ÉCOLE DE TECHNOLOGIE SUPÉRIEURE UNIVERSITÉ DU QUÉBEC

MÉMOIRE PRÉSENTÉ À L'ÉCOLE DE TECHNOLOGIE SUPÉRIEURE

COMME EXIGENCE PARTIELLE À L'OBTENTION DE LA MAÎTRISE EN GÉNIE ÉLECTRIQUE M. Ing.

PAR Pierre Clément BLAUD

DÉVELOPPEMENT D'UN MODÈLE DE SIMULATION DE SUPERCONDENSATEUR ET VALIDATION EXPÉRIMENTALE

MONTRÉAL, LE 5 JUILLET 2012

BIONE Pierre Clément Blaud, 2012

Cette licence <u>Creative Commons</u> signifie qu'il est permis de diffuser, d'imprimer ou de sauvegarder sur un autre support une partie ou la totalité de cette œuvre à condition de mentionner l'auteur, que ces utilisations soient faites à des fins non commerciales et que le contenu de l'œuvre n'ait pas été modifié.

PRÉSENTATION DU JURY

CE MÉMOIRE A ÉTÉ ÉVALUÉ

PAR UN JURY COMPOSÉ DE:

M. Louis-A. Dessaint, directeur du mémoire Département de génie électrique à l'École de technologie supérieure

M. Handy Fortin-Blanchette, président du jury Département de génie électrique à l'École de technologie supérieure

M. Olivier Tremblay, membre du jury Institut de recherche d'Hydro-Québec

M. Sylvain Morel, examinateur externe Bombardier Aéronautique

IL A FAIT L'OBJET D'UNE SOUTENANCE DEVANT JURY ET PUBLIC

LE 18 JUIN 2012

À L'ÉCOLE DE TECHNOLOGIE SUPÉRIEURE

AVANT-PROPOS

Le document suivant est le résultat du travail que j'ai effectué pour obtenir la maîtrise en génie électrique de l'École de Technologie Supérieure (ÉTS). J'ai intégré ce programme grâce au partenariat de double diplôme conclu entre l'École de Technologie Supérieur et l'Université de Technologie de Belfort-Montbéliard (UTBM). Université où je suivais une formation pour l'obtention du diplôme d'ingénieur dans le département de Génie Électrique et Systèmes de Commande.

Ce travail s'inscrit dans le projet ENV405 du Consortium de Recherche et d'Innovation en Aérospatiale au Québec (CRIAQ). Ce programme est mené en partenariat avec l'École de Technologie Supérieure, l'Université Laval, Bombardier Aéronautique et Transtronic Inc. Le but est de rendre un avion commercial plus électrique.

Les thématiques de recherche sont:

- la simulation électrique d'un avion,
- la simulation et validation expérimentale de la consommation électrique lors d'une situation d'urgence.

Pour cette deuxième partie, deux axes d'études sont développés, le premier est la génération de l'électricité par une éolienne de secours, le second et de concevoir un système hybride de génération avec piles à combustible, accumulateurs et supercondensateurs. Ce mémoire de maîtrise s'inscrit dans la partie supercondensateur de ce projet, il vise à fournir un modèle de supercondensateur pour être utilisé dans les simulations pour l'hybridation des sources électriques.

En second lieu, le modèle de supercondensateur a pour objectif d'être intégré dans la librairie SimPowerSystems (SPS) de Matlab/Simulink. Cette librairie est développée par l'Institut de Recherche d'Hydro-Québec (IREQ) et l'École de Technologie Supérieure. Louis-A. Dessaint me présenta ce projet à l'hiver 2011 et j'acceptai d'y prendre part pour me perfectionner dans le stockage de l'énergie électrique et la simulation de systèmes complexes.

REMERCIEMENTS

Je remercie le professeur Louis-A. Dessaint pour m'avoir proposé ce sujet de maîtrise et pour la liberté, l'intégrité et la confiance qu'il a pu m'accorder durant ce mémoire. De plus, je le remercie aussi pour le support financier.

Je voudrais remercier le personnel technique du département de génie électrique, Yves Robitaille, Jorge Rojas Abad et Sylvain Brisebois pour leurs assistances et appuis qu'ils ont pu me procurer pour l'avancement de ce mémoire.

Je remercie également les étudiants du GREPCI pour les entraides et les bons moments passés au laboratoire.

Je remercie les nombreux relecteurs qui ont eu la gentillesse et la patience de lire mon mémoire pour améliorer l'orthographe et la syntaxe des phrases.

Et de tout mon cœur je remercie mon frère Etienne et ma mère Nadine pour le soutien qu'ils m'ont procuré.

J'aimerais remercier les potos Montréalais pour les admirables moments et les rigolades passés en leur compagnie.

Finalement je souhaiterais sincèrement remercier les universités et établissements publiques qui ont pu m'accueillir dans les meilleures conditions durant mes études supérieures, l'Institut Universitaire de Technologie de l'Université de Poitiers, l'Université de Technologie de Belfort-Montbéliard et l'École de Technologie Supérieur de l'Université du Québec. Sans oublier les professeurs et maîtres de conférences qui ont pu me transmettre leurs savoirs et leurs goûts de la connaissance.

DÉVELOPPEMENT D'UN MODÈLE DE SIMULATION DE SUPERCONDENSATEUR ET VALIDATION EXPÉRIMENTALE

Pierre Clément BLAUD

RÉSUMÉ

Ce mémoire disserte d'un modèle de supercondensateur pour un logiciel de simulation dans le domaine du génie électrique. Les logiciels de simulation sont incontournables dans la recherche et développement de nouveaux produits et procédés pour le génie. Le logiciel de simulation est le module SimPowerSystems (SPS) de Matlab/Simulink.

Le choix pour répondre à la problématique s'est porté sur le modèle de Stern de la double couche électrique. Ce modèle a la particularité de modéliser la capacité entre une électrode en métal et un électrolyte liquide. Par la suite ce modèle est modifié pour être adapté dans le but de modéliser un supercondensateur et pour être programmé dans le logiciel de simulation. Le modèle développé est simple d'utilisation, les principales données nécessaires à son fonctionnement sont obtenues de la documentation du constructeur.

Des essais expérimentaux de caractérisation puis de charge et décharge sont effectués sur des supercondensateurs pour être comparés avec les simulations. Les résultats obtenus sont concluants. L'erreur maximale entre les essais et les simulations est de 5% et en moyenne de 2% dans la plupart des autres cas.

Mots-clés : Supercondensateur, Double Couche Électrique, Stern, SimPowerSystems

DÉVELOPPEMENT D'UN MODÈLE DE SIMULATION DE SUPERCONDENSATEUR ET VALIDATION EXPÉRIMENTALE

Pierre Clément BLAUD

ABSTRACT

This thesis deals with ultracapacitor model for simulation of electrical systems. Simulation software has become inevitable part of design and development of products and process in engineering. Toolbox SimPowerSystems has been used, this toolbox is a part of simulation software Matlab/Simulink.

Stern model has been chosen. Stern theory models electric double layer and capacitance between metal electrode and liquid electrolyte could be found. The model has been modified in order to model ultracapacitors and to be implemented in SimPowerSystems (SPS). The model is user friendly, major data could be found in manufacturer's datasheet.

Thus, experimental tests have been done and they have been compared with simulations. Two type of tests have been done, first one to identify ultracapacitors and secondly to load and unload ultracapacitors. Results show that maximal error is less than 5% and medium error is less than 2%

Keywords: Ultracapacitor, Electric double layer, Stern, SimPowerSystems

TABLE DES MATIÈRES

INTRO	DUCTION	N	1
CHAP	ITRE 1	REVUE DE LA LITTÉRATURE	3
1.1	Bref histor	rique du condensateur et supercondensateur	3
1.2	Utilisation	industrielle du supercondensateur	6
1.3	Constitutio	on du supercondensateur	
	1.3.1	Électrodes	9
	1.3.2	Électrolytes	. 10
1.4	Théorie de	e la double couche électrique	11
1.5	Effet de si	gnaux alternatifs	14
1.6	Modèles é	guivalents électriques	15
	1.6.1	Modèles fréquentiels	. 15
	1.6.2	Modèles énergétiques	. 18
1.7	Modèle éc	uivalent thermique	19
1.8	Brevets su	r les supercondensateurs	20
1.9	Présentatio	on du modèle de supercondensateur du logiciel Saber	22
	1.9.1	Modèle de supercondensateur proposé par Saber	. 23
	1.9.2	Résumé du modèle proposé par Saber	. 25
1.10	Conclusio	n de la revue de littérature	26
CHAP	ITRE 2	ETUDE THEORIQUE DE LA DOUBLE COUCHE ELECTRIQUE	27
2.1	Couche de	Helmholtz	27
2.2	Couche de	e Gouy et Chapman	28
2.3	Modificati	ion de Otto Stern-Hamburg	40
2.4	Redistribu	tion des charges	48
2.5	Conclusio	n	
СНАР	ITRE 3	ÉTUDE DE L'EFFET DE SIGNAUX AI TERNATIES SUR LE	
CIIIII	IIIIL J	SUPERCONDENSATEUR	53
31	Effet sur l	e diélectrique	53
3.2	Effet sur la	a canacité	58
33	Effet sur la	a résistance	60
34	Effet sur l	impédance	
3 5	Conclusio	n	67
5.0	Conclusio		
CHAP	ITRE 4	PROGRAMMATION DE L'ÉQUATION DE STERN ET DE TAFEL	
		DANS SPS	69
4.1	Présentation	on de SPS	69
4.2	Utilisation	d'une source de tension contrôlée	70
4.3	Programm	ation des équations dans SPS	71
4.4	Conclusio	n	86

CHA	PITRE 5	MODÈLE ÉQUIVALENT THERMIQUE DU SUPERCONDENSATEUR	
5.1	Modèle é	Equivalent thermique	
5.2	Présentat	tion de Simscape thermal	
5.3	Program	mation du modèle équivalent avec Simscape	
54	Compara	hisons des résultats obtenus avec le modèle et la publication	91
5 5	Données	de la documentation du constructeur	96
5.6	Conclusi	on	
2.0	Contrast		
CHA	PITRE 6	BANCS D'ESSAI DE TEST POUR LES	
		SUPERCONDENSATEURS	99
6.1	Premier l	banc d'essai	99
6.2	Deuxièm	e banc d'essai	100
6.3	Incertitud	des de mesure des capteurs.	
64	Supercor	idensateurs disponibles au laboratoire	102
6.5	Conclusi	on	
CHA	PITRE 7	RÉSULTATS EXPÉRIMENTAUX ET COMPARAISON AV SIMULATIONS SPS	'EC LES 105
7.1	Procédur	es employées pour les essais pratiques	105
7.2	Paramètr	es du modèle de Stern et de l'équation de Tafel	106
	7.2.1	Paramètres de l'équation de Tafel	106
	7.2.2	Paramètres du modèle de Stern	107
7.3	Procédur	es employées pour les simulations de SPS	117
7.4	Compara	ison des essais pratiques et des simulations SPS	118
	7.4.1	Supercondensateur Maxwell de 350F	
	7.4.2	Supercondensateur Maxwell de 650F	
	7.4.3	Supercondensateur Maxwell de 1200F	127
	7.4.4	Supercondensateur Maxwell de 3000F	
	7.4.5	Supercondensateur Nesscap 650F	135
	7.4.6	Supercondensateur Nesscap 1200F	
	7.4.7	Supercondensateur Nesscap 3000F	
	7.4.8	Supercondensateur Nesscap 3500F	
	749	Supercondensateur Nesscap 88F et 48V	151
	7410	Supercondensateur Nesscap 176F et 48V	154
75	Interpréta	ation des données	157
7.6	Applicati	ion de créneaux de courant sur le supercondensateur	158
1.0	7 6 1	Premier essai	159
	762	Deuxième essai	162
	7.6.3	Troisième essai	165
77	7.0.5 Internréte	ation des données	
78	Conclusi	on des essais pratiques	100
1.0	Conclusi		
CON	CLUSION		171
RECO	OMMAND	ATIONS	173

ANNEXE I	ALGORITHMES	177
ANNEXE II	SCHÉMA ET PROGRAMME DU PREMIER BANC ESSAI	193
ANNEXE III	SCHÉMA ET PROGRAMME DU DEUXIÈME BANC ESSAI	199
ANNEXE IV	MÉTHODE DE OLDHAM (2008) POUR OBTENIR L'ÉQUATION DE STERN	209
ANNEXE V	MODIFICATION DE LA CAPACITÉ EN FONCTION DE LA TEMPÉRATURE AVEC LE MODÈLE DE STERN	215
ANNEXE VI	DOCUMENTATION TECHNIQUE D'UN SUPERCONDENSATEUR	221
ANNEXE VII	SIMULATION SPS AVEC UNE ÉLECTRODE ET RAYON MOLÉCULAIRE DE 1 NM	225
ANNEXE VIII	RÉCAPUTULATIF DES PARAMÈTRES DU MODÈLE DES SUPERCONDENSATEURS	229
LISTE DE RÉFÉ	RENCES BIBLIOGRAPHIQUES	231

LISTE DES TABLEAUX

Tableau 4.1	Explication des paramètres du modèle pour SPS	80
Tableau 7.1	Paramètres de SPS et mesure de l'essai pratique supercondensateur Maxwell de 350F	119
Tableau 7.2	Paramètres de SPS et mesure de l'essai pratique supercondensateur Maxwell de 650F	
Tableau 7.3	Paramètres de SPS et mesure de l'essai pratique supercondensateur Maxwell de 1200F	127
Tableau 7.4	Paramètres de SPS et mesure de l'essai pratique supercondensateur Maxwell de 3000F	
Tableau 7.5	Paramètres de SPS et mesure de l'essai pratique supercondensateur Nesscap de 650F	
Tableau 7.6	Paramètres de SPS et mesures de l'essai pratique supercondensateur Nesscap de 1200F	
Tableau 7.7	Paramètres de SPS et mesures de l'essai pratique supercondensateur Nesscap de 3000F	143
Tableau 7.8	Paramètres de SPS et mesures de l'essai pratique supercondensateur Nesscap de 3500F	147
Tableau 7.9	Paramètres de SPS et mesures de l'essai pratique supercondensateur Nesscap 88F	
Tableau 7.10	Paramètres de SPS et mesures de l'essai pratique supercondensateur Nesscap 176F	
Tableau 7.11	Paramètres de SPS et mesure de l'essai pratique de l'essai en créneau un	
Tableau 7.12	Paramètres de SPS et mesure de l'essai pratique de l'essai en créneau deux	
Tableau 7.13	Paramètres de SPS et mesure de l'essai pratique de l'essai en créneau trois	

LISTE DES FIGURES

Figure 1.1	Description par Becker de son invention Tirée de Becker (1957, p. 1)	5
Figure 1.2	Supercondensateurs Maxwell Tirée de la documentation du constructeur	6
Figure 1.3	Schéma simplifié du supercondensateur Tirée de Belhachemi (2001, p. 12)	8
Figure 1.4	Électrode en charbon actif Tirée de Belhachemi (2001, p. 13)	9
Figure 1.5	Modèle de Helmholtz Tirée de Conway (1999, p. 109)	11
Figure 1.6	Modèle de Gouy-Chapman Tirée de Conway (1999, p. 109)	12
Figure 1.7	Modèle de Stern Tirée de Conway (1999, p. 109)	13
Figure 1.8	Tracé de Nyquist d'un supercondensateur Tirée de Kotz, Hahn, et Gallay (2006, p. 551)	14
Figure 1.9	Premier schéma simplifié de la ligne de transmission Tirée de Buller et al. (2002)	16
Figure 1.10	Deuxième schéma simplifié de la ligne de transmission Tirée de Nassim Rizoug (2006, p. 51)	16
Figure 1.11	Modèle de supercondensateur développé par Rizoug Tirée de Nassim Rizoug (2006, p. 58)	17
Figure 1.12	Modèle de supercondensateur des constructeurs Tirée de Nassim Rizoug (2006, p. 29)	18
Figure 1.13	Modèle de supercondensateur développé par Zubieta et Bonert Tirée de Zubieta et Bonert (2000)	18

Figure 1.14	Modèle équivalent thermique Tirée de Al Sakka et al. (2009, p. 584)	19
Figure 1.15	Électrodes mises en couches première représentation Tirée de Bendale et al. (2004, figure 9 sur 19)	21
Figure 1.16	Électrodes mises en couches deuxième représentation Tirée de Farahmandi et al. (1999, p. 1)	21
Figure 1.17	Environnement graphique de Saber	22
Figure 1.18	Présentation du modèle de supercondensateur de Saber	23
Figure 1.19	Fenêtre propriété de Saber	24
Figure 2.1	Représentation de l'électrolyte en lames Tirée de Bard et Faulkner (1980, p. 503)	30
Figure 2.2	Potentiel de surface suivant le modèle de Gouy-Chapman	
Figure 2.3	Potentiel de surface suivant le modèle de Gouy-Chapman et un potentiel d'électrode de 1.5V	37
Figure 2.4	Capacité surfacique suivant le modèle de Gouy-Chapman	
Figure 2.5	Capacité surfacique de la double couche avec le modèle de Stern et les couches de Helmholtz et Gouy-Chapman .	42
Figure 2.6	Capacité surfacique de la double couche avec le modèle de Stern	43
Figure 2.7	Capacité surfacique en fonction de la tension du modèle de Stern	44
Figure 2.8	Capacité en fonction de la tension avec le modèle de Stern	46
Figure 2.9	Régulation à 48V d'un module de supercondensateur	48
Figure 2.10	Mesure de la tension du supercondensateur lors de la redistribution des charges	49
Figure 2.11	Tension du supercondensateur lors de la redistribution des charges avec l'équation de Tafel	50
Figure 2.12	Courant calculé avec l'équation de Tafel	51
Figure 3.1	Diélectrique en fonction de la fréquence	53

Figure 3.2	Capacité et résistance en fonction de la fréquence Tirée de Kotz, Hahn, et Gallay (2006, p. 552)	56
Figure 3.3	Diélectrique en fonction de la fréquence	57
Figure 3.4	Capacité calculée en fonction de la fréquence	58
Figure 3.5	Capacité en fonction de la fréquence Tirée de Rafik et al. (2007, p.931)	59
Figure 3.6	Conductance en fonction de la fréquence	62
Figure 3.7	Résistance en fonction de la fréquence	63
Figure 3.8	Capacité en fonction de la fréquence	65
Figure 3.9	Tracé de Nyquist du supercondensateur	66
Figure 3.10	Efficacité du stockage suivant la fréquence	68
Figure 4.1	Librairie de SPS	69
Figure 4.2	Sources de tension et de courant de SPS	71
Figure 4.3	Modèle équivalent électrique du supercondensateur	71
Figure 4.4	Source de tension contrôlée et résistance	73
Figure 4.5	Calcul de la charge et sous programme de l'équation de Stern	73
Figure 4.6	Programmation de l'équation de Stern sous Simulink	76
Figure 4.7	Programme Matlab dans Simulink	77
Figure 4.8	Paramètres d'entrée du modèle de supercondensateur	79
Figure 4.9	Déduction des paramètres du modèle avec une documentation constructeur	81
Figure 4.10	Déduction des paramètres du modèle avec une documentation constructeur pour un module	82
Figure 4.11	Déduction des paramètres du modèle avec une données	84
Figure 4.12	Tension obtenue avec le modèle	85
Figure 4.13	Créneau de courant de charge et décharge	86

XXII

Figure 5.1	Modèle équivalent thermique Tirée de Al Sakka et al. (2009, p. 584)	87
Figure 5.2	Librairie de Simscape	
Figure 5.3	Éléments thermique de Simscape	88
Figure 5.4	Éléments thermiques de capteurs Simscape	
Figure 5.5	Éléments thermiques de source de chaleur Simscape	89
Figure 5.6	Modèle équivalent thermique du supercondensateur de 1500F	90
Figure 5.7	Modèle équivalent thermique du supercondensateur de 310F	90
Figure 5.8	Évolution de la température du supercondensateur 310F avec Simscape	91
Figure 5.9	Évolution de la température du supercondensateur de 310F Tirée de Al Sakka et al. (2009, p.584)	92
Figure 5.10	Résistance en fonction de la température du supercondensateur de 310F mesurée par Al Sakka et al. (2009)	93
Figure 5.11	Évolution de la température du supercondensateur de 1500F avec Simscape	94
Figure 5.12	Évolution de la température du supercondensateur de 1500F Tirée de Al Sakka et al. (2009, p. 585)	95
Figure 5.13	Résistance et capacité thermique d'un module de 48V Tirée du document 1009365.11 de Maxwell	96
Figure 6.1	Schéma du deuxième banc d'essai	100
Figure 6.2	Capteur de courant LEM	102
Figure 6.3	Supercondensateurs du laboratoire	103
Figure 7.1	Bloc de mise à l'échelle	
Figure 7.2	Variation de α de l'équation de Tafel	106
Figure 7.3	Comparaison essai et programme Matlab une couche	108
Figure 7.4	Comparaison essai et programme Matlab deux couches	108
Figure 7.5	Comparaison essai et programme Matlab trois couches	

Figure 7.6	Comparaison essai et programme Matlab quatre couches	
Figure 7.7	Comparaison essai et programme Matlab cinq couches	109
Figure 7.8	Comparaison essai et programme Matlab six couches	109
Figure 7.9	Comparaison essai et programme Matlab sept couches	109
Figure 7.10	Comparaison essai et programme Matlab huit couches	109
Figure 7.11	Comparaison essai et programme Matlab neuf couches	109
Figure 7.12	Comparaison essai et programme Matlab dix couches	109
Figure 7.13	Comparaison essai et programme Matlab onze couches	110
Figure 7.14	Comparaison essai et programme Matlab douze couches	110
Figure 7.15	Comparaison essai et programme Matlab treize couches	110
Figure 7.16	Comparaison essai et programme Matlab quatorze couches	110
Figure 7.17	Comparaison essai et programme Matlab r=0.5nm	111
Figure 7.18	Comparaison essai et programme Matlab r=0.6nm	111
Figure 7.19	Comparaison essai et programme Matlab r=0.7nm	111
Figure 7.20	Comparaison essai et programme Matlab r=0.8nm	111
Figure 7.21	Comparaison essai et programme Matlab r=0.9nm	111
Figure 7.22	Comparaison essai et programme Matlab r=1nm	111
Figure 7.23	Comparaison essai et programme Matlab r=1.1nm	112
Figure 7.24	Comparaison essai et programme Matlab r=1.2nm	112
Figure 7.25	Comparaison essai et programme Matlab r=1.3nm	112
Figure 7.26	Comparaison essai et programme Matlab r=1.4nm	112
Figure 7.27	Comparaison essai et programme Matlab r=1.5nm	112
Figure 7.28	Comparaison essai et programme Matlab r=1.6nm	112
Figure 7.29	Comparaison essai et programme Matlab r=1.21nm	113

XXIV

Figure 7.30	Comparaison essai et programme Matlab r=1.22nm	113
Figure 7.31	Comparaison essai et programme Matlab r=1.23nm	113
Figure 7.32	Comparaison essai et programme Matlab r=1.24nm	113
Figure 7.33	Comparaison essai et programme Matlab r=1.25nm	113
Figure 7.34	Comparaison essai et programme Matlab r=1.26nm	113
Figure 7.35	Comparaison essai et programme Matlab r=1.27nm	114
Figure 7.36	Comparaison essai et programme Matlab r=1.28nm	114
Figure 7.37	Comparaison essai et programme Matlab r=1.29nm	114
Figure 7.38	Comparaison essai et programme Matlab r=1.3nm	114
Figure 7.39	Résultat du calcul du rayon moléculaire et du nombre de couches	115
Figure 7.40	Comparaison essai et Matlab SC Nesscap 650F	116
Figure 7.41	Comparaison essai et Matlab SC Nesscap 1200F	116
Figure 7.42	Comparaison essai et Matlab SC Nesscap 3000F	116
Figure 7.43	Comparaison essai et Matlab SC 3500F	116
Figure 7.44	Comparaison essai et Matlab SC Nesscap 88F	117
Figure 7.45	Comparaison essai et Matlab SC Nesscap 176F	117
Figure 7.46	Réponse du supercondensateur Maxwell 350F	120
Figure 7.47	Réponse du supercondensateur Maxwell 350F chargement	120
Figure 7.48	Capacité en fonction de la charge du supercondensateur Maxwell 350F	121
Figure 7.49	Erreur relative entre l'essai pratique et la simulation SPS du supercondensateur Maxwell 350F	122
Figure 7.50	Réponse du supercondensateur Maxwell 650F	124
Figure 7.51	Réponse du supercondensateur Maxwell 650F chargement	124

Figure 7.52	Capacité en fonction de la charge du supercondensateur Maxwell 650F	125
Figure 7.53	Erreur relative entre l'essai pratique et la simulation SPS du supercondensateur Maxwell 650F	126
Figure 7.54	Réponse du supercondensateur Maxwell 1200F	128
Figure 7.55	Réponse du supercondensateur Maxwell 1200F chargement	128
Figure 7.56	Capacité en fonction de la charge du supercondensateur Maxwell 1200F	129
Figure 7.57	Erreur relative entre l'essai pratique et la simulation SPS du supercondensateur Maxwell 1200F	130
Figure 7.58	Réponse du supercondensateur Maxwell 3000F	132
Figure 7.59	Réponse du supercondensateur Maxwell 3000F chargement	132
Figure 7.60	Capacité en fonction de la charge supercondensateur Maxwell 3000F	133
Figure 7.61	Erreur relative entre l'essai pratique et la simulation SPS du supercondensateur Maxwell 3000F	134
Figure 7.62	Réponse du supercondensateur Nesscap 650F	136
Figure 7.63	Réponse du supercondensateur Nesscap 650F chargement	136
Figure 7.64	Capacité en fonction de la charge du supercondensateur Nesscap 650F	137
Figure 7.65	Erreur relative entre l'essai pratique et la simulation SPS du supercondensateur Nesscap 650F	138
Figure 7.66	Réponse du supercondensateur Nesscap 1200F	140
Figure 7.67	Réponse du supercondensateur Nesscap 1200F chargement	140
Figure 7.68	Capacité en fonction de la charge du supercondensateur Nesscap 1200F	141
Figure 7.69	Erreur relative entre l'essai pratique et la simulation SPS du supercondensateur Nesscap 1200F	142
Figure 7.70	Réponse du supercondensateur Nesscap 3000F	144

XXVI

Figure 7.71	Réponse du supercondensateur Nesscap 3000F chargement	144
Figure 7.72	Capacité en fonction de la charge du supercondensateur Nesscap 3000F	145
Figure 7.73	Erreur relative entre l'essai pratique et la simulation SPS du supercondensateur Nesscap 3000F	146
Figure 7.74	Réponse du supercondensateur Nesscap 3500F	148
Figure 7.75	Réponse du supercondensateur Nesscap 3500F chargement	148
Figure 7.76	Capacité en fonction de la charge du supercondensateur Nesscap 3500F	149
Figure 7.77	Erreur relative entre l'essai pratique et la simulation SPS du supercondensateur Nesscap 3500F	150
Figure 7.78	Réponse du supercondensateur Nesscap 88F	152
Figure 7.79	Réponse du supercondensateur Nesscap 88F chargement	152
Figure 7.80	Capacité en fonction de la charge du supercondensateur Nesscap 88F	153
Figure 7.81	Réponse du supercondensateur Nesscap 176F	155
Figure 7.82	Réponse du supercondensateur Nesscap 176F chargement	155
Figure 7.83	Capacité en fonction de la charge du supercondensateur Nesscap 176F	156
Figure 7.84	Courant du premier essai en créneau	159
Figure 7.85	Tension du premier essai en créneau	160
Figure 7.86	Erreur relative du premier essai en créneau	161
Figure 7.87	Courant du deuxième essai en créneau	162
Figure 7.88	Tension du deuxième essai en créneau	163
Figure 7.89	Erreur relative du deuxième essai en créneau	164
Figure 7.90	Courant du troisième essai en créneau	165
Figure 7.91	Tension du troisième essai en créneau	166

Figure 7.92	Erreur relative du troisième	essai en cre	éneau167
		••••••••••	

LISTE DES ABRÉVIATIONS, SIGLES ET ACRONYMES

CRIAQ	Consortium de Recherche et d'Innovation en Aérospatiale au Québec
ETS	École de Technologie Supérieure
GC	Gouy-Chapman
GREPCI	Groupe de Recherche en Électronique de Puissance et Commande Industrielle
INC.	Incorporated
IREQ	Institut de Recherche d'Hydro-Québec
Labview	Laboratory Virtual Instrument Engineering Workbench
Li-Ion	Lithium Ion
Lim	Limite
MOSFET	Metal Oxyde Semiconductor Field Effect Transistor
NPN	Jonction n, p et n.
NI	National Instruments
Ni-Cd	Nickel Cadium
NIST	National Institute of Standard and Technology
РСВ	Printed Circuit Board
SC	Supercondensateur
Sous-VI	Sous programme d'un VI principale
SI	Systèmes International d'unités
SPS	SimPowerSystems TM
TOR	Tout Ou Rien
UTBM	Université de Technologie de Belfort-Montbéliard
VI	Extension du programme de Labview

LISTE DES ALGORITHMES

Algorithme 4.1	Programme d'initialisation du modèle	74
Algorithme 4.2	Programmation de l'équation de Tafel	78

Page

LISTE DES SYMBOLES ET UNITÉS DE MESURE

UNITÉS DE BASE Bureau international des poids et mesures (2006)

- m mètre (unité de longueur)
- kg kilogramme (unité de masse)
- s seconde (unité de temps)
- A ampère (unité d'intensité de courant électrique)
- K kelvin (unité de température)
- mol mole (unité de quantité de matière **Aire**

m² mètre carrée

Volume

m³ mètre cube

CONSTANTES FONDAMENTALES SELON National Institute of Standard and Technology (2011)

Universelles

- c_0 vitesse de la lumière
- ϵ_0 permittivité diélectrique du vide
- μ_0 perméabilité magnétique du vide

Électromagnétisme

e charge élémentaire

Chimie physique

- F constante de faraday
- k constante de Boltzmann
- N_A nombre d'Avogadro, parfois noté L

R constante des gaz parfaits

UNITÉS DÉRIVÉES

Angle

rad radian

Longueur

m mètre

nm nanomètre

Temps

- H heure
- s seconde
- ms milliseconde

Ènergie, travail, quantité de chaleur

J joule

G énergie de Gibbs Puissance W watt Angle solide Fréquence Hz hertz Différence de potentiel **Force électromotrice** V volt mV millivolt **Résistance et conductance électrique** S siemens Ω ohm Capacité électrique F farad

Ouantité d'électricité

- C coulomb
- °C degré celsius

SYMBOLES

Équation de Tafel

- η sur-potentiel (V)
- i densité de courant $(A \cdot m^{-2})$
- i_0 densité de courant d'échange (A·m⁻²)
- S surface actif des électrodes (m^2)

Modèle à deux branches de Zubieta

- C_{i0} capacité dépendant de la tension (F)
- C_{i1} capacité dépendant de la tension (F·V⁻¹)
- Cd capacité de la branche retardée (F)
- Cl capacité de la branche lente (Ω)
- Rd résistance de la branche retardée (Ω)
- Ri résistance de la branche immédiate (Ω)
- Rl résistance de la branche lente (Ω)

Rleak	résistande de fuite (Ω)	φ2	potentiel de surface à la distance
Madà	la fréquentiels		x ₂ en V
Niodel	paramètre de l'équation de Cole-	ρ	densité de charge ($C \cdot m^{-2}$)
u	Cole entre 0 et 1	σ	densité de charge électrique
ß	paramètre de l'équation de		$(\mathbf{C} \cdot \mathbf{m}^{-2})$
F	Havriliak-Negami entre 0 et 1	$\pmb{\sigma}^{\scriptscriptstyle M}$	densité de charge électrique de
С	capacité complexe (F)		stockée ($C \cdot m^{-2}$)
C'	capacité réelle (F)	σ^{s}	densité de charge électrique de la
С"	capacité imaginaire (F)		solution($C \cdot m^{-2}$)
C_{dc}	capacité continu (F)	с	concentration molaire (mol \cdot m ⁻³)
C_{ω}	capacité fréquentielle (F)	C	capacité en F
3	permittivité diélectrique du	C_d	capacité surfacique de la double
	matériau	u	couche ($F \cdot m^{-2}$)
* 3	permittivité complexe diélectrique	Coo	capacité de la couche de Gouy-
	du matériau	- GC	Chapman (F, m^{-2})
ε'	permittivité réelle diélectrique du	C	capacité de la couche de Helmholtz
<u>.</u>	materiau	\mathbf{C}_{H}	$(\Gamma_{\rm em}^{-2})$
ъ	du matériau	d	(F·III) distance de la couche de Helmholtz
£	permittivité diélectrique du	u	(m)
US	matériau à la fréquence nulle	n _p	concentration ionique au point B
£	nermittivité diélectrique du	n^0	concentration ionique totale
v∞	matériau à la fréquence infinie	n_{-}^{0}	nombre d'ion à l'équilibre au point
n	taux d'efficacité de stockage entre	пв	B
-1	0 et 1	Ν	nombre de couches de l'électrode
σ^*	conductivité complexe $(S \cdot m^{-1})$		(N*)
σ'	conductivité réelle ($S \cdot m^{-1}$)	N _p	nombre de supercondensateur en
$\sigma^{\prime\prime}$	conductivité imaginaire ($S \cdot m^{-1}$)	r	parallèle (N*)
0 0	$\frac{1}{10000000000000000000000000000000000$	Ns	nombre de supercondensateur en
X	distance conceptuelle de	5	série (N*)
	l'électrolyte (m)	q	densité de charge électrique
Z	impédance (Ω)	-	$(\mathbf{C} \cdot \mathbf{m}^{-2})$
		Q	charges électriques (C)
Modè	le de Stern	S	surface de l'électrode (m ²)
3	permittivite dielectrique du	$W_{A ightarrow B}$	le travail (j)
c	nateriau permittivité diélectrique du vide	X	plan x (m)
د ₀	notantial de surface (V)	X ₂	distance de l'électrode de la fin de
φ	potentiel de surface (V)		la couche de Helmholtz (m)
ϕ_0	potentiel de surface à la distance	у	plan y(m)
	zéro (V)	Ζ	plan z (m)
		Z	amplitude de charge des ions

XXXV

Modèle thermique

Cth	capacité thermique $(J \cdot W^{-1})$
Р	pertes par effet joule (W)
Rconv	résistance de convection ($K \cdot W^{-1}$)
Rth	résistance thermique $(K \cdot W^{-1})$
Та	température ambiante (K)
INTRODUCTION

Le supercondensateur est un réservoir d'énergie. Cette énergie est stockée sous forme électrostatique par accumulation de charge entre deux électrodes. Les électrodes sont constituées de carbones poreux et elles sont séparées par un matériau diélectrique. Dans le supercondensateur il n'y a pas de réaction d'oxydo-réduction entre les électrodes et le matériau diélectrique. Grâce à ce procédé de stockage d'énergie le supercondensateur possède une forte puissance massique (W/kg) et une durée de vie importante.

Les supercondensateurs sont employés pour seconder les éléments de stockage d'énergie ne possédant pas une puissance massique suffisante pour l'utilisation envisagée. Ces éléments sont : les batteries, les piles à combustible etc.

Le but de ce mémoire est d'étudier le phénomène électrique du supercondensateur pour obtenir un modèle décrivant son fonctionnement lors du chargement, déchargement et repos. Ce modèle sera par la suite implémenté dans la librairie SPS. Afin que ce modèle soit intégré il doit pouvoir répondre au cahier des charges de celui-ci. Les principales contraintes sont : le modèle doit convenir pour chaque supercondensateur, le plus précis possible et que tous les paramètres doivent être obtenus d'une documentation constructeur.

Afin de répondre à cette étude, le mémoire est structuré en sept parties.

Le premier chapitre est une revue de littérature. Cette recherche permet de connaître les modèles qui ont été proposés et de discerner les lois physiques qui régissent le supercondensateur. En conclusion de ce chapitre l'hypothèse de notre recherche est formulée. Le second chapitre concernera l'étude théorique du modèle sélectionnée pour notre recherche. Le troisième chapitre s'attache à expliquer la réponse des supercondensateurs en présence de courant alternatif. Le quatrième chapitre développera la programmation de notre équation développée en second chapitre pour l'incorporer dans SPS. Le chapitre cinq présentera un modèle thermique du supercondensateur, l'analyse permet de connaître la

température en fonctionnement du supercondensateur. Le sixième chapitre consiste à montrer les bancs d'essais développés au laboratoire. Le septième chapitre présentera, comparera et analysera les résultats des essais expérimentaux et des simulations SPS.

Pour finir la conclusion et les recommandations de ce travail de recherche seront présentés.

CHAPITRE 1

REVUE DE LA LITTÉRATURE

La revue de littérature a pour objet de connaitre les recherches qui ont été effectuées sur chaque domaine du supercondensateur. Ces domaines sont la composition du supercondensateur, les matériaux, l'électrostatique, la réponse électrique et bien d'autre domaine, cependant seules les informations pertinentes pour notre mémoire sont sélectionnées. Nonobstant, il ne faut pas oublier l'application industrielle qui en est faite et les avantages de l'utilisation du supercondensateur. Afin de répondre à ce besoin, la revue de littérature est divisée en neuf parties.

Tout d'abord l'invention du supercondensateur est présentée, puis l'utilisation industrielle du supercondensateur. Ensuite la constitution du supercondensateur est exposée. La partie suivante montre les publications et revues qui relatent des lois de la physique du supercondensateur, cette théorie est appelée théorie de la double couche électrique. Une présentation des recherches effectuées sur l'effet de signaux alternatifs sur le supercondensateur. La partie suivante exposera les modèles équivalents électriques. Ensuite un modèle équivalent thermique est présenté puis les brevets sur les supercondensateurs. Le modèle de supercondensateur du logiciel Saber est présenté. Et pour finir une conclusion de cette revue de littérature est effectuée.

1.1 Bref historique du condensateur et supercondensateur

Le livre de Conway (1999) présente une bonne revue historique du condensateur et du supercondensateur. Les principaux points sont repris afin de donner une revue historique.

Le stockage d'énergie dans un condensateur est connu depuis 1745. Découverte faite indépendamment par deux savants. Le premier Ewald Georg von Kleist trouva que les charges électriques sont retenues dans une bouteille remplie d'alcool ou d'eau et de deux électrodes en métal. Une électrode est plongée dans la bouteille, la seconde entoure la

bouteille de verre. Il observa que les charges électriques se déchargent lors d'un choc électrique. Le second fut Pieter van Musschenbroek qui inventa la bouteille de Leyde, système reposant sur le même principe que celui de Ewald Georg von Kleist. Pieter fit découvrir cette invention au monde scientifique. Une description plus approfondie de sa découverte est décrite dans le livre de Williams et Williams (2009). Cette découverte ouvrit la porte aux travaux sur le condensateur. Le traitement théorique du condensateur avança avec les travaux de :

- Charles Augustin Coulomb avec la force exercée par une charge électrique,
- André-Marie Ampère et son travail sur l'électrodynamique,
- Benjamin Franklin et ses travaux sur la conservation de la charge.

Le stockage d'énergie est connu depuis 1745 avec la relation suivante, G est l'énergie de Gibbs:

$$G = \frac{1}{2}CV^2 \tag{1.1}$$

Et

$$G = \frac{1}{2}qV \tag{1.2}$$

Ces relations sont fondamentales pour tout système de stockage d'énergie.

Une importante avancée sera faite par Hermann Ludwig von Helmholz avec le travail de la conservation de la charge dans un électrolyte aqueux et le phénomène de l'électrolyse. Il découvrit que le courant est fonction de l'élément chimique de l'électrolyte. Il donna le premier modèle mathématique de la double-couche électrique pour un condensateur. Ce modèle fut par la suite amélioré par: Louis George Gouy, David Chapman, Otto Stern-Hamburg. Une revue plus approfondie de la théorie de la double couche sera faite dans la partie sur la théorie de la double couche électrique.

Le brevet de Becker (1957) semble être le début de l'utilisation de la double couche pour stocker l'énergie électrique. Dans son brevet il décrit le stockage d'énergie avec du carbone poreux imprégné d'électrolyte aqueux. Le carbone poreux augmente la surface de contact entre l'électrode et l'électrolyte, une large capacité est obtenue par ce procédé. Le principal avantage du carbone est qu'il existe sous plusieurs formes et que celui-ci permet de créer des surfaces de contact avec l'électrolyte très importantes. La première utilisation est faite dans les laboratoires de la Standard Oil of Ohio en 1957. Les chercheurs ont utilisé des électrodes de pile à combustible possédant une large densité surfacique. Selon Conway (1999, p. 185) dès les années soixante une utilisation dans les véhicules a été envisagée. L'utilisation pour industrie a dans un premier temps été réservée pour les applications militaires, le supercondensateur a très vite trouvé sa place dans les applications civiles pour alimenter les mémoires d'ordinateurs et dernièrement en industrie du transport.

Figure 1.1 Description par Becker de son invention Tirée de Becker (1957, p. 1)

Aujourd'hui, les deux principaux constructeurs de supercondensateurs sont Maxwell et Nesscap. Nesscap a été créée en 1998 en Corée du Sud par Sun-wook Kim. Maxwell est une entreprise américaine qui développe les supercondensateurs depuis 45 ans, Maxwell est basée à San Diego en Californie. Nesscap et Maxwell possèdent des distributeurs dans de nombreux pays. Les supercondensateurs se déclinent par des cellules de 2.3V ou 2.7V de quelques farads à plusieurs centaines de farads. Le plus petit supercondensateur est de 10F avec une tension aux bornes de 2.3V, le plus large supercondensateur est de 5000F et une

tension à ses bornes de 2.7V. Les constructeurs développent depuis quelques années des modules de supercondensateurs afin d'être utilisés sur différents bus continu, par exemple 48 Volts, 120 Volts ou plus.

Figure 1.2 Supercondensateurs Maxwell Tirée de la documentation du constructeur

1.2 Utilisation industrielle du supercondensateur

L'article de Shah et al. (2008) permet de faire une revue des utilisations industrielles. L'auteur classe les applications en onze catégories :

- lignes de transmission,
- association de supercondensateurs et batteries pour les alimentations de secours,
- alimentation de secours,
- stabiliser la fréquence sur les réseaux,
- micro réseaux électriques,
- atténuation des problèmes de tension des éoliennes,
- télécommunication,
- démarrage à froid des moteurs à combustion interne diesel,
- véhicules hybrides et électriques.

Afin de synthétiser les applications exposées par Shah et al. (2008), celles-ci sont réorganisées et expliquées en quatre parties.

Alimentations de secours : les supercondensateurs peuvent être utilisés pour stocker de l'énergie. Cette énergie pourra être redistribuée à un réseau ou à un équipement lors d'une panne d'alimentation électrique. Ceci permet une continuité de fonctionnement des installations.

Stabilisation des réseaux électriques : les réseaux électriques sont soumis à de nombreuses pressions de fonctionnement. À ces pressions s'ajoutent des contraintes de fonctionnement. Elles sont imposées pour garder une bonne qualité du réseau pour chaque utilisateur relié. Afin de respecter ces contraintes les supercondensateurs peuvent être utilisés pour fournir ou bien prendre de l'énergie localement. Un très bon exemple d'application avec un trolley-bus est donné par Rufer, Hotellier, and Barrade (2004).

Utilisation dans les transports : lors des phases de freinage, l'énergie perdue par effet joule peut-être récupérée pour ensuite être restituée lors de l'accélération du véhicule. Un exemple d'application est donné par Camara (2007). En combinaison avec une source d'énergie par exemple les batteries ou les piles à combustible, dans le but de délivrer les demandes en puissance. Un second exemple est présenté par Bertoni et al. (2002), puis Ortúzar, Moreno, et Dixon (2007). Un second domaine d'application est pour enlever l'alimentation par caténaires des tramways dans les centres historiques des villes. Un exemple est donné par Rufer et al. (2003).

Utilisation en milieu critique : les supercondensateurs ont une très longue durée de vie. Ils peuvent être utilisés dans les installations où un faible entretien est nécessaire afin d'avoir un système de stockage d'énergie pérenne. La seconde utilisation du supercondensateur en milieu critique concerne les températures extrêmes. Kotz, Hahn, et Gallay (2006) mesurent la capacité et la résistance du supercondensateur pour une température de -40°C à +70°C. Cette température correspond à la plage de fonctionnement du supercondensateur.

1.3 Constitution du supercondensateur

La constitution du supercondensateur est très simple. Le supercondensateur est constitué de deux électrodes qui sont plongées dans un électrolyte. Les deux électrodes sont séparées par un séparateur qui laisse les ions migrer.

Figure 1.3 Schéma simplifié du supercondensateur Tirée de Belhachemi (2001, p. 12)

1.3.1 Électrodes

Les électrodes sont constituées de carbone poreux à haute densité surfacique. La densité surfacique est de 1000 à 2000 m² \cdot g⁻¹. Dans le livre Carbons for Electrochemical Energy Storage and Conversion Systems de Béguin et Frąckowiak (2009). Le chapitre 11 indique que trois types d'électrodes existent:

- charbons actifs,
- oxydes métalliques,
- polymères conducteurs.

Pour les applications industrielles les électrodes en charbon actif sont utilisées.

Figure 1.4 Électrode en charbon actif Tirée de Belhachemi (2001, p. 13)

1.3.2 Électrolytes

L'électrolyte influence la capacité totale du supercondensateur par le diélectrique, mais aussi la résistance et la tension maximale. Par la résistance il influence la puissance spécifique. La résistance du supercondensateur est fonction de la conductivité de l'électrolyte. La conductivité est fonction de la solvatation des ions, (capacité à se dissoudre) et la valence des ions, (capacité à se déplacer). Selon Gallay et Gualous (2009) trois familles d'électrolytes sont disponibles:

- liquides ioniques,
- solvants aqueux,
- solvants organiques.

Les électrolytes utilisés industriellement sont les solvants aqueux et organiques. Les liquides ioniques ont un coût trop important. La différence entre les électrolytes aqueux et organiques est la conductivité et la tenue en tension. La tenue en tension est la tension maximale à ne pas dépasser. En dépassant cette tension, il y a électrolyse et décomposition de l'électrolyte en gaz. La tenue en tension de l'électrolyte aqueux est de 1.23V et de 3V pour l'organique, Gallay et Gualous (2009). Avec une tension d'utilisation plus élevée, l'énergie stockée disponible est plus importante. Les solvants organiques utilisés sont:

- acétonitrile,
- propylène carbonate.

Les électrolytes organiques sont plus difficiles de fabrication et de manipulation que les électrolytes aqueux de plus ils ont une conductivité moindre. Cependant grâce à une tension plus importante, l'énergie stockée est plus élevée. Il faut aussi signaler que ces produits sont d'une très grande toxicité.

1.4 Théorie de la double couche électrique

Le phénomène physique du supercondensateur est appelé double couche électrique, electric double Layer capacitor dans la littérature anglo-saxonne. La théorie de la double couche est présentée par Bard et Faulkner (1980) et dans le livre de Conway (1999). Les trois grandes avancées ainsi que les chercheurs ayant contribués à la compréhension de la théorie sont présentés ci-dessous.

Le premier à avoir étudié la structure en double couche fut Hermann Ludwing Helmholtz (1879). Pour Helmholtz la capacité (le stockage de charge pour une différence de potentiel) est constante en fonction du diélectrique de l'électrolyte et de l'épaisseur de la structure en double couche. Ce modèle de structure en double couche est assimilable à un condensateur, Figure 1.5.

Figure 1.5 Modèle de Helmholtz Tirée de Conway (1999, p. 109)

Louis George Gouy (1910), physicien français, proposa un modèle de la structure en double couche correspondant à une zone diffuse. Il y a donc un champ. Cette zone diffuse correspond à une zone ou les ions ne sont pas spécifiquement absorbés. Cette zone diffuse est en trois dimensions. Indépendamment David Leonard Chapman (1913), physicien anglais, proposa aussi un modèle de couche diffuse, mais en y appliquant les calculs mathématiques. Le principal défaut de ce modèle est que celui-ci surestime la capacité surfacique et que le potentiel de surface près de l'électrode est erroné, Figure 1.6.

Figure 1.6 Modèle de Gouy-Chapman Tirée de Conway (1999, p. 109)

Stern-Hamburg (1924), physicien allemand et lauréat du prix Nobel de physique en 1943¹, proposa une amélioration de la modélisation de la structure en double couche en combinant le modèle de Hermann Ludwing von Helmholtz et celui de Gouy-Chapman. Stern obtint deux couches, la première prénommée couche de Helmholtz et la seconde couche de Gouy-Chapman. Chaque couche reprenant les principes énoncés par Helmholtz (1879), Gouy (1910) et Chapman (1913), Figure 1.7.

¹ Pour ses travaux sur l'épitaxie par jet moléculaire.

Figure 1.7 Modèle de Stern Tirée de Conway (1999, p. 109)

Grahame (1947) améliora le modèle de Stern en prenant en compte la taille des ions, cations vis-à-vis des anions. Il décomposa la couche de Helmholtz en deux couches appelées Inner et Outer, puis une couche diffuse de Gouy-Chapman. Son modèle est fait de trois couches. La principale avancée de l'article de Grahame est que celui-ci fit une expérience qui corrobore la théorie.

De nombreuses autres études ont été écrites pour améliorer ces modèles, Guidelli et Schmickler (2000). Nous pouvons citer le modèle de Jellium, qui est utilisé pour améliorer l'interface entre l'électrode et l'électrolyte, zone précédant la couche de Helmholtz. Le modèle de Jellium est un modèle de mécanique quantique qui prend en compte l'interaction entre les électrons dans un solide. Dans le cas du supercondensateur, ce solide est l'électrode.

1.5 Effet de signaux alternatifs

Kotz, Hahn, et Gallay (2006), Buller et al. (2002) et Rafik et al. (2007) mesurent l'impédance du supercondensateur en fonction de la fréquence du signal d'entrée. Les deux équipes ont utilisés un impédancemètre (electrochemical impedance spectrometer).

Cet appareil sert à mesurer l'impédance d'une batterie, d'une pile à combustible ou d'un supercondensateur. Le fonctionnement est le suivant. Un courant régulé en fréquence et en amplitude est injecté aux bornes du supercondensateur. La tension aux bornes est mesurée, puis par un calcul et des transformées, l'impédance, partie réelle et imaginaire sont obtenues. Les informations de ces publications sont les suivantes:

- la capacité est variable suivant la fréquence du signal d'entrée;
- la résistance est variable suivant la fréquence du signal d'entrée;
- le supercondensateur a une réponse de type "ligne de transmission" suivant la fréquence du signal d'entrée, entre 0.5Hz et 15 Hz, Figure 1.8.

Figure 1.8 Tracé de Nyquist d'un supercondensateur Tirée de Kotz, Hahn, et Gallay (2006, p. 551)

1.6 Modèles équivalents électriques

Un modèle électrique équivalent est un modèle constitué de résistance, d'inductance, de capacité, de source de tension et de courant. La littérature est très bien fournie sur les modèles électriques équivalents du supercondensateur. Cinq modèles équivalents sont hiérarchisés par Nassim Rizoug (2006). Les cinq modèles sont:

- modèle constructeur,
- modèle fréquentiel,
- modèle ligne à constante localisée,
- modèle amélioré de la ligne de transmission,
- modèle énergétique simplifié.

Ces cinq modèles peuvent être classés en deux catégories:

- modèles fréquentiels,
- modèles énergétiques.

Les modèles équivalents électriques souffrent d'un défaut majeur, il est nécessaire d'effectuer un essai pratique pour obtenir les éléments qui le composent.

1.6.1 Modèles fréquentiels

Les modèles fréquentiels permettent d'obtenir le comportement fréquentiel du supercondensateur. Les modèles fréquentiels sont des modèles équivalents de ligne de transmission modifiées pour le supercondensateur, Buller et al. (2002), Figure 1.9, Belhachemi (2001).

Figure 1.9 Premier schéma simplifié de la ligne de transmission Tirée de Buller et al. (2002)

Un deuxième schéma de la ligne de transmission est donné dans la littérature, Figure 1.10 :

Figure 1.10 Deuxième schéma simplifié de la ligne de transmission Tirée de Nassim Rizoug (2006, p. 51)

N. Rizoug, Bartholomeus, et Le Moigne (2010) ont modifié le modèle fréquentiel en prenant en compte une capacité variante suivant la charge du supercondensateur, Figure 1.11.

Figure 1.11 Modèle de supercondensateur développé par Rizoug Tirée de Nassim Rizoug (2006, p. 58)

Les capacités C_n sont obtenues par une approximation linéaire en fonction de la tension. L'équation retenue par les auteurs est :

$$C = aV_{sc}^2 + bV_{sc} + c \tag{1.3}$$

Pour obtenir les paramètres de cette équation, les auteurs effectuent un chargement du supercondensateur à courant constant. Puis ils mesurent la capacité et la tension du supercondensateur. Ils obtiennent la capacité en fonction de la tension, il suffit ensuite de prendre trois points de la courbe obtenue pour obtenir les paramètres a, b et c.

Le principal inconvénient de ces modèles fréquentiels est que la méthode de caractérisation des éléments est fastidieuse, et qu'elle nécessite du matériel sophistiqué². Le modèle le plus performant est le modèle développé par N. Rizoug, Bartholomeus, et Le Moigne (2010), en effet celui-ci modélise le comportement du supercondensateur avec des courants continus et alternatifs. Cependant la méthode de caractérisation est la plus longue, puisqu'il est nécessaire de caractériser les composantes continues, puis les composantes alternatives.

² Electrochemical impedance spectrometer.

1.6.2 Modèles énergétiques

Le premier modèle est celui présenté par les constructeurs de supercondensateur. Le modèle est un simple modèle RC. Ce modèle est très simple, cependant l'erreur donnée par ce modèle est très importante, puisque la capacité ne varie pas, Figure 1.12.

Figure 1.12 Modèle de supercondensateur des constructeurs Tirée de Nassim Rizoug (2006, p. 29)

Le second est le modèle énergétique présenté par Zubieta et Bonert (2000). Ce modèle a l'avantage d'être simple et il permet une réponse du supercondensateur avec peu d'erreur si le courant de charge et de décharge ne présente pas de composante fréquentielle, Figure 1.13.

Figure 1.13 Modèle de supercondensateur développé par Zubieta et Bonert Tirée de Zubieta et Bonert (2000)

Ce modèle de supercondensateur est le plus utilisé. Ses principaux avantages sont une méthode de caractérisation simple et très bien expliquée, de plus la réponse du modèle présente peu d'erreur. Cependant tout comme les modèles fréquentiels, il est nécessaire de procéder à des essais pratiques pour obtenir les paramètres.

1.7 Modèle équivalent thermique

Un modèle équivalent thermique est développé par Al Sakka et al. (2009). Les auteurs ont obtenu un supercondensateur modifié par Maxwell. Maxwell a intégré lors de la construction trois thermocouples. Les chercheurs ont ensuite chargé et déchargé le supercondensateur sur plusieurs centaines de cycles afin de mesurer l'élévation de température et la constante de temps thermique. Le modèle qu'ils ont développé est le suivant, Figure 1.14:

Figure 1.14 Modèle équivalent thermique Tirée de Al Sakka et al. (2009, p. 584)

La source P est la source de pertes par effet joule, cette perte est égale à :

$$P = RI^2 \tag{1.4}$$

Avec R la résistance du supercondensateur et I le courant le traversant. Ce modèle sera par la suite modélisé avec Simscape, les autres paramètres seront expliqués plus en détail.

1.8 Brevets sur les supercondensateurs

Les brevets sur les supercondensateurs permettent de lister les acteurs du secteur. Les principaux acteurs des brevets sur le supercondensateur sont:

- Maxwell,
- Nesscap,
- Bolloré,
- General Electric,
- Intel.

Les sujets abordés sont:

- l'électrolyte,
- le séparateur,
- les électrodes.

Les brevets sont difficilement exploitables pour notre problématique, en effet ils contiennent principalement des images et du texte peu utile pour notre recherche. Cependant deux brevets de Bendale et al. (2004) et Farahmandi et al. (1999) sont intéressants puisqu'ils relèvent la construction interne des supercondensateurs. En particulier ceux-ci nous informent qu'un supercondensateur est constitué de plusieurs électrodes. Les Figure 1.15 et Figure 1.16 nous donnent une idée de la mise en place des électrodes. Le nombre d'électrodes améliorent l'efficacité du supercondensateur (surface de contact Électrode/Électrolyte le plus important). Elles doivent être le plus mince possibles. Le deuxième enseignement et que les électrodes sont disposées en couches parallèles.

Nous verrons par la suite l'incidence de la mise en parallèle des électrodes sur la réponse de notre modèle, voir 7.2.2.

Figure 1.15 Électrodes mises en couches première représentation Tirée de Bendale et al. (2004, figure 9 sur 19)

Figure 1.16 Électrodes mises en couches deuxième représentation Tirée de Farahmandi et al. (1999, p. 1)

Cette mise en parallèle des électrodes est expliquée par Belhachemi (2001, p. 16). Deux techniques sont présentées, premièrement le bobinage et deuxièmement l'empilement.

1.9 Présentation du modèle de supercondensateur du logiciel Saber

Saber est produit par la compagnie californienne Synopsis. La création de l'entreprise remonte à 1986 par Aart de Geus et une équipe d'ingénieurs du centre de recherche sur les micro-électroniques de General Electric. C'est tout naturellement que Synopsis offre des solutions dans les domaines électroniques. Ces solutions sont : les circuits intégrés, les system on chip, FPGA etc. Cependant Synopsis offre des solutions dans d'autres domaines telles que la mécanique ou le thermique.

Saber est un logiciel de simulation multi-domaine et de création de circuit électronique. Les domaines de simulation sont : électrique, mécanique, hydraulique, thermique, pneumatique et magnétique.

L'environnement graphique de Saber se présente tel que, Figure 1.17:

Figure 1.17 Environnement graphique de Saber

Les éléments sont pris de la rubrique Parts et mis par l'utilisateur sur la fenêtre de travail. Les éléments énergétiques et stockage du domaine électrique sont :

- les batteries au plomb et au li-ion,
- les piles à combustible PEMF et SOFC,
- les cellules solaires.

Le modèle de supercondensateur n'est pas présent dans la rubrique source énergétique mais dans la rubrique électronique et éléments passifs.

1.9.1 Modèle de supercondensateur proposé par Saber

Saber propose un modèle de supercondensateur à deux branches. Une fois inséré sur la fenêtre de travail, il est possible de voir le modèle et l'information sur les paramètres du supercondensateur dans view model, Figure 1.18.

Figure 1.18 Présentation du modèle de supercondensateur de Saber

Les éléments à renseigner du modèle doivent être fait dans une fenêtre propriété, Figure 1.19:

Properties Properties Properties Properties		
	views	Default
	Behavior	
	primitive	ultracap
	library	ai_electronic
	ref	ultracap1
	cell_cnt	1
	сар	2030
	esr	0.8e-3
	ileak	100e-3
	vnom	2.7
	kc	0.37
	tau	150
	VM	0.5
	dv_dt	0.05
	ic	0.5
	cell_temp	25.0
	esr_scale	[(temperature=-40.0,s
	ratings	(v_max=undef,i_max=
	part_type	"ultracapacitor"
	part_class	"generic"
	include_stress	

Figure 1.19 Fenêtre propriété de Saber

Le descriptif des paramètres sont :

- les paramètres classiques qui sont obtenus de la documentation du constructeur, capacité nominale, résistance en série (ESR), courant de fuite (Rleak) et la tension nominale (Vnom);
- le nombre de supercondensateurs en série (cell_cnt);
- la température de fonctionnement, elle agit sur la résistance en série. Cependant la température n'est pas calculée par Saber avec les pertes par effet joule et la valeur de la résistance série n'est pas modifiée pendant les simulations (cell_temp);

- tau, vm et dv_dt, permettent de renseigner la redistribution des charges qui se produit après le chargement du supercondensateur. Tau est la constante de temps de Rd et Cd, Figure 1.18. Vm est la tension finale après cette redistribution. Cette valeur est équivalente à la tension de sur-potentiel de l'équation de Tafel. Dv_dt permet de renseigner au moment où est pris vm. Ainsi si une redistribution de vm est égale à 0.5V, mesurée à 20 secondes après l'arrêt de la charge, dv_dt =0.025V/s;
- le dernier paramètre et non des moindres est kc. Ce paramètre modélise la variation de la capacité en fonction de la charge, c'est la base du modèle à deux branches. La valeur à renseigner doit-être entre 0 et 1, avec 0 aucun d'effet de non linéarité. Pour obtenir ce paramètre Sypnosis indique:

"Set kc to non-zero value if there is a measured voltage curve which can be matched with. The default kc value is 0" [...] "When both kc and dv_dt are set to 0, the model is collapsed to the simple series RC model which is the default settings of both parameters."

Pour utiliser le modèle proposé par Synopsis dans Saber il est nécessaire de procéder à un essai pratique et de suivre la procédure de Belhachemi (2001). Le modèle permet une mise en série des supercondensateurs pour augmenter la tension nominale, mais pas de mise en parallèle. Cette mise en parallèle peut-être faite par deux méthodes. Premièrement il est possible de les mettre en parallèle dans la fenêtre de travail. Deuxièmement, par une modification de la capacité nominale et la résistance en série.

1.9.2 Résumé du modèle proposé par Saber

Le modèle de Saber est un modèle à deux branches proposé par Zubieta et Bonert (2000). De ce fait il conserve les avantages de celui-ci. Prise en main simple et réponse qui présente peu d'erreur, Belhachemi (2001).

Cependant il conserve les incommodités. Un essai pratique est nécessaire pour obtenir les éléments du modèle. Si les paramètres ne sont pas connus, le modèle se transforme en simple modèle RC.

Les logiciels de simulations sont utilisés par les industriels en recherche et développement pour développer des nouveaux systèmes. Les dimensionnements effectués sont donc susceptibles de modifications. L'utilisation du modèle à deux branches est donc difficile d'emploi.

1.10 Conclusion de la revue de littérature

Après un aperçu de la revue de littérature sur le supercondensateur, deux idées peuvent se dégager. Premièrement les modèles macroscopiques, ce sont des modèles équivalents électriques avec des résistances, capacités et inductances. Un second groupe, les modèles microscopiques qui visent à l'analyse des phénomènes physiques du supercondensateur. Notre hypothèse de recherche est la suivante :

Le modèle microscopique de la double-couche (modèle de Stern) peut-être appliqué pour modéliser le comportement du supercondensateur.

Notre recherche se chargera de valider ou invalider cette hypothèse.

CHAPITRE 2

ÉTUDE THÉORIQUE DE LA DOUBLE COUCHE ÉLECTRIQUE

Avant de commencer l'étude théorique il est important de définir la capacité. La capacité est le stockage des charges en réponse à une perturbation de potentiel, défini dans le livre de Bard et Faulkner (1980) par:

$$C_d = \frac{\partial \sigma}{\partial E} \tag{2.1}$$

Avec σ la densité de charge en C · m⁻² et E est le potentiel en V. C_d est la capacité surfacique en F · m⁻².

Les équations d'énergie d'un condensateur et supercondensateur sont :

$$E = \frac{1}{2}CV^2 \tag{2.2}$$

Ou

$$E = \frac{1}{2}QV \tag{2.3}$$

2.1 Couche de Helmholtz

La couche de Helmholtz est très simple puisqu'elle est identique à un condensateur. La densité de charge électrique est donnée par:

$$\sigma = \frac{\varepsilon \varepsilon_0}{d} V \tag{2.4}$$

La capacité surfacique est égale à :

$$C_{H} = \frac{\partial \sigma}{\partial V} = \frac{\varepsilon \varepsilon_{0}}{d}$$
(2.5)

Pour obtenir la capacité en F, il est nécessaire de multiplier par la surface S qui est la surface d'interaction entre l'électrode et l'électrolyte.

$$C = S \frac{\varepsilon \varepsilon_0}{d} \tag{2.6}$$

La capacité surfacique est constante en fonction de la tension en volt. Ce modèle est limité puisque les essais effectués en laboratoire nous démontrent que la capacité du supercondensateur varie en fonction de la charge stockée. Ce modèle ne prend en compte que l'interface entre l'électrode et l'électrolyte.

2.2 Couche de Gouy et Chapman

Le potentiel dans l'électrolyte n'est pas uniforme. Les charges sont concentrées prés de l'électrode et diffusées à mesure de l'éloignement de l'électrode. L'appellation utilisée est couche diffuse et diffuse layer dans la littérature Anglo-Saxonne.

La solution est décomposée en lame. Les statistiques de Maxwell-Boltzmann sont utilisées, n_B est la concentration ionique au point B, n_B^0 est le nombre de ions à l'équilibre thermodynamique :

$$n_B = n_B^0 \exp\left(\frac{-W_{A \to B}}{kT}\right) \tag{2.7}$$

 $W_{A \to B}$ est le travail nécessaire pour déplacer un ion du point A au point B. Ce travail est égal à :

$$W_{A \to B} = \int_{A}^{B} F dx = eV = ez\phi$$
(2.8)

La statistique de Maxwell-Boltzmann est une loi de distribution des particules. Elle s'applique pour de la mécanique classique, elle ne prend pas en compte les effets quantiques. De plus elle est applicable pour un équilibre thermodynamique³.

Le potentiel électrique est égal à :

$$V = z\phi \tag{2.9}$$

La solution de l'électrolyte est divisée en plusieurs lames de même distance, ces lames peuvent être représentées par, Figure 2.1:

³ L'équilibre thermodynamique est lorsqu'il y a équilibre thermique (température), mécanique (pression) et chimique (potentiel chimique).

Figure 2.1 Représentation de l'électrolyte en lames Tirée de Bard et Faulkner (1980, p. 503)

À chaque lame correspond une charge par unité de volume, la densité de charge totale est la somme de la charge à chaque lame:

$$\rho(x) = \sum_{i} n_i z_i e \tag{2.10}$$

L'équation (2.7) est mise dans l'équation (2.10), nous obtenons :

$$\rho(x) = \sum_{i} n_i^0 z_i e \exp\left(\frac{-z_i e\phi}{kT}\right)$$
(2.11)

La relation de Poisson est utilisée pour obtenir la relation entre la densité de charge et le potentiel de surface :

$$\frac{-\rho}{\varepsilon\varepsilon_0} = \frac{d^2\phi}{dx^2} + \frac{d^2\phi}{dy^2} + \frac{d^2\phi}{dz^2}$$
(2.12)

Seul l'axe des x est pris en compte et en utilisant l'équation (2.11), nous obtenons :

$$\frac{d^2\phi}{dx^2} = \frac{-e}{\varepsilon\varepsilon_0} \sum_i n_i^0 z_i \exp\left(\frac{-z_i e\phi}{kT}\right)$$
(2.13)

En appliquant l'égalité suivante :

$$\frac{d^2\phi}{dx^2} = \frac{1}{2} \frac{d}{d\phi} \left(\frac{d\phi}{dx}\right)^2$$
(2.14)

Cette égalité est appliquée sur l'équation (2.13) :

$$d\left(\frac{d\phi}{dx}\right)^2 = -\frac{2e}{\varepsilon\varepsilon_0} \sum_i n_i^0 z_i \exp\left(\frac{-z_i e\phi}{kT}\right) d\phi$$
(2.15)

Ensuite une intégration est effectuée :

$$\left(\frac{d\phi}{dx}\right)^2 = \frac{2kT}{\varepsilon\varepsilon_0} \sum_i n_i^0 z_i \exp\left(\frac{-z_i e\phi}{kT}\right) + \text{constante}$$
(2.16)

La constante est obtenue avec la limite qui tend vers l'infini, dans ce cas $\phi \to 0$ et $\frac{d\phi}{dx} = 0$:

$$\lim_{\phi \to 0} \text{constante} = \frac{-2kT}{\varepsilon \varepsilon_0} \sum_i n_i^0$$
(2.17)

En mettant l'équation (2.17) dans (2.16), nous obtenons :

$$\left(\frac{d\phi}{dx}\right)^2 = \frac{2kT}{\varepsilon\varepsilon_0} \sum_i n_i^0 \left[\exp\left(\frac{-z_i e\phi}{kT}\right) - 1 \right]$$
(2.18)

Une des simplifications utilisées pour le modèle de Gouy-Chapman est un électrolyte symétrique. L'électrolyte symétrique signifie que le nombre de cations (ions chargés positivement) et d'anions (ions chargés négativement) sont identiques et qu'ils sont chargés avec la même magnitude z. L'équation (2.18) devient:

$$\left(\frac{d\phi}{dx}\right)^2 = \frac{2kT}{\varepsilon\varepsilon_0} \left\{ \sum_i n_i^0 \left[\exp\left(\frac{-z_i e\phi}{kT}\right) - 1 \right] + \sum_i n_i^0 \left[\exp\left(\frac{+z_i e\phi}{kT}\right) - 1 \right] \right\}$$
(2.19)

$$\left(\frac{d\phi}{dx}\right)^2 = \frac{2kT}{\varepsilon\varepsilon_0} \sum_i n_i^0 \left[\exp\left(\frac{-z_i e\phi}{kT}\right) + \exp\left(\frac{+z_i e\phi}{kT}\right) - 2 \right]$$
(2.20)

$$\left(\frac{d\phi}{dx}\right)^2 = \frac{2kT}{\varepsilon\varepsilon_0} \sum_i 2n_i^0 \left[\frac{1}{2}\exp\left(\frac{-z_i e\phi}{kT}\right) + \frac{1}{2}\exp\left(\frac{+z_i e\phi}{kT}\right) - 1\right]$$
(2.21)

$$\left(\frac{d\phi}{dx}\right)^2 = \frac{2kT}{\varepsilon\varepsilon_0} \sum_i 2n_i^0 \left[\cosh\left(\frac{ze\phi}{kT}\right) - 1\right]$$
(2.22)

$$\left(\frac{d\phi}{dx}\right)^2 = \frac{4kTn^0}{\varepsilon\varepsilon_0} \left[\cosh\left(\frac{ze\phi}{kT}\right) - 1\right]$$
(2.23)

$$^{4}\cosh(x)=\frac{e^{x}+e^{-x}}{2}$$

$$\left(\frac{d\phi}{dx}\right)^2 = \frac{8kTn^0}{\varepsilon\varepsilon_0} \frac{\cosh\left(\frac{ze\phi}{kT}\right) - 1}{2}$$
(2.24)

$$\left(\frac{d\phi}{dx}\right)^2 = \frac{8kTn^0}{\varepsilon\varepsilon_0} \sinh^2\left(\frac{ze\phi}{2kT}\right)^5$$
(2.25)

Finalement nous obtenons :

$$\frac{d\phi}{dx} = \pm \sqrt{\frac{8kTn^0}{\varepsilon\varepsilon_0}} \sinh\left(\frac{ze\phi}{2kT}\right)$$
(2.26)

Ensuite nous souhaitons obtenir le potentiel, une intégration est nécessaire, l'équation (2.26) est prise négative, car la tension baisse dans l'électrolyte à mesure de l'éloignement de l'électrode.

$$\int_{\phi_0}^{\phi} \frac{d\phi}{\sinh\left(\frac{ze\phi}{2kT}\right)} = -\left(\frac{8kTn^0}{\varepsilon\varepsilon_0}\right)^{1/2} \int_{0}^{x} dx$$
(2.27)

$$\frac{1}{2} \int_{\phi_0}^{\phi} \frac{d\phi}{\frac{1}{2} \left(\sinh\left(\frac{ze\phi}{4kT} + \frac{ze\phi}{4kT}\right) + \sinh\left(\frac{ze\phi}{4kT} - \frac{ze\phi}{4kT}\right) \right)} = -\sqrt{\frac{8kTn^0}{\varepsilon\varepsilon_0}} \int_0^x dx$$
(2.28)

⁵ sinh²
$$\left(\frac{x}{2}\right) = \frac{\cosh(x) - 1}{2}$$

$$\frac{1}{2} \int_{\phi_0}^{\phi} \left(\frac{d\phi}{\sinh\left(\frac{ze\phi}{4kT}\right)\cosh\left(\frac{ze\phi}{4kT}\right)} \right) = -\sqrt{\frac{8kTn^0}{\varepsilon\varepsilon_0}} \int_0^x dx$$
(2.29)

$$\frac{1}{2} \int_{\phi_0}^{\phi} \left(\frac{\frac{1}{\left(\cosh\left(\frac{ze\phi}{4kT}\right)\right)^2}}{\frac{\sinh\left(\frac{ze\phi}{4kT}\right)}{\cosh\left(\frac{ze\phi}{4kT}\right)}} \right)^2 d\phi = -\sqrt{\frac{8kTn^0}{\varepsilon\varepsilon_0}} \int_{0}^{x} dx$$

$$(2.30)$$

$$\frac{1}{2} \oint_{\phi_0} \left(\frac{\frac{4kT}{ze} \left[\cosh^2 \left(\frac{ze\phi}{4kT} \right) - \sinh^2 \left(\frac{ze\phi}{4kT} \right) \right]}{\cosh^2 \left(\frac{ze\phi}{4kT} \right)} \right) d\phi = -\sqrt{\frac{8kTn^0}{\varepsilon\varepsilon_0}} \int_{0}^{x} dx$$

$$\frac{\sinh \left(\frac{ze\phi}{4kT} \right)}{\cosh \left(\frac{ze\phi}{4kT} \right)} d\phi = -\sqrt{\frac{8kTn^0}{\varepsilon\varepsilon_0}} \int_{0}^{x} dx$$

$$\frac{2kT}{ze} \ln \left[\left[\frac{\sinh\left(\frac{ze\phi}{4kT}\right)}{\cosh\left(\frac{ze\phi}{4kT}\right)} \right]_{\phi_0}^{\phi} \right] = -\sqrt{\frac{8kTn^0}{\varepsilon\varepsilon_0}} \int_{0}^{x} dx$$
(2.32)

$$\frac{2kT}{ze}\ln\left(\frac{\tanh\left(\frac{ze\phi}{4kT}\right)}{\tanh\left(\frac{ze\phi}{4kT}\right)}\right) = -\sqrt{\frac{8kTn^{0}}{\varepsilon\varepsilon_{0}}}\int_{0}^{x}dx$$
(2.33)

 ϕ_0 représente le potentiel quand la distance x est égale à 0, ce qui est équivalent au potentiel au niveau de l'électrode. Nous souhaitons obtenir le potentiel ϕ , l'équation est obtenue comme suit:

$$\frac{\tanh\left(\frac{ze\phi}{4kT}\right)}{\tanh\left(\frac{ze\phi_0}{4kT}\right)} = \exp\left(-\sqrt{\frac{2n^0z^2e^2}{\varepsilon\varepsilon_0kT}}x\right)$$
(2.34)

 ϕ est égale à :

$$\phi = \frac{2kT}{ze} \ln \left(\frac{1 + \tanh\left(\frac{ze\phi_0}{4kT}\right) \exp\left(-\sqrt{\frac{2n^0 z^2 e^2}{\varepsilon\varepsilon_0 kT}}x\right)}{1 - \tanh\left(\frac{ze\phi_0}{4kT}\right) \exp\left(-\sqrt{\frac{2n^0 z^2 e^2}{\varepsilon\varepsilon_0 kT}}x\right)} \right)$$
(2.35)

Un programme Matlab a été utilisé pour calculer le potentiel en fonction de la distance de l'électrode, voir Algorithme-A I-1. La tension de l'électrode est prise égale à 2.5V. A l'aide d'une boucle d'incrémentation, la distance x est augmentée, puis le potentiel est calculé. Le résultat obtenu est observable à la Figure 2.2.

Le potentiel de surface obtenu grâce au programme est, Figure 2.2:

Figure 2.2 Potentiel de surface suivant le modèle de Gouy-Chapman

La chute de tension à l'interface entre l'électrode et l'électrolyte est importante, puis la chute de tension suit une exponentielle décroissante. Afin d'observer la tension de l'électrode il est nécessaire de diminuer la distance x.
1.55

Le programme est modifié avec une tension d'électrode de 1.5V, Figure 2.3.

Figure 2.3 Potentiel de surface suivant le modèle de Gouy-Chapman et un potentiel d'électrode de 1.5V

En modifiant la distance, la chute de tension de l'interface entre l'électrode et l'électrolyte n'est plus présente. Belhachemi (2001, figure 2.8 p.38) calcul le potentiel sur une distance de 0 jusqu'à 15 nanomètre et un potentiel d'électrode de 25mV. Les résultats obtenus par l'auteur sont différents de ceux obtenus sur les Figure 2.2 et Figure 2.3. Ces différences proviennent du potentiel de l'électrode et des paramètres de l'équation qui ne sont pas identiques.

Dans notre étude sur le supercondensateur, le potentiel suivant la distance de l'électrode n'est pas utile. Ce que l'on souhaite c'est la charge ainsi que la capacité. Pour cela nous utilisons le théorème de Gauss qui nous donne la charge stockée par unité de surface :

$$q = \varepsilon \varepsilon_0 \oint_{S} Eds \tag{2.36}$$

E est le champ électrique, celui-ci est donné par l'équation (2.26), la densité de charge est:

$$\frac{q}{S} = \sigma^{M} = -\sigma^{S} = \sqrt{8kT\varepsilon\varepsilon_{0}n^{0}}\sinh\left(\frac{ze\phi}{2kT}\right)$$
(2.37)

La capacité surfacique est obtenue en dérivant l'équation (2.37), nous obtenons :

$$C_{GC} = \frac{d\sigma^{M}}{d\phi_{0}} = \sqrt{\frac{2z^{2}e^{2}\varepsilon\varepsilon_{0}n^{0}}{kT}} \cosh\left(\frac{ze\phi_{0}}{2kT}\right)$$
(2.38)

Un programme Matlab a été créé pour calculer la capacité surfacique en fonction du potentiel de l'électrode, voir Algorithme-A I-2. La capacité surfacique obtenue est visible à la Figure 1.1.

Figure 2.4 Capacité surfacique suivant le modèle de Gouy-Chapman

La principale limitation du modèle de Gouy-Chapman est une baisse importante du potentiel de surface au voisinage de l'électrode, voir Figure 2.2. Cette baisse importante est le résultat que le modèle ne prend pas en compte la taille des ions. En effet ils ne peuvent pas approcher de l'électrode plus près que leur taille. La seconde limitation concerne la capacité. Celle-ci est infinie pour le potentiel de l'électrode élevé. Il ressort du modèle de Gouy-Chapman des limitations, la partie suivante présente la modification apportée par Stern sur ce modèle.

2.3 Modification de Otto Stern-Hamburg

Stern améliora le modèle de double couche en considérant que les ions ne sont présents qu'à partir d'une certaine distance correspondant au rayon moléculaire. De ce fait il divisa la couche en deux, la première appelée couche compacte de Helmholtz et la seconde couche diffuse de Gouy-Chapman. Chaque couche reprenant la théorie de leurs auteurs.

En prenant l'équation (2.26), à x2, x2 est la distance de l'électrode qui correspond au début de la couche de Gouy-Chapman, nous obtenons:

$$\left(\frac{d\phi}{dx}\right)_{x=x_2} = -\sqrt{\frac{2kTn^0}{\varepsilon\varepsilon_0}}\sinh\left(\frac{ze\phi_2}{2kT}\right)$$
(2.39)

En utilisant le théorème de Gauss, nous obtenons la densité de charge :

$$\sigma^{M} = -\sigma^{S} = -\varepsilon \varepsilon_{0} \left(\frac{d\phi}{dx}\right)_{x=x_{2}} = \sqrt{8kT\varepsilon \varepsilon_{0}n^{0}} \sinh\left(\frac{ze\phi_{2}}{2kT}\right)$$
(2.40)

La même densité de charge est appliquée par l'électrode sur toute la couche de Helmholtz. Elle est obtenue avec l'équation (2.4) avec une chute de tension constante due à la couche de Helmholtz:

$$\phi_2 = \phi_0 - \frac{\sigma^M x_2}{\varepsilon \varepsilon_0} \tag{2.41}$$

Ensuite nous pouvons mettre ϕ_2 dans l'équation (2.40). La densité de charge devient :

$$\sigma^{M} = \sqrt{8kT\varepsilon\varepsilon_{0}n^{0}} \sinh\left(\frac{ze}{2kT}\left(\phi_{0} - \frac{\sigma^{M}x_{2}}{\varepsilon\varepsilon_{0}}\right)\right)$$
(2.42)

La capacité est définie par l'équation (2.1) en arrangeant l'équation (2.42), nous obtenons la capacité de la double couche avec le modèle de Stern :

$$\phi_0 = \frac{\sigma^M x_2}{\varepsilon \varepsilon_0} + \frac{2kT}{ze} \operatorname{arsinh}\left(\frac{\sigma^M}{\sqrt{8kT\varepsilon \varepsilon_0 n^0}}\right)$$
(2.43)

Puis,

$$\frac{1}{C_d} = \frac{\phi_0}{\sigma^M} = \frac{x_2}{\varepsilon \varepsilon_0} + \frac{2kT}{ze\sigma^M} \operatorname{arsinh}\left(\frac{\sigma^M}{\sqrt{8kT\varepsilon \varepsilon_0 n^0}}\right)$$
(2.44)

En remplaçant k, z et e par la constante de Faraday⁶, la constante des gaz parfaits⁷ puis la concentration par la concentration molaire⁸, nous obtenons :

$$\frac{1}{C_d} = \frac{\phi_0}{\sigma^M} = \frac{x_2}{\varepsilon \varepsilon_0} + \frac{2RT}{F\sigma^M} \operatorname{arsinh}\left(\frac{\sigma^M}{\sqrt{8RT\varepsilon \varepsilon_0 c}}\right)$$
(2.45)

Ce résultat est aussi obtenu par Oldham (2008) pour un électrolyte liquide et une électrode en métal. Cependant celui-ci utilise une méthode différente pour obtenir ce résultat.

⁶
$$F = N_A \times e$$

⁷ $R = k \times N_A$
⁸ $c = \frac{n^0}{N_A}$

La capacité totale de la double couche avec les couches de Helmholtz et de Gouy-Chapman est équivalente à la mise en parallèle de deux condensateurs :

$$\frac{1}{C_d} = \frac{1}{C_H} + \frac{1}{C_{GC}}$$
(2.46)

Un calcul de la capacité surfacique en fonction de la densité de charge est fait avec un programme Matlab, voir Algorithme-A I-3. La Figure 2.5 présente le résultat du calcul de la capacité de la double couche avec le modèle de Stern, avec la capacité des couches de Helmholtz (tracé bleu) et Gouy-Chapman (tracé noir).

Figure 2.5 Capacité surfacique de la double couche avec le modèle de Stern et les couches de Helmholtz et Gouy-Chapman

Ensuite, seule la capacité du modèle de Stern est tracée, Figure 2.6.

Figure 2.6 Capacité surfacique de la double couche avec le modèle de Stern

En utilisant la relation suivante :

$$Q = C \times V \tag{2.47}$$

Cette relation lit la charge stockée, la capacité et la tension aux bornes du supercondensateur.

Un nouveau tracé est effectué avec la capacité en fonction de la tension et en ne prenant que la charge positive, Figure 2.7:

Figure 2.7 Capacité surfacique en fonction de la tension du modèle de Stern

Selon la Figure 2.7, la capacité surfacique est de $0.36 \text{ F} \cdot \text{m}^{-2}$ pour une tension de 0V. Ensuite la capacité est maximale lorsque la tension est de 2.7 V. Le modèle de la double couche électrique avec la modification de Stern nous donne une capacité qui varie selon un logarithme. Cependant pour notre étude nous devons obtenir la relation entre la capacité surfacique et la capacité totale du supercondensateur.

La relation associant la capacité avec notre équation (2.45) est la surface en m², ainsi l'équation (2.45) devient:

$$C = S \left[\frac{x_2}{\varepsilon \varepsilon_0} + \frac{2RT}{F \frac{Q}{S}} \operatorname{arsinh} \left(\frac{\frac{Q}{S}}{\sqrt{8RT\varepsilon \varepsilon_0 c}} \right) \right]^{-1}$$
(2.48)

Ou bien

$$C = \left[\frac{x_2}{\varepsilon \varepsilon_0 S} + \frac{2RT}{FQ} \operatorname{arsinh}\left(\frac{Q}{S\sqrt{8RT\varepsilon \varepsilon_0 c}}\right)\right]^{-1}$$
(2.49)

La surface S est obtenue par la relation suivante :

$$S = \frac{\text{Capacité du supercondensateur à 2.7V}}{\text{Capacité surfacique du modèle de Stern à 2.7V}}$$
(2.50)

Une valeur de la surface S est calculée pour obtenir 3000F à 2.7V, Figure 2.8:

Figure 2.8 Capacité en fonction de la tension avec le modèle de Stern

L'équation (2.49) est modifiée pour obtenir la tension aux bornes de l'électrode :

$$V = \frac{Qx_2}{\varepsilon \varepsilon_0 S} + \frac{2RT}{F} \operatorname{arsinh}\left(\frac{Q}{S\sqrt{8RT\varepsilon \varepsilon_0 c}}\right)$$
(2.51)

Nous avons vu dans la revue de littérature que plusieurs électrodes sont mises en parallèle dans les supercondensateurs, l'équation (2.51) est modifiée :

$$V = N \left(\frac{Qx_2}{N^2 \varepsilon \varepsilon_0 S} + \frac{2RT}{F} \operatorname{arsinh} \left(\frac{Q}{N^2 S \sqrt{8RT \varepsilon \varepsilon_0 c}} \right) \right)$$
(2.52)

Les supercondensateurs sont mis en parallèle et en série pour augmenter l'énergie stockée et la tension. L'équation (2.52) devient :

$$V = \frac{NN_sQx_2}{N_PN^2\varepsilon\varepsilon_0S} + \frac{NN_s2RT}{F} \operatorname{arsinh}\left(\frac{Q}{N_PN^2S\sqrt{8RT\varepsilon\varepsilon_0c}}\right)$$
(2.53)

Avec N_s le nombre de supercondensateurs en série, N_p le nombre de supercondensateurs en parallèle et N le nombre d'électrodes en parallèle. Cette formule sera par la suite utilisée pour modéliser la réponse du supercondensateur dans SPS.

2.4 Redistribution des charges

Lorsque le supercondensateur est chargé une perte de tension à ses bornes est observable. Peu de travaux ont été effectués sur ce sujet. Nous avons branché expérimentalement une source de tension aux bornes d'un module de supercondensateur, le courant et la tension du supercondensateur ont été mesurés, Figure 2.9.

Figure 2.9 Régulation à 48V d'un module de supercondensateur

La source de courant envoie un courant de 20A, puis quand la tension du module atteint 48V, le courant diminue. Ce courant à la forme d'une exponentielle négative. Un second essai a été effectué sur un supercondensateur de 650F, mais lors de cet essai lorsque la tension du supercondensateur atteint 2.7V, la source de courant arrête de fournir de l'énergie au supercondensateur. Pendant ce temps, la tension est mesurée aux bornes du supercondensateur, Figure 2.10.

Figure 2.10 Mesure de la tension du supercondensateur lors de la redistribution des charges

À une surtension, le supercondensateur revient à son potentiel d'équilibre suivant une exponentiel. L'équation de Tafel est utilisée pour définir ce sur-potentiel :

$$i(\eta) = i_0 \exp\left(\frac{\alpha \eta F}{RT}\right) \tag{2.54}$$

 η est le surpotentiel, le courant i est en A · m⁻², i₀ la densité de courant d'échange et α détermine la courbe de Tafel.

Pour le supercondensateur cette équation devient :

$$-i_{c}(t) = Si_{0} \exp\left(\frac{\alpha \eta(t)F}{RT}\right)$$
(2.55)

Un programme Matlab est créé pour calculer le courant de Tafel, la perte de charge et la réponse du supercondensateur lorsque ses bornes sont déconnectées, Algorithme-A I-4. Le résultat du calcul est obtenu à la Figure 2.11.

Figure 2.11 Tension du supercondensateur lors de la redistribution des charges avec l'équation de Tafel

La tension initiale est de 2.5V, la baisse de tension est plus importante pendant les 100 premières secondes. La tension suit une exponentielle négative, ce qui est identique à ce qui avait été mesuré. Il est à noter que la baisse de tension est moins importante lors de l'essai effectué avec le supercondensateur. Dans le chapitre suivant, les paramètres de l'équation de Tafel seront modifiés pour convenir à la réponse du supercondensateur.

Le second graphique correspond au courant calculé avec l'équation de Tafel, Figure 2.12:

Figure 2.12 Courant calculé avec l'équation de Tafel

Le courant de Tafel est plus important pendant les 20 premières secondes. Ce courant correspond à la plus forte baisse de la tension pendant les premières secondes.

Cette équation de Tafel sera programmée dans SPS pour simuler la baisse de la tension aux bornes des supercondensateurs lors de la redistribution des charges et quand le supercondensateur est au repos.

2.5 Conclusion

Ce chapitre a permis d'étudier le modèle de la double couche presque centenaire présenté par Stern en 1923. Cette équation est modifiée pour prendre en compte la multi-couches des électrodes et la mise en série et en parallèle des supercondensateurs. La seconde équation régie les pertes de charge qui peuvent survenir à l'intérieur du supercondensateur. Les paramètres de ces deux équations ne sont pas parfaitement connus. Lors des essais pratiques ces paramètres seront mesurés.

CHAPITRE 3

ÉTUDE DE L'EFFET DE SIGNAUX ALTERNATIFS SUR LE SUPERCONDENSATEUR

3.1 Effet sur le diélectrique

En prenant l'équation de Stern (2.45) en enlevant les constantes fondamentales, l'élément qui est modifié en fonction de la fréquence est le diélectrique de l'électrolyte. Le livre théorique de Raju (2003) expose l'effet de la fréquence sur le diélectrique, en particulier le chapitre 4. Lorsqu'un signal de fréquence est appliqué, la permittivité diélectrique de l'électrolyte change. La Figure 3.1 montre le diélectrique en fonction de la fréquence.

Figure 3.1 Diélectrique en fonction de la fréquence

Le diélectrique est la capacité d'un élément à faire passer un courant électrique. Plus celui-ci est faible plus le matériau devient un isolant.

Le diélectrique est composé d'une partie réelle et une partie imaginaire :

$$\varepsilon(\omega) = \varepsilon'(\omega) - j\varepsilon''(\omega) \tag{3.1}$$

Trois équations régissent le diélectrique en fonction de la fréquence. La première est la relaxation de Debye:

$$\varepsilon(\omega) = \varepsilon_{\infty} + \frac{\varepsilon_{s} - \varepsilon_{\infty}}{1 + j\omega\tau}$$
(3.2)

La seconde est appelée l'équation de Cole-Cole:

$$\varepsilon(\omega) = \varepsilon_{\infty} + \frac{\varepsilon_s - \varepsilon_{\infty}}{1 + (j\omega\tau)^{\alpha}}$$
(3.3)

La troisième est l'équation de Havriliak-Negami:

$$\varepsilon(\omega) = \varepsilon_{\infty} + \frac{\varepsilon_{s} - \varepsilon_{\infty}}{\left(1 + \left(j\omega\tau\right)^{\alpha}\right)^{\beta}}$$
(3.4)

Dans notre cas nous utilisons l'équation de Debye, puisque les deux équations suivantes sont utilisées pour le diélectrique des polymères, $\alpha = 1$ et $\beta = 1$. Ensuite suivant les études de Kotz, Hahn, et Gallay (2006) et Buller et al. (2002), la capacité est nulle au delà de quelques dizaines de Hz, un calcul de limite avec l'équation de Stern (2.45) est fait. La première limite est le diélectrique:

$$\lim_{\omega \to \infty} \mathcal{E}_{\infty}(\omega) = 0 \tag{3.5}$$

Il vient :

$$\lim_{\omega \to \infty} \varepsilon(\omega) = 0 \tag{3.6}$$

Ensuite la limite de l'équation de Stern :

$$\lim_{\omega \to \infty} \left[\frac{1}{C} = \frac{x_2}{\varepsilon(\omega)\varepsilon_0} + \frac{2RT}{F\sigma^M} \operatorname{arsinh}\left(\frac{\sigma^M}{\sqrt{8RT\varepsilon(\omega)\varepsilon_0 c}}\right) \right]$$
(3.7)

Puis,

$$\lim_{X \to 0} \operatorname{arsinh}(X) = 0 \tag{3.8}$$

La limite de l'équation de Stern devient :

$$\lim_{\omega \to \infty} C = \frac{\varepsilon(\omega)\varepsilon_0}{x_2} = 0$$
(3.9)

Ceci est concordant avec la capacité en fonction de la fréquence donnée par Kotz, Hahn, et Gallay (2006). La capacité et la résistance mesurées par les auteurs sont exposées à la Figure 3.2.

Figure 3.2 Capacité et résistance en fonction de la fréquence Tirée de Kotz, Hahn, et Gallay (2006, p. 552)

Pour utiliser l'équation (3.2) afin d'obtenir la capacité en fonction de la fréquence avec l'équation (2.45), il est nécessaire de connaitre la valeur du diélectrique entre les fréquences 0Hz et 10Hz ainsi que τ la constante de relaxation. L'équation de Debye a été programmée avec Matlab. Puis le paramètre τ sera par la suite modifié pour que la réponse soit identique

à la publication de Kotz, Hahn, et Gallay (2006). Le programme fait avec Matlab est Algorithme-A I-5. Le résultat du calcul est obtenu à la Figure 3.3.

Figure 3.3 Diélectrique en fonction de la fréquence

La courbe bleu est la partie réelle et la courbe verte est la partie imaginaire suivant l'équation (3.1). La permittivité diélectrique commence à 68 lorsque la fréquence est faible, puis la partie réelle tend vers zéro lorsque la fréquence augmente. La partie imaginaire peut être exprimée comme une perte.

La partie suivante a pour but de mettre l'équation de la relaxation de Debye avec l'équation de Stern.

3.2 Effet sur la capacité

Les équations (3.2) et (2.45) ont été programmées avec un programme Matlab, Algorithme-A I-6. Les paramètres de l'équation (3.4) utilisés sont les suivants, $\alpha = 0.01$, $\beta = 1$ et $\tau = 0.15$. Les résultats obtenus sont à la Figure 3.4.

Figure 3.4 Capacité calculée en fonction de la fréquence

Les capacités mesurées par Rafik et al. (2007) sont à la Figure 3.5.

Figure 3.5 Capacité en fonction de la fréquence Tirée de Rafik et al. (2007, p.931)

Les capacités calculées avec l'équation de Stern et la relaxation de Debye se rapprochent des mesures effectuées par Rafik et al. (2007). Les différences peuvent provenir des paramètres de l'équation de la relaxation de Debye, en les modifiant il est possible de mieux corréler les mesures, des essais expérimentaux doivent être entrepris pour obtenir les valeurs exacts de la capacité pour chaque fréquence.

Ces courbes nous renseignent que la capacité baisse très fortement lorsque la fréquence augmente. Dès 1 hertz la capacité est divisée par trois. Selon l'équation (2.1), La capacité est définie par le stockage des charges en réponse à une perturbation de potentiel. En augmentant la fréquence du signal d'entrée du supercondensateur celui-ci perd de sa faculté à stocker la charge, de ce fait il perd aussi sa faculté à stocker de l'énergie, équation (2.2).

3.3 Effet sur la résistance

La résistance est obtenue en calculant la conductance du supercondensateur. Je n'ai pas trouvé de formule donnant la conductance du supercondensateur, mais seulement une relation en fonction de la fréquence donnant la conductivité. Cette relation est obtenue de la publication de Fannin et al. (2002), elle est égale à :

$$\sigma_{ac}^* = \sigma' + j\sigma'' \tag{3.10}$$

$$\sigma_{ac}^* = j\omega\varepsilon_0\varepsilon^* \tag{5.11}$$

(2 11)

(2, 1, 2)

$$\sigma_{ac}^* = j\omega\varepsilon_0(\varepsilon' - j\varepsilon'') \tag{3.12}$$

$$\sigma_{ac}^* = \omega \varepsilon_0 \varepsilon'' + j \omega \varepsilon_0 \varepsilon'$$
(3.13)

La conductivité possède une partie réelle et une partie imaginaire. La conductance totale du supercondensateur est égale à :

$$\sigma_{totale} = \sigma_{\acute{e}lectrode} + X\sigma' \tag{3.14}$$

σ' doit être multiplié par la surface, pour obtenir des siemens (S). Cette surface est obtenue en prenant la résistance donnée par la documentation technique du constructeur sur les supercondensateurs. Dans notre cas nous utilisons la publication de Kotz, Hahn, et Gallay (2006) et la Figure 3.2. Ainsi pour un courant de 0.1Hz, la résistance est de $1.8e^{-3}\Omega$, soit une conductance de 555.55S. Pour une fréquence de 100Hz, la résistance est de $0.8e^{-3}\Omega$, soit 1250S. Ce qui nous donne la relation suivante:

$$\sigma_{100hz} = \sigma_{\acute{e}lectrode} + X \varepsilon_0 \varepsilon'' \omega_{100hz}$$
(3.15)

$$1250 = 555.55 + X\varepsilon_0 \varepsilon'' \omega_{100hz}$$
(3.16)

$$X = \frac{1250 - 555.55}{\varepsilon_0 \varepsilon'' \omega_{100hz}}$$
(3.17)

 ε " est la partie imaginaire de l'équation de relaxation de Debye pour 100Hz. Dans notre cas, nous obtenons une valeur de X = 1.157416666e¹¹m. Cette surface est purement théorique pour que la relation puisse être utilisée. Un programme Matlab est utilisé pour obtenir les valeurs de la conductance en fonction de la fréquence, Algorithme-A I-7. La conductance obtenue est présentée à la Figure 3.6.

Figure 3.6 Conductance en fonction de la fréquence

La résistance est obtenue en calculant l'inverse de la conductance, voir Figure 3.7.

Figure 3.7 Résistance en fonction de la fréquence

En comparant avec la mesure effectuée par Kotz, Hahn, et Gallay (2006), la résistance calculée possède quelques différences. Pour obtenir une corrélation plus importante il est nécessaire de recalculer les paramètres des équations (3.4) et (3.14). Les principales différences sont:

- premièrement, il y a un changement de résistance rapide de la résistance entre 0.9 Hz et 0.01Hz, qui n'est pas modélisé avec l'équation;
- deuxièmement, à la fréquence de 1kHz, la résistance calculée n'est pas identique à la résistance mesurée par Kotz, Hahn, et Gallay (2006), $0.95m\Omega$ au lieu de $0.8m\Omega$.

3.4 Effet sur l'impédance

Pour tracer le plan de Nyquist il est nécessaire d'obtenir la partie réelle et imaginaire de l'impédance du supercondensateur. La partie réelle est prise avec l'équation (3.15), la partie imaginaire est égale à :

$$Z = \frac{1}{jC\omega}$$
(3.18)

Nous avons vu précédemment que le diélectrique possède une composante réelle et imaginaire. Il en découle une partie réelle et imaginaire pour la capacité. L'impédance du condensateur avec la partie réelle et imaginaire est :

$$Z = \frac{1}{j\omega(C'+jC'')} \tag{3.19}$$

Ensuite,

$$Z = \frac{1}{jC'\omega - C''\omega}$$
(3.20)

$$Z = \frac{jC' + C''\omega}{(jC'\omega - C''\omega)(jC'\omega + C''\omega)}$$
(3.21)

Soit :

$$Z = \frac{C''\omega}{-C'^2\omega^2 - C''^2\omega^2} + j\frac{C'\omega}{-C'^2\omega^2 - C''^2\omega^2}$$
(3.22)

Seule la partie imaginaire est prise, la partie réelle n'est pas considérée.

Un programme Matlab est créé pour calculer le plan de Nyquist, les données de la publication de Kotz, Hahn, et Gallay (2006) sont prises comme référence, voir Algorithme-A I-8. La capacité en fonction de la fréquence obtenue est à la Figure 3.8.

Figure 3.8 Capacité en fonction de la fréquence

La résistance calculée est la Figure 3.7.

L'impédance calculée est à la Figure 3.9.

Figure 3.9 Tracé de Nyquist du supercondensateur

Le tracé obtenu par la mesure de Kotz, Hahn, et Gallay (2006) est la Figure 1.8. Le tracé calculé modélise bien le comportement du supercondensateur lors des bases fréquences et la pente de 45°. L'erreur sur les hautes fréquences est due au calcul de la résistance, la résistance minimale calculée est de $0.95m\Omega$ au lieu de $0.8m\Omega$, ce qui a pour effet une partie imaginaire nulle alors que la partie réelle est égale à $0.95m\Omega$.

3.5 Conclusion

Ce chapitre donne une bonne idée du comportement du supercondensateur lorsque des signaux alternatifs sont appliqués à ses bornes. Le résultat est une baisse de la charge stockée. Cependant ce travail peut être continué, des essais pratiques plus nombreux doivent être effectués pour valider cette théorie. De plus le calcul de la résistance doit être revu, la relation (3.15) n'est pas optimale et suivant l'équation (3.22) une composante réelle a été négligée. Le calcul fait avec cette formule indique qu'elle a le même tracé suivant la fréquence que le tracé de la résistance en fonction de la fréquence. Cependant les valeurs ne sont pas identiques.

Il est vraisemblable qu'il y ait une même formule liant la capacité et la résistance en fonction de la fréquence pour un supercondensateur.

Toujours, selon l'équation (2.1), La capacité est définie par le stockage des charges en réponse à une perturbation de potentiel. Un taux d'efficacité de stockage de l'énergie suivant la fréquence du signal de chargement peut-être défini. Ce taux est :

$$\eta = \frac{C_{\omega}}{C_{dc}} \tag{3.23}$$

Le résultat calculé est à la Figure 3.10.

Figure 3.10 Efficacité du stockage suivant la fréquence

Le taux d'efficacité va de 1 à 0. Cependant des essais pratiques plus approfondis doivent être effectués pour valider ce taux.

La principale information à retenir est que le signal de stockage du supercondensateur doit être continu pour tirer le maximum de capacité de stockage. Ce principe est appliqué avec les convertisseurs du domaine du génie électrique, en particulier les hacheurs élévateurs et abaisseurs utilisés avec les supercondensateurs. Dans les prochaines parties et lors du développement de l'équation de Stern dans SPS les signaux sont toujours considérés comme continus, il n'y a pas de prise en compte du changement de la capacité suivant la fréquence du signal.

CHAPITRE 4

PROGRAMMATION DE L'ÉQUATION DE STERN ET DE TAFEL DANS SPS

4.1 Présentation de SPS

SimPowerSystems (SPS) est une boite à outils (toolbox) de Simulink. Simulink est une composante du logiciel Matlab. Les blocs de SPS sont développés par TransÉnergie Technologie Inc. de Hydro-Québec.

SPS inclut des moteurs électriques, des convertisseurs de puissances et des éléments de stockage d'énergie, telles que les batteries NiMH, lithium, plomb et cadmium. Olivier Tremblay, Dessaint, et Dekkiche (2007) développèrent les modèles de batteries pour SPS. Ces modèles sont génériques, mais ils peuvent être modifiés par l'utilisateur afin d'obtenir un gabarit qui correspond à son application.

Figure 4.1 Librairie de SPS

SPS inclut aussi des éléments du domaine électrique plus simple tel que des résistances, inductances, capacités et des charges électriques.

4.2 Utilisation d'une source de tension contrôlée

La modélisation de la tension du supercondensateur est faite avec une source de tension contrôlée. SPS présente deux sources contrôlées, la seconde est une source de courant. Ce choix est fait car l'équation (2.53) donne la tension du supercondensateur en fonction de la charge stockée. Cette charge est obtenue en intégrant le courant :

$$Q(t) = \int i(t)dt \tag{4.1}$$

De plus Tremblay, Dessaint, et Dekkiche (2007) utilisent la source de tension de SPS pour modéliser la réponse des batteries.

Pour utiliser la source de courant de SPS, l'équation du courant à utiliser est la suivante :

$$i_c = \frac{dQ}{dt} = \frac{dC \times v}{dt}$$
(4.2)

Ensuite nous obtenons⁹ :

$$i_c = C\frac{dv}{dt} + v\frac{dC}{dt}$$
(4.3)

Cette formule présente deux dérivés, elles augmentent les erreurs de calcul du logiciel, ce qui conforte le choix de la source de tension.

70

⁹ (uv)' = u'v + uv'

Figure 4.2 Sources de tension et de courant de SPS

4.3 **Programmation des équations dans SPS**

Le modèle équivalent utilisé avec la source de tension contrôlée est à la Figure 4.3.

Figure 4.3 Modèle équivalent électrique du supercondensateur

Les paramètres de l'équation (2.53) utilisés sont les suivants :

- ε est égale à 68, l'électrolyte considéré est du carbonate de propylène à 25°C, voir Huck et al. (1982),
- c, la concentration molaire, suivant l'auteur Oldham (2008), la concentration est égale à :

$$c = \frac{1}{8N_{A}r^{3}} \times 0.86 \tag{4.4}$$

- avec r le rayon moléculaire, dans un premier temps nous prenons r=1nm,
- x2, distance de la couche de Helmholtz, pris toujours égale au rayon moléculaire.

Les paramètres de l'équation (2.55) utilisés sont les suivants :

- i0, pris égale à $\frac{if}{S}$, avec if le courant de fuite pris dans les documents techniques des constructeurs,
- η le sur-potentiel pris égale à 0.2V,
- α égale à 1 dans un premier temps.

Les paramètres de l'équation de Tafel et de l'équation de Stern seront par la suite modifiés.

Figure 4.4 Source de tension contrôlée et résistance

Les bornes V+ et V- sont les bornes SPS. Elles sont différentes des connecteurs de Simulink et de Simscape. La résistance Rdc modélise la chute de tension qui se créée aux bornes du supercondensateur. Le courant est mesuré pour calculer la charge avec une intégrale, voir Figure 4.5.

Figure 4.5 Calcul de la charge et sous programme de l'équation de Stern

Le courant est intégré, puis la valeur maximale et minimale est comparée avec la charge calculée (bloc saturation dynamic). Les bornes de la charge sont, une valeur minimale de 0.1C et une valeur maximale suivant le nombre de supercondensateurs mis en série, en parallèle et de la valeur maximale de la tension renseignée.

Une charge initiale est ajoutée (bloc Qinit), elle modélise la tension initiale du supercondensateur au démarrage de la simulation. Le bloc Isd est le courant calculé avec l'équation de Tafel, le signe est négatif car elle représente une perte de charge dans le supercondensateur.

L'équation de Stern est programmée dans le sous système nommé Modèle de Stern.

S est la surface active des électrodes. Cette valeur de S est calculée avec un programme au démarrage de la simulation en appliquant la formule (2.50). Ce programme est dans le Mask editor du programme de SPS. Le programme pour le calcul de S est le suivant, Algorithme 4.1 :

q=1.60217656e-19;	% Charge élémentaire			
T=273.15+Temp;	% Température en kelvin			
K=1.3806503e-23;	% Constante de Boltzmann			
epsilon0=8.854187e-12;	% Permittivité du vide			
epsilonR=68;	% Permittivité de la solution			
epsilon=epsilon0*epsilonR;	% Permittivité relative			
R=8.314472;	% Constante des gaz parfaits j.k^-1.mol^-1			
F=96485.3383;	% Constante de faraday C.mol^-1			
L=6.02214199e23;	% Nombre d'Avogadro mol^-1			
qx(1)=0.0001;	% Initialisation de la charge			
Vtotx=0;	% Initialisation de la tension			
Cinner=epsilon/r;	% Couche de Helmholtz			
c=(1/(8*L*r^3))*0.8653846	15; % Concentration molaire			
Qinit1=0;				
for k=1:1:50000				
if Vtotx<=(Voltage)				
$qx(k+1)=qx(k)+(0.00005)$; %charge d une électrode en C.m^2;				
%Calcul de la capacite				

Algorithme 4.1 Programme d'initialisation du modèle

L'équation de Stern avec Simulink est programmée, voir Figure 4.6.

Figure 4.6 Programmation de l'équation de Stern sous Simulink

Les constantes fondamentales sont renseignées, ainsi que les paramètres renseignés par l'utilisateur. La tension V est calculée et cette valeur est envoyée à la source de tension contrôlée.

La programmation de l'équation de Tafel est effectuée dans un sous-programme Matlab. Il est possible avec Simulink d'intégrer un programme Matlab, voir Figure 4.7.

Figure 4.7 Programme Matlab dans Simulink

Les paramètres de l'équation de Tafel sont mis en entrée du programme, la sortie Isd est le courant calculé, Vinits et Ir1 sont utilisés pour mémoriser la tension et le courant.

La programmation de l'équation est, Algorithme 4.2 :

```
Algorithme 4.2 Programmation de l'équation de Tafel
```

```
function [Isd, Vinits, Ir1] = fcn(I, Ir, V, Temp, If, Q, X, Vinit, Np, Ns, Nc)
%%»»»Tafel equation««%%%
i0=(If)/(X); %i0 densité de courant en A.m^-2
R=8.314472; %constante des gaz parfaits
T=273.15+Temp; %température en kelvin
F=96485.3383; %constante de faraday
alpha=0.3; % coefficient de transfert
if Vinit==0
  Vinit=V;
end
if (Q>0.1) && (I==0)
  if Ir>0
     Isd=(((i0*exp((alpha*((V/Ns)-((Vinit/Ns)-
(0.3)))*F)/(R*T)))*(X))*Nc*Ns)/Np;
     Vinits=Vinit;
     Ir1=10;
  else
     Isd=(((i0*exp((alpha*((V/Ns)-((Vinit/Ns)-
0.3))*F)/(R*T)))*(X))*Nc*Ns)/Np;
     Vinits=Vinit;
     Ir1=-10;
  end
else
  Isd=0;
  Vinits=V;
  Ir1=I;
end
```

Les paramètres du modèle de supercondensateur sont renseignés par l'utilisateur à l'aide de la fenêtre Simulink, voir Figure 4.8.

Block Parameters: Supercondensateur	X
- Supercondensateur Supercapacitor (mask)	
Implements a generic supercapacitors model that model electric double layer.	
Parameters Charge plot	
Rated Capacitance (F)	
99.48	
Internal Resistance DC (ohm)	
7.5e-3	
Rated Voltage (V)	
48.08	
Temperature (°C)	
25	
Surge Voltage (V)	
2.85*18	
Number of serie capacitor (N*)	
18	
Number of parallele capacitor (N*)	
1	
Initial voltage (V)	
0	
Leakage current (A)	
3e-3	
Number of layer (N*)	
8	
Spheres of radius (m)	
1.9e-9	
OK Cancel Help App	ly

Figure 4.8 Paramètres d'entrée du modèle de supercondensateur

La plupart des paramètres sont obtenus d'une documentation technique d'un constructeur de supercondensateur, ANNEXE VI, Tableau 4.1, Figure 4.9, Figure 4.10, Figure 4.11.

Paramètres	Donnée obtenues		
Rated capacitance, capacité à la tension	Documentation constructeur		
maximale d'un supercondensateur			
Internal resistance DC, résistance dc	Documentation constructeur		
Rated Voltage, tension d'un	Documentation constructeur		
supercondensateur			
Temperature, température de	Température nominale de 25°C		
fonctionnement			
Surge voltage, tension de dégradation de	Documentation constructeur		
l'électrolyte			
Number of serie capacitor, nombre de	Utilisateur suivant son système		
supercondensateur en série			
Number of parallel capacitor, nombre de	Utilisateur suivant son système		
supercondensateur en parallèle			
Initiale voltage, tension initiale du	Utilisateur suivant son système		
supercondensateur			
Leakage current, courant de fuite	Documentation constructeur		
Number of layer, nombre de couche	Valeur par défaut		
d'électrode			
Spheres of radius, rayon moléculaire	Valeur par défaut		

Tableau 4.1 Explication des paramètres du modèle pour SPS

DATASHEET K2 SER	IES ULTRACAP	ACITORS	and the second
de la companya de la			
FEATURES AND BENEFITS Highest power performance	> Automotive sub	CATIONS systems	Block Parameters: Supercondensateur
available > Grid Stabilization			Supercondensateur Supercapacitor (mask)
 Covest RCtime constant Over 1,000,000 duty cycles Proprietary material science and packaging technology 	 Hybrid drive trai Rail system pow Transportation 	Implements a gereric supercapacitors model that model electr double layer.	
> Threaded terminal or	> Utility vehicles		Parameters Charge plot
weldable posts			Rated Capacitance (F)
			> 650
PRODUCT SPECIFICAT	IONS		Internal Resistance DC (ohm)
	BCAP0650	BCAP1200	8.8e- 3
Rafed Capacitance ¹	650	1,200 F	Rated Voltage (V)
Minimum Capacitance, initial*	650 F	1,200 F	2.7
Maximum ESR _{ecc} initial ¹	0.8 mΩ	0.58 mΩ	Temperature (°C)
Rated Voltage	270∨	270V	
Absolute Maximum Voltage ¹¹	2.85 V	<u>2.85</u> V	[23
AT = 18°C) ²	54 Auro	70 A ₄₁₂	Surge Voltage (V)
Maximum Continuous Current (AT = 49°C) ^e	88 A _{mms}	110 A _{sees}	2.85
Naximum Peak Current,	600 A	1,00CA	Number of serie capacitor (N*)
1 second (non repetitive)	15 mÅ	27 má	L <mark>1</mark>
TEMPERATURE	1221185	2.7 INCS	Number of parallele capacitor (N*')
Operating temperature range			1
(Cell case (emperature)			Initial voltage (V)
istumunti, jatu Massimuuse	-460	-40%	0
Storage temperature range Bosed unchanged)	0.20	84.0	L Leakage current (A)
Minimum	-4@C	-40°C	1.5e-3
Maximum	70°C	70°C	Assertion of losser (81%)
PHYSICAL			
Mass, typical	160 g	260 g	
Terminals:	Threaded or Weldable	Threaded or Weldable	Spheres of radius (m)
Naximum Terminal Torque (K04)	14 Nm	14 Nm	1.23e-9
			OK Cance Help Apply
Page 1 5 Document number: 10153	70.3 > maxwell.com		Enabling Energy's Future"

Figure 4.9 Déduction des paramètres du modèle avec une documentation constructeur

Les paramètres qui ne sont pas obtenus de la notice sont en vert et violet.

Pour un module de supercondensateur les paramètres à renseigner deviennent, Figure 4.10 :

Figure 4.10 Déduction des paramètres du modèle avec une documentation constructeur pour un module

Le nombre de supercondensateurs en série est obtenu par la relation suivante :

$$N_s = \frac{\text{Tension du module}}{2.7} \tag{4.5}$$

La tension réelle du module est égale à 16.2V.

Pour le nombre de branche en parallèle, il faut se référer par rapport aux cellules du manufacturier. Dans notre cas la cellule est de 350F, car :

$$N_s = \frac{350}{58} = 6 \tag{4.6}$$

Le nombre de branche est égal à 1 dans le cas de la Figure 4.10.

Pour la variation de la capacité et de la résistance en fonction de la température, l'utilisateur doit modifier ses paramètres de capacité et de résistance comme indiqué dans la documentation technique, voir Figure 4.11.

		🖬 Block Parameters: Supercondensateur 🛛 🛛 🕅
	Supercondensateur Supercapacitor (mask)	
	Implements a generic supercanacitors model that model electric	
	double layer.	
TYPICAL CHARACTERISTICS		Parameters Charge plot
THERMAL CHARACTERISTICS BCAP0650	BCAP1200 E	Rated Capacitance (F)
Therma Resistance (Rih, Case to e service	5.2000	650
Ambient), typicaF	0.5 4 10	
Thermal Capacitance (C _a), typical ² 190 JPC	300 JPC	Internal Resistance DC (ohm)
ESRAND CAPACITANCE VS TEMPERATURE		0.8e-3*1.25
Department		Rated Voltage (V)
8795		2.7
		Temperature (90)
Net.		-20
80%		
5 mm		Surge Voltage (V)
Take		2.85
1976		Number of serie capacitor (N*)
80%		1
-68 40 -20 6 20 49 68 89 Texasingnetty		Number of perplicie consciter (N*)
NOTES		
1. Consolitance and ESP, magnumed at 26% per	8 B -	
Document Number 100/239 available at	$6.P_{eval} = -4$	Inital voltage (V)
www.maxwell.com.	7. E=	0
 Per Maxwell Document 1007239 available at 	3.6	Leakage current (A)
www.maxwell.com.	8. $E_{stand} = \frac{72}{3.6}$	1.5e-3
3. Maximum Peak current (1 sec) = <u>72 CV</u> Cx B3R ₂ + 1	9. Oxde per l	Number of lange (018)
4. After 72 hours at 25°C and rated voltage. Initial	WWW.MBK	Number of layer (N*)
leakage-current can be higher.	10. No more ti	6
5. Per IEC 62391-2. $P_{c} = 0.12V^{c}$	minimum i	Spheres of radius (m)
ESR _{bc} x mass	11. Absolute n	1.23e-9
	exceed 1 s	
MOUNTING RECOMMENDATIONS	MARKINGS	
Do not reverse palarity. Please refer to document	Products are n	
number 1016419, axallable at maxwell.com for welding.	Rated capacita	nce, raied voltage, product number, factures positive terminal warning
THE ADDITITURE RACE BORDS.	marking, serial	number.
	-	
Page 3 > Document number: 1015370.3 > maxvell.com		Enabling Emergy's Future

Figure 4.11 Déduction des paramètres du modèle avec une documentation constructeur pour une température donnée

À noter que lors des tests expérimentaux, CHAPITRE 7, le modèle a été testé que pour une température ambiante.

Deux paramètres (Number of layer et Spheres of radius, violet) ne sont pas obtenus par la documentation technique. Une valeur par défaut peut être proposée pour l'utilisateur. Pour le mémoire ces deux paramètres sont mesurés lors des essais expérimentaux, voir 7.2.2.

Le résultat obtenu pour une charge et décharge du supercondensateur est à la Figure 4.12.

Figure 4.12 Tension obtenue avec le modèle

Figure 4.13 Créneau de courant de charge et décharge

Avec le modèle nous obtenons une réponse en tension. Il est nécessaire d'affiner les paramètres du modèle pour qu'ils correspondent aux supercondensateurs pour améliorer la réponse du modèle de SPS.

4.4 Conclusion

Ce chapitre a présenté la programmation de l'équation de Stern et de Tafel dans SPS. La charge est obtenue en intégrant le courant, l'équation de Stern et de Tafel sont programmées avec l'aide de Simulink et Matlab. Le chapitre suivant concerne la modélisation thermique du supercondensateur.

CHAPITRE 5

MODÈLE ÉQUIVALENT THERMIQUE DU SUPERCONDENSATEUR

5.1 Modèle équivalent thermique

Le modèle équivalent thermique proposé par Al Sakka et al. (2009) est à la Figure 5.1.

Figure 5.1 Modèle équivalent thermique Tirée de Al Sakka et al. (2009, p. 584)

Les paramètres du modèle équivalent sont :

- P, les pertes par effet joules en W,
- Ta, la température ambiante en K,
- Cth, la capacité thermique en $J \cdot W^{-1}$,
- Reconvection, la résistance convective en $K \cdot W^{-1}$,
- Rth, la résistance thermique de conduction en $K \cdot W^{-1}$,
- T, la température de surface du supercondensateur en K.

Les pertes par effet joule sont obtenues avec l'équation (1.4).

5.2 Présentation de Simscape thermal

La programmation est faite avec le « Thermal » de la « Foundation libraries » de Simscape. Cette librairie sert à modéliser les effets thermiques. Les particularités de Simscape est qu'il est nécessaire de déclarer les unités pour qu'il puisse fonctionner. La deuxième particularité est qu'il est possible de créer des blocs en programmant en langage Simscape. Cependant cette partie ne sera pas développée. Les blocs de la librairie se présentent tel que :

🖬 L	ibra	ry: fl_	_lib/The	rmal		
File	Edit	View	Format	Help		
	т	hermal	Elements]	Thermal Sensors	Thermal Sources
	6				-	1 1 2

Figure 5.2 Librairie de Simscape

Les éléments de « Thermal elements » sont :

🙀 Library: fl_lib/Thermal/Ther	mal Elements		
File Edit View Format Help			
∎- न्र्≣ि ि∎ Conductive Heat Transfer	∎-∜য়েয়াটান Convective Heat Transfer ⊒	e-Aje e Radiative Heat Transfer ■ Thermal Reference	Thermal Mass

Figure 5.3 Éléments thermique de Simscape

Les éléments utilisés sont : « Conductive Heat Transfert », « Convertive Heat Transfer », « Thermal Mass » et « Thermal Reference ».

Les éléments de « Thermal Sensors » sont :

Figure 5.4 Éléments thermiques de capteurs Simscape

Seul le capteur de température est utilisé.

Les éléments de « Thermal Sources » sont :

Figure 5.5 Éléments thermiques de source de chaleur Simscape

Les deux éléments sont utilisés. « Ideal Temperature Source » est utilisée pour modéliser la température ambiante et « Ideal Heat Flow Source » est utilisée pour modéliser la perte par effet joule.

5.3 **Programmation du modèle équivalent avec Simscape**

Dans la publication de Al Sakka et al. (2009), les auteurs utilisent deux supercondensateurs pour mesurer la température, le premier de 1500F et le second de 310F. Ces supercondensateurs ont la particularité de posséder trois thermocouples pour mesurer la température. Ces thermocouples ont été intégrés par Maxwell lors de la fabrication.

Le modèle du premier supercondensateur est, Figure 5.6:

Figure 5.6 Modèle équivalent thermique du supercondensateur de 1500F

Le second est, Figure 5.7:

Figure 5.7 Modèle équivalent thermique du supercondensateur de 310F

Les éléments caractéristiques des modèles sont pris de la publication Al Sakka et al. (2009, p.584, Table 2).

5.4 Comparaisons des résultats obtenus avec le modèle et la publication

Premièrement le supercondensateur de 310F, l'élévation de température obtenue est, voir Figure 5.8. Le courant est considéré égal à 30A pendant 2800s, puis égale à 0A.

Figure 5.8 Évolution de la température du supercondensateur 310F avec Simscape

Figure 5.9 Évolution de la température du supercondensateur de 310F Tirée de Al Sakka et al. (2009, p.584)

Il y a une différence entre la simulation faite avec Simscape et l'essai fait par Al Sakka et al. (2009). Ces différences proviennent de la résistance, lors de la simulation avec Simscape cette donnée ne varie pas. Alors que la valeur de la résistance mesurée par Al Sakka et al. (2009) change en fonction de la température, voir Figure 5.10.

Figure 5.10 Résistance en fonction de la température du supercondensateur de 310F mesurée par Al Sakka et al. (2009)

Le second supercondensateur utilisé par Al Sakka et al. (2009) est de valeur de 1500F. En utilisant les paramètres donnés, le résultat de la simulation Simscape est, voir Figure 5.11.

Figure 5.11 Évolution de la température du supercondensateur de 1500F avec Simscape

Les mesures faites par Al Sakka et al. (2009) sont, voir Figure 5.12.

Figure 5.12 Évolution de la température du supercondensateur de 1500F Tirée de Al Sakka et al. (2009, p. 585)

La simulation faite avec Simscape ne concorde pas à l'essai fait par les chercheurs. Cette erreur provient de la résistance qui est trop élevée.

Malgré les différences entre les simulations Simscape et les essais effectués par Al Sakka et al. (2009) le modèle proposé par les auteurs convient pour une modélisation thermique.

La différence entre nos simulations et les essais proviennent de la valeur de la résistance qui est donnée que pour une température, alors que cette résistance varie en fonction de la température. Pour obtenir de meilleures réponses, il faudrait varier la résistance suivant la température du supercondensateur, voir Figure 5.10.

5.5 Données de la documentation du constructeur

Les simulations précédentes ont été effectuées avec les paramètres données par Al Sakka et al. (2009). Pour calculer la température lors du fonctionnement d'un supercondensateur il est nécessaire de connaître les résistances et la capacité thermique. Ces paramètres sont donnés dans la documentation technique de Maxwell sur les supercondensateurs. L'exemple suivant est un module de 48V, voir Figure 5.13.

Figure 5.13 Résistance et capacité thermique d'un module de 48V Tirée du document 1009365.11 de Maxwell

Pour utiliser le modèle proposé par Al Sakka et al. (2009), la résistance à utiliser est R_{ca} et la capacité C_{th} . Pour utiliser les résistances R_{cm} et R_{ma} chaque supercondensateur doit être considéré séparément. Le modèle équivalent doit être reconsidéré.

5.6 Conclusion

Ce chapitre a présenté un modèle équivalent thermique pour calculer la température du supercondensateur lors de son fonctionnement. D'autres modèles peuvent être utilisés, Johansson et Andersson (2008) présentent un autre modèle équivalent thermique. Ce modèle ne prend pas en compte la convection et il a la particularité de présenter deux capacités thermiques. Les auteurs ont utilisé ce modèle pour les modifications de température rapide et plus longue dans le temps.

Le couplage entre le modèle thermique et le modèle électrique nécessite des travaux de recherche plus approfondis. Premièrement la modification de la résistance est facilement envisageable par une table de valeur dans Simulink. Deuxièmement la difficulté vient du modèle de Stern et de l'équation de Tafel, des travaux plus approfondis sont nécessaires. Un premier travail est effectué sur la modification de la température avec le modèle de Stern à l'ANNEXE V. Ce travail met en lumière de nouvelle problématique.

La principale information de ce chapitre est que la constante de temps thermique du supercondensateur est très importante, celle-ci est de plusieurs heures.

CHAPITRE 6

BANCS D'ESSAI DE TEST POUR LES SUPERCONDENSATEURS

Deux bancs d'essais ont été construits afin de valider le modèle de supercondensateur. Les deux bancs d'essais sont contrôlés avec Labview et une carte NI6009 PCI de National Instruments (NI). Le but des bancs d'essais est de valider ou d'invalider le modèle développé dans SPS.

6.1 Premier banc d'essai

Le premier banc d'essai a pour but de caractériser le supercondensateur, le fonctionnement repose sur un transistor bipolaire en fonctionnement linéaire commandé par une sortie analogique de la carte NI. Une carte a été développée avec l'aide de Altium designer. Pour les schémas de Altium, la liste du matériel et les programmes Labview voir ANNEXE II.

Le fonctionnement est le suivant. Un transistor bipolaire est commandé par une sortie analogique de la carte NI. Ce transistor fonctionne en fonctionnement linéaire. Un optocoupleur et un amplificateur opérationnel se chargent de transformer la tension en courant. La consigne est appliquée grâce à Labview. Pendant le fonctionnement, le courant et la tension du supercondensateur sont mesurés. Lorsque la tension atteint la tension maximale du supercondensateur (2,5V ou 2,7V), la sortie devient égale à zéro, ainsi le courant est nul. Les valeurs de la tension et du courant en fonction du temps sont exportées au format excel pour être comparées avec les simulations SPS.

6.2 Deuxième banc d'essai

Le second banc d'essai répond à la demande pour effectuer des chargements et des déchargements. Le second banc d'essai est un convertisseur DC/DC deux quadrants, voir Figure 6.1.

Figure 6.1 Schéma du deuxième banc d'essai

Le déchargement s'effectue dans une résistance. Les drivers de MOSFET sont réalisés grâce à une carte développée par le GREPCI. Les cartes sont contrôlées avec Labview, un nouveau programme a été développé, voir ANNEXE III.

Il est à noter que l'utilisation de Labview n'est pas optimale pour le bon fonctionnement du banc d'essai. Le temps d'exécution de la boucle while principale est long. Le temps d'exécution est de plusieurs millisecondes. Il en résulte un temps de réponse de Labview long pour modifier le rapport α . L'erreur de courant entre la consigne et le courant réel est importante.

6.3 Incertitudes de mesure des capteurs

L'incertitude sur les capteurs est une composante à ne pas négliger. Lorsque l'erreur entre les mesures effectuées et les simulations seront calculées, l'incertitude des capteurs sera présente.

Deux capteurs sont utilisés. Le premier est un capteur de courant de marque LEM LA 55-P, voir Figure 6.2. Son incertitude est :

- $X = \pm 0.65\% Ipn$,
- pour un courant de 10 ampères X = 10A, $X = \pm 0.065\% = \pm 0.0065A$.

Le deuxième capteur est un capteur de tension, il est utilisé seulement lorsque des essais sur le module de 48V seront effectués. Lorsqu'un essai sur un supercondensateur de 2,7V est effectué, les bornes sont directement reliées à une entrée analogique de la carte d'acquisition. L'incertitude de ce capteur est :

- $X = \pm 0.05\%$,
- pour une tension de 2.7V X=±0.05%=±0.00131V;

L'incertitude d'échantillonnage de la carte d'acquisition est négligée devant les deux autres incertitudes. Lors des essais le calcul de la charge est effectué avec le courant et le temps, l'incertitude maximale sur la charge est :

•
$$(\omega Q) = \left| \frac{\partial Q}{\partial I} (\omega I) \right| + \left| \frac{\partial Q}{\partial t} (\omega t) \right| = 10.34C.$$

Avec la charge, la capacité est calculée, l'incertitude maximale est :

•
$$(\omega C) = \left| \frac{\partial C}{\partial Q} (\omega Q) \right| + \left| \frac{\partial C}{\partial V} (\omega V) \right| = 4.23F = \frac{4.23}{606} 100 = 0.69\%$$

En conclusion, nous pouvons dire que l'incertitude maximale sur la mesure et le calcul de la capacité est de 0,69%.

Figure 6.2 Capteur de courant LEM

6.4 Supercondensateurs disponibles au laboratoire

Les supercondensateurs disponibles au laboratoire sont les suivants, voir Figure 6.3 :

- BCAP0350 E250 de Maxwell, 350F et tension maximale de 2,5V,
- BCAP0650 de Maxwell, 650F et tension maximale de 2,7V,
- BCAP1200 de Maxwell, 1200F et tension maximale de 2,7V,
- BCAP3000 de Maxwell, 3000F et tension maximale de 2,7V,
- ESHSR-0650 de Nesscap, 650F et tension maximale de 2,7V,
- ESHSR-1200 de Nesscap, 1200F et tension maximale de 2,7V,
- ESHSR-3000 de Nesscap, 3000F et tension maximale de 2,7V,
- ESHSP-3500 de Nesscap, 3500F et tension maximale de 2,7V, ce supercondensateur est carré,
- EMHSR-0088 de Nesscap, 88F et tension maximale de 48V.

Deux constructeurs de supercondensateurs sont représentés, Maxwell et Nesscap. L'avantage sera de mesurer la différence de réponse qu'il peut y avoir entre deux supercondensateurs de même capacité mais de manufacturier différent.

Figure 6.3 Supercondensateurs du laboratoire

6.5 Conclusion

Ce chapitre a présenté les bancs d'essais créés pour effectuer des tests sur les supercondensateurs. Cette étape est importante car la qualité de fonctionnement influencera les mesures et la validation du modèle de Stern.

CHAPITRE 7

RÉSULTATS EXPÉRIMENTAUX ET COMPARAISON AVEC LES SIMULATIONS SPS

7.1 Procédures employées pour les essais pratiques

Premièrement, la tension aux bornes des supercondensateurs est nulle au démarrage des essais de caractérisation. La source de courant employée est une EMS 40-25 de Electronic Measurements INC. La procédure faite pour étalonner le capteur de courant dans Labview est la suivante :

- un essai est effectué, lors de cet essai la source de tension alimente une résistance de 1Ω, la tension est augmentée par pallier;
- le courant est mesuré avec un multimètre FLUKE 79III;
- la tension en sortie du capteur avec l'étage de mise en forme du signal est mesurée par Labview;
- une table est créée sous Labview pour mettre à l'échelle le signal. Entre deux points une approximation linéaire est faite par Labview.

Figure 7.1 Bloc de mise à l'échelle

7.2 Paramètres du modèle de Stern et de l'équation de Tafel

Les premiers essais pratiques ont été effectués dans le but de mesurer les paramètres de l'équation de Tafel et de Stern.

7.2.1 Paramètres de l'équation de Tafel

Premièrement, un essai est effectué sur le supercondensateur de 650F de Maxwell, afin de connaître le paramètre α de l'équation de Tafel qui convient. La valeur α égale à 0,8 convient pour ce supercondensateur avec un sur-potentiel de 0.2V, l'erreur est la moins importante. Un second essai a été effectué avec un sur-potentiel de 0.3V, α obtenu est de 0.3.

Figure 7.2 Variation de α de l'équation de Tafel

7.2.2 Paramètres du modèle de Stern

Deuxièmement, le nombre de couche est obtenu avec un programme Matlab en modifiant le nombre de couches et en les comparant à la mesure faite sur le supercondensateur 650F de Maxwell, voir Algorithme-A I-9. Les résultats des calculs sont les Figure 7.3 à Figure 7.45.

Figure 7.3 Comparaison essai et programme Matlab une couche

Figure 7.5 Comparaison essai et programme Matlab trois couches

Figure 7.6 Comparaison essai et programme Matlab quatre couches

SC=650F Maxwell, 6 couches en parallèle

700

Figure 7.7 Comparaison essai et programme Matlab cinq couches

Figure 7.9 Comparaison essai et programme Matlab sept couches

Figure 7.11 Comparaison essai et programme Matlab neuf couches

Figure 7.8 Comparaison essai et programme Matlab six couches

Figure 7.10 Comparaison essai et programme Matlab huit couches

Figure 7.12 Comparaison essai et programme Matlab dix couches

Figure 7.13 Comparaison essai et programme Matlab onze couches

Figure 7.15 Comparaison essai et programme Matlab treize couches

Figure 7.14 Comparaison essai et programme Matlab douze couches

Figure 7.16 Comparaison essai et programme Matlab quatorze couches

Le nombre de couches donnant le meilleur résultat est six.

Le même procédé a été fait pour obtenir le rayon moléculaire :

Le rayon moléculaire donnant le meilleur résultat est entre 1.2nm et 1.3nm.

Le rayon moléculaire donnant le meilleur résultat est r=1.23nm.

Le résultat est, Figure 7.39 :

Figure 7.39 Résultat du calcul du rayon moléculaire et du nombre de couches

Les supercondensateurs Nesscap sont de constructions différentes que les supercondensateurs de Maxwell. En effet le rayon moléculaire et le nombre de couches correspondants sont, Figure 7.40 à Figure 7.43 :

1400

1200

1000

800 600 400

200

0**L** 0

50

100

Figure 7.40 Comparaison essai et Matlab SC Nesscap 650F

Figure 7.42 Comparaison essai et Matlab SC Nesscap 3000F

Figure 7.41 Comparaison essai et Matlab SC Nesscap 1200F

150 200 Temps s

Calcul Matlab

Essai pratique

250

300

350

SC=1200F Nesscap, 8 couches en paralleles, r=1.30nm

Figure 7.43 Comparaison essai et Matlab SC 3500F

Le nombre de couches et le rayon moléculaire des modules de supercondensateur Nesscap sont, Figure 7.44 et Figure 7.45 :

Figure 7.44 Comparaison essai et Matlab SC Nesscap 88F

Figure 7.45 Comparaison essai et Matlab SC Nesscap 176F

Tous les paramètres du modèle sont maintenant connus. La prochaine étape est la comparaison des essais pratiques et des simulations SPS.

7.3 Procédures employées pour les simulations de SPS

La procédure utilisée pour comparer la réponse des supercondensateurs et les résultats des simulations SPS est la suivante. Premièrement, le modèle utilisé est le modèle de Stern programmé dans SPS voir le CHAPITRE 4. Deuxièmement, les paramètres qui définissent le modèle sont pris suivant le travail effectué en 7.1. Troisièmement, les paramètres du supercondensateur mesurés lors des essais sont utilisés pour la simulation SPS. Ces paramètres sont : la résistance, la capacité, le courant de charge et le temps de fin de l'essai. Les courants sont environ de 10A pour chaque essai de caractérisation. Finalement les paramètres de configuration de SPS utilisés sont :

- step size de $1e^{-4}s$,
- decimation des scopes de Simulink, égale à 100,

- solver ode45, Dormand et Prince (1980),
- variable Step,
- Matlab 2011b.

Les calculs effectués par SPS sont exportés sur un tableur, puis un graphique est créé. Sur ce graphique deux courbes sont tracées, la courbe de tension de l'essai pratique et de la simulation SPS. Ensuite la capacité est calculée, un second graphique est créé avec la capacité mesurée lors de l'essai pratique et la capacité calculée avec la simulation SPS.

7.4 Comparaison des essais pratiques et des simulations SPS

Tous les supercondensateurs présents au laboratoire sont chargés et comparés avec une simulation SPS. L'erreur relative est calculée avec la relation suivante :

$$\varepsilon_t = \frac{\left|V_{ep} - V_{sps}\right|}{V_{ep}} \times 100 \tag{7.1}$$

7.4.1 Supercondensateur Maxwell de 350F

Les données de l'essai pratique et celles utilisées pour paramétrer le supercondensateur dans SPS sont, Tableau 7.1 :

	Essai pratique	SPS
Capacité	321.88F	321.88F
Résistance	4.5mΩ	4.5mΩ
Nombre en série	1	1
Nombre en parallèle	1	1
Nombre de couche	Voir 7.2.2	6
Rayon moléculaire	Voir 7.2.2	1.23 nm
Courant de fuite	Voir 7.2.1	0.3mA, $\alpha = 0.3$ et $\eta = 0.3$ V
Tension initiale	0V	0V
Courant de charge	11.09A	11.09A
Temps de fin	493.88s	495s

Tableau 7.1 Paramètres de SPS et mesure de l'essai pratique supercondensateur Maxwell de 350F

Figure 7.46 Réponse du supercondensateur Maxwell 350F

Figure 7.47 Réponse du supercondensateur Maxwell 350F chargement

Figure 7.48 Capacité en fonction de la charge du supercondensateur Maxwell 350F

- 71.1s pour l'essai pratique,
- 70.8s pour la simulation SPS.

L'erreur relative est calculée sur le cycle, Figure 7.49 :

Figure 7.49 Erreur relative entre l'essai pratique et la simulation SPS du supercondensateur Maxwell 350F

L'erreur maximale est au début du chargement du supercondensateur.

$$\varepsilon_{t=493.8s} = \frac{\left|V_{ep} - V_{sps}\right|}{V_{ep}} \times 100 = \frac{\left|2.378 - 2.400\right|}{2.378} \times 100 = 0.92\%$$
(7.2)

7.4.2 Supercondensateur Maxwell de 650F

Les données de l'essai pratique et celles utilisées pour paramétrer le supercondensateur dans SPS sont, Tableau 7.2 :

	Essai pratique	SPS
Capacité	628.36F	628.36F
Résistance	3.2mΩ	3.2mΩ
Nombre en série	1	1
Nombre en parallèle	1	1
Nombre de couche	Voir 7.2.2	6
Rayon moléculaire	Voir 7.2.2	1.23nm
Courant de fuite	Voir 7.2.1	1.5mA, $\alpha = 0.3$ et $\eta = 0.3$ V
Tension initiale	0V	0V
Courant de charge	10.92A	10.92A
Temps de fin	995.21s	996s

Tableau 7.2 Paramètres de SPS et mesure de l'essai pratique supercondensateur Maxwell de 650F

Figure 7.50 Réponse du supercondensateur Maxwell 650F

Figure 7.51 Réponse du supercondensateur Maxwell 650F chargement

Figure 7.52 Capacité en fonction de la charge du supercondensateur Maxwell 650F

- 153.3s pour l'essai pratique,
- 152.9s pour la simulation SPS.

L'erreur relative est calculée sur le cycle, Figure 7.53 :

Figure 7.53 Erreur relative entre l'essai pratique et la simulation SPS du supercondensateur Maxwell 650F

L'erreur maximale est au début du chargement du supercondensateur.

$$\varepsilon_{t=995.2s} = \frac{\left|V_{ep} - V_{sps}\right|}{V_{ep}} \times 100 = \frac{\left|2.566 - 2.526\right|}{2.566} \times 100 = 1.56\%$$
(7.3)

7.4.3 Supercondensateur Maxwell de 1200F

Les données de l'essai pratique et celles utilisées pour paramétrer le supercondensateur dans SPS sont, Tableau 7.3 :

	Essai pratique	SPS
Capacité	1207.83F	1207.83F
Résistance	3.11mΩ	3.11mΩ
Nombre en série	1	1
Nombre en parallèle	1	1
Nombre de couche	Voir 7.2.2	6
Rayon moléculaire	Voir 7.2.2	1.23nm
Courant de fuite	Voir 7.2.1	2.7mA, $\alpha = 0.3$ et $\eta = 0.3$ V
Tension initiale	0V	0V
Courant de charge	10.95A	10.95A
Temps de fin	1492.31s	1493s

Tableau 7.3 Paramètres de SPS et mesure de l'essai pratique supercondensateur Maxwell de 1200F

Figure 7.54 Réponse du supercondensateur Maxwell 1200F

Figure 7.55 Réponse du supercondensateur Maxwell 1200F chargement

Figure 7.56 Capacité en fonction de la charge du supercondensateur Maxwell 1200F

- 294s pour l'essai pratique,
- 293.4s pour la simulation SPS.

L'erreur relative est calculée sur le cycle, Figure 7.57 :

Figure 7.57 Erreur relative entre l'essai pratique et la simulation SPS du supercondensateur Maxwell 1200F

L'erreur maximale est au début du chargement du supercondensateur.

$$\varepsilon_{t=1492.3s} = \frac{\left|V_{ep} - V_{sps}\right|}{V_{ep}} \times 100 = \frac{\left|2.561 - 2.507\right|}{2.561} \times 100 = 2.1\%$$
(7.4)

7.4.4 Supercondensateur Maxwell de 3000F

Les données de l'essai pratique et celles utilisées pour paramétrer le supercondensateur dans SPS sont, Tableau 7.4 :

	Essai pratique	SPS
Capacité	2795.56F	2795.56F
Résistance	2.77mΩ	2.77mΩ
Nombre en série	1	1
Nombre en parallèle	1	1
Nombre de couche	Voir 7.2.2	6
Rayon moléculaire	Voir 7.2.2	1.23nm
Courant de fuite	Voir 7.2.1	5.2mA, $\alpha = 0.3$ et $\eta = 0.3$ V
Tension initiale	0V	0V
Courant de charge	11A	11A
Temps de fin	1993s	1993s

Tableau 7.4 Paramètres de SPS et mesure de l'essai pratique supercondensateur Maxwell de 3000F

Figure 7.58 Réponse du supercondensateur Maxwell 3000F

Figure 7.59 Réponse du supercondensateur Maxwell 3000F chargement

Figure 7.60 Capacité en fonction de la charge supercondensateur Maxwell 3000F

- 678.2s pour l'essai pratique,
- 677.3s pour la simulation SPS.

L'erreur relative est calculée sur le cycle, Figure 7.61 :

Figure 7.61 Erreur relative entre l'essai pratique et la simulation SPS du supercondensateur Maxwell 3000F

L'erreur maximale est au début du chargement du supercondensateur.

$$\varepsilon_{t=1993s} = \frac{\left|V_{ep} - V_{sps}\right|}{V_{ep}} \times 100 = \frac{\left|2.588 - 2.518\right|}{2.588} \times 100 = 2.7\%$$
(7.5)

7.4.5 Supercondensateur Nesscap 650F

Les données de l'essai pratique et celles utilisées pour paramétrer le supercondensateur dans SPS sont, Tableau 7.5 :

	Essai pratique	SPS
Capacité	732.06F	732.06F
Résistance	3.48mΩ	3.48mΩ
Nombre en série	1	1
Nombre en parallèle	1	1
Nombre de couche	Voir 7.2.2	8
Rayon moléculaire	Voir 7.2.2	1.51nm
Courant de fuite	Voir 7.2.1	1.5mA, $\alpha = 0.3$ et $\eta = 0.3$ V
Tension initiale	0V	0V
Courant de charge	10.84A	10.84A
Temps de fin	991.7s	992s

Tableau 7.5 Paramètres de SPS et mesure de l'essai pratique supercondensateur Nesscap de 650F

Figure 7.62 Réponse du supercondensateur Nesscap 650F

Figure 7.63 Réponse du supercondensateur Nesscap 650F chargement

Figure 7.64 Capacité en fonction de la charge du supercondensateur Nesscap 650F

- 179.8s pour l'essai pratique,
- 179.3s pour la simulation SPS.

L'erreur relative est calculée sur le cycle, Figure 7.65 :

Figure 7.65 Erreur relative entre l'essai pratique et la simulation SPS du supercondensateur Nesscap 650F

L'erreur maximale est au début du chargement du supercondensateur.

$$\varepsilon_{t=991.7s} = \frac{\left|V_{ep} - V_{sps}\right|}{V_{ep}} \times 100 = \frac{\left|2.396 - 2.519\right|}{2.519} \times 100 = 4.88\%$$
(7.6)

7.4.6 Supercondensateur Nesscap 1200F

Les données de l'essai pratique et celle utilisées pour paramétrer le supercondensateur dans SPS sont, Tableau 7.6 :

	Essai pratique	SPS
Capacité	1348.72F	1348.72F
Résistance	2.91mΩ	2.91mΩ
Nombre en série	1	1
Nombre en parallèle	1	1
Nombre de couche	Voir 7.2.2	8
Rayon moléculaire	Voir 7.2.2	1.30nm
Courant de fuite	Voir 7.2.1	2.7mA, $\alpha = 0.3$ et $\eta = 0.3$ V
Tension initiale	0V	0V
Courant de charge	10.83A	10.83A
Temps de fin	977.11s	978s

Tableau 7.6 Paramètres de SPS et mesures de l'essai pratique supercondensateur Nesscap de 1200F

Figure 7.66 Réponse du supercondensateur Nesscap 1200F

Figure 7.67 Réponse du supercondensateur Nesscap 1200F chargement

Figure 7.68 Capacité en fonction de la charge du supercondensateur Nesscap 1200F

- 332.41s pour l'essai pratique,
- 331.6s pour la simulation SPS.

L'erreur relative est calculée sur le cycle, Figure 7.69 :

Figure 7.69 Erreur relative entre l'essai pratique et la simulation SPS du supercondensateur Nesscap 1200F

L'erreur maximale est au début du chargement du supercondensateur.

$$\varepsilon_{t=977.1s} = \frac{\left|V_{ep} - V_{sps}\right|}{V_{ep}} \times 100 = \frac{\left|2.491 - 2.541\right|}{2.491} \times 100 = 2\%$$
(7.7)

7.4.7 Supercondensateur Nesscap 3000F

Les données de l'essai pratique et celles utilisées pour paramétrer le supercondensateur dans SPS sont, Tableau 7.7 :

	Essai pratique	SPS
Capacité	3340.65F	3340.65F
Résistance	2.94mΩ	2.94mΩ
Nombre en série	1	1
Nombre en parallèle	1	1
Nombre de couche	Voir 7.2.2	6
Rayon moléculaire	Voir 7.2.2	1.5nm
Courant de fuite	Voir 7.2.1	5.2mA, $\alpha = 0.3$ et $\eta = 0.3$ V
Tension initiale	0V	0V
Courant de charge	10.84A	10.84A
Temps de fin	1986.27s	1987s

Tableau 7.7 Paramètres de SPS et mesures de l'essai pratique supercondensateur Nesscap de 3000F

Figure 7.70 Réponse du supercondensateur Nesscap 3000F

Figure 7.71 Réponse du supercondensateur Nesscap 3000F chargement

Figure 7.72 Capacité en fonction de la charge du supercondensateur Nesscap 3000F

Le supercondensateur atteint la tension de 2.7V lorsque le temps est égal à :

- 822.5s pour l'essai pratique,
- 820.5s pour la simulation SPS.

L'erreur relative est calculée sur le cycle, Figure 7.73 :

Figure 7.73 Erreur relative entre l'essai pratique et la simulation SPS du supercondensateur Nesscap 3000F

L'erreur maximale est au début du chargement du supercondensateur.

L'erreur en fin d'essai est :

$$\varepsilon_{t=1986.2s} = \frac{\left|V_{ep} - V_{sps}\right|}{V_{ep}} \times 100 = \frac{\left|2.474 - 2.587\right|}{2.474} \times 100 = 4.57\%$$
(7.8)

7.4.8 Supercondensateur Nesscap 3500F

Les données de l'essai pratique et celles utilisées pour paramétrer le supercondensateur dans SPS sont, Tableau 7.8 :

	Essai pratique	SPS
Capacité	3737.45F	3737.45F
Résistance	4.52mΩ	4.52mΩ
Nombre en série	1	1
Nombre en parallèle	1	1
Nombre de couche	Voir 7.2.2	4
Rayon moléculaire	Voir 7.2.2	0.75nm
Courant de fuite	Voir 7.2.1	5.5mA, $\alpha = 0.3$ et $\eta = 0.3$ V
Tension initiale	0V	0V
Courant de charge	12.01A	12.01A
Temps de fin	1993.39s	1994s

Tableau 7.8 Paramètres de SPS et mesures de l'essai pratique supercondensateur Nesscap de 3500F

Figure 7.74 Réponse du supercondensateur Nesscap 3500F

Figure 7.75 Réponse du supercondensateur Nesscap 3500F chargement

Figure 7.76 Capacité en fonction de la charge du supercondensateur Nesscap 3500F

Le supercondensateur atteint la tension de 2.7V lorsque le temps est égal à :

- 824s pour l'essai pratique,
- 821.2s pour la simulation SPS.

L'erreur relative est calculée sur le cycle, Figure 7.77 :

Figure 7.77 Erreur relative entre l'essai pratique et la simulation SPS du supercondensateur Nesscap 3500F

L'erreur maximale est au début du chargement du supercondensateur.

L'erreur en fin d'essai est :

$$\varepsilon_{t=1993.3s} = \frac{\left|V_{ep} - V_{sps}\right|}{V_{ep}} \times 100 = \frac{\left|2.478 - 2.541\right|}{2.478} \times 100 = 2.54\%$$
(7.9)

7.4.9 Supercondensateur Nesscap 88F et 48V

Les données de l'essai pratique et celles utilisées pour paramétrer le supercondensateur dans SPS sont, Tableau 7.9 :

	Essai pratique	SPS
Capacité	99.48F	1790.64F
Résistance	7.5mΩ	7.5mΩ
Nombre en série	1	18
Nombre en parallèle	1	1
Nombre de couche	Voir 7.2.2	8
Rayon moléculaire	Voir 7.2.2	1.9nm
Courant de fuite	Voir 7.2.1	3mA, $\alpha = 0.3$ et $\eta = 0.3$ V
Tension initiale	0V	0V
Courant de charge	10.02A	10.02A
Temps de fin	1988.91s	1988s

Tableau 7.9 Paramètres de SPS et mesures de l'essai pratique supercondensateur Nesscap 88F

Figure 7.78 Réponse du supercondensateur Nesscap 88F

Figure 7.79 Réponse du supercondensateur Nesscap 88F chargement

Figure 7.80 Capacité en fonction de la charge du supercondensateur Nesscap 88F

Le supercondensateur atteint la tension de 48.08V lorsque le temps est égal à :

- 476.7s pour l'essai pratique,
- 476.1s pour la simulation SPS.

L'erreur n'est pas calculée sur le cycle en entier. La cause est la boucle while de Labview qui n'est pas cadencée, la tension est donnée entre 10ms et 15ms sans aucune récurrence. Il n'est pas possible de cadencer SPS à la même vitesse que lors de l'essai pratique.

L'erreur en fin d'essai est :

$$\varepsilon_{t=1988} = \frac{\left|V_{ep} - V_{sps}\right|}{V_{ep}} \times 100 = \frac{\left|43.251 - 45.613\right|}{43.251} \times 100 = 5.46\%$$
(7.10)

7.4.10 Supercondensateur Nesscap 176F et 48V

Les données de l'essai pratique et celles utilisées pour paramétrer le supercondensateur dans SPS sont, Tableau 7.10 :

	Essai pratique	SPS
Capacité	202.53F	1822.772F
Résistance	7.34mΩ	7.34mΩ
Nombre en série	1	18
Nombre en parallèle	1	2
Nombre de couche	Voir 7.2.2	8
Rayon moléculaire	Voir 7.2.2	1.9nm
Courant de fuite	Voir 7.2.1	3mA, $\alpha = 0.3$ et $\eta = 0.3$ V
Tension initiale	0V	0V
Courant de charge	10.05A	10.05A
Temps de fin	1995.08s	1995s

Tableau 7.10 Paramètres de SPS et mesures de	;
l'essai pratique supercondensateur Nesscap 176	F

Figure 7.81 Réponse du supercondensateur Nesscap 176F

Figure 7.82 Réponse du supercondensateur Nesscap 176F chargement

Figure 7.83 Capacité en fonction de la charge du supercondensateur Nesscap 176F

Le supercondensateur atteint la tension de 48.01V lorsque le temps est égal à :

- 964.9s pour l'essai pratique,
- 971s pour la simulation SPS.

Tout comme le supercondensateur Nesscap 88F, l'erreur n'est pas calculée sur le cycle en entier. La cause est la boucle while de Labview qui n'est pas cadencée, la tension est donnée entre 10ms et 15ms sans aucune récurrence. Il n'est pas possible de cadencer SPS à la même vitesse que lors de l'essai pratique.

L'erreur en fin d'essai est :

$$\varepsilon_{t=1988} = \frac{\left|V_{ep} - V_{sps}\right|}{V_{ep}} \times 100 = \frac{\left|44.847 - 43.914\right|}{44.847} \times 100 = 2.08\%$$
(7.11)

7.5 Interprétation des données

En ce qui concerne le modèle de Stern, le chargement des supercondensateurs est correctement modélisé. L'erreur relative calculée entre les essais et les simulations lors de la charge nous renseigne que l'erreur la plus importante se présente lors du début du chargement. Cependant, cette erreur provient de deux facteurs :

- premièrement, cette erreur doit être remise dans le contexte, la tension est la plus faible puisque au début du chargement, en dessous du dixième de V;
- deuxièmement, la procédure de test pour obtenir une tension nulle (court circuit des bornes) n'a pas été définie scrupuleusement. De ce fait il peut rester des charges présentes dans le supercondensateur. Un court circuit de plusieurs heures doit être envisagé. Un simple essai permet de mettre en lumière cet effet : lorsque le supercondensateur est à 0V en le laissant se reposer un ou deux jours, la tension se rapproche de 300mV;
- quatrièmement, le banc d'essai n'est pas optimal puisque le courant n'est pas linéaire sur tout le cycle. Lors du démarrage du chargement un pic de courant se produit. De plus lors de la charge le courant baisse de quelque mA. Cet effet n'est pas reproduit sur SPS.

En négligeant cette erreur au début de cycle, l'erreur est maximale sur le supercondensateur 350F de Maxwell. Ce résultat est prévisible, puisque le rayon moléculaire et le nombre de couches utilisés ont été calculés sur le supercondensateur de Maxwell de 650F. Il faudrait recalculer ces deux paramètres. Cependant l'erreur reste en dessous de 5%. Pour les autres supercondensateurs, l'erreur relative est en dessous de 2%, et dans le meilleur des cas en dessous de 1% pour le supercondensateur Maxwell de 1200F.

En ce qui concerne l'équation de Tafel, la redistribution des charges est modélisée. Cependant les résultats obtenus sont classés en deux catégories :

- les supercondensateurs Maxwell avec une erreur en fin de cycle maximale de 2.7% pour le supercondensateur de 3000F;
- les supercondensateurs Nesscap avec une erreur en fin de cycle maximale de 5.46% pour le supercondensateur de 88F.

L'erreur mesurée avec les supercondensateurs Nesscap provient du fait que les coefficients de l'équation de Tafel ont été mesurés avec le supercondensateur Maxwell de 650F. Il serait judicieux d'adapter les paramètres aux supercondensateurs Nesscap. De plus en comparaison, entre les supercondensateurs Nesscap et Maxwell, la redistribution des charges est plus importante sur ceux de Nesscap. La redistribution peut provenir de la qualité de l'électrolyte présent dans le supercondensateur, il peut y avoir plus d'impuretés.

7.6 Application de créneaux de courant sur le supercondensateur

Des créneaux de courant ont été appliqués sur le supercondensateur de Maxwell 650F. Les consignes de courant appliquées sont de 3 Ampères. Cette valeur est faible, mais est le résultat d'une tension du supercondensateur faible, la résistance de décharge doit être petite. La résistance utilisée pour le banc d'essai est une résistance de $0,5\Omega$. Trois séries d'essais ont été effectués.

7.6.1 Premier essai

Pour le premier essai un créneau de 5A et -5A est appliqué. De 25 à 50 secondes 5A, puis un échelon de -5A de 75s à 100s. La durée de l'essai est de 105s. La forme du courant est, Figure 7.84 :

Figure 7.84 Courant du premier essai en créneau

Les données mesurées de l'essai pratique et celles utilisées pour paramétrer le supercondensateur dans SPS sont, Tableau 7.11 :

	Essai pratique	SPS
Capacité	Voir 7.4.2	628.36F
Résistance	8.63mΩ	8.63mΩ
Nombre en série	1	1
Nombre en parallèle	1	1
Nombre de couches	Voir 7.2.2	6
Rayon moléculaire	Voir 7.2.2	1.23nm
Courant de fuite	Voir 7.2.1	0.5mA, α =0.3 et η =0.3V
Tension initiale	2.087	2.087

Tableau 7.11 Paramètres de SPS et mesure de l'essai pratique de l'essai en créneau un

La forme de la tension est, Figure 7.85 :

Figure 7.85 Tension du premier essai en créneau

L'erreur relative est calculée. Elle est égale à, Figure 7.86 :

Figure 7.86 Erreur relative du premier essai en créneau

L'erreur en fin de cycle est :

$$\varepsilon_{t=105} = \frac{\left|V_{ep} - V_{sps}\right|}{V_{ep}} \times 100 = \frac{\left|2.086 - 2.079\right|}{2.086} \times 100 = 0.33\%$$
(7.12)

7.6.2 Deuxième essai

Pour le second essai, des créneaux de 3A sont appliqués. Un courant de 3A est appliqué de 25s à 50s, puis un courant de -3A de 75 à 100s. Ce cycle est appliqué 5 fois. Le temps de l'essai est de 505s. Le courant est, Figure 7.87 :

Figure 7.87 Courant du deuxième essai en créneau

Les données mesurées de l'essai pratique et celles utilisées pour paramétrer le supercondensateur dans SPS sont, Tableau 7.12 :

	Essai pratique	SPS
Capacité	Voir 7.4.2	628.36F
Résistance	15mΩ	15mΩ
Nombre en série	1	1
Nombre en parallèle	1	1
Nombre de couches	Voir 7.2.2	6
Rayon moléculaire	Voir 7.2.2	1.23nm
Courant de fuite	Voir 7.2.1	0.3mA, $\alpha = 0.3$ et $\eta = 0.3$ V
Tension initiale	1.565V	1.565V

Tableau 7.12 Paramètres de SPS et mesure de l'essai pratique de l'essai en créneau deux

La tension obtenue avec l'essai pratique et SPS est, Figure 7.88 :

Figure 7.88 Tension du deuxième essai en créneau

L'erreur relative est calculée, elle est égale à, Figure 7.89 :

Figure 7.89 Erreur relative du deuxième essai en créneau

L'erreur en fin de cycle est :

$$\varepsilon_{t=505} = \frac{\left|V_{ep} - V_{sps}\right|}{V_{ep}} \times 100 = \frac{\left|1.554 - 1.543\right|}{1.554} \times 100 = 0.70\%$$
(7.13)

7.6.3 Troisième essai

Pour le troisième essai, des créneaux de 3A sont appliqués. Un courant de 3A est appliqué de 2.5s à 5 s, puis un courant de -3A de 7.5s à 10s. Ce cycle est appliqué 10 fois. Le temps total de l'essai est de 105s. Le courant est, Figure 7.90 :

Figure 7.90 Courant du troisième essai en créneau

Les données mesurées de l'essai pratique et celles utilisées pour paramétrer le supercondensateur dans SPS sont, Tableau 7.13 :

	Essai pratique	SPS
Capacité	Voir 7.4.2	628.36F
Résistance	15.3mΩ	15m.3Ω
Nombre en série	1	1
Nombre en parallèle	1	1
Nombre de couches	Voir 7.2.2	6
Rayon moléculaire	Voir 7.2.2	1.23nm
Courant de fuite	Voir 7.2.1	0.3mA, α =0.3 et η =0.3V
Tension initiale	1.556V	1.556V

Tableau 7.13 Paramètres de SPS et mesure de l'essai pratique de l'essai en créneau trois

La tension obtenue avec l'essai pratique et SPS est, Figure 7.91 :

Figure 7.91 Tension du troisième essai en créneau

L'erreur relative est égale à, Figure 7.92 :

Figure 7.92 Erreur relative du troisième essai en créneau

L'erreur en fin de cycle est :

$$\varepsilon_{t=102s} = \frac{\left|V_{ep} - V_{sps}\right|}{V_{ep}} \times 100 = \frac{\left|1.565 - 1.551\right|}{1.565} \times 100 = 0.89\%$$
(7.14)

7.7 Interprétation des données

Trois créneaux de différentes amplitudes et de fréquences différentes ont été appliqués sur le supercondensateur de 650F de Maxwell. La capacité, le rayon moléculaire et le nombre de couches des électrodes ont été pris de l'essai de caractérisation section 7.4.2.

L'erreur maximale en fin de cycle de 0.89%, est obtenue pour le troisième essai. L'erreur maximale avec un pic est égale à 4%. Cependant cette erreur correspond aux transitions entre une phase où le courant est nul et lorsqu'il devient positif ou négatif. Avec le banc d'essai il y a une dynamique qui n'est pas respectée avec la simulation SPS. En omettant ces pics, l'erreur maximale pendant un chargement ou un déchargement est obtenue par l'essai numéro deux. L'erreur obtenue est de 1.25% à l'instant t=441s.

Il faut signaler que sont présentes les erreurs des capteurs de mesures. Mais la principale erreur vient de la dynamique de Labview. Lorsque les créneaux de courant sont rapides, pour l'essai numéro 3, Labview n'a pas le temps de régler le courant à la valeur demandée. L'erreur sur le courant entre la simulation SPS et l'essai pratique est importante, puisque les créneaux employés dans SPS sont des créneaux parfaits. L'utilisation d'un banc d'essai avec un temps de réponse plus rapide pour réguler le courant permettrait d'amoindrir cette erreur.

Un problème avec la simulation SPS concerne le courant utilisé pour la redistribution des charges. Le courant est moins important que celui donné dans les documentations des constructeurs. Cet effet vient de la redistribution des charges à l'intérieur du supercondensateur. En effet la redistribution des charges est plus importante lorsque le supercondensateur est chargé à la valeur maximale, 2.7V.

168

7.8 Conclusion des essais pratiques

Le modèle de Stern modélise correctement les supercondensateurs. Ce modèle a été modifié pour prendre en compte la structure des supercondensateurs avec la mise en parallèle des électrodes et la mise en série et en parallèle des cellules. La caractérisation des supercondensateurs a permis de modifier les paramètres du modèle de Stern afin de réduire l'erreur. Les erreurs mesurées lors de la caractérisation sont inférieures à 5% pour le supercondensateur de Maxwell 350F. Cependant les erreurs sont inférieures à 2% pour les autres supercondensateurs. Lors des essais avec des créneaux, l'erreur est inférieure à 1.25% lors d'un chargement.

L'équation de Tafel modélise correctement la redistribution des charges. Cependant il est nécessaire de connaître parfaitement les paramètres de chaque supercondensateur pour obtenir une réponse optimale. De plus lorsque le supercondensateur n'est pas chargé au maximum de sa capacité, la redistribution des charges est moindre. Le dernier élément à signaler est qu'entre deux supercondensateurs et entre les deux marques, la réponse des supercondensateurs ne sont pas identiques lorsque la redistribution des charges se produit.

Un dernier élément qui peut influencer l'erreur est la résistance interne du supercondensateur. Les mesures faites ne sont pas parfaites puisque la résistance est calculée suivant la chute de tension au début d'un chargement. La résistance est très dépendante de la température, voir Figure 5.10, lorsque le courant passe dans le supercondensateur, la température augmente ce qui modifie la valeur de la résistance. Johansson et Andersson (2008) effectuent des essais sur des supercondensateurs avec des courants importants. Les auteurs mesurent une résistance différente entre le début du cycle et la fin du cycle.

CONCLUSION

L'objectif de ce travail de recherche était de proposer un modèle de supercondensateur pour l'intégrer dans le logiciel de simulation SPS. Ce modèle devait être le plus simple et le plus facile d'emploi.

Pour répondre à ce problème, la recherche fût partagée en sous parties.

La phase première de ce travail était de faire une revue des travaux sur le sujet. Le but recherché était une meilleure connaissance du fonctionnement du supercondensateur, puis de choisir un modèle pour être développé pour notre application. Le choix s'est porté sur le modèle de Stern car celui-ci présente l'avantage d'une utilisation sans essais pratiques.

La seconde phase avait pour objectif de développer le modèle choisi dans le SPS. Ce modèle devait être développé pour être transparent et simple pour le futur utilisateur.

La troisième phase de ce travail de recherche était de développer un banc d'essai pour les supercondensateurs. Cette partie, il faut bien l'avouer, a été la plus difficile. Tout d'abord le matériel mis à disposition au laboratoire n'est pas adéquat. Du fait des difficultés rencontrées, cette partie a pris plus de temps que prévu.

La dernière phase de ce projet était de comparer les résultats obtenus des essais pratiques pour les comparer avec les simulations SPS.

Notre problématique de recherche était : Le modèle microscopique de la double couche électrique (modèle de Stern) peut-être appliqué pour modéliser le comportement du supercondensateur.

Ce modèle a été modifié pour prendre en compte la construction des électrodes du supercondensateur, la mise en série et en parallèle de ceux-ci et la redistribution des charges qui se produit. Le modèle a été validé grâce aux deux bancs d'essai et à la comparaison des essais expérimentaux et des simulations SPS. Les erreurs mesurées dans le cas le plus défavorable sont inférieures à 5%. Nonobstant, ces erreurs sont en moyenne inférieures à 2%. Lors des essais avec des créneaux, l'erreur est inférieure à 1.25% lors d'un chargement.

Les principales contributions de ce travail de recherche sont au nombre de deux. Premièrement, la validation du modèle de Stern pour le supercondensateur. Ce modèle microscopique permet une utilisation sans essais pratiques. La deuxième contribution est le développement d'un modèle de supercondensateur pour SPS. Ce modèle apportera une grande simplification pour les utilisateurs de SPS. Il leur donnera un gain de temps dans leurs recherches et développement.

Cependant ce modèle possède ses faiblesses. Le courant de charge doit être continu, les courants alternatifs et l'effet ligne de transmission ne sont pas pris en compte dans le modèle développé dans SPS. Deuxièmement l'effet de la température et son élévation par les pertes par effet joules ne sont pas pris en compte par le modèle développé dans SPS. Le nombre de couches et le rayon moléculaire peuvent être pris comme valeur standard, ou modifier pour chaque supercondensateur afin d'améliorer la réponse. Une simulation SPS avec un nombre de couches et rayon moléculaire inconnus est observable à l'ANNEXE VII.

RECOMMANDATIONS

Le travail effectué pendant ce mémoire de recherche bien que très abondant peut être continué. Deux axes de développement peuvent être effectués. Tout d'abord, la théorie de la double couche puis un deuxième axe avec le domaine de l'ingénierie.

Premièrement, la théorie de la double couche peut être modifiée pour être améliorée. Le modèle de Stern ne modélise pas correctement la modification de la capacité en fonction de la température. Kotz, Hahn, et Gallay (2006) indiquent que la capacité varie de -5% à -40°C et de +5% à 70°C. En faisant varier la température avec le modèle de Stern, il apparait que la capacité varie inversement des mesures de Kotz, Hahn, et Gallay (2006), voir ANNEXE V. Selon Conway (1999, p. 647) indique :

« Like condensed-state substances, the interphasial fluid of the double layer tends to expand with a rise in temperature, so the effective average thickness of the compact part of the double layer increases and its specific capacitance decreases."

Le modèle de Stern est basé sur la statistique de Maxwell-Boltzmann, équation (2.7). La statistique de Maxwell-Boltzmann est une loi de distribution des particules. Elle s'applique pour de la mécanique classique, elle ne prend pas en compte les effets quantiques. De plus elle est applicable pour un équilibre thermodynamique¹⁰. Un autre axe de travail peut être par la prise en compte la mécanique quantique, la statistique est remplacée par les statistiques de Fermi-Dirac ou Bose-Einstein. Des travaux de recherche sont nécessaires ensuite pour appliquer la relation de Poisson afin d'obtenir le potentiel de surface et le théorème de Gauss pour obtenir la charge par unité de surface.

¹⁰ L'équilibre thermodynamique est lorsqu'il y a équilibre thermique (température), mécanique (pression) et chimique (potentiel chimique).

Le modèle de Jellium peut être considéré en plus de la théorie de la double couche électrique. Ce modèle s'attache à prendre en compte l'électron dans le métal (l'électrode) quand les charges sont positives et uniformément chargées. Ce modèle prend en compte l'effet capacitif que l'électrode peut produire. Il s'ajoute au modèle de Stern qui concerne l'électrolyte, un départ pour cette recherche peut être le travail de Amokrane (1996).

La théorie de la DLVO (Derjaguin, Landau, Verwey et Overbreek) peut être analysée pour décrire les forces d'interaction entre particule dans un liquide. Le potentiel d'un champ vectoriel relie la force au potentiel électrique par le gradient :

$$\vec{F} = -\vec{\nabla}V \tag{7.15}$$

 \vec{F} est la force de double couche électrique ou la force de London. Hillier, Kim, et Bard (1996) mesurent la force de la double couche entre une électrode et un électrolyte, ce travail peut constituer une base pour approfondir cette théorie.

Deuxièmement, la commande du convertisseur DC/DC deux quadrants par Labview n'est pas très efficace. Il en résulte une erreur de mesure due au temps de calcul de Labview. Une des solutions serait d'utiliser un environnement en temps réel, opal-rt ou dSPACE. Ce travail permettrait d'enlever les erreurs de mesure dues à Labview.

Un autre travail peut être d'intégrer un volant d'inertie avec Simscape et les machines électriques développées dans SPS. L'énergie est stockée sous forme cinétique, les volants ont une réponse identique aux supercondensateurs avec l'énergie valant :

$$E = \frac{1}{2}J\Omega^2 \tag{7.16}$$

De ce fait les volants d'inertie sont employés dans le même but que les supercondensateurs, pour donner de fortes puissances à un système.

Ce travail peut être intéressent pour les développeurs de systèmes énergétiques afin de tester l'une ou l'autre des solutions.

ANNEXE I

ALGORITHMES

Algorithme-A I-1 Calcul du potentiel de surface suivant le modèle de Gouy-Chapman

clear all	
%%Potentiel de surface s	suivant le modèle de Gouy-Chapman%%
e=1.60217656e-19;	% charge elementaire
Ta=25;	% température ambiante
T=273.15+Ta;	% température en kelvin
K=1.3806503e-23;	% constante de Boltzmann
epsilon0=8.854187e-12;	% permittivité du vide
epsilonR=68;	% permittivité du diélectrique de l'électrolyte
epsilon=epsilon0*epsilon	nR; % permittivité relative
R=8.314472;	% j.k $^{-1}$.mol $^{-1}$ constante des gaz parfaits
F=96485.3383;	% C.mol ⁻¹ constante de Faraday
L=6.02214199e23;	% mol^-1 nombre d'Avogadro
r=1e-9;	% rayon moléculaire
c=(1/(8*L*r^3))*0.86;	% concentration molaire
phi0=2.5;	% potentiel de l'électrode
n0=0.001;	% concentration à l'équilibre thermodynamique
z=1;	% amplitude des charges électroniques
x(1)=0;	% distance de l'électrode
%% Calcul du potentiel	de surface suivant la distance formule 2.35 %%
for j=1:1:10000	
phi(j)=(2*K*T)/(z*e)*	^t log((1+tanh((z*e*phi0)/(4*K*T))*exp(
-(sqrt((2*0.0001*(z	^2)*(e^2))/(epsilon*K*T)))*x(j)))/(1-tanh(
(z*e*phi0)/(4*K*T)	$))*exp(-(sqrt((2*0.0001*(z^{2})*(e^{2}))/))))))))))))))))))))))))))))))))$
(epsilon*K*T)))*x(j)))); % formule 2.35
if j<10000	
$x(j+1)=x(j)+1*10^{-9};$	% incrémentation de la distance
end	
end	
figure(1),plot(x,phi,'blue'	','LineWidth', 2)
grid on	
xlabel('Distance en m')	
ylabel('Potentiel de surfa	ce en V')
·	
%% fin %%	

Algorithme-A I-2 Calcul de la capacité surfacique suivant le modèle de Gouy-Chapman

clear all %%Calcul de la capacité surfacique%% e=1.60217656e-19; % charge élémentaire % température ambiante Ta=25; T=273.15+Ta: % température en kelvin K=1.3806503e-23; % constante de Boltzmann epsilon0=8.854187e-12; % permittivité du vide % permittivité du diélectrique de l'électrolyte epsilonR=68; epsilon=epsilon0*epsilonR; % permittivité relative % j.k⁻¹.mol⁻¹ constante des gaz parfaits R=8.314472; % C.mol⁻¹ constante de Faraday F=96485.3383: % mol^-1 nombre d'Avogadro L=6.02214199e23; % rayon moléculaire r=1e-9: $c=(1/(8*L*r^3))*0.86;$ % concentration molaire n0=0.001: % concentration à l'équilibre thermodynamique % amplitude des charges électroniques z=1; % potentiel de l'électrode maximum PHI0=-200e-3; for j=1:1:10000 if PHI0(j)<200e-3 $Cd(j)=sqrt(2*z^2*e^2*epsilon*n0)*cosh((z*e*PHI0(j))/(2*K*T));$ %formule 2.38 if j<10000*2 PHIO(j+1)=PHIO(j)+0.001;%incrémention du potentiel de l'électrode end else Cd(j)=Cd(j-1);if j<10000 PHIO(j+1)=PHIO(j);end end end figure(33),plot(PHI0,Cd,'blue','LineWidth', 2) grid on axis([-0.2 0.2 0 4.5e-24]); xlabel('Potentiel de l"életrode en Volts') ylabel('Capacité en F.m^-2') %% fin %%

Algorithme-A I-3 Calcul de la capacité suivant le modèle de Stern

```
clear all
%% Calcul de la capacité suivant le modèle de Stern %%
e=1.60217656e-19;
                       % charge élémentaire
Ta=25;
                        % température ambiante
T=273.15+Ta;
                        % température en kelvin
                        % constante de Boltzmann
K=1.3806503e-23:
epsilon0=8.854187e-12; % permittivité du vide
                        % permittivité du diélectrique
epsilonR=68;
epsilon=epsilon0*epsilonR;
R=8.314472;
                        \frac{1}{1} j.k^-1.mol^-1 constante des gaz parfaits
F=96485.3383;
                        % C.mol<sup>-1</sup> constante de faraday
                        % mol^-1 nombre d'Avogadro
L=6.02214199e23 :
                        % rayon moléculaire
r=1e-9;
                        % concentration molaire
c=(1/(8*L*r^3))*0.86;
Cinner=(epsilon)/r;
                        % capacité de la couche de Helmholtz
q(1) = -50e-2;
                        % charge initiale négative
for j=1:1:10000
  Cout(j)=((2*R*T)/(F*q(j)))*asinh(q(j)/sqrt(8*R*T*epsilon*c));
  % formule 2.45
  Cout2(j)=Cout(j)^-1; % capacité de la couche de Gouy-Chapman
  C(i)=((1/Cinner)+Cout(i))^{-1};% formule 2.46
  if j<10000
    q(j+1)=q(j)+0.01e-2; % incrémentation de la charge
  end
end
% nouvelle boucle pour une charge initiale nulle
q_2(1) = 0.0001; % charge initiale
V3=0:
               % tension initiale
S=5403.45; % surface actif des électrodes
for j=1:1:50000
  if V3<2.7 % tension maximale de 2.7V
    Cout3(j) = ((2*R*T)/(F*q2(j)))*asinh(q2(j)/sqrt(8*R*T*epsilon*c));
    % formule 2.43
    Cout4(j)=Cout3(j)^-1;
    C2(j)=((1/Cinner)+Cout3(j))^{-1};% formule 2.46
    C3(j)=C2(j)*S;
                              % formule 2.51
    V2(j)=q2(j)/C2(j); % calcul de la tension de l'électrode
    V3=V2(j);
     if V3<2.7
       if j<50000
         q_2(j+1)=q_2(j)+0.01e-2; % incrémentation de la charge
       end
    end
```

end
end
figure(1),plot(q,Cout2,'black',q,C,'red',q,Cinner,'blue','LineWidth',2) grid on %title('Capacité de la double couche avec l''équation de Stern') xlabel('Charge en C.m^-2') ylabel('Capacité en F.m^-2')
figure(2),plot(q2,C2,'blue','LineWidth',2) grid on axis([0 1.5 0.35 0.56]); %title('Capacité de la double couche avec l''équation de Stern') xlabel('Charge en C.m^-2') ylabel('Capacité en F.m^2')
figure(3),plot(V2,C2,'blue','LineWidth',2) grid on axis([0 2.7 0.35 0.56]); %title('Capacité de la double couche avec l''équation de Stern') xlabel('Tension de l''électrode en V') ylabel('Capacité en F.m^2')
figure(4),plot(V2,C3,'blue','LineWidth',2) grid on %title('Capacité de la double couche avec l''équation de Stern') xlabel('Tension de l''électrode en V') ylabel('Capacité en F') %% fin %%
Algorithme-A I-4 Calcul de la redistribution des charges avec l'équation de Tafel

clear all	
%% Calcul de la redistributi	on des charges %%
q=1.60217656e-19;	% Charge élémentaire
Ta=25;	% Température ambiante en Celsius
T=273.15+Ta;	% Température en kelvin
K=1.3806503e-23;	% Constante de Boltzmann
epsilon0=8.854187e-12;	% Permittivité du vide
epsilonR=68:	% Permittivité de la solution
epsilon=epsilon0*epsilonR:	% Permittivité relative
R=8 314472:	% Constante des gaz parfaits i k^-1 mol^-1
F=964853383	% Constante de Faraday C mol^-1
$I = 6.02214199e^{23}$	% Nombre d'Avogadro mol^-1
r=0.8e-9	% Rayon moléculaire
%% équation de Tafel %%	
%Calcul de la charge perdu	e lorsque le supercondensateur est chargé au
% maximum suivi l'aquation	de Tafel
$V_{n}(2) = (2.6, 2.7)$	% Calcul du surnatantial
$V \Pi(2) = (2.0 - 2.7),$	% Calcul du surpotentiel
aipina = 1.3, aipina = 1.3, aipina = 1.3, aipina = 1.3, aipina = 1.3, aipina = 1.3,	⁷⁰ Reglage de la Courbe de Talel
$10-3.2e-3/(1000 \cdot 2.2939077)$	15.2), % 10 en densité de courant A.m ⁻²
C = 1000;	% Capacite en larads
$Qn(1) = C^{*}2.5;$	% Charge stockee V initiale de 2.5
12(1)=0;	% 12 est le courant totale an ampere
for j=2:1:100000 i(j)=i0*exp((alpha*Vn(j)* i2(j)=i(j)*1000*2.293967 Qn(j)=Qn(j-1)-(i2(j)*j/10 Vn2(j)=Qn(j)/C; Vn(j+1)=(Vn2(j)-2.4);	 *F)/(R*T)); % Formule 2.54 de Tafel 715; % Calcul du courant total 0); % Calcul de l'énergie perdue % Calcul de la nouvelle tension % Calcul du nouveau surpotentiel
temps(j)=j/100;	
end	
% Tracé de la tension et du	courant de redistribution de charge
figure(1),plot(temps,i2) grid on %title('courant de tafel en fo xlabel('Temps en s') ylabel('Courant en A') axis([0 1000 0 1]);	onction du temps')
figure(2),plot(temps,Vn2) grid on %title('tension du supercond	lensateur en fonction du temps')
xlabel('Temps en s')	chisaceur en fonction du temps j

ylabel('Tension en V')		
axis([0 1000 2 2.5]);		

Algorithme-A I-5 Calcul du diélectrique en fonction de la fréquence

clear all %% Diélectrique en fonction de la fréquence %% ep0=68; % Diélectrique DC à 25°C tau=0.15; % Constante de relaxation, cependant elle est renseignée dans % l'équation pour que Matlab prenne la partie imaginaire alpha=0; % Coefficient de l'équation de Cole-Cole
beta=1; % Coefficient de l'équation de Havriliak–Negami
for k=1:1:150 f(k)=k*0.1; % Fréquence w(k)=2*3.14*f(k); % Pulsation ep(k)=68/((1+((w(k)*0.15i)^(1-alpha)))^beta); % Équation 3.4 end
epreal=real(ep); % Partie réél epim=imag(ep); % Partie imaginaire
%Tracé du diélectrique en fonction de la fréquence
figure=plot(f,epreal,f,epim) grid on %title('epreal et epim') xlabel('Fréquence en Hz') ylabel('Diélectrique sans unité, réel et imaginaire')
% Set DisplayNames for the lines for use by the legend set(figure(1),'Displayname','Diélectrique réél') set(figure(2),'Displayname','Diélectrique imaginaire') % Center a legend at the top of the graph legend('Location','north')

Algorithme-A I-6 Calcul de la capacité en fonction de la fréquence

```
clear all
%% Calcul de la capacité en fonction de la fréquence du signal %%
q=1.60217656e-19;
                           % Charge élémentaire
Ta=25;
                           % Température ambiante en Celsius
T=273.15+Ta:
                           % Température en kelvin
K=1.3806503e-23;
                           % Constante de Boltzmann
epsilon0=8.854187e-12;
                           % Permittivité du vide
epsilonR=68;
                           % Permittivité de la solution
%epsilon=epsilon0*epsilonR;% Permittivité relative
R=8.314472;
                            % Constante des gaz parfaits j.k^-1.mol^-1
                           % Constante de Faraday C.mol^-1
F=96485.3383;
L=6.02214199e23;
                           % Nombre d'Avogadro mol^-1
r=1.23e-9;
                           % Rayon moléculaire
% Calcul de la capacité de la couche de Helmholtz
%Cinner=epsilon/r;
                           % F.m^2
c=(1/(8*L*r^3))*0.865384615; % Concentration molaire;
%Déclaration des paramètres de l'équation 3.4
ep0=epsilonR:
tau=0.15;
alpha=0.01;
beta=1;
%Déclaration de la charge initiale des supercondensateurs pour reproduire
% publication de Rafik et al. (2007)
    Q1(1)=0.01; %charge en C;
    Q2(1)=0.14;
    Q3(1)=0.53;
for i=1:1:1000000
    % Calcul de la fréquence et la pulsation
    f(i)=i*0.001; %incrémentation de la fréquence
    w(i)=2*3.14*f(i); %calcul de la pulsation
    % Calcul de la permittivité diélectrique
    ep(i)=epsilonR/((1+((w(i)*0.15i)^{(1-alpha)}))^{beta}); % equa. 3.4
    %Calcul de la permittivité relative
    epsilon(i)=ep(i)*epsilon0;
         %Calcul de la capacité de la couche de Helmholtz
    Cinner(i) = epsilon(i)/r;
         %Calcul de la capacité de la couche de Gouy-Chapman
    Cout(i) = ((2*R*T)/(F*(Q1)))*asinh((Q1)/...
       sqrt(8*R*T*epsilon(i)*c)); % en farad .m^-2
```

```
Cout2(i)=((2*R*T)/(F*(Q2)))*asinh((Q2)/...
       sqrt(8*R*T*epsilon(i)*c)); % en farad .m^-2
    Cout3(i) = ((2*R*T)/(F*(Q3)))*asinh((Q3)/...
       sqrt(8*R*T*epsilon(i)*c)); % en farad .m^-2
    %Calcul de la capacité suivant modification de Stern
    C1(i)=7092.2*((Cinner(i)^-1)+Cout(i))^-1;
                                                  % en farad.m^-2
    C2(i)=7092.2*((Cinner(i)^-1)+Cout2(i))^-1;
                                                   % en farad.m^-2
    C3(i)=7092.2*((Cinner(i)^{-1})+Cout3(i))^{-1};
                                                   % en farad.m^-2
end
figure(1), semilogx(f,C1,f,C2,f,C3)
grid on
%title('Capacité en farad en fonction de la fréquence ')
xlabel('Fréquence log en Hz')
ylabel('Capacité en F')
%set(gca, 'fontsize', 12);
%% fin %%
```

Algorithme-A I-7 Calcul de la conductance et de la résistance en fonction de la fréquence

```
clear all
%% Calcul de la résistance en fonction de la fréquence du signal %%
q=1.60217656e-19;
                            % Charge élémentaire
Ta=25:
                            % Température ambiante en Celsius
                           % Température en kelvin
T=273.15+Ta;
K=1.3806503e-23;
                           % Constante de Boltzmann
epsilon0=8.854187e-12;
                           % Permittivité du vide
epsilonR=68;
                            % Permittivité de la solution
epsilon=epsilon0*epsilonR; % Permittivité relative
R=8.314472;
                           % Constante des gaz parfaits j.k^-1.mol^-1
                            % Constante de Faraday C.mol^-1
F=96485.3383;
                            % Nombre d'Avogadro mol^-1
L=6.02214199e23;
                           % Rayon moléculaire
r=1.23e-9;
% Calcul de la capacité de couche de Helmholtz
Cinner=epsilon/r :
                         % F.m^2
c=(1/(8*L*r^3))*0.865384615; % Concentration molaire;
%Déclaration des paramètres de l'équation 3.4
ep0=68;
tau=0.15;
alpha=0.01;
beta=1;
%Déclaration de la charge initiale des supercondensateurs pour reproduire
% publication de Kotz, Hahn, et Gallay (2006)
Q1(1)=0.01; %charge en C;
for i=1:1:100000
    % Calcul de la fréquence et la pulsation
    f(i)=i*0.01; %incrémentation de la fréquence
    w(i)=2*3.14*f(i);
    % Calcul de la permittivité diélectrique
    ep(i)=68/((1+((w(i)*0.15i)^{(1-alpha))})^{beta}); % equa. 3.4
    epsilon(i)=ep(i)*epsilon0;
    %Calcul de la tension de l'électrode
    Cout(i) = ((2*R*T)/(F*(Q1)))*asinh((Q1)/sqrt(...))
       8*R*T*epsilon(i)*c)); % en farad .m^-2
    Cinner(i) = epsilon(i)/r;
    C1(i)=1237.62*((Cinner(i)^{-1})+Cout(i))^{-1}; \% en farad.m^-2
    %Calcul conductance et résistance%
    sigma(i)=1.157416666e11*(-
```

```
1*(w(i)*epsilon0*imag(ep(i))))+555.55;
     Res(i)=1/sigma(i);
end
figure(1), semilogx(f,C1,'lineWidth',2)
grid on
%title('Capacité en farad en fonction de la fréquence ')
xlabel('Fréquence log en Hz')
ylabel('Capacité en F')
%set(gca, 'fontsize', 12);
figure(2), semilogx(f,Res,'lineWidth',2)
grid on
%title('Résistance en fonction de la fréquence ')
xlabel('Fréquence log en Hz')
ylabel('Résistance en ohm')
%axis([10^-2 10^3 0 4*10^-3]);
figure(3),semilogx(f,sigma,'lineWidth',2)
grid on
%title('Conductance en fonction de la fréquence ')
xlabel('Fréquence log en Hz')
ylabel('Conductance en S')
%% fin %%
```

Algorithme-A I-8 Calcul de l'impédance du supercondensateur

clear all	
%% Calcul de la résistance e	en fonction de la fréquence du signal %%
q=1.60217656e-19;	% Charge élémentaire
Ta=25;	% Température ambiante en Celsius
T=273.15+Ta;	% Température en kelvin
K=1.3806503e-23;	% Constante de Boltzmann
epsilon0=8.854187e-12;	% Permittivité du vide
epsilonR=68;	% Permittivité de la solution
epsilon=epsilon0*epsilonR;	% Permittivité relative
R=8.314472;	% Constante des gaz parfaits j.k^-1.mol^-1
F=96485.3383;	% Constante de Faraday C.mol^-1
L=6.02214199e23;	% Nombre d'Avogadro mol^-1
r=1.23e-9;	% Rayon moléculaire
% Calcul de la capacité de la	i couche de Helmholtz
$c = (1/(8*L*r^3))*0.8653846$	15. % Concentration molaire:
	, , , , , , , , , , , , , , , , , , ,
%Déclaration des paramètre ep0=68;	s de l'équation 3.4
tau=0.15;	
alpha=0.01;	
beta=1;	
%Déclaration de la charge ir % publication de Kotz, Hahr Q1(1)=0.01; %charge en C;	nitiale des supercondensateurs pour reproduire n, et Gallay (2006)
$f_{or} = 1 \cdot 1 \cdot 100000$	
1011-1.1.100000 % Calcul de la fráquenc	a at la nulcation
f(i) = i * 0.01 % incréme	ntation de la fréquence
$w(i)=2*3 \ 14*f(i)$	ination de la frequence
% Calcul de la permitt	ivité diélectrique
ep(i)=68/((1+((w(i))*0))	5i) ⁽¹ -alpha))) ⁽² beta) ² % equa 3 4
epsilon(i)=ep(i)*epsilor	10;
	-)
%Calcul de la tension d	e l'électrode
Cout(i)=((2*R*T)/(F*(Q1)))*asinh((Q1)/sqrt
(8*R*T*epsilon(i)*c)); % Calcul de la couche de Gouy-Chapman
Cinner(i)=epsilon(i)/r;	% Calcul de la couche de Helmholtz
C1(i)=1237.62*((Cinne	$r(i)^{-1}+Cout(i))^{-1}$; %Calcul de C totale
% Calcul de la partie in	naginaire de

```
% l'impédance du supercondensateur
     C1real(i)=real(C1(i)); %Partie réelle de l'équa. de Stern
     C1im(i)=imag(C1(i));
                             % Partie imaginaire de l'équa. de Stern
     rendement(i)=C1real(i)/C1real(1); %Calcul de l'efficacité
     %equa. 3.22
     Z1(i)=C1real(i)*w(i)/(-C1real(i)^2*w(i)^2-C1im(i)^2*w(i)^2);
     %Calcul de la conductance et résistance%
     sigma(i)=1.157416666e11*(-
1*(w(i)*epsilon0*imag(ep(i))))+555.55;
     Res(i)=1/sigma(i);
end
figure(1), semilogx(f,C1,'lineWidth',2)
grid on
%title('Capacité en farad en fonction de la fréquence ')
xlabel('Fréquence log en Hz')
ylabel('Capacité en F')
axis([10<sup>-2</sup> 10<sup>3</sup> 0 400]);
figure(2), semilogx(f,Res,'lineWidth',2)
grid on
%title('Résistance en fonction de la fréquence ')
xlabel('Fréquence log en Hz')
ylabel('Résistance en ohm')
%axis([10^-1 10^2 0 4*10^-3]);
figure(3),plot(Res,Z1,'-o')%, '-*', Res,Z2,'-o',Res,Z3,'-.')
grid on
%title('IM en fonction de R ')
xlabel('Réel ohm')
vlabel('Imaginaire ohm')
axis([0 0.002 -0.005 0]);
figure(4), semilogx(f, rendement, 'lineWidth', 2)
grid on
xlabel('Fréquence log en Hz')
ylabel('Efficacité')
axis([10<sup>-2</sup> 10<sup>3</sup> 0 1.5]);
%% fin %%
```

5
clear all %%Calcul de la capacité avec N couches électriques %% %%Condensateur Maxwell 650F essai 3 avec fil de masse %% %%Lecture des données de l'essai pratique%% TempsEssai = xlsread('tempsdechargementmaxwell650f5.xls'); VEssai = xlsread('tensionessaimaxwell650f5.xls'); CEssai = xlsread('capaciteessaimaxwell650f5.xls');
%% Triple layer model %% % Triple couche électrique % q=1.60217656e-19; Ta=25; K=273.15+Ta; (Constante de Boltzmann) epsilon0=8.854187e-12; (Constante de Boltzmann) (Permittivité du vide) (Permittivité de la solution) (Permittivité relative) (Constante des gaz parfaits j.k^-1.mol^-1) (F=96485.3383; (Constante de faraday C.mol^-1) (L=6.02214199e23; (Constante de Yavogadro mol^-1) (F=9e-9; (Constante de Sc%%<
% Calcul de la capacité de la inner et outer couche de Helmholtz Cinner=epsilon/r ; % F.m^2 Cinner2=epsilon/r2; % F.m^-2
% Calcul de la concentration c=(1/(8*L*r^3))*0.865384615; %0.86 marche normale
% Le modèle ne fonctionne pas lorsque la charge égale 0 q1(1)=0.0001; q2(1)=0.0001; qx(1)=0.0001; t(1)=0.1; V(1)=0.
temps(1)=0; %Initialisation du temps I=10.93; %Valeur du courant X=229.1119663; %Surface actif des électrodes SC=637.29; %Capacité du supercondensateur réel i=1:
Nc=7 [·] %Nombre de couches

Algorithme-A I-9 Calcul du nombre de couches

```
for i=1.1.11
                 %Modification du rayon moléculaire
  r(i)=1.23e-9;+i*0.01e-9;
  r2(i)=0;%0.3e-9+i*0.1e-9;
  Cinner(i) = epsilon/r(i);
  Cinner2(i) = epsilon/r2(i);
  c(i)=(1/(8*L*r(i)^3))*0.865384615;
  Vtot=0;
  Vtotx=0;
  q1(1,i)=0.0001;
  q2(1,i)=0.0001;
  qx(1,i)=0.0001;
  t(1,i)=0.1;
  V(1,i)=0;
  temps(1,i)=0;
%Calcul de la valeur de X on calcul jusqu'à ce que V soit supérieure a
2.7V
for k=1:1:40000
  if Vtotx \leq (2.7)
     qx(k+1,i)=qx(k,i)+(0.0001/2); %Charge d'une électrode en C.m^2;
    %Calcul de la tension de l'électrode
    Coutx(k,i) = ((2*R*T)/(F*qx(k,i)))*asinh(qx(k,i)/sqrt(...))
       8*R*T*epsilon*c(i)); % en farad .m^-2
   C1x(k,i)=((Cinner(i)^{-1})+(Cinner2(i)^{-1})+Coutx(k,i))^{-1};%en F.m^-2
     V1x(k,i)=(qx(k,i)/C1x(k,i));
    %Calcul de la tension totale et de la capacité totale.
    C4x(k,i)=C1x(k,i)*Nc; %Association de condensateurs en parallèle
    Cx=C4x(k,i);
     Vx(k,i)=(V1x(k,i)*Nc)+(Ra*I); % Calcul de la tension total DDP
     Vtotx=Vx(k,i);
  else
  end
end
X(i)=SC/Cx;
for j=1:1:30000 %j est l'incrémentation de la ligne
%Calcul de la tension du supercondensateur
if Vtot\leq(2.7)
  t(i+1,i)=0.1;
  temps(j+1,i)=temps(j,i)+t(j,i);
```

```
q1(j+1,i)=q1(j,i)+((I^{*}t(j,i))/(Nc^{*}Nc^{*}X(i)));
  q2(j+1,i)=q2(j,i)+(I*t(j,i));
  %Calcul de la tension de l'électrode une.
  Cout1(j,i) = ((2*R*T)/(F*q1(j,i)))*asinh(q1(j,i)/sqrt(...))
     8*R*T*epsilon*c(i)); % en farad .m^-2
  C1(j,i)=((Cinner(i)^{-1})+(Cinner2(i)^{-1})+Cout1(j,i))^{-1};%F.m^-2
  V1(j,i) = (q1(j,i)/C1(j,i));
  %Calcul de la tension totale et de la capacité totale.
  C4(j,i)=C1(j,i)*Nc; % Association de condensateurs en parallèle
  V(j,i)=(V1(j,i)*Nc)+(Ra*I); % Calcul de la tension totale DDP
  Vtot=V(j,i);
  %Calcul de la capacité du supercondensateur et de la charge
  Ccondo(j,i)=C4(j,i)*X(i);
  Ccondo2(j,i)=q2(j,i)/V(j,i);
else
  q2(j,i)=q2(j-1,i);
  Ccondo(j,i)=Ccondo(j-1,i);
  Ccondo2(j,i)=Ccondo2(j-1,i);
  temps(j,i)=temps(j-1,i);
  V(i,i)=V(i-1,i);
  C4(j,i)=C4(j-1,i);
end
end
end
% Vexcel=flipud(rot90(V)); % Rotation des données pour export sous
%excel
% tempsexcel=flipud(rot90(temps));
% Rotation des donnees pour export sous excel
% Qexcel=flipud(rot90(q2));
% figure(1),plot(q2,Ccondo)
% grid on
% title('Capacité en farad.m^-2 en fonction de la charge ')
% set(gca, 'fontsize', 22);
figure(2),plot(temps,Ccondo2,'r-',TempsEssai,CEssai,'black-
','LineWidth',2)
grid on
title({'Capacité en F en fonction du temps';'SC=650F Maxwell essai 3, 7
```

```
couches en parallèle, r=1.23nm'})
xlabel('Temps secondes')
ylabel('Capacité en F')
set(gca, 'fontsize', 22);
% str1(1) = {'r=1.5e^{-9} m'};
% text(150,600,str1,'fontsize',20)
% str2(1) = {'r=0.5e^{-9} m'};
% text(150,650,str2,'fontsize',20)
figure(3),plot(temps,V,'r-',TempsEssai,VEssai,'black-','LineWidth',2)
grid on
title({'Tension en volts en fonction du temps';'SC=650F Maxwell essai 3,
7 couches en parallèle, r=1.23nm'})
xlabel('Temps secondes')
vlabel('Tension en volts')
set(gca, 'fontsize', 22);
% str1(1) = {'r=1.5e^{-9} m'};
% text(60,1.7,str1,'fontsize',20)
% str2(1) = {'r=0.5e^{-9} m'};
% text(60,1.1,str2,'fontsize',20)
figure(4),plot(temps,Ccondo,'r-','LineWidth',2)
grid on
title({'Capacité en F en fonction du temps';'SC=650F Maxwell essai 3, 7
couches en parallèle, r=1.23nm'})
xlabel('Temps secondes')
ylabel('Capacité en F')
% str1(1) = {'r=1.5e^{-9} m'};
% text(1,496,str1,'fontsize',20)
% str2(1) = {'r=0.5e^{-9} m'};
% text(1,572,str2,'fontsize',20)
set(gca, 'fontsize', 22);
%% fin%%
```

ANNEXE II

SCHÉMA ET PROGRAMME DU PREMIER BANC ESSAI

Le schématique de la carte est, voir Figure-A II-1.

Figure-A II-1 Schématique de la carte sous Altium Designer Le PCB de la carte est, voir Figure-A II-2.

Figure-A II-2 PCB de la carte sous Altium Designer

Pour séparer l'étage puissance de celui de commande des optocoupleurs et des conducteurs de MOSFET sont employés.

La liste du matériel utilisé est, voir Figure-A II-3.

Source Data	a From:	PCB_Project2.	PrjPCB		
Project:		PCB_Project2.	PrjPCB	a 1	
Variant: None		None			
Creation Date	: 2012-03-26	09:46:21			
Print Date:	40994	40994,40721	-		
Footprint	Comment	LibRef	Designator	Description	Quantity
ACS 750	ACS750 Allegro	ACS750 Allegro		ACS 750	
RAD-0.2	Cap	Cap	C2, C3, C5, C8, C10, C15, C16	Capacitor	
CAPPR5-5x	Cap	Cap	C7, C9	Capacitor	
DO-35	Diode 1N914	Diode 1N914	D1. D3	High Conductance Fast Diode	
TO-220 A	Diode	Diode	D4	Default Diode	
PIN1	Socket	Socket	J1, J2, J4, J5, J6, J7, J8, J9, J10, J11, J1 J13	Socket	8
HDR1X2	Header 2	Header 2	P2, P3, P4, P5, P6	Header, 2-Pin	
TO-220AB	MOSFET-N	MOSFET-N	Q1 STP 55NF06	N-Channel MOSFET	
TO-220AB	MOSFET N	MOSFET-N	Q3, Q4	N-Channel MOSFET	
TO-220AB	PNP1	PNP1	Q6 TIP42	PNP Darlington Bipolar Transistor	
TO-220AB	NPN	NPN	Q2 2N6487	NPN Bipolar Transistor	
AXIAL-0.5	Res1	Res1	R1	Resistor	
AXIAL-0.3	Res1	Res1	R4, R5, R6, R7, R12, R13, R14, R15, R1 R17, R18, R19, R20, R25, R26, R27, R26	Resistor	
VDE	DDat	DDot	Rpu1, Rpu2	Potentiomotor	
VD2	DDat	DDot	D22	Potentiometer	
	EOD852	Ontoisolator1		A Din Dhototransistor Ontocounlor	
NI14A	I M2002N	I M2002N	112	Low Power Quad Operational Amplifier	
N014	LM2902N	LM2902N	114	Quadruple Operational Amplifier	
PA8	MAX4/27CPA	MAX4427CPA	U10 Max U11 MAX	Dual High-Speed 1.54 MOSEET Driver	
TOSE	1M7805CT	I M7805CT		Series 3 Terminal Positive Regulator	
RAD-01	Jumper	lumper	W1 W2 W3 W4	Jumper Wire	
RAD 0 1	Marche normale	lumper	W/5 W/8	lumper Wire	
RAD-0 1	+5V	Jumper	W6 W9	Jumper Wire	
RAD-01	GND	Jumper	W7 W10	Jumper Wire	
1010 0.1	one	Campor			
Approved		Notes			

Figure-A II-3 Liste du matériel employé avec Altium Designer

Le programme Labview permettant de contrôler le courant circulant dans le supercondensateur et la mesure de la tension est, voir Figure-A II-4.

Figure-A II-4 Face avant de Labview du premier banc d'essai

Le programme Labview en langage graphique est, voir Figure-A II-5.

Figure-A II-5 Diagramme de Labview du premier banc d'essai

ANNEXE III

SCHÉMA ET PROGRAMME DU DEUXIÈME BANC ESSAI

Le schéma des commandes de MOSFET est, voir Figure-A III-1.

Figure-A III-1 Carte de contrôle des transistors

Le programme créé avec Labview pour contrôler les cartes, mesurer la tension et le courant est, voir Figure-A III-2.

Figure-A III-2 Face avant de Labview du deuxième banc d'essai

Plusieurs fonctions sont nécessaires pour contrôler le banc d'essai, voir Figure-A III-3, Figure-A III-4, Figure-A III-5, Figure-A III-6.

Figure-A III-3 Déclaration des compteurs et utilisation de deux sorties TOR

Deux entrées analogiques sont utilisées, pour mesurer le courant et la tension. Deux sorties numériques sont utilisées pour commander T1 et T2.

Figure-A III-4 Déclaration des entrées et sorties de la carte NI

La consigne de charge ou de décharge est faite avec un tableau, cela permet d'obtenir des créneaux.

Figure-A III-5 Déclaration du tableau de consigne

La boucle while du programme est, voir Figure-A III-6.

Figure-A III-6 Boucle while du programme Labview

Des organigrammes sont présentés. Ils décrivent le fonctionnement des sous-vi du vi (nom d'un programme Labview) principal, voir Algorithme-A III-1, Algorithme-A III-2, Algorithme-A III-3, Algorithme-A III-4.

Algorithme-A III-1 Organigramme de demande d'arrêt

Algorithme-A III-2 Organigramme de la mesure de la tension

Algorithme-A III-3 Organigramme de test de chargement ou déchargement

Algorithme-A III-4 Organigramme de réglage de α

ANNEXE IV

MÉTHODE DE OLDHAM (2008) POUR OBTENIR L'ÉQUATION DE STERN

Suivant la statistique de Boltzmann :

$$n_B = n_B^0 \exp\left(\frac{-W_{A \to B}}{kT}\right) \tag{A I-1}$$

Ensuite la concentration est égale à :

$$c^+ + c^- = c^0$$
 (A I-2)

Le cation chargé positivement devient :

$$c^{+} = c^{0} \exp\left(\frac{-z_{i}e\phi}{kT}\right) = c^{0} \exp\left(\frac{-Q(\phi_{x} - \phi_{\infty})}{kT}\right) = c^{0} \exp\left(\frac{-F(\phi_{x} - \phi_{\infty})}{RT}\right)$$
(A I-3)

L'anion chargé négativement devient :

$$c^{-} = c^{0} \exp\left(\frac{z_{i}e\phi}{kT}\right) = c^{0} \exp\left(\frac{Q(\phi_{x} - \phi_{\infty})}{kT}\right) = c^{0} \exp\left(\frac{F(\phi_{x} - \phi_{\infty})}{RT}\right)$$
(A I-4)

La densité de charge est égale :

$$\rho(x) = F(c^{+} - c^{-}) = Fc^{0}\left(\exp\left(\frac{-F(\varphi_{x} - \varphi_{\infty})}{RT}\right) - \exp\left(\frac{-F(\varphi_{x} - \varphi_{\infty})}{RT}\right)\right)$$
(A I-5)

210

Ou encore :

$$\rho(x) = -2Fc^{0} \sinh\left(\frac{F(\varphi_{x} - \varphi_{\infty})}{RT}\right)$$
(A I-6)

Ensuite en écrivant :

$$\Lambda = -\frac{F}{RT}(\varphi_x - \varphi_\infty) \tag{A I-7}$$

La densité de charge peut-être écrite par :

$$\rho(x) = -2Fc^0 \sinh(\Lambda) \tag{A I-8}$$

En utilisant l'équation de Poisson nous obtenons :

$$\frac{2Fc}{\varepsilon_0\varepsilon}\sinh(\Lambda) = \frac{d^2\varphi_x}{dx^2} = \frac{RT}{F}\frac{d^2\Lambda}{dx^2}$$
 (A I-9)

Et

$$\frac{2F^2c}{\varepsilon_0\varepsilon RT}\sinh(\Lambda) = \frac{d^2\Lambda}{dx^2} = \frac{d\Lambda}{dx}\frac{d}{d\Lambda}\frac{d\Lambda}{dx} = \frac{1}{2}\frac{d}{d\Lambda}\left(\frac{d\Lambda}{dx}\right)^2$$
(A I-10)

En introduisant la longueur de Debye dans un électrolyte :

$$\delta = \sqrt{\frac{\varepsilon_0 \varepsilon kT}{2e^2 c}} = \sqrt{\frac{RT\varepsilon_0 \varepsilon}{2F^2 c}}$$
(A I-11)

Nous pouvons modifier l'équation précédente :

$$2\sinh(\Lambda)d\Lambda = \delta^2 d\left(\frac{d\Lambda}{dx}\right)^2 r \le x \le \infty$$
 (A I-12)

En intégrant nous obtenons :

$$2\cosh(\Lambda) = \delta^2 \left(\frac{d\Lambda}{dx}\right)^2 r \le x \le \infty$$
 (A I-13)

Puis la racine carrée :

$$\frac{d\Lambda}{dx} = \frac{\sqrt{2\cosh(\Lambda)}}{\delta} r \le x \le \infty$$
 (A I-14)

La charge totale sur l'électrode est :

$$q = \int_{r}^{\infty} \rho(x) dx = -2Fc \int_{r}^{\infty} \sinh(\Lambda) dx = -2Fc \int_{\Lambda_{r}}^{0} \frac{\sinh(\Lambda)}{\frac{d\Lambda}{dx}} d\Lambda$$
(A I-15)

$$q = -2Fc \int_{\Lambda_r}^{0} \frac{\sinh(\Lambda)}{\sqrt{2}\sqrt{\cosh(\Lambda)}} d\Lambda = -\sqrt{2}Fc \delta \int_{\Lambda_r}^{0} \frac{\sinh(\Lambda)}{\sqrt{\cosh(\Lambda)}} d\Lambda$$
(A I-16)

$$q = -\sqrt{2}Fc\delta \left[2\sqrt{\cosh(\Lambda)}\right]_{\Lambda_r}^0$$
(A I-17)

$$\frac{q^2}{8F^2c^2\delta^2} = -\left[\cosh(\Lambda)\right]_{\Lambda_r}^0 = -\left[\cosh(0) - \cosh(\Lambda_r)\right]$$
(A I-18)

$$\frac{q^2}{8F^2c^2\delta^2} = \left[\cosh(\Lambda_r - \cosh(0))\right] \tag{A I-19}$$

De sorte que :

$$\Lambda_r = \frac{F}{RT} [\varphi_r - \varphi_\infty] \tag{A I-20}$$

En utilisant la transformation de somme en produit du cosh, et la longueur de Debye nous obtenons :

$$\frac{q^2}{4cRT\varepsilon_0\varepsilon} = 2\sinh^2\left(\frac{\Lambda_r}{2}\right)$$
(A I-21)

En inversant l'équation, nous obtenons :

$$\Lambda_r = 2 \operatorname{arsinh}\left(\frac{q}{\sqrt{8RTc\varepsilon\varepsilon_0}}\right) \tag{A I-22}$$

La couche diffuse de Gouy et Chapman devient :

$$\frac{1}{C_{diffuse}} = \frac{\varphi_r - \varphi_{\infty}}{q} = \frac{2RT}{Fq} \operatorname{arsinh}\left(\frac{q}{\sqrt{8RTc\varepsilon\varepsilon_0}}\right)$$
(A I-23)

La couche de Helmholtz est égale à :

$$\frac{1}{C_{Helmholtz}} = \frac{\varphi_0 - \varphi_r}{q} = \frac{r}{\varepsilon \varepsilon_0}$$
(A I-24)

La capacité totale de la double couche est égale à :

$$\boxed{\frac{1}{C} = \frac{1}{C_{Helmholtz}} + \frac{1}{C_{diffuse}} = \frac{r}{\varepsilon \varepsilon_0} + \frac{2RT}{Fq} \operatorname{arsinh}\left(\frac{q}{\sqrt{8RTc\varepsilon \varepsilon_0}}\right)}$$
(A I-25)

ANNEXE V

MODIFICATION DE LA CAPACITÉ EN FONCTION DE LA TEMPÉRATURE AVEC LE MODÈLE DE STERN

Le modèle de Stern ne modélise pas correctement la modification de la capacité en fonction de la température. Kotz, Hahn, et Gallay (2006) mesurent la variation de la capacité, Figure-A V-1:

Figure-A V-1 Capacité en fonction de la température Tirée de Kotz, Hahn, et Gallay (2006, p. 552)

La capacité est calculée avec l'équation de Stern, équation (2.45), le paramètre T est modifié et la permittivité diélectrique est calculée suivant les mesures faites par Huck et al. (1982). Les auteurs mesurent la permittivité diélectrique du carbonate de propylène en fonction de la température. La variation de 230K à 313K est, Figure-A V-2:

Figure-A V-2 Diélectrique en fonction de la température

Cette courbe est obtenue avec l'équation suivante :

$$\varepsilon = 16.8 + \frac{15.3 \cdot 10^3}{T} \tag{A II-1}$$

Un programme Matlab est créé pour modifier la température et calculer la capacité, Algorithme-A V-1:
Algorithme-A V-1 Calcul de la capacité surfacique en fonction de la température

clear all						
%% Calcul de la capacité en	n fonction de la température %%					
q=1.60217656e-19;	% Charge élémentaire					
Ta=25;	% Température ambiante en celsius					
T=273.15+Ta;	% Température en kelvin					
K=1.3806503e-23;	% Constante de Boltzmann					
epsilon0=8.854187e-12;	% Permittivité du vide					
R=8.314472;	% Constante des gaz parfaits j.k^-1.mol^-1					
F=96485.3383;	% Constante de faraday C.mol^-1					
L=6.02214199e23;	% Nombre d'Avogadro mol^-1					
r=1.23e-9;	% Rayon moléculaire					
$c = (1/(8*L*r^3))*0.8653846$	515; % Concentration molaire;					
	,					
for $k = 1.1.80$						
%Première houcle nour ju	ncrémenter la température et la permittivité					
%Calcul de la permittivi	té diélectrique					
T(k)=23+k*1.%Tempé	rature en kelvin					
ensilon R(k) = 16.8 + (15.3 ensilon R(k)) =	3/T(k):					
ensilon(k) = ensilonR(k)*e	ensilon0: %Permittivité relative					
epsnon(k) epsnon(k) (
%Calcul de la couche de	Helmholtz					
$C_{inner}(k) = ensilon(k)/r$	$\frac{1}{2}$ F m ²					
Children (K)-epsilon (K)/1,	/01.111 2					
%Mise à zero de la chara	9					
$a_1(1 k) = 0.0001$	e					
$q_1(1,k) = 0.0001,$ t(1,k) = 0.00001.						
U(1,K) = 0.00001, V(2=0)						
$\sqrt{5-0}$, for i=1:1:50000						
$\frac{101}{9}$	our colouler le conseité maximale à le					
% Deuxienie boucie ioi p	souhaitáe					
$\frac{1}{6}$ temperature et tension	sounanee					
$\begin{array}{c} 11 \forall \ 5 \leq 2.7 \\ 4(1+1) = 4(1+1) + 0.001 \\ 0.01 \\$	n and an and a dia management					
(J+1,K) - t(J,K) + 0.001; % incrementation du temps						
$q_{1}(j+1,k) = (0.1 * t(j,k)); \%$	Charge d'une electrode en C.m ²					
	11/1 4 1					
%Calcul de la capacite de						
$CoutI(J,K) = ((2^{*}R^{*}I(K))/(2^{*}R^{*}I(K)))/(2^{*}R^{*}I(K))/(2^{*}$	$(F^{*}qI(J,K)))^{*}asinn($					
$qI(j,k)/sqrt(8^*R^*I(k)^*epsilon(k)^*c));$ % en farad .m^-2						
$C1(j,k)=((Cinner(k)^{-1})+$	$Cout1(j,k))^{-1}$; % en farad.m^-2					
$0/C_{-1} = 1 + 1 + 1 + 1$						
%Calcul de la tension du	supercondensateur					
VI(J,K)=(qI(J,K)/CI(J,K))	,					
$V_{3}^{3}=V_{1}(j,k);$						
else						
C1(j,k)=C1(j-1,k);						

C2(k)=C1(j,k); end end end figure(1),plot(T,C2,'-') grid on %title('Capacité en F.m^-2, en fonction de la température ') xlabel('Température en K') ylabel('Capacité en F.m^{-2}') %% fin %%

Le résultat du calcul obtenu est, Figure-A V-3 :

Figure-A V-3 Capacité surfacique en fonction de la température

La capacité calculée baisse lorsque la température augmente. Elle est inverse des mesures faites par Kotz, Hahn, et Gallay (2006). Des études plus approfondies sont nécessaires pour obtenir une modification de la capacité en fonction de la température.

ANNEXE VI

DOCUMENTATION TECHNIQUE D'UN SUPERCONDENSATEUR

Page 1 > Document number: 1015370.3 > maxwell.com

DATASHEET K2 SERIES ULTRACAPACITORS

PRODUCT SPECIFICATIONS (Cont'd)

PHYSICAL (Cont'd)	BCAP0650	BCAP1200	BCAP1500	BCAP2000	BCAP3000	
Vibration	ISO 16750-3, Table 14					
Shock	SAE J2464					
POWER & ENERGY						
Usable Specific Power, P ₄ ^s	6,800 W/kg	5,800 W/kg	6,600 W/kg	6,900 W/kg	5,900 W/kg	
Impedance Match Specific Power, P	14,000 W/kg	12,000 W/kg	14,000 W/kg	14,000 W/kg	12,000 W/kg	
Specific Energy, E _{mat} ⁷	4.1 Wh/kg	4.7 Wh/kg	5.4 Wh/kg	5.6 Wh/kg	6.0 Wh/kg	
Stored Energy ^a	0.66 Wh	1.22 Wh	1.52 Wh	2.03 Wh	3.04 Wh	
LIFE						
High Temperature' (at Rated Voltage & Maximum Operating Temperature)	1,500 hours					
Capacitance Change (% decrease from minimum initial value)	20%	20%	20%	20%	20%	
ESR Change (% increase from maximum initial value)	100%	100%	100%	100%	100%	
Room Temperature ¹ (at Rated Voltage & 25°C)	10 years					
Capacitance Change (% decrease from minimum initial value)	20%	20%	20%	20%	20%	
ESR Change (% increase from maximum initial value)	100%	100%	100%	100%	100%	
Cycle Life19	1,000,000 cycles	1,000,000 cycles	1,000,000 cycles	1,000,000 cycles	1,000,000 cycles	
Capacitance Change (% decrease from minimum initial value)	20%	20%	20%	20%	20%	
ESR Change (% increase from maximum initial value)	100%	100%	100%	100%	100%	
Test Current	65 A	100 A	100 A	100 A	100 A	
Shelf Life ^{1,10} (Stored uncharged up to a maximum storage temperature)	2 years					
SAFETY						
Short Circuit Current, typical (Current possible with short circuit from rated voltage. Do not use as an operating current.)	3,400 A	4,700 A	5,700 A	7,700 A	9,300 A	
Certifications	RoHS, UL810a	RoHS, UL810a	RoHS, UL810a	RoHS, UL810a	RoHS, UL810a	
Page 2 >> Document number: 1015370.3	s maxwell.com			Ń		

222

DATASHEET 🔅 K2 SERIES ULTRACAPACITORS

TYPICAL CHARACTERISTICS

THERMAL CHARACTERISTICS	BCAP0650	BCAP1200	BCAP1500	BCAP2000	BCAP3000	
Thermal Resistance (Rth, Case to Ambient), typical ²	6.5°C/W	5.3°C/W	4.5°C/W	3.8°C/W	3.2°C/W	
Thermal Capacitance (C ₄), typical ²	190 J/°C	300 J/C	320 J/°C	410 J/C	600 J/C	

ESR AND CAPACITANCE VS TEMPERATURE

NOTES

- Capacitance and ESR_{pc} measured at 25°C per Document Number 1007239 available at www.maxwell.com.
- Per Maxwell Document 1007239 available at www.maxwell.com.

3. Maximum Peak current (1 sec) = $\frac{\frac{1}{2} \text{ CV}}{\text{C x ESR}_{pc} + 1}$

 After 72 hours at 25°C and rated voltage. Initial leakage current can be higher.

5. Per IEC 62391-2,
$$P_d = \frac{0.12V^2}{ESR_{pc} \times mass}$$

MOUNTING RECOMMENDATIONS

Do not reverse polarity. Please refer to document number 1016419, available at maxwell.com for welding recommendations.

6.
$$P_{max} = \frac{V^2}{4 \times ESR_{DC} \times mass}$$

7.
$$E_{max} = \frac{\frac{V_2 CV^2}{3,600 \times mass}}$$

8.
$$E_{max} = -\frac{\frac{V_2 CV^2}{2}}{1000 \times mass}$$

- Cycle per Document Number 1007239 available at www.maxwell.com.
- No more than 10% decrease in capacitance from minimum initial capacitance or 50% increase in ESR from maximum initial ESR.
- Absolute maximum voltage non repeated, not to exceed 1 second.

MARKINGS

Products are marked with the following information: Rated capacitance, rated voltage, product number, name of manufacturer, positive terminal, warning marking, serial number.

Page 3 > Document number: 1015370.3 > maxwell.com

DATASHEET **K2 SERIES ULTRACAPACITORS** BCAPxxxx P270 K04 2.8 MAX UNTHREADED LENGTH 2.8 MAX UNTHREADED LENGTH M12 X 1.75 - 6g MI2X1.75-6g ର୍ଦ୍ଧର AAX 14 BCAPxxxx P270 K05 RDAN **Dimensions (mm)** Part Description L (±0.3mm) **Package Quantity** D1 (±0.2mm) D2 (±0.7mm) BCAP0650 P270 K04/05 51.5 60.4 60.7 30 BCAP1200 P270 K04/05 60.4 60.7 30 74 BCAP1500 P270 K04/05 85 60.4 60.7 30 60.7 BCAP2000 P270 K04/05 102 60.4 15 BCAP3000 P270 K04/05 138 60.4 60.7 15 Product dimensions are for reference only unless otherwise identified. Product dimensions and specifications may change without notice. Please contact Maxwell Technologies directly for any technical specifications critical to application. All products featured on this datasheet are covered by the following U.S. patents and their respective foreign counterparts: 7511941, 7492574, 7307830, 6.842.330, 6.631.074, 6.804.108, 6.813.139, 7.352.558, 7.295.423, 7.090.946, 7.508.651, 7.492.571, 7.342.770, 6.643.119, 7.384.433, 7.147.674, 7.317.609, 7.495.349, 7.102.877. ٦ Maxwell Technologies, GmbH

Maxwell Technologies, Inc. **Global Headquarters** 5271 Viewridge Court, Suite 100 San Diego, CA 92123 USA Tel: +1 858 503 3300 Fax: +1 858 503 3301

Maxwell Technologies SA CH-1728 Rossens Switzerland Tel: +41 (0)26 411 85 00 Fax: +41 (0)26 411 85 05

Brucker Strasse 21 D-82205 Gilching Germany Tel: +49 (0)8105 24 16 16 Fax: +49 (0)8105 24 16 19

Maxwell Technologies, Inc. Shanghal Representative Office 13E, CR Times Square 500 Zhangyang Road, Pudong Shanghai 200122, P.R. China Tel: +86 21 5836 8780 Fax: +86 21 5836 8790

Page 4 > Document number: 1015370.3 > maxwell.com

ANNEXE VII

SIMULATION SPS AVEC UNE ÉLECTRODE ET RAYON MOLÉCULAIRE DE 1 NM

Une simulation avec un nombre de couches inconnu et un rayon moléculaire inconnu a été faite avec SPS. Les valeurs renseignées étaient une électrode et un rayon moléculaire de 1nm. Le supercondensateur utilisé est le Maxwell 650F, les paramètres de la capacité et de la résistance ont été pris du Tableau 7.2. Les résultats sont, Figure-A VII-1 à Figure-A VII-4 :

Figure-A VII-1 Réponse du supercondensateur Maxwell 650F

Figure-A VII-2 Réponse du supercondensateur Maxwell 650F chargement

Figure-A VII-3 Capacité en fonction de la charge du supercondensateur Maxwell 650F

Figure-A VII-4 Erreur relative entre l'essai pratique et la simulation SPS du supercondensateur Maxwell 650F

L'erreur relative maximale au démarrage est égale à 9.5%, puis lors du chargement l'erreur maximale est égale à 6.5%. Cette simulation nous indique que lorsque les paramètres sont inconnus l'erreur maximale atteint 6.5% en omettant le pic d'erreur du démarrage.

ANNEXE VIII

RÉCAPITULATIF DES PARAMÈTRES DU MODÈLE DES SUPERCONDENSATEURS

	1						1
Supercondensateurs	X ₂ et r	Ν	ΔV	α	C	R	If
BCAP0350 E250	1.23nm	6	0.3V	0.3	321.88F	4.5mΩ	0.3mA
BCAP0650	1.23nm	6	0.3V	0.3	628.36F	3.2mΩ	1.5mA
BCAP1200	1.23nm	6	0.3V	0.3	1207.83F	3.11mΩ	2.7mA
BCAP3000	1.23nm	6	0.3V	0.3	2795.56F	2.77mΩ	5.2mA
ESHR-0650	1.51nm	8	0.3V	0.3	732.06F	3.48mΩ	1.5mA
ESHR-1200	1.30nm	8	0.3V	0.3	1348.72F	2.91mΩ	2.7mA
ESHR-3000	1.5nm	6	0.3V	0.3	3340.65F	2.94mΩ	5.2mA
ESHSP-3500	0.75nm	4	0.3V	0.3	3737.45F	4.52mΩ	5.5mA
EMHSR-0088	1.9nm	8	0.3V	0.3	99.48F	7.5mΩ	3mA

Tableau-A VIII-1 Récapitulatif des paramètres

LISTE DE RÉFÉRENCES BIBLIOGRAPHIQUES

- Al Sakka, M., H. Gualous, J. Van Mierlo, et H. Culcu. 2009. « Thermal modeling and heat management of supercapacitor modules for vehicle applications ». *Journal of Power Sources* 194 (2): 581–587.
- Amokrane, S. 1996. « Microscopic description of the electrode surface and double layer capacity at the electrode/solution interface ». *Electrochimica acta* 41 (14): 2097–2105.
- Bard, A.J., et L.R. Faulkner. 1980. *electrochemical methods: fundamentals and applications*. John Wiley and Sons.
- Becker, Howard I. 1957. « Low Voltage Electrolytic Capacitor ». New York, N.Y.
- Béguin, François, et Elżbieta Frąckowiak. 2009. Carbons for Electrochemical Energy Storage and Conversion Systems. CRC Press.
- Belhachemi, Farid. 2001. « Modélisation et caractérisation des super-condensateurs à couche double électrique utilisés en électronique de puissance ». Lorraine: Institut National Polytechnique de Lorraine.
- Bendale, Priya, Manuel R. Malay, John M. Dispennette, Chenniah Nanjundiah, et Medina Chaney. 2004. «Electrochemical double layer capacitor having carbon powder electrodes ». US Patent US2004/0090736 A1. Folley and Lardner P.O. Box 80278 San Diego, CA 92138-0278.
- Bertoni, L., H. Gualous, D. Bouquain, D. Hissel, M. -C Pera, et J. -M Kauffmann. 2002.
 « Hybrid auxiliary power unit (APU) for automotive applications ». In Vehicular Technology Conference, 2002. Proceedings. VTC 2002-Fall. 2002 IEEE 56th, 3:1840-1845 vol.3. IEEE. doi:10.1109/VETECF.2002.1040535.
- Buller, S., E. Karden, D. Kok, et RW De Doncker. 2002. « Modeling the dynamic behavior of supercapacitors using impedance spectroscopy ». *Industry Applications, IEEE Transactions on* 38 (6): 1622–1626.
- Bureau international des poids et mesures. 2006. *Le système international d'unités SI*. Organisation intergouvernementale de la convention du mètre.
- Camara, Mamadou Baïlo. 2007. « Supercondensateurs pour échange dynamique d'énergie à bord du véhicule électrique hybrid Modélisation, étude des convertisseurs et commande ». U.F.R des sciences Techniques et Gestion de l'Industrie de l'Université de Franche-Comté.

- Chapman, D.L. 1913. « LI. A contribution to the theory of electrocapillarity ». *The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science* 25 (148): 475–481.
- Conway, B.E. 1999. Electrochemical supercapacitors: scientific fundamentals and technological applications. New York, N.Y.: Springer.
- Dormand, J.R., et P.J. Prince. 1980. « A family of embedded Runge-Kutta formulae ». Journal of computational and applied mathematics 6 (1): 19–26.
- Fannin, PC, SW Charles, D. Vincent, et AT Giannitsis. 2002. « Measurement of the highfrequency complex permittivity and conductivity of magnetic fluids ». *Journal of magnetism and magnetic materials* 252: 80–82.
- Farahmandi, Dispennette, Blank, et Kolb. 1999. « Multi-electrode double layer capacitor having single electrolyte seal and aluminum impregnated carbon cloth electrodes ». US Patent 5,862,035. Maxwell Energy Products, Inc., San Diego, CA.
- Gallay, Roland, et Hamid Gualous. 2009. Carbons for Electrochemical Energy Storage and Conversion Systems. CRC Press. Berlin: CRC Press.
- Gouy, M. 1910. « Sur la constitution de la charge electrique a la surface d'un electrolyte ».
- Grahame, D.C. 1947. « The electrical double layer and the theory of electrocapillarity. » *Chemical Reviews* 41 (3): 441–501.
- Guidelli, R., et W. Schmickler. 2000. « Recent developments in models for the interface between a metal and an aqueous solution ». *Electrochimica Acta* 45 (15-16): 2317–2338.
- Helmholtz, H. 1879. « Studien über electrische Grenzschichten ». Annalen der Physik 243 (7): 337–382.
- Hillier, A.C., S. Kim, et A.J. Bard. 1996. « Measurement of double-layer forces at the electrode/electrolyte interface using the atomic force microscope: potential and anion dependent interactions ». *The Journal of Physical Chemistry* 100 (48): 18808–18817.
- Huck, JR, GA Noyel, LJ Jorat, et AM Bondeau. 1982. «Dielectric relaxation and conductivity in propylene carbonate ». *Journal of Electrostatics* 12: 221–228.
- Johansson, P., et B. Andersson. 2008. «Comparison of simulation programs for supercapacitor modelling». *Master of Science Thesis. Chalmers University of Technology, Sweden.*

- Kotz, R., M. Hahn, et R. Gallay. 2006. « Temperature behavior and impedance fundamentals of supercapacitors ». *Journal of power sources* 154 (2): 550–555.
- National Institute of Standard and Technology. 2011. Fundamental Physical Constants-Extensive Listing. {http://physics.nist.gov/constants.
- Oldham, K.B. 2008. « A Gouy-Chapman-Stern model of the double layer at a (metal)/(ionic liquid) interface ». *Journal of Electroanalytical Chemistry* 613 (2): 131–138.
- Ortúzar, M., J. Moreno, et J. Dixon. 2007. « Ultracapacitor-based auxiliary energy system for an electric vehicle: Implementation and evaluation ». *Industrial Electronics, IEEE Transactions on* 54 (4): 2147–2156.
- Rafik, F., H. Gualous, R. Gallay, A. Crausaz, et A. Berthon. 2007. « Frequency, thermal and voltage supercapacitor characterization and modeling ». *Journal of power sources* 165 (2): 928–934.
- Raju, Gorur G. 2003. *Dielectrics in Electric Fields*. CRC Press.
- Rizoug, N., P. Bartholomeus, et P. Le Moigne. 2010. «Modeling and characterizing supercapacitors using an online method ». *Industrial Electronics, IEEE Transactions* on 57 (12): 3980–3990.
- Rizoug, Nassim. 2006. « Modélisation électrique et énergétique des supercondensateurs et méthodes de caractérisation: Application au cyclage d'un module de supercondensateurs basse tension en grande puissance ». Lille: École centrale de Lille, Université des sciences et technologie de Lille.
- Rufer, A., P. Barrade, D. Hotellier, et S. Hauser. 2003. « Sequential supply for electrical transportation vehicles: Properties of the fast energy transfer between supercapacitive tanks ». In *Industry Applications Conference, 2003. 38th IAS Annual Meeting. Conference Record of the*, 3:1530–1537.
- Rufer, A., D. Hotellier, et P. Barrade. 2004. «A supercapacitor-based energy storage substation for voltage compensation in weak transportation networks». *Power Delivery, IEEE Transactions on* 19 (2): 629–636.
- Shah, VA, J.A. Joshi, R. Maheshwari, et R. Roy. 2008. «Review of ultracapacitor technology and its applications ». In *Fifteenth National Power Systems Conference* (NPSC), IIT Bombay, 142–147.
- Stern-Hamburg, H.O. 1924. «Zur Theorie Der Elektrolytischen Doppelschicht». S. f. Electrochemie.

- Tremblay, O., L. -A Dessaint, et A. -I Dekkiche. 2007. « A Generic Battery Model for the Dynamic Simulation of Hybrid Electric Vehicles ». In *IEEE Vehicle Power and Propulsion Conference*, 2007. VPPC 2007, 284-289. IEEE. doi:10.1109/VPPC.2007.4544139.
- Williams, H.S, et E.H. Williams. 2009. *A History of Science*. The Project Gutenberg EBook. Vol. 2. 5 vol. http://www.gutenberg.org/files/1706/1706-h/1706-h.htm.
- Zubieta, L., et R. Bonert. 2000. « Characterization of double-layer capacitors for power electronics applications ». *Industry Applications, IEEE Transactions on* 36 (1): 199–205.