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LOCALIZATION AND COOPERATIVE COMMUNICATION METHODS FOR
COGNITIVE RADIO

Olivier DUVAL

ABSTRACT

We study localization of nearby nodes and cooperative communication for cognitive radios.

Cognitive radios sensing their environment to estimate the channel gain between nodes can

cooperate and adapt their transmission power to maximize the capacity of the communication

between two nodes. We study the end-to-end capacity of a cooperative relaying scheme using

orthogonal frequency-division modulation (OFDM) modulation, under power constraints for

both the base station and the relay station. The relay uses amplify-and-forward and decode-

and-forward cooperative relaying techniques to retransmit messages on a subset of the available

subcarriers. The power used in the base station and the relay station transmitters is allocated

to maximize the overall system capacity. The subcarrier selection and power allocation are

obtained based on convex optimization formulations and an iterative algorithm. Additionally,

decode-and-forward relaying schemes are allowed to pair source and relayed subcarriers to

increase further the capacity of the system. The proposed techniques outperforms non-selective

relaying schemes over a range of relay power budgets.

Cognitive radios can be used for opportunistic access of the radio spectrum by detecting spec-

trum holes left unused by licensed primary users. We introduce a spectrum holes detection

approach, which combines blind modulation classification, angle of arrival estimation and

number of sources detection. We perform eigenspace analysis to determine the number of

sources, and estimate their angles of arrival (AOA). In addition, we classify detected sources

as primary or secondary users with their distinct second-orde one-conjugate cyclostationarity

features. Extensive simulations carried out indicate that the proposed system identifies and

locates individual sources correctly, even at -4 dB signal-to-noise ratios (SNR).

In environments with a high density of scatterers, several wireless channels experience non-

line-of-sight (NLOS) condition, increasing the localization error, even when the AOA estimate

is accurate. We present a real-time localization solver (RTLS) for time-of-arrival (TOA) esti-

mates using ray-tracing methods on the map of the geometry of walls and compare its perfor-

mance with classical TOA trilateration localization methods. Extensive simulations and field

trials for indoor environments show that our method increases the coverage area from 1.9% of

the floor to 82.3 % and the accuracy by a 10-fold factor when compared with trilateration. We

implemented our ray tracing model in C++ using the CGAL computational geometry algorithm

library. We illustrate the real-time property of our RTLS that performs most ray tracing tasks in

a preprocessing phase with time and space complexity analyses and profiling of our software.

Keywords: Cooperative Communications, Cognitive Radio, Ray-Tracing, Localization





MÉTHODES DE LOCALISATION ET DE COMMUNICATION COOPÉRATIVE
POUR LA RADIO COGNITIVE

Olivier DUVAL

RÉSUMÉ

Une étude sur des applications de la radio cognitive pour la localisation et l’identification de

radios à courte distance et les communications coopératives entre plusieurs radios est présentée.

Les radios cognitives analysant leur environnement pour estimer le gain du canal entre les

nœuds peuvent coopérer et adapter leur puissance de transmission afin de maximiser la capacité

du lien de communication entre deux nœuds. La capacité de communication entre deux noeuds

coopérant avec un relais et utilisant une modulation orthogonal frequency-division frequency

modulation OFDM, sous des contraintes de puissance d’émission pour la station de base et la

station relais est étudiée. Le relais utilise une technique de relais par amplification et retrans-

mission pour retransmettre des messages à un sous-ensemble de sous-porteuses disponibles.

La puissance utilisée dans la station de base et les émetteurs des stations relais est distribuée de

telle sorte que la capacité globale du système est optimisée. La sélection de sous-porteuse et

l’attribution de puissance sont obtenues sur la base de formulations d’optimisation convexe et

d’un algorithme itératif. De plus, des modèles de relais par décodage et retransmission incluent

la possibilité de joindre les sous-porteuses de source à d’autres sous-porteuses relayées pour

augmenter la capacité du système. Les technique proposées offre de meilleures performances

de capacité que des méthodes de relais non sélectives pour une gamme de budgets de puissance

du relais.

Les radios cognitives peuvent être utilisées pour un accès opportuniste au spectre radiofréquen-

tiel en détectant les trous laissés vacants par des utilisateurs primaires licensés dans ces bandes.

Nous introduisons une approche de détection de trous spectraux, qui combine la classification

de modulation aveugle, l’estimation de l’angle d’arrivée (AOA) et la détection du nombre de

sources. Nous effectuons une analyse des sous-espace propres pour déterminer le nombre de

sources, et pour estimer leurs AOA. De plus, nous classons les sources détectées entre utilisa-

teurs primaires ou secondaires avec leurs caractéristiques cyclostationnarires de second ordre

et conjugué primaire. De nombreuses simulations réalisées indiquent que le système proposé

identifie et localise les sources individuelles correctement, même à un rapport signal à bruit de

-4 dB.

Dans les environnements impliquant une forte densité d’obstacles, plusieurs canaux sans fil

n’ont pas de ligne de vue directe (NLOS), ce qui augmente considérablement l’erreur de lo-

calisation, même lorsque l’estimation d’AOA est exacte. Nous présentons un estimateur de

localisation en temps réel (RTLS) basé sur des estimés de temps d’arrivée (TOA) en utilisant

des méthodes de tracé de rayons sur la carte de la géométrie des murs et nous comparons ses

performances avec les méthodes classiques de localisation de trilatération de temps d’arrivée.

De nombreuses simulations et des essais sur le terrain pour de tels environnements intérieurs



X

montrent que notre méthode permet d’augmenter la zone de couverture de 1,9 % de la surface

à 82,3 % et la précision d’un facteur de 10 par rapport à la trilatération.

Nous avons implémenté notre modèle de tracé de rayons en C++ en utilisant la bibliothèque

CGAL d’algorithmes de géométrie computationelle. Nous démontrons, par une analyse théorique

de la complexité spatiale et temporelle de l’algorithme et par un profilage de notre logiciel,

comment nous pouvons maintenir la propriété “temps réel" de notre RTLS en effectuant la

plupart des tâches associées au tracé de rayons dans une phase de prétraitement.

Mots-clés: Communication coopérative, Radio cognitive, Tracé de rayons, Localisation
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INTRODUCTION

In the last 30 years, consumer demand for wireless communication devices has exploded into

a more than one trillion dollars market for the mobile industry alone. Since the development

of the first generation of mobile telephony, the scarcity of radio-frequency spectrum has been a

major issue limiting the use of mobile devices for voice and data. Technological breakthroughs

such as frequency reuse, code-division-multiple-access modulation schemes, and voice com-

pression have helped expand mobile technology to billions of users worldwide. The recent

development of smart phones and its internet access, as well as its numerous popular soft-

ware applications has increased the demand for data traffic. The capacity of a communication

channel is a limit on the data transmission that can be achieved with arbitrarily small error

probability. Wireless communication systems with a higher capacity can then sustain more

data traffic and potentially more subscribers, and produce larger profits for their operators.

A survey has shown that spectrum usage ranges from 15% to 85% in licensed bands under

6 GHz, while the rest of this licensed spectrum is wasted in many low traffic periods, frequency

bands and areas known as spectrum holes [Cabric et al. (2004)]. Opportunistic access to these

spectrum holes has been proposed as a method to further increase the spectrum available to

wireless communication networks. Cognitive radios use sensors to analyze the changing radio

environment in their vicinity and can adapt to these changes by modifying their data rates,

transmission power, modulation scheme, and other parameters.

The first technology based on cognitive radios, IEEE 802.22, aims at reusing television broad-

cast bands to establish wireless regional area networks [Cordeiro et al. (2005)].

In this work, three aspects of wireless communications related to cognitive radio capabilities

are studied: low-power communications, line-of-sight (LOS) localization & identification of

uncooperative mobile nodes and non-line-of-sight (NLOS) localization in environments deeply

cluttered with scatterers.

Transmission power is an important factor in the design and regulations governing the deploy-

ment of most radio devices worldwide. Mobile devices are battery-powered and their power
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resources are limited, and several technological breakthroughs have targeted lowering battery

usage while maintaining communication capabilities. Regulation agencies such as the Federal

Communication Commission in the United States or the Canadian Radio-Television Telecom-

munication Council have also defined spectrum masks to which radio transmitting devices must

comply prior to obtaining permits to operate in these countries. Low-power technologies such

as Ultra-wideband tackle these two issues by limiting the transmission power to very low levels,

but transmitting on large portions of the radio spectrum. A drawback for low-power communi-

cations is the lowering of communication capacity at ranges larger than several tens of meters

in most cases. Cooperating wireless communication mobile devices or fixed repeaters acting

as relays can help tackle this limitation.

Objective of the Thesis

This thesis aims at investigating several concepts permitting the practical integration of cog-

nitive radios. Mainly, the objective is to propose constructive OFDM schemes and to exploit

localisation to maximize the spectrum efficiency of communication strategies for real-world

radio scenarios. The aim is constructive in the sense that the algorithms should be tractable and

usable in real-time by small devices.

List of Contributions

The list of contributions of this thesis is intimately linked to the publications:

a. An optimal subcarrier and power allocation algorithm for OFDM relay links [Duval et al.

(2010) and Boostanimehr et al. (2010)];

b. An angle-of-arrival and cyclostationarity feature detection method to localize and iden-

tify nearby radio nodes that offers high probability of localization and detection, even

with channels with signal-to-noise ratios under -4 dB [Duval et al. (2008)];

c. A two-dimensional ray tracing software for calculating specular reflections on multiple

obstacles [Duval et al. (2012)];
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d. A real-time localization solver (RTLS) based on ray-tracing calculations improving the

accuracy by a ten-fold factor and coverage from 2% to 81% in deeply occluded areas

[Duval et al. (2012)].

Thesis Organization

This thesis aims at spectral spectrum holes identification end exploitation. Each chapter follows

results published in [Duval et al. (2010) and Boostanimehr et al. (2010)] [Duval et al. (2008)],

as well as ray-tracing investigation results submitted for publication.

The global cognitive radio scenario uniting the research topics reported in this thesis is detailed

in chapter 1. This chapter also includes a litterary review on these topics.

In chapter 2, cooperative transmission power optimization methods are presented for several

scenarios. In multiple-carrier cooperative communications networks, the power and subcarriers

frequencies are shared between a source and a relay node. We propose power and subcarrier

allocation methods that increases the capacity of state-of-the-art relay-assisted communications

links.

Spatial spectrum holes offer another dimension for cognitive radios networks to increase their

communication capacity without interfering with primary users. Radio devices equipped with

antenna arrays, such as 802.11n or more recent versions of Wi-Fi technology, can adjust their

radiation pattern to avoid interfering with primary users and maximize their transmission power

in the direction of spatial spectrum holes. By doing so, the spectrum that would normally

be wasted can now be used by cognitive radio operators to generate significant revenues by

providing more services to end users. A prior step in this endeavour is to locate the position of

nearby primary users.

Localization of mobile targets is a technological problem that has attracted a large amount of

attention since its first use in air defense in the late 1930’s. In the last 75 years, localization

technology developers have reduced the costs and improved on the accuracy and coverage of

military and civilian positioning systems. Nowadays, radar applications are used worldwide
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in both civilian and military air traffic control and surveillance, and commercial applications

of the global positioning system (GPS) are available worldwide. Nevertheless, a unified local-

ization method able to position mobile devices accurately for indoor environments is not yet

available.

Localization methods applied in the cognitive radio context do not count on the cooperation of

primary users, and therefore can not take advantage of GPS receivers. However, since spatial

spectrum hole cognitive radio systems require the use of antenna arrays, this equipment can

also be used to estimate the angle of arrival (AOA) of transmission coming from primary users.

Since primary users do not cooperate with cognitive radios systems, their location has to be

estimated before any spectrum hole can be exploited. However, several competing cognitive

radio systems can field radio devices in the same area, which do not cooperate with each other.

Since spectrum holes are only defined by primary users, nearby cognitive radio nodes must not

be confused with primary users to identify all spatial spectrum holes.

In chapter 3 we present a joint localization and identification method for cognitive radios. In

general, nodes in wireless communication networks do not have a direct path, and in some

cases, a NLOS condition occurs which can potentially cause large positioning errors in real-

time localization solvers (RTLS). However, commercial RTLS offer the possibility of including

the map of these obstacles to help in improving their localization accuracy. We have developed

a complete two-dimensional RTLS software using ray tracing techniques to exploit the ge-

ometry of these obstacles to cancel their effect on the localization accuracy. The developed

software is presented in chapter 4 and improves the localization accuracy by a factor of ten

over methods using no obstacles maps in heavily occluded areas. We also show that using the

obstacles map increases the coverage area for one considered RTLS scenario from 2% to 81%

of the floorplan.



CHAPTER 1

COGNITIVE RADIO CONCEPT AND LITTERATURE REVIEW

This chapter covers a general literature review of topics covered in this work. Every chapter

will then offer a more detailed and contained literature review that will introduce each specific

topic more thoroughly.

Digital communication systems include a transmitter device, a receiver device and a channel,

and several basic blocks as shown on figure 1.1 [Proakis (2000)], on which the source encoder

and decoder are used to reduce the impact of noise in the channel to the probability of error

in transmitted messages. The modulator and demodulator pair is used to convert the informa-

tion bits into parameters - frequency, amplitude, or phase - of one or multiple carrier waves.

Radio communication systems operate on wireless channels and their access to the channel

includes several radio-frequency analog electronic components, including antennas, filters and

amplifiers, following technology-specific topologies.

Figure 1.1 Basic elements of a digital communication system.

Software-defined radios include high performance analog-to-digital and digital-to-analog con-

verters and replace some analog components with programs embedded on digital-signal-processors

and field-programmable gate array circuits (Fig. 1.2 [Luo (2011)]). This technology offers a
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greater flexibility than its analog counterpart, for its frequency of operation or filter character-

istics can be modified by uploading a firmware update even when it is deployed on the field.

Figure 1.2 Basic elements of a software-defined radio architecture.

Cognitive radio is a concept that emerged as an extension of software-defined radio [Mitola

(2000)] for radios using information about their environment to adapt their behavior for various

ends.

Figure 1.3 [Haykin (2005)] illustrates the basic elements of the cognition cycle: sensors on

the radio measure radio-frequency stimuli, another block is used to analyze the radio scene.

A notable scene analysis object is the spectrum hole: a portion of licensed radio spectrum

that is temporarily left unused by primary users, and which can be reused by cognitive radios.

Another scene analysis element is the interference temperature, which is used for interference-

controlled spectrum access cognitive policies. A cognitive radio can transmit in a frequency

band if and only if it can guarantee that transmitting will not cause interference temperature to

cross a pre-defined interference temperature threshold at primary users level [Haykin (2005);

Bhargava and Hossain (2007)]. Under this opportunistic spectrum access scenario, the cogni-
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Figure 1.3 Basic cognition cycle.

tive radio plays a secondary user role, while nodes taking part in a licensed network play the

role of primary users.

1.1 Basic Cognitive Radio Scenario

Several dimensions of the spectrum can be exploited by cognitive radios to communicate with-

out causing harmful interference to primary users: time, frequency, space, interference tem-

perature and others. In this work, we aim at exploiting the spatial dimension and interference

temperature.

Figure 1.4 illustrates the location of primary users and cognitive radios for our basic scenario

where friendly and competing cognitive radios, as well as primary users compete for radio

spectrum at the same time and in the same frequency bands; only interference and spatial
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spectrum holes can be exploited by cognitive radios to communicate. Apart from cooperative

cognitive radio belonging to the same network, other cognitive networks can compete to seize

spectrum holes, and do not require the same protection from interference as primary users do.

Figure 1.4 Cognitive Radio Basic Scenario.

1.2 Low Power Operation

One way to reduce the interference to primary users operating in the same bands as cognitive

radios is to limit their transmission power to very low level and use wide frequency band, as in

underlay schemes like ultra-wideband networks [Bansal et al. (2010)]. These power limitations

could greatly limit the communication capacity of cognitive radio networks. Nevertheless,

using a relay node, two nodes can improve their communication capacity under severe power
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limitations. Figure 1.5 illustrates three cooperative nodes: a source node uses a relay node to

communicate with a destination node.

Figure 1.5 Low power communications in the vicinity of primary users.

Many wideband wireless channels experiment frequency-selective fading, and allocating more

power to subcarriers with higher channel gains can improve their communication capacity. We

consider an OFDM modulation scheme where a source and a relay node share NFFT subcarri-

ers using half-duplex signalling. Under this scenario, the source and relay nodes have different

power budgets PS and PR to be divided among the channel’s subcarriers.

Research on communications with relay links have been pioneered by [Van Der Meulen (1971)]

and theoretical bounds for the capacity of relay additive white gaussian noise channels (AWGN)
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have been derived by [Cover and Gamal (1979)]. More recently, the capacity for other AWGN

relaying schemes has been studied: with feedback [Marina et al. (2008)], linear relaying

[Del Coso and Ibars (2009)] and orthogonal channels [Liang and Veeravalli (2005), Liang

et al. (2007), Liang and Kramer (2007)]

Several authors have derived the capacity of non-relaying channels experiencing frequency-

selective Rayleigh fading. Resource allocation plays an important part in the capacity of these

channels, as power is allocated to timeslots and frequency bands with higher channel gains

[Li and Goldsmith (2001), Caire et al. (1999), Biglieri et al. (1998), Goldsmith and Varaiya

(1997)].

Different signalling schemes have been studied for fading relay channels: decode-and-forward

[del Coso and Ibars (2005), Siriwongpairat et al. (2006), Gunduz and Erkip (2007), Farhadi

and Beaulieu (2008)], turbo codes [Hu and Duman (2007)], amplify-and-forward [Issariyakul

and Krishnamurthy (2009)], stability [Jose et al. (2009)], multi-user [Rankov and Wittneben

(2007)].

As it is the case for non-relaying channels, power allocation is a major component for max-

imizing the capacity of fading relay channels [Host-Madsen and Zhang (2005), Yu and Lui

(2006), Hammerstrom and Wittneben (2007), Louveaux et al. (2008)]. In multiple carrier re-

lay channels, resource allocation can include power and subcarrier selection [Li and Liu (2006),

Bakanoglu et al. (2007), Hsu et al. (2011)].

Using the channel impulse response information on multi-carriers communications schemes, in

chapter 2 we study schemes capable of maximizing the capacity of a wireless link by allocating

power and frequency bands to the source and relay nodes. By carefully selecting the subcarriers

on which the relay transmits and distributing the transmission power on these subcarriers, we

obtain near-optimal capacity, and compare communication capacity with non-selective relaying

methods as the ones described in this section.
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We have developed a joint power and subcarrier allocation optimization method for amplify-

and-forward cooperative communication scheme for fading relay channels using available

channel state information.

1.3 Primary Users LOS-AOA Localization and Identification

Cognitive radios equipped with antenna arrays can direct their antenna transmission patterns

away from primary users receivers to minimize the interference to primary users [Mouhamadou

et al. (2006)]. In order to accomplish this task, cognitive radios must estimate the position of

nearby users and direct their transmission power in directions unoccupied by primary users

[Nasif (2009)]. Nearby radios can be other unlicensed cognitive radios, competing for the

same spectrum, on which no interference regulations are enforced. By identifying competing

cognitive radios, more spatial spectrum holes can be made available. Figure 1.6 illustrates

a cognitive radio directing its power to an area only occupied by other unlicensed cognitive

radios, cooperative or not.

Classical mobile localization methods include received signal strength (RSS), time-of-arrival

(TOA) or angle-of-arrival (AOA) [Pahlavan and Levesque (2005)]. The AOA estimation has

been studied for line-of-sight (LOS) multipath environments [Klukas and Fattouche (1998)],

and applied for Global System for Mobile Communications (GSM) systems [Cesbron and

Arnott (1998)]. Realistic primary user nodes deployment scenarios include more than one

node to be detected and localized by a cognitive radio network. Fortunately, radios equipped

with antenna arrays can improve on the detection of the number of nearby mobiles [Zhang

et al. (1989), Hu et al. (1999a)].

Using higher-order statistical tests performed on signals emitted from nearby radios, it is

possible to classify the different modulation schemes employed [Dobre et al. (2007)]. and

more specifically, distinguish between single-carrier and multiple-carriers linear modulation

schemes [Punchihewa et al. (2007)].

In cognitive radio networks, the interference to primary users is strictly enforced, while the

interference to competing cognitive radios is not. Using nearby radios’ modulation scheme



12

Figure 1.6 Exploiting a spatial spectrum hole

with an antenna array-equipped CR.

pattern, it is then possible to mitigate whether they are primary users or competing cogni-

tive radios. In chapter 3, we propose a joint angle-of-arrival (AOA) localization method for

line-of-sight (LOS) environments combined with a modulation pattern identification method

to localize primary users.

1.4 NLOS Localization using Ray Tracing

When obstacles such as walls block the direct path between nodes (Fig. 1.7), the resulting

NLOS channel distorts RSS, TOA and AOA estimations, causing large localization errors in

LOS estimators. Using a map showing the geometry of these obstacles can help in reducing
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the impact of these distortions by tracing the path of waves reaching a cognitive radio receiver

bouncing on walls back to their transmitter.

Figure 1.7 NLOS channels caused by the presence of obstacles.

In general, indoor wireless channels experience a large number of multipaths [Saleh and Valen-

zuela (1987)], which largely distort the channel impulse response. In order to resolve some

of the strongest multipaths for indoor environments, channel bandwidths as wide as several

hundreds of MHz like for ultra-wide band (UWB) communication channels can be necessary

[Yousef and Sayed (2002), Yu et al. (2009) Jourdan et al. (2008), Denis et al. (2005), Gezici

et al. (2005)]. When these conditions are respected, the first peak in the channel impulse re-

sponse can be interpreted as the "time-of-arrival". Advanced sampling techniques can be used

to further increase the resolution of the TOA estimate [Li and Pahlavan (2004), Zhao et al.
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(2006a), Humphrey and Hedley (2008)]. However, even these methods cannot cope with the

undetected node problem that arises in NLOS channels and cause large distance biases [Alavi

and Pahlavan (2003a), Alavi and Pahlavan (2003b), Alavi et al. (2005), Alavi and Pahlavan

(2006)].

Cooperation between dense radios network nodes can increase the precision and robustness of

localization results [Patwari et al. (2005), Jia and Buehrer (2011)]. Measurements of RSS in

802.11 networks obtained at a specific site can also be used to train a localization estimation

algorithm [Haeberlen et al. (2004), Mitilineos et al. (2009)].

When the obstacle density is high compared to the sensor density and when field measurements

are not available, the map of the obstacles’ location and shape can be used to reduce their

impact on the localization error. Since cognitive radios are expected to access information on

their environment, they can exploit the map of scatterers surrounding the base stations in their

networks [Zhao et al. (2007b), Zhao et al. (2007a), Zhao et al. (2006b)], provided this map

offers sufficient information on the obstacles’ properties [Wahl et al. (2007)].

Ray launching techniques modelling individual rays rather than groups of rays [Lawton and

McGeehan (1994)] can become particularly complex as the covered space and the obstacles

density grow. Acceleration techniques have been presented that help reduce this complexity

for specific tasks [Wölfle et al. (1997), Wölfle et al. (1999), Aguado Agelet et al. (2000), Ji

et al. (2001), Hoppe et al. (2003)]. Ray tracing can be made progressive, offering a trade-off

between calculation time and accuracy, with partial results available at any step [Chen et al.

(2004)].

Ray tracing is primarily a computer graphics method for rendering the propagation of light

waves scattering on surfaces and reaching an observer [Keller (1978), Sack and Urrutia (2000)].

The computational complexity of these methods can be prohibitive for some applications, and

a significant research effort has been deployed to make it more efficient. Hierarchical space

partitions [Samet and Webber (1988)] or occluder fusion [Wonka et al. (2000)] can reduce the

complexity of visibility queries.
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Space partition is an important factor in the complexity of ray tracing techniques and several

partitioning methods have been developed for ray tracing [Van Bilsen and Stolk (2008), Ize

et al. (2007)].

Radio ray tracing methods aim at modelling the propagation of radio frequency waves on obsta-

cles, and are both faster and less precise than finite difference Maxwell equations solvers [Wa-

gen and Rizk (2003)]. Still, classical radio ray tracing methods are usually too computationally

demanding for real-time applications in mobile devices. Several ray tracing models have been

developed over the years, and their models concord with field measurements [Aguado et al.

(1997), Yang et al. (1998), Zhang et al. (1998)].

The effects of obstacles on the propagation of radio waves are modelled with a collection of

specular reflections, transmissions and diffractions, and diffuse scattering [Ullmo and Baranger

(1999), Bladel (2007)]. Ray tracing models for transmission through walls have been devel-

opped and tested [Grubisic et al. (2006)]. Diffraction can be modelled with the uniform theory

on diffraction [Walfisch and Bertoni (1988), Kouyoumjian and Pathak (1974)], which is shown

to be accurate by several field experiments [Kanatas et al. (1997)].

Diffuse scattering models add to the accuracy of ray tracing models at the cost of more compu-

tational complexity [Durgin et al. (2002), Degli-Esposti et al. (2007)]. The calculation of the

visibility queries around observer points is particularly complex for diffusion scattering models

[Prasant and Sarkar (2003)]. Applications of ray tracing models for MIMO models have also

been developed and tested against field measurements [Ng et al. (2004), Ng et al. (2007)].

Ray tracing methods can be extended from electromagnetic field propagation modelling to the

characterization of wireless channels. Site-specific information on the location and shape of

obstacles can improve on the accuracy of empirical models [Kaya et al. (2009), Clarke (2002),

Iskander and Yun (2002)].

Ray-tracing aided localization methods have been proposed for 802.11 indoor networks [El-

Kafrawy et al. (2010), Atia et al. (2012)], UWB [Yang and Naitong (2005)] or using hybrid
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AOA/TDOA estimates [Bishop et al. (2008), Gentile et al. (2008)] or hybrid AOA/RSS [Tayebi

et al. (2009)].

Ray tracing methods have been presented to improve the accuracy of wireless channel mod-

els, but their acceleration is still a major research topic, especially for real-time application

like localization solvers. In chapter 4 we propose a ray tracing acceleration technique for

the localization of mobile nodes in environments with a large density of scatterers. We use

field-gathered channel sounding data to show that it can achieve high localization accuracy in

real-time.



CHAPTER 2

POWER AND SUBCARRIER ALLOCATION METHODS FOR RELAY LINKS

2.1 Introduction

In recent years, cooperative communications techniques have been proposed to improve cov-

erage, enhance capacity and combat shadowing in wireless communication networks, such as

cellular networks or mesh networks. Relay cooperative techniques exploit cooperative diver-

sity by means of providing several copies of a signal, which experience independent channel

gains, in order to further overcome channel fading [Pabst et al. (2004), Laneman et al. (2004),

Nabar et al. (2004)].

We study the parallel relay channel which has three nodes: a source S, a relay R, and a destina-

tion node D, as shown on Fig. 2.1. The wireless medium is divided intoNFFT subcarriers, each

with index k. The gains for the source-to-relay, relay-to-desintation and source-to-destination

channels are hsr, hrd and hsd, respectively.

Figure 2.1 The relay channel.

Two fundamental relaying methods have been defined in [Laneman et al. (2004)]: amplify-

and-forward (AF), where the relay retransmits an amplified version of the transmitted signal

including noise and channel degradations, without reading its content; and decode-and-forward

(DF) where the relay reads the message completely, encodes a new one and transmits it to the

destination.
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Resource allocation methods for orthogonal frequency-division multiplexing (OFDM) without

cooperation have been studied thoroughly [Wong et al. (1999); Rhee and Cioffi (2000)]. Co-

operative communications in the OFDM context have been shown to improve the achievable

downlink communication rate between a base station and a destination node, using a single re-

lay that performs relaying on all available subcarriers [Hammerstrom and Wittneben (2006)].

When considering selective subcarrier relaying in the OFDM context, we will need to identify

which subcarriers to use for relaying (i.e., subcarrier selection). This technique was proven to

improve rate [Vandendorpe et al. (2008a)] for decode-and-forward relaying systems.

Several researchers have included selective relaying in their power allocation schemes. The

work in [Pischella and Belfiore (2008)] does select subchannels but the joint problem of sub-

carrier and power allocation in orthogonal frequency-division multiple access (OFDMA) was

not treated. Subcarrier selection and bit-loading algorithms based on power gains, as presented

in [Gui and Cimini (2008)], do not consider the capacity loss when the base station does not

transmit in the second timeslot. [Ma et al. (2008)] used a selective subchannel relaying bit-

loading scheme, but the power allocation problem was not considered.

Several researchers have studied cooperative communication optimization problems where a

centralized control unit with knowledge of the channel state information can allocate power to

the transmitters at source and relay nodes in order to fulfill an objective under a set of con-

straints. Early research in cooperative communications has shown that energy efficient trans-

mitters operating in relay networks help extending battery life Laneman and Wornell (2000).

Other investigations on power allocation for relay networks have relied on the sum power con-

straints shared by source and relay nodes to minimize outage probability [Hasna and Alouini

(2003)] rather than power constraints distributed to each individual nodes. Using distributed

constraints can be described as more practical in the mobile communications context, as each

mobile device has access to its own battery source power.

In this work, we are interested in capacity maximization objectives, which several researchers

reached under similar sum power constraints [Jingmei et al. (2004), Qi et al. (2004), Ying et al.
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(2007) and Li et al. (2008)]. Individual power constraints, however, represent practical systems

more faithfully, because geographically separated nodes have independent power sources.

Current research has considered individual power constraints for capacity maximization power

allocation [Hammerstrom and Wittneben (2006), Louveaux et al. (2008) and Vandendorpe

et al. (2008b)], but did not consider another dimension of the problem: frequency selective

fading. Early power allocation problems [Hasna and Alouini (2003)] have considered flat fad-

ing for AF [Jingmei et al. (2004)] and DF [Qi et al. (2004)] relaying schemes. Frequency

selective channels under OFDM modulation, which consider constant channel gains in nar-

row subcarriers, have been studied in [Ying et al. (2007), Vandendorpe et al. (2008b)]. In

cooperative power allocation for OFDM modulated transmitters, most researchers decide to

relay on all subcarriers [Ying et al. (2007), Li et al. (2008)], but choosing to relay on only

some subcarriers offer better capacity performance in general [Hammerstrom and Wittneben

(2006), Vandendorpe et al. (2008b)]. Also, the relay node has an opportunity to transmit on a

given subcarrier, messages that were received on a different subcarrier. This pairing technique

improves capacity in systems under sum power constraints [Qi et al. (2004) and Ying et al.

(2007)], but is only mentioned as a potential benefit for individual power constrained problems

[Hammerstrom and Wittneben (2006)].

In this chapter, we study joint power and subcarrier allocation schemes for frequency selective

relay channels under OFDM modulation. We propose selective subcarrier allocation schemes

for AF systems and subcarrier pairing for DF systems under individual power constraints at the

source and relay transmitters.

For AF schemes, we show that by carefully selecting the subcarriers on which relaying should

be performed and using a capacity improvement criterion, we are able to improve end-to-end

system capacity when compared to that in the relay system proposed in [Hammerstrom and

Wittneben (2006)]. For DF schemes, we show that by using convex and integer optimization

methods, we can allocate subcarrier and power resources in an optimal manner.



20

We show the AF and DF system models in sections 2.2 and 2.3, and numerical results for both

schemes in section 2.4.

2.2 Amplify and Forward Model

A base station transmits to a single mobile user using OFDM modulation schemes, and can use

a single mobile as a relay station. Then, we consider the capacity for every frequency separated

subcarrier, k. Each time period is separated in two time slots, where the base station transmits a

message in the first time slot. In the second timeslot, we define the relay decision as μk, where

μk = 1 means that the relay station amplifies and forwards the message sent by the base station

in timeslot 1. In bands with μk = 0 the transmission is solely undertaken by the source node

in two successive time slots, and the relay node is not transmitting at all:

μk =

⎧⎪⎨
⎪⎩
0, if subcarrier k is not used by the relay

1, if subcarrier k is used by the relay.

(2.1)

We assume that there are NFFT subcarriers in the OFDM system. The gain of the kth subcar-

rier’s channel between source and destination is hsd,k, between source and relay is hsr,k, and

between relay and destination is hrd,k. We assume that these channel gains are slow-varying,

and are therefore constant for both transmission and relaying timeslots. We assume that the

source sends data with power pS,k on the kth subcarrier, and the relay amplifies the message by

a factor gk using power pR,k on the kth subcarrier:

gk =

√
pR,k

pS,k|hsr,k|2 + σ2
r

. (2.2)

The noise variance at the relay within one OFDM subcarrier is σ2
r and at the destination is σ2

d.

The SNR ρk for subcarrier k is then [Hammerstrom and Wittneben (2006)]

ρk =
pS,k|hrd,kgkhsr,k|2
σ2
d + σ2

r |gkhrd,k|2
+
pS,k|hsd,k|2

σ2
d

=
pS,kak · pR,kbk

1 + pS,kak + pR,kbk
+ pS,kck (2.3)
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where ak =
|hsr,k|2

σ2
r

, bk =
|hrd,k|2

σ2
r

, and ck =
|hsd,k|2

σ2
d

represent the signal gain to noise ratios for

the source-relay, relay-destination and source-destination channels, respectively. Figure 2.2

illustrates the overall received signal and noise powers at receiver rxk.

Figure 2.2 Relaying system model.

We assume that the base station has total information on channel gains and noise variance at the

relay and destination receivers, i.e. ak, bk, ck are known ∀k ∈ {1, 2, . . . , NFFT}. The source

and relay powers are constrained by power budget PS and PR, respectively:

1TpS = PS (2.4)

1TpR = PR. (2.5)

The capacity for a relay communication in the kth subcarrier is given by

CR,k = μk
1

2
log2(1 + ρk) (2.6)

for which the 1/2 factor represents the half duplex relaying process, and the μk factor represents

the relaying decision. The capacity for the non-relaying process is given by:

CS,k = (1− μk) log2(1 + pS,kck). (2.7)
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If μk = 0, transmission over that subchannel is solely undertaken by the source node without

any involvement of the relay node in two successive time slots. Combining (2.6) and (2.7), the

overall capacity using selective subcarrier relaying in the k-th subcarrier is given by:

CI,k = μk
1

2
log2(1 + ρk) + (1− μk) log2(1 + pS,kck). (2.8)

Our objective is to determine the relay decision μk, the power allocations for the base station

pS,k and the relay station pR,k for all subcarriers k which offer the optimal global capacity CI :

CI =

NFFT∑
k=1

CI,k. (2.9)

2.2.1 Subcarrier and Power Allocation: Preprocessing Heuristic and Optimization For-

mulations

Being a proper integer problem, we solve the subcarrier selection and power allocation problem

in two recursive steps that we repeat until convergence is obtained. As will be demonstrated

in section 2.4, only a few iterations are required to converge to a suboptimal capacity. In the

next section, we describe the first of these steps, namely, the subcarrier selection and power

allocation at the relay.

2.2.1.1 Subcarrier Selection and Power Allocation at the Relay

In this first step, given a base station power vector pS, we calculate estimates of both pR and

μ. Let us first rewrite (2.8) by grouping the μk dependent factors in a single log expression as

follows:

CI,k =
1

2
log2

[(
(1 + ρk)

(1 + pS,kck)2

)μk
]
+ log2(1 + pS,kck). (2.10)

Then clearly, the first term of (2.10) must be larger than 0 for the relaying process to increase

capacity in subcarrier k. Let Ξ(pR,k, pS,k) represent the capacity increase brought by relaying

on subcarrier k:

Ξ(pR,k,, pS,k) =
1 + ρk

(1 + pS,kck)2
. (2.11)
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For power allocation at the relay, we fix source power pS,k and consider

Ξ(pR,k,) =
d1pR,k + d2
d3pR,k + d4

, where (2.12)

d1 = bk(pS,kak + pS,kck + 1)

d2 = p2S,kakck + pS,kak + pS,kck + 1

d3 = bk(pS,kck + 1)2

d4 = (pS,kak + 1)(pS,kck + 1)2.

Figure 2.3 Relaying capacity gain function.

Eq. (2.12) represents a rational function which is plotted in Fig. 2.3. The asymptotes of this

curve are defined as

(vertical) :pR,k =
−pS,kak − 1

bk

(horizontal) :Ξ(pR,k) =
pS,kak + pS,kck + 1

(pS,kck + 1)2
.
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In order to obtain gain in capacity, the horizontal asymptote has to be larger than 1, so that

at least some values of 0 < pR,k < PR can actually improve capacity. In other words, the

following condition has to be satisfied in order to improve capacity through relaying:

ak > ck(pS,kck + 1). (2.13)

For every subcarrier k that does not satisfy condition (2.13), we set μk = 0, γk = 0 and

PR,k = 0. Our problem is then to assign power to the remaining subcarriers that do satisfy

it. We define the point {γk = pR,k|Ξ(pR,k) = 1}, γk ∈ γ as the minimum value of pR,k that

improves capacity, where

γk =
ck(pS,kak + 1)(pS,kck + 1)

bk(ak − ck(pS,kck + 1))
. (2.14)

Table 2.1 Symbols for the AF Optimization Problem

Description Symbol Name
Source Relay

Power Budget PS PR

Power Vector pS pR

Power Vector’s Element k pS,k pR,k

Vector for Minimal Power to Improve Capacity nil γ
Vector for Relay Selection nil μ

Source-relay power gain to noise ratio a
Relay-destination power gain to noise ratio b
Source-destination power gain to noise ratio c

Therefore, for all subcarriers for which we want to perform relay, we must select μk = 1 and

set pR,k > γk so that we can obtain a gain in capacity. In order to calculate global capacity,

which satisfies these constraints, we define a pre-processing heuristic. First, we make sure

that we can improve capacity in all subcarriers, while respecting global power constraints by

successively setting μk = 0 for the subcarrier with largest μk · γk until μTγ ≤ PR.
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Then, we calculate pR that maximizes capacity, we set μk = 0 for the subcarrier with largest

μk · γk and recalculate pR that maximizes capacity as long as this iterative process increases

capacity. This heuristic simplifies the complexity of μk selection process from a combinatorial

to a linear complexity. This ordering based on γ comes at the performance cost of dropping

some bands with relatively high d1/d3 ratios.

A complete version of this heuristic is detailed in Section 2.2.2 and in the flowchart in Fig.

(2.4). We determine the value of pR which maximizes capacity using convex optimization

techniques [Boyd and Vandenberghe (2004)] to obtain the optimal power allocation for all

subcarriers for which μk = 1. The optimization problem is formulated as follows:

minimize −
∑

{∀k|μk=1}
log2 Ξ(pR,k)

subject to γ − pR � 0

1TpR − PR = 0. (2.15)

The Karush–Kuhn–Tucker (KKT) conditions for this convex optimization problem are given

by

γk − pR,k ≤ 0

1TpR − PR = 0

λk ≥ 0

λk(γk − pR,k) = 0

−λk + ν − 1

ln2

pS,kakbk(pS,kak + 1)

p2R,kw1 + pR,kw2 + w3

= 0

with w1 = b2k(pS,kak + pS,kck + 1),

w2 = bk(pS,kak + 1)(2pS,kck + pS,kak + 2) and

w3 = (pS,kak + 1)2(pS,kck + 1). (2.16)
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The solution is given by

p∗R,k = min

{
γk,

pS,kak + 1

bk(pS,kak + pS,kck + 1)
[·]
}

[·] = pS,kak
2

√
1 +

4bk(1 + pS,kak + pS,kck)

ν ln(2)pS,kak(pS,kak + 1)

− (2pS,kck + pS,kak + 2). (2.17)

The parameter ν is chosen such that the power constraint 1TpR = PR is fulfilled.

2.2.1.2 Power Allocation at the Source

Using the relay decision μ∗
k and power p∗R,k calculated in the previous section, we then de-

termine the source power allocation p∗S,k for all subcarriers k. In all relaying subcarriers

(μ∗
k = 1), the source power must be chosen so that we maintain the capacity increase func-

tion Ξ(pR,k = p∗R,k, pS,k) > 1, which after several algebraic manipulations, reduces to the

following:

pS,k < Γk

Γk =

√
(·)− (ak + ck(p

∗
R,kbk + 1))

2akck

(·) = (ak + ck(p
∗
R,kbk + 1))2 − 4ak(p

∗
R,kbk(ck − ak) + ck), for ak > ck.

(2.18)

The ak > ck condition is already verified by (2.13) for every relaying subcarrier, with μk =

1. The power allocation is performed in a similar fashion as in the previous section. Using

the subcarrier selection μ and relay power pR vectors found in Section 2.2.1.1 we obtain the
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marginally optimal source power vector by solving the following optimization problem:

minimize −
NFFT∑
k=1

CI,k

subject to − pS � 0

μT (pS − Γ) � 0

1TpS − PS = 0. (2.19)

Solving the KKT conditions in a similar manner as in Section 2.2.1.1, we obtain

p∗S,k =

⎧⎪⎨
⎪⎩

1
νln(2)

− 1
ck
, for μk = 0

max (Γk,
1
ak

[
−1 +

bkpR,k

2
(·)

]
), for μk = 1

(2.20)

where (·) = −1 +
√
1 + 2ak

νln(2)bkpR,k
. Assuming that when relaying occurs, hs,d << 1, so we

can ignore the 2nd term in (2.3). The parameter ν is chosen so that the sum power constraint

1TpS = PS is fulfilled.

2.2.2 Iterative Algorithm for Optimizing Subcarrier Selection and Power Allocation

We now perform the selective subcarrier and power allocation using the expressions derived in

the previous section. In this section, we provide a more detailed algorithmic description of our

method. Given power budgets PR and PS for the relay and the base station, NFFT subcarriers,

the power allocation is performed using the following iterative steps:

1: procedure POWER ALLOCATION

2: initialize: pS,k = PS/NFFT , ∀k
3: while convergence is not attained do

4: calculate pR and μk using pS using the algorithm described below

5: find pS that maximizes capacity with current μ and pR using (2.20)
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Figure 2.4 Flow chart for power allocation.
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The calculation of pR and μ is performed as follows:

1: procedure RELAY POWER AND FREQUENCY ALLOCATION

2: initialize: γ ′ = γ using (2.14) and μ = 1

3: set C ′
I = −1, μk = 0, γ ′

k and pR,k = 0, ∀ k | ak ≤ ck(PS,kck + 1)

4: while 1Tγ ′ > PR do

5: set μk = 0 and γk = 0, for {k |γk = max(γ ′)}

6: repeat

7: calculate pR that maximizes capacity with current μ using (2.17)

8: set this maximized capacity as CI

9: if CI < C ′
I then

10: return μ, pR = p′
R and CI = C ′

I

11: set C ′
I = CI and p′

R = pR

12: set μk = 0 and γk = 0, for {k |γk = max(γ ′)}

13: until γ = 0 and μ = 0

14: return μ, pR and CI

A flowchart of the algorithm is shown in Fig. 2.4. The combination of pS , pR and μ that

maximizes capacity can then be calculated. In section 2.4, we show performance evaluation

results for this algorithm show the capacity and convergence rate for this algorithm.

2.3 Decode-and-Forward Models

In a wireless OFDM network operating on frequency selective channels, a source wishes to

send data to a destination, using the assistance of a relay, as shown in Fig. 2.5. The channel’s

bandwidth is divided into N = NFFT subcarriers, and a transmission period lasts two time

slots. We define the gain of the ith subcarrier’s channel between source and destination as hsd,i,

source and relay hsr,i, and relay and destination hrd,i. We assume these channel gains do not

vary during a period of two time slots.

In the first time slot, data is broadcasted by source to relay and destination on all subcarriers,

with power p(1)
S . In the second time slot, on the M subcarriers that have been selected for
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Figure 2.5 Decode-and-forward system model.

relaying, the relay decodes, permutes and retransmits data with power pR. On the remaining

N-M subcarriers, the source transmits new data with power p(2)
S . Therefore, the relay might use

a different subcarrier as the one used by the source for a given message.

We define a NFFT × NFFT relay pairing matrix as TR with elements tRi,j . The permutations

occur from subcarrier i in the first time slot to subcarrier j in the second time slot if they are

paired, which is denoted by elements tRi,j = 1. Similarly, the non-relay pairing NFFT ×NFFT

matrix TNR has elements tNR
i,j = 1 if the subcarrier j is used to transmit a new message from

the source. All other elements tRi,j = 0 and tNR
i,j = 0.
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Then, after a two time slot period, the destination exploits maximum ratio combining to retrieve

the relayed messages. If we assume noise variance at the relay within one OFDM subcarrier

to be σ2
r and σ2

d at the destination, the capacity on relaying pairs and non-relaying pairs will be

[Laneman et al. (2004)]:

CR(i, j) =
1

2
min

{
log(1 + aip

(1)
S,i), log(1 + cip

(1)
S,i + bjpR,j)

}
(2.21)

CNR(i, j) =
1

2
log(1 + cip

(1)
S,i) +

1

2
log(1 + cjp

(2)
S,j) (2.22)

where ai = |hsr,i|2/σ2
r , bi = |hrd,i|2/σ2

d, and ci = |hsd,i|2/σ2
d. Our objective is to solve

the following optimization problem which involves joint optimization of pairing, selecting,

allocating power to the source in the first time slot, and allocating power to relay and source in

the second time slot:

minimize

p(1)
S , p(2)

S , pR, t
R
i,j, t

NR
i,j

−
NFFT∑
i=1

NFFT∑
j=1

{tRi,j · CR(i, j) + tNR
i,j · CNR(i, j)}

s.t.

NFFT∑
i=1

(tRi,j + tNR
i,j ) = 1, ∀j ∈ {1, 2, . . . , NFFT}

NFFT∑
j=1

(tRi,j + tNR
i,j ) = 1, ∀i ∈ {1, 2, . . . , NFFT}

tRi,j, t
NR
i,j ∈ {0, 1}, ∀i, j ∈ {1, 2, . . . , NFFT}

p(1)
S,i, p

(2)
S,i, pR � 0

1Tp(1)
S = PS, 1Tp(2)

S = PS, 1TpR = PR (2.23)

We solve this problem in two parts, the second one being power allocation, but we first discuss

pairing and selection in the next section.
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2.3.1 Pairing and selection

The pairing and selection is equivalent to determining the optimal TR and TNR matrices, which

is an integer programming problem that often proves to be unsolvable without a complex enu-

meration of possibilities. This is very complex in practical applications. In this paper, an

algorithm based on Hungarian method [Kuhn (1955)] is proposed in order to treat this issue.

Pairing algorithms are investigated in [Ying et al. (2007)] and [Li et al. (2008)], where the

proposed solutions are based on ordering the subchannel gains: the best source-relay gain is

paired with the best relay-destination. For instance, [Ying et al. (2007)] orders source-relay

subcarriers according to ai−ci and relay-destination subcarriers according to bj . These pairing

algorithms are only optimal when selection is unavailable, i.e. when relaying occurs on all

subcarriers. Consequently, this ordering method cannot be used to achieve optimal subcarrier

selection.

Proof. Pairing matrices following a ai − ci order are not optimal when selection is allowed.

Consider 2 subcarriers, indexed 1 and 2, for which channel gain to noise power ratios respect

the following constraints:

↗ a1 a2 b1 b2 c1 c2

a1 < < > > >>

a2 < > > >>

b1 > > >>

b2 > >>

c1 >

then, the ordered pairing method results in: {a1, b2}R1 , {a2, b1}R2 and the Hungarian pair-

ing method in: {a2, b2}R1 , {c1}NR
2 If there are any conditions which satisfy CR(a1, b2) +

CR(a2, b1) < CR(a2, b2) + CNR(c1) then the ordered pairing can not be optimal in general.
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Reasonably straightforward algebra results in the following conditions:

c1(c1 + 2) > a2

which is true, for example, with numerical values

{a1, a2, b1, b2, c1, c2}={895, 1047, 2612, 514, 58, 5}.

In terms of selection, [Qi et al. (2004)] and [Ying et al. (2007)] introduced a straightforward

algorithm for DF relaying systems for which a particular pair is used for relaying if ai, bj > ci.

Otherwise, the direct link offers a better capacity. However, this algorithm is based upon a sum

power constraint; and as discussed earlier, individual power constraints are more realistic to

depict practical applications.

To overcome the two shortcomings mentioned above, we present a unified algorithm based on

the Hungarian method to deal with the pairing and selection problem jointly. First we define

the following matrices:

D(i, j) =

⎧⎨
⎩ CR(i, j) CR(i, j) > CNR(i, j)

CNR(i, j) otherwise
(2.24)

F(i, j) =

⎧⎨
⎩ 1 CR(i, j) > CNR(i, j)

−1 otherwise
(2.25)

The integer programming problem is then reduced to an assignment problem on D that gives

T = TR + TNR and can be solved by applying the Hungarian method. This method can

be described as a series of recursive matrix row and column subtractions. First, the lowest

cost element in the assignment matrix is identified, and its corresponding row and column are

removed from the matrix, then, the same process is applied to the reduced matrix until all

assignments are determined. The TR and TNR matrices can be extracted from matrix T using
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Table 2.2 Symbols for the DF Optimization Problem

Description Symbol Name
Source Relay

Power Budget PS PR

Power Vector pS pR

Power Vector’s Element k pS,k pR,k

Source-relay power gain to noise ratio a
Relay-destination power gain to noise ratio b
Source-destination power gain to noise ratio c

Pairing Matrix T

the pre-calculated flag matrix F. The computational complexity of the Hungarian method is

Θ(N3), which is one order of magnitude faster than the bruteforce method, which requires

testing all Θ(N4) combinations before solving the assignment problem.

The pairing and selection method described above has a useful property that will be used in

section 2.3.2:

Proposition 1: A pair (i, j) selected for relaying has ai > ci.

Proof: If a pair (i, j) is selected by Hungarian, it immediately follows thatCR(i, j) ≥ CNR(i, j).

Therefore:

1

2
log

(
1 +min

{
aip

(1)
S,i, cip

(1)
S,i + bjpR,j

})
>

1

2
log

(
1 + cip

(1)
S,i

)
+

1

2
log

(
1 + cjp

(2)
S,j

)
(2.26)

The second term in the right hand side in (2.26) is always positive, and does not affect the

inequality. And, if the inequality holds, it means that it is held for both terms in the min

function. So, we have 1
2
log

(
1 + aip

(1)
S,i

)
> 1

2
log

(
1 + cip

(1)
S,i

)
and it suggests ai > ci.

After pairing and selection, the second part of the problem defined in (2.23) is power allocation.
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2.3.2 Power allocation

Once the pairing and selection problem is solved using techniques developed in section 2.3.1,

we use the resulting TR and TNR matrices to define two sets of (i, j) index pairs as follows:

SR = {(i, j)|tRi,j = 1} : {(i, j)|pR,j ≥ 0, p
(2)
S,j = 0} (2.27)

SNR = {(i, j)|tNR
i,j = 1} : {(i, j)|pR,j = 0, p

(2)
S,j ≥ 0} (2.28)

Now the problem can be reformulated as follows:

minimize

p(1)
S , p(2)

S , pR

−
∑

(i,j)∈SR

min{log(1 + aip
(1)
S,i), log(1 + cip

(1)
S,i + bjpR,j)}

−
∑

(i,j)∈SNR

{log(1 + cip
(1)
S,i) + log(1 + cjp

(2)
S,j)}

s.t. p(1)
S , p(2)

S , pR � 0

1Tp(1)
S = PS, 1Tp(2)

S = PS, 1TpR = PR (2.29)

The objective function in (2.29) is separable in p(2)
S . Note also that p(2)

S is not coupled by

constraints. Thus, we can break problem (2.29) into two sub-problems:

Sub-Problem 1: Cooperative water-filling:

minimize

p(1)
S , pR

−
∑

(i,j)∈SR

min{log(1 + aip
(1)
S,i), log(1 + cip

(1)
S,i + bjpR,j)}

−
∑

(i,j)∈SNR

{log(1 + cip
(1)
S,i)}

s.t. p(1)
S , pR � 0

1TP(1)
S = PS, 1TPR = PR (2.30)
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Sub-Problem 2: Classical water-filling:

minimize

p(2)
S

−
∑

(i,j)∈SNR

log(1 + cjp
(2)
S,j)

s.t. p(2)
S � 0

1Tp(2)
S = PS (2.31)

Using the Karush-Kuhn-Tucker (KKT) conditions [Boyd and Vandenberghe (2004)], the solu-

tion of classical water-filling sub-problem is as follows:

p
(2)
S,j =

⎧⎪⎨
⎪⎩

0 (i, j) ∈ SR

max

{
0, 1

ν
(2)
S

− 1
cj

}
(i, j) ∈ SNR

(2.32)

where the constant ν
(2)
S is chosen such that the constraint 1Tp(2)

S = PS is satisfied.

For solving the cooperative sub-problem water-filling, we first investigate its convexity by

introducing new variable w.

minimize

p(1)
S , pR

−
∑

(i,j)∈SR

log(1 + wi)−
∑

(i,j)∈SNR

log(1 + cip
(1)
S,i)

s.t. wi ≤ aip
(1)
S,i, (i, j) ∈ SR

wi ≤ cip
(1)
S,i + bjpR,i, (i, j) ∈ SR

wi ≥ 0, (i, j) ∈ SR

p
(1)
S,i ≥ 0, (i, j) ∈ SNR

1Tp(1)
S = PS, 1TpR = PR (2.33)

The cooperative water-filling sub-problem is equivalent to (2.33), and the convexity of (2.33) is

obvious, because, the objective function is a summation over convex functions, and constraints

are all affine and linear [Boyd and Vandenberghe (2004)]. Now we solve the problem in two

steps:
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Step 1: We set the source powers to be constant and optimize the relay power by writing the

KKT conditions:

pR,j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min

{
max

{
0, 1

νR
− cip

(1)
S,i+1

bj

}
, ai−ci

bj
p
(1)
S,i

}
,

(i, j) ∈ SR

0 (i, j) ∈ SNR

(2.34)

in which, the constant νR is chosen such that the constraint 1TpR = PR is satisfied. As stated

before in proposition 1, if a pair (i, j) is in the set SR, then ai−ci > 0. And in turn,
(

ai−ci
bj

)
p
(1)
S,i

is a positive constant.

Step 2: We set the relay powers to be constant and optimize the source power by writing the

KKT conditions:

p
(1)
S,i =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

min

{
max

{
0, 1

ν
(1)
S

− 1
ai

}
,

bj
ai−ci

pR,j

}
,

(i, j) ∈ SR

max

{
0, 1

ν
(1)
S

− 1
ci

}
, (i, j) ∈ SNR

(2.35)

in which, the constant ν
(1)
S is chosen such that the constraint 1Tp(1)

S = PS is satisfied. Again,

according to proposition 1,
bj

aj−cj
pR,j is a positive constant.

Finally, these two steps can be conducted alternatively until convergence is reached. Simulation

results show that this process converges quickly to an optimal point.

2.4 Numerical Results

2.4.1 Amplify-and-Forward

We evaluate the proposed subcarrier relay selection technique using different relay positions

and power budgets, and we compare the resulting capacity with the one we can obtain with non-

relaying and all-subcarriers relaying schemes. For all the numerical evaluations, we adjust PS

to obtain a nominal average signal-to-noise ratio ρk = 0 dB in all source-to-destination, non-
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relaying links as in [Hammerstrom and Wittneben (2006)]. The fading channel gain follow a

complex normal distribution as defined in [Hammerstrom and Wittneben (2006)]:

hn,k ∼ CN

(
0,

1

L(1 + d)α

)
(2.36)

Figure 2.6 Convergence of the selection heuristics.

with α = 3, distance d m, and L = 4. Using |h|2 from (2.36) and σ2
d = σ2

r = 4.14× 10−17, and

NFFT = 16 subcarriers, we calculate values for the channel gain to noise power ratios ak, bk

and ck defined in (2.3). For all of the calculations, the source-destination distance is set to 1000

meters. For all the considered scenarios, the algorithm described in Section 2.2.2 reaches 99%

of the achievable capacity in a total of 3 trials. Extensive simulations show that the heuristic
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described in section 2.2.1 converges to a maximal value after setting up to 6 subcarriers to not

relay, or μk = 0, as shown on Fig. 2.6.

2.4.1.1 Capacity vs Relay Power Budget

Figure 2.7 Capacity vs. relay/base station power ratio.

We first measure the impact of modifying the relay power budget on the overall capacity of the

system. We position the relay at an equal distance of d = 500 m from both the source and des-

tination, and we calculate the capacity for systems where relaying occurs in all subcarriers, and

for systems with selective subcarriers relaying, using the algorithm described in Section 2.2.2.

The results are shown in Fig. 2.7.

The non-relaying link is used as a reference performance against which we compare our algo-

rithm, and the numerical results for this link are represented as the unitary capacity “No relay"

curve in Fig. 2.7. The “Always Relay" system improves capacity over the reference “No Re-
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lay" scheme with high relay power budgets, i.e. when PR > 0.04PS . For lower power budgets,

it is always better to not relay, at least in some of the subcarriers. Under high power relay bud-

gets, it is always better to relay in all subcarriers, and our selective relay method tends to the

“Always Relay" case. Similarly, under low power budgets, it is better not to relay at all, and our

system tends to the “No Relay" case. When the relay power budget is between these extreme

values, selective subcarrier relaying improves capacity over both comparative schemes.

2.4.2 Capacity vs Distance under High Relay Power Budget

Figure 2.8 Capacity vs. distance for high relay power budget.

In this section, we set the relay power budget PS = PR to values that maintain the comparative

SNR ρ0,k = 0 dB, and we place the relay between the source and destination, and calculate

the capacity for several distances to source relatively to the source-destination destination. The

results are shown in Fig. 2.8. The “Always Relay" scheme improves capacity for all positions

except when the relay is located close to either the source or destination. In these positions,

the long-distance channels dominate the relaying signal to noise ratios, and make it hard to
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compensate for the 0.5 loss in capacity created by the half duplex relaying scheme performed

on all subcarriers.

Using the proposed selective subcarrier relaying, we obtain better capacity for any relay po-

sition, but when the relay is located close to the destination, we simply do not relay in any

subcarrier, and obtain a capacity equivalent to the “No Relay" case. The offset observed when

the relay and source are co-located is explained by the small capacity increase obtained with

using the full PR in a few subcarriers, so that their capacity is improved, even considering the

0.5 half duplex cost.

The symmetry of these curves can be explained from the symmetry of the amplify-and-forward

SNR in (2.3), where ak increases as bk decreases when the relay is moved towards the source.

Also, in this particular case, we impose equal source and relay power budgets, suggesting that,

on average, the allocated source and relay powers are equal, keeping the symmetry property

about relay distance.

2.4.2.1 Capacity vs Distance under Low Relay Power Budget

As we have seen in Section 2.4.1.1, the achievable capacity should be higher in the selective

relaying scheme for low relay power budgets. As in the previous section, we calculate the

capacity for different relative distances with PR = 0.04PS . Figure 2.9 shows that the selective

subcarrier relaying scheme improves capacity over all distances, but when the relay is located

close to the source, the capacity is equal to the capacity of the “No Relay" scheme. The “Al-

ways Relay" scheme only improves capacity in a limited portion of positions, close to the des-

tination and degrades capacity for other positions. These results show how that the selective

relaying schemes presented in this paper improve capacity over all non-selective algorithms

presented in the litterature in the studied scenario. It also shows that a naive implementation

of relays depicted in the “Always Relay" scheme can actually worsen overall capacity perfor-

mances over a point-to-point communication link with no relay.
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Figure 2.9 Capacity vs. distance for low relay power budget.

2.4.3 Decode-and-Forward Numerical Results

We demonstrate the performance of our selective DF subcarrier pairing and PA technique

through simulation for different source-relay and relay-destination distances, and different

source and relay power budgets. It is assumed that all the three nodes are located on a line.

The distance between source and destination (d0) is always 1000 m, and location of the re-

lay is indicated by dr
d0

where dr is source-relay distance. We consider an OFDM modulation

with NFFT = 16, subcarrier separation of 10 kHz, and σ2
r = σ2

d = 4.47 × 10−17. Channel

complex gains hi are picked from a Rayleigh fading channel with the following distribution

[Hammerstrom and Wittneben (2006)]:

hi = CN
(
0,

1

L(1 + d)α

)
(2.37)
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where the path loss exponent α = 3, distance dm, and the number of taps L = 4. Source power

budget is selected such that for all subcarriers we have the average SNR of 0 dB at destination.

Finally, given |h|2, σ2
r , σ

2
d, NFFT and subcarrier separation, the channel gains to noise power

ratios ai, bi and ci are calculated as described in section 2.2.

2.4.4 Convergence

We study the convergence of the iterative process described in section 2.3.2. As it will be shown

later in this section, the distance and power budgets play a major role in the selection and power

allocation decisions, so we performed simulations scenarios for different relay power budgets

of PR = PS , 0.1PS and 0.04PS , and for relays positioned either at midpoint between source

and relay, or at a relative distance β ∼ U [0, 1]. The average ratio of subcarriers used for

relaying for these scenarios is shown on table 2.3. We also show the convergence rate of these

scenarios on Fig. 2.10.

Table 2.3 Relaying Subcarriers Ratio

Relay Power Budget % Relaying Subcarriers
dr = 0.5d0 dr = βd0

PS 92.75 67.5
0.1 · PS 74.44 49.94
0.04 · PS 57.31 40.44

Analyzing the results on Fig. 2.10, we first find that the iterative process converges to the op-

timal solution for every considered scenario and even the first step is very close to the optimal.

An important observation is that the convergence time increases when the ratio of relaying

subcarriers is close to 50%. This is a situation where the number of pairing and selection

combinations is large, and it takes more trials to reach the optimal solution.
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Figure 2.10 Convergence of the power allocation technique.

2.4.5 Pairing and Selection Performance

We consider the performance of the pairing and selection parts of the process described in

section 2.3.2. We performed simulations for a power budget of PR = 0.1 · PS , with several

positions for the relay node. The resulting capacity for scenarios where pairing and selection

are activated or not are shown in Fig. 2.11. Analyzing the result, we observe that selection plays

an important role in cooperative capacity, and that any scenario without considering selection

will worsen capacity for some positions of the relay. For instance, the always relay curves

of Fig. 2.11 fall below the reference “1B/S/Hz” non-relaying capacity for several relay

positions. Pairing is mainly useful when a lot of relaying occurs. Overall, it appears clearly

with the results that pairing and selection using the method described in section 2.3.2 improves

capacity over non-selective and non-pairing schemes for every considered relay position.
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Figure 2.11 Performance of the pairing and selection processes.

2.4.5.1 Power Allocation

We study the performance of the power allocation part of the process described in section

2.3.2 for several relay node positions, and show the resulting capacity for relay power budget

PR = PS on Fig. 2.12 and PR = 0.1 · PS on Fig. 2.13. We will first compare observations

between these figures:

Location of the Peak Capacity: In the equal power budget case, the peak occurs at the midpoint

between source and relay.

When the relay power ratio is less, the peak capacity with regards to position moves towards the

destination, because the maximal capacity occurs when the source-relay and relay-destination

links have the same level of SNR.
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Figure 2.12 Capacity for equal power budgets at source and relay.

Capacity Close to the Destination: The capacity obtained for both scenarios when the relay is

close to destination is similar, because the min function in (2.21) is dominated by the source-

relay link, which is weaker than the relay-destination link.

Capacity Elsewhere: The capacity obtained in the equal power scenario is much higher com-

pared to the reduced relay power, because more power is available at the relay, and in turn,

more subcarriers will be used for relaying. For instance, at distance dr = 0.5d0, table 2.3

shows an average of 92.75% relaying subcarriers for the equal power scenario and 74.4% for

the reduced relay power scenario.

Now, we analyze the performance of different power allocation schemes for both relay power

budget scenarios in Fig. 2.12 and 2.13. We use uniformly distributed power as a reference to

which we compare optimal power allocation.
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Figure 2.13 Capacity for reduced relay power budget.

Performance Gain: It is observed that our power allocation technique improves capacity for

any considered relay position and relay power budget scenario.

Source Power Importance: It can be seen that uniform relay curves offer better performances

than all uniform source power curves for most considered positions of the relay. This is because

the source power allocation has an impact on both direct and relay links, which is not the case

for relay power allocation.

Impact of the source power in time slot 2 vector p
(2)
S : Recent research in the field [Ying et al.

(2007) and Vandendorpe et al. (2008b)] did not include the p
(2)
S optimization. In our scenario,

we associate these schemes to the uniform p
(2)
S curves, which show considerably less capacity

than our optimal source and relay method.
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2.5 Conclusion

We have studied the capacity of a selective cooperative relaying wireless communication scheme

using OFDM modulation under power constraints for both the base station and the relay sta-

tion. We have developed a scheme for subcarrier relay selection and power allocation that

outperforms nonselective relaying schemes over a range of relay power budgets, and converges

in a few iterations.

We have also presented algorithms for decode-and-forward relaying schemes permitting the re-

lay to pair source-transmitted and relay-transmitted subcarriers. We have developed a method

for optimizing the capacity of cooperative systems operating under this signalling scheme. We

have analytically demonstrated that our method maximizes instantaneous rates using CSI, for

several individual power budgets and relay location scenarios. Numerical results show that our

method outperforms systems using similar solutions to the most recent research in the field.

Also, adding pairing and selection processes to our iterative power allocation problem greatly

improves capacity performance, without considerably increasing the computational complex-

ity.



CHAPTER 3

BLIND MULTI-SOURCES DETECTION AND LOCALIZATION FOR COGNITIVE

RADIO

3.1 Introduction

In recent years, cognitive wireless communication networks have emerged as a way to improve

frequency spectrum use by offering unlicensed secondary users the opportunity to momentarily

occupy spectrum holes in licensed bands [Haykin (2005)]. When occupying licensed spectrum

bands, the cognitive radio must not cause any perceptible harmful effect for every primary

receiver. Radio scene analysis is an important advance associated with cognitive radios [Haykin

(2005); Bhargava and Hossain (2007)] because the knowledge it offers allows the radio to adapt

to the changing radio frequency environment. With extensive knowledge on both the location

and class of all local users, the cognitive radio can efficiently reuse spectrum holes and avoid

causing any harmful interference on primary users [Haykin (2005)]. Cognitive radios must

also adapt to presumably non-cooperative legacy primary user networks and secondary user

competitors seeking to occupy the spectrum as well.

Secondary users attempting to efficiently reuse spectrum holes left free by single-carrier lin-

ear digital (SCLD) primary users can use orthogonal frequency division modulation (OFDM)

schemes to occupy spectrum bands efficiently [Haykin (2005), Cabric and Brodersen (11-14

Sept. 2005)]. In order to determine whether sources are primary or secondary users, the

cognitive radio must then classify incoming signals through modulation classification (MC).

Recently proposed OFDM-SCLD blind MC algorithms require carrier and timing recovery

[Akmouche (1999)], or estimation of signal-to-noise ratio (SNR) [Wang and Ge (23-26 Sept.

2005)], before the recognition algorithm applied. The classification algorithm proposed in

[Punchihewa et al. (3-7 Sept. 2007)] does not require the preprocessing tasks, such as sym-

bol timing estimation, carrier and waveform recovery, and signal and noise power estimation.

However, it requires the knowledge of presence or absence of signals to avoid identifying noise

input as single carrier. This knowledge is not available for uncooperative radios like primary
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users or competing secondary users. Also, authors did not investigate the classifier’s perfor-

mance with multiple received signals.

The MC algorithm proposed in [Punchihewa et al. (3-7 Sept. 2007)] requires the presence of a

single signal source to perform classification correctly. If these requirements are not satisfied,

the MC algorithm can misclassify the signal sources. In order to overcome this issue, our

original contribution is to combine the number of sources estimation provided by the MUSIC

[Godara (2004)] algorithm to the MC algorithm described in [Punchihewa et al. (3-7 Sept.

2007)] to ensure the cognitive radio’s knowledge on the location of primary and secondary

users.

In order to extend the spatial reuse, the location of other users has to be known so the cogni-

tive radio can avoid disturbing them. Several localization techniques have been proposed, but

may require cooperation from mobile users through the use of a beacon signal [Bulusu et al.

(Oct. 2000)] or pseudo-noise sequence [Caffery and Stuber (May 1998)]. Angle of arrival es-

timation (AoA) is an efficient way to measure users location and may not require cooperation

from sources [Godara (2004)]. The multiple signal classification (MUSIC) algorithm has been

proven efficient for AoA [Bulusu et al. (Oct. 2000)] and estimating the number of present

sources [Hu et al. (1999b)]. In this paper, we show how we can combine these localization

techniques to classification and detection to effectively identify spectral spectrum holes.

The rest of the chapter is organised as follows: Signal models and the proposed localization

and classification algorithms are introduced in Sections 3.2 and 3.3, respectively. Simulation

results for the proposed algorithm are discussed in Section 3.4. Finally, conclusions are drawn

in Section 3.5.

3.2 Signal Model

The signal model considered in this chapter includes wireless transmissions from primary and

secondary users through an additive white gaussian noise (AWGN) channel and the receiver

consists of a uniform linear array.
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Figure 3.1 Angles of arrival measurement setup.

3.2.1 Primary and Secondary Users Signals

The noiseless received SCLD and OFDM modulated signals sSCLD(t) and sOFDM(t) are de-

fined as follows [Punchihewa et al. (3-7 Sept. 2007)]:

sSCLD(t) = α ejφej2πΔfct

∞∑
p=−∞

spg(t− pT − εT ) (3.1)

sOFDM(t) = α ejφej2πΔfct

K−1∑
k=0

∞∑
p=−∞

sk,pe
j2πΔfK(t−pT−εT )g(t− pT − εT ) (3.2)



52

where α is the attenuation factor, φ is the initial phase, Δfc is the carrier frequency offset,

sp and sk,p represent the symbols transmitted within the pth period, and the pth period and kth

subcarrier, respectively. Function g(t) is the pulse shape, T is the symbol period, and 0 ≤ ε ≤ 1

is the timing offset. For OFDM modulation scheme, ΔfK is the frequency separation between

adjacent subcarriers, K is the total number of subcarriers and the symbol period is given by

T = Tuse + Tcp where the useful symbol duration is Tuse = Δf−1
K and the cyclic prefix is

usually Tcp = Tuse/4.

3.2.2 Received Signal

As shown in Fig. 3.1, the receiver is equipped with an array of L antennas with uniform

distance d, which offers different channel lengths for each element of the antenna array. These

differences in distances are shown in Fig. 3.1, as ldsin(θ), where l refers to the antenna’s

number and θ is the wave’s angle of arrival from SCLD and OFDM sources located at an

unknown distance from a cognitve receiver (CR). These effects can be accounted for using

vector a(θ):

a(θ) = [a0(θ), a1(θ), · · · , aL−1(θ)] (3.3)

with its elements defined as:

al(θ) = e
j2πldsin(θ)

λ0 , 0 ≤ l ≤ L− 1 (3.4)

where λ0 is the received signal’s wavelength.

The signal received at the antenna array level is defined by the L-sized vector r(t,θ):

r(t, θ) = a(θ)s(t) + n(t) (3.5)

with n(t) a L-sized vector with independent AWGN elements.
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Figure 3.2 Block diagram for receiver system.

As shown in Fig. 3.2, for each snapshot n, N samples of r(t,θ) are saved in the received L x N

matrix X[n]:

X[n] = [r(t0, θ), r(t0 + ts, θ), · · · , r(t0 + (N − 1)ts, θ)] (3.6)

3.3 Detection and Localization Algorithm

An important objective for cognitive systems is to detect spectrum holes [Haykin (2005)], and

maximize the exploitation of these novel wireless communications opportunities. OFDM is a

very efficient way for cognitive secondary user networks to fill those dynamic spectrum holes

[Cabric and Brodersen (11-14 Sept. 2005)]. Therefore, when a secondary user detects OFDM

transmissions in a band, a competitor secondary user network is most likely filling a signifi-

cant portion of the available spectrum holes. On the other hand, if no OFDM transmission is

detected, a larger number of spectrum holes can be expected. The primary objective of our

algorithm is to provide AoA of primary sources in order to exploit spectrum holes when no

OFDM sources are detected.
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For each considered snapshot n of X[n], the proposed system, shown in Fig. 3.2, operates as

follows:

a. Determine the number of sources m̂;

b. if m̂ ≥ 1, evaluate the OFDM presence detector Ω;

c. if Ω = false, calculate the AoA estimate Θ̂, for all primary users;

d. modify the cognitive radio’s antenna array radiation pattern to minimize transmitted

power for every Θ ≈ Θ̂1.

We employ the MUSIC algorithm [Godara (2004)] to detect the number of sources and the

AoA of incoming signals. The modulation classifier is based on results in [Punchihewa et al.

(3-7 Sept. 2007)]. In the following, we describe the functionalities of each of these blocks,

also shown in Fig. 3.2.

3.3.1 Number of Sources

The first objective of the algorithm is to determine the number of distinctive sources in order

to provide presence of signal information to the MC block.

First, we calculate Ĉ, the estimate of the L x L covariance matrix for a given snapshot X[n].

The elements ĉi,j of Ĉ are defined as follows:

ĉi,j =
1

N − 1

N∑
k=1

(Xi,k[n]− X̄i[n])(Xj,k[n]− X̄j[n]) (3.7)

where

X̄i[n] =
1

N

N∑
k=1

Xi,k[n] (3.8)

1The 4th element of the algorithm will be considered as future work.
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Then, the covariance matrix Ĉ is decomposed in eigenvalues matrix Λ and eigenvectors matrix

Q:

Ĉ = QΛQ−1 (3.9)

for which we consider that the diagonal elements of Λ are arranged in descending order, and

the corresponding eigenvectors in Q are ordered accordingly. The diagonal elements of Λ are

then stored in L-elements vector λ. These eigenvalues are separated in two groups [Zhang

et al. (Oct 1989)], the signal subspace: λs

λss = [λ(0)λ(1) · · · λ(m̂− 1)] (3.10)

and the noise subspace λns

λn = [λ(m̂)λ(m̂+ 1) · · · λ(L− 1)] (3.11)

The objective of the algorithm is to estimate the threshold shift Γ that separates these two

groups.

Γ =
ψPs(

1 +
√

Ps
L

)2 (3.12)

where

Ps =
λ(0)− λ(L− 1)

L
(3.13)

and ψ is a constant depending on the quality of the data [Hu et al. (1999b)]. The number of

sources m̂ is then estimated with:

m̂ =

⎧⎨
⎩ 0 if m̂ = ∅

max(m̂) otherwise
(3.14)
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where ∅ represents the empty set and

m̂ = {∀ i ∈ {0, 1, 2, . . . , L− 1} : λ(i− 1)− λ(i) > Γ} (3.15)

As discussed in section 3.1, in order to avoid misclassification of noise-only inputs, the MC

algorithm requires at least one input signal to be present. Therefore, we only invoke the MC

algorithm when m̂ �= 0.

3.3.2 Blind Detection and Classification

We classify OFDM against single-carrier linear digital (SCLD) with the lowest order non-zero

cyclic cumulants (CC), second-order/ one conjugate, as in [Punchihewa et al. (3-7 Sept. 2007)].

The input signal for the classification algorithm is a snapshot n of X[n] for which the number

of sources block has detected the presence of at least one source. We consider r = r0, the first

row of the received signal X[n], representing the input signal from antenna 0. We calculate the

estimate ĉrΩ(β; τ)2,1 of the second order, one conjugate CC of r at cycle frequency (CF) β and

delay τ as:

ĉrΩ(β; τ)2,1 =
1

U

U−1∑
u=0

rΩ(u+ τ) · rHΩ (u)e−2jπβu (3.16)

where U is the total number of time samples in the received signal vector r and Ω represents

the unknown class of signal r:

Ω =

⎧⎨
⎩ 1 if at least one OFDM source is present

0 if only SCLD sources are present
(3.17)

Under the assumption that there is no aliasing, the second-order/ one-conjugate CC at CF β

and delay τ for SCLD and OFDM signals are given as [Punchihewa et al. (3-7 Sept. 2007)]:

crSCLD
(β; τ)2,1 = α2cs,2,1ρ

−1e−j2πβερe−j2πρ−1ΔfcTτ

·
∑
u

g(u+ τ)gH(u)e−j2πβu + cw(β; τ)2,1 (3.18)
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crOFDM
(β; τ)2,1 = α2cs,2,1D

−1e−j2πβεDe−j2π(ρK)−1ΔfcTuτ

·ΞK(τ)
∑
u

g(u+ τ)gH(u)e−j2πβu

+cw(β; τ)2,1 (3.19)

where

ΞK(τ) =
K−1∑
k=0

e−j2π(ρK)−1kτ

= ejπ(ρK)−1(K−1)τ · sin(πτρ−1)

sin(πτ(ρK)−1)
(3.20)

here, ρ represents the oversampling factor, Cw(β; τ)2,1 represents the noise CC, and D repre-

sents the total number of samples in one OFDM symbol period. The classification of OFDM

against SCLD is based on the existence of a significant peak located at a non-zero delay value

of the estimated second-order/ one-conjugate CC magnitude. Classification of OFDM against

SCLD is performed in two steps. First, we locate a non-zero peak in the estimated second-

order/ one-conjugate CC magnitude at delay τpeak, with 0 < τpeak < U , and at CF β = 0.

Then, using the cyclostationarity test developed by Dandawate [Dandawate and Giannakis (Sep

1994)], we check whether or not β = 0 is indeed a CF for delay τ = τpeak. If β = 0 is found to

be a CF for delay τ = τpeak, the signal is classified as OFDM, otherwise the signal is classified

as SCLD.

3.3.3 Angle of Arrival

Using the number of sources, and the eigenvectorsQ calculated in the number of sources block,

we employ the MUSIC algorithm to estimate the angle of arrival for all of these sources. First,

we obtain Qns ⊆ Q, the noise subspace eigenvectors matrix by keeping the eigenvectors that
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are associated with the noise eigenvalues λns:

Q = [v0 v1 · · · vL−1] (3.21)

Qns = [vm̂ vm̂+1 · · · vL−1] (3.22)

Then we estimate the angle of arrival θ̂:

θ̂ =
argmax

ϑ∈ (−π/2, π/2]

(
1

aH(ϑ)QnsQH
ns a(ϑ)

)
(3.23)

where a(ϑ) is defined in (3.3) and (3.4).

3.4 Simulation Results and Analysis

In this section, we illustrate the performance of each part of the algorithm through extensive

simulations.

3.4.1 Simulation Setup

For all simulations conducted in this chapter, we select the parameters defined in section 3.2.1

as follows: α = 1, ε = 0.75 and φ ∼ U(−π, π). We generate baseband SCLD signals using

g(t) as a raised cosine filter with roll-off factor 0.35, 40 kHz bandwidth and Δfc = 16 kHz.

We select baseband OFDM signals parameters as g(t) is a raised cosine window with roll-off

factor 0.025, 800 kHz bandwidth, Δfc = 320 kHz, K = 128. We select the data symbols {sp}
and {sk,p} by choosing independent and identically distributed samples from M-ary phase shift

keying (MPSK) constellations. Regarding the propagation and reception parameters defined in

Section 3.2.2, we select L = 15, d/λ0 = 0.5 and N=12800. These parameters could represent

an antenna array with 15 elements, separated by a half-wavelength distance, and installed on a

cognitive base station using 12800 signal samples to detect nearby radios.
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3.4.2 Simulation of the Number of Sources Detector

This simulation illustrates the performance of the number of sources detector, described in

Section 3.3.1. We investigate several combinations of primary and secondary user scenarios.

For each scenario, we estimate the number of signals m̂ and evaluate the average estimation

error ē as:

ē =

∑V
v=1 |m̂v −mv|

V
(3.24)

for which we conduct V = 100 trials. Our results, illustrated in Fig. 3.3, show that the number

of sources estimation algorithm obtains low estimation errors for all scenarios even with SNR

as low as -10 dB. In addition, except for the 7 PSK sources scenario, similar performance

is obtained for SNR as low as -15 dB. However, the 7 PSK sources scenario, with sources

located at angles 6 ◦, 14 ◦, 29 ◦, 40 ◦, 46 ◦, 63 ◦ and 74 ◦, shows a significant estimation error for

SNR below -10 dB. This deviation is due to the eigenvalues vector λ which does not show a

clear threshold between the noise and signal subspaces λns and λss as the number of sources

increases significantly. These results dominate the overall performance of the system and will

hinder any AoA estimation for this particular scenario and SNR levels. Our algorithm offers

near zero error average error for a 4 single carrier signals input, when SNR is as low as -17 dB,

which significantly outperforms [Hu et al. (1999b)].

3.4.3 Simulation of the Modulation Classifier

We have investigated the performance of the MC algorithm described in 3.3.2 with several

combinations of primary and secondary user scenarios. In Fig. 3.4, we show the probability

of correct classification PCC for those scenarios. We obtain PCC = 1 for the whole examined

SNR range for a scenario for which only noise is present. If the MC block is operated alone,

this result would be incorrect because Ω = 0 is supposed to represent SCLD, not noise only

sources. Since our system combines the number of sources and MC blocks, we eliminate this

misclassification. In addition, we have shown that our system is able to detect OFDM signals

when there are also SCLD signals present, even at SNR = -3 dB. Whereas [Punchihewa et al.

(3-7 Sept. 2007)] has considered only one SCLD or OFDM signal source. We observe a
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Figure 3.3 Average error on number of sources.

performance degradation when compared with a single OFDM source scenario because the

presence of SCLD transmissions decreases the value of the CF determination statistic defined

in section 3.3.2. This means that the SCLD transmissions have a similar effect to noise power

as they increase the required SNR to effectively detect OFDM transmissions. Furthermore,

the scenario with seven SCLD sources shows perfect classification results for the whole SNR

range. The cognitive radio can use these classification results to find out all the available

spectrum holes.

3.4.4 Performance of the Angle of Arrival Estimator

In Fig. 3.5, we illustrate a typical set of estimated angles with SNR = -8 dB. There, one can

easily identify seven distinguished peaks corresponding to the seven distinct sources.
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Figure 3.4 Performance evaluation of the MC block.

We then calculate the root mean square error (RMSE) of the AoA estimation for several com-

binations of primary and secondary user scenarios, with RMSE defined as:

RMSE =

√∑V
v=1(θ̂v − θv)2

V
(3.25)

where we measure the square error for each one of the V estimated angles θv. According to the

results shown in Fig. 3.6, the AoA block estimates offers a maximum RMSE of 1 ◦ for SNR

as low as -12 dB for all considered scenarios. From Fig. 3.6, one can notice that the RMSE of

the AoA increases with the increase of the number of sources. This is caused by an error in the

number of sources estimation, as discussed in 3.4.2.

By combining the number of sources, blind modulation classification and angle of arrival

blocks results, the secondary user has cognition of the angle of arrival and class of all surround-
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Figure 3.5 Estimation of the AOA for seven BPSK sources.

ing sources. This knowledge can then be exploited to occupy available dynamic spectrum holes

without interfering with primary users, through advanced beamforming techniques.

3.5 Conclusion

In this chapter, we presented an algorithm for blind detection and localization of primary and

secondary users for cognitive radio through modulation classification and angle of arrival esti-

mation. The overall simulation results indicate that this system identifies and locates sources

correctly for all considered scenarios, even at -4 dB SNR. In addition, we have shown the clas-

sification performance for several SCLD sources and for OFDM signal in presence of multiple

SCLD sources. Cognitive radios employing the proposed system will identify available spec-
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Figure 3.6 Root mean square error on the AOA estimation algorithm.

trum holes efficiently by avoiding frequency bands that are already filled by secondary user

competitors, and exploit available spectrum holes by avoiding interference to primary users,

employing information on their localization.





CHAPTER 4

REAL-TIME LOCALIZATION SOLVER WITH LINEAR COMPLEXITY

RAY-TRACING UNDER NLOS CONDITIONS

4.1 Introduction

The recent development of high-end, low cost mobile devices running location-based appli-

cations and including global positioning system (GPS) receivers has attracted increasingly

important research for real-time localization solvers (RTLS). However, new RTLS methods

are required for indoors environments, where no direct link between the mobile and the GPS

satellites is available.

Even though some localization-specific hardware can significantly improve the effectiveness

of this task, we aim at developing software localization methods based on existing wireless

communication technology, such as 4G cellular and 802.11, without adding any hardware. Re-

cently developed devices under these technologies enable the estimation of channel parameters

with sufficient precision to effectively estimate the mobile station’s (MS) location within a few

meters precision [Pahlavan and Levesque (2005)].

Several classical RTLS methods use known channel models and estimate one or several of its

features. Channel features that are mostly used for localization are the received signal strength

(RSS), time-of-arrival (TOA), and the angle of arrival (AOA). Roughly speaking, RSS offers

low-cost, yet inaccurate estimates of distance and AOA requires antenna arrays and advanced

front-end hardware at the base station level, which are not available in general [Pahlavan and

Levesque (2005)].

TOA can be used under many technologies at relatively low cost, offering very accurate esti-

mates on distance, though under non-line-of-sight (NLOS) conditions, the lack of knowledge

for the shape of obstacles significantly increases the error on distance estimation [Pahlavan

and Levesque (2005)]. When confronted with such challenges, one popular approach aims at

identifying NLOS channels and to ignore them until the mobile moves in line-of-sight (LOS),
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[Heidari et al. (2009)], [Chan et al. (2006)], [Morelli et al. (2007)]. Other methods consist in

considering single-bounce reflection NLOS channels [Seow and Tan (2008)], but ignoring any

paths that experienced multiple scattering on obstacles. These solutions are limited to certain

scatterers geometries and require a large number of deployed base stations to cover one floor

of a building with a large number of scatterers.

Site-specific RTLS use additional knowledge acquired by either conducting a campaign of

channel measurements at several locations of the environment or from a map of the scatterers.

The former method, also known as fingerprinting, can provide good positioning performance

[Nerguizian et al. (2006)], and the latter can be used when field test measurements are not

available. Most in-building base stations and wireless router installers usually need the map

of the building to properly install their hardware, so this map is generally easy to obtain for

any service provider, as it is already used in commercial RTLS solutions [Cisco Systems Inc.

(2010)].

In this chapter, we present a site-specific RTLS method based on ray-tracing (RT) modelling on

a map of scatterers for positioning mobile stations using distances based TOA estimates, and

solving the position to less than the estimated distance error when the distance from three base

stations is used. We also performed extensive field trials in corridors of École de technologie

supérieure, and obtained less than 5 meters error for more than 85% of the tested locations

when the distance estimation has a 5 meters quantization step size. To the author’s knowledge,

this is the first real-time ray tracing algorithm for in-building mobile localization, and a detailed

discussion on related research is conducted in section 4.2.

The rest of the chapter is the following: in section 4.3, we formally define the localization

problem in our case and show the different blocks in our system model. In section 4.4, we

then show how we employ ray tracing methods to perform the RTLS task and discuss on the

complexity of our method. Finally, in section 4.5, we show the precision and computational

complexity that our method can reach using data gathered in extensive field tests we have

conducted.
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4.2 Related Research

4.2.1 NLOS Mitigation

Most solutions proposed in the literature for reducing the positioning errors caused by NLOS

channels can be described as mitigation: the detection and elimination of measurements ob-

tained from NLOS paths. Several authors have proposed mitigation techniques: [Heidari et al.

(2009)] use a binary hypothesis test based on a hybrid function of root mean square (RMS)

delay spread and RSS features, [Chan et al. (2006)] use a residual on measurements from all

base stations to only keep those that result from LOS channels, and [Morelli et al. (2007)] use

hidden Markov models on the whole channel impulse response data. In these methods, the

information obtained from NLOS paths is eliminated, and not used for localization purposes.

In [Seow and Tan (2008)], a method similar to NLOS mitigation is proposed, but adding in-

formation from paths that experience single-bounce scattering on obstacles to the localization

solution, while eliminating every path experiencing higher order scattering. This added infor-

mation was shown to improve performances, but extending this work to higher order scattering

would significantly increase computational complexity.

In [Chen et al. (2012)], an estimate on the distance error caused by NLOS measurements is

produced using a network of sensors. The results are supported by extensive simulation results,

based upon an exponential propagation model.

Using prior information on the error caused by NLOS paths lowers the Cramer-Rao lower

bound on positioning [Qi et al. (2006); Sieskul et al. (2009)]. By using the map of scatterers

(which is readily available to most service providers), an acceptable positioning accuracy can

be maintained even in heavily obstructed areas, while keeping a low density of sensors.

4.2.2 Scatterers Map Solutions

In outdoors, urban scenarios, several RTLS have successfully included scatterers maps, but

could not be easily exported to the kind of scatterers geometries that indoor environments
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experiment: [Kikuchi et al. (2006)] uses ray tracing software to generate a database of AOA

and degree of scattering channel features at every point on a 10m tile of an urban map. The

RTLS then finds the closest point in this database to measured features from MS. In [Coco et al.

(2004)], a similar tile database is generated, using ray tracing, including Universal Theory of

Diffraction formulae, and the RTLS then finds an electromagnetic source’s position by finding

its closest match in the database. [Tsalolikhin et al. (2011)] creates a partition of the floor plan

instead of generating a tiles database. Each partition encloses a set of locations with similar

TOA and AOA distributions. The RTLS then measures TOA and AOA from a MS, and finds

the partition with the closest joint AOA-TOA distribution in the database as a solution. Our

method follows a similar partitioning philosophy, which we adapted for indoor environments.

Indoors ray tracing methods have attracted much less attention in the RTLS literature, but the

ELVIS RTLS [Kaya et al. (2007)] proposes using a joint AOA-TOA estimate to back trace the

signal’s path from the BS to the MS. Our method is partially inspired from this method, but

it drops the need for a costly AOA estimator and only uses TOA measurements. Moreover,

our proposed technique comprises a preprocessing step which simplifies the real-time compu-

tational complexity, thus allowing its use in complicated scattering environments.

4.2.3 Fast and Precise Radio Ray Tracing

In this section, we discuss advances in radio ray tracing modelling that are useful for our

system, but are not related directly to RTLS. The computational complexity of these methods

have been an issue for several years [Huschka (1994)].

Hoppe et al. have developed a large number of radio ray tracing methods for indoors [Rauti-

ainen et al. (2007)] and urban microcells [Hoppe et al. (1999)] environments. These models are

shown to be accurate in extensive field tests and use preprocessing of the database to quicken

the ray tracing query process. The ray tree concept developed in section 4.4 of this chapter is

partially based on their work.

Fuschini et al. [Fuschini et al. (2008)] have developed 3D urban ray tracing models and assem-

bled specialized hardware to measure their accuracy. Among other results, they have shown
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that path gains and delay spreads can be modelled accurately using RT. Similar results have

been obtained for urban environments in [Son and Myung (1999)]. The concept of ray tubes

presented in this chapter, which concatenates several rays with similar properties in order to

simplify ray tracing is used extensively in our model.

The method of regions [Kimpe et al. (1999)] used for indoors radio ray tracing represents

regions that intersect several ray tubes obtained from reflections on walls, and is part of our

model. Indoor ray tracing models have also been proven to be accurate through extensive

measurements [Athanasiadou and Nix (2000), Browne et al. (2002)].

In summary, no indoor real-time localization method has been developed that compensates for

the radio-waves NLOS paths without requiring on-field propagation losses measurements.

4.2.4 Proposed TOA RTLS with Ray Tracing

The proposed RTLS solution for indoor environments uses existing wireless communication

infrastructures with relatively scarce base stations, and is shown to be accurate even with wire-

less channels experiencing perturbations from a large density of scatterers. The method pre-

sented in this chapter first performs extensive ray-tracing pre-processing tasks, partly based

on the fast ray tracing methods described in this section to create partitions as in [Tsalolikhin

et al. (2011)], but in regions sharing the same quantized TOA. The second task in our system

is performed by a RTLS that queries sets of partitions in the database to estimate the MS’

position.

4.3 System Model

In this chapter, we estimate a mobile station’s (MS) two dimensional (2D) position using up-

link channels, from the MS to several base stations (BS). We first describe how we estimate

the time of arrival from the channel’s impulse response (CIR) and we then show an optical

approximation to model the reflections of electromagnetic waves on walls.
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Figure 4.1 System model block diagram.

The system model is shown on Fig. 4.1. Map files are first preprocessed to generate tiles sets

files. These tiles sets files are then used for real-time localization. The different blocks for this

system are described in the following sections.

4.3.1 Map File

The geometry of walls is available in shapefile format, possibly extracted from the architectural

plans of a commercial, industrial or residential building. The type of materials and fine geome-

try of walls, as well as any information on furniture are not required in our reflective geometric

system, as opposed to electromagnetic propagation simulators. The algorithms presented in

this chapter consider the walls as two-dimensional impenetrable obstacles by all radio waves

composing the wireless channel. This ray-optical reflective model is acceptable for modeling

the TOA of radiowaves with a wavelength smaller than 30 cm and transmitted power smaller

than 100 mW studied in this chapter, and we leave the inclusion of transmissions, diffractions

and diffuse scattering of radio waves as future work.
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4.3.2 Tiles Generator

The tiles generator is the main part of our system, and we define some of its parameters in table

4.1:

Table 4.1 System Definitions

W Bandwidth (Hz)

D Propagation Depth

L Number of bins in Channel Impulse Response

Ti TOA Bin Index for Base Station i
B Number of base stations in system

The objective of the tile generator function is then to take a map and a base station position,

and to trace all the areas that have in common a distance from the base station. In the LOS

area surrounding the base station, each tile set has a single ring-shaped tile, and as the range

is increased further, tiles sets are created from a collection of parts from several rings. The

distance is estimated from the channel impulse response, for LOS and NLOS conditions.

4.3.2.1 LOS Distance Estimation

Time of arrival (TOA) is a well known feature used in mobile positioning, and in this section

we derive an extension of the time of arrival estimation to non direct path.

The wideband channel impulse response is represented by [Pahlavan and Levesque (2005)]:

h(τ) =
L∑
i=1

βie
jφiδ(τ − τi) (4.1)

where each multipaths i out of a total of L significantly strong paths has gain βi, phase φi

and delay τi. The TOA is the delay τ1,w of the first multipath reaching the receiver from a

transmitter and is estimated from the CIR of a channel with bandwidth w. In this chapter, we
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consider quantized delay bins, i.e.:

τk,w =
k

w
, k ∈ 0, 1, . . . , Nbins (4.2)

where Nbins/w is the delay spread of one channel h.

A common method for estimating τ̂1,w is to identify the delay τ at which h(τ) crosses a pre-

determined threshold:

τ1,w = {min τ |h(τ) > threshold} (4.3)

The distance between the transmitter and receiver nodes, calculated from TOA estimations is

then:

d̂w = cτ̂1,w (4.4)

4.3.2.2 NLOS First Specular Path

Under LOS conditions, event though multiple paths between MS and BS constitute the radio

channel, the direct path is the strongest and shortest one, thus easing the distance estimation

using the technique defined in section 4.3.2.1. Figure 4.2 b) shows these longer and weaker

multi paths mp.

Under NLOS conditions, however, an obstacle such as a wall blocks the direct path, so the first

detected path can be created from radio waves that were reflected or diffracted on obstacles,

or transmitted through them. Figure 4.2 c) shows two paths with similar length and most

probably similar strength, thus making the selection of the correct paths (figure 4.2 d), here for

three correct paths) more difficult.

Several techniques have been demonstrated to identify the shortest path in NLOS conditions

[Richter (2005)], [Botteron et al. (2004)] and [Pahlavan et al. (2006)]. Therefore, we assume

it is possible to always find the correct first path.
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4.3.2.3 NLOS Path Identification

Path rays are traced emerging from the base station bs at an angle α and reaching a distance cτ ,

thereby creating a pair labelled pα,τ . Figure 4.2 a) shows the geometry for the shortest path sp

and its destination point px,y in the LOS case. The channel follows several paths for the LOS

case (b) and the NLOS case (c). The overal objective is to identify the shortest path for every

base station in a considered environment (d).

Figure 4.2 Identifying the closest path to px,y.

Definition 4.1. The set of all angular and delay pairs

AT ≡ {pα,τ | 0 < α < 2π, 0 < τ < τmax}

Definition 4.2. The set of all positions on the floor:
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ST ≡ {px,y | 0 < x < xmax, 0 < y < ymax}

with (0, 0) and (xmax, ymax) being the lower left and upper right corners of the floor plan,

respectively.

Identifying the correct path then consists in defining a mapping function f between sets AT

and ST :

f : AT → ST (4.5)

One important challenge in this task is the fact that for every location px,y ∈ ST , there are

several possible paths, each of which passing on different walls, requiring a lot of calculations.

Using simple assumptions, this problem can be greatly simplified.

Proposition 1. NLOS paths have only been created from reflections on walls, and not from

diffraction or diffusion.

Lemma 1. Some positions px,y can be unreachable with purely specular interactions with

walls.

Definition 4.3. The area covering all areas only reachable with specular reflections is defined

as set S ⊆ ST .

Lemma 2. f : AT → S is a surjective mapping, because every location is linked to at least

one ray emerging from the receiver.

Proposition 2. Only the shortest path is detected at receiver level and it is always detected.

Lemma 3. For a given position px,y, there are many ray-generated points pα,τ resulting from

many paths, but we need only to consider the closest one (i.e. the one with τmin).

Definition 4.4. The set of ray points that cover closest locations is defined as A ⊆ AT .

Lemma 4. f : A → ST is an injective mapping, because every ray traced from the receiver

can be linked to at most one location.
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We now have enough lemmae to pose the following theorem:

Theorem 1. By reducing the set of ray pairs pα,τ to S and the set of positions px,y to A, a

bijective function can be created that links the two sets:

f : A ↔ S (4.6)

Defining a bijective mapping function in this manner greatly reduces the complexity of the

NLOS path identification at the cost of additional simple sets operations. RTLS methods that do

not exhibit the bijective property (such as fingerprinting techniques) can potentially experiment

a higher probability of error. First, several signal patterns can point to the same location, and

secondly some locations on the map could be unresolvable.

In the rest of the chapter, function f will be called the tiles generator, and we will describe it

in more detail in section 4.3.3.

4.3.3 Tiles Generator Function

The tile generator function quantizes a measured TOA to one out of L equal-sized delay bins

smaller than the delay spread of a site.

The tile generator takes a base station position and a map M, the delay quantization factor L,

tree depth D and creates a bijective function f of a time of arrival plus tolerance and angle of

arrival plus tolerance to create a set of tiles that represent all the positions at the end of the rays

that satisfy these times and angles. All these combinations are then saved in one file for each

base station, to be used later for real-time localization.

4.3.4 Loading Tiles & real-time Localization

During real-time localization, the TOAs are estimated and quantized by base stations, providing

a set of time bin indexes T1, T2, . . . , TB. Then, for every time bin index, the corresponding tile

set is loaded.
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We then obtain a reduced tiles set by intersecting all the loaded sets. The transmitter’s position

can then be picked from any location in this reduced tiles set. This position follows a result

similar to the geometric solution [Cafferty and Venkatraman (2004)] but using mirror images of

base stations on the obstacles’ surfaces. As future work, we could consider different probability

density functions for the TOA within one quantized step and use linear estimators to further

improve the positioning accuracy [Tseng and Feng (2012)].

We conduct a more detailed discussion on these mirror images in the next section.

4.4 Ray Tracing Computation

In this section, we derive detailed ray tracing computation methods for implementing the theo-

retical tiles generating and real-time localization functions developed in section 4.3. For every

computational geometry function we present, a short discussion on its computational complex-

ity is also provided.

4.4.1 Geometric Structures

The geometric structures used for the ray tracing method presented in this chapter are defined

in table 4.2.

The geometric structures defined in table 4.2 are illustrated on Fig. 4.3 for LOS geometry and

Fig. 4.4 for NLOS geometry. The TWVP in Fig. 4.4 is generated from the reflection on the

leftmost wall of the VP shown on Fig. 4.3. Its ghost source is then a mirror image of the VP’s

receiver on this same wall.

The algorithm used for generating the visibility polygon is the point visibility in a polygon with

holes, which is a classic computational geometry problem. This framework can be directly

applied to generate the VP from a receiver which applies very well to ray tracing problems.

1: procedure VISIBILITY POLYGON(Receiver,Map)

2: Asano’s point visibility in the plane algorithm [Ghosh (2007)].

Complexity: O(N logN) [Ghosh (2007)].



77

Table 4.2 Definitions for Geometric Structures

Primitives

Map A non-winding polygon with holes obtained

from maps (Fig. 4.1)

N Number of vertices in a map

Wall Any complete segment of a map

Wall Segment A segment ⊆ any one wall

Receiver An isolated vertex representing the known

exact location of a base station, the observer.

Generated Structures

Ghost An isolated vertex obtained from one

or more reflections of a receiver on walls

Ray Tube Triangle formed from one vertex on a ghost

and the opposing segment on a wall

Ray Tree Hierarchic ray tubes structure, defining

rays from a receiver and bouncing on walls

Visibility Polygon (VP) The area seen by a receiver

Through Wall VP (TWVP) The area seen by a ghost through a wall

Ring area comprised between two concentric

circles centred on a receiver or ghost

Tile A polygon which is the subset of a ring

comprised of segments and circular arcs

The algorithm used for generating the Through-Wall Visibility polygon adds an intersection

step to the VP algorithm and is based upon the reflection ray tubes presented in [Son and

Myung (1999)].

1: procedure TWVP(Ghost,Wall,Map)

2: Create viewport(Wall, Ghost Rays, map’s boundary)

3: NewMap←Intersect map with trapeze

4: Remove Wall from New map

5: Call Visibility Polygon with ghost and new map

The rays defining the viewport’s sides in step 1 emerge from the ghost, pass by the wall’s

endpoints and reach the map’s boundary.

Complexity: Step 2 involves intersecting a N − edges map with a k − edges viewport, which

can be done inO(k log k+kN+N logN) [Dévai (1995)]. In all cases, k has a value of either 4
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Figure 4.3 LOS Geometry.

or 5, therefore k � N and the complexity reduces toO(N logN). The new map polygon has K

edges, where K � N . Therefore, the overall TWVP complexity is O (N logN +K logK) ∝
O (N logN), which is exactly of the same order as the VP algorithm.

4.4.2 Ray Tubes Tree

Classical ray tracing methods [Huschka (1994)] consist in calculating the power emitted by a

transmitter as it radiates through its environment. While this method is very useful for cal-
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Figure 4.4 Reflective geometry.

culating the coverage from base stations, a reverse ray tracing method [Kaya et al. (2007)]

originating from the receiver is preferable for TOA localization purposes. The ray tracing

problem then consists in drawing all possible paths that a received signal can have taken.

Figure 4.5 shows that the reflective geometry from the receiver follows a n-ary tree structure

rooted on the visibility polygon around the receiver and propagating one step every time an

interaction occurs on a scatterer, or ray tree [Hoppe et al. (1999); Son and Myung (1999)].

Every non-root node represents a ray tube, for which a TWVP is generated; for every wall

segment in the TWVP, a child ray tube node is generated, until a depth D is reached.

The ray tracing tree is created using the following method:

The algorithm for generating ray tubes nodes in the ray tubes tree is the following:

1: procedure NODE(SOURCE, WALL, MAP)
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Figure 4.5 Ray tree structure.

2: Calculate G← Ghost(Source, Wall)

3: Calculate TWVP (G, Wall, Map)

4: Depth d← d+ 1

The recursive function of ray tubes for generating the ray tree is the following:

1: procedure RAY TREE GENERATION

2: Get Receiver R

3: Get Map M

4: Depth d← 0

5: Calculate VP(R,M)

6: for all Wall Wi ∈ VP do

7: d, Gi, TWV Pi ← Node(R, Wi, M)

8: if d < D then

9: for all Wall Wi,j ∈ TWV Pi do
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10: d, Gi,j , TWV Pi,j ← Node (Gi, Wi,j , M)

11: if d < D then

12: for all Wall Wi,j,k ∈ TWV Pi,j do

13: d, Gi,j,k, TWV Pi,j,k ← Node(Gi,j , Wi,j,k, M)

14: . . .

The complexity associated with this process is directly linked to
∑D

d=1N
d+1 logN , the total

number of nodes in the ray tree.

The total complexity is O
(∑D

d=1N
d+1 logN

)
= O

(
ND logN

)
. Typically, from one depth

level to the next, each wall generates polygons with no more than 2 walls, so this expression

can be approximated with O
(
2DN logN

)
. As a comparison, the worst-case complexity for

generating the D-reflections-visibility-polygon is O(N2DlogN) [Aronov et al. (2006)].

4.4.3 Tiles Generation Algorithm

In a strictly LOS environment, regions of the floor sharing a common quantized TOA value

would have a ring-shape as shown on Fig. 4.3. However, the presence of reflective scatterers

in NLOS environments creates distortions in these rings, which become fractioned in curved

polygons sets, defined as tiles in table 4.2. Using the ray tree structure developed in section

4.4.2, we can draw tiles sets by intersecting rings centred on ghosts with every TWVP in the

tree:

1: procedure TILES GENERATION(RAY TREE RT)

2: RL ← List of L rings with increasing radii

3: PS ← The set of TWVP polygons from RT

4: for all Ring Ri ∈ RL with increasing radii do

5: PSi ← Set of polygons ∈ PS intersecting Ri

6: for all Polygons Pi,j in PSi do

7: T ilei,j ← Intersect Pi,j with Ri

8: Tile Set T i ← T ilei,j

9: Save T i to file
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10: Remove T i from PSi

The intersection or difference of two polygons with a total of N vertices, and k intersect-

ing edges have a O(N logN + k) time complexity [O’Rourke (1998)]. Since k � N in

our case, we skip this factor and the combined intersection and difference operations have a

O(2N logN) time complexity. We perform this task for every TWVP intersecting a ring, which

has a worst case complexity ofO
(
ND+1L

)
then the overall upper bound isO(ND+22L logN).

Typically, the number of nodes in the ray tree is less than O
(
2D

)
, and most TWVPs have less

than 10 vertices in regular indoors geometries similar to ones we have experimented in our

field trials, so the typical time complexity for generating tiles is O
(
66L · 2D).

The space complexity for tiles sets files is the number of vertices used to represent the curved

polygons generated in procedure TILES GENERATION. An upper bound on the number of

vertices is to have N vertices for every TWVP associated with every node in the ray tree.

The polygon-polygon intersection has a O(N) space complexity [O’Rourke (1998)]. Then,

the space complexity per file is O(L · ND+2) vertices. Using a similar argument to the time

complexity above, the typical space complexity is O
(
10L · 2D).

4.4.4 RTLS from Tiles

For every measured and quantized TOA Ti at receiver points i, the RTLS seeks its correspond-

ing Tile Set Ti and calculates the intersection between all tiles sets to generate the final solution

space S. Figure 4.6 illustrates an example of tiles sets for different quantized TOA. Since we

assume no knowledge on the TOA within the quantized value, every position in S is equiprob-

able. The RTLS then returns region S and a randomly picked point in S as its final result.

1: procedure REAL-TIME LOCALIZATION(T1, T2, . . . , TB)

2: for all Requested times of arrival Ti do

3: Load tile set Ti of tiles set list i.

4: Polygons set S ← Intersection of all loaded tiles sets

5: Pick any point at random from S



83

Figure 4.6 Example of tiles generated for TOA bin indexes 2, 3, 6 and 9.

Complexity: the number of polygons in one of the L tile sets of a file generated from a ray tree

with depth D has an upper bound of O(L · ND+2) vertices, which happens if all the vertices

of the largest possible ray tree are concentrated in a single tile set. Since vertices are divided

fairly evenly among the L tiles sets, and since most polygons have less than 10 vertices each,

the typical complexity per tiles set is O(10·2
D+2

L
+ K) with bias K representing the minimal

number of vertices per tile, which occurs when rings are very thin.
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The joint intersection of B tiles sets has a worst case time complexity of

O
(
(B − 1)

[
(L ·ND+2 log ·ND+2

])
and since L� ND+2, the expression can be reduced to O

(
(B − 1)(LND+2) D+2

logN 2

)
.

The typical time complexity is O
(
(B − 1)

[
10
L
· 2D+2 +K

]
log

[
10
L
· 2D+2 +K

])
.

4.5 Measurements

Our objective is to measure the limits in accuracy of our ray tracing model shown in section 4.4

when tested with field measurements. Our tests involve channel sounding experiments [Heidari

et al. (2009)] performed at the first floor of École de Technologie Supérieure, in the corridors

surrounding an amphitheater room. The floorplan is shown in Fig. 4.7.

4.5.1 Tests Setup

We have placed an emitter antenna at 24 randomly picked different locations and a receiver

antenna at 5 different locations, as shown on Fig. 4.7. The tx locations illustrate the path that

a pedestrian could have followed in the ETS corridors and the rx positions illustrate possible

Wi-Fi router positions. For all these tx − rx combinations, we have measured the channel

frequency response following the test equipment and parameters defined in table 4.3.

4.5.2 Channel Impulse Response

For all frequency response measurements done following the methods defined in section 4.5.1,

we used the chirp-z transform to extract the channel impulse response:

h(n) = h(τ)|τ=nΔt =
1

N

N−1∑
k=0

W (k)H(k)ej2πnΔt×kΔf (4.7)

with N = 1601, Δt = 187.5ps, Δf = 936.9kHz,
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Table 4.3 Field Trial Specifications

Hardware

Vector Network Analyzer Agilent HP8753ES

Low Noise Amplifier Mini Circuit ZRL-1150LN

Low Noise Amplifier Mini Circuit ZX60-1215LN+

Amplifier Mini Circuit ZX60-24+

60m Coaxial Cable AIR802 CA600

Channel Sounding Parameters

Bandwidth 800 MHz to 1.4 GHz

Power 10 dBm

Number of points 1601

Time index size 1 ns

Ray Tracing Parameters

Ray Tree Depth (D) 8

Last Ring’s Radius 130m

Number of Rings (L) 13, 26 and 130

Figure 4.7 Transmitters and receivers positions.
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4.5.3 Experimental Specular Time-Of-Arrival

For all channel impulse responses extracted in the previous section, the first specular path’s

time of arrival is estimated. In LOS situations, this task is a straightforward application of

Eq. 4.3. For NLOS situations, we assume that the correct multi path element can be picked

by a method described in section 4.3.2.2. We have therefore selected the correct multi path

component in the channel impulse response and applied Eq. 4.3 on it to obtain the time-of

arrival.

The TOA at every receiver i is then quantized in one out of L equally-sized bins to obtain Ti.

For every transmitter, we have then measured the positioning error of our RTLS for all possible

combinations of three TOA estimations Ti: [(1, 2, 3), (1, 2, 4), (1, 2, 5) . . . (3, 4, 5)].

4.5.4 Accuracy

The root-mean-square complementary cumulative distribution function for the localization po-

sition error is illustrated in Fig. 4.8. The trilateration scenario involves classical trilateration

without considering the effect of walls on the result. The ideal curves show the limit on lo-

calization accuracy when the time of arrival selects the correct time bin for three different

ring width sizes (130/L = 10m, 5m and 1m). The experimental curves show the localization

accuracy for the process described in section 4.5.3 for the same ring width sizes.

A single CIR measurement was considered for estimating the TOA at every base stations, and

no super-resolution [Pahlavan and Levesque (2005)] was used. Using several CIR samples

to estimate the TOA, super-resolution algorithms or others could at least improve localization

performances and produce CDF curves similar to those shown on Fig. 4.8, but shifted leftwise.

Comparing our algorithm to the trilateration method, we can see a 10-fold accuracy improve-

ment using the additional information provided by NLOS multipath bounces on scatterers.

Another important observation is that our three-way intersection method improves the accuracy

from any single TOA estimate. For example, three TOA measurements quantized in 5 meters

bins have more than 98 % probability of positioning the MS with less than 5 meters error in
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Figure 4.8 Positioning error.

the ideal curve. For the experimental curve, this probability drops to 80 %, which could be

compensated by more advanced TOA estimation techniques. Obstacles with various shapes

and positions result in positioning results with different accuracy, whose distribution can be

observed on the positioning error CDF curves on Fig. 4.8.

4.5.5 Complexity

The theoretical complexity expressions defined in section 4.4 are tested experimentally here.

In Fig. 4.9, the time complexity for the tiles generation pre-processing task is measured for

several ray tree depths. It is found to be between 2D and 3D, which is close to the theoretical

typical complexity.
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Figure 4.9 Ray tree creation time complexity.

Real-time complexity was measured and the results are shown on Fig. 4.10. The time complex-

ity of the RTLS method is inversely proportional to the number of rings used until it reaches

bias K, which is 0.6 in our case.

Figure 4.11 illustrates the space complexity per ring and time complexity in the same plot. The

objective of this plot is to show how the number of vertices per ring commands the RTLS time

complexity for a wide range of ring step size L values.

4.5.6 Area Coverage

Using a purely specular reflection propagation model can leave some points of the considered

area untouched by rays. On Fig. 4.12, a), we can see the LOS area around a receiver, on

b), a small spot represents the area simultaneously in LOS of three receiver points, on c) the
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Figure 4.10 RTLS time complexity.

area seen in LOS and reflections around the same receiver, and d) the area seen in LOS and

reflections from the same three receivers simultaneously.

Fig. 4.12 shows the area covered by (a) LOS and one base station, (b) LOS intersection of 3

base stations, (c) reflective visibility of one base station and (d) the area covered by the inter-

section of the reflective visibility of the same 3 base stations. This figure illustrates how NLOS

methods can increase the area coverage over LOS methods. Our model includes specular re-

flections on walls, but no diffraction or diffusion. Therefore, some locations on the floorplan

that are only reachable with these electromagnetic scattering effects are not covered, as dis-

cussed in section 4.3.2.3. Nevertheless, the area covered by the intersection of three LOS areas

used for localization can be smaller than one meter-squared like for Fig. 4.12 b). By adding



90

Figure 4.11 Tiles Complexity.

specular reflections, the three-way intersection covered area increases to more than 80% of the

floorplan as shown on Fig. 4.12 d).

We have calculated the area covered for all tx-rx combinations in this scenario and the results

are summarized in table 4.4.

Since the average distance between base stations is 28.7 m, we consider that this deployment

scenario has a higher base stations density than any commercial 802.11 or indoor cellular

networks. For this optimistic scenario, a NLOS mitigation technique that eliminates any NLOS

path will end up with an average joint three base stations coverage of 1.9% in our scenario with

5 base stations. In comparison, our method using multiple order reflections on walls has a

82.3 % coverage ratio. When a MS is located outside the covered area, large localization errors
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Table 4.4 Map Characteristics

Total Area 1620 m2

Number of Base Stations 5

Mean Std

Distance Between Base Stations (m) 28.7 7.9

LOS Area Coverage per BS (%) 25.34 11.4

Total Area Coverage per BS (%) 97.9 1.8

LOS Three-way Intersection Area Coverage (%) 1.9 3.3

Total Three-way Intersection Area Coverage (%) 82.3 19.4

occur. These results clearly show that TOA RTLS methods based on LOS hypothesis are less

suitable than our method in indoors environments involving a high scatterers density.

4.6 Conclusion

In this chapter, an indoor RTLS for dense scatterers environments is presented which uses

scatterers maps and ray tracing techniques to define zones having common TOA to base stations

with known locations.

The simulation and field trials shown in this chapter illustrate how using ray tracing methods

on a scatterers map in TOA RTLS can significantly increase the coverage area and accuracy

when compared with LOS methods. In our experimental test setup at ETS, the coverage area

increased from 1.9% to 82.3% using the proposed technique while the accuracy was improved

by a 10-fold factor. This task can be accomplished in real-time by saving pre-processed tiles

sets files.

As discussed in section 4.3.2.2, in this chapter, we have assumed that the right multi-path

element is picked in the CIR, using known signal processing methods. A logical next step in

developing a realistic application would be to implement these methods and expect a decrease

in accuracy for the realistic TOA estimation of the first CIR peak is prone to more errors

than the ideal scenario we have used in this work. On the other hand, no drop in coverage is

expected, as the CIR peak estimation process does not decrease the channel delay spread.
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Figure 4.12 Coverage for different visibility and base stations combinations.

Improving our ray tree structure pose some important challenges such as adding diffraction,

transmission through walls, diffuse scattering and 3D geometries while maintaining the real-

time properties. The regularity of the scatterers surfaces like walls, floors and ceilings mean

that ray tubes can be used for many of these model improvements [Son and Myung (1999)].



CONCLUSION

The deployment of cognitive radio devices by the wireless communication industry offers fun-

damental performance improvements on communication capacity, localization accuracy and

coverage.

We have proposed selective relaying schemes for amplify-and-forward and decode-and-forward

which achieve near optimal power and subcarrier allocation with perfectly known channel state

information. Even in the cognitive radio context with advanced spectrum sensing mechanisms

implemented, continuously estimating the changing channel gains in all frequency bands can

prove to be a difficult challenge to tackle. An extension of our work could include optimization

algorithms for selective relaying and non-relaying subcarriers with only partial channel state

information.

Cognitive radios can opportunistically access spectrum holes to increase their link capacity, and

significantly increase the number of users and services they can support. By using cooperative

communication under low transmission power bounds, not only can mobile cognitive radios

transmit in licensed bands without interfering with primary users, but they can also reduce

their power consumption. In this work. we have shown how OFDM power and subcarrier

resources can be allocated in order to maximize the capacity of wireless communication links.

Cognitive radios can be used for opportunistic access of the radio spectrum by detecting spec-

trum holes left unused by licensed primary users. We introduce a spectrum holes detection

approach, which combines blind modulation classification, angle of arrival estimation and

number of sources detection. We perform eigenspace analysis to determine the number of

sources, and estimate their angles of arrival (AOA). In addition, we classify detected sources

as primary or secondary users with their distinct second-order/ one-conjugate cyclostationarity

features. Extensive simulations carried out indicate that the proposed system identifies and

locates individual sources correctly, even at -4 dB SNR.

In environments involving a high density of scatterers, several wireless channels experience

non-line-of-sight(NLOS) condition, which considerably increases the localization error, even
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when the AOA estimate is accurate. We present a real-time localization solver (RTLS) for

time-of-arrival (TOA) estimates using ray-tracing methods on the map of the geometry of walls

and compare its performance with classical TOA trilateration localization methods. Extensive

simulations and field trials for such indoor environments show that our method increases the

coverage area from 1.9% of the floor to 82.3 % and the accuracy by a 10-fold factor when

compared with trilateration.

As mentioned in section 4.3.2.2, the ideal first path is used as the input time-of-arrival metric

in our system. A logical further step to implement our RTLS to practical systems would be

to include a non-line-of-sight first path estimation method. Commercial three-dimensional

radio ray tracing software is already available for solving the ray-optical approximation to

the Maxwell equations including diffraction on edges, transmissions through obstacles and

diffusion on rough surfaces. Expanding our RTLS software to include all these elements, while

maintaining its real-time property would then be an obvious next step in implementing our

RTLS algorithm in commercial RTLS products. Nevertheless, the ray-tracing pre-rendering

philosophy and computational geometry basis on which this work is rooted will provide a

useful framework for developing a robust RTLS with limited complexity.

In general, this thesis opens the path for a significant amount of future research in order to reach

a cognitive radio system capable of jointly localizing, identifying and avoiding to interfere with

primary users, in any wireless channel propagation condition. Results presented in this thesis

show that steps on this path have been taken, especially in marginally solving each part of this

problem, but solving them jointly would be an important step in developing a realistic cognitive

radio system using spatial spectrum holes.

Cognitive radios in general are not as widely implemented in commercial applications as its

predecessor software-defined radio. Even though current service providers could try to block

changes in spectrum access regulations for several years, if a technology capable of oppor-

tunistically accessing the radio spectrum without interfering with primary users is developed,

it is of my opinion that pressure will be too strong to let some 90 % of its spectrum be wasted

by licensed users. Until cognitive radios are indeed widely deployed, the algorithms presented
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in this thesis can be adapted for their implementation in other cooperative communication and

localization systems.
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