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LA MÉTHODE D’INGÉNIERIE DES EXIGENCES DE QUALITÉ DU PRODUIT 
LOGICIEL : SOQUAREM 

 
 

 Rachida, DJOUAB 
 
 

RÉSUMÉ 
 
L'industrie des TI a besoin de données fiables sur les exigences de qualité pour évaluer 
adéquatement les systèmes et leur architecture. La gestion des exigences de qualité du 
produit logiciel est une discipline qui vient d’émerger pour améliorer la qualité du produit en 
adressant ses exigences de qualité. Cette tâche n’est pas facile et exige de grands efforts des 
praticiens, une meilleure implication des parties prenantes ainsi qu’une solide connaissance 
des techniques de gestion des exigences de qualité. De plus ce type d’exigences est difficile à 
définir et de nature conflictuelle. De nouvelles approches de gestion de qualité ont été 
développées pour palier aux limitations des approches traditionnelles d’ingénierie des 
exigences comme : a) l’absence de conseils systématiques sur la façon de définir les 
exigences de qualité; b) la difficulté d’identifier les exigences de qualité et de les représenter 
dans des modèles et processus et c) l’absence de techniques de gestion des exigences de 
qualité. 
 

Cette thèse définit une nouvelle méthode d’ingénierie des exigences de qualité nommée 
SOQUAREM, basée sur le standard de qualité ISO/IEC SQuaRE 25030. La méthode  
propose un processus structuré, supporté par des techniques et concepts de traitement de ces 
exigences. Le processus de SOQUAREM couvre 2 niveaux d'abstraction (Affaires et 
système) et six étapes conceptuelles telles que: l'identification et spécification des objectifs 
d’affaire, la dérivation des attributs de qualité, leur analyse et consolidation et finalement  
leur intégration dans le processus fonctionnel. Le processus SOQUAREM propose la 
combinaison de plusieurs concepts de différents niveaux organisationnels pour identifier, 
représenter et retracer les attributs de qualité. 
 

Ce document est divisé en 6 chapitres. Le premier chapitre présente l’état de l’art sur les  
« Exigences de qualité » en général et sur les différentes approches de leur traitement telles 
que “MOQARE” (Misuse-Oriented QuAlity Requirements Engineering), “IESE NFR" 
(Institute for Experimental Software Engineering Non Functional Requirements), "Soft Goal 
Notation" (Chung Framework), "FDAF” (Formal Design and Analysis Framework) et 
"ATAM" (Architecture Tradeoff Analysis Method). Le deuxième chapitre introduit la 
problématique de la recherche, ses objectifs, limites et sa méthodologie. Le troisième 
chapitre décrit le déroulement de la recherche pour justifier la solution de recherche 
proposée. Il commence par une analyse de la situation actuelle des exigences de qualité dans 
les milieux  académiques et industriels pour en ressortir les principaux indicateurs. Il termine 
par une description des aspects innovateurs de la nouvelle méthode proposée concrétisés en 
ses caractéristiques spécifiques, méta modèle, processus de sa conception et la structure de 
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son processus. Le quatrième chapitre décrit la nouvelle méthode d’ingénierie des exigences 
de qualité  (SOQUAREM) incluant ses fondements, concepts clés et son modèle de 
processus. Le cinquième chapitre présente un exemple détaillé appliqué à un système 
automatisé de contrôle des bâtiments appelé MSLite. L’applicabilité de SOQUAREM est 
illustrée dans cet exemple et ensuite analysée. Le dernier chapitre présente une conclusion 
sur le travail de recherche et son éventuelle évolution. 
 
 

Mots-clés: SOftware product QUAlity Requirements Engineering Method 
(SOQUAREM), Software Quality, Quality management methods, Quality attributes 
identification, ISO/IEC SQuaRE 25030. 
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ABSTRACT 
 
The IT industry needs reliable data about Quality Requirements (QRs) to adequately evaluate 
systems and their architecture. Quality requirements management of the software product is 
an emerging discipline aiming to enhance the software product quality by addressing its 
quality requirements. Dealing with this kind of requirements is not easy and implies much 
effort from practitioners, better involvement of interested stakeholders and a solid knowledge 
in quality management techniques. In fact they are vague, difficult to define and often 
conflict with other requirements. New approaches toward QRs management are developed to 
resolve problems of traditional software engineering views as: a) lack of systematic 
guidelines on how to elicit QRs; b) difficulty to identify QRs and to represent them in models 
and processes.  
 
In the context of a proposal for a SOftware product QUAlity Requirements Engineering 
Method (SOQUAREM), this thesis provides a structured QRs engineering process with its 
supporting ISO/IEC SQuaRE 25030 standard, management techniques and concepts. 
SOQUAREM process spans 2 high levels of abstraction (business and system) and six 
conceptual phases such as: identification and refinement of business goals, derivation and 
consolidation of the quality attributes and their integration into the functional process. The 
proposed SOQUAREM illustrates in a structured and easy to use way how several concepts 
can be combined at different organizational levels to identify, represent, document and 
retrace quality attributes. 
 
This document is divided into six chapters:  the first chapter presents a background and 
related work on "Quality requirements" in general and on various quality requirements 
management methods such as MOQARE (Misuse-Oriented QuAlity Requirements 
Engineering)), IESE NFR (Institute for Experimental Software Engineering Non Functional 
Requirements), Soft Goal Notation (Chung Framework), FDAF (Formal Design and Analysis 
Framework) and ATAM (Architecture Tradeoff Analysis Method). The second chapter 
introduces the research topic with its objectives, its limits, the research methodology and 
research steps. The third chapter describes the research execution by analyzing the current 
situation of quality requirements with the resulted indicators from academic and industrial 
environments and formulating the future requirements of the proposed research solution. An 
overview of the innovative aspects of proposed method like its specific features, metamodel, 
building process, and process structure are pinpointed. The fourth chapter describes primarily 
the most important parts of the research which are the development of a new quality 
requirements engineering method called SOftware product QUAlity Requirements 
Engineering Method including fundamentals, key concepts and a process model. The fifth 
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chapter presents an illustrative example applied to a building automation system called 
MSLite. Applicability of SOQUAREM process in this example is developed and analyzed. 
The last chapter presents a conclusion on this research work and its expected evolution in the 
future. 
 
 
Keywords: SOftware product QUAlity Requirements Engineering Method 
(SOQUAREM), Software Quality, Quality management methods, Quality attributes 
identification, ISO/IEC SQuaRE 25030. 
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INTRODUCTION 
 

 
PRESENTATION OF THE RESEARCH PROJECT 

 
 
A. Subject of the research project 
 

Software requirements engineering is a large and complex discipline requiring more and 

more expertise and knowledge from practitioners and software developers. With the rapid 

evolution in the field of software development and the increasing pressure to deliver high 

quality applications, this discipline is faced with major problems such as: a) lack of 

systematic guidance on how to elicit quality requirements (called also Non Functional 

Requirements NFRs); b) difficulty identifying quality requirements and representing them in 

models and processes and c) absence of clear guidelines about the way to provide a 

consensus view on quality characteristics and their relationships. The existing techniques of 

requirements capture (as viewpoint and object-oriented) do not put emphasis on quality 

requirements as is the case for functional requirements (Araujo et al., 2003). Experience 

shows that approximately 70 percent of software projects have failed to deliver what 

originally was required. Consequently, developed applications are often costly in terms of 

resources and time and the estimated cost per defect increases significantly in the latter stages 

of the software development life cycle. Furthermore, they rarely respect time deadlines and 

are often returned by dissatisfied users (NIST, 2002 and Humphrey, 1995).  ; 

 

On the other hand, recent studies (Sommerville et al., 1997), (Cysneiros et al., 2004), 

(Bredemeyer et al., 2001), (Mylopoulos et al., 1992), (Hill et al., 2004), (Wiegers et al., 

1999) and (Poort et al., 2004) demonstrate that the quality requirements specification step is 

ignored or bypassed for various reasons: quality is considered as an afterthought, cost and/or 

absence of quality engineering practices. The lack of this step in the definition phase of the 

software product life cycle may compromise business processes and may impact negatively 

the results of any development project. 

 

QRs management of the software product is an emerging discipline aiming to palliate these 
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problems and develop high quality software systems. New QRs management approaches 

have been developed to specify and model NFRs at the early stages of the life cycle.  They 

used QAs as force drivers to evaluate architectures and make early identification of risks, 

sensitive points and tradeoffs before design decisions are made (Gallagher, 2000). They also 

used NFRS as quality aspects to evaluate architecture designs and to predict early design 

errors and be able to improve them before delving into implementation features (Dai et al., 

2005). The next section will situate the research project between the traditional software 

engineering approaches and current software quality engineering standards. 

 

B. Context of this research project 
 

The context of this reserach project is related to the management of QRs at early stages of the 

software product life cycle. As illustrated in Figure 1.1, this research project is situated 

between traditional software engineering approaches and existing quality standards.  

 

 
 

Figure 1 Context of the research project  
 

The traditional software engineering approaches (like viewpoint and object oriented 

methods) are proving to improve the quality of requirements specification (Kotony and 

Sommerville., 1996). Viewpoint-oriented approachs support both the requirements elicitation 
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and the structuring of the requirements document. They enable the conversion of top-level 

goals  into requirements and constraints. PREview (Process and Requirements Viewpoints) is 

a requirements method focusing on the early stage of requirements engineering (Sawyer et 

al., 1996).  

But these approaches are faced with the following limitations: 

• Quality requirements identification step is considered as an afterthought; 

•  No clear guidance is provided to identify and define QRs; 

• No well structured process for QRs identification;  

• No defined methods for retracing QRs;  

• No defined quality model for dynamic linkage between QRs; 

• Lack of a consensus on the definition of QAs. 

 

On the other hand, software quality engineering standards have proven their usefulness in 

different fields of application such as facilitation of communication between users through a 

standard vocabulary (ISO/IEC 9126, 2004) and (ISO/IEC 14598, 1999). However, one notes 

that the emergence of software quality engineering standards in the development of software 

product systems has not solved some of the problems associated with the software QRs 

management.  

 

This research project addresses some of the limitations that existing software engineering 

approaches and software quality engineering standards suffer from in order to design the 

ISO/IEC standards-based quality approach (Figure1.1). For example, this research project 

addresses the limitation: “No well defined process for identification of quality requirements” 

and the drawback: “No clear consensus of quality concepts” by proposing a “software QRs 

management process”. 

 

C. Contribution and foreseen benefits of this research project  
 

As mentioned in the previous section, this research project will address some of the 

limitations from which existing engineering approaches and software quality engineering 
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standards suffer. The relevant added value of this research can be described as follows: 

 

• The research solution will be proposed to the editor committee of the guide to 

SWEBOK (SWEBOK, 2004)  for the consideration; 

• The research solution will be given for the disposition of the international 

standardization (ISO SC7 / WG6) once published; 

• The research solution will provide the software industry a structured QRs engineering 

method that can be used to support requirements engineering phase. 

 

Figures 2 and 3 summarize the difference between the traditional software engineering 

process and the new enhanced process with quality concepts. The traditional functional 

requirements definition process in the specification phase seeks maximum or even all 

requirements defined or frozen. In practice these requirements are often modified or even 

sought for in further phases of the life cycle (Figure 2), while quality requirements may be 

partial and require further elicitation, definition and refinement during the development 

process. Figure 3 shows the different categories of software QRs identified at each phase of 

the development process. They are described in (Suryn, 2003) where QRs are extracted from 

the stakeholder’s requirements and translated through the decomposition model into the three 

categories of ISO/IEC 9126: internal and external quality requirements (IQ and EQ), quality 

in use (QiU) and the operational quality (Oper) of the TL 9000 standards.  
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Figure 2 Traditional functional requirements in software engineering process  
Extracted from Suryn (2006) 
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Figure 3 Quality requirements in software engineering process  

Extracted from Suryn (2006) 
 

The dashed oriented arrow indicates that quality requirements could be clarified and refined 

from elicited requirements to the construction phase. At each development phase, they could 

be formalized according to the traditional requirements formalization process where 

requirements are analyzed, collected, classified and prioritized to finally be validated. 
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Further, as shown in Figure 3, quality in use (QiU) and operational quality (OP) are the first 

categories of software QRs that could be identified at the requirements phase. Some external 

(EQ) and internal quality (IQ) requirements could also be defined. At the design phase, the 

external and some internal QRs could be defined while at the construction phase, only the 

internal QRs are identified. 

 

Among the challenging problems addressed in this thesis are the following: 

 

(a) Investigating various aspects of software QRs management such as identification (of 

business and software) requirements, specification, representation and 

documentation; 

(b) Supporting this management by software quality engineering standards.  

 

The key motivations for this research project are:  

• The need to map quality concepts with the product definition phase; 

• The need to support both novices and experts in software QRs management. 

 

D. Research objectives 
 

This research goal can be stated as follows: “Support the software product definition phase 

with a management method of quality requirements: identification, representation and 

documentation”.  

 

To pursue this goal, the research objectives are to: 

 

1. Develop a structured quality requirements engineering method: SOftware Product 

QUAlity Requirements Engineering Method (SOQUAREM). The quality standard 

ISO/IEC SQuaRE 25030 is used as a framework supporting the engineering process 

of the method.  



7 

2. Develop the process model representing concepts and phases of SOQUAREM 

method. 

 

The research methodology adopted to achieve these objectives is divided into four main 

phases: exploration, analysis, design and application.  

  

The exploration phase consists of exploring the software quality requirements domain, 

specifically the software quality concepts, QRs definitions and quality standards (ISO/IEC 

9126 and ISO/IEC 25030). This phase also describes and analyzes the existing QRs 

management approaches and establishes their strengths and weaknesses. 

 

The analysis phase is divided into three sub phases: Analysis of existing software QRs 

management methods, data collection of software QRs engineering practices in industry and 

analysis of resulted indicators from industrial and academic environments.  

The first sub phase consists of analyzing some representative software QRs management 

methods (chosen from literature review) in their case studies to know to what extent they 

address management of QRs. The approach adopted during this analysis is to describe the 

applicability of these methods by analyzing their case studies in the applicative domains and 

identifying their strong and weak points in industrial and scientific communities.  

The second sub phase consists of analyzing collected data from a questionnaire in industry to 

determine the current state of the QRs engineering practices.  

The third sub phase analyzes industrial and academic indicators obtained in the two 

preceding sub phases and identifies critical needs seen by industry in the field of software 

QRs management. Important conclusions and justifications of the proposed solution are 

formulated.  

 

The design phase consists of creating the software QRs engineering method (SOQUAREM) 

and the associated process model. The main concepts involved in the engineering process of 

the method (BMM and BCT, scenarios template, utility tree and QAs template) are 
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developed and detailed. The main phases of the SOQUAREM process model are then 

described. The phases are:  

 

1. State the business goals; 

2. Refine the business goals;  

3. Link the refined business goals to quality attributes; 

4. Build quality attributes scenarios; 

5. Consolidate quality attributes; 

6. Link quality attributes to the functional process. 

 

The application phase of the method consists of applying the method in an illustrative 

example for a building automation system to clarify the core ideas of SOQUAREM. The 

method is then evaluated in industry (by international experts in the software quality field) 

and academia (during workshop sessions) and on a committee level ISO/IEC SC7 System 

and Software Engineering. Feedback on SOQUAREM is provided by both experts and 

participants of the workshop session and are analyzed for further improvements and future 

research avenues. 

 

E. Limitations of the research 
 

The present research is limited to the design of the SOQUAREM method and its process 

model for managing software QRs and does not cover implementation of IT tool supporting 

this process. It is important to notice that linkage of measures with the associated quality 

characteristics is not part of this research project because the measures in ISO/IEC 2500 are 

not available. On the other hand, as the process is involving stakeholders at each phase 

(during the consensus session to discuss and confirm QAs), the used negotiation techniques 

were not investigated when they do not approve the resulted QAs. One supposes that 

negotiation is done and the required phase is restarted.  In addition, the developed 

questionnaire is not deployed in a large industrial spectrum due to time constraints and 

availability of respondents. The questionnaire has been deployed with eight domain 

representatives of industry who accept to distribute it in their respective companies. The main 
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purpose of the questionnaire is to have some indications about QRs engineering practices in 

industry.  On the other hand, the conflicts resolution among QAs and their prioritization is a 

vast and complex subject which could not be entirely treated as part of this thesis. Fictitious 

data is provided to illustrate the conflicts resolution problem. Finally, evaluation of the whole 

process by standards or methods could not be performed under the mandate of this thesis, 

being limited to analyzing feedback from software quality domain experts and participants of 

the workshop session (Only the first four phases of the process have been evaluated during 

the workshop session).  

 

F. Organization of this Thesis 
 

The organization of this thesis is as follows: 

 

The chapter 1 presents the literature review on the main concepts and definitions related to 

software QRs management, in particular, the quality requirements and software quality 

definitions, software quality engineering standards and existing software QRs management 

methods such as Soft Goal Notation, MOQARE (Misuse Oriented QuAlity REquirements), 

IESE NFR (Institute for Experimental Software Engineering Non Functional Requirements) 

method, FDAF (Formal Description and Analysis Framework) and ATAM (Architecture 

TradeOff  Analysis Method). 

 

The chapter 2 presents research objectives and the research methodology designed to address 

this research.  Research steps to accomplish the stated objectives are also described in detail.  

 

The chapter 3 explains the details of the research execution and gives the justifications of the 

research solution. Interest is centered on QRs indicators of both academic and industrial 

environments. First, applicability of chosen quality requirements management methods from 

literature review is analyzed and discussed. Analysis is based primarily on established 

strengths and weakness of existing methods and quality requirements engineering criteria.  

Second, the current situation of quality requirements environment is analyzed in industry. A 

questionnaire is elaborated for this purpose. Third, resulted indicators from the two 
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environments are analysed and discussed and important obseravtions are revealed to finally 

formulate requirements for the proposed research solution. An overview of the proposed 

research solution and its innovative aspects are presented by describing its specific features, 

meta-model, building process and process structure.  

 

The chapter 4 describes in detail the proposed research solution called SOftware QUAlity 

REquirements MEthod (SOQUAREM) and includes key concepts and an elaborated 

SOQUAREM process model. 

 

The chapter 5 describes the application of the SOQUAREM process to an automation 

building system by an illustrative example. Finally, the process is analyzed and discussed and 

its practical relevance is evaluated. 

 

This work then summarizes the key contributions, implications for software engineering, 

practical implications, limitations, strengths and future research avenues. 

 

 

 



 

CHAPTER 1 
 
 

LITERATURE REVIEW 
 
 
1.1 Introduction 
 

This chapter presents the literature review of existing quality requirements definitions, 

quality requirements management methods and quality standards for a software product. 

Section 1 introduces a quality requirements concept and related terminologies. Important 

definitions of quality needs, quality requirements and software quality as seen by major 

actors and (SWEBOK) are presented. Section 2 describes concepts of quality standards. The 

third section defines and investigates concepts of various quality requirements management 

methods designed at different levels of software development (requirements and architecture 

levels) (MOQARE, IESE NFR, Soft goal notation, ATAM, Prometheus and quality attributes 

model). Section 4 presents a comparative analysis of these designed methods and establishes 

their weakness related research issues. Section 5 concludes the chapter. 

 

Table 1.1 summarized the main QRs aspects to be covered in this chapter. 
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Table 1.1 Main QRs aspects   
 

Main aspects Description 

How software QRs 
appeared and why?  

• They appear at the requirements level, generally at the specification step of FRs and are 
integrated in the “Requirements Specification Document” (RSD); 

• The evolving technology, industry experience, costly applications in time and resources, 
retuned back application and rarely respect time deadline, dissatisfied users and 
limitations of existing requirements engineering techniques (viewpoint & object oriented) 
in addressing software QRs led to the critical need to recognize and address QRs; 

• Easy to specify but difficult to represent and control. 

Why are they critical 
to the software 
engineering 
community (Doerr, 
2011)?  

NFRs are essential for software and system development  
• -Architecture; 
• -Early quality assurance;  
• -Subcontracting.  

Neglecting NFRs can lead to  
•  failed projects;  
• -bad product quality; 
• -increased time to market (TTM);  
• -high rework costs.  

Where are they 
defined or specified?  

• In RUP as supplementary specifications (Jacobson et al., 1999);  
• In the last section of the «Use Case» description;  
• In the requirements specification document   and annexed as quality constraints. 

What is the 
terminology used to 
specify them?  

•  “NFR describes a certain value (or value domain) for a QA that should be achieved in a 
specific project. The NFR constraints a QA by determining a value for a metric associated 
with the QA.” (Doerr et al., 2005) ; 

• User needs representing the design and end user views (Felici et al., 2000) ; 
• Quality goals and characteristics of the software product (Trendowicz et al., 1998) and 

(Punter et al., 2000); 
• Global properties of a system, assumptions, quality constraints or goals of stakeholders 

(Brito et al., 2002); 
• QAs  (Doerr et al., 2005) and (Kazman et al., 2000) ; 
• NFRs in SWEBOK (Abran et al., 2004);  
• The most popular and recognized terminology is NFR and QAs where NFRs are 

instantiation of QAs.  

Who is interested by 
them?  

• Architect, Maintainer, Developer, Manager, Evaluator; 
• Customer; 
• End user.  

Are there any 
research motivations 
in this direction?  

• ISO/IEC 9126 for software product:  
• Good reference but needs to be supported by practical guidelines and structured methods;  
• There is also a need to process to map quality concepts of the standard with the product 

definition phase.  

What are the 
important QRs 
management 
methods/quality 
standards developed 
during the 2 last 
decades?  

• FDAF method (Dai, 2005); Quality model for quality attribute (Brito et al., 2002);  
• MOQARE  method (Herrmann et al., 2007); ATAM method (Kazman et al., 2000); 
• IESE-NFR method (Doerr et al., 2005); Soft Goal notation (Chung et al., 2000);  
• ISO SQuaRE 25030 standard ; BMM (Business Motivation Model) (BRG, 2007). 
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1.2 Quality requirements 
 

This section is focused on quality requirements in software engineering with emphasis on 

definitions of requirements and software quality. Both software engineering-related literature 

positions and software quality engineering standards are presented and analyzed.  

 

1.2.1 Quality requirements and software quality 
 

Before delving into the details of software requirements, it is important to define a 

requirement versus a need. As described by Azuma in his article (Azuma, 2004): 

 
“Needs for a product are expectations of stakeholders for the effects of the 
product when it is actually operated, which means such action to the 
software product as development, distribution, release, installation, use and 
maintenance”. (Azuma, 2004). 

 
Therefore according to Azuma, needs are divided into stated needs and implied needs and 

should be transformed into requirements. Furthermore, the author (Azuma, 2004) clarifies the 

relationships between needs and requirements by defining requirements as “Requirements are 

the external specification of specific needs that a product is expected to satisfy” The 

relationship between needs and requirements is illustrated in Figure 1.1. Stakeholder’s needs 

(stated and implied) are collected and identified, then selected and specified to be 

transformed into QIU requirements, functional requirements and quality requirements.  
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Figure 1.1 Relationships between Needs and Requirements  
 Extracted from Zubrow (2004) 

 

Stakeholder needs come from many sources (Zubrow, 2004 and ISO/IEC SQuaRE 25030, 

2007) (Figure 1.2). Requirements elicited from the stakeholders contribute to the definition 

of the three views of software quality requirements: quality in use requirements (QIU), 

external quality requirements (EQ) and internal quality requirements (IQ). QIU is the user’s 

view of the quality of the software product when it is used in a specific environment and in a 

specific context. EQ is the totality of the characteristics of the software product from an 

external view. External metrics address properties visible to the users of a product (customer, 

manager and software engineer) such as reliability, functionality, performance and usability.  

 

For example, reliability of the entity “operating system” can be evaluated by measuring the 

Mean Time To Failure (MTTF) and Rate of OCcurrence Of Failures (ROCOF).  External 

metrics are not available until the late stages of the software development life cycle. IQ is the 

totality of the characteristics of the software product from an internal view. Internal metrics 

address properties visible only to the development team. They include size metrics (Lines of 

Code, number of modules) and complexity metrics (Cyclomatic complexity). The quality of 

the source code can be evaluated by the number of faults found by KLOC. Analyzability of 



15 

the source code can also be evaluated by the following code analysis metrics: cyclomatic 

number, number of statements and comment rate. Internal metrics are used to estimate 

external metrics at the early stages of the development process. The quality in use 

requirements influences the external quality, which in turn influences the internal quality 

requirements. The internal quality requirements are implemented through internal measures, 

which contribute to the specification of the external quality and quality in use of the software 

product.  

 

 

 

 

 

 

 

 

 

 

 
 

 
Figure 1.2 QRs life cycle model  

Extracted from ISO/IEC 25030 (2007) 
 

Moreover, the guide to SWEBOK (Software quality knowledge area (KA), chap 11) (Abran 

et al., 2004) describes software quality as follows:  

 
“What is software quality, and why it is so important that it be pervasive in 
the guide to SWEBOK? Over the years authors and organizations have 
defined the term “quality” differently. To Phil Crosby (Crosby, 1979), it 
was “conformance to user requirements.” Watts Humphrey (Humphrey, 
1989) refers to quality as “achieving excellent levels of fitness for use”, 
while IBM coined the phrase “market-driven quality” which is based on 
achieving total customer satisfaction”. (Abran et al., 2004). 
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So, according to the guide to SWEBOK, software quality refers to user requirements or 

levels of fitness for use or for customer satisfaction. In all these definitions the same key 

points are considered: requirements and stakeholder needs. Furthermore, the guide points out 

the definition of quality concepts and the ability of the software engineer to understand them 

when developing or maintaining software as it is written:  

 

“Thus, the software engineer has a responsibility to elicit quality 
requirements which may not be explicit at the outset and to discuss their 
importance as well as the level of difficulty in attaining them”. (Abran et 
al., 2004). 

 

The quality requirements should be defined and specified by the software engineer. 

 

At the same time, the guide to SWEBOK (Abran et al., 2004) (software requirements KA, 

section software requirements fundamentals) defines software requirement as: “A software 

requirement is a property which must be exhibited by software developed or adapted to solve 

a particular problem”. 

 

Later in the guide, a definition of non-functional requirements is given as: “Non-functional 

requirements are the ones that act to constrain the solution. Non-functional requirements are 

sometimes known as constraints or quality requirements”. These definitions associate non-

functional requirements to quality requirements. 

 

In summary, software quality requirements have emerged in the last decade when 

requirements engineering activities encountered difficulties in capturing all the fulfilled 

requirements (functional, performance, interface, organizational and quality). First, this 

difficulty was associated with non-functional requirements and supplementary requirements 

which were attached to functional requirements (Westerheim et al., 2005).  In effect, non-

functional requirements were defined as:  constraints, limitations, specifications or 

performance (the system should run on UNIX, the system should work in real-time, the 

system should handle up to 500 GB of data). Later, these non-functional requirements were 

associated with quality requirements where more research was concentrated on their 
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modeling and representation (Mylopoulos et al., 1992, Dieter, 1998 and Jacobs, 1999) and on 

negotiation of conflicts between different requirements.   

 

In his article (Doi, 1999), the author tries to extract quality requirements in a capturing 

method. The capturing method is organized around a requirements capture meeting, which is 

taken by videotape. Furthermore, the authors (Yuen Tak Yu and Pak-Lok Poon; 2005) 

present a design for the learning activities in a course on software quality practices. Their 

purpose is to provide opportunities for students to gain hands-on experience on exemplar 

software quality practices in spite of the various constraints. 

 

On the other hand, Suryn enunciates that “Identifying quality requirements that can be 

elicited, formalized and further evaluated in each phase of full software product life cycle 

thus becomes a crucial task in the process of building a high quality software product”  

(Suryn et al., 2005b). This expression shows the importance of identifying quality 

requirements early in the software product life cycle to obtain the required software quality.  

 

Sousa promotes separation of the concerns principle which is difficult to apply at the 

requirement level due to the strong relationship and interdependencies among non-functional 

requirements (NFRs) (Sousa et al., 2004). The basic idea is that NFRs are often scattered and 

tangled with the functional artifacts they affect. They describe an approach representing 

NFRs as concerns and compose them with the functional requirements they affect. The “Use 

Case” approach is used to capture and represent functional requirements (FRs) combined 

with the NFRs framework (Chung, 2000) to deal with NFRs concerns.  

 

In the same research field, Cooper deals with multiple concepts to define NFRs (Cooper et 

al., 2005). Cooper describes an approach which integrates a semi formal UML with a set of 

existing formal methods into an aspect oriented framework in order to design and analyze 

NFRs. Cooper also considers the software architecture design as an important contribution in 

the reduction of development costs and the improvement of software quality. However, 

Cooper mentions that software architects are faced with problems of how to meet the NFRs 

(while designing software architecture) and argues that NFRs have to be met in order to help 
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designers with a rationale for decision making among competing designs. To address this 

problem, the author presents the Formal Design and Analysis (FDAF) Framework  where 

NFRs are defined as reusable aspects to design and analysis and UML is extended (by 

stereotypes, tagged values or constraints) to support the design of these aspects. Design of 

aspects is performed by transforming the UML designs into formal methods and by using 

Chung’s NFRs framework.  

 

Otherwise, the literature shows that non-functional requirements cannot be treated alone and 

several authors (Paech et al., 2002 and 2003) and (Doerr et al., 2003) have argued for 

integrating functional (FRs), non-functional requirements (NFRs) and architectural options 

(AOs) early in the development process. For instance, these authors indicate that NFRs, FRs 

and architectural decisions must be developed in a tightly integrated approach combining 

elicitation, specification (of NFRs and FRs) and design architecture. Integration is supported 

by different kinds of experience-based artifacts such as checklists, patterns and rationale. 

Checklists and questionnaires are used to capture important NFRs. Architectural patterns are 

applied in reusing architectural options and for evaluating them against specified 

requirements. Traceability and rationale management are used for capturing the decision 

making involved in the joint specification and design of FRs, NFRs and AOs.  

 

Paech also deals with important issues to be solved in integrating the requirement 

engineering process into the architectural development process (Paech et al., 2003) such as: 

a) use the win-win approach to identify the essential NFRs, FRs and AOs and the different 

views of different stakeholders; b) use goal graphs to specify NFRs and FRs and identify 

their dependencies and use case maps for describing AOs; c) use rationale management (goal 

graphs, concordance matrix and ATAM - Architectural Tradeoffs and Analysis Method) to 

assess how well the different AOs address a specific set of FRs and NFRs. Goal graphs are 

used to capture criteria (business goals) and issues (NFRs and FRs), AOs and their 

assessments. A concordance matrix captures assessments of the AOs against FRs and NFRs. 

ATAM captures criteria (quality attributes, business goals), issues (risks), options 

(architectural views) and assessments (utility tree). CBAM (Cost Benefit Analysis Method) is 
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used to refine the ATAM results with cost benefits (criteria, options); and d) use architectural 

styles to capture and use experience on typical AOs. 

 

In addition, in his position paper, Mylopoulos puts emphasis on the increasing use of the 

“goal concept” in requirement engineering methods and techniques (Mylopoulos, 1998) 

considering goals as an important construct in different areas of requirements engineering as: 

a) requirement acquisition and specification: here goals are used as the main guiding concept 

in requirement specification; b) clarifying requirements: the goal oriented approach would 

allow  the requirements to be refined and clarified through an incremental process; c) 

requirements conflicts: goals are a useful way to address conflicts among NFRs where 

difficult tradeoffs have to be made such as costs, performance, flexibility and usability; d) 

driving design: goals are an important driving force of requirements to design. In fact, the 

NFRs framework (Chung, 2000) uses NFRs as goals to guide the design process.  

 

More definitions on quality requirement have been suggested in the engineering community. 

Authors like Pfleeger, van Vliet and Lauesen (Pfleeger, 2001; van Vliet, 2002 and Lauesen, 

2001) highlight, in their research field, the importance of dealing with non functional 

requirements at an early stage.  

 

Lauesen in his book entitled “Software requirements Styles and Techniques” defines quality 

requirements as “Quality requirements specify how well the system must perform its 

functions. How fast it respond? How easy must it be to use? How secure does it have to be 

against attacks? How easy should it to be maintained?” The McCall and Matsumoto quality 

model (McCall, 1977) (Operation, revision and transition) is used with a quality grid to find 

the important quality factors. The author also highlights the importance of QRs in the 

requirements specification step and confirms that they occupy little space because they are 

difficult to identify and verify. In addition, in the described case studies, QRs are presented 

as: a) quality properties enumerated as quality attributes related to the described system; b) or 

categorized as one of the goal levels (domain level, high-level and product level 

requirements) which are quality level requirements.  
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Lauesen describes several requirements elicitation techniques. For instance, Goal-Domain-

Tracing is described as a checking technique which establishes a relation between business 

goals and domain issues (tasks or quality factors) and addresses these two points: a) which 

quality factors and tasks ensure that the business goal can be met? And b) what is the purpose 

of each task and quality factor in terms of business goals? The Goal-Task-Description is 

another technique used to show relationships between goals and tasks in order to identify the 

critical tasks. Goal-Task-Description is also used to progress from stating business goals to 

formulating requirements (functional and quality requirements). To formulate quality 

requirements (for instance, usability), the method used is : a) identify usability issues, 

business goals, concerns, user profiles and critical tasks; b) select requirements styles to 

cover the issues; c) select metrics and target values. 

 

Pfleeger describes in her book functional and non-functional requirements and explores their 

characteristics and methods to define and specify them. Pfleeger defines non-functional 

requirement as: “A requirement or constraint describing a restriction on the system that 

limits our choices for constructing a solution to the problem”. Requirements are written in a 

Requirements Statement Language (RSL). The author highlights how to express NFRs as 

descriptions of the path through the R-nets as mentioned in “We can think of the non 

functional requirements as descriptions of constraints placed on the flow along various 

paths”. NFRs are specified by making the R-nets with validation points (“A validation point 

is a place in the diagram used to denote the beginning or the end of a measurement”). 

Pfleeger presents different specification techniques of requirements (ranking from static: data 

flow diagram to time related dependencies and oriented object) which do not mention 

anywhere how to identify NFRs. An exception is made for the technique SREM (“Software 

Requirements Engineering Methodology”) which views the system as a finite state machine 

where the statements are analyzed by a Requirements Engineering Validation System 

(REVS). As enunciated by the author, “RSL describes the flow of processing in terms of what 

events initiate which processes. These flows are represented as networks”. These networks 

or R-nets specify the transformation of a particular state and a single input into a new state 
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with multiple output messages. RSL allows for a complete specification view of FRs and 

NFRs requirements associated to elements and processing steps.  

 

Hans Van Vliet in his book defines four types of non-functional requirements according to 

IEEE framework (Std 830-1993: Recommended Practice for Software Requirements 

Specifications): external interface requirements, performance requirements, design 

constraints and software system attributes. Performance requirements and software quality 

attributes are known as quality requirements. The author highlights the importance of these 

requirements and difficulty to specify and verify them. Van Vliet also emphasizes the fact 

that these requirements should be expressed in objective and measurable terms.  

 

Van Vliet presents a list of techniques for capturing and formulating requirements. For 

example, task analysis is a technique used to obtain a hierarchy of tasks and subtasks to be 

carried out by people working in the domain. Scenario-based analysis is a method which 

analyzes, generates and validates scenarios in a systematic way. Entity-Relationship 

Modeling is a requirements specification technique which models the data aspect and the 

finite State machines are used to model the functional aspect.  

 

Other authors are working in the same research field to address organizational requirements 

in conjunction with quality requirements (Firesmith et al., 2004). In their research study 

entitled “Requirements Elicitation and Analysis Processes for Safety and Security 

Requirements”, Firesmith described the problems encountered when requirements 

engineering practices are missed or not well defined early in the development life cycle and 

mentioned also that organizational mechanisms facilitate the promotion of quality 

requirements in the software development process. The search focus was oriented 

specifically on “safety and security engineering” and aims to identify the potential conflicts 

of quality concepts (time consuming) with organizational mechanisms (time to market and 

cost considerations) and to support quality engineering by organizational techniques. An 

elicitation process for security requirements was developed and supported by prototype tools 

(Mead, 2004 and Firesmith, 2003 and 2005).  
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On the other hand, Bevan considers software product quality by achieving “quality in use” 

and adopting a user centered design process to meet user needs for quality (Bevan, 1999 and 

Bevan et al., 1997). A “quality in use” is defined as a way to incorporate human factors into 

the software engineering life cycle. In other terms, by defining “quality in use”, a link is 

provided between the human factors approach to usability and user centered design. 

 

Table 1.2 summarizes relevant software QRs definitions suggested by different authors. 

 
Table 1.2 Definitions of software QRs by authors 

 

 
 

In conclusion, one can say that quality requirements have been addressed by different authors 

and most of them put emphasis on their importance in determining the software product 

quality. These authors also turn the reader’s attention to the difficulty of identifying quality 

requirements and to the need for developing more methods and approaches to deal with 

them. 
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1.3 Software quality engineering standards 
 

One of the first predecessors of today’s quality models is the quality model presented by Jim 

McCall (McCall et al., 1977) (also known as the General Electric’s Model of 1977). This 

model originates from the US military and is primarily aimed toward the system developers 

and the system development process.  McCall attempts to establish a link between users and 

developers by defining a number of software quality factors that reflect both the users’ views 

and the developers’ priorities. The McCall quality model has three major perspectives for 

defining and identifying the quality of a software product: product revision (ability to 

undergo changes), product transition (adaptability to new environments) and product 

operations (operational characteristics).  

 

The model details the three major perspectives in a hierarchy of a) factors (to specify) which 

describe the external view of the software as viewed by the users, b) criteria (to build) which 

describe the internal view of the software as seen by the developer and c) metrics (to control) 

which are defined and used to provide a scale and method of measurement. 

 

 The second of the basic predecessors of today’s quality models is the quality model 

presented by Barry W. Boehm (Boehm et al., 1978). Boehm’s model attempts to qualitatively 

define software quality by a given set of attributes and metrics. Boehm's model presents a 

hierarchical quality model structured around high-level characteristics, intermediate level 

characteristics, and primitive characteristics. 

 

The high-level characteristics represent basic high-level requirements of actual use to which 

an evaluation of software quality could be put – the general utility of software.  

The intermediate level characteristic represents Boehm’s 7 quality factors that together 

represent the qualities expected from a software system.  

 

The lowest level structure of the characteristics hierarchy in Boehm’s model is the primitive 

characteristics metrics hierarchy. The primitive characteristics provide the foundation for 

defining quality metrics. 
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A more recent model is the quality model presented by R. Geoff Dromey (Dromey, 1995). 

His idea is as quoted “quality evaluation differs for each product and that a more dynamic 

idea for modeling the process is needed to be wide enough to apply for different systems”. 

Dromey’s quality model is based on the relationship between quality attributes and sub-

attributes, as well as the connexion between the product properties and the software quality 

attributes. 

The standard ISO/IEC 9126 (ISO/IEC 9126, 2004) developed by ISO/IEC JTC1 SC7 

(Subcommittee SC7 - Software and Systems Engineering of International Organization for 

Standardization) is divided into four parts: 

1. ISO/IEC 9126-1: Information technology - Software quality characteristics and 

metrics - Part 1: Quality model. 

This part provides the recommended quality model containing important quality 

characteristics for the final product. Quality sub characteristics and attributes refine the 

quality model and can be internal or external quality attributes.  

2. ISO/IEC 9126-2: Information technology - Software quality characteristics and 

metrics - Part 2: External metrics (Figure 1.3). 

This part provides external quality metrics for measuring software quality characteristics 

applicable to an executable software product during testing or operating at a later stage of 

development and after entering the operation process. 

3. ISO/IEC 9126-3: Information technology - Software quality characteristics and 

metrics - Part 3: Internal metrics (Figure 1.3). 

This part provides internal quality metrics for measuring software quality characteristics 

applicable to a non-executable software product during designing and coding at an early 

stage of the development process. 

4. ISO/IEC 9126-4: Information technology - Software quality characteristics and 

metrics - Part 4: Quality in use metrics (Figure 1.4) 

This part provides quality in use metrics for measuring software quality characteristics 

applicable to an executable software product after entering the operation process. 
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Figure 1.3 ISO/IEC 9126 Quality Model - External and Internal Quality 
 Extracted from Suryn et al., (2005b) 

 

 
 

Figure 1.4 ISO/IEC 9126 Quality Model - Quality in Use 
 Extracted from Suryn et al., (2005b) 

 

Azuma presents in his article (Azuma, 2004) the categorization of software quality 

requirements according to ISO/IEC JTC1/SC7 (External Quality Requirements, Internal 

Quality Requirements, and Quality-In-Use Requirements) as follows: 

 
“External Quality Requirements specify the required level of quality from 
the external view. They include requirements derived from user quality 
needs, including Quality-In-Use requirements”. “Internal quality 
requirements are used to specify properties of interim products, including 
static and dynamic models, other documents and source code”. (Azuma, 
2004). 
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Moreover, according to Suryn, the extraction of software quality requirements begins with 

identification of stakeholder requirements and continues through decomposition until all 

corresponding categories of quality requirements are identified (Quality in use, external 

quality, internal quality and operational quality) (Suryn, 2003). The quality requirements 

decomposition model is static and gives no insight on how to extract and decompose quality 

requirements (Figure 1.5). Hence, the process of defining and controlling quality 

requirements has been proposed to state important questions to be asked about the way to 

define and control quality requirements (Figure 1.6). 

 

 
 

Figure 1.5 Quality requirements decomposition model  
Extracted from Suryn (2003) 
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Figure 1.6 Process of defining and controlling quality requirements  
Extracted from Suryn (2003) 

 

Operational quality (OP) shown in Figures 1.5 and 1.6 is described by TL 9000 standards: 

TL 9000 Quality System Requirements (TL900, 2001a) and TL 9000 Quality System 

Measurements (TL900, 2001b). These standards are developed by QUEST Forum (in 1999-

2000 and Published in 2001) for the set of initial requirements for operational quality as well 

as for reporting on implemented quality once the software product has been developed and 

deployed in the field (Suryn et al., 2004a.)  

 

TL 9000 (part 2) identifies four categories of requirements and/or measurements applicable 

to software products:  

1. Common measurements – referring to the number of problems reported, response time, 

overdue problem responsiveness and on-time delivery;  

2. Hardware and software measurements – referring to system outage;  

3. Software measurements – referring to software installation and maintenance;  

4. Service measurement – referring to service quality.  
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Figure 1.7 illustrates the TL 9000 model structured in layers: 

1. International Standard - ISO 9001; 

2. Common TL 9000 Requirements; 

3. Hardware, Software and Services Specific Quality System Requirements; 

4. Common TL 9000 Metrics; 

5. Hardware, Software and Services Specific Quality System Metrics. 

 

 
 

Figure 1.7 Quest FORUM TL9000 Model  
Extracted from TL 9000 (2001) 

 

The TL 9000 standard series was combined with ISO/IEC 9126 to create CQL (Consolidated 

quality life cycle) model (Figure 1.8), which serves as the basis (backbone) for the process of 

defining quality requirements, their measurement and evaluation. CQL model was proposed 

by Suryn and Abran (Suryn et al., 2004a.) where they describe the applicability of a CQL 

model in each phase during the development process. The Discovery and Requirements 

Analysis phases are briefly presented hereafter. 
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Figure 1.8 Suryn-Abran CQL model version 1.1  
Extracted from Suryn et al., (2005) 

     

Discovery Phase: The definition of quality requirements is undertaken in the Discovery 

Phase. Three sets of requirements have to be identified and defined:  

1. Functional and non-functional requirements of the product; 

2. Operational quality requirements; 

3. Quality in Use requirements. 

In this phase “quality in use and operational quality” characteristics are analyzed and 

applicable measures are defined. Target values are then assigned for each. Standards to be 

applied to complete this task are ISO/IEC 9126 – Part 4: Quality in Use Metrics and TL 9000 

– Quality Management System Measurement Handbook (part 2). 

 

Requirements Analysis Phase: In this phase external and internal quality attributes of the 

software product are defined. The ISO standards applied in this phase are:  

1. ISO/IEC 9126 – Part 2: External Quality Metrics 

2. ISO/IEC 9126 – Part 3: Internal Quality Metrics 
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The CQL model was improved after several steps resulting from detailed analysis and 

verification. The authors (Suryn and al, 2005b.) present a research model analysis and 

propose enhancements (normative support) for each phase of CQL model (Figure 1.8). 

 

1.3.1 Software quality Requirements and ISO/IEC SQuaRE standard  
 

In their research study (Suryn and Abran, 2003), the authors addressed the need to integrate 

process and product standards in the development process through their quality engineering 

approach. They highlighted the absence of ISO standards used in the product definition phase 

(Figure 1.9) and the mapping mechanisms between these standards and all phases of the life 

cycle of a software product. The ISO/IEC 15288 – System life cycle processes (ISO/IEC 

15288, 2002) which identifies the generic phases of the development process was integrated 

into these standards in order to define the mapping between these standards and the software 

product life cycle phases.   

 

 
 

Figure 1.9 High-level mapping of ISO/IEC SC7 software product quality  
Standards and a software life cycle   
Extracted from Suryn et al., (2003) 

 

The first generation of software quality engineering standards developed by the ISO SC7 

(ISO/IEC 9126 – Software Engineering – Product quality and ISO/IEC 14598 - Evaluation 

of software products) presents some limitations (Figure 1.10) as mentioned:  
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“While it provides generic linkages between the high-level concepts of the 
ISO 9126 quality instruments (i.e. characteristics, sub characteristics and 
measures), it is not yet specified in the format of specific prescriptive 
quality engineering practices. In particular, the current versions of these 
ISO/IEC standards do not provide a clear mapping between the quality 
engineering instruments already developed and the various phases of the 
product development life cycle”. (Suryn and Abran, 2003). 
 

 
 

Figure 1.10 Mapping between ISO/IEC 15288, ISO/IEC 9126 and ISO/IEC 14598  
Extracted from Suryn et al., (2003) 

 

 In fact, the standards provide the static quality concepts but do not support the mapping 

between quality concepts and the software life cycle phases. Based on these remarks, the 

authors present the relevant improvements proposed by the ISO/IEC SC7 WG6 experts to 

build the new standard for software quality requirements specifications ISO/IEC SQuaRE 

25000 – Software Product Quality Requirements and Evaluation.  
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1.3.2 Standard ISO/IEC SQuaRE 25030 - Software Product Quality Requirements  
 

ISO/IEC SQuaRE: 25000: The Software Product Quality Requirements and Evaluation 

standard is a set of international standards and technical reports on software product quality. 

SQuaRE consists of five divisions: quality management, quality requirements, quality 

evaluation, quality models and quality metrics. This standard includes: definitions of terms, 

reference models and a general guide, requirements and recommendations, and individual 

guides for the use of the series. 

ISO/IEC SQuaRE: 25030 is described by (Azuma, 2001):  

 
“Quality Requirements is a “SQuaRE” standard that enables software 
product quality requirement to be specified, tracked, validated and 
managed with evaluation from different perspectives by those associated 
with acquisition, requirements analysis, development, use, evaluation, 
support, maintenance, quality assurance and audit of software. It provides 
a guide to use the model and metrics for requirement definition”. (Azuma, 
2001). 

 

Azuma also indicates that the application of SQuaRE 25030 standard allows one to: 

• “Validate the completeness of a requirements definition; 
• Identify software requirements from a view of quality; 
• Identify software design objectives; 
• Identify software testing objectives; 
• Identify acceptance criteria for a completed software product”. 

(Azuma, 2001). 
 

The quality requirements components of the standard are presented in Figure 1.11. 
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Figure 1.11 ISO/IEC SQuaRE 25030 Quality Requirement Division  
Extracted from ISO/IEC 25030 (2007)     

 

The steps of the standard (ISO/IEC 25030, 2007) are listed as follows (Figure 1.12):  

• General assumptions; 

• System considerations; 

• Stakeholder’s considerations; 

• Quality model considerations; 

• V&V considerations. 
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Figure 1.12 Steps of the standard  
 

System considerations are represented in Figure 1.13 

 

 
 

Figure 1.13 System considerations     
 

Stakeholder’s considerations are represented in Figure 1.14.  
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Figure 1.14 Stakeholders considerations  
    

Quality model considerations are represented in Figure 1.15 
 

 
 

Figure 1.15 Quality model considerations   
 

Validation and verification (V&V) considerations are represented in Figure 1.16 
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Figure 1.16 V&V considerations  
     

As SQuaRE complies with ISO/IEC 15288 System Life Cycle Processes, Azuma proposes a 

contribution from the guide ISO/IEC 25030: Quality requirements in the phases: 

“Stakeholder requirements definition” process and “Requirements analysis” process (Figure 

1.17). 

 

 
 

Figure 1.17 ISO/IEC 15288 System Life Cycle Processes to appear in 25030  
Extracted from Zubrow (2004) 
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The proposed contribution from the guide ISO/IEC 25030 is described by the following 

activities: 

 

• Elicitation and definition of quality requirements as input to “Stakeholder requirements 

definition” process; 

• Formalization of identified requirements as input to “Requirements analysis” process; 

• Identification and formalization of internal quality requirements. 

 

Software quality engineering standards have proven their applicability in different fields of 

application such as facilitation of communication between users through a standard language 

(ISO/IEC 9126, 2004) and (ISO/IEC 14598, 1999).  However, they need to be supported by 

techniques and practical guidelines to identify and model software QRs. As a solution, there 

is a possibility to combine quality standards with QRs management methods. The next 

section will present some QRs management methods which address elicitation and definition 

of quality requirements. 
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1.4 Quality requirements management methods 
 

Over the past two decades, research on software quality and quality requirements (QRs) has 

resulted in several software QRs management methods. These methods are classified into 

four categories developed at two subsequent levels (requirement and architectural). This 

classification was based on the main drivers contributing to identify and specify quality 

attributes and are: business goals, aspect and goal concepts. The methods are: 

 

a) Business goal oriented methods which use business goals as main drivers in the software 

quality process: 

a. Space-Ufo:  uses business issues to identify the quality needs of the stakeholders 

(users, customers and managers) (requirements level); 

b. MOQARE (Misuse Oriented QuAlity Requirements Engineering): uses business goals 

and the misuse concept to describe quality attributes (requirements level); 

c.  ATAM (Architecture Tradeoff Analysis Method): uses business goals and scenarios to 

describe quality attributes (architectural level). 

 

b) Aspect oriented methods are based on the aspect concept of the “Aspect oriented 

paradigm”: 

a.  FDAF (Formal Design and Analysis Framework): uses the aspect concept and formal 

methods to design and analyse NFRs (architectural level); 

b. Quality model for quality attributes: uses the aspect concept to specify quality 

attributes (requirements level). 

 

c) Goal oriented methods which are based on the goal concept to specify, refine and 

analyze conflicts:  

a. IESE NFR (Institute for Experimental Software Engineering for NFR) deals with 

quality attributes of embedded systems (requirement and architectural levels); 

b. Soft goal notation : uses goals as a driving force to elicit and refine NFRS and to guide 

the design process (requirements and architectural levels); 
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c. Prometheus (Probabilistic Method for early evaluation of NFRs): combines goal 

concepts to operationalize quality goals via the Goal Measurement template 

(requirements level). 

 

d) Other QRs management methods:   

a. Quality models in software packages (requirements level); 

b. Quality specification strategies for embedded systems (requirements level); 

c. SHEL (Software and HardwarE and Live ware) methodology  which deals with the 

integration of different types of requirements (functional, cognitive and quality) 

(requirements and architectural levels); 

 

Each method will be described according to its process and model, analyzed and discussed 

by establishing strengths and weaknesses. The analysis and discussion of strengths and 

weaknesses are based on the existing literature on the QRs methods and on Djouab’s 

analysis. A conclusion ends this section with important observations arising from the studied 

quality methods. 

 
 
1.4.1 SPACE-UFO1 Project  
 

1.4.1.1  Description of the method   
 

The approach presented by Punter in (Punter et al., 1997), (Veenendaal, 1997) and (Space-

Ufo, 1998) deals with the fit between the software product characteristics and the user’s need 

for that product (explicit and implicit). The authors present the SPACE-UFO project and 

describe the method for IT product quality requirements specifications and evaluation. This 

method is focused on user needs and is used as a “quality target” for both IT the product 

                                                 
 

1 SPACE-UFO project is part of the SPACE-Software Product Advanced Certification and Evaluation --User 

FOcus- is a new CEC ESPRIT project that will provide an enhanced user-oriented method for IT product 

quality requirements specification. 
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evaluation process and the IT development process. Requirements addressed by this method 

are quality needs and quality characteristics of the software product. The quality model used 

by this method is the standard ISO/IEC 9126. The tools/techniques supporting this method 

are: questionnaires, scenarios and interviews. 

 

1.4.1.2  Activities of this method 
 

The authors describe the reference model of this method (Figure 1.18). The main objective of 

this methodology is to specify quality requirements for the software product and to evaluate 

the quality of this software product. The basic idea is to use a first transformation process to 

elaborate a quality profile (based on ISO/IEC 9126 model) from the descriptions of the 

business process, the needs of the user/customer and the software product itself. A second 

transformation process is used to produce a quality specification (describing quality 

characteristics of the software product being developed which serves as input to the 

development process) and an evaluation plan (describing techniques and tools to be used to 

evaluate the software product).  

 

Furthermore, Punter et al point out the importance of building a quality profile of the 

software product which is defined as a list of ISO/IEC 9126 prioritized quality characteristics 

and sub characteristics and a number of requirements associated with these quality 

characteristics. The main phases of building the quality profile are as follows: 

 

• Identification of quality needs: quality needs of the stakeholders (users, customers and 

managers) are related to business issues or companies. The user’s quality needs for a 

software product are defined in accordance with the influence a software product has on: 

o Business system and characteristics of that business system; 

o User tasks. 

•  Specification of quality characteristics: quality characteristics have to be specified 

and quantified in a consistent and complete manner. It is important to find a good 

definition for each sub characteristic and to link that characteristic to the associated 

metric.  
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Figure 1.18 SPACE-UFO reference model 

Extracted from Punter et al., (1997) 
 

1.4.1.3  Analysis and discussion of the method 
 

This methodology is based on building a quality profile which determines the quality level of 

the software product. The quality profile is then based on the user’s quality needs related to 

business aspects and the quality characteristics of the software product. The methodology 

seems to be suitable to establish the important quality characteristics of the software product 

but some questions could be addressed:  

• At which point of the process of building the quality profile are important quality 

requirements identified? Which techniques or tools have been used to identify quality 

requirements? 

• Are business aspects well modeled to identify quality needs in a structured way? 

• Are conflicts between quality characteristics resolved in a consistent and complete 

manner? 

• Is there a way to retrace quality requirements or to manage their changes when they 

happen? 
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Table 1.3 summarizes the strengths and weaknesses of this method. 

 

Table 1.3 Strengths and weaknesses of Space-UFO method  
Extracted from Punter et al., (1997) 

 

Space UFO METHOD 

Strengths Weaknesses 

1. Quality characteristics are extracted 

from the context in which the product 

is supposed to be used; 

2. Quality needs of the stakeholders 

(users, customers and managers) are 

identified from the different business 

aspects; 

3. Uses ISO/IEC 9126 to specify quality 

characteristics. 

1. This method needs to structured & practical 

mechanisms to (Punter et al., 1997): 

a) Define the relationship between the quality 

characteristics of the product and the business 

characteristics and 

b) Specify and quantify quality characteristics: how to 

establish linkage between quality characteristics and 

their associated measures? 

2. It is not mentioned anywhere in this method how to 

define “quality in use”; 

3. It is not focused on the mapping activities of quality 

engineering instruments with the product definition 

phase at early requirements stage.7 

 

 
1.4.2 MOQARE (Misuse-Oriented QuAlity Requirements Engineering) method 
 

1.4.2.1  Description of the method  
 

MOQARE (Hermann et al., 2007a.) is developed to explore quality requirements. The aim of 

MOQARE is to support intuitive and systematic identification of quality requirements. This 

method was developed by integrating and adapting concepts from other methods (like Misuse 

Cases) and provides a general conceptual model of quality requirements and a checklist-

based process for deriving them in a top down fashion. This derivation starts from business 

goals and vague quality requirements and delivers detailed requirements. Relationships 

among these requirements are modeled in a Misuse Tree. The completeness criterion for the 

NFR is: each business goal must be linked to at least one business damage; each business 

damage must be linked to at least one quality deficiency. 
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Requirements addressed by this method are quality attributes (QAs), quality requirements 

(QRs). The tools/techniques supporting this method are the misuse case approach chosen as a 

basis for detailing QRs from business goals down to quality goals and further to detailed 

requirements (here called “countermeasures”). MOQARE identifies potential Misuse Cases 

with respect to all QAs and derives further requirements. The Misuse Cases method of 

exploring QRs is based on the general principle: an asset is to be protected from a threat, and 

to do so, countermeasures are defined. Figure 1.19 presents an overview of the MOQARE 

concepts and their relationships.  

 

 
 

Figure 1.19 MOQARE concepts and their relationships  
Extracted from Herrmann et al., (2007a) 

 

Hermann (Hermann et al., 2007a) defined these concepts as follows: 

• The business goals are supported by quality goals of the system. A quality goal is the 

combination of an asset plus a QA, and both are to be protected, like “integrity of the 

data”. An asset can be any part of the system. The quality goals are high-level QRs.  
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• A quality deficiency means that the asset does not satisfy the QA. The quality 

deficiencies concretize how (when/where/how much) the system does not satisfy the 

QA. This non-compliance can be total or partial, permanent or temporary.  

• A threat is an action (during system use, development, administration or maintenance) 

which causes a quality deficiency and consequently degrades the satisfaction of a quality 

goal. The threat is usually executed by a misuser, its driving force. Often, the threat is 

facilitated or even provoked by vulnerability.  

• Vulnerability is a property of the system, either a flaw or a side-effect of an otherwise 

wanted property, if it is misused with respect to a quality goal.  

 

1.4.2.2   Process of the method  
 

The process model is presented in Figure 1.20 which describes MOQARE’s general 

conceptual model of QRs and the checklist-based process for deriving them in a top-down 

fashion. The requirement elicitation is guided by a four-step process: 

 

 
 

Figure 1.20 MOQARE process model 
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1. Find the quality goals (based on business goals, business damages, and quality 

deficiencies); 

2. Describe Misuse Cases (including threat, misuser, vulnerabilities, and consequences); 

3. Define countermeasures; 

4. With countermeasures which are quality goals, re-start the cycle at step 2. 

 
The MOQARE results can be presented in the form of a graph, a “Misuse Tree” (Figure 

1.21). A Misuse Tree has the following levels, from top to bottom:  

 

• Business goal: the cause of a system’s development and use; 

• Business damage: threat to business goals; 

• Quality deficiency: cause damages; 

• Quality goal: combination of an asset and a QA; 

• Misuse Case : a whole misuse case scenario, including misuser, threat and 

consequences; 

• Countermeasure, some of which are quality goals: prevents, mitigates or detects 

misuse. 
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Figure 1.21 Misuse Tree for the wireless network system  
Extracted from Herrmann et al., (2007b) 

 

1.4.2.3  Analysis and discussion of the method 
 

MOQARE supports intuitive and systematic identification of quality requirements. The input 

is a functional description or draft of a planned or existing system, business goals and quality 

goals. The output is a misuse tree. The method provides a systematic detailing of the NFR 

using defined concepts which are supported by a notation with a tree structure. MOQARE 

looks at quality deficiencies triggered by misuses in order to better understand what quality 

means to the stakeholders. The main contribution is support by the context-rich misuse case 

scenarios and the focus is on the business goals as main drivers of the system. The main 

quality issues captured by MOQARE need not to be measurable at an early stage. Metrics 

would only be emphasized as soon as they are needed to support quality assurance. However, 

there are some questions related to applicability of MOQARE method: are conflicts between 

QAs documented? How does one retrace QRs to their original requirements? And finally, for 

a complex system where the misuse tree gets big, is the MOQARE analysis time-consuming?  
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Table 1.4 summarizes the strengths and weaknesses of this method. 

 

Table 1.4 Strengths and weaknesses of MOQARE  
Extracted from Herrmann et al., (2007a and 2007b) 

 

MOQARE method 

Strengths Weaknesses 

1. Based on business goals and focus on quality 
requirements which support business goals; 

2. Support intuitive and systematic 
identification of QRs; 

3. Provides a general conceptual model for QRs 
and a checklist-based for deriving them in a 
top down fashion; 

4. Provides reuse of checklists; 
5. Supported by the context-rich Misuse Case 

scenarios. 

1. Vague NFRs are refined to FRs, or NFR but not 
measurable and quantifiable by metrics 

2. Conflicts between quality concepts are not 
documented; 

3. No direct integration of NFRs into the FRs 
documents and architectural options 

4. Not yet applicable to all types of quality 
requirements; 

5. Not yet proven its applicability in industry; 
6. MOQARE analysis seems to be time consuming 

where the Misuse Tree gets too big and the system to 
analyze is too complex. 
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1.4.2.4  Suggestions 
 

Suggestions have been made by authors (Hermann et al., 2007b.) to improve this method: 

 

• The MOQARE process could include a final evaluating phase in which project specific 

knowledge is added to the checklists as additional items and also as a whole sub tree; 

• Adopt an NFRs dependency graph analysis as an additional reusable artefact describing 

frequent QAs dependencies and their conflicts; 

• Develop tools support to allow linking of NFRs to FRs and document their integration 

into the FRs documents. 

 

1.4.3 ATAM (Architecture Tradeoff Analysis Method)  
 

1.4.3.1  Description of the method 
 

ATAM is an analysis method developed by the Software Engineering Institute at Carnegie 

Mellon University. The method is organized around business drivers and quality attributes 

goals and based on the extent of the architectural styles to determine quality attribute goals. 

Its purpose is to assess the consequences of architectural decisions in light of quality 

attributes requirements (Kazman et al., 2000). ATAM is most beneficial when done early in 

the software development life cycle when the cost of changing architectures is minimal.  

 

ATAM is founded in three key concepts: quality attribute characterization, scenarios and the 

attribute-based architectural styles (Kazman et al., 2000). The scenario-based quality 

requirements elicitation is an important factor in applying this method. 

Requirements addressed by this method are system quality attributes (Figure 1.22). 

Tools/techniques supporting this method are utility tree, scenarios and brainstorming.   
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Figure 1.22 System quality attributes 
 

1.4.3.2 Activities of the method  
 

The ATAM process consists of gathering stakeholders together to identify the driving quality 

attributes from the business drivers and to create associated prioritized scenarios. These 

scenarios are then combined with architectural approaches and architectural decisions to 

identify trade-offs, sensitivity points, and risks (or non-risks).  

 

1.4.3.3 Steps of the ATAM Process (Kazman et al., 2000) 
 

The process model of ATAM is described in the following steps: 

1. Present ATAM - Present the concept of ATAM to the stakeholders, and answer any 

questions about the process; 

2. Present Business Drivers - Everyone in the process presents and evaluates the business 

drivers for the system in question; 

3. Present the Architecture - The architect presents the high level architecture to the team 

with an 'appropriate level of detail'; 

4. Identify Architectural Approaches - Different architectural approaches to the system 

are presented and discussed by the team; 

5. Generate a Quality Attribute Utility Tree - Define the core business and technical 
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requirements of the system, and map them to an appropriate architectural property and 

present a scenario for this given requirement; 

6. Analyze architectural approaches - Analyze the scenarios, rating them by priority. The 

architecture is then evaluated against each scenario; 

7. Brainstorm and prioritize scenarios - among the larger stakeholder group, present the 

current scenarios, and expand upon them; 

8. Analyze architectural approaches - Perform step 6 again with the added knowledge of 

the larger stakeholder community; 

9. Present results - provide all documentation to the stakeholders and write a report 

detailing this information along with any proposed mitigation strategies. 

 
1.4.3.4 Analysis and discussion of the method  
 

ATAM is a method for architecture evaluation which confirms that quality requirements 

were satisfied by the developed software architecture. ATAM evaluates architectures of 

multiple quality attributes, identifies critical architectural decisions that conflict among 

multiple quality attributes and resolves them. Quality requirements elicitation is the first step 

of ATAM where quality scenarios and requirements are gathered by interviewing the 

involved stakeholders of the software. However, the author mentioned (Lee et al., 2001) 

difficulty constructing any concrete quality scenarios. Reasons for the difficulties are: a) lack 

of consensus on the definition of quality attributes; b) biased viewpoints of some 

stakeholders; c) no systematic way to write scenarios and no metrics to evaluate architecture 

on multiple quality attributes scenarios. The proposed quality requirements elicitation 

strategy is represented by the following points: 

1. Select the quality attributes;  

2. Make a consensus on these quality attributes; 

3. Develop scenario elicitation forms;  

4. Select an appropriate measure for each quality attribute; 

5. Decide priorities among the quality attributes.  
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Table 1.5 summarizes the strengths and weaknesses of this method. 

 

Table 1.5 Strengths and weaknesses of ATAM method  
Extracted from Kazman et al. (2000) and Lee et al., (2001) 

 
ATAM method 

Strengths Weaknesses 

1. The leading method in the area of 

software architecture evaluation; 

2. An interesting analysis method 

based on business drivers; 

3. Focused on the stakeholder’s 

scenarios, quality attribute 

characterization and quality 

attribute architectural styles. 

1. Used at the architectural level, not 

requirement one; 

2. Time consuming in writing scenarios and 

interviewing stakeholders; 

3. Difficulty to understand terminologies related 

to quality attributes definitions 

4. Unavailability of various stakeholders and no 

personal profiles of stakeholders; 

5. No systematic way to write scenarios; 

6. Scenarios have not metrics leading to 

difficulty in analyzing tradeoffs and 

evaluating architectures. 

 

 

1.4.4 FDAF (Formal Design and Analysis Framework) method 
 

1.4.4.1 Description of the method   
 

FDAF is an aspect-oriented architectural approach proposed to solve the problem of 

systematically modeling and analyzing NFRs for software architecture (Dai et al., 2005). 

This approach allows design and analysis of NFRs for distributed real systems and helps to 

build NFRs aspects into software architecture involved in enterprise level goals. This 

approach is supported by a process providing a systematic modeling of NFRs properties (by 

extending UML with aspects) and their automated analysis (by using formal methods and 

their supporting tools). This process verifies that these NFRs have been met and allows one 

to decide how to reorganize architecture components affected by these NFRs. In FDAF, 

NFRs’ properties are represented as aspects at the architectural level. An aspect repository is 
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provided to reuse predefined aspects. These aspects are integrated into the UML based 

architecture design model and analyzed automatically (by using translation algorithms) to 

formalize part of UML into formal languages.  

Requirements addressed by this method are quality aspects. Tools/techniques supporting this 

method are: UML model, Aspect Oriented Paradigm, Formal methods and their supporting 

tools.   

 

1.4.4.2 Activities of this method 
 

The process model is presented in Fig 1.23 where a UML aspect-oriented design model is 

created, formalized, analyzed and iteratively refined according to analysis results provided 

for particular aspects. Activities of FDAF are presented below (Dai et al., 2005). 

 

 
 

Figure 1.23 FDAF process model  
Extracted from Dai et al., (2005) 
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• Create a semi formal Extended UML Aspect Oriented Design Model: NFRs of the 

system are represented as aspects. A parallelogram notation is used to capture aspects 

in the UML design model where UML can be extended by stereotypes, tagged values 

and constraints. 

• Create a formal Aspect Oriented Model: A suitable formal language associated with 

the aspect oriented UML design model is selected and translated into a set of formal 

models. 

• Analyze the formal Aspect Oriented Model: The set of formal models is analyzed 

using existing tool in support (as Promella and Rapide) of the formal languages.  

 

1.4.4.3 Analysis and discussion of the method 
 

FDAF is an interesting method used to create architecture designs with NFRs aspects that 

cannot be described in the real time version of UML. The major contribution of FDAF is that 

it integrates the semi-formal UML with formal methods into an aspect oriented framework. 

In fact, the parallelogram notation is used to present aspect information. The aspect model is 

based on one specific aspect which makes it simpler than a traditional mixed model. 

However, formal methods are limited by their analysis tools in different areas. For instance: a 

lack of modeling constructs to support the description of a component’s behavior and 

connections; difficulty to obtain useful information from the raw data as the number of 

simulated events increases; restriction of modeled systems by mathematical assumptions and 

time consumption related to analysis of NFRs aspects. 

 

Table 1.6 summarizes the strengths and weaknesses of FDAF method when applied to define 

and analyze the three quality aspects (Dai, 2005) and (Dai et al., 2003, 2005 and 2006): 

performance response time aspect analyzed with Rapide tool, performance resource 

utilization aspect analyzed with Armani tool and the RBAC (Role Based Access Control) 

security aspect analyzed with Alloy tool. 
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Table 1.6 Strengths and weaknesses of FDAF method  
Extracted from Dai (2005) and Dai et al., (2003, 2005 and 2006) 

 

FDAF METHOD 

Strengths Weaknesses 

1. The FDAF performance aspect analysis helps 

to create architecture design that cannot be 

described in the real time version of UML; 

2. Rapide's analysis tool supports architects 

with detailed analysis of the system’s 

behaviour simulation at the architectural 

level and detects uninspected activities; 

3. Rapide is of great help for architects and 

designers to  identify early problems and  to 

refine the architecture design iteratively; 

4. The FDAF resource utilization aspect 

analysis provides architects with detailed 

analysis information about which component 

is the bottleneck (overloaded and busy all 

the time) and refine the UML architecture to 

meet the NFRs; 

5. The FDAF security aspect analysis allows 

detecting inconsistency of the multiple 

system security policies early in the design. 

 

 

1. There is no identification step of the NFRs aspects 

by the framework; 

2. Limitations of the Alloy’s analysis tool in this 

area: it doesn’t provide modeling constructs to 

support the description of component’s behaviour 

and connections; 

3. Analysis is time consuming; 

4. There is no mention where the quality standard 

ISO/IEC 9126 has been used; 

5. Limitations of the Rapide’s analysis tool and 

difficulty to obtain useful information from the 

raw data (response time analysis results presented 

in the graphical browser) as the number of 

simulated events increases; 

6. Limitations of the Armani’s analysis tool in this 

area: the mathematical assumptions restrict the 

systems they are modeled. For example 

assumptions that all components are executing 

sequentially are not applicable to systems where 

components are executing in a parallel way; 

7. The queuing network analysis is not applicable to 

other architectural styles (pipe and filter and layer 

architecture); 

8. The Armani tool does not calculate automatically 

the property “sOverloaded” instead it allows 

changes to it. 
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1.4.5 Method “Requirement model for quality attributes”  
 

1.4.5.1  Description of the method 
 

This method defines a process to identify and specify quality attributes that crosscut 

requirements and to integrate them into the functional requirements at an early stage of the 

software development process (Brito et al., 2002): 

 

1. Proposes a template  to specify quality attributes at the requirement stage; 

2. Extends “Use Cases” and sequences diagrams (Jacobson et al., 1992) to specify 

integration of quality attributes with functional requirements. 

 

1.4.5.2  Activities of the method  
 

The process model is compatible with UML formalism (Jacobson et al., 1998) and is 

composed of three important activities (Figure 1.24):  

 

1. Identification of system requirements and selection of quality attributes relevant to the 

stakeholder’s requirements and application domain from those requirements; 

2. Specification of requirements:  

• Specify functional requirements by using “Use Case” based approach; 

• Describe quality attributes by using templates and specify quality attributes 

crosscutting functional requirements; 

3. Integration of crosscutting quality attributes with functional requirements. 
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Figure 1.24 Requirements model for quality attributes  
Extracted from Brito (2002) 

 

Requirements addressed by this method are: functional and quality. Quality requirements are 

specified as “quality attributes” and are defined as “global properties of a system, 

assumptions, constraints or goals of stakeholders”. The quality model used by this method is 

a template for describing quality attributes. Tools/techniques supporting the method are Use 

Case approaches (UML model, sequence & class diagrams) for specifying functional 

requirements and templates for describing quality attributes. 

 

1.4.5.3  Analysis and discussion of the method 
 

The method “Requirement model for quality attributes” defines a process to identify and 

specify quality attributes that crosscut requirements including their integration with 

functional requirements.  
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The strengths of the method (Araujo et al., 2002 and 2003) and (Brito, 2002) are: 

 

1. It proposes a new concept: “aspect-oriented paradigm", to integrate quality 

requirements (non functional requirements) with the functional requirements (Araujo 

et al., 2002 and 2003).  

2. This method investigates other approaches such as ATAM (Architecture Tradeoff 

Analysis Method), composition patterns and goal oriented requirements engineering 

related to quality attributes and crosscutting concerns.  

3. Using a template for describing quality attributes is interesting in the sense that 

knowledge about these attributes is collected (source, focus, decomposition, 

influence, requirements describing them, and their contribution to other attributes).  

 

However somr drawbacks are identified:  

 

1. it is not specified anywhere how to identify these quality attributes from system and 

user requirements and how to select them according to the application domain and 

stakeholders (Djouab and Suryn, 2006).  

2. In addition, it is not indicated in the template how  quality attributes are derived from 

quality requirements and how they are retraced to these quality requirements.  

3. Finally, It is not specified how ISO/IEC 9126 is used to specify quality characteristics 

and sub-characteristics. 

 

1.4.6 IESE NFR method 
 

1.4.6.1 Description of the method 
 

IESE NFR is a systematic experience-based approach which elicits documents and analyses 

Non-functional Requirements (NFRs) of embedded systems. Its objective is to achieve a 

minimal and sufficient set of measurable and traceable NFRs (Doerr et al., 2005). IESE NFR 

has been introduced to palliate the drawbacks of other approaches which lack systematic 

guidance on how to use them and to end up with measurable NFRs. IESE NFR distinguishes 
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between quality attributes (QAs) and NFRs where QAs are captured in quality models and 

NFRs are captured in templates. IESE NFR defines QAs as “QA is a non-functional 

characteristic of a system, user task, system task, or organization. An NFR describes a certain 

value of a QA that should be achieved in a specific project” (Doerr et al., 2005).  

 

The IESE NFR methodology has been used to elicit usability requirements in concert with 

supplementary requirements related to “Use Case” approach and high level architecture 

(Kerkow et al., 2003). Kerkow shows how quality aspects contribute to architectural design. 

The methodology uses a quality model (QM) (Figure 1.27) and quality attribute (QA) types 

to capture knowledge on NFRs and a template for capturing specific NFRs. In addition, 

checklists are used to elicit NFRs in concert with user models, Use Cases and architecture. 

 

1.4.6.2  Activities of this method 
 

IESE NFR method is organized around stakeholder workshops to select and tailor quality 

models and to use these models to elicit and document the NFRs. In fact, the method starts 

by prioritizing the high level QAs most important to the project and by selecting the quality 

models associated to these QAs. These selected quality models are tailored in workshops to 

the needs of the project. Checklists and templates are derived from the quality model to be 

used (in workshops) for the elicitation process. Dependencies between QAs (general and the 

lowest level) in the quality models are included in the checklists and used to identify NFRs 

and conflicts among them. The process of IESE NFR is organized around 2 basic steps 

(Figure 1.25): tailoring the quality model and elicitation process. 
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Figure 1.25 IESE NFR process 
 Extracted from Doerr et al., (2005) 

 

Tailoring the quality model:  where the experience based reference model is tailored to the 

need of the client’s project (Figures 1.26 and 1.27).  This process produces checklists and 

templates for use in the next process. The figures 1.28, 1.39 and 1.30 show examples of the 

tailoring process for the Tetris game. 
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Figure 1.26 Quality reference model for Efficiency  
Extracted from Doerr et al., (2005) and Kerkow et al., (2003) 

 

 
 

Figure 1.27 Tailored QM for Efficiency  
Extracted from Doerr et al., (2005) and Kerkow et al., (2003) 
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Figure 1.28 Tailoring process example of game Tetris  
Extracted from Herrmann et al., (2007b) 

 

 

 
 

Figure 1.29 Tailoring process example of game Tetris  
Extracted from Herrmann et al., (2007b) 
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Figure 1.30 Tailoring process example of game Tetris  
Extracted from Herrmann et al., (2007b) 

 

Elicitation process: Based upon the previous created artifacts, the different types of 

activities that formulate the NFRs are defined (organizational, user task, system task and 

system). These NFRs are consolidated to be analyzed for possible conflicts.  

Activities of the elicitation process are:  

 

• Elicit organizational NFRs; elicit NFRs that constrain QAs of the organization; 

• Elicit user task NFRs; elicit NFRs that constrain QAs of user tasks; 

• Elicit system task NFRs; NFRs that constrain QAs of system tasks; 

• Elicit system NFRs; elicit NFRs that constrain QAs of the system and subsystems; 

• Consolidate; QAs are analyzed for conflicts and NFRs that constrain different QAs 

are validated according to dependencies documented within the quality model. 

 

The checklist gives a means to identify these conflicts and a means to solve them. The 

process is based on the following artifacts:  Prioritized questionnaire; user model; system 

functionality and physical architecture. The figures 1.32, 1.33 and 1.34 show examples of the 

elicitation process for the Tetris game. 
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Figure 1.31 Elicitation process example of game Tetris  
Extracted from Herrmann et al., (2007b) 

 
 

 
 

Figure 1.32 Elicitation process example of game Tetris  
Extracted from Herrmann et al., (2007b) 
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Figure 1.33 Elicitation process example of game Tetris  
Extracted from Herrmann et al., (2007b) 

 

1.4.6.2 Analysis and discussion of the method  
 

IESE NFR method tried to achieve a complete and focused set of measurable and traceable 

quality aspects at an early stage. It provides structured guidance to elicit and document NFRs 

supported by the prioritized questionnaire of QAs, the tailoring process of the QM and the 

derived checklists and templates. The main contribution of this method is to provide 

guidance during the elicitation process. Hence, IESE NFR is suitable to deal with quality 

requirements at early stages because it deals with multiple NFRs (high and lowest levels) and 

is based on ISO/IEC 9126. However, some limitations remain:  

 
• The method is restricted to embedded systems where NFRs are dependent on functional 

requirements and architectural options and where NFRs should be clarified in the 

subsequent phases of the development process; 

• How can one retrace quality attributes to their original quality requirements? 

• What should be done with NFRs not satisfied? 

• The method will become difficult to use with the complexity of the quality model. 

 

Table 1.7 summarizes the strengths and weaknesses of the method when applied in industry 

(three case studies) (Doerr et al., 2005) and dealing with security, efficiency, reliability and 

maintainability attributes. 
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Table 1.7 Strengths and weaknesses of IESE NFR method  
Extracted from Doerr et al., (2003 and 2005) and Kerkow et al., (2003) 

 

IESE NFR METHOD 

Strengths Weaknesses 

1. A systematic approach which led to 

structured, correct, complete and 

measurable NFRs; 

2. Identifies early conflicting requirements 

with the use of the analysis dependency; 

3. Enhances communication between 

stakeholders (requirements engineer, 

developer and customer); 

4. Ability to elicit several quality 

attributes; 

5. NFRs are in almost cases measurable. 

 

1. How are conflicts among  quality attributes 

resolved? 

2. How to maintain the quality model with the growth 

of the dependency graph?  

3. The dependency graph is used to represent 

dependencies between quality attributes. The graph 

is not used to capture NFRs (they are placed in the 

requirements documents template); 

4. Size of checklist will be large with the growth of 

the conditions and alternatives sections; 

5. The experience based artifacts (models, checklists 

and templates) have to be maintained to be used 

efficiently. 

6. Much time is spent to resolve terminologies 

problems during workshop sessions; 

 
 
1.4.7 Soft goal notation of the Chung NFR Framework  
 

1.4.7.1  Description of the framework  
 

The framework is a process-oriented approach addressing non functional requirements 

(NFRs) (Chung et al., 1994, 1995 and 2000). It uses a goal graph structure to record and 

structure NFRs, design alternatives, decisions and rationale. All of these concepts are treated 

uniformly as goals (denoted by nodes) and related to one another via links. The framework 

documents NFRs with soft-goal notation (Figure 1.35) where elements of the goal graph are: 

a) quality attributes/NFRs (represented as clouds), b) operationalizations (represented in bold 

clouds) which indicate how the NFR is achieved and c) relationships divided into refinement 

(represented by “And” and “Or”) and contribution (represented by positive contribution 

“Make” and negative contribution “Break”). To satisfy NFRs goals, the developer considers 
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design alternatives called “satisfying goals” along with their tradeoffs, refines them, makes 

selections and justifies them by recording design rationale called “argumentation goals”.  

 

Development knowledge about specific NFRs is to be taken from the literature and industrial 

experience and captured as methods, which are then presented for reuse to help the developer 

generate new goals and links. For example, techniques can be incorporated from security 

evaluation criteria, performance responsiveness principles, and accuracy concepts (Chung et 

al., 1995). 

 

Non-functional requirements are systematically integrated into the development. They are 

represented as potentially conflicting or synergistic goals. 

To deal with NFRs, there is a need to: 

 

• Consider key domain characteristics; 

• Capture NFR-specific concepts; 

• Detect defects. 

 

 
 

Figure 1.34 Soft-goal notation example  
Extracted from Chung et al., (1995) 
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Requirements addressed by the framework are non functional requirements (NFRs) or soft 

goals. Tools/techniques supporting this method are goal graph structures, catalogues of 

refinement methods and interdependencies analysis among NFRs. 

 

1.4.7.2  Activities of the framework  
 

The process model is presented in Figure 1.36 

 

 
 

Figure 1.35 Framework model  
 

1.4.7.3  Analysis and discussion of the method  
 

The NFR-Framework is based on a process-oriented approach to deal with NFRs. During the 

software development process, this framework allows treating NFRs as potentially 

conflicting goals to achieve. Development alternatives which could meet the stated NFRs are 

considered and design tradeoffs are examined. The design decisions related to NFRs are 
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justified according to the needs of the intended application domain. The framework has been 

evaluated from three viewpoint perspectives: developers, experts and application domain 

(Chung et al., 1995). 

 

1.4.7.4  Perspective of developers  
 

• Framework observations: explicit expression of an initial set of NFRs as goals 

improved awareness and led to systematic development. When conflicts and synergy 

among the NFRs goals are explicitly described, allowing consideration of design 

tradeoffs to satisfy NFRs goals; 

• Catalogues of methods enable one to capture the large number of NFRs-specific 

concepts and their associated techniques;  

• Goal graph structures are important as a record of initial development and for long term 

review and maintenance of systems; 

• Defect detection observations dealing with NFRs involve repeated clarification of 

goals, addition of missing details, detection of goal graph synergy and conflict. 

 

1.4.7.5  Perspective of domain experts  
 

• Framework is helpful in the broad domain studied; 

• The cataloguing of development techniques and NFRs-specific knowledge would be 

helpful; 

• The goal graph structure and their components were helpful. 

 

1.4.7.6  Application domain perspective 
 

Application of the framework did not correspond to the domain because of the lack of 

knowledge about the domain, its priorities and terminology (lack of contact with domain 

people during the study). 
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In summary, important framework findings are a process oriented approach, goal graph 

structures, formality, tradeoffs and delivery of the main requirements. Table 1.8 summarizes 

the strengths and weaknesses of the framework. 

 

Table 1.8 Strengths and weaknesses of Chung framework  
Extracted from Chung et al., (1994 and 1995) 

 

Chung framework 

Strengths Weaknesses 

1. Applicable to all types of 

quality requirements; 

2. Structure and record NFRs, 

design alternatives, decisions 

and rationale in a goal graph 

structure; 

3. Provides catalogues of 

refinement methods. 

1. Knowledge on conflicts detection with functional 

requirements is not collected; 

2. Elicited NFRs are not integrated in the requirements 

specification document; 

3. Focused on documentation and negotiation of QRs and not 

their elicitation from business goals; 

4. Some NFRs stated in quantitative terms are not supported by 

the taxonomy of the NFR framework; 

5. Goal graph structures would be larger for complex systems; 

7. New decomposition methods would be provided to bridge 

automatically the gap between the new NFRs and the given 

satisfying goals; 

8. There is  a comprehensibility limit in understanding the 

meaning of arguments; 

9. Improvements in naming and presentation are needed to 

increase understandability; 

10. Lack of consultation with domain people during the study left 

gaps in the domain knowledge.  

 

 
 
1.4.8 Prometheus Method to model quality in SPL (Software Product Lines) 
 

1.4.8.1   Description of the method   
 

Authors Punter (Punter et al., 2002 and Trendowicz et al., 2003) try to combine several 

methodologies to model and evaluate the quality of software products early in the 
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development process. Prometheus is an example of such research. This approach describes a 

method to modeling NFRs (Non-functional requirements) by using flexible, reusable and 

transparent quality models. Prometheus combines 3 methodologies to model and evaluate the 

quality of a software product:  

1. The SQUID approach (Kitchenham et al., 1997); 

2. The BBNs (Bayesian Belief Networks) probabilistic concept (Fenton et al., 2002); 

3. The GQM (Goal Question Metric) concepts (Gray et al., 1997, Birk et al., 1998,  

Fuggetta et al., 1998 and Solingen et al, 1999a). 

 

1.4.8.2  Activities of the method 
  

The definition process for these quality requirements is composed of three phases:  

 
1. Requirements specification phase: during this phase a quality model is developed.  

Activities to define quality requirements are listed below (Figure 1.37): 

a. Define quality goals: quality goals are defined by the system users and other 

stakeholders by applying the MGT (Measurement Goal Template);  

b. Specify quality characteristics (content of model): describes the refinement of quality 

goals into quality characteristics and sub characteristics; 

c. Specify relationships (structure of model): here, two types of relationships are defined: 

decomposition, which specifies decomposition of high quality characteristics into 

detailed sub characteristics, and influence, that defines which sub characteristic 

influences the value of other characteristics; 

d. Review the model: the model is reviewed according to the implementation feasibility; 

e. Operationalize the model: the model is quantified (characteristics and relationships) 

and qualified by applying the BBN technique (Bayesian Belief Network). 

 

2. Application phase: During this phase, the model is used to evaluate the requirements; 

 

3. Packaging phase: Information on acquired experience during application of the model is 

collected in order to improve that information and to reuse it in other projects. 
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Requirements addressed by this method are quality goals and characteristics of the software 

product. Various quality models are combined and used by this method. Tools/techniques 

supporting this method are: GQM (Goal Question Metric) to define quality goals, interviews 

and questionnaires with domain experts to refine quality goals into quality characteristics and 

sub characteristics, SQUID tool for modeling and evaluating software quality and BBN 

technique for quantification of relationships as well as for the integration of quantitative and 

qualitative data within the quality model.  

 

 
 

Figure 1.36 Activities during the specification phase of the Prometheus method  
Extracted from Trendowicz et al., (2003) 

 
1.4.8.3  Analysis and discussion of the method 
 

As mentioned before, Prometheus method enables one to start quality evaluation early in the 

development process. It uses GQM method to define quality goals. The goal formulation is 

conducted iteratively and serves as a baseline for the evaluation step. Goals are defined by 

system users and other stakeholders related to the project who are involved in acceptation of 

the evaluation. This method defines its own quality model by organizing interview sessions 
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with domain experts who contribute in defining quality goals and quality characteristics. 

Sessions are supported by techniques such as questionnaires, case studies and existing quality 

models.  

Prometheus is an interesting method since it gives the main activities for building the quality 

model for the project domain and has the following advantages: 

 

1. Starting quality evaluation early in the development process; 

2. Learning effectively across several product variances/releases; 

3. Integrating quantitative (measured based) and qualitative approaches; 

4. Combining different contexts of software quality individual views (as developers, 

users) and evaluation objects (processes, products, resources); 

5. Applicable across different companies, to any project and incorporates views of all 

relevant project stakeholders; 

6. Reuse of quality experience packaged in existing quality models across other projects. 

It also supports the reuse of measurement data as well as quality characteristics and 

their relationships; 

7. Refining the quality model through subsequent projects. 

 

However, this method does not use the ISO/IEC 9126 as a quality model and it does not 

indicate how quality requirements are extracted from quality goals and how they are 

specified (Djouab and Suryn, 2006). Further,  application of Prometheus for quality modeling 

also faces problems like the huge effort needed to initialize the BBN quality model with 

expert’s knowledge, serious limitations of the BBN network in size and structure 

(decomposition level equal to 2), computation complexity of the BBN network linked with 

the exponential growth of the number of probabilities and the size of tables, and as reported 

by Fenton, impossibility to assess accuracy of the quality model due to the great amount of 

data required to make precise predictions of the quality characteristics values (Djouab and 

Suryn, 2007a). Table 1.9 summarizes the strengths and weaknesses of this method. 
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Table 1.9 Strengths and weaknesses of Prometheus method  
Extracted Trendowicz et al., (2003); Empress, (2004); (Gray et al., (1997);  

  Birk et al., (1998); Fuggetta et al., (1998) and Solingen et al, (1999a) 
 

Prometheus METHOD 

Strengths Weaknesses 

1. It gave a detailed description of software 
product quality requirements definition 
activities; 

2. Combines both subjective probabilities (from 
domain experts) with probabilities based on 
objective measured data; 

3. BBN provides a transparent quality model (in 
structure and content); 

4. Provides easy learning of complex quality 
dependencies (conflicts ans redundancies); 

5. Easy to be modified and to be applied in 
similar software projects; 

6. Combines different kinds of data and 
facilitates merging more than one quality 
view in one model; 

7. Specifies quality attributes and helps 
understand the relationship types among them 
(redundancies, contradictions); 

8. Refines probabilities during the development 
process 

9. Predicts missing data; 
10. Supported by automatic tools (Analytica, 

Hugin, Netica, MSBNx); 
 

1. There is no mention how to identify QRs from 
quality goals (defined by GQM method);  

2. It did not use ISO/IEC9126 as quality standard; 
3. There is no mention how to specify QRs; 
4. The quality model is build for a specified software 

(embedded) and particular application domain; 
5. Output of the Bayesian quality model is a 

probability of a value of the quality characteristic 
instead of the value itself.  

6. Initial BBN quality model requires much effort from 
the experts to set up the node probability tables; 

7. Limitations on the size of the BBN: the number of 
cells of a given BBN network augments 
exponentially with the growth of the number of 
variables and relationships; 

8. Limitations on the structure of the BBN network : 
maximal number of parents limited to 2; 

9. Exponential growth of probabilities requires more 
computational power to re-calculate the network; 

10. The cost of the relationships quantification (in the 
decomposition tree combined with the quality 
model) may increase if each characteristic will be 
influenced by (or decomposed to) more than 3 sub 
characteristics; 

11. Problem of definition of the BBN parameters 
(conditional probabilities); 

12. Quality model developed with GQM is specific to 
the project domain & the characteristics/sub 
characteristics obtained during the refinement 
process are not in conformance with ISO/IEC 9126; 

13. The structure of GQM process will be complex if 
the difference in the quality focus emerges among 
stakeholders. This will require further iterations of 
GQM which will be costly for an organization 
(especially small or medium organization); 

14. The model based on GQM is difficult to maintain; 
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1.4.9 Quality models in software packages methodology 
 

1.4.9.1  Description of the method 
 

This method has been proposed (Carvallo et al., 2002a and 2002b and 2003) to deal with 

requirements definition and decomposition. Requirements addressed by this method are 

quality requirements and the model used is the ISO/IEC 9126 quality model.  

 

1.4.9.2  Activities of the method 
 

Quality requirements are described in a structured methodology which is organized in the 

following steps:  

• Defining the domain: examine and describe the domain of interest with the 

collaboration of experts; 

• Determining quality characteristics; 

• Defining a hierarchy of sub characteristics; 

• Decomposing sub characteristics into attributes ; 

• Decomposing derived attributes into basic attributes; 

• Stating relationships between quality entities to determine the complete quality model. 

Various types of relationships can be identified: collaboration, damage and 

dependency; 

• Determining measures for attributes: select measures for all attributes (basic) and 

derived context-free attributes; 

• Collecting feedback to refine and extend the requirements. 

 
1.4.9.3  Analysis and discussion of the method 
 

This method presents the following advantages quoted by authors (Carvallo et al., 2003): 
 

• Well structured and gives a detailed description of software product quality 

requirements definition activities; 

• Easy to compare quality requirements with package selection descriptions; 
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• The quality models obtained with this methodology can be supported by packages 

selection tools; 

• The methodology increases reusability. 

 

Nevertheless, the following drawbacks are noted:  

 

• Restricted to software package selection domains; 

• Does not indicate how to identify, specify, decompose and control quality requirements 

in the proposed steps; 

• Focused on external attributes because package suppliers do not give access to the 

package code; 

• Not focused on the mapping activities of quality engineering instruments with the 

product definition phase of the life cycle. 

 
1.4.10 Quality specification strategies for embedded software 
 

1.4.10.1   Description of the method 
 

The proposed method is a “Multi party chain” strategy which deals with software quality of 

embedded software (Solingen et al., 1999b). It was developed by the Spirits project and is 

based on user’s perceptions (different stakeholders) of software product quality requirements. 

Stakeholders involved in the product usage should have responsibility to define quality 

requirements of the product. As these stakeholders (buyers, users, developers and project 

manager) have different views of the software product, Solingen points out the importance of 

supporting communication between these parties about product quality. Availability of these 

quality requirements facilitates translation of different interpretations and negotiation of these 

requirements among the involved parties. Requirements addressed by this method are quality 

characteristics of the software product. The quality model used is the ISO/IEC 9126 standard. 

Tools/techniques supporting this method are interviews and UML model.   
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1.4.10.2   Activities of the method 
 

 The method is structured as follows: 
 
• Identify all the involved parties (users and stakeholders) in definition of software product 

quality; 

• Use a model (multi-chain) to capture quality requirements of the relevant parties and trace 

them easily; 

• Make a series of structured interviews with representatives of all parties in order to obtain 

a complete view of the quality requirements formulated in standardized quality terms 

(ISO/IEC 9126);  

• Produce a consensus on the relevant quality characteristics of the software product. 

 

1.4.10.3   Analysis and discussion of the method  
 

The strengths of the method (Solingen et al., 1999b) are:  

 

• Quality view of the user: users and stakeholders involved in the software product project 

participate in defining quality requirements;  

• The multi party chain model : allows one to capture quality requirements of the involved 

stakeholders  and users; 

• Communication among the involved parties about product quality:  facilitates resolution 

of conflicts between involved parties and helps to build a consensus about software 

product quality characteristics. 

 

However some drawbacks are identified:  

 

• There is no mention of how quality requirements are captured in the “multi chain” model, 

specified and retraced; 

•  How do conflicts between parties get resolved and are there any comprehensible 

guidelines to provide the consensus view on quality requirements and their relationships? 
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• Not focused on the mapping activities of quality engineering instruments with the product 

definition phase at the early requirements stage; 

• Inability to reuse quality experiences in other projects and companies. 

 

1.4.11 Method SHEL (Software and HardwarE and Live ware)  
 

1.4.11.1   Description of the method  
 

The approach proposed by Felici (Felici et al., 2000) deals with the integration of different 

types of requirements, which are defined over software, hardware and live ware (human) 

resources. Requirements defined by this approach are: cognitive, functional and quality. The 

SHEL model supports a systemic view which in turn supports the definition of different types 

of requirements related to system  (software and hardware) and human aspects (human roles, 

interaction, and help in breakdown-situations). 

 

1.4.11.2   Activities of this method 
 

The definition process of these requirements is composed of 6 phases (Figure 1.37): 

 

• Work analysis: is a profound analysis of the work system of the specific environment.  

o Studying the way in which the productive process is performed taking into account all 

the resources that contribute and interact in the process execution; 

o Producing models and processes as tools supporting process performance, objects in 

the work process, interactions, social and work practices in order to describe the 

existing work system with its critical issues and weaknesses. 

• Identification of user needs and critical issues: elicit critical issues due to the 

knowledge distribution among the SHEL resources and their interaction.  

o Providing a basis for alternative design considerations represented by various 

prototypes and design models early in the design process; 

o Ascertaining suitable knowledge distributions for an effective use of the resources. 
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• Definition of SHEL requirements and Design of the SHEL system: All the collected 

information contributes to defining the requirements and architecture of the system 

according to the SHEL model. 

• Definition of functional, cognitive and quality requirements: Quality requirements 

are defined according to the UCD approach (User Centered Design) (Felici et al., 1998) 

which is based on the user viewpoint to define quality needs for the system. A quality 

model is defined with quality characteristics by using the task analysis technique. The 

tool (SQUID) (Felici et al., 1998) and (Kitchenham et al., 1997) for data acquisition is 

used to control and evaluate software quality. 

• Design of prototypes and Mock-ups: requirements are mapped into “design patterns” 

represented in prototypes, mock-ups, design models and scenarios. 

• Validation by experts in the work environment: The last phase of one iteration cycle 

in SHEL oriented requirements engineering approach is the validation by the domain 

experts: 

o System compliance with requirements is evaluated. The evaluation takes into account 

“measurable criteria” such as performance and criteria such as usability, cognitive 

workload and level of cognitive support; 

o Requirements and the projected system are validated in the real system environment. 

 

Techniques used in this method are: observations, interviews, heuristic analysis, video 

recording and checklists for capturing information on the productive process. Prototypes, 

design models, patterns, mock-ups and scenarios are used for validating the work 

environment. 
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Figure 1.37 Phases of the process for defining requirements  
Extracted from Felici et al., (2000) 

 

1.4.11.3   Analysis and discussion of the method   
 

This method deals with the integration of different types of requirements defined for 

software, hardware and live ware resources. It defines requirements by a systemic 

requirements engineering process and represents quality requirements as user needs which 

have been identified in the first “work analysis” phase of the SHEL oriented process.  The 

third phase, “Definition of SHEL requirements and Design of the SHEL system”, defines the 

requirements and architecture of the system according to the SHEL model which represents 

the starting point for defining quality requirements and other requirements as stated before 

(cognitive and functional). This method seems to be costly and does not support all features 

required for an integrated method and does not indicate how to identify quality requirements 

from SHEL system and design architecture (Djouab and Suryn, 2006). In fact, there is no 

mention of any technique for extracting QRs from SHEL requirements and design of the 

SHEL system. Finally, this method is not focused on the mapping activities of quality 

engineering instruments at the early requirements stage. 
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1.4.12 BMM (Business Motivation Model) 
 

1.4.12.1   BMM definition 
 

BMM is an intentional model which focuses on intentions, motivations and reasons, and 

deals with complex human and organizational issues (BRG, 2007). BMM has been 

introduced in the literature review because business goals are important drivers of the system 

as described by MOQARE and ATAM methods and will be part of the research solution. 

As claimed by Business Rules Group (BRG, 2007), the BMM is designed to provide a 

structure for developing, managing and communicating business plans in an organized 

manner. BMM has been proposed as a standard under the Object Management Group. It is a 

simple and compact standard that provides a metamodel for enterprise-specific motivation 

models. BMM contains and organizes the elements of its business governance: vision and 

mission, influences and assessments, goals and objectives, strategies and tactics, as well as 

business policies. It references other relevant elements of its business models (its business 

processes, business rules, organization units, assets, resources, products, services) that are 

contained in related models built using specifications outside the BMM scope. Models are 

expressed in a Unified Modeling Language (UML) standard (Figure 1.39 for detailed 

metamodels). Table 1.10 summarizes the definitions of the core concepts of BMM. 
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Figure 1.38 Business Motivation Model Framework  
Extracted from Deng (2006, p.35) 
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Table 1.10 BMM concepts descriptions  
 

Artifacts Description (from (Deng, 2006)) Commentary 

Ends 
 
 
 

What an enterprise wants to be. 
Examples: 
1. Develop new lines of business 
2. Moving into  new markets 
3. Maintain its current position in the market 

Ends do not say how the 
goals will be achieved 

1. Vision 1. An overall image of what the organization wants to be or 
become 

 

2. Desired results 
a. Goals 
b. Objectives 

2. Are more specific 
a. Tend to be long term and defined qualitatively 
b. A step along the way towards a goal and is quantitative. 

 

Means What the organization needs to achieve what it wants. It 
indicates capabilities that can be exploited to achieve the 
desired results 

Means do not indicate business 
process necessary to exploit 
them and responsibility for such 
tasks 

1. Mission 
 

It indicates the ongoing operational activity of the enterprise. 
It covers all strategies and complete area of operations 

 

2. Course of Action 
 

a. Strategy 
 

b. Tactic 
 

What the enterprise has decided to do  and what has to be 
done 
a. Strategy tends to be long term and broad in scope. It is 
implemented by tactic 
b. Tactics tend to be short term and narrow in scope. 
Tactic may contribute to implementation of more than one 
strategy. 

1. Course of Action does not 
define how well it has to be 
done 

a. Strategies are selected to 
move the enterprise towards 
its goals  

b. Tactics are selected to ensure 
that it meets its objectives 

3. Directive 
 

a. Business 
Policy 

b. Business Rule 
 
 
 

a. Business policy governs, controls, guides and shapes 
strategies and tactics. It defines what can be done and 
what must not be done. It sets limits on how it should be 
done 

b. Derived from business policy, it needs to be defined and 
managed for consistency and completeness. It provides 
specific solution when a course of action fails and specific 
resolutions to conflicts arising among ends. 

1. Every directive must be 
explicit and recorded in an 
official manner  

2. All courses of actions must 
be governed by some 
directive 
 

Influencer Any changes affecting the enterprise in employment of its 
Means or in achievement of its Ends 

 

1. Internal 
 

 

1. Internal changes are: 
a. Infrastructure 
b. Issues 
c. Resource habit 
d. assumptions 

 

2. External 
 

 

1. External changes are:  
a. Environment; Technology; Regulation 
b. Supplier 
c. Customer 
d. Competitor and partner  

  

Assessment  Judgment about the influence of an Influencer on the ability 
of the enterprise to achieve its Ends or use its Means 

 

1. Potential Impact 
a. Risks 
b. Potential 

reward 

1. Identified to support assessments 
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1.4.13 Synthesis of described methods 
 

The present section discusses and analyzes the four classes of software QRs management 

methods described in the previous section.  

The first class: Business goals oriented quality methods (Space-Ufo, MOQARE and ATAM) 

uses business goals as main forces in the quality requirements management process. Space-

Ufo identifies quality needs according to the characteristics of the business system. 

MOQARE is applicable to QRs derived from business goals. ATAM supports evaluation of 

given architectural alternatives with respect to quality requirements attributes. However, 

there is: 

 

1. No mention of how to describe and model business characteristics in a structured way 

to identify quality needs (Space UFo); 

2. A lack of a systematic way to write scenarios (ATAM); 

3. Focus on eliciting architecture-centered quality attributes (ATAM); 

4. Absence of documentation of conflicts between quality concepts (MOQARE); 

5. No direct integration of NFRs and FRs (MOQARE); 

6. No support for non-technical stakeholders and novices (MOQARE). 

 

The second class: Aspect oriented quality methods (FDAF and Requirements model for 

quality attributes) is based on the “Aspect” concept to describe QRs. The FDAF framework 

has been designed for a specific quality attribute at the architectural level. It has been 

developed to create architecture designs with NFRs aspects that cannot be described in the 

real time version of UML. However, FDAF is not concerned with the identification of QAs 

at the requirement level. It uses limited analysis tools and modeling constructs to describe a 

component’s behavior and connections. Requirements model for quality attributes process 

defines quality attributes as crosscutting concerns and specifies them in a template. But there 

is no indication of how to identify quality attributes from system and user requirements.  

 

The third class: Goal oriented quality methods (IESE NFR, soft goal notation and 

Prometheus) is based on a “goal” concept to describe QRs. The IESE NFR method is a well 
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defined process for eliciting complete and measurable NFRs, except that quality attributes 

are not derived from business goals and the tailoring stage is not supported by context rich 

scenarios as is the case for MOQARE method. The soft goal notation method is applicable to 

all types of QRs, but focuses on the documentation and negotiation of QRs, and not on their 

elicitation from business goals. The Prometheus method gives a detailed process to build a 

quality model for a specific domain project, but it seems to be difficult to apply particularly 

in the step of construction of the BBN quality model. In fact, the BBN quality model is 

restricted to a maximum of three decomposition levels and initialization of the BBN network 

(filling the probability tables) requires more effort from experts.  

 

The last category of quality methods (Quality models in software packages, Quality 

specification strategies for embedded systems and SHEL (Software and HardwarE and Live 

ware)) lack a systematic way to manage QRs. They are either restricted to software package 

selection domains or do not indicate how QRs of the involved stakeholders are captured, not 

does it define QRs in the scope of a systemic requirements engineering process. 

 

Some of the potential drawbacks of QRs management methods will be addressed by the 

research solution (Figure 1.40). The QRs management methods are: “Soft goal notation”, 

ATAM, IESE NFR method, MOQARE and “Requirements model for quality attributes”. For 

instance, the drawbacks of MOQARE and Soft goal notation methods (no integration of 

NFRs with FRs and NFRs not elicited from business goals) will be addressed in the research 

solution by defining concepts dealing with business goals and integration of NFRs with FRs.  
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Figure 1.39 Drawbacks of the QRs management methods and the research solution 
 

These QRs management methods are compared using criteria related to the management of 

QRs which are: identification, decomposition, conflict analysis, representation, 

documentation, derivation from business goals of quality attributes, consensus on quality 

definitions, quality standard and integration with FRs. These criteria have been chosen 

according to the identified drawbacks of the software QRs management methods.  

 

Table 1.11 summarizes an assessment of the software QRs management methods according 

to established criteria. Table 1.12 establishes comparisons of the used artifacts of methods 

according to quoted criteria. 

 

In summary, the described software QRs management methods presented some advantages 

and strengths which can be summarized in Tables 1.11 and 1.12:   

 

• Decomposition and representation of quality requirements (as soft goal notation and 

IESE NFR methods); 

• Conflict analysis among quality requirements (as IESE NFR and soft goal notation 

methods); 
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• Integration of quality requirements with functional requirements and architectural 

options (as IESE NFR and QAs model). 

 

But in the most methods:  

 

• The identification of QAs is partially covered and there is a lack of a structured way to 

show clearly how QAs are extracted from the original requirements (system/user 

requirements and business specifications); 

• The conflict resolution among QAs is not addressed (except for ATAM, IESE NFR and 

soft goal notation methods); 

• The derivation of QAs from the business specifications is not covered (except for 

ATAM and MOQARE methods); 

• There is a lack of documentation of QAs and consensus on quality definitions; 

• There is an absence of software quality engineering standards (except for IESE NFR 

method); 

• The integration of QAs with FRs is not addressed (except for IESE NFR and QAs 

model). 
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Table 1.11 Summary of chosen methods  
and their criteria assessment 
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MOQARE Partially Partially No Yes No No No Partially No 

IESE NFR Partially Yes Yes Yes No No Yes No Yes 

ATAM Partially Partially Yes Yes No No No Partially No 

SOFT GOAL 

NOTATION 
Partially Yes Yes yes No No No No No 

Quality 

Attributes 

Model 

Partially Partially No No No No No No Yes 

 
 

Yes: concept is well defined. 

No: concept is not defined. 

Partially: concept is mentioned but not defined. 
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Table 1.12 Comparisons of chosen methods  
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1.5 Chapter summary 
 

In this presented literature review, we investigated the main aspects of software QRs like 

existing QRs definitions and terminology used to specify them, important software quality 

engineering standards and QRs management methods developed during the last 2 decades.  

 

In the section related to the QRs definitions, Azuma defines relationships between needs and 

requirements as “stakeholder’s needs (stated and implied) are collected and identified, then 

selected and specified to be transformed in QRs”. Further, requirements elicited from 

stakeholders’ needs are defined in 3 views of software QRs: quality in use requirements, 

external and internal quality requirements. In addition, SWEBOK defines NFRs as 

constraints or quality requirements. On the other hand, several authors including Suryn, 

Pfleeger, Lauesen and Hans Van Vliet highlight the importance of dealing with QRs at early 

stages and the difficulty to specify and verify them (Table 1.2). They also put emphasis on 

their modeling and representation. So, new methods and standards have emerged for this 

purpose.  

 

The software QRs management methods section can be classified into three main categories:  

 

1. The business oriented quality methods are based on the elicitation of business goals and 

business characteristics in order to define QAs of the software product. Example of 

such methods: ATAM, MOQARE and Space Ufo. ATAM and Space Ufo need to be 

supported by more structured QRs management techniques;  

2. The aspect oriented methods (Quality model for QAs and FDAF) promote use of 

aspects to specify QAs that often scatter functional requirements. These methods are 

faced with the problem of applying aspects at the requirement level due to the strong 

interdependencies among NFRs;  

3. The goal oriented methods (ISESE NFR, NFR framework and Prometheus) use the 

goal as the main guiding concept in QRs specification, refinement and conflicts 

resolution.  
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For the described software quality engineering standards section, four software quality 

engineering standards have been presented: the McCall quality model, the Boehm model, 

Dromey’s quality model and ISO/IEC 9126: Software Product Evaluation: Quality 

Characteristics and Guidelines for their Use-standard (ISO/IEC 9126, 2004). ISO/IEC 9126 

was part of the first generation of software quality engineering standards. It was improved by 

ISO/IEC SC7 WG6 experts to build the new standard for quality requirements specifications 

ISO/IEC SQuaRE 25000. ISO/IEC SQuaRE 25030 is the standard enabling software product 

quality requirements to be specified, tracked, validated and evaluated from different 

perspectives (acquirer, developer and evaluator) (section 1.2).  

 

Chapter 3 will introduce the methodological aspects of the research that lead to the research 

goal and objectives and the main research steps used to design the proposed method 

SOQUAREM. 

 

 

 



 

 CHAPTER 2 
 
 

RESEARCH OBJECTIVES AND METHODOLOGY  
 
 
This chapter describes methodological aspects of the research project. Section 1 presents 

research issues and fundamental questions related to the research project. Section 2 describes 

the main goal and research objectives. Section 3 describes in detail the required steps to 

accomplish these research objectives. Last section concludes the chapter. 

 

2.1 Introduction 
 

Research issues identified from analysis of literature review refer to limitations of 

engineering approaches in addressing quality requirements. The majority of the described 

methods in chapter 1 such as MOQARE, IESE NFR, Soft goal notation, ATAM and “Quality 

attributes model” deal partially or not at all with criteria related to: identification, 

decomposition, representation, conflict analysis and documentation of QAs (Tables 1.11 and 

1.12 in section 1.4) .  

 

This research project addresses the limitations related to the identification, conflict analysis, 

representation, documentation, derivation from business goals of quality attributes, quality 

standard and integration with FRs and proposes the design of a quality requirements 

engineering method and its model. 

 

The method should support convenient refinement techniques and linkage mechanisms by 

which QAs are obtained from the stakeholder’s business goals. The linkage mechanism is 

supported by the quality standard ISI/IEC 25030 to infer the right QAs. Secondly, the method 

should provide efficient ways to support representation, documentation and integration of 

QAs with the FRs model.   

 

The method will apply a dedicated process of managing quality attributes (Figure 2.1). The 

process will help the person responsible for defining new software product quality attributes 
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to identify and refine business goals, link them to QAs, represent them in a personalized 

quality model, specify them in a template and finally integrate them into the FRs model. 

 

 

 
Figure 2.1 Process of managing quality attributes 

 

The fundamental questions related to the research project are organized around five basic 

elements:  

• Derive the stakeholder’s business goals into refined business goals (question 1) ; 

• Link the refined business goals into the corresponding quality attributes according to 

ISO/IEC SQuaRE 25030 quality standard (question 2); 

• Integrate quality requirements into the personalized quality model  and retrace them to 

their original requirements (question 3); 

• Specify and document quality requirements (question 4); 

• Integrate the QAs with the FRs model (question 5). 
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2.2 Research Goal and Objectives 
 

The main goal of this research is:  

 
“To support the software product definition phase with a systematic management method of 
quality requirements.”  
 

To pursue to this goal, the research objectives are:  

 

a. Develop a structured quality requirements engineering method: SOftware Product 

QUAlity Requirements Engineering Method (SOQUAREM) supported by the quality 

standard ISO/IEC SQuaRE 25030.    

Sub objectives are: 

• Development of an identification technique of quality requirements; 

• Development of a representation model of quality requirements;  

• Development of a documentation formalism of quality requirements; 

• Development of an integration technique of quality requirements with the FRs model; 

b. Develop the process model representing concepts and phases of SOQUAREM method. 

 

2.3 Research Methodology 
 

The research methodology designed to attain the research objectives includes the following 

research steps (Figures. 2.2 and 2.3): 

 

a) Exploration phase: this step studies the main concepts and definitions related to the 

software QRs management domain. It includes a literature review of: 

• Software QRs definitions and concepts (details in chapter 1); 

• Software quality engineering standards ISO/IEC 9126 and ISO/IEC 25030 (details in 

chapter 1); 

• Quality requirements management methods (details in chapter 1); 
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The literature review revealed the following: 

 

Software quality requirements:  

• Easy to specify but difficult to identify, test and control; 

• Difficult to define in the same terminology when stated by different stakeholders; 

• Often conflicting among each other which is difficult to resolve; 

• Often scattered and tangled with functional requirements. 

 

The Quality standard ISO/IEC SQuaRE 25030 will be used in the research project to support 

the proposed software QRs management process.  

 

The QRs management methods deal partially or not at all with identification, documentation, 

conflict analysis and integration with the FRs process. 

 

b) Analysis phase: consists of analyzing the existing software QRs management methods 

(chosen from literature review) in their cases studies to know to what extent they address 

management of software QRs. Further, a questionnaire is developed and distributed in the 

industrial circle and the collected data is analyzed to determine the current state of the 

software QRs engineering practices in industry. Finally, the obtained data from industry 

and academia are analyzed to define the future requirements of the research solution. The 

analysis phase is divided in three sub phases (details in chapter 3): 

 

i. Analysis of existing QRs management methods: the goal of this phase is to 

determine the strengths and weaknesses related to applicability of the recognized methods 

addressing quality requirements in the scientific environment and industry (Methods are: 

MOQARE, IESE NFR, Soft Goal Notation, ATAM and FDAF).  

The research focuses on analyzing the existing and known implementations of each 

method by considering applicability of the method (the case study) and elements used in 

the engineering process of the method as: a) identification  of quality requirements-related 

activities; b) identification  of used techniques/tools (questionnaires, checklists, templates 
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and patterns) ; c) identification of implied actors; d) identification of the used quality 

model and standards and e) identification of results and artifacts produced by this method. 

The approach adopted during this analysis describes the applicability of methods by 

analyzing their case studies in the applicative domains and identifying their strong and 

weak points. The results envisaged are indicators describing the strengths and weaknesses 

of the applied methods in industrial and scientific communities (details in chapter 3.1). 

 

ii. Quality requirements data collection practices in industry: the goal of this phase 

is to determine the current state of the quality requirements engineering practices in 

industry. A questionnaire is distributed in industry and its sections are defined as follows:    

• Information on the respondent; 

• Companies and stakeholders; 

• Processes; 

• Methods; 

• Software quality engineering standards used in the applicative domain.  

 

Results envisaged are indications about the development of the software QRs engineering 

practices that could be proposed to industry (details in chapter 3.2). 

 

iii. Analysis of resulted indicators from industry and academia environments: the 

goal of this phase is to analyze industrial and academic indicators obtained in the two 

preceding sub phases and to identify critical needs seen by industry in the field of software 

QRs management. Important conclusions and justifications of the proposed solution will 

be formulated. Analysis is carried out in the following categories (details in chapter 3.3): 

• Identification of software QRs; 

• Representation of software QRs; 

• Documentation of software QRs; 

• Integration of software QRs with the FRs model; 

• Quality standard used. 
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c) Design of the engineering method (SOQUAREM) and the associated process model: 

it includes the creation of a quality engineering method and the associated model 

addressing the identified needs of the industrial software development environment. The 

design phase is divided into two subsequent phases:   

 

i. Development of the main concepts of SOQUAREM: details the different concepts 

involved in the software QRs engineering process (BMM and BCT, scenarios template, 

utility tree and QAs template) (details in chapter 4.1).  

 

ii. Development of the process model and the SOQUAREM method: describes the 

main phases of the SOQUAREM process (details in chapter 4.2). Each phase is described 

with three parts:  input and output artifacts and used techniques and standards. The phases 

are: 

1. State the business goals;  

2. Refine the business goals; 

3. Link the refined business goals to quality attributes; 

4. Build quality attributes scenarios; 

5. Consolidate quality attributes; 

6. Link quality attributes to the functional process. 

 

d) Application of the method: This step applies the method in an illustrative example and 

evaluates to what extent this method addresses software QRs management techniques 

(identification, representation, conflicts resolution and documentation…). The application 

phase is divided into two subsequent phases:   

 

i. Development of the exploratory case of SOQUAREM: build an illustrative 

example for building an automation system to clarify the core ideas of SOQUAREM 

method and its practical relevance to the software product definition phase (details in 

chapter 5). Each phase of the SOQUAREM process is applied in the example.  
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ii. Analysis and evaluation of the method: the goal of this sub phase is to identify 

constraints and corrective measures in order to improve the method and define the 

research avenues (details in chapter 5). Analysis and evaluation are carried out in industry 

and academia (Workshop session) and on the ISO/IEC SC7 System and Software 

Engineering committee level. The adopted method to realize this evaluation is explained 

in the following points: 

 

1. Evaluation of the developed method 

• By international experts in the software quality field; 

• During organized workshop session.  

 

2. Presentation of the method (once published) on the committee level of ISO/IEC 

SC7 - System and Software Engineering 

• Direct co-operation with experts of the working group SC7 WG6 - software 

quality measurement and evaluation-. 
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Figure 2.3 Research Methodology 
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2.4 Chapter summary 
 

This chapter presented research methodology which addresses the research project of 

systematically identifying, specifying and representing quality requirements in processes and 

models for the software product definition phase. Fundamental questions related to the 

research project have been presented followed by the research objectives. Research steps to 

attain the stated objectives have been described in a dedicated-four-phase analysis 

methodology and are: exploration, analysis, design of the software quality engineering 

method (SOQUAREM) and the associated process model and finally application phase for 

the method. The exploratory phase is related to the literature review studying concepts 

dealing with the quality requirements such as standards and methods. This phase provides the 

current state of the art quality requirements subject. The analysis phase provides, in one part, 

indicators about the strengths and weaknesses of methods applied in the industrial and 

scientific communities, and on the other part, indicators about development of the quality 

requirements practices that could be proposed in industry. Analysis results are used to justify 

the future proposed quality engineering method and define the requirements for its design. 

The two last phases are related to the design and application of the software quality 

engineering method (SOQUAREM). The design phase describes concepts of the method and 

its process model. The application phase develops an illustrative example describing the 

application of the designed method and evaluates it in industrial and academic environments. 

 

The next chapter studies in detail the analysis phase of the research methodology. 

 



 

CHAPTER 3 
 
 

 RESEARCH EXECUTION 
 

 
Chapter 3 describes the details of the research execution (Figure 3.1). Its main purpose is to 

justify the design of the QRs engineering method and define the requirements for this design. 

Section 1 discusses and analyzes applicability of existing QRs management methods in their 

respective case studies by establishing their strengths and weaknesses (Table 3.2). Methods 

are also assessed according to established QRs management criteria and compared to their 

used artifacts in case studies. Section 2 presents an overview of the the current situation of 

quality requirements environment in the industrial circle where a questionnaire is used and 

the collected data is analyzed. The analysis of resulted indicators from applicability of QRs 

management methods in industrial and academic environements and from QRs engineering 

practices in industry is also presented in this section. The critical needs are identified from 

the domain representatives in industry and relevant conclusions and observations are stated. 

From these conclusions, future requirements of the proposed research solution are formulated 

in the third section. An overview of the proposed method, justifications and added values are 

pinpointed. Section 4 concludes the chapter. 
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3.1 How to apply methods for quality requirements management 
 

To study and discuss the applicability of existing QRs management methods, the following 

case studies from the literature review were chosen based on their availability. They are: 

 

1. FDAF (Formal Design and Analysis Framework): use the aspect concept and formal 

methods to design and analyse NFRs (Dai et al., 2005 and 2006) and (Cooper et al., 

2004). 

2. MOQARE (Misuse Oriented QuAlity Requirements Engineering): use business goals 

and misuse concept to describe quality attributes (Hermann et al., 2007a and 2007b); 

3. ATAM (Architecture Tradeoffs Analysis Method): use business goals and scenarios 

to describe quality attributes (Kazman et al., 2000); (Jones, 2001); (Gallagher, 2000); 

(Bass et al., 2003); (Boucké et al., 2006) and (Venckeleer, 2006). 

4. IESE NFR/ASPIRE2 (Analysis of Software Product In Requirement Engineering) 

(Doerr et al., 2005); 

5. Soft goal notation (or NFR Chung framework): use goals as a driving force to elicit 

and refine NFRS and to guide the design process (Chung et al., 1994 and 1995). 

 

Table 3.1 describes the chosen QRs management methods with their main concepts and 

designed levels 

                                                 
 

2 IESE NFR is the same method as ASPIRE 
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Table 3.1 QRs management methods with their 
 concepts and designed levels 
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MOQARE  Requirement   *   *    

Architectural        

IESE NFR  Requirement    *     

Architectural    *     

ATAM  Requirement        

Architectural   *    *   

SOFT 3GOAL 
NOTATION  

Requirement    *     

Architectural    *     

FDAF  Requirement        

Architectural  *      *  

 

 

3.1.1 Analysis and discussion of applicability of QRs management methods 
 
The present section analyzes and discusses the applicability of QRs management methods 

according to their case studies.  

 

The FDAF aspect oriented approach has been applied in three case studies: building security 

for online banking, achieving a performance response time for the ATM banking system and 

                                                 
 

3 Soft Goal Notation is also called the NFR Chung framework 
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analyzing the resource utilization performance aspect for the domain name server system 

(DNS).  

 

1. The first case study illustrated building a Role Based Access Control (RBAC) (Dai et al., 

2006), a design of an aspect of architecture for an online banking system using the FDAF 

framework. RBAC aspect is adapted from well established RBAC security patterns. The 

FDAF framework has been used to define the role based access control (RBAC) aspect on 

the basis of the security pattern and model in a UML architecture design. The RBAC 

model has been translated into an Alloy specification and analyzed. The analysis results 

help architects to detect inconsistencies in the multiple systems’ RBAC policies early in 

the design. A parallelogram notation is used to present aspect information and is 

incorporated into the standard UML to indicate where in the static or dynamic model, all 

or in part of the aspect needs to be included. The advantage of translation approaches is 

that verification and validation techniques and tools can be applied to the source semi-

formal notation as UML. This case study has shown that the definition of the RBAC 

security aspect is adequate and security aspects could be reusable with certain assumptions 

and customizations. The definition of the RBAC aspect is refined with a new attribute 

called “assumption” which describes possible assumptions about the system making this 

aspect easily applicable. Therefore, building the RBAC security aspect into the software 

architecture helps to meet the enterprise level security requirements.  

 

2. In the second case study (Dai et al., 2005), the response time performance aspect has been 

modeled in the UML architecture design by using the stereotype PAstep. Rapide's analysis 

tool supports architects with detailed analysis of the system’s behaviour simulation. 

Results of the response time analysis are available in the early design. However, Rapide’s 

analysis tool is limited by its capacity to provide analysis results (in the graphical browser) 

when the number of simulated events increases. 

 

3. In the third case study (Cooper et al., 2004), the problem of overloaded component has 

been resolved by defining the “Resource utilization” aspect with a set of UML 
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stereotypes. Armani’s analysis tool in FDAF was used to provide architects with detailed 

analysis information about which component is the bottleneck (overloaded and busy all 

the time). However, there are some limitations of Armani’s analysis tool in this area: the 

mathematical assumptions restrict the systems they model. For example assumptions that 

all components are being executed sequentially are not applicable to systems where 

components are executed concurrently. Another concern of the Armani tool is that it does 

not calculate automatically the property “sOverloaded” and must be changed manually by 

architects.  

 

In conclusion, the FDAF framework is an interesting approach to create architecture designs 

with NFRs aspects that cannot be described in the real time version of UML. The major 

contribution of FDAF is that it integrates the semi-formal UML with the formal methods into 

an aspect oriented framework. The aspect model is based on one specific aspect which makes 

it simpler than a traditional mixed model. Application of this method in the case studies 

showed that NFRs are a powerful tool to evaluate architecture designs and to predict early 

design errors and be able to improve them before delving into the implementation features 

(Djouab and Suryn, 2007b). However, it deals with one specific aspect composed of multiple 

sub aspects such as performance, response time and resource utilization and there is no 

mention in FDAF of how to deal with interdependencies between NFRs (aspects).  

 

IESE NFR method has been applied in three industrial domains: wireless plant control 

system, multi-functional printer systems and geographical information system (Doerr et al., 

2005).  

 

1. In the wireless plant control case study, the prioritization of the quality attributes (QAs) 

(efficiency, reliability and maintainability) and tailoring of their associated quality models 

(QMs) are done in the first workshop in order to be available for the elicitation process. 

Efficiency requirements are elicited in the first workshop and reliability with 

maintainability requirements are elicited in the second workshop. The elicitation process 

was supported by the quality models, checklists and dependency analysis activity for 
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identifying and resolving conflicting requirements in the early phase. One observes that 

many NFRs missing before are now elicited. However, much time was spent during the 

tailoring process to resolve terminologies problems and improve the quality models.   

 

2. For the second case study, two workshops were held: one for customizing the quality 

model (QM) and the other for the NFRs elicitation. Refinement of the QA selected in the 

multi-functional printer systems (efficiency) differed from the wireless system in the sense 

that a new need emerged: requirements management support for clarifying the NFRs. 

Especially for the embedded system (high integration of software and hardware), 

requirements management support is of great importance in order to palliate the difficulty 

defining all the requirements. Furthermore, the specified NFRs must be detailed in the 

subsequent development phases. Another aspect discovered in this case study is the 

interdependency of the functional requirements with non functional requirements which 

results in additional effort through iterations. 

 

3. In the geographical system, a particular QA was selected (security) with the associated 

quality model based on ISO/IEC 9126 and the security domain experts. The experience 

acquired in this case study, in particular during the elicitation process, was attaching 

metrics to this QA, the  importance of integrating functional requirements and 

architectural options and a need for significant rework on the architectural level in order to 

integrate NFRs. 

 

In summary, IESE NFR is project and domain dependent. QAs are influenced by the project–

specific variations and elicited according to priority of the industrial application, type of 

project and quality viewpoints of the different workshop participants. In addition, IESE NFR 

is costly in time because the requirement management support is performed in iterations and 

the size of checklists will be large with the growth of conditions and alternative sections 

(Djouab and Suryn, 2007b). In fact, the experience based artifacts (models, checklists and 

templates) have to be maintained to be used efficiently. Furthermore, the application of IESE 

NFR depends on functional requirements and architectural options. Experience showed that 
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NFRs, functional requirements (FRs) and architectural options (AOs) must be intertwined 

because refining NFRs is not possible without detailing functionality or architecture. Major 

rework has to be done to integrate NFRs in architecture (case study 2). 

 

The NFR Chung framework case study (Chung et al., 1994) is a good example to represent 

the relevant concepts and methods for dealing with NFRs during the software development 

process. The NFR-Assistant tool defined two NFRs catalogues “Security” and 

“Performance” with their associated techniques. However, there is a need for definition and 

use of more specialized methods requiring additional domain expertise. There is also a need 

for use of the framework by a variety of users dealing with a variety of non-functional 

requirements (not limited to accuracy, security and performance), a variety of domains and a 

variety of system characteristics. This case study showed that capturing domain expertise 

early in the process and participation of stakeholders in resolving quality terminology issues 

are important steps in the framework.  In addition, it has been mentioned that training a 

variety of users (developers and administrators) in the use of the framework by a (cost-) 

effective means is required. The NFR assistant tool should be extended by a larger set of 

goals and methods to see if it could be accommodated and graphically represented. 

 

For the MOQARE method (Hermann et al., 2007a and 2007b), the requirements elicitation 

was guided by the four steps of the process, the misuse tree and checklists. The misuse tree 

gives an overview of the requirements and is used to structure interviews and support the 

iterative requirements elicitation process. In fact, for each iteration, a branch is created to 

support interviews bringing new results. However, MOQARE requires a method specialist to 

represent the stakeholders’ requirements into a misuse tree.  The produced misuse tree in this 

case study contained two iterations. On the first level, there were two quality goals, 10 threats 

and 35 countermeasures (13 were quality goals and three of these countermeasures were 

analyzed further, leading to 10 more threats and 15 countermeasures). The 15 quality goals 

belonged to all six categories of ISO 9126. In addition, one observes on the first level of the 

analysis that only mere data was important in the case study, but later on the MOQARE 
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analysis showed that the whole process of data input, processing and output had to be 

controlled.  

 

In summary, MOQARE is an emerging method supporting systematic identification of QRs 

from business quality goals. However, the method seems to be more complex and difficult to 

be understood by non technical stakeholders. In addition, it has been mentioned that main 

quality issues captured by MOQARE are not measurable at an early stage and conflicts 

between quality attributes are not documented. MOQARE needs to be validated in a real 

context with a large spectrum of users. 

 

During the application of ATAM to a large government-sponsored simulation system (the 

Wargame 2000 system a highly complex real-time simulation system), the results of this 

evaluation reported some benefits (Jones, 2001) like: “The stated goals of the ATAM 

evaluation were met” and “The evaluation allowed a focus on the entire system rather than 

narrow or short-term concerns”. The case study shows that ATAM is appropriate for use 

when a system is in development and improves understanding of architectural issues for the 

future versions of the system and stakeholder communications.  

 

The work of Gallagher describes the application of ATAM in the evaluation of government-

sponsored reference architecture for a ground based command and control system (Gallagher, 

2000). The author mentions that ATAM increases the system developer’s probability that a 

system built conforming to the architecture will meet the needs of its customer base. In 

addition, benefits of performing ATAM are summarized in these points (Gallagher, 2000): 

“early identification of risks, sensitivity points, and tradeoffs before design decisions are 

made and become costly to change”. Gallagher suggested using a program to do the ATAM-

based evaluation. The evaluation pointed out that more work is needed to ensure correctness 

of the interfaces and integration of the components. It also revealed potential deficiencies that 

may have taken months, perhaps years, to uncover at a greatly increased cost to the acquirer.  
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Authors of the book “Software Architecture in Practice” (Bass et al., 2003) present software 

architecture in a real-world setting, reflecting both the opportunities and constraints that 

companies encounter. In addition, case studies describing architectures illustrate key points 

of both technical and organizational discussions. 

On the other hand, application of ATAM to a multiagent system (MAS) architecture for an 

AGV transportation system was a valuable experience (Boucké et al., 2006). It revealed the 

importance of business drivers for architectural design. Especially, it improved understanding 

of the quality attributes and the other stakeholders improved their understanding of the 

fundamental architecture of the system and the important design decisions. But some critical 

notes have been identified by the author (Boucké et al., 2006) such as: “coming up with a 

utility tree proved to be difficult, time consuming, and at times tedious. A lack of experience 

and clear guidelines of how to build up such a tree hindered and slowed down the 

discussion.”  

  

In (Venckeleer, 2006) great emphasis was put on architecture explication and the 

specification of architectural quality goals (architectural styles which should meet quality 

attributes). Functionality was largely ignored and business drivers were the starting point of 

the elicitation process. There was also a strong focus on implication of stakeholders during 

all steps of ATAM process. However, stakeholder involvement in “Phase 2” may not be 

realistic because it was difficult to have a common pool of questions from stakeholders for 

analyzing each quality attribute over architecture. Another aspect discovered during the 

application of ATAM is related to naming scenarios and quality attributes. In fact, results of 

the analysis are dependent on the selection of the scenarios and their relevance for evaluating 

the architecture. Future work is needed to evaluate the effects of its various usages and to 

create a repeatable method based on repositories of scenarios and elicitation questions. 

 

Table 3.2 summarizes strengths/weaknesses identified during case studies application of each 

method. It is important to mention here that ATAM is the only method which has proven its 

usage in industry by its working group (Jones, 2001); (Gallagher, 2000); (Bass et al., 2003); 

(Boucké et al., 2006) and (Venckeleer, 2006). For the other methods (MOQARE, FDAF, 
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IESE NFR and Soft Goal Notation), there is no information about their usage in industry. 

Only case studies have been provided.  

 

Table 3.2 Strengths and weaknesses of QRs management methods 
 

QRs management 
methods 

Strengths Weaknesses 

FDAF framework 

(Dai et al., 2005 

and 2006) and 

(Cooper et al., 

2004) 

1. The RBAC aspect provides architects 

with the concrete information about 

addition of a security aspect in their 

application. 

2. Rapide's analysis tool supports 

architects with detailed analysis of the 

system’s behavior simulation at the 

architectural level; 

3. The FDAF resource utilization aspect 

analysis provides architects with 

detailed analysis information about 

which component is the bottleneck 

(overloaded and busy all the time) 

and refine the UML architecture to 

meet the NFRs. 

1. Limitations of the Alloy’s analysis tool in this 

area: it doesn’t provide modeling constructs to 

support the description of component’s 

behaviour and connections; 

2. Limitations of the Rapide’s analysis tool and 

difficulty to obtain useful information from the 

raw data (response time analysis results 

presented in the graphical browser) as the 

number of simulated events increases; 

3. Limitations of the Armani’s analysis tool in 

this area: the mathematical assumptions restrict 

the systems they are modeled; 

4. The Armani tool does not calculate 

automatically the property “sOverloaded” 

instead it allows changes to it. 

IESE 

NFR/ASPIRE 
(Doerr et al., 2005) 

1. Identifies early conflicting 

requirements with the use of the 

analysis dependency; 

2. Enhances communication between 

stakeholders (requirements engineer, 

developer and customer); 

3. Elicits important missed NFRs. 

 

1. The dependency graph is used to represent 

dependencies between quality attributes. 

Graph is not used to capture NFRs (they are 

placed in the requirements documents 

template); 

2. The requirement management support is 

performed in iterations which will be costly at 

long term; 

3. Major rework in architecture to integrate 

NFRs; 

4. Much rework is required during integration of 

the functional and NFRs through iterations. 
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Table 3.2 Strengths and weaknesses of QRs management methods (follow) 
 

QRs management 
methods 

Strengths Weaknesses 

Soft Goal Notation: 

Credit card system 

(Chung et al., 1994) 

1. The framework studies covered a 

variety of NFRs, a number of 

application areas and systems 

with a variety of characteristics;  

2. Allows to represent the relevant 

concepts and methods for dealing 

with NFRs during the software 

development process; 

 

3. Links the design decisions back to 

the source NFRs. 

 

1. There is a need for definition and use of more 

specialised methods requiring additional 

expertise; 

2. Further work is needed towards a more rigorous 

evaluation of the Framework. This would involve 

real studies across a spectrum of developers and 

on a variety of different types of systems; 

3. There is a need for larger bodies of goals, 

methods and tradeoffs to see if they can be 

accommodated and graphically represented; 

4. There is not a closely real work with 

development teams from the organisations.  

MOQARE: 

Uveitis Database 

(Hermann et al., 

2007a and 2007b) 

1. The tree structure helps to 

structure the elicitation process 

and interviews;  

2. The checklists were helpful in 

avoiding concentration on only a 

few QAs, types of threats or 

misusers;  

3. The method guides stakeholders 

by a process and support the reuse 

of knowledge by checklists and 

templates. 

1. A domain-specific wording is preferred instead 

of general items in the checklist (for example 

user should be replaced by a specific role 

“nurse”); 

2. The process became difficult to apply when 

iterations augment and hence the misuse tree 

became more complex : not all quality goals 

could be analyzed; 

3. How about countermeasures which are not 

selected, are they analyzed further? Or omitted? 

4. As How to integrate the results of MOQARE 

into the FRs specification document; 

 

ATAM:Purchase2
Pay.com  and MAS 
architecture for an 
AGV 
transportation 
system 
(Jones, 2001); 
(Gallagher, 2000); 
(Bass et al., 2003); 
(Boucké et al., 
2006) and 
(Venckeleer, 2006) 

1. Forces an articulation of specific 

quality goals; 

2. Strong focus on & direct 

involvement of stakeholders; 

3. Forces concrete consideration of 

business drivers; 

4. Improves importance of software 

architecture in software 

engineering. 

 

 

1. Quality attribute workshop is difficult and time 

consuming; 

2. No connection to the business goals; 

3. Applying ATAM requires more 

planning/understanding; 

4. No common pool of questions for analysing 

each quality attribute over architecture; 

5. There is a need to investigate how domain 

knowledge and degree of expertise affect the 

coverage of selected scenarios.  

 

 



112 

Table 3.3 describes the assessment of QRs management methods according to characteristics 

and criteria established in chapter 1 (section 1.4.13) which are: identification, decomposition, 

definition, representation, conflict analysis, documentation, quality standard used, and 

integration with FRs. QRs management methods are evaluated by their extent to address each 

criterion. As illustrated by the table, one can argue that most of the concepts (identification, 

decomposition, conflict resolution, documentation, derivation from business goals and 

integration with functional requirements) are not applied by these methods (Tables 3.3 and 

3.4). The “Representation” and “Definition” concepts are easily addressed in these methods 

but “Documentation” and “Consensus on quality definitions” are absent. The 

“identification”, “Conflict resolution”, “Derivation from business goals” and “Integration 

with FRs” concepts are neither applied nor mentioned in the case studies neither are they 

described. For the used ISO/IEC quality standard, only IESE NFR method indicates in the 

case study the use of ISO/IEC 9126. Table 3.4 establishes comparisons of method artifacts 

used during these case studies. In fact, used artifacts are defined in the case studies but they 

need to be further described to be understandable. There is also a need for more easily 

applied techniques to be acceptable to users. 

 

Table 3.3 Assessment of QRs management method’s applicability 
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MOQARE  Partially  Partially  Yes  No  Yes  No  No  No  Partially  No  

IESE NFR  Partially  Partially  Yes  Partially Yes  No  No  Yes  No  Partially  

ATAM  No  No  Yes  Yes  Yes  No  No  No  Partially  No  

SOFT 
GOAL 
NOTATI
ON  

No  Partially  

Yes  

Partially yes  No  No  No  No  No  

FDAF  No  No  Yes  No  yes  No  No  No  No  No  
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Yes: The concept is well applied. 

No: concept is not applied. 

Partially: concept is mentioned in the case study but not described. 

 
Table 3.4 Comparisons of applied QRs management methods through their artifacts 

 

 
 

 

3.1.2 Conclusion 
 
This section presented and discussed the applicability of five QRs management methods (in 

case studies) classified according to three major concepts (business goals, aspect and goals 

oriented). Analysis and discussion of their applicability (by case study) have been described 

and their strengths and weaknesses have been identified.  

The following sections describe QRs situation in industry and analyze the resulting indicators 

from industrial and academic environments.  
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3.2  Quality requirements management in an industrial environment 
 

This section presents an overview of the current situation of QRs engineering practices in an 

industrial environment. A questionnaire was developed and distributed in industry to obtain 

indicators about the QRs practices in industry (Annex I). The first part of this section 

describes data collected from the questionnaire, the second part analyses the collected data 

and provides the results illustrating the real situation of QRs engineering practices in 

companies and their critical needs.  

 

3.2.1 Data collection of quality requirements  
 

The questionnaire is structured as follows: section 1 presents the purpose of the questionnaire 

and questions on the personal profile of each of the domain representative who complete the 

questionnaire. The next section describes instructions related to how answers should be 

formulated.  Finally, the main items related to stakeholders, processes, methods, standards 

and the company are described.  A pivot table tool (Excel 2003) is used for sorting and 

summarizing the collected data. A detailed description of the questionnaire is presented in 

Annex I. 

For each section of the questionnaire, items are filled out according to the following closed-

type questions: “Yes”, “No”, “Partially” or “Do not know”. The objective is to have 

indications about management of software QRs in the industrial environment. Some 

questions may require additional justification.  

 

3.2.2 Performing the data collection process 

 

The questionnaire was filled out by eight domain representatives from industry along with 

their comments. These domain representatives are practitioners in industry with different 

profiles and more than 3 years experience in the software quality field (Table 3.5). Two of 

the domain representatives have solid backgrounds in software quality engineering (11 and 

20 years). Their major responsibilities are focused in process engineering and software 

planning. 
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 Table 3.5 Responsibility and duration of working of domain representatives 
 

 
 

 

 
 

Figure 3.2 Profile of domain representatives 
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3.2.3 Analyzing the collected data 
 

The present section deals with the analysis of the results collected from the survey. The 

following sections have been analyzed: 

1. Companies and stakeholders interested by the processing of QRs of the software 

product; 

2. Processes with QRs of the software product; 

3. Methods of QRs processing of the software product; 

4. Software quality engineering standards of the software product used in industry. 

 

a) Companies and stakeholders 
 

In this section, companies interested by the processing of quality requirements are of 

medium size (51-3000 people) (Table 3.6). 

 

Table 3.6 Size of companies 
 

Count of Size of company 
Size of 
company         

Position >5000 people
10 - 50 
people 

301 - 1000 
people 

51 - 300 
people Grand Total 

Architect   1  1 

Evaluator  1   1 

Quality assurance manager    2 2 

Quality engineer 1    1 

Research And Development    5 5 

Grand Total 1 1 1 7 10 
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Figure 3.3 Size of companies interested in QRs processing 
 

Their largest activity domains are: banking, electronics and logistics. But the 

respondents have mentioned that education, information and communication technology, 

government, health and banking are also important activity fields (Table 3.7).  

 

Table 3.7 Activity domains 
 

Count of Importance of activity 
domains Importance of activity domains     

Activity domains Largest part Most important Not relevant Grand Total 

Aeronautics   1 1 

Banking 1 1  2 

Education   2  2 

Electronics 1   1 

Government  1  1 

Health  2  2 
Information & communication 
technology  1  1 

Logistics 1   1 

RS&D  1  1 

Grand Total 3 8 1 12 
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Figure 3.4 Activity domains of companies 
 

The most important type of projects and software developed by the company are in 

systems, business and internet (Table 3.8). The moderately important types of developed 

projects are the embedded and systems ones. 

 
Table 3.8 Developed projects 

 

Count of Importance of 
projects 

Importance of 
projects       

Projects developed Moderatly important Most important Not relevant Grand Total 

Business   2   2 

Embedded 1 1 

Internet based   2 2 

Real time   1 1 

Scientific   1 1 

Systems 1 1 2 

Test & Test training   1 1 

Grand Total 2 5 3 10 
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Figure 3.5 Importance of developed projects 
 

 

Developed projects are almost not critical for the company as shown in Table 3.9 and 

Figure 3.6, except for those developed in business, internet and test training. 

 
Table 3.9 Critical level of developed projects 

 

Count of Business 
critical level Business critical level     

Projects developed Critical Not critical Grand Total 

Business 1 1 2 

Embedded  1 1 

Internet based 1 1 2 

Personal  1 1 

Real time  1 1 

Scientific  1 1 

Systems  2 2 

Test & Test training 1  1 

Grand Total 3 8 11 
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Figure 3.6 Critical level of developed project 
 

Most of the stakeholders interested by the QRs processing are: IT department or business 

operations and department of management. Persons responsible for managing QRs for a 

specific software development project are: project managers, quality engineer and 

quality assurance manager. Most would have at least 2 years experience. Project and test 

managers have more than 5 years experience in their respective fields (Table 3.10).  
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Table 3.10 Interested stakeholders by QRs 
 

 

 

 
 

Figure 3.7 Stakeholders and their experience 
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Training in processes and methods is a priority for project managers and software and 

system developers. Norms and standards are also important for quality engineers and 

finally, more software tools should be available to software and system developers 

(Table 3.11). 

 

Table 3.11 Type of training 
 

 
 
 

 
 

Figure 3.8 Stakeholders and their experience 
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b) Processes 
 

Figure 3.9 indicates that most of the organizations use a QRs process where 

identification and specification activities of QRs are the most important. Prioritization 

and documentation are the next most important activities. Finally, representation of QRs 

is reported in the third position. One notes that traceability of QRs is also an important 

activity to be taken into account in the quality process. 

 

 
 

Figure 3.9 QRs process activities 
 

In Table 3.12, 40% of the responses indicate an absence of software tools supporting the 

quality requirements process. Some respondents mentioned the use of “HP Quality 

Centre”, “Rationale” and other market standard software.  
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Table 3.12 Type of Sofware tools 
 

Count of QRs tools   

QRs tools Total 

 Other market standard software 10,00%

HP Quality Centre 10,00%

N/A 20,00%

Rationale Software Inc. 20,00%

We do not use a software tool 40,00%

Grand Total 100,00%

 

 

 
 

Figure 3.10 The use of software tools 
 

Finally the critical need for a structured and well defined quality requirements process is 

strongly desired (88%), as seen in Table 3.13. 



125 

Table 3.13 The need to improve quality 
 

Count of Improvequality   

Improvequality Total 

N/A 11,11%

Yes 88,89%

Grand Total 100,00%

 

 

 
Figure 3.11 The need to a structured QRs process 

 

c) Methods 

According to the responses, “Interviews”, “Meetings” and internal methods of 

organization are the most used techniques to identify QRs. “Brainstorming”, 

“Observations” and “Checklists” are used in second place (Figure 3.12). 
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Table 3.14 Techniques to identify QRs 
 

Count of Identification   

Identification Total 

Brainstorming 11,11%

Checklists 11,11%

Internal methods 16,67%

Interviews 22,22%

Meetings 16,67%

Observations 11,11%

Questionnaire 5,56%

We do not use any identification method 5,56%

Grand Total 100,00%

 

 

 
 

Figure 3.12 QRs identification most used techniques 
 

For the decomposition method of QRs, there is an absence of a recognized technique 

(57%). The only technique used is the “Quality model”, represented by 26% of the 

survey (Table 3.15). 
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Table 3.15 Techniques to decompose QRs 
 

Count of decomposition   

decomposition Total 

Quality model 31,25% 

We do not use any decomposition method 68,75% 

Grand Total 100,00% 

 

 

 
 

Figure 3.13 QRs decomposition most used techniques 
 

QRs are first documented in “Template” (42%), 37% have mentioned the use of the 

requirements specification document (RSD), see Table 3.16. 
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Table 3.16 Techniques to document QRs 
 

Count of Documentation   

Documentation Total 

RSD 43,75%

Template 50,00%

We do not use any documentation formalism 6,25%

Grand Total 100,00%

 

 

 
 

Figure 3.14 QRs documentation most used techniques 
 

In organizations dealing with quality requirements, the size of software projects may 

vary from mega to big to medium (Table 3.17 and Figure 3.15).  
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Table 3.17 Size of software projects 
 

Count of Size 

of SWP 

Size of 

SWP         

Response no 

Big 
300-
I000 

KLOC 

Medium 
50-300 
KLOC 

Mega >1 
MLOC 

Small <50 
KLOC 

Grand 
Total 

SW project1  1  2 1 4 

SW project2  2  1  3 

SW project3   2   2 

Grand Total 3 2 3 1 9 

 

 

 
 

Figure 3.15 Size of developed software projects 
 

The total effort for each type of software project is thousands-hundreds for the mega 

project; 40-few hundred for the big project and 8-40 participants for the medium project 

(Figure 3.16).  
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Table 3.18 Total effort of software projects 
 

Count of Total effort of SWP Total effort of SWP       

Response no 
Size of 
SWP 

2 persons for 
1- 2 weeks 

40- few 
hundreds 

8-40 
participants

Hundreds-
thousands Grand Total 

SW project1  
Mega >1 
MLOC    1 1 

  
Small <50 
KLOC 1    1 

SW project1  
Total   1   1 2 

SW project2  

Big 300-
I000 
KLOC  1   1 

SW project2  
Total    1   1 

SW project3  

Medium 
50-300 
KLOC   1  1 

SW project3  
Total     1  1 

Grand Total   1 1 1 1 4 

 

 

 
 

Figure 3.16 Total efforts for the developed software projects 
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Also, hierarchy levels for each software project vary from 1 to 4 levels for the mega 

project to 3 levels for the small and big projects and 2 levels for the medium project 

(Table 3.19).  

Table 3.19 Hierarchy levels of software projects 
 

Count of 
Hierarchy of 
authority 

Hierarchy of 
authority         

Size of SWP 1 level 2 levels 3 levels 4 levels 
Grand 
Total 

Big 300-I000 
KLOC   1  1 
Medium 50-
300 KLOC  1   1 
Mega >1 
MLOC 2   1 3 
Small <50 
KLOC   1  1 

Grand Total 2 1 2 1 6 

 
 

 
 

Figure 3.17 Hierarchy levels for the developed software projects 
 

Duration of the software projects vary from (Figure 3.18): 

• 2 years, 2-3 years and >5 years for a mega project  

• 2 years and 3-5 years for a big project  

• 2 years and 2-3 years for a medium project  

• 2 years for a small project. 
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Table 3.20 Duration of software projects 
 

Count of Duration of 
SWP2 Duration of SWP         

Size of SWP <2 years 
>5 
years 2-3 years 3-5 years Grand Total 

Big 300-I000 KLOC 2     1 3 
Medium 50-300 
KLOC 2  1  3 

Mega >1 MLOC 2 1 1  4 

Small <50 KLOC 1    1 

Grand Total 7 1 2 1 11 

 

 

 
 

Figure 3.18 Duration of the developed software projects 
 

d) Standards 

The survey indicates that most software quality engineering standards supporting 

organizations are ISO/IEC 9126 and 14598. Two other standards which were suggested 

by respondents are ISO/IEC 25051 and 15408 (Figure 3.19).  
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Table 3.21 Quality standards 
 

Count of Quality standard   

Quality standard Total 

ISO/IEC 15408 1 

ISO/IEC 25051 1 

IEEE 830 2 

ISO / IEC 14598 3 

ISO / IEC 9126 3 

Grand Total 10 

 

 

 
 

Figure 3.19 Used standards 
 

The project and quality assurance managers are responsible for applying these standards 

in their organizations. They have 5 or more years experience in this field (Figure 3.20).  

 

Table 3.22 Responsible of standards 
 

Count of How long How long   

Responsible > 5 years Grand Total 

Project manager 1 1 

Quality assurance manager 7 7 

Grand Total 8 8 
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Figure 3.20 Experience related to the responsibility for standards 
 

For organizations using ISO/IEC 9126, the used parts of this standard are quality model, 

internal quality, external quality and quality in use (Figure 3.21). They are used 21 times 

for 50 projects (Figure 3.22).   

 
Table 3.23 Used parts of ISO/IEC 9126 

 

Count of Parts of standard   

Parts of standard Total 

External quality 2 

Internal quality 2 

Quality in use 1 

Quality model 3 

Grand Total 8 

 
 

 
 

Figure 3.21 Parts of ISO/IEC 9126 
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Table 3.24 Frequency use of times of ISO/IEC 9126 
 

Count of Frequency of use 
projects   Frequency of use projects   

Frequency of use  times Parts of standard 50 
Grand 
Total 

21 External quality 1 1

  Internal quality 1 1

  Quality in use 1 1

  Quality model 1 1

21 Total   4 4

Grand Total   4 4

 
 
 

 
 

Figure 3.22 Frequency use of times of ISO/IEC 9126 per projects 
 

e) Conclusion 

Analysis of the questionnaire provides general observations about the software QRs 

subject. Resulted indicators are related to the motivation of organizations to have the 

best engineering practices of QRs, the difficulty to apply some QRs management 

techniques and the critical need to a structured QRs process with its supporting software 

tool. 
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3.2.3 Analysis of resulted indicators from industry and academic environments 
 

This section analyzes obtained data from industrial and academic environments. In other 

words, indicators resulted from applied software QRs management methods in their case 

studies (section 3.1) and from collected data from questionnaires (section 3.2) are analyzed. 

Critical needs seen by domain representatives in industry in the field of quality requirements 

are identified and conclusions and justifications for the proposed solution are formulated. 

Resulted data will determine future requirements for the research solution design. The 

analysis process is carried out in the following categories: 

 
• Identification of software QRs; 

• Representation of software QRs; 

• Documentation of software QRs; 

• Integration of software QRs with the FRs model; 

• Quality standard used. 

 

3.2.3.1  Resulted indicators from applied QRs management methods in their case 
studies: 

 

• The applied methods need to improve their process with the software QRs management 

techniques (identification, decomposition, conflict resolution, documentation, derivation 

from business goals and integration with functional requirements); 

• The need for more understanding and applying quality standards; 

• There is a need for understandable and applied techniques to be acceptable by users; 

• Critical need for well described and understandable artifacts; 

• A lack of understanding of quality attributes in the software engineering community (the 

same interpretation of the quality attribute with different attribute names); 

• Difficulty to define a unique terminology of QAs among stakeholders; 

• Importance of interaction and consultation with domain people to capture priorities for 

requirements and to resolve terminology problems;  

• A lack of contact with domain people during the case study; 

• A need for a clarifying technique of the meaning of QAs; 
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• A critical need for documenting QRs and integrating them in the RSD. 

 

3.2.3.2   Analysis of collected data about QRs engineering practices in industry has 
provided the following indicators: 

 

• QRs represent an interesting domain field and an important aspect to be addressed in 

organizations; 

• Most of the organizations use a software QRs process where identification, specification, 

prioritization, documentation and representation activities of QRs are the most important 

(Figure 3.9); 

• The need for more software QRs engineering practices (decomposition techniques are 

either partial or absent (Figure 3.13) as is traceability (Figure 3.9)); 

•  “Interviews”, “Meeting” and internal methods are the most used techniques to identify 

QRs (Figure 3.12); 

• The QRs process needs to be supported by software tools (Figure 3.10); 

• The need for training in quality processes, norms and standards and software tools; 

• Critical need for a structured and well defined quality requirements process (88%) (Figure 

3.11); 

• Use more software quality engineering standards (Figure 3.19): 

o  ISO/IEC 25051 Software engineering — Software product Quality Requirements and 

Evaluation (SQuaRE) — Requirements for quality of Commercial Off-The-Shelf 

(COTS) software product and instructions for testing (this International Standard is 

applicable to COTS “Commercial Off-The- Shelf” software products.  

o ISO/IEC 15408 – Evaluation Criteria for Information Technology Security (represents 

the outcome of a series of efforts to develop criteria for evaluation of IT Security that 

are broadly used within the international community). 
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3.2.3.3  Conclusions and justifications for the proposed solution 
 

In conclusion, the resulted indicators from industry show the existence of an interest for the 

QRs domain field where most of the organizations use a software QRs process. However, 

this process needs to be: 

 
1. Improved by more structured software QRs management techniques; 

2. Supported by more software quality engineering standards and tools. 

 

Resulted indicators from applicability of QRs management methods in their case studies 

show that QRs engineering techniques need to be adequately applied, appropriately used and 

easily understandable. There is also a need for methods to detail meanings of the QAs, 

document and integrate them in the RSD document. Finally, there is a need to easily apply 

the software quality engineering standards and to use a unified terminology of QAs among 

stakeholders. 

 

From the previous resulted indicators, future requirements of the proposed research solution 

are summarized in developing new techniques for: 

 

• Identifying and defining software QRs ;  

• Representing software QRs and describing their traceability; 

• Resolving conflicts among them; 

• Documenting software QRs in a specific format such as a template. 

• Integrating software QRs with the FRs model; 
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3.3  Innovative aspects of the proposed research solution:  SOQUAREM (SOftware 
QUAlity Requirements Engineering Method) 

 

In this section, innovative aspects of SOQUAREM method are highlighted by describing its 

specific features, meta-model, building process and process structure. 

 

3.3.1 Specific features of SOQUAREM method 
 

SOQUAREM solution is proposed to palliate some of the limitations of the software QRs 

management methods. It addresses the list of QRs managing criteria (Table 3.25). Its 

innovative aspects are represented as follows: 

1. More interaction with stakeholders and domain experts during consensus and free 

dialogue sessions; 

2. Use of intentional modeling and motivation of business in the derivation process of 

quality attributes; 

3. Structured derivation of quality goals from business goals by using Business Context 

Table (BCT) and Business Motivation Model (BMM). Derivation step of quality 

attributes from business goals is fully described in SOQUAREM; 

4. Use of scenarios at the requirements level to resolve terminology problems and infer the 

right quality attribute; 

5. Use of transformation rules which are: statement rules to define business goals, 

refinement rules to refine business goals, linkage rules to derive quality attributes from 

business goals and mapping rules to link quality attributes to the FRs model; 

6. Use of ISO/IEC SQuaRE 25030 as supporting quality standard for SOQUAREM 

process; 

7. Use of a quality template to specify and document quality attributes; 

8. Use of prioritizing methods (impact matrix and weighted method) to resolve conflicts 

among quality attributes. 
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Table 3.25 SOQUAREM characteristics  
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SOQUAREM  BCT  
 
BMM  
 
Consensus 
session  
 
Statement and 
refinement rules  

BCT  
 
BMM  
 
Linkage 
rules  

QAs  Utility 
tree  
 
Scenarios 
template 

Impact 
matrix  
 
Weighted 
method  

Template  ISO/IEC 
SQuaRE 
25030 

Mapping 
rules  
 
Scenarios 
template 

 
 

 

3.3.2 Meta-Model of SOQUAREM method 
 

SOQUAREM represents an intentional, scenarios-oriented approach to quality requirements 

engineering. Modeling elements in SOQUAREM include business goals; quality attributes 

scenarios, actions and quality standard ISO/IEC SQuaRE 25030 (Figure 3.23). Business 

goals, influencer and strategies are provided from the BMM model. They could be traceable 

to the concepts of quality attributes, actors and actions. Quality attributes are clarified into 

quality scenarios where details about actions and assets related to their achievement are 

defined. Quality attributes are also specified by using the ISO/IEC SQuaRE 25030 quality 

standard as a supporting framework. 
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 Figure 3.23 Meta-Model of SOQUAREM  
 
 

3.3.3 The SOQUAREM building process 
 

Figure 3.24 shows the SOQUAREM building process which presents mapping of concepts 

from different research resources (such as quality attributes template, scenarios descriptions, 

Business elements…), the domain experts’ verification and process improvements. The 

dashed boxes present different authors from literature review who deal with similar concepts 

in their specific context. For example, scenarios descriptions in ATAM method (Kazman et 

al., 2000) are used to detail the meaning of quality attributes with a specific description 

related to an architectural context. The quality attributes template (Moreira et al., 2002) 

describes quality attributes with specific items to address aspectual quality attributes 

crosscutting with functional requirements.  
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Elements of context (such as business, user and software domain) help to identify and refine 

business goals by using BMM and BCT concepts. The quality standard ISO/IEC SQuaRE 

25030 is used during the linkage process of QAs to business goals to infer the right quality 

attribute. Scenario descriptions are semi formal methods used to make the QAs operational 

and help their integration in the FRs process. Prioritization techniques (Moreira et al., 2002) 

are used to resolve conflicts among quality attributes. QAs template (Brito et al., 2002) and 

utility tree (Kazman et al., 2000) are concepts used to document and represent quality 

attributes. 

 

 
 

Figure 3.24 SOQUAREM building process 
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3.3.4 SOQUAREM process structure 
 
The SOQUAREM structure, illustrated in Figure 3.25, is organized around phases and uses 

various techniques and tools (heuristics, mathematical and intentional modeling), quality 

standard ISO/IEC 25030 and transformation rules. Stakeholders and domain experts are 

involved during the process operation. Techniques used are either informal, heuristic or semi 

formal. The informal ones are consensus and free dialogue sessions, scenario descriptions 

and templates. Scenario descriptions are used to detail the meaning of quality attributes and 

make them operational. Heuristic techniques use descriptive methods to help clarify the 

business goals and identify quality attributes. Semi formal methods use UML modeling to 

represent the operational part of the quality attribute (actions undertaken to achieve it) and to 

link them to the functional requirements (represented in the use case model). Mathematical 

methods such as utility tree, impact matrix and weighted methods are used to represent 

quality attributes and resolve conflicts among them. Transformation rules are used during the 

whole process to regulate the operation process and are subdivided into statement rules to 

define business goals, refinement rules to refine business goals into refined business goals, 

linkage rules to derive quality attributes from business goals and mapping rules to link 

quality attributes to the functional process. 
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Figure 3.25 SOQUAREM process structure 
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3.4 Conclusion 
 

This chapter presented the fundamentals of the research execution. Initially, applicability of 

existing QRs management methods has been described by analyzing their case studies and 

identifying their strong and weak points. Resulted analysis demonstrated that most of the 

applied methods do not fully apply the QRs management concepts (most of the applied 

concepts are mentioned in the case study but not described enough (Tables 3.3 and 3.4). QRs 

management methods need future work to evaluate their various usages across a large 

spectrum of users and systems and should be validated in concrete situations with real 

companies.  

 

Subsequently, the current situation analysis of quality requirements seen by industry has been 

provided by developing a questionnaire. Resulted indicators pinpointed critical needs, major 

difficulties in addressing quality requirements and important directives for improving the 

QRs processing of the software product in industry. 

 

Again, analysis of QRs situation in academic and industrial environments has been 

conducted. This part analyzed resulted indicators from both the questionnaire and the applied 

methods and provided relevant requirements for the SOQUAREM method which have been 

concretized in the fourth section “SOQUAREM innovative aspects”. In fact, innovative 

aspects of the solution have been established by describing its specific characteristics and its 

design and structure processes.  

 

Chapter 4 describes in detail the proposed solution SOQUAREM: its key concepts and 

process model. 

 





 

CHAPTER 4 
 

 
 SOQUAREM: SOFTWARE QUALITY REQUIREMENTS ENGINEERING 

METHOD 
 

 
This chapter presents a detailed description of SOQUAREM (SOftware QUAlity 

Requirements Engineering Method) method. Section 1 introduces the high conceptual levels 

of SOQUAREM and its process for producing QAs list. Section 2 defines and develops its 

key concepts. Section 3 describes and details SOQUAREM process model. Section 4 

concludes this chapter.  

 

 4.1 SOQUAREM method 
 

The proposed method is business goals-centric; stakeholder-centered and scenario-oriented 

(Djouab and Suryn, 2011a). It is organized around 2 high conceptual levels (Figure 4.1): 

 

• The business goals level: identifies important business goals (BGi) from the BMM 

model and BCT concept (next section). Specific rules are used to refine business goals. 

Consensus and free dialogue sessions are used to confirm the refined business goals 

(RBGi) with stakeholders and domain experts.  

• The system quality attributes level: Quality attributes are derived from the business 

goals according to the quality standard ISO/IEC 25030 and linkage rules. They are also 

detailed and operationalized by using the “Scenarios template” concept. Quality 

attributes are analyzed for possible conflicts and consolidated by using prioritizing 

techniques. They are retraced to their original business goals by applying the “Utility 

tree” concept. Finally, quality attributes are linked to the “Use case” model by using 

mapping rules. 
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Figure 4.1 High conceptual levels of SOQUAREM 
 

Figure 4.2 shows the required elements for identifying QAs. BCT elements (which are 

questions on business context: What, Why, How and Who) are mapped with BMM artifacts 

to refine the business goals (BGk). Refined business goals are linked to QAs (according to 

quality standard ISO/IEC 25030, linkage rules, scenarios template and prioritization 

techniques) to obtain the final quality attributes list (QAm). QAs list is discussed with 

concerned stakeholders during consensus sessions. 
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Figure 4.2 Required elements for identifying quality attributes 
 

Data collected from the different questionnaires will produce the first database which will be 

organized and aggregated according to stakeholder’s quality needs, ISO/IEC 25030 quality 

standard, scenarios template, linkage rules and prioritization techniques to finally obtain a list 

of prioritized quality attributes (Figure 4.3).  

 

 
 

Figure 4.3 Process producing the quality attributes list 
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4.2 SOQUAREM Key concepts  
 

This section describes the relevant concepts of SOQUAREM. The first group of concepts  is 

provided from standards (BMM and ISO/IEC 25030) and known methods like  priorizing 

methods (impact matrix and wheigted method), consenssus and free dialogue sessions. The 

second group of concepts is reused in SOQUAREM with Djouab’s definitions. For instance, 

the “Utility tree” concept of ATAM  (Kazman et al., 2000) method is reused with Djouab’s 

representation model and the BCT concept is reused from the work of Deng (Deng, 2006) 

and QAs description template is reused from the work of Brito (Brito et al., 2003). The last 

group of concepts is developed for the purpose of SOQUAREM process (scenario template 

and transformation rules (statement, refinement, linkage and mapping rules). The Key 

concepts of SOQUAREM (Figure 4.4) are: 

 

1. BMM (Business Motivation Model): is the starting point of the SOQUAREM method. 

It is used to define motivation of the business context, state goals and sub goals of the 

business, related strategies and identifies relevant stakeholders with their corresponding 

expectations.  

2. Business context Table (BCT): describes fundamental questions about elements of the 

business context. It structures and details items of BMM business context according to 

the following keywords questions: How, What, Why and Who. BMM and BCT are used 

in the first three SOQUAREM process phases to help refine business goals and derive 

quality attributes from business goals. 

3. Free dialogue session:  is used to identify and refine business goals from technological 

constraints, high level functional requirements and covering strategies.  

4. Scenario template: details the meanings of quality attributes according to specific items 

of the scenario template (Table 4.11). The scenario template provides a structured way to 

build the QAs utility tree and to integrate QAs in the FRs model (Use cases). 

5. ISO/IEC 25030: helps stakeholders focus on the most recognized quality characteristics. 

It is used to infer the right quality attribute from the refined business goals. 
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6. Consensus session: provides a means to communicate and consolidate quality attributes 

to the stakeholders in order to obtain the final list of prioritized quality attributes. 

Consensus sessions are used to : 

a. Confirm business goals with stakeholders; 

b. Discuss the linkage of the QAs to the business goals with concerned stakeholders; 

c. Confirm consolidated QAs.   

d. Discuss conflicts among QAs with stakeholders. 

7. Quality attributes template: documents quality attributes in the following terms: the 

context in which the quality attribute is applied, the source of the quality attribute, 

representation of the quality attribute and impact of the quality attribute on the software 

process. 

8. Utility tree: (for traceability of quality attributes) is developed for each quality attribute 

and shows how quality attributes are organized with the refined business goals and the 

associated quality scenarios.   

9. Statement, refinement, linkage and mapping rules: state and define ways to refine 

business goals, link quality attributes to the refined business goals and map quality 

attributes to the corresponding use case model. 

10. Prioritizing methods: (such as impact matrix and weighted method) used to find and 

resolve conflicts among quality attributes.  

 

Figure 4.4 presents key concepts involved in the main activities of SOQUAREM process.  

The first activity related to identifying and refining business goals (green color) uses the 

following concepts: BMM, BCT, free dialogue session, consensus session, statement and 

refinement rules.  The second activity addresses derivation of quality attributes from the 

refined business goals and their consolidation by applying the following concepts: BMM and 

BCT, scenarios template, quality standard ISOIEC 25030, linkage rules, consensus session 

and prioritizing techniques (yellow color). The next activity uses the “Mapping rules” to link 

QAs to the use case model (blue color). The last two activities apply “QAs template” and 

“Utility tree” concepts to deal with documentation and representation of quality attributes 

(red and purple colors). 
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Figure 4.4 Key concepts of SOQUAREM 
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4.2.1 Development of SOQUAREM concepts  
 

This section details the main concepts developed in SOQUAREM method: the BCT 

(Business context Table), scenario template, utility tree, QAs template, consensus session 

and the different transformation rules used in SOQUAREM process (statement, refinement, 

linkage and mapping rules).  The BMM model is detailed in chapter 1 (section 1.4.12). 

 

4.2.1.1 The BCT 
 

The idea of BCT is to structure the business vision of the system by using keyword questions 

such as: what, why, who, where and when. BCT will help to organize business information 

that defines the scope of SOQUAREM process. 

As suggested by its name, a business context is organized around questions related to 

identification and clarification of business context elements which contribute to identify 

quality attributes. Table 4.1 presents the elements of a business context. 

 

Table 4.1 BCT (Business Context Table)  
 

Questions Business context elements 

What 1. Business goals  
2. High level and technological constraints  
3. High level quality needs 
4. High level functional requirements  
5. Regulations and compliance  
6. Domain characteristics  
7. Political interests and organizational culture  

How Business strategies to achieve business goals  

Who Target stakeholders  

Why 1. Current business  
a. Outcomes  
b. Impact  
c. Performance measures  

2. Needs for target stakeholders to be met  
3. Business mandate  
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4.2.1.2  The consensus session  
 

 The consensus session is used to discuss and consolidate ideas with stakeholders about 

quality attributes. It is applied throughout the entire process of SOQUAREM by using 

different techniques (C/R is used to indicate Confirmed/Rejected): 

1.  During the first two phases, a consensus session is used to confirm and to consolidate 

the business goals and refined business goals with stakeholders; 

2. During phase 3, this session is used to confirm linkage of quality attributes to the 

business goals with stakeholders  (Table 4.2); 

3. Phase 5 uses the consensus session combined with the weighted quality attributes 

method to help resolve conflicts among quality attributes and discuss them with 

stakeholders (Table 4.3); 

4. Phases 4 and 6 also use a consensus session technique to confirm with stakeholders the 

obtained quality scenarios and to map the QAs to the FRs model. 

 

Table 4.2 Confirm linkage of QAs with business goals 
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Table 4.3 Resolve conflicts among QAs 
 

 
 

 

4.2.1.3   The QAs template  
 
A template is used to document QAs in descriptive items which are subdivided into three 

classes (Tables 4.4 and 4.5):   

 

• Quality attributes context class: contains items documenting: 

o Name of the quality attribute which is defined according to ISO/IEC SQuaRE 25030; 

o Brief description of the quality attribute; 

o Category of the QA according to ISO/IEC 25030; 

o Source of information contributing to the definition of the quality attribute 

(stakeholders and documents); 

o Stakeholders impacted by the quality attribute: which class of stakeholders is 

interested by this QA; 

o Priority of the QA: expresses the importance of the quality attribute for the 

stakeholders. It can be :  

 High (H: ), Medium (M) and Low (L); 

 Or by values like: [0.6…1] for High,] 0.3…0.6[for Medium and [0…0.3] for Low. 
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• Quality attributes traceability class: contains items documenting traceability of the 

quality attribute to its original business goals source. The “Representation” item is 

described by: 

o The list of business goals and the refined goals which are contributing to the 

derivation of the quality attribute;  

o Actors responsible for achieving the quality attribute; 

o  The number of identified QAs scenarios for each actor. 

 

• Quality attributes impact class: contains items documenting: 

o Requirements affected by the quality attribute like functional requirements, cognitive 

requirements; 

o Models and processes requiring the quality attribute like sequence diagrams, use case 

model and business domain model (Table 4.6); 

o Activities of the software life cycle and phases of the software process standards 

where this quality attribute is required, managed or verified (Table 4.7);  

o Impact of other quality attributes (negatively or positively) on the quality attribute 

(Table 4.8). 
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Table 4.4 Template for specifying quality attributes 
 

QA  context class 

Name The QA name  

Description A brief description of the quality attribute 

Category The QA category according to the ISO/IEC 25030 taxonomy : QiU, EQ and IQ 

Source Stakeholders, vision document , use case artifacts 

Target 
stakeholders 

Manager, customer, developer, quality evaluator and other stakeholders 

Quality standard 
used 

ISO/IEC SQuaRE 25030 

Priority Priority of the QA 

QA  traceability class 

Representation Business goals  Refined business 
goals 

Actor 1 Actor i 

Number of quality 
scenarios 

Number of quality 
scenarios 

QA  impact class 

Requirements Functional, non functional, cognitive and other  type of requirements 

Activities and 
phases 

Requirements elicitation, requirements analysis, architectural design and test. 

Models and 
processes 

Sequence diagrams, uses case diagrams and architectural styles. 

Impact Represents how a quality attribute can be affected by other quality attributes. This 
impact can be positive (+) or negative (-). 
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Table 4.5 QAs documentation classes types  
 

 
Table 4.6 Models requiring the QA  

 

   
Activity  

 
Where QAs      
 

 
 
Use case model 

 
 
Sequence diagrams 

 
 
Architectural styles 

Is required *   

Is managed  *  

Is verified for its 
realization 

  * 

 
 

Table 4.7 Activities requiring the QA  
 

                      
 Activity  

 
Where QAs      
 

 
Requirements  

elicitation 

 
Requirements 

analysis 

 
Architecture design 

Is required *   

Is managed  *  

Is evaluated   * 
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Table 4.8 Impact matrix for conflicts among quality attributes 
 

                 QAi 
                          
QAj 

 
Quality attribute 1 
 

 
Quality attribute 2 

 

 
       
……. 

 
Quality attribute n 
 

Quality attribute 1 
 

+ +   

Quality attribute  2 
 

   _ 

. 

. 

. 

    

Quality attribute  n +    

 

 

Figure 4.5 shows an overview of the QAs database representing the required data for the QAs 

management process. QAs are derived from the business goals, applied in a specific domain 

and could affect other requirements. They are described and detailed in scenarios where an 

action item contributes to make them operational. Actors are responsible for achieving the 

QAs and stakeholders are concerned with their realization. QA is required by different 

development models and is managed or verified in many activities of the software life cycle 

and phases of the software process standards. 

 

 

 

 

 

 

 

 

 



160 

  
 

Figure 4.5 Quality attributes database reference 
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4.2.1.4    The scenarios template 
 

The “Scenario template” provides a context for detailing and operationalising quality 

attributes. It is used to build the QAs scenarios and to map them to the FRs. The “Action” 

item is used to perform the mapping and the “Asset” item is used to elaborate the QAs 

scenarios. Table 4.9 summarizes the scenario description template items.  

 

Table 4.9 Quality scenarios template 
 

Scenarios items Description 

Action Undertaken to achieve the quality attribute  

Asset Any part of the system (hardware, software, 
personnel, development process and data) 
involved in achieving the quality attribute  

 

 

4.2.1.5    The utility tree  
 

The utility tree is a key concept of SOQUAREM method. It is developed to describe the 

traceability of the quality attribute to its original requirements source. It represents derived 

quality attributes, their refined business goals and generated scenarios in a goal graph 

structure (Figure 4.6). It is structured into three levels: 

 

1. Business level: where stated business goals and their refined business goals are 

represented. Priority of the related refined business goal is also represented. 

2. Quality attributes system level:  where derived quality attributes are represented 

from detailed business goals. The actor responsible for achieving the quality attribute 

is also represented at this level. 

3. Scenarios System level: where the meaning of the derived quality attribute is 

detailed with scenarios according to the scenario template (Table 4.9). 
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Figure 4.6 Utility tree of quality attributes 
 

4.2.1.6    Transformation rules 
 

This section describes the transformation rules used to verify the logic of SOQUAREM 

process. The proposed rules are applied at each phase of the process to help derive quality 

attributes. They are divided into the following rules: 

 

1. Statement rules: used to ensure that business goals are stated according to a business 

mandate, domain characteristic and organizational culture of the business (Table 4.1). 

Table 4.10 gives an excerpt of statement rules in the SOQUAREM concept. 
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Table 4.10 Statement rules 
 

Statement rules 
 

1. STR1 : Each business goal is detailed according to  “Business mandate”  of BCT table 

and “Desired results” of BMM model;  

2. STR2: Each business goal is related to one or more quality needs of stakeholders;  

3. STR3: Each business goal is identified according to domain characteristics of the 

business;  

4. STR4: Each business goal is defined according to high level problems and technological 

constraints of the business;  

5. STR5: Business goals are defined according to regulations and compliance, political 

interests and organizational culture of the business. 

 

 

2. Refinement rules: used to ensure that business goals are detailed according to covered 

business strategies, regulations, technological constraints and the organizational culture 

of the business. Table 4.11 gives an excerpt of refinement rules in the SOQUAREM 

concept. 

 
Table 4.11 Refinement rules 

 

Refinement rules 
 

1. RFR1: Each business goal is detailed according to technological constraints, existing 

regulations and compliance and high level functional requirements; 

2. RFR 2: Each business goal is detailed according to definition of the business strategies 

suggested to achieve the business goals; 

3. RFR3: Business strategies of BCT should correspond or be part of courses of actions of 

BMM model. 

 

 

3. Linkage rules: used to ensure that quality attributes are derived from refined business 

goals according to stakeholder’s quality needs and ISO/IEC 25030 quality standard. 

Table 4.12 gives an excerpt of linkage rules in the SOQUAREM concept. 



164 

Table 4.12 Linkage rules 
 

 

Linkage rules 
 
 

1. LNR1: Each quality attribute is derived  according to high level quality needs, definition 

of the refined business goal and taxonomy of ISO/IEC 25030; 

2. LNR2: Each derived quality attribute could be linked to one or more refined business 

goal; 

3. LNR3 Each obtained quality attribute could be achieved by at least one actor; 

4. LNR4: Define relevant actors who should achieve quality attribute from external 

influencer of the BMM model;  

5. LNR5: the WHO item: target stakeholders of the BCT should be part of external 

influencer of BMM model; 

6. LNR6: Define relevant actions from definition of refined business goals and internal 

influencer of the BMM model; 

 

 

4. Mapping rules: used to ensure that quality attributes are mapped to functional 

requirements (the use case model) by using scenario template items as main drivers of 

this mapping. Table 4.13 gives an excerpt of mapping rules in the SOQUAREM concept. 

 

Table 4.13 Mapping rules 
 

Mapping rules 
 
1. MPR1: Actor of the “Utility tree”  is mapped to Actor of the use case model;  

2. MPR2: “Action” of the QA scenario undertaken by Actor is mapped to a new use case; 

3. MPR3: Each actor of the “Utility tree”  is mapped to a business concept of the business 

domain model; 

4. MPR4: “Asset” and “Action” of the QA scenario are mapped to business concept and 

relationship between mapped business concepts. 

 



165 

4.3 The SOQUAREM process model 
 

The SOQUAREM process model is divided into six phases for defining and refining business 

goals, deriving, operationalizing, analyzing, documenting and representing QAs and finally 

for linking them to the FRs process. These phases use various software QRs management 

techniques (questionnaire, consensus session, BMM, scenarios, prioritizing, utility tree and 

template). Potential inputs to the process are BMM, BCT and domain experts. The main 

participants are quality requirements engineers, domain experts and selected stakeholders. If 

the outputs for each phase are not approved by the stakeholders, one can suppose that the 

stakeholders need to negotiate with each other during consensus sessions and the phase is 

restarted if necessary. The negotiation techniques are not investigated in this thesis. 

 

The SOQUAREM process (Figure 4.7) is represented as: 

 

Phase 1: State and identify the business goals: define the relevant elements of the business 

context such as business goals and business domain. It is important to mention that the 

business goals definition is related to the goals of the BMM concept.  

Phase 2: Refine business goals: business goals are detailed according to additional business 

information such as organizational culture, regulations and guidelines, technological 

constraints and business strategies.  

Phase 3: Link business goals to the corresponding quality attributes: detailed business goals 

are used to derive the quality attributes by using ISO/IEC 25030 quality standard and linkage 

rules. The relation between the business goals and the FRs is not included in this process. 

Phase 4: Build quality attributes scenarios by using the scenario template and the consensus 

session techniques to infer the right quality attribute. 

Phase 5: Analyze conflicts between QAs and consolidate them by using prioritization 

methods. If the consolidation is not approved by the stakeholders, the process is restarted 

from the phase 3 (Figure 4.7). 

Phase 6: The last phase of one iteration cycle consists of linking the QAs to the functional 

requirements process by updating the initial use case model with additional information 

about QAs. 
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Figure 4.7 SOQUAREM process model 
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Figures 4.8 and 4.9 summarize the linkage process and logic of SOQUAREM. Figure 4.8 

shows the linkage process of SOQUAREM involving elements of the business context (like 

business vision, business goals and strategies) to be refined and linked to system elements 

like quality attributes, actors and associated actions.  

As illustrated by Figure 4.9, quality attributes are identified from business goals and 

integrated into the FRs process. SOQUAREM process is used at two levels: the business 

level where elements of the business context as BMM and BCT are used with the statement 

and refinement rules to help identify business goals and refine them into refined business 

goals. At the system level quality attributes are: a) linked to refined business goals by using 

quality standard ISO/IEC 25030 and linkage rules and detailed into quality scenarios; and b) 

mapped to the FRs process by using mapping rules and a scenario template. SOQUAREM 

helps to provide traceability of QAs to their business goals. Elements of the business context 

could be mapped to the QAs by:   

 

1. Refining business goals into sub goals and linking them to quality attributes (blue, green 

and purple colors); 

2. Deriving actors responsible for achieving quality attributes from the “External 

influencer” item  of BMM (Deng, 2006) and the “Who” questions of BCT concepts (red 

color); 

3. Deriving actions undertaken by actors to achieve quality attributes from the “Internal 

influencer “item of BMM and the refined business goals (brown color). 

 

The mapping from BMM elements like “Internal and external influencer” to the defined 

actors an actions is inspired from the work of Deng which suggests in her research to 

integrate the modeling techniques of BMM and I* framework.  

Deng said that “An external influencer in the BMM could be considered as an actor in i*, and 

an internal influencer could be a resource, task, goal, softgoal, or belief according to its 

characteristics”. She also said that to determine if they mean the same concepts, it will 

depend on further definitions of these concepts by OMG. 
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Figure 4.8 Linkage process of SOQUAREM process  
 

 

 
 

Figure 4.9 Logic of SOQUAREM process model  
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4.3.1 Detailed description of the phases of SOQUAREM process 
 

Phase 1: State and identify business goals of the system (Figure 4.10) 
 

In this phase, the business goals of the organization are formulated from the BMM and BCT 

items. The business goals definition starts from the goals of the BMM concept (the “Ends:: 

desired results::goals” item) (Table 1.10). The BCT concept provides the “WHY” (business 

mandate and target stakeholder’s needs) and “WHAT” (high level problems, technological 

constraints, high quality needs, domain characteristics and organizational culture) artifacts to 

state the business goals. Statement rules and consensus sessions are techniques used to define 

and discuss business goals with stakeholders. Outputs of this phase are the main business 

goals of the system. 

 

 
 

Figure 4.10 State the business goals 
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Phase 2: Refine the business goals (Figure 4.11) 
 

This phase details the business goals with additional information by describing the covered 

strategies to achieve these goals, technological constraints, directives/regulations and 

organizational cultures impacting the business system. The BMM and BCT concepts are used 

as inputs in this phase. The BCT concept provides the following inputs: a) “HOW” (business 

strategies) and b) “WHAT” (high level functional requirements, technological constraints 

and regulations). The BMM concept provides the following inputs: a) “Course of action” 

(Strategies) and b) “Directives”. Consensus sessions, free dialogue sessions and refinement 

rules are techniques used to discuss and confirm refined business goals with stakeholders. 

Refined business goals are prioritized with the participation of stakeholders as follows: High 

(H), medium (M) and Low (L). Refined business goals are the main output at this phase.  

 

 
 

Figure 4.11 Refine the business goals 
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Phase 3: Link the business goals to corresponding quality attributes (Figure 4.12)  
 

The phase derives the quality attributes and their associated actors and actions from the 

refined business goals by using linkage rules and ISO/IEC 25030. Relevant actors related to 

achievement of quality attributes are derived from the “WHO" question of the BCT concept 

(target stakeholders item) and the BMM concept (external influencer’ item). Actions are 

identified by asking questions about possible actions that could be derived from the “Internal 

influencer” item and the refined business goals. Quality attributes are derived from the 

“WHAT” question of the BCT concept (High level quality needs item) and ISO/IEC 25030 

quality standard. Linkage rules are used to verify the derivation process of quality attributes. 

Consensus sessions are used to discuss and confirm obtained quality attributes with 

stakeholders. The output at this phase is a quality attributes list. 

 

 
 

Figure 4.12 Link the business goals to the corresponding quality attributes 
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Phase 4: Build the quality attribute scenarios (Figure 4.13) 
 

This phase builds the quality scenarios associated to the QAs according to the scenario 

template description (Table 4.9).  Important items of the scenario template are: action 

undertaken to achieve quality attribute and asset on which action is undertaken. The Action 

item of the scenario template is mapped to the relevant action field of the QAs list. The asset 

item of the scenario template is defined from the refined business goals. Consensus sessions 

are used to confirm quality scenarios with stakeholders. The output at this phase is utility tree 

of quality attribute scenarios (Figure 4.6). 

 

 
 

Figure 4.13 Build the quality scenarios 
 

Phase 5: analyze conflicts among quality attributes and consolidate them (Figure 4.14) 
 

This phase evaluates interactions among QAs, compares and adjusts them to find and remove 

conflicting QAs. It consists of: 

 
• Building the impact matrix where each quality attribute may contribute negatively or 

positively to the other quality attributes in order to find possible conflicts and resolve 

them (Table 4.8). 

• Attributing weights (range [0...1]) represents priority) to those quality attributes that 

contribute negatively to each other (Table 4.14). The weighted method describes the 
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extent to which a quality attribute may constrain an actor. The values are given (by 

involved stakeholders) according to the importance each quality attribute has for each 

actor. In the case where all the values are rated high, a voting system is performed or a 

maximum per stakeholder is defined by using the negotiation techniques. The scales 

used here are based on fuzzy logic and have the following meaning [Rashid and al., 

Brito and al., 2002]: 

 
o “Very important” takes values in the interval [0,8 .. 1,0] 

o  “Important” takes values in the interval [ 0,5 .. 0,8] 

o “ Medium” takes values in the interval [0,3 .. 0,5] 

o  “Low” takes values in the interval [0,1 .. 0,3] 

o  “Very low” takes values in the interval [0 .. 0,1] 

 

• Resolving conflicts and consolidating them with the stakeholders (during consensus 

session) by using the weighted method; 

• Building the utility tree according to the consolidated data. Labels are assigned to each 

quality attribute scenario as follows:  

 
o S if the quality attribute is satisfied; 

o D if the quality attribute is not satisfied; 

o P if the quality attribute is partially satisfied. 

 

• Repeating the process to select the most beneficial QAs which involve the least conflict. 
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Figure 4.14 Analyze conflicts between QAs and consolidate them 
 
 

Table 4.14 Attribute weights to quality attributes  
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Quality attribute / RGBi 
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Phase 6: link quality attributes to a functional model (use case model and business 
domain model) (Figure 4.15) 
 

QAs are linked to the FRs process (“Use cases” and “Business domain” models) by using the 

mapping rules. These models are already defined in the beginning of the process and are 

enriched with QAs data. The following section describes the mapping rules of a QAs utility 

tree and “Use cases” and “Business domain” models.  

 

 
 

Figure 4.15 Link QAs to use case and business domain models 
 

Figure 4.6 illustrates the mapping process of a use case model (with the actor “Actor1” and 

two actions “Action1” and “Action3”) with two utility trees Utility1 and Utility2 in the 

following steps: 

1. Find all the QAs utility trees that refer to a particular actor in the use case model (Utility 

1 and Utility 2). 

2. Relate actions of the actor to roots of the QA utility tree which correspond to the same 

actor (Action1 and Action3 of Actor1 are related to Utility1 and utility2). 

3. If actions in the use case model do not cover the nodes of the QA utility tree (part 

actions), add the later actions of the actor to the use case model (Actions 2, 5 and 6). 

4. If the actor of the QA utility tree does not exist in the use case model, add it to the use 

case model with its associated actions (Actor2 and Actor3). 



176 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 4.16 Mapping process with the use case model 
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model with the QA utility 
trees Actor1 

3. Relate actions of Actor1 to 
roots of utility1 and utility 2  
 

4. Add  actions of utility trees to 
the use case model 
 

 

5. Add actors of the utility trees 
to the use case model 
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2.  Actor1 
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Figure 4.17 shows the mapping process of a business domain model (containing the business 

concept: “Actor1” and the relationships “Relationship1” and “Relationship2”) with two 

utility trees Utility1 and Utility2 in the following steps: 

 
1. Find all the QAs utility trees that refer to the business concept “Actor1” in the business 

domain model (Utility1 and Utility2). 

2. Relate relationships of the business concept “Actor1” to roots of the QA utility tree 

which correspond to the same actor (“Relationship1” and “Relationship2”). 

3. If relationships in the business domain model do not cover the nodes of the QA utility 

tree (actions and assets), add assets and actions of the actor (of the utility trees) to the 

business domain model as follows:  

 
i. Assets will be mapped to the business concepts and actions mapped to the 

relationship between actor concept and assets (Asset1, Asset2 and Asset3);  

ii. Actions will be mapped with more abstract relationships in the business domain 

model (Action1, Action2 and Action3). For example, action “add new language” in 

the utility tree (Figures. 5.21 and 5.24) will be mapped to “defines international 

language” relationship in the business domain model. 

5. If actors of the QAs utility tree do not exist in the business domain model, add them to 

the business domain model with their associated “Action” and “Asset” nodes (Actor2 

and Actor3). 

6. Verify coherence and semantics of the extended business domain model (deleting all the 

redundant business concepts and update relationship with the same name). 

7. QAs views are projected from the overall added business and relationship concepts 

(Figure 4.18) of the business domain model. 
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Compare «Relationships” of the Business concept “Actor1” with the “Action” and “Assets” 
nodes of the QAs utility trees of the same actor: 
 
If “Relationship” # “Action” and “Business concept” related to the Actor1 # “Asset” Then 
1. Add “Asset” as “Business concept” to the Business domain model 
2. Add “Action” as “Business relationship” between the Actor1 and the added “Business 

concepts” to the Business domain model and “Action” is abstracted in “Abstract Action”. 
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Figure 4.17 Mapping process with the business domain model 

Mapping process with the business domain model 
1. Find QAs utility trees that 

refer to Actor1 in the 
business domain model 

2. Relate Actor of the business 
domain model with the QA 
utility trees Actor1; 

3. Relate  relationships of 
Actor1 to roots of utility1 
and utility 2; 

4. Make the comparison of 
“Relationship” with the 
nodes of QA utility trees; 

5. Add assets and actions of 
utility trees to the business 
domain model; 
 
 

6. Actors to be added to the 
business domain model. 

1. Utility1 and utility2 
 
 
2. Actor1 
 
 
3. Relationship1 and  
Relationship2 
 
4.See table above  
 
 
5. Asset1, Asset2 and 
Asset3 
5. Action1, Action2 and 
Action3 
 
6. Actor2 and Actor3 



179 

Relationship1 Abstracted action1 

QA6 view 
QA3 view 

 

 
Figure 4.18 Quality attributes views 

 

Quality attributes are derived from the business domain model. The new added business 

concepts (from actor of the utility tree and asset of the scenario template) and relationship 

(from action of the scenario template) help in the projection of the quality attribute view.  

Projection is specifically defined from relationship existing between the new added business 

concepts.  
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4.4 CONCLUSION 
 

This chapter described the SOftware QUAlity Requirements Engineering Method 

(SOQUAREM) developed for quality requirements engineering process in the software 

product definition phase. SOQUAREM provides solutions to many recurring quality 

management problems which include: 

 

• Systematic and structured identification, representation of QRs in the software product 

definition phase; 

• Clear derivation of QAs from business concepts; 

• Well defined traceability mechanism; 

• Better integration of quality requirements with the functional process. 

 

The main concepts of SOQUAREM have been described. One can cite: 

 

• BMM (Business Motivation Model), BCT (Business Context Table) concept and 

transformation rules (statement, refinement and linkage) to identify and derive 

important QAs according to ISO/IEC 25030 taxonomy; 

• Scenario template concept to infer the right QA and utility tree allows for describing 

the traceability of QAs to their original requirements; 

• Prioritization methods (impact matrix and weighted method) help to analyze and 

resolve conflicts among QAs; 

• QAs template to document QAs; 

• Mapping rules and scenario template contribute to integrate QAs into the functional 

model;  

• Finally, consensus sessions are used at each process phase to interact with stakeholders 

and domain experts. 
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Subsequently, SOQUAREM process phases are described in detail. They are structured as 

follows: 

 
• The first 2 phases are used at the business level to identify and refine business goals; 

• The last four phases are used at the system level to: 

 
o  Derive QAs from the refined business goals; 

o  Build quality scenarios; 

o Analyze possible conflicts among QAs and consolidate them; 

o Finally, integrate QAs into the FRs model. 

 

The next chapter describes the application of SOQUAREM in an illustrative example. 

 





 

CHAPTER 5 
 

 
 ILLUSTRATIVE EXAMPLE OF THE BUILDING AUTOMATION SYSTEM CASE  
 

 

This chapter describes the applicability of SOQUAREM process by an example (Djouab and 

Suryn, 2011b). Section 1 develops the example and its operation in SOQUAREM process 

phases. Section 2 analyses and discusses the applicability of SOQUAREM process and 

finally, section 3 concludes the chapter by the resulted analysis and future improvements. 

 

5.1 Development of the example  
 

In this section, application of the SOQUAREM process to the MSLite system is illustrated by 

an example. First, the MSlite is described by its context and functional part (use case and 

business domain models) (Sangwan et al., 2008 and Ozkaya et al., 2008). A detailed 

application of SOQUAREM process to the MSLite system is then illustrated. The data 

describing the main inputs of SOQUAREM process, high level quality needs, BMM model 

and BCT table were developed. The business and refined business goals data are provided by 

the MSLite case. The work of Sustra (Sustra and al., 2007) was used to develop the business 

goal 3 (BG3) and its refined business goals. In phase 5 of the process, the data used to deal 

with conflict resolution among the QAs was provided (Tables 5.11 and 112). 

 

5.1.1 Presentation of the example 
 

The presented example has been developed from the case of Sangwan and Ozkaya (Sangwan 

et al., 2008) and (Ozkaya et al., 2008).  These authors pinpoint the importance of quality 

attributes to drive the architecture of the system. They also describe how QAs are elicited 

from business goals. This case was selected because it provides initial data on QAs (business 

goals and refined goals) which help to build the example and illustrate the SOQUAREM 

process. Data provided from the case of Sangwan and Ozkaya include: 

• Functional requirements of the MSLite system; 

• The 2 business goals of MSLite system (BG1 and BG2) and their scenarios. 
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The remaining data in the example is provided from: 

 

1. Djouab’s research describing:  

• High level problems and quality needs; 

• BMM model and BCT concepts; 

• QAs scenarios; 

• Conflict resolution. 

 

2. Other papers: 

• The business goal 3 (BG3) related to increasing the use of Internet (Sustar et al., 

2007).  

 

5.1.2 Description of the MSLite system 
 

An organization wants to develop a software system called MSLite, a unified management 

station for a building’s automation domain that will automatically monitor and/or control the 

internal functions of buildings, such as heating, ventilation, air conditioning, lighting, access 

and safety (Figures 5.1 and 5.2). The intended users of MSLite are facility managers who 

need to operate many (hardware) systems required to support building functions. Since there 

are a large number of these systems, a Field System Simulator (FSS) is used during software 

product development to simulate these systems. 
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Figure 5.1 MSLite definitions  
Extracted from Sangwan et al., (2008) 

 

 
 

Figure 5.2 MSLite system context  
Extracted from Sangwan et al., (2008) 
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Some of the high level functional requirements for the MSLite system are: 
 

• Manage the network of hardware-based field systems represented in FSS used for 

controlling building functions; 

• Issue commands to configure the field systems and change the values of their 

properties; 

• Define rules based on property values of field systems that trigger reactions and issue 

commands to reset these property values; 

• Define alarm conditions similar to rules that, when met, trigger alarms notifying the 

appropriate user of life-critical situations. 

 

Figure 5.3 shows a subset of use cases and actors identified from the analysis of some of the 

business process to be supported by «MSLite». These use cases are listed as follows: 

 

• Define automation rules; 

• Define alarms;  

• Define the SOP “Standard Operating Procedures”; 

• Issue commands to field devices; 

• Handle alarms and their life cycle;  

• Generate alarms originating from field systems; 

• Notify a change of value:  including for example the changes of some field system 

property values and failure reports.     



187 

 
 

Figure 5.3 Use cases  
Extracted from Ozkaya et al., (2008) 

 

The business process descriptions in Figure 5.4 illustrates problems in the domain model of 

the building automation and introduce the important business entities that would be 

manipulated by the use cases (alarms, rules, commands and SOP (Standard Operating 

Procedure)). 

 

 
 

Figure 5.4 Business domain model  
Extracted from Ozkaya et al., (2008) 
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5.1.3 Specific features of application of SOQUAREM method 
 

In this section, application of SOQUAREM for the MSLite System is described. First, the 

“Why SOQUAREM process is applied to the MSLite system” is presented by summarizing 

high level problems and quality needs for the MSLite system. Second, the “How 

SOQUAREM process is applied to the MSLite system” is discussed by describing the main 

concepts/rules and phases of SOQUAREM process. Table 5.1 summarizes the application of 

SOQUAREM process to the MSLite system. 

 

Table 5.1 SOQUAREM process applied to MSLite system 
 

SOQUAREM case study: MSLite system 

1. High level problems and quality needs for the MSLite system (Table 5.3 of BCT, section 

WHAT) 

1.1 High level MSLite system problems: lack of web tools.  

1.2 High level quality needs: operability, security. 

2.  Description of SOQUAREM process for the MSLite system 

2.1  Description of the main concepts of SOQUAREM: BMM (Business Motivation Model) and 

BCT (Business Context Elements); 

2.2  Phases of SOQUAREM process. 

Phase Description Key concepts/Rules Input Output 

1 State business goals BMM and BCT 

Consensus session 

BMM, BCT, Use 

case model 

Business goals 

 

….. 

    

 

 

5 Analyze and 

consolidate QAs 

Impact matrix 

Weighted method 

Consensus session 

Utility tree of QAs 

scenarios 

 (QAs) template 

Consolidated utility 

tree of QAs 
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5.1.3.1  High level problems and quality needs for the MSLite system 
 

High level problems 
 

Some of the high level problems for the MSLite system are summarized in the following 

points: 

• MSLite UI is not customized to most recognized languages; 

• Absence of web and communication tools;  

• MSLite system does not support field systems from different manufacturers. 

 

MSLite problems are caused by the following reasons: 

• Increased use of Hardware’s commoditization; 

• Lack of technological platforms (as the .NET platform and the C# language). 

 

MSLite problems have the following consequences: 

• MSLite system is not efficient and not profitable; 

• Shrinking profit margins. 

• Unsatisfied customers; 

• Loss of money. 

 

High level quality needs 
 
From the identified problems, some of the high level quality needs are summarized as 

follows: 

• The overall vision for the organization is to broaden the market base by being an open 

general-purpose management station that can be used with a wide variety of field 

systems (including eventually third party (Adaptability).  

• Build an accessible building automation system product («MSLite») with modern 

technologies that provides excellent user experience to satisfy advanced expectations 

by customers (Usability and Adaptability and Satisfaction).  
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• The system should also use web browser interfaces, which may even include building 

this capability into the individual controllers. The MSLite components should be 

designed to use internet communications for sharing information with the rest of the 

system. Internet-based communications should be specified to improve building 

operators' access to the system and to improve system communications (Operability, 

Interoperability, Security and Adaptability).  

• The management station is deployed in a critical environment and must satisfy 

increased availability and security requirements (Security).  

• The management station must be deployable in environments with four figure user 

numbers (Adaptability). 

 

5.1.3.2  Description of SOQUAREM process  
 

SOQUAREM process is applied to the MSLite system to deal with its high level 

technological problems and to meet associated high level quality needs. Inputs of 

SOQUAREM process are: Functional requirements (FRs), the BMM and BCT concepts and 

the main output is the list of identified quality attributes for MSLite system (Figure 5.5). 

 

 
 

Figure 5.5 Output of SOQUAREM process applied to MSLite system 
 

Main Key concepts to be applied in SOQUAREM phases  
 
Figure 5.6 shows and excerpt from the developed BMM (Business Motivation Model) in the 

automation building system case. The desired outcome of the business transformation is 

represented in the frame “Desired_Result” which is to “offer the automation system product 

MSLite in new and emerging geographic markets”. The “Desired_Result” is supported by 

the “Course_ of_ Action: opening sales channels” which is a component of the “Mission: 

reduce total development costs for the management stations and coordinate sales channels” 



191 

that make operative the “Vision: broaden market base with an open general-purpose 

management station that can be used with a wide variety of field systems”.  

From the “Desired_Result” frame, emerge two major business goals: 

 

1. Goal 1: Be a market leader by supporting the system with additional language features, 

cultures and regulations; 

2. Goal 2: Use a third part seller, the “Value Added Resellers” to increase sales. 

 
The two goals are supported by four strategies (Table 5.2).  
 
Directives to support achievement of the desired results are both federal, provincial and 

building system specific directives. Directives are divided into three categories: 

act/legislation, policy and agreement (Table 5.2).  

 

Influencers are an important item in the BMM. They have a strategic influence on the 

building automation system. They are represented in Figure 5.5 with the building automation 

system’s assessments of them. Influencers could present strengths and weaknesses, 

opportunities and threats (Table 5.2). Table 5.3 (Business Context Table BCT) describes 

business context elements for the MSLite system. 
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Table 5.2 BMM concepts used for automation building system 
 

BMM concepts Description 

Vision Desired_Result 
1. Goal1:  Be a market leader by supporting system with additional language 

features, cultures and regulations; 
2. Goal2:  Use a third part seller the “Value Added Resellers” to increase its 

sales. 

Mission Course_ of_ Action 
1. The “sales channels planning” strategy efforts towards achieving the second 

goal.  
2. The “sales channels expansion strategy” is aiming to allow sales channels to 

be done through the “Value Added Resellers” in diverse locations and 
manufacturers types.  

3. The two strategies “language support management for the MSLite” and 
“Regulations management” are developed for the first goal to allow support 
international languages and different regulations into the MSLite system. 

 

Directives 1. The insurance act of the  “Building automation system”  oversees the whole 
building automation system processing and is linked to goals “Goal1” and 
“Goal2”;  

2. The privacy protection act protects usage of building automation system 
information. Its strategy is to regulate and guide the management of 
building automation system and information; 

3. The interprovincial sales channels agreements are helpful in achieving the 
first goal “Goal1” of entering new and emerging geographic markets. 

 

Influencers 1. External influencers include: Suppliers and manufacturers. Facilities 
managers, field system and resellers are main actors in the building 
automation process; 

2. Internal influencer could be Legacy information System, sales expansions 
channels and total expansion costs. 

 

Assessments 1. Strength:  
a. Support from manufacturers 

2. Weaknesses:  
a. Large investment in non integrated systems  
b. Unknown hardware commodities cost. 
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Table 5.3 BCT for automation building system  
 

 Business context elements 

What  1. Business goals 

a. Enter new emerging geographic markets;  

b. Expand sales channels through value added resellers.  

 

2. High level problems and technological constraints  

a. MSLite UI is not customized with most recognized languages; 

b. Absence of web and communication tools; 

c. MSLite system do not support field systems from different manufacturers;    

d. Implementation language will be ‘C#’ and the implementation platform will be ‘.NET’; 

e. System will support a management station software to manage the field systems; 

f. System will be modified according to market’s languages, cultures and regulations;  

g. Application will feature a HTML based web user interface and compatible at least with Internet 

Explorer 5.5;  

h. The integration of commercial off-the-shelf components is not possible due to budget 

considerations. 

 

3. High level quality needs  

a. The overall vision for organization is to broaden market base by being an open general-purpose 

management station that can be used with a wide variety of field systems (including eventually 

third party (Adaptability); 

b. Build an accessible building automation system product MSLite with modern technologies that 

provides excellent user experience to satisfy advanced expectations by customers (Usability and 

Adaptability and Satisfaction); 

c. The system should also use web browser interfaces, which may even include building this 

capability into the individual controllers. The MSLite components should be designed to use 

Internet communications for sharing information with the rest of the system. Internet-based 

communications should be specified to improve building operators' access to the system and to 

improve system communications (Operability, Interoperability, Adaptability and Security); 

d. The management station is deployed in critical environment and must satisfy increased 

availability and security requirements (Security);  

e. The management station must be deployable in environments with four figure user numbers 

(Adaptability). 

 

4. High level functional requirements  

a. Manage the network of hardware-based field systems represented in FSS used for controlling 

building functions; 

b. Issue commands to configure the field systems and change values of their properties;  

c. Define rules based on property values of field systems that trigger reactions and issue commands 

to reset these property values;  
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Table 5.3 BCT for automation building system (follow) 
 

 Business context elements 

What d. Define alarm conditions similar to rules that when met trigger alarms notifying appropriate 

user of life-critical situations.  

 

5. Regulations and compliance  

a. Certain regulations require all life critical systems to operate within specific latency 

constraints. The system must be able to meet these latency requirements with a sufficient 

margin.  

6. Domain characteristics 

a. Context of the system: Unified management system for the Building automation system of 

different field devices;  

b. Field devices: alarms, heating, ventilation, air conditioning, lighting, access and safety.  

 

7. Political interests and organizational culture  

a. Political interests: oriented towards  a more recognized and unified management system;  

b. Organizational culture: putting emphasis on flexible employers. 

How  Business strategies to achieve business goals  

a. Modern technologies based on useful GUI that satisfy advanced expectations of customers; 

b. Channels planning Strategy;  

c. Sales channels expansion strategy.  

Who  Target stakeholders  

a. Facilities manager;  

b. Field system;  

c. Resellers and building automation system user.  

 Why 1. Current business  

a. Outcome: Improve profit margins and be market leader in automations systems  

 

2. Needs for target stakeholders to be met  

a. Control and monitor building functionalities in a way that ensures functionality, efficiency, 

privacy, reliability and simplicity. 

 

3. Business mandate  

a. Enter new emerging geographic market by modifying system to support different languages, 

cultures and regulations. Languages could be non Latin characters and scripts written from 

right to left and supporting regulations that require life critical systems to operate within 

specific latency constraints; 

b. Expand sales channels through value added resellers and support hardware devices from 

different manufacturers. Support also conversions of non standard units used by different 

field systems for rule evaluation and commands without errors and user intervention.  
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Description of SOQUAREM phases 
 

Phase 1: State and identify the business goals of the system (Table 5.4) 
 

• An organization wants to extend its automation system product MSLite in: 

  New and emerging geographic markets; 

  Expand sales channels through value-added resellers by letting resellers sell the 

software system under their own brands.  

• Resellers would support field systems from the manufacturers they choose.  

• Figure 5.7 shows the concepts involved in this phase:  

 BMM to define business goals by its “desired results” frame;  

 BCT (Why and What questions) to structure and organize business goals;  

 Consensus session to confirm business goals with stakeholders; 

 Statement rules to verify if business goals are correctly defined.  

• By applying the statement rule STR1(Table 4.10): “Each business goal is defined 

according to the “Business mandate” item of BCT (Table 5.2) item and the “Desired 

results” item of BMM (Table 5.3), 2 business goals BG1 and BG2 are defined (Figure 

5.8).  

 

 
 

Figure 5.7 Concepts of phase 1  
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Table 5.4 State and identify business goals for MSLite system 
 

 
 

 

 
 

Figure 5.8 Business goals of the MSLite system 
 
 

Phase 2: Refine the business goals (Table 5.5) 
 

• MSLite was developed to support a wide variety of field systems (including an eventual 

third party), international languages and regulations constraints.  



198 

• MSLite should use web browser interfaces and communication tools for sharing 

information with other computer applications such as online weather-forecasting services 

to improve building operators' access to the system.  

• Use of an internet communications protocol XML may allow MSLite system to 

seamlessly communicate with business enterprise software such as accounting and 

business scheduling packages (Figure 5.10).  

• Business goals are detailed according to additional business information such as 

organizational culture, regulations and guidelines, technological constraints and business 

strategies. Figure 5.9 shows the concepts involved in this phase: 

 

o BMM defines refined business goals by its “course of action” and “directives” 

frames;  

o BCT (How and what questions) to structure and organize refined business goals; 

o Consensus session to confirm refined business goals with stakeholders;  

o Refinement rules to verify if refined business goals are correctly detailed. 

 

• By applying the refinement rule RFR1 (Table 4.11): “Each business goal is detailed 

according to technological constraints, existing regulations and compliance and high 

level functional requirements”. The refined business goals are described with their 

priority in the “Refined business table” (Table 5.6). Business goals and their refined 

goals are represented in the utility tree (Figure 5.11). 
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Figure 5.9 Concepts of phase 2  
 
 

Table 5.5 Refine business goals 
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Figure 5.10 How a web browser interface works  
Extracted from Sustar et al., (2007) 

 
 

 
 

Figure 5.11 Refined business goals of the MSLite system 
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Table 5.6 Refined business goals table 
 

Business goal Goal refinement Priority  

BG1: Enter a 
new emerging 
geographic 
market:  

 
 

It must be possible to modify the system to support different languages, cultures 
and regulations. 
 
BG1.1: Support several international languages  
BG1.1.1: The system must allow changing all user interactions language to a 
language of choice. This includes languages with non-Latin characters and 
scripts written from right to left. 
 
BG1.2: Support regulations that require life-critical systems, such as fire alarms, 
to operate within specific latency constraints  
BG1.2.1: Certain regulations and certifications require all life critical systems 
such as fire alarms and intrusion detection systems to operate within specific 
latency constraints. The system must be able to meet these latency requirements 
with a sufficient margin. 

 
 
 
 
M  
 
 
 
H 
 

BG2: Expand 
its sales 
channels 
through value-
added 
resellers.  
 

To succeed in the Value Added Resellers market, the system must be able to 
support hardware from different manufacturers. This includes existing and to 
some extent future devices. 
 
BG2.1: Support field systems from different manufacturers  
 
BG2.2: Support conversions of nonstandard units used by the different field 
systems  
BG2.2.1: The field devices supported by the system can use different units. 
These units can be different from the units used by the user when specifying 
automation rules thresholds and commands. The system must be able to make all 
required conversions for rule evaluation and commands without errors and 
without user intervention 

 
 
 
 
 
H 
 
 
 
H 
 
 

BG3: Increase 
use of 
Internet: Use 
web browser 
interface 
which usually 
runs on a 
dedicated web 
server.  
 

Web browser interface allows a user to access and view the MSLite through the 
Internet using a computer that is running web browser software. Users can take 
advantage of this capability to monitor and control the MSLite in multiple 
facilities from a single computer 
 
BG31: Supporting the emerging standard XML for «MSLite», manufacturers 
give their customers the flexibility to configure the system on their own, use a 
configuration package from another manufacturer, or use a third-party software 
package that supports XML as a file format, such as Microsoft Excel and 
Microsoft Access. Because Microsoft is freely distributing its XML software 
engine, it's much easier for manufacturers, software developers, or users to 
create custom applications that read and write XML data, possibly even reading 
proprietary configuration data files and exporting them in standard XML format. 
BG311: The BACnet standard of MSLite will be added with XML and web 
services in order to exchange data with other computing applications over a 
network. One initial use of web services is to enable sophisticated functionality, 
such as creating "virtual thermostats" that give users control over the 
temperatures in their own areas. Use also web services to integrate BASs with 
utility systems, which would implement control strategies based on real-time 
pricing.  

 
 
 
 
 
 
 
 
 
H 
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Phase 3: Link the business goals to corresponding quality attributes (Table 5.7) 
 

Identify quality attributes of the MSLite system (Adaptability and Efficiency) and relevant 

actors and actions to achieve them (QAs list in Table 5.8). Figure 5.12 illustrates the concepts 

involved in this phase: 

 

• BCT concept:   

o WHO: target stakeholders to define relevant actors related to the QA; 

o WHAT: high level quality needs to define the candidate quality attributes of the 

system. 

• BMM concept: 

o External Influencer to define relevant actors related to the QA; 

o Internal Influencer to identify relevant actions to achieve the QA.  

 

• ISO/IEC 25030 used to infer the right quality attribute; 

• Refined business goals to help identify relevant actions of the QA; 

• Linkage rules to verify if QAs are correctly identified. 

 

 
 

Figure 5.12 Concepts of phase 3 
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Table 5.7 Link the business goals to the corresponding quality attributes 
 

 
 

 

By applying the linkage rule LNR1 (Table 4.12): “Each QA is derived according to high 

level quality needs, the refined business goals, the target stakeholders and ISO/IEC 

25030”, two QAs have been identified (Figures 5.13 and 5.14) (Adaptability and 

Efficiency) and their actors responsible to achieve them (facility manager and field 

system).  
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Figure 5.13 Application of the first linkage rule LNR1 
 

 

 
  

Figure 5.14 QAs and their respective actors  
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Table 5.8 Quality attributes list 
 

 
 

 

 

 

 

 

 

 

 

 

Business 
goals 

Refined business goals Priority Derived 
QA 

Relevant 
actors 

Actions 

BG1: Enter 
a new 
emerging 
geographic 
market.  

 
 

 
International language  
 
BG11: Support several 
international languages  
 
BG1.1.1: The system 
must allow changing all 
user interactions language 
to a language of choice. 
This includes languages 
with non-Latin characters 
and scripts written from 
right to left. 
 
 
 
Latencies of alarm and 
event propagation 
 
BG12: Support 
regulations that require 
life-critical systems, such 
as fire alarms, to operate 
within specific latency 
constraints  
 
 

 
 
M 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
H 

 
Adaptability 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Efficiency  

 
Facility 
manager 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Field 
system 

 
Add  new 
language 
 
 
 
 
Modify the 
language  
 
 
 
 
 
 
 
Update a change 
in property 
value in all UI 
screens  
 
Notify property 
value to the 
MSLite system 
 
 
Report the life-
critical alarm to 
the concerned 
users within 3 
seconds of the 
occurrence of 
the event that 
generated the 
alarm 

BG2: 
Expand its 
sales 
channels 
through 
value-added 
resellers 
 

New field device system 
 
BG2.1: Support field 
systems from different 
manufacturers  
 
 
 
 
Non-standard units 
 
BG2.2: Support 
conversions of 
nonstandard units used by 
the different field systems
  

 
H 
 
 
 
 
 
 
 
H 

 
Adaptability 
 
 
 
 
 
 
 
Adaptability 
 

Facility 
manager 
 
 
 
 
 
 
Facility 
manager 
 
 

Add new field 
system 
 
 
 
 
 
 
Handle unit 
from the  added 
field device 
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 Table 5.9 illustrates the confirmed quality attributes linked to business goals with interested 

stakeholders (developer and business manager) during the application of the consensus 

session. C/R is an abbreviation of Confirmed/Rejected. 

 
Table 5.9 Confirm linkage of quality attributes with business goals 

 

 
 

 
Phase 4: Build the QAs scenarios (Figure 5.15 and Table 5.10) 
 

Build quality scenarios associated to the derived quality attributes by using: 

 
• Structure of QAs scenario template (Table 4.9); 

• QAs list and relevant actors and actions to achieve QAs (Table 5.8); 

• The QAs scenarios are built as follows: 

o Mapping the “Action” item of the scenario template to the relevant actions of the QAs 

list;  
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o The “Asset” item of the scenario template is specified from the definition of the 

refined business goals (Table 5.6). 

• The priority of QA is defined according to its importance for the actor; 

• For the derived QA “Adaptability” associated with BG1, 2 scenarios are built (Figure 

5.16):  

 

o Scenario1: (Add new language, UI); 

o Scenario2: (Modify new language, UI); 

 
• A consensus session is applied to confirm resulted quality scenarios with stakeholders.  

• A utility tree of quality attributes corresponding to the MSLite system (adaptability and 

efficiency) is represented in Figure5.17. Mapping between identified elements of BMM 

(desired result, external and internal influencer) and those of the utility tree (quality 

attributes, actors and actions) is also represented in the utility tree. 

 

 
 

Figure 5.15 Concepts of phase 4 
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Figure 5.16 Scenarios build for Adaptability and BG1.1 
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Figure 5.17 Utility tree of quality attributes 
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Table 5.10 Quality attributes scenarios 
 

Derived QA, 
(Number of 
scenarios) 

Quality scenarios 

 
Adaptability (2) 
 

 
a. The system should support new language without any required 

code modification.  
 

1. Scenario 1 (add new language, UI) 
 

2. Scenario 2 (modify new language, UI) 

 
 
 
 
Efficiency (3) 

 
a. A change in property value is detected by the field device and 

notified to the MSLite system. The value is updated in all UI 
screens that display the property value 
 
1. Scenario 1 (update change of property value, system) 
 
2. Scenario 2 (Notify change of property value, system) 

 
b. An event which should trigger an alarm is generated in a field 

device. A life-critical alarm should be reported to the concerned 
users and displayed on the UI of all users that must receive it. 
 
3. Scenario 3 (Report alarm, system) 

 
 
Adaptability (1) 
 

 
a. Add new field device system which should offer functionality 

similar to the FFS. Extend the UI of the MSLite with the new 
device configuration information.  
1. Scenario 1 (add new field system, field device) 

 

 
 
 
Adaptability (1) 
 

 
 

a. Support conversion of the new connected field device (to the 
system) using non-SI units 

 
1. Scenario 1 (handle non standard units, field device) 
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Phase 5: analyze conflicts among quality attributes and consolidate them (Figure 5.18) 
 

 
 

Figure 5.18 Concepts of phase 5 
 

Some of the QAs may be found to conflict with each other while others appear to 

complement or strengthen one another. In this phase, interactions among quality attributes 

are evaluated in order to adjust the utility tree. The following steps are applied:  

 

1. Build Impact matrix: shows in which way (negatively or positively) a quality attribute 

impacts on the others. Whenever there is a negative contribution between quality 

attributes there is a conflict. In this case, the efficiency of the system impacts negatively 

on adaptability, operability and interoperability of the system with other internet 

applications. Interoperability and operability may conflict with the security of exchanged 

data. But interoperability and operability are likely to complement the adaptability of the 

system to the new specifications (new language, new field system, non standard units 

conversion and new configuration). On the utility tree, dotted lines marked by a plus or 

minus signs are used to represent positive and negative interactions. The model can be 

used by developers to identify the most beneficial QAs with the least conflict. An 

example is shown in Figure 5.19. 
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Figure 5.19 Utility tree with conflicts 
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2. Attribute weights to conflicting quality attributes (Table 5.11): conflicts among 

quality attributes could be resolved by attributing weights to the cells of the quality 

attribute/actor matrix where the conflicting quality attributes apply to the same actors.  

The values are given by the “developer” and the “manager” according to the importance 

each quality attribute has for each actor. Used scales are based on the fuzzy logic [section 

4.3.1, phase 5]. Using fuzzy values (very important, important, medium and low) 

facilitates the stakeholders' task of attributing priorities to conflicting QAs.  Therefore, 

for an actor facility manager, for example, efficiency has a higher priority than 

adaptability and interoperability (except for BG21) and adaptability has higher priority 

than interoperability (except for BG11). 

 

Table 5.11 Weighted method 
 

     

  
Actor 

 
 
QA/ RGBi 

 
 

Facility manager 

 
 

Field system 

Efficiency/BG12 1,0 1,0 

Adaptability  

BG11 BG21 BG22 BG31 

0,6 1,0 0,8 0,8 
 

 

Security/BG33 0,7  

Interoperability/BG
32 

0,7  

Operability/BG31 0,7  
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3. Resolve conflicts  
 

Facility manager actor shows 3 conflicting situations between: 

 

o Efficiency and adaptability; 

o Interoperability and Security; 

o Operability and Security. 

 

These kinds of quality attributes impact negatively on each other and have the same weight 

allocated to them (see the highlighted cells in Table 5.11). For the first very important 

category of quality attributes (weighted at 1,0), the facility manager needs to handle the 

alarm in time and define the new field system.  For the second important category of quality 

attributes (weighted at 0,7), on one hand, the facility manager needs to interoperate with 

other internet applications and access the XML data. The third category, the facility manager 

is required to read/write XML data in a secure way. To resolve these kinds of conflict 

negotiation is needed among the stakeholders. One suitable solution is (Table 5.12): 

 

o To lower the weight allocated to adaptability to 0.8 for the affected actor. This is 

because efficiency is more important than adaptability. It is essential that the alarm is 

handled at time even though the user may not see if the new field system has been 

added.  

o To lower the weight allocated to interoperability to 0.6 because in this case it is 

essential to ensure the security of exchanged data before interoperating with other 

applications.  

o To lower the weight allocated to operability to 0.5 because in this case it is essential to 

communicate with other applications in a secure way then read or write the XML data.  
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Table 5.12 Resolve conflicts among QAs 
 

     

  
Actor 

 
 
QA/ RGBi 

 
 

Facility manager 

 
 

Field system 

Efficiency/BG12 1,0 1,0 

Adaptability  

BG11 BG21 BG22 BG31 

0,5 0,8 0,8 0,8 
 

 

Security/BG33 0,7  

Interoperability/BG
32 

0,6  

Operability/BG31 0,5  

 

 

In summary, operability is judged to have less priority than security and interoperability, 

so it may be acceptable to have operability partially satisfied in order to achieve 

satisfaction of the security and interoperability NFRs, as shown in Figure 5.20 (labels 

(P) for partially satisfied and (S) for satisfied). The final utility tree to be linked with the 

functional process is presented in Figure 5.21. Table 5.13 shows the QAs description 

template for the efficiency QA. 
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Figure 5.20 Utility tree with “Operability” partially satisfied 
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Figure 5.21 Consolidated utility tree 
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 Table 5.13 Quality attributes template 
 

Items Description 

Name  Efficiency 

Description Support regulations that require life-critical systems, such as fire alarms, 
to operate within specific latency constraints 

Category External quality 

Source  Stakeholders, BMM and vision document  

Target 
stakeholders  

Business manager, developer and evaluator 

Quality 
standard used  

ISO/IEC Square 25030  

Priority  High for Business manager  
Medium for Developer 
High for Evaluator  

Representation  

BG1:enter 
new 
emerging 
geographic 
markets: 

 

BG12: 
latencies of
alarm and
event 
propagation

Field system  
 

Facility manager 

1. Scenario 1 (update 
change of property 
value, system) 

2. Scenario 2 (Notify 
change of property 
value, system) 

3. Scenario 3 (Report 
alarm, system 

1. Scenario 1 (handle 
alarm, system) 
 

Requirements  Functional requirements (described in the use case model)  

Activities and 
phases 
Standards  

Architecture, testing  
ISO/IEC Square 25030 and ISO/IEC 14598  

Models and 
processes  

Use case and business domain models  

Impact   (-) to Adaptability, (-) to Interoperability, (-) to Operability  
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Phase 6: link quality attributes to functional requirements  
 

The utility tree is mapped to use case and business domain models of MSLite system by 

using “Mapping rules” (Figure 5.22 with main concepts involved in phase 6). 

 

 
 

Figure 5.22 Concepts of phase 6 
 

Quality attributes are linked to the functional requirements in two ways: 

 

1. By the use case model (Figure 4.16): from the consolidated utility tree (Figure 5.21), 

map the actions of quality attributes scenarios to candidate use cases of the functional 

process. The original use case model (Figure 5.3) is adjusted to the new model (Figure 

5.23). The new added uses cases are: 

 
a. Define language; 

b. Handle NS-units; 

c. Configure the system; 

d. Report life-critical alarms; 

e. Update change of value. 
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Figure 5.23 Extended use case model with Adaptability and Efficiency scenarios 
  

2. By the business domain model (Fig 4.17): the business domain model of Figure 5.4 is 

extended with quality attributes concepts. The following actions are undertaken by the 

actor facility manager in the quality scenarios (Figure 5.21): 

 
1. Define field system language; 

2. Convert field system in new “NS units”; 

3. Configure system with internet communications capability. 

 

These actions are mapped to the following business concepts in the business domain model 

(Figure 5.24):  
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1. International language;  

2. “NS-Units”; 

3. Field system which already exists; 

4. Web browser package. 

Relationships of the facility manager with the mapped business concepts are: 

1. Defines: between the facility manager with International language; 

2. Converts: between the facility manager and the NS Units concept; 

3. Configures: between the facility manager and the Web browser package. 

 

Figure 5.24 shows the extended business domain model with business concepts.   

 

 
 

Figure 5.24 Extended business domain model with new business concepts 
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It is possible to define the “Adaptability” view which is projected from the added business 

and relationship concepts (Figures 4.18 and 5.25). For example, the “facility manager” 

concept is related to three added business concepts: “International language”, NS-Units and 

“Web browser package” by the three relationship concepts (defines, converts by and 

configures).  

The second quality view to be projected from the added business concepts “constraints” and 

“regulations” is “Efficiency” view where business concept “Alarm” is related to business 

concepts “Regulations” and “Constraints” by the relationships concepts (require and 

operates). In fact, alarm is supported by regulations requiring its operation under certain 

latency constraints. Figure 5.25 shows the quality views (Adaptability and Efficiency) 

projected from the added business concepts (for the building automation system). 

 

 
 

Figure 5.25 Quality views of new business concepts 
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5.1.4 Analysis of SOQUAREM process 
 

SOQUAREM process was evaluated by professionals and experts from the requirements 

engineering community in order to know the extent of addressing quality requirements. The 

task was not easy since the evaluation of the whole process requires several steps difficult to 

perform during the mandate of this thesis. In this section, an evaluation step was suggested in 

two ways: a) by interviewing and obtaining feedback from participants of the ISSEM 2011 

Workshop via a survey (Annex II-1); and b) by gathering feedback from international 

software quality experts (Annex II-2). 

 

1. Interviewing the participants of the workshop: performed via a questionnaire 

conducted with quality engineering participants (PHD students, architects and 

practitioners) to get valuable feedback on applicability, appropriateness, 

understandability and completeness of SOQUAREM process (the four phases of the 

process have been evaluated and responses were collected from four participants (Annex 

II-2)). The objective was to identify to what extent SOQUAREM addressed the chosen 

quality requirements management activities: identification and representation. Hence, an 

evaluation was made to see if the used concept at each activity of the process was 

adequately applied (if the concept is applied in the example according to its definition), 

appropriately used (if the concept is applied in the right and corresponding place) in the 

example and easily understandable (the concept is applied in the example without much 

cognitive workload). Missing elements (elements have been missed from the use of the 

concept) were acknowledged from the process related to these criteria. Questions were 

categorized into four major evaluation criteria: 

 

i. Applicability of SOQUAREM process (phases, concepts and techniques) in terms of 

identification, representation, traceability and documentation; 

ii. Appropriateness of the way SOQUAREM process used concepts and techniques; 

iii. Understandability of concepts during application of SOQUAREM process activity; 

iv. Completeness of SOQUAREM process according to the used concepts and 

techniques. 
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More specifically, SOQUAREM has been evaluated from different axes: 

 

1. Activities of SOQUAREM and the used concepts at each activity and phase of its process 

(Annex II-1-2: Tables A II- 3 and A II-4); 

2. Applicability of the method according to chosen criteria from literature (Annex II-1-2 and 

Table-A II- 7); 

3. Dealing with software quality (Annex II-1-2 and Table-A II- 8); 

 
 

1.1 Activities of SOQUAREM and the used concepts at each activity and phase of 

SOQUAREM  

 
1.1.1 For the identification activity: collected responses from the participants are given 

for the four evaluation criteria:  Applicability, Appropriateness, Understandability 

and Completeness: see Tables 5.14-5.17 and Figures 5.26-5.29. See also Annex II-1-

2: Table-A II- 3 and Annex II-2.The following scale is used: 3 = very good concept; 

2= fair concept and 1= poor concept. 

 

Table 5.14 Applicability of concepts for the identification activity 
 

Response 

no 

Applicability 

of  BMM 

Applicability of 

BCT 

Applicability of 

Scenarios 

template 

Applicability 

of 

transformation 

rules 

Applicability 

of ISO/IEC 

9126 

Response 1 3 3 1 3 3 

Response 2 3 3 2 3 1 

Response 3 2 2 3 3 1 

Response 4 3 1 2 2 3 

 

The scenario template is not a concept used in the identification activity during the first 

phases of the process: 1, 2 and 3. It has been introduced in this evaluation to know if 

participants have read and understood SOQUAREM process. One of the participants has 

identified this error (the participant 1 Annex II-2-1). 
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Figure 5.26 Responses of participants about applicability of concepts 
 

One can say that BMM and transformation rules are the most adequately applied concepts. 

The BCT concept is in second position. The scenario template and the quality standard 

follow. 

 

Table 5.15 Appropriateness of concepts for the identification activity 
 

Response 

no 

Appropriateness 

of BMM 

Appropriateness 

of BCT 

Appropriateness 

of Scenarios 

template 

Appropriateness 

of 

transformation 

rules 

Appropriateness 

of ISO/IEC 

9126 

Response1 3 2 1 3 3 

Response 3 3 2 3 1 

Response 3 2 2 3 3 2 

Response 4 1 3 2 1 3 
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Figure 5.27 Responses of participants about appropriateness of concepts 
 

The transformation rules and BCT concepts are the most appropriately used, followed by the 

BMM and ISO/IIEC 9126 quality standard. Finally, the scenario template is in third position. 

 

Table 5.16 Understandability of concepts for the identification activity 
 

Response  no 

Understandability 

of BMM 

Understandability 

of BCT 

Understandability 

of Scenarios 

tempalte 

Understandability 

of transformation 

rules 

Understandability 

of ISO/IEC 9126 

Response  1 3 2 1 3 2 

Response 2 3 3 1 3 1 

Response 3 2 2 2 2 1 

Response  4 3 3 2 2 2 
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Figure 5.28 Responses of participants about understandability of concepts 
 

BMM is an easily undertsandable concept, then come the BCT and transformation rules. 

Finally, the scenario template and the quality standard are in third position. 

 

Table 5.17 Completeness of concepts for the identification activity 
 

Response  
no 

Completeness 
of BMM 

Completeness of 
BCT 

Completeness of 
scenarios template

Completeness 
of 

transformation 
rules 

Completeness of 
ISO/IEC 9126 

Response  1 2 3 1 3 3 

Response  2 3 3 1 3 1 

Response  3 2 2 3 3 2 

Response  4 2 3 3 2 3 
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Figure 5.29 Responses of participants about completeness of concepts 
 

The BCT and transformation rules have no major missing elements. In second position, 

BMM and ISO/IEC 9126 quality standard and finally the scenario template is quoted in third 

position. 

 

From collected responses, one can say that SOQUAREM addresses well the identification of 

QAs by the following concepts: 

 

• BMM, “Transformation rules” and BCT are the most adequately applied, and easily 

understandable concepts; 

• BCT, “Transformation rules”, BMM and ISO/IEC 9126 are the most appropriately used 

concepts. They are also applied without major missing elements that contribute to 

identify the QAs; 

• The scenario template concept was not well ranked by participants for the identification 

activity because it is not used during phases 1, 2 and 3 of SOQUAREM process. 
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1.1.2 For the representation activity: collected responses from the participants are given 

for the four evaluation criteria:  applicability, appropriateness, understandability and 

completeness: see Tables 5.18-5.21 and Figures 5.30-5.33. See also Annex II-1-2: 

Table-A II- 4 and Annex II-2. 

 

Table 5.18 Applicability of concepts for the representation activity 
 

Response  no Applicability of Utility tree Applicability of Scenarios template 

Response  1 3 1 

Response  2 3 2 

Response  3 3 3 

Response  4 3 2 

 

 

 
 

Figure 5.30 Applicability of concepts 
 

Table 5.19 Appropriateness of concepts for the representation activity 
 

Response  

no 

Appropriateness of Utility 

tree 

Appropriateness of Scenarios 

template 

Response  1 2 1 

Response  2 3 2 

Response  3 3 3 

Response  4 3 3 
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Figure 5.31 Appropriateness of concepts 
 

 

Table 5.20 Understandability of concepts for the representation activity 
 

Response  no 

Understandability of Utility tree Understandability of Scenarios 

template 

Response  1 3 1 

Response  2 3 1 

Response  3 3 2 

Response  4 3 3 

 

 

 
 

Figure 5.32 Understandability of concepts 
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Table 5.21 Completeness of concepts for the representation activity 
 

Response  no Completeness of utility tree Completeness of scenarios template 

Response  1 2 1 

Response  2 3 1 

Response  3 3 2 

Response  4 3 2 

 

 

 
 

Figure 5.33 Completeness of concepts 
 

From collected responses, one can say that SOQUAREM addresses well the representation of 

QAs by its involved concepts. Compared to the scenario template concept, the utility tree is 

the most adequately applied, easily understandable and appropriately used concept. It is also 

used without any missing elements that contribute to represent QRs. 
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In this section, one observes that:  

 

• SOQUAREM is able to identify quality attributes by its used concepts like BMM, BCT 
and “Transformation rules”;  

• SOQUAREM is also able to represent quality attributes by its used concepts like utility 
tree and scenario template; 

• Concepts are adequately applied, appropriately used in the example and easily 
understandable. Concepts are  also used without major missing elements that could 
contribute to represent the QAs; 

• The scenario template has been evaluated as a very good concept (applicability, 

appropriateness and understandability) for phase 4 of SOQUAREM process (Annex II-2-

1); 

• The utility tree concept describes the traceability between quality attributes and business 

goals very well. 

 

1.2 Applicability of the method according to chosen criteria from literature   

Collected responses are illustrated in Tables 5.22 and Figures 5. 34. See also Annex II-1-2: 

Table-A II-7 and Annex II -2. 

 

Table 5.22 Applicability of SOQUAREM 
 

Response  no Adaptability to 

QRs 

Client acceptance Complexity Scalability 

Response  1 3 3 3 3 

Response  2 3 2 2 2 

Response  3 3 1 2 3 

Response  4 3 3 2 3 
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Figure 5.34 Criteria for applicability of SOQUAREM 
 

SOQUAREM has been evaluated according to four criteria: adaptability to QRs; client 

acceptance; complexity and scalability. “Adaptability and “Scalability” have been well 

accepted by evaluators. For “complexity“, the method is simple to understand but requires 

time. For the “client acceptance”, one notes that clients never have time to read 

SOQUAREM and its use will demand time. In addition, it is important to tell customers why 

QAs are important. 

 

1.3 Dealing with software quality  
 

This section collected responses from participants about ability of SOQUAREM to deal with 

software quality and how it is possible to improve its process, challenges and further 

comments (Annex II-1-2: Table-A II-8 and Annex II -2). They are presented as follows: 

 

1. SOQUAREM allows one to: 

o Represent in a very structured and simplified way all the relevant concepts; 

o Trace back to the high level needs that caused each QA; 

o Prioritize the development effort by QAs requirements management and change 

request; 

o Easily understand its use but it is time consuming because managers do not have the 

time to define goals clearly; 
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2. SOQUAREM will be improved by developing an automated tool and measuring its 

benefits from real cases;  

3. Strengths of the method are: utility tree concept, very structured methodology, easy to 

apply (taking one hour (Annex II.2.3 section “Other findings”)); 

4. It could be used in an academic environment to introduce to students; 

5. Threats to SOQUAREM are: how it links to agile methods (Annex II.2.3 section “Other 

findings” ); 

6. It is important to market the method and link it to a QAs model and measurement 

process;  

7. It is also suggested to market the present advantages of QAs requirements management; 

8. The challenges of applying SOQUAREM are foreseen in costs and time for gathering 

requirements. It also requires an additional effort from the requirements professional to 

encourage some companies to be more involved in the software QRs management 

process. 

 

2. Feedback from the potential experts in the software quality field: obtain valuable 

feedback from experts in the quality software engineering field. SOQUAREM has been 

submitted and revised by international software quality experts (A list of experts is 

presented in Annex II-2, only three experts have given their feedback). Results collected 

from the experts revealed the following points: 

 
1. SOQUAREM is well structured and easy to read; 

2. The concepts used in SOQUAREM could improve derivation of quality attributes 

from business goals especially BMM and BCT concepts; 

3. The QAs  template needs some improvements: 

a. Representation of the quality scenarios and their prioritization; 

b. Detail more activities of the software life cycle and phases of the software 

process standards. 

4. Resolving the conflicting attributes is very important and difficult to implement. 
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5.2 Conclusion 
 

The present chapter described in an illustrative example the application of SOQUAREM to 

the MSLite system, a unified management station for the building automation domain.  

At first, the main inputs/outputs of SOQUAREM process were defined, followed by a 

detailed description of the application of SOQUAREM phases to MSLite system. 

 

Later, SOQUAREM method was analyzed and evaluated in two ways: 

 

1. Interviewing experts of the ISSEM 2011 workshop via a survey and collecting their 

feedback; 

2. Gathering feedback of the international software quality domain experts. 

Analysis revealed the importance of a structured and easy to use process by 

practitioners. Results also show the valuable contribution of used concepts such as: 

BMM, BCT, utility tree and scenario template in the management of quality 

requirements (identification, representation and traceability). 

 

The next chapter concludes this thesis document 

 





 

CONCLUSION 
 

 

A. Summary of investigations 
 

This thesis presented and described a software quality requirements engineering method 

called SOQUAREM (SOftware QUAlity Requirements Engineering Method).  Its main 

objective is to support identification and representation of quality requirements at the 

definition phase of a software product. SOQUAREM is born from the ideas of: a) the 

motivation of the business which contributes to align business specifications to system and 

user requirements; b) supporting QRs management techniques by quality standards; c) 

providing clear and structured guidance on how to elicit, document and retrace QRs and d) 

integrating the software QRs specifications into the functional process. It provides a general 

conceptual model which derives quality attributes from business goals and ensures their 

properly detailed definition. SOQUAREM addressed the challenging aspects of software 

QRs management such as identification (of business and software) requirements, conflicts 

resolution and prioritization, representation and traceability, specification and documentation 

of QRs. Dedicated to address all types of quality requirements, SOQUAREM provides 

structured engineering process phases supported by the ISO/IEC 25030 standard and 

concepts of different organizational levels to systematically define and represent quality 

requirements.  

 

The conceptual model of the method has been detailed including:  

 

1. Business concepts such as BMM (Business Motivation Model) and BCT (Business 

Context Table); 

2. Transformation rules (statement, refinement and linkage) to identify and derive 

important quality attributes according to ISO/IEC 25030 taxonomy; 

3. Scenarios concept to infer the right quality attribute; 

4. Utility tree to retrace quality attributes to their original requirements; 

5. QAs template to specify and document quality attributes; 
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6. Mapping rules to integrate quality attributes into the functional model;  

7. Finally, consensus sessions used at each process phase to interact with stakeholders 

and domain experts.  

 

The different phases of the software QRs engineering process of SOQUAREM are described 

in the following levels: 

 

• Business level: where business goals are identified and refined according to business 

context elements (phases 1 and 2 of the process);  

• System level: where:  

 

a. The business goals are used to derive and infer the right QAs by using ISO/IEC 

25030 quality standard, linkage rules and scenario template concepts (phases 3 and 4 

of the process);  

b. QAs are analyzed for conflicts and consolidated according to the prioritized methods 

(impact matrix and weighted method) and the consensus sessions to select and 

confirm the most suitable QAs (phase 5 of the process); 

c. QAs are mapped to the functional requirements process by using the mapping rules 

and scenario template concepts. The initial use case model is updated with additional 

information about QAs (phase 6 of the process). 

 

SOQUAREM concepts have been applied and illustrated in an example: “a building 

automation system” and a management station system called MSLite. In this example, 

SOQUAREM process has been applied to the MSLite system to deal with its high level 

technological constraints and meet the associated high level quality needs. Inputs to 

SOQUAREM process are: functional requirements (FRs), the BMM and BCT concepts and 

the main output were the list of quality attributes for MSLite system which were integrated in 

the use case and business domain models of the organization.  
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The main purpose of the example is to show that it is possible to manage QRs by performing 

subsequent refinement phases and verification rules from the abstract business goals to the 

detailed quality attributes. 

SOQUAREM has shown its merits in this example and relevant feedback from international 

software quality domain experts and participants of the workshop ISSEM 2011 (section 

5.1.4) demonstrated success points of this method. 

 

B. Key Contributions 
 

This research created a quality requirements engineering method for software product 

systems. The major contribution is the creation of the first structured quality requirements 

engineering process which: 

 

1. Is designed from the foundations of the quality engineering standard ISO/IEC 

SQuaRE 25030; 

2. Describes fully the derivation of quality attributes from business goals; 

3. Integrates intuitive modeling and motivation of the business in the quality process in 

order to: 

a. align business specifications with system requirements and architectural 

design; 

b. derive and define quality attributes from business context elements; 

c. build the bridge between business and system level specifications; 

4. Provides more interaction with stakeholders and domain experts during consensus 

and free dialogue sessions; 

5. Integrates many concepts of recognized methods and standards to adequately manage 

software QRs such as utility tree of ATAM method and BMM standard of OMG; 

6. Allows the integration of quality requirements into the functional process; 

7. Integrates scenarios at the requirements level to help resolve terminology problems 

and infer the correct quality attributes; 
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Various contributions documented in this thesis have been published at conferences and in 

journals. The list follows: 

Conference Papers 

Published 

1. Djouab R., Suryn W. (2006) “An ISO/IEC standards-based quality requirement definition 

approach: Applicative analysis of three quality requirements definition methods”. ISIE 

2006 Annual Conference of the IEEE Industrial Electronics Society. 9-13 July 2006. Page 

(s): 3231 - 3239. Montreal, Que.   

2. Djouab R., Suryn W. (2007) “Analysis of a probabilistic quality method for evaluation of 

non functional requirements” was published for ICSSEA International Conference on 

Software and Systems Engineering and their Applications. 4-6 December 2007 -

Conservatoire National des Arts et Métiers - Paris, France 

3. Djouab R., Suryn W. (2007) “Applicability analysis of two quality requirements treatment 

methods: IESE NFR and FDAF” was published for ICSSEA International Conference on 

Software and Systems Engineering and their Applications.4-6 December 2007 -

Conservatoire National des Arts et Métiers - Paris, France 

4. Djouab R., Suryn W. (2011) SOQUAREM: SOftware QUAlity Requirements Engineering 

Method was published for SQM Conference on Quality Management. 18-20 April 

2011. Loughborough University, Leicestershire, UK.  

5. Djouab R., Suryn W. (2011) Applicability of SOQUAREM method: "an illustrative case 

study” was published for SQM Conference on Quality Management. 18-20 April 

2011. Loughborough University, Leicestershire, UK. 
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Journal Papers 

Submitted 

 

1. Djouab R., Suryn W. (2012) “The bridge between business and system level 

specifications: SOftware QUAlity Requirements Engineering Method (SOQUAREM)”. 

RE 2012 journal. Reference number: RE388.  

2. Djouab R., Suryn W. (2012) “Analysis and improvement of the IESE NFR method”. RE 

2012 journal. Reference number: RE389.  

3. Djouab R., Suryn W. (2012) “How could BMM and GQM contribute together to capture 

quality attributes for the software product?” RE 2012 journal. Reference number: 

RE391.  

  

C. Implications for software engineering theory 
 

The quality requirements process opens a new research avenue to the development and 

management of quality requirements at early stages of development (requirements and design 

process). Once published, it will be a good enrichment for SWEBOK with software QRs base 

knowledge and will provide benefits to International Standards Organization ISO/IEC 

SC7/WG6.  

 

Compared to existing quality methods, this research introduced: 

 

1. Novel quality requirements engineering process called SOQUAREM for product 

software (chapter 4.2); 

2. Novel quality engineering concepts including scenario template and transformation rules 

(statement, refinement, linkage and mapping rules) (section 4.1.2). 
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D. Practical implications 
 

The results of this research have practical implications for the software engineering 

community. The proposed SOQUAREM method will offer to industry the facility to manage 

software QRs (by using a structured QRs process) to obtain the product software systems 

with the desired quality attributes that conform to the most recognized software quality 

engineering standards (ISO/IEC SQuaRE 25000). 

 

The use of various concepts will offer industry a flexible model to understand management 

of software QRs and how to deal with them appropriately. Application of the business 

concepts BMM and BCT will provide a better understanding of the motivation of business. 

Scenario template will allow understanding the purpose of each quality attribute while the 

utility tree will provide an easy way to retrace quality requirements to their original business 

requirements. Moreover, consensus sessions will improve communication between quality 

practitioners and stakeholders. Alignment between business and functional requirements will 

facilitate the specification of architectural styles and increase mutual understanding between 

software architects, business managers and quality practitioners. 

 

E. Limitations and strengths 
 

SOQUAREM has been developed to support quality practitioners and software engineers in 

identifying and representing quality attributes of the software product. It is easy to apply but 

requires time and effort to become familiar to interested stakeholders. SOQUAREM process 

also offers to stakeholders an opportunity to learn more about QAs and to integrate them in 

their business process.  

 

Current limitations of SOQUAREM include: 

 

• A need to develop more the transformation rules (section 4.2.1.6) and the QAs database 

(section 4.2.1.3);  
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• SOQUAREM process has been evaluated partially and there is a need to evaluate the 

whole process with more standards/methods; 

• SOQUAREM needs also to be evaluated in a real case (industrial context); 

• There is a need for a supporting software tool to better improve communication among 

interested stakeholders; 

• There is a need for the most recognized prioritization methods and automated modeling 

systems for conflict resolution support like AHP (Analytical Hierarchy Process) and S-

COST (Software Cost Option Strategy Tool); 

•  SOQUAREM does  not define measures for the defined QAs; 

• There is a need for the academic environment to support to introduce SOQUAREM to 

students and the scientific community in order to contribute to the design of quality 

processes in organizations; 

 

Further research is required to address these limitations, one by one. 

 

The strengths of SOQUAREM method are: 

 

• SOQUAREM process could be easily used by beginners as well as experts; 

• SOQUAREM supports identification of QRs at early stages of the software life cycle; 

• SOQUAREM supports communication and increases mutual understanding among 

stakeholders; 

• SOQUAREM supports integration of QAs into the functional process; 

•  SOQUAREM supports alignment of business specifications with functional 

requirements. 
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F. Further research 
 

Possible continuation of this research includes: 

 

1. Application  and validation of SOQUAREM in an industrial context;  

2. Integration of the measures in the SOQUAREM process according to the updates of 

ISO/IEC 25030; 

3. Development of a supporting IT tool that automates the SOQUAREM process and 

shows relevant parts of SOQUAREM process model; 

4. More development of the mapping between the ISO/IEC 25030 concepts and the 

SOQUAREM process; 

5. More rework and development of the transformation rules;  

6. Further work on the mapping rules and the integration process of the QAs into the FRs 

process; 

7. Evaluation of the applicability of SOQUAREM process through applying appropriate 

ISO/IEC standards;  

8. Supporting SOQUAREM process with prioritization methods and automated modeling 

systems like AHP (Analytical Hierarchy Process) and S-COST (Software Cost Option 

Strategy Tool); 

9. Deployment of the questionnaire on QRs engineering practices in a large industrial 

spectrum; 

10. Integration of SOQUAREM process with software engineering processes/methods such 

as agile methods, RUP (Rational Unified Process), RAD (Role Activity Diagramming), 

Architecture centred design and ATAM (Architectural Trade Off and Analysis Method). 

 



 

ANNEX I 

 
 

QUESTIONNAIRE ON QRS OF THE SOFTWARE PRODUCT 
 

 

 Annex I is divided into two parts. The first part describes the questionnaire and its sections. 

The second presents the row data collected from the interviewed experts.  

 

I.1 Description of the questionnaire 

 

This part describes the purpose of the questionnaire and its important sections  

 

I.1.1 Purpose of the questionnaire 

 

Dear Sir / Madam 

We are studying quality requirements for software, particularly quality requirements in the 

software development life cycle. 

This survey is aimed at identifying quality requirements used in industry which will help 

identify critical needs in this field, as well as the difficulties faced with their processing. 

 

Results of the survey will be useful for identifying the best software engineering practices in 

use. Your contribution is important to the success of our research objective. Gathered data 

will remain confidential and all data will be made anonymous.  

We thank you in advance for your participation as part of our research. 

This survey starts with a series of questions regarding the person completing the survey. This 

includes information such as the number of years of experience in the field of quality 

requirements for software.  

Next, a series of questions related to processes, methods, software quality engineering 

standards and stakeholders interested in quality requirements. 
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Please answer questions based on your experience in the field of software product quality. 

Additional information may be written in the space provided. 

It should take nor more than 30 minutes to answer this survey.  

Participants may have a copy of any findings if they desire. If you have questions about the 

follow up of the survey or you have any concerns about the research, please do not hesitate to 

contact me at my email address below. If you want to see a summary of the results, I can 

send them at the end of August.  

 

Thank you 

Rachida Djouab 

Ph.D. Eng.Student 

========================================= 

Dept of SW and IT Engineering 

École de Technologie Supérieure – ÉTS 

1100 Notre-Dame Ouest 

Montréal, Québec, Canada  H3C 1K3 

rachida.djouab.1@ens.etsmtl.ca; rdjouab@hotmail.com 
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I.1.2 Description of sections on the questionnaire 

 

Sections of the questionnaire are listed as follows: 

 

1. Identification of the respondents (Table- A I-1); 

2. Companies and stakeholders (Table- A I-2); 

3. Processes (Table- A I-3); 

4. Methods (Table- A I-4); 

5. Standards (Table- A I-5). 
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Table- A I-1 List of domain experts 
 

 

FORM Of IDENTIFICATION OF THE  RESPONDENTS 

 
Family Name: ____________________________ Forename (s): ____________________________ 
Date (dd/ mm /yyyy: ____ / ____ / ________27 September 2012 

Questions Answers 

 

1. What is your position within your organization 

nowadays? 
 

 

� Project administrator  
� Project manager 
� Developer 
� Quality engineer 
� Quality assurance manager 
� Others, specify ____________________________ 
� Comments  

                        

 

2. How long have you been worked in the area of 

software quality requirements (in years)? 

 

 

 

� Less than 1 year  
� 1-3 years  
� Over 3 years 
 Others, specify____________________________ 
 Comments                          

3. What are your responsibilities? 

1.  

    

� Planning of software 
�  Design of software  
�  Specification of software  
�  Programming and test  
� Construction or Installation  
�  Maintenance of software 
�  Test of software 
�   Others , specify____________________________ 

� Comments  
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Table- A I-2 Companies and stakeholders 
 

COMPANIES  AND STAKEHOLDERS SECTION 

 
This section collects information on activity fields of companies and the important stakeholders that can 
be interested by the processing of quality requirements of the software product. 

Questions Answers 

1. Are you working for:  
 

 

 

 
� a small part of a bigger company 
� a small part of a smaller company 
� a big part of a bigger company 
� a big part of a smaller company 
�Other, please specify__________________________________ 
� Comments _________________________________________ 

                     _________________________________________ 
 

2. What does your company do?  
Please specify the following activity 
domains? For example: 
For the largest part, add 1 asterisk 
next to the activity domain   
*�           For the most important 
part, add 2 asterisks **�   
For the relevant ones, add 3 
asterisks,        ***�   

 

2.  

�Aeronautics 
�Electronics 
�Banking  
�Education  
�Research and development 
�Health 
�Security  
�Others, specify ________________________       
� Comments ___________________________________________ 
                        ___________________________________________    

                   

3. What types of projects and software 
are developed by the company? 
Please specify the relevant ones.  
For the most important, please add an 
asterisk next to them? 

 

 
�Systems 
�Real time 
�Business 
�Scientists 
�Embedded 
�Personal 
�Internet based 
�Others, specify ________________________  
� Comments __________________________________________ 
                         __________________________________________ 
 

4. What is the business critical level of 
your software products? (For 
example if the software product is 
related to critical systems such as fire 
systems and nuclear systems).  

 

 
�critical    
�no critical 
�Others, specify __________________________ 
� Comments __________________________________________ 
                         __________________________________________ 
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COMPANIES  AND STAKEHOLDERS SECTION 

 
5. Who are the stakeholders interested 

in processing of quality 
requirements? 

 
� Department of software development? 
�Department of IT or business operations? 
�Department of management 
�Department of marketing 
�Department of sales 
�Others, specify ________________________ 
� Comments ___________________________________________ 
                         ___________________________________________ 

 
6. Who is responsible for managing 

quality requirements for a specific 
software development project?" 
Please, specify his experience? 

 

 
� Comments 

____________________________________________________ 
 ____________________________________________________ 
 ____________________________________________________ 

 

Quality responsible Experience (years) 
� Project administrator 
� Project manager 
� Software or systems developer 
� Quality engineer  
� Others, specify ________________ 
 

�Under 1 year 
�1 year  and more  
� Others, specify 
__________________
_ 
 

 

7. Please, specify the type of training 
given in software quality for the 
several people? 
 

 

 

 

� Comments 
____________________________________________________ 

        _____________________________________________________ 

        _____________________________________________________ 

 

 Norms and 
standards 

Processes and 
methods 

Software 
tools 

Ot
her
s 

Project 
administrator 

    

Project 
manager 
 

    

Software or 
systems 
developer 
 

    

Quality 
engineer  
 

    

Others, 
specify:_____
_ 
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Table- A I-3 Processes 
 

SECTION ON PROCESSES 

 
This section collects information on the existent processes dealing with quality requirements of the 
software product  
 

Questions Answers 

1. In your organization, do you use a 
quality requirements process? 
(Identification, specification, 
representation, documentation and 
prioritization or others)? Please specify the 
most accurate answer? 

 

1. Use all the time 
2. Use sometimes 
3. Have done but stopped 
4. Plan to but not yet 
5. No plans to  
 Comments: 

_____________________________________________________
____________________________________________________ 

2. If your organization uses a quality 
requirements process, please specify which 
of the following activities are performed 
by your process? If there are most 
important activities, please add an asterisk 
next to them? 

�Identification of quality requirements 
�Specification of quality requirements 
�Representation of quality requirements 
�Prioritization of quality requirements  
�Documentation of quality requirements 
�Comments __________________________________________ 
                      __________________________________________ 

3. Is the quality requirements process 
supported by software tools? 

 

 
�From Rationale software Inc. 
�Internally developed 
�No, we do not use  a software tool 
�Comments ___________________________________________ 
 

4. Could a structured and well defined 
quality requirements process improve the 
quality of your projects? Please provide 
your personal opinion.  
 
  

�  Yes [for example, we need to identify quality attributes, represent 
them and document them] 

        ___________________________________________________ 
� No_________________________________________________ 
        ___________________________________________________ 
� N/A________________________________________________ 
� Comments: 

_____________________________________________________ 
        _____________________________________________________ 
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Table- A I-4 Methods 
 

SECTION ON METHODS 
 
This section collects information on the existent methods of quality requirements processing of the 
software product  
 

Questions Answers 

1.  In your organization, are 
quality requirements 
identified according to 
specific methods (for 
example using interviews 
with stakeholders to 
identify most quality 
attributes of the software 
product)/ techniques (or use 
checklists to elicit and 
document them)? 

 
 

   
 

� Questionnaire 
� Brainstorming 
� Observations 
� Meetings 
� Interviews 
� Checklists,  
� Internal methods of organizationNo, we do not use any identification 

method 
� Comments 

____________________________________________________ 
    

 
2. In your organization, do 

you use a specific method 
to decompose quality 
requirements into quality 
attributes? 

 
 

   
� Quality model 

          ___________________________________________________ 

� Tree 
      ____________________________________________________ 

 
� Graphical notation 
       ___________________________________________________ 
 
� No, we do not use any decomposition method 

 
� Comments __________________________________________ 

 

3. In your organization, are 
quality requirements 
documented according to a 
definite formalism? 

 

 

 
 

   
�In a requirements specification document (RSD)________________________ 
        
�In Template_________________________________________ 
         
� No, we do not use any documentation formalism 

 
� Comments __________________________________________ 

 

If your organization deals with 
quality requirements: 
 
4. Could you specify the size 

of your software projects 
(SWPs)? KLOC (Kilo or 
thousands Lines of Code), 
Please specify the most 
important ones? 

 

 
 
 
 
 
 
 
 
 
 
 

 Small Medium Big Mega 
Size of 
SWP1 
 

< 50 KLOC 
 

50-300 
KLOC 

300-1M. 
KLOC 

>1M. 
KLOC 

Size of 
SWP2 
 

    

Size of 
SWP3 
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SECTION ON METHODS 
 
This section collects information on the existent methods of quality requirements processing of the 
software product  
 

 
 
� Comments 

________________________________________________________ 
                  
________________________________________________________ 
                 
_________________________________________________________ 

           
 

5. Could you specify the total 
effort for the software 
projects (SWPs) (e.g. three 
people for two weeks, one 
person for 10 weeks)? 

 
 

 

� Comments 
_____________________________________________________ 
 _____________________________________________________ 
 _____________________________________________________ 

  

 Small Medium Big Mega 

Effort of 
SWP1 
 

 
Person  
Day  
Week  

 
 

 
Person  
Week  
Month  

 

 
Person  
Month  
Year  

 

 
Person  
Year  

 

Effort of 
SWP2 
 

 
Person  
Day  
Week  

 

 
Person  
Week  
Month  

 

 
Person  
Month  
Year  

 

 
Person  
Year  

 

Effort of
SWP3 
 

 
Person  
Day  
Week  

 

 
Person  
Week  
Month  

 

 
Person  
Month  
Year  

 

 
Person  
Year  

 

6. Could you specify the 
hierarchy of levels of 
authority of your software 
projects (SWPs)? 

 
 
 

 

 
 
� Comments 

________________________________________________________ 
        ________________________________________________________ 

 ________________________________________________________ 
         

 Small Medium Big Mega 

Hierarchy 
of level of 
SWP1 

1 level 2 levels 
 

> 2 levels >> 

Hierarchy 
of level of 
SWP2 

    

Hierarchy 
of level of 
SWP3 
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SECTION ON METHODS 
 
This section collects information on the existent methods of quality requirements processing of the 
software product  
 

 
7. Could you specify the 

duration of your software 
project? 

 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
� Comments 

________________________________________________________ 
        ________________________________________________________ 
 

                       

 Small Medium Big Mega 

Time for 
SWP1 

< 2 years 2-3 years 3-5 years >5  years … 

Time for 
SWP1 

    

Time for 
SWP1 
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Table- A I-5 Standards 
 

SECTION ON STANDARDS 

 
This section collects information on the software quality engineering standards of the software product 
used in industry  

Questions Answers 

1. In your organization, is 
the quality requirements 
process supported by a 
quality standard? 

 
 

 

   
 

��ISO / IEC 9126__________________________________________ 
                __________________________________________________ 
 
��ISO / IEC 14598_________________________________________ 

                ___________________________________________________ 
 

� IEEE Std 830____________________________________________ 
                             ____________________________________________ 
                     

� Comments 
_______________________________________________________ 
 

If your organization uses a 
quality standard, please 
specify? 

 
2. Who is responsible for the 

application of this 
standard and for how long 
have they been 
responsible? 

 
 
 
 
 
 
 
 

� Comments 
________________________________________________________          
 

Responsible for standard How long  (years) 
��Project administrator 
��Project manager 
��Developer 
��Engineer quality 
��Quality assurance manager 
��Others, specify 
 
 

 

If your organization uses ISO / 
IEC 9126 quality 
standard, please specify? 

 
 
 

3. Used parts of this 
standard? 

 
 

4. Frequency of their 
utilization (by number 
of       Projects)? 

 
 
 
 
 
 
 

� Comments         
_________________________________________________ 

Parts of ISO / IEC 9126 frequency (number of 
times by number of 
projects) 

�� Quality Model 
��Internal Quality 
��External Quality 
��Quality in use 
��Others, specify 

 

5. If your organization 
does not use a quality 
standard, is there a need 
to define it? Please 
specify? 

 

 
� Yes       
� No____________________________________________________ 
    
� N/A___________________________________________________ 

� Comments 
___________________________________________________________     
_____ 

Please give me your email address if you wish to have a copy of the results. 
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I.2 Collected data from experts 
 

The collected data for the QRs sections are listed in the following tables and the specialists 

who distributed the survey in their respective industry are listed. 

 

RespondentID CollectorID StartDate EndDate 

      

1482098231 20159947 07-13-2011 07-13-2011

1474048025 20159947 07-05-2011 07-05-2011

1473558661 20159947 07-04-2011 07-05-2011

1469997474 20159947 06-29-2011 06-29-2011

1469951280 20159947 06-29-2011 06-29-2011

1468644722 20159947 06-28-2011 06-28-2011

1468630975 20159947 06-28-2011 06-28-2011
    

    

IP Address Email Address First Name LastName 

      

211.244.1.2    

210.205.122.190    

210.205.122.190    

174.94.91.54    

174.94.91.54    

174.94.91.54    

174.94.91.54    
    

    

Column1 Column2 Column3 Column4 
Custom Data Your details  What is your position within your 

organization nowadays?  Please select 
the best match or add an alternative. 

  Family name Forenames(s) Response 

 AHN sunho  

 Kim Seong wook Developer 

 Yang Sungname Other, please specify 

 McTeigue Jerome Other, please specify 

 From Italy  Quality engineer 

 Howard Leanne Quality assurance manager 

 M Taleb Quality engineer 

 Nicola Iacovelli  Quality assurance manager 

 

 



257 

Column1 Column2 Column3 Column4 
What size of organisation do you work for? Please select the best 
match for the total number.    

For the organisation you work for, what % 
of the total people work on software 
development?   

Response Comments on the total size Response 

Comments on the 
% working on 
software 
development 

10 - 50 people  1-9% of the total  

    

51 - 300 people  61-80%  

301 - 1000 people  61-80%  

>5000 people    

    

    

51 - 300 people    
    

    

Column1 Column2 Column3 Column4 
What does your company do? Please specify the following activity domains, selecting answers for each row. If 
the choices are not suitable for your organisation please describe what your organisation does in the comments 
box. 

Aeronautics Electronics Banking Education 

    

    

Not relevant Largest part Largest part Most important 

    

    

  Most important Most important 
    

    

Column1 Column2 Column3 Column4 
What does your company do? Please specify the following activity domains, selecting answers for each row. If 
the choices are not suitable for your organisation please describe what your organisation does in the comments 
box. 

Research and development Health Security Other, please specify 

    

    

Most important    

   Largest part 

   Most important 

 Most important  Most important 

    

 Most important  Most important 
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Column1 Column2 Column3 Column4 

Comments on what your 
company does 

What types of projects and software are developed by the company?   Please 
indicate with are relevant and which are the most important to your company.  If 
you do not know please state this in the comments box.      

 Systems Real time Business 

Certification process development    

and Quality measurement development   

 Moderately important Not relevant Most important 

Logistics Most important   

information & communications  technology  Most important 

Government, Telco    

    

ICT services for public administrations             

    

    

Scientific Embedded Personal Internet based 

    

    

Not relevant Moderately important Not relevant Most important 

    

   Most important 
 
    

Column1 Column2 Column3 Column4 

  

What is the business critical level of your 
software products? (For example if the 
software product is related to critical 
systems such as fire systems and nuclear 
systems).     

Others, please specify 
Comments on relevant and important 
projects Response 

Comments on 
business critical 
nature of the 

   projects 

 N/A  N/A 

    

  Not critical  

  Not critical  

  Critical  

Not relevant We test, and offer test training Critical  

    

  Less critical  
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Column1 Column2 Column3 Column4 

    
Who are the stakeholders interested in 
processing of QRs? Please select the 
department that is most interested. If it 
is not listed Please select 'Other' and add 
comments on what department it is.  

Who is responsible for managing QRs for a 
specific software development project? 

Response 

Comments on the 
stakeholders 
interested in 
processing of QRs Response 

Comments on who 
is responsible for 
specific software 
development 
projects 

Department of marketing   N/A 

    

Department of IT or business operations Quality engineer  

Department of IT or business operations Other, please specify 
Development 
manager 

Others, please specify All Project manager  

Department of management  Project manager 
Developer and 
Quality Engineer 

    

Departments of management and development Project manager and quality assurance manager

 
 
   

Column1 Column2 Column3 Column4 
    How many years of experience does he/she have in this role?  Please, specify the type of training given in 

software quality for the people involved?  If 
you do not know, please state this in the 
comments box 

   

   

Response 

Comments on who is responsible for 
specific software development 
projects Project administrator 

Project 
manager 

 N/A Norms and standards 
Processes and 
methods 

    

1 year or more  No training 
Norms and 
standards 

1 year or more    

1 year or more   
Processes and 
methods 

Other length of 
experience, please specify 
below. 

Most would have at least 2 years and Project managers and Test 
managers more than 5 years of experience in their respective area. 

Processes and 
methods 

    

1 year or more   
Processes and 
methods 
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Column1 Column2 Column3 Column4 
Please, specify the type of training given in software quality for the people 
involved?  If you do not know, please state this in the comments box.        
Software or systems 
developer 

Quality engineer Others, please 
specify I do not know 

Processes and 
methods Other training (please specify)  

    

Software tools Norms and standards   

    
Processes and 
methods Processes and methods   

Software tools Norms and standards   

    

    

Column1 Column2 Column3 Column4 

 

Does your organization use a QRs 
process? (Identification, specification, 
representation, documentation and 
prioritization or others)?  Please specify 
the most accurate answer. 

 

If your organization uses a 
QRs process, please specify 
which of the following 
activities are performed by 
your process. Please identify 
the most important 
activities. If you do not 
know please state this as a 
comment. 

Comments on 
software quality 
training 

Response Comments 
QRs process 

Identification of quality 
requirements 

 Use all the time  Most important 

    

 Plan to but not yet  Not relevant 

All type of training Use all the time  Most important 

 Use all the time  Most important 

 Use all the time  Most important 

 Use sometimes  Most important 

 Use all the time  Most important 
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The international specialists and domain representatives who agreed to distribute the survey 

in their respective industry are: 

 

 

Mr. Tom McBride 
Australia 

Ms. Alison Holt 
New Zealand 

Dr. Klaudia Dussa-Zieger 
Germany 

Dr. Jenny Dugmore 
United Kingdom 

Dr. Yasuharu Nishi 
Japan 

Prof. Keum-Suk Lee 
Korea 

Dr. Juan Garbajosa 
Spain 

Mr. Matt Mansell 
New Zealand 

 

 





 

ANNEX II 

 
 

QUESTIONNAIRE ON SOQUAREM METHOD 
 

 

Annex II is divided into two parts. The first one describes the survey. The second part 

presents collected data from the participants and software quality experts.  

 

II.1 Description of the survey 

 

This part describes the purpose of the survey and its detailed description  

 

II.1.1 Purpose of the survey 

 

Dear Sir/Madam, 

 

To know the extent of SOQUAREM toward addressing engineering practices of quality 

requirements, we are conducting a survey. The survey serves to acquire indicators on the 

applicability of SOQUAREM process and to identify its strengths and weaknesses.  

Results of the questionnaire will be useful for a further detailed evaluation step for 

SOQUAREM. Considering the importance of this information for our research, your 

contribution is very much desired for the success of our research objective. Gathered data 

will remain confidential and anonymous. 

We thank you in advance for your collaboration which to our research. 

We start the survey by a series of questions on the experience of your personnel. Later, a 

series of questions regrouped into 3 categories relating to: 

a. Evaluating criteria of SOQUAREM process (Table1); 

b. Applicability of SOQUAREM;  

c. Other findings. 
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Table-A II-1 evaluation criteria of SOQUAREM 
 

 

 

Please answer questions by referring to your experience in the field of the quality of 

software product. 

 

II.1.2 Description of the survey 
 

This survey begins by presenting the identification form of the participants (Table- A II-2), 

the instructions on modalities of answers and finally describes sections of the survey as 

follows: 

 

1. Identification of QAs (Table- A II-3); 

2. Representation of QAs (Table- A II-4); 

3. Conflict resolution of QAs (Table- A II-5); 

4. Integration of QAs with FRs (Table- A II-6); 

5. Applicability of SOQUAREM (Table- A II-7); 

6. Other findings (Table- A II-8). 

 

 



265 

Table-A II-2 Identification of the participant 
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Instructions on the modalities of answers 
 

Objective is to know if quality requirements management techniques have been addressed 

by SOQUAREM process and to identify its critical weaknesses as well as its improvement. 

The questionnaire is organized in 3 main sections: 

 

1. The first section deals with the evaluating criteria of SOQUAREM: identification, 

representation and Traceability. 

2.  For each criterion: evaluate Applicability, Appropriateness, Completeness and 

Understandability of used concepts of SOQUAREM by giving 3 question choices:  3 = 

very good,   2= fair,   1= poor. 

3. A second section evaluates the applicability of SQOUAREM according to criteria 

chosen from literature.  

4. A third section is dedicated to other findings where your opinions are taken into 

account; 

5. For any remark or additional information, please write it in the commentaries section 

relating to asked questions; 

6. It is important that your answers be based on your experience and your practices in the 

field of software engineering. 

 

Sections of the survey 
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Table-A II-3 Identification of QAs 

 

Identification of QAs:  

Phases involved in SOQUAREM process: 1, 2 and 3  
 

To know to what extent SOQUAREM do address identification of quality attributes, evaluate if 

involving concepts like BMM, BCT and the transformation rules (Statement, Refinement and Linkage 

rules) are adequately applied and appropriately used in SOQUAREM case and easily 

understandable. Evaluate also if there are missing elements from involved concepts which could 

contribute to identify QAs? 

 

Scale:   3 = very good,   2= fair,   1= poor. 

Commentaries: 

 

 

Concepts/criteria Applicability  
Were these 
concepts 
adequately 
applied to 
identify and 
derive QAs from 
business goals? 
 

Appropriateness 
 Were these 
concepts 
appropriately used 
to identify and 
derive QAs from 
business goals? 
 

Understandability 
Were these concepts 
easily 
understandable to 
identify and derive 
QAs from business 
goals? 
 

Completeness 
Were these 
concepts used 
without any 
missing 
elements that 
could 
contribute to 
identify QAs? 

BMM      

BCT      

Scenarios 

template 

    

Statement rules 

Refinement rules 

Linkage rules 

    

ISO/IEC 9126     

 

 

 



268 

Table-A II-4 Representation of QAs 

 

Representation of QAs 

Phase involved in SOQUAREM process: 4 

 
To know to what extent SOQUAREM do address representation of quality attributes, evaluate if involving 

concepts like Utility tree and scenario template are adequately applied and appropriately used in 

SOQUAREM case and easily understandable. Evaluate also if there are missing elements from involved 

concepts which could help to represent and retrace QAs to business goals. 

 

 

Scale:   3 = very good,   2= fair,   1= poor. 

Commentaries: 

 

 

 

 

 

Concepts/criteria Applicability 
Were these 
concepts 

adequately 
applied to 

represent and 
retrace QAs? 

 

Appropriateness 
Were these 
concepts 

appropriately used 
to represent and 

retrace QAs? 
 

Understandability
Were these 

concepts easily 
understandable to 

represent and 
retrace QAs? 

 

Completeness 
Were these 

concepts used 
without any 

missing elements 
that could help to 
represent QAs? 

 
Utility tree     

Scenarios 

template 
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Table-A II-5 Conflicts resolution of QAs 

 

Conflicts resolution of QAs 

Phase involved in SOQUAREM process: 5 

 
To know to what extent SOQUAREM do address conflicts resolution of quality attributes, evaluate if 

involving concepts like Impact matrix and Weighted method are adequately applied and appropriately 

used in SOQUAREM case and easily understandable. Evaluate also if they are missing elements from 

involved concepts which could help to resolve conflicts among QAs. 

 

 

Scale:   3 = very good,   2= fair,   1= poor. 

Commentaries: 

 

 

 

 

 

 

Concepts/criteria Applicability  
Were these 
concepts 
adequately 
applied to 
resolve conflicts 
among QAs?? 
 

Appropriatene
ss 
 Were these 
concepts 
appropriately 
used to resolve 
conflicts among 
QAs? 
 

Understandabil
ity 
Were these 
concepts easily 
understandable 
to resolve 
conflicts among 
QAs? 

Completeness  
Were these 
concepts used 
without any 
missing 
elements that 
could help to 
resolve conflicts 
among QAs? 

Impact matrix             

Weighted method     
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Table-A II-6 Integration of QAs with FRs 

 

Integration with FRs 

Phase involved in SOQUAREM process: 6 

 
To know to what extent SOQUAREM do address integration of QAs with FRs, evaluate if involving 

concepts like Mapping rules are adequately applied and appropriately used in SOQUAREM case and 

easily understandable. Evaluate also if they are missing elements from involved concepts which could 

contribute to map QAs into the FRs process. 

 

Scale:   3 = very good,   2= fair,   1= poor. 

Commentaries: 

 

 

 

 

 

 

Concepts/criteria Applicability  
Were Mapping 
rules adequately 
applied to 
integrate QAs 
with FRs?? 
 

Appropriateness 
 Were Mapping 
rules appropriately 
used to integrate 
QAs with FRs? 
 
 

Understandability 
Were Mapping 
rules easily 
understandable to 
integrate QAs with 
FRs? 
 

Completeness  
Were Mapping 
rules used 
without any 
missing 
elements that 
could integrate 
QAs with 
FRs? 
 

Mapping rules     
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Table-A II-7 Applicability of SOQUAREM 
 

 

Investigate applicability of SOQUAREM to quality requirements management by evaluating it according 

to the following criteria (Mead, 2005):  

• Adaptability to quality requirements: the ability of SOQUAREM to  manage quality 

requirements 

• Client acceptance: If clients agree SOQUAREM when managing their requirements? 

• Complexity: the degree of difficulty in understanding and properly executing SOQUAREM 

process. Can the requirements engineers and stakeholders easily perform SOQUAREM method 

correctly once they learn the process? 

• Scalability: the ability of the SOQUAREM process to address quality requirements of enterprise-

level system, in addition to smaller applications. 

 

 

Scale: 3 = very good, 2= fair, 1= poor. 

 

 

SOQUAREM/criteria Adaptability to 

QRs 

Client acceptance Complexity Scalability 

SOQUAREM 
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Table-A II-8 Other findings 
 

Dealing with software quality 

 

1. To what extent does SOQUAREM 

process help organizations to deal 

with software quality?  

2. Is the process easy to apply? And 

what is the time required to apply it? 

3. How can SOQUAREM be improved? 

4. What are strengths, weaknesses, 

opportunities and threatens? 

 

__________________________________________

__________________________________________

__________________________________________

__________________________________________

__________________________________________

__________________________________________

Other issues 

 

What challenges (i.e., cost, man-power) 

of applying the process would you 

foresee? 

 

 
__________________________________________

__________________________________________

__________________________________________

__________________________________________

__________________________________________

__________________________________________

Further impression 

 

Do you have any further comments? 

__________________________________________

__________________________________________

__________________________________________

__________________________________________

__________________________________________

Thanks for your collaboration. 

 

II.2 Collected data from participants and software quality experts  
 

The collected responses of the participants are listed in the following tables (there are four 

participants with 5 response tables each). The specialists who evaluate SOQUAREM 

methodology are also listed (the highlighted ones) with their associated feedback.   
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II.2.1 Responses of the participant 1 are given in the following tables:  
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278 

II.2.2 Responses of the participant 2 are given in the following tables:  
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II.2.3 Responses of the participant 3 are given in the following tables:  
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288 

II.2.4 Responses of the participant 4 are given in the following tables:  
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The international specialists and scientist who agreed to evaluate SOQUAREM 

methodology are: 

 

 

Dr. Tafline Murnane 
Australia 

Ms. Alison Holt 
New Zealand 

Dr. Klaudia Dussa-

Zieger 
Germany 

Dr. Annette Reilly 
USA 

Dr. Jenny Dugmore 
UK 

Mr. Anatol Kark 
Canada 

Prof. Motoei Azuma 
Japan 

Prof. Keum-Suk Lee 
Korea 

Dr. Nigel Bevan 
UK 

Dr. Juan Garbajosa 
Spain 

 

 

 

The highlighted ones have given their feedback on SOQUAREM in the following sections:  
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1. Feedback of Dr. Annette Reilly USA is:  
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2. Feedback of Prof. Motoei Azuma (Japan) is:  
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3. Feedback of Prof. Keum-Suk Lee (Korea) is:  
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