003). “Certifying for CMM level 2 and ISO9001 with XP@Scrum”,

Conference on Agile Development, IEEE Computer Society, Washington DC, USA,
pp. 120-124.

Wang, X., M. Lane , K. Conboy, M. Pikkarainen. (2009). “Where agile research goes:

starting from a 7-year retrospective (report on agile research workshop at XP2009)”,
ACM SIGSOFT Software Engineering Notes, 34(5), pp. 28-30.

Wiegers, K. (2002). “Peer Reviews in Software: A Practical Guide”, Johns Hopkins

University Press, Boston, pp. 1-256.

Wright, G. (2003). “Achieving ISO 9001 Certification for an XP Company", Lecture Notes in

Computer Science, Extreme programming and Agile Methods, agile universe, New
Orleans, pp. 43-50.

Yahaya, J., A. Deraman, F. Baharom, A. Hamdan. (2009). “Software Certification from

Process and Product Perspectives”. International Journal of Computer Science and
Network Security, 9(3), pp. 222-231.

Yang, H.-G and B. Vandenbosch. (1998). “Visibility as the Basis of a Framework for

Identifying Strategic Information Systems”, Journal of Information Technology
Management, 9(2), pp. 31-42.

245

Zarour, M. (2009). “Methods to Evaluate Lightweight Software Process Assessment Methods
Based on Evaluation Theory and Engineering Design Principles”, PhD thesis, École
de Technologie Supérieure, Université du Québec, Montréal, Canada.

Zelkowitz, M. V. and D.Wallace. (1997). “Eexperimental validation in software

technology”, Information and Software Technology, 39(11), pp.735-744.

