

ÉCOLE DE TECHNOLOGIE SUPÉRIEURE
UNIVERSITÉ DU QUÉBEC

 THESIS PRESENTED TO

ÉCOLE DE TECHNOLOGIE SUPÉRIEURE

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR
THE DEGREE OF DOCTOR OF PHILOSOPHY

Ph. D.

BY

Rachida DJOUAB

SOFTWARE PRODUCT QUALITY REQUIREMENTS ENGINEERING METHOD:
SOQUAREM

MONTREAL, SEPTEMBER 26, 2012

© Copyright Rachida Djouab, 2012

THIS THESIS HAS BEEN EVALUATED

BY THE FOLLOWING BOARD OF EXAMINERS

Mr. Witold Suryn, Thesis Director
Software Engineering & Information Technology Department
École de technologie supérieure

Mr. Zbigniew Dziong, President of the Board of Examiners
Electrical Engineering Department
École de technologie supérieure

Mr. Pierre Bourque
Software Engineering & Information Technology Department
École de technologie supérieure

Mme Ebba Bora Hvannberg
Computer Science Department, Iceland University

THIS THESIS WAS PRESENTED AND DEFENDED

BEFORE A BOARD OF EXAMINERS AND PUBLIC

SEPTEMBER 26, 2012

AT ÉCOLE DE TECHNOLOGIE SUPÉRIEURE

ACKNOWLEDGEMENTS

 I want to thank, first of all, my creator “Allah” who gave me the force to continue this

research work and helped me to endure the difficult situations that I encountered.

I want to thank my research supervisor, Dr. Witold Suryn

Thanks to Dr. Suryn for accepting me as a Ph.D. student and trusting me to complete this

thesis. I am very grateful for his pertinent advice and help provided during these years of

research. He taught me how to find strength in myself despite all the difficulties that arise

and to always give the best of myself. I thank him for his great contribution in improving the

quality of my research work.

Thanks also to Dr. Abran, for his help, guidance and his presence, especially during the

evaluation of my research. He taught me rigor in work, patience and to focus on the essential.

Thanks to participants of the workshop ISSEM 2011, especially Mr. Carlos Monsalve who

helped me to evaluate my research work.

Thanks also to Dr. Taleb, for his support and guidance during the redaction of the thesis

document.

Very special thanks as well to my family who has endured and supported me during all of

these years of study, especially my three children who gave me strength and happiness. I owe

you all my gratitude and I thank you all again. I dedicate to them this thesis as a proof of my

appreciation and love.

LA MÉTHODE D’INGÉNIERIE DES EXIGENCES DE QUALITÉ DU PRODUIT
LOGICIEL : SOQUAREM

 Rachida, DJOUAB

RÉSUMÉ

L'industrie des TI a besoin de données fiables sur les exigences de qualité pour évaluer
adéquatement les systèmes et leur architecture. La gestion des exigences de qualité du
produit logiciel est une discipline qui vient d’émerger pour améliorer la qualité du produit en
adressant ses exigences de qualité. Cette tâche n’est pas facile et exige de grands efforts des
praticiens, une meilleure implication des parties prenantes ainsi qu’une solide connaissance
des techniques de gestion des exigences de qualité. De plus ce type d’exigences est difficile à
définir et de nature conflictuelle. De nouvelles approches de gestion de qualité ont été
développées pour palier aux limitations des approches traditionnelles d’ingénierie des
exigences comme : a) l’absence de conseils systématiques sur la façon de définir les
exigences de qualité; b) la difficulté d’identifier les exigences de qualité et de les représenter
dans des modèles et processus et c) l’absence de techniques de gestion des exigences de
qualité.

Cette thèse définit une nouvelle méthode d’ingénierie des exigences de qualité nommée
SOQUAREM, basée sur le standard de qualité ISO/IEC SQuaRE 25030. La méthode
propose un processus structuré, supporté par des techniques et concepts de traitement de ces
exigences. Le processus de SOQUAREM couvre 2 niveaux d'abstraction (Affaires et
système) et six étapes conceptuelles telles que: l'identification et spécification des objectifs
d’affaire, la dérivation des attributs de qualité, leur analyse et consolidation et finalement
leur intégration dans le processus fonctionnel. Le processus SOQUAREM propose la
combinaison de plusieurs concepts de différents niveaux organisationnels pour identifier,
représenter et retracer les attributs de qualité.

Ce document est divisé en 6 chapitres. Le premier chapitre présente l’état de l’art sur les
« Exigences de qualité » en général et sur les différentes approches de leur traitement telles
que “MOQARE” (Misuse-Oriented QuAlity Requirements Engineering), “IESE NFR"
(Institute for Experimental Software Engineering Non Functional Requirements), "Soft Goal
Notation" (Chung Framework), "FDAF” (Formal Design and Analysis Framework) et
"ATAM" (Architecture Tradeoff Analysis Method). Le deuxième chapitre introduit la
problématique de la recherche, ses objectifs, limites et sa méthodologie. Le troisième
chapitre décrit le déroulement de la recherche pour justifier la solution de recherche
proposée. Il commence par une analyse de la situation actuelle des exigences de qualité dans
les milieux académiques et industriels pour en ressortir les principaux indicateurs. Il termine
par une description des aspects innovateurs de la nouvelle méthode proposée concrétisés en
ses caractéristiques spécifiques, méta modèle, processus de sa conception et la structure de

VIII

son processus. Le quatrième chapitre décrit la nouvelle méthode d’ingénierie des exigences
de qualité (SOQUAREM) incluant ses fondements, concepts clés et son modèle de
processus. Le cinquième chapitre présente un exemple détaillé appliqué à un système
automatisé de contrôle des bâtiments appelé MSLite. L’applicabilité de SOQUAREM est
illustrée dans cet exemple et ensuite analysée. Le dernier chapitre présente une conclusion
sur le travail de recherche et son éventuelle évolution.

Mots-clés: SOftware product QUAlity Requirements Engineering Method
(SOQUAREM), Software Quality, Quality management methods, Quality attributes
identification, ISO/IEC SQuaRE 25030.

SOFTWARE PRODUCT QUALITY REQUIREMENTS ENGINEERING METHOD:
SOQUAREM

Rachida, DJOUAB

ABSTRACT

The IT industry needs reliable data about Quality Requirements (QRs) to adequately evaluate
systems and their architecture. Quality requirements management of the software product is
an emerging discipline aiming to enhance the software product quality by addressing its
quality requirements. Dealing with this kind of requirements is not easy and implies much
effort from practitioners, better involvement of interested stakeholders and a solid knowledge
in quality management techniques. In fact they are vague, difficult to define and often
conflict with other requirements. New approaches toward QRs management are developed to
resolve problems of traditional software engineering views as: a) lack of systematic
guidelines on how to elicit QRs; b) difficulty to identify QRs and to represent them in models
and processes.

In the context of a proposal for a SOftware product QUAlity Requirements Engineering
Method (SOQUAREM), this thesis provides a structured QRs engineering process with its
supporting ISO/IEC SQuaRE 25030 standard, management techniques and concepts.
SOQUAREM process spans 2 high levels of abstraction (business and system) and six
conceptual phases such as: identification and refinement of business goals, derivation and
consolidation of the quality attributes and their integration into the functional process. The
proposed SOQUAREM illustrates in a structured and easy to use way how several concepts
can be combined at different organizational levels to identify, represent, document and
retrace quality attributes.

This document is divided into six chapters: the first chapter presents a background and
related work on "Quality requirements" in general and on various quality requirements
management methods such as MOQARE (Misuse-Oriented QuAlity Requirements
Engineering)), IESE NFR (Institute for Experimental Software Engineering Non Functional
Requirements), Soft Goal Notation (Chung Framework), FDAF (Formal Design and Analysis
Framework) and ATAM (Architecture Tradeoff Analysis Method). The second chapter
introduces the research topic with its objectives, its limits, the research methodology and
research steps. The third chapter describes the research execution by analyzing the current
situation of quality requirements with the resulted indicators from academic and industrial
environments and formulating the future requirements of the proposed research solution. An
overview of the innovative aspects of proposed method like its specific features, metamodel,
building process, and process structure are pinpointed. The fourth chapter describes primarily
the most important parts of the research which are the development of a new quality
requirements engineering method called SOftware product QUAlity Requirements
Engineering Method including fundamentals, key concepts and a process model. The fifth

X

chapter presents an illustrative example applied to a building automation system called
MSLite. Applicability of SOQUAREM process in this example is developed and analyzed.
The last chapter presents a conclusion on this research work and its expected evolution in the
future.

Keywords: SOftware product QUAlity Requirements Engineering Method
(SOQUAREM), Software Quality, Quality management methods, Quality attributes
identification, ISO/IEC SQuaRE 25030.

TABLE OF CONTENTS

Page

INTRODUCTION .. 1

CHAPTER 1 LITERATURE REVIEW…………………………………………………..11

1.1 Introduction ..11
1.2 Quality requirements ..13
 1.2.1 Quality requirements and software quality ... 13
1.3 Software quality engineering standards ...23

1.3.1 Software quality Requirements and ISO/IEC SQuaRE standard 30
1.3.2 Standard ISO/IEC 25030 SQuaRE - Software Product Quality Requirements 32

1.4 Quality requirements management methods ..38
1.4.1 SPACE-UFO Project .. 39
1.4.2 MOQARE (Misuse-Oriented QuAlity Requirements Engineering) method 42
1.4.3 ATAM (Architecture Tradeoff Analysis Method) method 48
1.4.4 FDAF (Formal Design and Analysis Framework) method.......................... 51
1.4.5 Method “Requirement model for quality attributes” 55
1.4.6 IESE NFR method ... 57
1.4.7 Soft goal notation of the Chung NFR Framework 65
1.4.8 Prometheus Method to model quality in SPL (Software Product Lines) 69
1.4.9 Quality models in software packages methodology 74
1.4.10 Quality specification strategies for embedded software 75
1.4.11 Method SHEL (Software and HardwarE and Live ware) 77
1.4.12 BMM (Business Motivation Model) .. 80
1.4.13 Synthesis of described methods ... 83

1.5 Chapter summary ...89

CHAPTER 2 RESEARCH OBJECTIVES AND METHODOLOGY 91

2.1 Introduction ..91
2.2 Research Goal and Objectives ...93
2.3 Research Methodology ..93
2.4 Chapter summary ...100

CHAPTER 3 RESEARCH EXECUTION .. 101

3.1 How to apply methods for quality requirements management102
 3.1.1 Analysis and discussion of applicability of QRs management methods 103
 3.1.2 Conclusion ... 113

XII

3.2 Quality requirements management in an industrial environment114
3.2.1 Data collection of quality requirements ... 114
3.2.2 Performing the data collection process .. 114
3.2.3 Analyzing the collected data ... 116
3.2.4 Analysis of resulted indicators from industry and academic environments ..136

3.3 Innovative aspects of the proposed research solution: SOQUAREM (SOftware
QUAlity Requirements Engineering Method) ...139
3.3.1 Specific features of SOQUAREM method .. 139
3.3.2 Meta-Model of SOQUAREM method ... 140
3.3.3 The SOQUAREM building process ... 141
3.3.4 SOQUAREM process structure ... 143

3.4 Conclusion ...145

CHAPTER 4 SOQUAREM: SOFTWARE QUALITY REQUIREMENTS

ENGINEERING METHOD ... 147

4.1 SOQUAREM method ..147
4.2 SOQUAREM Key concepts ..150
 4.2.1 Development of SOQUAREM concepts ... 153
4.3 The SOQUAREM process model ..165
 4.3.1 Detailed description of the six phases of SOQUAREM process 169
4.4 CONCLUSION ..180

CHAPTER 5 ILLUSTRATIVE EXAMPLE OF THE BUILDING AUTOMATION

SYSTEM CASE.. 183

5.1 Development of the example ...183

5.1.1 Presentation of the example ... 183
5.1.2 Description of the MSLite system ... 184
5.1.3 Specific features of application of SOQUAREM method 188
5.1.4 Analysis of SOQUAREM process ... 223

5.2 Conclusion ...235

CONCLUSION ……………………………………………………………………………..237

ANNEX I QUESTIONNAIRE ON QRS OF THE SOFTWARE PRODUCT 245

ANNEX II QUESTIONNAIRE ON SOQUAREM METHOD .. 263

BIBLIOGRAPHY ... 297

LIST OF TABLES

Page

Table 1.1 Main QRs aspects ..12

Table 1.2 Definitions of software QRs by authors ...22

Table 1.3 Strengths and weaknesses of Space-UFO method Extracted from Punter et al.,
 (1997) ...42

Table 1.4 Strengths and weaknesses of MOQARE Extracted from Herrmann et al.,
 (2007a and 2007b) ...47

Table 1.5 Strengths and weaknesses of ATAM method Extracted from Kazman et al.
 (2000) and Lee et al., (2001) ..51

Table 1.6 Strengths and weaknesses of FDAF method Extracted from Dai (2005) and
 Dai et al., (2003, 2005 and 2006) ..54

Table 1.7 Strengths and weaknesses of IESE NFR method Extracted from Doerr et al.,
 (2003 and 2005) and Kerkow et al., (2003) ...65

Table 1.8 Strengths and weaknesses of Chung framework Extracted from Chung et al.,
 (1994 and 1995) ...69

Table 1.9 Strengths and weaknesses of Prometheus method Extracted Trendowicz et al.,
 (2003); Empress, (2004); (Gray et al., (1997); Birk et al., (1998); Fuggetta et
 al., (1998) and Solingen et al, (1999a) ...73

Table 1.10 BMM concepts descriptions ..82

Table 1.11 Summary of chosen methods and their criteria assessment87

Table 1.12 Comparisons of chosen methods ...88

Table 3.1 QRs management methods with their concepts and designed levels103

Table 3.2 Strengths and weaknesses of QRs management methods110

Table 3.2 Strengths and weaknesses of QRs management methods (follow)111

Table 3.3 Assessment of QRs management method’s applicability112

XIV

Table 3.4 Comparisons of applied QRs management methods through their artifacts..113

Table 3.5 Responsibility and duration of working of domain representatives115

Table 3.6 Size of companies ..116

Table 3.7 Activity domains ..117

Table 3.8 Developed projects ...118

Table 3.9 Critical level of developed projects ...119

Table 3.10 Interested stakeholders by QRs ..121

Table 3.11 Type of training..122

Table 3.12 Type of Sofware tools ..124

Table 3.13 The need to improve quality ..125

Table 3.14 Techniques to identify QRs ...126

Table 3.15 Techniques to decompose QRs ..127

Table 3.16 Techniques to document QRs ..128

Table 3.17 Size of software projects ..129

Table 3.18 Total effort of software projects ..130

Table 3.19 Hierarchy levels of software projects ..131

Table 3.20 Duration of software projects ...132

Table 3.21 Quality standards ...133

Table 3.22 Responsible of standards..133

Table 3.23 Used parts of ISO/IEC 9126 ..134

Table 3.24 Frequency use of times of ISO/IEC 9126 ..135

Table 3.25 SOQUAREM characteristics ...140

Table 4.1 BCT (Business Context Table) ..153

XV

Table 4.2 Confirm linkage of QAs with business goals ..154

Table 4.3 Resolve conflicts among QAs ..155

Table 4.4 Template for specifying quality attributes ...157

Table 4.5 QAs documentation classes types ..158

Table 4.6 Models requiring the QA ...158

Table 4.7 Activities requiring the QA ..158

Table 4.8 Impact matrix for conflicts among quality attributes159

Table 4.9 Quality scenarios template ...161

Table 4.10 Statement rules ...163

Table 4.11 Refinement rules ..163

Table 4.12 Linkage rules ..164

Table 4.13 Mapping rules ..164

Table 4.14 Attribute weights to quality attributes ..174

Table 5.1 SOQUAREM process applied to MSLite system ..188

Table 5.2 BMM concepts used for automation building system193

Table 5.3 BCT for automation building system ...194

Table 5.3 BCT for automation building system (follow) ...195

Table 5.4 State and identify business goals for MSLite system197

Table 5.5 Refine business goals ...199

Table 5.6 Refined business goals table ..201

Table 5.7 Link the business goals to the corresponding quality attributes203

Table 5.8 Quality attributes list ..205

Table 5.9 Confirm linkage of quality attributes with business goals206

XVI

Table 5.10 Quality attributes scenarios ..210

Table 5.11 Weighted method ...213

Table 5.12 Resolve conflicts among QAs ..215

Table 5.13 Quality attributes template ...218

Table 5.14 Applicability of concepts for the identification activity224

Table 5.15 Appropriateness of concepts for the identification activity225

Table 5.16 Understandability of concepts for the identification activity226

Table 5.17 Completeness of concepts for the identification activity227

Table 5.18 Applicability of concepts for the representation activity229

Table 5.19 Appropriateness of concepts for the representation activity229

Table 5.20 Understandability of concepts for the representation activity230

Table 5.21 Completeness of concepts for the representation activity231

Table 5.22 Applicability of SOQUAREM ...232

LIST OF FIGURES

Page

Figure 1 Context of the research project ..2

Figure 2 Traditional functional requirements in software engineering processExtracted
 from Suryn (2006)..5

Figure 3 Quality requirements in software engineering process Extracted from Suryn
 (2006) ...5

Figure 1.1 Relationships between Needs and Requirements Extracted from Zubrow
 (2004) ...14

Figure 1.2 QRs life cycle model Extracted from ISO/IEC 25030 (2007)15

Figure 1.3 ISO/IEC 9126 Quality Model - External and Internal Quality Extracted from
 Suryn et al., (2005b) ...25

Figure 1.4 ISO/IEC 9126 Quality Model - Quality in Use Extracted from Suryn et al.,
 (2005b) ...25

Figure 1.5 Quality requirements decomposition model Extracted from Suryn (2003)26

Figure 1.6 Process of defining and controlling quality requirements Extracted from Suryn
 (2003) ...27

Figure 1.7 Quest FORUM TL9000 Model Extracted from TL 9000 (2001)28

Figure 1.8 Suryn-Abran CQL model version 1.1 Extracted from Suryn et al., (2005)29

Figure 1.9 High-level mapping of ISO/IEC SC7 software product qualityStandards and a
 software life cycle Extracted from Suryn et al., (2003)30

Figure 1.10 Mapping between ISO/IEC 15288, ISO/IEC 9126 and ISO/IEC 14598
 Extracted from Suryn et al., (2003) ...31

Figure 1.11 ISO/IEC SQuaRE 25030 Quality Requirement DivisionExtracted from
 ISO/IEC 25030 (2007) ...33

Figure 1.12 Steps of the standard ..34

XVIII

Figure 1.13 System considerations ..34

Figure 1.14 Stakeholders considerations ...35

Figure 1.15 Quality model considerations ..35

Figure 1.16 V&V considerations...36

Figure 1.17 ISO/IEC 15288 System Life Cycle Processes to appear in 25030 Extracted
 from Zubrow (2004) ..36

Figure 1.18 SPACE-UFO reference model Extracted from Punter et al., (1997)41

Figure 1.19 MOQARE concepts and their relationships Extracted from Herrmann et al.,
 (2007a) ...43

Figure 1.20 MOQARE process model ..44

Figure 1.21 Misuse Tree for the wireless network system Extracted from Herrmann et al.,
 (2007b) ...46

Figure 1.22 System quality attributes ..49

Figure 1.23 FDAF process model Extracted from Dai et al., (2005)52

Figure 1.24 Requirements model for quality attributes Extracted from Brito (2002)56

Figure 1.25 IESE NFR process Extracted from Doerr et al., (2005)59

Figure 1.26 Quality reference model for Efficiency Extracted from Doerr et al., (2005)
 and Kerkow et al., (2003) ..60

Figure 1.27 Tailored QM for Efficiency Extracted from Doerr et al., (2005) and Kerkow et
 al., (2003) ...60

Figure 1.28 Tailoring process example of game Tetris Extracted from Herrmann et al.,
 (2007b) ...61

Figure 1.29 Tailoring process example of game Tetris Extracted from Herrmann et al.,
 (2007b) ...61

Figure 1.30 Tailoring process example of game Tetris Extracted from Herrmann et al.,
 (2007b) ...62

XIX

Figure 1.31 Elicitation process example of game Tetris Extracted from Herrmann et al.,
 (2007b) ...63

Figure 1.32 Elicitation process example of game Tetris Extracted from Herrmann et al.,
 (2007b) ...63

Figure 1.33 Elicitation process example of game Tetris Extracted from Herrmann et al.,
 (2007b) ...64

Figure 1.34 Soft-goal notation example Extracted from Chung et al., (1995)66

Figure 1.35 Framework model ..67

Figure 1.36 Activities during the specification phase of the Prometheus method Extracted
 from Trendowicz et al., (2003) ..71

Figure 1.37 Phases of the process for defining requirements Extracted from Felici et al.,
 (2000) ...79

Figure 1.38 Business Motivation Model Framework Extracted from Deng (2006, p.35) ..81

Figure 1.39 Drawbacks of the QRs management methods and the reserach solution85

Figure 2.1 Process of managing quality attributes ..92

Figure 2.2 Research Methodology ..98

Figure 2.3 Research Methodology ..99

Figure 3.1 Research execution ..101

Figure 3.2 Profile of domain representatives ..115

Figure 3.3 Size of companies interested in QRs processing ...117

Figure 3.4 Activity domains of companies ...118

Figure 3.5 Importance of developed projects ..119

Figure 3.6 Critical level of developed project ...120

Figure 3.7 Stakeholders and their experience ...121

Figure 3.8 Stakeholders and their experience ...122

XX

Figure 3.9 QRs process activities ..123

Figure 3.10 The use of software tools ...124

Figure 3.11 The need to a structured QRs process ..125

Figure 3.12 QRs identification most used techniques ...126

Figure 3.13 QRs decomposition most used techniques ...127

Figure 3.14 QRs documentation most used techniques ..128

Figure 3.15 Size of developed software projects ..129

Figure 3.16 Total efforts for the developed software projects ..130

Figure 3.17 Hierarchy levels for the developed software projects131

Figure 3.18 Duration of the developed software projects ...132

Figure 3.19 Used standards ...133

Figure 3.20 Experience related to the responsibility for standards134

Figure 3.21 Parts of ISO/IEC 9126 ...134

Figure 3.22 Frequency use of times of ISO/IEC 9126 per projects135

Figure 3.23 Meta-Model of SOQUAREM ..141

Figure 3.24 SOQUAREM building process ..142

Figure 3.25 SOQUAREM process structure ...144

Figure 4.1 High conceptual levels of SOQUAREM ...148

Figure 4.2 Required elements for identifying quality attributes149

Figure 4.3 Process producing the quality attributes list ..149

Figure 4.4 Key concepts of SOQUAREM ..152

Figure 4.5 QAs database ...160

Figure 4.6 Utility tree of quality attributes ..162

XXI

Figure 4.7 SOQUAREM process model ...166

Figure 4.8 Linkage process of SOQUAREM process ...168

Figure 4.9 Logic of SOQUAREM process model ..168

Figure 4.10 State the business goals ..169

Figure 4.11 Refine the business goals ...170

Figure 4.12 Link the business goals to the corresponding quality attributes171

Figure 4.13 Build the quality scenarios ...172

Figure 4.14 Analyze conflicts between QAs and consolidate them174

Figure 4.15 Link QAs to use case and business domain models175

Figure 4.16 Mapping process with the use case model ...176

Figure 4.17 Mapping process with the business domain model ..178

Figure 4.18 Quality attributes views ...178

Figure 5.1 MSLite definitions Extracted from Sangwan et al., (2008)185

Figure 5.2 MSLite system context Extracted from Sangwan et al., (2008)185

Figure 5.3 Use cases Extracted from Ozkaya et al., (2008) ..187

Figure 5.4 Business domain model Extracted from Ozkaya et al., (2008)187

Figure 5.5 Output of SOQUAREM process applied to MSLite system190

Figure 5.6 BMM for automation building system ...192

Figure 5.7 Concepts of phase 1 ...196

Figure 5.8 Business goals of the MSLite system ..197

Figure 5.9 Concepts of phase 2 ...199

Figure 5.10 How a web browser interface works Extracted from Sustar et al., (2007)200

Figure 5.11 Refined business goals of the MSLite system ..200

XXII

Figure 5.12 Concepts of phase 3 ..202

Figure 5.13 Application of the first linkage rule LNR1 ..204

Figure 5.14 QAs and their respective actors ...204

Figure 5.15 Concepts of phase 4 ...207

Figure 5.16 Scenarios build for Adaptability and BG1.1 ..208

Figure 5.17 Utility tree of quality attributes ..209

Figure 5.18 Concepts of phase 5 ...211

Figure 5.19 Utility tree with conflicts ...212

Figure 5.20 Utility tree with “Operability” partially satisfied ...216

Figure 5.21 Consolidated utility tree ...217

Figure 5.22 Concepts of phase 6 ...219

Figure 5.23 Extended use case model with Adaptability and Efficiency scenarios220

Figure 5.24 Extended business domain model with new business concepts221

Figure 5.25 Quality views of new business concepts ..222

Figure 5.26 Responses of participants about applicability of concepts225

Figure 5.27 Responses of participants about appropriateness of concepts226

Figure 5.28 Responses of participants about understandability of concepts227

Figure 5.29 Responses of participants about completeness of concepts228

Figure 5.30 Applicability of concepts ...229

Figure 5.31 Appropriateness of concepts ..230

Figure 5.32 Understandability of concepts..230

Figure 5.33 Completeness of concepts ..231

Figure 5.34 Criteria for applicability of SOQUAREM ...233

LIST OF ABREVIATIONS AND ACRONYMS

NFRs Non-functional Requirements

FRs

Functional Requirements

AOs

Architectural options

BG

Business goal

RBG

Refined business goal

SQE

Software quality Engineering

QRs

Quality requirements

CQL

Consolidated Quality Life cycle

IQUAL

Ingénierie de QUAlité Logicielle

SQuaRE

Software Product Quality Requirements and Evaluation

SPACE-UFO

Software Product Advanced Certification and Evaluation-
User Focus

SQUID

Software QUality In Development

Prometheus

Probabilistic Method for early evaluation of NFRs

BBNs

Bayesian Belief Network

GQM

Goal Question Metric

SQUARE

System QUAlity Requirements Engineering

SHEL

Software HardwarE Live ware

KA

Knowledge Area

SWEBOK

SoftWarE Body Of Knowledge

CQL

Consolidated quality life cycle

QTM

Quality Traceability Model

XXIV

UP

Unified Process

QiU

Quality in Use

EQ

External Quality

IQ

Internal Quality

ATAM

Architecture Tradeoffs Analysis Method

FDAF

Formal Design and Analysis Framework

MOQARE

Misuse Oriented QuAlity Requirements Engineering

SOQUAREM

SOtware QUAlity Requirements Engineering Method

QAs

Quality Attributes

QM

Quality Model

FSS

Field System Simulator

MSLite

Management Station

SOP

Standard Operating Procedure

IESE NFR

Institute for Experimental Software Engineering Non
Functional Requirements

IT Information Technology

SHEL

Software HardwarE and Live ware

INTRODUCTION

PRESENTATION OF THE RESEARCH PROJECT

A. Subject of the research project

Software requirements engineering is a large and complex discipline requiring more and

more expertise and knowledge from practitioners and software developers. With the rapid

evolution in the field of software development and the increasing pressure to deliver high

quality applications, this discipline is faced with major problems such as: a) lack of

systematic guidance on how to elicit quality requirements (called also Non Functional

Requirements NFRs); b) difficulty identifying quality requirements and representing them in

models and processes and c) absence of clear guidelines about the way to provide a

consensus view on quality characteristics and their relationships. The existing techniques of

requirements capture (as viewpoint and object-oriented) do not put emphasis on quality

requirements as is the case for functional requirements (Araujo et al., 2003). Experience

shows that approximately 70 percent of software projects have failed to deliver what

originally was required. Consequently, developed applications are often costly in terms of

resources and time and the estimated cost per defect increases significantly in the latter stages

of the software development life cycle. Furthermore, they rarely respect time deadlines and

are often returned by dissatisfied users (NIST, 2002 and Humphrey, 1995). ;

On the other hand, recent studies (Sommerville et al., 1997), (Cysneiros et al., 2004),

(Bredemeyer et al., 2001), (Mylopoulos et al., 1992), (Hill et al., 2004), (Wiegers et al.,

1999) and (Poort et al., 2004) demonstrate that the quality requirements specification step is

ignored or bypassed for various reasons: quality is considered as an afterthought, cost and/or

absence of quality engineering practices. The lack of this step in the definition phase of the

software product life cycle may compromise business processes and may impact negatively

the results of any development project.

QRs management of the software product is an emerging discipline aiming to palliate these

2

problems and develop high quality software systems. New QRs management approaches

have been developed to specify and model NFRs at the early stages of the life cycle. They

used QAs as force drivers to evaluate architectures and make early identification of risks,

sensitive points and tradeoffs before design decisions are made (Gallagher, 2000). They also

used NFRS as quality aspects to evaluate architecture designs and to predict early design

errors and be able to improve them before delving into implementation features (Dai et al.,

2005). The next section will situate the research project between the traditional software

engineering approaches and current software quality engineering standards.

B. Context of this research project

The context of this reserach project is related to the management of QRs at early stages of the

software product life cycle. As illustrated in Figure 1.1, this research project is situated

between traditional software engineering approaches and existing quality standards.

Figure 1 Context of the research project

The traditional software engineering approaches (like viewpoint and object oriented

methods) are proving to improve the quality of requirements specification (Kotony and

Sommerville., 1996). Viewpoint-oriented approachs support both the requirements elicitation

3

and the structuring of the requirements document. They enable the conversion of top-level

goals into requirements and constraints. PREview (Process and Requirements Viewpoints) is

a requirements method focusing on the early stage of requirements engineering (Sawyer et

al., 1996).

But these approaches are faced with the following limitations:

• Quality requirements identification step is considered as an afterthought;

• No clear guidance is provided to identify and define QRs;

• No well structured process for QRs identification;

• No defined methods for retracing QRs;

• No defined quality model for dynamic linkage between QRs;

• Lack of a consensus on the definition of QAs.

On the other hand, software quality engineering standards have proven their usefulness in

different fields of application such as facilitation of communication between users through a

standard vocabulary (ISO/IEC 9126, 2004) and (ISO/IEC 14598, 1999). However, one notes

that the emergence of software quality engineering standards in the development of software

product systems has not solved some of the problems associated with the software QRs

management.

This research project addresses some of the limitations that existing software engineering

approaches and software quality engineering standards suffer from in order to design the

ISO/IEC standards-based quality approach (Figure1.1). For example, this research project

addresses the limitation: “No well defined process for identification of quality requirements”

and the drawback: “No clear consensus of quality concepts” by proposing a “software QRs

management process”.

C. Contribution and foreseen benefits of this research project

As mentioned in the previous section, this research project will address some of the

limitations from which existing engineering approaches and software quality engineering

4

standards suffer. The relevant added value of this research can be described as follows:

• The research solution will be proposed to the editor committee of the guide to

SWEBOK (SWEBOK, 2004) for the consideration;

• The research solution will be given for the disposition of the international

standardization (ISO SC7 / WG6) once published;

• The research solution will provide the software industry a structured QRs engineering

method that can be used to support requirements engineering phase.

Figures 2 and 3 summarize the difference between the traditional software engineering

process and the new enhanced process with quality concepts. The traditional functional

requirements definition process in the specification phase seeks maximum or even all

requirements defined or frozen. In practice these requirements are often modified or even

sought for in further phases of the life cycle (Figure 2), while quality requirements may be

partial and require further elicitation, definition and refinement during the development

process. Figure 3 shows the different categories of software QRs identified at each phase of

the development process. They are described in (Suryn, 2003) where QRs are extracted from

the stakeholder’s requirements and translated through the decomposition model into the three

categories of ISO/IEC 9126: internal and external quality requirements (IQ and EQ), quality

in use (QiU) and the operational quality (Oper) of the TL 9000 standards.

5

Elicit requirements

Freeze requiremens

Design

Construction

Delivery

If If wellwell donedone
thethe requiremensrequiremens

are are completecomplete
in in thisthis pointpoint

RequirementsRequirements
maymay bebe modifiedmodified

if if necessarynecessary
in in thisthis areaarea

……but but requirementsrequirements
are NOT are NOT beingbeing furtherfurther soughtsought

for in for in thisthis areaarea

Elicit requirements

Freeze requiremens

Design

Construction

Delivery

If If wellwell donedone
thethe requiremensrequiremens

are are completecomplete
in in thisthis pointpoint

RequirementsRequirements
maymay bebe modifiedmodified

if if necessarynecessary
in in thisthis areaarea

RequirementsRequirements
maymay bebe modifiedmodified

if if necessarynecessary
in in thisthis areaarea

……but but requirementsrequirements
are NOT are NOT beingbeing furtherfurther soughtsought

for in for in thisthis areaarea

……but but requirementsrequirements
are NOT are NOT beingbeing furtherfurther soughtsought

for in for in thisthis areaarea

Figure 2 Traditional functional requirements in software engineering process
Extracted from Suryn (2006)

Elicit requirements

Freeze requiremens

Design

Construction

Delivery

QiU, Oper
some External

and Internal
Quality reqs.

Remaining External
and Some Internal

Quality reqs.

Remaining Internal
Quality reqs.

QiUQiU
OperOper

E&IQE&IQ

IQIQ

Development

Elicit requirements

Freeze requiremens

Design

Construction

Delivery

Elicit requirements

Freeze requiremens

Design

Construction

Delivery

QiU, Oper
some External

and Internal
Quality reqs.

QiU, Oper
some External

and Internal
Quality reqs.

Remaining External
and Some Internal

Quality reqs.

Remaining External
and Some Internal

Quality reqs.

Remaining Internal
Quality reqs.

Remaining Internal
Quality reqs.

QiUQiU
OperOper
QiUQiU

OperOper
QiUQiU

OperOper

E&IQE&IQE&IQE&IQE&IQE&IQ

IQIQIQIQIQIQ

Development

Figure 3 Quality requirements in software engineering process

Extracted from Suryn (2006)

The dashed oriented arrow indicates that quality requirements could be clarified and refined

from elicited requirements to the construction phase. At each development phase, they could

be formalized according to the traditional requirements formalization process where

requirements are analyzed, collected, classified and prioritized to finally be validated.

6

Further, as shown in Figure 3, quality in use (QiU) and operational quality (OP) are the first

categories of software QRs that could be identified at the requirements phase. Some external

(EQ) and internal quality (IQ) requirements could also be defined. At the design phase, the

external and some internal QRs could be defined while at the construction phase, only the

internal QRs are identified.

Among the challenging problems addressed in this thesis are the following:

(a) Investigating various aspects of software QRs management such as identification (of

business and software) requirements, specification, representation and

documentation;

(b) Supporting this management by software quality engineering standards.

The key motivations for this research project are:

• The need to map quality concepts with the product definition phase;

• The need to support both novices and experts in software QRs management.

D. Research objectives

This research goal can be stated as follows: “Support the software product definition phase

with a management method of quality requirements: identification, representation and

documentation”.

To pursue this goal, the research objectives are to:

1. Develop a structured quality requirements engineering method: SOftware Product

QUAlity Requirements Engineering Method (SOQUAREM). The quality standard

ISO/IEC SQuaRE 25030 is used as a framework supporting the engineering process

of the method.

7

2. Develop the process model representing concepts and phases of SOQUAREM

method.

The research methodology adopted to achieve these objectives is divided into four main

phases: exploration, analysis, design and application.

The exploration phase consists of exploring the software quality requirements domain,

specifically the software quality concepts, QRs definitions and quality standards (ISO/IEC

9126 and ISO/IEC 25030). This phase also describes and analyzes the existing QRs

management approaches and establishes their strengths and weaknesses.

The analysis phase is divided into three sub phases: Analysis of existing software QRs

management methods, data collection of software QRs engineering practices in industry and

analysis of resulted indicators from industrial and academic environments.

The first sub phase consists of analyzing some representative software QRs management

methods (chosen from literature review) in their case studies to know to what extent they

address management of QRs. The approach adopted during this analysis is to describe the

applicability of these methods by analyzing their case studies in the applicative domains and

identifying their strong and weak points in industrial and scientific communities.

The second sub phase consists of analyzing collected data from a questionnaire in industry to

determine the current state of the QRs engineering practices.

The third sub phase analyzes industrial and academic indicators obtained in the two

preceding sub phases and identifies critical needs seen by industry in the field of software

QRs management. Important conclusions and justifications of the proposed solution are

formulated.

The design phase consists of creating the software QRs engineering method (SOQUAREM)

and the associated process model. The main concepts involved in the engineering process of

the method (BMM and BCT, scenarios template, utility tree and QAs template) are

8

developed and detailed. The main phases of the SOQUAREM process model are then

described. The phases are:

1. State the business goals;

2. Refine the business goals;

3. Link the refined business goals to quality attributes;

4. Build quality attributes scenarios;

5. Consolidate quality attributes;

6. Link quality attributes to the functional process.

The application phase of the method consists of applying the method in an illustrative

example for a building automation system to clarify the core ideas of SOQUAREM. The

method is then evaluated in industry (by international experts in the software quality field)

and academia (during workshop sessions) and on a committee level ISO/IEC SC7 System

and Software Engineering. Feedback on SOQUAREM is provided by both experts and

participants of the workshop session and are analyzed for further improvements and future

research avenues.

E. Limitations of the research

The present research is limited to the design of the SOQUAREM method and its process

model for managing software QRs and does not cover implementation of IT tool supporting

this process. It is important to notice that linkage of measures with the associated quality

characteristics is not part of this research project because the measures in ISO/IEC 2500 are

not available. On the other hand, as the process is involving stakeholders at each phase

(during the consensus session to discuss and confirm QAs), the used negotiation techniques

were not investigated when they do not approve the resulted QAs. One supposes that

negotiation is done and the required phase is restarted. In addition, the developed

questionnaire is not deployed in a large industrial spectrum due to time constraints and

availability of respondents. The questionnaire has been deployed with eight domain

representatives of industry who accept to distribute it in their respective companies. The main

9

purpose of the questionnaire is to have some indications about QRs engineering practices in

industry. On the other hand, the conflicts resolution among QAs and their prioritization is a

vast and complex subject which could not be entirely treated as part of this thesis. Fictitious

data is provided to illustrate the conflicts resolution problem. Finally, evaluation of the whole

process by standards or methods could not be performed under the mandate of this thesis,

being limited to analyzing feedback from software quality domain experts and participants of

the workshop session (Only the first four phases of the process have been evaluated during

the workshop session).

F. Organization of this Thesis

The organization of this thesis is as follows:

The chapter 1 presents the literature review on the main concepts and definitions related to

software QRs management, in particular, the quality requirements and software quality

definitions, software quality engineering standards and existing software QRs management

methods such as Soft Goal Notation, MOQARE (Misuse Oriented QuAlity REquirements),

IESE NFR (Institute for Experimental Software Engineering Non Functional Requirements)

method, FDAF (Formal Description and Analysis Framework) and ATAM (Architecture

TradeOff Analysis Method).

The chapter 2 presents research objectives and the research methodology designed to address

this research. Research steps to accomplish the stated objectives are also described in detail.

The chapter 3 explains the details of the research execution and gives the justifications of the

research solution. Interest is centered on QRs indicators of both academic and industrial

environments. First, applicability of chosen quality requirements management methods from

literature review is analyzed and discussed. Analysis is based primarily on established

strengths and weakness of existing methods and quality requirements engineering criteria.

Second, the current situation of quality requirements environment is analyzed in industry. A

questionnaire is elaborated for this purpose. Third, resulted indicators from the two

10

environments are analysed and discussed and important obseravtions are revealed to finally

formulate requirements for the proposed research solution. An overview of the proposed

research solution and its innovative aspects are presented by describing its specific features,

meta-model, building process and process structure.

The chapter 4 describes in detail the proposed research solution called SOftware QUAlity

REquirements MEthod (SOQUAREM) and includes key concepts and an elaborated

SOQUAREM process model.

The chapter 5 describes the application of the SOQUAREM process to an automation

building system by an illustrative example. Finally, the process is analyzed and discussed and

its practical relevance is evaluated.

This work then summarizes the key contributions, implications for software engineering,

practical implications, limitations, strengths and future research avenues.

CHAPTER 1

LITERATURE REVIEW

1.1 Introduction

This chapter presents the literature review of existing quality requirements definitions,

quality requirements management methods and quality standards for a software product.

Section 1 introduces a quality requirements concept and related terminologies. Important

definitions of quality needs, quality requirements and software quality as seen by major

actors and (SWEBOK) are presented. Section 2 describes concepts of quality standards. The

third section defines and investigates concepts of various quality requirements management

methods designed at different levels of software development (requirements and architecture

levels) (MOQARE, IESE NFR, Soft goal notation, ATAM, Prometheus and quality attributes

model). Section 4 presents a comparative analysis of these designed methods and establishes

their weakness related research issues. Section 5 concludes the chapter.

Table 1.1 summarized the main QRs aspects to be covered in this chapter.

12

Table 1.1 Main QRs aspects

Main aspects Description

How software QRs
appeared and why?

• They appear at the requirements level, generally at the specification step of FRs and are
integrated in the “Requirements Specification Document” (RSD);

• The evolving technology, industry experience, costly applications in time and resources,
retuned back application and rarely respect time deadline, dissatisfied users and
limitations of existing requirements engineering techniques (viewpoint & object oriented)
in addressing software QRs led to the critical need to recognize and address QRs;

• Easy to specify but difficult to represent and control.

Why are they critical
to the software
engineering
community (Doerr,
2011)?

NFRs are essential for software and system development
• -Architecture;
• -Early quality assurance;
• -Subcontracting.

Neglecting NFRs can lead to
• failed projects;
• -bad product quality;
• -increased time to market (TTM);
• -high rework costs.

Where are they
defined or specified?

• In RUP as supplementary specifications (Jacobson et al., 1999);
• In the last section of the «Use Case» description;
• In the requirements specification document and annexed as quality constraints.

What is the
terminology used to
specify them?

• “NFR describes a certain value (or value domain) for a QA that should be achieved in a
specific project. The NFR constraints a QA by determining a value for a metric associated
with the QA.” (Doerr et al., 2005) ;

• User needs representing the design and end user views (Felici et al., 2000) ;
• Quality goals and characteristics of the software product (Trendowicz et al., 1998) and

(Punter et al., 2000);
• Global properties of a system, assumptions, quality constraints or goals of stakeholders

(Brito et al., 2002);
• QAs (Doerr et al., 2005) and (Kazman et al., 2000) ;
• NFRs in SWEBOK (Abran et al., 2004);
• The most popular and recognized terminology is NFR and QAs where NFRs are

instantiation of QAs.

Who is interested by
them?

• Architect, Maintainer, Developer, Manager, Evaluator;
• Customer;
• End user.

Are there any
research motivations
in this direction?

• ISO/IEC 9126 for software product:
• Good reference but needs to be supported by practical guidelines and structured methods;
• There is also a need to process to map quality concepts of the standard with the product

definition phase.

What are the
important QRs
management
methods/quality
standards developed
during the 2 last
decades?

• FDAF method (Dai, 2005); Quality model for quality attribute (Brito et al., 2002);
• MOQARE method (Herrmann et al., 2007); ATAM method (Kazman et al., 2000);
• IESE-NFR method (Doerr et al., 2005); Soft Goal notation (Chung et al., 2000);
• ISO SQuaRE 25030 standard ; BMM (Business Motivation Model) (BRG, 2007).

13

1.2 Quality requirements

This section is focused on quality requirements in software engineering with emphasis on

definitions of requirements and software quality. Both software engineering-related literature

positions and software quality engineering standards are presented and analyzed.

1.2.1 Quality requirements and software quality

Before delving into the details of software requirements, it is important to define a

requirement versus a need. As described by Azuma in his article (Azuma, 2004):

“Needs for a product are expectations of stakeholders for the effects of the
product when it is actually operated, which means such action to the
software product as development, distribution, release, installation, use and
maintenance”. (Azuma, 2004).

Therefore according to Azuma, needs are divided into stated needs and implied needs and

should be transformed into requirements. Furthermore, the author (Azuma, 2004) clarifies the

relationships between needs and requirements by defining requirements as “Requirements are

the external specification of specific needs that a product is expected to satisfy” The

relationship between needs and requirements is illustrated in Figure 1.1. Stakeholder’s needs

(stated and implied) are collected and identified, then selected and specified to be

transformed into QIU requirements, functional requirements and quality requirements.

14

Collected and
Identified

Stakeholders’
(Business) Needs

Selected and
Specified

Needs
&

QIU
Requirements

Functional
Requirements

External Quality
Requirements

Functional
Design

&
Internal
Quality

Requirements

Non Functional
Design

&
Internal
Quality

Requirements

Stakeholders’
Needs in their

Minds

Stated,
Implied or
Unaware

Needs

Solicit & Identify Select & Specify

Collected and
Identified

Stakeholders’
(Business) Needs

Collected and
Identified

Stakeholders’
(Business) Needs

Selected and
Specified

Needs
&

QIU
Requirements

Selected and
Specified

Needs
&

QIU
Requirements

Functional
Requirements
Functional
Requirements

External Quality
Requirements
External Quality
Requirements

Functional
Design

&
Internal
Quality

Requirements

Functional
Design

&
Internal
Quality

Requirements

Non Functional
Design

&
Internal
Quality

Requirements

Non Functional
Design

&
Internal
Quality

Requirements

Stakeholders’
Needs in their

Minds

Stakeholders’
Needs in their

Minds

Stated,
Implied or
Unaware

Needs

Solicit & IdentifySolicit & Identify Select & SpecifySelect & Specify

Figure 1.1 Relationships between Needs and Requirements
 Extracted from Zubrow (2004)

Stakeholder needs come from many sources (Zubrow, 2004 and ISO/IEC SQuaRE 25030,

2007) (Figure 1.2). Requirements elicited from the stakeholders contribute to the definition

of the three views of software quality requirements: quality in use requirements (QIU),

external quality requirements (EQ) and internal quality requirements (IQ). QIU is the user’s

view of the quality of the software product when it is used in a specific environment and in a

specific context. EQ is the totality of the characteristics of the software product from an

external view. External metrics address properties visible to the users of a product (customer,

manager and software engineer) such as reliability, functionality, performance and usability.

For example, reliability of the entity “operating system” can be evaluated by measuring the

Mean Time To Failure (MTTF) and Rate of OCcurrence Of Failures (ROCOF). External

metrics are not available until the late stages of the software development life cycle. IQ is the

totality of the characteristics of the software product from an internal view. Internal metrics

address properties visible only to the development team. They include size metrics (Lines of

Code, number of modules) and complexity metrics (Cyclomatic complexity). The quality of

the source code can be evaluated by the number of faults found by KLOC. Analyzability of

15

the source code can also be evaluated by the following code analysis metrics: cyclomatic

number, number of statements and comment rate. Internal metrics are used to estimate

external metrics at the early stages of the development process. The quality in use

requirements influences the external quality, which in turn influences the internal quality

requirements. The internal quality requirements are implemented through internal measures,

which contribute to the specification of the external quality and quality in use of the software

product.

Figure 1.2 QRs life cycle model

Extracted from ISO/IEC 25030 (2007)

Moreover, the guide to SWEBOK (Software quality knowledge area (KA), chap 11) (Abran

et al., 2004) describes software quality as follows:

“What is software quality, and why it is so important that it be pervasive in
the guide to SWEBOK? Over the years authors and organizations have
defined the term “quality” differently. To Phil Crosby (Crosby, 1979), it
was “conformance to user requirements.” Watts Humphrey (Humphrey,
1989) refers to quality as “achieving excellent levels of fitness for use”,
while IBM coined the phrase “market-driven quality” which is based on
achieving total customer satisfaction”. (Abran et al., 2004).

16

So, according to the guide to SWEBOK, software quality refers to user requirements or

levels of fitness for use or for customer satisfaction. In all these definitions the same key

points are considered: requirements and stakeholder needs. Furthermore, the guide points out

the definition of quality concepts and the ability of the software engineer to understand them

when developing or maintaining software as it is written:

“Thus, the software engineer has a responsibility to elicit quality
requirements which may not be explicit at the outset and to discuss their
importance as well as the level of difficulty in attaining them”. (Abran et
al., 2004).

The quality requirements should be defined and specified by the software engineer.

At the same time, the guide to SWEBOK (Abran et al., 2004) (software requirements KA,

section software requirements fundamentals) defines software requirement as: “A software

requirement is a property which must be exhibited by software developed or adapted to solve

a particular problem”.

Later in the guide, a definition of non-functional requirements is given as: “Non-functional

requirements are the ones that act to constrain the solution. Non-functional requirements are

sometimes known as constraints or quality requirements”. These definitions associate non-

functional requirements to quality requirements.

In summary, software quality requirements have emerged in the last decade when

requirements engineering activities encountered difficulties in capturing all the fulfilled

requirements (functional, performance, interface, organizational and quality). First, this

difficulty was associated with non-functional requirements and supplementary requirements

which were attached to functional requirements (Westerheim et al., 2005). In effect, non-

functional requirements were defined as: constraints, limitations, specifications or

performance (the system should run on UNIX, the system should work in real-time, the

system should handle up to 500 GB of data). Later, these non-functional requirements were

associated with quality requirements where more research was concentrated on their

17

modeling and representation (Mylopoulos et al., 1992, Dieter, 1998 and Jacobs, 1999) and on

negotiation of conflicts between different requirements.

In his article (Doi, 1999), the author tries to extract quality requirements in a capturing

method. The capturing method is organized around a requirements capture meeting, which is

taken by videotape. Furthermore, the authors (Yuen Tak Yu and Pak-Lok Poon; 2005)

present a design for the learning activities in a course on software quality practices. Their

purpose is to provide opportunities for students to gain hands-on experience on exemplar

software quality practices in spite of the various constraints.

On the other hand, Suryn enunciates that “Identifying quality requirements that can be

elicited, formalized and further evaluated in each phase of full software product life cycle

thus becomes a crucial task in the process of building a high quality software product”

(Suryn et al., 2005b). This expression shows the importance of identifying quality

requirements early in the software product life cycle to obtain the required software quality.

Sousa promotes separation of the concerns principle which is difficult to apply at the

requirement level due to the strong relationship and interdependencies among non-functional

requirements (NFRs) (Sousa et al., 2004). The basic idea is that NFRs are often scattered and

tangled with the functional artifacts they affect. They describe an approach representing

NFRs as concerns and compose them with the functional requirements they affect. The “Use

Case” approach is used to capture and represent functional requirements (FRs) combined

with the NFRs framework (Chung, 2000) to deal with NFRs concerns.

In the same research field, Cooper deals with multiple concepts to define NFRs (Cooper et

al., 2005). Cooper describes an approach which integrates a semi formal UML with a set of

existing formal methods into an aspect oriented framework in order to design and analyze

NFRs. Cooper also considers the software architecture design as an important contribution in

the reduction of development costs and the improvement of software quality. However,

Cooper mentions that software architects are faced with problems of how to meet the NFRs

(while designing software architecture) and argues that NFRs have to be met in order to help

18

designers with a rationale for decision making among competing designs. To address this

problem, the author presents the Formal Design and Analysis (FDAF) Framework where

NFRs are defined as reusable aspects to design and analysis and UML is extended (by

stereotypes, tagged values or constraints) to support the design of these aspects. Design of

aspects is performed by transforming the UML designs into formal methods and by using

Chung’s NFRs framework.

Otherwise, the literature shows that non-functional requirements cannot be treated alone and

several authors (Paech et al., 2002 and 2003) and (Doerr et al., 2003) have argued for

integrating functional (FRs), non-functional requirements (NFRs) and architectural options

(AOs) early in the development process. For instance, these authors indicate that NFRs, FRs

and architectural decisions must be developed in a tightly integrated approach combining

elicitation, specification (of NFRs and FRs) and design architecture. Integration is supported

by different kinds of experience-based artifacts such as checklists, patterns and rationale.

Checklists and questionnaires are used to capture important NFRs. Architectural patterns are

applied in reusing architectural options and for evaluating them against specified

requirements. Traceability and rationale management are used for capturing the decision

making involved in the joint specification and design of FRs, NFRs and AOs.

Paech also deals with important issues to be solved in integrating the requirement

engineering process into the architectural development process (Paech et al., 2003) such as:

a) use the win-win approach to identify the essential NFRs, FRs and AOs and the different

views of different stakeholders; b) use goal graphs to specify NFRs and FRs and identify

their dependencies and use case maps for describing AOs; c) use rationale management (goal

graphs, concordance matrix and ATAM - Architectural Tradeoffs and Analysis Method) to

assess how well the different AOs address a specific set of FRs and NFRs. Goal graphs are

used to capture criteria (business goals) and issues (NFRs and FRs), AOs and their

assessments. A concordance matrix captures assessments of the AOs against FRs and NFRs.

ATAM captures criteria (quality attributes, business goals), issues (risks), options

(architectural views) and assessments (utility tree). CBAM (Cost Benefit Analysis Method) is

19

used to refine the ATAM results with cost benefits (criteria, options); and d) use architectural

styles to capture and use experience on typical AOs.

In addition, in his position paper, Mylopoulos puts emphasis on the increasing use of the

“goal concept” in requirement engineering methods and techniques (Mylopoulos, 1998)

considering goals as an important construct in different areas of requirements engineering as:

a) requirement acquisition and specification: here goals are used as the main guiding concept

in requirement specification; b) clarifying requirements: the goal oriented approach would

allow the requirements to be refined and clarified through an incremental process; c)

requirements conflicts: goals are a useful way to address conflicts among NFRs where

difficult tradeoffs have to be made such as costs, performance, flexibility and usability; d)

driving design: goals are an important driving force of requirements to design. In fact, the

NFRs framework (Chung, 2000) uses NFRs as goals to guide the design process.

More definitions on quality requirement have been suggested in the engineering community.

Authors like Pfleeger, van Vliet and Lauesen (Pfleeger, 2001; van Vliet, 2002 and Lauesen,

2001) highlight, in their research field, the importance of dealing with non functional

requirements at an early stage.

Lauesen in his book entitled “Software requirements Styles and Techniques” defines quality

requirements as “Quality requirements specify how well the system must perform its

functions. How fast it respond? How easy must it be to use? How secure does it have to be

against attacks? How easy should it to be maintained?” The McCall and Matsumoto quality

model (McCall, 1977) (Operation, revision and transition) is used with a quality grid to find

the important quality factors. The author also highlights the importance of QRs in the

requirements specification step and confirms that they occupy little space because they are

difficult to identify and verify. In addition, in the described case studies, QRs are presented

as: a) quality properties enumerated as quality attributes related to the described system; b) or

categorized as one of the goal levels (domain level, high-level and product level

requirements) which are quality level requirements.

20

Lauesen describes several requirements elicitation techniques. For instance, Goal-Domain-

Tracing is described as a checking technique which establishes a relation between business

goals and domain issues (tasks or quality factors) and addresses these two points: a) which

quality factors and tasks ensure that the business goal can be met? And b) what is the purpose

of each task and quality factor in terms of business goals? The Goal-Task-Description is

another technique used to show relationships between goals and tasks in order to identify the

critical tasks. Goal-Task-Description is also used to progress from stating business goals to

formulating requirements (functional and quality requirements). To formulate quality

requirements (for instance, usability), the method used is : a) identify usability issues,

business goals, concerns, user profiles and critical tasks; b) select requirements styles to

cover the issues; c) select metrics and target values.

Pfleeger describes in her book functional and non-functional requirements and explores their

characteristics and methods to define and specify them. Pfleeger defines non-functional

requirement as: “A requirement or constraint describing a restriction on the system that

limits our choices for constructing a solution to the problem”. Requirements are written in a

Requirements Statement Language (RSL). The author highlights how to express NFRs as

descriptions of the path through the R-nets as mentioned in “We can think of the non

functional requirements as descriptions of constraints placed on the flow along various

paths”. NFRs are specified by making the R-nets with validation points (“A validation point

is a place in the diagram used to denote the beginning or the end of a measurement”).

Pfleeger presents different specification techniques of requirements (ranking from static: data

flow diagram to time related dependencies and oriented object) which do not mention

anywhere how to identify NFRs. An exception is made for the technique SREM (“Software

Requirements Engineering Methodology”) which views the system as a finite state machine

where the statements are analyzed by a Requirements Engineering Validation System

(REVS). As enunciated by the author, “RSL describes the flow of processing in terms of what

events initiate which processes. These flows are represented as networks”. These networks

or R-nets specify the transformation of a particular state and a single input into a new state

21

with multiple output messages. RSL allows for a complete specification view of FRs and

NFRs requirements associated to elements and processing steps.

Hans Van Vliet in his book defines four types of non-functional requirements according to

IEEE framework (Std 830-1993: Recommended Practice for Software Requirements

Specifications): external interface requirements, performance requirements, design

constraints and software system attributes. Performance requirements and software quality

attributes are known as quality requirements. The author highlights the importance of these

requirements and difficulty to specify and verify them. Van Vliet also emphasizes the fact

that these requirements should be expressed in objective and measurable terms.

Van Vliet presents a list of techniques for capturing and formulating requirements. For

example, task analysis is a technique used to obtain a hierarchy of tasks and subtasks to be

carried out by people working in the domain. Scenario-based analysis is a method which

analyzes, generates and validates scenarios in a systematic way. Entity-Relationship

Modeling is a requirements specification technique which models the data aspect and the

finite State machines are used to model the functional aspect.

Other authors are working in the same research field to address organizational requirements

in conjunction with quality requirements (Firesmith et al., 2004). In their research study

entitled “Requirements Elicitation and Analysis Processes for Safety and Security

Requirements”, Firesmith described the problems encountered when requirements

engineering practices are missed or not well defined early in the development life cycle and

mentioned also that organizational mechanisms facilitate the promotion of quality

requirements in the software development process. The search focus was oriented

specifically on “safety and security engineering” and aims to identify the potential conflicts

of quality concepts (time consuming) with organizational mechanisms (time to market and

cost considerations) and to support quality engineering by organizational techniques. An

elicitation process for security requirements was developed and supported by prototype tools

(Mead, 2004 and Firesmith, 2003 and 2005).

22

On the other hand, Bevan considers software product quality by achieving “quality in use”

and adopting a user centered design process to meet user needs for quality (Bevan, 1999 and

Bevan et al., 1997). A “quality in use” is defined as a way to incorporate human factors into

the software engineering life cycle. In other terms, by defining “quality in use”, a link is

provided between the human factors approach to usability and user centered design.

Table 1.2 summarizes relevant software QRs definitions suggested by different authors.

Table 1.2 Definitions of software QRs by authors

In conclusion, one can say that quality requirements have been addressed by different authors

and most of them put emphasis on their importance in determining the software product

quality. These authors also turn the reader’s attention to the difficulty of identifying quality

requirements and to the need for developing more methods and approaches to deal with

them.

23

1.3 Software quality engineering standards

One of the first predecessors of today’s quality models is the quality model presented by Jim

McCall (McCall et al., 1977) (also known as the General Electric’s Model of 1977). This

model originates from the US military and is primarily aimed toward the system developers

and the system development process. McCall attempts to establish a link between users and

developers by defining a number of software quality factors that reflect both the users’ views

and the developers’ priorities. The McCall quality model has three major perspectives for

defining and identifying the quality of a software product: product revision (ability to

undergo changes), product transition (adaptability to new environments) and product

operations (operational characteristics).

The model details the three major perspectives in a hierarchy of a) factors (to specify) which

describe the external view of the software as viewed by the users, b) criteria (to build) which

describe the internal view of the software as seen by the developer and c) metrics (to control)

which are defined and used to provide a scale and method of measurement.

 The second of the basic predecessors of today’s quality models is the quality model

presented by Barry W. Boehm (Boehm et al., 1978). Boehm’s model attempts to qualitatively

define software quality by a given set of attributes and metrics. Boehm's model presents a

hierarchical quality model structured around high-level characteristics, intermediate level

characteristics, and primitive characteristics.

The high-level characteristics represent basic high-level requirements of actual use to which

an evaluation of software quality could be put – the general utility of software.

The intermediate level characteristic represents Boehm’s 7 quality factors that together

represent the qualities expected from a software system.

The lowest level structure of the characteristics hierarchy in Boehm’s model is the primitive

characteristics metrics hierarchy. The primitive characteristics provide the foundation for

defining quality metrics.

24

A more recent model is the quality model presented by R. Geoff Dromey (Dromey, 1995).

His idea is as quoted “quality evaluation differs for each product and that a more dynamic

idea for modeling the process is needed to be wide enough to apply for different systems”.

Dromey’s quality model is based on the relationship between quality attributes and sub-

attributes, as well as the connexion between the product properties and the software quality

attributes.

The standard ISO/IEC 9126 (ISO/IEC 9126, 2004) developed by ISO/IEC JTC1 SC7

(Subcommittee SC7 - Software and Systems Engineering of International Organization for

Standardization) is divided into four parts:

1. ISO/IEC 9126-1: Information technology - Software quality characteristics and

metrics - Part 1: Quality model.

This part provides the recommended quality model containing important quality

characteristics for the final product. Quality sub characteristics and attributes refine the

quality model and can be internal or external quality attributes.

2. ISO/IEC 9126-2: Information technology - Software quality characteristics and

metrics - Part 2: External metrics (Figure 1.3).

This part provides external quality metrics for measuring software quality characteristics

applicable to an executable software product during testing or operating at a later stage of

development and after entering the operation process.

3. ISO/IEC 9126-3: Information technology - Software quality characteristics and

metrics - Part 3: Internal metrics (Figure 1.3).

This part provides internal quality metrics for measuring software quality characteristics

applicable to a non-executable software product during designing and coding at an early

stage of the development process.

4. ISO/IEC 9126-4: Information technology - Software quality characteristics and

metrics - Part 4: Quality in use metrics (Figure 1.4)

This part provides quality in use metrics for measuring software quality characteristics

applicable to an executable software product after entering the operation process.

25

Figure 1.3 ISO/IEC 9126 Quality Model - External and Internal Quality
 Extracted from Suryn et al., (2005b)

Figure 1.4 ISO/IEC 9126 Quality Model - Quality in Use
 Extracted from Suryn et al., (2005b)

Azuma presents in his article (Azuma, 2004) the categorization of software quality

requirements according to ISO/IEC JTC1/SC7 (External Quality Requirements, Internal

Quality Requirements, and Quality-In-Use Requirements) as follows:

“External Quality Requirements specify the required level of quality from
the external view. They include requirements derived from user quality
needs, including Quality-In-Use requirements”. “Internal quality
requirements are used to specify properties of interim products, including
static and dynamic models, other documents and source code”. (Azuma,
2004).

26

Moreover, according to Suryn, the extraction of software quality requirements begins with

identification of stakeholder requirements and continues through decomposition until all

corresponding categories of quality requirements are identified (Quality in use, external

quality, internal quality and operational quality) (Suryn, 2003). The quality requirements

decomposition model is static and gives no insight on how to extract and decompose quality

requirements (Figure 1.5). Hence, the process of defining and controlling quality

requirements has been proposed to state important questions to be asked about the way to

define and control quality requirements (Figure 1.6).

Figure 1.5 Quality requirements decomposition model
Extracted from Suryn (2003)

27

Figure 1.6 Process of defining and controlling quality requirements
Extracted from Suryn (2003)

Operational quality (OP) shown in Figures 1.5 and 1.6 is described by TL 9000 standards:

TL 9000 Quality System Requirements (TL900, 2001a) and TL 9000 Quality System

Measurements (TL900, 2001b). These standards are developed by QUEST Forum (in 1999-

2000 and Published in 2001) for the set of initial requirements for operational quality as well

as for reporting on implemented quality once the software product has been developed and

deployed in the field (Suryn et al., 2004a.)

TL 9000 (part 2) identifies four categories of requirements and/or measurements applicable

to software products:

1. Common measurements – referring to the number of problems reported, response time,

overdue problem responsiveness and on-time delivery;

2. Hardware and software measurements – referring to system outage;

3. Software measurements – referring to software installation and maintenance;

4. Service measurement – referring to service quality.

28

Figure 1.7 illustrates the TL 9000 model structured in layers:

1. International Standard - ISO 9001;

2. Common TL 9000 Requirements;

3. Hardware, Software and Services Specific Quality System Requirements;

4. Common TL 9000 Metrics;

5. Hardware, Software and Services Specific Quality System Metrics.

Figure 1.7 Quest FORUM TL9000 Model
Extracted from TL 9000 (2001)

The TL 9000 standard series was combined with ISO/IEC 9126 to create CQL (Consolidated

quality life cycle) model (Figure 1.8), which serves as the basis (backbone) for the process of

defining quality requirements, their measurement and evaluation. CQL model was proposed

by Suryn and Abran (Suryn et al., 2004a.) where they describe the applicability of a CQL

model in each phase during the development process. The Discovery and Requirements

Analysis phases are briefly presented hereafter.

29

Figure 1.8 Suryn-Abran CQL model version 1.1
Extracted from Suryn et al., (2005)

Discovery Phase: The definition of quality requirements is undertaken in the Discovery

Phase. Three sets of requirements have to be identified and defined:

1. Functional and non-functional requirements of the product;

2. Operational quality requirements;

3. Quality in Use requirements.

In this phase “quality in use and operational quality” characteristics are analyzed and

applicable measures are defined. Target values are then assigned for each. Standards to be

applied to complete this task are ISO/IEC 9126 – Part 4: Quality in Use Metrics and TL 9000

– Quality Management System Measurement Handbook (part 2).

Requirements Analysis Phase: In this phase external and internal quality attributes of the

software product are defined. The ISO standards applied in this phase are:

1. ISO/IEC 9126 – Part 2: External Quality Metrics

2. ISO/IEC 9126 – Part 3: Internal Quality Metrics

30

The CQL model was improved after several steps resulting from detailed analysis and

verification. The authors (Suryn and al, 2005b.) present a research model analysis and

propose enhancements (normative support) for each phase of CQL model (Figure 1.8).

1.3.1 Software quality Requirements and ISO/IEC SQuaRE standard

In their research study (Suryn and Abran, 2003), the authors addressed the need to integrate

process and product standards in the development process through their quality engineering

approach. They highlighted the absence of ISO standards used in the product definition phase

(Figure 1.9) and the mapping mechanisms between these standards and all phases of the life

cycle of a software product. The ISO/IEC 15288 – System life cycle processes (ISO/IEC

15288, 2002) which identifies the generic phases of the development process was integrated

into these standards in order to define the mapping between these standards and the software

product life cycle phases.

Figure 1.9 High-level mapping of ISO/IEC SC7 software product quality
Standards and a software life cycle
Extracted from Suryn et al., (2003)

The first generation of software quality engineering standards developed by the ISO SC7

(ISO/IEC 9126 – Software Engineering – Product quality and ISO/IEC 14598 - Evaluation

of software products) presents some limitations (Figure 1.10) as mentioned:

31

“While it provides generic linkages between the high-level concepts of the
ISO 9126 quality instruments (i.e. characteristics, sub characteristics and
measures), it is not yet specified in the format of specific prescriptive
quality engineering practices. In particular, the current versions of these
ISO/IEC standards do not provide a clear mapping between the quality
engineering instruments already developed and the various phases of the
product development life cycle”. (Suryn and Abran, 2003).

Figure 1.10 Mapping between ISO/IEC 15288, ISO/IEC 9126 and ISO/IEC 14598
Extracted from Suryn et al., (2003)

 In fact, the standards provide the static quality concepts but do not support the mapping

between quality concepts and the software life cycle phases. Based on these remarks, the

authors present the relevant improvements proposed by the ISO/IEC SC7 WG6 experts to

build the new standard for software quality requirements specifications ISO/IEC SQuaRE

25000 – Software Product Quality Requirements and Evaluation.

32

1.3.2 Standard ISO/IEC SQuaRE 25030 - Software Product Quality Requirements

ISO/IEC SQuaRE: 25000: The Software Product Quality Requirements and Evaluation

standard is a set of international standards and technical reports on software product quality.

SQuaRE consists of five divisions: quality management, quality requirements, quality

evaluation, quality models and quality metrics. This standard includes: definitions of terms,

reference models and a general guide, requirements and recommendations, and individual

guides for the use of the series.

ISO/IEC SQuaRE: 25030 is described by (Azuma, 2001):

“Quality Requirements is a “SQuaRE” standard that enables software
product quality requirement to be specified, tracked, validated and
managed with evaluation from different perspectives by those associated
with acquisition, requirements analysis, development, use, evaluation,
support, maintenance, quality assurance and audit of software. It provides
a guide to use the model and metrics for requirement definition”. (Azuma,
2001).

Azuma also indicates that the application of SQuaRE 25030 standard allows one to:

• “Validate the completeness of a requirements definition;
• Identify software requirements from a view of quality;
• Identify software design objectives;
• Identify software testing objectives;
• Identify acceptance criteria for a completed software product”.

(Azuma, 2001).

The quality requirements components of the standard are presented in Figure 1.11.

33

Figure 1.11 ISO/IEC SQuaRE 25030 Quality Requirement Division
Extracted from ISO/IEC 25030 (2007)

The steps of the standard (ISO/IEC 25030, 2007) are listed as follows (Figure 1.12):

• General assumptions;

• System considerations;

• Stakeholder’s considerations;

• Quality model considerations;

• V&V considerations.

34

Figure 1.12 Steps of the standard

System considerations are represented in Figure 1.13

Figure 1.13 System considerations

Stakeholder’s considerations are represented in Figure 1.14.

35

Figure 1.14 Stakeholders considerations

Quality model considerations are represented in Figure 1.15

Figure 1.15 Quality model considerations

Validation and verification (V&V) considerations are represented in Figure 1.16

36

Figure 1.16 V&V considerations

As SQuaRE complies with ISO/IEC 15288 System Life Cycle Processes, Azuma proposes a

contribution from the guide ISO/IEC 25030: Quality requirements in the phases:

“Stakeholder requirements definition” process and “Requirements analysis” process (Figure

1.17).

Figure 1.17 ISO/IEC 15288 System Life Cycle Processes to appear in 25030
Extracted from Zubrow (2004)

37

The proposed contribution from the guide ISO/IEC 25030 is described by the following

activities:

• Elicitation and definition of quality requirements as input to “Stakeholder requirements

definition” process;

• Formalization of identified requirements as input to “Requirements analysis” process;

• Identification and formalization of internal quality requirements.

Software quality engineering standards have proven their applicability in different fields of

application such as facilitation of communication between users through a standard language

(ISO/IEC 9126, 2004) and (ISO/IEC 14598, 1999). However, they need to be supported by

techniques and practical guidelines to identify and model software QRs. As a solution, there

is a possibility to combine quality standards with QRs management methods. The next

section will present some QRs management methods which address elicitation and definition

of quality requirements.

38

1.4 Quality requirements management methods

Over the past two decades, research on software quality and quality requirements (QRs) has

resulted in several software QRs management methods. These methods are classified into

four categories developed at two subsequent levels (requirement and architectural). This

classification was based on the main drivers contributing to identify and specify quality

attributes and are: business goals, aspect and goal concepts. The methods are:

a) Business goal oriented methods which use business goals as main drivers in the software

quality process:

a. Space-Ufo: uses business issues to identify the quality needs of the stakeholders

(users, customers and managers) (requirements level);

b. MOQARE (Misuse Oriented QuAlity Requirements Engineering): uses business goals

and the misuse concept to describe quality attributes (requirements level);

c. ATAM (Architecture Tradeoff Analysis Method): uses business goals and scenarios to

describe quality attributes (architectural level).

b) Aspect oriented methods are based on the aspect concept of the “Aspect oriented

paradigm”:

a. FDAF (Formal Design and Analysis Framework): uses the aspect concept and formal

methods to design and analyse NFRs (architectural level);

b. Quality model for quality attributes: uses the aspect concept to specify quality

attributes (requirements level).

c) Goal oriented methods which are based on the goal concept to specify, refine and

analyze conflicts:

a. IESE NFR (Institute for Experimental Software Engineering for NFR) deals with

quality attributes of embedded systems (requirement and architectural levels);

b. Soft goal notation : uses goals as a driving force to elicit and refine NFRS and to guide

the design process (requirements and architectural levels);

39

c. Prometheus (Probabilistic Method for early evaluation of NFRs): combines goal

concepts to operationalize quality goals via the Goal Measurement template

(requirements level).

d) Other QRs management methods:

a. Quality models in software packages (requirements level);

b. Quality specification strategies for embedded systems (requirements level);

c. SHEL (Software and HardwarE and Live ware) methodology which deals with the

integration of different types of requirements (functional, cognitive and quality)

(requirements and architectural levels);

Each method will be described according to its process and model, analyzed and discussed

by establishing strengths and weaknesses. The analysis and discussion of strengths and

weaknesses are based on the existing literature on the QRs methods and on Djouab’s

analysis. A conclusion ends this section with important observations arising from the studied

quality methods.

1.4.1 SPACE-UFO1 Project

1.4.1.1 Description of the method

The approach presented by Punter in (Punter et al., 1997), (Veenendaal, 1997) and (Space-

Ufo, 1998) deals with the fit between the software product characteristics and the user’s need

for that product (explicit and implicit). The authors present the SPACE-UFO project and

describe the method for IT product quality requirements specifications and evaluation. This

method is focused on user needs and is used as a “quality target” for both IT the product

1 SPACE-UFO project is part of the SPACE-Software Product Advanced Certification and Evaluation --User

FOcus- is a new CEC ESPRIT project that will provide an enhanced user-oriented method for IT product

quality requirements specification.

40

evaluation process and the IT development process. Requirements addressed by this method

are quality needs and quality characteristics of the software product. The quality model used

by this method is the standard ISO/IEC 9126. The tools/techniques supporting this method

are: questionnaires, scenarios and interviews.

1.4.1.2 Activities of this method

The authors describe the reference model of this method (Figure 1.18). The main objective of

this methodology is to specify quality requirements for the software product and to evaluate

the quality of this software product. The basic idea is to use a first transformation process to

elaborate a quality profile (based on ISO/IEC 9126 model) from the descriptions of the

business process, the needs of the user/customer and the software product itself. A second

transformation process is used to produce a quality specification (describing quality

characteristics of the software product being developed which serves as input to the

development process) and an evaluation plan (describing techniques and tools to be used to

evaluate the software product).

Furthermore, Punter et al point out the importance of building a quality profile of the

software product which is defined as a list of ISO/IEC 9126 prioritized quality characteristics

and sub characteristics and a number of requirements associated with these quality

characteristics. The main phases of building the quality profile are as follows:

• Identification of quality needs: quality needs of the stakeholders (users, customers and

managers) are related to business issues or companies. The user’s quality needs for a

software product are defined in accordance with the influence a software product has on:

o Business system and characteristics of that business system;

o User tasks.

• Specification of quality characteristics: quality characteristics have to be specified

and quantified in a consistent and complete manner. It is important to find a good

definition for each sub characteristic and to link that characteristic to the associated

metric.

41

Figure 1.18 SPACE-UFO reference model

Extracted from Punter et al., (1997)

1.4.1.3 Analysis and discussion of the method

This methodology is based on building a quality profile which determines the quality level of

the software product. The quality profile is then based on the user’s quality needs related to

business aspects and the quality characteristics of the software product. The methodology

seems to be suitable to establish the important quality characteristics of the software product

but some questions could be addressed:

• At which point of the process of building the quality profile are important quality

requirements identified? Which techniques or tools have been used to identify quality

requirements?

• Are business aspects well modeled to identify quality needs in a structured way?

• Are conflicts between quality characteristics resolved in a consistent and complete

manner?

• Is there a way to retrace quality requirements or to manage their changes when they

happen?

42

Table 1.3 summarizes the strengths and weaknesses of this method.

Table 1.3 Strengths and weaknesses of Space-UFO method
Extracted from Punter et al., (1997)

Space UFO METHOD

Strengths Weaknesses

1. Quality characteristics are extracted

from the context in which the product

is supposed to be used;

2. Quality needs of the stakeholders

(users, customers and managers) are

identified from the different business

aspects;

3. Uses ISO/IEC 9126 to specify quality

characteristics.

1. This method needs to structured & practical

mechanisms to (Punter et al., 1997):

a) Define the relationship between the quality

characteristics of the product and the business

characteristics and

b) Specify and quantify quality characteristics: how to

establish linkage between quality characteristics and

their associated measures?

2. It is not mentioned anywhere in this method how to

define “quality in use”;

3. It is not focused on the mapping activities of quality

engineering instruments with the product definition

phase at early requirements stage.7

1.4.2 MOQARE (Misuse-Oriented QuAlity Requirements Engineering) method

1.4.2.1 Description of the method

MOQARE (Hermann et al., 2007a.) is developed to explore quality requirements. The aim of

MOQARE is to support intuitive and systematic identification of quality requirements. This

method was developed by integrating and adapting concepts from other methods (like Misuse

Cases) and provides a general conceptual model of quality requirements and a checklist-

based process for deriving them in a top down fashion. This derivation starts from business

goals and vague quality requirements and delivers detailed requirements. Relationships

among these requirements are modeled in a Misuse Tree. The completeness criterion for the

NFR is: each business goal must be linked to at least one business damage; each business

damage must be linked to at least one quality deficiency.

43

Requirements addressed by this method are quality attributes (QAs), quality requirements

(QRs). The tools/techniques supporting this method are the misuse case approach chosen as a

basis for detailing QRs from business goals down to quality goals and further to detailed

requirements (here called “countermeasures”). MOQARE identifies potential Misuse Cases

with respect to all QAs and derives further requirements. The Misuse Cases method of

exploring QRs is based on the general principle: an asset is to be protected from a threat, and

to do so, countermeasures are defined. Figure 1.19 presents an overview of the MOQARE

concepts and their relationships.

Figure 1.19 MOQARE concepts and their relationships
Extracted from Herrmann et al., (2007a)

Hermann (Hermann et al., 2007a) defined these concepts as follows:

• The business goals are supported by quality goals of the system. A quality goal is the

combination of an asset plus a QA, and both are to be protected, like “integrity of the

data”. An asset can be any part of the system. The quality goals are high-level QRs.

44

• A quality deficiency means that the asset does not satisfy the QA. The quality

deficiencies concretize how (when/where/how much) the system does not satisfy the

QA. This non-compliance can be total or partial, permanent or temporary.

• A threat is an action (during system use, development, administration or maintenance)

which causes a quality deficiency and consequently degrades the satisfaction of a quality

goal. The threat is usually executed by a misuser, its driving force. Often, the threat is

facilitated or even provoked by vulnerability.

• Vulnerability is a property of the system, either a flaw or a side-effect of an otherwise

wanted property, if it is misused with respect to a quality goal.

1.4.2.2 Process of the method

The process model is presented in Figure 1.20 which describes MOQARE’s general

conceptual model of QRs and the checklist-based process for deriving them in a top-down

fashion. The requirement elicitation is guided by a four-step process:

Figure 1.20 MOQARE process model

45

1. Find the quality goals (based on business goals, business damages, and quality

deficiencies);

2. Describe Misuse Cases (including threat, misuser, vulnerabilities, and consequences);

3. Define countermeasures;

4. With countermeasures which are quality goals, re-start the cycle at step 2.

The MOQARE results can be presented in the form of a graph, a “Misuse Tree” (Figure

1.21). A Misuse Tree has the following levels, from top to bottom:

• Business goal: the cause of a system’s development and use;

• Business damage: threat to business goals;

• Quality deficiency: cause damages;

• Quality goal: combination of an asset and a QA;

• Misuse Case : a whole misuse case scenario, including misuser, threat and

consequences;

• Countermeasure, some of which are quality goals: prevents, mitigates or detects

misuse.

46

Figure 1.21 Misuse Tree for the wireless network system
Extracted from Herrmann et al., (2007b)

1.4.2.3 Analysis and discussion of the method

MOQARE supports intuitive and systematic identification of quality requirements. The input

is a functional description or draft of a planned or existing system, business goals and quality

goals. The output is a misuse tree. The method provides a systematic detailing of the NFR

using defined concepts which are supported by a notation with a tree structure. MOQARE

looks at quality deficiencies triggered by misuses in order to better understand what quality

means to the stakeholders. The main contribution is support by the context-rich misuse case

scenarios and the focus is on the business goals as main drivers of the system. The main

quality issues captured by MOQARE need not to be measurable at an early stage. Metrics

would only be emphasized as soon as they are needed to support quality assurance. However,

there are some questions related to applicability of MOQARE method: are conflicts between

QAs documented? How does one retrace QRs to their original requirements? And finally, for

a complex system where the misuse tree gets big, is the MOQARE analysis time-consuming?

47

Table 1.4 summarizes the strengths and weaknesses of this method.

Table 1.4 Strengths and weaknesses of MOQARE
Extracted from Herrmann et al., (2007a and 2007b)

MOQARE method

Strengths Weaknesses

1. Based on business goals and focus on quality
requirements which support business goals;

2. Support intuitive and systematic
identification of QRs;

3. Provides a general conceptual model for QRs
and a checklist-based for deriving them in a
top down fashion;

4. Provides reuse of checklists;
5. Supported by the context-rich Misuse Case

scenarios.

1. Vague NFRs are refined to FRs, or NFR but not
measurable and quantifiable by metrics

2. Conflicts between quality concepts are not
documented;

3. No direct integration of NFRs into the FRs
documents and architectural options

4. Not yet applicable to all types of quality
requirements;

5. Not yet proven its applicability in industry;
6. MOQARE analysis seems to be time consuming

where the Misuse Tree gets too big and the system to
analyze is too complex.

48

1.4.2.4 Suggestions

Suggestions have been made by authors (Hermann et al., 2007b.) to improve this method:

• The MOQARE process could include a final evaluating phase in which project specific

knowledge is added to the checklists as additional items and also as a whole sub tree;

• Adopt an NFRs dependency graph analysis as an additional reusable artefact describing

frequent QAs dependencies and their conflicts;

• Develop tools support to allow linking of NFRs to FRs and document their integration

into the FRs documents.

1.4.3 ATAM (Architecture Tradeoff Analysis Method)

1.4.3.1 Description of the method

ATAM is an analysis method developed by the Software Engineering Institute at Carnegie

Mellon University. The method is organized around business drivers and quality attributes

goals and based on the extent of the architectural styles to determine quality attribute goals.

Its purpose is to assess the consequences of architectural decisions in light of quality

attributes requirements (Kazman et al., 2000). ATAM is most beneficial when done early in

the software development life cycle when the cost of changing architectures is minimal.

ATAM is founded in three key concepts: quality attribute characterization, scenarios and the

attribute-based architectural styles (Kazman et al., 2000). The scenario-based quality

requirements elicitation is an important factor in applying this method.

Requirements addressed by this method are system quality attributes (Figure 1.22).

Tools/techniques supporting this method are utility tree, scenarios and brainstorming.

49

Figure 1.22 System quality attributes

1.4.3.2 Activities of the method

The ATAM process consists of gathering stakeholders together to identify the driving quality

attributes from the business drivers and to create associated prioritized scenarios. These

scenarios are then combined with architectural approaches and architectural decisions to

identify trade-offs, sensitivity points, and risks (or non-risks).

1.4.3.3 Steps of the ATAM Process (Kazman et al., 2000)

The process model of ATAM is described in the following steps:

1. Present ATAM - Present the concept of ATAM to the stakeholders, and answer any

questions about the process;

2. Present Business Drivers - Everyone in the process presents and evaluates the business

drivers for the system in question;

3. Present the Architecture - The architect presents the high level architecture to the team

with an 'appropriate level of detail';

4. Identify Architectural Approaches - Different architectural approaches to the system

are presented and discussed by the team;

5. Generate a Quality Attribute Utility Tree - Define the core business and technical

50

requirements of the system, and map them to an appropriate architectural property and

present a scenario for this given requirement;

6. Analyze architectural approaches - Analyze the scenarios, rating them by priority. The

architecture is then evaluated against each scenario;

7. Brainstorm and prioritize scenarios - among the larger stakeholder group, present the

current scenarios, and expand upon them;

8. Analyze architectural approaches - Perform step 6 again with the added knowledge of

the larger stakeholder community;

9. Present results - provide all documentation to the stakeholders and write a report

detailing this information along with any proposed mitigation strategies.

1.4.3.4 Analysis and discussion of the method

ATAM is a method for architecture evaluation which confirms that quality requirements

were satisfied by the developed software architecture. ATAM evaluates architectures of

multiple quality attributes, identifies critical architectural decisions that conflict among

multiple quality attributes and resolves them. Quality requirements elicitation is the first step

of ATAM where quality scenarios and requirements are gathered by interviewing the

involved stakeholders of the software. However, the author mentioned (Lee et al., 2001)

difficulty constructing any concrete quality scenarios. Reasons for the difficulties are: a) lack

of consensus on the definition of quality attributes; b) biased viewpoints of some

stakeholders; c) no systematic way to write scenarios and no metrics to evaluate architecture

on multiple quality attributes scenarios. The proposed quality requirements elicitation

strategy is represented by the following points:

1. Select the quality attributes;

2. Make a consensus on these quality attributes;

3. Develop scenario elicitation forms;

4. Select an appropriate measure for each quality attribute;

5. Decide priorities among the quality attributes.

51

Table 1.5 summarizes the strengths and weaknesses of this method.

Table 1.5 Strengths and weaknesses of ATAM method
Extracted from Kazman et al. (2000) and Lee et al., (2001)

ATAM method

Strengths Weaknesses

1. The leading method in the area of

software architecture evaluation;

2. An interesting analysis method

based on business drivers;

3. Focused on the stakeholder’s

scenarios, quality attribute

characterization and quality

attribute architectural styles.

1. Used at the architectural level, not

requirement one;

2. Time consuming in writing scenarios and

interviewing stakeholders;

3. Difficulty to understand terminologies related

to quality attributes definitions

4. Unavailability of various stakeholders and no

personal profiles of stakeholders;

5. No systematic way to write scenarios;

6. Scenarios have not metrics leading to

difficulty in analyzing tradeoffs and

evaluating architectures.

1.4.4 FDAF (Formal Design and Analysis Framework) method

1.4.4.1 Description of the method

FDAF is an aspect-oriented architectural approach proposed to solve the problem of

systematically modeling and analyzing NFRs for software architecture (Dai et al., 2005).

This approach allows design and analysis of NFRs for distributed real systems and helps to

build NFRs aspects into software architecture involved in enterprise level goals. This

approach is supported by a process providing a systematic modeling of NFRs properties (by

extending UML with aspects) and their automated analysis (by using formal methods and

their supporting tools). This process verifies that these NFRs have been met and allows one

to decide how to reorganize architecture components affected by these NFRs. In FDAF,

NFRs’ properties are represented as aspects at the architectural level. An aspect repository is

52

provided to reuse predefined aspects. These aspects are integrated into the UML based

architecture design model and analyzed automatically (by using translation algorithms) to

formalize part of UML into formal languages.

Requirements addressed by this method are quality aspects. Tools/techniques supporting this

method are: UML model, Aspect Oriented Paradigm, Formal methods and their supporting

tools.

1.4.4.2 Activities of this method

The process model is presented in Fig 1.23 where a UML aspect-oriented design model is

created, formalized, analyzed and iteratively refined according to analysis results provided

for particular aspects. Activities of FDAF are presented below (Dai et al., 2005).

Figure 1.23 FDAF process model
Extracted from Dai et al., (2005)

53

• Create a semi formal Extended UML Aspect Oriented Design Model: NFRs of the

system are represented as aspects. A parallelogram notation is used to capture aspects

in the UML design model where UML can be extended by stereotypes, tagged values

and constraints.

• Create a formal Aspect Oriented Model: A suitable formal language associated with

the aspect oriented UML design model is selected and translated into a set of formal

models.

• Analyze the formal Aspect Oriented Model: The set of formal models is analyzed

using existing tool in support (as Promella and Rapide) of the formal languages.

1.4.4.3 Analysis and discussion of the method

FDAF is an interesting method used to create architecture designs with NFRs aspects that

cannot be described in the real time version of UML. The major contribution of FDAF is that

it integrates the semi-formal UML with formal methods into an aspect oriented framework.

In fact, the parallelogram notation is used to present aspect information. The aspect model is

based on one specific aspect which makes it simpler than a traditional mixed model.

However, formal methods are limited by their analysis tools in different areas. For instance: a

lack of modeling constructs to support the description of a component’s behavior and

connections; difficulty to obtain useful information from the raw data as the number of

simulated events increases; restriction of modeled systems by mathematical assumptions and

time consumption related to analysis of NFRs aspects.

Table 1.6 summarizes the strengths and weaknesses of FDAF method when applied to define

and analyze the three quality aspects (Dai, 2005) and (Dai et al., 2003, 2005 and 2006):

performance response time aspect analyzed with Rapide tool, performance resource

utilization aspect analyzed with Armani tool and the RBAC (Role Based Access Control)

security aspect analyzed with Alloy tool.

54

Table 1.6 Strengths and weaknesses of FDAF method
Extracted from Dai (2005) and Dai et al., (2003, 2005 and 2006)

FDAF METHOD

Strengths Weaknesses

1. The FDAF performance aspect analysis helps

to create architecture design that cannot be

described in the real time version of UML;

2. Rapide's analysis tool supports architects

with detailed analysis of the system’s

behaviour simulation at the architectural

level and detects uninspected activities;

3. Rapide is of great help for architects and

designers to identify early problems and to

refine the architecture design iteratively;

4. The FDAF resource utilization aspect

analysis provides architects with detailed

analysis information about which component

is the bottleneck (overloaded and busy all

the time) and refine the UML architecture to

meet the NFRs;

5. The FDAF security aspect analysis allows

detecting inconsistency of the multiple

system security policies early in the design.

1. There is no identification step of the NFRs aspects

by the framework;

2. Limitations of the Alloy’s analysis tool in this

area: it doesn’t provide modeling constructs to

support the description of component’s behaviour

and connections;

3. Analysis is time consuming;

4. There is no mention where the quality standard

ISO/IEC 9126 has been used;

5. Limitations of the Rapide’s analysis tool and

difficulty to obtain useful information from the

raw data (response time analysis results presented

in the graphical browser) as the number of

simulated events increases;

6. Limitations of the Armani’s analysis tool in this

area: the mathematical assumptions restrict the

systems they are modeled. For example

assumptions that all components are executing

sequentially are not applicable to systems where

components are executing in a parallel way;

7. The queuing network analysis is not applicable to

other architectural styles (pipe and filter and layer

architecture);

8. The Armani tool does not calculate automatically

the property “sOverloaded” instead it allows

changes to it.

55

1.4.5 Method “Requirement model for quality attributes”

1.4.5.1 Description of the method

This method defines a process to identify and specify quality attributes that crosscut

requirements and to integrate them into the functional requirements at an early stage of the

software development process (Brito et al., 2002):

1. Proposes a template to specify quality attributes at the requirement stage;

2. Extends “Use Cases” and sequences diagrams (Jacobson et al., 1992) to specify

integration of quality attributes with functional requirements.

1.4.5.2 Activities of the method

The process model is compatible with UML formalism (Jacobson et al., 1998) and is

composed of three important activities (Figure 1.24):

1. Identification of system requirements and selection of quality attributes relevant to the

stakeholder’s requirements and application domain from those requirements;

2. Specification of requirements:

• Specify functional requirements by using “Use Case” based approach;

• Describe quality attributes by using templates and specify quality attributes

crosscutting functional requirements;

3. Integration of crosscutting quality attributes with functional requirements.

56

Figure 1.24 Requirements model for quality attributes
Extracted from Brito (2002)

Requirements addressed by this method are: functional and quality. Quality requirements are

specified as “quality attributes” and are defined as “global properties of a system,

assumptions, constraints or goals of stakeholders”. The quality model used by this method is

a template for describing quality attributes. Tools/techniques supporting the method are Use

Case approaches (UML model, sequence & class diagrams) for specifying functional

requirements and templates for describing quality attributes.

1.4.5.3 Analysis and discussion of the method

The method “Requirement model for quality attributes” defines a process to identify and

specify quality attributes that crosscut requirements including their integration with

functional requirements.

57

The strengths of the method (Araujo et al., 2002 and 2003) and (Brito, 2002) are:

1. It proposes a new concept: “aspect-oriented paradigm", to integrate quality

requirements (non functional requirements) with the functional requirements (Araujo

et al., 2002 and 2003).

2. This method investigates other approaches such as ATAM (Architecture Tradeoff

Analysis Method), composition patterns and goal oriented requirements engineering

related to quality attributes and crosscutting concerns.

3. Using a template for describing quality attributes is interesting in the sense that

knowledge about these attributes is collected (source, focus, decomposition,

influence, requirements describing them, and their contribution to other attributes).

However somr drawbacks are identified:

1. it is not specified anywhere how to identify these quality attributes from system and

user requirements and how to select them according to the application domain and

stakeholders (Djouab and Suryn, 2006).

2. In addition, it is not indicated in the template how quality attributes are derived from

quality requirements and how they are retraced to these quality requirements.

3. Finally, It is not specified how ISO/IEC 9126 is used to specify quality characteristics

and sub-characteristics.

1.4.6 IESE NFR method

1.4.6.1 Description of the method

IESE NFR is a systematic experience-based approach which elicits documents and analyses

Non-functional Requirements (NFRs) of embedded systems. Its objective is to achieve a

minimal and sufficient set of measurable and traceable NFRs (Doerr et al., 2005). IESE NFR

has been introduced to palliate the drawbacks of other approaches which lack systematic

guidance on how to use them and to end up with measurable NFRs. IESE NFR distinguishes

58

between quality attributes (QAs) and NFRs where QAs are captured in quality models and

NFRs are captured in templates. IESE NFR defines QAs as “QA is a non-functional

characteristic of a system, user task, system task, or organization. An NFR describes a certain

value of a QA that should be achieved in a specific project” (Doerr et al., 2005).

The IESE NFR methodology has been used to elicit usability requirements in concert with

supplementary requirements related to “Use Case” approach and high level architecture

(Kerkow et al., 2003). Kerkow shows how quality aspects contribute to architectural design.

The methodology uses a quality model (QM) (Figure 1.27) and quality attribute (QA) types

to capture knowledge on NFRs and a template for capturing specific NFRs. In addition,

checklists are used to elicit NFRs in concert with user models, Use Cases and architecture.

1.4.6.2 Activities of this method

IESE NFR method is organized around stakeholder workshops to select and tailor quality

models and to use these models to elicit and document the NFRs. In fact, the method starts

by prioritizing the high level QAs most important to the project and by selecting the quality

models associated to these QAs. These selected quality models are tailored in workshops to

the needs of the project. Checklists and templates are derived from the quality model to be

used (in workshops) for the elicitation process. Dependencies between QAs (general and the

lowest level) in the quality models are included in the checklists and used to identify NFRs

and conflicts among them. The process of IESE NFR is organized around 2 basic steps

(Figure 1.25): tailoring the quality model and elicitation process.

59

Figure 1.25 IESE NFR process
 Extracted from Doerr et al., (2005)

Tailoring the quality model: where the experience based reference model is tailored to the

need of the client’s project (Figures 1.26 and 1.27). This process produces checklists and

templates for use in the next process. The figures 1.28, 1.39 and 1.30 show examples of the

tailoring process for the Tetris game.

60

Figure 1.26 Quality reference model for Efficiency
Extracted from Doerr et al., (2005) and Kerkow et al., (2003)

Figure 1.27 Tailored QM for Efficiency
Extracted from Doerr et al., (2005) and Kerkow et al., (2003)

61

Figure 1.28 Tailoring process example of game Tetris
Extracted from Herrmann et al., (2007b)

Figure 1.29 Tailoring process example of game Tetris
Extracted from Herrmann et al., (2007b)

62

Figure 1.30 Tailoring process example of game Tetris
Extracted from Herrmann et al., (2007b)

Elicitation process: Based upon the previous created artifacts, the different types of

activities that formulate the NFRs are defined (organizational, user task, system task and

system). These NFRs are consolidated to be analyzed for possible conflicts.

Activities of the elicitation process are:

• Elicit organizational NFRs; elicit NFRs that constrain QAs of the organization;

• Elicit user task NFRs; elicit NFRs that constrain QAs of user tasks;

• Elicit system task NFRs; NFRs that constrain QAs of system tasks;

• Elicit system NFRs; elicit NFRs that constrain QAs of the system and subsystems;

• Consolidate; QAs are analyzed for conflicts and NFRs that constrain different QAs

are validated according to dependencies documented within the quality model.

The checklist gives a means to identify these conflicts and a means to solve them. The

process is based on the following artifacts: Prioritized questionnaire; user model; system

functionality and physical architecture. The figures 1.32, 1.33 and 1.34 show examples of the

elicitation process for the Tetris game.

63

Figure 1.31 Elicitation process example of game Tetris
Extracted from Herrmann et al., (2007b)

Figure 1.32 Elicitation process example of game Tetris
Extracted from Herrmann et al., (2007b)

64

Figure 1.33 Elicitation process example of game Tetris
Extracted from Herrmann et al., (2007b)

1.4.6.2 Analysis and discussion of the method

IESE NFR method tried to achieve a complete and focused set of measurable and traceable

quality aspects at an early stage. It provides structured guidance to elicit and document NFRs

supported by the prioritized questionnaire of QAs, the tailoring process of the QM and the

derived checklists and templates. The main contribution of this method is to provide

guidance during the elicitation process. Hence, IESE NFR is suitable to deal with quality

requirements at early stages because it deals with multiple NFRs (high and lowest levels) and

is based on ISO/IEC 9126. However, some limitations remain:

• The method is restricted to embedded systems where NFRs are dependent on functional

requirements and architectural options and where NFRs should be clarified in the

subsequent phases of the development process;

• How can one retrace quality attributes to their original quality requirements?

• What should be done with NFRs not satisfied?

• The method will become difficult to use with the complexity of the quality model.

Table 1.7 summarizes the strengths and weaknesses of the method when applied in industry

(three case studies) (Doerr et al., 2005) and dealing with security, efficiency, reliability and

maintainability attributes.

65

Table 1.7 Strengths and weaknesses of IESE NFR method
Extracted from Doerr et al., (2003 and 2005) and Kerkow et al., (2003)

IESE NFR METHOD

Strengths Weaknesses

1. A systematic approach which led to

structured, correct, complete and

measurable NFRs;

2. Identifies early conflicting requirements

with the use of the analysis dependency;

3. Enhances communication between

stakeholders (requirements engineer,

developer and customer);

4. Ability to elicit several quality

attributes;

5. NFRs are in almost cases measurable.

1. How are conflicts among quality attributes

resolved?

2. How to maintain the quality model with the growth

of the dependency graph?

3. The dependency graph is used to represent

dependencies between quality attributes. The graph

is not used to capture NFRs (they are placed in the

requirements documents template);

4. Size of checklist will be large with the growth of

the conditions and alternatives sections;

5. The experience based artifacts (models, checklists

and templates) have to be maintained to be used

efficiently.

6. Much time is spent to resolve terminologies

problems during workshop sessions;

1.4.7 Soft goal notation of the Chung NFR Framework

1.4.7.1 Description of the framework

The framework is a process-oriented approach addressing non functional requirements

(NFRs) (Chung et al., 1994, 1995 and 2000). It uses a goal graph structure to record and

structure NFRs, design alternatives, decisions and rationale. All of these concepts are treated

uniformly as goals (denoted by nodes) and related to one another via links. The framework

documents NFRs with soft-goal notation (Figure 1.35) where elements of the goal graph are:

a) quality attributes/NFRs (represented as clouds), b) operationalizations (represented in bold

clouds) which indicate how the NFR is achieved and c) relationships divided into refinement

(represented by “And” and “Or”) and contribution (represented by positive contribution

“Make” and negative contribution “Break”). To satisfy NFRs goals, the developer considers

66

design alternatives called “satisfying goals” along with their tradeoffs, refines them, makes

selections and justifies them by recording design rationale called “argumentation goals”.

Development knowledge about specific NFRs is to be taken from the literature and industrial

experience and captured as methods, which are then presented for reuse to help the developer

generate new goals and links. For example, techniques can be incorporated from security

evaluation criteria, performance responsiveness principles, and accuracy concepts (Chung et

al., 1995).

Non-functional requirements are systematically integrated into the development. They are

represented as potentially conflicting or synergistic goals.

To deal with NFRs, there is a need to:

• Consider key domain characteristics;

• Capture NFR-specific concepts;

• Detect defects.

Figure 1.34 Soft-goal notation example
Extracted from Chung et al., (1995)

67

Requirements addressed by the framework are non functional requirements (NFRs) or soft

goals. Tools/techniques supporting this method are goal graph structures, catalogues of

refinement methods and interdependencies analysis among NFRs.

1.4.7.2 Activities of the framework

The process model is presented in Figure 1.36

Figure 1.35 Framework model

1.4.7.3 Analysis and discussion of the method

The NFR-Framework is based on a process-oriented approach to deal with NFRs. During the

software development process, this framework allows treating NFRs as potentially

conflicting goals to achieve. Development alternatives which could meet the stated NFRs are

considered and design tradeoffs are examined. The design decisions related to NFRs are

68

justified according to the needs of the intended application domain. The framework has been

evaluated from three viewpoint perspectives: developers, experts and application domain

(Chung et al., 1995).

1.4.7.4 Perspective of developers

• Framework observations: explicit expression of an initial set of NFRs as goals

improved awareness and led to systematic development. When conflicts and synergy

among the NFRs goals are explicitly described, allowing consideration of design

tradeoffs to satisfy NFRs goals;

• Catalogues of methods enable one to capture the large number of NFRs-specific

concepts and their associated techniques;

• Goal graph structures are important as a record of initial development and for long term

review and maintenance of systems;

• Defect detection observations dealing with NFRs involve repeated clarification of

goals, addition of missing details, detection of goal graph synergy and conflict.

1.4.7.5 Perspective of domain experts

• Framework is helpful in the broad domain studied;

• The cataloguing of development techniques and NFRs-specific knowledge would be

helpful;

• The goal graph structure and their components were helpful.

1.4.7.6 Application domain perspective

Application of the framework did not correspond to the domain because of the lack of

knowledge about the domain, its priorities and terminology (lack of contact with domain

people during the study).

69

In summary, important framework findings are a process oriented approach, goal graph

structures, formality, tradeoffs and delivery of the main requirements. Table 1.8 summarizes

the strengths and weaknesses of the framework.

Table 1.8 Strengths and weaknesses of Chung framework
Extracted from Chung et al., (1994 and 1995)

Chung framework

Strengths Weaknesses

1. Applicable to all types of

quality requirements;

2. Structure and record NFRs,

design alternatives, decisions

and rationale in a goal graph

structure;

3. Provides catalogues of

refinement methods.

1. Knowledge on conflicts detection with functional

requirements is not collected;

2. Elicited NFRs are not integrated in the requirements

specification document;

3. Focused on documentation and negotiation of QRs and not

their elicitation from business goals;

4. Some NFRs stated in quantitative terms are not supported by

the taxonomy of the NFR framework;

5. Goal graph structures would be larger for complex systems;

7. New decomposition methods would be provided to bridge

automatically the gap between the new NFRs and the given

satisfying goals;

8. There is a comprehensibility limit in understanding the

meaning of arguments;

9. Improvements in naming and presentation are needed to

increase understandability;

10. Lack of consultation with domain people during the study left

gaps in the domain knowledge.

1.4.8 Prometheus Method to model quality in SPL (Software Product Lines)

1.4.8.1 Description of the method

Authors Punter (Punter et al., 2002 and Trendowicz et al., 2003) try to combine several

methodologies to model and evaluate the quality of software products early in the

70

development process. Prometheus is an example of such research. This approach describes a

method to modeling NFRs (Non-functional requirements) by using flexible, reusable and

transparent quality models. Prometheus combines 3 methodologies to model and evaluate the

quality of a software product:

1. The SQUID approach (Kitchenham et al., 1997);

2. The BBNs (Bayesian Belief Networks) probabilistic concept (Fenton et al., 2002);

3. The GQM (Goal Question Metric) concepts (Gray et al., 1997, Birk et al., 1998,

Fuggetta et al., 1998 and Solingen et al, 1999a).

1.4.8.2 Activities of the method

The definition process for these quality requirements is composed of three phases:

1. Requirements specification phase: during this phase a quality model is developed.

Activities to define quality requirements are listed below (Figure 1.37):

a. Define quality goals: quality goals are defined by the system users and other

stakeholders by applying the MGT (Measurement Goal Template);

b. Specify quality characteristics (content of model): describes the refinement of quality

goals into quality characteristics and sub characteristics;

c. Specify relationships (structure of model): here, two types of relationships are defined:

decomposition, which specifies decomposition of high quality characteristics into

detailed sub characteristics, and influence, that defines which sub characteristic

influences the value of other characteristics;

d. Review the model: the model is reviewed according to the implementation feasibility;

e. Operationalize the model: the model is quantified (characteristics and relationships)

and qualified by applying the BBN technique (Bayesian Belief Network).

2. Application phase: During this phase, the model is used to evaluate the requirements;

3. Packaging phase: Information on acquired experience during application of the model is

collected in order to improve that information and to reuse it in other projects.

71

Requirements addressed by this method are quality goals and characteristics of the software

product. Various quality models are combined and used by this method. Tools/techniques

supporting this method are: GQM (Goal Question Metric) to define quality goals, interviews

and questionnaires with domain experts to refine quality goals into quality characteristics and

sub characteristics, SQUID tool for modeling and evaluating software quality and BBN

technique for quantification of relationships as well as for the integration of quantitative and

qualitative data within the quality model.

Figure 1.36 Activities during the specification phase of the Prometheus method
Extracted from Trendowicz et al., (2003)

1.4.8.3 Analysis and discussion of the method

As mentioned before, Prometheus method enables one to start quality evaluation early in the

development process. It uses GQM method to define quality goals. The goal formulation is

conducted iteratively and serves as a baseline for the evaluation step. Goals are defined by

system users and other stakeholders related to the project who are involved in acceptation of

the evaluation. This method defines its own quality model by organizing interview sessions

72

with domain experts who contribute in defining quality goals and quality characteristics.

Sessions are supported by techniques such as questionnaires, case studies and existing quality

models.

Prometheus is an interesting method since it gives the main activities for building the quality

model for the project domain and has the following advantages:

1. Starting quality evaluation early in the development process;

2. Learning effectively across several product variances/releases;

3. Integrating quantitative (measured based) and qualitative approaches;

4. Combining different contexts of software quality individual views (as developers,

users) and evaluation objects (processes, products, resources);

5. Applicable across different companies, to any project and incorporates views of all

relevant project stakeholders;

6. Reuse of quality experience packaged in existing quality models across other projects.

It also supports the reuse of measurement data as well as quality characteristics and

their relationships;

7. Refining the quality model through subsequent projects.

However, this method does not use the ISO/IEC 9126 as a quality model and it does not

indicate how quality requirements are extracted from quality goals and how they are

specified (Djouab and Suryn, 2006). Further, application of Prometheus for quality modeling

also faces problems like the huge effort needed to initialize the BBN quality model with

expert’s knowledge, serious limitations of the BBN network in size and structure

(decomposition level equal to 2), computation complexity of the BBN network linked with

the exponential growth of the number of probabilities and the size of tables, and as reported

by Fenton, impossibility to assess accuracy of the quality model due to the great amount of

data required to make precise predictions of the quality characteristics values (Djouab and

Suryn, 2007a). Table 1.9 summarizes the strengths and weaknesses of this method.

73

Table 1.9 Strengths and weaknesses of Prometheus method
Extracted Trendowicz et al., (2003); Empress, (2004); (Gray et al., (1997);

 Birk et al., (1998); Fuggetta et al., (1998) and Solingen et al, (1999a)

Prometheus METHOD

Strengths Weaknesses

1. It gave a detailed description of software
product quality requirements definition
activities;

2. Combines both subjective probabilities (from
domain experts) with probabilities based on
objective measured data;

3. BBN provides a transparent quality model (in
structure and content);

4. Provides easy learning of complex quality
dependencies (conflicts ans redundancies);

5. Easy to be modified and to be applied in
similar software projects;

6. Combines different kinds of data and
facilitates merging more than one quality
view in one model;

7. Specifies quality attributes and helps
understand the relationship types among them
(redundancies, contradictions);

8. Refines probabilities during the development
process

9. Predicts missing data;
10. Supported by automatic tools (Analytica,

Hugin, Netica, MSBNx);

1. There is no mention how to identify QRs from
quality goals (defined by GQM method);

2. It did not use ISO/IEC9126 as quality standard;
3. There is no mention how to specify QRs;
4. The quality model is build for a specified software

(embedded) and particular application domain;
5. Output of the Bayesian quality model is a

probability of a value of the quality characteristic
instead of the value itself.

6. Initial BBN quality model requires much effort from
the experts to set up the node probability tables;

7. Limitations on the size of the BBN: the number of
cells of a given BBN network augments
exponentially with the growth of the number of
variables and relationships;

8. Limitations on the structure of the BBN network :
maximal number of parents limited to 2;

9. Exponential growth of probabilities requires more
computational power to re-calculate the network;

10. The cost of the relationships quantification (in the
decomposition tree combined with the quality
model) may increase if each characteristic will be
influenced by (or decomposed to) more than 3 sub
characteristics;

11. Problem of definition of the BBN parameters
(conditional probabilities);

12. Quality model developed with GQM is specific to
the project domain & the characteristics/sub
characteristics obtained during the refinement
process are not in conformance with ISO/IEC 9126;

13. The structure of GQM process will be complex if
the difference in the quality focus emerges among
stakeholders. This will require further iterations of
GQM which will be costly for an organization
(especially small or medium organization);

14. The model based on GQM is difficult to maintain;

74

1.4.9 Quality models in software packages methodology

1.4.9.1 Description of the method

This method has been proposed (Carvallo et al., 2002a and 2002b and 2003) to deal with

requirements definition and decomposition. Requirements addressed by this method are

quality requirements and the model used is the ISO/IEC 9126 quality model.

1.4.9.2 Activities of the method

Quality requirements are described in a structured methodology which is organized in the

following steps:

• Defining the domain: examine and describe the domain of interest with the

collaboration of experts;

• Determining quality characteristics;

• Defining a hierarchy of sub characteristics;

• Decomposing sub characteristics into attributes ;

• Decomposing derived attributes into basic attributes;

• Stating relationships between quality entities to determine the complete quality model.

Various types of relationships can be identified: collaboration, damage and

dependency;

• Determining measures for attributes: select measures for all attributes (basic) and

derived context-free attributes;

• Collecting feedback to refine and extend the requirements.

1.4.9.3 Analysis and discussion of the method

This method presents the following advantages quoted by authors (Carvallo et al., 2003):

• Well structured and gives a detailed description of software product quality

requirements definition activities;

• Easy to compare quality requirements with package selection descriptions;

75

• The quality models obtained with this methodology can be supported by packages

selection tools;

• The methodology increases reusability.

Nevertheless, the following drawbacks are noted:

• Restricted to software package selection domains;

• Does not indicate how to identify, specify, decompose and control quality requirements

in the proposed steps;

• Focused on external attributes because package suppliers do not give access to the

package code;

• Not focused on the mapping activities of quality engineering instruments with the

product definition phase of the life cycle.

1.4.10 Quality specification strategies for embedded software

1.4.10.1 Description of the method

The proposed method is a “Multi party chain” strategy which deals with software quality of

embedded software (Solingen et al., 1999b). It was developed by the Spirits project and is

based on user’s perceptions (different stakeholders) of software product quality requirements.

Stakeholders involved in the product usage should have responsibility to define quality

requirements of the product. As these stakeholders (buyers, users, developers and project

manager) have different views of the software product, Solingen points out the importance of

supporting communication between these parties about product quality. Availability of these

quality requirements facilitates translation of different interpretations and negotiation of these

requirements among the involved parties. Requirements addressed by this method are quality

characteristics of the software product. The quality model used is the ISO/IEC 9126 standard.

Tools/techniques supporting this method are interviews and UML model.

76

1.4.10.2 Activities of the method

 The method is structured as follows:

• Identify all the involved parties (users and stakeholders) in definition of software product

quality;

• Use a model (multi-chain) to capture quality requirements of the relevant parties and trace

them easily;

• Make a series of structured interviews with representatives of all parties in order to obtain

a complete view of the quality requirements formulated in standardized quality terms

(ISO/IEC 9126);

• Produce a consensus on the relevant quality characteristics of the software product.

1.4.10.3 Analysis and discussion of the method

The strengths of the method (Solingen et al., 1999b) are:

• Quality view of the user: users and stakeholders involved in the software product project

participate in defining quality requirements;

• The multi party chain model : allows one to capture quality requirements of the involved

stakeholders and users;

• Communication among the involved parties about product quality: facilitates resolution

of conflicts between involved parties and helps to build a consensus about software

product quality characteristics.

However some drawbacks are identified:

• There is no mention of how quality requirements are captured in the “multi chain” model,

specified and retraced;

• How do conflicts between parties get resolved and are there any comprehensible

guidelines to provide the consensus view on quality requirements and their relationships?

77

• Not focused on the mapping activities of quality engineering instruments with the product

definition phase at the early requirements stage;

• Inability to reuse quality experiences in other projects and companies.

1.4.11 Method SHEL (Software and HardwarE and Live ware)

1.4.11.1 Description of the method

The approach proposed by Felici (Felici et al., 2000) deals with the integration of different

types of requirements, which are defined over software, hardware and live ware (human)

resources. Requirements defined by this approach are: cognitive, functional and quality. The

SHEL model supports a systemic view which in turn supports the definition of different types

of requirements related to system (software and hardware) and human aspects (human roles,

interaction, and help in breakdown-situations).

1.4.11.2 Activities of this method

The definition process of these requirements is composed of 6 phases (Figure 1.37):

• Work analysis: is a profound analysis of the work system of the specific environment.

o Studying the way in which the productive process is performed taking into account all

the resources that contribute and interact in the process execution;

o Producing models and processes as tools supporting process performance, objects in

the work process, interactions, social and work practices in order to describe the

existing work system with its critical issues and weaknesses.

• Identification of user needs and critical issues: elicit critical issues due to the

knowledge distribution among the SHEL resources and their interaction.

o Providing a basis for alternative design considerations represented by various

prototypes and design models early in the design process;

o Ascertaining suitable knowledge distributions for an effective use of the resources.

78

• Definition of SHEL requirements and Design of the SHEL system: All the collected

information contributes to defining the requirements and architecture of the system

according to the SHEL model.

• Definition of functional, cognitive and quality requirements: Quality requirements

are defined according to the UCD approach (User Centered Design) (Felici et al., 1998)

which is based on the user viewpoint to define quality needs for the system. A quality

model is defined with quality characteristics by using the task analysis technique. The

tool (SQUID) (Felici et al., 1998) and (Kitchenham et al., 1997) for data acquisition is

used to control and evaluate software quality.

• Design of prototypes and Mock-ups: requirements are mapped into “design patterns”

represented in prototypes, mock-ups, design models and scenarios.

• Validation by experts in the work environment: The last phase of one iteration cycle

in SHEL oriented requirements engineering approach is the validation by the domain

experts:

o System compliance with requirements is evaluated. The evaluation takes into account

“measurable criteria” such as performance and criteria such as usability, cognitive

workload and level of cognitive support;

o Requirements and the projected system are validated in the real system environment.

Techniques used in this method are: observations, interviews, heuristic analysis, video

recording and checklists for capturing information on the productive process. Prototypes,

design models, patterns, mock-ups and scenarios are used for validating the work

environment.

79

Figure 1.37 Phases of the process for defining requirements
Extracted from Felici et al., (2000)

1.4.11.3 Analysis and discussion of the method

This method deals with the integration of different types of requirements defined for

software, hardware and live ware resources. It defines requirements by a systemic

requirements engineering process and represents quality requirements as user needs which

have been identified in the first “work analysis” phase of the SHEL oriented process. The

third phase, “Definition of SHEL requirements and Design of the SHEL system”, defines the

requirements and architecture of the system according to the SHEL model which represents

the starting point for defining quality requirements and other requirements as stated before

(cognitive and functional). This method seems to be costly and does not support all features

required for an integrated method and does not indicate how to identify quality requirements

from SHEL system and design architecture (Djouab and Suryn, 2006). In fact, there is no

mention of any technique for extracting QRs from SHEL requirements and design of the

SHEL system. Finally, this method is not focused on the mapping activities of quality

engineering instruments at the early requirements stage.

80

1.4.12 BMM (Business Motivation Model)

1.4.12.1 BMM definition

BMM is an intentional model which focuses on intentions, motivations and reasons, and

deals with complex human and organizational issues (BRG, 2007). BMM has been

introduced in the literature review because business goals are important drivers of the system

as described by MOQARE and ATAM methods and will be part of the research solution.

As claimed by Business Rules Group (BRG, 2007), the BMM is designed to provide a

structure for developing, managing and communicating business plans in an organized

manner. BMM has been proposed as a standard under the Object Management Group. It is a

simple and compact standard that provides a metamodel for enterprise-specific motivation

models. BMM contains and organizes the elements of its business governance: vision and

mission, influences and assessments, goals and objectives, strategies and tactics, as well as

business policies. It references other relevant elements of its business models (its business

processes, business rules, organization units, assets, resources, products, services) that are

contained in related models built using specifications outside the BMM scope. Models are

expressed in a Unified Modeling Language (UML) standard (Figure 1.39 for detailed

metamodels). Table 1.10 summarizes the definitions of the core concepts of BMM.

81

Figure 1.38 Business Motivation Model Framework
Extracted from Deng (2006, p.35)

82

Table 1.10 BMM concepts descriptions

Artifacts Description (from (Deng, 2006)) Commentary

Ends

What an enterprise wants to be.
Examples:
1. Develop new lines of business
2. Moving into new markets
3. Maintain its current position in the market

Ends do not say how the
goals will be achieved

1. Vision 1. An overall image of what the organization wants to be or
become

2. Desired results
a. Goals
b. Objectives

2. Are more specific
a. Tend to be long term and defined qualitatively
b. A step along the way towards a goal and is quantitative.

Means What the organization needs to achieve what it wants. It
indicates capabilities that can be exploited to achieve the
desired results

Means do not indicate business
process necessary to exploit
them and responsibility for such
tasks

1. Mission

It indicates the ongoing operational activity of the enterprise.
It covers all strategies and complete area of operations

2. Course of Action

a. Strategy

b. Tactic

What the enterprise has decided to do and what has to be
done
a. Strategy tends to be long term and broad in scope. It is
implemented by tactic
b. Tactics tend to be short term and narrow in scope.
Tactic may contribute to implementation of more than one
strategy.

1. Course of Action does not
define how well it has to be
done

a. Strategies are selected to
move the enterprise towards
its goals

b. Tactics are selected to ensure
that it meets its objectives

3. Directive

a. Business
Policy

b. Business Rule

a. Business policy governs, controls, guides and shapes
strategies and tactics. It defines what can be done and
what must not be done. It sets limits on how it should be
done

b. Derived from business policy, it needs to be defined and
managed for consistency and completeness. It provides
specific solution when a course of action fails and specific
resolutions to conflicts arising among ends.

1. Every directive must be
explicit and recorded in an
official manner

2. All courses of actions must
be governed by some
directive

Influencer Any changes affecting the enterprise in employment of its
Means or in achievement of its Ends

1. Internal

1. Internal changes are:
a. Infrastructure
b. Issues
c. Resource habit
d. assumptions

2. External

1. External changes are:
a. Environment; Technology; Regulation
b. Supplier
c. Customer
d. Competitor and partner

Assessment Judgment about the influence of an Influencer on the ability
of the enterprise to achieve its Ends or use its Means

1. Potential Impact
a. Risks
b. Potential

reward

1. Identified to support assessments

83

1.4.13 Synthesis of described methods

The present section discusses and analyzes the four classes of software QRs management

methods described in the previous section.

The first class: Business goals oriented quality methods (Space-Ufo, MOQARE and ATAM)

uses business goals as main forces in the quality requirements management process. Space-

Ufo identifies quality needs according to the characteristics of the business system.

MOQARE is applicable to QRs derived from business goals. ATAM supports evaluation of

given architectural alternatives with respect to quality requirements attributes. However,

there is:

1. No mention of how to describe and model business characteristics in a structured way

to identify quality needs (Space UFo);

2. A lack of a systematic way to write scenarios (ATAM);

3. Focus on eliciting architecture-centered quality attributes (ATAM);

4. Absence of documentation of conflicts between quality concepts (MOQARE);

5. No direct integration of NFRs and FRs (MOQARE);

6. No support for non-technical stakeholders and novices (MOQARE).

The second class: Aspect oriented quality methods (FDAF and Requirements model for

quality attributes) is based on the “Aspect” concept to describe QRs. The FDAF framework

has been designed for a specific quality attribute at the architectural level. It has been

developed to create architecture designs with NFRs aspects that cannot be described in the

real time version of UML. However, FDAF is not concerned with the identification of QAs

at the requirement level. It uses limited analysis tools and modeling constructs to describe a

component’s behavior and connections. Requirements model for quality attributes process

defines quality attributes as crosscutting concerns and specifies them in a template. But there

is no indication of how to identify quality attributes from system and user requirements.

The third class: Goal oriented quality methods (IESE NFR, soft goal notation and

Prometheus) is based on a “goal” concept to describe QRs. The IESE NFR method is a well

84

defined process for eliciting complete and measurable NFRs, except that quality attributes

are not derived from business goals and the tailoring stage is not supported by context rich

scenarios as is the case for MOQARE method. The soft goal notation method is applicable to

all types of QRs, but focuses on the documentation and negotiation of QRs, and not on their

elicitation from business goals. The Prometheus method gives a detailed process to build a

quality model for a specific domain project, but it seems to be difficult to apply particularly

in the step of construction of the BBN quality model. In fact, the BBN quality model is

restricted to a maximum of three decomposition levels and initialization of the BBN network

(filling the probability tables) requires more effort from experts.

The last category of quality methods (Quality models in software packages, Quality

specification strategies for embedded systems and SHEL (Software and HardwarE and Live

ware)) lack a systematic way to manage QRs. They are either restricted to software package

selection domains or do not indicate how QRs of the involved stakeholders are captured, not

does it define QRs in the scope of a systemic requirements engineering process.

Some of the potential drawbacks of QRs management methods will be addressed by the

research solution (Figure 1.40). The QRs management methods are: “Soft goal notation”,

ATAM, IESE NFR method, MOQARE and “Requirements model for quality attributes”. For

instance, the drawbacks of MOQARE and Soft goal notation methods (no integration of

NFRs with FRs and NFRs not elicited from business goals) will be addressed in the research

solution by defining concepts dealing with business goals and integration of NFRs with FRs.

85

Figure 1.39 Drawbacks of the QRs management methods and the research solution

These QRs management methods are compared using criteria related to the management of

QRs which are: identification, decomposition, conflict analysis, representation,

documentation, derivation from business goals of quality attributes, consensus on quality

definitions, quality standard and integration with FRs. These criteria have been chosen

according to the identified drawbacks of the software QRs management methods.

Table 1.11 summarizes an assessment of the software QRs management methods according

to established criteria. Table 1.12 establishes comparisons of the used artifacts of methods

according to quoted criteria.

In summary, the described software QRs management methods presented some advantages

and strengths which can be summarized in Tables 1.11 and 1.12:

• Decomposition and representation of quality requirements (as soft goal notation and

IESE NFR methods);

• Conflict analysis among quality requirements (as IESE NFR and soft goal notation

methods);

CONCEPTS OF THE RESEARCH SOLUTION

Soft goal
notation

MOQARE

IESE
NFR

ATAM

Quality attributes
model

NFR not
elicited from
business
goals

Not direct
integration
of NFRs
and FRS

Tailoring stage
not supported
by context rich
scenarios

Lack of
systematic

way to write
scenarios

Quality goals
not derived
from business
goals

1

2 3 4 5

D
raw

b
ack

s
ad

d
ressed

by

86

• Integration of quality requirements with functional requirements and architectural

options (as IESE NFR and QAs model).

But in the most methods:

• The identification of QAs is partially covered and there is a lack of a structured way to

show clearly how QAs are extracted from the original requirements (system/user

requirements and business specifications);

• The conflict resolution among QAs is not addressed (except for ATAM, IESE NFR and

soft goal notation methods);

• The derivation of QAs from the business specifications is not covered (except for

ATAM and MOQARE methods);

• There is a lack of documentation of QAs and consensus on quality definitions;

• There is an absence of software quality engineering standards (except for IESE NFR

method);

• The integration of QAs with FRs is not addressed (except for IESE NFR and QAs

model).

87

Table 1.11 Summary of chosen methods
and their criteria assessment

Quality

requirements

methods

Characteristics and criteria

Id
en

ti
fi

ca
ti

on
 o

f
q

u
al

it
y

 a
tt

ri
b

u
te

s

D
ec

om
p

os
it

io
n

C
on

fl
ic

t
an

al
ys

is

R
ep

re
se

n
ta

ti
on

D
oc

u
m

en
ta

ti
on

C
on

se
n

su
s

on

q
u

al
it

y
d

ef
in

it
io

n
s

Q
u

al
it

y
st

an
da

rd

D
er

iv
at

io
n

 f
ro

m

b
u

si
n

es
s

go
al

s

In
te

gr
at

io
n

 w
it

h

F
R

s

MOQARE Partially Partially No Yes No No No Partially No

IESE NFR Partially Yes Yes Yes No No Yes No Yes

ATAM Partially Partially Yes Yes No No No Partially No

SOFT GOAL

NOTATION
Partially Yes Yes yes No No No No No

Quality

Attributes

Model

Partially Partially No No No No No No Yes

Yes: concept is well defined.

No: concept is not defined.

Partially: concept is mentioned but not defined.

88

Table 1.12 Comparisons of chosen methods

89

1.5 Chapter summary

In this presented literature review, we investigated the main aspects of software QRs like

existing QRs definitions and terminology used to specify them, important software quality

engineering standards and QRs management methods developed during the last 2 decades.

In the section related to the QRs definitions, Azuma defines relationships between needs and

requirements as “stakeholder’s needs (stated and implied) are collected and identified, then

selected and specified to be transformed in QRs”. Further, requirements elicited from

stakeholders’ needs are defined in 3 views of software QRs: quality in use requirements,

external and internal quality requirements. In addition, SWEBOK defines NFRs as

constraints or quality requirements. On the other hand, several authors including Suryn,

Pfleeger, Lauesen and Hans Van Vliet highlight the importance of dealing with QRs at early

stages and the difficulty to specify and verify them (Table 1.2). They also put emphasis on

their modeling and representation. So, new methods and standards have emerged for this

purpose.

The software QRs management methods section can be classified into three main categories:

1. The business oriented quality methods are based on the elicitation of business goals and

business characteristics in order to define QAs of the software product. Example of

such methods: ATAM, MOQARE and Space Ufo. ATAM and Space Ufo need to be

supported by more structured QRs management techniques;

2. The aspect oriented methods (Quality model for QAs and FDAF) promote use of

aspects to specify QAs that often scatter functional requirements. These methods are

faced with the problem of applying aspects at the requirement level due to the strong

interdependencies among NFRs;

3. The goal oriented methods (ISESE NFR, NFR framework and Prometheus) use the

goal as the main guiding concept in QRs specification, refinement and conflicts

resolution.

90

For the described software quality engineering standards section, four software quality

engineering standards have been presented: the McCall quality model, the Boehm model,

Dromey’s quality model and ISO/IEC 9126: Software Product Evaluation: Quality

Characteristics and Guidelines for their Use-standard (ISO/IEC 9126, 2004). ISO/IEC 9126

was part of the first generation of software quality engineering standards. It was improved by

ISO/IEC SC7 WG6 experts to build the new standard for quality requirements specifications

ISO/IEC SQuaRE 25000. ISO/IEC SQuaRE 25030 is the standard enabling software product

quality requirements to be specified, tracked, validated and evaluated from different

perspectives (acquirer, developer and evaluator) (section 1.2).

Chapter 3 will introduce the methodological aspects of the research that lead to the research

goal and objectives and the main research steps used to design the proposed method

SOQUAREM.

 CHAPTER 2

RESEARCH OBJECTIVES AND METHODOLOGY

This chapter describes methodological aspects of the research project. Section 1 presents

research issues and fundamental questions related to the research project. Section 2 describes

the main goal and research objectives. Section 3 describes in detail the required steps to

accomplish these research objectives. Last section concludes the chapter.

2.1 Introduction

Research issues identified from analysis of literature review refer to limitations of

engineering approaches in addressing quality requirements. The majority of the described

methods in chapter 1 such as MOQARE, IESE NFR, Soft goal notation, ATAM and “Quality

attributes model” deal partially or not at all with criteria related to: identification,

decomposition, representation, conflict analysis and documentation of QAs (Tables 1.11 and

1.12 in section 1.4) .

This research project addresses the limitations related to the identification, conflict analysis,

representation, documentation, derivation from business goals of quality attributes, quality

standard and integration with FRs and proposes the design of a quality requirements

engineering method and its model.

The method should support convenient refinement techniques and linkage mechanisms by

which QAs are obtained from the stakeholder’s business goals. The linkage mechanism is

supported by the quality standard ISI/IEC 25030 to infer the right QAs. Secondly, the method

should provide efficient ways to support representation, documentation and integration of

QAs with the FRs model.

The method will apply a dedicated process of managing quality attributes (Figure 2.1). The

process will help the person responsible for defining new software product quality attributes

92

to identify and refine business goals, link them to QAs, represent them in a personalized

quality model, specify them in a template and finally integrate them into the FRs model.

Figure 2.1 Process of managing quality attributes

The fundamental questions related to the research project are organized around five basic

elements:

• Derive the stakeholder’s business goals into refined business goals (question 1) ;

• Link the refined business goals into the corresponding quality attributes according to

ISO/IEC SQuaRE 25030 quality standard (question 2);

• Integrate quality requirements into the personalized quality model and retrace them to

their original requirements (question 3);

• Specify and document quality requirements (question 4);

• Integrate the QAs with the FRs model (question 5).

93

2.2 Research Goal and Objectives

The main goal of this research is:

“To support the software product definition phase with a systematic management method of
quality requirements.”

To pursue to this goal, the research objectives are:

a. Develop a structured quality requirements engineering method: SOftware Product

QUAlity Requirements Engineering Method (SOQUAREM) supported by the quality

standard ISO/IEC SQuaRE 25030.

Sub objectives are:

• Development of an identification technique of quality requirements;

• Development of a representation model of quality requirements;

• Development of a documentation formalism of quality requirements;

• Development of an integration technique of quality requirements with the FRs model;

b. Develop the process model representing concepts and phases of SOQUAREM method.

2.3 Research Methodology

The research methodology designed to attain the research objectives includes the following

research steps (Figures. 2.2 and 2.3):

a) Exploration phase: this step studies the main concepts and definitions related to the

software QRs management domain. It includes a literature review of:

• Software QRs definitions and concepts (details in chapter 1);

• Software quality engineering standards ISO/IEC 9126 and ISO/IEC 25030 (details in

chapter 1);

• Quality requirements management methods (details in chapter 1);

94

The literature review revealed the following:

Software quality requirements:

• Easy to specify but difficult to identify, test and control;

• Difficult to define in the same terminology when stated by different stakeholders;

• Often conflicting among each other which is difficult to resolve;

• Often scattered and tangled with functional requirements.

The Quality standard ISO/IEC SQuaRE 25030 will be used in the research project to support

the proposed software QRs management process.

The QRs management methods deal partially or not at all with identification, documentation,

conflict analysis and integration with the FRs process.

b) Analysis phase: consists of analyzing the existing software QRs management methods

(chosen from literature review) in their cases studies to know to what extent they address

management of software QRs. Further, a questionnaire is developed and distributed in the

industrial circle and the collected data is analyzed to determine the current state of the

software QRs engineering practices in industry. Finally, the obtained data from industry

and academia are analyzed to define the future requirements of the research solution. The

analysis phase is divided in three sub phases (details in chapter 3):

i. Analysis of existing QRs management methods: the goal of this phase is to

determine the strengths and weaknesses related to applicability of the recognized methods

addressing quality requirements in the scientific environment and industry (Methods are:

MOQARE, IESE NFR, Soft Goal Notation, ATAM and FDAF).

The research focuses on analyzing the existing and known implementations of each

method by considering applicability of the method (the case study) and elements used in

the engineering process of the method as: a) identification of quality requirements-related

activities; b) identification of used techniques/tools (questionnaires, checklists, templates

95

and patterns) ; c) identification of implied actors; d) identification of the used quality

model and standards and e) identification of results and artifacts produced by this method.

The approach adopted during this analysis describes the applicability of methods by

analyzing their case studies in the applicative domains and identifying their strong and

weak points. The results envisaged are indicators describing the strengths and weaknesses

of the applied methods in industrial and scientific communities (details in chapter 3.1).

ii. Quality requirements data collection practices in industry: the goal of this phase

is to determine the current state of the quality requirements engineering practices in

industry. A questionnaire is distributed in industry and its sections are defined as follows:

• Information on the respondent;

• Companies and stakeholders;

• Processes;

• Methods;

• Software quality engineering standards used in the applicative domain.

Results envisaged are indications about the development of the software QRs engineering

practices that could be proposed to industry (details in chapter 3.2).

iii. Analysis of resulted indicators from industry and academia environments: the

goal of this phase is to analyze industrial and academic indicators obtained in the two

preceding sub phases and to identify critical needs seen by industry in the field of software

QRs management. Important conclusions and justifications of the proposed solution will

be formulated. Analysis is carried out in the following categories (details in chapter 3.3):

• Identification of software QRs;

• Representation of software QRs;

• Documentation of software QRs;

• Integration of software QRs with the FRs model;

• Quality standard used.

96

c) Design of the engineering method (SOQUAREM) and the associated process model:

it includes the creation of a quality engineering method and the associated model

addressing the identified needs of the industrial software development environment. The

design phase is divided into two subsequent phases:

i. Development of the main concepts of SOQUAREM: details the different concepts

involved in the software QRs engineering process (BMM and BCT, scenarios template,

utility tree and QAs template) (details in chapter 4.1).

ii. Development of the process model and the SOQUAREM method: describes the

main phases of the SOQUAREM process (details in chapter 4.2). Each phase is described

with three parts: input and output artifacts and used techniques and standards. The phases

are:

1. State the business goals;

2. Refine the business goals;

3. Link the refined business goals to quality attributes;

4. Build quality attributes scenarios;

5. Consolidate quality attributes;

6. Link quality attributes to the functional process.

d) Application of the method: This step applies the method in an illustrative example and

evaluates to what extent this method addresses software QRs management techniques

(identification, representation, conflicts resolution and documentation…). The application

phase is divided into two subsequent phases:

i. Development of the exploratory case of SOQUAREM: build an illustrative

example for building an automation system to clarify the core ideas of SOQUAREM

method and its practical relevance to the software product definition phase (details in

chapter 5). Each phase of the SOQUAREM process is applied in the example.

97

ii. Analysis and evaluation of the method: the goal of this sub phase is to identify

constraints and corrective measures in order to improve the method and define the

research avenues (details in chapter 5). Analysis and evaluation are carried out in industry

and academia (Workshop session) and on the ISO/IEC SC7 System and Software

Engineering committee level. The adopted method to realize this evaluation is explained

in the following points:

1. Evaluation of the developed method

• By international experts in the software quality field;

• During organized workshop session.

2. Presentation of the method (once published) on the committee level of ISO/IEC

SC7 - System and Software Engineering

• Direct co-operation with experts of the working group SC7 WG6 - software

quality measurement and evaluation-.

98

Figure 2.2 Research Methodology

RESEARCH METHODOLOGY STEPS

EXPLORATION
 Literature review

Quality engineering standards
QRs management methods

APPLICATION OF THE METHOD

Analysis and evaluation of the case Development of the illustrative case
for building automation system

ANALYSIS

Data collection related to QRs
engineering in industry

Analysis of existing QRs
management methods

Analysis of resulted indicators from
industry and academia environments

Indicators about applicability of QRs
management methods in industrial
and academia environments

Indicators about QRs
engineering practices in
industry

DESIGN OF THE ENGINEERING METHOD (SOQUAREM) AND
THE ASSOCIATED MODEL

Development of the process model
and the method SOQUAREM

Development of the main
concepts of SOQUAREM

Questionnaire, Scenarios
Consensus sessions, Template
Personalized quality model

SOQUAREM phases:
State business goals
Refine business goals
Link business goals to QAs......

99

Figure 2.3 Research Methodology

100

2.4 Chapter summary

This chapter presented research methodology which addresses the research project of

systematically identifying, specifying and representing quality requirements in processes and

models for the software product definition phase. Fundamental questions related to the

research project have been presented followed by the research objectives. Research steps to

attain the stated objectives have been described in a dedicated-four-phase analysis

methodology and are: exploration, analysis, design of the software quality engineering

method (SOQUAREM) and the associated process model and finally application phase for

the method. The exploratory phase is related to the literature review studying concepts

dealing with the quality requirements such as standards and methods. This phase provides the

current state of the art quality requirements subject. The analysis phase provides, in one part,

indicators about the strengths and weaknesses of methods applied in the industrial and

scientific communities, and on the other part, indicators about development of the quality

requirements practices that could be proposed in industry. Analysis results are used to justify

the future proposed quality engineering method and define the requirements for its design.

The two last phases are related to the design and application of the software quality

engineering method (SOQUAREM). The design phase describes concepts of the method and

its process model. The application phase develops an illustrative example describing the

application of the designed method and evaluates it in industrial and academic environments.

The next chapter studies in detail the analysis phase of the research methodology.

CHAPTER 3

 RESEARCH EXECUTION

Chapter 3 describes the details of the research execution (Figure 3.1). Its main purpose is to

justify the design of the QRs engineering method and define the requirements for this design.

Section 1 discusses and analyzes applicability of existing QRs management methods in their

respective case studies by establishing their strengths and weaknesses (Table 3.2). Methods

are also assessed according to established QRs management criteria and compared to their

used artifacts in case studies. Section 2 presents an overview of the the current situation of

quality requirements environment in the industrial circle where a questionnaire is used and

the collected data is analyzed. The analysis of resulted indicators from applicability of QRs

management methods in industrial and academic environements and from QRs engineering

practices in industry is also presented in this section. The critical needs are identified from

the domain representatives in industry and relevant conclusions and observations are stated.

From these conclusions, future requirements of the proposed research solution are formulated

in the third section. An overview of the proposed method, justifications and added values are

pinpointed. Section 4 concludes the chapter.

Figure 3.1 Research execution

ANALYSIS

Data collection related to
QRs in industry

Analysis of existing QRs
management methods

Analysis of resulted indicators from
industry and academia

environments

Indicators about applicability of
QRs management methods in the
industry and academia

Indicators about QRs
engineering practices in
industry

Future requirements of the proposed
research solution

1 2

3 4

102

3.1 How to apply methods for quality requirements management

To study and discuss the applicability of existing QRs management methods, the following

case studies from the literature review were chosen based on their availability. They are:

1. FDAF (Formal Design and Analysis Framework): use the aspect concept and formal

methods to design and analyse NFRs (Dai et al., 2005 and 2006) and (Cooper et al.,

2004).

2. MOQARE (Misuse Oriented QuAlity Requirements Engineering): use business goals

and misuse concept to describe quality attributes (Hermann et al., 2007a and 2007b);

3. ATAM (Architecture Tradeoffs Analysis Method): use business goals and scenarios

to describe quality attributes (Kazman et al., 2000); (Jones, 2001); (Gallagher, 2000);

(Bass et al., 2003); (Boucké et al., 2006) and (Venckeleer, 2006).

4. IESE NFR/ASPIRE2 (Analysis of Software Product In Requirement Engineering)

(Doerr et al., 2005);

5. Soft goal notation (or NFR Chung framework): use goals as a driving force to elicit

and refine NFRS and to guide the design process (Chung et al., 1994 and 1995).

Table 3.1 describes the chosen QRs management methods with their main concepts and

designed levels

2 IESE NFR is the same method as ASPIRE

103

Table 3.1 QRs management methods with their
 concepts and designed levels

 Concepts

QRs management methods

Paradigms and concepts

A
sp

ec
t O

ri
en

te
d

P
ar

ad
ig

m
 (

A
O

P
)

B
us

in
es

s
O

ri
en

te
d

P
ar

ad
ig

m
 (

B
O

P
)

G
oa

l O
ri

en
te

d
P

ar
ad

ig
m

 (
G

O
P

)

M
is

U
se

 C
as

e
C

on
ce

pt

S
ce

na
ri

os
 c

on
ce

pt

F
or

m
al

 c
on

ce
pt

MOQARE Requirement * *

Architectural

IESE NFR Requirement *

Architectural *

ATAM Requirement

Architectural * *

SOFT 3GOAL
NOTATION

Requirement *

Architectural *

FDAF Requirement

Architectural * *

3.1.1 Analysis and discussion of applicability of QRs management methods

The present section analyzes and discusses the applicability of QRs management methods

according to their case studies.

The FDAF aspect oriented approach has been applied in three case studies: building security

for online banking, achieving a performance response time for the ATM banking system and

3 Soft Goal Notation is also called the NFR Chung framework

104

analyzing the resource utilization performance aspect for the domain name server system

(DNS).

1. The first case study illustrated building a Role Based Access Control (RBAC) (Dai et al.,

2006), a design of an aspect of architecture for an online banking system using the FDAF

framework. RBAC aspect is adapted from well established RBAC security patterns. The

FDAF framework has been used to define the role based access control (RBAC) aspect on

the basis of the security pattern and model in a UML architecture design. The RBAC

model has been translated into an Alloy specification and analyzed. The analysis results

help architects to detect inconsistencies in the multiple systems’ RBAC policies early in

the design. A parallelogram notation is used to present aspect information and is

incorporated into the standard UML to indicate where in the static or dynamic model, all

or in part of the aspect needs to be included. The advantage of translation approaches is

that verification and validation techniques and tools can be applied to the source semi-

formal notation as UML. This case study has shown that the definition of the RBAC

security aspect is adequate and security aspects could be reusable with certain assumptions

and customizations. The definition of the RBAC aspect is refined with a new attribute

called “assumption” which describes possible assumptions about the system making this

aspect easily applicable. Therefore, building the RBAC security aspect into the software

architecture helps to meet the enterprise level security requirements.

2. In the second case study (Dai et al., 2005), the response time performance aspect has been

modeled in the UML architecture design by using the stereotype PAstep. Rapide's analysis

tool supports architects with detailed analysis of the system’s behaviour simulation.

Results of the response time analysis are available in the early design. However, Rapide’s

analysis tool is limited by its capacity to provide analysis results (in the graphical browser)

when the number of simulated events increases.

3. In the third case study (Cooper et al., 2004), the problem of overloaded component has

been resolved by defining the “Resource utilization” aspect with a set of UML

105

stereotypes. Armani’s analysis tool in FDAF was used to provide architects with detailed

analysis information about which component is the bottleneck (overloaded and busy all

the time). However, there are some limitations of Armani’s analysis tool in this area: the

mathematical assumptions restrict the systems they model. For example assumptions that

all components are being executed sequentially are not applicable to systems where

components are executed concurrently. Another concern of the Armani tool is that it does

not calculate automatically the property “sOverloaded” and must be changed manually by

architects.

In conclusion, the FDAF framework is an interesting approach to create architecture designs

with NFRs aspects that cannot be described in the real time version of UML. The major

contribution of FDAF is that it integrates the semi-formal UML with the formal methods into

an aspect oriented framework. The aspect model is based on one specific aspect which makes

it simpler than a traditional mixed model. Application of this method in the case studies

showed that NFRs are a powerful tool to evaluate architecture designs and to predict early

design errors and be able to improve them before delving into the implementation features

(Djouab and Suryn, 2007b). However, it deals with one specific aspect composed of multiple

sub aspects such as performance, response time and resource utilization and there is no

mention in FDAF of how to deal with interdependencies between NFRs (aspects).

IESE NFR method has been applied in three industrial domains: wireless plant control

system, multi-functional printer systems and geographical information system (Doerr et al.,

2005).

1. In the wireless plant control case study, the prioritization of the quality attributes (QAs)

(efficiency, reliability and maintainability) and tailoring of their associated quality models

(QMs) are done in the first workshop in order to be available for the elicitation process.

Efficiency requirements are elicited in the first workshop and reliability with

maintainability requirements are elicited in the second workshop. The elicitation process

was supported by the quality models, checklists and dependency analysis activity for

106

identifying and resolving conflicting requirements in the early phase. One observes that

many NFRs missing before are now elicited. However, much time was spent during the

tailoring process to resolve terminologies problems and improve the quality models.

2. For the second case study, two workshops were held: one for customizing the quality

model (QM) and the other for the NFRs elicitation. Refinement of the QA selected in the

multi-functional printer systems (efficiency) differed from the wireless system in the sense

that a new need emerged: requirements management support for clarifying the NFRs.

Especially for the embedded system (high integration of software and hardware),

requirements management support is of great importance in order to palliate the difficulty

defining all the requirements. Furthermore, the specified NFRs must be detailed in the

subsequent development phases. Another aspect discovered in this case study is the

interdependency of the functional requirements with non functional requirements which

results in additional effort through iterations.

3. In the geographical system, a particular QA was selected (security) with the associated

quality model based on ISO/IEC 9126 and the security domain experts. The experience

acquired in this case study, in particular during the elicitation process, was attaching

metrics to this QA, the importance of integrating functional requirements and

architectural options and a need for significant rework on the architectural level in order to

integrate NFRs.

In summary, IESE NFR is project and domain dependent. QAs are influenced by the project–

specific variations and elicited according to priority of the industrial application, type of

project and quality viewpoints of the different workshop participants. In addition, IESE NFR

is costly in time because the requirement management support is performed in iterations and

the size of checklists will be large with the growth of conditions and alternative sections

(Djouab and Suryn, 2007b). In fact, the experience based artifacts (models, checklists and

templates) have to be maintained to be used efficiently. Furthermore, the application of IESE

NFR depends on functional requirements and architectural options. Experience showed that

107

NFRs, functional requirements (FRs) and architectural options (AOs) must be intertwined

because refining NFRs is not possible without detailing functionality or architecture. Major

rework has to be done to integrate NFRs in architecture (case study 2).

The NFR Chung framework case study (Chung et al., 1994) is a good example to represent

the relevant concepts and methods for dealing with NFRs during the software development

process. The NFR-Assistant tool defined two NFRs catalogues “Security” and

“Performance” with their associated techniques. However, there is a need for definition and

use of more specialized methods requiring additional domain expertise. There is also a need

for use of the framework by a variety of users dealing with a variety of non-functional

requirements (not limited to accuracy, security and performance), a variety of domains and a

variety of system characteristics. This case study showed that capturing domain expertise

early in the process and participation of stakeholders in resolving quality terminology issues

are important steps in the framework. In addition, it has been mentioned that training a

variety of users (developers and administrators) in the use of the framework by a (cost-)

effective means is required. The NFR assistant tool should be extended by a larger set of

goals and methods to see if it could be accommodated and graphically represented.

For the MOQARE method (Hermann et al., 2007a and 2007b), the requirements elicitation

was guided by the four steps of the process, the misuse tree and checklists. The misuse tree

gives an overview of the requirements and is used to structure interviews and support the

iterative requirements elicitation process. In fact, for each iteration, a branch is created to

support interviews bringing new results. However, MOQARE requires a method specialist to

represent the stakeholders’ requirements into a misuse tree. The produced misuse tree in this

case study contained two iterations. On the first level, there were two quality goals, 10 threats

and 35 countermeasures (13 were quality goals and three of these countermeasures were

analyzed further, leading to 10 more threats and 15 countermeasures). The 15 quality goals

belonged to all six categories of ISO 9126. In addition, one observes on the first level of the

analysis that only mere data was important in the case study, but later on the MOQARE

108

analysis showed that the whole process of data input, processing and output had to be

controlled.

In summary, MOQARE is an emerging method supporting systematic identification of QRs

from business quality goals. However, the method seems to be more complex and difficult to

be understood by non technical stakeholders. In addition, it has been mentioned that main

quality issues captured by MOQARE are not measurable at an early stage and conflicts

between quality attributes are not documented. MOQARE needs to be validated in a real

context with a large spectrum of users.

During the application of ATAM to a large government-sponsored simulation system (the

Wargame 2000 system a highly complex real-time simulation system), the results of this

evaluation reported some benefits (Jones, 2001) like: “The stated goals of the ATAM

evaluation were met” and “The evaluation allowed a focus on the entire system rather than

narrow or short-term concerns”. The case study shows that ATAM is appropriate for use

when a system is in development and improves understanding of architectural issues for the

future versions of the system and stakeholder communications.

The work of Gallagher describes the application of ATAM in the evaluation of government-

sponsored reference architecture for a ground based command and control system (Gallagher,

2000). The author mentions that ATAM increases the system developer’s probability that a

system built conforming to the architecture will meet the needs of its customer base. In

addition, benefits of performing ATAM are summarized in these points (Gallagher, 2000):

“early identification of risks, sensitivity points, and tradeoffs before design decisions are

made and become costly to change”. Gallagher suggested using a program to do the ATAM-

based evaluation. The evaluation pointed out that more work is needed to ensure correctness

of the interfaces and integration of the components. It also revealed potential deficiencies that

may have taken months, perhaps years, to uncover at a greatly increased cost to the acquirer.

109

Authors of the book “Software Architecture in Practice” (Bass et al., 2003) present software

architecture in a real-world setting, reflecting both the opportunities and constraints that

companies encounter. In addition, case studies describing architectures illustrate key points

of both technical and organizational discussions.

On the other hand, application of ATAM to a multiagent system (MAS) architecture for an

AGV transportation system was a valuable experience (Boucké et al., 2006). It revealed the

importance of business drivers for architectural design. Especially, it improved understanding

of the quality attributes and the other stakeholders improved their understanding of the

fundamental architecture of the system and the important design decisions. But some critical

notes have been identified by the author (Boucké et al., 2006) such as: “coming up with a

utility tree proved to be difficult, time consuming, and at times tedious. A lack of experience

and clear guidelines of how to build up such a tree hindered and slowed down the

discussion.”

In (Venckeleer, 2006) great emphasis was put on architecture explication and the

specification of architectural quality goals (architectural styles which should meet quality

attributes). Functionality was largely ignored and business drivers were the starting point of

the elicitation process. There was also a strong focus on implication of stakeholders during

all steps of ATAM process. However, stakeholder involvement in “Phase 2” may not be

realistic because it was difficult to have a common pool of questions from stakeholders for

analyzing each quality attribute over architecture. Another aspect discovered during the

application of ATAM is related to naming scenarios and quality attributes. In fact, results of

the analysis are dependent on the selection of the scenarios and their relevance for evaluating

the architecture. Future work is needed to evaluate the effects of its various usages and to

create a repeatable method based on repositories of scenarios and elicitation questions.

Table 3.2 summarizes strengths/weaknesses identified during case studies application of each

method. It is important to mention here that ATAM is the only method which has proven its

usage in industry by its working group (Jones, 2001); (Gallagher, 2000); (Bass et al., 2003);

(Boucké et al., 2006) and (Venckeleer, 2006). For the other methods (MOQARE, FDAF,

110

IESE NFR and Soft Goal Notation), there is no information about their usage in industry.

Only case studies have been provided.

Table 3.2 Strengths and weaknesses of QRs management methods

QRs management
methods

Strengths Weaknesses

FDAF framework

(Dai et al., 2005

and 2006) and

(Cooper et al.,

2004)

1. The RBAC aspect provides architects

with the concrete information about

addition of a security aspect in their

application.

2. Rapide's analysis tool supports

architects with detailed analysis of the

system’s behavior simulation at the

architectural level;

3. The FDAF resource utilization aspect

analysis provides architects with

detailed analysis information about

which component is the bottleneck

(overloaded and busy all the time)

and refine the UML architecture to

meet the NFRs.

1. Limitations of the Alloy’s analysis tool in this

area: it doesn’t provide modeling constructs to

support the description of component’s

behaviour and connections;

2. Limitations of the Rapide’s analysis tool and

difficulty to obtain useful information from the

raw data (response time analysis results

presented in the graphical browser) as the

number of simulated events increases;

3. Limitations of the Armani’s analysis tool in

this area: the mathematical assumptions restrict

the systems they are modeled;

4. The Armani tool does not calculate

automatically the property “sOverloaded”

instead it allows changes to it.

IESE

NFR/ASPIRE
(Doerr et al., 2005)

1. Identifies early conflicting

requirements with the use of the

analysis dependency;

2. Enhances communication between

stakeholders (requirements engineer,

developer and customer);

3. Elicits important missed NFRs.

1. The dependency graph is used to represent

dependencies between quality attributes.

Graph is not used to capture NFRs (they are

placed in the requirements documents

template);

2. The requirement management support is

performed in iterations which will be costly at

long term;

3. Major rework in architecture to integrate

NFRs;

4. Much rework is required during integration of

the functional and NFRs through iterations.

111

Table 3.2 Strengths and weaknesses of QRs management methods (follow)

QRs management
methods

Strengths Weaknesses

Soft Goal Notation:

Credit card system

(Chung et al., 1994)

1. The framework studies covered a

variety of NFRs, a number of

application areas and systems

with a variety of characteristics;

2. Allows to represent the relevant

concepts and methods for dealing

with NFRs during the software

development process;

3. Links the design decisions back to

the source NFRs.

1. There is a need for definition and use of more

specialised methods requiring additional

expertise;

2. Further work is needed towards a more rigorous

evaluation of the Framework. This would involve

real studies across a spectrum of developers and

on a variety of different types of systems;

3. There is a need for larger bodies of goals,

methods and tradeoffs to see if they can be

accommodated and graphically represented;

4. There is not a closely real work with

development teams from the organisations.

MOQARE:

Uveitis Database

(Hermann et al.,

2007a and 2007b)

1. The tree structure helps to

structure the elicitation process

and interviews;

2. The checklists were helpful in

avoiding concentration on only a

few QAs, types of threats or

misusers;

3. The method guides stakeholders

by a process and support the reuse

of knowledge by checklists and

templates.

1. A domain-specific wording is preferred instead

of general items in the checklist (for example

user should be replaced by a specific role

“nurse”);

2. The process became difficult to apply when

iterations augment and hence the misuse tree

became more complex : not all quality goals

could be analyzed;

3. How about countermeasures which are not

selected, are they analyzed further? Or omitted?

4. As How to integrate the results of MOQARE

into the FRs specification document;

ATAM:Purchase2
Pay.com and MAS
architecture for an
AGV
transportation
system
(Jones, 2001);
(Gallagher, 2000);
(Bass et al., 2003);
(Boucké et al.,
2006) and
(Venckeleer, 2006)

1. Forces an articulation of specific

quality goals;

2. Strong focus on & direct

involvement of stakeholders;

3. Forces concrete consideration of

business drivers;

4. Improves importance of software

architecture in software

engineering.

1. Quality attribute workshop is difficult and time

consuming;

2. No connection to the business goals;

3. Applying ATAM requires more

planning/understanding;

4. No common pool of questions for analysing

each quality attribute over architecture;

5. There is a need to investigate how domain

knowledge and degree of expertise affect the

coverage of selected scenarios.

112

Table 3.3 describes the assessment of QRs management methods according to characteristics

and criteria established in chapter 1 (section 1.4.13) which are: identification, decomposition,

definition, representation, conflict analysis, documentation, quality standard used, and

integration with FRs. QRs management methods are evaluated by their extent to address each

criterion. As illustrated by the table, one can argue that most of the concepts (identification,

decomposition, conflict resolution, documentation, derivation from business goals and

integration with functional requirements) are not applied by these methods (Tables 3.3 and

3.4). The “Representation” and “Definition” concepts are easily addressed in these methods

but “Documentation” and “Consensus on quality definitions” are absent. The

“identification”, “Conflict resolution”, “Derivation from business goals” and “Integration

with FRs” concepts are neither applied nor mentioned in the case studies neither are they

described. For the used ISO/IEC quality standard, only IESE NFR method indicates in the

case study the use of ISO/IEC 9126. Table 3.4 establishes comparisons of method artifacts

used during these case studies. In fact, used artifacts are defined in the case studies but they

need to be further described to be understandable. There is also a need for more easily

applied techniques to be acceptable to users.

Table 3.3 Assessment of QRs management method’s applicability

QRs
manageme
nt methods

Characteristics and criteria

Id
en

ti
fi

ca
ti

on
 o

f
qu

al
it

y
 a

ttr
ib

ut
es

D
ec

om
po

si
ti

on

D
ef

in
it

io
n

C
on

fl
ic

t a
na

ly
si

s

R
ep

re
se

nt
at

io
n

D
oc

um
en

ta
ti

on

C
on

se
ns

us
 o

n
qu

al
it

y
de

fi
ni

ti
on

s

Q
ua

li
ty

 s
ta

nd
ar

d

D
er

iv
at

io
n

fr
om

bu

si
ne

ss
 g

oa
ls

In
te

gr
at

io
n

w
ith

 F
R

s

MOQARE Partially Partially Yes No Yes No No No Partially No

IESE NFR Partially Partially Yes Partially Yes No No Yes No Partially

ATAM No No Yes Yes Yes No No No Partially No

SOFT
GOAL
NOTATI
ON

No Partially

Yes

Partially yes No No No No No

FDAF No No Yes No yes No No No No No

113

Yes: The concept is well applied.

No: concept is not applied.

Partially: concept is mentioned in the case study but not described.

Table 3.4 Comparisons of applied QRs management methods through their artifacts

3.1.2 Conclusion

This section presented and discussed the applicability of five QRs management methods (in

case studies) classified according to three major concepts (business goals, aspect and goals

oriented). Analysis and discussion of their applicability (by case study) have been described

and their strengths and weaknesses have been identified.

The following sections describe QRs situation in industry and analyze the resulting indicators

from industrial and academic environments.

114

3.2 Quality requirements management in an industrial environment

This section presents an overview of the current situation of QRs engineering practices in an

industrial environment. A questionnaire was developed and distributed in industry to obtain

indicators about the QRs practices in industry (Annex I). The first part of this section

describes data collected from the questionnaire, the second part analyses the collected data

and provides the results illustrating the real situation of QRs engineering practices in

companies and their critical needs.

3.2.1 Data collection of quality requirements

The questionnaire is structured as follows: section 1 presents the purpose of the questionnaire

and questions on the personal profile of each of the domain representative who complete the

questionnaire. The next section describes instructions related to how answers should be

formulated. Finally, the main items related to stakeholders, processes, methods, standards

and the company are described. A pivot table tool (Excel 2003) is used for sorting and

summarizing the collected data. A detailed description of the questionnaire is presented in

Annex I.

For each section of the questionnaire, items are filled out according to the following closed-

type questions: “Yes”, “No”, “Partially” or “Do not know”. The objective is to have

indications about management of software QRs in the industrial environment. Some

questions may require additional justification.

3.2.2 Performing the data collection process

The questionnaire was filled out by eight domain representatives from industry along with

their comments. These domain representatives are practitioners in industry with different

profiles and more than 3 years experience in the software quality field (Table 3.5). Two of

the domain representatives have solid backgrounds in software quality engineering (11 and

20 years). Their major responsibilities are focused in process engineering and software

planning.

115

 Table 3.5 Responsibility and duration of working of domain representatives

Figure 3.2 Profile of domain representatives

116

3.2.3 Analyzing the collected data

The present section deals with the analysis of the results collected from the survey. The

following sections have been analyzed:

1. Companies and stakeholders interested by the processing of QRs of the software

product;

2. Processes with QRs of the software product;

3. Methods of QRs processing of the software product;

4. Software quality engineering standards of the software product used in industry.

a) Companies and stakeholders

In this section, companies interested by the processing of quality requirements are of

medium size (51-3000 people) (Table 3.6).

Table 3.6 Size of companies

Count of Size of company
Size of
company

Position >5000 people
10 - 50
people

301 - 1000
people

51 - 300
people Grand Total

Architect 1 1

Evaluator 1 1

Quality assurance manager 2 2

Quality engineer 1 1

Research And Development 5 5

Grand Total 1 1 1 7 10

117

Figure 3.3 Size of companies interested in QRs processing

Their largest activity domains are: banking, electronics and logistics. But the

respondents have mentioned that education, information and communication technology,

government, health and banking are also important activity fields (Table 3.7).

Table 3.7 Activity domains

Count of Importance of activity
domains Importance of activity domains

Activity domains Largest part Most important Not relevant Grand Total

Aeronautics 1 1

Banking 1 1 2

Education 2 2

Electronics 1 1

Government 1 1

Health 2 2
Information & communication
technology 1 1

Logistics 1 1

RS&D 1 1

Grand Total 3 8 1 12

118

Figure 3.4 Activity domains of companies

The most important type of projects and software developed by the company are in

systems, business and internet (Table 3.8). The moderately important types of developed

projects are the embedded and systems ones.

Table 3.8 Developed projects

Count of Importance of
projects

Importance of
projects

Projects developed Moderatly important Most important Not relevant Grand Total

Business 2 2

Embedded 1 1

Internet based 2 2

Real time 1 1

Scientific 1 1

Systems 1 1 2

Test & Test training 1 1

Grand Total 2 5 3 10

119

Figure 3.5 Importance of developed projects

Developed projects are almost not critical for the company as shown in Table 3.9 and

Figure 3.6, except for those developed in business, internet and test training.

Table 3.9 Critical level of developed projects

Count of Business
critical level Business critical level

Projects developed Critical Not critical Grand Total

Business 1 1 2

Embedded 1 1

Internet based 1 1 2

Personal 1 1

Real time 1 1

Scientific 1 1

Systems 2 2

Test & Test training 1 1

Grand Total 3 8 11

120

Figure 3.6 Critical level of developed project

Most of the stakeholders interested by the QRs processing are: IT department or business

operations and department of management. Persons responsible for managing QRs for a

specific software development project are: project managers, quality engineer and

quality assurance manager. Most would have at least 2 years experience. Project and test

managers have more than 5 years experience in their respective fields (Table 3.10).

121

Table 3.10 Interested stakeholders by QRs

Figure 3.7 Stakeholders and their experience

122

Training in processes and methods is a priority for project managers and software and

system developers. Norms and standards are also important for quality engineers and

finally, more software tools should be available to software and system developers

(Table 3.11).

Table 3.11 Type of training

Figure 3.8 Stakeholders and their experience

123

b) Processes

Figure 3.9 indicates that most of the organizations use a QRs process where

identification and specification activities of QRs are the most important. Prioritization

and documentation are the next most important activities. Finally, representation of QRs

is reported in the third position. One notes that traceability of QRs is also an important

activity to be taken into account in the quality process.

Figure 3.9 QRs process activities

In Table 3.12, 40% of the responses indicate an absence of software tools supporting the

quality requirements process. Some respondents mentioned the use of “HP Quality

Centre”, “Rationale” and other market standard software.

124

Table 3.12 Type of Sofware tools

Count of QRs tools

QRs tools Total

 Other market standard software 10,00%

HP Quality Centre 10,00%

N/A 20,00%

Rationale Software Inc. 20,00%

We do not use a software tool 40,00%

Grand Total 100,00%

Figure 3.10 The use of software tools

Finally the critical need for a structured and well defined quality requirements process is

strongly desired (88%), as seen in Table 3.13.

125

Table 3.13 The need to improve quality

Count of Improvequality

Improvequality Total

N/A 11,11%

Yes 88,89%

Grand Total 100,00%

Figure 3.11 The need to a structured QRs process

c) Methods

According to the responses, “Interviews”, “Meetings” and internal methods of

organization are the most used techniques to identify QRs. “Brainstorming”,

“Observations” and “Checklists” are used in second place (Figure 3.12).

126

Table 3.14 Techniques to identify QRs

Count of Identification

Identification Total

Brainstorming 11,11%

Checklists 11,11%

Internal methods 16,67%

Interviews 22,22%

Meetings 16,67%

Observations 11,11%

Questionnaire 5,56%

We do not use any identification method 5,56%

Grand Total 100,00%

Figure 3.12 QRs identification most used techniques

For the decomposition method of QRs, there is an absence of a recognized technique

(57%). The only technique used is the “Quality model”, represented by 26% of the

survey (Table 3.15).

127

Table 3.15 Techniques to decompose QRs

Count of decomposition

decomposition Total

Quality model 31,25%

We do not use any decomposition method 68,75%

Grand Total 100,00%

Figure 3.13 QRs decomposition most used techniques

QRs are first documented in “Template” (42%), 37% have mentioned the use of the

requirements specification document (RSD), see Table 3.16.

128

Table 3.16 Techniques to document QRs

Count of Documentation

Documentation Total

RSD 43,75%

Template 50,00%

We do not use any documentation formalism 6,25%

Grand Total 100,00%

Figure 3.14 QRs documentation most used techniques

In organizations dealing with quality requirements, the size of software projects may

vary from mega to big to medium (Table 3.17 and Figure 3.15).

129

Table 3.17 Size of software projects

Count of Size

of SWP

Size of

SWP

Response no

Big
300-
I000

KLOC

Medium
50-300
KLOC

Mega >1
MLOC

Small <50
KLOC

Grand
Total

SW project1 1 2 1 4

SW project2 2 1 3

SW project3 2 2

Grand Total 3 2 3 1 9

Figure 3.15 Size of developed software projects

The total effort for each type of software project is thousands-hundreds for the mega

project; 40-few hundred for the big project and 8-40 participants for the medium project

(Figure 3.16).

130

Table 3.18 Total effort of software projects

Count of Total effort of SWP Total effort of SWP

Response no
Size of
SWP

2 persons for
1- 2 weeks

40- few
hundreds

8-40
participants

Hundreds-
thousands Grand Total

SW project1
Mega >1
MLOC 1 1

Small <50
KLOC 1 1

SW project1
Total 1 1 2

SW project2

Big 300-
I000
KLOC 1 1

SW project2
Total 1 1

SW project3

Medium
50-300
KLOC 1 1

SW project3
Total 1 1

Grand Total 1 1 1 1 4

Figure 3.16 Total efforts for the developed software projects

131

Also, hierarchy levels for each software project vary from 1 to 4 levels for the mega

project to 3 levels for the small and big projects and 2 levels for the medium project

(Table 3.19).

Table 3.19 Hierarchy levels of software projects

Count of
Hierarchy of
authority

Hierarchy of
authority

Size of SWP 1 level 2 levels 3 levels 4 levels
Grand
Total

Big 300-I000
KLOC 1 1
Medium 50-
300 KLOC 1 1
Mega >1
MLOC 2 1 3
Small <50
KLOC 1 1

Grand Total 2 1 2 1 6

Figure 3.17 Hierarchy levels for the developed software projects

Duration of the software projects vary from (Figure 3.18):

• 2 years, 2-3 years and >5 years for a mega project

• 2 years and 3-5 years for a big project

• 2 years and 2-3 years for a medium project

• 2 years for a small project.

132

Table 3.20 Duration of software projects

Count of Duration of
SWP2 Duration of SWP

Size of SWP <2 years
>5
years 2-3 years 3-5 years Grand Total

Big 300-I000 KLOC 2 1 3
Medium 50-300
KLOC 2 1 3

Mega >1 MLOC 2 1 1 4

Small <50 KLOC 1 1

Grand Total 7 1 2 1 11

Figure 3.18 Duration of the developed software projects

d) Standards

The survey indicates that most software quality engineering standards supporting

organizations are ISO/IEC 9126 and 14598. Two other standards which were suggested

by respondents are ISO/IEC 25051 and 15408 (Figure 3.19).

133

Table 3.21 Quality standards

Count of Quality standard

Quality standard Total

ISO/IEC 15408 1

ISO/IEC 25051 1

IEEE 830 2

ISO / IEC 14598 3

ISO / IEC 9126 3

Grand Total 10

Figure 3.19 Used standards

The project and quality assurance managers are responsible for applying these standards

in their organizations. They have 5 or more years experience in this field (Figure 3.20).

Table 3.22 Responsible of standards

Count of How long How long

Responsible > 5 years Grand Total

Project manager 1 1

Quality assurance manager 7 7

Grand Total 8 8

134

Figure 3.20 Experience related to the responsibility for standards

For organizations using ISO/IEC 9126, the used parts of this standard are quality model,

internal quality, external quality and quality in use (Figure 3.21). They are used 21 times

for 50 projects (Figure 3.22).

Table 3.23 Used parts of ISO/IEC 9126

Count of Parts of standard

Parts of standard Total

External quality 2

Internal quality 2

Quality in use 1

Quality model 3

Grand Total 8

Figure 3.21 Parts of ISO/IEC 9126

135

Table 3.24 Frequency use of times of ISO/IEC 9126

Count of Frequency of use
projects Frequency of use projects

Frequency of use times Parts of standard 50
Grand
Total

21 External quality 1 1

 Internal quality 1 1

 Quality in use 1 1

 Quality model 1 1

21 Total 4 4

Grand Total 4 4

Figure 3.22 Frequency use of times of ISO/IEC 9126 per projects

e) Conclusion

Analysis of the questionnaire provides general observations about the software QRs

subject. Resulted indicators are related to the motivation of organizations to have the

best engineering practices of QRs, the difficulty to apply some QRs management

techniques and the critical need to a structured QRs process with its supporting software

tool.

136

3.2.3 Analysis of resulted indicators from industry and academic environments

This section analyzes obtained data from industrial and academic environments. In other

words, indicators resulted from applied software QRs management methods in their case

studies (section 3.1) and from collected data from questionnaires (section 3.2) are analyzed.

Critical needs seen by domain representatives in industry in the field of quality requirements

are identified and conclusions and justifications for the proposed solution are formulated.

Resulted data will determine future requirements for the research solution design. The

analysis process is carried out in the following categories:

• Identification of software QRs;

• Representation of software QRs;

• Documentation of software QRs;

• Integration of software QRs with the FRs model;

• Quality standard used.

3.2.3.1 Resulted indicators from applied QRs management methods in their case
studies:

• The applied methods need to improve their process with the software QRs management

techniques (identification, decomposition, conflict resolution, documentation, derivation

from business goals and integration with functional requirements);

• The need for more understanding and applying quality standards;

• There is a need for understandable and applied techniques to be acceptable by users;

• Critical need for well described and understandable artifacts;

• A lack of understanding of quality attributes in the software engineering community (the

same interpretation of the quality attribute with different attribute names);

• Difficulty to define a unique terminology of QAs among stakeholders;

• Importance of interaction and consultation with domain people to capture priorities for

requirements and to resolve terminology problems;

• A lack of contact with domain people during the case study;

• A need for a clarifying technique of the meaning of QAs;

137

• A critical need for documenting QRs and integrating them in the RSD.

3.2.3.2 Analysis of collected data about QRs engineering practices in industry has
provided the following indicators:

• QRs represent an interesting domain field and an important aspect to be addressed in

organizations;

• Most of the organizations use a software QRs process where identification, specification,

prioritization, documentation and representation activities of QRs are the most important

(Figure 3.9);

• The need for more software QRs engineering practices (decomposition techniques are

either partial or absent (Figure 3.13) as is traceability (Figure 3.9));

• “Interviews”, “Meeting” and internal methods are the most used techniques to identify

QRs (Figure 3.12);

• The QRs process needs to be supported by software tools (Figure 3.10);

• The need for training in quality processes, norms and standards and software tools;

• Critical need for a structured and well defined quality requirements process (88%) (Figure

3.11);

• Use more software quality engineering standards (Figure 3.19):

o ISO/IEC 25051 Software engineering — Software product Quality Requirements and

Evaluation (SQuaRE) — Requirements for quality of Commercial Off-The-Shelf

(COTS) software product and instructions for testing (this International Standard is

applicable to COTS “Commercial Off-The- Shelf” software products.

o ISO/IEC 15408 – Evaluation Criteria for Information Technology Security (represents

the outcome of a series of efforts to develop criteria for evaluation of IT Security that

are broadly used within the international community).

138

3.2.3.3 Conclusions and justifications for the proposed solution

In conclusion, the resulted indicators from industry show the existence of an interest for the

QRs domain field where most of the organizations use a software QRs process. However,

this process needs to be:

1. Improved by more structured software QRs management techniques;

2. Supported by more software quality engineering standards and tools.

Resulted indicators from applicability of QRs management methods in their case studies

show that QRs engineering techniques need to be adequately applied, appropriately used and

easily understandable. There is also a need for methods to detail meanings of the QAs,

document and integrate them in the RSD document. Finally, there is a need to easily apply

the software quality engineering standards and to use a unified terminology of QAs among

stakeholders.

From the previous resulted indicators, future requirements of the proposed research solution

are summarized in developing new techniques for:

• Identifying and defining software QRs ;

• Representing software QRs and describing their traceability;

• Resolving conflicts among them;

• Documenting software QRs in a specific format such as a template.

• Integrating software QRs with the FRs model;

139

3.3 Innovative aspects of the proposed research solution: SOQUAREM (SOftware
QUAlity Requirements Engineering Method)

In this section, innovative aspects of SOQUAREM method are highlighted by describing its

specific features, meta-model, building process and process structure.

3.3.1 Specific features of SOQUAREM method

SOQUAREM solution is proposed to palliate some of the limitations of the software QRs

management methods. It addresses the list of QRs managing criteria (Table 3.25). Its

innovative aspects are represented as follows:

1. More interaction with stakeholders and domain experts during consensus and free

dialogue sessions;

2. Use of intentional modeling and motivation of business in the derivation process of

quality attributes;

3. Structured derivation of quality goals from business goals by using Business Context

Table (BCT) and Business Motivation Model (BMM). Derivation step of quality

attributes from business goals is fully described in SOQUAREM;

4. Use of scenarios at the requirements level to resolve terminology problems and infer the

right quality attribute;

5. Use of transformation rules which are: statement rules to define business goals,

refinement rules to refine business goals, linkage rules to derive quality attributes from

business goals and mapping rules to link quality attributes to the FRs model;

6. Use of ISO/IEC SQuaRE 25030 as supporting quality standard for SOQUAREM

process;

7. Use of a quality template to specify and document quality attributes;

8. Use of prioritizing methods (impact matrix and weighted method) to resolve conflicts

among quality attributes.

140

Table 3.25 SOQUAREM characteristics

Requirements
for the
research
solution

Characteristics and criteria
Id

en
ti

fi
ca

ti
on

D
er

iv
at

io
n

fr
om

bu

si
ne

ss
 g

oa
ls

D
ef

in
it

io
n

R
ep

re
se

nt
at

io
n

C
on

fl
ic

ts
 a

na
ly

si
s

D
oc

um
en

ta
ti

on

Q
ua

li
ty

 s
ta

nd
ar

d

In
te

gr
at

io
n

w
ith

 F
R

s

SOQUAREM BCT

BMM

Consensus
session

Statement and
refinement rules

BCT

BMM

Linkage
rules

QAs Utility
tree

Scenarios
template

Impact
matrix

Weighted
method

Template ISO/IEC
SQuaRE
25030

Mapping
rules

Scenarios
template

3.3.2 Meta-Model of SOQUAREM method

SOQUAREM represents an intentional, scenarios-oriented approach to quality requirements

engineering. Modeling elements in SOQUAREM include business goals; quality attributes

scenarios, actions and quality standard ISO/IEC SQuaRE 25030 (Figure 3.23). Business

goals, influencer and strategies are provided from the BMM model. They could be traceable

to the concepts of quality attributes, actors and actions. Quality attributes are clarified into

quality scenarios where details about actions and assets related to their achievement are

defined. Quality attributes are also specified by using the ISO/IEC SQuaRE 25030 quality

standard as a supporting framework.

141

 Figure 3.23 Meta-Model of SOQUAREM

3.3.3 The SOQUAREM building process

Figure 3.24 shows the SOQUAREM building process which presents mapping of concepts

from different research resources (such as quality attributes template, scenarios descriptions,

Business elements…), the domain experts’ verification and process improvements. The

dashed boxes present different authors from literature review who deal with similar concepts

in their specific context. For example, scenarios descriptions in ATAM method (Kazman et

al., 2000) are used to detail the meaning of quality attributes with a specific description

related to an architectural context. The quality attributes template (Moreira et al., 2002)

describes quality attributes with specific items to address aspectual quality attributes

crosscutting with functional requirements.

142

Elements of context (such as business, user and software domain) help to identify and refine

business goals by using BMM and BCT concepts. The quality standard ISO/IEC SQuaRE

25030 is used during the linkage process of QAs to business goals to infer the right quality

attribute. Scenario descriptions are semi formal methods used to make the QAs operational

and help their integration in the FRs process. Prioritization techniques (Moreira et al., 2002)

are used to resolve conflicts among quality attributes. QAs template (Brito et al., 2002) and

utility tree (Kazman et al., 2000) are concepts used to document and represent quality

attributes.

Figure 3.24 SOQUAREM building process

143

3.3.4 SOQUAREM process structure

The SOQUAREM structure, illustrated in Figure 3.25, is organized around phases and uses

various techniques and tools (heuristics, mathematical and intentional modeling), quality

standard ISO/IEC 25030 and transformation rules. Stakeholders and domain experts are

involved during the process operation. Techniques used are either informal, heuristic or semi

formal. The informal ones are consensus and free dialogue sessions, scenario descriptions

and templates. Scenario descriptions are used to detail the meaning of quality attributes and

make them operational. Heuristic techniques use descriptive methods to help clarify the

business goals and identify quality attributes. Semi formal methods use UML modeling to

represent the operational part of the quality attribute (actions undertaken to achieve it) and to

link them to the functional requirements (represented in the use case model). Mathematical

methods such as utility tree, impact matrix and weighted methods are used to represent

quality attributes and resolve conflicts among them. Transformation rules are used during the

whole process to regulate the operation process and are subdivided into statement rules to

define business goals, refinement rules to refine business goals into refined business goals,

linkage rules to derive quality attributes from business goals and mapping rules to link

quality attributes to the functional process.

144

Figure 3.25 SOQUAREM process structure

145

3.4 Conclusion

This chapter presented the fundamentals of the research execution. Initially, applicability of

existing QRs management methods has been described by analyzing their case studies and

identifying their strong and weak points. Resulted analysis demonstrated that most of the

applied methods do not fully apply the QRs management concepts (most of the applied

concepts are mentioned in the case study but not described enough (Tables 3.3 and 3.4). QRs

management methods need future work to evaluate their various usages across a large

spectrum of users and systems and should be validated in concrete situations with real

companies.

Subsequently, the current situation analysis of quality requirements seen by industry has been

provided by developing a questionnaire. Resulted indicators pinpointed critical needs, major

difficulties in addressing quality requirements and important directives for improving the

QRs processing of the software product in industry.

Again, analysis of QRs situation in academic and industrial environments has been

conducted. This part analyzed resulted indicators from both the questionnaire and the applied

methods and provided relevant requirements for the SOQUAREM method which have been

concretized in the fourth section “SOQUAREM innovative aspects”. In fact, innovative

aspects of the solution have been established by describing its specific characteristics and its

design and structure processes.

Chapter 4 describes in detail the proposed solution SOQUAREM: its key concepts and

process model.

CHAPTER 4

 SOQUAREM: SOFTWARE QUALITY REQUIREMENTS ENGINEERING

METHOD

This chapter presents a detailed description of SOQUAREM (SOftware QUAlity

Requirements Engineering Method) method. Section 1 introduces the high conceptual levels

of SOQUAREM and its process for producing QAs list. Section 2 defines and develops its

key concepts. Section 3 describes and details SOQUAREM process model. Section 4

concludes this chapter.

 4.1 SOQUAREM method

The proposed method is business goals-centric; stakeholder-centered and scenario-oriented

(Djouab and Suryn, 2011a). It is organized around 2 high conceptual levels (Figure 4.1):

• The business goals level: identifies important business goals (BGi) from the BMM

model and BCT concept (next section). Specific rules are used to refine business goals.

Consensus and free dialogue sessions are used to confirm the refined business goals

(RBGi) with stakeholders and domain experts.

• The system quality attributes level: Quality attributes are derived from the business

goals according to the quality standard ISO/IEC 25030 and linkage rules. They are also

detailed and operationalized by using the “Scenarios template” concept. Quality

attributes are analyzed for possible conflicts and consolidated by using prioritizing

techniques. They are retraced to their original business goals by applying the “Utility

tree” concept. Finally, quality attributes are linked to the “Use case” model by using

mapping rules.

148

Figure 4.1 High conceptual levels of SOQUAREM

Figure 4.2 shows the required elements for identifying QAs. BCT elements (which are

questions on business context: What, Why, How and Who) are mapped with BMM artifacts

to refine the business goals (BGk). Refined business goals are linked to QAs (according to

quality standard ISO/IEC 25030, linkage rules, scenarios template and prioritization

techniques) to obtain the final quality attributes list (QAm). QAs list is discussed with

concerned stakeholders during consensus sessions.

149

Figure 4.2 Required elements for identifying quality attributes

Data collected from the different questionnaires will produce the first database which will be

organized and aggregated according to stakeholder’s quality needs, ISO/IEC 25030 quality

standard, scenarios template, linkage rules and prioritization techniques to finally obtain a list

of prioritized quality attributes (Figure 4.3).

Figure 4.3 Process producing the quality attributes list

150

4.2 SOQUAREM Key concepts

This section describes the relevant concepts of SOQUAREM. The first group of concepts is

provided from standards (BMM and ISO/IEC 25030) and known methods like priorizing

methods (impact matrix and wheigted method), consenssus and free dialogue sessions. The

second group of concepts is reused in SOQUAREM with Djouab’s definitions. For instance,

the “Utility tree” concept of ATAM (Kazman et al., 2000) method is reused with Djouab’s

representation model and the BCT concept is reused from the work of Deng (Deng, 2006)

and QAs description template is reused from the work of Brito (Brito et al., 2003). The last

group of concepts is developed for the purpose of SOQUAREM process (scenario template

and transformation rules (statement, refinement, linkage and mapping rules). The Key

concepts of SOQUAREM (Figure 4.4) are:

1. BMM (Business Motivation Model): is the starting point of the SOQUAREM method.

It is used to define motivation of the business context, state goals and sub goals of the

business, related strategies and identifies relevant stakeholders with their corresponding

expectations.

2. Business context Table (BCT): describes fundamental questions about elements of the

business context. It structures and details items of BMM business context according to

the following keywords questions: How, What, Why and Who. BMM and BCT are used

in the first three SOQUAREM process phases to help refine business goals and derive

quality attributes from business goals.

3. Free dialogue session: is used to identify and refine business goals from technological

constraints, high level functional requirements and covering strategies.

4. Scenario template: details the meanings of quality attributes according to specific items

of the scenario template (Table 4.11). The scenario template provides a structured way to

build the QAs utility tree and to integrate QAs in the FRs model (Use cases).

5. ISO/IEC 25030: helps stakeholders focus on the most recognized quality characteristics.

It is used to infer the right quality attribute from the refined business goals.

151

6. Consensus session: provides a means to communicate and consolidate quality attributes

to the stakeholders in order to obtain the final list of prioritized quality attributes.

Consensus sessions are used to :

a. Confirm business goals with stakeholders;

b. Discuss the linkage of the QAs to the business goals with concerned stakeholders;

c. Confirm consolidated QAs.

d. Discuss conflicts among QAs with stakeholders.

7. Quality attributes template: documents quality attributes in the following terms: the

context in which the quality attribute is applied, the source of the quality attribute,

representation of the quality attribute and impact of the quality attribute on the software

process.

8. Utility tree: (for traceability of quality attributes) is developed for each quality attribute

and shows how quality attributes are organized with the refined business goals and the

associated quality scenarios.

9. Statement, refinement, linkage and mapping rules: state and define ways to refine

business goals, link quality attributes to the refined business goals and map quality

attributes to the corresponding use case model.

10. Prioritizing methods: (such as impact matrix and weighted method) used to find and

resolve conflicts among quality attributes.

Figure 4.4 presents key concepts involved in the main activities of SOQUAREM process.

The first activity related to identifying and refining business goals (green color) uses the

following concepts: BMM, BCT, free dialogue session, consensus session, statement and

refinement rules. The second activity addresses derivation of quality attributes from the

refined business goals and their consolidation by applying the following concepts: BMM and

BCT, scenarios template, quality standard ISOIEC 25030, linkage rules, consensus session

and prioritizing techniques (yellow color). The next activity uses the “Mapping rules” to link

QAs to the use case model (blue color). The last two activities apply “QAs template” and

“Utility tree” concepts to deal with documentation and representation of quality attributes

(red and purple colors).

152

Figure 4.4 Key concepts of SOQUAREM

Business
motivation

Model

Scenarios

template

QAs Template

Identify and
refine

business
goals

Derive
QAs from
business

goals

ISO/IEC 25030

Link QAs to use
case model

Document
QAs

Utility tree of

QAs Retrace QAs

C
onsensus session

Business Context
Table

Free dialogue
session

Statement and
refinement rules

Linkage
rules

Consensus
session

Prioritizing

methods

Mapping

rules

Legend

Concept

Activities

Define

Use of concept
in the activity

153

4.2.1 Development of SOQUAREM concepts

This section details the main concepts developed in SOQUAREM method: the BCT

(Business context Table), scenario template, utility tree, QAs template, consensus session

and the different transformation rules used in SOQUAREM process (statement, refinement,

linkage and mapping rules). The BMM model is detailed in chapter 1 (section 1.4.12).

4.2.1.1 The BCT

The idea of BCT is to structure the business vision of the system by using keyword questions

such as: what, why, who, where and when. BCT will help to organize business information

that defines the scope of SOQUAREM process.

As suggested by its name, a business context is organized around questions related to

identification and clarification of business context elements which contribute to identify

quality attributes. Table 4.1 presents the elements of a business context.

Table 4.1 BCT (Business Context Table)

Questions Business context elements

What 1. Business goals
2. High level and technological constraints
3. High level quality needs
4. High level functional requirements
5. Regulations and compliance
6. Domain characteristics
7. Political interests and organizational culture

How Business strategies to achieve business goals

Who Target stakeholders

Why 1. Current business
a. Outcomes
b. Impact
c. Performance measures

2. Needs for target stakeholders to be met
3. Business mandate

154

4.2.1.2 The consensus session

 The consensus session is used to discuss and consolidate ideas with stakeholders about

quality attributes. It is applied throughout the entire process of SOQUAREM by using

different techniques (C/R is used to indicate Confirmed/Rejected):

1. During the first two phases, a consensus session is used to confirm and to consolidate

the business goals and refined business goals with stakeholders;

2. During phase 3, this session is used to confirm linkage of quality attributes to the

business goals with stakeholders (Table 4.2);

3. Phase 5 uses the consensus session combined with the weighted quality attributes

method to help resolve conflicts among quality attributes and discuss them with

stakeholders (Table 4.3);

4. Phases 4 and 6 also use a consensus session technique to confirm with stakeholders the

obtained quality scenarios and to map the QAs to the FRs model.

Table 4.2 Confirm linkage of QAs with business goals

155

Table 4.3 Resolve conflicts among QAs

4.2.1.3 The QAs template

A template is used to document QAs in descriptive items which are subdivided into three

classes (Tables 4.4 and 4.5):

• Quality attributes context class: contains items documenting:

o Name of the quality attribute which is defined according to ISO/IEC SQuaRE 25030;

o Brief description of the quality attribute;

o Category of the QA according to ISO/IEC 25030;

o Source of information contributing to the definition of the quality attribute

(stakeholders and documents);

o Stakeholders impacted by the quality attribute: which class of stakeholders is

interested by this QA;

o Priority of the QA: expresses the importance of the quality attribute for the

stakeholders. It can be :

 High (H:), Medium (M) and Low (L);

 Or by values like: [0.6…1] for High,] 0.3…0.6[for Medium and [0…0.3] for Low.

156

• Quality attributes traceability class: contains items documenting traceability of the

quality attribute to its original business goals source. The “Representation” item is

described by:

o The list of business goals and the refined goals which are contributing to the

derivation of the quality attribute;

o Actors responsible for achieving the quality attribute;

o The number of identified QAs scenarios for each actor.

• Quality attributes impact class: contains items documenting:

o Requirements affected by the quality attribute like functional requirements, cognitive

requirements;

o Models and processes requiring the quality attribute like sequence diagrams, use case

model and business domain model (Table 4.6);

o Activities of the software life cycle and phases of the software process standards

where this quality attribute is required, managed or verified (Table 4.7);

o Impact of other quality attributes (negatively or positively) on the quality attribute

(Table 4.8).

157

Table 4.4 Template for specifying quality attributes

QA context class

Name The QA name

Description A brief description of the quality attribute

Category The QA category according to the ISO/IEC 25030 taxonomy : QiU, EQ and IQ

Source Stakeholders, vision document , use case artifacts

Target
stakeholders

Manager, customer, developer, quality evaluator and other stakeholders

Quality standard
used

ISO/IEC SQuaRE 25030

Priority Priority of the QA

QA traceability class

Representation Business goals Refined business
goals

Actor 1 Actor i

Number of quality
scenarios

Number of quality
scenarios

QA impact class

Requirements Functional, non functional, cognitive and other type of requirements

Activities and
phases

Requirements elicitation, requirements analysis, architectural design and test.

Models and
processes

Sequence diagrams, uses case diagrams and architectural styles.

Impact Represents how a quality attribute can be affected by other quality attributes. This
impact can be positive (+) or negative (-).

158

Table 4.5 QAs documentation classes types

Table 4.6 Models requiring the QA

Activity

Where QAs

Use case model

Sequence diagrams

Architectural styles

Is required *

Is managed *

Is verified for its
realization

 *

Table 4.7 Activities requiring the QA

 Activity

Where QAs

Requirements

elicitation

Requirements

analysis

Architecture design

Is required *

Is managed *

Is evaluated *

159

Table 4.8 Impact matrix for conflicts among quality attributes

 QAi

QAj

Quality attribute 1

Quality attribute 2

…….

Quality attribute n

Quality attribute 1

+ +

Quality attribute 2

 _

.

.

.

Quality attribute n +

Figure 4.5 shows an overview of the QAs database representing the required data for the QAs

management process. QAs are derived from the business goals, applied in a specific domain

and could affect other requirements. They are described and detailed in scenarios where an

action item contributes to make them operational. Actors are responsible for achieving the

QAs and stakeholders are concerned with their realization. QA is required by different

development models and is managed or verified in many activities of the software life cycle

and phases of the software process standards.

160

Figure 4.5 Quality attributes database reference

161

4.2.1.4 The scenarios template

The “Scenario template” provides a context for detailing and operationalising quality

attributes. It is used to build the QAs scenarios and to map them to the FRs. The “Action”

item is used to perform the mapping and the “Asset” item is used to elaborate the QAs

scenarios. Table 4.9 summarizes the scenario description template items.

Table 4.9 Quality scenarios template

Scenarios items Description

Action Undertaken to achieve the quality attribute

Asset Any part of the system (hardware, software,
personnel, development process and data)
involved in achieving the quality attribute

4.2.1.5 The utility tree

The utility tree is a key concept of SOQUAREM method. It is developed to describe the

traceability of the quality attribute to its original requirements source. It represents derived

quality attributes, their refined business goals and generated scenarios in a goal graph

structure (Figure 4.6). It is structured into three levels:

1. Business level: where stated business goals and their refined business goals are

represented. Priority of the related refined business goal is also represented.

2. Quality attributes system level: where derived quality attributes are represented

from detailed business goals. The actor responsible for achieving the quality attribute

is also represented at this level.

3. Scenarios System level: where the meaning of the derived quality attribute is

detailed with scenarios according to the scenario template (Table 4.9).

162

Figure 4.6 Utility tree of quality attributes

4.2.1.6 Transformation rules

This section describes the transformation rules used to verify the logic of SOQUAREM

process. The proposed rules are applied at each phase of the process to help derive quality

attributes. They are divided into the following rules:

1. Statement rules: used to ensure that business goals are stated according to a business

mandate, domain characteristic and organizational culture of the business (Table 4.1).

Table 4.10 gives an excerpt of statement rules in the SOQUAREM concept.

163

Table 4.10 Statement rules

Statement rules

1. STR1 : Each business goal is detailed according to “Business mandate” of BCT table

and “Desired results” of BMM model;

2. STR2: Each business goal is related to one or more quality needs of stakeholders;

3. STR3: Each business goal is identified according to domain characteristics of the

business;

4. STR4: Each business goal is defined according to high level problems and technological

constraints of the business;

5. STR5: Business goals are defined according to regulations and compliance, political

interests and organizational culture of the business.

2. Refinement rules: used to ensure that business goals are detailed according to covered

business strategies, regulations, technological constraints and the organizational culture

of the business. Table 4.11 gives an excerpt of refinement rules in the SOQUAREM

concept.

Table 4.11 Refinement rules

Refinement rules

1. RFR1: Each business goal is detailed according to technological constraints, existing

regulations and compliance and high level functional requirements;

2. RFR 2: Each business goal is detailed according to definition of the business strategies

suggested to achieve the business goals;

3. RFR3: Business strategies of BCT should correspond or be part of courses of actions of

BMM model.

3. Linkage rules: used to ensure that quality attributes are derived from refined business

goals according to stakeholder’s quality needs and ISO/IEC 25030 quality standard.

Table 4.12 gives an excerpt of linkage rules in the SOQUAREM concept.

164

Table 4.12 Linkage rules

Linkage rules

1. LNR1: Each quality attribute is derived according to high level quality needs, definition

of the refined business goal and taxonomy of ISO/IEC 25030;

2. LNR2: Each derived quality attribute could be linked to one or more refined business

goal;

3. LNR3 Each obtained quality attribute could be achieved by at least one actor;

4. LNR4: Define relevant actors who should achieve quality attribute from external

influencer of the BMM model;

5. LNR5: the WHO item: target stakeholders of the BCT should be part of external

influencer of BMM model;

6. LNR6: Define relevant actions from definition of refined business goals and internal

influencer of the BMM model;

4. Mapping rules: used to ensure that quality attributes are mapped to functional

requirements (the use case model) by using scenario template items as main drivers of

this mapping. Table 4.13 gives an excerpt of mapping rules in the SOQUAREM concept.

Table 4.13 Mapping rules

Mapping rules

1. MPR1: Actor of the “Utility tree” is mapped to Actor of the use case model;

2. MPR2: “Action” of the QA scenario undertaken by Actor is mapped to a new use case;

3. MPR3: Each actor of the “Utility tree” is mapped to a business concept of the business

domain model;

4. MPR4: “Asset” and “Action” of the QA scenario are mapped to business concept and

relationship between mapped business concepts.

165

4.3 The SOQUAREM process model

The SOQUAREM process model is divided into six phases for defining and refining business

goals, deriving, operationalizing, analyzing, documenting and representing QAs and finally

for linking them to the FRs process. These phases use various software QRs management

techniques (questionnaire, consensus session, BMM, scenarios, prioritizing, utility tree and

template). Potential inputs to the process are BMM, BCT and domain experts. The main

participants are quality requirements engineers, domain experts and selected stakeholders. If

the outputs for each phase are not approved by the stakeholders, one can suppose that the

stakeholders need to negotiate with each other during consensus sessions and the phase is

restarted if necessary. The negotiation techniques are not investigated in this thesis.

The SOQUAREM process (Figure 4.7) is represented as:

Phase 1: State and identify the business goals: define the relevant elements of the business

context such as business goals and business domain. It is important to mention that the

business goals definition is related to the goals of the BMM concept.

Phase 2: Refine business goals: business goals are detailed according to additional business

information such as organizational culture, regulations and guidelines, technological

constraints and business strategies.

Phase 3: Link business goals to the corresponding quality attributes: detailed business goals

are used to derive the quality attributes by using ISO/IEC 25030 quality standard and linkage

rules. The relation between the business goals and the FRs is not included in this process.

Phase 4: Build quality attributes scenarios by using the scenario template and the consensus

session techniques to infer the right quality attribute.

Phase 5: Analyze conflicts between QAs and consolidate them by using prioritization

methods. If the consolidation is not approved by the stakeholders, the process is restarted

from the phase 3 (Figure 4.7).

Phase 6: The last phase of one iteration cycle consists of linking the QAs to the functional

requirements process by updating the initial use case model with additional information

about QAs.

166

Figure 4.7 SOQUAREM process model

[not accepted]
[accepted]

 I
T

E
R

A
T

IO
N

167

Figures 4.8 and 4.9 summarize the linkage process and logic of SOQUAREM. Figure 4.8

shows the linkage process of SOQUAREM involving elements of the business context (like

business vision, business goals and strategies) to be refined and linked to system elements

like quality attributes, actors and associated actions.

As illustrated by Figure 4.9, quality attributes are identified from business goals and

integrated into the FRs process. SOQUAREM process is used at two levels: the business

level where elements of the business context as BMM and BCT are used with the statement

and refinement rules to help identify business goals and refine them into refined business

goals. At the system level quality attributes are: a) linked to refined business goals by using

quality standard ISO/IEC 25030 and linkage rules and detailed into quality scenarios; and b)

mapped to the FRs process by using mapping rules and a scenario template. SOQUAREM

helps to provide traceability of QAs to their business goals. Elements of the business context

could be mapped to the QAs by:

1. Refining business goals into sub goals and linking them to quality attributes (blue, green

and purple colors);

2. Deriving actors responsible for achieving quality attributes from the “External

influencer” item of BMM (Deng, 2006) and the “Who” questions of BCT concepts (red

color);

3. Deriving actions undertaken by actors to achieve quality attributes from the “Internal

influencer “item of BMM and the refined business goals (brown color).

The mapping from BMM elements like “Internal and external influencer” to the defined

actors an actions is inspired from the work of Deng which suggests in her research to

integrate the modeling techniques of BMM and I* framework.

Deng said that “An external influencer in the BMM could be considered as an actor in i*, and

an internal influencer could be a resource, task, goal, softgoal, or belief according to its

characteristics”. She also said that to determine if they mean the same concepts, it will

depend on further definitions of these concepts by OMG.

168

Figure 4.8 Linkage process of SOQUAREM process

Figure 4.9 Logic of SOQUAREM process model

169

4.3.1 Detailed description of the phases of SOQUAREM process

Phase 1: State and identify business goals of the system (Figure 4.10)

In this phase, the business goals of the organization are formulated from the BMM and BCT

items. The business goals definition starts from the goals of the BMM concept (the “Ends::

desired results::goals” item) (Table 1.10). The BCT concept provides the “WHY” (business

mandate and target stakeholder’s needs) and “WHAT” (high level problems, technological

constraints, high quality needs, domain characteristics and organizational culture) artifacts to

state the business goals. Statement rules and consensus sessions are techniques used to define

and discuss business goals with stakeholders. Outputs of this phase are the main business

goals of the system.

Figure 4.10 State the business goals

170

Phase 2: Refine the business goals (Figure 4.11)

This phase details the business goals with additional information by describing the covered

strategies to achieve these goals, technological constraints, directives/regulations and

organizational cultures impacting the business system. The BMM and BCT concepts are used

as inputs in this phase. The BCT concept provides the following inputs: a) “HOW” (business

strategies) and b) “WHAT” (high level functional requirements, technological constraints

and regulations). The BMM concept provides the following inputs: a) “Course of action”

(Strategies) and b) “Directives”. Consensus sessions, free dialogue sessions and refinement

rules are techniques used to discuss and confirm refined business goals with stakeholders.

Refined business goals are prioritized with the participation of stakeholders as follows: High

(H), medium (M) and Low (L). Refined business goals are the main output at this phase.

Figure 4.11 Refine the business goals

171

Phase 3: Link the business goals to corresponding quality attributes (Figure 4.12)

The phase derives the quality attributes and their associated actors and actions from the

refined business goals by using linkage rules and ISO/IEC 25030. Relevant actors related to

achievement of quality attributes are derived from the “WHO" question of the BCT concept

(target stakeholders item) and the BMM concept (external influencer’ item). Actions are

identified by asking questions about possible actions that could be derived from the “Internal

influencer” item and the refined business goals. Quality attributes are derived from the

“WHAT” question of the BCT concept (High level quality needs item) and ISO/IEC 25030

quality standard. Linkage rules are used to verify the derivation process of quality attributes.

Consensus sessions are used to discuss and confirm obtained quality attributes with

stakeholders. The output at this phase is a quality attributes list.

Figure 4.12 Link the business goals to the corresponding quality attributes

172

Phase 4: Build the quality attribute scenarios (Figure 4.13)

This phase builds the quality scenarios associated to the QAs according to the scenario

template description (Table 4.9). Important items of the scenario template are: action

undertaken to achieve quality attribute and asset on which action is undertaken. The Action

item of the scenario template is mapped to the relevant action field of the QAs list. The asset

item of the scenario template is defined from the refined business goals. Consensus sessions

are used to confirm quality scenarios with stakeholders. The output at this phase is utility tree

of quality attribute scenarios (Figure 4.6).

Figure 4.13 Build the quality scenarios

Phase 5: analyze conflicts among quality attributes and consolidate them (Figure 4.14)

This phase evaluates interactions among QAs, compares and adjusts them to find and remove

conflicting QAs. It consists of:

• Building the impact matrix where each quality attribute may contribute negatively or

positively to the other quality attributes in order to find possible conflicts and resolve

them (Table 4.8).

• Attributing weights (range [0...1]) represents priority) to those quality attributes that

contribute negatively to each other (Table 4.14). The weighted method describes the

173

extent to which a quality attribute may constrain an actor. The values are given (by

involved stakeholders) according to the importance each quality attribute has for each

actor. In the case where all the values are rated high, a voting system is performed or a

maximum per stakeholder is defined by using the negotiation techniques. The scales

used here are based on fuzzy logic and have the following meaning [Rashid and al.,

Brito and al., 2002]:

o “Very important” takes values in the interval [0,8 .. 1,0]

o “Important” takes values in the interval [0,5 .. 0,8]

o “ Medium” takes values in the interval [0,3 .. 0,5]

o “Low” takes values in the interval [0,1 .. 0,3]

o “Very low” takes values in the interval [0 .. 0,1]

• Resolving conflicts and consolidating them with the stakeholders (during consensus

session) by using the weighted method;

• Building the utility tree according to the consolidated data. Labels are assigned to each

quality attribute scenario as follows:

o S if the quality attribute is satisfied;

o D if the quality attribute is not satisfied;

o P if the quality attribute is partially satisfied.

• Repeating the process to select the most beneficial QAs which involve the least conflict.

174

Figure 4.14 Analyze conflicts between QAs and consolidate them

Table 4.14 Attribute weights to quality attributes

 Actor

Quality attribute / RGBi

Actor 1

......

Actor m

QA1/RBG1

QA2/RBG2 Weig
ht

[0…1]

……

QA1/RBGn

175

Phase 6: link quality attributes to a functional model (use case model and business
domain model) (Figure 4.15)

QAs are linked to the FRs process (“Use cases” and “Business domain” models) by using the

mapping rules. These models are already defined in the beginning of the process and are

enriched with QAs data. The following section describes the mapping rules of a QAs utility

tree and “Use cases” and “Business domain” models.

Figure 4.15 Link QAs to use case and business domain models

Figure 4.6 illustrates the mapping process of a use case model (with the actor “Actor1” and

two actions “Action1” and “Action3”) with two utility trees Utility1 and Utility2 in the

following steps:

1. Find all the QAs utility trees that refer to a particular actor in the use case model (Utility

1 and Utility 2).

2. Relate actions of the actor to roots of the QA utility tree which correspond to the same

actor (Action1 and Action3 of Actor1 are related to Utility1 and utility2).

3. If actions in the use case model do not cover the nodes of the QA utility tree (part

actions), add the later actions of the actor to the use case model (Actions 2, 5 and 6).

4. If the actor of the QA utility tree does not exist in the use case model, add it to the use

case model with its associated actions (Actor2 and Actor3).

176

Figure 4.16 Mapping process with the use case model

Mapping process with the use case model
1. Find QAs utility trees that

refer to Actor1 in the use
case model

2. Relate Actor of the use case
model with the QA utility
trees Actor1

3. Relate actions of Actor1 to
roots of utility1 and utility 2

4. Add actions of utility trees to
the use case model

5. Add actors of the utility trees
to the use case model

1. Utility1 and
utility2

2. Actor1

3. Action 1 and
Action3

4. Action2,
Action5 and
Action6

5. Actor2 and
Actor3

Actor1

Action2

Action3

Action1

BG1

(BG31,

priority)

(BG32,

priority)

(BG3n,

priority)

Utility1

BG2 BG3

QSC31

(Action1

, asset1)

QSC32

(Action2,

asset2)

QSC33

(Action5,

asset5)
Action3

Action1

1 1

3

BG4

(BG61,

priority)

(BG62,

priority)

(BG6n,

priority)

Utility2

BG5
BG6

QSC61

(Action6,

asset6)

QSC62

(Action3,

asset3)

QSC63

(Action1

, asset1)

5

3

4 4 4

QA3, Actor1 QA6, Actor1
QA1, Actor2, and Actor3

2

177

Figure 4.17 shows the mapping process of a business domain model (containing the business

concept: “Actor1” and the relationships “Relationship1” and “Relationship2”) with two

utility trees Utility1 and Utility2 in the following steps:

1. Find all the QAs utility trees that refer to the business concept “Actor1” in the business

domain model (Utility1 and Utility2).

2. Relate relationships of the business concept “Actor1” to roots of the QA utility tree

which correspond to the same actor (“Relationship1” and “Relationship2”).

3. If relationships in the business domain model do not cover the nodes of the QA utility

tree (actions and assets), add assets and actions of the actor (of the utility trees) to the

business domain model as follows:

i. Assets will be mapped to the business concepts and actions mapped to the

relationship between actor concept and assets (Asset1, Asset2 and Asset3);

ii. Actions will be mapped with more abstract relationships in the business domain

model (Action1, Action2 and Action3). For example, action “add new language” in

the utility tree (Figures. 5.21 and 5.24) will be mapped to “defines international

language” relationship in the business domain model.

5. If actors of the QAs utility tree do not exist in the business domain model, add them to

the business domain model with their associated “Action” and “Asset” nodes (Actor2

and Actor3).

6. Verify coherence and semantics of the extended business domain model (deleting all the

redundant business concepts and update relationship with the same name).

7. QAs views are projected from the overall added business and relationship concepts

(Figure 4.18) of the business domain model.

178

Relationship1

Relationship2

Compare «Relationships” of the Business concept “Actor1” with the “Action” and “Assets”
nodes of the QAs utility trees of the same actor:

If “Relationship” # “Action” and “Business concept” related to the Actor1 # “Asset” Then
1. Add “Asset” as “Business concept” to the Business domain model
2. Add “Action” as “Business relationship” between the Actor1 and the added “Business

concepts” to the Business domain model and “Action” is abstracted in “Abstract Action”.

BG1

(BG31,
priority)

(BG32,
priority)

(BG3n,
priority)

Utility1

BG2

BG3

QSC31
(Action1, Asset1)

1 1

3

BG4

(BG51,
(priority

(BG52,
priority)

BG5n,
priority)

Utility2

BG5 BG6

QSC52

(Action2,
Asset2)

QSC53

(Action3,
Asset3)

6

3

QA3, Actor1 QA6, Actor1 QA1, Actor2, and Actor3

Relationship2

Relationship1

 2 5

4

55

Figure 4.17 Mapping process with the business domain model

Mapping process with the business domain model
1. Find QAs utility trees that

refer to Actor1 in the
business domain model

2. Relate Actor of the business
domain model with the QA
utility trees Actor1;

3. Relate relationships of
Actor1 to roots of utility1
and utility 2;

4. Make the comparison of
“Relationship” with the
nodes of QA utility trees;

5. Add assets and actions of
utility trees to the business
domain model;

6. Actors to be added to the
business domain model.

1. Utility1 and utility2

2. Actor1

3. Relationship1 and
Relationship2

4.See table above

5. Asset1, Asset2 and
Asset3
5. Action1, Action2 and
Action3

6. Actor2 and Actor3

179

Relationship1 Abstracted action1

QA6 view
QA3 view

Figure 4.18 Quality attributes views

Quality attributes are derived from the business domain model. The new added business

concepts (from actor of the utility tree and asset of the scenario template) and relationship

(from action of the scenario template) help in the projection of the quality attribute view.

Projection is specifically defined from relationship existing between the new added business

concepts.

180

4.4 CONCLUSION

This chapter described the SOftware QUAlity Requirements Engineering Method

(SOQUAREM) developed for quality requirements engineering process in the software

product definition phase. SOQUAREM provides solutions to many recurring quality

management problems which include:

• Systematic and structured identification, representation of QRs in the software product

definition phase;

• Clear derivation of QAs from business concepts;

• Well defined traceability mechanism;

• Better integration of quality requirements with the functional process.

The main concepts of SOQUAREM have been described. One can cite:

• BMM (Business Motivation Model), BCT (Business Context Table) concept and

transformation rules (statement, refinement and linkage) to identify and derive

important QAs according to ISO/IEC 25030 taxonomy;

• Scenario template concept to infer the right QA and utility tree allows for describing

the traceability of QAs to their original requirements;

• Prioritization methods (impact matrix and weighted method) help to analyze and

resolve conflicts among QAs;

• QAs template to document QAs;

• Mapping rules and scenario template contribute to integrate QAs into the functional

model;

• Finally, consensus sessions are used at each process phase to interact with stakeholders

and domain experts.

181

Subsequently, SOQUAREM process phases are described in detail. They are structured as

follows:

• The first 2 phases are used at the business level to identify and refine business goals;

• The last four phases are used at the system level to:

o Derive QAs from the refined business goals;

o Build quality scenarios;

o Analyze possible conflicts among QAs and consolidate them;

o Finally, integrate QAs into the FRs model.

The next chapter describes the application of SOQUAREM in an illustrative example.

CHAPTER 5

 ILLUSTRATIVE EXAMPLE OF THE BUILDING AUTOMATION SYSTEM CASE

This chapter describes the applicability of SOQUAREM process by an example (Djouab and

Suryn, 2011b). Section 1 develops the example and its operation in SOQUAREM process

phases. Section 2 analyses and discusses the applicability of SOQUAREM process and

finally, section 3 concludes the chapter by the resulted analysis and future improvements.

5.1 Development of the example

In this section, application of the SOQUAREM process to the MSLite system is illustrated by

an example. First, the MSlite is described by its context and functional part (use case and

business domain models) (Sangwan et al., 2008 and Ozkaya et al., 2008). A detailed

application of SOQUAREM process to the MSLite system is then illustrated. The data

describing the main inputs of SOQUAREM process, high level quality needs, BMM model

and BCT table were developed. The business and refined business goals data are provided by

the MSLite case. The work of Sustra (Sustra and al., 2007) was used to develop the business

goal 3 (BG3) and its refined business goals. In phase 5 of the process, the data used to deal

with conflict resolution among the QAs was provided (Tables 5.11 and 112).

5.1.1 Presentation of the example

The presented example has been developed from the case of Sangwan and Ozkaya (Sangwan

et al., 2008) and (Ozkaya et al., 2008). These authors pinpoint the importance of quality

attributes to drive the architecture of the system. They also describe how QAs are elicited

from business goals. This case was selected because it provides initial data on QAs (business

goals and refined goals) which help to build the example and illustrate the SOQUAREM

process. Data provided from the case of Sangwan and Ozkaya include:

• Functional requirements of the MSLite system;

• The 2 business goals of MSLite system (BG1 and BG2) and their scenarios.

184

The remaining data in the example is provided from:

1. Djouab’s research describing:

• High level problems and quality needs;

• BMM model and BCT concepts;

• QAs scenarios;

• Conflict resolution.

2. Other papers:

• The business goal 3 (BG3) related to increasing the use of Internet (Sustar et al.,

2007).

5.1.2 Description of the MSLite system

An organization wants to develop a software system called MSLite, a unified management

station for a building’s automation domain that will automatically monitor and/or control the

internal functions of buildings, such as heating, ventilation, air conditioning, lighting, access

and safety (Figures 5.1 and 5.2). The intended users of MSLite are facility managers who

need to operate many (hardware) systems required to support building functions. Since there

are a large number of these systems, a Field System Simulator (FSS) is used during software

product development to simulate these systems.

185

Figure 5.1 MSLite definitions
Extracted from Sangwan et al., (2008)

Figure 5.2 MSLite system context
Extracted from Sangwan et al., (2008)

186

Some of the high level functional requirements for the MSLite system are:

• Manage the network of hardware-based field systems represented in FSS used for

controlling building functions;

• Issue commands to configure the field systems and change the values of their

properties;

• Define rules based on property values of field systems that trigger reactions and issue

commands to reset these property values;

• Define alarm conditions similar to rules that, when met, trigger alarms notifying the

appropriate user of life-critical situations.

Figure 5.3 shows a subset of use cases and actors identified from the analysis of some of the

business process to be supported by «MSLite». These use cases are listed as follows:

• Define automation rules;

• Define alarms;

• Define the SOP “Standard Operating Procedures”;

• Issue commands to field devices;

• Handle alarms and their life cycle;

• Generate alarms originating from field systems;

• Notify a change of value: including for example the changes of some field system

property values and failure reports.

187

Figure 5.3 Use cases
Extracted from Ozkaya et al., (2008)

The business process descriptions in Figure 5.4 illustrates problems in the domain model of

the building automation and introduce the important business entities that would be

manipulated by the use cases (alarms, rules, commands and SOP (Standard Operating

Procedure)).

Figure 5.4 Business domain model
Extracted from Ozkaya et al., (2008)

188

5.1.3 Specific features of application of SOQUAREM method

In this section, application of SOQUAREM for the MSLite System is described. First, the

“Why SOQUAREM process is applied to the MSLite system” is presented by summarizing

high level problems and quality needs for the MSLite system. Second, the “How

SOQUAREM process is applied to the MSLite system” is discussed by describing the main

concepts/rules and phases of SOQUAREM process. Table 5.1 summarizes the application of

SOQUAREM process to the MSLite system.

Table 5.1 SOQUAREM process applied to MSLite system

SOQUAREM case study: MSLite system

1. High level problems and quality needs for the MSLite system (Table 5.3 of BCT, section

WHAT)

1.1 High level MSLite system problems: lack of web tools.

1.2 High level quality needs: operability, security.

2. Description of SOQUAREM process for the MSLite system

2.1 Description of the main concepts of SOQUAREM: BMM (Business Motivation Model) and

BCT (Business Context Elements);

2.2 Phases of SOQUAREM process.

Phase Description Key concepts/Rules Input Output

1 State business goals BMM and BCT

Consensus session

BMM, BCT, Use

case model

Business goals

…..

5 Analyze and

consolidate QAs

Impact matrix

Weighted method

Consensus session

Utility tree of QAs

scenarios

 (QAs) template

Consolidated utility

tree of QAs

189

5.1.3.1 High level problems and quality needs for the MSLite system

High level problems

Some of the high level problems for the MSLite system are summarized in the following

points:

• MSLite UI is not customized to most recognized languages;

• Absence of web and communication tools;

• MSLite system does not support field systems from different manufacturers.

MSLite problems are caused by the following reasons:

• Increased use of Hardware’s commoditization;

• Lack of technological platforms (as the .NET platform and the C# language).

MSLite problems have the following consequences:

• MSLite system is not efficient and not profitable;

• Shrinking profit margins.

• Unsatisfied customers;

• Loss of money.

High level quality needs

From the identified problems, some of the high level quality needs are summarized as

follows:

• The overall vision for the organization is to broaden the market base by being an open

general-purpose management station that can be used with a wide variety of field

systems (including eventually third party (Adaptability).

• Build an accessible building automation system product («MSLite») with modern

technologies that provides excellent user experience to satisfy advanced expectations

by customers (Usability and Adaptability and Satisfaction).

190

• The system should also use web browser interfaces, which may even include building

this capability into the individual controllers. The MSLite components should be

designed to use internet communications for sharing information with the rest of the

system. Internet-based communications should be specified to improve building

operators' access to the system and to improve system communications (Operability,

Interoperability, Security and Adaptability).

• The management station is deployed in a critical environment and must satisfy

increased availability and security requirements (Security).

• The management station must be deployable in environments with four figure user

numbers (Adaptability).

5.1.3.2 Description of SOQUAREM process

SOQUAREM process is applied to the MSLite system to deal with its high level

technological problems and to meet associated high level quality needs. Inputs of

SOQUAREM process are: Functional requirements (FRs), the BMM and BCT concepts and

the main output is the list of identified quality attributes for MSLite system (Figure 5.5).

Figure 5.5 Output of SOQUAREM process applied to MSLite system

Main Key concepts to be applied in SOQUAREM phases

Figure 5.6 shows and excerpt from the developed BMM (Business Motivation Model) in the

automation building system case. The desired outcome of the business transformation is

represented in the frame “Desired_Result” which is to “offer the automation system product

MSLite in new and emerging geographic markets”. The “Desired_Result” is supported by

the “Course_ of_ Action: opening sales channels” which is a component of the “Mission:

reduce total development costs for the management stations and coordinate sales channels”

191

that make operative the “Vision: broaden market base with an open general-purpose

management station that can be used with a wide variety of field systems”.

From the “Desired_Result” frame, emerge two major business goals:

1. Goal 1: Be a market leader by supporting the system with additional language features,

cultures and regulations;

2. Goal 2: Use a third part seller, the “Value Added Resellers” to increase sales.

The two goals are supported by four strategies (Table 5.2).

Directives to support achievement of the desired results are both federal, provincial and

building system specific directives. Directives are divided into three categories:

act/legislation, policy and agreement (Table 5.2).

Influencers are an important item in the BMM. They have a strategic influence on the

building automation system. They are represented in Figure 5.5 with the building automation

system’s assessments of them. Influencers could present strengths and weaknesses,

opportunities and threats (Table 5.2). Table 5.3 (Business Context Table BCT) describes

business context elements for the MSLite system.

192

Reduce total
development costs and
coordinate sales
channels

Mission

Broaden base market
with an open general-
purpose
management station

Vision

Course_of_Action

Sales channels planning

Strategy

Language support
management

Strategy

Desired_Result

Be a market leader by
supporting system with
additional languages
features

Goal l

Support regulations
requiring life critical
systems operation within
specific latency
constraints

Sub Goal12

Assessment

Support from
manufacturers

Strength

Influencer

External_Influencer

Facility manager

Field system

Users

Regulations
management strategy

Strategy

Made_operative _by

Planned_by_mea
ns_of

Supported _by
Juged_inOn_achievment_of

Amplified_by

Sales channels
expansion

Strategy

Increasing needs of
automation
functionalities and their
integration in the
automation product

Environment

Internal_Influencer

Sales expansion
channels

Infrastructure

Total expansion costs

Internal issue

Support several
international languages

Sub Goal11

Do not know how to
reduce commodities
hardware costs

Weakness

Large investment in
non integrated
systems

Weakness

Support conversions of
NS Units of different
field systems

Sub Goal22

Other Automations-
Related systems, such
as manufacturers

Supplier

Support field systems
from different
manufacturers

Sub Goal21

Use a third part seller
the Value Added
Resellers to increase its
sales

Goal 2

Figure 5.6 BMM for automation building system

Opening sales
channels

Offer the
automation system
product MSLite in
new and emerging
geographic markets

193

Table 5.2 BMM concepts used for automation building system

BMM concepts Description

Vision Desired_Result
1. Goal1: Be a market leader by supporting system with additional language

features, cultures and regulations;
2. Goal2: Use a third part seller the “Value Added Resellers” to increase its

sales.

Mission Course_ of_ Action
1. The “sales channels planning” strategy efforts towards achieving the second

goal.
2. The “sales channels expansion strategy” is aiming to allow sales channels to

be done through the “Value Added Resellers” in diverse locations and
manufacturers types.

3. The two strategies “language support management for the MSLite” and
“Regulations management” are developed for the first goal to allow support
international languages and different regulations into the MSLite system.

Directives 1. The insurance act of the “Building automation system” oversees the whole
building automation system processing and is linked to goals “Goal1” and
“Goal2”;

2. The privacy protection act protects usage of building automation system
information. Its strategy is to regulate and guide the management of
building automation system and information;

3. The interprovincial sales channels agreements are helpful in achieving the
first goal “Goal1” of entering new and emerging geographic markets.

Influencers 1. External influencers include: Suppliers and manufacturers. Facilities
managers, field system and resellers are main actors in the building
automation process;

2. Internal influencer could be Legacy information System, sales expansions
channels and total expansion costs.

Assessments 1. Strength:
a. Support from manufacturers

2. Weaknesses:
a. Large investment in non integrated systems
b. Unknown hardware commodities cost.

194

Table 5.3 BCT for automation building system

 Business context elements

What 1. Business goals

a. Enter new emerging geographic markets;

b. Expand sales channels through value added resellers.

2. High level problems and technological constraints

a. MSLite UI is not customized with most recognized languages;

b. Absence of web and communication tools;

c. MSLite system do not support field systems from different manufacturers;

d. Implementation language will be ‘C#’ and the implementation platform will be ‘.NET’;

e. System will support a management station software to manage the field systems;

f. System will be modified according to market’s languages, cultures and regulations;

g. Application will feature a HTML based web user interface and compatible at least with Internet

Explorer 5.5;

h. The integration of commercial off-the-shelf components is not possible due to budget

considerations.

3. High level quality needs

a. The overall vision for organization is to broaden market base by being an open general-purpose

management station that can be used with a wide variety of field systems (including eventually

third party (Adaptability);

b. Build an accessible building automation system product MSLite with modern technologies that

provides excellent user experience to satisfy advanced expectations by customers (Usability and

Adaptability and Satisfaction);

c. The system should also use web browser interfaces, which may even include building this

capability into the individual controllers. The MSLite components should be designed to use

Internet communications for sharing information with the rest of the system. Internet-based

communications should be specified to improve building operators' access to the system and to

improve system communications (Operability, Interoperability, Adaptability and Security);

d. The management station is deployed in critical environment and must satisfy increased

availability and security requirements (Security);

e. The management station must be deployable in environments with four figure user numbers

(Adaptability).

4. High level functional requirements

a. Manage the network of hardware-based field systems represented in FSS used for controlling

building functions;

b. Issue commands to configure the field systems and change values of their properties;

c. Define rules based on property values of field systems that trigger reactions and issue commands

to reset these property values;

195

Table 5.3 BCT for automation building system (follow)

 Business context elements

What d. Define alarm conditions similar to rules that when met trigger alarms notifying appropriate

user of life-critical situations.

5. Regulations and compliance

a. Certain regulations require all life critical systems to operate within specific latency

constraints. The system must be able to meet these latency requirements with a sufficient

margin.

6. Domain characteristics

a. Context of the system: Unified management system for the Building automation system of

different field devices;

b. Field devices: alarms, heating, ventilation, air conditioning, lighting, access and safety.

7. Political interests and organizational culture

a. Political interests: oriented towards a more recognized and unified management system;

b. Organizational culture: putting emphasis on flexible employers.

How Business strategies to achieve business goals

a. Modern technologies based on useful GUI that satisfy advanced expectations of customers;

b. Channels planning Strategy;

c. Sales channels expansion strategy.

Who Target stakeholders

a. Facilities manager;

b. Field system;

c. Resellers and building automation system user.

 Why 1. Current business

a. Outcome: Improve profit margins and be market leader in automations systems

2. Needs for target stakeholders to be met

a. Control and monitor building functionalities in a way that ensures functionality, efficiency,

privacy, reliability and simplicity.

3. Business mandate

a. Enter new emerging geographic market by modifying system to support different languages,

cultures and regulations. Languages could be non Latin characters and scripts written from

right to left and supporting regulations that require life critical systems to operate within

specific latency constraints;

b. Expand sales channels through value added resellers and support hardware devices from

different manufacturers. Support also conversions of non standard units used by different

field systems for rule evaluation and commands without errors and user intervention.

196

Description of SOQUAREM phases

Phase 1: State and identify the business goals of the system (Table 5.4)

• An organization wants to extend its automation system product MSLite in:

 New and emerging geographic markets;

 Expand sales channels through value-added resellers by letting resellers sell the

software system under their own brands.

• Resellers would support field systems from the manufacturers they choose.

• Figure 5.7 shows the concepts involved in this phase:

 BMM to define business goals by its “desired results” frame;

 BCT (Why and What questions) to structure and organize business goals;

 Consensus session to confirm business goals with stakeholders;

 Statement rules to verify if business goals are correctly defined.

• By applying the statement rule STR1(Table 4.10): “Each business goal is defined

according to the “Business mandate” item of BCT (Table 5.2) item and the “Desired

results” item of BMM (Table 5.3), 2 business goals BG1 and BG2 are defined (Figure

5.8).

Figure 5.7 Concepts of phase 1

197

Table 5.4 State and identify business goals for MSLite system

Figure 5.8 Business goals of the MSLite system

Phase 2: Refine the business goals (Table 5.5)

• MSLite was developed to support a wide variety of field systems (including an eventual

third party), international languages and regulations constraints.

198

• MSLite should use web browser interfaces and communication tools for sharing

information with other computer applications such as online weather-forecasting services

to improve building operators' access to the system.

• Use of an internet communications protocol XML may allow MSLite system to

seamlessly communicate with business enterprise software such as accounting and

business scheduling packages (Figure 5.10).

• Business goals are detailed according to additional business information such as

organizational culture, regulations and guidelines, technological constraints and business

strategies. Figure 5.9 shows the concepts involved in this phase:

o BMM defines refined business goals by its “course of action” and “directives”

frames;

o BCT (How and what questions) to structure and organize refined business goals;

o Consensus session to confirm refined business goals with stakeholders;

o Refinement rules to verify if refined business goals are correctly detailed.

• By applying the refinement rule RFR1 (Table 4.11): “Each business goal is detailed

according to technological constraints, existing regulations and compliance and high

level functional requirements”. The refined business goals are described with their

priority in the “Refined business table” (Table 5.6). Business goals and their refined

goals are represented in the utility tree (Figure 5.11).

199

Figure 5.9 Concepts of phase 2

Table 5.5 Refine business goals

200

Figure 5.10 How a web browser interface works
Extracted from Sustar et al., (2007)

Figure 5.11 Refined business goals of the MSLite system

201

Table 5.6 Refined business goals table

Business goal Goal refinement Priority

BG1: Enter a
new emerging
geographic
market:

It must be possible to modify the system to support different languages, cultures
and regulations.

BG1.1: Support several international languages
BG1.1.1: The system must allow changing all user interactions language to a
language of choice. This includes languages with non-Latin characters and
scripts written from right to left.

BG1.2: Support regulations that require life-critical systems, such as fire alarms,
to operate within specific latency constraints
BG1.2.1: Certain regulations and certifications require all life critical systems
such as fire alarms and intrusion detection systems to operate within specific
latency constraints. The system must be able to meet these latency requirements
with a sufficient margin.

M

H

BG2: Expand
its sales
channels
through value-
added
resellers.

To succeed in the Value Added Resellers market, the system must be able to
support hardware from different manufacturers. This includes existing and to
some extent future devices.

BG2.1: Support field systems from different manufacturers

BG2.2: Support conversions of nonstandard units used by the different field
systems
BG2.2.1: The field devices supported by the system can use different units.
These units can be different from the units used by the user when specifying
automation rules thresholds and commands. The system must be able to make all
required conversions for rule evaluation and commands without errors and
without user intervention

H

H

BG3: Increase
use of
Internet: Use
web browser
interface
which usually
runs on a
dedicated web
server.

Web browser interface allows a user to access and view the MSLite through the
Internet using a computer that is running web browser software. Users can take
advantage of this capability to monitor and control the MSLite in multiple
facilities from a single computer

BG31: Supporting the emerging standard XML for «MSLite», manufacturers
give their customers the flexibility to configure the system on their own, use a
configuration package from another manufacturer, or use a third-party software
package that supports XML as a file format, such as Microsoft Excel and
Microsoft Access. Because Microsoft is freely distributing its XML software
engine, it's much easier for manufacturers, software developers, or users to
create custom applications that read and write XML data, possibly even reading
proprietary configuration data files and exporting them in standard XML format.
BG311: The BACnet standard of MSLite will be added with XML and web
services in order to exchange data with other computing applications over a
network. One initial use of web services is to enable sophisticated functionality,
such as creating "virtual thermostats" that give users control over the
temperatures in their own areas. Use also web services to integrate BASs with
utility systems, which would implement control strategies based on real-time
pricing.

H

202

Phase 3: Link the business goals to corresponding quality attributes (Table 5.7)

Identify quality attributes of the MSLite system (Adaptability and Efficiency) and relevant

actors and actions to achieve them (QAs list in Table 5.8). Figure 5.12 illustrates the concepts

involved in this phase:

• BCT concept:

o WHO: target stakeholders to define relevant actors related to the QA;

o WHAT: high level quality needs to define the candidate quality attributes of the

system.

• BMM concept:

o External Influencer to define relevant actors related to the QA;

o Internal Influencer to identify relevant actions to achieve the QA.

• ISO/IEC 25030 used to infer the right quality attribute;

• Refined business goals to help identify relevant actions of the QA;

• Linkage rules to verify if QAs are correctly identified.

Figure 5.12 Concepts of phase 3

203

Table 5.7 Link the business goals to the corresponding quality attributes

By applying the linkage rule LNR1 (Table 4.12): “Each QA is derived according to high

level quality needs, the refined business goals, the target stakeholders and ISO/IEC

25030”, two QAs have been identified (Figures 5.13 and 5.14) (Adaptability and

Efficiency) and their actors responsible to achieve them (facility manager and field

system).

204

Figure 5.13 Application of the first linkage rule LNR1

Figure 5.14 QAs and their respective actors

205

Table 5.8 Quality attributes list

Business
goals

Refined business goals Priority Derived
QA

Relevant
actors

Actions

BG1: Enter
a new
emerging
geographic
market.

International language

BG11: Support several
international languages

BG1.1.1: The system
must allow changing all
user interactions language
to a language of choice.
This includes languages
with non-Latin characters
and scripts written from
right to left.

Latencies of alarm and
event propagation

BG12: Support
regulations that require
life-critical systems, such
as fire alarms, to operate
within specific latency
constraints

M

H

Adaptability

Efficiency

Facility
manager

Field
system

Add new
language

Modify the
language

Update a change
in property
value in all UI
screens

Notify property
value to the
MSLite system

Report the life-
critical alarm to
the concerned
users within 3
seconds of the
occurrence of
the event that
generated the
alarm

BG2:
Expand its
sales
channels
through
value-added
resellers

New field device system

BG2.1: Support field
systems from different
manufacturers

Non-standard units

BG2.2: Support
conversions of
nonstandard units used by
the different field systems

H

H

Adaptability

Adaptability

Facility
manager

Facility
manager

Add new field
system

Handle unit
from the added
field device

206

 Table 5.9 illustrates the confirmed quality attributes linked to business goals with interested

stakeholders (developer and business manager) during the application of the consensus

session. C/R is an abbreviation of Confirmed/Rejected.

Table 5.9 Confirm linkage of quality attributes with business goals

Phase 4: Build the QAs scenarios (Figure 5.15 and Table 5.10)

Build quality scenarios associated to the derived quality attributes by using:

• Structure of QAs scenario template (Table 4.9);

• QAs list and relevant actors and actions to achieve QAs (Table 5.8);

• The QAs scenarios are built as follows:

o Mapping the “Action” item of the scenario template to the relevant actions of the QAs

list;

207

o The “Asset” item of the scenario template is specified from the definition of the

refined business goals (Table 5.6).

• The priority of QA is defined according to its importance for the actor;

• For the derived QA “Adaptability” associated with BG1, 2 scenarios are built (Figure

5.16):

o Scenario1: (Add new language, UI);

o Scenario2: (Modify new language, UI);

• A consensus session is applied to confirm resulted quality scenarios with stakeholders.

• A utility tree of quality attributes corresponding to the MSLite system (adaptability and

efficiency) is represented in Figure5.17. Mapping between identified elements of BMM

(desired result, external and internal influencer) and those of the utility tree (quality

attributes, actors and actions) is also represented in the utility tree.

Figure 5.15 Concepts of phase 4

208

Figure 5.16 Scenarios build for Adaptability and BG1.1

209

Figure 5.17 Utility tree of quality attributes

210

Table 5.10 Quality attributes scenarios

Derived QA,
(Number of
scenarios)

Quality scenarios

Adaptability (2)

a. The system should support new language without any required

code modification.

1. Scenario 1 (add new language, UI)

2. Scenario 2 (modify new language, UI)

Efficiency (3)

a. A change in property value is detected by the field device and

notified to the MSLite system. The value is updated in all UI
screens that display the property value

1. Scenario 1 (update change of property value, system)

2. Scenario 2 (Notify change of property value, system)

b. An event which should trigger an alarm is generated in a field

device. A life-critical alarm should be reported to the concerned
users and displayed on the UI of all users that must receive it.

3. Scenario 3 (Report alarm, system)

Adaptability (1)

a. Add new field device system which should offer functionality

similar to the FFS. Extend the UI of the MSLite with the new
device configuration information.
1. Scenario 1 (add new field system, field device)

Adaptability (1)

a. Support conversion of the new connected field device (to the
system) using non-SI units

1. Scenario 1 (handle non standard units, field device)

211

Phase 5: analyze conflicts among quality attributes and consolidate them (Figure 5.18)

Figure 5.18 Concepts of phase 5

Some of the QAs may be found to conflict with each other while others appear to

complement or strengthen one another. In this phase, interactions among quality attributes

are evaluated in order to adjust the utility tree. The following steps are applied:

1. Build Impact matrix: shows in which way (negatively or positively) a quality attribute

impacts on the others. Whenever there is a negative contribution between quality

attributes there is a conflict. In this case, the efficiency of the system impacts negatively

on adaptability, operability and interoperability of the system with other internet

applications. Interoperability and operability may conflict with the security of exchanged

data. But interoperability and operability are likely to complement the adaptability of the

system to the new specifications (new language, new field system, non standard units

conversion and new configuration). On the utility tree, dotted lines marked by a plus or

minus signs are used to represent positive and negative interactions. The model can be

used by developers to identify the most beneficial QAs with the least conflict. An

example is shown in Figure 5.19.

212

Figure 5.19 Utility tree with conflicts

213

2. Attribute weights to conflicting quality attributes (Table 5.11): conflicts among

quality attributes could be resolved by attributing weights to the cells of the quality

attribute/actor matrix where the conflicting quality attributes apply to the same actors.

The values are given by the “developer” and the “manager” according to the importance

each quality attribute has for each actor. Used scales are based on the fuzzy logic [section

4.3.1, phase 5]. Using fuzzy values (very important, important, medium and low)

facilitates the stakeholders' task of attributing priorities to conflicting QAs. Therefore,

for an actor facility manager, for example, efficiency has a higher priority than

adaptability and interoperability (except for BG21) and adaptability has higher priority

than interoperability (except for BG11).

Table 5.11 Weighted method

Actor

QA/ RGBi

Facility manager

Field system

Efficiency/BG12 1,0 1,0

Adaptability

BG11 BG21 BG22 BG31

0,6 1,0 0,8 0,8

Security/BG33 0,7

Interoperability/BG
32

0,7

Operability/BG31 0,7

214

3. Resolve conflicts

Facility manager actor shows 3 conflicting situations between:

o Efficiency and adaptability;

o Interoperability and Security;

o Operability and Security.

These kinds of quality attributes impact negatively on each other and have the same weight

allocated to them (see the highlighted cells in Table 5.11). For the first very important

category of quality attributes (weighted at 1,0), the facility manager needs to handle the

alarm in time and define the new field system. For the second important category of quality

attributes (weighted at 0,7), on one hand, the facility manager needs to interoperate with

other internet applications and access the XML data. The third category, the facility manager

is required to read/write XML data in a secure way. To resolve these kinds of conflict

negotiation is needed among the stakeholders. One suitable solution is (Table 5.12):

o To lower the weight allocated to adaptability to 0.8 for the affected actor. This is

because efficiency is more important than adaptability. It is essential that the alarm is

handled at time even though the user may not see if the new field system has been

added.

o To lower the weight allocated to interoperability to 0.6 because in this case it is

essential to ensure the security of exchanged data before interoperating with other

applications.

o To lower the weight allocated to operability to 0.5 because in this case it is essential to

communicate with other applications in a secure way then read or write the XML data.

215

Table 5.12 Resolve conflicts among QAs

Actor

QA/ RGBi

Facility manager

Field system

Efficiency/BG12 1,0 1,0

Adaptability

BG11 BG21 BG22 BG31

0,5 0,8 0,8 0,8

Security/BG33 0,7

Interoperability/BG
32

0,6

Operability/BG31 0,5

In summary, operability is judged to have less priority than security and interoperability,

so it may be acceptable to have operability partially satisfied in order to achieve

satisfaction of the security and interoperability NFRs, as shown in Figure 5.20 (labels

(P) for partially satisfied and (S) for satisfied). The final utility tree to be linked with the

functional process is presented in Figure 5.21. Table 5.13 shows the QAs description

template for the efficiency QA.

216

Figure 5.20 Utility tree with “Operability” partially satisfied

217

Figure 5.21 Consolidated utility tree

218

 Table 5.13 Quality attributes template

Items Description

Name Efficiency

Description Support regulations that require life-critical systems, such as fire alarms,
to operate within specific latency constraints

Category External quality

Source Stakeholders, BMM and vision document

Target
stakeholders

Business manager, developer and evaluator

Quality
standard used

ISO/IEC Square 25030

Priority High for Business manager
Medium for Developer
High for Evaluator

Representation

BG1:enter
new
emerging
geographic
markets:

BG12:
latencies of
alarm and
event
propagation

Field system

Facility manager

1. Scenario 1 (update
change of property
value, system)

2. Scenario 2 (Notify
change of property
value, system)

3. Scenario 3 (Report
alarm, system

1. Scenario 1 (handle
alarm, system)

Requirements Functional requirements (described in the use case model)

Activities and
phases
Standards

Architecture, testing
ISO/IEC Square 25030 and ISO/IEC 14598

Models and
processes

Use case and business domain models

Impact (-) to Adaptability, (-) to Interoperability, (-) to Operability

219

Phase 6: link quality attributes to functional requirements

The utility tree is mapped to use case and business domain models of MSLite system by

using “Mapping rules” (Figure 5.22 with main concepts involved in phase 6).

Figure 5.22 Concepts of phase 6

Quality attributes are linked to the functional requirements in two ways:

1. By the use case model (Figure 4.16): from the consolidated utility tree (Figure 5.21),

map the actions of quality attributes scenarios to candidate use cases of the functional

process. The original use case model (Figure 5.3) is adjusted to the new model (Figure

5.23). The new added uses cases are:

a. Define language;

b. Handle NS-units;

c. Configure the system;

d. Report life-critical alarms;

e. Update change of value.

220

Figure 5.23 Extended use case model with Adaptability and Efficiency scenarios

2. By the business domain model (Fig 4.17): the business domain model of Figure 5.4 is

extended with quality attributes concepts. The following actions are undertaken by the

actor facility manager in the quality scenarios (Figure 5.21):

1. Define field system language;

2. Convert field system in new “NS units”;

3. Configure system with internet communications capability.

These actions are mapped to the following business concepts in the business domain model

(Figure 5.24):

221

1. International language;

2. “NS-Units”;

3. Field system which already exists;

4. Web browser package.

Relationships of the facility manager with the mapped business concepts are:

1. Defines: between the facility manager with International language;

2. Converts: between the facility manager and the NS Units concept;

3. Configures: between the facility manager and the Web browser package.

Figure 5.24 shows the extended business domain model with business concepts.

Figure 5.24 Extended business domain model with new business concepts

222

It is possible to define the “Adaptability” view which is projected from the added business

and relationship concepts (Figures 4.18 and 5.25). For example, the “facility manager”

concept is related to three added business concepts: “International language”, NS-Units and

“Web browser package” by the three relationship concepts (defines, converts by and

configures).

The second quality view to be projected from the added business concepts “constraints” and

“regulations” is “Efficiency” view where business concept “Alarm” is related to business

concepts “Regulations” and “Constraints” by the relationships concepts (require and

operates). In fact, alarm is supported by regulations requiring its operation under certain

latency constraints. Figure 5.25 shows the quality views (Adaptability and Efficiency)

projected from the added business concepts (for the building automation system).

Figure 5.25 Quality views of new business concepts

223

5.1.4 Analysis of SOQUAREM process

SOQUAREM process was evaluated by professionals and experts from the requirements

engineering community in order to know the extent of addressing quality requirements. The

task was not easy since the evaluation of the whole process requires several steps difficult to

perform during the mandate of this thesis. In this section, an evaluation step was suggested in

two ways: a) by interviewing and obtaining feedback from participants of the ISSEM 2011

Workshop via a survey (Annex II-1); and b) by gathering feedback from international

software quality experts (Annex II-2).

1. Interviewing the participants of the workshop: performed via a questionnaire

conducted with quality engineering participants (PHD students, architects and

practitioners) to get valuable feedback on applicability, appropriateness,

understandability and completeness of SOQUAREM process (the four phases of the

process have been evaluated and responses were collected from four participants (Annex

II-2)). The objective was to identify to what extent SOQUAREM addressed the chosen

quality requirements management activities: identification and representation. Hence, an

evaluation was made to see if the used concept at each activity of the process was

adequately applied (if the concept is applied in the example according to its definition),

appropriately used (if the concept is applied in the right and corresponding place) in the

example and easily understandable (the concept is applied in the example without much

cognitive workload). Missing elements (elements have been missed from the use of the

concept) were acknowledged from the process related to these criteria. Questions were

categorized into four major evaluation criteria:

i. Applicability of SOQUAREM process (phases, concepts and techniques) in terms of

identification, representation, traceability and documentation;

ii. Appropriateness of the way SOQUAREM process used concepts and techniques;

iii. Understandability of concepts during application of SOQUAREM process activity;

iv. Completeness of SOQUAREM process according to the used concepts and

techniques.

224

More specifically, SOQUAREM has been evaluated from different axes:

1. Activities of SOQUAREM and the used concepts at each activity and phase of its process

(Annex II-1-2: Tables A II- 3 and A II-4);

2. Applicability of the method according to chosen criteria from literature (Annex II-1-2 and

Table-A II- 7);

3. Dealing with software quality (Annex II-1-2 and Table-A II- 8);

1.1 Activities of SOQUAREM and the used concepts at each activity and phase of

SOQUAREM

1.1.1 For the identification activity: collected responses from the participants are given

for the four evaluation criteria: Applicability, Appropriateness, Understandability

and Completeness: see Tables 5.14-5.17 and Figures 5.26-5.29. See also Annex II-1-

2: Table-A II- 3 and Annex II-2.The following scale is used: 3 = very good concept;

2= fair concept and 1= poor concept.

Table 5.14 Applicability of concepts for the identification activity

Response

no

Applicability

of BMM

Applicability of

BCT

Applicability of

Scenarios

template

Applicability

of

transformation

rules

Applicability

of ISO/IEC

9126

Response 1 3 3 1 3 3

Response 2 3 3 2 3 1

Response 3 2 2 3 3 1

Response 4 3 1 2 2 3

The scenario template is not a concept used in the identification activity during the first

phases of the process: 1, 2 and 3. It has been introduced in this evaluation to know if

participants have read and understood SOQUAREM process. One of the participants has

identified this error (the participant 1 Annex II-2-1).

225

Figure 5.26 Responses of participants about applicability of concepts

One can say that BMM and transformation rules are the most adequately applied concepts.

The BCT concept is in second position. The scenario template and the quality standard

follow.

Table 5.15 Appropriateness of concepts for the identification activity

Response

no

Appropriateness

of BMM

Appropriateness

of BCT

Appropriateness

of Scenarios

template

Appropriateness

of

transformation

rules

Appropriateness

of ISO/IEC

9126

Response1 3 2 1 3 3

Response 3 3 2 3 1

Response 3 2 2 3 3 2

Response 4 1 3 2 1 3

226

Figure 5.27 Responses of participants about appropriateness of concepts

The transformation rules and BCT concepts are the most appropriately used, followed by the

BMM and ISO/IIEC 9126 quality standard. Finally, the scenario template is in third position.

Table 5.16 Understandability of concepts for the identification activity

Response no

Understandability

of BMM

Understandability

of BCT

Understandability

of Scenarios

tempalte

Understandability

of transformation

rules

Understandability

of ISO/IEC 9126

Response 1 3 2 1 3 2

Response 2 3 3 1 3 1

Response 3 2 2 2 2 1

Response 4 3 3 2 2 2

227

Figure 5.28 Responses of participants about understandability of concepts

BMM is an easily undertsandable concept, then come the BCT and transformation rules.

Finally, the scenario template and the quality standard are in third position.

Table 5.17 Completeness of concepts for the identification activity

Response
no

Completeness
of BMM

Completeness of
BCT

Completeness of
scenarios template

Completeness
of

transformation
rules

Completeness of
ISO/IEC 9126

Response 1 2 3 1 3 3

Response 2 3 3 1 3 1

Response 3 2 2 3 3 2

Response 4 2 3 3 2 3

228

Figure 5.29 Responses of participants about completeness of concepts

The BCT and transformation rules have no major missing elements. In second position,

BMM and ISO/IEC 9126 quality standard and finally the scenario template is quoted in third

position.

From collected responses, one can say that SOQUAREM addresses well the identification of

QAs by the following concepts:

• BMM, “Transformation rules” and BCT are the most adequately applied, and easily

understandable concepts;

• BCT, “Transformation rules”, BMM and ISO/IEC 9126 are the most appropriately used

concepts. They are also applied without major missing elements that contribute to

identify the QAs;

• The scenario template concept was not well ranked by participants for the identification

activity because it is not used during phases 1, 2 and 3 of SOQUAREM process.

229

1.1.2 For the representation activity: collected responses from the participants are given

for the four evaluation criteria: applicability, appropriateness, understandability and

completeness: see Tables 5.18-5.21 and Figures 5.30-5.33. See also Annex II-1-2:

Table-A II- 4 and Annex II-2.

Table 5.18 Applicability of concepts for the representation activity

Response no Applicability of Utility tree Applicability of Scenarios template

Response 1 3 1

Response 2 3 2

Response 3 3 3

Response 4 3 2

Figure 5.30 Applicability of concepts

Table 5.19 Appropriateness of concepts for the representation activity

Response

no

Appropriateness of Utility

tree

Appropriateness of Scenarios

template

Response 1 2 1

Response 2 3 2

Response 3 3 3

Response 4 3 3

230

Figure 5.31 Appropriateness of concepts

Table 5.20 Understandability of concepts for the representation activity

Response no

Understandability of Utility tree Understandability of Scenarios

template

Response 1 3 1

Response 2 3 1

Response 3 3 2

Response 4 3 3

Figure 5.32 Understandability of concepts

231

Table 5.21 Completeness of concepts for the representation activity

Response no Completeness of utility tree Completeness of scenarios template

Response 1 2 1

Response 2 3 1

Response 3 3 2

Response 4 3 2

Figure 5.33 Completeness of concepts

From collected responses, one can say that SOQUAREM addresses well the representation of

QAs by its involved concepts. Compared to the scenario template concept, the utility tree is

the most adequately applied, easily understandable and appropriately used concept. It is also

used without any missing elements that contribute to represent QRs.

232

In this section, one observes that:

• SOQUAREM is able to identify quality attributes by its used concepts like BMM, BCT
and “Transformation rules”;

• SOQUAREM is also able to represent quality attributes by its used concepts like utility
tree and scenario template;

• Concepts are adequately applied, appropriately used in the example and easily
understandable. Concepts are also used without major missing elements that could
contribute to represent the QAs;

• The scenario template has been evaluated as a very good concept (applicability,

appropriateness and understandability) for phase 4 of SOQUAREM process (Annex II-2-

1);

• The utility tree concept describes the traceability between quality attributes and business

goals very well.

1.2 Applicability of the method according to chosen criteria from literature

Collected responses are illustrated in Tables 5.22 and Figures 5. 34. See also Annex II-1-2:

Table-A II-7 and Annex II -2.

Table 5.22 Applicability of SOQUAREM

Response no Adaptability to

QRs

Client acceptance Complexity Scalability

Response 1 3 3 3 3

Response 2 3 2 2 2

Response 3 3 1 2 3

Response 4 3 3 2 3

233

Figure 5.34 Criteria for applicability of SOQUAREM

SOQUAREM has been evaluated according to four criteria: adaptability to QRs; client

acceptance; complexity and scalability. “Adaptability and “Scalability” have been well

accepted by evaluators. For “complexity“, the method is simple to understand but requires

time. For the “client acceptance”, one notes that clients never have time to read

SOQUAREM and its use will demand time. In addition, it is important to tell customers why

QAs are important.

1.3 Dealing with software quality

This section collected responses from participants about ability of SOQUAREM to deal with

software quality and how it is possible to improve its process, challenges and further

comments (Annex II-1-2: Table-A II-8 and Annex II -2). They are presented as follows:

1. SOQUAREM allows one to:

o Represent in a very structured and simplified way all the relevant concepts;

o Trace back to the high level needs that caused each QA;

o Prioritize the development effort by QAs requirements management and change

request;

o Easily understand its use but it is time consuming because managers do not have the

time to define goals clearly;

234

2. SOQUAREM will be improved by developing an automated tool and measuring its

benefits from real cases;

3. Strengths of the method are: utility tree concept, very structured methodology, easy to

apply (taking one hour (Annex II.2.3 section “Other findings”));

4. It could be used in an academic environment to introduce to students;

5. Threats to SOQUAREM are: how it links to agile methods (Annex II.2.3 section “Other

findings”);

6. It is important to market the method and link it to a QAs model and measurement

process;

7. It is also suggested to market the present advantages of QAs requirements management;

8. The challenges of applying SOQUAREM are foreseen in costs and time for gathering

requirements. It also requires an additional effort from the requirements professional to

encourage some companies to be more involved in the software QRs management

process.

2. Feedback from the potential experts in the software quality field: obtain valuable

feedback from experts in the quality software engineering field. SOQUAREM has been

submitted and revised by international software quality experts (A list of experts is

presented in Annex II-2, only three experts have given their feedback). Results collected

from the experts revealed the following points:

1. SOQUAREM is well structured and easy to read;

2. The concepts used in SOQUAREM could improve derivation of quality attributes

from business goals especially BMM and BCT concepts;

3. The QAs template needs some improvements:

a. Representation of the quality scenarios and their prioritization;

b. Detail more activities of the software life cycle and phases of the software

process standards.

4. Resolving the conflicting attributes is very important and difficult to implement.

235

5.2 Conclusion

The present chapter described in an illustrative example the application of SOQUAREM to

the MSLite system, a unified management station for the building automation domain.

At first, the main inputs/outputs of SOQUAREM process were defined, followed by a

detailed description of the application of SOQUAREM phases to MSLite system.

Later, SOQUAREM method was analyzed and evaluated in two ways:

1. Interviewing experts of the ISSEM 2011 workshop via a survey and collecting their

feedback;

2. Gathering feedback of the international software quality domain experts.

Analysis revealed the importance of a structured and easy to use process by

practitioners. Results also show the valuable contribution of used concepts such as:

BMM, BCT, utility tree and scenario template in the management of quality

requirements (identification, representation and traceability).

The next chapter concludes this thesis document

CONCLUSION

A. Summary of investigations

This thesis presented and described a software quality requirements engineering method

called SOQUAREM (SOftware QUAlity Requirements Engineering Method). Its main

objective is to support identification and representation of quality requirements at the

definition phase of a software product. SOQUAREM is born from the ideas of: a) the

motivation of the business which contributes to align business specifications to system and

user requirements; b) supporting QRs management techniques by quality standards; c)

providing clear and structured guidance on how to elicit, document and retrace QRs and d)

integrating the software QRs specifications into the functional process. It provides a general

conceptual model which derives quality attributes from business goals and ensures their

properly detailed definition. SOQUAREM addressed the challenging aspects of software

QRs management such as identification (of business and software) requirements, conflicts

resolution and prioritization, representation and traceability, specification and documentation

of QRs. Dedicated to address all types of quality requirements, SOQUAREM provides

structured engineering process phases supported by the ISO/IEC 25030 standard and

concepts of different organizational levels to systematically define and represent quality

requirements.

The conceptual model of the method has been detailed including:

1. Business concepts such as BMM (Business Motivation Model) and BCT (Business

Context Table);

2. Transformation rules (statement, refinement and linkage) to identify and derive

important quality attributes according to ISO/IEC 25030 taxonomy;

3. Scenarios concept to infer the right quality attribute;

4. Utility tree to retrace quality attributes to their original requirements;

5. QAs template to specify and document quality attributes;

238

6. Mapping rules to integrate quality attributes into the functional model;

7. Finally, consensus sessions used at each process phase to interact with stakeholders

and domain experts.

The different phases of the software QRs engineering process of SOQUAREM are described

in the following levels:

• Business level: where business goals are identified and refined according to business

context elements (phases 1 and 2 of the process);

• System level: where:

a. The business goals are used to derive and infer the right QAs by using ISO/IEC

25030 quality standard, linkage rules and scenario template concepts (phases 3 and 4

of the process);

b. QAs are analyzed for conflicts and consolidated according to the prioritized methods

(impact matrix and weighted method) and the consensus sessions to select and

confirm the most suitable QAs (phase 5 of the process);

c. QAs are mapped to the functional requirements process by using the mapping rules

and scenario template concepts. The initial use case model is updated with additional

information about QAs (phase 6 of the process).

SOQUAREM concepts have been applied and illustrated in an example: “a building

automation system” and a management station system called MSLite. In this example,

SOQUAREM process has been applied to the MSLite system to deal with its high level

technological constraints and meet the associated high level quality needs. Inputs to

SOQUAREM process are: functional requirements (FRs), the BMM and BCT concepts and

the main output were the list of quality attributes for MSLite system which were integrated in

the use case and business domain models of the organization.

239

The main purpose of the example is to show that it is possible to manage QRs by performing

subsequent refinement phases and verification rules from the abstract business goals to the

detailed quality attributes.

SOQUAREM has shown its merits in this example and relevant feedback from international

software quality domain experts and participants of the workshop ISSEM 2011 (section

5.1.4) demonstrated success points of this method.

B. Key Contributions

This research created a quality requirements engineering method for software product

systems. The major contribution is the creation of the first structured quality requirements

engineering process which:

1. Is designed from the foundations of the quality engineering standard ISO/IEC

SQuaRE 25030;

2. Describes fully the derivation of quality attributes from business goals;

3. Integrates intuitive modeling and motivation of the business in the quality process in

order to:

a. align business specifications with system requirements and architectural

design;

b. derive and define quality attributes from business context elements;

c. build the bridge between business and system level specifications;

4. Provides more interaction with stakeholders and domain experts during consensus

and free dialogue sessions;

5. Integrates many concepts of recognized methods and standards to adequately manage

software QRs such as utility tree of ATAM method and BMM standard of OMG;

6. Allows the integration of quality requirements into the functional process;

7. Integrates scenarios at the requirements level to help resolve terminology problems

and infer the correct quality attributes;

240

Various contributions documented in this thesis have been published at conferences and in

journals. The list follows:

Conference Papers

Published

1. Djouab R., Suryn W. (2006) “An ISO/IEC standards-based quality requirement definition

approach: Applicative analysis of three quality requirements definition methods”. ISIE

2006 Annual Conference of the IEEE Industrial Electronics Society. 9-13 July 2006. Page

(s): 3231 - 3239. Montreal, Que.

2. Djouab R., Suryn W. (2007) “Analysis of a probabilistic quality method for evaluation of

non functional requirements” was published for ICSSEA International Conference on

Software and Systems Engineering and their Applications. 4-6 December 2007 -

Conservatoire National des Arts et Métiers - Paris, France

3. Djouab R., Suryn W. (2007) “Applicability analysis of two quality requirements treatment

methods: IESE NFR and FDAF” was published for ICSSEA International Conference on

Software and Systems Engineering and their Applications.4-6 December 2007 -

Conservatoire National des Arts et Métiers - Paris, France

4. Djouab R., Suryn W. (2011) SOQUAREM: SOftware QUAlity Requirements Engineering

Method was published for SQM Conference on Quality Management. 18-20 April

2011. Loughborough University, Leicestershire, UK.

5. Djouab R., Suryn W. (2011) Applicability of SOQUAREM method: "an illustrative case

study” was published for SQM Conference on Quality Management. 18-20 April

2011. Loughborough University, Leicestershire, UK.

241

Journal Papers

Submitted

1. Djouab R., Suryn W. (2012) “The bridge between business and system level

specifications: SOftware QUAlity Requirements Engineering Method (SOQUAREM)”.

RE 2012 journal. Reference number: RE388.

2. Djouab R., Suryn W. (2012) “Analysis and improvement of the IESE NFR method”. RE

2012 journal. Reference number: RE389.

3. Djouab R., Suryn W. (2012) “How could BMM and GQM contribute together to capture

quality attributes for the software product?” RE 2012 journal. Reference number:

RE391.

C. Implications for software engineering theory

The quality requirements process opens a new research avenue to the development and

management of quality requirements at early stages of development (requirements and design

process). Once published, it will be a good enrichment for SWEBOK with software QRs base

knowledge and will provide benefits to International Standards Organization ISO/IEC

SC7/WG6.

Compared to existing quality methods, this research introduced:

1. Novel quality requirements engineering process called SOQUAREM for product

software (chapter 4.2);

2. Novel quality engineering concepts including scenario template and transformation rules

(statement, refinement, linkage and mapping rules) (section 4.1.2).

242

D. Practical implications

The results of this research have practical implications for the software engineering

community. The proposed SOQUAREM method will offer to industry the facility to manage

software QRs (by using a structured QRs process) to obtain the product software systems

with the desired quality attributes that conform to the most recognized software quality

engineering standards (ISO/IEC SQuaRE 25000).

The use of various concepts will offer industry a flexible model to understand management

of software QRs and how to deal with them appropriately. Application of the business

concepts BMM and BCT will provide a better understanding of the motivation of business.

Scenario template will allow understanding the purpose of each quality attribute while the

utility tree will provide an easy way to retrace quality requirements to their original business

requirements. Moreover, consensus sessions will improve communication between quality

practitioners and stakeholders. Alignment between business and functional requirements will

facilitate the specification of architectural styles and increase mutual understanding between

software architects, business managers and quality practitioners.

E. Limitations and strengths

SOQUAREM has been developed to support quality practitioners and software engineers in

identifying and representing quality attributes of the software product. It is easy to apply but

requires time and effort to become familiar to interested stakeholders. SOQUAREM process

also offers to stakeholders an opportunity to learn more about QAs and to integrate them in

their business process.

Current limitations of SOQUAREM include:

• A need to develop more the transformation rules (section 4.2.1.6) and the QAs database

(section 4.2.1.3);

243

• SOQUAREM process has been evaluated partially and there is a need to evaluate the

whole process with more standards/methods;

• SOQUAREM needs also to be evaluated in a real case (industrial context);

• There is a need for a supporting software tool to better improve communication among

interested stakeholders;

• There is a need for the most recognized prioritization methods and automated modeling

systems for conflict resolution support like AHP (Analytical Hierarchy Process) and S-

COST (Software Cost Option Strategy Tool);

• SOQUAREM does not define measures for the defined QAs;

• There is a need for the academic environment to support to introduce SOQUAREM to

students and the scientific community in order to contribute to the design of quality

processes in organizations;

Further research is required to address these limitations, one by one.

The strengths of SOQUAREM method are:

• SOQUAREM process could be easily used by beginners as well as experts;

• SOQUAREM supports identification of QRs at early stages of the software life cycle;

• SOQUAREM supports communication and increases mutual understanding among

stakeholders;

• SOQUAREM supports integration of QAs into the functional process;

• SOQUAREM supports alignment of business specifications with functional

requirements.

244

F. Further research

Possible continuation of this research includes:

1. Application and validation of SOQUAREM in an industrial context;

2. Integration of the measures in the SOQUAREM process according to the updates of

ISO/IEC 25030;

3. Development of a supporting IT tool that automates the SOQUAREM process and

shows relevant parts of SOQUAREM process model;

4. More development of the mapping between the ISO/IEC 25030 concepts and the

SOQUAREM process;

5. More rework and development of the transformation rules;

6. Further work on the mapping rules and the integration process of the QAs into the FRs

process;

7. Evaluation of the applicability of SOQUAREM process through applying appropriate

ISO/IEC standards;

8. Supporting SOQUAREM process with prioritization methods and automated modeling

systems like AHP (Analytical Hierarchy Process) and S-COST (Software Cost Option

Strategy Tool);

9. Deployment of the questionnaire on QRs engineering practices in a large industrial

spectrum;

10. Integration of SOQUAREM process with software engineering processes/methods such

as agile methods, RUP (Rational Unified Process), RAD (Role Activity Diagramming),

Architecture centred design and ATAM (Architectural Trade Off and Analysis Method).

ANNEX I

QUESTIONNAIRE ON QRS OF THE SOFTWARE PRODUCT

 Annex I is divided into two parts. The first part describes the questionnaire and its sections.

The second presents the row data collected from the interviewed experts.

I.1 Description of the questionnaire

This part describes the purpose of the questionnaire and its important sections

I.1.1 Purpose of the questionnaire

Dear Sir / Madam

We are studying quality requirements for software, particularly quality requirements in the

software development life cycle.

This survey is aimed at identifying quality requirements used in industry which will help

identify critical needs in this field, as well as the difficulties faced with their processing.

Results of the survey will be useful for identifying the best software engineering practices in

use. Your contribution is important to the success of our research objective. Gathered data

will remain confidential and all data will be made anonymous.

We thank you in advance for your participation as part of our research.

This survey starts with a series of questions regarding the person completing the survey. This

includes information such as the number of years of experience in the field of quality

requirements for software.

Next, a series of questions related to processes, methods, software quality engineering

standards and stakeholders interested in quality requirements.

246

Please answer questions based on your experience in the field of software product quality.

Additional information may be written in the space provided.

It should take nor more than 30 minutes to answer this survey.

Participants may have a copy of any findings if they desire. If you have questions about the

follow up of the survey or you have any concerns about the research, please do not hesitate to

contact me at my email address below. If you want to see a summary of the results, I can

send them at the end of August.

Thank you

Rachida Djouab

Ph.D. Eng.Student

===

Dept of SW and IT Engineering

École de Technologie Supérieure – ÉTS

1100 Notre-Dame Ouest

Montréal, Québec, Canada H3C 1K3

rachida.djouab.1@ens.etsmtl.ca; rdjouab@hotmail.com

247

I.1.2 Description of sections on the questionnaire

Sections of the questionnaire are listed as follows:

1. Identification of the respondents (Table- A I-1);

2. Companies and stakeholders (Table- A I-2);

3. Processes (Table- A I-3);

4. Methods (Table- A I-4);

5. Standards (Table- A I-5).

248

Table- A I-1 List of domain experts

FORM Of IDENTIFICATION OF THE RESPONDENTS

Family Name: ____________________________ Forename (s): ____________________________
Date (dd/ mm /yyyy: ____ / ____ / ________27 September 2012

Questions Answers

1. What is your position within your organization

nowadays?

� Project administrator
� Project manager
� Developer
� Quality engineer
� Quality assurance manager
� Others, specify ____________________________
� Comments

2. How long have you been worked in the area of

software quality requirements (in years)?

� Less than 1 year
� 1-3 years
� Over 3 years
 Others, specify____________________________
 Comments

3. What are your responsibilities?

1.

� Planning of software
� Design of software
� Specification of software
� Programming and test
� Construction or Installation
� Maintenance of software
� Test of software
� Others , specify____________________________

� Comments

249

Table- A I-2 Companies and stakeholders

COMPANIES AND STAKEHOLDERS SECTION

This section collects information on activity fields of companies and the important stakeholders that can
be interested by the processing of quality requirements of the software product.

Questions Answers

1. Are you working for:

� a small part of a bigger company
� a small part of a smaller company
� a big part of a bigger company
� a big part of a smaller company
�Other, please specify__________________________________
� Comments ___

2. What does your company do?
Please specify the following activity
domains? For example:
For the largest part, add 1 asterisk
next to the activity domain
*� For the most important
part, add 2 asterisks **�
For the relevant ones, add 3
asterisks, ***�

2.

�Aeronautics
�Electronics
�Banking
�Education
�Research and development
�Health
�Security
�Others, specify ________________________
� Comments ___

3. What types of projects and software
are developed by the company?
Please specify the relevant ones.
For the most important, please add an
asterisk next to them?

�Systems
�Real time
�Business
�Scientists
�Embedded
�Personal
�Internet based
�Others, specify ________________________
� Comments __
 __

4. What is the business critical level of
your software products? (For
example if the software product is
related to critical systems such as fire
systems and nuclear systems).

�critical
�no critical
�Others, specify __________________________
� Comments __
 __

250

COMPANIES AND STAKEHOLDERS SECTION

5. Who are the stakeholders interested

in processing of quality
requirements?

� Department of software development?
�Department of IT or business operations?
�Department of management
�Department of marketing
�Department of sales
�Others, specify ________________________
� Comments ___

6. Who is responsible for managing

quality requirements for a specific
software development project?"
Please, specify his experience?

� Comments

__
 __
 __

Quality responsible Experience (years)
� Project administrator
� Project manager
� Software or systems developer
� Quality engineer
� Others, specify ________________

�Under 1 year
�1 year and more
� Others, specify

_

7. Please, specify the type of training
given in software quality for the
several people?

� Comments
__

 Norms and
standards

Processes and
methods

Software
tools

Ot
her
s

Project
administrator

Project
manager

Software or
systems
developer

Quality
engineer

Others,
specify:_____
_

251

Table- A I-3 Processes

SECTION ON PROCESSES

This section collects information on the existent processes dealing with quality requirements of the
software product

Questions Answers

1. In your organization, do you use a
quality requirements process?
(Identification, specification,
representation, documentation and
prioritization or others)? Please specify the
most accurate answer?

1. Use all the time
2. Use sometimes
3. Have done but stopped
4. Plan to but not yet
5. No plans to
 Comments:

__

2. If your organization uses a quality
requirements process, please specify which
of the following activities are performed
by your process? If there are most
important activities, please add an asterisk
next to them?

�Identification of quality requirements
�Specification of quality requirements
�Representation of quality requirements
�Prioritization of quality requirements
�Documentation of quality requirements
�Comments __
 __

3. Is the quality requirements process
supported by software tools?

�From Rationale software Inc.
�Internally developed
�No, we do not use a software tool
�Comments ___

4. Could a structured and well defined
quality requirements process improve the
quality of your projects? Please provide
your personal opinion.

� Yes [for example, we need to identify quality attributes, represent
them and document them]

� No___

� N/A__
� Comments:

252

Table- A I-4 Methods

SECTION ON METHODS

This section collects information on the existent methods of quality requirements processing of the
software product

Questions Answers

1. In your organization, are
quality requirements
identified according to
specific methods (for
example using interviews
with stakeholders to
identify most quality
attributes of the software
product)/ techniques (or use
checklists to elicit and
document them)?

� Questionnaire
� Brainstorming
� Observations
� Meetings
� Interviews
� Checklists,
� Internal methods of organizationNo, we do not use any identification

method
� Comments

__

2. In your organization, do

you use a specific method
to decompose quality
requirements into quality
attributes?

� Quality model

� Tree
 __

� Graphical notation

� No, we do not use any decomposition method

� Comments __

3. In your organization, are
quality requirements
documented according to a
definite formalism?

�In a requirements specification document (RSD)________________________

�In Template___

� No, we do not use any documentation formalism

� Comments __

If your organization deals with
quality requirements:

4. Could you specify the size

of your software projects
(SWPs)? KLOC (Kilo or
thousands Lines of Code),
Please specify the most
important ones?

 Small Medium Big Mega
Size of
SWP1

< 50 KLOC

50-300
KLOC

300-1M.
KLOC

>1M.
KLOC

Size of
SWP2

Size of
SWP3

253

SECTION ON METHODS

This section collects information on the existent methods of quality requirements processing of the
software product

� Comments

__

__

5. Could you specify the total
effort for the software
projects (SWPs) (e.g. three
people for two weeks, one
person for 10 weeks)?

� Comments

 Small Medium Big Mega

Effort of
SWP1

Person
Day
Week

Person
Week
Month

Person
Month
Year

Person
Year

Effort of
SWP2

Person
Day
Week

Person
Week
Month

Person
Month
Year

Person
Year

Effort of
SWP3

Person
Day
Week

Person
Week
Month

Person
Month
Year

Person
Year

6. Could you specify the
hierarchy of levels of
authority of your software
projects (SWPs)?

� Comments

__
 __

 __

 Small Medium Big Mega

Hierarchy
of level of
SWP1

1 level 2 levels

> 2 levels >>

Hierarchy
of level of
SWP2

Hierarchy
of level of
SWP3

254

SECTION ON METHODS

This section collects information on the existent methods of quality requirements processing of the
software product

7. Could you specify the

duration of your software
project?

� Comments

__
 __

 Small Medium Big Mega

Time for
SWP1

< 2 years 2-3 years 3-5 years >5 years …

Time for
SWP1

Time for
SWP1

255

Table- A I-5 Standards

SECTION ON STANDARDS

This section collects information on the software quality engineering standards of the software product
used in industry

Questions Answers

1. In your organization, is
the quality requirements
process supported by a
quality standard?

��ISO / IEC 9126__
 __

��ISO / IEC 14598___

� IEEE Std 830__
 __

� Comments

If your organization uses a
quality standard, please
specify?

2. Who is responsible for the

application of this
standard and for how long
have they been
responsible?

� Comments
__

Responsible for standard How long (years)
��Project administrator
��Project manager
��Developer
��Engineer quality
��Quality assurance manager
��Others, specify

If your organization uses ISO /
IEC 9126 quality
standard, please specify?

3. Used parts of this
standard?

4. Frequency of their
utilization (by number
of Projects)?

� Comments

Parts of ISO / IEC 9126 frequency (number of
times by number of
projects)

�� Quality Model
��Internal Quality
��External Quality
��Quality in use
��Others, specify

5. If your organization
does not use a quality
standard, is there a need
to define it? Please
specify?

� Yes
� No__

� N/A___

� Comments

Please give me your email address if you wish to have a copy of the results.

256

I.2 Collected data from experts

The collected data for the QRs sections are listed in the following tables and the specialists

who distributed the survey in their respective industry are listed.

RespondentID CollectorID StartDate EndDate

1482098231 20159947 07-13-2011 07-13-2011

1474048025 20159947 07-05-2011 07-05-2011

1473558661 20159947 07-04-2011 07-05-2011

1469997474 20159947 06-29-2011 06-29-2011

1469951280 20159947 06-29-2011 06-29-2011

1468644722 20159947 06-28-2011 06-28-2011

1468630975 20159947 06-28-2011 06-28-2011

IP Address Email Address First Name LastName

211.244.1.2

210.205.122.190

210.205.122.190

174.94.91.54

174.94.91.54

174.94.91.54

174.94.91.54

Column1 Column2 Column3 Column4
Custom Data Your details What is your position within your

organization nowadays? Please select
the best match or add an alternative.

 Family name Forenames(s) Response

 AHN sunho

 Kim Seong wook Developer

 Yang Sungname Other, please specify

 McTeigue Jerome Other, please specify

 From Italy Quality engineer

 Howard Leanne Quality assurance manager

 M Taleb Quality engineer

 Nicola Iacovelli Quality assurance manager

257

Column1 Column2 Column3 Column4
What size of organisation do you work for? Please select the best
match for the total number.

For the organisation you work for, what %
of the total people work on software
development?

Response Comments on the total size Response

Comments on the
% working on
software
development

10 - 50 people 1-9% of the total

51 - 300 people 61-80%

301 - 1000 people 61-80%

>5000 people

51 - 300 people

Column1 Column2 Column3 Column4
What does your company do? Please specify the following activity domains, selecting answers for each row. If
the choices are not suitable for your organisation please describe what your organisation does in the comments
box.

Aeronautics Electronics Banking Education

Not relevant Largest part Largest part Most important

 Most important Most important

Column1 Column2 Column3 Column4
What does your company do? Please specify the following activity domains, selecting answers for each row. If
the choices are not suitable for your organisation please describe what your organisation does in the comments
box.

Research and development Health Security Other, please specify

Most important

 Largest part

 Most important

 Most important Most important

 Most important Most important

258

Column1 Column2 Column3 Column4

Comments on what your
company does

What types of projects and software are developed by the company? Please
indicate with are relevant and which are the most important to your company. If
you do not know please state this in the comments box.

 Systems Real time Business

Certification process development

and Quality measurement development

 Moderately important Not relevant Most important

Logistics Most important

information & communications technology Most important

Government, Telco

ICT services for public administrations

Scientific Embedded Personal Internet based

Not relevant Moderately important Not relevant Most important

 Most important

Column1 Column2 Column3 Column4

What is the business critical level of your
software products? (For example if the
software product is related to critical
systems such as fire systems and nuclear
systems).

Others, please specify
Comments on relevant and important
projects Response

Comments on
business critical
nature of the

 projects

 N/A N/A

 Not critical

 Not critical

 Critical

Not relevant We test, and offer test training Critical

 Less critical

259

Column1 Column2 Column3 Column4

Who are the stakeholders interested in
processing of QRs? Please select the
department that is most interested. If it
is not listed Please select 'Other' and add
comments on what department it is.

Who is responsible for managing QRs for a
specific software development project?

Response

Comments on the
stakeholders
interested in
processing of QRs Response

Comments on who
is responsible for
specific software
development
projects

Department of marketing N/A

Department of IT or business operations Quality engineer

Department of IT or business operations Other, please specify
Development
manager

Others, please specify All Project manager

Department of management Project manager
Developer and
Quality Engineer

Departments of management and development Project manager and quality assurance manager

Column1 Column2 Column3 Column4
 How many years of experience does he/she have in this role? Please, specify the type of training given in

software quality for the people involved? If
you do not know, please state this in the
comments box

Response

Comments on who is responsible for
specific software development
projects Project administrator

Project
manager

 N/A Norms and standards
Processes and
methods

1 year or more No training
Norms and
standards

1 year or more

1 year or more
Processes and
methods

Other length of
experience, please specify
below.

Most would have at least 2 years and Project managers and Test
managers more than 5 years of experience in their respective area.

Processes and
methods

1 year or more
Processes and
methods

260

Column1 Column2 Column3 Column4
Please, specify the type of training given in software quality for the people
involved? If you do not know, please state this in the comments box.
Software or systems
developer

Quality engineer Others, please
specify I do not know

Processes and
methods Other training (please specify)

Software tools Norms and standards

Processes and
methods Processes and methods

Software tools Norms and standards

Column1 Column2 Column3 Column4

Does your organization use a QRs
process? (Identification, specification,
representation, documentation and
prioritization or others)? Please specify
the most accurate answer.

If your organization uses a
QRs process, please specify
which of the following
activities are performed by
your process. Please identify
the most important
activities. If you do not
know please state this as a
comment.

Comments on
software quality
training

Response Comments
QRs process

Identification of quality
requirements

 Use all the time Most important

 Plan to but not yet Not relevant

All type of training Use all the time Most important

 Use all the time Most important

 Use all the time Most important

 Use sometimes Most important

 Use all the time Most important

261

The international specialists and domain representatives who agreed to distribute the survey

in their respective industry are:

Mr. Tom McBride
Australia

Ms. Alison Holt
New Zealand

Dr. Klaudia Dussa-Zieger
Germany

Dr. Jenny Dugmore
United Kingdom

Dr. Yasuharu Nishi
Japan

Prof. Keum-Suk Lee
Korea

Dr. Juan Garbajosa
Spain

Mr. Matt Mansell
New Zealand

ANNEX II

QUESTIONNAIRE ON SOQUAREM METHOD

Annex II is divided into two parts. The first one describes the survey. The second part

presents collected data from the participants and software quality experts.

II.1 Description of the survey

This part describes the purpose of the survey and its detailed description

II.1.1 Purpose of the survey

Dear Sir/Madam,

To know the extent of SOQUAREM toward addressing engineering practices of quality

requirements, we are conducting a survey. The survey serves to acquire indicators on the

applicability of SOQUAREM process and to identify its strengths and weaknesses.

Results of the questionnaire will be useful for a further detailed evaluation step for

SOQUAREM. Considering the importance of this information for our research, your

contribution is very much desired for the success of our research objective. Gathered data

will remain confidential and anonymous.

We thank you in advance for your collaboration which to our research.

We start the survey by a series of questions on the experience of your personnel. Later, a

series of questions regrouped into 3 categories relating to:

a. Evaluating criteria of SOQUAREM process (Table1);

b. Applicability of SOQUAREM;

c. Other findings.

264

Table-A II-1 evaluation criteria of SOQUAREM

Please answer questions by referring to your experience in the field of the quality of

software product.

II.1.2 Description of the survey

This survey begins by presenting the identification form of the participants (Table- A II-2),

the instructions on modalities of answers and finally describes sections of the survey as

follows:

1. Identification of QAs (Table- A II-3);

2. Representation of QAs (Table- A II-4);

3. Conflict resolution of QAs (Table- A II-5);

4. Integration of QAs with FRs (Table- A II-6);

5. Applicability of SOQUAREM (Table- A II-7);

6. Other findings (Table- A II-8).

265

Table-A II-2 Identification of the participant

266

Instructions on the modalities of answers

Objective is to know if quality requirements management techniques have been addressed

by SOQUAREM process and to identify its critical weaknesses as well as its improvement.

The questionnaire is organized in 3 main sections:

1. The first section deals with the evaluating criteria of SOQUAREM: identification,

representation and Traceability.

2. For each criterion: evaluate Applicability, Appropriateness, Completeness and

Understandability of used concepts of SOQUAREM by giving 3 question choices: 3 =

very good, 2= fair, 1= poor.

3. A second section evaluates the applicability of SQOUAREM according to criteria

chosen from literature.

4. A third section is dedicated to other findings where your opinions are taken into

account;

5. For any remark or additional information, please write it in the commentaries section

relating to asked questions;

6. It is important that your answers be based on your experience and your practices in the

field of software engineering.

Sections of the survey

267

Table-A II-3 Identification of QAs

Identification of QAs:

Phases involved in SOQUAREM process: 1, 2 and 3

To know to what extent SOQUAREM do address identification of quality attributes, evaluate if

involving concepts like BMM, BCT and the transformation rules (Statement, Refinement and Linkage

rules) are adequately applied and appropriately used in SOQUAREM case and easily

understandable. Evaluate also if there are missing elements from involved concepts which could

contribute to identify QAs?

Scale: 3 = very good, 2= fair, 1= poor.

Commentaries:

Concepts/criteria Applicability
Were these
concepts
adequately
applied to
identify and
derive QAs from
business goals?

Appropriateness
 Were these
concepts
appropriately used
to identify and
derive QAs from
business goals?

Understandability
Were these concepts
easily
understandable to
identify and derive
QAs from business
goals?

Completeness
Were these
concepts used
without any
missing
elements that
could
contribute to
identify QAs?

BMM

BCT

Scenarios

template

Statement rules

Refinement rules

Linkage rules

ISO/IEC 9126

268

Table-A II-4 Representation of QAs

Representation of QAs

Phase involved in SOQUAREM process: 4

To know to what extent SOQUAREM do address representation of quality attributes, evaluate if involving

concepts like Utility tree and scenario template are adequately applied and appropriately used in

SOQUAREM case and easily understandable. Evaluate also if there are missing elements from involved

concepts which could help to represent and retrace QAs to business goals.

Scale: 3 = very good, 2= fair, 1= poor.

Commentaries:

Concepts/criteria Applicability
Were these
concepts

adequately
applied to

represent and
retrace QAs?

Appropriateness
Were these
concepts

appropriately used
to represent and

retrace QAs?

Understandability
Were these

concepts easily
understandable to

represent and
retrace QAs?

Completeness
Were these

concepts used
without any

missing elements
that could help to
represent QAs?

Utility tree

Scenarios

template

269

Table-A II-5 Conflicts resolution of QAs

Conflicts resolution of QAs

Phase involved in SOQUAREM process: 5

To know to what extent SOQUAREM do address conflicts resolution of quality attributes, evaluate if

involving concepts like Impact matrix and Weighted method are adequately applied and appropriately

used in SOQUAREM case and easily understandable. Evaluate also if they are missing elements from

involved concepts which could help to resolve conflicts among QAs.

Scale: 3 = very good, 2= fair, 1= poor.

Commentaries:

Concepts/criteria Applicability
Were these
concepts
adequately
applied to
resolve conflicts
among QAs??

Appropriatene
ss
 Were these
concepts
appropriately
used to resolve
conflicts among
QAs?

Understandabil
ity
Were these
concepts easily
understandable
to resolve
conflicts among
QAs?

Completeness
Were these
concepts used
without any
missing
elements that
could help to
resolve conflicts
among QAs?

Impact matrix

Weighted method

270

Table-A II-6 Integration of QAs with FRs

Integration with FRs

Phase involved in SOQUAREM process: 6

To know to what extent SOQUAREM do address integration of QAs with FRs, evaluate if involving

concepts like Mapping rules are adequately applied and appropriately used in SOQUAREM case and

easily understandable. Evaluate also if they are missing elements from involved concepts which could

contribute to map QAs into the FRs process.

Scale: 3 = very good, 2= fair, 1= poor.

Commentaries:

Concepts/criteria Applicability
Were Mapping
rules adequately
applied to
integrate QAs
with FRs??

Appropriateness
 Were Mapping
rules appropriately
used to integrate
QAs with FRs?

Understandability
Were Mapping
rules easily
understandable to
integrate QAs with
FRs?

Completeness
Were Mapping
rules used
without any
missing
elements that
could integrate
QAs with
FRs?

Mapping rules

271

Table-A II-7 Applicability of SOQUAREM

Investigate applicability of SOQUAREM to quality requirements management by evaluating it according

to the following criteria (Mead, 2005):

• Adaptability to quality requirements: the ability of SOQUAREM to manage quality

requirements

• Client acceptance: If clients agree SOQUAREM when managing their requirements?

• Complexity: the degree of difficulty in understanding and properly executing SOQUAREM

process. Can the requirements engineers and stakeholders easily perform SOQUAREM method

correctly once they learn the process?

• Scalability: the ability of the SOQUAREM process to address quality requirements of enterprise-

level system, in addition to smaller applications.

Scale: 3 = very good, 2= fair, 1= poor.

SOQUAREM/criteria Adaptability to

QRs

Client acceptance Complexity Scalability

SOQUAREM

272

Table-A II-8 Other findings

Dealing with software quality

1. To what extent does SOQUAREM

process help organizations to deal

with software quality?

2. Is the process easy to apply? And

what is the time required to apply it?

3. How can SOQUAREM be improved?

4. What are strengths, weaknesses,

opportunities and threatens?

__

__

__

__

__

__

Other issues

What challenges (i.e., cost, man-power)

of applying the process would you

foresee?

__

__

__

__

__

__

Further impression

Do you have any further comments?

__

__

__

__

__

Thanks for your collaboration.

II.2 Collected data from participants and software quality experts

The collected responses of the participants are listed in the following tables (there are four

participants with 5 response tables each). The specialists who evaluate SOQUAREM

methodology are also listed (the highlighted ones) with their associated feedback.

273

II.2.1 Responses of the participant 1 are given in the following tables:

274

275

276

277

278

II.2.2 Responses of the participant 2 are given in the following tables:

279

280

281

282

283

II.2.3 Responses of the participant 3 are given in the following tables:

284

285

286

287

288

II.2.4 Responses of the participant 4 are given in the following tables:

289

290

291

292

293

The international specialists and scientist who agreed to evaluate SOQUAREM

methodology are:

Dr. Tafline Murnane
Australia

Ms. Alison Holt
New Zealand

Dr. Klaudia Dussa-

Zieger
Germany

Dr. Annette Reilly
USA

Dr. Jenny Dugmore
UK

Mr. Anatol Kark
Canada

Prof. Motoei Azuma
Japan

Prof. Keum-Suk Lee
Korea

Dr. Nigel Bevan
UK

Dr. Juan Garbajosa
Spain

The highlighted ones have given their feedback on SOQUAREM in the following sections:

294

1. Feedback of Dr. Annette Reilly USA is:

295

2. Feedback of Prof. Motoei Azuma (Japan) is:

296

3. Feedback of Prof. Keum-Suk Lee (Korea) is:

BIBLIOGRAPHY

Abran, A., Moore, J.W., Bourque, P., Dupuis, R., Tripp, L. 2004. “Guide to the Software
Engineering Body of Knowledge”. IEEE Computer Society/ ISO/IEC JTC1 SC7.
Latest version downloadable from www.swebok.org

Aburub F., M. Odeh and I. Beeson. 2007 «Modelling non-functional requirements of

business processes ", Journal Information and Software Technology., Vol. 49,
(Butterworth-Heinemann Newton, MA, USA November. 2007), p.1162–1171.

Araujo J., A. Moreira, I. Brito, and A. Rashid. 2002 "Aspect-Oriented Requirements with

UML," presented at Workshop on "Aspect-oriented modeling with UML", UML
2002. (Dresden, Germany).

Araújo J., P.Coutinho 2003. "Identifying Aspectual Use Cases Using a Viewpoint-Oriented

Requirements Method". Early Aspects 2003. Aspect-Oriented Requirements
Engineering and Architecture Design, Workshop of the 2nd International Conference
on Aspect-Oriented Software Development. (Boston, USA, 17 March. 2003), p. 1-6.

Arnon R. 2006. "ATAM: Introduction to SEI’s Architecture Tradeoff Analysis Method". In

http://arnon.me/presentations-papers-articles/. Consulted in 2009.

Azuma M. 2001 "SQuaRE -Software Product Quality Requirements and Evaluation-".

Revision of WG6 N474 based on discussion at the SC7/WG6 Prague Meeting
ISO/IEC JTC1/SC7/WG6.

Azuma M. 2004 "Applying ISO/IEC 9126-1 quality model to quality requirements

engineering on critical software". Sixth International Workshop on Requirements for
High Assurance Systems (RHAS 2004). (Kyoto, Japan, 2004), p. 3-10.

Bart Venckeleer. 2006. ATAM "Architecture Trade-off Analysis Method" with case study.

http://www.docstoc.com/docs/22734205/ATAM-Architecture-Trade-off-Analysis-
Method-with-case-study. Consulted in January 2010.

Barbacci 2003. "Software-Quality Attributes and Architecture Trade-Offs.".Software

Engineering Institute, Carnegie Mellon University, Pittsburgh, PA.

Bass L, Clements P, Kazman R. 2003. "Software Architecture in Practice ", 2nd edition,

Addison-Wesley. 528 p.

Beck K. 1994. "Patterns and software development" Dr. Dobb’s Journal, vol. 19, no 2,

p.18–23.

298

Bevan N., A. Motoei. 1997. "Quality in use: Incorporating human factors into the software
engineering lifecycle"
in Proceedings of the IEEE International Software Engineering Standards
Symposium (ISESS 97). (Walnut Creek, CA June 01- 06 1997), p 169-179.

Bevan N. 1999 "Quality in use: Meeting user needs for quality". Journal of Systems and

Software , vol.49, no 3, p. 89-96.

Birk, R. van Solingen, J. Järvinen. 1998 "Business Impact, Benefit, and Cost of Applying

GQM in Industry" An In-Depth, Long-Term Investigation at Schlumberger RPS.
Software Metrics Symposium, 1998. Metrics 1998. Proceedings. Fifth International,
(IEEE METRICS 1998). (Bethesda, MD, USA. 20-21 Nov 1998), p. 93-96.

Boehm, B., J. Brown, H. Kaspar, M. Lipow, G. MacLeod and M. Merritt. 1978

"Characteristics of Software Quality", TRWSeries of Software Technology,
TRWSystems and Energy, Inc. (1973); also published by North-Holland,
Amsterdam.

Boehm B., H. In, T.Rodgers and Deutsch M. 2001 "Applying WinWin to quality

requirements: a case study " in Proceedings of the 23rd International Conference on
Software Engineering, IEEE Computer Society. (Toronto, Ontario, Canada), p. 555-
564.

Borland, the OPEN ALM COMPANY. 2007. “Driving Quality Throughout the Software

Delivery Lifecycle. The benefits of Lifecycle Quality Management.” White Paper.
www.borland.com/resources/en/pdf/solutions/lqm_driving_quality.pdf. Retrieved in
2012.

Boucké N, Weyns.D, Schelfthout.K, Holvoet.T. 2006. "Applying the ATAM to an Architecture

for Decentralized Control of a Transportation System". QoSA 2006, p.180-198.

Bredemeyer D. and R. Malan. 2001 "Defining Non-Functional Requirements», in

Architecture Resources for Enterprise Advantage. B. Consulting, Ed.: Bredemeyer
Consulting. http://www.bredemeyer.com. Consulted in 2009.

Brito I., Moreira A. and Araujo J. 2002. "A Requirements Model for Quality Attributes,"

presented at Workshop on "Early Aspects: Aspect-Oriented Requirements
Engineering and Architecture Design", 1st International Conference on Aspect-
Oriented Software Development. (University of Twente, Enschede, Holland. April
22-26), p. 1-6.

Brito I. and Moreira A. 2003. "Towards a Composition Process for Aspect-Oriented

Requirements," presented at Workshop of the 2nd International Conference on
Aspect-Oriented Software Development. (Boston, Massachusetts), p. 1-6.

299

Business Rules Group (BRG). 2007. "Business Motivation Model". (Version 1.3).
Retrieved 2010 from http://www.businessrulesGroup.org.

Carvallo J.P., X. Franch 2002a. "A Quality-Model-Base approach for describing and

evaluating software packages". In Proceeding RE '02 Proceedings of the 10th
Anniversary IEEE Joint International Conference on Requirements Engineering.
(Essen, Germany 9-13 September), p.104-111.

Carvallo J.P., P. Botella, X.B.Illa, X.Franch, C.Quer 2002b. "Using Quality Models for

Assessing COTS Selection". (WER 2002), p. 263-277.

Carvallo J.P, X. Franch. 2003. "Using Quality Models in Software Package Selection",

IEEE Software. Vol. 20, no 1, p.34-41.

Carvallo J.P., X. Franch, G. Grau, C. Quer. 2004. "QM: A Tool for Building Software

Quality Models", RE 2004, p.358-359.

Chung L., B. A. Nixon and E. Yu. 1994. "Using Quality Requirements to Systematically

Develop Quality Software,". Proc., 4th International Conference on Software Quality.
(McLean, VA, U.S.A. Oct). p. 3-5.

Chung L. and B. A. Nixon. 1995. "Dealing with Non-Functional Requirements: Three

Experimental Studies of a Process-Oriented Approach,"; Proc., IEEE 17th
International Conference on Software Engineering. (Seattle, April 24-28), p. 25-37.

Chung L, B. Nixon, E. Yu, and J. Mylopoulos. 2000. Non-Functional Requirements in

Software Engineering. Kluwer Academic Publishing, Boston Hardbound, 472 p.

Constantine L. 1997 "The case for Essential Use Cases" Object Magazine. SIGS

Publications NY. Vol. 7, no 3, p. 72-70.

Cooper Kendra, Lirong Dai, Yi Deng. 2004. "Performance Modeling and Analysis of

Software Architectures: An Aspect-Oriented UML Based Approach". Software
Engineering Research and Practice. p. 111-120.

Crosby Phil. 1979. Quality is Free. New York: McGraw-Hill. ISBN 0-07-014512-1.

Cysneiros L.M, J.C. Sampaio do Prado Leite. 2004. “Non functional Requirements: From

Elicitation to Conceptual Models” IEEE Transactions on Software Engineering, vol.
30, No. 5. P.328-349. Published by the IEEE Computer Society 2004.

Dai, L., Cooper, K. 2003. “Process Definition for the Formal Design Analysis Framework

Creating an Aspect-oriented Design Supporting Response Time Performance".
Technical Report UTDCS-20-03. Department of Computer Science Univ. of Texas at
Dallas Richardson, 37 p.

300

Dai L. 2005. “Formal design analysis framework: an aspect-oriented architectural
framework”. PhD Dissertation, The University of Texas at Dallas, 318 p.

Dai L., Cooper K. 2005. “Modeling and Analysis of Non-functional Requirements as

Aspects in a UML Based Architecture Design”. Proceedings of the Sixth
International Conference on Software Engineering, Artificial Intelligence,
Networking and Parallel/Distributed Computing and First ACIS International
Workshop on Self-Assembling Wireless Networks (SNPD/SAWN’05). (Towson
university, Towson, Maryland, USA May 23-25), p.178-183.

Dai Lirong, Kendra Cooper. 2006. "Helping to Meet the Security Needs of Enterprises:

Using FDAF to Build RBAC into Software Architectures". Software Engineering
Research and Practice 2006: 790-796.

Deng X., 2006. "Intentional Modeling for Enterprise Architecture – Managing Knowledge

about “Why” to Support Change". Master’s Thesis, Faculty of Information Studies,
University of Toronto. 171 p.

Dieter Landes. 1998. "Requirements Engineering for Quality Requirements – Industrial

Problem Statement", Fourth International Workshop on Requirements Engineering:
Foundations of Software Quality REFSQ’98. (Pisa, Italy), p.185-186.

Djouab R., Suryn W. 2006. “An ISO/IEC standards-based quality requirements definition

approach: Applicative analysis of three quality requirements definition methods”
was published to ISIE 2006 Annual Conference of the IEEE Industrial Electronics
Society. (9-13 July Montreal), p.3231-3239.

Djouab R., Suryn W. 2007a. “Analysis of a probabilistic quality method for evaluation of

non functional requirements” was published to ICSSEA International Conference
on Software and Systems Engineering and their Applications. 4-6 December -
Conservatoire National des Arts et Métiers - Paris, France.

Djouab R., Suryn W. 2007b. “Applicability analysis of two quality requirements treatment

methods: IESE NFR and FDAF” was published to ICSSEA International
Conference on Software and Systems Engineering and their Applications. 4-6
December 2007 -Conservatoire National des Arts et Métiers - Paris, France

Djouab R., Suryn W. 2011a. "SOQUAREM: SOftware QUAlity Requirements Engineering

Method". SQM Conference on Quality Management. (18-20 April
2011. Loughborough University, Leicestershire, UK).

Djouab R., Suryn W. 2011b. "Applicability of SOQUAREM method: an illustrative case

study". SQM Conference on Quality Management. (18-20 April
2011. Loughborough University, Leicestershire, UK).

301

Doerr J., K erkow D., B. Paech. 2003. "Eliciting Efficiency Requirements with Use Cases",
9th International Workshop on Requirements Engineering. Foundation for Software
Quality. (Workshop held at CaiSE' 03, June), p.23-32.

Doerr J., D. Kerkow, T. Koenig, T. Olsson, and T. Suzuki. 2005. "Non-Functional

Requirements in Industry - Three Case Studies Adopting an Experience-based NFR
Method". In Proceedings 13th IEEE International Conference on Requirements
Engineering. (Paris France 29 August-2 September), p. 373–384.

Doerr J. 2011." Non-functional Requirements". Lecture: Requirements Engineering WS

2010/2011. Retrieved 23 november 2011 from http://wwwagse.informatik.uni-
kl.de/teaching/re/ws2010/Vorlesung%20RE_WS1011_NFR.pdf. 29 p.

Doi K. 1999. “An extraction method of quality requirements in the offline requirements

capturing method”, in Transactions of the Information Processing Society of Japan.
Vol. 40, no 11, p. 4012-20.

Dromey R.Geoff. 1995. "A Model for Software Product Quality". In Journal of IEEE

Transactions on Software Engineering. (EEE Press Piscataway, NJ, USA), Vol. 21,
no 2, p. 146-162.

Egyed A. and P. Grunbacher. 2004. "Identifying requirements conflicts and cooperation:

how quality attributes and automated traceability can help". In IEEE Computer
Society. Vol. 21, no 6, p.50-58.

Empress. 2004. http://www.empress-itea.org/deliverables/D3.5_v1.0_Public_Version.pdf.

Retrieved in 2008.

Felici M., A. Pasquini, and S. De Panfilis. 1998. "Software Quality in User-Centred

Design". ESCOM-ENCRESS 98, p. 239-247.

Felici M., M.-A. Sujan, and M. Wimmer. 2000. "Integration of Functional Cognitive and

Quality Requirements: A Railways Case Study". ESCOM - SCOPE 2000, p. 395-
403.

Fenton N., P. Krause and M. Neil 2001. "A probabilistic model for software defect

prediction », unpublished manuscript available from the authors.

Fenton N. E., Krause, P., and Neil, M. 2002. Probabilistic Modelling for Software Quality

Control. Journal of Applied Non-Classical Logics. Vol. 12, no 2, p. 173-188.

Firesmith D. 2003. “Using Quality Models to Engineer Quality Requirements”. Journal of

Object Technology (JOT). Vol. 2. no5 (September-October 2003), p.67-75.
http://www.jot.fm/issues/issue_2003_09/column6. Retrieved in 2007.

302

Firesmith, Donald; Mead, Nancy R.; and Woody, Carol. 2004. "System Quality
Requirements Engineering (SQUARE) Project". http://www.cert.org/sse/square.html.
Retrieved in 2007.

Firesmith D. 2005. “Quality Requirements Checklist”, in Journal of Object Technology.

Vol. 4, no. 9 (November-December 2005), p. 31-38,
http://www.jot.fm/issues/issue_2005_11/column4. Retrieved in 2007.

Gallagher B.P 2000. "Using the architecture tradeoff analysis method to evaluate reference

architecture: A case study". Technical Report CMU/SEI-2000-TN-007, Carnegie
Mellon University, Software Engineering Institute. 25 p.

Herrmann, A. Barbara Paech 2007a. "MOQARE: misuse-oriented quality requirements

engineering" in Requirements Engineering Journal, Vol. 13, no 1, p. 73-86.

Herrmann, A. Kerkow, D. Doerr, J. 2007b. "Exploring the Characteristics of NFR
Methods" - A Dialogue About Two Approaches. , REFSQ, LNCS 4542. (Springer
Verlag Berlin Heidelberg), p. 320-334.

Hill R., J. Wang, and K. Nahrstedt 2004. "Quantifying non-functional requirements: a

process oriented approach," presented at Requirements Engineering Conference
Proceedings. 12th IEEE International. (6-11 Sept), p. 352 - 353.

Humphrey W. 1989. Managing the software process. Addison-Wesley. 512 p.

Humphrey W. 1995. A Discipline for Software Engineering. Addison-Wesley Publishing

Company, Massachusetts. 789 p.

ISO/IEC 9126. 1999-2004. - Software Engineering - Product quality. Parts 1-4.

ISO/IEC 14598. 1999. Information Technology—Software Product Evaluation, Parts 1–5.

Genève, ISO/IEC.

ISO/IEC 25030 2007. - Software engineering – Software quality requirements and

evaluation (SQuaRE) – Quality requirements.

ISO/IEC 15288 2002- Information Technology - Life Cycle Management - System Life

Cycle Processes.

ISO/IEC 12207 - 2008. Systems and software engineering -- Software life cycle processes.

Jacobs S. 1999. "Introducing Measurable Quality Requirements: A Case Study", Ericsson

Eurolab Deutschland. Fourth IEEE International Symposium on Requirements
Engineering (RE'99). (Limerick, Ireland June 07- 11), 172 p.

303

Jacobson, I., et al. 1992. Object-oriented Software Engineering: A Use Case Driven
Approach. Addison Wesley. Reading, MA. 582 p.

Jacobson I., Booch G., and Rumbaugh J. 1998. "Unified Modeling Language 1.3", White

paper, Rational Software Corp.

Jacobson I., Booch G., and Rumbaugh J. 1999. "Unified Software Development Process",

Addison-Wesley. 512 p.

Jones. L.G and Lattanze.A.J. 2001. "Using the architecture tradeoff analysis method to

evaluate a wargame simulation system: a case study". CMU SEI Technical Report
CMU/SEI-2001-TN-022, Software Engineering Institute, Pittsburgh, PA (Dec. 2001).
33 p.

Kazman R, Klein M, Clements P. 2000. "ATAM: method for architecture evaluation".

Technical Report CMU/SEI-2000-TR-004, Software Engineering Institution,
Carnegie Mellon University. 83 p.

Kerkow D., Kohler K., Dorr J. 2003. “Usability and other quality aspects derived from Use

cases». Performance by Design. Proceedings of forUSE 2003, Second International
Conference on Usage-Centered, p. 135-154.

Kitchenham B., S. Linkman, A. Paquini, V. Nanni. 1997. "The SQUID approach to

defining a quality model", Software Quality Journal, Vol.6, no3, p.211-233.

Kotonya, G. and I. Sommerville 1996. “Requirements Engineering with Viewpoints”.

BCS/IEE Software Engineering Journal, Vol.11, no 1, p.5–18.

Lauesen S. 2001. “Software requirements Styles and Techniques”. Addison Wesley. 608 p.

Lee.J, Choo Y. 2001. "Quality requirements elicitation for the architecture evaluation of

process computer systems". In Proceedings of APSEC. (4-7 December, Macau,
China), p. 335-340.

McCall J. A. 1977. "Factors in Software Quality - General Electric," n77C1502.

Maguire M.C. 1998. "User-Centred Requirements Handbook", HUSAT Research institute,

WP5, deliverable D5.3 from Telematics Applications Project TE 2010. 202 p.

Mead, N. R. 2004. “Requirements Elicitation and Analysis Processes for Safety & Security

Requirements.” Proceedings of the Third International Workshop on Requirements
for High Assurance Systems (RHAS 2004). Kyoto, Japan, Sept. 6, 2004. Pittsburgh,
PA: Software Engineering Institute, Carnegie Mellon University, 2004.
http://www.sei.cmu.edu/community/rhas-workshop/rhas04-proceedings.pdf. P 35-40.

304

Mead, N. R. 2005. “Security Quality Requirements Engineering (SQUARE)
Methodology.” Technical report CMU/SEI-2005-TR-009. ESC-TR-2005-009. 81 p.

Moreira A., J. Araujo, and I. Brito. 2002. "Crosscutting quality attributes for requirements

engineering," in Proceedings of the 14th international conference on Software
engineering and knowledge engineering. (Ischia, Italy: ACM Press), p. 167-174.

Mylopoulos J., L. Chung, B.Nixon. 1992. "Representing and Using Non-Functional

Requirements: A Process Oriented Approach", ACM Transaction on Software
Engineering, vol.18, no6, pp.483- 497.

Mylopoulos. 1998. “Why Goal-Oriented Requirements Engineering? Proceedings of the

4th International Workshop on Requirements Engineering: Foundations of Software
Quality (8-9 June 1998, Pisa, Italy), p. 15-22. E. Dubois, A.L. Opdahl, K. Pohl, eds.
Presses Universitaires de Namur, 1998.

NIST (National Institute of Standards and Technology), U.S Department of Commerce

Technology Administration. 2002. “The Economic Impacts of Inadequate
Infrastructure for Software Testing.” Gaithersburg, Maryland. RTI Project Number
7007.011. http://www.nist.gov/director/planning/upload/report02-3.pdf. Retrieved in
2012.

Ozkaya Ipek, Len Bass, and Robert L. Nord, Raghvinder S. Sangwan, “Making Practical

Use of Quality Attribute”. I E E E S o f t wa r e. Vol. 25. no2 (March-April 2008),
p.25-33.

Paech B., A. von Knethen, J. Doerr, J. Bayer, D. Kerkow, A. Trendowicz. T.

Punter. 2003. "An Experience-Based Approach for Integrating Architecture and
Requirements Engineering". 2nd International Workshop on SofTware Requirements
to Architectures (STRAW '03), (Portland, Oregon, May 9), p. 142-149.

Paech B., A. Dutoit, D. Kerkow, A. von Knethen. 2002. "Functional requirements, non-

functional requirements and architecture specification cannot be separated – A
position paper”. Proceedings of the International Workshop on Requirements
Engineering: Foundations for Software Quality (REFSQ). (Essen, Germany), p.102-
107.

Pfleeger S.L. 2001. "Software Engineering Theory and Practice". In Prentice Hall. Second

edition. 659 p.

Poort E. R. and P. H. N. de With 2004. "Resolving requirement conflicts through non-

functional decomposition," presented at Software Architecture, 2004. WICSA
Proceedings, Fourth Working IEEE/IFIP Conference. (12-15 June Oslo, Norway),
p.145 - 154.

305

Punter T., R. V. Solingen, et al. 1997. "Software Product Evaluation-Current status and
future needs for customers and industry", In the Proceedings of the 4th IT Evaluation
(EVIT-97). (Netherlands, Delft), p. 1-11.

Punter T., A. Trendowicz, P. Kaiser. 2002. "Evaluating Evolutionary Software Systems",

PROFES 2002 (product focused software process improvement): international
conference on product focused software process improvement No4, (Rovaniemi, 9-11
December Finlande)
, vol. 2559, p. 258-272.

A. Rashid, P. Sawyer, A. Moreira, and J. Araujo. 2002. "Early Aspects: a model for aspect-

oriented requirements engineering," presented at Requirements Engineering
Proceedings, IEEE Joint International Conference on, 2002. (9-13 September Essen,
Germany), p. 199 - 202.

Sangwan Raghvinder, Colin Neill, Matthew Bass, Zakaria El Houda. 2008. «Integrating a

software architecture-centric method into object-oriented analysis and design" in
Journal of Systems and Software. Vol. 81, no 5, p. 727–746.

Sawyer.P., Sommerville.I. and Viller.S. 1996. “PREview: Tackling the Real Concerns of

Requirements Engineering”. Cooperative Systems Engineering Group, Technical
Reports.

Space-Ufo Consortium. 1998. "The Space Ufo Methodology-User Guide", Esprit project
P22290.

Solingen Van, R., R.J. Kusters, J.J.M. 1999b. "Strategies for the identification and

specification of embedded software quality". Proceedings: Software Technology and
Engineering Practice, STEP'99. (Pittsburgh, PA, USA August 30-September 2), p
33-39.

Sommerville I. and P. Sawyer. 1997. “Requirements Engineering, A good practice guide”,

John Wiley and Sons. 404 p.

Sousa G., Vastro j. 2004. "Improving the separation of non-functional concerns in

requirements artifacts"Proceedings of the 12th IEEE International Requirements
Engineering Conference (RE’04).

Suryn W., A. Abran. 2003. “ISO/IEC SQuaRE. The 2nd generation of standard for quality

of software product”. Proceedings of 7th IASTED International Conference on
Software Engineering and Applications, SEA 2003, November 3-5, 2003, Marina del
Rey, CA, USA. p 807-814.

Suryn W. 2003. “Thoughts on Teaching Software Quality Engineering”. Proceedings of 8th

Annual INSPIRE Conference (Springer), April 23-25. Galsgow, Scotland, UK.

306

Suryn W., Abran A., Laporte C. 2004a. “An integrated life cycle quality model for general
public market software products”. Proceedings of 12th International Software Quality
Management and INSPIRE Conference (BSI). (Canterbury, Kent, UK 5-7 April), p.
97-110.

Suryn W., Hailey V. A., Coster A. 2004b. “Huge potential user base for ISO/IEC 90003 –

the state of the art for improving quality in software engineering”. ISO Management
System International No.4, July-August 2004.

Suryn W., Gil B. 2005a. "ISO/IEC9126–3 internal quality measures: are they still useful? »

HCTII.

Suryn W., Girard D. 2005b. " Suryn-Abran Consolidated Quality Lifecycle (CQL) Model -

the Applicative Evolution". BIS 2005. (Poznan, Poland, 20–22 April), p.126–146.

Suryn W., Kahlaoui A., Georgiadou E. 2005c. "Quality engineering process for the

Program Design Phase of a generic software life cycle". Proceedings of 13th
International Software Quality Management & INSPIRE Conference (SQM 2005).
(Gloucestershire, Cheltenham, UK.21–23 March), p. 253–266.

Suryn W. course 2006a. " Ingénierie de la qualité logicielle", at ETS: École de Technologie

Supérieure. 2003-2006.

Suryn W. 2006b. http://profs.logti.etsmtl.ca/wsuryn/research/. Retrieved in 2006.

Suryn W. 2006c. http://profs.logti.etsmtl.ca/wsuryn/iqual/. Retrieved in 2006.

Sustar.J and Goldschmidt.I. 2007. "Saving Energy with a Building Automation System".

Document ID: CEMC-EMQ-Q307. http://www.esource.com/resource. Retrieved in
2012.

Sutcliffe A, Minocha S. 1998. "Scenario-based analysis of nonfunctional requirements". In:

Dubois E, Opdahl AL, Pohl K (eds) Proceedings of the fourth international workshop
on requirements engineering: foundation of software quality—REFSQ 98. (Presses
universitaires de Namur, Namur), p 219–234.

TL9000. 2001a. Quality Management System Requirements Handbook. Release 3.0,

QuEST Forum 2001.

TL9000. 2001b. Quality Management System Measurements Handbook. Release 3.0,

QuEST Forum 2001.

Trendowicz Adam and Teade Punter. 2003. "Quality Modeling for Software Product

Lines". Proceedings of 7th ECOOP Workshop on Quantitative Approaches in
Object-Oriented Software Engineering, QAOOSE, Darmstadt, 2003.

307

Veenendaal Erik.van and Julie McMullan 1997. "Achieving Software Quality". ESSI
SCOPE. 208 p.

Vliet, H. 2002. “Software Engineering, Principles and Practice”, Second Edition. John

Wiley & Sons, 705 p.

Westerheim, H., Hanssen, G.K. 2005. “The introduction and use of a tailored unified

process - a case study”, in Proceedings. 31st Euromicro Conference on Software
Engineering and Advanced Applications, p 196-203.

Wiegers Karl E. 1999. "Writing Quality Requirements". Process Impact. Retrieved

05MAY08 from: http://www.processimpact.com/articles/qualreqs.html. Published in
Software Development Magazine, May 1999.

Yuen Tak Yu, Pak-Lok Poon. 2005. “Designing activities for learning software quality

practices”, in Proceedings Fifth International Conference on Quality Software (QSIC
2005. (Melbourne, Australia 19-20 September), p333-338.

Zubrow.D. 2004. “Software Quality Requirements and Evaluation, the ISO 25000 Series”.

PSM Technical Working Group. Carnegie Mellon University. Pittsburgh, PA 15213-
3890. Retrieved 20 may from http://www.
psmsc.com/Downloads/TWGFeb04/04ZubrowISO25000SWQualityMeasurement.pd
f. 35 p. Retrieved in 2007.

