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ABSTRACT

With the advent of wind energy technology, several methods have become mature and are seen

today as standard for predicting and forecasting the wind. However, their results are still site

dependent, and the increasing sizes of both modern wind turbines and wind farms tackle limits

of existing methods. Some triggered processes extend to the junction between microscales and

mesoscales.The main objectives of this thesis are thus to identify, implement and evaluate an

approach allowing for microscale and mesoscale ABL flow modelling considering the various

challenges of modern wind energy applications.

A literature review of ABL flow modelling from microscales to mesoscales first provides an

overview of the specificities and abilities of existing methods. The combined mesoscale/large

eddy simulation (LES) modelling appears to be the most promising approach, and the Com-

pressible Community Mesoscale Model (MC2) is elected as the basis of the method in which

the components required for LES are added and implemented. A detailed description of the

mathematical model and the numerical aspects of the various components of the LES-capable

MC2 are then presented so that a complete view of the proposed approach along with the speci-

ficities of its implementation are provided. This further allows to introduce the enhancements

and new components of the method (separation of volumetric and deviatoric Reynolds tensor

terms, vertical staggering, subgrid scale models, 3D turbulent diffusion, 3D turbulent kinetic

energy equation), as well as the adaptation of its operating mode to allow for LES (initial-

ization, large scale geostrophic forcing, surface and lateral boundaries). Finally, fundamental

aspects and new components of the proposed approach are evaluated based on theoretical 1D

Ekman boundary layer and 3D unsteady shear and buoyancy driven homogeneous surface full

ABL cases. The model behaviour at high resolution as well as the components required for

LES in MC2 are all finely evaluated, including: the dynamic kernel at high resolution; space

and time discretization of the 3D turbulent diffusion; five subgrid scale models; and the sen-

sitivity of the model to numerical parameters. Furthermore, LES test cases are thoroughly

studied, showing that a longer time interval for post-processing than in the reference studies is

needed due to a high but normal level of scatter in the results.

In the end, the obtained LES-capable mesoscale model is shown to perform on par with other

similar reference LES models, albeit it is slightly more dissipative. It is thus demonstrated that

the adapted MC2 is suitable for both micro- and mesoscales providing a strong foundation for

more advanced studies.

Keywords: atmospheric boundary layer, large eddy simulation, column model, mesoscale,

microscale, neutral, convective, compressible
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RÉSUMÉ

L’avènement de la technologie éolienne s’est accompagné de l’arrivé à maturité des méthodes

pour prédire et prévoir le vent. Toutefois, leurs résultats dépendent encore des sites étudiés,

et leurs limites commencent à être atteintes avec l’augmentation de la taille des parcs et des

éoliennes modernes. Certains des processus en présence sont maintenant à la limite des mi-

croéchelles et des mésoéchelles. Les objectifs de la thèse sont donc d’identifier, d’implémenter

et d’évaluer une approche capable de modéliser les écoulements dans la couche limite atmo-

sphérique (CLA) à ces échelles en considérant les défis liés aux applications éoliennes.

Une revue de la modélisation des écoulements de la CLA allant des microéchelles aux mé-

soéchelles est tout d’abord réalisée. La combinaison des approches mésoéchelle/simulation

aux grandes échelles (SGÉ) ressort comme étant la plus prometteuse, et le Modèle Mésoéchelle

Compressible Communautaire (MC2) est choisi comme point de départ auquel sont ajoutés et

implémentés les éléments requis pour la SGÉ. S’en suivent, la description détaillée du modèle

mathématique et des aspects numériques de la version de MC2 adaptée pour la SGÉ. Ainsi,

l’approche proposée est clairement illustrées tant dans son ensemble, qu’au niveau des spé-

cificités de son implémentation. Cela inclus les améliorations et les nouvelles composantes

de la méthode (séparation du traitement des parties volumétriques et déviatoriques du tenseur

de Reynolds, discrétisation verticale, modèles de sous-mailles, diffusion turbulente 3D, équa-

tion prognostique 3D de l’énergie cinétique turbulente), ainsi que les adaptations de son mode

opératoire permettant la SGÉ (initialisation, forçages géostrophiques grande échelle, condition

limites de surface et latérales). Finalement, les aspects fondamentaux et les nouvelles com-

posantes de l’approche proposée sont évalués basé sur des cas 1D de couche limite d’Ekman

et des cas 3D et instationnaires de CLA complète neutre et convective au dessus d’une surface

homogène. Cela permet de finement évaluer : le noyau dynamique à haute résolution ; la dis-

crétisation spatiale et temporelle de la diffusion turbulente 3D ; cinq modèles de sous-maille ;

et la sensibilité du modèle aux paramètres numériques principaux. De plus, létude détaillée

des cas tests 3D démontre que des intervalles de temps plus long que dans l’étude de référence

sont nécessaires à cause d’une dispersion importante mais normale dans les résultats.

En définitive, il est prouvé que le modèle mésoéchelle adapté pour la SGÉ est aussi performant

que les modèles SGÉ équivalents, quoique sensiblement plus dissipatif. Il est donc démontré

que les modifications apportées à MC2 lui permettent d’opérer tant aux microéchelle qu’aux

mésoéchelles, ce qui représente une base solide pour des études plus avancées.

Mot-clés : couche limite atmosphérique, simulation aux grandes échelles, modèle colonne,

mésoéchelle, microéchelle, neutre, convectif, compressible
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C
〈u〉
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CM , CH Momentum and heat surface transfer coefficients

CKol Kolmogorov constant generally taken equal to 1.5− 1.6
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Cε TKE dissipation closure constant of TKE based SGS models
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C ′1 Coefficient
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Eu, Ev, Ew Longitudinal velocity spectra of streamwise, spanwise and vertical velocity compo-

nents
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components

fm, fh Momentum and heat stability functions of UKMO Smagorinsky and hybrid TKE

SGS models

fmstd
, fhstd

Standard momentum and heat stability functions of UKMO Smagorinsky SGS model

F,G Parameter

F External forcing of the filtered momentum conservation equations (includes f and

turbulent diffusion terms)

F External forcing and heat sources of the filtered Euler equations in matrix form (in-

cludes f , Q and turbulent terms)

F ∗Ψ x External forcing of the passive scalar conservation equation

F turb Part of F including turbulent terms only

Fu turb, Fv turb, Fw turb, FT turb Streamwise, spanwise, vertical velocities, and temperature components

of F turb
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F V
turb,F

H
turb Vertical and horizontal part of F turb

F V
u turb, F

V
v turb, F

V
T turb Streamwise, spanwise velocities, and temperature components of F V

turb

FH
u turb, F

H
v turb, F

H
w turb, F

H
T turb Streamwise, spanwise, vertical velocities, and temperature components

of FH
turb

h Parameter; height of orography above sea level; height of the stable boundary layer

hx, hy Streamwise and spanwise computational domain lateral halo sizes (in index)

H Numerical horizontal diffusion added to the Euler equations in matrix form

k Turbulent kinetic energy (TKE)

ktot Total TKE (resolved and subgrid)

kμ Parameter of Dnor function

kx Longitudinal wave number

Kψ,KM ,KT ,Kk Generic, momentum, temperature and TKE turbulent mixing coefficients

l, lt Length; characteristic mixing length scale of turbulence

lRANS , lLES RANS mixing length and LES filter width of Bechmann hybrid SGS model

LMO Monin-Obukhov length scale

Lxi , Lx, Ly, Lz Generic, streamwise, spanwise and vertical sizes of the computational domain

Lk,Lε Mixing and dissipation length scales of Redelsperger SGS model

LN Mixing length based on N for stable stratification of Deardorff based SGS model

LS Mixing length based on S for stable stratification of Kosovi SGS model

L Linear terms of the Euler equations of motion in matrix form

Ltr L averaged in time along the Lagrangian trajectory

Lij Léonard stress tensor

n Integer parameter; iteration number

N Brunt-Väisälä frequency

N∗ Reference isothermal state Brunt-Väisälä frequency

Ni, Nj , Nk Number of points of the computational domain in the streamwise, spanwise and

vertical directions

nk Numbers of vertical levels

Nsponge Number of levels in the top sponge layer

p, pt Pressure on momentum and temperature levels

p0 Constant; Pressure at the ground surface

ph, pht Hydrostatic pressure on momentum and temperature levels

pred Reduce pressure, i.e. including volumetric part of Reynolds tensor

p∗ Hydrostatic isothermal reference pressure

Pk Production term of the TKE equation

P Generalized pressure (model main variable)

q Normalized pressure (= ln(p/p0))

q∗ Hydrostatic isothermal reference normalized pressure

Q Heat sources in the filtered internal energy conservation equation (Q and turbulent

diffusion terms)

Q Heat sources in the internal energy conservation equation

Q Linear and non-linear terms of the system of equation solve by the model

r Parameter

Rij Reynolds stress tensor

R Non-linear terms of the Euler equations of motion in matrix form
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Rtr0 R spatially averaged along the Lagrangian trajectory at t0

Rturb Part of R including only turbulent terms

Rls Part of R including only large scale forcing terms

Ru ls, Rv ls, RT ls Streamwise, spanwise velocities and temperature components of Rls

R Ratio of resolved over subgrid turbulent stress at the first grid level

S Modulus of the strain rate tensor

Sij Strain rate tensor

S(kc) Velocity derivative skewness function

t Time

T Absolute temperature

T∗ Hydrostatic isothermal reference temperature

T Robert/Asselin time filter in matrix form

Tinert Inertial period

U Wind velocity modulus

UMO Wind velocity modulus computed based on the similarity theory

ut Characteristic velocity scale of turbulence

u∗ Friction velocity

u′v′, u′w′, v′w′ Turbulent momentum fluxes

u′2, u′2, u′2 Turbulent momentum variances

u′θ′, v′θ′, w′θ′ Turbulent heat fluxes

u+w−, u−w+ Sweeps process and ejection process

v, u, v, w Wind velocity vector and its streamwise, spanwise and vertical components (model

main variables)

vg, ug, vg Geostrophic wind vector, and its streamwise and spanwise components

w∗ Convective velocity scale

w′u′2, w′v′2, w′3 Vertical turbulent fluxes of velocity variances

w′U ′|s Surface turbulent momentum fluxes in the wind direction

w′θ′i Turbulent heat flux at the inversion

Wzt Momentum to temperature levels vertical interpolation Coefficient

x, y, z Streamwise, spanwise, and vertical Cartesian coordinates

x Arrival location of a Lagrangian trajectory (correspond to a grid point)

x, x0, y, y0 Intermediate variable of surface layer integrated stability functions

z+ Dimensionless wall distance

z0 Aerodynamic roughness length

z0M , z0H Momentum and heat aerodynamic roughness length

z1 Height above the surface of the first vertical level (variable dependent)

zaM , zaH Height of the momentum and heat levels used to compute integrated surface transfer

coefficients

zc Critical height

zi Height of the ABL (minimum heat flux at the inversion)

zie Stability dependent ABL height

zm, zw, zt Momentum, vertical velocity and temperature level heights

zref , ztop Reference and top height defining the new vertical mesh

Z New vertical coordinate

Zlog, Znor Function used in the definition of new vertical mesh



INTRODUCTION

The last two decades have seen substantial growth of wind energy industry with northern Eu-

rope countries such as Denmark and Germany driving most of the early stage developments.

Wind energy technology has become mature and versatile, and it is considered today as a re-

alistic approach to produce mass electricity. The world cumulative installed wind capacity has

grown exponentially as illustrated in Fig. 0.1. Canada and Québec are no exception with a

total installed capacity that has been multiplied by 30 over the last decade going from a meagre

137 MW in 2000 mostly installed in Cap-Chat/Matane, Québec to 5511 MW in June of 2012

distributed across Canada with a fifth of that capacity installed in Québec.

 0

 50

 100

 150

 200

 250

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

G
lo

b
al

 i
n
st

al
le

d
 c

ap
ac

it
y
 [

G
W

]

Years

Figure 0.1 Global cumulative installed wind capacity from 1996 to 2011.

From Global Wind Energy Council (GWEC) (2011, p. 15)

Modern wind turbines usually produce up to a couple of megawatts (MW) in optimal condi-

tions. Their hub is generally located at 100 m above the ground level (agl) with a rotor diameter

of a similar size, and wind farms having up to a couple of hundred turbines are more and more

common. They operate in the lowest part of the atmosphere, the so-called atmospheric bound-

ary layer (ABL), or more precisely in the surface layer of the ABL, which is directly influenced

by the earth surface. Considering that horizontal spacing between wind turbines is at least five

times their diameter, wind farm usually spread across several kilometres.
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In order to efficiently exploit the wind resource, a prediction of its geographical distribution is

needed so that wind turbines can be installed in the best locations. Similarly, the optimal in-

tegration in the electricity network of the energy coming from wind requires wind production

to be forecasted at least one day ahead. This, along with the forecast of electricity demand,

allows grid operators to make the best use of wind energy by minimizing the required produc-

tion from conventional power production facilities that are more polluting and more expensive

to operate. As a result, wind resource prediction and forecasting are two crucial tasks for wind

energy production to be economically appealing.

Problematic

Time and space variability of ABL flows highly depends on both local and large scale geo-

physical properties of the region of interest. Similarly, by going from blade airfoils to a region

with large clusters of wind farms, wind energy production facilities impact (and are impacted

by) ABL flows and wind resource at various scales as illustrated in Fig. 0.2 which is meant

to be an analogy with Stull (1988, Fig. 1.15, p. 20)). Wind technology thus clearly presents

a multiscale nature ranging from smallest microscales typical of engineering applications to

mesoscales usually being the appanage of weather applications. Models and approaches used

by the wind energy industry are thus borrowed from both the computational wind engineer-

ing (CWE) and meteorology domains, and there is a clear delimitation between these two

domains in wind energy applications. Microscale and Computational Fluid Dynamics (CFD)

approaches are commonly involved from the design of the blades to the design of a wind farm,

while mesoscales approaches are mostly used as a basis for wind forecasting and large scale

wind resource assessments.

With the advent of wind energy technology, several methods and tools have become mature and

are seen today as standard for predicting and forecasting the wind by the wind energy industry

and research community. These methods generally perform properly in optimal conditions

featuring well know limitations. However, result quality is still a function of the properties

of the sites studied. As a general rule, not considering the additional impact of wind turbine
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Figure 0.2 Typical time and space orders of magnitude for various aspects of

wind energy production facilities in analogy with Stull (1988, Fig. 1.15, p. 20)

and wind farm, the more the site and its surrounding area are complex (orography and surface

cover), the higher the errors are. As an example, there are often large differences between the

predicted versus the effective annual energy production of wind farms. Similarly, 24 hours

ahead production forecast commonly present an error of at least around ten percent. Thus,

wind energy industry still faces numerous challenges in these area due to the complex nature

of the environment in which wind turbines operate.

In addition, the large size of modern wind turbines as well as the increasing extent of wind

farms tackle the limits of existing approaches. Indeed, some of the processes triggered, which

are not yet fully understood (Wyngaard, 2004; Teixeira et al., 2008), are at the limit between

microscales and mesoscales. There is also the rise of new challenges in the regions with a

high wind energy penetration (Shaw et al., 2009). Indeed, on the one hand, most of the best
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suited sites are taken requiring to install new wind turbines in more complex sites for which

errors of standard approaches are higher. And on the other hand, wind farms start to have an

impact on the regional wind climate which is not yet neither well understood nor considered

by current mesoscale models. Finally, in the context of Quebec, and more generally of Canada,

wind energy industry faces additional constraints, i.e. Nordic climate (very cold environment,

freezing rain, frozen sea and lakes, large variation between summer and winter, boreal forest),

for which methods for predicting and forecasting the wind were not designed.

As a consequence of the above, there is a need for more advanced approaches better taking into

account the physical processes of ABL flows, such as distorted flow patterns induced by a com-

plex surface and thermal stratification, and their multiscale nature. Furthermore, microscale

approaches have to be able to deal with the largest microscales and the smallest mesoscales

due to the increasing size of wind turbines and wind farms, while mesoscale approaches need

to better take into account smallest mesoscale processes that are triggered by large wind en-

ergy production facilities. Thus, both the upper limit of microscale models and the lower limit

of mesoscale models need to be pushed further. In that sense, ABL flow scales at the limit

between microscales and mesoscales require a better understanding, which would allow to de-

velop new approaches better addressing the various challenges of predicting and forecasting

the wind for modern wind energy applications.

Objectives and methodology

The objective of the present study is thus to develop an approach or combination of approaches

that would allow to predict and study ABL flows from microscales to mesoscales. For that sake,

relevant components of both microscale and mesoscale methods need to be mixed together by

adapting either an available microscale model to perform properly at mesoscale, or a mesoscale

model to perform properly at microscale.

However, the best suited way as well as the most promising microscales and mesoscales ap-

proaches are at first unknown. As a result, the first associated objective is to review and evaluate

the various possible approaches to model ABL flows. It will allow to clearly appreciate their
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abilities and limitations with regards to the various processes of importance for wind energy

applications, and thus permit to define what appears to be the best suited approach.

The combined mesoscale/large eddy simulation (LES) modelling turns out to be the most natu-

ral, promising and skilled approach. Furthermore, due to the environmental modelling abilities

of mesoscale models, the latter appears to be the best suited starting point for the development

of the new approach. As a result, the second associated objective of this study is to implement

in the elected mesoscale model, i.e. the Compressible Community Mesoscale Model (MC2),

the required components allowing for LES. A full overview of the required adaptations, such

as the inclusion of the three dimensional turbulent diffusion and subgrid scale (SGS) mod-

els, is presented, and these new components are thoroughly described along the details and

specificities of their implementation in the mesoscale model.

The third associated objective is to validate relevant aspects and new components of the intro-

duced model, i.e. the LES-capable MC2, based on representative and challenging ABL flow

cases. Considering that the elected mesoscale model has already been thoroughly evaluated

for large scale flows, the validation of the new approach is mostly based on microscale typical

cases (impossible to reproduce with the original MC2 model). To finely evaluate the funda-

mental aspects of the various new components, homogeneous surface stratified full ABL cases

are elected. Note finally that this validation is achieved in comparison to existing solutions and

other reference results from the literature.

Thesis structure

The first chapter of the thesis is dedicated to the review of the specificities and abilities of

approaches used to model ABL flows at various scales. The three most common families of

approaches are successively discussed, i.e. CWE models, environmental models, and finally

LES models. The ultimate goal of the review is to identify an approach suitable to address the

challenges faced by modern wind energy applications.
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In a second chapter, the full mathematical model of the elected approach is thoroughly de-

scribed. Fundamental equations are first introduced and filtered, followed by the various details

of the turbulence modelling and other more specific aspects. Only momentum, internal energy

and pressure are considered (as opposed to the traditional description of mesoscale models

where others relevant processes for environmental modelling are also included).

The third chapter presents numerical method used to implement the mathematical model in-

troduced in the previous chapter. Following the structure of the model, i.e. the dynamics, the

physics, the initialization and the post-processing, all the details of the implementation are

thoroughly presented focusing on the various new components introduced.

The last chapter focuses on the validation of the fundamental aspects and new components

implemented in MC2 in the context of typical full ABL microscale flows. One dimensional

Ekman theoretical cases (Berger and Grisogono, 1998) are first investigated to finely evaluate

some aspect of the approach. Then, relying on the Moeng and Sullivan (1994) homogeneous

surface stratified full ABL cases, the introduced model is thoroughly evaluated for the first

time. In a third section, the sensitivity of the LES model to the principal numerical parameters

is assessed and compared to other existing solutions. Finally, a last section is dedicated to the

evaluation of the various refinement brought to the MC2 model.

Finally, the various contributions and achievements of the thesis are outlined in a conclusion

along the recommendation for future work.



CHAPTER 1

LITERATURE REVIEW

Most of human activities are taking place in the lowest part of the atmosphere, commonly

known as the Atmospheric Boundary Layer (ABL). Meteorological properties of this layer af-

fect us directly. Temperature, precipitations and wind are certainly the most relevant. Thus,

it is important to understand and predict the behaviour of such quantities. However, ABL is

the cradle of several coupled non-linear multiscale phenomena. Both large scales and local

phenomena interact as well as each quantities with each other. ABL can thus be regarded from

a wide range of scales and with a degree of completeness being a function of the objectives of

the studies. Only surface layer flows are considered by most civil engineering studies while

the full ABL, i.e. from the earth surface to the free atmosphere, immersed in a large scale flow

is modelled by Numerical Weather Prediction (NWP) approaches. As a result, Computational

Fluid Dynamic (CFD) approaches used to model ABL flows vary a lot depending on the ap-

plication and the information needed. Indeed, assumptions can be made in the Navier-Stokes

(NS) equations that greatly simplify the problem at the price of representativeness. In a gen-

eral sense, the time, horizontal and vertical scales of the problem as well as more practical

considerations characterize the chosen ABL modelling approach.

In this chapter, the modelling of ABL flows in its broadest sense is addressed. A review of

the main approaches used in various domains is intended, keeping in mind that wind energy

applications are the ultimate goal of the present work. Thus, at first, the methods dedicated for

modelling flows at the microscale level, i.e. CWE approaches, are presented. Afterwards, the

modelling of ABL flows within large scales models, i.e. environmental modelling and NWP, is

reviewed. Finally, LES approaches dedicated to the modelling of the ABL are investigated. In

a conclusion, these approaches are further compared in order to clearly identify and justify the

method chosen for the present work.
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1.1 Computational Wind Engineering (CWE)

Computational Wind Engineering (CWE) consists in the numerical study of flows in the lower

part of the ABL, i.e. the surface layer, in order to model, predict and understand wind flows

and loads over various geometries and complex terrains (Stathopoulos, 2002). Microscale

processes and small scale turbulence phenomena are dominant at these scales.

From an engineering perspective, only the most relevant ABL processes are considered, and the

ABL is left to its most simplistic expression, i.e. retaining shear and surface roughness proper-

ties while considering only a perfectly neutrally stratified surface layer. Indeed, such a strategy

is motivated either by the will to thoroughly study some aspects of the flow (without having

the ’noise’ from other processes) or to obtain a simple yet representative model dedicated to

a practical use (i.e. wind resource assessment, study of wind loads, ...). In this section, after

refining the ABL definition in view of engineering application, the approaches commonly used

in computational wind engineering are reviewed, i.e. simple and highly dedicated approaches

and CFD models. Focus is set on models promising for wind energy application.

1.1.1 ABL in view of engineering applications

The vast majority of CWE applications consider the ABL as being only the surface layer and

they rely on the most common representation of the latter, namely the Monin-Obukhov (MO)

similarity theory also known as the log-law velocity profile (Richards and Hoxey, 1993; Mu-

rakami, 1997; Stathopoulos, 2002). While this theory takes into account surface layer thermal

stratification, non-neutral flows are rarely considered in CWE. This theory is also used to ob-

tain other quantities such as the momentum flux or the TKE profile. It is however only valid

for the surface layer of a statistically horizontally homogeneous ABL (Stull, 1988).

Instead, some applications use a very simplified ABL representation for which the velocity

profile follows a power-law. This originated directly from classical fluid mechanics (Schlicht-

ing, 1979; Tritton, 1988). Indeed, the empirical formula of the classical velocity profile for

turbulent boundary layer over a flat plane is given by u(z) = ua (z/za)
α

where ua is the ref-
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erence wind speed at the reference height za, u is the wind speed at the height z and α is the

shear coefficient (an empirical exponent). For classical turbulent boundary layer over a flat

plate, this exponent is usually taken to be α ≈ 0.143 = 1/7. Empirical in nature, this law

can easily be used to provide an inlet boundary condition or for vertical interpolation. It has

been used extensively for years in the wind energy domain (Spera, 1994; Manwell et al., 2002),

mainly thanks to its robustness and its ability to simply interpolate wind data. While the shear

coefficient α has a highly non-linear behaviour, some researchers developed formulations of

the power-law that take into account surface roughness or thermal stratification (Spera, 1994;

Manwell et al., 2002). Coming back to CWE, the classical log-law surface layer representation

is also sometimes not used because model validations are based on wind tunnel experiment.

Indeed, real ABL Reynolds number, roughness length parameter, z0, and thus vertical profiles

of velocity as well as turbulent quantities are not trivial to reproduce in a wind tunnel.

When only surface layer flows are considered in a restricted area, the Coriolis acceleration

has no impact. As a result, Coriolis effect is generally not included in CWE. It is however

sometimes present for practical reasons. Indeed, as discuss later, the top boundary definition

and flow driving process appear somewhat more natural when using a geostrophic wind. In the

wind energy sector, only the surface layer is most of the time considered for problems with total

horizontal size smaller than 10 km. The Coriolis effect thus has negligible impacts (turning

of the main flow is negligible). This approximation may be questionable when considering

modern wind turbine, which top is often above surface layer (∼ 10 % of ABL height), and

large wind farms that span over more than 10 km.

Finally in CWE, ABL is mostly considered as being neutrally stratified, thus removing tem-

perature from the problem. Such an assumption brings huge simplifications since all thermal

effects are neglected and thus, only momentum and mass conservation need to be solved. This

assumption is perfectly justified for comparison with laboratory flows. Full scale data have

however to be used with caution when compared with numerical results based on this assump-

tion. For the particular case of wind energy application, results based on this assumption are

found to be representative enough to satisfy the industry requirements (at least for the moment).
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Indeed, over flat terrain, the yearly averaged vertical velocity profile is often well approximated

by the neutral profile.

To sum-up, the CWE approaches generally share the following representation of the ABL:

• 3D surface layer only;

• steady;

• neutrally stratified;

• no Coriolis effect;

• incompressible high Reynolds number flows.

As a result, unless specified, the term ABL will refer to the neutrally stratified surface layer

only in this section.

1.1.2 Simple and highly dedicated approaches

Thanks to their inexpensive character, simple and highly dedicated approaches to model ABL

flows over terrain are very popular, notably within the microscale wind resource assessment

community. The two more popular approaches a presented in this section1.

1.1.2.1 Mass conservation microscale model

One of the simplest approach to model the ABL over a terrain is to use interpolation based

on the geophysical parameters of the surface and under the constraint of minimizing the mo-

mentum flux divergence. An example of such an approach is the MINERVE model (Finardi

et al., 1993). In this model, various weather data (generally surface wind from met towers)

are first interpolated on the computational grid using the natural neutral log-law as well as a

clever interpolation method taking into account topography and roughness. Afterwards, inter-

polated data are refined based on the mass continuity and ABL stratification. This approach

thus contains no dynamics equation: it is purely kinematic.

1 The approaches presented in this section are generally not included within CWE methods (even if they hold a

computational character and were developed for engineering applications). They are part of this section

because there are also part of the microscale approaches.
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This type of model is less demanding than CFD approaches. However, as shown by Finardi

et al. (1993), its results are heavily influenced by the interpolation methods used and also by

the location and amount of input data. And since it is kinematic, every main dynamic flow

feature has to be depicted by some input wind profile. In the comparison of Finardi et al.

(1993), two mass conservation models were compared to a dynamic linearized Navier-Stokes

equations based model. The author conclude that all models “show an ability to describe the

flow with errors” lower than 20 %.

1.1.2.2 Linearized Navier-Stokes equations approach

Linearized Navier-Stokes equations approach is still by far the most widely used for microscale

surface wind studies (notably for wind resource assessment). The mathematical concepts and

methods they invoke were introduced by Jackson and Hunt (1975) and are far from being

trivial. In fact, this approach allows to quickly compute flows over hills with a gentle slope.

This theory is based on the linearisation of the advection term in the conservation equations.

This is done by directly computing the velocity speed-up and considering the background flow

as constant in the terrain-following direction (horizontal). A vertical variation is allowed and

the ABL is furthermore divided in several layers each based on a different equilibrium in the

equation of motion. Due to the linearisation of the advection terms, this family of methods is

sometimes called dynamic linearized models or simply linear models. In its original version,

two layers were present:

The inner layer: closest of the surface. Viscous (molecular and turbulent) forces are domi-

nants through the shear stress.

The outer layer: above the inner layer. In this region the flow can be considered as inviscid

(rotational or irrotational).

Each of these layers is then matched asymptotically in the vertical direction to obtain the com-

plete solution of the flow over orography. In general, the horizontal directions are processed

based on Fourier transformation (implying periodical lateral boundary conditions) while in the
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vertical direction, the layering approach used at first was replaced by finite differences that

were found to be more convenient since they allow smoother transitions (Ayotte, 2008).

From the classical version described, many enhancements were tried, such as the implementa-

tion of a more complete turbulent closure in order to increase the model accuracy and further

push its limits toward more complex terrain. It is also important to underline that the Jackson

and Hunt (1975) approach considers only topography. As a result, it needs to be coupled with

other models to be able to take into account all the earth surface properties which influence di-

rectly the wind profile, such as the roughness length. Ayotte (2008) achieved a comprehensive

review of the evolution of these methods over the years.

Linear models are robust and require a very low computational cost. This mainly explains their

success over the years. The most famous example of the application of this theory is the Wind

Atlas Analysis and Application Program (WAsP) that was developed to create the European

Wind Atlas by Troen and Petersen (1989). In fact, WAsP is the coupling of several dedicated

sub-models such as the roughness changes model (non-linearly coupled with stratification) or

the orography model (also called B-Z model) which is based on (Jackson and Hunt, 1975)

model. Others implementations also exist such as MS-Micro of Taylor et al. (1983) (which is

also known as the Mixed Spectral Finite Difference (MSFD) model).

This kind of approach leads to promising results when they are used within their working

envelope i.e. neutrally stratified flow over low and smooth hills. Their theoretical limit is

for small perturbation i.e. with a velocity speed-up, ΔS = u′/u, lower than 0.2 (u being

the unperturbed velocity and u′ the velocity perturbation). In practice, they work well up to

u′/u ≈ 0.5 (Petersen et al., 1998). However, they are not able to reproduce detached flow

which may occur for a slope higher than 0.3 (the slope can be expressed as the height of the

hill divided by its half width). As an example, the speed-up at the top of the hill is over-

estimated due to linearisation for flow over an isolated rough hill with a the slope value higher

than 0.3. Non-linear models need to be used over such orography.
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1.1.3 CFD modelling of ABL flows

CFD has experienced a tremendous amount of advances and refinement since its birth 40 years

ago. A huge amount of studies were published, each time enhancing, applying, comparing and

validating some of the possible approaches. The practical use of these methods has increased

in the last 20 years and today they are about to become a standard for many applications. More

than a decade ago, Stathopoulos (1997); Murakami (1997, 1998) presented comprehensive

reviews of turbulence models applied to Computational Wind Engineering (CWE). After re-

viewing the various possible applications and associated challenges, some of the most common

and most promising turbulence models were presented and discussed. While a wide range of

results is introduced, the authors focus on bluff body flows to study in details various aspect of

the closures. Such a flow presents several of the most challenging features, i.e. separation/re-

circulation, impinging area, vortex shedding, that are also relevant for flow over natural terrain.

Murakami (1997, Tab. 6) presents a summary of particular interest: the various approaches

discussed are organized as a function of their abilities. As a summary, concerning Reynolds

Averaged Navier-Stokes (RANS) methods, the standard k − ε model is the least dexterous

due to inherent limitations of the underlying assumptions and the eddy viscosity hypothesis.

Some modifications such as the use of a non-linear eddy viscosity are shown to correct its

main drawback (such as the over-production of TKE in the impinging area causing a momen-

tum deficit). Reynolds Stress Models (RSM), i.e. true second order models, lead to equivalent

results with a more complete description of turbulence but enhancement of the result does not

worth their higher complexity and computational cost. Finally, LES models are found by far

more versatile, notably when using dynamic subgrid scale models. There are however very

computationally demanding and less easily applicable. Stathopoulos (1997, 2002) concluded

that CWE was still in its infancy and the numerical wind tunnel still needs development.

The ten last years have seen a large increase of the CWE use in environmental engineering

applications such as microscale pollutant dispersion. For wind energy applications, even if his-

torically simpler models were preferred, CFD is becoming a standard with the democratization

of computational power. Ayotte (2008) depicted the computational methods used in wind engi-
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neering attempting to clarify their abilities, limits and source of errors. Recently, Sumner et al.

(2010) reviewed CFD in wind energy. The study is divided in two parts. First, small scale flows

are treated i.e. aerodynamics of the wind turbine from the blade elements to the whole rotor.

The second part, which is of concern to us, is dedicated to larger scale flows (aimed at wind

turbine siting) i.e. simulation of the ABL flows from flat terrain to complex terrain and wind

turbines and wind farm wake effects. The methods discussed in those two latter studies are of

the same families as in Stathopoulos (1997, 2002), but they are refined to better address wind

energy challenges. Furthermore, they are evaluated in the context of wind energy. The chal-

lenging problems (refinement of boundary conditions and turbulence models) are thoroughly

discussed. Concerning the RANS methods, conclusions are also that the so-called standard

k − ε model is clearly put aside by the research community to the benefit of some variants

such as the RNG k − ε or non-linear viscosity models that are discussed later. RSM model

popularity also suffer from its higher computational cost. The authors clearly state that RANS

approaches are nevertheless not likely to overcome the difficulties related to terrain with a large

slope where the modelled mean flow recovers too quickly (notably when the surface is rough).

LES is found to be the best solution while still mostly used for research applications more than

to solve practical problems.

In this section, CFD modelling of surface layer flows is presented in more details from the

angle of wind energy applications. At first, the challenges and solutions to model the homoge-

neous surface layer are inspected. Then, ABL flows over heterogeneous terrain are considered,

including flows over bluff bodies, ideal and real orographies. It is to note that, while the two

former geometries serve us to study turbulence closure abilities, the latter allows to present the

challenges faced in dealing with full scale real cases.

1.1.3.1 Modelling of the neutral homogeneous surface layer

An appropriate modelling of the neutral homogenous surface layer is the simplest yet critical

requirement for successful CWE applications. The underlying challenge is a correct reproduc-

tion of the profile of the variable of interest as well as an ABL in equilibrium that is maintained
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across the computational domain. In that sense, care has to be taken not only in the turbulence

model but also in the boundary conditions. Challenges between the two main approaches,

RANS and LES, differ. Indeed, RANS aim to reproduce a strictly horizontally homogeneous

flow. In LES, eddies ranging from the problem size to the filter size have to be explicitly present

with the right level of energy in order to statistically reproduce the same homogeneous state as

RANS. In consideration of their properties, LES is thoroughtly reviewed in Sec. 1.3.

A true no-slip surface boundary condition with a mesh starting within the roughness sublayer,

i.e. z+ = u∗z/ν ≤ 11 (Schlichting, 1979), is non trivial for ABL flows due to their rough

character. Indeed, ABL flows are high Reynolds number flows that are most of the time fully

aerodynamically rough. It implies that the roughness sublayer is smaller than the roughness

elements and that shear stresses are dominated by the Reynolds stresses at the height of rough

elements. As a result, an explicit representation of the roughness element would be needed to

solve the flow within and above roughness sublayer. This type of surface boundary condition

is the most correct and it should be used whenever possible to strictly evaluate the turbulence

model abilities while removing errors from the surface boundary condition. However, practical

reasons sometimes prevent its use which is the case when modelling the surface layer with

most of the RANS approaches. At that point, it is of interest to underline that k − ω models

can overcome these shortcomings (Patel, 1998). By properly specifying the surface boundary

condition using notably a roughness based Reynolds number to characterize the aerodynamic

regime, Knopp et al. (2009) managed to obtain very promising solutions.

As a result of those difficulties close to the ground, from the simplest model to the most ad-

vanced once, the surface velocity boundary condition generally accepted is a wall function

based on the log-law velocity profile. In that case, the first mesh point needs to be located in

the logarithmic region of the boundary layer, i.e. z+ ≥ 30. The surface momentum flux, u∗,

is computed from this law and imposed as a boundary condition for the turbulent diffusion;

surface velocity is then updated. Another strategy is to add a drag form sink term in the mo-

mentum equations expressed as −Cdv |v|. Cd is a drag coefficient that is non-zero only within

a layer close to the surface. This approach is often called the canopy stress model (Brown et al.,
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2001) because it was first developed to better represent vegetative canopy. The integral of this

force over the depth is equal to the surface stress. This allows to find correspondence between

Cd profiles and the aerodynamic roughness, z0. The canopy stress model is known to be better

suited than the classical log-law approach over forest and complex land cover, such as patchy

forest with well defined edges (Dalpé and Masson, 2008).

Other quantities at the surface and the inlet such as the turbulent properties are prescribed ac-

cording to both experimental results and mathematical constraints of an homogeneous surface

layer which follows the log-law velocity profile. Richards and Hoxey (1993) provided a sim-

ple set of boundary conditions and constants for the widely used k − ε models to be able to

reproduce correctly the ABL in homogeneous conditions. Thanks to the underlying strong ar-

guments, these boundary conditions were generally adopted (Hargreaves and Wright, 2007).

However, turbulence models closure constants are responsible of many debates. In fact, various

experimental campaigns have led to different measurements. As an example the surface layer

value of the TKE is found to vary from 3.75 u2
∗ (Wyngaard and Coté, 1974) to 5.47 u2

∗ (Garratt,

1992) which gives a value of the model constant Cμ ranging from 0.071 to 0.033 (based on

TKE surface boundary condition from Richards and Hoxey (1993)) while the standard con-

stant is 0.09. Thus, constants seem to be a function of the site. Currently, a stronger consensus

however exists to adopt a modified set of constants more appropriate to the ABL (Sumner et al.,

2010) instead of the one originally proposed by Launder and Spalding (1974).

Concerning the commercial CFD softwares, it is to note that they are certainly the computer

codes that are the most used, notably for practical applications. Generally, only research cen-

tres and large companies are able to have their own in-house codes specially dedicated to their

needs. Even if commercial codes offer facilities to adapt the model (such as the User Define

Function (UDF) in Fluent/CFX), they are often used with few or even no adaptations. Follow-

ing this approach imposes to use the provided boundary conditions. However, Hargreaves and

Wright (2007) recently demonstrated that the generally implemented rough wall condition in

those codes (Nikuradse’s sand grain equivalent roughness) was not suited for ABL modelling

based on k − ε approaches. They recommended and explained how to use the Richards and
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Hoxey (1993) approach in such a case (notably for the surface and the top boundaries). While

this set of conditions is largely used, a problem is often described: the development of a stream-

wise gradient in the TKE and ε in the near wall region. Sumner and Masson (2010) recently

elucidated that it was caused by a numerical error related to the log profile curvature close to

the ground and an insufficient grid refinement. The solution to correct such an error in the case

of a mixing length model was introduced decades ago by Taylor and Delage (1971). However,

the full correction for the k − ε models further required correction of terms in the TKE and

dissipation rate prognostic equations. After such a correction is applied, nearly perfect agree-

ment is obtained between inlet and outlet for all variables (not only velocity as before). It can

however be seen as an ad-hoc modification of the model since it is based on the log law profile

only applicable for homogeneous flat terrain.

Concerning the lateral boundary conditions, the most common solutions are to use either sym-

metry or periodicity condition. And, for outlet condition, a velocity outflow or a pressure

outflow is often chosen.

Finally, concerning the driving of the flow, several approaches are also possible. The most

common and simple one is to use a symmetry at the top boundary and force the flow thanks to

mass conservation and the inlet velocity profile (Gasset et al., 2005). However, based on this

approach, the shear in the vicinity of the top boundary is affected (Gasset et al., 2005), and a

lost of momentum can be observed when domains are very long in the streamwise direction.

A more appropriate approach is to impose a shear stress at the top of the domain based on the

log-law velocity profile in a same way it is done at the surface (Richards and Hoxey, 1993).

This is considered as the optimum approach in CWE (Hargreaves and Wright, 2007). It is also

possible to impose a pressure gradient between the inlet and the outlet of the domain such as in

a channel flow (Bechmann, 2006). This gradient can be adjusted as a function of the divergence

of the momentum fluxes in order to obtain the desired velocity at the top of the boundary layer.

Note that this gradient should be negligible in comparison to shear stress effects close to the

surface. The velocity profile is thus not affected by the former. Another approach is to use a

pressure gradient, but in conjunction with the Coriolis effect such that a geostrophic wind drives
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the flow. In that case, wind velocity components follow an Ekman spiral which are closer to

a real ABL (without thermal effects). The two last approaches allow to use a stress free top

boundary condition and are more generally used with LES and mesoscale models. Finally,

the last approach for boundary conditions discussed here is nesting. Following this approach,

all the boundary conditions (inlet, outlet, lateral and top) are coming from a computation on

a larger domain and generally with a coarser resolution. This approach is very common for

mesoscale model as opposed to CWE. It is more appropriate for LES or when dealing with full

scale flows for which ideal homogeneous inflow conditions rarely exist.

1.1.3.2 Flow over topography

Once the homogeneous surface layer is correctly modelled, it is possible to think about intro-

ducing the desired heterogeneity within the computational domain. The meaning of topogra-

phy here includes orography features as well as surface cover heterogeneity such as roughness

changes. Full scale measurement campaigns are expensive, tricky and until recently it was

not possible to have a knowledge of the complete velocity and turbulent fields in the ABL

other than punctual. In addition, not being in a controlled environment also complicates the

acquisition and the post processing of the data. As a result, a large part of the comparison and

validation of the various CWE methods was undertaken based on more classical wind tunnel

experiments. However, since the boundary layer obtained in wind tunnel differs from the ABL,

CWE ABL models needs to be adapted through their constants to optimally reproduce wind

tunnel flows. So the best practice appears to be the use of both wind tunnel and full scale

experiments such as done by Kim and Patel (2000).

A distinction is also to acknowledge between bluff body flows and flows over natural, smoother

topography. Indeed, vertical edges of bluff bodies encourage to use Cartesian grids while mesh-

ing based on curvilinear approaches is much straightforward for smooth and natural topogra-

phy. Non-Orthogonal curvilinear meshes (also referred to as oblique coordinate) must be used

with care since grid cells can get strongly deformated in the case of steep terrain. Mesh de-

formations can cause non-negligible numerical errors. A solution is to use the more advanced
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orthogonal approaches for which vertical edges of the mesh are always perpendicular to the

ground and mesh deformation is minimized (Kim and Patel, 2000). Another possibility is to

use cell blocking approach (Murakami, 1997; Bonaventura, 2000; Gasset et al., 2005).

As reviewed by Murakami (1997); Stathopoulos (1997, 2002); Sumner et al. (2010), a large

amount of numerical studies exist that compare with both full scale and wind tunnel experi-

ments. The aim of the present work is not to review all of them but to have a clearer image of

the ongoing work and to illustrate the capacities of the various models.

1.1.3.2.1 Flow over bluff bodies and ideal topography

Concerning flows over bluff bodies and ideal topography, experimental cases generally found

in the literature are: forward and backward facing step, cubes, buildings of all shapes, escarp-

ments, triangular ridge, step mountains, bell shape hills and valleys. Among other things, we

can cite Moss and Baker (1980) 2D forward and backward facing step with Re = 5 × 104

but a smooth surface, RUSHIL (2D hill) (Khurshudyan et al., 1982) and RUSVAL (2D val-

ley) (Khurshudyan et al., 1990) EPA’s experiments with a rough surface, Ishihara et al. (2001)

smooth/rough 2D/3D hills and forward facing step and Ayotte (2008) changing steepness 2D

smooth/rough hills. Several datasets are also available through the European Research Commu-

nity on Flow Turbulence and Combustion (ERCOFTAC) (www.ercoftac.org). In their reviews,

Stathopoulos (1997) and Murakami (1997) show numerous comparisons of numerical mod-

els with wind tunnel experiments (mainly for buildings and bluff bodies). In ours days, some

research groups have further reproduced scaled city centres (Stathopoulos, 2002), as well as

natural terrain topography such as the Bolund hill, 2008 (http://windenergyresearch.org/2010/

09/the-bolund-project/). In that sense, the Wind Dome facility of the University of Western

Ontario looks very promising (www.eng.uwo.ca/windeee/). However, besides bluff bodies, a

large part of the wind tunnel test cases are 2D (Kim and Patel, 2000).

A turbulent closure model that is almost absent of the CWE literature is the k − l approach.

Indeed, this one to one-and-a-half order turbulence model is heavily used for the modelling of

the stratified ABL but it is less popular for modelling the ABL over complex terrain because
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the flow needs to be a priori known to best define the mixing length, which is impossible for

complex terrain situation. Indeed, while for second order models the mixing length is computed

based on the values of both k and ε, here it is directly set. The k− l approach is however more

natural in the case of a homogeneous stratified boundary layer since l is of the same order as the

eddy characteristic scales. This approach is thus very common for meteorological application

as discussed later (see Sec. 1.2). The microscale model Meteodyn WT (Delaunay et al., 2004)

is based on a k− l closure derived from Mellor and Yamada (1982) which is further discuss in

the next section. Meteodyn WT appears to be a promising tool for wind resource assessment,

notably when considering its improvement over linear approaches, its computational efficiency

and the fact that thermal stratification is taken into account.

Using RUSHIL and RUSVAL rough neutral test cases, Finardi et al. (1995) tried various mix-

ing length based turbulent closures going from first order to one-and-a-half order. They tested

three approaches for the computation of the velocity scale: mean velocity gradient (∂U/∂z),

vertical velocity fluctuation (w′2) and the TKE. Concerning the mixing length, Blackadar

(1962) and Hunt et al. (1989) approaches were tested. The inclusion in the definition of the

mixing length of ∂U/∂z/
√
w′2 (Hunt approach) was shown to give significant improvements

over the standard Blackadar mixing length formulation. They also found that the velocity scale

computed from TKE is not fully appropriate for the cases tested due to high vertical anisotropy

of the turbulent field. In other words, the authors state that the additional complexity intro-

duced by including the prognostic equation for TKE (or two equations for k and ε) may not

produce a corresponding improvement in the results as opposed to using a full second order

closure model such as the Reynolds Stress Model (RSM) that does not rely anymore on the

eddy viscosity hypothesis.

Ross et al. (2004) present new wind tunnel results that are used to compare a range of one-and-

a-half and full second order models (i.e. RSM). The experiments intend to reproduce scaled

neutral and stably stratified atmospheric boundary layer flows over a 2D ridge of various slopes.

The general conclusion is that while the RSM approach gives the best results (although it is less

numerically stable), the various approaches tested perform adequately for neutral flow over a
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2D hill, notably when the mixing length computation is tuned to take into account the local

Reynolds stress. Indeed, the addition of the shear dependent term in the one-and-a-half order

mixing length leads to significant improvements in predicting the development of the wake

region downstream the hill in both neutral and stable cases. However, both one-and-a-half or-

der schemes fail to provide a good prediction at the top of the hill, and only the full second

order model is able to correctly model lee-side flow. None of the models are able to correctly

reproduce u′2, w′2. Concerning the more classical RANS approaches, Zhang (1994) compared

a standard k− ε with the early results from Moss and Baker (1980), illustrating the difficulties

of the k − ε in recirculating areas. Later, Murakami (1997); Stathopoulos (1997) clearly doc-

umented those problems and illustrated the possible solution: alleviate the shortcoming of the

isotropic eddy linear viscosity using a non-linear formulation. The Boussinesq eddy viscosity

is said to be linear because it relates linearly strain rate and the stress (when not considering the

expression of the eddy viscosity). In the non-linear viscosity model, this relation is based on a

polynomial including both the deformation tensor, Sij , and the rotation tensor, Ωij . In parallel

and to address the same problems, approaches correcting terms in the dissipation prognostic

equation were introduced such as the RNG k−ε. Both type of approaches are able to overcome

the standard approach main limitations.

Easom (2000) and later Wright and Easom (2003) thoroughly reviewed the k − ε family ap-

proaches as well as the RSM. Easom (2000) presents a large amount of results as well as

comparisons with full scale measurements of flows over a building, a 6 m perfect cube and a

fence. The conclusion of the study is that best suited k−ε models are advanced non-linear eddy

viscosity approaches such as the Craft non-linear model. The second best performing models

are the RNG k−ε and the RSM. However, the latter is less numerically stable. The author also

claim that some non-linear models such as the MMK (Murakami, Mochida and Kondo) are

based on ah-doc modifications. Both non-linear, RNG and RSM approaches correct the prob-

lem of over-production of TKE inherent to the standard k − ε. However, it is stated that none

of the RANS models provide accurate results for the whole range of test cases. Interestingly,
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Kim and Patel (2000) also found the RNG model to be performing well but they had troubles

with the Craft non-linear model, which failed to work due to wall-functions problems.

Lun et al. (2003) tried classical and modified k − ε approaches (Durbin realizable model and

Shih non-linear eddy viscosity model) for flow over a hill and over a cliff for various surface

roughness lengths. They also showed that non-linear and realizable models correct the over-

prediction of TKE done by the classical approach in the impinging area. Furthermore, it was

found that surface roughness has a significant impact on the length of the recirculation regions.

The performance of several k − ε models varied depending on the case reproduced notably

concerning the Durbin k− ε for the flow in the lee side of the hill. In fact, this latter model was

not able to represent properly flows after an obstacle.

A year after, Bitsuamlak et al. (2004), achieved a review of the neutral surface layer flows

modelling over complex terrain. The study shows a good amount of cases (wind tunnel and

full scale data) and the models discussed go all the way from the National Building Code of

Canada to advanced modified k − ε closures. Both ideal and natural terrains are considered.

The authors conclude that in general, numerical results are in agreement with field data in the

upstream area of the complex terrain as opposed to the downstream region where larger differ-

ences are generally observed. The RNG k − ε closure is often cited as giving the best results.

Speaking of the influence of the roughness, Ayotte (2008) also evaluated RANS approaches

with wind tunnel data of flows over a smooth ridge of various height and roughness, and found

that roughness impacts the length of the recirculating zone, notably for moderately steep hill

for which the recirculation area may or may not be present depending on the roughness. Ayotte

(2008) shows that RANS models fail in the back face of the hill where the flow recovers too

quickly. The maximum slope at which the RANS approach performs well is found to be 0.4

over a smooth surface and 0.3 over a rougher surface. He suggests that only the use of eddy

resolving approaches can prevent those shortcoming. Furthermore, he states that wind tunnel

data, while very helpful, are free of externally imposed length scales such as may be present in

the atmospheric boundary layer (see Sec. 1.2). In addition, as clearly illustrated by Bitsuamlak

et al. (2004) in its two last figures as well as during the Bolund intercomparison (Bechmann
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et al., 2010), wind tunnel scaled models and full scale experiments lead to different results.

None of the wind tunnel experiments were in the top ten best results of Bolund blind intercom-

parison. Several factors can explain this fact but one of the main causes is the differences in

the boundary layer turbulent properties due to the wind tunnel characteristics and the scaling

factors. These latter points, explains why models need to be adapted (through the constants) to

perform better for full scale cases (Richards and Hoxey, 1993; Sumner and Masson, 2010).

1.1.3.2.2 Flow over real terrain

Several cases are presented in the literature that illustrate surface layer measurement cam-

paigns over all sorts of terrain going from flat heterogeneous to very complex terrain and urban

environment. The most well-known and used site is certainly the Askervein hill located in

Scotland (Walmsley and Taylor, 1996). There are many other campaigns such as the Sirhowy

valley or the Blashavar hill test case, less popular but as useful, as it is reviewed by Taylor

et al. (1987). It is also important to cite some of the experiments based on full scale buildings.

The most well known experiments may be those from the Silsoe research facilities including,

buildings, a fence and a perfect cube (Hoxey et al., 2002; Quinn and Richards, 2002) or the

Texas Tech University building (Levitan et al., 1990).Due to practical considerations, most of

the well instrumented sites used for experiments are generally of limited size. Furthermore, as

illustrated by Taylor et al. (1987), nearly perfect low hills are often elected. Historically, they

were sought because being at the limit of suitability of linear approaches (i.e. the front side

gives good results while on the lee side flow is too complex to be well reproduced by such sim-

ple methods). Recently, a full scale measurement campaign and blind test were led for a small

hill called Bolund, close the Risø national laboratory in Denmark (Bechmann et al., 2010). The

hill was just ∼ 12 m high, but the incoming boundary layer depth was small compared to the

hill height (making the latter large in comparison). A LIDAR (Light Detection And Ranging)

as well as sonic anemometers monitoring the three velocity components were used to measure

wind properties along several sections of the hill.
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At the opposite of the full scale heavily instrumented test cases, the huge part of full scale

comparisons are based on another type of data, i.e. punctual measurements coming from met

towers. Advanced 3D sonic anemometers are rarely used by the wind energy community. Cup

anemometers are very often preferred instead for economical reasons. Thus, only horizontal

wind modulus, direction and standard deviation (SD) of both are monitored (SD from the sub

averaging frequency). In that case, the measures are generally more scattered, more prone to

uncertainties of all kinds and less trivial to use. So post-processing and filtering are needed.

Intercomparison of the results with other studies is furthermore less straightforward or impos-

sible since each of those cases feature it own specificity. The studies from Gasset et al. (2005)

to Brodeur and Masson (2008) illustrate the latter facts and the implicit limitations of working

with punctual data. However, validation/comparison with measurement from cup anemometers

is the closest from real life applications and it is heavily used in the wind energy sector. Such

measurements are thus also useful even if less universal in terms of model validation.

Comparisons of RANS with full scale data generally lead to the same conclusion as for compar-

isons with wind tunnel data (Stathopoulos, 1997; Murakami, 1997; Easom, 2000; Stangroom,

2004; Bitsuamlak et al., 2004). Indeed, the same limitations inherent to RANS models as

illustrated in the above sections were observed here. As an example, Kim and Patel (2000)

reproduce the flow over several natural topographies (Sirhowy valley and Askervein). As for

the ideal cases, the best results were obtained with the RNG k−ε approach. Stangroom (2004)

concluded that advanced two equation closure models, such as the k − ε RNG, are recom-

mended, but that RSM models lead to better results.

Full-scale cases add also new important challenges: the heterogeneous character, even if small,

of surface roughness, orography are important to consider as well as the impact on the flow

of surrounding features and unsteady phenomena in the area of interest. A particular attention

needs thus to be dedicated not only in the model, but also to the input data used in the boundary

conditions of the model.
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The Askervein hill dataset can be taken as an example to illustrate those facts. Generally, a

constant roughness of 0.03 m was used. However, the top of the hill appeared to be slightly

smoother. Castro et al. (2003) by modulating the value of the roughness with height on the

hill, obtained better results: vertical profiles of TKE and speed-up were improved by lowering

the roughness length on the hill. This explained a long standing problem of under-estimation

of the velocity at the top of the hill by several models (Castro et al., 2003). In the same way,

Undheim et al. (2006) show that by using a finer description of the orography (2 m contours

instead of the usual 10 m contours), the hill top speed-up was better predicted. Kim and Patel

(2000) reported that the separation in the leeward side of the hill was not predicted by models

if the surrounding hills were not included in the computational domain.

Concerning inlet, outlet and lateral boundary conditions, Brodeur and Masson (2008) precom-

puted the flow in two dimensions for each boundary in order to avoid using classical homo-

geneous boundaries. Then, in a nesting approach, those results were then used as inlet and

lateral boundaries of a 3D domain. Eidsvik et al. (2004) present a nesting approach based on

a three levels cascade using meteorological models. The first level uses an hydrostatic opera-

tional weather prediction model (HIRLAM). The outputs from HIRLAM are directly used for

a second level of cascade that uses a non-hydrostatic mesoscale model (MC2, further described

later). Finally, the last level is based on an anelastic model (SIMRA) at first dedicated to small

scale engineering applications. SIMRA does not take into account the Coriolis effect and it is

based on a k−ε turbulence closure. The prediction system is used to study flows over an airport

located in a complex terrain area. Flow features and turbulence level and pattern are found to

be in agreement with experimental data from plane observations. Eidsvik (2005) further uses

the same approach to successfully predict the flow over the Askervein hill. The anisotropy of

the turbulence is further accounted thanks to a non-linear algebraic stress model. Interestingly

the constant of the model were kept equal to the ones used for industrial flow.

Those few observations illustrate the importance and difficulties to properly take into account

the natural parameters in order to conduct successful comparisons between numerical and real

full scale experiments.
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1.1.4 Summary of CWE

All along this section, CWE methods have been reviewed and a special attention was set on

the need of and abilities for wind energy applications. A general conclusion is that while an

appropriate turbulence closure associated to a correct modelling of the homogeneous surface

layer is necessary condition, it is not sufficient, and a fine representation of the earth surface as

well as local and surrounding environment properties are crucial notably for full scale studies.

Linearized NS equation models are inexpensive and lead to reasonable results over smooth

topography and not too high roughness length, notably in the upstream region of hills. These

approaches are not adapted for slope higher than 0.2−0.3 and CFD approaches (solving the full

non-linear NS equations) need then to be used. Concerning turbulence closure, k− l models is

rarely used but computation of l can be adapted to account of orography impact on the flow so

that performances of the model can be enhanced also in the downstream part of the orography.

Those approaches are however limited in complex terrain. The k − ε family approach is the

most appealing and used one. Some variants of the standard model are generally preferred,

such as the RNG k − ε, due to the shortcomings of the former. RSM models give the same

type of results as the latter with more information on the turbulent quantities but at a higher

computational cost. They are found to be less interesting. Generally, all models tend to better

predict flow upstream of the orography. Flows on the lee side are best predicted by advanced

models. However, due to an over-prediction of turbulence associated with RANS limitations,

flow generally recovers too quickly after obstacles. In addition, the use of RANS models is

restricted by the highly unsteady and anisotropic character of flow above complex terrain where

eddy resolving approaches, i.e. LES, appear to be best suited. As an example, a recirculating

zone behind an obstacle is generally flapping and can even disappear intermittently. Such an

information, of interest for locating a turbine, can not be captured by RANS approaches and

measurements or LES are needed.

A fine representation of the earth surface includes both a representative and precise horizontal

description of surface cover and orography, and also a surface boundary condition able to
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properly take into account the type of surface cover. The use of the simple log-law profile only

based on a roughness length for flow above complex land cover may result in erroneous results

whatever the turbulent closure. Hence, the challenges are moved to the correct integration of a

fine representation of the earth surface.

In summary, although model abilities are known and their results are promising, cases over

heterogeneous natural terrain are still very challenging which is of concern for wind energy

applications. Furthermore, by noting that ABL is effectively never neutral, that modern wind

turbines are close to 150 m tall, which is roughly the height of surface layer top, and that wind

farm horizontal extent can span more than 5 − 10 km, which is in the mesoscale domain, it

can be concluded that modern wind energy applications are beyond the limits of the hypothesis

commonly used in CWE, i.e. only neutral surface layer without the Coriolis effect.

1.2 Environmental modelling of the ABL

Environmental models, such as large scale and mesoscale atmospheric circulation models (re-

ferred to as mesoscale model hereafter), face the challenge of accounting for the whole atmo-

sphere’s complexity by solving or modelling all relevant natural processes that interact, even

indirectly, with it. Thus, in addition to simulate a flow over a rotating non-homogeneous sphere,

they have to consider turbulent transfer of heat, humidity and momentum, phase changes,

clouds, radiation, topography (orography and land cover), vegetation, soil, etc. Thus, as op-

posed to CWE, momentum turbulent mixing, albeit important, only represents a small part

of the processes taken into account. Furthermore, horizontally, scales of interests range from

few kilometres to the entire earth, and vertically, the soil, the earth surface and the whole at-

mosphere are considered. Here, the expression “environmental modelling of the ABL” refers

to the modelling of the full ABL and earth surface processes by means of large scale and

mesoscale models.

Some differences in terminology between CWE and meteorological applications are to un-

derline: convection in environmental modelling is associated to buoyant processes. Thus, the

transport due to the fluid motion, i.e. the convection of CWE, is called advection in the environ-
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mental modelling literature. Terminology of model names also slightly differ. Historically, the

TKE (resp. mixing length) have been referred to as k (resp. l) in CWE, while it is represented

by E (resp. λ) in environmental modelling applications. Thus, k − l is called E − λ and k − ε

becomes E − ε. However, thermal stratification put aside, methods and approaches to model

turbulence in environmental models are based on the same mathematical models and theories

as for CWE as underlined by Pielke and Nicholls (1997). However, due to the model’s aim

and specificity of the processes of interest (notably because of the stratification and the large

differences between horizontal and vertical scales interest), the “ecosystem” of models differs:

k − ε is not very popular and k − l is the preferred approach.

In this section, the various possible approaches to model the ABL in environmental models are

reviewed. Knowing that the ultimate concern of the study is ABL flows modelling for use in

wind energy application, a special attention will be given to momentum treatment as well as

the processes influencing directly the latter, such as thermal stratification of the ABL. At first,

the ABL in view of environmental models is discussed. Then, mesoscale models are further

described to better understand challenges associated to their use at high resolution for ABL

flows. Finally, a review of most established models is done by first considering stratified ABL

over flat homogeneous terrain and then over heterogeneous terrain.

1.2.1 ABL in view of environmental applications

While the ABL is not generally the primary objective of large scale and mesoscale models,

it is of high concern since it drives a large part of energy exchanges of the atmosphere and it

is where most of human activities are taking place. As further discussed in the next section,

the time and space scales at which environmental models operate require the use of strongly

deformated grid cells with generally Δx/Δz � 100 in the ABL. Horizontal resolution go up to

1 km, which is roughly the height of the ABL, while the vertical resolution reaches generally

a few tens of meters close to the surface (with at least one grid point located in the surface

layer). Furthermore, since turbulent exchanges in the ABL are mostly vertical and horizontal

gradients of the main variables (except pressure) are negligible compared to vertical gradients
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in the ABL, large scale and mesoscale approaches generally consider the ABL as horizon-

tally homogenous invoking the ergodic/Taylor hypothesis. Thus, horizontal components of the

turbulence mixing are neglected by ABL models and it is also often assumed that there is no

subsidence, i.e. w = 0 m/s (while fully 3D conservation equations of mass, energy and momen-

tum are solved in the associated mesoscale model). These generally accepted simplifications

are called boundary layer approximation (Stull, 1988; Holton, 2004), and ABL models relying

on the latter are commonly known as ABL column models. Such a model is generally used

within large scale and mesoscale model for the parametrization of turbulence mixing in the

ABL and the whole atmosphere.

While the boundary layer approximation greatly simplifies the problem (only two out of nine

Reynolds tensor terms need to be considered and the advection is neglected), environmental

models still have to deal with unsteady stratified full (from the earth surface to the free atmo-

sphere) non-dry ABL flows submitted to large scale forcing and diurnal and seasonal cycle

sensitive to the free atmosphere, the earth surface and the soil state. Thus, numerous processes

need to be parametrized in addition to turbulence closures that have to be able to seamlessly

take into account the whole range of stratification from very stable to freely convective. The

reader is referred to the scientific documentation of any of the mesoscale models introduced in

the next section for a detailed description of all the features of such ABL models.

As a summary, mesoscale models generally share the following representation of the ABL:

• horizontally homogeneous full ABL (from the earth surface to the free atmosphere);

• unsteady (with the ability to reproduce the diurnal cycle);

• thermally stratified;

• Coriolis effect;

• incompressible high Reynolds number flows.

As a result in this section, unless specified, the term ABL will refer to the horizontally homo-

geneous stratified full ABL (from the earth surface to the free atmosphere).
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1.2.2 Mesoscale models

Mesoscale models are currently the heart of Numerical Weather Prediction (NWP) models on

which is based the everyday weather forecast. They are also used in a wide range of envi-

ronmental applications going from wind energy forecast and resource evaluation to pollutant

dispersion and flood studies. They can be seen as approaches being composed of many inte-

grated sub-models: the dynamic model, i.e. the solving of the various conservation equations,

may be the most important component, and all the physical parametrization form the other pil-

lar of the model. Turbulence modelling is part of the latter sub-models, and while it is of prime

importance to correctly reproduce ABL flows, the accuracy and efficiency to solve the conser-

vation equations of mass, momentum and energy, as well as other quantities of interest, such

as moisture, are a very critical aspect of the approaches. This latter fact is further enforced

when flows at high resolution over a non-homogeneous surface (Δx < 10 km) are consid-

ered (Benoit et al., 1997). Furthermore, while a coarse horizontal resolution tend to smooth

surface properties, finer meshes leads to a finer surface representation and steeper orography

which can introduce numerical complications. Considering that wind energy applications gen-

erally rely on high resolution mesoscale model outputs (Δx < 10 km or even Δx < 1 km), it

is of prime interest to review high resolution mesoscale models.

In the next subsection, the main characteristics and abilities of mesoscale models will be re-

viewed. The aim is to introduce all key concepts notably for mesoscale models dealing with

high resolution. As a result, mesoscale models are first introduced. Then, the main components

in the structure of the models, grid properties and vertical coordinates are discussed. Finally,

the use of mesoscale models in wind energy application is illustrated.

1.2.2.1 Introduction to mesoscale models

The simplest definition of mesoscale models would be that they are models dealing with

mesoscale processes, namely topography forced flow regimes (i.e. orography and other sur-

face properties) ranging between synoptic scales and microscales (2000 km to 1 km). They

consider the full atmosphere from the surface to ∼ 20 − 30 km and they generally retain the
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abilities to deal with synoptic scale flows, and sometimes, to reproduce the general atmospheric

circulation. Today, some mesoscale models also tackle microscale phenomena (after a proper

adaptation of the various parametrization). As a result, they can be used for a very wide range

of scales explaining their usefulness and wide spread application for environmental modelling.

Pressure, temperature, moisture and momentum conservation equations are generally consid-

ered by mesoscale models, but other passive or reactive quantities such as pollutant can further

be included. The dynamic kernel, i.e. the solver of the various conservation equations, is of

central importance and models are generally designed around the latter. Parametrization of

unresolved processes, such as turbulence mixing, cloud microphysics and radiative exchanges

are also fully taken into account through a so-called physical parametrization.

Due to their complexity, mesoscale models are traditionally developed and maintained through

cooperative programs involving several universities, research groups and government agencies.

Some of the operational global NWP models that are based on mesoscale models are:

GEM: the Global Environment Multiscale unified model from Recherche en Prévision Numérique

(RPN), Meteorological Research Division (MRD), and the Canadian Meteorological

Centre (CMC). GEM forecast ten days in advance at a horizontal resolution of 25 km.

Open Source (LGPL). http://collaboration.cmc.ec.gc.ca/science/rpn.comm/.

GFS: the Global Forecast System (previously AVN) is run by the National Oceanic and Atmo-

spheric Administration (NOAA) and the National Centers for Environmental Prediction

(NCEP) to produce forecasts up to 16 days in advance at 35 km resolution. Open Source

(MIT License) and all output are freely available. http://www.emc.ncep.noaa.gov/GFS.

UM: the Unified Model from the United Kingdom Met Office (UKMO). UM produce six

days forecasts at 25 km resolution. License. http://www.metoffice.gov.uk/research/

modelling-systems/unified-model

These models are also able to assimilate data from a wide variety of external sources, such as

in-flight plane, radar, satellite, surface stations and also from other models. The assimilation

of data is done in a four dimensional way, i.e. space (3D) and time. It allows for a more
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realistic representation of surface and atmosphere at initial condition and during the spin-up

period of the forecast. Based on permanent data assimilation, mesoscale models can also be

run offline to produce analysis data, i.e. 4D seamless gridded databases of the surface and the

atmospheric states. Analysis data (and re-analysis data which goes a step further) is the closest

representation of the full atmosphere we can have.

Historically, an important aspect of mesoscale models has been the computational efficiency

since their main goal is to operationally forecast the weather. Thus, in addition to the solvers, all

components of the models have also to be efficient which adds restrictions on the approach that

can be used. As an example, finite difference are most of the time preferred to the more flexible

and advanced finite volumes and finite elements methods because of their efficiency (Steppeler

et al., 2003). Furthermore, all the main components of the models are generally optimized to

run in parallel on multiprocessor architecture and High Performance Computers (HPC).

Hydrostatic hypothesis is well suited when modelling large scale flows (Holton, 2004), i.e.

with Δx > 10 km. Indeed, at such scales, vertical velocity is negligible in comparison to

horizontal velocity. As a result, dw/dt = 0 and w equation leads to the hydrostatic balance,

i.e. ∂p/∂z = −ρg, and it is convenient to rely a pressure vertical coordinate as it brings nu-

merous simplification in the system of equations to be solved. At the finest mesoscales (1

to 20 km), driven by processes including buoyancy and topographic effects, vertical velocity

can locally become of the order or higher than the horizontal wind (Holton, 2004). In such

a case, mesoscale flow is determined by non-hydrostatic processes. Surface heat, solar radia-

tion, moisture fluxes, evaporation, condensation, convection and turbulence can also introduce

non-hydrostatic effects. As a result, it is generally admitted that the hydrostatic approximation

becomes inaccurate for a resolution finer than 10 km. Thus, high resolution mesoscale mod-

els have to be non-hydrostatic (NH), and wind energy applications should rely on NH models

since they generally use high resolution model outputs (Δx < 10 km).
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Based on the studies reviewed along the environmental modelling section, the following list in-

troduces some of the mainstream operational or quasi-operational, compressible, NH mesoscale

limited area models (LAM, see also Sec. 1.2.2.4):

ARPS: the Advanced Regional Prediction System developed at the Center for Analysis and

Prediction of Storms (CAPS) at the University of Oklahoma. It integrates the LES capa-

bilities. Open Source. http://www.caps.ou.edu/ARPS.

COSMO: formerly called Lokal-Modell (LM) and developed by the German weather ser-

vices, Deutscher Wetterdienst (DW), it is now developed and maintained by the COnsor-

tium for Small-scale MOdelling (COSMO). Open Source. www.cosmo-model.org.

Eta: the Eta model is named after its vertical coordinate. First, developed by Zaviša Jan-

jić and Fedor Mesinger and named HIBU (Hydrometeorological Institute and Belgrade

University), it was run operationally by the NCEP as the main regional North American

Mesoscale (NAM) model before 2006. Open Source. http://etamodel.cptec.inpe.br.

GEM-LAM: the Global Environmental Multiscale model in non-hydrostatic LAM configura-

tion. Open Source (LGPL). http://collaboration.cmc.ec.gc.ca/science/rpn.comm.

MC2: the Compressible Community Mesoscale Model from Recherche en Prévision Numérique

(RPN), Meteorological Research Division (MRD), and the Canadian Meteorological

Centre (CMC). Integration of LES capabilities is in progress. Open Source (LGPL).

http://collaboration.cmc.ec.gc.ca/science/rpn.comm.

Meso-NH: the “modèle Méso-échelle Non-Hydrostatique” from the Centre National de Recherche

en Météorologie (CNRM) and the Laboratoire d’Aérologie (LA) (Cuxart et al., 2000). It

integrates LES capabilities. Open Source. http://mesonh.aero.obs-mip.fr/mesonh.

MM5: the Fifth Generation Penn State University (PSU) and National Center for Atmospheric

Research (NCAR) Mesoscale Model is freely provided and supported by the Mesoscale

Prediction Group (MPG) at the Mesoscale and Microscale Meteorology (MMM) Divi-

sion, NCAR. Open Source. http://www.mmm.ucar.edu/mm5.

RAMS: the Regional Atmospheric Modeling System developed at Colorado State University.

It was the earliest mesoscale model to be applied to CWE problems (Pielke and Nicholls,
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1997). It integrates LES capabilities. Open Source (GPL). http://bridge.atmet.org/users/

software.php.

WRF: the Weather Research and Forecasting model is developed based on a cooperative part-

nership of NCEP, NCAR, and the meteorological research community of the US in-

cluding universities and federal research laboratories. It is a fairly recent model. Open

Source. http://www.wrf-model.org. WRF has two main configurations, namely:

WRF-NMM: the WRF Non-hydrostatic Mesoscale Model is currently the main re-

gional weather forecast model ran operationally at the NCEP as the North American

Mesoscale (NAM) model. http://www.dtcenter.org/wrf-nmm/users.

AR-WRF: the Advanced Research WRF is developed primarily at the NCAR with a

strong support from the community. It integrates LES capabilities. http://www.

mmm.ucar.edu/wrf/users (Skamarock et al., 2008) (Klemp and Skamarock, 2004)

By not relying anymore on the hydrostatic balance, NH mesoscale models also have to deal

with pressure and sound waves. While the latter do not have meteorological significance, they

can pollute the solution if not properly treated. Indeed, due to their high speed, sound waves

add severe restrictions on the time step. The anelastic approximation allows to filter sound

waves without assuming hydrostatic balance2. However, while it permit to reproduce all kinds

of stratified flows still considering an incompressible fluid, thermodynamic variables can only

depart slightly from their reference state. This is not always satisfied in real cases which is

one of the main weaknesses of anelastic approaches. In addition, the latter are known to “leak”

energy since they are not strictly relying on the conservation of energy theorem (Randall, 2010).

In the past, the anelastic approximation was often used, but current mainstream NH mesoscale

models do not rely on it anymore, addressing sound wave through their time stepping schemes

as discussed in the next section.

Finally, it is noteworthy that compressible NH mesoscale models solve the exact Euler equa-

tions of motion, i.e. the various conservation equations also known as the Navier-Stokes equa-

2 The anelastic approximation is similar to the Boussinesq approximation where density equals a reference

profile that varies vertically instead of being constant. Mass flux is non-divergent under the anelastic

approximation.
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tions without molecular and turbulent diffusion processes, without any approximation before

discretization. Theoretically, they can be used at all scales without restrictions. Discretization,

boundary conditions and physical parametrization however limit the range of applicability.

1.2.2.2 Time stepping and advection schemes

Modelling of the time evolution of atmospheric phenomena is one of the main purpose of

mesoscale models. Numerical methods used to take into account time evolution and advection

terms are thus of prime interest. This is further strengthen when further considering that they

have to address sound waves in compressible mesoscale model.

Both explicit and implicit time discretization can be used. As a general remark, depending on

the scheme, explicit approaches are inexpensive but time steps are restricted by the Courant-

Friedrichs-Lewy condition (CFL = uΔt/Δx) that generally have to be lower than 0.25. On

the contrary, implicit scheme are costly and more complex but allow large time steps leading

to CFL � 1 (Girard et al., 2005). While implicit approaches are quite standard for hydrostatic

models, explicit approaches are commonly used for NH models maybe due to their already

higher complexity (Steppeler et al., 2003).

Several compressible mesoscale models, such as ARPS, LM, MM5, RAMS and WRF are

based on the Eulerian discretization of the advection. These models are considered as robust

and as efficient as Eulerian hydrostatics models (Steppeler et al., 2003). They are usually

based on split-explicit schemes and on three time levels (leapfrog) time discretization (Holton,

2004). Slip-explicit (mode splitting) reduces restriction on time step by processing fast sound

waves apart from slower advective tendencies. Furthermore, horizontal and vertical directions

are treated differently. In the horizontal, the explicit treatment of sound wave is based on

smaller, inner time steps that satisfy the sound speed CFL condition. These time steps are

a fraction of the model time step used to compute the advection and all other terms. In the

vertical, due to a higher resolution, an implicit discretization is generally used. Split-explicit

approaches are well established because they do not require solving very large linear systems

and they are easy to implement (also on HPC since only the information of surrounding meshes
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is needed) (Steppeler et al., 2003). They are however more restrictive on the time step in

comparison with fully implicit approaches notably when considering large scale flows.

Implicit time discretization allows for a bigger time step, while each time step is more com-

putationally expensive. Lagrangian advection schemes (discussed hereafter) are often used

in combination with implicit approaches, which explains the Semi-Implicit Semi-Lagrangian

(SISL) model denomination. These methods were adapted for an efficient modelling of large

scale flows but they require more complex elliptic solvers (Thomas et al., 1998). Indeed, im-

plicit treatment leads to an Helmholtz equation for pressure. The latter is equivalent to Poisson

equation for incompressible flows. It is only 2D in implicit hydrostatic models but it is 3D and

asymmetric in compressible NH models Steppeler et al. (2003). Furthermore, the anisotropy

of the system depends on the steepness of orography, and thus indirectly on the size of the

mesh. A steeper orography may result in larger asymmetric terms and thus in a system harder

to solve. However, with a cautious treatment, implicit approaches have the potential to be more

efficient than explicit schemes. Tanguay et al. (1990) were the first to present a compressible

SISL mesoscale model. Bergström and Juuso (2006), Benoit et al. (1997) and Laprise et al.

(1997) further developed this approach by adding the topography based on Gal-Chen vertical

coordinates (first test achieved by Pinty et al. (1995)). They also added all the features re-

quired by a fully operational mesoscale model: the MC2 model was born. The GEM unified

global and regional operational model as well as the United Kingdom Meteorological Office

unified forecast and climate model are also based on a SISL approach and can be used in both

hydrostatic and non-hydrostatic configurations.

Advection is the main non-linearity in the equation of atmospheric motion. Thus, accurate and

efficient treatment of this term is essential. The choice of advection scheme has generally a

strong influence on the entire model architecture (Steppeler et al., 2003). Historically, Eulerian

schemes with centred finite difference coupled with a three time levels (leapfrog) discretization

were widely used in both hydrostatic and NH mesoscale models. Schemes based on flux form

of the advection terms allow the immediate conservation of advected quantities (Wilcox, 1994).

Such an approach is used in the WRF model. Schemes based on the advective form of the
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equations leads to equivalent results only if solutions are smooth (i.e. velocities are far from

sound speed) which is the case for atmospheric motion (Steppeler et al., 2003). As a result,

Eulerian schemes based on the advective form of equation are also commonly used in NH

mesoscale models. Models such as LM, MM5, ARPS and RAMS use variants of Eulerian

scheme based on the advective form of equations. Finally, note that Eulerian leapfrog schemes

are quite robust but they generally need an explicit filtering of the quantities (time and space)

to avoid time step decoupling. This filtering increase effective numerical diffusion which can

eventually reach a level equal to or higher than turbulent diffusion (Steppeler et al., 2003).

Concerning the Lagrangian advection schemes, the advected quantities are updated at each

grid point by interpolation of the trajectory’s upstream values (previous time-step) reaching

that mesh at the new time step. Thus, interpolation methods are critical, notably close to

the surface. Semi-Lagrangian (SL) advection schemes are convenient for multidimensional

advection discretization (Steppeler et al., 2003). However, efficiency of SL schemes appears

to decrease at high resolution, but no theoretical limitation support this remarks (Bartello and

Thomas, 1996). As underlined by Thomas et al. (1998) and Randall (2011, Sec. 5.12), such a

scheme can be interpreted as an Eulerian finite difference scheme which is shifted to the upwind

grid cell (i.e. a generalized upstream scheme). It thus features the same properties, i.e. it is

monotone but more diffusive than centred Eulerian scheme. Randall (2011) further adds that

the intensity of this numerical diffusion can be lowered by using higher-order interpolations

(to compute variable at the upwind location), but it cannot be avoided.

1.2.2.3 Discretization, vertical coordinate and topography

Structured grid allows for simple and light-weight data organization, implying a more efficient

use and access to the memory. It thus allows for efficient model implementation which ex-

plains why they are adopted by most of mainstream NH models such as MM5, Meso-NH, LM,

RAMS, ARPS, MC2 and GEM. In addition, seeing the properties of the computational domain,

i.e. generally a square box, unstructured grid become less necessary than for engineering ap-

plications. They however present undoubtful advantages such as the ability to finely represent
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complex surface features as estuaries at an equivalent resolution (Steppeler et al., 2003). Struc-

tured grid discretization of mesoscale model based on finite difference is commonly based on

horizontal Arakawa -B and -C staggering coupled to Charney-Phillips staggered vertical dis-

cretization (Holton, 2004; Steppeler et al., 2003).

Vertical coordinates allow the representation of orography in mesoscale models. As opposed

to hydrostatic models that largely rely on pressure based vertical coordinate, NH models com-

monly use fixed terrain following vertical coordinates (Holton, 2004; Steppeler et al., 2003),

such as Gal-Chen terrain following vertical coordinate. They were introduced by Gal-Chen

and Somerville (1975) and Clark (1977). Such a curvilinear oblique coordinate consists in a

normalization of the natural height coordinate z based on the height of orography above sea

level h, and a height at which the mesh is not influenced by orography anymore ZT , such that

the new coordinate is defined as (z − h)/(ZT − h). The height ZT equals the top boundary

height in the original Gal-Chen vertical coordinate. In an hybrid coordinate system, ZT is lower

than the top boundary and a different vertical coordinate is used above ZT . Instead of using

the natural height, some NH mesoscale models such as MM5 or GEM also rely on pressure

based vertical coordinate such as the sigma coordinate, σ. The latter is generally obtained by

normalizing the pressure by a reference or a computed hydrostatic pressure. It also leads to

a terrain following coordinate. This conveniently allows to directly reuse the same physical

parametrization for the hydrostatic and NH configuration of the model (Steppeler et al., 2003).

However, σ coordinate is generally not fix in time.

Terrain following vertical coordinates allow a transformation to a rectangular computational

domain which simplifies discretization of equations and model implementation. The ABL

is furthermore treated uniformly, i.e. meshes are roughly at the same height above ground

everywhere in the computational domain. However, traditional terrain following coordinate

systems are based on perfectly vertical edges. The coordinate is non-orthogonal which imply

a strong deformation of meshes over steep orography. With such coordinates, vertical walls

cannot be reproduced, and the practical maximum slope that can be handled is reduced by

numerical problems. Indeed, spurious flows can develop even in an atmosphere initially at rest
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due to purely numerical discrepancies caused by a too steep orography (Girard et al., 2005).

This is particularly of concern at high resolution, since the finer representation of the surface

implies a less smoothed orography and thus higher slopes.

To overcome this limitation, more advanced orthogonal terrain following coordinates can be

used. It is also possible to rely on a coordinate based directly on the natural height with a

cell blocking method such as for flow around buildings in CWE. The latter approach is how-

ever less straightforward to apply on natural terrain (Bonaventura, 2000). Furthermore, those

approaches generally require the use of finite volume (FV) or finite element (FE) discretiza-

tion. Nevertheless, FV methods are not sufficiently efficient to comply with the requirement

of an operational model (Steppeler et al., 2003). Bonaventura (2000) proposed an accurate

and efficient approach equivalent to a FV method but dedicated to SISL. It is also possible to

adopt an hybrid orography representation, such as the building block approach used by the Eta

model. While this latter method appears promising at large scale, it has some difficulties at

high resolution (Steppeler et al., 2003).

1.2.2.4 Lateral boundaries and downscaling

Mesoscale models, notably at high resolution, have generally a finite domain (not global) which

is called limited area model (LAM). As a result, they rely on larger scale data, commonly

general circulation models (GCM) outputs, to provide them with initial and time evolving

lateral (and top) boundary data. Various possible approaches can be used to achieve such a

downscaling. Statistical downscaling exists but dynamical downscaling is the most common

in NWP and consists in the four dimensional nesting (space and time) of a fully evolving flow.

However, a higher resolution drastically increases the size of the problem: dividing by two the

mesh size, the problem size is multiplied by 8, i.e. by two for each spatial direction and by two

for the time step to comply with the CFL condition. Thus, it imposes the use of adaptative grid

refinements to optimize computational power and memory usage.

The most common adaptative grid refinement method is to use several nested grids, all with a

refined resolution in a defined sub region of a larger grid. Nesting is challenging since coarser
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results need to be used to initiate and pilot a finer resolution problem. Processing of the ini-

tial and lateral boundary condition is thus a critical task. Mesoscale models generally include

highly tuned self-nesting capabilities so that the downscaling results are optimized. For classi-

cal nesting, a ratio in the horizontal resolution around four is generally used between nesting

levels, but it can vary depending of the model (Benoit et al., 1997). Nesting based on data from

another model is usually less trivial and requires a fine pre-processing of the data. In a one-way

nesting, the finer scale model uses the results from the larger scale one as initial and boundary

condition. A two-way nesting is when the larger scale computation further take into account

the results of the finer scale one. With a two-way nesting, computations are coupled allowing

for a representation of interactions between a broader range of scales. The smallest scales are

able to influence the largest ones letting a chance the butterfly effect to occur.

Unconventional adaptative approaches have also been implemented in NH models based on

both structured and unstructured meshes. Structured adaptative grids with variable resolution

are interesting since they retain some of the structured grid advantages. They further allow

the direct study of interaction between a wider range of scales without the need of a two-

way nesting. In that sense, a downscaling is done directly with a unique grid. Following this

approach the resolution is increased in a rectangular sub-region of the domain and it smoothly

decreases outside this area. As a result, this grid type is also known as stretched or telescopic

grid. It is to note however that the CFL constraints apply to the finest meshes, restricting the

time step even in the coarse resolution areas.

1.2.2.5 Mesoscale models in wind energy applications

Mesoscale models play an important role in the wind energy domain. The most straightforward

application is certainly to forecast wind power production, but they are also very commonly

used for wind resource assessment.

In regions where wind power penetration is more than a few percent of the total energy pro-

duction portfolio, a forecast of wind farms production is needed in order to optimize wind

energy use and integration to the grid. The output of operational NWP system are most of
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the time directly used by wind power production forecast models. Such models are generally

based on purely statistical approaches similar to Model Output Statistics (MOS) modules (sta-

tistical downscaling), but simple physical model such as linear flow models (e.g. Sec. 1.1.2.2)

can also be used (Landberg et al., 2003a) (dynamical downscaling). Wind power forecasting

community generally considers that up to 80 % of the production forecast error is coming from

the input weather forecast data, thus from NWP models (Giebel et al., 2003; Landberg et al.,

2003a; Kariniotakis et al., 2004). In order to evaluate the probability of a forecast scenario, the

output from several models or from the same model but with slightly different initial, boundary

conditions and configuration, can be combined in order to obtain an ensemble prediction. This

kind of forecast allows reducing the mean error while associating a fluctuating value to wind

energy as a function forecast uncertainty (Pinson and Kariniotakis, 2004).

Modern wind resource assessment also heavily relies on mesoscale models. Landberg et al.

(2003b) reviewed wind resource assessments methods and they clearly identified mesoscale

models as part of the best suited approaches for the large scale seamless and contiguous wind

resource assessment. In fact, instead of operational NWP model outputs, analysis and reanaly-

sis data are used by large scale wind mapping applications which downscale this data up to the

microscale level following statistical-dynamical downscaling approach. Commonly, the time

evolving three dimensional representation of the atmosphere from the reanalysis data is first

processed in order to obtain a representative large scale wind climate, i.e. a classification by

speed bins and directions at several heights of geostrophic wind retaining also the information

on thermodynamic variables (Frank and Landberg, 1997; Yu et al., 2006). Instead of a classifi-

cation, a statistical selection of representative event can also be used (Russo and Zack, 1997).

Then, a mesoscale model is used to downscale each of the wind climate classes or events. A

resolution of one to five kilometres is often used. Then, results can be recombined, based on

the probability of occurrence of each class or event, in order to obtain the characteristics of the

mean wind at the mesoscale level. This is however not sufficient and the geographical wind

resource distribution need to be known at the microscale level, i.e. Δx ∼ 100 m. This cascade

thus allows going from few kilometres to a few tens of meters where the last level is generally
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based on microscale models such as the one presented in the CWE section (simplest linear

models are commonly used).

Such statistical-dynamical downscaling approaches have been used successfully starting with

Frank and Landberg (1997) who introduced and validate the first mesoscale wind atlas ap-

proach based on the NH Karlsruhe Atmospheric Mesoscale Model (KAMM). Frank et al.

(1999) further compared the latter approach and a linear microscale model (WAsP). KAMM

was run with a resolution of 350 m. They clearly showed advantages and limitations of each ap-

proaches: while the microscale model was better skilled for fine topography due to the too low

resolution of the mesoscale model, the latter, by taking into account stratification, was able to

reproduce a decoupling phenomena related to a low level inversion, improving notably results

over the microscale model in such situations. The KAMM model was later coupled to WAsP

to obtain an efficient meso-micro wind mapping approach. The KAMM/WAsP approach have

been heavily used all around the world (Landberg et al., 2003b). Yu et al. (2006) introduced the

Wind Energy Simulation Toolkit (WEST) which is an approach equivalent to KAMM/WAsP

but based on the mesoscale model MC2 and the microscale model MS-Micro. It was used suc-

cessfully to obtain the Canadian Wind Energy Atlas (CWEA), http://www.windatlas.ca (En-

vironment Canada, 2004), and over a very complex terrain of Yukon, Canada (Pinard et al.,

2005), with however slightly less success. The three level nesting approach presented by Ei-

dsvik et al. (2004) also follows an equivalent philosophy. The mesoscale models High Resolu-

tion Limited Area Model (HIRLAM) and MC2 are used in cascade followed by the microscale

non-linear SIMRA model. The last level of nesting is based on an advance second order RANS

model with the very same features as CWE models. (Eidsvik, 2005) further tested successfully

the approach on the well-known Askervein smooth hill. In parallel, several private companies

such as AWS TruePower (http://www.awstruepower.com) (Russo and Zack, 1997) and 3TIER

(http://www.3tier.com/) have developed they own wind mapping system generally based on a

mesoscale-microscale statistical-dynamical downscaling. Many countries such as the full US

were completely mapped at the microscale level and free large scales wind resource maps of

the whole earth surface exists.
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1.2.3 Environmental modelling of ABL flows

ABL modelling in large scale and mesoscale approaches is generally based on the boundary

layer approximation as discussed earlier. A so-called ABL column model is used, and most

of the processes are parametrized. Turbulent diffusion is one the principal processes since it is

the main driver for vertical transport in the ABL. Generally speaking, methods and approaches

used to model turbulence in mesoscale models are the same as in CWE, i.e. RANS approaches,

but in 1D as underlined by Pielke and Nicholls (1997). Their comprehensive classification

can be found in Stull (1988, Chap. 6). However, thermal stratification, humidity as well as

exchanges of all kinds with the earth surface and the free atmosphere play an important role

that need to be considered by models, which clearly broadens the aspects to be investigated

and increases the complexity of the approaches.

To add complexity, direct result comparisons with data coming from well controlled experi-

ments are almost impossible due to the size of the problems. Indeed, when momentum only is

considered, parameters such as the Reynolds number are well suited to scale the flow param-

eters. However, when adding temperature to the problem, other non-dimensional parameters

such as Froude number become relevant, and scaling conditions are hardly satisfied all at once.

As a result, models are generally compared to each others and to full scale experiments. Note

also that they are indirectly evaluated through the everyday forecast. Mesoscale wind resource

assessment are also interesting to evaluate surface wind modelling of mesoscale models.

Here, the most widely accepted ABL models (mostly column models) implemented in mesoscale

approaches are reviewed and intercompared. Only momentum and heat turbulent mixing along

with the inclusion of thermal stratification are considered. In a first section, the various sim-

ilarity theories that apply to the ABL are presented. Then, the modelling of the stratified

homogeneous ABL is considered. This section is thus purely devoted to ABL column models.

Finally, based on common mesoscale flow types, we briefly review the mesoscale modelling

of the ABL over heterogeneous surface. In this latter section, abilities of both ABL column

models and mesoscale models are thus addressed.
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1.2.3.1 Similarity theories in the ABL

Similarity theories can be seen as the simplest ABL models (zero order) (Stull, 1988). They

allow a simple but precise representation of processes to which they apply. They play an

important role in the prescription of surface boundary conditions of ABL models, as well as

in the inclusion of thermal stratification (Stull, 1988). Depending on the scales considered by

environmental models and their vertical resolution close to the surface, various representation

of the ABL through similarity can be used.

In large scale models with very limited vertical resolution, i.e. ABL represented by one grid

point, an estimation of the surface drag can be obtained based on the Rossby number similarity

theory (Rossby, 1932). This theory allows to evaluate surface shear stress as a function of

the surface Rossby number Ro = ||vg||/fz0 (where ||vg|| is the geostrophic wind modulus,

f is the Coriolis factor and z0 is the roughness length). This zero-order model is the simplest

representation of the full ABL (Stull, 1988). As confirmed by many experiments, it leads to

representative results in regions with an homogeneous surface such as great plains or oceans.

Thus, it often serve as a first evaluation of the full ABL (Blackadar, 1962; Detering and Etling,

1985; Garratt et al., 1996). However, no general agreement exists concerning the universal

function linking the surface drag to the surface Rossby number (Stull, 1988, Sec. 9.8).

After the mid 1980s, most mesoscale and general circulation models had a sufficiently high ver-

tical resolution allowing the first grid point to be located in the surface layer. It thus permitted

to use the surface-layer similarity theory, also known as the Monin-Obukhov (MO) similarity

theory, as bottom boundary condition of ABL column models. The relevant surface related

scales of this theory are z0, LMO, u∗ as well as the temperature scale of the surface layer, θSL∗ .

Based on the latter scaling, the primitive of the dimensionless gradient functions (also know as

universal gradient functions or flux-profile relationships) of temperature and momentum in the

surface layer can be obtained. Integrating these functions allows the direct computation of ve-

locity/temperature at a given height in the surface layer such as done by Benoit (1977). This is

particularly convenient to prescribe surface boundary condition of ABL models . The Monin-
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Obukhov similarity theory is largely accepted by the community and a large amount of studies

tackled the problem of deriving and validating the associated flux-profile relationships (Stull,

1988; Foken, 2006). A general agreement exists today (Foken, 2006) on parameters such as the

von Karman constant (κ = 0.4) and an adapted version of the widely used universal functions

derived from Kansas data (Businger et al., 1971) was proposed which are still in use today3.

It is important to note that the Monin-Obukhov similarity theory is only valid for an homoge-

nous surface layer when winds are not calm and u∗ is not zero. However, as discussed by De-

lage and Girard (1992), the dependance of the universal gradient function on z/LMO can be

transformed to a dependance on a gradient Richardson number Ri, so that the same universal

function linking turbulent mixing to stratification can be used everywhere in the ABL. Monin-

Obukhov similarity theory is also invalid in the roughness sublayer (i.e. the lowest part of the

ABL directly impacted by roughness elements as discussed in Sec. 1.1.3.1). This becomes

notably critical for very rough terrain such as flow above a canopy (natural or urban) where

the roughness sublayer can reach up to 2-3 times the canopy height (Garratt et al., 1996). In

such a case, the surface layer is clearly affected (being shallower or even absent), and universal

gradient functions must be modified to take into account the height of the canopy and the effect

of its roughness sublayer on the flow (Garratt, 1992).

Two main types of ABL exist with regards to thermal stratification: stable nocturnal boundary

layers (NBL), and daytime convective boundary layers (CBL).

Nocturnal boundary layers (NBL) are still challenging to model (Cuxart et al., 2006; Svensson

and Holtslag, 2006; Bosveld et al., 2010). As an example of their complexity, the turbulence

can be intermittent, roughly half of the cooling is due to radiation (the other half comes from

turbulent transport), and the height of the NBL is a function of its initial state (Garratt et al.,

1996). Furthermore, it is now recognized that there are several distinct types of stable boundary

layer (Teixeira et al., 2008). Nieuwstadt (1984) proposed a similarity theory for the local

3 Historically, the surface layer community was divided on parameter values coming from two important

experiments, the Wangara (1967), Australia, and the Kansas (1968), United States, experiments. In the end, it

was proven that part of the Kansas experiment measurements were slightly biased (Foken, 2006).
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scaling (i.e. z − less) of the turbulence in the NBL. This theory appears to be a generalization

of the Monin-Obukhov theory using local scaling, i.e. that are the local values of LMO, u∗

and θSL∗ respectively. This theory is very well suited for moderately stable NBL and generally

accepted (Beare et al., 2006).

Daytime convective boundary layers (CBL) also known as mixed layers were among the first

ABL type to be numerically studied (Deardorff, 1972). They are indeed easier to model be-

cause of the large size of eddies generated by convection that confer them a well mixed char-

acter. Concerning the surface layer, either the Monin-Obukhov or the local free convection

similarity theory can be used depending on the relative importance of surface heating with

regards to surface stress (Wyngaard and Coté, 1974). These mixed-layer similarity theories

rely on zi, w∗ and the mixed layer temperature θML
∗ . It is generally accepted (Deardorff, 1972;

Moeng and Sullivan, 1994) that the regime is convective and well represented by mixed-layer

Monin-Obukhov similarity theory for −zi/LMO > 4.5.

A more extensive overview of the scaling applicability as a function of the ABL properties can

be found in Holtslag and Nieuwstadt (1986). This latter literature review has been presented at

the ABL Summer Course of Les Houches (van Dop et al., 2008) by Dr. Holtslag himself with

only few changes confirming that it is still up-to-date.

1.2.3.2 Stratified homogeneous ABL

The modelling of the stratified homogeneous ABL have drawn a large interest in the research

community over the last 40 years. Here, the main ABL column models are illustrated. Their

abilities are evaluated based on experimental data and intercomparison studies. Note that those

discussion are devoted to ABL column models since mesoscale model abilities are not triggered

in horizontal homogeneous cases.



47

1.2.3.2.1 ABL column models closures

Common closures The modelling of ABL effectively started in the 70’s. Blackadar (1962)

introduced and evaluated a first order model for neutral ABL, i.e. only based on a mixing

length, that is still a reference today. Guided by observations, he specified that the mixing

length increased approximately linearly near the surface, κz, and then asymptotically to reach

a constant value at upper levels, λ0. Two main definition of the asymptotic mixing length λ0

are commonly accepted: λ0 = C||ug||/f or λ0 = Cu∗/f where C is a constant (0.00027 and

0.05 respectively), ||ug|| is the geostrophic wind, u∗ is the friction velocity and f is the Coriolis

factor. This definition of the length scale is well suited for the neutral homogeneous ABL, but

latter studies prove that thermal stratification effects can be further included by using stability

functions to scale the mixing length or mixing coefficients (Stull, 1988).

Today, first order closures are still in use, mostly in operational forecast mesoscale models,

however closures including a prognostic equation for TKE and a mixing length, i.e. k − l one-

and-a-half order models, are the most common (Cuxart et al., 2006; Svensson and Holtslag,

2007; Bosveld et al., 2010). This is explained by their good ratio between performances,

simplicity and computational cost. Furthermore, the mixing length for stratified ABL has been

historically simpler to parametrize: characteristic length scale of the eddy is easier to evaluate

than temperature variance or TKE dissipation rate (Stull, 1988).

Mellor and Yamada (1974), in one of the first attempts to reproduce a diurnal cycle, compared

and classified several closures going from the full second-order closures (model based on up

to 13 partial equations for TKE and each turbulent momentum and heat fluxes and variances)

to a first order. The models were classified into different levels according to their complexity,

ranging from most sophisticated, full second-order closure (Level 4) to the simplest first order

closure (Level 1). The intermediate model (Level 2.5) which drops the prognostic equation for

temperature variance but retains the one of TKE and a mixing length, i.e. a k − l model, ap-

peared to be almost as skilled as the full second order models (Mellor and Yamada, 1982). This
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one-and-a-half order model, which is referred to as the level 2.5 MY model in the literature, is

still commonly used today to study the evolution of the ABL.

Nevertheless, approaches based on the eddy viscosity approximation, i.e. models with an or-

der lower than two, can not reproduce the countergradient fluxes observed at the top of the

CBL (André et al., 1978). Indeed, the eddy mixing coefficient being by definition posi-

tively defined, countergradient can only be predicted with second or higher order closures.

A parametrization is therefore needed for lower order models: a countergradient term can be

explicitly included in the closure or a non-local scheme can be used (Stull, 1988).

As a example of a typical ABL model included in mesoscale model, the one-and-a-half order

column model from EC mesoscale models (MC2 and GEM) can be cited. This k − l column

model that rely on Blackadar (1962) mixing length and stability functions was first introduced

by Mailhot and Benoit (1982). Relevant physical processes (radiative effects and humidity)

and exchange processes taking place at the surface and in the soil are addressed and it is ca-

pable of simulating diurnal cycle of the full ABL. Benoit et al. (1989) implemented Mailhot

and Benoit (1982) model in the Canadian Regional Finite-Element Model. Later, Delage and

Girard (1992) develop new surface layer stability functions for the neutral to convective ABL

also valid at free convection limit (U = 0) from the surface layer to the Ekman layer. This al-

lowed to use the same stability function from the surface to the ABL top. Delage (1997) further

shown that the use of a critical Richardson number for SBL is not suited in large scale model

claiming that it prevents to take into account the residual subgrid turbulence. They presented

a modified simple parametrization that brought results similar to more complex approaches.

Many other refinement were latter included in this approach, such as the Bougeault and Lacar-

rère (1989) non-local definition of the mixing length (Bélair et al., 1999). Since Benoit et al.

(1989) work, this one-and-a-half order column model have been used successfully in all the

Canadian mesoscale model used for the operational weather forecast by CMC (Cuxart et al.,

2006; Svensson and Holtslag, 2007).
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Higher order closures Very few mesoscale models rely on turbulent closure with an order

higher than two. As for CWE, the enhancement of results is not significant in comparison to the

increase in complexity and computational cost. However, they are useful and most of the time

employed for research purposes. Some early studies can illustrate their abilities. Wyngaard

and Coté (1974) presented a second order closure that they tested against the CBL of the day

33 of the Wangara experiment. Results were also compared with Deardorff’s early LES results

of the same test case and they compare well. Wyngaard (1975) extended the second order

closure introduced above to be able to deal with stable stratification. Based on the Kansas

and Minnesota datasets, the authors showed that the model predicts correctly the structure of

the turbulence from neutral to moderately stable cases4. André et al. (1978) were the first to

reproduce a full diurnal cycle (based on the Wangara experiment data) with a unique model:

a third order RANS model. Results were in good agreement with both experimental data

and other numerical studies. Only the stable boundary layer height was significantly under-

estimated. However, by pushing closure assumption to a higher order model, this work allowed

to validate and refine the closures of the lower order models.

Finally, it is interesting to note that the k − ε approach of Launder and Spalding (1972), while

heavily used for engineering application to model the neutral ABL, is much less involved in

meteorological applications where it historically drew less attention. With such an approach,

while there is no need to compute a length scale (leading some researchers consider the k − ε

as a second order model), parametrization of the TKE dissipation rate with regards to strati-

fication is more tricky than for others closure of the same order such as k − θ2 (André et al.,

1978). Furthermore as underlined by Weng and Taylor (2003), all the early applications of

the classical ε equation (Launder and Spalding, 1972) to the fully neutral ABL led to too deep

boundary layers. Several researchers however proposed modifications to the standard ε equa-

tion by adjusting production and destruction of TKE. Detering and Etling (1985) presented a

modified version of the standard k − ε that successfully addresses homogeneous neutral and

4 As a side note, Wyngaard (1975) also found that ABL over a flat homogeneous surface with a constant

surface cooling rate can reach a quasi-steady state where particular scaling can apply. This later proves to be

of practical use to validate models (Cuxart et al., 2006).
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convective ABL. The authors claimed that the introduced k− ε model is to be seen as a model

that yields equivalent results of a k − l, concerning stratified ABL, but that is more skilled for

complex flow configuration since the length scale does not have to be defined. For its part,

Duynkerke (1988) presented a k − ε model dedicated to the neutral and stable homogenous

ABL which also proved to be appropriate. Duynkerke (1988) closure is today implemented

in the mesoscale model Meso-NH. Recently, a modified version of the standard k − ε model

was also proposed by Alinot and Masson (2005) for stable, unstable and neutral ABL. This ap-

proach, which is not a column model but a 3D classical RANS approach, was found to greatly

improve the results over previous studies, notably for the stable thermal stratification cases.

1.2.3.2.2 Recent column model intercomparisons

Now that the main ABL column models have been introduced, abilities are further studied

though a review of recent intercomparisons.

Hurley (1997) intercompared 10 well established column model turbulent closures including

three first order, three one-and-a-half order and four second order closures (several variants

of Mellor and Yamada (1982), Duynkerke (1988) and Detering and Etling (1985) are used).

All models are based on the so-called boundary layer approximation but Hurley (1997) under-

lines that horizontal turbulent diffusion effects can be added by means of new source terms.

Closures are first evaluated for a one-dimensional convective boundary layer obtained after

the mesoscale model is run for 48 hours (i.e. two full diurnal cycles). It is found that mean

fields are satisfactorily reproduced even by simpler models. However, the more complex the

model, the better the results, particularly for turbulence predictions, although, this cannot be

generalized. Inclusion of countergradient was needed for some of the models to perform better

in the convective regime, such as Duynkerke (1988). Nevertheless, all models under-estimate

both the horizontal velocity variance and the TKE dissipation rate near the top of the mixed

layer, and, discrepancies between the three most advanced models reach up to 20 % of the

non-dimensional estimated variances values in the mixed layer.
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Bélair et al. (1999) further evaluated various configuration of a k − l model implemented in

the MC2 mesoscale model for several CBL measured during the Montreal-96 Experiment on

Regional Mixing and Ozone (MERMOZ). Some non-local aspects of the closures are regarded

through the countergradient terms and length scale formulation. Two formulation of l are eval-

uated: the classical Blackadar formulation (Blackadar, 1962) (fully local) and the Bougeault-

Lacarère approach (Bougeault and Lacarrère, 1989) (non-local). It is shown that the non-local

approach better predict the CBL fast growth in comparison of the local approach. Concerning

countergradient, Bélair et al. (1999) found that the explicit inclusion of this term in the vertical

diffusion equation had a negligible impact on the modelled ABL, notably in comparison to

enhancement obtained with the new non-local length scale formulation.

Weng and Taylor (2003) also tested several turbulent closures for an homogenous stratified

ABL. Comparisons rely on neutral, stable ABL and full diurnal cycles. The closures evaluated

are the standard k− ε, Detering and Etling (1985) k− ε, a k− ε− l (where the length scale is

used to parametrize the production in the dissipation equation), the level 2.5 from Mellor and

Yamada (1982) noted k−k2l (with both the prognostic and diagnostic model of k2l) and finally,

two versions of the classical k − l approach (based on André et al. (1978) or Delage (1974)

for stable stratification). The study does not compare with experimental data, but models are

compared with each others, to MO similarity and literature results. For the neutral case, the

k − l approach is taken as a reference. It is shown that k − l, k − ε − l, Detering and Etling

(1985) k − ε and diagnostic k − k2l are similarly satisfying. On the other hand, standard

k − ε and prognostic k − k2l largely over-estimate the turbulent mixing and ABL height. The

picture is slightly changed for the stably stratified ABL. Indeed, all k − ε and k − k2l produce

a too deep stable ABL with, once more, too much mixing. The closures that compare best with

similarity are Delage (1974) k− l and k−ε− l closures. Finally, the diurnal cycle is carried out

by piloting the surface temperature (based on some Wangara data but not attempting to match

results). A comparison of the results is done after 10 diurnal cycles. This latter intercomparison

is based on four models and the general conclusions are the same as before: the k − ε, and the

two k − k2l models over-estimate the mixing and ABL depth. The maximum value of the
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TKE for models based on two equations is twice as large as the one based on one equation.

In the end, the author states that the k − l approaches are still quite good. Concerning higher

order models, it is found that while they take into account more physical processes, they do not

guaranty success (Weng and Taylor, 2003).

Finally, it is worth presenting the three recent and very extensive intercomparisons done under

the aegis of the GEWEX Atmospheric Boundary Layer Study, GABLS project (http://www.

met.wau.nl/projects/Gabls) (GEWEX stands for Global Energy and Water Cycle Experiment,

http://www.gewex.org). In these intercomparisons, the abilities of various critical aspects of

not only ABL column models implemented in mesoscale models, but also of LES models are

evaluated. The latter also serve as a basis of comparison for the former.

GABLS 1 is based on the quasi-steady moderately stable Arctic boundary layer proposed

by Kosović and Curry (2000), and that compare reasonably well with the Nieuwstadt similar-

ity (Nieuwstadt, 1984). Twenty ABL column models implemented in sixteen research and op-

erational mesoscale models are intercompared, see http://turbulencia.uib.es/gabls (Cuxart et al.,

2006). All evaluated models except one rely on the eddy viscosity assumption and compared

closure include simple first order (8 models), most common one-and-a-half order (8 models)

and more evolved second order (two k − ε and a k2
θ). The general conclusion for the single

column models intercomparison is that, while vertical resolution is not a concern, first order

closures have a tendency to increase the mixing in comparison to research dedicated models

(generally based on higher order closures i.e. 1.5). The former over-estimates u∗ and the upper

stable boundary layer inversion does not develop. The latter are closer to LES results. Fine

tuning the closure parameters (such as Prandtl number, stability function and mixing length)

based on LES results proved to generally enhanced the results.

GABLS 2 is based on the Cooperative Atmosphere-Surface Exchange Study - 1999, CASES-

99 (Poulos et al., 2002) and its goals is to study and model the diurnal cycle over land (Svensson

and Holtslag, 2006, 2007), see http://www.misu.su.se/~gsven/gabls/. Eighteen column models

are compared. The first conclusions of the study are that all model results differ from each
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others and do not fit observations. The most significant difference is the under-estimated di-

urnal cycle of wind speed at 10 m agl (too low during unsteady day and too high during the

stable night). Furthermore, even though surface temperature was provided, the 2 m agl tem-

perature differs between models (reaching 2 C differences). Discrepancies between models are

generally most striking during morning hours.

GABLS 3 is based on one diurnal cycle of a moderately stratified, baroclinic, mid-latitude

ABL (Bosveld et al., 2010), see http://www.knmi.nl/samenw/gabls/. This last intercomparison

relies on data coming from the 213 m high heavily instrumented Cabauw met mast and from

other facilities in the Netherlands. As opposed to the previous two GABLS intercomparisons

(where the surface temperature was prescribed), in GABLS 3, each participant had to use its

own soil/vegetation, while radiation models, fine tuned geostrophic forcing and dynamic ten-

dencies were prescribed broadening the investigated aspects. Nineteen models were compared

ranging from first order to second order ABL column models. The emphasis was on the sunset

and morning transition as well as nocturnal boundary layer. Preliminary results show that sig-

nificant discrepancies between models are obtained for the 2 m agl temperature, the 200 m agl

wind speed and boundary layer height. Thermal coupling between surface and stable boundary

layer seems to be the principal factor explaining the differences between models and observa-

tions. Long wave radiation and turbulent mixing are found to be of secondary importance.

As a conclusion of all the intercomparisons presented above, it is clear that various compo-

nents and parametrization of the ABL column models still need to be validated and enhanced

notably in stable conditions and during the morning and evening transitions. Indeed, when

comparing models to each other and to real cases, discrepancies are not negligible. However,

some categories of turbulent closure seem to emerge (as for the k − ε in CWE): namely the

k − l models. They appear to be the best compromise between computational cost, simplicity

and result quality, at least for the stratified homogeneous cases. It is thus of interest to review

the abilities of the same approaches but for cases where the surface in not homogeneous which

is the topic of the next section.
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1.2.3.3 Mesoscale modelling of ABL over an heterogeneous surface

The mesoscale modelling of ABL flows over an heterogeneous surface involves all the main

components of environmental models, i.e. both the dynamic kernel and the ABL model are

required to tackle mesoscale heterogeneous cases. Two main types of mesoscale surface het-

erogeneities can be considered, i.e. orography and land cover, and both subgrid and resolved

heterogeneities are important. In the context of mesoscales phenomena, the characteristic size

of resolved surface heterogeneities lies between one to hundreds of kilometres. They can be

explicitly represented and resolved. Conversely, subgrid heterogeneities need to be implicitly

taken into account through parametrization. The simplest and maybe most relevant example

is the aerodynamic roughness length, z0. As a side note, most of the problems considered in

CWE have a characteristic size smaller than the grid size of environmental models.

Large scale and mesoscale approaches commonly rely on the boundary layer approximation,

which is generally accepted for grids with Δx > 1 km (Stull, 1988). Hence, the vast majority

of environmental modelling applications only consider the vertical turbulent mixing, and they

fully rely on the mesoscale model dynamic kernel to reproduce 3D flow features. Further-

more, to overcome the lack of horizontal mixing, horizontal diffusion is often added numer-

ically (Benoit et al., 1997). However, this approach becomes clearly invalid if the horizontal

resolution is refined, such as Δx < 1 km: horizontal turbulent mixing also need to be prop-

erly modelled (Teixeira et al., 2008). Indeed, in the scales from 100 m to 1 km, 3D turbulent

microscale phenomena become non-negligible, but mesoscale processes are still important.

They merge and interact and it is very challenging for both experimental and numerical stud-

ies (Wyngaard, 2004). Wind turbines and wind farms interact with ABL flows at those scales;

thus they deserve a special attention (Shaw et al., 2009).

In this section, the common types of mesoscale flow over an heterogeneous surface are briefly

introduced exploring the abilities and limitation of ABL column models through various ex-

amples. Small mesoscale heterogeneities are considered as they are more relevant with re-

gards to the ABL model evaluation. Furthermore, some heterogeneities at the border between



55

mesoscales and microscales are also investigated to further evaluate the limits of the environ-

mental models common hypothesis of validity.

1.2.3.3.1 Land cover discontinuities

Various type of mesoscale land cover heterogeneities exist, each impacting differently the main

variables of the model. Natural discontinuities generally include a change of several surface

parameters at the same time further complicating the problem.

Subgrid land cover heterogeneities have to be fully parametrized. Advanced models of the sur-

face cover are generally used in mesoscale models to provide a surface boundary to the ABL

model. The Interaction Soil-Biosphere-Atmosphere model (ISBA) or the Canadian LAnd Sur-

face Scheme (CLASS) are two examples implemented in the GEM and MC2 models (Mailhot

et al., 1998). Those approaches generally consider that each mesh are composed by a few

main land covers and the information on each land cover and their ratio in the mesh need to be

provided as input to the model. Then, a budget is computed for each land cover and the aggre-

gated result is used as boundary condition for atmospheric processes. Subgrid topography is

also parametrized through those advanced surface models as discussed in the next section.

Concerning the resolved land cover heterogeneities, the ABL column models consider the

surface changes but they are not able to predict the associated dynamics processes. Thus,

the abilities of the approaches directly depends on the solver of the equations of motions.

Sea and inland breezes are mesoscale circulation of a characteristic size equal or greater than

50−100 km that can be triggered by various type of surface discontinuities (allowing to evalu-

ate various configuration of the model), and that requires energy, momentum and mass conser-

vation equations to be properly solved. They have historically drawn a large interest from the

environmental modelling community (Garratt et al., 1996; Hurley, 1997; Crosman and Horel,

2010). Garratt et al. (1996) reviewed ABL importance in sea and inland breeze modelling.

After summarizing the advances on this topic during the period from 70’s to the mid 90’s, they

conclude that ABL column models based on a prognostic equation for TKE are quite suit-
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able for predicting the turbulent structures of the sea-breeze system. Hurley (1997) compared

10 column models (zero, one and two equations - see the previous section) based on a 2D sea-

breeze flow. All closures led to similar results and all models are found to produce a reasonable

sea-breeze circulation pattern. TKE increases at the front, but, this is better defined for higher

order models. Recently, Crosman and Horel (2010) achieved a thorough review of the sea and

lakes breeze modelling considering the dependence of the modelled sea breezes on ten main

geophysical variables. Concerning the ABL model, the authors underline the importance of

using appropriate parametrization such as k − l, notably to properly consider the CBL. It is

found that a poor turbulence modelling or an inadequate ABL model may not prevent to repro-

duce the sea/land breeze circulation, but some of its features may be impossible to reproduce.

On the other hand, a higher level of sophistication as well as a slightly better resolution are not

found to always improve results.

As a result of the above, it appears that, while important, the ABL column model closure have a

limited impact on sea and land breeze results, and it can be concluded that k− l column models

are generally found to be sufficiently advanced to properly take into account key processes,

while the added value of higher order closures does not appear clearly.

1.2.3.3.2 Flow over valley and hill

Flows over changing orography represent an important aspect of mesoscale models (Holton,

2004). However, as underlined by Teixeira et al. (2008), until recently most of the studies ne-

glected or gave little attention to boundary layer effects. Instead, strong efforts were dedicated

to the validation of the dynamics of the models by reproducing phenomena such as gravity

waves (Clark and Peltier, 1977; Miranda and James, 1992; Pinty et al., 1995; Bonaventura,

2000; Girard et al., 2005). However, ABL interactions with mesoscale orographic flows are

very complex and not yet fully understood (Teixeira et al., 2008; Shaw et al., 2009).

Commonly, both the mesoscale models and their associate ABL model are evaluated using

full scale orographic flow cases. In fact, all the studies based on real cases evaluate the full

mesoscale model and thus the ABL model indirectly. However, data coming from full scale
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dedicated measurement campaigns, i.e. intense observation period (IOP), are the best suited for

fine evaluation of the models. As an example of such experiments the Mesoscale Alpine Pro-

gramme (MAP) (Benoit et al., 2002), the PYRenées EXperiment (PYREX) (Georgelin et al.,

2000), or the very recent large deployment Terrain-induced Rotor EXperiment (T-REX) (Gru-

bišić et al., 2008) can be cited. Theoretical mesoscale orographic flow studies that consider

ABL effects also exist but are more scarce. They allow to evaluate specific aspects of the

model in a more generic and quantitative way by simplifying the problem and only triggering

processes of interest. Finally, as opposed to CWE, wind tunnel experiments are of limited use

for the evaluation of mesoscale models due to the large differences in scale and the broader

range of processes to consider (not talking about the earth rotation or the diurnal cycle).

Subgrid topography play an important role: it increases the apparent roughness of the surface

decelerating the whole flow and increasing the subgrid mixing in the ABL. It is thus gen-

erally taken into account through the ABL model. The simpler approach on which most of

mesoscale rely is to directly increase the aerodynamic roughness length as a function of the

subgrid topography. Direction dependent roughness is also sometimes used. However, during

the Comparison of Mesoscale Prediction and Research Experiment (COMPARE) second ex-

ercise (Georgelin et al., 2000) where fifteen mesoscale models were intercompared based on

PYREX IOP 3, it was found that subgrid topography is a key element that models based on

the above simple parametrizations fail to properly consider. More advanced surface boundary

conditions are required, such as a vertically distributed drag (cf. canopy model). The large

impact of the subgrid topography in Georgelin et al. (2000) study was partly caused by the

coarse horizontal resolution (10 km - as operational model) voluntary used.

Resolved topography is fully taken into account by the dynamic kernel of the approach inde-

pendently of the ABL column model (that most of the time does not see it). As an illustration

of a typical study of a flow over orography that includes ABL impacts, Bergström and Juuso

(2006) evaluated the channelling effect of a valley based on the MIUU hydrostatic mesoscale

model and the level 2.5 MY ABL column model (Mellor and Yamada, 1982). Phenomena

such as pressure-driven and forced channelling are studied based on ideal valleys of various
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form factor (ranging from 4 km to 32 km width) considering several thermal stratification and

surface properties. Most of the conclusions of this study regard the impact on the valley wind

of the various geostrophic wind and the valley configuration. However, it is also found that

ABL flow regime plays a key role: stable stratification increases valley wind, while convective

situations decrease the valley wind because of downward momentum transport. The various

features found numerically are qualitatively confirmed based on full scale data (Bergström and

Juuso, 2006). Those finding are also corroborated by Pinard et al. (2005) who observed the

exact same valley wind behaviour based on experimental data (but which, in their case, is not

reproduced by the model due to a too coarse resolution).

In his intercomparison of 10 ABL column models, Hurley (1997) (see previous sections) also

evaluated a diurnally cycling full ABL over a 2D Agnesi hill of 6 km half-width by 600 m high.

The author concludes the following: (1) the general patterns of wind velocity are all similar

and all models capture the temperature increase in the lee side of the hill due the mixing caused

by the hill; (2) TKE level is quite different among models; (3) the ten ABL models are found

to generally produce reasonable predictions of the mean variables, however, more complex

turbulent closures such as the various k − ε tested better predict turbulent fields.

At a finer scale, Castelli et al. (2001) evaluated turbulent closures from the RAMS mesoscale

model against RUSVAL experimental wind tunnel data (i.e. neutral flow over a valley, see

Sec. 1.1.3.2.1) for which a length scaling factor of 600 is used (valley depth and width become

70 m and 560 m which make the flow lying between microscales and mesoscales). Closures

evaluated are the level 2.5 MY, the k−ε and the k− l model. It is noteworthy that the former is

a column model while the two latter are 3D classical RANS approaches. MY closure is found

to be clearly unsuited mostly because of the lack of horizontal turbulent diffusion. The other

general conclusion is that the use of an additional ε equation does not clearly improves the

results with respect to the k − l model.

Castelli et al. (2005) achieved a similar comparison with wind tunnel data but for a 3D Gaus-

sian hill of 100 m characteristic size (after scaling is applied). Deardorff (1980) SGS model
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is evaluated (in addition to the models from Castelli et al. (2001)), and the MY model col-

umn model is enhanced thanks to an horizontal diffusion parametrization inspired from the

Smagorinsky SGS model. Results confirm the findings of Castelli et al. (2001): Deardorff,

k − l model and k − ε models lead to similar results while the MY model, even tweaked, is

clearly not suited for such a problem. All closures give similar velocity maximum uphill, but

the k − l results are slightly better to those obtained with both k − ε and Deardorff for the

downhill region. The k − ε tends to transport the TKE upward more than the other closures.

Interestingly, those remarks are in good agreement with the findings of Sec. 1.1.3.2.

Today a growing number of mesoscale models consider the fully 3D turbulence (Pielke and

Nicholls, 1997; Cuxart et al., 2000; Klemp and Skamarock, 2004; Chow et al., 2005; Castelli

et al., 2005). Furthermore, in the most advanced mesoscale models, i.e. ARPS, Meso-NH,

RAMS or WRF, several turbulent closures are implemented to allow the use of the model

from very large scales, where only vertical turbulent processes are considered and most of the

heterogeneities are parametrized, to microscales, where both vertical and horizontal processes

are taken into account (Klemp and Skamarock, 2004; Skamarock et al., 2008). The ultimate

goal is to seamlessly reproduce flow from mesoscales to microscales by tackling the so-called

“Terra Incognita” (Wyngaard, 2004). In that sense, closures where mixing coefficients are

not isotropic were recently implemented in WRF (Skamarock et al., 2008) as suggested by

Wyngaard (2004). Similarly, the three level nesting approach presented by Eidsvik et al. (2004)

interestingly addressed the challenge of flow modelling from the large scales to the microscales

(cf. Sec. 1.1.3.2.2 for more details). Those later approaches are very promising with regards to

the needs of wind energy applications (Shaw et al., 2009).

1.2.4 Summary of environmental modelling of ABL

This section illustrated various aspect of environmental modelling approaches with a special

attention dedicated to the full ABL momentum and heat processes. Large scale and mesoscale

model are the heart of environmental models which are capable to simulate atmospheric flows

from the global to the local scales and predict weather up to a week ahead or more. Three
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dimensional time evolving mass, energy and momentum conservation equations are solved in

mesoscale model, i.e. the dynamic kernel, and the others relevant processes (that can not be

simulated) such as turbulent diffusion and all ABL processes are modelled relying, most of the

time, on the boundary layer approximation. However, a much broader range of processes have

to be considered in comparison to CWE applications.

Concerning mesoscale models dynamic kernel, hydrostatic approaches are clearly unadapted

to problems where Δx < 10 km, and most of the modern environmental models rely on the

compressible non-hydrostatic Navier-Stokes equations. Such approaches however require an

efficient treatment of the time variation and advection terms of the equations of motion which

has repercussions on the whole model architecture (numerical methods and implementation).

Terrain following non-orthogonal coordinates are generally used. However, they are known to

cause numerical difficulties over steep terrain which situation is more likely to happen at high

resolutions due to the less smoothed representation of the surface.

Concerning turbulence modelling in mesoscale models, given the typical horizontal resolution

and grid anisotropy, most of the approaches only consider the vertical turbulent mixing. Thus,

mesoscale model largely rely on ABL column models. Simple and first order closures are dis-

appearing to the benefit of one-and-a-half order approaches, i.e. k− l model. While simple and

computationally efficient, the latter leads to promising prediction of both the mean variables

and the turbulent quantities in most cases and for moderately stable to unstable homogeneous

ABL. Higher order models, such as k − ε, k − θ2 or even full second and third order closures,

also exist but there are generally used for research purposes only. Concerning k−ε models, the

parametrization of ABL thermal stratification is more tricky than in k − l models. However,

they are proven to slightly better predict orographic flows notably with regards to turbulent

quantities. Models with an order higher than two are rarely used in modern mesoscale model.

They were at first very useful to better understand phenomena and enhance parametrization of

lower order closures. However, they are too computationally expensive in comparison to the

enhancement they bring and LES models seems far more appealing.
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The boundary layer approximation, i.e. ABL column model, is clearly proven to be invalid for

Δx < 1 km. Indeed, within the mesoscale-microscale gap, i.e. scales from 100 m to 1 km,

3D turbulent phenomena become non-negligible (preventing the use of classical mesoscale

model which rely in ABL column model), but mesoscale processes are still important (pre-

venting the use of classical microscale model). This range of scales is also know as “Terra

Incognita” (Wyngaard, 2004) as it has historically drawn less attention: some processes and

interactions are not yet fully understood partly due to a lack of dedicated experimental and

numerical studies (Teixeira et al., 2008; Shaw et al., 2009).

In conclusion, mesoscale approaches offer very promising features allowing to take into ac-

count the environment in which wind turbine operate. They are crucial tools for both fore-

casting and wind resource assessment. However, modern wind turbine have a diameter larger

than 100 m and wind farm extent can reach 10 km or more. Thus, while large wind farms

have an impact on the mesoscale flow, interactions of wind turbines with the large scale flow

and with each other are in the mesoscale-microscale gap, slightly beyond classical mesoscale

models abilities. Mesoscale models that can also operate correctly at microscale are thus of

prime interest for wind energy applications.

1.3 Large eddy simulation of the ABL

Large Eddy Simulation (LES) is a modelling technique aiming to resolve the anisotropic and

energy containing large turbulent structures, while modelling the dissipative isotropic homo-

geneous small eddies based on a Subgrid Scale (SGS) model. At some point, LES, which is

part of CFD approaches, is closer to mesoscale modelling (than RANS) in the sense they both

fully resolve part of the unsteady flow processes. Lilly (1962) and Smagorinsky (1963) were

the first to propose and implement an approach based on a subgrid scale (SGS) model. At first,

it was applied to large scale environmental flows5, and while very limited by the computational

power available at that time, they set the ground for more evolved LES studies. Currently, the

Smagorinsky-Lilly SGS model is still considered and commonly used as reference. However,

5 In fact, as underlined by Lesieur et al. (2005), it is hard to dissociate LES approaches and meteorology

applications since the first LES were applied to atmospheric flow.
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the last decade has seen considerable developments as well as an exponential growth in the

use of LES models (Senocak et al., 2007; Piomelli, 2008; Chow and Street, 2009; Bechmann

and Sørensen, 2010), which is also correlated with the increase of computational power. The

reader is referred to Pope (2000), Lesieur et al. (2005) and Sagaut (2006) books that present an

up-to-date, thorough and comprehensive review of LES.

In the context of the full ABL, i.e. from the earth surface to the free atmosphere, LES models

have to deal with a stratified high Reynolds number shear flow bounded by a no-slip rough

surface and a flexible membrane (the inversion layer) separating two distinct regions of the

flow, i.e. the ABL and the free atmosphere. The surface can present some complex cover

and orographic features. In addition, others meteorological processes have to be taken into

account when environmental problems are addressed as illustrated in the previous subsection.

Considering the abilities of environmental models and the fact that they have the best possible

features to take into account the environment in which wind turbines operate, LES-capable

mesoscale models are of prime interest.

In this study, considering the needs of wind energy applications and the properties of the ABL,

LES approaches that address the fully rough high Reynolds number flows are introduced and

reviewed. Firstly, more details are given on the ABL from the LES point of view. Then, the

LES of the ABL over an homogeneous surface is discussed by first reviewing the neutrally

stratified and adiabatic ABL. The main classical and advanced SGS models are introduced in

this section. Then, the inclusion of thermal effects is discussed. Finally, the LES modelling

of the ABL over an heterogeneous surface is briefly introduced along with the associated chal-

lenges and abilities of LES models.

1.3.1 ABL in views of LES applications

LES aims to reproduce quantitatively and resolve the whole range of eddies smaller than the

domain size and bigger than a spatial filter which is located in the inertial subrange scales

(i.e. scales at which turbulence is considered homogeneous and isotropic and where the veloc-

ity power spectra follows a −5/3 slope, see Appendix II). Eddies smaller than the filter are
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modelled while bigger ones are simulated. The filter often relies on the mesh explaining why

subfilter scale (SFS) models are usually called subgrid scale (SGS) models. In such a case,

the filtering is said to be implicit. However, some more advanced SFS models are based on an

explicit filtering of NS equations. The latter approaches are more computationally expensive,

since they must have several meshes within the filter, and more complex, as new terms appear

in the expression of the SFS stresses (see Leonard decomposition Eq. (A II-17)). However,

they are more flexible and powerful (Lesieur et al., 2005). Both the solver of the spatially

filtered unsteady NS equations and the SFS model are crucial for a successful LES of the ABL.

The ABL over an homogeneous surface modelled by means of LES is unsteady and no more

horizontally homogeneous. This is thus clearly in opposition with RANS and ABL column

models representation of ABL. Indeed, horizontal homogeneity as well as steady state are only

reached statistically in LES. It is sometimes referred to a permanent state (statistically steady)

or quasi-steady state. The unsteady nature of LES has great implication on how the models

are operated and on the interpretation of the results. Inlet, outlet, lateral and top boundary

conditions, while permitting to drive the flow, have to allow eddies to enter and escape the

domain without spuriously impacting the solution. At the inlet, not only the first and the

second order moments (resolved and subgrid), but also the spectral signature of the flow needs

to be correctly reproduced. These latter facts further illustrate the increased complexity and the

less straightforward application of LES in comparison to RANS.

Similarly concerning the model results, while RANS directly provides the averaged final so-

lution, LES always requires a post-processing (based on time and space averages) to obtain

statistically steady quantities. Furthermore, a sufficiently long time interval is required to ob-

tain stable statistics. LES data is thus somewhat closer to real data and a complete spectral

picture of resolved turbulence can be studied as opposed to previously presented approaches.

Depending on the LES model goals, the representation of the ABL may differ which influences

the whole model configuration. LES dedicated to CWE generally only consider the neutral sur-

face layer, and the Coriolis effect (and sometimes roughness) are neglected. Representation of
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the ABL is thus partly the same as for the CWE RANS approaches and only the unsteady mo-

mentum and mass conservation are considered. At the opposite, LES applied to environmental

modelling are naturally closer to mesoscale models and integrate several of the specifications

of the latter with regards to the ABL and the earth surface, i.e. full ABL up to free atmosphere

with the Coriolis effect, temperature, humidity, etc. Recently, SGS models have been imple-

mented in mesoscale models which was shown to successfully reproduce ABL flows (Cuxart

et al., 2000; Chow et al., 2005; Drobinski et al., 2007).

LES applied to both CWE and environmental modelling have to face the challenge of repro-

ducing turbulent atmospheric motion down to a spatial scale and bounded by a no-slip rigid and

rough wall. Thus, while their background philosophy remains the same, LES can be used for

a wide range of applications. However, LES of the ABL is still a research tool, computation-

ally expensive, and not trivial to use, notably in real conditions as it is illustrated all along the

following sections. Nonetheless, LES is becoming more and more popular due to its abilities.

As a summary, LES of the ABL generally share the following representation of the ABL:

• 3D surface layer or full ABL;

• unsteady;

• neutral or thermally stratified;

• with and without Coriolis effect.

• incompressible high Reynolds number flows.

Hence, unless specified, the term ABL will refer to the 3D time evolving ABL in this section.

1.3.2 LES of the homogeneous surface ABL

The simplest yet necessary step for a successful application of the LES of the ABL is to cor-

rectly reproduce the ABL over an homogeneous surface. It is thus somewhat similar to the

philosophy of RANS and column models. This ideal representation of the ABL is relevant and

useful for LES approaches going from the surface layer dedicated CWE studies to the stratified

full ABL reproduced by environmental models. It is a practical way of evaluating the abili-
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ties of both the solver of conservation equations and the SGS model (Porté-Agel et al., 2000;

Chow et al., 2005). Indeed, for such a case the problem and model inputs are kept as simple

as possible and cases are highly reproducible. In addition, it allows to study in detail the most

fundamental ABL processes from the surface to the free atmosphere. Until recently, the use of

LES by the meteorological modelling community was mainly focused on stratified full ABL

for which surface is homogeneous and lateral boundary condition are periodic. Among other

things, this allowed to better understand processes taking place in the middle and the top of the

ABL (Deardorff, 1972; Moeng and Sullivan, 1994).

While adiabatic ABL, i.e. considering only momentum and mass conservation, appears to be

simpler with regards to physical representation, they are more demanding than convective ABL

notably close to the surface. The convective processes that drive the flow exhibit larger struc-

tures which allows resolving a bigger part of the flow with the same grid (Sullivan et al.,

1994). At the opposite, stable ABL show smaller structure than neutral ABL. There are thus

more challenging than both unstable and neutral ABL (Beare et al., 2006).

In the following section, the LES of the homogeneous surface ABL is reviewed. At first,

aspects common to all homogeneous approaches are discussed such as boundary and initial

conditions of the models. Then, LES modelling of neutral ABL is reviewed by considering

approaches applied to both the surface layer only and to the full ABL. In parallel to the lat-

ter subsections, classical and advanced SGS models along with their various declinations and

limitations are thoroughly reviewed. In a last part, the inclusion of thermal effects in the LES

models is discussed by focusing on approaches dealing with the full ABL and that consider

the internal energy conservation. It is noteworthy that all along this section a special attention

will be given to the treatment of the near-surface region since it appears to be one of the most

important limitations of LES applied to the ABL.

1.3.2.1 Common aspects

LES model applied to the homogeneous surface ABL have some specifications in common,

whether the adiabatic surface layer or the stratified full ABL are considered. Methods for
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driving the flow, surface, lateral and top boundary boundary conditions as well as initialization

approaches roughly face the same challenges.

1.3.2.1.1 The challenge of the earth surface

The earth surface similarly as a wall restricts the size and behaviour of eddies and it affects

small eddies isotropy. It can be said that it represents the Achilles’ heel of LES of the ABL as

discussed all along this section.

1.3.2.1.1.1 LES and no-slip rigid wall LES of a flow bounded by a no-slip rigid wall can

be done following two main approaches as discussed by Pope (2000). Near wall resolved

LES (LES-NWR) resolve at least 80 % of the turbulent energy everywhere, while near wall

modelling LES (LES-NWM) resolve 80 % of turbulent energy only remote from the wall.

In other words, the former resolve the flow down to the viscous sublayer based on the more

universal true no-slip wall condition, while the latter take into account the surface through wall

functions with a first cell being generally located in the log-law region of the boundary layer.

In addition, ABL is a high Reynolds number flow, and the higher the Reynolds number is,

the thinner is the viscous sublayer. However, as opposed to RANS, highly stretched grid cells

are not well suited for LES as they may cause numerical instabilities and spuriously affect

the filter width (Andren et al., 1994; Murakami, 1998). As a result, LES-NWR of the ABL

requires very fine nearly isotropic meshes increasing the computational cost to an unrealistic

level as illustrated by Piomelli (2008). On top of that, ABL surface is most of the time fully

aerodynamically rough which further complicates the modelling within the roughness sublayer,

as discussed in Sec. 1.1.3.1 (as opposed to the use of generally accepted and relatively simple

wall function based on the similarity theory). As a result, LES based on a no-slip surface

boundary conditions, i.e. LES-NWR, are far from being trivial to implement in the context of

ABL flows. They are thus less appealing than the cheaper and simpler LES-NWM approaches

for the reproduction of ABL flows. Those facts are enforced for methods addressing the full

ABL due to mesh restrictions.
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LES-NWR approaches are however commonly found in CWE where flow around non-rough

bluff bodies is of concern. In those studies, the ABL is more often considered as a classical

turbulent boundary layer (a turbulent boundary layer over a flat plate), as illustrated in the early

review of Murakami (1998). In fact, the concept of LES slightly differs between CWE and en-

vironmental modelling community. Because of the size of the flow features to be resolved, the

filter size differs. The grid cell size of LES based environmental modelling approaches is of

the order of 20 m which is roughly the characteristic size of geometries studied in CWE. As a

result, the latter LES approaches require a much finer grid but typical domain size is restrained

compared to environmental models. No-slip surface boundary conditions are thus more re-

alistic in CWE applications. Despite those differences and the fact that CWE generally only

consider the neutral ABL, the results from those studies are of prime interests for environmen-

tal modelling applications, notably with regards to the SGS model abilities since the same or

very similar approaches are used in every domain.

LES-NWM models rely on wall functions to provide wall boundary condition. However, while

the eddy size decrease as the wall is approached, the LES-NWM resolution stays generally

unchanged. As results, the flow is not sufficiently resolved in the layer close to the wall, and

at least two assumptions, on which SGS models are generally based, are violated: the isotropy

of the turbulence and the filter located in the inertial subrange (Mason and Thomson, 1992).

Thus, even with correct wall functions, LES-NWM are biased close to the ground if no special

care is taken to properly address those shortcomings and to adapt the SGS model formulation

consistently. Such a limitation is easily diagnosed in ABL flows by comparing the profiles of

non-dimensional velocity vertical shear close to the surface, ΦM , from LES results and from

the similarity theory. For neutral ABL, the latter should be constant and equals to one, while

typical LES results exhibit a clear overshoot of ΦM (Andren et al., 1994). Independently of

the SGS model, this error is a function of both the flow and surface properties (Stoll and Porté-

Agel, 2006) and the numerical parameters such as the mesh resolution and cell aspect ratio

close to the surface (Brasseur and Wei, 2010).
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1.3.2.1.1.2 LES and surface layer similarity theory Wall functions used by LES-NWM

of the ABL are commonly based on the Monin-Obukhov similarity theory, as illustrated in most

of the paper introduced in this sections. Canopy model, which represent the surface by impos-

ing volumetric forces on the few meshes close to the ground, are also sometime used (Brown

et al., 2001). They can be seen as an extension of the MO similarity for porous domains. This

approach is known to properly take into account tall vegetation cover such as forest which is

of interest for wind energy applications. In the LES context, it can also be used as a numerical

technique to provide the model with a more advanced surface boundary condition (in three

dimensions instead of two) (Chow et al., 2005; Senocak et al., 2007). However, the surface

layer similarity theory (and canopy models) was developed based on ensemble averaged sur-

face layer profiles: MO similarity describes the time or space averaged surface layer over an

homogeneous surface. As a result, the use of such a theory with local instantaneous values

of the velocity and temperature to provide the model with the surface boundary stress may be

questionable, and as underlined by Porté-Agel et al. (2000); Stoll and Porté-Agel (2006), no

universal agreement exist concerning wall-stress models.

The simplest and very common approach to provide LES-NWM of the ABL with a surface

boundary condition is to apply the MO similarity theory locally (Mason and Thomson, 1987;

Stoll and Porté-Agel, 2006; Sagaut, 2006; Drobinski et al., 2007; Brasseur and Wei, 2010). In

such a case, the wall shear stress is expressed as τi3 = τwui/‖u‖ where ui is the horizontal

component of the instantaneous velocity vector u, and the local total surface shear stress τw,

i.e. the local friction velocity, is computed relying only on local instantaneous quantities.

This approach is popular due to it simplicity and because it can be used straightforwardly with

an heterogeneous surface. However, it does not guarantee that the average surface stress equals

the actual mean surface stress (Stoll and Porté-Agel, 2006). Indeed, it has the disadvantage of

leading to a larger average stress for a given near-wall velocity (Silva Lopes et al., 2007). Stoll

and Porté-Agel (2006) further state that the underlying assumptions are only valid if meshes

close to the surface are heavily deformed (i.e. grid cell aspect ratio Δx/Δz 	 1).
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To avoid such an inconsistency, a very popular approach is to compute total surface shear

stress base on the ensemble averaged flow properties, and then used that value along the local

flow properties to compute the local shear stress at the wall as proposed by Schumann (1975).

In such a case, we have τi3 = 〈τw〉 ui/UMO where 〈τw〉 = −u2
∗ is the mean total surface

shear stress obtained from similarity theory and UMO is the velocity also computed based on

the similarity theory. For an homogeneous surface case, the horizontally averaged velocity

magnitude 〈‖u‖〉 is generally used to compute 〈τw〉. Thus, only one value of the friction

velocity u∗ is computed, and UMO is obtained based on the latter. Thus, this approach requires

that the cases reproduced have at least one homogeneous direction (Schumann, 1975; Porté-

Agel et al., 2000) which is somewhat limiting. However, a time average can also be used so

that this approach is valid for non-homogeneous cases. In that case, a relaxation can be used

for the mean velocity and mean wall shear stress to be able to evolve (Silva Lopes et al., 2007).

Other approaches, such as the one introduced by Moeng (1984), further considering the en-

semble averaged surface shear stress and it local fluctuation also exist. They are however more

complex and feature similar constraints as the Schumann (1975) approach. Furthermore, as

stated by Sullivan et al. (1994), the various approaches to define the surface boundary condi-

tion have a very limited impact on the results.

In a recent study, Stoll and Porté-Agel (2006) evaluated various approaches to represent the

stress at the surface boundary for LES models applied to the ABL. They compared four mod-

els of the surface shear stress. The first one is based on the horizontal averaged approach of

Schumann (1975) introduced above (called SG). The second model features the same approach

but uses a velocity of a fluid element displaced in the direction of the flow (by a given length

which is a function of the flow structures orientation) when scaling the magnitude to get the

stress components (called shifted SG). This approach intent to better take into account veloc-

ity fluctuations close to the ground, and thus fluctuation in the surface stress for low Reynolds

number flow (Stoll and Porté-Agel, 2006). The third stress model is based on the local approach

illustrated above (called local SG)6. Finally, the last approach is based on experimentally de-

6 In Stoll and Porté-Agel (2006) paper this approach is wrongly refers to Moeng (1984) surface model.
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veloped/validated model which relies on the streamwise velocity as presented by Marusic et al.

(2001) (called MKP). This new surface stress model was designed so that, for any altitude in

the logarithmic region, the modelled shear stress spectrum (obtained by applying the model

on experimental data in the study) would properly reproduce the measured surface shear stress

spectrum. Essentially, the model assumes that fluctuations of the wall shear stress are propor-

tional to the near-wall tangential velocity fluctuations.

Stoll and Porté-Agel (2006) found that non-dimensional velocity gradient φM and variance u′2

at the first few meshes above the surface were influenced by roughness length when using the

classic surface shear stress models, i.e. SG, shifted SG and local SG. A larger roughness length

resulted in a stronger damping of velocity fluctuations near the surface. This had the conse-

quence to lower the level of resolved velocity variances and energy spectra, and also to enlarge

the values of the non-dimensional velocity gradient φM . The impact on the velocity spectra

close to the surface is particularly notable with the local SG model using a large roughness

length (z0 > 0.1 m). All those problems were less significant for cases with a lower surface

roughness. However, experimental results suggested that the roughness should not have any

influence on those two quantities, i.e. φM and u′2. Only the MKP model was not influenced by

roughness and managed to correctly perform, notably with regards to velocity spectra.

Stoll and Porté-Agel (2006) study is based on an advanced dynamical Smagorinsky SGS model

presented in the next section. They found that the result enhancements in the surface region

thanks to the use of this advanced SGS model were far more significant than only using a

proper surface shear stress model in combination with a simple SGS model. However, the

error introduced in velocity vertical gradient close to the surface propagates to the full veloc-

ity profile introducing a roughness dependent error(except with MKP) which would better be

avoided. They concluded that, considering the differences of the results, surface stress model

have a limited impact: neither the SG, the shifted SG nor the local SG are better, and only the

MKP shown few enhancements.



71

1.3.2.1.2 Lateral and top boundary conditions

Lateral (i.e. inlet, outlet and lateral sides) and top boundary conditions have to be permeable to

eddies of all size so that they can enter and exit the computational domain freely. Concerning

lateral boundary conditions, several techniques are possible but in the context of a homoge-

neous ABL the most straightforward approach is to use periodical lateral boundary conditions,

i.e. what is going out on one side of the domain comes in on the opposite side of the domain.

Indeed, the periodic lateral boundary conditions heavily simplify the treatment since no special

care has to be taken to reproduce all the range of eddies. The turbulence and thus the bound-

ary layer are able to develop by themselves, mitigating initial condition importance. However,

the flow need to be initially perturbed to trigger the various instabilities, and an appropriate

spin-up period is require to reach a fully developed turbulent flow. Physically realistic initial

conditions may only accelerate the development of the turbulent steady state, leaving the end

result unchanged with respect to results based on more simplistic initialization approaches.

When only the surface layer is considered, Coriolis effect is negligible and the mean flow

orientation is the same across the whole domain. As a result, inlet, outlet and sides boundary

conditions can be clearly identified. This type of flow is sometimes referred to as channel flow.

When simulating the full ABL, the Coriolis effect is included, and the mean flow is turning with

height. Therefore, lateral boundary conditions, that see a flow parallel to them above ABL, are

inlet and outlet boundary condition below the inversion. Periodic boundary conditions are thus

even more convenient in such a case.

Periodic lateral boundary conditions also facilitate the use of Fourier transforms since the latter

generally assume an infinite domain7. However, while the domain can be seen as infinitely

periodic, its real elementary size needs to be sufficiently large in order to allow the excitation of

energy producing eddies. Above a critical domain size, results should become independent of

the horizontal domain size. However, using periodic boundary condition, the whole solution is

prone to oscillate at the inertial frequency around an equilibrium profile since the flow velocity

7 c.f. Sagaut (2006) for the development of NS equations in the Fourier space and a discussion on the Fourier

transformation in finite domains.
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is not prescribed at the lateral boundaries of the domain (as opposed to when inlet boundary

condition is prescribed). Furthermore, cumulative errors such as a non-conservation of the

mass can make the model diverge.

A Galilean transformation, i.e. a grid moving with the flow, is sometimes used in conjunction

with the periodic boundary conditions in order to reduce discretization error and lower the

stability limit for the time step (Andren et al., 1994).

The nesting approach, as discussed in Sec. 1.2.2.4 can also be used for the lateral and some-

times the top boundary conditions (Sagaut, 2006). The same philosophy as for the mesoscale

models can be followed but at finer scale (Drobinski et al., 2007). Seeing the limitations of

mesoscale models at fine scale, the use of a LES model as a last level of nesting is very promis-

ing. Nesting approach is useful to provide boundary condition for heterogeneous surface cases.

In homogeneous surface cases, this approach is generally used to address meteorological prob-

lems where the large scale flow is evolving, i.e. advection of cold air, passing front, diurnal

cycle influenced mesoscale phenomena (Drobinski et al., 2007). The nesting approach can

also be used in a two step approach. The mesh is unchanged but the first step is periodic while

the second one is nested.

Finally, damping regions sometime called sponges (Benoit et al., 1997; Ding et al., 2001a;

Lesieur et al., 2005), are often implemented at the top and lateral boundaries of the domain

when periodicity is not used. Such an approach is required for eddies (and gravity waves

and sound waves, that can arise when the temperature is considered) not to be reflected in

the computational domain when reaching the boundaries. Such phenomena have also to be

properly addressed by the boundary conditions. These phenomena can pollute and thus bias

the solution. Those damping regions are a transition between the domain boundary and the

simulated flow inside the domain (Laprise et al., 1997; Benoit et al., 1997). Sometimes, the

sponge region can be based on simple weighting functions (such as cos2 function). However,

more evolved methods are often required, such as the addition of a numerical diffusion in

order to smooth the flow fields when getting closer to the boundaries (Shuman, 1957). Several
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advanced approaches also exist, such as the radiative boundary condition that trigger and damp

explicitly only the waves and eddies that reaches the boundary of the domain (Gray et al., 2001;

Skamarock et al., 2008).

1.3.2.1.3 Driving the flow

In LES, driving an ABL flow is most of the time achieved by means of a pressure gradient as-

sociated with a stress free top boundary condition (all LES studies discussed here). Two main

reasons explain this choice for the top boundary. On the one hand, imposing a vertical shear

requires the latter to be a priori known which is only the case in the surface layer (where the

pressure gradient is negligible compared to the other terms in the equations) thanks to the MO

similarity theory. At the opposite, the shear in the above part of the ABL (below the free atmo-

sphere, and where the pressure gradient become non-negligible) is a priori unknown and the

imposition of pressure gradient is more physically meaningful. 8. On the other hand, imposing

a vertical velocity shear or a moving layer at the top of the domain is less straightforward than

when relying on CWE RANS approaches since eddies reaching the top boundary need to be

either damped or able to exit smoothly without side effects.

When the Coriolis effect is neglected, i.e. channel flow, the pressure gradient is parallel to the

velocity component. The mean flow has the same direction throughout the whole domain and

across the vertical profile. LES models dedicated to the surface layer and CWE LES models

often rely on this approach. They reproduce a relatively shallow partial ABL. The pressure

gradient corresponding to a desired velocity can be computed such as presented by Porté-Agel

et al. (2000). Similarity theory can be used to obtain an a priori estimate of the stress.

When the Coriolis effect is taken into account, the pressure gradient is roughly perpendicular

to the wind above the ABL, i.e. in the free atmosphere. This is called the geostrophic bal-

ance and it is widely considered to be a good approximation of the free atmosphere horizontal

8 Thus, this type of approach to drive the flow is very common for CWE RANS approaches as generally only

the surface layer is considered (Richards and Hoxey, 1993; Hargreaves and Wright, 2007). However, while

this is strictly valid only in the surface layer, computational domain of CWE RANS studies often extended

well above its effective height for numerical reasons but the flow above the surface layer should not be

considered as fully realistic.
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equilibrium. This large scale pressure gradient in presence of the Coriolis effect is commonly

referred to as the geostrophic wind. In such a configuration, the computational domain requires

to be higher than the ABL and the top of the domain is thus at least a couple of thousands me-

ters high. As the earth surface is approached, turbulent stresses increase, and momentum and

thus the Coriolis effect decreases while the horizontal large scale pressure gradient stays un-

changed. As a result, the wind turns with height as a function of the equilibrium between these

three forces in the NS equation. This is the so-called Ekman spiral. Wind turns to the left

(right) in the northern (southern) hemisphere. In that configuration, driving the flow by means

of a pressure gradient is very practical.

In the case of fully periodic lateral boundary conditions, a proper treatment of the pressure

variable is required since, at the same time, a mean gradient at the scale of the domain is

needed, and the resolved pressure field also has to be periodic. The pressure gradient driving

the flow is thus generally subtracted from the instantaneous pressure field, and imposed though

new external forcing.

1.3.2.1.4 Initialization

An appropriate initialization is required to allow the “ignition” of turbulence in LES. Tra-

ditionally, perturbations are applied to the velocity components but temperature can also be

targeted (Andren et al., 1994; Moeng and Sullivan, 1994; Brown et al., 2000). A wide range

of methods can be used to generate perturbations going from totally random to spectrally orga-

nized and satisfying mass conservation. Some researcher also force an heterogeneous surface

for a given number of iterations (Mason and Thomson, 1987). However, a spin-up period af-

ter the initialization is generally needed regardless of the initialization method used, so that

organized turbulent eddies can develop with properties independent of the initial perturbations.

If initial fields do not satisfy mass conservation, incompressible/anelastic approaches generally

require larger initial perturbations (Andren et al., 1994). Too small perturbations can damp and

the flow can revert to laminar. When compressible approaches are used, perturbations not sat-

isfying the mass conservation have a direct impact on the temperature. The mean temperature
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profile can then be affected depending of the set of random numbers used, notably close to the

surface (see Sec. 3.4.2). If the approach takes into account internal energy, a heated surface

in conjunction with small perturbations appears to be suited for both incompressible and com-

pressible approaches since, on the one hand, it allows perturbations to propagate and organize

due to the strong effect of convection, while on the other hand, the same phenomena evacuate

spurious temperature perturbations (Moeng and Sullivan, 1994).

To increase the level of physical representativeness of initialization, velocity components per-

turbations can be scaled with a priori or experimental profile of velocity variances or TKE (An-

dren et al., 1994). Mass conservation can also be a criterion of the initialization. This latter

constraint, could be achieved by basing initialization on a kinematic decomposition of flow

field in a rotational and potential part, such as presented in Panton (1996, Chap. 17).

1.3.2.2 SGS models for the adiabatic ABL

While being the simplest representation, surface homogeneous neutrally stratified/adiabatic

ABL include challenging and fundamental features common to all ABL such as shear pro-

cesses. The latter take more importance in neutral and stable ABL, where they are the unique

source of mixing. As a result, modelling the neutral ABL allows validating some fundamen-

tal aspects of LES models of the thermally stratified ABL. It can be seen as a preliminary

validation step of models that integrate a more complete representation of the ABL.

The simplest approach to reproduce neutral ABL flows based on LES is to consider an adiabatic

ABL, or in other words, to only take into account momentum and mass conservation. In such

a case the pure neutral ABL is modelled. As illustrated earlier, CWE approaches are generally

based on such an assumption, and models are often dedicated only to the lower half of the

ABL (Porté-Agel et al., 2000). The channel flow approach is often followed. Some models also

include the Coriolis effect intending to reproduce the idealized Ekman boundary layer (Andren

et al., 1994). Finally, models that also fully take into account internal energy or enthalpy

conservation can also be used to reproduce neutral ABL. In that case, a neutral ABL capped

by an inversion (Moeng and Sullivan, 1994) can be reproduced and temperature should not
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have any effects in the neutral region. In any cases, the flow modelled presents similarity and

non-dimensional quantities can be readily compared specially in the lower part of the ABL.

In this section, the neutral ABL serve to introduce the wide range of SGS models that have been

applied to reproduce ABL flows based on LES. The abilities of those models to reproduce both

quantities of interest and the ABL structure are discussed. All approaches discussed are based

on periodic lateral boundary conditions, and the focus is on the LES-NWM approaches. A

special attention is given to the flow processes close to the ground.

Classical SGS models are thus first reviewed along with their limitation and possible improve-

ments. Then, advanced SGS models with and without explicit filtering are introduced in two

separate sections and their abilities are discussed.

1.3.2.2.1 Classical SGS models

Classical SGS model refers to the several variants of the Smagorinsky-Lilly (Lilly, 1962;

Smagorinsky, 1963) and TKE based (Lilly, 1966) SGS models. They are all based on the

eddy viscosity hypothesis and subgrid mixing coefficients are assumed to be the product of a

length scale lt and a velocity scale ut both representative of the turbulence, i.e. νt = ltut as

proposed by the Prandtl mixing length approximation. In the context of classical SGS models,

the turbulent characteristic length scale is generally proportional to the 3D grid size, i.e. the

implicit filter width Δ, such as lt = CtΔ where Ct is a closure constant (which is set once

and for all but sometime a function of the height agl). The definition of the velocity scale

differs depending of the approach. Based on these simple considerations, several SGS model

were proposed that further take into account both the no-slip rough surface and the stratifica-

tion to allow the reproduction of the full ABL with LES models. Classical SGS models are

dissipative-only, meaning that the SGS mixing is considered to only dissipate energy of the

resolved fields. They are simple and they have been heavily used to model a wide range of

flow fields including the ABL (Murakami, 1998; Piomelli, 1999).
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Here, the generic Smagorinsky SGS is first investigated. Then, the generic TKE based SGS

models is discussed. Finally, limitations and possible enhancements of classical SGS models

are reviewed. Note that, while this section is dedicated to the neutral homogeneous ABL,

historically, most of the early LES studies that addressed the full ABL were focusing on the

convective ABL as it is easier to reproduce based on LES and less computational demanding

than neutral and stable ABL (discussed in further details in Sec. 1.3.2.3).

1.3.2.2.1.1 Smagorinsky SGS model The Smagorinsky-Lilly SGS model (Lilly, 1962;

Smagorinsky, 1963) assume, as a first approximation, that production and dissipation of TKE

are locally in equilibrium, i.e. equal at the subgrid level. The turbulent velocity scale is

computed based on the product of filter width Δ and the modulus of the strain rate tensor

‖S‖ = (2SijSij)
1/2 = S, such as ut = ΔS. This is thus a first order model and we have

νt = (CSΔ)2S = λ2S, (1.1)

τij −
1

3
δijτkk = −2νtSij = −2λ2SSij. (1.2)

where traditionally, we have Ct = C2
S with CS referred to as the Smagorinsky constant, the

length scale λ = CSΔ, and the filter width Δ = (ΔxΔyΔz)1/3.

Lilly (1966) obtained a theoretical value of the Smagorinsky constant CS based on the Kol-

mogorov hypothesis (spectra model) for an isotropic homogeneous turbulence (see also Lesieur

et al. (2005, p. 44)), giving

CS �

1

π

(
2

3CKol

)3/4

(1.3)

where CKol is the Kolmogorov constant found experimentally and generally taken equal to 1.5

in the ABL, thus giving CS = 0.17. This value of the constant is theoretically well suited for the

well resolved regions of the flow where the filter is properly located in the inertial subrange. It

is the considered today as the traditional value of the Smagorinsky constant (Porté-Agel et al.,

2000; Lesieur et al., 2005).
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The first large eddy simulation of the ABL is certainly the one of Deardorff (1972) who, in a

pioneering study based on Smagorinsky-Lilly SGS model with CS = 0.1, reproduce a neutral

and a convective ABL based on a 403 mesh. This computation took more than one year and

a half which includes six month solely for the initialization. Deardorff (1972) noticed that the

velocity profiles did not follow the similarity theory and he could not reproduce the logarithmic

velocity profile. However, the full ABL (not the surface layer) was more of concern for this

first promising study, that was focusing on the convective ABL.

The neutral static stability full ABL, i.e. the Ekman boundary layer, was for the first time

thoroughly studied by Mason and Thomson (1987) using a Smagorinsky SGS model. The

study was still exploratory and assessed the impact of resolution (a 40 by 40 horizontal domain

was always used), the domain size (from 24 to 3 km) and the Smagorinsky constant (from

0.12 to 0.47). Mason and Thomson (1987) confirmed that the Ekman ABL height was roughly

0.35 u∗/f and that for such a case, u∗/f is a proper scaling parameter for height. They also

studied the ABL unsteady structure in order to better understand dynamic processes taking

place at various heights. As for channel flow, elongated eddies in the direction of the wind

were found close to the surface. In the middle of the ABL, i.e. far from the surface, correlations

were more isotropic. First and second order moment profiles were satisfactorily compared with

Deardorff (1972) and the Launder-Reece-Rodi (LRR) second order Reynolds stress model, but

the limitations of the Deardorff (1972) approach were clearly underlined. Concerning the

Smagorinsky constant, it was found that the larger the value of CS is, the smoother are the

flow fields. Furthermore, large values of CS (higher than 0.2) led to a smooth well-resolved

solution with small numerical errors (effective filter bigger than resolution and errors related

to the discretization of the problem are small), while small values of CS gave much choppy

fields (i.e. with structures of the size of the mesh that can hardly be interpreted as physical

as underlined by Mason (1994)) with larger numerical errors. This study allowed, in addition

to the improvement brought to the Smagorinsky SGS model, to refine Ekman boundary layer

understanding and requirements in terms of resolution, domain size and boundary conditions.

It opened the path for more advanced approaches.
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Later, in a thorough study, Mason and Brown (1999) discussed the behaviour of LES ap-

proaches based on the Smagorinsky SGS model with regards to some key parameters, such

as the Smagorinsky constant CS , the horizontal and vertical resolution, the model coefficient

CSΔ, the size of the domain and the effects of the time period used to compute statistics.

A convective ABL was used as test case (but similar conclusions are obtained for neutral

ABL (Brown et al., 2000)). Various aspects of the solution were regarded, and many velocity

variance profiles and power spectra were presented by Mason and Brown (1999) for various

configuration of the model, allowing for comparison. First, it is shown that for an equal value

of the model coefficient, i.e. (CSΔ), the model converge to similar results (turbulent quantities

as well as velocity spectra) whatever the combination of CS and Δ (in the limit of a sufficiently

fine mesh and with an increasing numerical error when CS is lower). As a consequence, it was

considered by the authors that the SGS model as a whole determines the filter operation and

not the numerical grid only. It follows that the Smagorinsky constant CS is considered as a

measure of the ratio of the filter scale to the numerical resolution. The authors further suggest

that the SGS would better be called the subfilter scales, but as it is seen at the end of next sub-

section, subgrid and subfilter scales have a different meaning. However, as a recommendation,

Mason and Brown (1999) show that a too small value of CS (< 0.23 for Mason) lead to a build

up of energy at the smallest scales, and the model could diverge. A large value of CS is helpful

(> 0.32 for Mason) to identify the role of numerical errors but the model efficiency is greatly

affected since a higher resolution is needed to obtain the same results.

A year later, Brown et al. (2000) presented a continuation of Mason and Brown (1999) study,

by further investigating the same parameters for a neutral boundary layer as well as studying

the impact of using an advection scheme (monotone) known to be more diffusive. In neu-

tral conditions, the same behaviour with regards to the numerical parameter earlier discussed

was observed. Concerning advection scheme, the usual non-dissipative advection method was

compared to a monotone advection scheme. This latter approach is generally used in cloud

resolving LES models but conclusion can be further extended to numerical diffusion impact

of all advection schemes. It was found that as long as the simulation is well resolved (either



80

numerically - high CS - or with a filter being located well into the inertial subrange), LES re-

sults appear to be insensitive to the choice of advection scheme. In fact, SGS dissipation adapts

to the numerical diffusion of the advection scheme and it gets lower in places where the flow

is well resolved. Close to the surface however, some difficulties remained and the dissipative

advection scheme had a non-negligible impact. And it was shown that it could affect the whole

solution if both the mesh or CS were not properly set.

While all the parameters discussed by Mason and Brown (1999) and Brown et al. (2000) had

been already investigated in earlier studies, they clearly illustrate the behaviour of the model in

the well resolved regions as a function of the main parameters of the SGS model.

The above discussion mostly regards the Smagorinsky SGS model parameters in the well re-

solved regions, i.e. the flow interior, and it was found that CS values within 0.15 to 0.3 are

commonly used for LES of ABL (Lilly, 1966; Mason, 1994; Mason and Brown, 1999; Porté-

Agel et al., 2000; Pope, 2000). Close to the surface where the shear dominates, i.e. in the

surface layer, the value of CS need to be adjusted to improve the results as discussed by Sagaut

(2006, p. 124). Indeed, values around 0.1 are preferred for shear flows due to the fact that

the field gradient is non-zero which contributes to the strain rate tensor modulus (Porté-Agel

et al., 2000). The constant thus has to be reduced in order to enforce the local equilibrium

relation (Sagaut, 2006). As a result, for LES of the full ABL instead of a unique value, it

would be better to use a vertical profile for the Smagorinsky constant. However, this profile is

flow and case dependent and more advance approaches considering the local properties of the

flow are needed to dynamically define this constant (i.e. dynamics Smagorinsky SGS models

Sec. 1.3.2.2.3.2). However, Mason and Thomson (1987) proposed to defined the length scale

λ of Smagorinsky SGS model as a function of the height agl (instead of being solely a function

of the mesh) following an asymptotic behaviour such as

λ =

[
1

(CSΔ)n
+

1

(κ (z + z0))
n

]−1/n
. (1.4)
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In the flow interior, i.e. in the mixed/Ekman layer far from the surface, the length scale λ

equals CSΔ, and it is reduced as the surface approach in a Van Driest manner so that the

effective Smagorinsky constant reach zero at the surface. The exponent n was set to 1 by

Mason and Thomson (1987) but 2 was latter found to be better adapted (Mason and Thomson,

1992; Porté-Agel et al., 2000). This approach prove to enhance near-surface results and it is

still used today in the UKMO large eddy model (LEM) (Gray et al., 2001), a descendant of

Mason’s model. However, as demonstrated by Mason and Thomson (1992), Porté-Agel et al.

(2000) and Brasseur and Wei (2010), the sole adaptation of the length scale (which changes the

effective constant of the model) is not sufficient to fully address the limitation of the classical

SGS model in the near-surface region.

In this section, the Smagorinsky SGS model was illustrated through various studies (mostly

from the UKMO LES research group). As it will be discussed all along the next sections,

the Smagorinsky SGS model has been and is still heavily used today (Porté-Agel et al., 2000;

Chow et al., 2005; Beare et al., 2006; Piomelli, 2008; Churchfield et al., 2010; Brasseur and

Wei, 2010). It is very simple, yet well adapted as underlined by Murakami (1998). Therefore,

it has been extensively studied and its limitations and behaviour are very well known. As

a result, it commonly serves as a reference model in a huge amount of LES studies. It is

also implemented in several Mesoscale models such as ARPS (Chow et al., 2005), UM (Gray

et al., 2001), RAMS (Pielke and Nicholls, 1997). Thus, it represents an interesting first step

in developing of a new LES model, allowing to evaluate the non-SGS parts of the model by

comparison with the other studies using the Smagorinsky SGS model.

1.3.2.2.1.2 TKE based SGS model Instead of relying on the sole strain rate tensor, the

eddy viscosity of the TKE based SGS model is expressed following the Prandtl-Kolmogorov

proposal (Lilly, 1966), i.e. the turbulent velocity scale is set equal to the root of the TKE and
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we have

νt = Ckλk
1/2, (1.5)

τij −
1

3
δijτkk = −2Ckλk

1/2 Sij, (1.6)

where the mixing length scale is equal to the filter width λ = Δ in neutral conditions and

Ck is a closure constant. This SGS model was for the first time proposed by Lilly (1966) by

simplifying a full second order model of the SGS stresses. Note that, a Van Driest damping of

the mixing length scale λ is sometime used (similarly to the Smagorinsky SGS model). In that

case, λ is reduced as a function of the height agl through a clipping with κz which is know to

slightly enhance the near-surface results (Sullivan et al., 1994; Ding et al., 2001a).

Concerning the TKE, k, it is generally obtained thanks to its prognostic equation (also referred

to as prognostic or conservation equation) that is to solve and which can be written

(
∂

∂t
+ uj

∂

∂xj

)
k = Pk − ε+Dk (1.7)

where the production Pk, the dissipation ε, and the diffusion Dk terms can be expressed

as (Deardorff, 1980; Moeng, 1984; Sullivan et al., 1994; Kosović and Curry, 2000)

Pk = −τijSij, ε =
Cε

λε

k3/2, Dk =
∂

∂xi

(
2νt

∂k

∂xi

)
, (1.8)

where the dissipation length scale is generally taken equal to the filter width λε = Δ in neutral

conditions, and Cε is a second closure constant. Note that the diffusion term include all the

transport terms and the most generally accepted parametrization is presented here (Deardorff,

1980; Kosović and Curry, 2000).

This SGS model is relevant for relatively high Reynolds number flows where the TKE does not

vanish. They are less suited to predict the laminar-turbulent transition. If TKE is initialized to

zero, it may never change value and the model may stick to a laminar flow (Piomelli, 1999).
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Considering turbulence in an equilibrium state, i.e. production and dissipation of TKE are

equal, and using the Kolmogorov theory, Lilly (1966) obtained a value for the closure constants

Cε = π

(
2

3CKol

)3/2

, (1.9)

and, based on the SGS TKE prognostic equation

Ck = C1/3
ε C

4/3
S =

1

π

(
2

3CKol

)3/2

(1.10)

giving (Ck; Cε) = (0.094; 0.93) with CKol = 1.5.

Based on Lilly (1966) derivation, Sommeria (1976) presented a SGS model with a diagnostic

equation for all second order turbulent moments, and (Ck; Cε) = (0.0667; 0.7). The TKE

was also diagnosed. The model was dedicated to the full ABL with the possible inclusion

of boundary layer clouds. It was the first time a TKE based SGS model was applied to the

ABL and the first time boundary layer clouds were modelled. While encouraging results were

obtained, the author considered the study as preliminary since many aspects of the model were

to clarify. Among other things, they suggested the need for a prognostic equation for TKE.

Deardorff (1980) presented a TKE based SGS model dedicated to the full ABL and similar

to the one previously proposed by Lilly (1966) (with (Ck; Cε) = (0.1; 0.7) in neutral con-

ditions) in which the prognostic equation of SGS TKE Eq. (1.7) was solved. One year later,

Redelsperger and Sommeria (1981) enhanced the SGS model of Sommeria (1976) also adding

such an equation. The inclusion of an prognostic equation for TKE, in addition to provide a

value of the TKE itself, permitted to better take into account the history of the flow, and to

include non-local aspects of turbulence while keeping the model relatively simple. By doing

so, the TKE can be seen as one of the main variables of the model as proposed by Redelsperger

and Sommeria (1981). With such a model, the SGS turbulence is not assumed in equilibrium

(production and dissipation of TKE not equal anymore), and TKE can be transported thanks to

its advection. As a result, this SGS model also appears to be more skilled than the Smagorinsky
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SGS model for ABL over a complex surface but no significant improvement are to be expected

for it in homogeneous cases (Andren et al., 1994). It was found by Deardorff (1980) to be the

optimum between first order Smagorinsky and full second order models. However, as opposed

to RANS approaches where notable improvement are observed when going from a first order

model (zero equation) to a one-and-a-half-order model (one equation) and to a second order

(two equations), the enhancement is not that clear in LES. Indeed, on the one hand, since only a

small part of the turbulence is modelled in LES compared to RANS (where everything is mod-

elled), the impact of the details of the SGS model on the results is notably reduced (Andren

et al., 1994). On the other hand, the imbalance between production and dissipation of subgrid

TKE is much smaller than in RANS. As a result, some authors considers that the increase in

complexity and computational cost caused by the additional equation to be solved is worth only

if the information on the TKE is required by some other parametrization schemes (apart from

eddy viscosity) (Lesieur et al., 2005).

Moeng (1984) later developed a LES model based on Deardorff (1980) SGS model and a

mixed pseudo-spectral finite-difference solver. The latter requires the flow fields to be explicitly

filtered which allows a better control on the LES filter. Furthermore, it avoids finite difference

errors (in the horizontal directions) by processing horizontal components of the equations in the

spectral space relying on Fast Fourier Transform (FFT). Moeng (1984) reproduced successfully

day 33 of Wangara experiment with results in agreement with Deardorff’s previous findings.

By comparing with an advanced analytical spectra model (taking into account the filter and

discretization effects) and observation, Moeng and Wyngaard (1988) further showed that the

wave cut-off filter was more appropriate than the Gaussian filters. In addition, they calibrated

the model constant with respect to the theoretical filtered spectra and found that (Ck; Cε) =

(0.1; 0.93) performed best. These values are in good agreement with what obtained by Lilly

(1966) based on Kolmogorov hypothesis. Today, they are still considered as appropriate for

the flow interior (Redelsperger et al., 2001).

Moeng and Sullivan (1994) also reproduced a neutral ABL based on the model just intro-

duced (Deardorff, 1980; Moeng, 1984; Moeng and Wyngaard, 1988). This study is of particular
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interest because the neutral case of Moeng and Sullivan (1994) is not strictly adiabatic since the

internal energy conservation is considered and the ABL is capped by a strong inversion (8◦K

in 60 m). It allows to significantly reduce the height of the domain, to damp the inertial oscil-

lation, and also to further validate the complete LES model by verifying that temperature, even

if included, do not change the result in the neutral region. Despite the above considerations,

the obtained profiles of the various turbulent quantities in the lower half of the ABL exhibit the

very same characteristics as results from Moeng et al. model in Andren et al. (1994) study con-

firming the validity of the approach (albeit the solution consistently fail close to the surface)9.

The main objective of Moeng and Sullivan (1994) was to further examine the flow properties

and structure across the ABL, and the main features of the full ABL (latter observed experi-

mentally) were recovered such as the near-surface streaks that occur in updraft/downdraft pairs

elongated in the flow direction and that gradually disappear with increasing height (Moeng and

Sullivan, 1994; Drobinski et al., 2004).

The Deardorff-Moeng (Deardorff, 1980; Moeng and Wyngaard, 1988) SGS model was also

implemented in WRF (Klemp and Skamarock, 2004). However, an adaptation of the con-

stant was needed. Indeed, numerical schemes of this method are higher orders (third order

Runge-Kutta time scheme and fifth order upwind advection scheme), reducing the numerical

diffusion and thus increasing energy of small structures. By using the usual set of constant

(Ck;Cε) = (0.1; 0.93), the obtained solutions were noisy with a build up of energy at the grid

scale (i.e. many small structures of the size of the grid) (Klemp and Skamarock, 2004). Thus,

Ck needed to be increased to smooth the results (due to the exact same reasoning as for the

Smagorinsky constant). Those problems are also discussed by Takemi and Rotunno (2005)

who first reviewed the set of constants that have been historically used with the TKE based

SGS model. The latter authors suggested that (Ck;Cε) = (0.15; 0.93) were more appropriated

for use in WRF, instead of the usual set of closure constants.

9 For such a case, as opposed to the pure Ekman boundary layer, the ABL height zi is define by the inversion,

i.e. generally the height of the minimum heat flux. Thus, zi is used instead of u∗/f as a height scaling

parameter and to compare Moeng and Sullivan (1994) results with Andren et al. (1994) Ekman boundary

layer results, height needs to be rescaled using the ratio u∗/zif
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To close this section, concerning the inclusion of SGS models in mesoscale models, it is to

note that Cuxart et al. (2000) added in the mesoscale model Meso-NH a SGS model similar

to Sommeria (1976) and Redelsperger and Sommeria (1981). They validated the approach for

several flow configurations, and the adiabatic ABL cases of Andren et al. (1994) (discussed in

details in the next section), was also reproduced successfully by Cuxart et al. (2000). How-

ever, the model was not alleviating the near-surface departure from the similarity theory. The

Smagorinsky and the TKE based SGS models have also been implemented in ARPS (Chow

and Street, 2009) and a few other mesoscale models with the same general results.

1.3.2.2.1.3 Limitations of classical SGS models The main properties of the classical SGS

models have been introduced in the previous section, and it has been seen that they were capa-

ble to reproduce full ABL flows. In this subsection, the main abilities of classical SGS models

are further investigated notably discussing the Andren et al. (1994) mile-stone intercomparison.

It is to underline that most of the attention is set on the near-surface region where LES-NWM

suffer from under-resolution and SGS eddies tend to be anisotropic.

Andren et al. (1994) intercomparison Andren et al. (1994) intercompared four reference

LES models of the full ABL, i.e. models of Mason, Moeng, Nieuwstadt and Schumann, based

on an homogeneous surface fully adiabatic Ekman boundary layer similar to Mason and Thom-

son (1987). Thus, only momentum and mass conservation are considered10. The exact same

numerical protocol is used in all the approaches, i.e. domain size, mesh, surface, lateral and top

boundary conditions, initialization method, input data and post-processing. Only the Mason

model had a stretched grid in the vertical direction along with a filter size Δ that only rely on

Δx and Δy (Δz of the filter is thus implicitly set equal to horizontal resolution, and changed

in the vertical resolution has no impact on the SGS model). In fact, these aspects (numerical

protocol) along several aspects of the results are described in detail by Andren et al. (1994) and

the study gives a good and thorough overview of the abilities of LES-NWM based on classical

SGS model. As a result, Andren et al. (1994) intercomparison served as a reference along the

10 Note however that each of the four models are also able to deal with temperature as they had been previously

intercompared in a similar way but for a purely convective ABL (Nieuwstadt et al., 1992), as discussed later.
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years to evaluate LES models for the adiabatic full ABL over homogeneous surface (Kosović,

1997; Cuxart et al., 2000; Chow et al., 2005; Senocak et al., 2007).

Mathematical model and numerical methods for both the solvers and the SGS models com-

pared in Andren et al. (1994) differ from one model to the other. However, they all feature

second order discretization schemes, and conservative approaches are used to compute ad-

vective terms. The only exception is Moeng’s model for which the horizontal derivatives are

computed based on a pseudo-spectral method. For their part, the SGS model compared are

the standard Smagorinsky (Mason; introduced previously), the backscatter Smagorinsky (Ma-

son; advanced SGS model presented in Sec. 1.3.2.2.2.2) and three variants of the TKE based

SGS model (Moeng; introduced previously, Nieuwstadt and Schumann11) featuring different

values for the TKE production and dissipation closure constants. To a priori compare all the

SGS models, Andren et al. (1994) evaluated the associated Smagorinsky constant of each SGS

model considering the dissipation and production of TKE in equilibrium. The constant value

ranged from 0.13 for Schumann to 0.24 for Moeng.

Results of all models compared by Andren et al. (1994) are generally very similar despite the

differences in mathematical models and numerical methods: they all reproduce the same iner-

tial oscillation and are in good agreement above the first third of the ABL. The Smagorinsky

and TKE based SGS models are found equally skilled for the neutral homogeneous Ekman

boundary layer. In the lowest third of the ABL, however, some differences are observed. Mod-

els can be classified in two groups: Moeng, Nieuwstadt and the Mason’s standard Smagorin-

sky, on one side, and Mason’s backscatter and Schumann, on the other. In fact, the backscatter

SGS model (and Schumann’s model to a least extent) is notably less biased close to the sur-

face clearly illustrating limitations of classical SGS models. Based on the backscatter SGS

model, non-dimensional vertical gradient of horizontal velocity in the surface layer is in bet-

ter agreement with MO similarity, i.e. without an overshoot, and friction velocity is increased

in comparison to the others models. Longitudinal velocity variance profile does not exhibit a

11 Note that, the Schumann SGS model used in Andren et al. (1994) study was relying on a classic TKE based

SGS model and not on the two-part eddy viscosity approach introduced in Sec. 1.3.2.2.2.1 (Schumann, 1975).
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“nose” close to the ground and vertical velocity variance profile becomes more linear (no more

featuring an inflexion point in the middle of the surface layer). Furthermore, the backscatter

and Schumann SGS models also feature a lower eddy mixing coefficient close to the surface

resulting in lower SGS flux and variances close to the surface, and an increase of the resolved

strain rates. Concerning velocity spectra, this decrease in SGS eddy diffusivity shift the spec-

tral peak toward higher wave-numbers which is followed by a steeper drop-off, confirming the

increase of small structures energy. Finally, the same eddy diffusivity was imposed by Andren

et al. (1994) in all LES models (based on the Mason non-backscatter results) in order to eval-

uate the impact of the non SGS parts of the models Results of all the models converge to the

same solution which proved that the differences previously observed were mainly due to the

SGS model and not caused by the solver or numerical schemes.

Andren et al. (1994) clearly illustrated the abilities of classical SGS models for an adiabatic

ABL and their limitations with regards to the surface layer. It was also demonstrated that the

differences in the results were clearly related to SGS models. In fact, both Smagorinsky and

TKE based classical SGS models are purely dissipative and deterministic as they assume that

the subgrid motion is fully determined by the resolved motion. They were demonstrated to

be over-dissipative (Mason and Thomson, 1992; Murakami, 1998; Piomelli, 1999; Porté-Agel

et al., 2000) which cause an over-reduction of the level of energy of the smallest resolved

structures. This is illustrated in Andren et al. (1994) intercomparison by the higher SGS eddy

diffusivity of classical SGS models. Furthermore, as discussed by Piomelli (1999), classical

SGS models are unable to reproduce the details of the subgrid stresses accurately at a local

level, notably with regards to the correlations and energy transfers to/from small scales from/to

the energy producing large-scales. This is particularly critical where unresolved part of the

flow is increased or in particular regions of flow over complex terrain (Piomelli, 1999).

In the near-surface region where the flow is already under-resolved, this tend to further damp

the resolved vertical turbulent mixing, which allows a higher vertical shear of horizontal ve-

locity, resulting in an overshoot of the non-dimensional wind shear and a too low friction

velocity (Mason and Thomson, 1992; Porté-Agel et al., 2000; Brasseur and Wei, 2010). The
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nose shape in the non-dimensional wind shear, which was first described by Mason and Thom-

son (1992), is thus very typical of LES based on dissipative only SGS models (Andren et al.,

1994; Sullivan et al., 1994; Porté-Agel et al., 2000; Redelsperger et al., 2001; Chow et al.,

2005; Piomelli, 2008). Many efforts were devoted by the research community to avoid this

shortcoming by adapting the SGS model, and while some solution were proposed at an early

stage (Schumann, 1975), it is still an open field of research (Piomelli, 2008) that receive a lot

of attention (Andren et al., 1994; Sullivan et al., 1994; Porté-Agel et al., 2000; Ding et al.,

2001a; Redelsperger et al., 2001; Drobinski et al., 2004; Chow et al., 2005; Piomelli, 2008).

High Accuracy Zone (HAZ) It is only recently that Brasseur and Wei (2010) first proposed

a solution to avoid the non-dimensional wind shear overshoot, only relying on a classical SGS

model, but applicable to the other approaches. Brasseur and Wei (2010) first found the source

of the overshoot problem inspired by an analogy with the physical behaviours of channel flow

over a smooth wall (where an overshoot naturally exists and depends on the Reynolds number

of the flow). Then, they demonstrated that the overshoot could be removed by properly adjust-

ing some of the numerical parameters of the LES model, namely the vertical resolution in the

surface layer, the grid aspect ratio close to the surface and the Smagorinsky constant. These

findings largely contrast with the hitherto generally accepted fact that the overshoot could only

be address by improving the SGS model, not by increasing the resolution (Mason and Thom-

son, 1992; Sullivan et al., 1994).

Three theoretical criteria were developed to bring the LES in the so-call High Accuracy Zone

(HAZ), i.e. the region in the R−ReLES parameter space12 where the overshoot is avoided and

results are almost independent of the grid parameters.

The HAZ is defined by critical minimum value of R and ReLES that form the two first criteria of

Brasseur’s framework, see Brasseur and Wei (2010, Fig. 6) for a graphical illustration. In fact,

12 R is the ratio of resolved over subgrid turbulent stress at the first grid level, and ReLES = ziu∗/νLES is a

LES Reynolds number analogous to the Re of smooth wall channel flow but where zi is the ABL height and

νLES is the LES viscosity which is defined by the ratio of subgrid stress 〈τ13〉 over resolved strain rate

2 〈S13〉 at the first grid level, see Brasseur and Wei (2010). In eddy viscosity closures, the LES viscosity is

shown to be proportional to the product of the model constant by the grid aspect ratio each raised to a

power (Brasseur and Wei, 2010).
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increasing the horizontal resolution or lowering the model constant but keeping the vertical

resolution unchanged tend to increase the resolved part of the flow close to the surface. As

a result, both R and ReLES are increased. In such a case, R is found to increase linearly

with ReLES in the R − ReLES parameter space. At the opposite, only increasing the vertical

resolution tend to lower the first level height and also indirectly lower the model constant which

have a mixed effect on R and ReLES . In the R − ReLES parameter space, this is found to

change the proportionally between R and ReLES , i.e. the slope of the line obtained when only

the horizontal resolution or the model constants were changed. As a result, a minimum vertical

resolution is required to reach the HAZ, which is the third criteria of Brasseur’s framework.

Brasseur and Wei (2010) further evaluated various reference results of the adiabatic ABL from

the literature (Andren et al., 1994; Sullivan et al., 1994; Porté-Agel et al., 2000; Chow et al.,

2005; Drobinski et al., 2007) plotting them in the R−ReLES parameter space, see Brasseur and

Wei (2010, Fig. 7). While constraint imposed by the three criteria to move a LES in the HAZ

are found relatively realistic in terms of grid requirements, only (Drobinski et al., 2007) is lo-

cated in the HAZ (which is also the only result not featuring an overshoot of the dimensionless

wind shear). Brasseur and Wei (2010) proposed a practical methods to bring LES in the HAZ.

The latter is successfully applied based Moeng and Sullivan (1994) shear case and using the

Moeng/Deardorff pseudo-spectra model (Deardorff, 1980; Moeng and Wyngaard, 1988) along

with a Smagorinsky SGS model. Note however that the three criteria are model and closure

dependent and that an iterative procedure is needed to properly move the LES in the HAZ. In

that sense, it is interesting to underline the differences between the various results from Andren

et al. (1994) on Brasseur and Wei (2010, Fig. 7). Considering that numerical parameters of the

models (except the constant) are identical in that study, it illustrates how model dependent are

the three critical parameters. Finally, it is to underline that, while theoretically fully justified,

the approach proposed by Brasseur and Wei (2010) has been found to lead to less satisfactory

results with other codes (Churchfield et al., 2010; Lapointe-Thériault, 2012).

Structure of the surface layer To end this section, a recent theory describing the structure

of the neutral surface layer in introduced. In fact, this theory explains and unify a large number
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of advanced observations and theoretical descriptions of the surface layer velocity component

energy spectra (Drobinski et al., 2004). It suggests the existence of two sublayers in the surface

layer that arise from the eddies dynamical behaviour associated with surface proximity (Hunt

and Carlotti, 2001). In a sublayer close to the ground, z � 10 m, the eddy surface layer (ESL),

the dominant mechanism is the blocking of impinging eddies coming from above. The shear is

also important. The other sublayer above, called the shear surface layer (SSL), is where only

shear affects the isotropy of turbulence. It can be seen as an intermediate layer, a transition,

between the ESL and the Ekman layer. The SSL exhibit the elongated rolls, also referred to as

streaks, previously discussed.

Based on the latter theory and the velocity spectra it predicts as a function of the height agl,

Redelsperger et al. (2001) developed a simple TKE based SGS model. In fact, in the latter

approach only the mixing and dissipation lengths differ from Deardorff (1980) SGS model.

They write λ = (1 − γ)Akz + γΔ and λε = (1 − γ)Aεz + γΔ, where Ak and Aε are non-

dimensional constants obtained by matching the new SGS model with similarity theory at the

bottom boundary, and γ is a blending function going from 0 at the surface to 1 at a given height

similar the one introduced by Sullivan et al. (1994). The proposed SGS model is thus simple

to implement and valid in the whole ABL, complying with Kolmogorov theory in the flow

interior, with the two-layer theory in the surface layer, and with MO similarity at the surface.

Furthermore, the definition of the blending function given by Redelsperger et al. (2001) is more

general than Sullivan et al. (1994) as it is also suitable for heterogeneous surface cases.

The approach proves to significantly enhance results close to the surface (Redelsperger et al.,

2001; Drobinski et al., 2004). The overshoot of the non-dimensional wind shear was divided

by two, allowing the velocity to better follow the log-law profile. Furthermore, the predicted

dissipation rate was in very good agreement with the similarity theory. Considering its fun-

damentals, simplicity and abilities, this approach is clearly appealing. It was implemented

successfully in the Meso-NH (Drobinski et al., 2004, 2007).
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1.3.2.2.2 Advanced SGS models

With the increasing computational power, the last fifteenth years have seen an exponential

use of the LES tools. The LES technique evolved and in addition to reach a higher level of

maturity, tremendous enhancements have been achieved. New SGS models have been proposed

to address limitation of the existing approaches for both the flow interior and the region close to

the surface. Furthermore, dedicated experimental campaigns have allowed to better understand

ABL processes and validate some of the aspects of the LES models. As an example, the

elongated rolls of the surface layer, i.e. the streaks, were effectively observed at full scale

and quantitatively studied thanks to SODAR data acquired only recently (Poulos et al., 2002;

Drobinski et al., 2004, 2007).

By advanced SGS model, we refer to the SGS that go beyond the classic Smagorinsky and

TKE based SGS models and that were applied to the ABL or similar flows. The study of

advanced SGS models allows to better appreciate and understand the limitation of the classical

SGS models, further illustrating how they can be avoided.

In the the current section, an overview of the main advanced SGS models relevant for ABL

flows is achieved, i.e. the two-part eddy viscosity SGS models, the backscatter SGS models

and the hybrid RANS LES models.

1.3.2.2.2.1 Two-part eddy viscosity SGS models The two-part eddy viscosity SGS mod-

els is based on the legitimate assumption that in the region close to the surface, the flow fluc-

tuates around an average profile which is well described by similarity theory. As a result, SGS

stresses can be split in two parts as introduced by Schumann (1975): an isotropic or fluctuating

part, which is computed based on the usual local isotropy assumption, and an inhomogeneous

part that represent the averaged profile and that is modelled based on a simple RANS model

(zero or first order). Schumann (1975) study, while not dedicated to the ABL, was a first

promising attempt to address limitation of LES-NWM model close to the ground. It was also

the first time a TKE based SGS model was used for a LES of a channel flow. The two-part
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SGS model proved to be an important advance since the results close to the walls were found

to be better reproduced independently of the mesh resolution.

Following Schumann (1975) concept, Sullivan et al. (1994) implemented a two-part eddy vis-

cosity SGS model dedicate to the ABL and where thermal stratification is fully considered. Mo-

eng’s model (Moeng, 1984; Moeng and Wyngaard, 1988) was used as basis and the Deardorff/-

Moeng TKE based SGS model was adapted. As in Schumann (1975) SGS model, SGS stresses

are split into isotropic and inhomogeneous contributions, such as τij = −2νtγSij − 2νT 〈Sij〉
where γ is a so-called isotropic factor, i.e. a blending function. In the isotropic part (first term),

the eddy viscosity νt is a function of the magnitude of a fluctuating strain rate, while in the

inhomogeneous part (second term), the average eddy viscosity νT depends upon the magnitude

of the strain rate computed from ensemble averaged flow quantities only. The isotropic part

progressively reaches the total stress through the isotropic factor γ that is computed based on

the ratio of fluctuating strain rate over total strain rate. The separation into mean and fluctuating

parts allows a transition from LES to ensemble-average modelling as the wall is approached,

which can be seen as a simple hybrid RANS-LES approach. Furthermore, unlike Schumann

(1975), the mean eddy viscosity is computed so that the mean shear always matches similarity

theory at the surface closest computational grid point.

Based on the shear and convective cases introduced by Moeng and Sullivan (1994) and fo-

cusing on the near-surface flow (an aspect that was left aside by Moeng and Sullivan (1994)),

Sullivan et al. (1994) showed that the proposed approach notably improve the LES results close

to the ground. With the new SGS model, profiles of velocity, temperature, as well as turbu-

lent quantity are in agreement with the similarity theory; the friction velocity is also slightly

increased compared to simpler SGS models as Deardorff (1980) due to the reduction of the

near-surface shear (Mason and Thomson, 1992); the flow close to the surface is more resolved

increasing notably the energy of small eddies; and results are further shown to be less sensi-

tive to the resolution than the classical SGS models. Results enhancement brought by Sullivan

SGS model are on par with the one obtained with the backscatter model (Mason and Thomson,

1992) (presented in the following section). However, the former might appear more appeal-
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ing since it is deterministic and only based on simple physical consideration, it requires less

computational time and it is simpler to implement.

Ding et al. (2001a) also introduced and validated two new SGS models dedicated to the ABL

similar to Sullivan et al. (1994) SGS model but which are based on the Smagorinsky SGS

model (not on a TKE based SGS model). This study is also solving Moeng and Sullivan

(1994) cases. Results obtained are equivalent to the ones of Sullivan et al. (1994), albeit the

two-part eddy viscosity model need to be further tweaked and some of the results present

some suspicious discontinuities and shapes. In any case, this study confirms the abilities of the

Schumann (1975); Sullivan et al. (1994) approach, in addition to, widening it applicability to

the Smagorinsky SGS models.

The two-part eddy viscosity SGS model present some interesting abilities to notably lower the

bias with respect to the similarity theory in the vicinity of the surface. However, some limita-

tions have to be underlined. First, the flow properties close to the surface need to be a priori

known in order to correctly express the anisotropic SGS model part. In the case of the ABL

over an homogeneous surface, anisotropic part of the stress in the surface layer can be readily

computed based the MO similarity theory, and the blending function between isotropic and

anisotropic SGS part is generally computed based on the mean flow properties (horizontally

averaged along the homogeneous direction), not locally. Over an heterogeneous surface, how-

ever, the application of such an approach is less trivial since MO similarity are valid only for

statistically homogeneous flows (that satisfy ergodicity hypothesis). Finally, it is to note that

some authors demonstrated (Piomelli, 2008) that even adapted to an heterogeneous surface,

this approach may not be suitable when the surface flow is too complex, such as when there

are recirculating regions, if the model of the anisotropic part is too simplistic (i.e. lower order).

1.3.2.2.2.2 Backscatter SGS model Both standard Smagorinsky as well as the TKE based

SGS model are dissipative only. This is not always valid notably in flow close to a rigid no-slip

wall. Indeed, it was shown experimentally and theoretically that while the averaged dissipation

is positive, small eddies are able to transfer (give) energy to larger structures, resulting in
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a locally negative instantaneous dissipation (Lesieur et al., 2005). This process is called the

backscatter of energy. It has to be modelled separately from eddy viscosity. The Eddy-Damped

Quasi-Normal Markovian (EDQNM) theory allowed to estimate the theoretical backscatter

rate. Based on those considerations, Mason and Thomson (1992) introduced a SGS model

including the TKE backscatter effect. The main objective of this study was to address the short

comings of standard Smagorinsky approach close to the ground notably for the neutral and

stably stratified surface layer. It was the first times the systematical overshoot of the surface

layer dimensionless wind shear was described.

Mason and Thomson (1992) backscatter SGS model is based on the introduction of additional

stresses into the simulation providing backscatter of energy. These new stresses are generated

based on random numbers that are properly scaled and processed (divergence free) to give the

desired backscatter rate as predicted by the EDQNM theory. As discussed during the analy-

sis of Andren et al. (1994) intercomparison, this stochastic backscatter SGS model is shown

to bring notable improvements close to the surface. The velocity profile as well as turbulent

quantities correctly follow the experimentally found profiles (Mason and Thomson, 1992; An-

dren et al., 1994) and resolved part of the flow is increased notably close to the ground due

to the stochastic backscatter. However, those structures have a more random character and are

less organized than those predicted by the two-part eddy viscosity SGS model which is fully

deterministic as shown by Sullivan et al. (1994). In comparison to the classical SGS models,

the backscatter SGS models also show a shorter spin-up period and a fully developed ABL is

reach earlier than with classical SGS models (Andren et al., 1994; Mason, 1994). In addition,

smaller fluctuations of the integrated TKE are observed which indicates that the backscatter

models provide a more stable simulation (Mason, 1994). Hobson et al. (1999) based on an adi-

abatic ABL further compared Smagorinsky SGS model results with and without backscatter

effect for several grid configurations using the Mason and Thomson (1992) model. Again, a

clear enhancement is obtained thanks to the backscatter model, notably when a coarse resolu-

tion is used. It is also of interest that the authors find out that a simple mixing length RANS
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model could be better performing than LES model close to the ground if no care was taken to

properly address the near-surface region in LES.

The backscatter effect is the consequence of non-linear interaction while the redistribution of

SGS TKE is the consequence of anisotropy induced by the shear. They can thus be viewed as

deterministic. Based on these considerations and the non-linear constitutive theory, Kosović

(1997) introduced a model based on a backscatter approach, but instead of relying on random

number generated processes, a non-linear SGS model was used. It is thus solely based on a non-

linear combination of the strain rate Sij and rotation rate Ωij tensors (see Sec. 2.2.3.5). Kosović

(1997) non-linear backscatter SGS model is evaluated based on Andren et al. (1994) Ekman

case retaining the exact same the numerical parameter and protocol. In comparison to the linear

models, i.e. classical SGS models, the non-linear backscatter SGS models show a shorter spin-

up period which is in agreement with the findings of Mason and Thomson (1992). Concerning

the first order moments, Kosovíc SGS model totally corrects the over-estimation of the shear

close to the surface and the results clearly follow the similarity theory. This improvement

exceeds the one of Mason and Thomson (1992), Sullivan et al. (1994) and Porté-Agel et al.

(2000) and is similar to the one of Silva Lopes et al. (2007). Tangential stresses are slightly

improved and their resolved part is increased close to the surface. TKE and streamwise velocity

variance profiles are also notably improved in comparison the linear models. These turbulent

quantities do not exhibit anymore a nose shape and the total TKE is nearly linear with height

(as opposed to Mason and Thomson (1992)) with a maximum value 1/3 smaller than the linear

model which is in good agreement with other experimental and advanced LES studies (that

address the limitation of classical SGS model close to the surface). However, in comparison

to Mason and Thomson (1992), a lower value of the near-surface TKE is obtained with the

non-linear model which also exhibits a significant reduction of TKE transport. These observed

differences are said to be the consequence of the better reproduction of the normal components

of the SGS stresses by the non-linear model (Kosović, 1997). Concerning velocity spectra,

simulations with the non-linear SGS model do not show a fast drop-off as opposed to linear

models. Indeed, even with a filter not well into the inertial subrange, i.e. close to the surface,



97

the slope of the spectra is in agreement with the generally accepted −5/3 slope of the inertial

subrange. Furthermore, the spectra peak is shifted toward the larger wave number. These

observation are in total agreement with previous studies.

To finish presenting Kosović (1997) non-linear backscatter SGS model abilities, it is to note

that the structure of the flow is notably changed close to the surface in comparison to the linear

and two-part eddy viscosity models. Indeed, the non-linear model tends to produce smaller and

more isotropic structures close to the surface. As a result, the streak like structures, that were

observed in previous experimental and numerical studied, are much weaker, poorly defined and

not aligned with the flow. Unfortunately, no clear explanation is given by Kosović (1997) for

such a phenomena, that appears to differ from reality (Drobinski et al., 2004).

1.3.2.2.2.3 Hybrid RANS/LES models Hybrid RANS/LES methods intent to benefit from

the best of each family of models depending of the local flow properties. In the case of high

Reynolds number flows bounded by a rough wall, RANS approaches can lead to promising

result in an inexpensive manner as illustrated in Sec. 1.1.3. For such flows, these methods do

not alleviate the need of wall functions at the lower boundary, but they are able to reproduce

correctly the near-wall region (if the RANS model is appropriate), even with grid cells that

have a high aspect ratio (Δx large compared to Δz). At the opposite, a mesh aspect ratio

close to one is required for LES. As a result, LES-NWM of high Reynolds number flows is

unrealistically expensive if the inner layer is to be resolved (Piomelli, 2008). In hybrid models,

RANS is used to model the flow in the inner and part of the outer layer and LES is used for

the upper outer region where the filter is properly located in the inertial subrange. The RANS

model can thus be viewed as acting as a wall model for the LES.

This family of models was, in fact, already introduced in this thesis. Indeed, SGS model such

as the one of Sullivan et al. (1994) and Ding et al. (2001a), and to some extent, the approaches

using a canopy model (Chow et al., 2005; Silva Lopes et al., 2007; Senocak et al., 2007) can

be considered as hybrid model since part of the SGS is directly related to the mean (in the

Reynolds average sense) properties of the flow. However, in most of these approaches, a very
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simple RANS model (zeroth or first order) was used generally requiring an a priori knowledge

of the mean properties of the flow. As seen earlier, this was proven to give promising results

for ABL over a homogeneous surface. For more complex flows, the underlying hypothesis

of such simple RANS models are broken affecting their validity. A solution is to use more

advanced RANS model, such as second order closures that are proven to perform correctly in

such situations (Piomelli, 2008).

As an example of an advanced hybrid RANS/LES model applied to the ABL, Bechmann and

Sørensen (2010) elegantly combined a k − ε URANS and a k − ε based SGS model. In their

approach, the same filtered NS equations are contiguously solved for the whole computational

domain, and the only difference between the URANS model and the LES model is hidden in the

expression of turbulent stresses. Bechmann and Sørensen (2010) used the usual eddy viscosity

definition of the k − ε model everywhere, i.e. νt = Cμk
2/ε. However the dissipation term in

the TKE equation is expressed as in the k − l model, i.e. ε = k3/2/l where l can whether take

the value of the RANS mixing length, lRANS = k3/2/ε, or the LES length scale, lLES = CΔΔ

where CΔ is a closure constant related to the Smagorinsky constant. The criteria to switch

between the two approaches is simply based on the hypothesis that, the flow is well resolved

only in regions of the domain where the RANS mixing length is greater than the LES length

scale, which can be expressed as l = min (lRANS, lLES). Following this approach, the classical

k − ε closure is fully recovered when lRANS is used, while in the LES region, k − ε equations

adapt to the length scale so that k3/2/ε ∝ lLES (Bechmann, 2006). Thus, the introduced hybrid

models appears as an extension of the popular TKE based SGS models featuring an advance

surface boundary condition based on a k − ε RANS model.

Bechmann (2006) hybrid RANS/LES approach as presented above is still relying on an uniquely

dissipative SGS model. As a result, Bechmann and Sørensen (2010) also implemented a

stochastic backscatter model following Mason and Thomson (1992). However, backscatter of

energy is linked to the unsteady interaction between small and large structures not considered

by RANS. As a result, backscatter effects are removed from the RANS region and a blending

is used for them to rich their full value in the LES region.
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Bechmann and Sørensen (2010) focused on the Askervein case, however, the abilities of the

model were first evaluated for a flat homogeneous case similar to Andren et al. (1994) as illus-

trated in Bechmann (2006). The non-dimensional wind shear shows that the hybrid RANS/LES

approach without backscatter feature a nose with a maximum error value similar to others clas-

sical SGS models (Andren et al., 1994). However, its height is significantly lower and located

at the transition between RANS and LES. The velocity profile is thus less affected than with

classical SGS models. However, as it is usually the case for such hybrid approaches (Piomelli,

2008), part of the limitations of classical SGS model are addressed by the hybrid model, but

the problems are transferred at the interface between the models. The addition of the backscat-

ter of energy to the hybrid model clearly improve the results in the surface layer while they

are mostly unchanged above (Bechmann and Sørensen, 2010). The various enhancement ob-

served by Mason and Thomson (1992) (in variances, TKE and velocity spectra) are reproduce,

and the maximum wind shear error at the transition between models is reduced by half. The

backscatter model thus clearly improve the transition between RANS and LES.

The approach introduced by Bechmann (2006); Bechmann and Sørensen (2010), and more

generally the hybrid RANS/LES approach shows some very interesting features. The combi-

nation of second orders RANS and SGS models is appealing notably for more complex cases.

However, problems generally arise at the interface between the RANS and the LES regions (Pi-

omelli, 2008), and it was shown by Bechmann and Sørensen (2010) that the addition of a simple

stochastic backscatter model notably improved the results in this zone.

1.3.2.2.3 Advanced SGS models with explicit filtering

When a general convolution filter is used to filter the NS equations, i.e. explicit filtering,

the subfilter stress tensor is the sum of three tensor which is called the Leonard decomposi-

tion (Leonard, 1974): τij = Lij + Cij + Rij where Lij is the Leonard stress tensor, Cij is the

cross terms stress tensor and Rij the Reynolds stress tensor. At the opposite, when an implicit

filter is used, i.e. based on the mesh, subfilter stress tensor reduce to the Reynolds tensor.
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The Leonard tensor is fully defined by resolved quantities while the other two tensors need to

be modelled. The total subfilter scale (SFS) stress can thus be decomposed into a resolved part

(i.e. Leonard tensor) sometimes called the resolved subfilter scale (RSFS) stress, and a subgrid

part (i.e. the Reynolds tensor) generally called the subgrid scale (SGS) stress. The cross terms

tensor is most of the time neglected. The total stress is thus the sum of the resolved, the RSFS

and the SGS stresses, and it can be considered that the application of the filter (explicit) on

top of the discretization operator (i.e. discretization of the equation on the grid) decomposes

the energy spectrum of a turbulent flow in three parts (resolved, RSFS and SGS), that, once

added, form the unfiltered energy spectrum, see Chow et al. (2005, Fig. 1). This decomposition

allows to compute separately each stress and to evaluate their importance notably concerning

the RSFS and SGS stresses. And while the use of an explicit filter add complexity to the SGS

model, it add flexibility and allows to better take into account the subfilter physic.

1.3.2.2.3.1 Scale similarity SGS model The scale similarity SGS model of Bardina et al.

(1980) was one of the first approaches to address the fundamental limitations of the classical

SGS model by assuming that “the most active subgrid scales are those closer to the cutoff and

that the scales with which they interact most are those right above the cutoff”. In other words,

properties and impacts of the largest subgrid eddies can be deducted from the properties of

the smallest resolved eddies (rather than on the entire turbulent spectrum). To do so, largest

subgrid eddies can be obtained by filtering the subgrid velocity such as u′ = u − u (in the

context of a general convolution filter, i.e. using an explicit filter). The SGS stress tensor can

then be parametrized as τij = uiuj−uiuj which is the “scale-similar” model also referred to as

Bardina’s model. It can be seen as the simplest reconstruction model (Chow et al., 2005). Note,

this model suffer from under-dissipation of turbulence, which is readily addressed by adding

−2νtSij to the Bardina model to obtain the mixed Bardina model (Murakami, 1998) such as

τij = −2νtSij + uiuj − uiuj . The scale similarity SGS model was the first to introduce the

concept of double filtering. It was proven to allow for backscatter processes to be reproduced,

and thus to allows a better reproduction of flows close to rigid walls. The Bardina model was
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also coupled with a TKE based SGS model which was found to greatly enhance the results

over classical SGS model in the context of complex terrain (Chow and Street, 2009).

1.3.2.2.3.2 Dynamic Smagorinsky SGS model In the mixed Bardina’s model, as well as

in all the approaches previously presented, the Smagorinsky constant need to be set in a some-

what arbitrary manner. However, this constant, and by extension the ones of TKE based SGS

models, are found to be dependent of the flow fields (Germano et al., 1991) and the distance

to the wall. Germano et al. (1991) introduced a SGS model where the Smagorinsky constant

is dynamically computed as a function of the local resolved flow properties. The so-called

dynamic Smagorinsky SGS model was born.

The idea of Germano et al. (1991) was to use a test filter located in the simulate inertial sub-

range in addition to the usual implicit mesh filter. At this test level, local subgrid velocity

fluctuations and thus subgrid fluxes can be directly computed which allows to determine the

local Smagorinsky constant Cdyn (at the test filter level). Then, considering that the transfers of

energy across the two filters is similar since they are both located in the inertial subrange, Cdyn

is used as closure constant of the SGS model. This assumption is also referred to as the scale-

invariance of Cdyn (Porté-Agel et al., 2000). Note that there is no restriction on the sign on the

dynamically computed model coefficient. As a result, negative values can be obtained allowing

backscatter of energy (Germano et al., 1991). Furthermore, the same dynamic procedure can

also be applied to temperature and others scalars to obtain the dynamically turbulent Prandtl

and Schmidt constants, respectively. However, the dynamic SGS models generally requires a

notably higher computational time in comparison to the standard Smagorinsky approach (Mu-

rakami, 1998; Piomelli, 1999; Porté-Agel et al., 2000).

Following the dynamics procedure proposed by Germano et al. (1991), Cdyn is over-defined

and it can be computed as many Smagorinsky constants as the tensors has components, i.e. nine

in total for shear stress tensor, and three for temperature and scalars. Germano et al. (1991) ag-

gregated all the possible values based on the strain rate tensor Sij . However, this approach can

lead to values of Cdyn that are spurious or undefined or that present very sharp gradients. This
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tends to generate numerical instabilities that destabilize numerical calculations (Murakami,

1998), and make the model inconsistent, affecting the whole approach. Lilly (1992) proposed

a method to obtain an optimum value of Cdyn based on the minimization of the error on the

latter (considering the square of the tensor representing the differences between the double

filtered stress tensor and the Leonard tensor). Such an approach almost avoid the problems

of division by zero faced by Germano et al. (1991). Furthermore, the local properties of the

subgrid fluxes are better taken into account. However, sporadic undefined values can still arise

requiring some extra processing and averaging.

The computational instability problems of the Germano-Lilly dynamic SGS model (generally

referred to as the dynamic SGS model) can be addressed by averaging the various quantities

necessary to compute the model coefficient over space (and/or time) prior to the computation

of the latter. This have been very popular (Lesieur et al., 2005). However, the flow need to

have at least an homogeneous direction which limit the use of such an approach. Furthermore,

the essence of the local dynamic computation of the Smagorinsky constant is lost by averaging.

As a result of the limitation and instabilities discussed above and in order to further increase

the applicability of dynamic approaches for more complex geometries, many methods have

been proposed that address the dynamical computation of the model coefficient (Lesieur et al.,

2005). As an example, Meneveau et al. (1996) proposed a Lagrangian dynamic Smagorinsky

SGS model based on the Germano-Lilly approach but for which the error on Cdyn is minimized

along the fluid particle trajectory, and Cdyn is averaged along this trajectory allowing the use

of the dynamic procedure without any homogenous directions (Murakami, 1998). However,

this model prevents backscatter of TKE. The dynamic approaches can also be mixed with other

complementary SGS models further improving both the physical representation of the flow and

the numerical stability of the approach (Murakami, 1998; Piomelli, 1999; Ishihara et al., 2001;

Chow et al., 2005). As an example, to take into account the backscatter effects of TKE, the

scale similarity model of Bardina et al. (1980) (or Mason and Thomson (1992) approach) can

be used in association to the dynamic Smagorinsky SGS model (Murakami, 1998; Porté-Agel

et al., 2000; Chow et al., 2005; Senocak et al., 2007). This so-called mixed dynamic SGS
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models have been applied successfully further proving to be less affected by computational

instability problems faced by the Germano-Lilly approach (Murakami, 1998; Chow and Street,

2009; Senocak et al., 2007).

As a conclusion, Murakami (1997, 1998) thorough review clearly shown the abilities of the

dynamical computation of the Smagorinsky constant for CWE (smooth wall). They com-

pared LES-NWR approaches based on a large number of SGS models, i.e. the standard, the

scale-similarity, the dynamic, the dynamic mixed, the Lagrangian dynamic and the Lagrangian

dynamic mixed SGS models. Murakami (1997, Tabs. 5 and 6) summarize the abilities of these

SGS model depending on the flow and flow feature to reproduce. The dynamic SGS model, i.e.

the Germano-Lilly SGS model, is found to enhance significantly the results over the standard

approach, but suffers of heavy numerical instabilities and presents a computational cost five

times higher than the standard Smagorinsky model. The Lagrangian dynamic SGS model is

found to be very stable but prevents backscatter of TKE. At the opposite, the dynamic mixed

SGS models integrates backscatter of energy, and while it is more stable than the dynamic

model, it is less stable than the Lagrangian approach. Both latter models have roughly twice

the computational cost of the standard Smagorinsky. Finally, the Lagrangian dynamic mixed

SGS model is found to perform best. It is as stable as the standard Smagorinsky SGS model

while being only 50 % more computationally expensive. Furthermore, it retains the backscat-

ter abilities of the scale similarity model. Conclusions of Piomelli (1999) review are similar

concerning model abilities.

1.3.2.2.3.3 Dynamic SGS model and rigid no-slip wall Currently, dynamic Smagorinsky

SGS models appear to be generally accepted. They have been applied successfully to a wide

range of cases including channel flow and neutral ABL (Murakami, 1998; Piomelli, 1999,

2008), showing clear enhancement over the standard Smagorinsky approach. In fact, thanks to

their self-adaptation abilities, the dynamic approaches are shown to be particularly skilled to

account for the transition between laminar and turbulent regimes (Murakami, 1998; Piomelli,

1999). As a result, in the context of LES-NWR, the transition between the viscous sublayer, in

which the flow is laminar, to the log region, where the flow is turbulent, is properly reproduced
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by dynamic Smagorinsky SGS models and the computed Smagorinsky constant vanish as the

surface is approached without any adaptation of the model (Murakami, 1998; Piomelli, 2008).

Situation isÂ however slightly changed for LES-NWM based on dynamic SGS models. Indeed,

the viscous sublayer is not anymore resolved and the dynamics SGS models advantage of prop-

erly taking into account the laminar-turbulent transition close to the wall is lost. They have to

rely on wall functions (Piomelli, 2008). As a result, the underlying problem of under-resolution

close to the surface is common to both standard and dynamic Smagorinsky approaches. How-

ever, the nature of the biases differ. The over-dissipative standard Smagorinsky model damp

the level of energy of the smallest resolved structures allowing a too high mean velocity shear

close to the ground. At the opposite, velocity fluctuations are over-estimated by dynamics SGS

models in the near-surface region because of an under-estimation of the SGS model coefficient.

As a consequence, surface wind shear is under-estimated by dynamics SGS models as clearly

illustrated by Porté-Agel et al. (2000). Thus, dynamic SGS models also require a fine tuning

of the surface in the case of LES-NWM as opposed to LES-NWR.

However, as underlined by some authors, dynamic SGS models application to high Reynolds

number flows such as the ABL, i.e. Re > 104, received a keen interest only in the recent

years Piomelli (2008). Indeed, considering their higher computational cost, their numerical

stability shortcomings, and the fact that the laminar-turbulent transition is not a concern for

LES-NWM applied to large Re flow such as the ABL, the dynamic SGS models have his-

torically appeared less appealing for high Re flows than it was for low Re and transitional

flows (Mason, 1994; Piomelli, 2008).

1.3.2.2.3.4 Hybrid RANS/standard/dynamics SGS model Seen the ambivalent proper-

ties of the standard and the dynamic SGS models close to the surface in LES-NWM, a simple

and natural approach is to use an hybrid model based on both SGS models (Piomelli, 2008).

As an example, Iizuka and Kondo (2004) compared four SGS models with wind tunnel data

of an aerodynamically rough flow over a ridge (at the 1/1000 scale) (Ishihara et al., 2001).

They found that a simple ad-hoc hybrid SGS model where a standard Smagorinsky SGS model
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is used for three first levels and dynamics SGS model (either the Germano-Lilly or the La-

grangian dynamic SGS model) is used elsewhere, was better performing than the standard or

the dynamic approaches alone, even if as a first approximation no particular care was taken at

the interface between the models. However, some of the variables such as the eddy viscosity

were presenting a notable discontinuity in this region.

Senocak et al. (2007) also compared various LES approaches for a neutral ABL over an ho-

mogeneous surface. They used the case from Andren et al. (1994) with some variant of the

mesh. The study focuses on the evaluation of performance of different near-surface models

at various grid resolutions which are the following: the backscatter SGS model of Mason and

Thomson (1992); Brown et al. (1994), the canopy model from Brown et al. (2001)13 and a

proposed hybrid RANS/LES model. Both the canopy an the proposed model are based on a

dynamic Smagorinsky SGS model, while the backscatter SGS model only rely on the standard

Smagorinsky approach (with CS = 0.18) (Senocak et al., 2007). Note that the canopy model,

while at first devoted to take into account the real plan/urban canopy, it used in this study as

computational scheme to represent rough surface stresses for the dynamic SGS. The proposed

hybrid RANS/LES model is a simple yet interesting approach that combines a “stratification

conscious” Prandtl’s mixing length model and the dynamic Smagorinsky model based on sim-

ple blending function. The height of the transition between models, h, need however to be

provided. This length scale was set proportional to the filter width after a sensitivity study of

the results showed its optimum value was evolving with resolutions.

Results from Senocak et al. (2007) clearly show that the proposed hybrid RANS/LES model

is closer to MO similarity. However, with that model, resolved motion within surface layer is

suppressed (as a function of h) and most turbulent quantities are modelled and not resolved.

This latter point represents an important drawback of the hybrid approach notably for more

complex case such as flow over an heterogeneous surface or if surface layer turbulence is to

be studied. Finally, as underlined by the authors, only the backscatter backscatter and canopy

approaches are able to reproduce the flow structure described by Drobinski et al. (2004),

13 Note that the cos2 is used by Brown et al. (2001) while it is cos3 in Senocak et al. (2007) paper.
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Finally, Silva Lopes et al. (2007) introduced a promising hybrid approach based on a mix of

the standard and the Lagrangian dynamic Smagorinsky SGS model where a blending function

is used to merge models, such as C = αCstd + (1− α)Cdyn. The blending coefficient α is

similar to Brown et al. (2001) canopy model, i.e. α = cos2(π/2 · z/ztop) when z < ztop and

α = 0 otherwise, with ztop being the maximum distance at which the merging is active (Silva

Lopes et al., 2007). It is thus claimed by the authors that this approach is similar to a hybrid

RANS/LES model. Concerning the standard Smagorinsky SGS model, the damping function

of Mason and Thomson (1987) is used to obtain the standard Smagorinsky model coefficient

with CS = 0.16 and n = 2, see Eq. (1.4). At the surface boundary, the wall stress model pre-

sented by Marusic et al. (2001) was used (c.f. Sec. 1.3.2.1.1.2). The study focuses on the flow

over the Askervein hill that the authors previously studied based on a RANS approach (Castro

et al., 2003). However, in a first part, the flow over an homogeneous surface is studied in order

to refine numerical parameters and find the best value of the parameter ztop allowing a smooth

transition between surface and upper ABL SGS models.

Velocity profile as well as resolved turbulent quantities obtained by (Silva Lopes et al., 2007)

were in nearly perfect agreement with the similarity theory up to 1000 m and experimental

results. Only a very slight deviation of the velocity profile is to note at the height where

both models are merging, i.e. 150 − 180 m. These results are one of the best discussed here

illustrating the abilities of hybrid standard/dynamic standard SGS models.

1.3.2.2.3.5 Scale-dependent dynamic SGS model The source of the limitation inherent

to the dynamics Smagorinsky SGS models in the near-surface region of LES-NWM was elu-

cidated by Porté-Agel et al. (2000), who also proposed a solution, i.e. the scale-dependent

dynamic Smagorinsky SGS model. In fact, classical dynamic SGS model assumes scale-

invariance of the Smagorinsky constant CS . In other words, the latter is considered not being a

function of the filter size Δ, i.e. CS(Δ) = CS(2Δ). However, by comparing vertical profiles of

the dynamically found model coefficient for several mesh resolutions, Porté-Agel et al. (2000)

showed that at a fixed height, CS is a function of the filter size. This proved that the scale

invariance assumption did not hold for high Reynolds number flows, notably close to a wall. In
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the proposed scale-dependent dynamic SGS model, the Smagorinky constant is a function of

the filter size, i.e. CS(Δ) �= CS(2Δ). However, subgrid stress model also become a function of

the ratio of model coefficients, i.e. β = C2
S(2Δ)/C2

S(Δ), which is unknown. By using a second

explicit test filter (at 4Δ), and assuming that the dependance of β on Δ is approximated by a

power law, Porté-Agel et al. (2000) managed to dynamically compute the model coefficient

not relying on the scale invariance assumption.

Porté-Agel et al. (2000) based their analysis on an adiabatic homogeneous ABL not consid-

ering the Coriolis effect. They used a Lagrangian dynamics SGS model along with a pseudo-

spectral approach with numeric and boundary conditions very similar to the model of Moeng

(1984). However, the friction velocity is provided and the authors avoid deliberately the use of

a wall model in order to prevent the latter to interfere with the proposed solution. The scale-

dependent dynamic Smagorinsky SGS model led to clearly enhanced results compared to the

standard Smagorinsky and the original dynamic SGS models. Most notably, the velocity spec-

tra are very close to the experimental measurements and the profiles of first and second order

moments are located between the standard Smagorinsky and the original dynamic SGS model

results, and they are in better agreement with the similarity theory. Following the scale depen-

dent approach, the value of model coefficient is only modified close to the surface, and β = 1

in the flow interior meaning that the scale invariance assumption is valid (in that region). The

classical dynamic model coefficient is thus recovered in the flow interior (CS ∼ 12.5 here).

Finally, as opposed to the various studies previously discussed in this section, Porté-Agel et al.

(2000) enhancements were obtained without either changing the boundary condition or adding

new near surface treatment to the model. Only the mathematical representation of the problem

was more consistent with the physics of phenomena.

1.3.2.2.3.6 Dynamic reconstruction SGS model The last dynamic approach discussed

here was introduced by Chow et al. (2005). It is an advanced model that combine some of the

most promising enhancements reviewed above, in addition to include a reconstruction model

for the resolved subfilter scale (RSFS) stresses. Chow et al. (2005) were the first to apply a re-
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construction model to the ABL. Furthermore, the whole approach and the various comparisons

are based on the ARPS mesoscale model.

As a reminder, when a general convolution filter is applied to NS equations, the turbulent stress

tensor obtained features two new terms (the Leonard and the Cross terms tensors) in addition

to the usual Reynolds tensor that is solely present when equations are implicitly filtered based

on the grid. As opposed to SGS stress that need to be modelled, the RSFS stresses depend

on the difference between the exact (discrete) and the filtered (by the explicit filter) velocity

field (Chow et al., 2005). Following Chow et al. (2005), RSFS stresses can be obtained, i.e.

reconstructed, by first computing the unfiltered velocity based on an inverse filtering operation,

known as a deconvolution of the filtered velocity. This operation can be achieved using Taylor

series or the approximate deconvolution method (ADM)14. Including the RSFS stresses allows

to take into account the backscatter of energy. Concerning the SGS stresses, Chow et al. (2005)

elected a variant of the Germano-Lilly dynamics Smagorinsky SGS model, i.e. the dynamic

Wong-Lilly SGS model (DWL), which is said to be simpler to implement and more stable than

the classical Germano-Lilly while showing less difficulties close to the surface. However, to

overcome under-dissipative nature of the dynamic procedure close to the surface, Chow et al.

(2005) also used the Brown et al. (2001) canopy models as wall model.

Chow et al. (2005) evaluated the dynamic reconstruction model DRM-ARM based on An-

dren et al. (1994) case mostly focusing on the near-surface results. The standard Smagorinsky

model is taken as a reference, and it is also evaluated and compared together with the dynamic

Wong-Lilly (DWL) model. Concerning the results, first order moments from the DWL and the

DRM-ARM SGS model are within 10 % of the similarity theory (with slight enhancement for

the DRM-ARM) which is better than most of the approaches already discussed here. Differ-

ences between the DWL and the DRM-ARM models become clear in second order moments.

DRM-ARM results show a smaller resolved vertical momentum flux, and a larger unresolved

part. The SGS term is in fact, nearly equal between DWL and DRM-ARM, but the SFS is

14 As a side note, when considering the simplest zeroth order series, the filtered and unfiltered velocity are

equals and the scale similarity model of Bardina et al. (1980) is recovered.
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increased due to the added effect of the RSFS stresses. By comparing with Direct Numerical

Simulation (DNS) data and higher resolution results from the same case,Chow et al. (2005)

shown that the SFS stresses from the DRM-ADM model are in much better agreement with

the reference results than the DWL or the Smagorinsky models. The higher the order of the

series to reconstruct the unfiltered velocity, the closer the results are from the reference data.

However, even based on a low order series (≤ 2), results are clearly enhanced. Furthermore,

with the DRM-ADM model results close to the surface are nearly unaffected by the grid, al-

beit the canopy model parameters require to be adapted as a function of the grid aspect ratio.

Finally, in comparison to the Smagorinsky SGS model, the DWL model is roughly 20 % more

computationally expensive and the DRM-ADM is at least 50 % more demanding (cost increase

with the order of the series). Chow et al. (2005) found the DRM-ADM model with lower order

series as been the optimum SGS model (enhancement/cost ratio).

As a result of the above, the DRM-ADM SGS model is very promising. Both first and second

order moments are correctly reproduced and the approach is highly resilient to strongly defor-

mated grid cell. The study also confirmed the relevance of accounting for the RSFS stresses

(as previously proposed in a simplified manner by Bardina et al. (1980)) for the modelling of

fully rough wall bounded high Reynolds number flows such as the neutral ABL.

1.3.2.3 Inclusion of thermal effects to SGS models

Thermal effects are coupled with shear processes and inhibit or enhance turbulent mixing in

various manners. They affect production, dissipation of TKE in addition to the characteristic

mixing length scale of the turbulence (Stull, 1988). The same general philosophy to include

stratification effects with some exceptions is followed by LES as in mesoscale models, i.e. an

additional conservation equation of the internal energy is solved (see Sec. 1.2.1), and surface

boundary condition as well as momentum and heat SGS turbulent mixing are made depen-

dent of the stratification (often through the use of Richardson number dependent functions).

Classical and advanced SGS models dedicated to the neutral ABL can thus be generalized to

include stratification effects, and as a side note, the same closure constant can be used since
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the behaviour of the inertial subrange is not affected by stratification (but only its minimum

wave number). However, as previously illustrated in Sec. 1.2.3.1 and 1.2.3, there are notable

differences between unstable and stable regimes which affect SGS model abilities.

Convective ABL exhibit very large eddies of the size of the ABL and it is weakly influenced by

the history of the flow (Stull, 1988; Moeng and Sullivan, 1994). Turbulence is produced by both

shear and convective processes resulting in free or forced convection depending on the ratio of

both processes (see Sec. 1.2.3.1). For zi/LMO ≤ −4.5, convection processes become domi-

nant and convective scaling, such as the convection velocity w∗, become fully valid (Deardorff,

1972; Moeng and Sullivan, 1994). Nieuwstadt et al. (1992) achieved the first LES intercom-

parison based on a freely convective ABL. They evaluated the same models as in Andren et al.

(1994) intercomparison (except the backscatter SGS model). Very promising results were ob-

tained and it was clearly demonstrated that SGS models have little influence on the results,

albeit the impact of the Smagorinsky constant on quantities such as w′2 was illustrated. Dif-

ferences between models were notably smaller than for the equivalent neutral intercomparison

of Andren et al. (1994). In fact, most of the eddies of a convective ABL are resolved in LES

which explains the small impact of the subgrid scale models (smaller than in neutral and stable

conditions notably close to the surface) (Nieuwstadt et al., 1992; Mason, 1994; Sullivan et al.,

1994; Mason and Brown, 1999; Ding et al., 2001a). As a result, convective ABL are easier

to reproduce than neutral or stable ABL since coarse meshes and simple SGS models can be

used with a reasonable success (Sullivan et al., 1994). This explains why early LES studies

were mostly focusing on the convective ABL (Deardorff, 1972; Sommeria, 1976). However,

it is noteworthy that SGS models applied to the convective ABL also need to be able to deal

with stable stratification since the entrainment layer as well as the free atmosphere are stably

stratified. Simple parametrizations were proven to lead to satisfying results (Mason, 1994; Sul-

livan et al., 1994; Sorbjan, 2005a). As a result of the above, it is generally admitted that dry

convective ABL over a flat homogeneous terrain are well understood and correctly reproduced

by means of LES even using relatively simple SGS models (Nieuwstadt et al., 1992; Sullivan

et al., 1994; Mason and Brown, 1999; Sorbjan, 2005a; Teixeira et al., 2008).
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On the other hand, stable ABL are shallow, tend to feature small eddies and they heavily rely on

the history of the flow (Teixeira et al., 2008). Depending on the strength of the stability, turbu-

lence can be intermittent with turbulent patches travelling with the flow. Only shear processes

produce turbulence while the stable stratification inhibit it (Stull, 1988). Backscatter of energy

is also more significant in the stable surface layer (Brown et al., 1994; Kosović and Curry,

2000). One of the first intercomparison of LES models for the stable ABL was achieved by

Beare et al. (2006), i.e. GABLS 1 http://gabls.metoffice.com/. Eleven models were compared:

two standard Smagorinsky, five TKE based, two dynamics Smagorinsky, two backscatter and

one two-part eddy viscosity models. It was clearly demonstrated that SGS models play a larger

role in stable than in neutral and convective conditions, and very fine grids are required for LES

to properly simulate it. While classical SGS models have been heavily used, their simplistic

representation of the subgrid scale turbulence is more problematic to properly reproduce sta-

ble ABL. Beare et al. (2006) further suggested that advanced SGS models are more efficient

than classical ones by requiring a lower resolution to reach an equivalent quality. They were

also more independent of the grid. As an example, they concluded that for a moderately sta-

ble ABL (h/LMO = 2, h being the height of the stable boundary layer), a grid resolution of

6.25 m would produce a reasonable accuracy (of the order of 20 %) but a grid resolution of

3.125 m or lower would be ideal for a robust LES of such a case. As a consequence, the stable

ABL is very challenging, computationally demanding and advanced SGS models are required

if a realistic grid is to be used. The interest from the LES research community to better un-

derstand and model stable ABL has tremendously increased only very recently (Beare et al.,

2006; Teixeira et al., 2008). This can be illustrated by the fourteen years that passed between

the first intercomparison for convective and stable ABL.

In this section, the mainstream LES models dedicated to the stratified ABL are illustrated and

discussed. Note that thermal effects are generally implemented by extending LES models of

the neutral ABL. The latter were previously reviewed, and as a results, only the enhancements

to take into account thermal processes are presented here. Both stable and convective ABL

are considered and the section is organized following the great families of SGS models, as
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previously done. Thus, the inclusion of the stratification is first presented for the Smagorinsky

SGS model, and then for the TKE based SGS models.

1.3.2.3.1 Smagorinsky SGS model

Many adaptation of the Smagorinsky SGS model discussed in Sec. 1.3.2.2.1.1 were developed

to be able to deal with the stratification and the full non-adiabatic ABL, see Deardorff (1972);

Mason (1989); Brown et al. (1994); Ding et al. (2001a) for some examples. Every author in-

troduces its own version, but the fundamental philosophy generally remains equivalent. The

Large Eddy Model (LEM) from the UKMO Mason and Thomson (1987); Mason (1989); Ma-

son and Thomson (1992); Brown et al. (1994); Mason and Brown (1999); Brown et al. (2000)

is an established model and it can be taken as an example to illustrate the adaptations needed

to take into account the stratification based on the Smagorinsky approach.

By extension to the standard Smagorinsky SGS model, Lilly (1962) and later Mason (1989)

proposed the following expression of the eddy viscosity coefficient in stratified conditions

νt =λ2
rS (1− Rif )

1/2 , (1.11)

where Rif is the local subfilter flux Richardson number, and λr is the characteristic length scale

of turbulence. Most Smagorinsky SGS models dedicated to the non-adiabatic ABL rely on this

definition of the eddy viscosity or a variant. In its simplest form, as used by Lilly (1962), λr

is set equal to its neutral value, i.e. λ as defined in Eq. (1.4), which leads to consider only the

direct influence of the buoyancy on the energy production (Mason and Thomson, 1992) and

not on the turbulence length scale. As a result, λr has also to be a function of Rif and, notably,

it must tend to zero as a critical Richardson number is reached, as underlined by Brown et al.

(1994) and Delage (1997). This was later confirmed by Mason and Brown (1999), who shown

that both the subgrid TKE and the length scale needed to be buoyancy dependent.

The heat mixing coefficient is commonly defined thanks to the turbulent Prandtl number such

as νh = νt/Prt. The latter was generally taken as constant in the early studies (before 1990),
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which is suitable for convective ABL. However, it was found experimentally (such as in the

Kansas measurement campaign) that Prt should also be a function of the stratification in stable

condition (Brown et al., 1994).

Following the above considerations, Brown et al. (1994) expressed the momentum and heat

mixing coefficients as follow

νt =λ2Sfm (Ri) , (1.12)

νh =λ2Sfh (Ri) , (1.13)

where fm and fh are stability functions that depend on the local gradient Richardson number

Ri (i.e. calculated based on the local surrounding cells) which can be conveniently expressed

as follow Ri = N2/S2 where S is the rate of strain modulus and N is the Brunt-Väisälä

frequency. Concerning the Smagorinsky constant, Beare et al. (2006) found that a value lower

than 0.2 is desirable for the Stable boundary layer modelling.

Stability functions fm and fh are derived from experimental observations of the ABL surface

layer, as presented earlier in Sec. 1.2.3.1 for environmental model (Stull, 1988). Stability func-

tion from the UKMO Smagorinsky SGS model are further described in Sec. 2.2.3.1.2, see also

Brown et al. (1994); Gray et al. (2001). Based on these function, the eddy viscosity expression

shown in Eq. (1.11) is recovered in convective conditions. On the contrary and as suggested

by experimental observations, in stable conditions, Prt is allowed to be stratification dependent

going from 0.7 in convective and neutral conditions to 1 as the critical Richardson number Ric

is reached. Above Ric, fm = fh = 0 and thus subgrid turbulence is avoided. As a side note,

differences exist with mesoscale models notably in stable conditions due to the significantly

higher resolution of LES (Brown et al., 1994; Delage, 1997). Indeed, the local mesoscale

Richardson number is at some point equivalent to the LES domain averaged Richardson num-

ber. As a result, in the mesoscale context, turbulence subsist (at least in patches) at the subgrid

scale for Ri higher than its critical value, increasing the effective subgrid mixing (Beare et al.,

2006). At the opposite, a critical Richardson number is not well suited in the LES context (Ma-
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son, 1994; Delage, 1997; Beare et al., 2006). Note finally that, several forms for the stability

functions have been proposed for use with the Smagorinsky SGS model (Brown et al., 1994;

Ding et al., 2001a; Beare et al., 2006).

Finally, concerning advanced models based on the Smagorinsky approach, Mason and Thom-

son (1992) stochastic backscatter SGS model was refined by Brown et al. (1994) and applied to

the stables ABL. This approach is identical to the Smagorinsky SGS model described above, al-

beit it include the backscatter of energy as described in Sec. 1.3.2.2.2.2. Note that Brown et al.

(1994) also added a new backscatter term for the potential temperature. This approach is found

to notably improve the results in stable (and neutral) conditions (Brown et al., 1994; Mason,

1994; Beare et al., 2006), while it does not have a significant impact on the results in unsta-

ble conditions (Mason and Brown, 1999). The two-part eddy viscosity SGS model proposed

by Ding et al. (2001a) and Ding et al. (2001b) introduced in Sec. 1.3.2.2.2.1 is also designed

to deal with non-neutral full ABL. However, unlike Sullivan et al. (1994), this two-part eddy

viscosity model (based on the Smagorinsky approach) is also applied to the temperature. MO

similarity theory is used to compute the mean field eddy-viscosity, i.e. the inhomogeneous

term of the two-part eddy viscosity SGS model. The model was found to properly perform

from moderately stable to convective conditions clearly improving the results from the stan-

dard Smagorinsky model (Ding et al., 2001a,b). However, this approach requires that similarity

theory is valid. Finally, it is to underline that applications of dynamic Smagorinsky SGS mod-

els to the stratified ABL are more scarce due to their added complexity and requirement in

computational time. However, Beare et al. (2006) clearly shown they are very appealing and

at least as capable as the backscatter approaches.

1.3.2.3.2 TKE based SGS model

TKE based SGS models have received a large attention from the environmental modelling

community as discussed previously and as an example, classical TKE based SGS models rep-

resent half of the schemes in the Beare et al. (2006) recent intercomparison. In fact, the extra

information provided by the prognostic equation for TKE is useful or even required for the
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parametrization of others processes such as cloud microphysics (Deardorff, 1980) which ex-

plain their success. The TKE based SGS model proposed by Deardorff (1980) is a simple yet

complete SGS model that is fully able to deal with thermal stratification of the full ABL (Mo-

eng and Sullivan, 1994). This model was introduced in Sec. 1.3.2.2.1.2 for neutral conditions.

It is today considered by many authors as a reference TKE based SGS model dedicated to the

full ABL (Moeng and Sullivan, 1994; Sullivan et al., 1994; Cuxart et al., 2000; Redelsperger

et al., 2001; Sorbjan, 2005a), and most of TKE based advanced approaches share a similar

philosophy to take into account thermal stratification, i.e. inclusion of an additional production

terms in the TKE equation and adaptation of the mixing and dissipation length scales as a func-

tion of the stratification. This model can thus serve as an example in the same way the UKMO

Smagorinsky model served us in the previous section.

In the Deardorff (1980) SGS model, eddy viscosity and diffusivity are given by

νt = Ckλk
1/2, (1.14)

νh =
νt
Prt

with Prt =

(
1 +

2λ

Δ

)−1
, (1.15)

where the various quantities are similar to Eq. (1.5). The mixing length is directly equal to

the filter width, i.e. λ = Δ, in neutral and convective conditions. As a result, the increase of

subgrid mixing in buoyant conditions is solely taken into account thorough the subgrid TKE

and resolved quantities. On the contrary, in stable conditions λ is a function of the stratifica-

tion though a ratio equivalent to a Richardson number, i.e. λ = min
(
Δ, 0.76k1/2/N

)
. This

definition for stable conditions allows the mixing length to become much smaller than the grid

resolution so that the subgrid mixing can be lower and even avoided in very stable regions.

Furthermore, the Prandtl number Prt becomes a function of the stratification in stable condi-

tions. This is on par with UKMO Smagorinsky SGS model (Brown et al., 1994). While simple,

such a parametrization of the length scale allows to properly reproduce the stable inversion at

the top of the ABL (Sullivan et al., 1994). It is generally accepted (Moeng, 1984; Moeng and

Sullivan, 1994; Sullivan et al., 1994; Kosović and Curry, 2000; Sorbjan, 2005a).
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Additional terms appear in the subgrid scale TKE equation when considering internal energy.

Under the Boussinesq shallow convection approximation (see Stull (1988)), the same TKE

equation as presented in Eq. (1.8) is obtained with simply an additional buoyancy production

term. The latter, which rely on the parametrization of the heat flux, can be either positive

in convective conditions, or negative in stable conditions (as opposed to the shear production

terms that is always positive). This approach is generally accepted to model the increase or

decrease of subgrid TKE as a function of the stratification, which in turn affect turbulence

mixing coefficients (Deardorff, 1980; Moeng and Sullivan, 1994; Sullivan et al., 1994; Kosović

and Curry, 2000; Sorbjan, 2005a).

As an example of a variant of the Deardorff TKE based SGS model, Sommeria (1976); Re-

delsperger and Sommeria (1981) also proposed a simple TKE based SGS model dedicated to

the non-neutral full ABL. Cuxart et al. (2000) latter implemented this SGS model in the Meso-

NH mesoscale model and Redelsperger et al. (2001) further enhanced this SGS model by better

considering physical processes of the surface layer. Sommeria/Redelsperger SGS model share

the same general philosophy as the one of Deardorff (1980). However, mixing length is al-

ways independent of the stratification (albeit Cuxart et al. (2000) underline that this would be

required for stable stratification), and more importantly, complex stability function based on

bulk Richardson numbers are used to scale the various turbulent flux, similarly as in the UKMO

Smagorinsky SGS model. Several studies confirmed that Sommeria/Redelsperger approach is

as suitable as the Deardorff (1980) SGS model for a wide range of stratification (Sommeria,

1976; Redelsperger and Sommeria, 1981, 1986; Cuxart et al., 2000; Redelsperger et al., 2001;

Drobinski et al., 2004; Beare et al., 2006; Drobinski et al., 2007).

However, as underlined by Beare et al. (2006), such classical SGS models are too simplistic to

correctly reproduce the complex phenomena taking place in the stably stratified ABL with a re-

alistic mesh. Advanced SGS model that better take into account the subgrid physical processes

are far more appealing.
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The two-part eddy viscosity SGS model of Sullivan et al. (1994) introduced in Sec. 1.3.2.2.2.1

was also designed to deal with non-neutral flows. The latter is mostly based on Deardorff

(1980) SGS model in the flow interior. Thus, all the adaptation presented above are included

in Sullivan et al. (1994) SGS model. Furthermore, the mean field eddy-viscosity, i.e. the inho-

mogeneous term of the two-part eddy viscosity, is computed relying on MO similarity theory.

This approach was proven to enhance the results for neutral and slightly unstable case (Sul-

livan et al., 1994), and this model was also used successfully during GABLS 1 stable ABL

intercomparison (Beare et al., 2006). Interestingly, Sullivan et al. (1994) found that applying

the two-part eddy viscosity concept to the momentum only (and not to the temperature as op-

posed to Brown et al. (1994) and Ding et al. (2001a)), was sufficient to notably improve both

velocity and temperature profiles close to the surface, albeit in unstable conditions.

Finally, Kosović and Curry (2000) introduced a SGS model able to deal with stable stratifica-

tion that is based on the Kosović (1997) non-linear Backscatter SGS model previously intro-

duced in Sec. 1.3.2.2.2.2. Kosović and Curry (2000) followed the ideas of Deardorff (1980) to

include stratification, however mixing length scale is always set equal to the filter width, and

only the dissipation length scale is explicitly a function of the stratification. Furthermore, the

latter is also a function of the magnitude of the resolved shear in order to also take into account

the shear production of TKE in stable regions. Kosović and Curry (2000) evaluated the model

based on a quasi-steady stable ABL for which experimental measurement were available15.

The approach was found promising, and results from GABLS 1 intercomparison (Beare et al.,

2006) shown that it was on par with the Mason and Thomson (1992) stochastic backscatter

SGS models and dynamic SGS models.

1.3.3 LES of the heterogeneous surface ABL

Heterogeneous surface ABL further adds important challenges to the already non-trivial LES

of the full ABL. It requires that not only the model perform properly in homogeneous condi-

tions, but also that some of the aspects of the SGS model as well as the operating mode are

15 As a side note, this cases was latter selected as the reference case of the GABLS 1 LES

intercomparison (Beare et al., 2006).
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adapted. Indeed, because of the surface heterogeneities, the problem do not feature anymore

homogeneous directions preventing a host of simplification in both the SGS models and the

operating mode of the LES approach. As an example, periodicity of lateral boundaries of the

domain, i.e. inlet, outlet and sides, which was largely simplifying their treatment, in addition

to allow for ensemble averages and fast Fourier transform, is not well suited anymore for most

heterogeneous cases. This also affect the post-processing in a similar manner.

Heterogeneous cases can be either theoretical or real. Real cases are however more challeng-

ing to deal with due to the non-controlled environment: several types of discontinuities have

generally to be represented, and lateral boundary conditions are more complex to prescribe.

Furthermore, there are a general lack of appropriate data to validated LES models in real con-

ditions (Teixeira et al., 2008; Shaw et al., 2009). All these fact, explain why LES of real

heterogeneous surface ABL is non-trivial and very scarce in the literature.

In this section, the various challenges of heterogeneous cases are briefly introduced and some

possible approach to address them are discussed. First, the general consideration for the LES

of heterogeneous cases are first presented. Then, the abilities of the various SGS models pre-

viously introduced in the context of an homogeneous surface ABL are quickly explored.

1.3.3.1 General considerations

The LES of ABL over heterogeneous surface present large differences in their common aspects

compared to the LES over homogeneous surface. Because the surface is heterogeneous, the

flow over it and its properties are also statistically heterogeneous. As a result, approaches and

methods (SGS model, wall model and post-processing) relying on the ensemble averaged in

space are invalid in the context of an heterogeneous surface, restraining their use to cases with

at least one homogeneous direction. As an example, SGS models based on ensemble averages,

such as Sullivan et al. (1994) or the Germano-Lilly dynamic SGS model (Germano et al., 1991;

Lilly, 1992) are not valid anymore. This represent one of the major complications faced by LES

for heterogeneous and real cases.
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Concerning the boundaries of the computational domain, the surface is generally processed

as for homogeneous cases, i.e. the no-slip rough wall is modelled through wall functions, see

Sec. 1.3.2.1.1.1. However, for all the cases not featuring an homogeneous direction, the mod-

els such as the one of Schumann (1975) is not anymore valid, and only wall models based

on local quantities can be used. Furthermore, relying on the usual wall function based on the

MO similarity is not always appropriate such as in recirculating zones as underlined by Pi-

omelli (2008). Orography can be taken into account either using cell-blocking approach or

using terrain following vertical coordinate (oblique and orthogonal) as discussed respectively

in Sec. 1.1.3.2 and Sec. 1.2.2.3. The latter is generally preferred for real cases. The surface

boundary condition is further discussed in the next section.

Concerning the inlet, outlet and lateral boundary conditions, unless an infinite repetition of

the same surface feature is considered such as in Hobson et al. (1999) study, periodical lateral

boundary condition are not suitable for the LES of surface heterogeneous cases. Thus, other

inlet, outlet and lateral boundary conditions need to be prescribed while being able to freely let

eddy in and out of the computational domain.

At the inlet, fully developed ABL need thus to be explicitly prescribed. This can be achieved

based on an analytical/statistical mathematical representation of the ABL (Iizuka and Kondo,

2004), which can go from averaged profiles simply perturbed with scaled random numbers to

a more advanced and faithful representation of the turbulence. Instead of fully manually pre-

scribes the inlet, one can also let the turbulence develop by itself following a wind tunnel like

approach (Uchida and Ohya, 2003), i.e. using explicit obstacles to generate turbulent structures.

However, these approaches are far from being trivial, and generally, a long enough upstream

domain is needed to let the turbulence properly develop which is computationally expensive

An other way to prescribe the inlet, which is the most common, is to use a precursor simulation

based on an homogeneous surface and fully periodic boundary conditions (Bechmann, 2006;

Bechmann and Sørensen, 2010; Silva Lopes et al., 2007; Chow and Street, 2009). Such a

simulation allow to obtain a fully developed ABL flow as discussed in the previous section,
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that is stored in a wind database. Then, the result from this simulation is used as inlet and

sometimes lateral boundary conditions of an heterogeneous problem not anymore periodical.

Note that Chow and Street (2009) however reported some numerical instabilities and had to

use a so-called pressure detrending to avoid problems. This two levels approach is somewhat

straightforward, however it is expensive when considering storage requirement since at least

inlet and sometimes lateral boundaries are needed at every time steps to drive the the advanced

simulation. In the same manner, recycle boundary condition can also be used, i.e. the flow

at the outlet of an upstream domain serve as inlet of the computational domain and are also

re-injected at the inlet of the upstream domain such as what was done in the periodical case.

Concerning the others boundary, at the outlet, a Neumann zero gradient boundary condition

can be used (Iizuka and Kondo, 2004; Bechmann, 2006; Bechmann and Sørensen, 2010; Chow

and Street, 2009). However, Bechmann (2006) reported some numerical problems in the region

close to the outlet and had to use a buffer region. They also showed that, while more complex, a

convective boundary condition such as used by Silva Lopes et al. (2007) and Uchida and Ohya

(2003) gives better results. Concerning the lateral boundary conditions (sides), depending of

the case free-slipping wall (Uchida and Ohya, 2003; Chow and Street, 2009) or periodic condi-

tions are generally used (Iizuka and Kondo, 2004; Bechmann, 2006; Bechmann and Sørensen,

2010; Silva Lopes et al., 2007). Finally, a top boundary similar to the homogeneous cases is

generally used as described in Sec. 1.3.2.1, and most of the time a free shear boundary condi-

tion is used (Uchida and Ohya, 2003; Bechmann, 2006; Bechmann and Sørensen, 2010; Silva

Lopes et al., 2007; Chow and Street, 2009). However, in some cases a symmetry condition

is adopted (Iizuka and Kondo, 2004) but this is more for CWE problems were the model is

compared to wind tunnel data.

Finally, inlet lateral, outlet and top boundary conditions can also be prescribed following a

nesting-like approach as described in Sec. 1.2.2.4 (Drobinski et al., 2004, 2007). This is very

appealing with regards to real cases and environmental modelling. As a side note this approach

is also interesting when the flow is turning with height such as when the Coriolis acceleration

is considered since inlet, outlet and sides of the domain are less well defined.
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In conclusion, it is to note that many possible approaches exist to provide the model with

suitable inlet, lateral and outlet boundary conditions.

1.3.3.2 Quick review of SGS models

Over an heterogeneous surface, the processes illustrated for the homogeneous surface ABL

merge with the processes induced by surface heterogeneities increasing the level of complexity

of flow features. Furthermore, surface heterogeneities first affect the flow close to the surface,

i.e. the surface layer, a region already challenging for LES-NWM models as introduced pre-

viously (Piomelli, 2008). As a result, independently to the intrinsic abilities and limitation of

each SGS model, a prerequisite is that the lower part of the ABL must be reproduced properly

in homogeneous conditions if one wants to simulate complex flow features caused by inhomo-

geneities. This explains why most of the studies dedicated to the heterogeneous surface ABL,

first validate the model for an homogeneous surface (Bechmann, 2006; Silva Lopes et al., 2007;

Chow and Street, 2009). However, this does not guarantee that the wall is correctly modelled

in the context of heterogeneous surface as seen at the end of this section (Piomelli, 2008). Last

but not least, it is noteworthy that all the approaches relying on an horizontal averaging of any

kind are not anymore appropriate in the context of an heterogeneous surface ABL which further

restrict the possible LES approaches to model ABL flows over an heterogeneous surface.

Cases similar to the one discussed in the CWE section, Sec. 1.1.3.2, are used to evaluate the

LES models. Thus, the vast majority of studies tackling heterogeneous surface consider only

the neutral ABL, few full scale experimental dataset exist and many studies rely on wind tunnel

dataset for the validation of the models (with the limitation associated to them). The reader is

referred to Sec. 1.1.3.2 for further discussion concerning the various available test cases. Here,

it is to underline that most of the recent studies focusing on the evaluation of LES model over

a full scale topography are based on the Askervein hill experiment (Silva Lopes et al., 2007;

Chow and Street, 2009; Bechmann and Sørensen, 2010). Those studies further allowed to

better understand the flow above this very popular test case, confirming among other things the

intermittency of separation in the lee-side of the hill.
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Clark (1977) was among the first to implement a classical Smagorinsky SGS model consid-

ering the temperature and including of the topography by means of an oblique curvilinear

vertical coordinate. This study was however focusing on gravity waves and a free-slip surface

boundary condition was used. More recently, Murakami (1998) reviewed the challenges and

compared the abilities of various LES over a bluff body. While this study focuses on CWE, it

clearly illustrates the limitations of the classical SGS models, i.e. the over-dissipative nature of

these pure eddy viscosity models, but more importantly, the need to adapt the model closure

constant as a function of the flow fields (as already discussed previously). Murakami (1998)

described the latter as particularly critical in the context of flow around bluff bodies, and thus

by extension for flow above an heterogeneous surface. Indeed, flow fields induced by hetero-

geneities include various types of flow features such as separation, free shear layer, impinging,

vortex shedding, etc. As a result, it is difficult to select one adequate value of the Smagorinsky

constant knowing that each of the flow features, which location is a priori unknown, would

ideally requires its proper value of the constant. In a general manner, when considering iso-

lated surface heterogeneities such as a single hill, the results in the upwind region are little

influenced by the difference of the SGS models used (albeit the homogeneous surface ABL is

well reproduced and the inlet boundary is correctly prescribed), but there are generally large

differences in the wake region (Murakami, 1998; Iizuka and Kondo, 2004; Silva Lopes et al.,

2007; Piomelli, 2008; Chow and Street, 2009; Bechmann and Sørensen, 2010). The standard

Smagorinsky SGS model generally underestimates the length of the reverse flow region (Mu-

rakami, 1998; Iizuka and Kondo, 2004). Similarly, the classical TKE based SGS model predict

a too low TKE level and a too high speed-up in the lee side of the hill (Chow and Street, 2009).

The over-dissipative nature of classical SGS models can be overcome by using a backscatter

model or the Bardina scale-similarity approach as discussed in the previous section (Murakami,

1997, 1998; Brown et al., 2001; Chow and Street, 2009). Similarly, this can be achieved using

a dynamic SGS model that allow negative values of the model coefficient. As an example of

the importance of such processes, Murakami (1998, Fig. 10) shows an instantaneous horizontal

cross-section around a cube of the dynamically obtained Smagorinsky constant with various
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dynamic SGS models. On that figure, it can be seen that the model coefficient is negative

(indicating that backscatter of energy take place) in a non-negligible part of the cross-section.

In that sense, (Chow and Street, 2009) demonstrated the enhancement obtained by using a

reconstruction (deconvolution) model along with the classical TKE based SGS model. The

additional information retrieved thanks to the reconstruction model, i.e. the RSFS stresses,

clearly enhance the results, and even the simplest reconstruction model, which is said to be

equivalent to the scale-similarity model, is found to greatly improve the results in the lee-side

of the hill. In fact, results on par with the others more advanced dynamic models evaluated are

obtained with this simpler model which thus appears as optimum.

The dynamic Smagorinsky approaches are very appealing for the LES of heterogeneous sur-

face ABL due to their self-adaptation properties, and many studies have shown their clear ad-

vantages over classical models (Murakami, 1997, 1998; Iizuka and Kondo, 2004; Silva Lopes

et al., 2007; Piomelli, 2008). However, in addition to their higher computational cost, the dy-

namical computation of the constant generally induce numerical instability similar but worse

than in the homogeneous context. Furthermore, cases generally do not feature homogeneous

directions preventing from using ensemble average of the model constant. Murakami (1998)

underlined the too intense fluctuations of the constant of the Germano-Lilly dynamic SGS

model which affect the numerical stability of the model and the results. As a consequence,

many studies have focused on this limitation using more advanced and mixed dynamic SGS

models. Murakami (1998) and other subsequent studies such as Chow and Street (2009) found

that the dynamics Smagorinsky SGS model mixed with a backscatter or scale similarity mod-

els notably increased the stability of the model while reducing by the computational cost. Ad-

vanced dynamic approaches such as the Lagrangian dynamic SGS model (Meneveau et al.,

1996) also have a similar positive effect. The latter is perfectly stable and also reduce the com-

putational time compared to classical dynamic SGS models (Murakami, 1998; Silva Lopes

et al., 2007). However, the Lagrangian dynamic SGS model avoid backscatter effects which

need to be explicitly included (as opposed to the classical dynamic approach). The addition of
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the latter was proven to further improve the results while reduce the computational cost of the

approach while improving the results (Murakami, 1998; Chow and Street, 2009).

A last challenging aspect of LES of the heterogeneous surface ABL is the representation of

the fully aerodynamically rough surface along with the prediction of the flow in the first few

meshes above the ground. Indeed, the wall model and the SGS model adaptations in the near-

surface region not only must allow the correct prediction of MO similarity for an homogeneous

surface, but also require to be able to go beyond since the latter are generally not valid in the

context of heterogeneous surface (which is worsen when a coarse resolution is used) (Piomelli,

2008). As a result, the two part eddy viscosity SGS models of Sullivan et al. (1994) and Ding

et al. (2001a) are not anymore valid since they fully rely on the MO similarity (and horizontal

ensemble average) to obtain the inhomogeneous eddy viscosity and the isotropic factor. Hybrid

RANS/LES approaches appear to be promising to address such a problem as demonstrated by

Bechmann and Sørensen (2010). Close surface region, which is under-resolved by LES, is

predicted based on a RANS model (using of a high resolution highly deformated meshes),

which allows the model to go beyond MO similarity notably closer to the ground than if just

a LES model was used. However, Bechmann and Sørensen (2010) failed to reproduce the

intermittency of the recirculation, but they used a classical TKE based SGS model in the flow

interior. Similar limitation are however found with dynamic approaches. As an example,

Iizuka and Kondo (2004) illustrated that a dynamic SGS model was failing to reproduce a

recirculation region in the back side of a hill due to the misrepresentation of the region close to

the surface. Similarly, while Silva Lopes et al. (2007) used the advanced wall model of Marusic

et al. (2001) along with a canopy model and a Lagrangian dynamic Smagorinsky SGS model,

they still noticed problems in the prediction of the eddy viscosity close to the ground. This was

said to be the cause of the models misrepresentation of the recirculation zone in the lee-side

of the hill. While the intermittency of the recirculation was well reproduced, its intensity was

increasing with a finer mesh (toward experimental results).
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1.3.4 Summary of LES of ABL

In this section, a review of the main aspects of LES of the ABL was presented focusing on the

various challenges and limitations of the different approaches introduced in the literature.

After briefly introducing the ABL in view of LES approaches, the LES of the homogeneous

surface ABL was thoroughly discussed and it was seen that it is still an open field of research

far from being trivial. A first section was dedicated to the common aspects of LES of the ABL

over an homogeneous surface, i.e. boundary conditions, driving the flow, and initialization.

The challenge of LES of a no-slip wall bounded flow were discussed along the large differ-

ences that exist between the LES-NWR and LES-NWM, and it was explained why the fully

aerodynamically rough surface of the ABL is very challenging for LES. Both classical and

advanced SGS models require a wall model which has profound implications in LES of the

ABL. A panel of popular SGS models was then presented in the context of the adiabatic ABL.

The classical SGS models, i.e. the Smagorinsky SGS model and the Deardorff TKE based SGS

model, were first introduced along their main properties and limitations notably in the region

close to the surface where the flow is under-resolved. These simple models are based on the

sole eddy viscosity approximation. They are over-dissipative and the closure constant need to

be adjusted manually. As a result, they are clearly biased in the near-surface region where they

depart from the MO similarity theory. This drove a large interest from the research community

for the last couple of decade, and while it was thought for longtime that the only way to avoid

such a bias was to use more advanced SGS models or apply a dedicated treatment in this re-

gion of the computational domain, we saw that this shortcoming could be avoided by simply

properly setting the grid and closure constants. Subsequently, advanced SGS models based on

both implicit (two-part eddy viscosity, backscatter, hybrid RANS/LES SGS models) and ex-

plicit (scale similarity, dynamics Smagorinsky and reconstruction SGS models) filtering were

introduced presenting the underlying philosophy of each approach along with the enhancement

they bring and their limitations. These models generally address the limitations of the classi-

cal SGS model, at least in the near-surface region. As a general rule, the more an approach

is advanced, the less it is biased, but this does not imply that they are more computationally
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expensive. The dynamic Smagorinsky SGS models were found very promising notably when

mixed with other approaches that better take into account the subgrid and subfiltered physical

processes and their interaction with resolved flow such as backscatter of energy. However, due

to their under-dissipative nature in the region close to the wall, they still require a fine tuning

of the bottom boundary to properly perform. While many other approaches are discussed in

the books of Lesieur et al. (2005); Sagaut (2006), this section was meant to illustrate the capa-

bilities of various SGS model in the context of an adiabatic homogeneous surface ABL. It was

clearly seen that it is still very challenging notably concerning the near-surface region which is

an open subject of research.

The thermally stratified ABL over an homogeneous surface was then considered along the

inclusion of thermal effects in SGS models. The challenges for LES of the various flow regimes

were first introduced and it was seen that not only the SGS model but also the solver need to

be properly designed. It was clearly underlined that convective conditions are generally easier

to reproduce based on LES due to the dominance of buoyant production of turbulence and the

large size of the eddies. At the opposite, it was seen that stable stratification is very challenging

and that the interest from the research community has notably increased in the recent years.

Various approaches to include thermal effects in SGS models were then presented focusing on

the classical Smagorinsky and Deardorff TKE based SGS models.

Finally, we proceeded to a quick review of the LES of the ABL over an heterogeneous surface

and real cases. The various common aspects were first discussed illustrating the important dif-

ferences and limitation implied by the non-homogeneous surface: the flow at the inlet boundary

need to be explicitly provided, cases do not generally feature homogeneous directions and MO

similarity are not anymore always valid. It was thus shown that, regardless of the SGS model,

the simple application of LES to such cases is tricky. The abilities of the various SGS models

previously introduced were then discussed. It was seen that due to their intrinsic limitations,

classical SGS models are clearly unable to predict much of the complex flow features induced

by heterogeneities (notably in the lee-side). Advanced SGS models partly address these limi-

tations especially concerning the dynamics Smagorinsky SGS models and hybrid RANS/LES
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approaches. However, while being the most appealing and outperforming RANS models, they

still present some difficulties in the region close to the wall leaving room for improvements.

To conclude it is to say that due to its abilities and the increase of the computational resources,

LES is becoming more and more popular in ours days. Furthermore, LES models present inter-

esting features allowing to address the various challenges of the processes within the mesoscale

microscale range as discussed by Teixeira et al. (2008) and Shaw et al. (2009) and a promising

approach is to use a LES model as a last level of nesting of a mesoscale model (Drobinski et al.,

2007). However, a gap remains before a straightforward application of LES for full scale real

cases such as in the wind energy context. As an example, during the recent model intercompar-

ison based on the Bolund experiment (Bechmann et al., 2010), no LES model was present in

the top ten results. Interestingly, while the opposite would have been expected, RANS models

were outperforming all LES models.

1.4 General conclusion of the review

All along this chapter, the various approaches dedicated to the modelling of ABL flows were

reviewed, illustrating their main properties, strengths and weaknesses. While wind energy ap-

plications were not at the centre of the various discussions, the ultimate goal was to define

which of these approaches or combination could be the most appropriate to address the chal-

lenges faced by the wind energy industry.

A first section was dedicated to methods used in CWE to model the ABL. Second order RANS

approaches such as the fine-tuned k − ε models are found to be the most promising. They

are currently more and more popular in the wind energy domain due to their balance between

computational time and performance. However, turbulence is fully modelled and they are

not well suited to reproduce unsteady and transient phenomena. As a result, they struggle

when the flow is too complex notably in the lee-side of obstacles (Ayotte, 2008; Sumner et al.,

2010). Furthermore, most of the time, CWE implementations consider only the neutral surface

layer neglecting the Coriolis effect. While these are good approximations when dealing with

typical microscale engineering problems, it is not appropriate for larger scale problems (>
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10 km) (Wyngaard, 2004; Shaw et al., 2009). Furthermore, the ABL is effectively almost

never in a neutral state. As a results, this introduces errors, notably when considering flow

over complex terrain since stratification has a strong non-linear effect. Similarly, surface layer

stratification has an important effect on the production of wind turbine (Shaw et al., 2009).

A second section addressed environmental modelling approaches, i.e. mesoscale models. These

approaches are dedicated to the simulation of large scale unsteady atmospheric flows consider-

ing the full ABL and the free atmosphere above a rotating sphere (Holton, 2004). They rely on

very advanced and coupled solvers of the conservation equations (Steppeler et al., 2003) and

include parametrizations of all the main processes taking place in the full scale ABL. Due to

their typical horizontal resolution (> 1 km), the ABL is modelled by means of ABL column

model and the unsteady RANS one-and-a-half order k−l turbulent closures are among the most

popular. They are sufficiently skilled for a wide range of stratifications, while being relatively

simple (Stull, 1988). Mesoscale approaches thus offer very promising features allowing to take

into account the environment in which wind turbines operate (Shaw et al., 2009). Furthermore,

they are already essential tools for both forecasting and wind resource assessment (Landberg

et al., 2003a,b). However, their parametrization of the ABL and turbulence, i.e. column model,

is generally too simplistic to be valid at a resolution higher than 1 km (Teixeira et al., 2008;

Shaw et al., 2009). Below this scale, while the solver of conservation equations does not

present theoretical limits, 3D turbulent closures are required for a realistic modelling of the

ABL (Wyngaard, 2004).

In a last section, LES of the ABL was thoroughly discussed (see Sec. 1.3.4 for a summary).

These approaches are able to almost fully resolve and reproduce the dynamic structure of

the unsteady ABL. In that sense, they are closer to mesoscale models than CWE RANS ap-

proaches. They are well suited to address the multiscale nature of the ABL (Drobinski et al.,

2007). Only the subgrid part of the flow, which is generally very small except in the near-

surface region for LES-NWM, is modelled by means of a SGS model. Momentum and some-

times internal energy are considered by the solver and the SGS model, and the Coriolis effect

is also commonly included. Standard Smagorinsky and Deardorff TKE based SGS models are
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very popular due to their relative simplicity. However, they are over-dissipative and present

important limitations notably in the near-surface region where LES is under-resolved (Andren

et al., 1994). This can be partly addressed by using more advanced SGS model such as the very

popular dynamic Smagorinsky SGS model. However, these latter approaches also require to

be finely tuned to properly predict the flow in the surface layer, notably over an heterogeneous

surface. As a result, and as opposed to CWE and environmental modelling, there are no general

agreements on a best suited LES approach that feature the optimum balance between perfor-

mance and simplicity (Piomelli, 2008). Furthermore, these approaches are significantly more

computationally demanding than RANS models (a ten fold ratio), and due to the restrictions

with regards to the resolution (∼ 10 m), their computational cost was for a long time too high

to allow their application on large domains (> 10 km) (Wyngaard, 2004; Shaw et al., 2009).

Modern wind turbines feature a hub height at roughly 100 m agl with a rotor diameter of a

similar scale. They are thus located in the upper part of the surface layer or even above in

stable conditions. For their part, modern wind farm usually extend over more than 10 km, trig-

gering both microscale and the mesoscale processes. Considering those simple facts, it is clear

that wind energy facilities are within the microscale-mesoscale gap. The latter is sometimes

referred to as “Terra incognita” (Wyngaard, 2004) due to the lack of understanding of the com-

plex interactions between mesoscales and microscales processes. Indeed, both numerical and

experimental research interest have for a long time mostly focused on the already challenging

pure microscale and mesoscale issues as illustrated during this literature review. As a result,

there is today a lack of numerical approach and experimental data that would allow the study of

the microscale mesoscale transition (Wyngaard, 2004; Teixeira et al., 2008), which is notably

detrimental for wind energy applications (Shaw et al., 2009).

In view of the specificities and abilities of the various models discussed in this literature review,

it appears that a multiscale modelling approach integrating mesoscale and LES models may be

the most natural and appropriate method to tackle the microscale mesoscale gap (Shaw et al.,

2009). Such a method would benefit from the environmental and large scale modelling abilities

from the mesoscale model, while being highly skilled to simulate the flow at the microscale.
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To that end, it is relevant to consider implementing a SGS modelling approach in a mesoscale

model (along with all the other required components allowing 3D turbulence modelling) as

recently proposed and proven to properly perform by few research groups (Cuxart et al., 2000;

Chow et al., 2005; Klemp and Skamarock, 2004; Drobinski et al., 2007). This would allow

to seamlessly model atmospheric flows from the large scales to the microscales. However, for

such an approach to perform properly, the solver of conservation equations of the mesoscale

model must able to deal with the unsteady fine structures typical of microscales (∼ 10 m).

Furthermore, SGS model put aside, the new components of the mesoscale model such as the

3D turbulent diffusion also need to be thoroughly validated. It can be achieved based on a well

known simple classical SGS model (such as the standard Smagorinsky of the TKE based SGS

models) and relying on various test cases for which both the solution and the behaviour of clas-

sical SGS model are known. Once the new LES-capable mesoscale approach is demonstrated

to perform on par with other reference LES models from the literature, it will be possible to

enhance the SGS model following the promising approaches introduced in this review.

In order to follow this path, the MC2 mesoscale model from EC was elected as a basis. The

dynamic kernel of MC2 is known to perform properly in a wide-range of scales ranging from

blood vessels to the general circulation (Pinty et al., 1995; Laprise et al., 1997; Benoit et al.,

1997). Furthermore, Pelletier et al. (2005) started to implement the missing required compo-

nents to allow MC2 to operate as a LES model. Among other things, the Smagorinsky SGS

model and a modified TKE based SGS model as well as 3D turbulent diffusion were added to

MC2 by Pelletier et al. (2005). However, this promising work was halted without evaluating

validity and performances of neither the solver in the context of LES of the full ABL, nor the

newly implemented components. The present study thus pursues Pelletier et al. (2005) achieve-

ments and is aimed at the validation and refinements of the LES-capable MC2 approach.
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MATHEMATICAL MODEL

The Compressible Community Mesoscale Model (MC2) is the fruit of more than 20 years of

development at the “Recherche en Prévision Numérique” (RPN) research group of the Cana-

dian Meteorological Centre (CMC), Environment Canada (EC). This state-of-the-art mesoscale

model was first devoted to large scale applications such as weather forecasting, climate studies

as well as numerical research.

MC2 solves the Euler equations of motion without approximations based on a Semi-Implicit,

Semi-Lagrangian (SISL) time stepping. This represents the dynamic kernel of MC2. It have

been refined and validated in the context of mesoscale modelling along the years (Robert et al.,

1985; Tanguay et al., 1990; Bergeron et al., 1994; Pinty et al., 1995; Benoit et al., 1997; Laprise

et al., 1997; Thomas et al., 1998; Girard et al., 2005). It is known to be suitable for a wide

spectrum of atmospheric processes and other types of fluid. The dynamic kernel is comple-

mented with models of all the relevant physical processes that require to be parametrized (i.e.

turbulent diffusion). This component, which is also referred to as the physics (or physics li-

brary), is common to other CMC mesoscale models. Resolved processes are thus simulated

through the dynamic kernel while modelled processes are parametrized in the physics.

The physics has been enhanced along the years notably by refining models and taking into

account more processes (Mailhot and Benoit, 1982; Delage, 1988; Benoit et al., 1989; Girard

and Delage, 1990; Delage and Girard, 1992; Benoit et al., 1997; Delage, 1997; Mailhot et al.,

1998; Bélair et al., 1999). However, until recently it was only considering vertical exchanges

relying on the horizontal homogeneity hypothesis (i.e. a column model). While such an ap-

proach is well suited in the mesoscale context (Stull, 1988; Holton, 2004; Cuxart et al., 2006;

Svensson and Holtslag, 2006), it does not allow the proper modelling of ABL flows for hori-

zontal meshes smaller than one kilometre (Wyngaard, 2004). Work initiated by Pelletier et al.

(2005) intended to include the required features to allow the MC2 to perform as a LES model.
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In the present chapter, the mathematical model of both the dynamic kernel and the physics of

MC2 is presented. In a first section, fundamental equations are developed relying on Favre

averaging to obtain a system of equations in the form solved by MC2. Then, the model for

turbulent processes is presented by detailing momentum and heat 3D turbulent diffusion, sub-

grid scale (SGS) models, the 3D TKE equation, and lastly the column model. Finally, other

components required to properly perform LES of the full ABL with MC2 are introduced.

2.1 Fundamental equations

Assuming the only force acting on a dry atmosphere are pressure, gravitation and friction, then

the second law of Newton, the first thermodynamic principle, conservation of mass and the

state equation can be written as follows (Stull, 1988; Holton, 2004)

dv

dt
+ fk × v +

1

ρ
∇p+ gk = f , (2.1a)

dT

dt
− 1

ρcp

dp

dt
=

Q

cp
, (2.1b)

1

ρ

dρ

dt
+∇ · v = 0, (2.1c)

p = ρRT. (2.1d)

where v is the velocity vector, p the pressure, T the absolute temperature, ρ the density, f and Q

non-conservative forces and heat sources, g the gravitational acceleration, f the Coriolis factor,

and cp the heat capacity of dry air at constant pressure.

Then, using the potential temperature definition

T = θπ, (2.2)

where π is the Exner function given by

π =

(
p

p0

)R/cp

, (2.3)
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with p0 is a reference pressure and R the gas constant for dry air, and Eq. (2.1) can be trans-

formed in flux form in the perspective of filtering, with for any variable ψ

ρ
dψ

dt
= ρ

∂ψ

∂t
+ ρv ·∇ψ =

∂ρψ

∂t
+∇ · ρvψ, (2.4)

one can obtain the Navier-Stokes equations in flux form (Wilcox, 1994)

∂ρv

∂t
+∇ · ρvv + fk × ρv +∇p+ ρgk = ρf , (2.5a)

∂ρθ

∂t
+∇ · ρvθ =

ρQ

cpπ
, (2.5b)

∂ρ

∂t
+∇ · ρv = 0, (2.5c)

p = ρRT. (2.5d)

2.1.1 Filtered Navier-Stokes equations

Favre filtering allows to eliminate density fluctuations from equations while retaining their

general character (Wilcox, 1994). For any variable ψ, this latter decomposition writes

ψ′ = ψ − ψ̃ with ψ̃ =
ρψ

ρ
(2.6)

where, as defined in Eq. (A II-8), ψ̃ is the Favre filtered value of ψ, ψ′ is the associated pertur-

bation, and, for any variable ψ, the usual decomposition of the turbulent fields writes

ψ‘ = ψ − ψ (2.7)

where ψ‘ is the perturbation associated to the filtered value ψ as shown in Eq. (A II-11). Further

details on the filtering of turbulent fields can be found is Sec. 2.
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Thus, by decomposing v, θ and the source terms using Favre filtering

v = ṽ + v′, (2.8a)

θ = θ̃ + θ′, (2.8b)

f = f̃ + f ′, (2.8c)

Q = Q̃+Q′, (2.8d)

and ρ and p based on classical Reynolds decomposition

ρ = ρ + ρ‘, (2.8e)

p = p + p‘, (2.8f)

and further assuming that (Wilcox, 1994)

T̃ ≈ θ̃π = θ̃

(
p

p0

)R/cp

, (2.9)

the flux form Favre filtered conservation equations are obtained (Wilcox, 1994)

∂ρṽ

∂t
+∇ ·

(
ρṽṽ + ρv′v′

)
+ fk × ρṽ +∇p+ ρgk = ρf̃ , (2.10a)

∂ρθ̃

∂t
+∇ ·

(
ρṽθ̃ + ρv′θ′

)
=

ρQ̃

cpπ
, (2.10b)

∂ρ

∂t
+∇ · ρṽ = 0, (2.10c)

p = ρRT̃ . (2.10d)

Finally, by posing for any Favre averaged variables ψ̃ that

d̃ψ̃

dt
=

∂ψ̃

∂t
+ ṽ ·∇ψ̃, (2.11)
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the Favre averaged advective form of the equations is obtained

d̃ṽ

dt
+ fk × ṽ +

1

ρ
∇p+ gk = f̃ − 1

ρ
∇ · ρv′v′ = F̃, (2.12a)

d̃θ̃

dt
=

Q̃

cpπ
− 1

ρ
∇ · ρv′θ′ = Q̃

cpπ
, (2.12b)

d̃ ln ρ

dt
+∇ · ṽ = 0, (2.12c)

p = ρRT̃ . (2.12d)

This system of equations is similar to Eq. (2.1). However, going from the advective to the flux

form, then filtering and going back to the advective form, allowed to isolate two new terms on

the right-hand side of Eq. (2.12). They are the turbulent momentum and heat turbulent fluxes

which are unresolved (subfilter part) and that have to be modelled.

Finally, it is noteworthy that, in the present case, the same system of equations is obtained

whether the so-called Favre averaging is based on time or space filtering. Indeed, as dis-

cussed in Sec. 2.2.4, since the grid is used as spatial filter, i.e. implicit filtering, Leonard tensor

vanishes, and thus the subfilter stress tensor directly equals the Reynolds stress tensor (Pope,

2000). As a consequence, this set of equations can be used for both RANS and LES.

2.1.2 Modified set of equation

Using the state equation Eq. (2.1d), density can be suppressed from Eq. (2.1) (density becomes

implicit) to obtain the following modified set of equations

dv

dt
+ fk × v +RT∇q + gk = f , (2.13a)

dT

dt
− RT

cp

dq

dt
=

Q

cp
, (2.13b)

cv
cp

dq

dt
+∇ · v =

Q

cpT
, (2.13c)
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where q = ln (p/p0) and p0 is a reference pressure. Note that in the present study, it is consid-

ered that there is no external forcing. As a result, heat sources Q disappear as well as f . Those

terms are however retained in what follows.

By neglecting all viscous effects (molecular and turbulent), this system represents the complete

Euler equations of motion. The Semi-Implicit Semi-Lagrangian (SISL) scheme of the MC2 is

based on this set of equations (Thomas et al., 1998; Girard et al., 2005) (source of heat in the

mass conservation equation are further considered as negligible in these studies).

2.1.2.1 Modified Favre filtered set of equation

Following the same procedure, an equivalent Favre averaged form of the modified system

Eq. (2.13) can be obtained. Density is first substituted in Eq. (2.12) using Eq. (2.12d) to get

d̃ṽ

dt
+ fk × ṽ +

RT̃

p
∇p+ gk = F̃, (2.14a)

d̃ ln θ̃

dt
=

Q̃
cpT̃

, (2.14b)

d̃

dt

(
ln

(
p

RT̃

))
+∇ · ṽ = 0. (2.14c)

Further considering that T̃ ≈ θ̃π and using derivative chain rules1, we obtain

d̃ṽ

dt
+ fk × ṽ +RT̃∇ ln p+ gk = F̃, (2.15a)

1

T̃

d̃T̃

dt
− 1

π

d̃π

dt
=

Q̃
cpT̃

, (2.15b)

1

p

d̃p

dt
− 1

T̃

d̃T̃

dt
+∇ · ṽ = 0. (2.15c)

Then, introducing q such as

q = ln

(
p

p0

)
which implies ln π =

R

cp
q, (2.16)

1 [f(g)]′ = g′f ′(g) and [f/g]′ = (f ′g − fg′)/g2
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we obtain the system

d̃ṽ

dt
+ fk × ṽ +RT̃∇q + gk = F̃, (2.17a)

d̃T̃

dt
− RT̃

cp

d̃q

dt
=

Q̃
cp
, (2.17b)

d̃q

dt
− 1

T̃

d̃T̃

dt
+∇ · ṽ = 0. (2.17c)

At this point only the continuity equation Eq. (2.17c) needs to be adapted for the system

Eq. (2.17) to be perfectly similar to Eq. (2.13). By substituting the temperature material deriva-

tive in Eq. (2.17c) using Eq. (2.17b), the continuity equation Eq. (2.17c) then becomes

d̃q

dt
− 1

T̃

[
Q̃
cp

− RT̃

cp

d̃q

dt

]
+∇ · ṽ = 0, (2.18)

cv
cp

d̃q

dt
+∇ · ṽ =

Q̃
cpT̃

(2.19)

and thus, the final system of equation can be written as

d̃ṽ

dt
+ fk × ṽ +RT̃∇q + gk = F̃, (2.20a)

d̃T̃

dt
− RT̃

cp

d̃q

dt
=

Q̃
cp
, (2.20b)

cv
cp

d̃q

dt
+∇ · ṽ =

Q̃
cpT̃

, (2.20c)

which is equivalent to the system of equation Eq. (2.13) and thus equivalent to the form used

by the model. However, under this form, density fluctuations are eliminated from filtered equa-

tions (Wilcox, 1994), and neglecting external forcing f̃ and heat source Q̃ does not suppress the

right hand side of the system of equations Eq. (2.20) as it further includes non-linear products

−1/ρ∇ · ρv′v′ and −1/ρ∇ · ρv′θ′ that have to be modelled.
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2.1.2.2 Changes of variables

To go further, the thermodynamic variables q and T̃ are separated into the sum of a reference

state and a deviation from this reference state as follows

q = q∗ + q′′ = q∗ + q′′ = ln
p∗
p0

+ ln
p

p∗
= ln

p

p0
, (2.21)

T̃ = T̃∗ + T̃ ′′ = T∗ + T̃ ′′, (2.22)

where T∗ = const. is a reference isothermal basic state, and q∗ satisfies a stationary isothermal

hydrostatic equilibrium, namely

∇Hq∗ = 0 and ∇zq∗ =
∂q∗
∂z

= − g

RT∗
, (2.23)

which implies

d̃q∗
dt

= w̃
∂q∗
∂z

= − gw̃

RT∗
. (2.24)

Introducing this decomposition in the system Eq. (2.20) gives

d̃ṽ

dt
+RT∗∇q′′ − g

T̃ ′′

T∗
k = F̃− fk × ṽ −RT̃ ′′∇q′′, (2.25a)

d̃T̃ ′′

dt
− RT∗

cp

d̃q′′

dt
+

gw̃

cp
=

Q̃
cp

− gT̃ ′′w̃
T∗cp

+
RT̃ ′′

cp

d̃q′′

dt
, (2.25b)

cv
cp

d̃q′′

dt
+∇ · ṽ − cv

cp

gw̃

RT∗
=

Q̃
cp(T∗ + T̃ ′′)

. (2.25c)

Furthermore, using a reference Brunt-Väisälä frequency N∗ and sound speed c∗ defined by

N2
∗ = g

(
∂ lnT∗
∂z

+
g

cpT∗

)
=

g2

cpT∗
, (2.26)

c2∗ =
cp
cv
RT∗, (2.27)
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and using the mass conservation equation Eq. (2.25c) in order to replace the material derivative

on the right-hand side of temperature equation Eq. (2.25b), we get

d̃ṽ

dt
+RT∗∇q′ − g

T̃ ′′

T∗
k = F̃− fk × ṽ −RT̃ ′′∇q′′, (2.28a)

d̃T̃ ′′

dt
− RT∗

cp

d̃q′′

dt
+

T∗
g
N2
∗ w̃ =

Q̃
cp

[
1 +

RT̃ ′′

cv(T∗ + T̃ ′′)

]
− RT̃ ′′

cv
∇ · ṽ, (2.28b)

RT∗
c2∗

d̃q′′

dt
+∇ · ṽ − g

c2∗
w̃ =

Q̃
cp(T∗ + T̃ ′′)

. (2.28c)

Finally, a buoyancy and a generalized pressure variables are introduced as

b̃ = g
T̃ ′′

T∗
, (2.29)

P = RT∗q′′, (2.30)

and the system of five equations with five unknowns (ṽ, b̃ and P ) then becomes

d̃ṽ

dt
+∇P − b̃k = F̃− fk × ṽ − b̃

g
∇P , (2.31a)

d̃

dt

(
b̃ − N2

∗
g
P

)
+N2

∗ w̃ =
N2
∗
g
Q̃
[
cvg + cpb̃

cvg + cv b̃

]
− R

cv
b̃∇ · ṽ, (2.31b)

1

c2∗

d̃P

dt
+∇ · ṽ − g

c2∗
w̃ =

N2
∗
g
Q̃
[

1

g + b̃

]
. (2.31c)

Heat source from the mass conservation equations Eqs. (2.20c) and (2.25c) are commonly

taken as negligible (Thomas et al., 1998; Girard et al., 2005), which leads to a simpler system

identical to the one on which the MC2 model is based

d̃ṽ

dt
+∇P − b̃k = F̃− fk × ṽ − b̃

g
∇P , (2.32a)

d̃

dt

(
b̃ − N2

∗
g
P

)
+N2

∗ w̃ =
N2
∗
g
Q̃ − R

cv
b̃∇ · ṽ, (2.32b)

1

c2∗

d̃P

dt
+∇ · ṽ − g

c2∗
w̃ = 0. (2.32c)
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where the internal energy conservation equation is also simpler than Eq. (2.31b) since it was

obtained relying on the mass conservation equation Eq. (2.25c).

This system is independent of the coordinate system. It conveniently conserves a classical

form as presented by Girard et al. (2005, Eqs. (5) and (6)) (Favre and Reynolds averaging put

aside) while the formal inclusion of the filtering adds subfiltered non-linear terms that have to

be modelled. The SISL approach implemented in MC2 can thus be applied straightforwardly

to solve the filtered Euler equation of motion Eq. (2.32).

As seen in the next Chapter, the left-hand side of this system is quite general as it contains

only material derivatives and linear forcing terms (acoustic and gravity waves) which allows

for an implicit treatment (Girard et al., 2005). On the other hand, the right-hand side contains

non-linear and source term which require an explicit treatment. Taking the divergence of mo-

mentum, and eliminating the remaining variables thanks to the last two equations leads to an

elliptic problem for P . Subsequently, once P is obtained for the future time step, b̃ and v can

be deduced by appropriate back substitutions. This way, the system Eq. (2.32) is fully solved

without any segregation of variables.

2.1.2.3 Summary

The system Eq. (2.32) can be rewritten in a matrix manner such as

d̃Ψ

dt
+L = R+ F , (2.33)

where the three first terms are computed during the solution of Euler equations

Ψ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ṽ

b̃ − N2
∗
g
P

P

c2∗

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, L =

⎡⎢⎢⎢⎢⎢⎣
∇P − b̃k

N2
∗ w̃

∇ · ṽ − g

c2∗
w̃

⎤⎥⎥⎥⎥⎥⎦, R =

⎡⎢⎢⎢⎢⎢⎢⎣
−fk × ṽ − b̃

g
∇P

−R

cv
b̃∇ · ṽ

0

⎤⎥⎥⎥⎥⎥⎥⎦ (2.34a)
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and the forcing and source terms F are included afterwards in a fractional step manner

F =

⎡⎢⎢⎢⎢⎢⎣
F̃

N2
∗
g
Q̃

0

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
−1

ρ
∇ · ρv′v′

− gπ

ρT∗
∇ · ρv′θ′

0

⎤⎥⎥⎥⎥⎥⎥⎦. (2.34b)

2.2 Turbulence modelling

The above system of equations, Eq. (2.32), can be fully solved (Girard et al., 2005) at the

exception of the non-linear velocity and temperature fluctuation products that appear after fil-

tering Navier-Stokes equations. This is the well known turbulence closure problem (Stull,

1988; Wilcox, 1994; Pope, 2000). Those latter terms must be modelled and they write

F̃ = −1

ρ
∇ · ρv′v′, (2.35)

Q̃ = −cpπ

ρ
∇ · ρv′θ′. (2.36)

The former, Eq. (2.35), represents the turbulent diffusion of momentum, i.e. the transport of

momentum caused by turbulence, while the latter, Eq. (2.36), represents the turbulent diffusion

of internal energy, i.e. the transport of heat caused by turbulence.

In this section, mathematical models of momentum and heat turbulent fluxes are presented2.

2.2.1 Momentum turbulent diffusion

Momentum transfers solely due to turbulent diffusion can be expressed in Cartesian coordinates

and tensorial notation such as

[
dũi

dt

]
turb

=
1

ρ

∂

∂xj

(
−ρu′iu

′
j

)
. (2.37)

2 Note that for convenience reasons, equations are based on a Cartesian coordinate system and tensorial

notations are used in this section.
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Turbulent momentum fluxes, also known as Reynolds stresses τij = −ρu′iu
′
j , need to be known

in order to compute the mean properties of a turbulent flow. To close this problem, the eddy

viscosity approximation is used. In the latter, the subfilter turbulent shear stresses τij are related

to the resolved rate of the strain Sij (which trace Sii is zero in incompressible conditions), i.e.

Sij =
1

2

(
∂ũi

∂xj

+
∂ũj

∂xi

)
, (2.38)

through a scalar turbulent eddy viscosity μt. This analogy with molecular viscosity was in-

troduced by Boussinesq. Thus, it is often referred to as the Boussinesq (eddy viscosity) ap-

proximation, but it is sometimes called the gradient transport theory or the gradient diffusion

assumption. In practice, the total viscosity becomes the sum of the molecular viscosity (prop-

erty of the fluid) and the eddy viscosity (property of the flow). As a side note, considering that

the ABL is a high Reynolds number flow, molecular viscosity is neglected in the present study.

Under the above assumption, the Reynolds stress tensor can be expressed such as

τij = −ρu′iu
′
j = 2μtSij︸ ︷︷ ︸

(I)

− 2

3
δij (μtSll + ρk)︸ ︷︷ ︸

(II)

, (2.39)

where ρk = 1/2 ρu′lu
′
l is the subfiltered turbulent kinetic energy (TKE) (included since by

definition it trace τll = −2ρk), and μt = ρνt = ρKM is the turbulent eddy viscosity.

In Eq. (2.39), term (I) can be called the deviatoric part of the Reynolds stress tensor (Mason and

Thomson, 1987), and term (II) is the isotropic or volumetric part. Deviatoric stress distort fluid

particle while isotropic stress tend to change their volume acting as a pressure (Pope, 2000).

Substituting Eq. (2.39) in Eq. (2.12a), it can be seen that the isotropic part of τij can be sub-

tracted from τij and directly added to the pressure. The momentum conservation equation in

Cartesian coordinate and tensorial notation which writes

d̃ũi

dt
+ fεij3ũj +

1

ρ

∂p

∂xi

+ δi3g =
1

ρ

∂

∂xj

(
−ρu′iu

′
j

)
, (2.40)
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then becomes

d̃ũi

dt
+ fεij3ũj +

1

ρ

∂pred
∂xi

+ δi3g =
1

ρ

∂

∂xj

(2ρKMSij) , (2.41)

with

pred = p+
2

3
ρ (KMSll + k) . (2.42)

In that case, the problem can be directly solved for the reduce pressure pred and only the

non-diagonal terms of the Reynolds tensor (and part of the variances) need to be explicitly

computed (Deardorff, 1972; Mason and Thomson, 1987; Wilcox, 1994; Pope, 2000). It conve-

niently reduces the number of term to compute, leading to the same results.

In the context of a compressible flow however, the use of such a reduced pressure is less

convenient as density is constantly recomputed and the thermodynamic pressure is required. In

this sense, such a variable change is not useful when density is implicit, and the isotropic part

of the Reynolds tensor must be known and explicitly added to the pressure (Piomelli, 1999).

In the present model, viscous processes (molecular and turbulent) are neglected when solving

the Euler equation of motion Eq. (2.32). Turbulent diffusion is then included afterwards in a

fractional step manner (Benoit et al., 1997) based on Eq. (2.35). This is thus equivalent to solve

Eq. (2.33) considering only Ψ , L and R and add F afterwards.

However, as discussed above, the isotropic part of Reynolds tensor, i.e. −2/3 (ρKMSll + ρk),

act as and impact directly the pressure. Thus, it must be added explicitly to the pressure. As a

result, even if those terms are due to turbulence, they must to be removed from the Reynolds

tensor (i.e. from F ) and included in R during the Euler solving step in Eq. (2.33). Thus,

momentum turbulent diffusion terms that have to be included in the dynamic kernel write

[
dũi

dt

]dyn
turb

= − 2

3ρ

∂

∂xi

(ρKMSll + ρk) , (2.43)
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while the remaining diffusion terms are expressed as

[
dũi

dt

]phy
turb

=
1

ρ

∂

∂xj

(2ρKMSij) . (2.44)

Introducing Eqs. (2.43) and (2.44) in Eq. (2.33), F and R then become in Cartesian coordinate

and tensorial notation

R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

fṽ − b̃

g

∂P

∂x
− 1

ρ

∂

∂x

(
2

3
(ρKMSll + ρk)

)
−fũ− b̃

g

∂P

∂y
− 1

ρ

∂

∂y

(
2

3
(ρKMSll + ρk)

)
− b̃

g

∂P

∂z
− 1

ρ

∂

∂z

(
2

3
(ρKMSll + ρk)

)
−R

cv
b̃
∂ũi

∂xi

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, F =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

ρ

∂

∂xi

(2ρKMSi1)

1

ρ

∂

∂xi

(2ρKMSi2)

1

ρ

∂

∂xi

(2ρKMSi3)

gπ

ρT∗

∂

∂xi

(
−ρu′iθ′

)
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

In fact, in the present implementation of the 3D turbulent diffusion in MC2, the full subgrid

velocity variances are included in R (i.e. the full terms from the Reynolds tensor diagonal).

Thus, turbulent diffusion terms that are effectively included in the dynamic kernel write

[
dũi

dt

]dyn
turb

= δij
1

ρ

∂

∂xj

(
−ρu′iu

′
j

)
(2.45)

= δij
1

ρ

∂

∂xj

(
2ρKMSij −

2

3
ρ (KMSll + k)

)
, (2.46)

while the remaining diffusion terms are expressed as

[
dũi

dt

]phy
turb

= (1− δij)
1

ρ

∂

∂xj

(
−ρu′iu

′
j

)
(2.47)

= (1− δij)
1

ρ

∂

∂xj

(2ρKMSij) . (2.48)
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Finally, after including Eqs. (2.46) and (2.48) in Eq. (2.33), F and R write

R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

fṽ − b̃

g

∂P

∂x
+

1

ρ

∂

∂x

(
2ρKMS11 −

2

3
ρ (KMSll + k)

)
−fũ− b̃

g

∂P

∂y
+

1

ρ

∂

∂y

(
2ρKMS22 −

2

3
ρ (KMSll + k)

)
− b̃

g

∂P

∂z
+

1

ρ

∂

∂z

(
2ρKMS33 −

2

3
ρ (KMSll + k)

)
−R

cv
b̃
∂ũi

∂xi

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2.49)

F =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(1− δi1)
1

ρ

∂

∂xi

(2ρKMSi1)

(1− δi2)
1

ρ

∂

∂xi

(2ρKMSi2)

(1− δi3)
1

ρ

∂

∂xi

(2ρKMSi3)

gπ

ρT∗

∂

∂xi

(
−ρu′iθ′

)
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.50)

2.2.2 Heat turbulent diffusion

Heat transfers solely due to turbulent diffusion can be expressed as

[
dθ̃

dt

]
turb

=
1

ρ

∂

∂xi

(
−ρu′iθ′

)
. (2.51)

Following the same approach as for the momentum, turbulent heat flux vector, ρv′θ′, is as-

sumed proportional to the mean temperature gradient so that

ρu′iθ′ = − μt

Prt

∂θ̃

∂xi

, (2.52)
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where Prt is the turbulent Prandtl number being the ratio between the momentum and thermal

mixing coefficients. A turbulent temperature mixing coefficient can thus be defined such as

KT =
KM

Prt
, (2.53)

and heat transfer due to turbulent diffusion then become

[
dθ̃

dt

]phy
turb

=
1

ρ

∂

∂xi

(
ρKT

∂θ̃

∂xi

)
. (2.54)

Finally, introducing Eq. (2.54) in Eq. (2.33) only modify F , which can then be written as

F =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(1− δi1)
1

ρ

∂

∂xi

(2ρKMSi1)

(1− δi2)
1

ρ

∂

∂xi

(2ρKMSi2)

(1− δi3)
1

ρ

∂

∂xi

(2ρKMSi3)

gπ

ρT∗

∂

∂xi

(
ρKT

∂θ̃

∂xi

)

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.55)

2.2.3 Subgrid scale (SGS) models

Now that turbulent diffusion of momentum and heat have been described, the last quantities

that need to be defined to close the problem are the turbulent eddy viscosity μt and the turbulent

Prandtl number Prt, or in other words, the mixing coefficients of momentum KM and heat KT .

A simple yet representative model consists in defining the mixing coefficients as the product

of a length scale lt and a velocity scale ut both representative of the turbulence, i.e. νt = ltut.

This is also known as the mixing length approximation.

As seen in the literature review, those two quantities can take different forms. In the context

of LES, the turbulent characteristic length scale is generally proportional to the 3D grid size
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Δ, such as lt = CtΔ. For the Smagorinsky type SGS models, the velocity scale is computed

based on the product of the grid size by the modulus of the strain rate tensor, i.e. ut = ΔS

which leads to νt = CtΔ
2S (with usually Ct = C2

S). For SGS model including an equation for

the TKE, we have ut = k1/2 which gives νt = CtΔk1/2. Based on these simple considerations,

several SGS model were proposed that further take into account both the no-slip rough surface

and the thermal stratification to allow the reproduction of the full ABL with LES models.

In the present section, various aspects of five simple SGS models implemented in MC2 are

described. Each of these SGS models integrates the basic features required to reproduce a dry

ABL from the surface to the free atmosphere. A summary of the five SGS models is shown in

Tab. 2.1, and their comparison for a shear and buoyancy driven ABL is presented in Sec. 4.4.1.

2.2.3.1 UKMO Smagorinsky SGS model

The Smagorinsky-Lilly approach is a local first order closure. This is the oldest and simplest

SGS model (Lilly, 1962; Smagorinsky, 1963). A large amount of studies based on this SGS

model have been published and the limitation of this approach are well understood and accepted

by the community (Mason, 1994; Porté-Agel et al., 2000; Pope, 2000).

The UK Meteorological Office (UKMO) has developed and validated an improved version of

the Smagorinsky SGS model that integrates all the basic requirements to reproduce a complete

ABL flow (from the surface to the free atmosphere) (Mason and Thomson, 1987; Mason, 1989;

Mason and Thomson, 1992; Mason, 1994; Brown et al., 1994; Hobson et al., 1999; Mason

and Brown, 1999; Brown et al., 2000). It is thus able to deal with stable to unstable thermal

stratification (and humidity and phase changes but this is out of the scope of the present study).

Following Brown et al. (1994) and Mason and Brown (1999), the momentum and heat mixing

coefficients of the UKMO Smagorinsky SGS model are computed as follows

KM =λ2fmS, (2.56)

KT =λ2fhS, (2.57)
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where λ is the neutral value of a characteristic length scale, fm and fh are stability functions

that depend on the local gradient Richardson number Ri, and S is the modulus of the non-

isotropic part of the strain rate tensor Eq. (2.38) that can be written as

S2 =2

(
Sij −

1

3
δijSll

)2

≈ 2SijSij (2.58)

=
1

2

3∑
i,j=1

(
∂ũi

∂xj

+
∂ũj

∂xi

− 2

3
δij

∂ũk

∂xk

)2

(2.59)

In the literature, we usually have S2 = 2SijSij (Pope, 2000, Sec. 13.2.7). The divergence

term, i.e. the trace of Sij , which is zero in the incompressible context, is generally neglected.

It is however no null in the compressible context. Thus, it is taken into account in order

to explicitly remove the isotropic part of the tensor and strictly agrees with the definition of

Reynolds stresses, Eq. (2.39) (Cuxart et al., 2000; Pelletier et al., 2005; Drobinski et al., 2007).

Finally, in order to overcome the limitation related to the eddy viscosity approximation (that

only relies on resolved fields to compute subgrid quantities and dissipate TKE), a stochastic

backscatter model was also added to the classical UKMO Smagorinsky SGS model (Mason

and Thomson, 1992). The latter proved to enhance the results in the surface layer and sta-

bly stratified regions (Mason and Thomson, 1992; Brown et al., 1994; Andren et al., 1994).

The improvements are however negligible in convective conditions and in the mixed or Ek-

man layer (Mason and Brown, 1999; Brown et al., 2000). As a first developmental step, this

backscatter is not implemented in the present study and it shall be the topic of later studies.

2.2.3.1.1 Length scale

The characteristic length scale of the Smagorinsky SGS model is defined as the product of the

Smagorinsky constant CS and the characteristic grid size, i.e.

λ0 = CSΔ. (2.60)
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This reference flow interior length scale is referred to as the filter width by the UKMO research

group (Mason, 1994) (while other research groups consider Δ as the filter). This length scale

is further matched asymptotically with a surface layer characteristic length scale such as

1

λn
=

1

λn
0

+
1

(κ (z + z0))
n , (2.61)

where n is a surface matching parameter usually set to 2 (Mason and Thomson, 1992; Porté-

Agel et al., 2000).

Concerning the filter width Δ, following the UKMO approach, we have

Δ = max
(
(ΔxΔy)1/2 , (ΔxΔyΔz)1/3

)
, (2.62)

= max (ΔH ,Δ3d) , (2.63)

where ΔH = (ΔxΔy)1/2 is the horizontal resolution, and Δ3d = (ΔxΔyΔz)1/3 is the 3D

resolution. Δ is obtained locally and can thus evolve with height. Such a definition prevents

the SGS model from being spuriously impacted when an anisotropic grid is used. Stretched

grid in the vertical can thus be used while keeping λ unchanged.

2.2.3.1.2 Stability functions

The stability function used in the UKMO Smagorinsky SGS model, fm and fh, were obtained

from experimental measurements. The functions described in Brown et al. (1994) and Mason

and Brown (1999) are used here. They cover the whole range of stratification, i.e. from unsta-

ble (Mason, 1989; Mason and Brown, 1999) to stable stratification (Brown et al., 1994), and

are suitable for both neutral conditions and free convection limit. These functions are directly

dependent of a local Richardson number, Ri, that can be defined as follow

Ri =
N2

S2
, (2.64)
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where N2 is the squared Brunt-Väisälä frequency of a dry atmosphere

N2 =
g

θ̃

∂θ̃

∂z
. (2.65)

Concerning fm and fh, we have for unstable stratifications (Ri < 0)

fm =(1− 16Ri)1/2 , (2.66)

fh =
1

PrN
(1− 40Ri)1/2 , (2.67)

while in moderately stable conditions, i.e. Ri is subcritical (0 ≤ Ri < Ric with Ric = 0.25)

fm =

(
1− Ri

Ric

)4

, (2.68)

fh =
1

PrN

(
1− Ri

Ric

)4

(1− 1.2Ri) , (2.69)

otherwise if Ric ≤ Ri

fm =fh = 0. (2.70)

The turbulent Prandtl number for neutral conditions is set to PrN = 0.7. However, the effective

turbulent Prandtl number Prt (= KM/KT = fm/fh) is a function of Ri. As seen in Mason and

Brown (1999), this is believed to lead to better results in stably stratified regions in comparison

with a classical approach where Prt is constant.

Stability functions are illustrated in Fig. 2.1, where it can be seen that both fm and fh increase

notably when Ri become negative. The mixing is thus increased as the ABL become more

unstable. At the opposite, subgrid mixing quickly vanish when Ri increases above zero.
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2.2.3.1.3 Closure constant

A theoretical value of the Smagorinsky constant CS was first obtained by Lilly (1966) based

on the Kolmogorov spectra model for an isotropic homogeneous turbulence, giving

CS =
1

π

(
2

3CKol

)3/4

, (2.71)

where CKol is the Kolmogorov constant generally taken equal to 1.5− 1.6 in the ABL (exper-

imental measurements), thus giving CS = 0.173 − 0.165 which is the theoretical best suited

in shear-free well resolved regions of the flow where subgrid turbulence is isotropic. It is con-

sidered today as the traditional value (Porté-Agel et al., 2000; Lesieur et al., 2005). However,

as discussed in Sec. 1.3.2.2.1.1, the value of CS has to be reduced to enforce the local equi-

librium relation in regions where the mean velocity gradient is non-zero (Sagaut, 2006), which
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is achieved in the UKMO Smagorinsky SGS model though the matching of the mixing length

scale, Eq. (2.61). In this study, CS = 0.15 is used (Brown et al., 1994; Hobson et al., 1999).

Depending on the mesh properties, the filter width of the UKMO Smagorinsky SGS model

may only be a function of the horizontal resolution ΔH , i.e. Eq. (2.63). In such a case, we can

define an equivalent 3D Smagorinsky constant, which allows to properly compare various SGS

models regardless of the vertical grid properties, such as we have (far from the boundaries)

CS 3d =
ΔH

Δ3d

CS H , (2.72)

where CS H = CS . Hence, when considering the grids used in Moeng and Sullivan (1994) (on

which results presented in Chap. 4 are partly based), we have CS 3d = 0.216 for the UKMO

Smagorinsky SGS model.

2.2.3.2 Deardorff SGS model

The Deardorff (1980) SGS model is certainly the simplest TKE based SGS dedicated to the

full ABL as discussed in Sec. 1.3.2.2.1.2. Thanks to the inclusion of a prognostic equation for

the TKE (which is detailed in Sec. 2.2.4), production and dissipation of TKE are not anymore

assumed equal, and non-local flow features may be better taken into account.

As most of the simple TKE based turbulent closures, Deardorff SGS model rely on the Kol-

mogorov relation to compute the momentum and heat mixing coefficients, which gives

KM = Ckλk
1/2, (2.73)

KT =
KM

Prt
=

Ckλ

Prt
k1/2, (2.74)

where Ck is the TKE production closure constant and λ is a mixing length function of the mesh

resolution and the flow stratification.
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Finally, the dissipation rate of TKE is parameterized following the classical approach such as

ε =
Cε

λε

k3/2, (2.75)

where Cε is the TKE dissipation closure constant and λε the dissipation length scale that is

considered equal to the mixing length in Deardorff SGS model (Sullivan et al., 1994).

2.2.3.2.1 Length scales

The mixing length λ of Deardorff SGS model equals directly the grid size Δ in neutral and

unstable conditions such as

Δ = (ΔxΔyΔz)1/3 = Δ3d, (2.76)

while in stably stratified regions (Deardorff, 1980) it is reduced to

LN = 0.76
k1/2

N
, (2.77)

where N is the Brunt-Väisälä frequency as described previously. This mixing length for stable

stratification is similar to an inverse Richardson number, in that, it is the ratio of a velocity

scale representing shear over a buoyant production. The reduction of λ in stable regions allows

to reduce the SGS mixing in a similar manner as achieved with the stability function in the

UKMO Smagorinsky SGS model. Even when buoyancy driven ABL is reproduced, this feature

is necessary to model a complete ABL that includes a capping inversion (Sullivan et al., 1994).

The mixing length is sometimes further reduced though a clipping with κz (Sullivan et al.,

1994), advocating that it allows to mimic the natural reduction of the turbulent eddies when

getting close to the surface. However, Redelsperger et al. (2001) state that this van Driest-like

damping (van Driest, 1956) does not have clear theoretical justification for LES. In addition,

if this damping is applied to the present model, the length scale become too small close to
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the surface and ABL flow is decoupled from the surface: shear instabilities are not anymore

triggered. It is thus not used in the present study.

To summarize the length scales computation

λ =

⎧⎪⎨⎪⎩
Δ, unstable

min(Δ;LN), stable

,

λε = λ.

2.2.3.2.2 Turbulent Prandtl number

The turbulent Prandtl number used in Deardorff SGS model is a function of the stratification

similarly as in the UKMO Smagorinsky SGS model. It is defined such as

1

Prt
=

(
1 +

2λ

Δ

)
. (2.78)

Thus, in unstable and neutral conditions, λ = Δ, we have Prt = 1/3 while in very stable

conditions, λ  Δ, momentum and mixing coefficient are equal with Prt = 1.

2.2.3.2.3 Closure constants

Concerning the closure constants, they were first obtained theoretically by Lilly (1966). First,

by considering turbulence in an equilibrium state (i.e. production and dissipation of TKE are

equal which is a good approximation for a flow in equilibrium over an homogeneous surface

in neutral condition (Stull, 1988)), he showed based on the SGS TKE prognostic equation that

Ck = C1/3
ε C

4/3
S (2.79)
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then, using the Kolmogorov theory, he obtained

Cε = π

(
2

3CKol

)3/2

, (2.80)

Ck =
1

π

(
2

3CKol

)3/2

, (2.81)

and thus

Cε

Ck

= π2. (2.82)

These relations give (Ck; Cε) = (0.094; 0.93) with CKol = 1.5 and (Ck; Cε) = (0.086; 0.845)

with CKol = 1.6. Deardorff (1973) and Deardorff (1980) used (Ck; Cε) = (0.1; 0.7), but Mo-

eng and Wyngaard (1988) showed based on a spectra analysis that (Ck; Cε) = (0.1; 0.93)

were better suited. These latter values are almost equal to the above theoretical values for

CKol = 1.5. Other set of constants are also used depending on the model details such as

(Ck; Cε) = (0.0667; 0.7) in MesoNH LES model (Cuxart et al., 2000; Redelsperger et al.,

2001), (Ck; Cε) = (0.086; 0.845) in Schmidt and Schumann (1989) (which is also in agree-

ment with the above theoretical values for CKol = 1.6), and finally, (Ck; Cε) = (0.15; 0.93) in

WRF LES model (Klemp and Skamarock, 2004; Takemi and Rotunno, 2005).

In the current study, it was decided to use the commonly accepted set of constants: (Ck; Cε) =

(0.1; 0.93) (Andren et al., 1994; Sullivan et al., 1994; Redelsperger et al., 2001). Using

Eq. (2.79), an equivalent Smagorinsky constant of CSeqv = C
3/4
k C

−1/4
ε = 0.181 is obtained.

Finally, note that we always have CS 3d = CSeqv for the Deardorff SGS model. Thus, when

considering Moeng and Sullivan (1994) grids, we have CS H = 0.126.

2.2.3.3 Hybrid TKE SGS model

The hybrid TKE SGS model integrates features of the Smagorinsky and Deardorff SGS models

as well as from the classical column model from the RPN. In fact, the hybrid TKE SGS model

can be viewed as a generalization for LES of the classical column closure.
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Mixing coefficients and dissipation are defined as in Deardorff SGS model (i.e. based on the

Kolmogorov relation) but as in the UKMO Smagorinsky SGS model, they also includes stabil-

ity functions (that are the same as in the column model). We thus have

KM = C ′kλfmk
1/2, (2.83)

KT = C ′kλfhk
1/2, (2.84)

and the dissipation is parametrized similarly

ε =
C ′ε

λεfm
k3/2, (2.85)

where C ′k and C ′ε are closure constants similar to Ck and Cε while all others quantities retain

the same meaning as previously.

2.2.3.3.1 Length scales

As opposed to Deardorff SGS model, the mixing and dissipation length scales does not directly

equal the filter width but they are proportional to it through a Smagorinsky like constant. The

mixing length for neutral condition is thus defined as

λ = min [κ (z + z0) ;λ0] (2.86)

with its values in the flow interior λ0 that writes

λ0 = min [CSΔH ;λe] , (2.87)

where the Smagorinsky-type constant is set to CS = 0.15 in the present study, and an equi-

librium length scale for neutral thermal stratification, λe = 200 m, is used as in the column

model (Blackadar, 1962; Mailhot and Benoit, 1982). The latter intents to allow the hybrid TKE

model to properly perform seamlessly from the microscale to the mesoscale but has no impact
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on the results if CSΔ < λe. A clipping of the mixing length with κ(z + z0) is also carried out

as in the column model. This van-Driest-like damping allow to better reproduce near-surface

flow in LES (Sullivan et al., 1994).

Finally, the dissipation length scale is always set equal to the mixing length, i.e. λε = λ.

2.2.3.3.2 Stability functions

Stability functions are dependent of the local gradient Richardson number

Ri =

g

θ̃

∂θ̃

∂z(
∂ũ

∂z

)2

+

(
∂ṽ

∂z

)2 . (2.88)

They can be seen as an adaptation of the mixing length function of the thermal stratification.

For unstable stratification (Ri ≤ 0) (Delage and Girard, 1992), we have

f 2
m =

fh
PrN

= (1− 40Ri)1/3 , (2.89)

while for stable stratification (Ri > 0) (Delage, 1997)

fm =
fh
PrN

= (1 + 12Ri)−1 , (2.90)

where the turbulent Prandtl number in neutral conditions is defined as PrN = 0.85.

Fig. 2.2 shows the stability functions used in the hybrid TKE SGS model. It can be seen that

shape of both stability functions and the turbulent Prandtl number are similar to the UKMO

SGS model, Fig. 2.1. However, the increase of the mixing with Ri in unstable condition is no-

tably lower than with the standard UKMO stability functions (but similar to the “conventional”

UKMO stability function fmstd
and fhstd

). At the opposite, for Ri > 0, stability functions of

the hybrid TKE SGS model feature a notably higher value than UKMO stability functions.

No critical Richardson number is used and stability functions reach slowly 0. This latter be-
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haviour is thought to be well suited in the mesoscale configuration as it allows mixing even if

Ri > Ric (Delage, 1997). Indeed, mesoscale grids are too large for the flow to become fully

laminar within a mesh. At the opposite in LES, the use of a critical Ric is better suited as

meshes are much smaller and turbulence can effectively disappear locally due to a local stable

stratification (Delage, 1997; Brown et al., 1994).
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Figure 2.2 Momentum fm and heat fh stability

functions, and turbulent Prandtl number Prt as a

function of Ri for the column and hybrid TKE SGS

models (Delage and Girard, 1992; Delage, 1997)

However to mitigate these differences, the TKE equation also includes a buoyancy term that

further allows to enhance or inhibit turbulent mixing as a function of local thermal stratification,

as seen in Sec. 2.2.4. In fact, Deardorff SGS model only rely on this term (and the solver) to

take into account stratification at subgrid level when Ri < 0, while mixing length is also

reduced when Ri > 0. It will thus be interesting to compare the results from the hybrid TKE

SGS model with Deardorff and UKMO Smagorinsky SGS model..
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2.2.3.3.3 Closure constants

The hybrid TKE SGS model production and dissipation closure constants are the same as for

the column model. They are obtained by matching the column model with the surface layer

similarity (Mailhot and Benoit, 1982; Redelsperger et al., 2001), i.e. Sec. 2.3.3, such as

C ′k =
1

α1/2
, (2.91)

C ′ε = C ′3k =
1

α3/2
, (2.92)

with the constant α = k/u2
∗ at the surface. In the present model, following Wyngaard and Coté

(1974) measurements, α = 3.75 which gives (C ′k; C
′
ε) = (0.516; 0.138).

However, the Smagorinsky-type constant introduced to compute λ0 could be directly included

in the TKE equation closure constants leading to the following effective constants

Ck = C ′kCS, (2.93)

Cε =
C ′3k
CS

=
C ′ε
CS

, (2.94)

which gives (Ck; Cε) = (0.077; 0.916) for the present model (and which interestingly returns

perfectly CSeqv = 0.15 by using Eq. (2.79)). These values are similar but not identical to the

ones used in the classical Deardorff SGS model as discussed previously. By further multiplying

Eq. (2.93) by Eq. (2.94), it can be found that

C ′k = (CkCε)
1/4, (2.95)

C ′ε = (CkCε)
3/4, (2.96)

and thus

α =
1

(CkCε)1/2
, (2.97)
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As a result, to recover Deardorff SGS model closure constants, i.e. (Ck; Cε) = (0.1; 0.93), it

would be required to use α = 3.28 leading to (C ′k; C
′
ε) = (0.552; 0.168) and CS = 0.181.

Finally, note that we always have CS H = CSeqv for the hybrid TKE SGS model. Thus, when

considering Moeng and Sullivan (1994) grids, we have CS 3d = 0.216 far from the boundaries.

2.2.3.4 Redelsperger SGS model

Redelsperger SGS model is identical to Deardorff SGS model, thus

KM = Ckλk
1/2, (2.98)

KT =
KM

Prt
=

Ckλ

Prt
k1/2 with

1

Prt
=

(
1 +

2λ

Δ

)
, (2.99)

and

ε =
Cε

λε

k3/2. (2.100)

However, mixing and dissipation length scales become height dependent in the region close

to the surface. This matching was obtained by Redelsperger et al. (2001) thanks to a simple

velocity spectra model dedicated to the surface layer (and that differs from Kolmogorov model

spectra). The latter is based on a recent theory that describes the structure of the surface layer

and that was validated experimentally and numerically (Drobinski et al., 2004, 2007). This

allows the SGS model to be mathematically consistent in the flow interior as well as at the

surface. In other words, based on this approach production and dissipation closure constants of

the column model are recovered at the surface while the SGS model is identical to Deardorff

above the surface (Redelsperger et al., 2001).
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2.2.3.4.1 Length scales

In neutral conditions, mixing and dissipation length scales of Redelsperger et al. (2001) SGS

model can be expressed as

Lk = (1− γ)Akz + γΔ, (2.101)

Lε = (1− γ)Aεz + γΔ, (2.102)

where Δ = Δ3d, Ak and Aε are closure constants dependent on both the surface layer and

the flow interior closure constants, γ ∈ [0; 1] is a weighting function that depends on both

horizontal and vertical grid spacing and properties of the surface layer.

The above formula only considers neutral conditions. This approach can be generalized to a

stratified surface layer considering stability functions used at the surface boundary condition,

as presented in Redelsperger et al. (2001). However, as a first developmental step, the neural

solution is considered here regardless of the stratification of the surface layer.

In the current implementation of Redelsperger SGS model, stratification is thus taken into

account as in Deardorff SGS model, i.e. thanks to the buoyancy production term in the TKE

equation and with a reduction of the length scale to LN in stable condition. As a result, the

mixing and dissipation lengths for unstable stratification (Ri < 0) are defined as

λ = Lk, (2.103)

λε = Lε, (2.104)

while for stable stratification (Ri > 0), we have

λ = min(Lk;LN), (2.105)

λε = min(Lε;LN). (2.106)
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2.2.3.4.2 Closure constants

The constants Ak and Aε were obtained by matching Redelsperger et al. (2001) SGS model

with the similarity theory. They can be expressed as

Ak =
1

α1/2

κ

Ck

, (2.107)

Aε = α3/2κCε, (2.108)

with the constant α = k/u2
∗ at the surface. As a consequence, mixing and dissipation length

scales are not anymore always equal. When α = 3.75 (Wyngaard and Coté, 1974) and the set

of closure constants from Deardorff SGS model are used 3 , i.e. (Ck; Cε) = (0.1; 0.93) (Moeng

and Wyngaard, 1988), we obtain (Ak; Aε) = (2.7; 2.07). Thus, in the lower part of the ABL

and in comparison to Deardorff SGS model, length scales are height dependent and dissipation

of TKE become higher than production. Results based on Redelsperger SGS model may thus

be less resolved close to the surface in comparison to Deardorff SGS model. Far from the

boundaries, Redelsperger SGS model is identical to Deardorff, and thus CS 3d = CSeqv = 0.181

giving CS H = 0.126 when considering Moeng and Sullivan (1994) grids.

2.2.3.4.3 Weighting function

The weighting function of Redelsperger et al. (2001) is similar to the “isotropic factor” intro-

duced by Sullivan et al. (1994). However, while the latter can only be used for homogeneous

surface flows relying on periodic lateral boundary conditions, the Redelsperger definition can

be applied regardless of the surface properties and lateral boundary conditions. It is defined as

γ = 1− exp

(
−3

z1 − z

z1 − zc

)
, (2.109)

where z1 is the height of the first TKE level, and zc is the critical height at which γ ≈ 0.95

or, in other words, the height at which the model relies at 95 % on the flow interior closure.

3 As a side note, in order to have Ak = Aε, it is required that α = (CkCε)
−1/2. Thus, by using

(Ck; Cε) = (0.1; 0.93), it would be need to have α = 3.28 which is the same value as for the hybrid TKE

SGS model to have the same constants as the Deardorff SGS model in the flow interior.
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Redelsperger et al. (2001) defined the latter simply considering the smallest size of eddy that

can be resolved in the horizontal and in the vertical. Thus, assuming that close to the surface

the eddies characteristic height is κz (and the smallest eddy that can be represented is 2Δz

high) and that they have a deformation height/width of 1/3 (and the smallest eddy that can be

represented is 2ΔH wide), they proposed that

zc = max

(
2Δz

κ
;
2ΔH

3κ

)
. (2.110)

Interestingly, this height is of the same order as the height at which 50 % of the flow is resolved.

2.2.3.5 Kosović SGS model

The gradient diffusion assumption cannot take into account some important phenomena ob-

served in turbulence: the backscatter of TKE and the redistribution of SGS TKE among the

normal SGS stress components (Mason and Thomson, 1992; Kosović, 1997).

2.2.3.5.1 Non-linear SGS model

Based on these considerations and the non-linear constitutive theory (Wilcox, 1994), Kosović

(1997) introduced a SGS model allowing backscatter, but instead of relying on stochastic pro-

cesses, a non-linear SGS model is used. The backscatter of TKE is fully deterministic since

solely based on a non-linear combination of strain rate Sij and rotation rate Ωij tensors such as

τij = −2CkΔk
1/2

Sij − (CSΔ)2
[
C1

(
SikSkj −

1

3
δijSmnSnm

)
+C2

(
SikΩkj − ΩikSkj

)]
,

(2.111)

where Sij is defined as in Eq. (2.38), and

Ωij =
1

2

(
∂ũi

∂xj

− ∂ũj

∂xi

)
. (2.112)
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Concerning the closure constants, Ck is associate to the production of TKE and defined as

Ck = π1/3

(
2

3CKol

)1/2

C
4/3
S =

(
8π

27

)1/3

C
4/3
S , (2.113)

while CS is a Smagorinsky-type constant defined as directly dependent on the backscatter of

TKE (through another constant, Cb) such as

CS = π−1
(

2

3CKol

)3/4

(1 + Cb)
1/2 =

(
8 (1 + Cb)

27π2

)1/2

, (2.114)

finally, C1 and C2 are closure constants associated with the new non-linear terms and that write

C1 =
9601/2Cb

7 (1 + Cb)S(kc)
and C2 = C1, (2.115)

where S(kc) is the velocity derivative skewness function taken equal to 0.5 (Kosović, 1997).

C1, C2 and CS were determined by Kosović (1997) so that the model provides correct energy

transfer and capture the normal stress effects observed in homogeneous sheared flows. They

only depend on the backscatter constant, Cb, that needs to be defined. When the latter is

increased, CS also increases, which is consistent with the fact that the same total amount of

fluctuations needs to be dissipated. A value of Cb = 0.36 was found optimal by Kosović

(1997) based on experimental and DNS data, which leads to CS = 0.202, C1 = C2 = 2.343

and Ck = Cε = 0.116.

Finally, the dissipation rate of TKE is parameterized as in Deardorff (1980) SGS model giving

ε =
Cε

λε

k3/2. (2.116)

However, and as opposed to all the approaches based on Deardorff SGS model, the dissipation

and production closure constants are set equal

Cε = Ck, (2.117)
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and the definition of the dissipation length scale slightly differs.

2.2.3.5.2 Length scales

The mixing length is based on the filter width such as

Δ = (ΔxΔyΔz)1/3 = Δ3d. (2.118)

However, and as opposed to the others SGS models, the dissipation length scales does not

always equal to the mixing length scale and we have

λε =

⎧⎪⎪⎨⎪⎪⎩
Δ, unstable(

1

Δ2
+

1

L2
N

+
1

L2
S

)−1/2
, stable

, (2.119)

with

LN = 0.76
k1/2

N
, (2.120)

a length scale related to the stratification as proposed by Deardorff (1980), and

LS = 2.76
k1/2

S
, (2.121)

an additional length scale which includes magnitude of the resolved shear in order to also

take into account the shear production of TKE in stable regions for the computation of the

dissipation length scale (Kosović, 1997).

2.2.3.5.3 Heat flux

In Kosović SGS model, a simple gradient diffusion approach is used to parameterize heat flux

along with the classical definition of the heat mixing coefficient (with a constant turbulent

Prandtl number set to Prt = 1/3). This aspect of Kosović SGS model is thus identical to Dear-
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dorff (1980) SGS model. Indeed, Kosović and Curry (2000) considered that the enhancement

brought to momentum thanks to the non-linear SGS model are also profitable to heat processes

thanks to the advection as shown by Sullivan et al. (1994).

2.2.3.5.4 Linear Kosović SGS model

If the backscatter constant is zero, Cb = 0, no backscatter effects are taken into account, and

Kosović SGS stress model becomes similar the Deardorff (1980) SGS model

KM = Ckλk
1/2, KT =

KM

Prt
=

Ckλ

Prt
k1/2 and ε =

Cε

λε

k3/2, (2.122)

with closure constants and mixing length that slightly differ. In that case, we have CS = 0.173,

C1 = C2 = 0, Ck = Cε = 0.0943, Prt = 1/3, λ = Δ and λε computed as in Sec. 2.2.3.5.2.

For that model, Eq. (2.79) is not anymore true as CSeqv becomes a function of the dissipation

length scale (even in neutral conditions) such as

CSeqv =

(
C3

k

Cε

λε

Δ

)1/4

. (2.123)

However, considering that λε equals the filter width (as in unstable conditions), we obtain an

equivalent constant CSeqv = 0.3 which is rather high as underlined in the studies from Mason

and Brown (1999) and Brown et al. (2000), and may lead to much more smoothed results in

comparison to the other models. However, this SGS model normally includes a backscatter

component which may increase fluctuations.

Finally, note that we always have CS 3d = CSeqv for the linear Kosović SGS model. Thus, when

considering Moeng and Sullivan (1994) grids, we have CS H = 0.208.

2.2.3.6 Summary of SGS models

The five subgrid scales presented in this section are summarized in Tab. 2.1.



167

T
ab

le
2
.1

S
u
m

m
ar

y
o
f

th
e

k
ey

fe
at

u
re

s
o
f

th
e

fi
v
e

S
G

S
m

o
d
el

s
ev

al
u
at

ed

N
am

e
M

ix
in

g
an

d
d

is
si

p
at

io
n

C
lo

su
re

co
n

st
an

ts
C

S
e
q
v

F
il

te
r

w
id

th
an

d
le

n
g

th
sc

al
es

S
tr

at
ifi

ca
ti

o
n

U
K

M
O

S
m

ag
o

ri
n

sl
y

(M
as

o
n

an
d

B
ro

w
n

,
1

9
9

9
)

K
M

=
λ
2
f
m
S

K
T

=
λ
2
f
h
S

C
S
=

0
.1
5

P
r N

=
0
.7

R
i c

=
0
.2
5

0
.1
5

Δ
=

⎧ ⎨ ⎩(Δ
x
Δ
y
Δ
z
)1

/
3
,

Δ
z
>

Δ
H

(Δ
x
Δ
y
)1

/
2
,

o
th

er
w

is
e

λ
0
=

C
S
Δ

λ
=

( 1 λ
2 0

+
1

(κ
(z

+
z 0

))
2

) −
1
/
2

f
m

=

⎧ ⎪ ⎨ ⎪ ⎩(1
−

1
6
R
i)
1
/
2
,

R
i
<

0
( 1
−

R
i

R
i c

) 4 ,
0
≤

R
i
<

R
i c

f
h
=

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩
1

P
r N

(1
−

4
0
R
i)
1
/
2
,

R
i
<

0

1

P
r N

( 1
−

R
i

R
i c

) 4 (1
−

1
.2
R
i)
,

0
≤

R
i
<

R
i c

f
m

=
f
h
=

0
,

R
i c

<
R
i

D
ea

rd
o

rf
f

(D
ea

rd
o

rf
f,

1
9

8
0

)

K
M

=
C

k
λ
k
1
/
2

K
T

=
C

k
λ

P
r t

k
1
/
2

ε
=

C
ε

λ
ε
k
3
/
2

C
k
=

0
.1

C
ε
=

0
.9
3

1

P
r t

=
1
+

2
λ Δ

0
.1
8
1

Δ
=

(Δ
x
Δ
y
Δ
z
)1

/
3

L N
=

0
.7
6
k
1
/
2

N

λ
=

⎧ ⎨ ⎩Δ
,

u
n

st
ab

le

m
in

(Δ
,L

N
)
,

st
ab

le

λ
ε
=

λ

H
y

b
ri

d
T

K
E

(P
el

le
ti

er
et

al
.,

2
0

0
5

)

K
M

=
C

′ k
λ
f
m
k
1
/
2

K
T

=
C

′ k
λ
f
h
k
1
/
2

ε
=

C
′ ε

λ
ε
f
m

k
3
/
2

C
S
=

0
.1
5

C
′ k
=

0
.5
1
6

C
′ ε
=

0
.1
3
7

P
r N

=
0
.8
5

0
.1
5

Δ
=

Δ
H

=
(Δ

x
Δ
y
)1

/
2

λ
0
=

m
in

(C
S
Δ
,λ

e
)

λ
=

m
in

(κ
(z

+
z 0

),
λ
0
)

λ
ε
=

λ

⎧ ⎪ ⎨ ⎪ ⎩f
2 m

=
f
h

P
r N

=
(1
−

4
0
R
i)
1
/
3
,

u
n

st
ab

le

f
m

=
f
h

P
r N

=
(1

+
1
2
R
i)
−
1
,

st
ab

le

R
ed

el
sp

er
g

er

(R
ed

el
sp

er
g

er

et
al

.,
2

0
0

1
)

K
M

=
C

k
λ
k
1
/
2

K
T

=
C

k
λ

P
r t

k
1
/
2

ε
=

C
ε

λ
ε
k
3
/
2

C
k
=

0
.1

C
ε
=

0
.9
3

1

P
r t

=
1
+

2
λ Δ

A
k
=

2
.7

A
ε
=

2
.0
7

0
.1
8
1

Δ
=

(Δ
x
Δ
y
Δ
z
)1

/
3

L k
=

(1
−

γ
)A

k
z
+

γ
Δ

L ε
=

(1
−

γ
)A

ε
z
+

γ
Δ

γ
=

1
−

ex
p

( −3
z 1
−

z

z 1
−

z c

)

z c
=

m
a
x

( 2Δ
z

κ
;
2
Δ

H

3
κ

)

λ
=

⎧ ⎨ ⎩L k
,

u
n

st
ab

le

m
in

(L
k
,L

N
)
,

st
ab

le

λ
ε
=

⎧ ⎨ ⎩L ε
,

u
n

st
ab

le

m
in

(L
ε
,L

N
)
,

st
ab

le

L
in

ea
r

K
o

so
v

ić
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2.2.4 Turbulent Kinetic Energy (TKE) prognostic equation

The turbulent kinetic energy (TKE), ρk = 1/2 ρu′lu
′
l, is a quantity representative of the turbu-

lent mixing intensity and transport. Solving a TKE prognostic equation permits to take into

account non-local flow features while keeping the problem relatively simple. Indeed, as seen

during the literature review, it almost alleviates the needs to solve an equation for each compo-

nents of the Reynolds stress while retaining most of the important information on turbulence

intensity and it transport (Sumner et al., 2010). In the LES context, TKE prognostic equation

represents the subgrid scale TKE, i.e. the unresolved part of the TKE, which is only a small

part of the total TKE except in some location where the flow is less resolved such as close to

the surface. As a consequence, in the LES context and as opposed to RANS, the inclusion

of the TKE equation does not result in significant improvement notably for simple homoge-

neous cases (Mason, 1994; Andren et al., 1994). It is however profitable for more complex

cases (Chow and Street, 2009; Bechmann and Sørensen, 2010).

A simple approach to obtain the TKE equation is to multiply momentum conservation equa-

tions by the velocity perturbation, then filter this new equations based on Reynolds or Favre

averaging and finally sum the equations of three components such that an equation for the

evolution of ρu′ku
′
k is obtained.

When considering stratified ABL flows (where buoyancy play an important role by produc-

ing or destructing TKE), the shallow convection approximation (also known as the Boussinesq

buoyancy approximation) allows to greatly simplify the TKE prognostic equation while retain-

ing all its representativeness. This approximation is generally accepted (Stull, 1988; Nieuw-

stadt et al., 1992; Sullivan et al., 1994; Holton, 2004) and it allows to neglect local density

fluctuations except where they are multiplied by the gravity g. In practice, it is similar to

replace ρ by ρ and g by g(1 + θ′/θ) (Stull, 1988).

By applying shallow convection approximation to momentum conservation equation and, fur-

ther considering the averaged ABL to be in hydrostatic equilibrium (which is a generally ac-

cepted approximation for the microscale (Stull, 1988; Holton, 2004)), the subgrid TKE prog-
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nostic equation can be expressed as

ρ
∂k

∂t
+ ρũi

∂k

∂xi

=
g

θ̃
ρw′θ′ − ρu′iu

′
j

∂ũi

∂xj

− ∂

∂xi

(
u′ip′ + ρu′i

u′ku
′
k

2

)
− μ

∂u′i
∂xj

∂u′j
∂xi

, (2.124)

where all quantities retain the same meaning as previously.

The terms on the left hand side, i.e. the accumulation and the advection of subgrid TKE, can

be combined to obtain the material (Lagrangian) derivative of the TKE. The latter is computed

through the SISL time stepping approach by considering the TKE as a passive scalar.

The first term on the right is the buoyant production term (positive or negative). It directly

depends on the closure of the turbulent heat-flux and can be written

g

θ̃
ρw′θ′ = −ρKT

g

θ̃

∂θ̃

∂z
(2.125)

= −ρKTN
2. (2.126)

The second source term on the right is the shear production (positive) which is also directly

function of the closure

ρu′iu
′
j

∂ũi

∂xj

= ρ

(
KMSij −

2

3
δij (KMSll + k)

)
∂ũi

∂xj

. (2.127)

The Kolmogorov relation is generally used to compute the momentum and heat mixing coeffi-

cient (i.e. KM = Ckλk
1/2 and KT = KM/Prt) as seen in Sec. 2.2.3.

The third term is a transport term. It is the redistribution of TKE by pressure gradient and by

velocity fluctuations. It can be approximated with the mixing length assumption (Tennekes and

Lumley, 1972, Eq. (4.2.32)) such as

∂

∂xi

(
u′ip′ + ρu′i

u′ku
′
k

2

)
=

∂

∂xi

(
u′i (p′ + ρk′)

)
≈ − ∂

∂xi

(
ρKk

∂k

∂xi

)
, (2.128)
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with Kk being the turbulent diffusion coefficient for TKE directly dependent on the momentum

mixing, Kk = CtkeKM , where Ctke is a constant equal to 2.08.

Finally, the last terms is the viscous dissipation of TKE, also written ε. It is also parametrized

following Kolmogorov relation as seen in Sec. 2.2.3.

μ
∂u′i
∂xj

∂u′j
∂xi

= ρε = ρ
Cε

λε

k3/2. (2.129)

By replacing terms of Eq. (2.124) using Eqs. (2.125), (2.127), (2.128) and (2.129) and devel-

oping equations, one can obtain a TKE equation under a form which is very close to the one

presented by Mailhot and Benoit (1982, Eq. (3.19)), i.e.

∂k

∂t
+ ui

∂k

∂xi

= Ak +Bk1/2 − Ck3/2 +
1

ρ

∂

∂xi

(
ρKk

∂k

∂xi

)
, (2.130)

where A and B are source-sink of TKE, C is the dissipation, and the last terms of the right

hand side is the diffusion/redistribution of TKE, which is also referred to as D.

A =− 2

3

(
∂ũ

∂x
+

∂ṽ

∂y
+

∂w̃

∂z

)
= −2

3
∇ũ, (2.131)

B =Ckλ

{
− g

Prtθ̃

∂θ̃

∂z
+

(
∂ũ

∂y
+

∂ṽ

∂x

)2

+

(
∂ũ

∂z
+

∂w̃

∂x

)2

+

(
∂ṽ

∂z
+

∂w̃

∂y

)2

+
4

3

[
∂ũ

∂x

(
∂ũ

∂x
− ∂ṽ

∂y

)
+

∂ṽ

∂y

(
∂ṽ

∂y
− ∂w̃

∂z

)
+

∂w̃

∂z

(
∂w̃

∂z
− ∂ũ

∂x

)]}
,

(2.132)

C =
Cε

λε

. (2.133)

A and B are source-sink terms, C is the dissipation term, and the last term of the right hand side

is the diffusion/redistribution of TKE, which is also referred to as D. Interestingly, the only

new term in comparison to the 1D version presented in Sec. 2.2.5.3 (Mailhot and Benoit, 1982;

Benoit et al., 1989) is the velocity divergence (A). It is now present because of the inclusion

of the isotropic part of the Reynolds tensor in the shear production term. The same remark can
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be done for the Cuxart et al. (2000) approach. The other terms are the same but there are now

generalized in three dimensions in order to include the horizontal contributions.

2.2.5 Classical column model

The turbulent diffusion presented in Sec. 2.2.1 and 2.2.2 is fully three dimensional and only

the gradient-diffusion assumption was used to express turbulent heat and momentum fluxes. It

is thus very general and similar to what can be found in the CFD domain.

In order to go from the 3D formulation to a simpler 1D column model, additional assumptions

can be made that greatly simplify the problem.

• In locations where ground surface is homogeneous (ocean, plain), vertical mean gradi-

ents of all variables are significantly bigger than horizontal mean gradients except for

pressure. As a results, an assumption often invoked is the horizontal homogeneity of all

the variables ψ except pressure, i.e. ∂ψ/∂x = ∂/∂y = 0. This is often referred to as the

boundary layer approximation in the literature. In such a case, turbulent diffusion can

act in the vertical only, and we speak of 1D turbulent diffusion or column model.

• Considering that there is at least an order of magnitude between the mean vertical ve-

locity and its fluctuations, it comes that subsidence is negligible, having thus w̃ = 0,

∂w̃/∂xi = 0 and ∂w̃/∂t = 04.

As seen during the literature review, Sec. 1.2, turbulence closures from most of large scale

and mesoscale models are based on these assumptions. Indeed, the latter is well suited for

those approaches because of the coarse horizontal resolution used (that is at best of the order

of the ABL height) and the aspect ratio of the meshes close to the surface (that is of the order

of Δx/Δz ≈ 100) that does not allow turbulent motion to be resolved but only fully mod-

elled (Cuxart et al., 2000; Wyngaard, 2004). The column model can thus be associated to an

1D unsteady RANS model.

4 As a side note, horizontal homogeneity added to incompressibility hypothesis (i.e. considering the ABL in

hydrostatic equilibrium, thus with ρ changing with height) also imposes the absence of subsidence through

mass conservation. Thus, neglecting the subsidence and considering the horizontal homogeneity hypothesis

mechanically imposes incompressibility.
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Concerning MC2, a classical column model based on the TKE prognostic equation was first

introduced by Mailhot and Benoit (1982). It has then been implemented in the operational

regional forecast model from Environment Canada by Benoit et al. (1989). Along the years,

this model has been heavily validated and refined (Delage and Girard, 1992; Benoit et al., 1997;

Delage, 1997; Mailhot et al., 1998; Bélair et al., 1999; Benoit et al., 2002; Yu et al., 2006).

This one-and-a-half order RANS closure is somewhat similar to the hybrid TKE SGS model,

Sec. 2.2.3.3, but it relies on the boundary layer approximation (it is thus 1D) and the definition

of the mixing and dissipation length scales also differs. In this section, the classical column

model is summarized.

2.2.5.1 Vertical turbulent diffusion

From the two assumptions above, the Reynolds stress tensor can be reduced to

τij = τi3, (2.134)

where i can only be 1 or 2 since the subsidence is neglected, i.e. w̃ = 0. This implies that no

velocity variances, and thus, no isotropic terms of the Reynolds tensor are present in this 1D

turbulence closure. Introducing the momentum mixing coefficient as previously

ρu′iu
′
j = ρu′iw′ = −ρKM

∂ũi

∂z
, (2.135)

the column model momentum transfers solely due to turbulent mixing then becomes

[
dũi

dt

]phy
turb

=
1

ρ

∂

∂z

(
ρKM

∂ũi

∂z

)
, (2.136)

and

[
dũi

dt

]dyn
turb

= 0. (2.137)
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It is noteworthy that, while very simple, this closure leads to satisfactory results when applied

in the frame of its assumptions (André et al., 1978; Mailhot and Benoit, 1982). It is also still

heavily used in large scale and mesoscale models (Cuxart et al., 2006; Svensson and Holtslag,

2006; Bosveld et al., 2008).

Concerning turbulent heat diffusion, similarly as for the momentum, only vertical gradient are

considered when the boundary layer approximation is used. We thus have

ρu′iθ′ = ρw′θ′ = −ρKT
∂θ̃

∂z
with KT =

KM

Prt
. (2.138)

Thus, heat transfer due to the sole turbulent diffusion then becomes

[
dθ̃

dt

]phy
turb

=
1

ρ

∂

∂z

(
ρKT

∂θ̃

∂z

)
. (2.139)

Finally as a summary, when the 1D turbulent diffusion is included in Eq. (2.33), R is un-

changed with respect to Eq. (2.34) while F becomes

F =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

ρ

∂

∂z

(
ρKM

∂u

∂z

)
1

ρ

∂

∂z

(
ρKM

∂v

∂z

)
0

gπ

ρT∗

∂

∂z

(
ρKT

∂θ̃

∂z

)

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.140)

2.2.5.2 Column model closure

The closure of the column model is almost identical to the hybrid TKE SGS model, i.e.

Eq. (2.83) and Eq. (2.84) are used to compute mixing coefficients KM and KT and Eq. (2.85)

is used to compute dissipation rate of TKE, ε. Concerning thermal stratification, the same
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stability functions are also used in the column model as presented in Eqs. (2.88), (2.89) and

(2.90). Finally, the closure constants of the column model are also defined as in Eqs. (2.91)

and (2.92), leading to (C ′k; C
′
ε) = (0.516; 0.138) when α = 3.75 (Wyngaard and Coté, 1974).

In fact, the only difference between the hybrid TKE SGS model and the column model (beyond

the boundary layer approximation) resides in the computation of the mixing length where the

Smagorinsky-type constant is no longer present. Thus, in the column model, the mixing and

dissipation length scale in neutral conditions are directly defined as

λ = min [κ (z + z0) ;λe] , (2.141)

λε = λ, (2.142)

where λe is the asymptotic value of 200 m (Blackadar, 1962).

Note finally that, other variant for the computation of the length scales are implemented in the

column model such as the approach from Bougeault and Lacarrère (1989) or from Lenderink

and Holtslag (2004). The former allows to better reproduce a rapidly growing convective

ABL (Bélair et al., 1999; Cuxart et al., 2000) while the latter better account of the neutral to

unstable transition. This is however out of the scope of the present study.

2.2.5.3 TKE equation of column model

The TKE equation of the column model is obtained similarly as in Sec. 2.2.4, however it is

greatly simplified thanks to the boundary layer approximation. It can be written as

∂k

∂t
=

1

ρ

g

θ̃
ρw′θ′ − 1

ρ
ρu′iw

∂ũi

∂z
− ∂

∂z

(
u′i (p′ + ρk)

)
− ε, (2.143)

where i can only equal 1 or 2. Note that, the advection of TKE is usually neglected since

horizontal velocity gradient are neglected as well as vertical velocity.
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By replacing terms of Eq. (2.144) using Eqs. (2.135), (2.138), (2.83), (2.84), (2.128) and

(2.129), a TKE equation identical to Mailhot and Benoit (1982, Eq. (3.19)) is obtained

∂k

∂t
= Bk1/2 − Ck3/2 +

∂

∂z

(
Kk

∂k

∂z

)
, (2.144)

where

B =Ckλ

((
∂ũ

∂z

)2

+

(
∂ṽ

∂z

)2

− g

Prtθ̃

∂θ̃

∂z

)
, (2.145)

C =
Cε

λε

. (2.146)

2.3 Surface layer similarity

Surface layer represents the lowest 10 % of the ABL. As discussed all along the literature

review, because the ABL is a high Reynolds number flow and due to the intrinsic properties of

the earth surface, ABL flows can hardly be resolved up to the viscous sublayer. As a result, a

true no-slip surface boundary condition cannot be implemented and wall functions are needed

to provide the model with surface boundary conditions.

2.3.1 Integrated surface layer

The Monin-Obukhov similarity is a generally accepted theory that describes the averaged sur-

face layer profiles (Stull, 1988). Sometimes referred to as surface layer similarity, it relates

mean surface layer vertical gradients of main variables to surface fluxes through stability func-

tion dependent of z/LMO where the Monin-Obukhov length scale writes

LMO = − u3
∗θ

κgw′θ′|s
. (2.147)

For the large majority of flow models dedicated to the ABL, Monin-Obukhov similarity theory

is used for the surface boundary condition.
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Based on this generally accepted theory, vertical turbulent fluxes are considered almost con-

stant in the surface layer (Stull, 1988). However, while this leads to satisfactory results in

neutral and unstable conditions, it was found that a linear variation with height is a better ap-

proximation in stable conditions (notably in the context of a mesoscale modelling where the

first model level is relatively high in the surface layer) (Delage, 1997). Thus, similarity rela-

tionship implemented in MC2 are defined such as for z < zie we have

∂Ũ

∂z
=

(
1− z

zie

)
u∗
κz

φM , (2.148)

∂θ̃

∂z
=

(
1− z

zie

)
θ∗
κz

φH , (2.149)

where U = (u2 + v2)1/2 = Ũ + U ′ is the velocity magnitude, u∗ =
(
−w′U ′|s

)1/2
= (u′w′|2s +

v′w′|2s)1/4 is the surface layer fiction velocity, θ∗ = −w′θ′|s/u∗ is the surface layer temperature

scale, φM and φH are stability functions dependent of z/LMO and zie is a stability dependent

ABL height defined as (Delage, 1997; Mailhot et al., 1998)

zie =

⎧⎪⎪⎨⎪⎪⎩
∞, unstable(
LMO

u∗
|f |

)1/2

, stable

. (2.150)

As a result, (1 − z/zie) vanish in unstable conditions and the usual surface layer formula are

recovered, while slightly more advanced expressions are used in stable conditions.

As a side note, by combining the definitions of Ri Eq. (2.88), and LMO Eq. (2.147), with the

basic surface layer equations, Eqs. (2.148) and (2.149), the following relationship (which is

true in the surface layer for both stable and unstable conditions) can be obtained

z

LMO

=

(
1− z

zie

)
φ2
M

φH

Ri, (2.151)

It conveniently allows to go from z/LMO, which is z-dependent, to Ri, which is a z − less

variable. As a result, z/LMO dependent stability functions (used in the surface layer) can
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be converted to Ri dependent stability functions in order to match the Ri dependent stability

function used to scale the mixing coefficients in the ABL.

The velocity and temperature at given level zaM and zaH in the surface layer (which is tradi-

tionally called the anemometer level) can then be obtained by

Ua =
u∗
κ

∫ zaM+z0M

z0M

(
1− z

zie

)
φM

z
dz, (2.152)

θa − θs =
θ∗
κ

∫ zaH+z0H

z0H

(
1− z

zie

)
φH

z
dz, (2.153)

where z0M is the momentum aerodynamic roughness height (usually noted z0) and z0H is the

temperature aerodynamic roughness height (taken as z0H = min(z0M/5.; 0.2) in MC2). Then,

the above expressions can be expressed such as

Ua =
u∗
CM

⇒ −w′U ′|s = CMu∗Ua = (CMUa)
2, (2.154)

θa − θs =
θ∗
CH

⇒ −w′θ′|s = CHu∗(θa − θs) = CHCMUa(θa − θs), (2.155)

with the integrated momentum and heat transfer coefficients defined as

C−1M =
1

κ

∫ zaM+z0M

z0M

(
1− z

zie

)
φM

z
dz =

ΦM

κ
, (2.156)

C−1H =
1

κ

∫ zaH+z0H

z0H

(
1− z

zie

)
φH

z
dz =

ΦH

κ
. (2.157)

Furthermore, considering that the wind does not change direction in the surface layer, which

is a generally accepted assumption (Stull, 1988), Eq. (2.154) can be generalized to compute

components of surface momentum flux such as

−w′u′i|s = CMu∗ua i = C2
MUaua i, (2.158)

where ua i are the horizontal velocity components at zaM .
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Surface fluxes can thus be expressed using the simple generic form

−w′ψ′|s = βψψa + αψ, (2.159)

where αψ is called the inhomogeneous part and βψ the homogeneous part. For momentum,

βM = C2
MUa and αM = 0, while for heat βT = CHCMUa and αT = −βT θs = −CHCMUaθs.

Further assuming continuity of the vertical turbulent fluxes across zaM and zaH levels, we obtain

−w′u′i|s = KM
∂ũi

∂z
= βMua i, (2.160)

−w′θ′|s = KT
∂θ̃

∂z
= βT θa + αT . (2.161)

which can served as surface boundary condition for turbulent diffusion (Mailhot and Benoit,

1982; Mailhot et al., 1998). This approach is used here to provide turbulent diffusion of heat

and momentum with surface boundary values.

To close this section, note that the above approach is fully based on local values of velocity

and temperature. This is well suited in the mesoscale context (column model) since the flow

is fully modelled (not resolved) in the ABL. In the LES context however, while this approach

is commonly used (Stoll and Porté-Agel, 2006; Drobinski et al., 2007), it is not sufficient to

enforce the spatially averaged surface layer (i.e. wind and temperature at zaM and zaH ) to follow

Monin-Obukhov similarity (Stoll and Porté-Agel, 2006) (see also Sec. 1.3.2.1.1.2).

2.3.2 Flux-profile relationships

The stability functions, also known as flux-profile relationship, are defined as in Delage and

Girard (1992) for unstable surface layer, i.e.

φ2
M = φH =

(
1− 40

z

LMO

)−1/3
, (2.162)
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and as in Delage (1997) for stable conditions

φM = φH = 1 + 12
z

LMO

. (2.163)

These functions slightly differ from the ones usually used and widely spread from Businger

et al. (1971) and Dyer (1974). However, as discussed by Delage and Girard (1992), these

functions are suitable for the free convection limit and remain correct for calm wind situation

in unstable cases. In addition, they are also sufficiently simple to allow the inclusion of a linear

variation with height of the momentum and heat fluxes in the stable surface layer (Delage,

1997). They have been largely validated Delage and Girard (1992); Delage (1997); Cuxart

et al. (2006); Svensson and Holtslag (2006) and were proven to perform successfully.

Based on Eq. (2.151), the dependence on z/LMO can be conveniently transformed to a de-

pendence on Ri when Eqs. (2.162) and (2.162) are used. The obtained Ri dependent stability

functions are z − less which allow their use in the ABL flow interior. They thus serve as sta-

bility functions in the hybrid TKE SGS model and the column model closures, i.e. Eqs. (2.89)

and (2.90)5. This allows to consistently match the surface layer with the above (albeit in the

column model and the hybrid TKE SGS model).

Finally, they can be integrated from the surface to a given height in the surface layer (i.e. from

z0M and z0H to zaM and zaH ) to obtain an algebraic expression of momentum and heat transfer

coefficients ΦM and ΦH and thus CM and CH .

For an unstable surface layer, the integrated transfer coefficient of momentum ΦM writes

ΦM = ln

(
zaM + z0M

z0M

)
+
√
3 tan−1

(√
3(x2 − 1)x0 − (x2

0 − 1)x

(x2
0 − 1)(x2 − 1) + 3xx0

)

+ ln

(
(x0 + 1)2(x2

0 − x0 + 1)1/2(x2
0 + x0 + 1)3/2

(x+ 1)2(x2 − x+ 1)1/2(x2 + x+ 1)3/2

)
,

(2.164)

5 Note that for notation consideration (i.e. for mixing coefficient of the hybrid TKE SGS model to have the

same form as the ones of UKMO SGS model), we have in the present study fm(Ri) = φM (Ri)−1 while

traditionally fm(Ri) = φM (Ri) is used.
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with

x =

(
1− 40

zaM + z0M
LMO

)1/6

, x0 =

(
1− 40

z0M
LMO

)1/6

. (2.165)

and the integrated transfer coefficient of heat ΦH

ΦH = ln

(
zaH + z0H

z0H

)
+

3

2
ln

(
y20 + y0 + 1

y2 + y + 1

)
+

√
3 tan−1

(
2
√
3(y − y0)

(2y0 + 1)(2y + 1) + 3

)
,

(2.166)

with

y =

(
1− 40

zaH + z0H
LMO

)1/3

, y0 =

(
1− 40

z0H
LMO

)1/3

. (2.167)

For a stable surface layer, heat and momentum transfer coefficients can be expressed as

ΦM = ln

(
zaM + z0M

z0M

)
+ ψ(zaM + z0M )− ψ(z0M ), (2.168)

ΦH = ln

(
zaH + z0H

z0H

)
+ ψ(zaH + z0H ) − ψ(z0H ), (2.169)

with

ψ =
1

2

[
a− z

zie
− ln

(
1 +

bz

2
+ a

)
− b

2c1/2
sin−1

(
b− 2cz

d

)]
, (2.170)

where

a = (1 + bz − cz2)1/2, b = d− 2

zie
, c =

d

zie
− 1

z2ie
, d =

48

LMO

. (2.171)

2.3.3 TKE surface boundary conditions

From the above expressions, surface momentum and heat fluxes can be readily computed using

Eqs. (2.154) and (2.155), and further assuming the continuity of the vertical turbulent fluxes
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across the surface layer, we have

w′U ′|s = −KM
∂Ũ

∂z
= −u2

∗. (2.172)

In addition, considering mixing coefficients definition of a generic TKE based models, i.e.

Eq. (2.83), it is obtained that in the surface layer

C ′kλk
1/2∂Ũ

∂z
= u2

∗. (2.173)

Then, using Eq. (2.148) to replace the vertical velocity gradient, and further assuming λ = κz

(from the mixing length scale definition Eq. (2.86)), it can be obtained that

k = αu2
∗, (2.174)

with

C ′k =
1

α1/2
, (2.175)

which, in addition to provide a surface boundary condition for the TKE, allows to obtain a

flow interior TKE production closure constant (of the column model and the hybrid TKE SGS

model) consistent with surface layer properties.

By further assuming that turbulence is in equilibrium in the surface layer, which implies that

production and dissipation of TKE are equal, and considering that λ = λε (as in Deardorff and

Hybrid TKE SGS models and the column model), and that as previously, λ = κz in the surface

layer, we obtain

C ′ε = C ′kk
−1
(
κz

∂Ũ

∂z

)2

, (2.176)
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which then becomes using Eqs. (2.148), (2.174) and (2.175)

C ′ε =
1

α3/2
. (2.177)

Thus, both production and dissipation closure constants of a generic TKE based model are

recovered by matching the flow interior closure with the surface.

2.4 Large scale forcing and periodicity

An interesting ability for LES of the ABL is the use of periodic lateral boundary conditions. It

allows to easily reproduce theoretical cases without the requirement of an advanced prescrip-

tion of the initial and boundary conditions, as discussed in the literature review, Sec. 1.3.2.1.

However, when the flow is driven by a geostrophic wind, a large scale pressure gradient have

to be present while such an approach implies that all main variables are periodical (which is

not be the case for the full pressure). In this section, an approach is presented that allows large

scale geostrophic forcing in presence of periodical lateral boundary conditions. The theoretical

development of this approach was first introduced in by Girard in Pelletier et al. (2005) but

it was implemented in the model during this study. Thermodynamic variable p and T can be

decomposed into a large scale stationary ψls, and small scales transient ψ′′′ variables, such as

q =qls + q′′′, (2.178)

T =Tls + T ′′′, (2.179)

where qls = ln(pls/p0) with pls = ρlsRTls and Tls are the large scale thermodynamic reference

state that satisfies both the geostrophic balance and hydrostatic equilibrium i.e.

fk × vg +RTls∇qls + g = 0. (2.180)

By further differentiating Eq. (2.180) with respect to z one can get a general exact form of

the so-called thermal wind relationship (which basically link a vertical gradient of geostrophic
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wind with an horizontal temperature gradient)

(
∂

∂z
− N2

ls

g

)
cg +∇H ln θls = 0 (2.181)

where

cg =
f

g
k × vg, N2

ls = g
∂ ln θls
∂z

and θls = Tls

(
pls
p0

)−R/cp

. (2.182)

Then, introducing this decomposition in Eq. (2.13) to separate thermodynamic variables into

large and small scales, horizontal gradients of the large scale variables can be eliminated thanks

to Eqs. (2.180) and (2.181) (considering the large scale variable as stationary). The following

system of equations can be obtained

dvH

dt
+RT∇Hq

′′′ = fH − fk × (vH − vg) + g
T ′′′

Tls

cg, (2.183a)

dw

dt
+RT

∂q′′′

∂z
− g

T ′′′

Tls

= fw, (2.183b)

dT ′′′

dt
− RTls

cp

dq′′′

dt
+

Tls

g
N2

lsw =
Q

cp
− RT ′′′

cv
∇ · v

+
Tls

g
fvH · k × ∂vg

∂z
− Tls

g
vH · cgN2

ls,

(2.183c)

cv
cp

dq′′′

dt
+∇ · v − g

c2ls
w = vH · cg

g

c2ls
. (2.183d)

Finally, in order to allow this system to comply with periodicity of lateral boundary conditions,

the following assumptions need to be done:

• Cartesian coordinates system (flat topography, no variable map scale factor);

• vg, Tls and qls depend only on z, and vg (z) has the same direction at all heights;

• Coriolis factor f is constant.

Furthermore, considering the order of magnitude of terms in Eq. (2.183), it comes that cg term

in the horizontal momentum equation, as well as terms containing vH · cg can be neglected.
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The above assumptions lead to the simplified system

dvH

dt
+RT∇Hq

′′′ = fH − fk × (vH − vg) , (2.184a)

dw

dt
+RT

∂q′′′

∂z
− g

T ′′′

Tls

= fw, (2.184b)

dT ′′′

dt
− RTls

cp

dq′′′

dt
+

Tls

g
N2

lsw =
Q

cp
− RT ′′′

cv
∇ · v +

Tls

g
fvH · k × ∂vg

∂z
, (2.184c)

cv
cp

dq′′′

dt
+∇ · v − g

c2ls
w = 0. (2.184d)

Interestingly, besides the new terms in the right-hand side of Eqs. (2.184a) and (2.184c), this

system exhibits the same form as Thomas et al. (1998, Eqs. (8) and (9)) and as Eq. (2.28)

(without Favre averaging and neglecting heat source term in mass conservation equation).

However, the meaning of the thermodynamic variables in Eq. (2.184) differs from Eq. (2.28).

As a result, the problem of transforming Eq. (2.184) into the model equations remains. To that

end, T∗ and q∗, i.e. the isothermal and hydrostatic reference basic state defined by Eq. (2.23),

are introduced such as

q = q′′′ + qls = q′′ + q∗ ⇒ q′′′ = q′′ + q∗ − qls(z),

T = T ′′′ + Tls(z) = T ′′ + T∗ ⇒ T ′′′ = T ′′ − als(z)T∗ with als(z) =
Tls − T∗

T∗
.

As a result

dq′′′

dt
=

dq′′

dt
− w

gals
RTls

,
∂q′′′

∂z
=

∂q′′

∂z
− gals

RTls

,

dT ′′′

dt
=

dT ′′

dt
− w

∂Tls

∂z
, RT

∂q′′′

∂z
− g

T ′′′

Tls

= RT
∂q′′

∂z
− g

T ′′

T∗

and

∇Hq
′′′ = ∇Hq

′′.
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Introducing the above relations in Eq. (2.184) to remove qls, Tls, q
′′′ and T ′′′ from the left hand

side, and then considering the terms including als as negligible, i.e. (Tls−T∗)  T∗, we obtain

a system of equations identical to the model equations Eq. (2.28) that depends only on the

usual variable but with two additional terms on the right-hand side of horizontal momentum

and internal energy equations, i.e.

dvH

dt
+RT∇Hq

′′ = fH − fk × (vH − vg) , (2.185a)

dw

dt
+RT

∂q′′

∂z
− g

T ′′

T∗
= fw, (2.185b)

dT ′′

dt
− RT∗

cp

dq′′

dt
+

T∗
g
N2
∗w =

Q

cp
− RT ′′

cv
∇ · v +

T∗
g
fvH · k × ∂vg

∂z
, (2.185c)

cv
cp

dq′′

dt
+∇ · v − g

c2∗
w = 0. (2.185d)

Further introducing the buoyancy b and the generalized pressure P , the system becomes iden-

tical to the model equations Eq. (2.32) with the two new terms on the right-hand side

dv

dt
+∇P − bk = f − fk × (v − vg)−

b

g
∇P , (2.186a)

d

dt

(
b − N2

∗
g
P

)
+N2

∗w =
N2
∗
g
Q− R

cv
b∇ · v + fvH · k × ∂vg

∂z
, (2.186b)

1

c2∗

dP

dt
+∇ · v − g

c2∗
w = 0. (2.186c)

The additional terms in Eqs. (2.185) and (2.186) allow to take into account the large scale

thermodynamic reference state while keeping thermodynamic variables fully periodic. They

alleviate the need for

−fk × vg ⇒ large scale pressure gradient. (2.187)

fvH · k × ∂vg

∂z
⇒ large scale temperature advection (barotropic cases only). (2.188)
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Finally, when the system Eq. (2.186) is written in a similar matrix form as Eq. (2.33), only R is

changed with respect to Eq. (2.34), such as it full form can be written (with turbulence terms)

R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f (ṽ − vg)−
b̃

g

∂P

∂x
+

1

ρ

∂

∂x

(
2ρKMS11 −

2

3
ρ (KMSll + k)

)
−f (ũ− ug)−

b̃

g

∂P

∂y
+

1

ρ

∂

∂y

(
2ρKMS22 −

2

3
ρ (KMSll + k)

)
− b̃

g

∂P

∂z
+

1

ρ

∂

∂z

(
2ρKMS33 −

2

3
ρ (KMSll + k)

)
−R

cv
b̃
∂ũi

∂xi

+ f

(
−ũ

∂vg
∂z

+ ṽ
∂ug

∂z

)
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.189)

2.5 Initial hydrostatic and geostrophic basic state

Usually, when dealing with mesoscale limited area models, initialization of the computation is

done based on a larger scale gridded data solution (i.e. such as from the results of the general

circulation model) in a nested manner. Three dimensional initial fields and lateral and top

boundary conditions are thus obtained though the interpolation of a coarser result. In the

context of the use and validation of a LES-capable mesoscale model, it is of particular interest

to be able to manually provide an initial value for all the model main variables, i.e. v, b and P

in the case of MC2, based on a simplified atmospheric state. It allows to reproduce theoretical

cases taking advantage of the periodicity of the lateral boundary conditions.

To provide such a basic initial atmospheric state, challenges differ for wind velocity com-

ponents and thermodynamic variables. Indeed, in the context of theoretical cases based on

periodical lateral boundary conditions where a permanent or quasi-steady states are reached,

initialization of velocity does not generally requires much care since initial fields do not im-

pact the final result but just the time to reach the permanent state (and thus only increases

the total computational cost). The velocity fields develop by themselves in response to the

imposed large scale forcing (large scale pressure and temperature gradients), and turbulence,
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once triggered, will develop to define the ABL. A common practice is thus to initialize wind

components with geostrophic wind and to add small random perturbation to ignite turbulent

instabilities (Moeng and Sullivan, 1994; Porté-Agel et al., 2000).

At the opposite, thermodynamic variables require that realistic coherent fields proper to the

treated case are provided for their three dimensional initial fields and lateral and top boundary

conditions. They need to take into account the reference thermal stratification through the

vertical profile of pressure and temperature as well as the large scale horizontal gradient of

those variables. In the context of theoretical cases where a permanent or quasi-steady state is

reached, the atmosphere is generally initialized thermodynamically at rest. Thus, for barotropic

(vg = const.) cases, it simply implies that both the geostrophic balance and the hydrostatic

equilibrium have to be satisfied, while for more evolved baroclinic cases, the thermal wind

relation can further be used (Holton, 2004).

In the present study, three dimensional initial fields of thermodynamic variables are obtained

following a sounding like initialization approach: in a first step, from the hydrostatic equilib-

rium and considering a given description of the thermal stratification of the atmosphere, one

vertical profile of both temperature and pressure are computed, and in a second step, based on

the geostrophic balance, the three dimensional domain is populated starting from that profile.

The initial fields thus satisfy the hydrostatic and geostrophic basic states such as

fk × vg +RT∇q + g = 0, (2.190)

or if the vertical component is separated from the horizontal components

1

ρ
∇Hp = −fk × vg, (2.191)

∇zq =
∂q

∂z
= − g

RT
. (2.192)
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When the large scale forcing described in Sec. 2.4 are used, the second step of this approach is

not needed since the large scale pressure gradient caused by the geostrophic wind is implicitly

taken into account through new source terms added to momentum equations.

This sounding like initialization approach requires as input a description of thermal stratifica-

tion of the atmosphere. A key and easy to interpret variable is the potential temperature: the

sign of ∂θ/∂z directly characterizes the stability regime. As a result, it was chosen as a starting

point to obtain the profile of thermodynamic variables. Note that a profile of the Brunt-Väisälä

frequency or of the absolute temperature could also be used.

From the θ definition Eq. (2.2) and the hydrostatic equilibrium Eq. (2.192), one can obtain

(
p

p0

)R/cp ∂

∂z

(
ln

p

p0

)
= − g

Rθ
, (2.193)

which is in the form of the derivative of the composition of two function, i.e. [fn+1]
′
=

(n+ 1) f ′fn. It is thus equivalent to

∂

∂z

((
p

p0

)R/cp
)

=
∂π

∂z
= − g

cpθ
, (2.194)

which is the hydrostatic equilibrium definition written in terms of the potential temperature

and Exner function Eq. (2.3). At this point, integrating Eq. (2.194) from zk to z gives a general

relation which only depend on the vertical profile of θ, i.e.

[π]zzk = −
∫ z

zk

g

cpθ(z′)
dz′. (2.195)

To go further, the vertical profile of θ can be approximated as linear with height such as

∀ z′ ∈ [zk; zk+1] , θ(z′) = az′ + b with

⎧⎪⎨⎪⎩
a =

θ(zk+1)− θ(zk)

zk+1 − zk

b = θ(zk)− azk

, (2.196)

where in neutral conditions we have θ(z′) = b.
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The right hand side of Eq. (2.195) can then be integrated to give

[π]zzk =

⎧⎪⎪⎨⎪⎪⎩
− g

cpb
(z − zk) , if

∂θ

∂z
= 0

− g

cpa
ln

(
az + b

azk + b

)
, otherwize

. (2.197)

From Eqs. (2.3) and (2.30), the Exner function can be written in terms of generalized pressure

π = exp

(
P − gz

cpT∗

)
. (2.198)

As a consequence, the generalized pressure can then be written as

P =

⎧⎪⎪⎨⎪⎪⎩
cpT∗ ln

[
πk −

g

cpb
(z − zk)

]
+ gz, if

∂θ

∂z
= 0

cpT∗ ln
[
πk −

g

cpa
ln

(
az + b

azk + b

)]
+ gz, otherwise

, (2.199)

where πk is the Exner function value at zk.

Now, concerning the temperature, based on the definition of potential temperature Eq. (2.2),

and Eqs. (2.196) and (2.197), it is possible to obtain

T =

⎧⎪⎪⎨⎪⎪⎩
b

[
πk −

g

cpb
(z − zk)

]
, if

∂θ

∂z
= 0

(az + b)

[
πk −

g

cpa
ln

(
az + b

azk + b

)]
, otherwise

. (2.200)

Finally, from Eq. (2.29), buoyancy corresponding to the input θ profile writes

b =

⎧⎪⎪⎨⎪⎪⎩
g

{
b

T∗

[
πk −

g

cpb
(z − zk)

]
− 1

}
, if

∂θ

∂z
= 0

g

{
az + b

T∗

[
πk −

g

cpa
ln

(
az + b

azk + b

)]
− 1

}
, otherwise

. (2.201)

Note however that this formula is not used since it may introduce some discrepancies caused

by numerical error (i.e. as b is not directly linked to P but found analytically). Instead, based

on the hydrostatic equilibrium Eq. (2.192) and the definition of the buoyancy Eq. (2.29), it is



190

also possible to obtain the following expression linking generalize pressure and buoyancy

b =
g
∂P

∂z

g − ∂P

∂z

. (2.202)

On the one hand, the latter is more convenient since no hypothesis are needed concerning

the profile of θ. It is thus more widely applicable. On the other hand, the discrete form of

Eq. (2.202) is also more consistent with the solver internals and discretization. As a result,

Eq. (2.202) is preferred to Eq. (2.201) to obtain the initial profile of b.

Finally, it is to underline that by approximating the full profile of potential temperature by n

linear segment and starting the integration from the surface where the reference pressure is

considered to be known (and thus the Exner function), a profile of the generalized pressure

P and the buoyancy b consistent with the input potential temperature profile can be obtained.

And although this procedure is a first approximation when dealing with real profile of potential

temperature, it is well suited for theoretical profiles.

2.6 Summary of the mathematical model

In this chapter, the mathematical model of both the dynamic kernel and the physics of MC2

have been presented focusing on the relevant aspects of the method and new components imple-

mented to allow MC2 to operate as a LES model of the full dry ABL over a flat surface. Indeed,

the full mathematical model of MC2 is much more complex as geographical projection, topog-

raphy, humidity, phase changes, etc. are fully included (Bergeron et al., 1994; Benoit et al.,

1997; Mailhot et al., 1998; Girard et al., 2005).

In a first section, the Euler equations of motion have been expressed in the form solved by the

model. However, as opposed to all previous presentation (Benoit et al., 1997; Thomas et al.,

1998; Girard et al., 2005), turbulent forcing are explicitly included in the development relying

on Favre filtering (making the turbulent model fully compliant with the compressible solver).
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The full mathematical model of turbulent processes was then described. Starting with turbu-

lent diffusion of momentum and heat, it was underlined that in the context of 3D turbulence

diffusion, due to the compressible solver where density is implicit, volumetric terms of the

Reynolds tensor need to be explicitly modelled and included in the dynamic kernel as they act

and impact directly on the pressure. Thus, only the deviatoric terms of the Reynolds tensor

are processed as usual (which departs from the traditional procedure followed at the RPN that

includes all modelled processes in the physics, see Sec. 3). The other aspects of the turbulent

closure were also described such as the newly implemented SGS models, the modelling of the

3D subgrid TKE transport as well as the column model.

Finally, the mathematical justification of other required features for LES of the full ABL were

introduced, i.e. the surface layer similarity theory, the large scale geostrophic forcing in pres-

ence of lateral periodicity, and the initial hydrostatic and geostrophic equilibrium derived from

geostrophic wind and potential temperature profiles.





CHAPTER 3

NUMERICAL METHOD

The mathematical model of the LES-capable MC2 was presented in Chap. 2. The prognos-

tic equations of MC2, Eq. (2.33), can be generalized to include terms used in the numerical

treatment (Bergeron et al., 1994), such as their general matrix form writes

dΨ

dt
+L = R+E + F +H + T (3.1)

where all the terms are a function of the main variables of the model Ψ (i.e. v, b and P ),

and dΨ/dt represents the material derivative of Ψ , L is the linear part of the gravity and

elastic waves, R includes the remaining Euler equation terms such as the non-linear terms,

F contains the external forcing, i.e. the physical parametrization terms such as the turbulent

diffusion, H contains the added horizontal numerical diffusion of Ψ , E represents the nesting

used to blend the model variables with the driving data near the lateral boundaries, and T is

the Robert/Asselin time filter required for the SISL time scheme to be stable.

Under this form and based on finite differences, Eq. (3.1) is solved for Ψ by first considering

only dΨ/dt, L and R (that represent the fully compressible Euler equations of motion without

external forcing). This forms the so-called dynamic kernel. At the end of this first step, Ψ+
D is

obtained. The latter is then corrected by adding successively the other terms (in the following

order: E, F and H , such as Ψ+
DE , Ψ+

DEF , and finally Ψ+
DEFH are respectively obtained). This

approach, which is illustrated in Fig. 3.1, is known as “successive corrections method”. It is

followed in MC2 to solve the full prognostic equations including the additional forcing.

Depending on the configurations of the model, i.e. real or theoretical cases, mesoscale or LES

configuration, ... , some of the terms of Eq. (3.1) may vanish. As an example, gravity wave

theoretical cases, such as presented in Pinty et al. (1995), only involve the dynamic kernel, the

nesting and the time filter. In the present study, all computations are based on periodical lateral

boundary conditions and feature an homogeneous surface. Thus, no data need to be provided at
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Initialisation
(Sec. 3.4)

Ψ−, Ψ0, Ψ+

?
Save

(Sec. 3.5)

?Exit

Ψ0 → Ψ−

Ψ+ → Ψ0

Dynamic kernel(Sec. 3.2) & nesting

Ψ−, Ψ0, Ψ+
DE

Physics(Sec. 3.2 and 3.3) & horizontal diffusion

Ψ−, Ψ0, Ψ+
DEFH

Time filter

Ψ−, Ψ0
T , Ψ+

DEFH

Ψ0
T → Ψ0

Ψ+
DEFH → Ψ+

Figure 3.1 Diagram of MC2 time loop

(adapted from Bergeron et al. (1994)).

Sections associated to each step are

indicated in parenthesis

the lateral boundary to drive the flow, i.e. no nesting is done and thus E disappears. Similarly

in the context of the use of MC2 with a fully three dimensional turbulent diffusion (for either

RANS or LES), no additional explicit numerical horizontal diffusion is required. Thus, H

also vanishes. As a side note, this terms is also unnecessary when the model is used as a pure

column model since all fields are perfectly homogeneous in the horizontal at all heights1.

1 Note that, in the present study, a so-called 3D sponge layer located in the upper part of the computational

domain is used to smooth the fields of the main variables (see Sec. 3.2.3). The latter is imposed through H .
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Last but not least, concerning the implementation, MC2 (and more generally mesoscale models

from EC) have been traditionally divided into two main components:

• the so-called “dynamics” taking care of simulated processes (Euler solver also referred

to as the dynamic kernel) and terms related to the numerical treatment (E, H and T );

• the so-called “physics” (common to all model from EC and also referred to as the physics

library) where all modelled processes, such as turbulent diffusion, are included.

These two components feature different spatial and time discretizations, and they rely on their

proper boundary conditions. This has great implications on the implementation of the 3D

turbulence modelling in MC2 (and in others mesoscale models from EC).

As a result of the above, in this chapter, after introducing the specificities of 3D turbulence

modelling within the mesoscale models from EC in Sec. 3.1, the numerical method involved in

the dynamics and then in the physics are described in Sec. 3.2 and Sec. 3.3 respectively. Both

of these sections describe the time and space discretization as well as the boundary conditions

proper to the various components along with other specific aspects. A special attention is given

to the features implemented or modified in this study. Then, Sec. 3.4 is dedicated to numerical

techniques used to provide the model with initial fields. Finally, Sec. 3.5 introduces various

numerical aspects of the post-processing with regards to LES.

3.1 Turbulence modelling in EC mesoscale models

Turbulence is include to the solution through F in a fractional step manner following a succes-

sive correction approach. However, as illustrated in Sec. 2.2.1, turbulent diffusion terms related

to the volumetric part of Reynolds tensor (present only when 3D turbulent processes are con-

sidered) i.e. the isotropic component, have to be included in the dynamic kernel as they act as

a pressure (Piomelli, 1999). Then, after Ψ+
DE from Fig. 3.1 is known, external and physical

forcing F , in which turbulent diffusion terms related to the deviatoric part of Reynolds tensor

are included, are computed and added to Ψ+
DE in order to obtain Ψ+

DEFH .
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?
Standalone model Standard model

SISL - Volumetric terms
(Sec. 3.2.5.1)

Ψ0, k0, K∗−
ψ → R0

turb

Surface
(Sec. 3.3.7)

Ψ− → β−
ψ , α−

ψ

Strain rate
((Sec. 3.2.5.4)

Ψ− → S−

Closure
(Sec. 3.2.5.5)

Ψ− → K∗
ψ

Explicit 3D diffusion
(Sec. 3.2.5.2.1 and 3.2.5.2.2)

Ψ− → F ∗
turb

Horizontal diffusion and TKE
(Sec. 3.2.5.2.3 and 3.2.5.3)

Ψ−, k0, K∗−
ψ → FH −

turb, D
0
dyn

Ψ− → S−, A−
dyn, B−

dyn

Interface
Dynamics → Physics

(Sec. 3.3.1 and 3.3.2)

?

Surface
(Sec. 3.3.7)

Ψ− → β−
ψ , α−

ψ

Closures
(Sec. 3.3.5 and 3.3.6)

Ψ−, k+DE →K∗
ψ

TKE integration(Sec. 3.3.4)

Ψ− → B−
phy , C−

phy

k+DE → k∗ → k� → D+
phy → k+

Simple closure

Ψ− →K∗
ψ , β−

ψ , α−
ψ

Implicit vertical diffusion(Sec. 3.3.3)

Ψ+
DE → Ψ∗ → F V +

turb → F ∗
turb

Interface
Physics → Dynamics

(Sec. 3.3.1 and 3.3.2)

Main variables final value
(Sec. 3.2.5.2.1 and 3.3.3)

Ψ+
DEF = Ψ+

DE + 2ΔtF ∗
turb

PHYSICS LIBRARY

Figure 3.2 Diagram of the structure of the 3D turbulence modelling in

MC2. Sections associated to each step are indicated in parenthesis
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In the mesoscale models from EC and thus MC2, physical forcing have been traditionally

computed separately (from the dynamic kernel), based on a so-called physics library. The

latter is common to all models of EC and relies on its proper vertical coordinate and boundary

conditions as seen later. Turbulent diffusion related to the deviatoric part of Reynolds tensor,

and the full classical ABL column model are included within the physics library.

However, the physics library was designed with large scale and mesoscale modelling in mind.

It fully relies on the boundary layer approximation, meaning that the ABL and the whole at-

mosphere are considered as horizontally homogeneous which largely affects the numerical

methods used in the physics. Indeed, the 3D computational domain on which the Euler equa-

tions of motion are solved is considered as a set of independent 1D columns in the physics

library, preventing the direct computation of horizontal gradient or interpolations (see Sec. 3.3

for further details).

As a result, when mesoscale cases are considered (i.e. relying on the ABL column model),

all the turbulence modelling can be done seamlessly within the physics. At the opposite, for

high resolution cases where a 3D turbulence modelling is required, many of the terms of the

turbulent diffusion, the TKE equation and the closures can not be directly computed in the

physics library. They need to be precomputed in the dynamics before being sent to the physics

to complete the 3D turbulence modelling. Following this approach, there is thus a separation

between all the horizontal and vertical turbulence related terms2.

In addition to this separation in space, time discretization of horizontal and vertical turbu-

lent diffusion differs. In order to fully take advantage of the large time step allowed by the

SISL in the mesoscale context, vertical turbulent diffusion requires to be treated implicitly in

time (Mailhot and Benoit, 1982). For its part, horizontal turbulent diffusion is considered only

for very high resolution cases, i.e. where Δx < 200 m. In that context, Δx/Δz become of the

order of unity and the time step is notably smaller, while vertical resolution does not change

significantly (in comparison to the horizontal resolution). As a result , numerical stability of

2 This separation mainly concerns computation of the strain rate tensor, some of the terms of the TKE equation

and turbulent diffusion terms related to the deviatoric part of Reynolds tensor.
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horizontal turbulent diffusion is less sensitive to the time step than vertical turbulent diffusion

in the context of mesoscale modelling. Thus, horizontal turbulent diffusion can be treated

explicitly in time, while, considering that velocity and temperature vertical gradient are still

dominant (horizontal turbulent diffusion terms are at least ten fold smaller than their vertical

counterpart), the same implicit treatment as in the column model is retained for the momentum,

heat and TKE vertical turbulent diffusion.

This approach, where the physics library is used (requiring a separated spatial and time nu-

merical treatment of horizontal and vertical turbulent quantities), is referred to as the standard

turbulence modelling in MC2.

Going a step further, and since the implicit treatment of the vertical turbulent diffusion is less

critical in the context of very high resolution modelling with MC2, a solution to avoid such

a partitioning (and the complications that come with it) is to handle the whole 3D turbulence

modelling at the same place, i.e. explicit in time in the dynamics. This is referred to as the

standalone turbulence model (since it does not rely anymore on the physics library). Both the

standard and the standalone turbulence models are presented along this chapter. As a summary,

the diagram shown in Fig. 3.2 illustrates the implementation of the 3D turbulence modelling in

MC2 (the various terms introduced in that diagram are all detailed in this chapter).

3.2 Dynamics

The numerical method used to solve the fully compressible Euler equations of motion Eq. (2.31),

i.e. the semi-Lagragian (SL) advection and the semi-implicit (SI) time discretization, have been

refined along the years to obtain a versatile and robust solver as introduced in the various papers

dedicated to MC2 (Robert et al., 1985; Tanguay et al., 1990; Bergeron et al., 1994; Pinty et al.,

1995; Benoit et al., 1997; Laprise et al., 1997; Thomas et al., 1998; Girard et al., 2005). The

report from Bergeron et al. (1994) is the most complete document describing thoroughly, not

only the mathematical model, but also the complete numerical method, including discretiza-

tions and boundary conditions of the dynamic kernel of MC2. It is nevertheless partly outdated.



199

Numerical method of the current version of the model is detailed in Girard et al. (2005), and

Thomas et al. (1998), while slightly older, present in details the current adiabatic kernel.

In this section, main aspects of numerical method used to solve the Euler equations of motion

(which form the dynamic kernel of MC2) are first introduced, by presenting the SISL, spa-

tial discretization and boundary conditions involved in the dynamics kernel. Then, and after

presenting the implementation of the new large scale forcing, the remaining of the section is

dedicated to the turbulence modelling achieved in the dynamics (outside the dynamics kernel).

Thus, starting with volumetric terms, both the dynamics components of the standard 3D tur-

bulence model (where horizontal turbulent diffusion and TKE terms are pre-computed in the

dynamics), and the full standalone 3D turbulence model (where a full UKMO SGS model and

the 3D turbulent diffusion are implemented in the dynamics) are then thoroughly presented.

3.2.1 Semi-Implicit Semi-Lagrangian (SISL) time stepping

The Semi-Lagrangian (SL) advection scheme approximates the material derivatives along a

trajectory characterized by three time levels (t−Δt, t, t+Δt), noted (ψ−, ψ0, ψ+) for any

variable ψ hereafter, and two spatial locations: the arrival, i.e. the end, of the trajectory x =

(x, y, z) which collocated with a grid point, and the upwind departure of the trajectory located

at (x− 2α) = (x− 2α, y − 2β, z − 2γ).

Following the SL approach, the discrete form of the material derivative can be expressed as

δtrΨ

2Δt
=

Ψ+
x − Ψ−

x−2α
2Δt

. (3.2)

Variables at time t− at the trajectory arrival location, i.e. Ψ−
x , are known. However, in order

to evaluate the various quantities at the upwind location and time t−, i.e. Ψ−
x−2α required by

Eq. (3.2), we also have to know the trajectory departure position x− 2α (that is not located

on a grid point). This location is solely a function of the displacements along the Lagrangian

trajectory (that are function of the velocity). As a result, the computation of the half displace-

ment, i.e. α = (α, β, γ), is the first necessary step of the semi-Lagrangian method. For that
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sake, a time extrapolation to t+ of velocity at x is first achieved such as

v+
x = 2v0

x − v−x . (3.3)

Then, a first computation of the displacement is done at the arrival of the trajectory, such as

α′ = Δtv+
x , (3.4)

and this value is then used to evaluate velocity at the trajectory midpoint v0
x−α′ , allowing finally

to obtain the value of the half displacements at the centre of the trajectory

α = Δtv0
x−α′ . (3.5)

Values of the various variables and terms at upwind location, i.e. Ψ−
x−2α, is then computed

based on a piecewise cubic polynomial interpolations (Thomas et al., 1998; Girard et al., 2005).

As underlined by Thomas et al. (1998), the semi-Lagrangian time integration scheme can be

interpreted as an Eulerian finite difference scheme which is shifted to the upwind grid cell

(commonly known as upwind scheme). Similarly, Randall (2011, Sec. 5.12) also considers

the semi-Lagrangian as being “equivalent to a generalized upstream scheme”, thus featuring

the same properties, i.e. it is monotone, but more importantly for LES, it is more diffusive

than centred Eulerian schemes. Randall (2011) further adds that while the intensity of this

numerical diffusion can be lowered by using higher-order interpolations (to compute variable

at the upwind location), it cannot be avoided.

Robert et al. (1985) (see also Laprise et al. (1997)) further combined the semi-Lagrangian ad-

vection scheme with a semi-implicit algorithm to solve the remaining linear terms as averaged

in time along the trajectory, which allows to filter the fastest gravity and sound waves ensuring

the numerical stability of the SISL scheme while allowing relatively long time steps (Thomas
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et al., 1998). The linear terms are thus expressed as

L
tr
=

(1 + ε)L+
x + (1− ε)L−x−2α

2
, (3.6)

where ε is an off-centring parameter.

As a result, following the SISL approach, the discrete form of the full model equations Eq. (2.33)

(where all terms are detailed in Eq. (2.34)) can be written as

δtrΨ

2Δt
+L

tr
= R

tr0
+ F ∗

x, (3.7)

where external forcing F ∗
x are evaluated at the arrival point and at an intermediate time level t∗

as F may be based on quantities from different time levels (such as the mixing coefficient). For

their part, the non-linear terms R
tr0

are spatially averaged along the trajectory at t0 (instead

of been computed at the trajectory midpoint, i.e. R0
x−α (Tanguay et al., 1990)). The latter can

thus be written as

R
tr0

=
(1 + ε)R0

x + (1− ε)R0
x−2α

2
. (3.8)

This spatial average introduces some mild numerical dissipation that allow to damp spurious

mode excited by the SISL three time levels scheme (Thomas et al., 1998). It thus increases the

stability of the method with regards to non-linear forcing. Finally, posing Δt± = (1± ε)Δt

and substituting Eqs. (3.2), (3.6) and (3.8) in Eq. (3.7) gives

[
Ψ+ +Δt+L+

]
x
=
[
Ψ− −Δt−L− +Δt−R0

]
x−2α +

[
Δt+R0 + 2ΔtF ∗]

x
= Q (3.9)

This system of equations is then solved by first interpolating to upwind location x− 2α the

first right-hand side term of Eq. (3.9), i.e. linear and non-linear terms, in order for Q to be

fully known. Then, variables are eliminated by taking the divergence of the momentum equa-

tions (their spatial discretized form is used) which leads to an Helmholtz wave equation for

P+ (Thomas et al., 1998; Girard et al., 2005).
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This elliptic problem features a highly non-symmetric linear system of equations due to off-

diagonal and cross-derivative terms. It is solved based on a robust iterative Generalized Min-

imal Residual (GMRES) Krylov solver, which is associated with an Alternative Direction

Implicit (ADI) pre-conditioner method allowing to solve the Helmholtz equation more effi-

ciently (Thomas et al., 1998; Girard et al., 2005). Once P at the arrival of the trajectory and at

t+ is known, i.e. P+
x , the remaining fields, i.e. u+

x , v+x , w+
x , b+x , are obtained by back substitu-

tion. At that point, Ψ+
ED from Fig. 3.2 is known. Following this approach, the problem is fully

solved without any segregation of variables contrary to the more classical CFD approaches

such as the uncoupled pressure implicit with split operator (PISO) method. Finally, a weak

Robert time filter (Asselin, 1972) is applied in order to damp numerical modes excited by the

three time level scheme. This filter is fully part of the three time level SISL approach and even

if it is applied after the physics (if activated).

Note that passive scalars Ψ , can be included in the problem such as

δtrΨ

2Δt
= F ∗Ψ x. (3.10)

Thus, in such a case only the semi-Lagrangian advection is achieved to compute the material

derivative of Ψ . Note that the TKE is advected following this approach.

Finally, concerning the present study, it is noteworthy that the isotropic part of the Reynolds

tensor, Eq. (2.46), as well as the additional terms allowing large scale geostrophic forcing,

Eq. (2.186), are included in R0
x as summarized on Eq. (2.189). The details of the spatial

discretization of those terms is given in Sec. 3.2.5.1 and Sec. 3.2.4, respectively.

3.2.2 Spatial discretization

In the present model, a staggered grid is used (along with finite differences) in both horizontal

and vertical directions as illustrated in Fig. 3.3 which shows the location of the main variables3.

Variables from the continuous space are projected on the grid based on piecewise-constant

3 Note that, as seen later a different discretization is used in the physics library of the model.
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finite elements and the projection operator presented in Girard et al. (2005, Sec. 3.c and 3.d).

As illustrated in Sec. 3.2.2.1 and Sec. 3.2.2.2, this formalism allows to define a correspondence

between indices used in the code (integer only referred to as absolute index) and indices of the

variable projected on the grid (referred to as projected indices and for which staggered variables

with regards to the pressure feature a half index). It further allows to define the operation such

as interpolations and derivatives in the discrete space as presented in Sec. 3.2.2.3.

a) Absolute index b) Projected index
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Figure 3.3 Mesh molecule illustrating the location of MC2 main variables: a) absolute

index, and b) projected index. Coriolis and map scale factors are located in φ, while

temperature, vertical velocity, TKE and mixing coefficients are in ψ

3.2.2.1 Horizontal discretization

In the horizontal, an Arakawa C-grid (Haltiner and Williams, 1980) is used along an uniform

non-isotropic mesh (in the present study an uniform isotropic grid is always used, i.e. Δx =

Δy = const.). As shown in Figs. 3.3 and 3.4, pressure (q and thus P ) is located at the centre

of the mesh, while the u velocity component is located at the centre of the east and west grid

faces and the v velocity component is located at the centre of the south and north grid faces.

Finally, vertical velocity and temperature (w, T and thus b) as well as TKE (k and KM ) are

located at the centre of the upper and lower faces, i.e. above and below the pressure location.
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Figure 3.4 Horizontal full domain (computational domain with boundary

conditions) along absolute index of q, u and v on the Arakawa C-grid

(in this example we have: Ni = Nj = 5 and hx = hy = 1)

Following Girard et al. (2005) projection operator formalism, the correspondence between the

absolute to the projected index, which is also illustrated in Fig. 3.3, writes

qi,j,k = [q]i,j,k , Ti,j,k = [T ]i,j,k−1/2 , ki,j,k = [k]i,j,k−1/2 ,

ui,j,k = [u]i−1/2,j,k , vi,j,k = [v]i,j−1/2,k , wi,j,k = [w]i,j,k−1/2 .
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Table 3.1 Computational domain and array dimensions in absolute index

Variable
Computational domain Array dimensions

x y z x y z

q 1 : Ni 1 : Nj 0 : Nk + 1 1− hx : Ni + hx 1− hy : Nj + hy 0 : Nk + 1

T 1 : Ni 1 : Nj 1 : Nk + 1 1− hx : Ni + hx 1− hy : Nj + hy 1 : Nk + 1

u 2 : Ni 1 : Nj 1 : Nk 1− hx : Ni + hx 1− hy : Nj + hy 1 : Nk + 1

v 1 : Ni 2 : Nj 1 : Nk 1− hx : Ni + hx 1− hy : Nj + hy 1 : Nk + 1

w 1 : Ni 1 : Nj 1 : Nk + 1 1− hx : Ni + hx 1− hy : Nj + hy 1 : Nk + 1

Tab. 3.1 gives details on the computational domain size and total array dimensions, and Fig. 3.4

further illustrates the full horizontal grid along with boundary locations in quv-plane. Ni, Nj

and Nk are the maximum indices in the three directions, and hx and hy the lateral halo size.

On this figure, note that computational domain lateral borders are located on half indices i.e.

at velocity locations [u]1/2,j,k, [u]Ni−1/2,j,k, [v]i,1/2,k and [v]i,Nj−1/2,k (which data is included in

the boundary domain). Furthermore, a halo of hx and hy width is used as lateral boundary of

the domain. The lateral boundaries is thus 3D. The latter is required to allow the computation

of the various variables at the Lagrangian trajectories upwind/departure location, i.e. Ψ−
x−2α

(for the mesh at an inlet). Sec. 3.2.3 further details the processing of the halo. Note finally

that, a similar halo is also present on the lateral sides of each sub-domains when the domain

is decomposed on several processor (decomposition is horizontal only and always based on a

even number of sub-domain).

3.2.2.2 Vertical discretization

In the vertical, as illustrated in Figs. 3.3 and 3.5, a variant of a Charney-Phillips grid (Haltiner

and Williams, 1980) is used with the possibility of a non uniform grid spacing. Far from the

boundaries, such as presented in Fig. 3.3, pressure and horizontal velocity components are

located on the full vertical levels, while vertical velocity, temperature, and TKE are located

on staggered levels. For its part, momentum turbulent mixing coefficient is also located on

staggered levels, while the heat turbulent mixing coefficient is computed on staggered levels

and interpolated to full levels when needed.
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Figure 3.5 Vertical mesh of the dynamics along with the absolute and projected

vertical indices of the main variables

The bottom and top boundary of the grid coincide with staggered levels. However, the pressure

(instead of the temperature) and the vertical velocity (which is normal) are located on those

two levels leading to qi,j,0 = [q]i,j,1/2 and qi,j,Nk+1 = [q]i,j,Nk+1/2. Concerning the tempera-

ture, its first (resp. last) level is located half way in between the bottom (resp. top) and the first

(resp. last) full level, leading to Ti,j,1 = [T ]i,j,3/4 and Ti,j,Nk+1 = [T ]i,j,Nk+1/4. The organiza-

tion of thermodynamic variables thus differs from the classical Charney-Phillips arrangement

at the lower and upper boundaries in order to better accommodate the computation of their

boundary conditions (see Sec. 3.2.3). On the contrary, discretization of velocity components

is unchanged throughout the domain. Finally, the top and bottom boundary conditions of TKE

(and mixing coefficients) are defined such as ki,j,1 = [k]i,j,1/2 and ki,j,Nk
= [k]i,j,Nk−1/2. TKE

thus have one level less than velocity and temperature.
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Fig. 3.5 further presents the height vectors of the full and staggered levels4, i.e. temperature zt

(staggered), vertical velocity zw (staggered), and momentum/pressure zm (full) height vector.

They are obtained by first setting the Nk+1 vertical velocity levels zw k = [zw]k−1/2 with zw 1 =

[zw]1/2 = 0 m and following a given definition of the vertical levels, i.e. uniform, stretched, ...

, but that have to be monotonic. Then, momentum levels zmk = [zm]k are computed as being

exactly in the middle of two zw levels, such as

[zm]k =
[zw]k+1/2 + [zw]k−1/2

2
=

zw k+1 + zw k

2
, (3.11)

with zm 0 = [zm]1/2 = [zw]1/2 and zmNk+1 = [zm]Nk+1/2 = [zw]Nk+1/2. Temperature level

are finally defined as zt k = [zt]k−1/2 = [zw]k−1/2 except for the bottom and top levels that are

computed as been half way in between the two first and last pressure levels respectively. Then,

the vertical grid spacing are readily obtained such as

[Δzm]k−1/2 = [zm]k − [zm]k−1 , (3.12)

[Δzt]k = [zt]k+1/2 − [zt]k−1/2 , (3.13)

[Δzw]k = [zw]k+1/2 − [zw]k−1/2 . (3.14)

where we have [Δzt]k = [Δzw]k away from the boundaries.

Finally, it is noteworthy that this approach introduces an asymmetry in the grid spacing and

unless the vertical mesh is fully uniform, we have

[zw]k−1/2 �=
[zm]k + [zm]k−1

2
. (3.15)

As a result, if a non uniform grid is to be used, care must be taken when interpolating variable

from the momentum levels to temperature levels.

4 Note that herein, these heights are Gal-Chen (Gal-Chen and Somerville, 1975) or generalized vertical

coordinate and not geometrical heights. However, since they are equal in the context of flat terrain, it is not

relevant to follow the formalism of vertical coordinate transformation.
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3.2.2.3 Simple operations in the discrete space

Interpolations and derivatives in the discrete space are illustrated in this section based on the

formalism, and horizontal and vertical discretizations introduced previously.

Staggered variables are brought to the center of the mesh based on a linear interpolation

[
T

Z
]
i,j,k

=
[T ]i,j,k+1/2 + [T ]i,j,k−1/2

2
=

Ti,j,k+1 + Ti,j,k

2
, (3.16)

[uX]i,j,k =
[u]i+1/2,j,k + [u]i−1/2,j,k

2
=

ui+1,j,k + ui,j,k

2
, (3.17)

while the interpolation to go from plain to staggered levels writes

[uZ]i−1/2,j,k−1/2 =
[zm]k − [zt]k−1/2
[zm]k − [zm]k−1

[u]i−1/2,j,k−1 +
[zt]k−1/2 − [zm]k−1
[zm]k − [zm]k−1

[u]i−1/2,j,k , (3.18)

=
zmk − zt k

zmk − zmk−1
ui,j,k−1 +

zt k − zmk−1
zmk − zmk−1

ui,j,k, (3.19)

and further considering the definition of zm levels, Eq. (3.11), this can also be expressed as

[uZ]i−1/2,j,k−1/2 =[Wzt ]k−1/2 [u]i−1/2,j,k−1 +
(
1− [Wzt ]k−1/2

)
[u]i−1/2,j,k , (3.20)

= Wzt k ui,j,k−1 + (1−Wzt k) ui,j,k, (3.21)

with

[Wzt ]k−1/2 =
[zt]k+1/2 − [zt]k−1/2
[zt]k+1/2 − [zt]k−3/2

=
zt k+1 − zt k
zt k+1 − zt k−1

. (3.22)

Note that at the bottom and top of the domain, special care is taken for vertical interpolation of

temperature to fall on momentum/pressure levels, such as

[
T

Z
]
i,j,1

=
[zt]i,j,3/2 − [zm]i,j,1
[zt]i,j,3/2 − [zt]i,j,3/4

[T ]i,j,3/4 +
[zm]i,j,1 − [zt]i,j,3/4
[zt]i,j,3/2 − [zt]i,j,3/4

[T ]i,j,3/2 , (3.23)

=
zt 2 − zm 1

zt 2 − zt 1
Ti,j,1 +

zm 1 − zt 1
zt 2 − zt 1

Ti,j,2. (3.24)
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Horizontal and vertical derivatives are given by

[
∂q

∂x

]
i−1/2,j,k

⇒
[
δxq

Δx

]
i−1/2,j,k

=
[q]i,j,k − [q]i−1,j,k

Δx
=

qi,j,k − qi−1,j,k
Δx

, (3.25)[
∂q

∂z

]
i,j,k−1/2

⇒
[
δzq

Δzm

]
i,j,k−1/2

=
[q]i,j,k − [q]i,j,k−1

[Δzm]k−1/2
=

qi,j,k − qi,j,k−1
zmk − zmk−1

, (3.26)[
∂T

∂z

]
i,j,k

⇒
[
δzT

Δzt

]
i,j,k

=
[T ]i,j,k+1/2 − [T ]i,j,k−1/2

[Δzt]k
=

Ti,j,k+1 − Ti,j,k

zt i,j,k+1 − zt i,j,k
, (3.27)

and slightly more complex derivative writes

[
∂u

∂x

]
i,j,k−1/2

⇒
[
δxu

Z

Δx

]
i,j,k−1/2

=
[uZ]i+1/2,j,k−1/2 − [uZ]i−1/2,j,k−1/2

Δx
, (3.28)

[
∂T

∂z

]
i,j,k−1/2

⇒
[
δzT

Z

Δzm

]
i,j,k−1/2

=

[
T

Z
]
i,j,k

−
[
T

Z
]
i,j,k−1

[Δzm]k−1/2
. (3.29)

Finally, coupled products such as the last terms on the right hand side of Eq. (2.32a) writes

[
b

g

∂P

∂x

]
i−1/2,j,k

⇒
[
b

XZ

g

δxP

Δx

]
i−1/2,j,k

. (3.30)

3.2.2.4 Vertical mesh generator

In the context of normal use of the MC2 model (i.e. for mesoscale cases), the upper boundary

of the computational domain is commonly located above 10 km, vertical grid is monotonically

stretched upward to better take into account the high gradient in the ABL, and the width/height

ratio of the near-surface cells is commonly higher than 100, i.e. 10 km/100 m. In addition, and

partly due to its compressible solver, the MC2 model features a top boundary condition based

on a multi-layer sponge as presented in Sec. 3.2.3 (always based on the ten upper levels here).

This heavily depart from the computational domains typically used to reproduce the full ABL

based on LES (Nieuwstadt et al., 1992; Moeng and Sullivan, 1994), which is generally only a

couple of kilometres high with the ratio Δx/Δz become of the order of unity in the regions of
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interest (i.e. from the surface to above the inversion). The roof of the model is thus drastically

lowered, and care must be taken for the upper boundary not to interact with the results (notably

considering the sponge layer used here). Furthermore, monotonically upward stretched grids

can not generally be used since a sufficiently high resolution is required to properly reproduce

inversion processes where large and sharp gradients can also be found.

Considering that only vertical uniform or monotonically upward stretched grids were available

in MC2, a new vertical mesh generator was developed based on the following criteria:

• function defining the vertical mesh must be growing and monotonic;

• surface as well as inversion are two regions where vertical gradients of various key quan-

tities are large, and thus, regions where a finer grid is needed;

• sponge region need to be as far as possible from the inversion not to interact with it while

been wide enough to be efficient without using too many levels.

From those simple criteria, and since surface layer momentum and temperature follow a log

law, a vertical coordinate based on the log function Zlog is defined such as ∀k ∈ [1;nk], where

nk = Nk + 1, we have

ln

(
Zlog(k)

r
+ 1

)
ln
(ztop

r
+ 1
) =

k

nk

, (3.31)

leading to

Zlog(k) = r

[(ztop
r

+ 1
)k/nk

− 1

]
, (3.32)

where k is the height index, ztop the height of the top boundary, nk the number of meshes in

the vertical and r is a parameter. Here, ztop and nk are provided as input and r = zref/α with

α an input coefficient and zref a reference height also provided as input (taken to be roughly

equal to the height of the ABL).
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Based on this definition, the grid is further refined at the inversion (and indirectly in the upper

ABL) thanks to a normal law used to reduce dZlog/dk near the inversion, thus increasing locally

the concentration of levels. The definition of this normal law writes

Dnor(k) =
1√
2πσ2

e
−
(k − kμ)

2

2σ2 , (3.33)

where here kμ is the normal law mean, i.e. location (in k index) of the normal law maximum,

and, σ is the standard deviation of the normal law (also in k index) defining the width of the

distribution. As seen later, kμ is found iteratively while σ is a parameter provided as input.

The cumulative of Dnor is then subtracted from Zlog, but note that, in order for the resolution

in the region of the inversion to be similar to the one at the surface, it is scaled. The scaled

cumulative function writes

Znor(k) =
ΔZlog(kμ)−ΔZlog(1)

max(Dnor)

∫ k

0

Dnor(k
′)dk′. (3.34)

A blending is further added in order for the deviation from the logarithmic profile to return to

zero at the top of the domain. The new vertical coordinate can then be expressed as

Z(k) = Zlog(k)− Znor(k) + max(Znor)f(k), (3.35)

where the blending function f(k) must be increasing with k, monotonic and ∀k ∈ [1;nk], f(k) ∈
[0; 1]. f(k) = (k/nk)

2 is used here. Finally, based on Eq. (3.35) and the criteria Z(kμ − 1) <

zref < Z(kμ), the location of the maximum of Dnor, i.e. kμ, is computed. The new vertical

mesh is then defined solely by Eq. (3.35) and the following parameters: α, σ, nk, zref and ztop.

An illustration of the possible vertical grid along with their first and second derivatives can

be seen in Fig. 3.6. On the left column of Fig. 3.6, grids have 60 meshes with α = 2 and

ztop = 1500 m. The top boundary is thus one third higher, while there are one third less meshes

than in the uniform vertical grid previously used. A widening of the refined region at zref can

be seen from σ = 6, where the normal law appears clearly, to σ = 18. In the latter case,
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nk = 60, ztop = 1.5 km, zref = 0.5 km nk = 96, ztop = 3 km, zref = 0.6 km
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Figure 3.6 Illustration of the new vertical mesh, Eq. (3.35), along its first and second order

derivatives for various sets of parameters: a), c) and e) nk = 60, zref = 0.5 km and

ztop = 1.5 km; b), d) and f) nk = 96, zref = 0.6 km and ztop = 3 km
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the local minimum of dz/dk at the inversion does not exist anymore: the resolution reaches

a plateau below zref before stretching again. At the opposite, the grid most refined at the

inversion, i.e. α = 2, σ = 6, have roughly the same resolution at the surface and zref (as the

uniform grid), while it is coarser in the mixed layer. On the right column of Fig. 3.6, grids have

96 meshes with α = 6 and ztop = 3000 m. The top boundary is thus three times higher than

the uniform grid, while the surface mesh is roughly three times finer and the same resolution

or lower is found at the inversion. The increase of σ shows the very same pattern as previously.

The grid based on α = 6, σ = 18 is of particular interest as the resolution below zref is always

finer than the uniform grid previously used.

The vertical mesh introduced here is interesting because, in addition to enhance resolution at

the surface without affecting the mixed layer, it also allows the evaluation of the top boundary

sponge influence on the results without adding computational cost. The main drawback is

however that the height of the ABL needs to be a priori known (at least its maximum height).

Furthermore, such meshes are less practical for cases where the inversion is evolving a lot

during the integration, such as in convective conditions, while for any diurnal cycling, this

constraint is diminished for large σ.

3.2.3 Boundary conditions

Boundary conditions involved to solve the Euler equations in MC2 are thoroughly presented

by Bergeron et al. (1994), and their up-to-date description is included in Thomas et al. (1998)

and Girard et al. (2005).

In the present section, the dynamic kernel set of boundary conditions used in the context of the

current study are presented, i.e. for use in LES of thermally stratified barotropic ABL flows

over a flat homogeneous surface and entrained by a constant geostrophic wind.
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3.2.3.1 Surface boundary

The surface is considered as a free-slip rigid wall in the dynamic kernel. Thus, vertical velocity

at the surface [w]i,k,1/2, which is obtained diagnostically based on the kinematic condition Gi-

rard et al. (2005, Eq. (13)), depends on the slope of the terrain and horizontal velocity compo-

nents. Then, surface pressure [q]i,k,1/2 is computed diagnostically thanks to the non-hydrostatic

prognostic equation of w at the first level (Girard et al., 2005). Finally, an additional thermody-

namic equation is solved to compute temperature perturbation at the first level [T ]i,k,3/4 (based

on [q]i,k,1/2 and [q]i,k,1 explaining the 3/4 vertical location of the first temperature). When the

surface is flat, [w]i,k,1/2 = 0, and thus dw/dt = 0 at the surface. As a result, the diagnostic

relation used to compute the surface pressure simplifies to the hydrostatic relation.

3.2.3.2 Top boundary

The top boundary is also based on a free-slip rigid wall but which is flat regardless of the

configuration of the model. Thus, vertical velocity at the top [w]i,k,Nk+1/2 is always zero at

the top boundary and pressure [q]i,k,Nk+1/2 is computed diagnostically relying on hydrostatic

equilibrium. Concerning the top temperature perturbation, as for the surface, an additional

thermodynamic equation is solved (Thomas et al., 1998; Girard et al., 2005).

Finally, it is noteworthy that the top boundary includes a so-called sponge layer of a given

depth in which an explicit additional horizontal smoothing of all the main variables except the

pressure (i.e. u, v, w and b) is applied. This region of enhanced horizontal diffusion allows to

gradually dissipate the energy of the waves and eddies reaching the top boundary in order to

prevent their spurious reflexion in the computational domain.

This horizontal smoothing is based on a nine point filtering as presented in Shuman (1957,

Eq. (5)) (see also Haltiner and Williams (1980, Sec. 11.8)), and it is included in H from

Eq. (3.1). As input parameters, this approach requires the number of levels on which the

sponge is applied Nsponge, and a smoothing coefficient νsponge which can be interpreted as an

horizontal viscosity. The latter coefficient is scaled from 0 at k < Nk − Nsponge (base of the
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sponge) to its maximum value at the top of the domain (top of the sponge) following a squared

cosine. In the present study, Nsponge = 10, i.e. the sponge layer is located on the 10 uppermost

levels, and a smoothing coefficient νsponge = 2 is always used.

3.2.3.3 Lateral boundaries

The lateral boundary conditions have to let the flow in and out of the domain and connect with

conditions outside the LAM area. As discussed in the previous section, due to the SL advection

scheme, few points outside the computational domain are required to be able to compute the

various quantities at the upwind location of the three time level trajectories. The variables in

the halo further have to comply with the model differential equations as discussed by (Thomas

et al., 1998; Girard et al., 2005). The optimum width of this halo, i.e. hx and hy, is a function

of the CFL number. Thus, assuming that CFL < 1 is the generally accepted criteria for SISL

approaches such as MC2 (Bartello and Thomas, 1996; Thomas et al., 1998; Girard et al., 2005),

hx = hy = 3 is used most of the time. Tab. 3.2 details the dimensions of the halo in absolute

indices and the data involved when lateral periodicity is used.

Table 3.2 Horizontal boundary conditions domain and lateral periodicity

Variable
Boundary condition domain Indices for lateral periodicity

x y x y

E
as

t q, T, w Ni + 1 : Ni + hx 1− hy : Nj + hy 1 : hx 1− hy : Nj + hy
u Ni + 1 : Ni + hx 1− hy : Nj + hy 1 : hx 1− hy : Nj + hy
v Ni + 1 : Ni + hx 1− hy : Nj + hy 1 : hx 1− hy : Nj + hy

W
es

t q, T, w 1− hx : 0 1− hy : Nj + hy Ni − hx + 1 : Ni 1− hy : Nj + hy
u 1− hx : 1 1− hy : Nj + hy Ni − hx + 1 : Ni + 1 1− hy : Nj + hy
v 1− hx : 0 1− hy : Nj + hy Ni − hx + 1 : Ni 1− hy : Nj + hy

N
o
rt

h q, T, w 1− hx : Ni + hx Nj + 1 : Nj + hy 1− hx : Ni + hx 1 : hy
u 1− hx : Ni + hx Nj + 1 : Nj + hy 1− hx : Ni + hx 1 : hy
v 1− hx : Ni + hx Nj + 1 : Nj + hy 1− hx : Ni + hx 1 : hy

S
o
u
th q, T, w 1− hx : Ni + hx 1− hy : 0 1− hx : Ni + hx Nj − hy + 1 : hy

u 1− hx : Ni + hx 1− hy : 0 1− hx : Ni + hx Nj − hy + 1 : hy
v 1− hx : Ni + hx 1− hy : 1 1− hx : Ni + hx Nj − hy + 1 : hy + 1
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In the present study, lateral boundary conditions are always periodical for all main variables.

This greatly simplifies their processing, since it is only required to swap the lateral halo of

each variables with the appropriate data from the opposite side of the computational domain, as

detailed in Tab. 3.2. Then, trajectories can be computed similarly as in computational domain

interior, and every variables has its lateral boundary conditions fully defined for the various

time levels and locations on the Lagrangian trajectory.

3.2.4 Geostrophic forcing with lateral periodic conditions

The terms related to the large scale geostrophic forcing in presence of lateral periodic boundary

conditions are illustrated in Eqs. (2.186) to (2.189). The mathematical formulation of such

terms was first introduced in Pelletier et al. (2005), however they had never been implemented.

As discussed in Sec. 2.4, they are included in R from Eq. (2.33) and noted Rls hereafter. Thus,

they are computed considering only the variables at the arrival of the trajectory at time t0,

namely Ψ 0
x, and included in R0

x from Eq. (3.9) (which is then interpolated at the upstream point

of the trajectory to get R0
x−2α). The information on the location in space (on the Lagrangian

trajectory, x subscript) and time (0 superscript) are dropped hereafter.

The large scale geostrophic wind, vg = (ug, vg), must be constant in time, horizontally homo-

geneous and with the same direction at all heights. It is located on plain levels, i.e. ug i,j,k =

ug k = [ug]k and vg i,j,k = vg k = [vg]k. Thus, the discrete form of the large scale geostrophic

wind forcing terms writes

Rls =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−
[
f

Y

vg

]
i−1/2,j,k[

f
X

ug

]
i,j−1/2,k

0[
f

XY

(
vYZ

δzug

Δzm
− uXZ

δzvg
Δzm

)]
i,j,k−1/2

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.36)
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Concerning the computation of these expressions at the bottom and top boundaries, since vg is

located on the same levels as q and constant in the horizontal, the computation of Ru ls and Rv ls

is straightforward. Concerning RT ls, the computation of the vertical derivative at the bottom

and top of the domain is also straightforward as it falls directly on temperature staggered levels

[T ]i,j,3/4 and [T ]i,j,Nk+1/4. On the other hand, the velocity components required at those levels

are simply set equal to their value at the first and last levels, i.e. [uXZ]i,j,3/4 = [uX]i,j,1 and

[uXZ]i,j,Nk+1/4 = [uX]i,j,Nk
. As a closure remark, f could be use instead of f

X

, f
Y

and f
XY

as the Coriolis factor have to be constant when large scale geostrophic forcing are involved.

Those notation were however retain to satisfy the projection formalism.

Finally, it is to note that Rls is implemented taking into account the various metric factors

arising from the mathematical transformation related to the inclusion of the topography. This

was done so that all the new components included in R are not an exception with regards to

metric factors, but not included here as they equal unity when the terrain is flat.

3.2.5 Turbulence modelling in the dynamics

Turbulent diffusion is normally achieved during the physical step. However, as illustrated in

Sec. 2.2.1, momentum turbulent diffusion terms related to the volumetric part of the Reynolds

tensor must be included in the dynamic kernel, i.e. in R from Eq. (2.33), as they act like a

pressure. Furthermore, as discussed in Sec. 3.1, when the standard 3D turbulence modelling

is followed, due to the specificities of the physics, the computation of the remaining terms re-

quires a separation of their horizontal components (that feature horizontal gradients and deriva-

tives), and their vertical components (that only feature vertical derivatives and interpolation).

In this standard approach, the former need to be pre-computed in the dynamics before being in-

cluded in the physics to complete the 3D turbulence modelling as introduced by Pelletier et al.

(2005)5. An alternative approach introduced here is to fully achieve the turbulence modelling

in the dynamics in a standalone manner (not relying on the physics).

5 Note that in the early implementation of the 3D turbulence modelling in MC2, there was no distinction

between the volumetric and the deviatoric part of the Reynolds tensor (Pelletier et al., 2005). The approach

was refined during this study as presented in the current chapter and validated in Chap. 4, by notably, further

splitting properly the various terms and improving the vertical staggering.
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In any case, it is noteworthy that the free-slip surface boundary condition used in the dynamic

kernel does not apply here. Instead, the surface is considered as a no-slip rough wall modelled

though wall functions, and the surface boundary condition is obtained considering the conti-

nuity of momentum and heat turbulent fluxes along the vertical at the bottom boundary (See

Sec. 3.3.7 for more details).

In the present section, the numerical method used to obtain the turbulence related terms in

the dynamics are presented. First, the discretization of the turbulent diffusion terms linked

to the volumetric part of Reynolds tensor is described. Then, the numerical method used to

compute turbulent diffusion terms that include the deviatoric part of the Reynolds tensor are

discussed. In that subsection, the 3D turbulent diffusion fully implemented in the dynamics

is first presented (i.e. the so-called standalone turbulence model), followed by the horizontal

diffusion terms pre-computed in dynamics when relying on the standard turbulence modelling.

Subsequently, the discretization of the horizontal terms of the TKE equation along with the

computation of the strain rate tensor modulus are presented. Finally, the standalone UKMO

Smagorinsky model implemented in the dynamics is introduced.

3.2.5.1 Volumetric part of the Reynolds tensor

The turbulent diffusion terms related to the volumetric part of Reynolds tensor are described

in Eqs. (2.46) and (2.49). They are included with the non-linear terms R0
x from Eq. (3.9), and

noted Rturb hereafter. They are thus computed considering only the variables at the arrival

of the trajectory at time t0, namely Ψ 0
x. The only exceptions are the mixing coefficient and

the TKE that rely on their values from the previous time step and can be noted K∗−
ψ and k0

(because they are computed in the physics which is achieved after the solving Euler equation as

illustrated in Fig. 3.2). The information on the location in space (on the Lagrangian trajectory,

xsubscript), as well as the location in time (0 superscript) are thus dropped hereafter.

As a reminder, in the present implementation of the volumetric terms, the full subgrid velocity

variances are included in the dynamic kernel (which is not fully the case when separating

terms as done in Eq. (2.43) and (2.44)). Thus, the fully developed continuous form of Rturb in
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cartesian coordinates is expressed as (similar to Eq. (2.49) but dropping Reynolds and Favre

average notations and developing Sij)

Rturb =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

ρ

∂

∂x

(
2ρKM

∂u

∂x
− 2

3
ρ

(
KM

∂ui

∂xi

+ k

))
1

ρ

∂

∂y

(
2ρKM

∂v

∂y
− 2

3
ρ

(
KM

∂ui

∂xi

+ k

))
1

ρ

∂

∂z

(
2ρKM

∂w

∂z
− 2

3
ρ

(
KM

∂ui

∂xi

+ k

))
0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1

ρ

∂

∂x

(
ρu′u′

)
−1

ρ

∂

∂y

(
ρv′v′

)
−1

ρ

∂

∂z

(
ρw′w′

)
0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.37)

It is noteworthy that including the full vertical velocity variances in the dynamic kernel through

Rturb avoid the need to achieve the vertical diffusion of w in the physics or elsewhere.

The air density is required to compute Rturb. It is obtained from the state equation expressed

in term of model variables such as

ρ =

p0 exp

(
P − gz

RT∗

)
RT∗

(
b

g
+ 1

) . (3.38)

Considering Eq. (3.37) and the horizontal and vertical arrangement of the main variables, it is

convenient to compute density at the pressure location, so that its discrete form writes

[ρ]i,j,k =

⎡⎢⎢⎢⎢⎣
p0 exp

(
P − gzm
RT∗

)
RT∗

(
b

Z

g
+ 1

)
⎤⎥⎥⎥⎥⎦

i,j,k

(3.39)

Note that the density at the surface [ρ]i,j,1/2 is extrapolated from [ρ]i,j,1 and [ρ]i,j,2. The density

at the first level [ρ]i,j,1 is computed from Eq. (3.39) considering for b
Z

the special spacing of the

first temperature level as described in Eq. (3.23).
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Then, following the grid layout described in Sec. 3.2.2, the discrete form of Eq. (3.37) writes

Rturb =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[
1

ρX

δxAx

Δx

]
i−1/2,j,k[

1

ρY

δyAy

Δy

]
i,j−1/2,k[

1

ρZ

δzAz

Δzm

]
i,j,k−1/2

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.40)

where

[Ax]i,j,k =

[
2ρKM

Z δxu

Δx
− A

]
i,j,k

, (3.41)

[Ay]i,j,k =

[
2ρKM

Z δyv

Δy
− A

]
i,j,k

, (3.42)

[Az]i,j,k =

[
2ρKM

Z δzw

Δzw
− A

]
i,j,k

, (3.43)

and

[A]i,j,k =

[
2

3
ρ

(
KM

Z

(
δxu

Δx
+

δyv

Δy
+

δzw

Δzw

)
+ k

Z

)]
i,j,k

. (3.44)

The velocity divergence in A6, which can be written [D]i,j,k, is computed based on the operator

implemented in the model and described in Girard et al. (2005, Eqs. (14a) and (33b)). At the

bottom of the domain, [A]i,j,1/2 is computed considering [D]i,j,1/2 = [D]i,j,1 and both k and KM

are used directly (no interpolation needed), while at the top we set [A]i,j,Nk
= [A]i,j,Nk+1/2 = 0.

Concerning the surface and top values of Ax, Ay and Az, velocity gradients at are considered

to vanish. Furthermore since [k]i,j,Nk−1/2 and [KM ]i,j,Nk−1/2 are the highest level of k and KM ,

we set [A]i,j,Nk
= [A]i,j,Nk+1/2 = 0. This is justified by the fact that both k and KM as well as

6 As a side note, strictly following Eq. (2.43), Ax, Ay and Az would only include A
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the divergence of velocity are negligible at the top of the domain (the flow is generally laminar

in the free atmosphere, and gradients are largely smoothed by the sponge layer).

Then the computation of the derivative of Ax, Ay and Az, i.e. Eq. (3.40), are straightforward

with regards to the boundaries (except for the vertical velocity component that does not re-

quired density to be vertically interpolated at the surface and top boundary).

Finally, note that Rturb is implemented taking into account the various map scale and metric

factors arising from the mathematical transformation related to the geographical projection and

the inclusion of the topography through Gal-Chen oblique coordinates as presented in Girard

et al. (2005). As a result, all the new components included in R0
x are not an exception with

regards to topography and geographical projection. Those coefficients are not included in this

presentation since they collapse when the terrain is flat and no geographical projection are used.

3.2.5.2 Deviatoric part of the Reynolds tensor and heat

The turbulent diffusion terms related to the deviatoric part of Reynolds tensor are described in

Eqs. (2.48) and (2.50). They are included in F ∗
x from Eq. (3.7) (noted F turb hereafter), and

added to the solution following a successive correction approach as discussed in Sec. 3.2.1.

The standalone turbulent diffusion, as well as the terms of the standard turbulent model pre-

computed in the dynamics (i.e. horizontal components of turbulent diffusion) are explicit in

time, meaning that main variables at the arrival of the trajectory and at time t−, i.e. Ψ−
x , are

used to compute the corrections associated to the turbulent diffusion that are then applied on

Ψ+
DE . However, similarly as for the volumetric terms, TKE and mixing coefficients (standalone

model put a side) are based on their value obtained during the previous time step and noted K∗−
ψ

and k0 (as illustrated in Fig. 3.2). The information on the location in space (on the Lagrangian

trajectory, subscript x), as well as the location in time (superscript) are dropped hereafter.

As a reminder, in the current implementation, the full velocity variances are removed from

deviatoric terms F turb and included in volumetric terms Rturb as discussed in Sec. 2.2.1. Thus,

the fully developed continuous form of F turb in cartesian coordinates is expressed as (similar
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to Eq. (2.55) but dropping Reynolds and Favre average notations and developing Sij)
7

F turb =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

ρ

[
∂

∂y

(
ρKM

(
∂v

∂x
+

∂u

∂y

))
+

∂

∂z

(
ρKM

(
∂w

∂x
+

∂u

∂z

))]
1

ρ

[
∂

∂x

(
ρKM

(
∂u

∂y
+

∂v

∂x

))
+

∂

∂z

(
ρKM

(
∂w

∂y
+

∂v

∂z

))]
1

ρ

[
∂

∂x

(
ρKM

(
∂u

∂z
+

∂w

∂x

))
+

∂

∂y

(
ρKM

(
∂v

∂z
+

∂w

∂y

))]
gπ

ρT∗

[
∂

∂x

(
ρKT

∂θ

∂x

)
+

∂

∂y

(
ρKT

∂θ

∂y

)
+

∂

∂z

(
ρKT

∂θ

∂z

)]
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.45)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1

ρ

[
∂

∂y

(
ρu′v′

)
+

∂

∂z

(
ρu′w′

)]
−1

ρ

[
∂

∂x

(
ρu′v′

)
+

∂

∂z

(
ρv′w′

)]
−1

ρ

[
∂

∂x

(
ρu′w′

)
+

∂

∂y

(
ρv′w′

)]
− gπ

ρT∗

[
∂

∂x

(
ρu′θ′

)
+

∂

∂y

(
ρv′θ′

)
+

∂

∂z

(
ρw′θ′

)]
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.46)

Those expressions are the basis of the standalone turbulence model, i.e. when the full turbu-

lence modelling is fully achieved in the dynamics, as presented in Sec. 3.2.5.2.1.

Concerning the standard turbulent model, as discussed in Sec. 3.1, there is a separation of hor-

izontal terms FH
turb, that are pre-computed in the dynamics and sent to the physics afterwards,

and the vertical terms F V
turb, that are computed in the physics, such as

F turb = FH
turb + F V

turb, (3.47)

7 Note that there are no terms related to the vertical turbulent diffusion of w in Eq. (3.45), since they are all

included with the variances which are included in the dynamic kernel.
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with

FH
turb =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

ρ

[
∂

∂y

(
ρKM

(
∂v

∂x
+

∂u

∂y

))
+

∂

∂z

(
ρKM

(
∂w

∂x

))]
1

ρ

[
∂

∂x

(
ρKM

(
∂u

∂y
+

∂v

∂x

))
+

∂

∂z

(
ρKM

(
∂w

∂y

))]
1

ρ

[
∂

∂x

(
ρKM

(
∂u

∂z
+

∂w

∂x

))
+

∂

∂y

(
ρKM

(
∂v

∂z
+

∂w

∂y

))]
gπ

ρT∗

[
∂

∂x

(
ρKT

∂θ

∂x

)
+

∂

∂y

(
ρKT

∂θ

∂y

) ]
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.48)

which discretization is discussed in Sec. 3.2.5.2.3, and

F V
turb =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

ρ

[
∂

∂z

(
ρKM

(
∂u

∂z

))]
1

ρ

[
∂

∂z

(
ρKM

(
∂v

∂z

))]
0

gπ

ρT∗

[
∂

∂z

(
ρKT

∂θ

∂z

)]
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.49)

which computation is detailed in Sec. 3.3.3. As a side note, the latter is identical to the turbulent

diffusion of the classical column model as discussed in Sec. 2.2.5. Finally, the fractional step

approach is followed to recombine FH
turb and F V

turb as described in Sec. 3.3.3.

3.2.5.2.1 Standalone turbulent diffusion

The standalone turbulence diffusion, i.e. Eq. (3.45), is implemented in the dynamics (outside

of the dynamic kernel). It is fully explicit in time and only relies on the variables at the arrival

location of the Lagrangian trajectory. F turb from Eq. (3.45) thus rely on Ψ−
x and K∗−

ψ (it is
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noted F−
turb). The final corrected main variables (turbulence aware) are obtained such as

Ψ+
DEF = Ψ+

DE + 2ΔtF−
turb

(
Ψ−

x

)
. (3.50)

where the total tendency can be written F ∗
turb = F−

turb

(
Ψ−

x

)
. The information on the location

in space and time on the trajectory is dropped hereafter.

Before proceeding to the computation of F turb, mixing coefficient are computed as illustrated

in Sec. 3.2.5.4 and Sec. 3.2.5.5. The air density, the absolute and potential temperatures, and

thus the Exner function and the full pressure need also to be known on staggered zt levels. The

pressure is first computed directly on zm levels based on the usual formulae

[p]i,j,k =

[
p0 exp

(
P − gzm
RT∗

)]
i,j,k

, (3.51)

then, its value on staggered levels, [pt]i,j,k−1/2, is obtained based on a cubic interpolation (rou-

tine provided in the model), and T , ρ, π and θ are computed on staggered levels such as

[T ]i,j,k−1/2 =
[
T∗
g

(b + g)

]
i,j,k−1/2

, (3.52)

[ρ]i,j,k−1/2 =
[ pt
RT

]
i,j,k−1/2

, (3.53)

[π]i,j,k−1/2 =

[(
pt
p0

)R/cp
]
i,j,k−1/2

, (3.54)

[θ]i,j,k−1/2 =
[
T

π

]
i,j,k−1/2

, (3.55)

which are obtained straightforwardly from the surface [ ]i,j,3/4 to the top [ ]i,j,Nk+1/4.

Then, the various components of the turbulence diffusion, i.e. Eq. (3.45), are computed such as

the discrete form of the streamwise velocity turbulent diffusion writes

[Fu turb]i−1/2,j,k =
[

1

ρXZ

(
δyAu

Δy
+

δzBu

Δzw

)]
i−1/2,j,k

, (3.56)
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with the turbulent fluxes expressed as

[Au]i−1/2,j−1/2,k =
[
ρXYZKM

XYZ

(
δxv

Δx
+

δyu

Δy

)]
i−1/2,j−1/2,k

=
[
−ρu′v′

]
i−1/2,j−1/2,k , (3.57)

[Bu]i−1/2,j,k−1/2 =
[
ρXKM

X

(
δxw

Δx
+

δzu

Δzm

)]
i−1/2,j,k−1/2

=
[
−ρu′w′

]
i−1/2,j−1/2,k . (3.58)

Similarly, the discrete form of the spanwise velocity turbulent diffusion is expressed as

[Fv turb]i,j−1/2,k =
[

1

ρYZ

(
δxAv

Δx
+

δzBv

Δzw

)]
i,j−1/2,k

, (3.59)

with the turbulent fluxes expressed as

[Av]i−1/2,j−1/2,k =
[
ρXYZKM

XYZ

(
δyu

Δy
+

δxv

Δx

)]
i−1/2,j−1/2,k

=
[
−ρu′v′

]
i−1/2,j−1/2,k , (3.60)

[Bv]i,j−1/2,k−1/2 =
[
ρYKM

Y

(
δyw

Δy
+

δzv

Δzm

)]
i,j−1/2,k−1/2

=
[
−ρv′w′

]
i−1/2,j−1/2,k . (3.61)

And the discrete form of the vertical velocity turbulent diffusion writes

[Fw turb]i,j,k−1/2 =
[
1

ρ

(
δxAw

Δx
+

δyBw

Δy

)]
i,j,k−1/2

, (3.62)

with the turbulent fluxes expressed as

[Aw]i−1/2,j,k−1/2 =
[
ρXKM

X

(
δzu

Δzm
+

δxw

Δx

)]
i−1/2,j,k−1/2

=
[
−ρu′w′

]
i−1/2,j,k−1/2 , (3.63)

[Bw]i,j−1/2,k−1/2 =
[
ρYKM

Y

(
δzv

Δzm
+

δyw

Δy

)]
i,j−1/2,k−1/2

=
[
−ρv′w′

]
i,j−1/2,k−1/2 . (3.64)

Finally, the discrete form of the temperature turbulent diffusion is expressed as

[FT turb]i,j,k−1/2 =
[
gπ

ρT∗

(
δxAT

Δx
+

δyBT

Δy
+

δzCT

Δzm

)]
i,j,k−1/2

, (3.65)
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with the turbulent fluxes written as

[AT ]i−1/2,j,k−1/2 =

[
ρXKT

XZ δxθ

Δx

]
i−1/2,j,k−1/2

=
[
−ρu′θ′

]
i−1/2,j,k−1/2 , (3.66)

[BT ]i,j−1/2,k−1/2 =
[
ρYKT

YZ δyθ

Δy

]
i,j−1/2,k−1/2

=
[
−ρv′θ′

]
i,j−1/2,k−1/2 , (3.67)

[CT ]i,j,k =

[
ρZKT

Z δzθ

Δzt

]
i,j,k

=
[
−ρw′θ′

]
i,j,k

. (3.68)

3.2.5.2.2 Boundary condition of the standalone turbulent diffusion

Concerning the boundary condition of the standalone turbulent diffusion, much care must be

taken to properly implement the bottom boundary, while the top boundary is less of concern

since all the fields are almost totally smoothed by the sponge layer.

Indeed, at the top boundary, we assume that all gradients vanish and that [KM ]i,j,Nk+1/2 =

[KT ]i,j,Nk+1/2 = 0 (which are virtual since outside of the domain). It then comes

[Fu turb]i−1/2,j,Nk
= [Fv turb]i,j−1/2,Nk

= [Fw turb]i,j,Nk+1/2 = [FT turb]i,j,Nk+1/4 = 0. (3.69)

At the bottom boundary, as discussed in Sec. 2.3, the continuity of heat and momentum vertical

turbulent fluxes across the bottom boundary is assumed, and surface heat and momentum turbu-

lent fluxes are obtained from the MO similarity. This Cauchy-type boundary condition (Mail-

hot and Benoit, 1982), which is illustrated on Eqs. (2.160) and (2.161), is used to obtain heat

and momentum vertical turbulent fluxes at the lower boundary such as

[
ρXKM

X δzu

Δzm

]
i−1/2,j,1/2

=
[
ρXβM

X

ua

]
i−1/2,j

=
[
−ρu′w′|s

]
i−1/2,j , (3.70)[

ρYKM
Y δzv

Δzm

]
i,j−1/2,1/2

=
[
ρYβM

Y

va

]
i,j−1/2

=
[
−ρv′w′|s

]
i,j−1/2 , (3.71)[

ρZKT
Z δzθ

Δzt

]
i,j,1/2

= [ρZ (βT θa + αT )]i,j =
[
−ρw′θ′|s

]
i,j
, (3.72)
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where ua = [u]i−1/2,j,1, va = [u]i,j−1/2,1 and θa = [θ]i,j,3/4 which are sometimes referred to

variables at the “anemometer” level (Mailhot et al., 1998). The homogeneous terms βM and

βT and the inhomogeneous term αT are two dimensional and horizontally located at the centre

of the mesh, i.e. at pressure location. Their computation is detailed in Sec. 2.3 and Sec. 3.3.7.

Finally, concerning the other bottom boundary conditions, vertical velocity is assumed to van-

ish, i.e. [w]i,j,1/2 = 0, and [KM ]i,j,1/2 and [KT ]i,j,1/2 are computed based on the similarity as

discussed in Sec. 3.2.5.5. Note that, care was taken to properly consider the unusual spacing

of pressure and temperature at the bottom and top boundaries (see Eq. (3.23)).

Considering the above, the various terms involved in the turbulent diffusion bottom boundary

are obtained as follow. Concerning [Fu turb]i−1/2,j,1, the computation of [Au]i−1/2,j−1/2,1 and its

derivative does not require special care. On the contrary, [Bu]i,j−1/2,1/2 is expressed as

[Bu]i−1/2,j,1/2 =
[
ρXβM

X

ua

]
i−1/2,j,1/2

, (3.73)

leading to

[
δzBu

Δzw

]
i−1/2,j,1

=
[Bu]i−1/2,j,3/2 −

[
ρXβM

X

ua

]
i−1/2,j,1/2

[zw]3/2 − [zw]1/2
. (3.74)

Concerning [Fv turb]i,j−1/2,1, similarly as for the streamwise velocity components the computa-

tion of [Av]i−1/2,j−1/2,1 and its derivative is straightforward, while we have

[Bv]i,j−1/2,1/2 =
[
ρY

(
βM

Y

va

)]
i,j−1/2,1/2

, (3.75)

leading to

[
δzBv

Δzw

]
i,j−1/2,1

=
[Bv]i,j−1/2,3/2 −

[
ρYβM

Y

va

]
i,j−1/2,1/2

[zw]3/2 − [zw]1/2
. (3.76)
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Concerning [Fw turb]i,j,1/2, both [Aw]i−1/2,j,1/2 and [Bw]i,j−1/2,1/2 include a vertical gradient of

the horizontal velocity components at the surface. They can be computed such as

[Aw]i−1/2,j,1/2 =
[
ρXβM

X

ua

]
i−1/2,j,1/2

, (3.77)

[Bw]i,j−1/2,1/2 =
[
ρYβM

Y

va

]
i,j−1/2,1/2

, (3.78)

leading to

[
δxAw

Δx

]
i,j,1/2

=

[
δx
Δx

(
ρXβM

X

ua

)]
i,j,1/2

Δx
, (3.79)

[
δyBw

Δy

]
i,j,1/2

=

[
δy
Δy

(
ρYβM

Y

va

)]
i,j,1/2

Δy
, (3.80)

however, they are set to zero.

Finally, concerning [FT turb]i,j,3/4, the computation of [AT ]i−1/2,j,3/4 and [BT ]i,j−1/2,3/4 and their

derivatives are straightforward, while [CT ]i,j,1/2 can be expressed such as

[CT ]i,j,1/2 = [ρZ (βT θa + αT )]i,j,1/2 , (3.81)

leading to

[
δzCT

Δzm

]
i,j,3/4

=
[CT ]i,j,1 − [ρZ (βT θa + αT )]i,j,1/2

[zm]1 − [zm]1/2
. (3.82)

3.2.5.2.3 Horizontal turbulent diffusion

When relying on the standard turbulence model, terms involving horizontal derivatives or in-

terpolations, i.e. FH
turb from Eqs. (3.47) and (3.48), have to be pre-computed in the dynamics

(outside of the dynamic kernel) in a manner similar to the standalone turbulent diffusion as

discussed in Sec. 3.1. Then, as described in Sec. 3.3.3, the output of the horizontal turbulent
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diffusion is included in the physics library where the turbulence modelling is completed to

obtain the total corrections from the turbulent diffusion F turb.

Numerical method used to compute the various terms of the horizontal diffusion are very sim-

ilar to the standalone turbulent diffusion presented in Sec. 3.2.5.2.1, albeit simpler. Indeed,

procedure followed are identical, while there are less terms to compute and boundary condi-

tions are much simpler since only horizontal gradients are considered. The horizontal turbulent

diffusion is explicit in time relying on the main variables at the arrival of the trajectory and at

time t−, i.e. Ψ−
x . The tendency due to horizontal turbulent diffusion can thus be noted FH −

turb.

Mixing coefficients are however based on the value obtained during the previous time step.

An important difference with the standalone model lies in the variables (mostly the pressure)

computed before the horizontal turbulent diffusion is achieved. Indeed, the physics library is

based on a sigma vertical coordinate (i.e. σ = p/p0) obtained (at each time step) relying on the

hydrostatic pressure computed considering variables at time t+, i.e. Ψ+
DE (see Sec. 3.3.2). As

a result, each pressure level zm of the dynamics has a corresponding sigma level σm = p+h /p
+
0

in the physics, and similarly for zt with σt = p+ht/p
+
0 .

Absolute and potential temperatures and air density computed in the physics on temperature

levels at time t− thus rely on p+ht, i.e. the hydrostatic pressure of temperature levels at time t+,

which is consistent with the implicit treatment of the vertical turbulent diffusion. As a result,

for consistency reasons, ρ, π and θ used to pre-compute the horizontal diffusion terms in the

dynamics are obtained based on p+ht on temperature levels (as before). Their computation is

thus very similar to Sec. 3.2.5.2.1, however p+ht is used instead of p−, such as

[
T−
]
i,j,k−1/2 =

[
T∗
g

(
b− + g

)]
i,j,k−1/2

, (3.83)

[
ρ−
]
i,j,k−1/2 =

[
p+ht
RT−

]
i,j,k−1/2

, (3.84)

[
π−
]
i,j,k−1/2 =

[(
p+ht
p0

)R/cp
]
i,j,k−1/2

, (3.85)



230

and

[
θ−
]
i,j,k−1/2 =

[
T−

π−

]
i,j,k−1/2

, (3.86)

which are obtained straightforwardly from the surface [ ]i,j,3/4 to the top [ ]i,j,Nk+1/4. Then,

the various pre-computed components of the horizontal turbulence diffusion, i.e. Eq. (3.48),

are obtained (dropping the information on the time level hereafter). The discrete form of the

streamwise velocity turbulent diffusion thus writes

[
FH
u turb

]
i−1/2,j,k =

[
1

ρXZ

(
δyAu

Δy
+

δzBu

Δzw

)]
i−1/2,j,k

, (3.87)

with the turbulent fluxes discretized as

[Au]i−1/2,j−1/2,k =
[
ρXYZKM

XYZ

(
δxv

Δx
+

δyu

Δy

)]
i−1/2,j−1/2,k

, (3.88)

[Bu]i−1/2,j,k−1/2 =
[
ρXKM

X

(
δxw

Δx

)]
i−1/2,j,k−1/2

. (3.89)

Similarly, the discrete form of the spanwise velocity turbulent diffusion is expressed as

[
FH
v turb

]
i,j−1/2,k =

[
1

ρYZ

(
δxAv

Δx
+

δzBv

Δzw

)]
i,j−1/2,k

, (3.90)

with the turbulent fluxes discretized as

[Av]i−1/2,j−1/2,k =
[
ρXYZKM

XYZ

(
δyu

Δy
+

δxv

Δx

)]
i−1/2,j−1/2,k

, (3.91)

[Bv]i,j−1/2,k−1/2 =
[
ρYKM

Y

(
δyw

Δy

)]
i,j−1/2,k−1/2

. (3.92)

And the discrete form of the vertical velocity turbulent diffusion writes

[
FH
w turb

]
i,j,k−1/2 =

[
1

ρ

(
δxAw

Δx
+

δyBw

Δy

)]
i,j,k−1/2

= [Fw turb]i,j,k−1/2 , (3.93)
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with the turbulent fluxes discretized as

[Aw]i−1/2,j,k−1/2 =
[
ρXKM

X

(
δzu

Δzm
+

δxw

Δx

)]
i−1/2,j,k−1/2

, (3.94)

[Bw]i,j−1/2,k−1/2 =
[
ρYKM

Y

(
δzv

Δzm
+

δyw

Δy

)]
i,j−1/2,k−1/2

. (3.95)

Finally, the temperature turbulent diffusion is discretized as

[
FH
T turb

]
i,j,k−1/2 =

[
gπ

ρT∗

(
δxAT

Δx
+

δyBT

Δy

)]
i,j,k−1/2

, (3.96)

with the turbulent fluxes discretized as

[AT ]i−1/2,j,k−1/2 =
[
ρXKT

XZ δxθ

Δx

]
i−1/2,j,k−1/2

, (3.97)

[BT ]i,j−1/2,k−1/2 =
[
ρYKT

YZ δyθ

Δy

]
i,j−1/2,k−1/2

. (3.98)

The same boundary conditions are used here as in the standalone turbulent diffusion, as de-

scribed in Sec. 3.2.5.2.2. However, FH
u turb, F

H
v turb and FH

T turb do not require anymore a turbu-

lent flux to be provided at the surface as they do not include the vertical diffusion terms. Only

FH
w turb still requires a surface flux as bottom boundary. The latter term is identical as in the

standalone model, it is thus computed following the same approach.

3.2.5.3 TKE equation pre-computed terms

The numerical integration of the TKE prognostic equation is achieved in the physics library,

however, when not considering the ABL as horizontally homogeneous, a non-negligible part

of TKE equation terms involve horizontal derivatives and interpolations. As a result, the latter

have to be pre-computed in the dynamics before being sent to the physics. As a side note, no

standalone version of the TKE equation was implemented in the present study.

The prognostic equation for the 3D TKE is presented in Eq. (2.130). In comparison, to the

1D TKE equation shown on Eq. (2.144) and implemented in the classical column model, the
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advection and A (production) are new terms, while both B (production) and D (diffusion) are

generalized, and C (dissipation) is unchanged. As a result, A and only the terms of B and D

that involve horizontal derivatives and interpolations are pre-computed in the dynamics, while

the remaining terms are computed in the physics as in the column model.

TKE material derivative is obtained following the SL approach as described in Sec. 3.2.1 con-

sidering the TKE as a passive scalar. Concerning the right-hand side of Eq. (2.130), by separat-

ing terms that are already implemented in the classical column model from the others (similarly

as done for the turbulent diffusion), i.e. A = Aphy +Adyn, B = Bphy +Bdyn, C = Cphy +Cdyn

and D = Dphy +Ddyn, we obtain (dropping Favre and Reynolds average formalism)

Adyn =− 2

3

(
∂u

∂x
+

∂v

∂y
+

∂w

∂z

)
, (3.99)

Bdyn =Ckλ

{(
∂u

∂y
+

∂v

∂x

)2

+
∂w

∂x

(
2
∂u

∂z
+

∂w

∂x

)
+

∂w

∂y

(
2
∂v

∂z
+

∂w

∂y

)

+
4

3

[
∂u

∂x

(
∂u

∂x
− ∂v

∂y

)
+

∂v

∂y

(
∂v

∂y
− ∂w

∂z

)
+

∂w

∂z

(
∂w

∂z
− ∂u

∂x

)]}
,

(3.100)

Cdyn =0, (3.101)

Ddyn =
1

ρ

(
∂

∂x

(
ρKk

∂k

∂x

)
+

∂

∂y

(
ρKk

∂k

∂y

))
, (3.102)

and

Aphy =0, (3.103)

Bphy =Ckλ

{
− g

Prtθ

∂θ

∂z
+

(
∂u

∂z

)2

+

(
∂v

∂z

)2
}
, (3.104)

Cphy =
Cε

λε

, (3.105)

Dphy =
1

ρ

∂

∂z

(
ρKk

∂k

∂z

)
. (3.106)
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Numerical integration of the TKE equation along the inclusion of Adyn, Bdyn and Ddyn as

well as the discretization of Bphy, Bphy and Dphy are presented in Sec. 3.3.4. Here, the pre-

computation in the dynamics of Adyn, Bdyn and Ddyn is presented.

As a general remarks, Adyn, Bdyn and Ddyn are computed at the same location as the TKE, i.e.

horizontally at the centre of the mesh and on staggered zw levels. Adyn, Bdyn terms only rely

on variables at the arrival of the Lagrangian trajectory at time t−, i.e. Ψ−
x , while Ddyn is based

on the TKE at time t0 also at the arrival of the trajectory. The horizontal turbulent diffusion of

TKE is thus explicit in time, and these terms can be noted A−dyn, B−dyn and D0
dyn. Note however

that, the mixing coefficient computed during the previous time step, i.e. K∗−
k , is used here. For

its part, the multiplication with the mixing length λ in Bdyn is achieved within the physics.

As a result, the discrete form of A−dyn, B−dyn and D0
dyn can be written as (dropping the informa-

tion on the time level hereafter)

[Adyn]i,j,k−1/2 =
[
−2

3

(
δxu

Z

Δx
+

δyv
Z

Δy
+

δzw
Z

Δzm

)]
i,j,k−1/2

, (3.107)

[Bdyn]i,j,k−1/2 =

[
Ckλ

{(
δyu

XYZ

Δy
+

δxv
XYZ

Δx

)2

+
δxw

X

Δx

(
2
δzu

X

Δzm
+

δxw
X

Δx

)

+
δyw

Y

Δy

(
2
δzv

Y

Δzm
+

δyw
Y

Δy

)
+

4

3

[
δxu

Z

Δx

(
δxu

Z

Δx
− δyv

Z

Δy

)

+
δyv

Z

Δy

(
δyv

Z

Δy
− δzw

Z

Δzm

)
+

δzw
Z

Δzm

(
δzw

Z

Δzm
− δxu

Z

Δx

)]}]
i,j,k−1/2

,

(3.108)

[Ddyn]i,j,k−1/2 =
[
1

ρ

{
∂

∂x

(
ρXKk

X ∂k

∂x

)
+

∂

∂y

(
ρYKk

Y ∂k

∂y

)}]
i,j,k−1/2

. (3.109)

Concerning the boundary conditions of these expressions, a surface value of the TKE is pro-

vided through a Dirichlet boundary condition such as [k]i,j,1/2 = 3.75u2
∗ + 0.2w2

∗ as discussed

in Sec. 3.3.7. Thus, [Adyn]i,j,1/2, [Bdyn]i,j,1/2 and [Ddyn]i,j,1/2 are set to zero. Finally, at the

top boundary, [k]i,j,Nk−1/2 is obtained from the prognostic equation of TKE, and [k]i,j,Nk+1/2

(which is virtual) is always taken to be zero.
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3.2.5.4 Modulus of the strain rate tensor

The strain rate tensor modulus is fully computed in the dynamics regardless of the version of

the turbulent model used (i.e. standard or standalone). It is at the same location as the TKE, i.e.

horizontally at the centre of the mesh and on staggered zw levels. It is computed only relying

on velocity components at the arrival of the trajectory at time t−, i.e. Ψ−
x , and noted S− (the

information on the location in time and on the trajectory is dropped hereafter).

As a reminder, the squared strain rate tensor modulus, Eq. (2.59), writes once fully developed

S2 =

(
∂u

∂y
+

∂v

∂x

)2

+

(
∂u

∂z
+

∂w

∂x

)2

+

(
∂v

∂z
+

∂w

∂y

)2

+
1

2

[(
2
∂u

∂x
− 2

3

∂uk

∂xk

)2

+

(
2
∂v

∂y
− 2

3

∂uk

∂xk

)2

+

(
2
∂w

∂z
− 2

3

∂uk

∂xk

)2
]
,

(3.110)

where the summation apply on k index. The discrete form of S then writes

[
S2
]
i,j,k−1/2 =

[(
δyu

XYZ

Δy
+

δxv
XYZ

Δx

)2

+

(
δzu

X

Δzm
+

δxw
X

Δx

)2

+

(
δzv

Y

Δzm
+

δyw
Y

Δy

)2

+
1

2

{(
2
δxu

Z

Δx
+ A

)2

+

(
2
δyv

Z

Δy
+ A

)2

+

(
2
δzw

Z

Δzm
+ A

)2
}]

i,j,k−1/2
,

(3.111)

with the velocity divergence [A]i,j,k−1/2 that is identical to [Adyn]i,j,k−1/2 from Eq. (3.107).

Finally, concerning the boundaries of S, the surface value of [S]i,j,1/2 is bypassed since [KM ]i,j,1/2

and [KT ]i,j,1/2 are imposed based on MO similarity through a Dirichlet boundary condition.

Thus, [S2]i,j,1/2 = 0 is used. At the top, the computation of [S2]i,j,Nk−1/2 is straightforward and

it is imposed that [S]i,j,Nk+1/2 = 0 (which is virtual).

3.2.5.5 Standalone Smagorinsky SGS model

Heat and momentum turbulent mixing coefficient, KM and KT , need to be known prior to

achieve the turbulent diffusion. Their computation is usually done in the physics library based

on either one of the various SGS models described in Sec. 2.2.3, or on the column model
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presented in Sec. 2.2.5. However, when relying on the standalone turbulence model, KM and

KT also need to be computed in the dynamics (since physics is not anymore activated). As a

first developmental step, only the UKMO Smagorinsky SGS model described in Sec. 2.2.3.1

was implemented in the dynamics (independently from its implementation in the physics).

Mixing coefficients are located on staggered zw levels at the centre of the mesh. They are noted

K∗
M and K∗

T , and computed only relying on variables at the arrival of the trajectory at time t−,

i.e. Ψ−
x (the information on the location in time and on the trajectory is dropped hereafter).

Following the Smagorinsky SGS model presented in Sec. 2.2.3.1, their discrete form write

[KM ]i,j,k−1/2 =
[
λ2fmS

]
i,j,k−1/2 , (3.112)

[KT ]i,j,k−1/2 =
[
λ2fhS

]
i,j,k−1/2 , (3.113)

where the modulus of the strain rate tensor [S]i,j,k−1/2 is computed as described in Sec. 3.2.5.4.

3.2.5.5.1 Length scale

The length scale is computed on staggered levels. Its value in the flow interior writes

[λ0]k−1/2 = min
(
500.,max

(
CS (ΔxΔy)1/2 , CS(ΔxΔy [Δzm]k−1/2)

1/3
))

, (3.114)

where the Smagorinsky constant is set to CS = 0.15. Note that Δx, Δy, as well as CS are con-

stant and Δzm only depends on the height. Thus, λ0 is only a function of height, furthermore,

if [Δzm]i,j,k−1/2 < (ΔxΔy)1/2, λ0 is constant throughout the domain.

Then, the final length scale (that includes an asymptotic surface matching and where z0 that

can be non-homogeneous in space) writes

[λ]i,j,k−1/2 =

[(
1

λn
0

+
1

(κ (zw + z0))
n

)−n]
i,j,k−1/2

, (3.115)
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where the asymptotic surface length scale matching coefficient is set to n = 2. The length

scale is a simple geometric function that only depends on the grid and some coefficients. Thus,

there is no need to recalculate λ at every time step.

3.2.5.5.2 Stability functions

Heat and momentum stability functions, fm and fh, are defined as illustrated in Sec. 2.2.3.1.2

and computed on staggered zw levels. They depend on a local Richardson number, Eq. (2.64),

which discrete form write

[Ri]i,j,k−1/2 =
[
N2

S2

]
i,j,k−1/2

, (3.116)

and which is computed on staggered zw levels by first evaluating potential temperature on

staggered levels as described in Sec. 3.2.5.2.1, and then the Brunt-Väisälä frequency such as

[
N2
]
i,j,k−1/2 =

[
g

θ

δzθ
Z

Δzm

]
i,j,k−1/2

. (3.117)

At the top and bottom of the domain we have [Ri]i,j,1/2 = 0 and [Ri]i,j,Nk+1/2 = 0. Furthermore,

it is imposed that Ri = 0 if S2 < 10−30 in order to prevent overflow in the computation of Ri

(since S2 is always positive).

For unstable stratification (Ri < 0), by developing Eqs. (2.56) and (2.57) replacing fm and fh

by their respective expressions, the discrete form of the mixing coefficients writes

[KM ]i,j,k−1/2 =
[
λ2
(
S2 + 16N2

)1/2]
i,j,k−1/2

, (3.118)

[KT ]i,j,k−1/2 =
[

λ2

PrN

(
S2 − 40N2

)1/2]
i,j,k−1/2

. (3.119)

Thus, while Ri still have to be explicitly computed, mixing coefficients for unstable conditions

never show a division by S. In practice, this avoid possible division by zero and thus overflow

errors when executing the model. This is of particular interest for cases or regions of the ABL
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that do not present velocity gradients such as just after the initialization of theoretical cases.

As a result, the above expression are implemented for the computation of heat and momentum

mixing coefficients in unstable regions (instead of first computing stability functions, and then

the mixing coefficients as presented in Sec. 2.2.3.1). However, to avoid any problems it is fur-

ther imposed that N2 = 0 if N2 > −10−30 (since N2 is always negative in unstable conditions)

and S2 = 0 if S2 < 10−30 (since S2 is always positive) in order to avoid underflow errors.

For subcritical stable stratification (0 ≤ Ri < Ric), the ratio (1− Ri/Ric) is bounded such as

Rifrac = max

(
0,min

(
1, 1− Ri

Ric

))
(3.120)

which leads to the mixing coefficients

[KM ]i,j,k−1/2 =
[
λ2SRi4frac

]
i,j,k−1/2 , (3.121)

[KT ]i,j,k−1/2 =
[

λ2

PrN
SRi4frac (1− 1.2Ri)

]
i,j,k−1/2

. (3.122)

Finally, concerning the boundary values of the the mixing coefficients, at the top

[KM ]i,j,Nk+1/2 = 0 and [KT ]i,j,Nk+1/2 = 0, (3.123)

while at the surface [KT ]i,j,1/2 and [KT ]i,j,1/2 (which are used to compute output diagnostic

near-surface variables) are obtained based on the similarity such as

[λ]i,j,1/2 =

[
κ
z0
φM

]
i,j

, (3.124)

[KM ]i,j,1/2 = [u∗λ]i,j,1/2 , (3.125)

[KT ]i,j,1/2 =

[
KM

φM

φH

]
i,j,1/2

, (3.126)

where φM and φM are the flux profile relationship defined at Eqs. (2.162) and (2.163) and

computed along the friction velocity u∗ as discussed in Sec. 2.3 and Sec. 3.3.7.
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3.3 Physics

The physics library have been actively developed for 30 years at the RPN and was successively

integrated into the various mesoscale models from EC (Mailhot and Benoit, 1982; Delage,

1988; Delage and Girard, 1992; Delage, 1997; Benoit et al., 1989, 1997; Mailhot et al., 1998;

Bélair et al., 1999). It was created before MC2 existed. In a general manner, it includes

a wide range of models for all phenomenon that require a parametrization. It is somewhat

autonomous as it features its own vertical coordinate, discretization and boundary conditions

and does not share memory and variables with the dynamics. Thus, as introduced in Sec. 3.1, all

variables and parameters required by the physics need to be provided by the dynamics through a

dedicated dynamics → physics interface and memory buses. Then, results from the modelling

of physical processes are returned to the dynamics through a dynamics → physics interface

under the form of corrections tendencies, i.e. dΨ/dt, that are added to the main variables.

In the present study, only momentum and heat turbulent processes as well as energy exchanges

at the ground surface are of concern in the physics library. It is also noteworthy that a more

recent version of the physics, that among other features a refined discretization, has been inte-

grated with MC2 during this study.

As a result, this section focuses only on the components of interest, and most of the computa-

tions detailed here are based on the new discretization. However, in order to better appreciate

the differences between the two versions of the physics, the spatial discretization of both origi-

nal and new version of the physics library is presented in a first section along the sigma vertical

coordinate and the processing applied at the interfaces between the physics and the dynam-

ics. Then, the implicit vertical turbulent diffusion is presented along its aggregation with its

horizontal counterpart allowing to obtain the total tendency from the 3D turbulent diffusion of

main variables. Subsequently, the numerical integration of the turbulent kinetic energy equa-

tion is presented. Afterwards, the implementation of SGS models and classical column model

closures are discussed. Finally, the computation of the surface layer scaling quantities and

integrated surface coefficient used in the surface boundary condition is introduced.
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3.3.1 Spatial discretization

In the physics, the three dimensional computational domain used to solve the Euler equations

of motion is considered as a set of Ni×Nj independent columns. Thus, it is to underline that, in

the physics, variables are not stored in 3D arrays but in 1D arrays. Each of these arrays contains

a vertical slice of the 3D domain, thus 2D data (in a 1D array), and each slice are processed on

a different computational processing unit (CPU) in the context of parallel computing. Finally,

considering the differences in the discretization of the physics and the dynamics, a projection

operator similar to [ ]i,j,k but dedicated to the physics { }i,j,k is introduced here8.

3.3.1.1 Horizontal discretization

The Ni × Nj columns processed in the physics9 are located at the mesh centre, i.e. the same

horizontal location as the pressure. Thus, all the quantities sent to the physics must be located

in either [ ]i,j,k−1/2 or [ ]i,j,k while the outputs of the physics require to be interpolated back at

the variable proper location.

As a consequence, both velocity components, and their associated horizontal turbulent diffu-

sion (see Sec. 3.2.5.2.3) are interpolated at the centre of the mesh to obtain the input of the

physics, i.e. [uX]i,j,k, [vY]i,j,k,
[
FH
u turb

X
]
i,j,k

and
[
FH
v turb

Y
]
i,j,k

(horizontal terms of the TKE

equation Adyn, Bdyn, and Ddyn as well as the strain rate tensor modulus S are already located

at the proper location). Similarly, the output of the physics, i.e. the total tendencies/corrections

due to momentum turbulent diffusion, Fu turb and Fv turb, have also to be interpolated back at the

location of the velocity components before been applied as corrections, i.e.
[
Fu turb

X
]
i−1/2,j,k

and
[
Fv turb

Y
]
i,j−1/2,k

. Note that on the contrary, no horizontal interpolation is needed for tem-

perature in either way since it is already located at the centre of the mesh.

These interpolations were linear and done following Eq. (3.17). However, they are applied on

both the input and output of turbulent diffusion at every time step which may introduce some

8 While the three indices in { }i,j,k are not mandatory since all computations in the physics are vertical only

and i = i and j = j, they are kept to retain the same formalism as in the previous sections.
9 Note that no physics processing is done in the halo.



240

numerical diffusion and smoothing of turbulent diffusion tendency fields. It was thus decided

to replace them by cubic interpolations such as taking u and Fu turb as an example (interpolation

in the streamwise direction), we have at the dynamics → physics interface

[uX]i,j,k = − 1

16
[u]i+3/2,j,k +

9

16
[u]i+1/2,j,k +

9

16
[u]i−1/2,j,k −

1

16
[u]i−3/2,j,k ,

(3.127)

= − 1

16
ui+2,j,k +

9

16
ui+1,j,k +

9

16
ui,j,k −

1

16
ui−1,j,k. (3.128)

and to go from the centre to the sides at the physics → dynamics interface

[Fu turb]i−1/2,j,k = − 1

16
[Fu turb]i+1,j,k +

9

16
[Fu turb]i,j,k +

9

16
[Fu turb]i−1,j,k −

1

16
[Fu turb]i−2,j,k ,

(3.129)

= − 1

16
Fu turb i+1,j,k +

9

16
Fu turb i,j,k +

9

16
Fu turb i−1,j,k −

1

16
Fu turb i−2,j,k.

(3.130)

A similar approach is followed for v in the spanwise direction, and for all the terms that need

an horizontal interpolation at the interface between the dynamics and the physics.

Note finally that, at the lateral boundaries of the domain, the cubic interpolation is done

straightforwardly considering lateral periodicity of the various fields.

3.3.1.2 Vertical staggering

The vertical discretization of the physics library is largely influenced by its vertical coordinate.

Indeed, as further discussed in Sec. 3.3.2, a sigma coordinate σ = p/p0 is used, which max-

imum value σ = 1 is located at the surface while the minimum is at the top of the domain.

Thus, for convenience reasons when relying on such a coordinate, it is often chosen to have

the lowest index of the arrays located at the top of the domain and the maximum index at the

bottom boundary, i.e. the surface. This approach is followed in the physics library meaning

that the vertical index are up-side-down compared to the dynamics as illustrated in Fig. 3.7.
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Concerning the vertical location of the main variables, a staggered grid is used so that turbulent

quantities such as the TKE are always staggered with regards to main variables as illustrated

by Fig. 3.7. However, depending of the version of the physics (i.e. the legacy version (Benoit

et al., 1997; Mailhot et al., 1998) in which an early version of the 3D turbulence modelling in

MC2 was implemented (Pelletier et al., 2005), or the new more advanced version integrated

during this work), the location of the variable differs as shown in Fig. 3.7. Note finally that a

special level of velocity components and temperature (at the maximum index in the physics)

serves to store the surface layer diagnostic data, i.e. udiag, vdiag and θdiag. This last level is not

part of the computational domain which thus has one level less than the dynamics.

In this section, both version of the physics vertical discretization are introduced along the

formal projection operator on the physics mesh.

3.3.1.2.1 Original vertical staggering

The version of the physics (version 4.1) that is officially included in the last public version

of MC2 (version 4.9.8) and in which the early version of the 3D turbulence modelling was

implemented (Pelletier et al., 2005), has its full levels (on which temperature and velocity

components are located) matching the staggered levels of the dynamics (i.e. temperature lev-

els), while its staggered level (where the TKE and mixing coefficient are located) correspond

to momentum levels of the dynamics, as illustrated in Fig. 3.7 a).

As a result, a vertical interpolation on temperature level of the horizontal velocity components

is needed to obtain the input of the physics (Benoit et al., 1997). At the interface between the

dynamics to the physics, we thus have

{u}i,j,k = [uXZ]i,j,Nk+1−k+1/2 , (3.131)

{v}i,j,k = [vYZ]i,j,Nk+1−k+1/2 , (3.132)

{θ}i,j,k = [θ]i,j,Nk+1−k , (3.133)

{k}i,j,k−1/2 = [k]i,j,Nk+1−k . (3.134)
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where {}i,j,k is the projection operator to the physics grid and i, j and k are the projected

indices on the physics grid. Note that all horizontal interpolations are cubic as discussed in

Sec. 3.3.1.1. At the bottom level, temperature is properly located, while velocity components

are extrapolated such as

{u}i,j,Nk−1/4 = (1− α) [uX]i,j,1 + α [uX]i,j,2 = [uXZ]i,j,3/4 , (3.135)

{v}i,j,Nk−1/4 = (1− α) [vY]i,j,1 + α [vY]i,j,2 = [vYZ]i,j,3/4 , (3.136)

where traditionally α = ([zw]1/2 − [zm]1)/([zm]2 − [zm]1) is used instead of α = ([zt]3/4 −
[zm]1 /([zm]2− [zm]1) (that is the strict definition of a linear extrapolation) in order to lower the

error associated with the linear extrapolation of variables that follow a log profile.

Subsequently and as in the horizontal directions, physics outputs, i.e. the total tendencies from

turbulent diffusion, are then interpolated back to momentum components location, such as

[Fu turb]i−1/2,j,k =
{
Fu turb

XZ
}

i−1/2,j,Nk+1−k+1/2
, (3.137)

[Fv turb]i,j−1/2,k =
{
Fv turb

YZ
}

i,j−1/2,Nk+1−k+1/2
, (3.138)

[FT turb]i,j,k−1/2 = {FT turb}i,j,Nk+1−k , (3.139)

where horizontal interpolations are cubic as discussed in Sec. 3.3.1.1.

This version of the physics and its coupling with the dynamics are described in Benoit et al.

(1997), while all the underlying mathematical models and numerical methods are further pre-

sented in the official documentation of the physics (Mailhot et al., 1998). The reader is thus

referred to the latter documents for a thorough description of the physics library.

The implementation of the 3D turbulent diffusion in MC2 was at first done based on the original

version of the physics as described in Pelletier et al. (2005). In that version of the model

(dynamics 4.9.8 coupled with physics 4.1 plus 3D turbulence closure), the various horizontal

terms are pre-computed in the dynamics so that neither horizontal nor vertical interpolation
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are needed before sending them to the physics. Thus, unlike what was presented earlier in

Sec. 3.2.5, the turbulent diffusion terms discussed in Sec. 3.2.5.2.3 are computed at the centre

of the mesh but on temperature levels. Similarly, modulus of the strain rate tensor discussed

in Sec. 3.2.5.4 and horizontal terms of TKE equation illustrated in Sec. 3.2.5.3 are computed

at the centre of the mesh but on momentum levels. This is not further described here and the

reader is referred to Pelletier et al. (2005) for further details.

In this original version of the physics library, the required vertical interpolations of momentum,

and notably the extrapolation at the bottom of the domain to obtain [uXZ]i,j,3/4, are triggering a

strong numerical mode with a zigzag pattern polluting the near surface region of the momen-

tum related quantities as discussed in the last chapter of the present study, i.e. Sec. 4.1 and

Sec. 4.4.2. This spurious phenomenon which is present in both the column and 3D turbulence

models (since it is related to the vertical diffusion), was found to be amplified at high resolution

during this study, affecting thus the suitability of the approach for use as a LES model.

3.3.1.2.2 New vertical staggering

In order to overcome numerical imperfections related to the original staggering of the physics,

it was decided to couple the dynamics with a more advanced version of the physics (version

5.0.2) which can handle almost seamlessly the various possible vertical staggering of the dy-

namics (but that did not include 3D turbulence abilities). In fact, the turbulent diffusion of the

various variables is now done according to their location in the dynamics.

Thus, momentum turbulent fluxes u′w′ and v′w′ are computed on staggered levels such as

their divergence falls back on momentum levels. Similarly, heat flux w′θ′ is computed on

momentum levels. As a results, all the main variables and pre-computed terms (as described in

Sec. 3.2.5.2.3, Sec. 3.2.5.4 and Sec. 3.2.5.3) remain at the same height, i.e. velocity components

on full levels, and temperature and TKE on staggered level as shown in Fig. 3.7 b), and only

the heat mixing coefficient needs to be interpolated on momentum levels before processing

heat turbulent diffusion. This new version of the physics is still based on a sigma vertical

coordinate, and array indices are up side-down compared to the dynamics.
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As a summary the following is done at the dynamics → physics interface

{u}i,j,k = [uX]i,j,Nk+1−k , (3.140)

which is also the case for the pre-computed term FH
u turb from Eq. (3.87),

{v}i,j,k = [vY]i,j,Nk+1−k , (3.141)

which is also the case for the pre-computed term FH
v turb from Eq. (3.90),

{θ}i,j,k−1/2 = [θ]i,j,Nk+1−k+1/2 , (3.142)

which is also the case for the pre-computed term FH
T turb from Eq. (3.96),

{k}i,j,k−1/2 = [k]i,j,Nk+1−k+1/2 , (3.143)

which is also the case for the pre-computed terms Adyn, Bdyn and Ddyn from Eqs. (3.107),

(3.108) and (3.109), and the strain rate tensor modulus from Eq. (3.111).

Then, when returning the total tendencies (that include both vertical and horizontal turbulent

diffusion) to the dynamics, we have

[Fu turb]i−1/2,j,k =
{
Fu turb

X
}

i−1/2,j,Nk+1−k
, (3.144)

[Fv turb]i,j−1/2,k =
{
Fv turb

Y
}

i,j−1/2,Nk+1−k
, (3.145)

[FT turb]i,j,k−1/2 = {FT turb}i,j,Nk+1−k+1/2 , (3.146)

which is achieve at the physics → dynamics interface, outside of the physics library. Note that

all horizontal interpolations in the above equation are cubic as discussed in Sec. 3.3.1.1.
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In order to couple this new version of the physics with the MC2 dynamics, the interface be-

tween the physics and the dynamics had to be adapted following the above rules. In addition,

the new physics library was further modified to include the new features dealing with high

resolution 3D turbulence modelling, such as the inclusion of the horizontal terms of turbulent

diffusion and TKE equation, and several SGS models (in addition to others minor adaptations).

Further details on the interface between the physics and the dynamics, and the modifications

of the new physics are given all along this section, i.e. Sec. 3.3.

3.3.2 Sigma vertical coordinate

The physics library is based on a sigma vertical coordinate σm = p+h /p
+
0 as introduced in

Sec. 3.3.1.2. It is obtained (at each time step) based on the hydrostatic pressure p+h , which is

computed considering surface pressure p+0 and temperature profile of the output of the dynamic

kernel at time t+, i.e. Ψ+
DE . Thus, every dynamics pressure/momentum level zm has a corre-

sponding hydrostatic sigma level σm in the physics, and similarly for zt with σt = p+ht/p
+
0 and

for zw with σe = p+ht/p
+
0 except at the first level where σe = σm = 1. The computation of the

sigma levels used in the physics is fully part of the dynamics → physics interface.

3.3.2.1 From height to sigma coordinate

In the dynamics, in order to compute the hydrostatic pressure on momentum and temperature

levels, i.e. p+h and p+ht, absolute temperature T+ at time t+ (i.e. based on Ψ+
DE) is first computed

on temperature levels such as

[
T+
]
i,j,k−1/2 =

[
T∗
g

(
b+ + g

)]
i,j,k−1/2

, (3.147)

then, the hydrostatic pressure is obtained integrating the hydrostatic relation from the surface

to the top of the domain such as for each layer

[
p+h
]
i,j,k

=
[
p+h
]
i,j,k−1

[
exp

(
−gΔzm

RT+

)]
i,j,k−1/2

, (3.148)
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with the surface pressure given by

[
p+h
]
i,j,1/2

=

[
p0 exp

(
P+

RT∗

)]
i,j,1/2

. (3.149)

Finally, the pressure on temperature levels is obtained following

[
p+ht
]
i,j,k−1/2 =

([
p+h
]
i,j,k

[
p+h
]
i,j,k−1

)1/2
, (3.150)

with

[
p+ht
]
i,j,3/4

=
([

p+h
]
i,j,1

[
p+h
]
i,j,1/2

)1/2
, (3.151)[

p+ht
]
i,j,Nk+1/4

=
([

p+h
]
i,j,Nk+1/2

[
p+h
]
i,j,Nk

)1/2
. (3.152)

Once the hydrostatic pressure is computed on the various sets of levels, the sigma coordinate

σt and σm can be readily obtained such as

[σt]i,j,k−1/2 =

[
p+ht
]
i,j,k−1/2[

p+h
]
i,j,1/2

, (3.153)

[σm]i,j,k =

[
p+h
]
i,j,k[

p+h
]
i,j,1/2

, (3.154)

which leads to the following once projected on the physics grid

{σt}i,j,k−1/2 = [σt]i,j,Nk+1−k+1/2 , (3.155)

{σm}i,j,k = [σm]i,j,Nk+1−k . (3.156)

For their part, the TKE sigma levels σe are at the same height as σt except the bottom level

which is located at the surface, i.e. Nk + 1/2 instead of Nk + 1/4.
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Finally, the top and bottom boundaries, i.e. σT and σB of the model are given by

σB = {σm}i,j,Nk+1/2 = {σe}i,j,Nk+1/2 = 1, (3.157)

σT = {σm}i,j,1+1/2 . (3.158)

3.3.2.2 From sigma to height coordinate

Once in the physics, the height of the sigma levels is retrieved by solving the hydrostatic

relation for z, which takes the following form in σ coordinate

∂σ

∂z
= − gσ

RT
= −ρg

p0
. (3.159)

As a side note, the Exner function take the following convenient form in sigma coordinate

π = σR/cp , (3.160)

it is thus straightforward to go from absolute to potential temperature.

Concerning the vertical derivatives in a sigma coordinate, based on the above expression, the

vertical gradient in height coordinate of a given variable ψ can be written as

∂ψ

∂z
=

∂ψ

∂σ

∂σ

∂z
= − gσ

RT

∂ψ

∂σ
= −ρg

p0

∂ψ

∂σ
. (3.161)

As a result, the vertical diffusion of ψ takes the following convenient form

1

ρ

∂

∂z

(
ρKψ

∂ψ

∂z

)
=

∂

∂σ

(
Ǩψ

∂ψ

∂σ

)
. (3.162)

where we have

Ǩψ =
( gσ

RT

)2
Kψ. (3.163)



249

Finally, the vertical grid spacing at a given height is obtained directly by

{Δzm}i,j,k+1/2 = −
R {T}i,j,k+1/2

g
ln

(
{σm}i,j,k+1

{σm}i,j,k

)
. (3.164)

3.3.3 Implicit vertical turbulent diffusion

The vertical turbulent diffusion solved in the physics is illustrated in Eq. (3.49) and detailed in

Appendix III. These terms are shared by both the column and the 3D turbulence model. For

any variable ψ (being either u, v or θ), the sole impact of the vertical turbulent diffusion on the

main variables can be expressed as (similarly as Eqs. (2.48) and (2.54))

[
dψ

dt

]V
turb

=
1

ρ

∂

∂z

(
ρKψ

∂ψ

∂z

)
≡ F V

ψ turb, (3.165)

where, following the formalism from Eqs. (2.33) to (2.36) and Sec. 3.2.5, [dψ/dt]Vturb is equiv-

alent to F V
u turb, F

V
v turb and T∗F V

T turb/gπ for u, v and θ equations respectively (see Eq. (3.49)).

After transforming Eq. (3.165) in sigma coordinates following Eq. (3.162), the discrete form

in time of the implicit vertical diffusion can be written as

ψ+ − ψ∗

2Δt
=

∂

∂σ

(
Ǩ∗

ψ

∂ψ+

∂σ

)
≡ F V +

ψ turb(ψ
∗) , (3.166)

where Ǩ∗
ψ is obtained following Eq. (3.163) with K∗

ψ first computed as described in Sec. 3.3.5

and Sec. 3.3.6 prior to solve Eq. (3.166).

The above equation is solved for Δψ = ψ+ − ψ∗ as discussed by Mailhot and Benoit (1982),

Benoit et al. (1989) and Mailhot et al. (1998), and the solution obtained is added as a correction

to the output of the dynamic kernel, such that the final value (turbulence aware) of the main

variables is obtained. Note however that, the initial value ψ∗ required to solve Eq. (3.166)

differs depending of the approach.
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In the column model, following a fractional step approach, ψ∗ is directly taken to be the output

from the dynamic kernel, i.e. Ψ+
DE , such as following the matrix form introduced at Eq. (2.33),

the final value of the main variables is expressed as

Ψ+
DEF = Ψ+

DE + 2ΔtF V +
turb

(
Ψ+

DE

)
, (3.167)

and thus the total tendency writes

F ∗
turb = F V +

turb

(
Ψ+

DE

)
. (3.168)

In the context of three dimensional turbulence modelling, by generalizing the fraction-step

philosophy, the horizontal turbulent diffusion pre-computed term, FH −
turb

(
Ψ−), is added to Ψ+

DE

in order to compute an initial value ψ∗ for the vertical turbulent diffusion Eq. (3.166). Thus,

using the matrix form as above, the initial value of Eq. (3.166) writes as follow when the 3D

turbulent diffusion is involved

Ψ ∗ = Ψ+
DE + 2ΔtFH −

turb

(
Ψ−) , (3.169)

and the final value of the main variables is obtained such as

Ψ+
DEF = Ψ ∗ + 2ΔtF V +

turb(Ψ
∗) . (3.170)

and thus the total tendency writes

F ∗
turb = FH −

turb

(
Ψ−)+ F V +

turb(Ψ
∗) . (3.171)

As a side note, this formulation is compatible with Eq. (3.166) since FH −
turb vanish in the 1D

context, and thus Ψ ∗ = Ψ+
DE is recovered.
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The boundary conditions involved to solve Eq. (3.166) are defined similarly as presented in

Sec. 3.2.5.2.1, but they further include the sigma coordinate transformation such as they write

Ǩ∗
ψ

∂ψ+

∂σ

∣∣∣∣
σT

= 0, (3.172)

Ǩ∗
ψ

∂ψ+

∂σ

∣∣∣∣
σB

= −β̌−ψ
(
ψ+
a − ψ−s

)
, (3.173)

where

β̌−ψ =

(
g

RT−s

)
β−ψ , (3.174)

and ψ+
a (unknown) is either {u+}i,j,Nk

, {v+}i,j,Nk
or {θ+}i,j,Nk+1/4, and β−ψ and α−ψ = −β−ψψ

−
s

are the associated homogenous and inhomogeneous surface terms computed as in Sec. 2.3 and

Sec. 3.3.7 prior to solve Eq. (3.166).

Finally, the spatial discretization of the above equations, as well as further details regarding the

original solver can be found in Mailhot and Benoit (1982), in Benoit et al. (1989, Appendix B

and C) and in Mailhot et al. (1998). Here, it is however to underline that, in the new version

of the physics, variables are vertically located as in the dynamics. Thus, while the exact same

solver as in the original version of the physics is used, there is half a vertical layer offset for

momentum diffusion (thus momentum diffusion discretization is similar to the TKE diffusion

in the original version of the model). At the opposite, turbulent diffusion of heat is unchanged

with regards to the original version of the physics, but the heat mixing coefficient is interpolated

on σm levels prior to solve Eq. (3.166).

3.3.4 Numerical integration of turbulent kinetic energy equation

The integration of the TKE equation Eq. (2.130) from t0 to t+ is achieved by splitting the pro-

cess into several fractional steps similarly as the turbulent diffusion. This approach is used to

solve the 1D TKE equation in the physics (Mailhot and Benoit, 1982; Benoit et al., 1989), and
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it is generalized to the 3D context where horizontal and vertical terms are further split (Pelletier

et al., 2005) (see also Sec. 3.2.5.3).

In this generalized fractional-step method, k+
DE is first computed following the SL advection

scheme as described in Sec. 3.2.1 (considering the TKE as a passive scalar, see Eq. (3.10))10.

Then, the remaining non-diffusive terms B−phy and C−phy are computed based on variables at

time t− following Eqs. (3.104) and (3.105), and all terms are brought together, such as

A− = A−dyn, B− = B−dyn +B−phy, C− = C−phy. (3.175)

The non-diffusive part of the TKE equation then writes (dropping the superscript)

∂k∗

∂t
= Ak∗ +Bk∗ 1/2 − Ck∗ 3/2, (3.176)

which is solved for an intermediate solution k∗ considering A, B and C independent of time

and using k+
DE as initial value, such as

∫ t+

t0
dt =

∫ k∗

k+DE

dη

Aη +Bη1/2 − Cη3/2
. (3.177)

The right hand side integral is obtained analytically (quadratic equation). In comparison to the

1D version (Mailhot and Benoit, 1982; Benoit et al., 1989), A is new in the 3D model. Thus,

the computation of the above integral required a new analytic solver as discussed by Pelletier

et al. (2005). Note also that, C can now take a different form depending on the closure (i.e.

column model, hybrid TKE SGS model, Deardorff SGS model, ...).

Subsequently, the TKE horizontal diffusion tendency D0
dyn (that is explicit in time, see Sec. 3.2.5.3)

is added to k∗, and a second intermediate value is obtained such as

k� = k∗ + 2ΔtD0
dyn

(
k0
)
. (3.178)

10 This step is bypassed when relying on the column model as TKE advection is neglected.
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Finally, the vertical diffusion of TKE is solved implicitly for Δk = k+ − k� using k� from

the above equation as initial value. In this last step, a similar approach as for the momentum

and temperature (see Sec. 3.3.3) is followed but with an appropriate mixing coefficient, i.e.

Kk = 2.08KM (see Sec. 2.2.4), and top and bottom boundary conditions. Note also that in the

new version of the physics there is half a level vertical offset compared to the original version

of the model (thus discretization of the TKE vertical diffusion in the new physics version is

similar to momentum and heat vertical diffusion in the original version of the model). As a

summary, the discrete form in time of the latter equation in sigma coordinate can be written

k+ − k�

Δt
=

∂

∂σ

(
Ǩ∗

k

∂k+

∂σ

)
≡ D+

phy(k
�) (3.179)

where Ǩ∗
k is obtained as in Eq. (3.163), and the top and bottom boundary conditions write

Ǩ+
k

∂k+

∂σ

∣∣∣∣
σT

= 0, (3.180)

k+
∣∣
σB

= k0
a, (3.181)

where k0
a = 3.75u2

∗+0.2w2
∗ (Wyngaard and Coté, 1974) and the TKE is clipped by a minimum

value, i.e. k+ = max (k+, 10−4).

The tendency from the vertical diffusion of TKE is then known, and the final value of the TKE

at time t+ is obtained such as

k+ = k� + 2ΔtD+
phy(k

�) . (3.182)

Note that, as for the vertical diffusion of heat and momentum, the above equation involved

when the 3D turbulent model is used, is consistent with the column model, since when relying

on the latter D0
dyn(k

0) vanish and we have k� = k∗.
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3.3.5 SGS models

The mathematical model of the five SGS models evaluated during the present study was intro-

duced in Sec. 2.2.3 where Tab. 2.1 presented their detailed overview. They serve to compute

the mixing coefficients which are located at the same place as the TKE as shown in Fig. 3.7, i.e.

vertically on staggered σe levels and horizontally at the centre of the mesh (as all the column

of the physics)11. In a general manner, main variables at time t− are used here, i.e. Ψ−. The

information on their location in time (superscript) is thus dropped hereafter.

In this section, the implementation of the five SGS models in the physics library is discussed.

However, before entering into the details of each SGS model, it is convenient to introduce the

computation of some quantities common to several SGS models.

The TKE and the strain rate tensor modulus are located on staggered levels at the centre of

the mesh, i.e. {k}i,j,k+1/2 and {S}i,j,k+1/2, they can thus be used straightforwardly to compute

mixing coefficients. Concerning their time level, S is pre-computed in the dynamics based

on variables at time t−, it can thus be noted S−. On the other hand, the time integration

of TKE is achieved after the mixing coefficient are computed as illustrated in Fig. 3.2. As

result, mixing coefficients are computed based on k+
DE in agreement with the fractional step

philosophy (Mailhot et al., 1998).

The height (agl) of σe levels (i.e. {zw}i,j,k+1/2) and the vertical resolution {Δzm}i,j,k+1/2 are

also required by several SGS models to define the mixing and dissipation length scales, and

some of the vertical gradients. The former is obtained as discussed in Sec. 3.3.2, while the

latter is computed as in Eq. (3.164). The filter width Δ, is given by

{Δ}k+1/2 =
(
ΔxΔy {Δzm}k+1/2

)1/3
, (3.183)

which is only a function of height.

11 As a side note, KT is computed on staggered σe levels, however, it is interpolated on σm before proceeding

to the vertical turbulent diffusion of temperature as discussed in Sec. 3.3.3.
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Concerning gradients, based on the physics discretization formalism, the Brunt-Väisälä fre-

quency is expressed on staggered σe levels as

{
N2
}
i,j,k+1/2

=

{
g

θ

δzθ
Z

Δzm

}
i,j,k+1/2

, (3.184)

where θ is interpolated on σm levels for the vertical derivative of θ
Z

to be located on σe levels.

In the following, the discrete form of the remaining quantities required by each SGS model is

detailed. It is however noteworthy that the physics library is largely relying on single precision

floats and integers (32 bit). Thus, as presented in this section, some limits and bounds have to

be imposed to avoid not only overflow and underflow, but also spurious phenomenon arising

for situations such as after initializing a perfectly neutral theoretical case with no shear.

3.3.5.1 UKMO Smagorinsky SGS model

The implementation of the UKMO Smagorinsky SGS model in the physics library is very

similar to the standalone SGS model included in the dynamics and presented in Sec. 3.2.5.5.

Indeed, while two separated routine perform these computations, both versions rely on the

same numerical method, boundary conditions and limits to avoid overflow and underflow.

Following Eqs. (2.56) and (2.57), the discrete form of UKMO Smagorinsky SGS model mixing

coefficients on σe levels can be written

{KM}i,j,k+1/2 =
{
λ2fmS

}
i,j,k+1/2

, (3.185)

{KT}i,j,k+1/2 =
{
λ2fhS

}
i,j,k+1/2

, (3.186)

where the length scale λ is constant in time and function of height agl. It is thus computed once

during initialization and it writes

{λ}i,j,k+1/2 =

{(
1

λn
0

+
1

(κ (zw + z0))
n

)−n}
i,j,k+1/2

, (3.187)



256

where n = 2 and the length scale value in the flow interior λ0 is given by

{λ0}k+1/2 = min
(
500.,max

(
CS (ΔxΔy)1/2 , CS {Δ}k+1/2

))
, (3.188)

with the Smagorinsky constant CS = 0.15.

Heat and momentum stability functions, fm and fh are defined as illustrated in Sec. 2.2.3.1.2.

They are computed following the approach presented in Sec. 3.2.5.5.2. Thus, after the Brunt-

Väisälä frequency is computed on staggered levels σe based on Eq. (3.187), the local Richard-

son number defined on Eq. (2.64) is computed such as

{Ri}i,j,k+1/2 =

{
N2

S2

}
i,j,k+1/2

(3.189)

Furthermore, it is imposed Ri = 0 if S2 < 10−30 in order to prevent overflow, and at the top

and bottom of the domain {Ri}i,j,1/2 = {Ri}i,j,Nk+1/2 = 0.

Finally, mixing coefficients are computed exactly as in Sec. 3.2.5.5.2 considering the proper

vertical indexing of the physics as described in Sec. 3.3.1. Finally, note that the same limits in

S and N as in Sec. 3.2.5.5.2 are used here to avoid overflow and underflow errors.

3.3.5.2 Deardorff SGS model

The Deardorff (1980) SGS model was introduced in Sec. 2.2.3.2. The discrete form on stag-

gered levels of its momentum and heat mixing coefficients writes

{KM}i,j,k+1/2 =
{
Ckλk

1/2
}
i,j,k+1/2

, (3.190)

{KT}i,j,k+1/2 =

{
KM

Prt

}
i,j,k+1/2

, (3.191)
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and the dissipation rate of TKE writes

{ε}i,j,k+1/2 =

{
Cε

λε

k3/2

}
i,j,k+1/2

, (3.192)

where Ck = 0.1, Cε = 0.93, Prt is computed directly using Eq. (2.78) and λ is defined as

{λ}i,j,k+1/2 =

⎧⎪⎨⎪⎩
{Δ}k+1/2 , unstable

min({Δ}k+1/2 , {LN}i,j,k+1/2), stable

,

{λε}i,j,k+1/2 = {λ}i,j,k+1/2 ,

and

{LN}i,j,k+1/2 =

{
0.76

k1/2

N

}
i,j,k+1/2

. (3.193)

In order to avoid underflow/overflow errors as well as spurious phenomenon arising after the

initialization of neutral theoretical cases, the following limits are imposed during the computa-

tion of the Brunt-Väisälä frequency{
δzθ

Z

Δzm

}
i,j,k+1/2

= 0, if

{∣∣∣∣∣ δzθ
Z

Δzm

∣∣∣∣∣
}

i,j,k+1/2

< 5× 10−6, (3.194)

and N2 = max (N2, 10−15).

3.3.5.3 Hybrid TKE SGS model

The hybrid TKE SGS model was introduced in Sec. 2.2.3.3. Its mixing coefficients and dissi-

pation are defined as in Deardorff SGS model, but as in the UKMO Smagorinsky SGS model,

they also include a Smagorinsky-type constant and stability functions (that are the same as

in the column model). The discrete form on staggered levels of the hybrid TKE SGS model
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mixing coefficients thus writes

{KM}i,j,k+1/2 =
{
C ′kλfmk

1/2
}
i,j,k+1/2

, (3.195)

{KT}i,j,k+1/2 =
{
C ′kλfhk

1/2
}
i,j,k+1/2

, (3.196)

and the dissipation is parametrized similarly

{ε}i,j,k+1/2 =

{
C ′ε

λεfm
k3/2

}
i,j,k+1/2

, (3.197)

where the closure constants C ′k = 0.516 and C ′ε = 0.137 are used.

The mixing length scales is proportional to the filter width through a Smagorinsky like constant

{λ}i,j,k+1/2 = {min [κ (zw + z0) , λ0]}i,j,k+1/2 , (3.198)

with λ0 = min [CSΔH , λe], CS = 0.15 and λe = 200 m.

Stability functions are dependent of the gradient Richardson number as defined in Eq. (2.88).

The latter is computed on staggered levels and writes

{Ri}i,j,k+1/2 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
g

θ

δzθ
Z

Δzm(
δzu

Δzm

)2

+

(
δzv

Δzm

)2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
i,j,k+1/2

. (3.199)

where the numerator is equal to N2 (obtained as in Eq. (3.184)). Note that the same limits

as in Deardorff SGS model are imposed for the computation of the latter, and 10−6 is added

to the denominator of Ri (done in the official version of the physics) in order to avoid under-

flow/overflow errors as well as spurious phenomenon mostly during the initialization.

Then, stability functions are obtained straightforwardly on staggered levels based on Eqs. (2.89)

and (2.90) where the turbulent Prandtl number PrN = 0.85 is used. However, the product of
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the mixing length by the stability function is further bounded in unstable conditions such as

{λfm}i,j,k+1/2 = min
(
{λfm}i,j,k+1/2 , 5000

)
. (3.200)

Finally, the dissipation length scale is obtained such as

{λεfm}i,j,k+1/2 = max
(
{λfm}i,j,k+1/2 , 10

−6
)
. (3.201)

3.3.5.4 Redelsperger SGS model

As introduced in Sec. 3.3.5.4, Redelsperger et al. (2001) SGS model is similar to Deardorff

SGS model: the discrete form of the mixing coefficient and TKE dissipation rate are identical to

Eqs. (3.190), (3.191) and (3.192), and the same definition is used for the mixing and dissipation

length scales in the flow interior (along with the limits to avoid overflow/underflow) as well as

the closure constants (Ck; Cε) = (0.1; 0.93).

However, in the vicinity of the surface, mixing and dissipation length scales become height

dependent such as in neutral condition we have

{Lk}i,j,k+1/2 = {(1− γ)Akzw + γΔ}i,j,k+1/2 , (3.202)

{Lε}i,j,k+1/2 = {(1− γ)Aεzw + γΔ}i,j,k+1/2 , (3.203)

where the additional closure constants Ak = 2.7 and Aε = 2.07, and γ ∈ [0, 1] is a weighting

function defined latter.

In the present version of Redelsperger SGS model, no care is taken to adapt Ak and Aε depend-

ing on the thermal stratification of the surface layer. As a result, stratification is only taken into

account as in Deardorff SGS model, and {λ}i,j,k+1/2 and {λε}i,j,k+1/2 are obtained based on the
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switch presented on Eq. (2.103) to (2.106), i.e. for unstable stratification (Ri < 0)

{λ}i,j,k+1/2 = {Lk}i,j,k+1/2 , (3.204)

{λε}i,j,k+1/2 = {Lε}i,j,k+1/2 , (3.205)

while for stable stratification (Ri > 0)

{λ}i,j,k+1/2 = {min(Lk,LN)}i,j,k+1/2 , (3.206)

{λε}i,j,k+1/2 = {min(Lε,LN)}i,j,k+1/2 . (3.207)

where LN is computed as in Deardorff SGS model, i.e. Eq. (3.193) (relying on the same limits).

The weighting function γ is defined as

{γ}i,j,k+1/2 =

{
1− exp

(
−3

z1 − zw
z1 − zc

)}
i,j,k+1/2

, (3.208)

where z1 = {zw}i,j,Nk−1/2 is the height of the first TKE level above the surface, and {zc}i,j,k+1/2

is a critical height computed as

{zc}i,j,k+1/2 = max

(
2 {Δzm}i,j,k+1/2

κ
,
2ΔH

3κ

)
. (3.209)

3.3.5.5 Linear Kosović SGS model

The linear Kosović SGS model is described in Sec. 2.2.3.5.4. In that simplified version, no

backscatter effects are taken into account, i.e. Cb = C1 = C2 = 0, and Kosović SGS stress

model become linear and similar to the Deardorff (1980) SGS model. Mixing coefficients and

dissipation are identical to Eqs. (3.190), (3.191) and (3.192), while the closure constants and

length scales slightly differ.
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The mixing length is based on the filter width as in Deardorff SGS model, i.e. λ = Δ. But on

the contrary, the dissipation length scales does not always equal λ, and we have

{λε}i,j,k+1/2 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{Δ}i,j,k+1/2 , unstable{(

1

Δ2
+

1

L2
N

+
1

L2
S

)−1/2}
i,j,k+1/2

, stable
, (3.210)

where {LN}i,j,k+1/2 is computed as in Deardorff SGS model, Eq. (3.193), and relying on the

same limits. For its part, {LS}i,j,k+1/2 =
{
2.76k1/2/S

}
i,j,k+1/2

is obtained straightforwardly

on staggered levels.

Finally, concerning the closure constants, Ck = Cε = 0.0943 (as opposed to the other SGS

models) and the turbulent Prandtl number is taken to be Prt = 1/3.

3.3.6 Classical column closure

The classic column model is almost identical to the Hybrid TKE SGS model presented in

Sec. 3.3.5.3, albeit simpler. Indeed, as introduced in Sec. 2.2.5.2, both models share the

same definition for the mixing coefficients, Eqs. (3.195) and (3.196), the TKE dissipation

rate, Eq. (3.197), the Ri and stability functions, Eqs. (3.199), (2.89) and (2.90), and finally

the closure constants (C ′k; C
′
ε) = (0.516; 0.138), Eqs. (2.91) and (2.92).

In fact, the only difference between the hybrid TKE SGS model and the column model (beyond

the boundary layer approximation) is in the mixing length: the Smagorinsky-type constant is

no longer present in the column model, and we have

{λ}i,j,k+1/2 = {min [κ (z + z0) , λe]}i,j,k+1/2 , (3.211)

{λε}i,j,k+1/2 = {λ}i,j,k+1/2 , (3.212)

where λe = 200 m (Blackadar, 1962).
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3.3.7 Surface layer similarity theory

In the official versions of the physics library (both the legacy that came with MC2 and the

new versions), surface layer parameters, such as the friction velocity, the surface sensible heat

flux or the Monin-Obukhov length scale, are evaluated following the mathematical model in-

troduced in Sec. 2.3. They are thus computed considering only the modulus of velocity Ua

at a given level zaM in the surface layer and the temperature difference (θa − θs) between the

surface, z = 0 m, and a given height zaH in the surface layer (along with the momentum and

temperature aerodynamic roughness lengths, z0M and z0H , respectively).

In the present study, all the cases reproduced require a surface sensible heat flux w′θ′|s to

be imposed (as opposed to the surface temperature) which is a common approach for LES

theoretical cases (Nieuwstadt et al., 1992; Kosović and Curry, 2000). Thus, the approach to

compute the surface layer parameters had to be adapted, such as at each time step, based on the

velocity and temperature at the first level above the surface at time t−, i.e.

{Ua}i,j =
{
(u− 2 + v− 2)1/2

}
i,j,Nk

(located at {zaM}i,j = {zm}i,j,Nk
),

{θa}i,j =
{
θ−
}
i,j,Nk+1/4

(located at {zaH}i,j = {zt}i,j,Nk+1/4 ),

and the given input parameters
{
w′θ′|s

}
i,j

, {z0M}i,j and {z0H}i,j, we need to compute {u∗}i,j
and {LMO}i,j, that will then allow to obtain all others surface layer quantities such as the

homogeneous and inhomogeneous boundary condition terms.

In this section, this modified approach is described for the unstable surface layer. Note that

the spacial indices and time level information is dropped hereafter (since all fields are 2D and

located at the centre of the mesh and only variables at time t− are used as input).
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Starting with the definition of u∗ and LMO as presented in Sec. 2.3, a system of two equations

and two unknowns (u∗ and LMO) can be obtained such as

LMO = − u3
∗θa

κgw′θ′|s
, (3.213)

u∗ =
Uaκ

ΦM

, (3.214)

where ΦM is a function of zm/LMO defined as in Eqs. (2.164).

This system can be solved for 1/LMO thanks to the Newton-Raphson method12. For that pur-

pose, u∗ as defined in Eq. (3.214) is first substituted in Eq. (3.213) to obtain

1

LMO

= − gw′θ′|s
κ2U3

aθa
Φ3

M . (3.215)

Then, the function, which root is searched, can be defined such as

f

(
1

LMO

)
= − gw′θ′|s

κ2U3
aθa

Φ3
M − 1

LMO

, (3.216)

and which derivative writes

f ′
(

1

LMO

)
= −3gw′θ′|s

κ2U3
aθa

Φ′MΦ2
M − 1. (3.217)

where ΦM is defined as in Eq. (2.164), and Φ′M is given by

Φ′M = LMO

(
x−1 − x−10

)
(3.218)

with x and x0 defined as in Eq. (2.165) (see also Delage and Girard (1992) Appendix).

12 Following the Newton-Raphson method, the root of a given a function f defined over the reals x and which

derivative write f ′, can be evaluated iteratively such as xn+1 = xn − f(xn)/f
′(xn).
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Finally, after four iterations of the Newton-Raphson method (Delage and Girard, 1992), i.e.

(
1

LMOn+1

)
=

(
1

LMOn

)
−

f

(
1

LMOn

)
f ′
(

1

LMOn

) , (3.219)

an approximated value of LMO is obtained. Then, both ΦM and ΦH , Eqs. (2.164) and (2.166),

become fully known as well as u∗ that is retrieved thanks to Eq. (3.214).

At that point, other variables such as the surface temperature θs can be computed, i.e.

θs = θa +
ΦHw′θ′|s

κu∗
, (3.220)

but also, and more importantly, the surface transfer coefficients CM and CH , Eqs. (2.156) and

(2.157)), as well as the homogeneous and inhomogeneous momentum and temperature surface

boundary terms that write

βM = CMu∗ =
κu∗
ΦM

=
κ2Ua

Φ2
M

and αM = 0, (3.221)

βT = CHu∗ =
κu∗
ΦH

=
κ2Ua

ΦMΦH

and αT = − κ2Ua

ΦMΦH

θs. (3.222)

This then allows to provide surface boundary to the various turbulent quantities and processes

such as the momentum and heat turbulent diffusion. This method to compute surface layer

parameters (that was at first only included in the physics) was also fully implemented in the

dynamics to provide the standalone turbulence model with surface boundaries.

Finally, it is to underline that the same surface boundary condition as described above is used

in conjunction with the five SGS models. Thus, the particular stability functions used for the

surface boundary condition of the UKMO LEM model (Gray et al., 2001) are not used here.

Similarly, for consistency reasons, the SGS model proposed by Redelsperger et al. (2001) for

non-neutral condition would require to be adapted according to the stability functions from

Delage and Girard (1992) and Delage (1997) (if it were used).
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3.4 Initialization

The initialization is the first necessary step allowing to properly perform numerical simulation

of ABL flows relying on either the classical column model or the LES model. As previously

discussed in Sec. 2.5, three dimensional initial fields of the main model thermodynamic vari-

ables, i.e. P and b, need to be populated such as the atmosphere is in equilibrium. The approach

followed here is the same regardless of the model used. At the opposite, velocity component u,

v, w initialization is more model dependent. Note that in any cases, the three time levels t−, t0

and t+, of all the main variables Ψ of the model have to be initialized, but not the TKE which

is set to a default value at the first time step.

In this section, the numerical details of the initialization step are further discussed by first

presenting the initialization of the 3D thermodynamic fields introduced in Sec. 2.5. Then, the

initialization of velocity components is discussed.

3.4.1 Initialization of thermodynamic fields

As introduced in Sec. 2.5, thermodynamic variables three dimensional initial fields are ob-

tained following a sounding like initialization approach. Thus, considering the hydrostatic

equilibrium and a given reference vertical profile of potential temperature, the profiles of the

generalized pressure P and the buoyancy b are first computed. Then, since the geostrophic

balance is implicitly taken into account through the additional large scale forcing terms de-

scribed in Sec. 2.4 and Sec. 3.2.4, this column is directly used to populate the three dimen-

sional domain. The initial fields thus satisfy directly the hydrostatic basic states and indirectly

the geostrophic equilibrium.

The first step of this approach is to interpolate the input profile of potential temperature θi (that

does not necessarily comply with the vertical grid layout) on pressure levels zm to get [θi]k

(so that the vertical gradient of the latter falls on staggered levels). Then, the discrete form of

Eq. (2.197) is integrated from the bottom [ ]1/2 to the top [ ]Nk+1/2 of the domain considering
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that [π]1/2 = 1 such as a profile of the Exner function is obtained, i.e.

[π]k =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[π]k−1 −

g

cpb

(
[zm]k − [zm]k−1

)
, if

[
δzθi
Δzm

]
k−1/2

= 0

[π]k−1 −
g

cpa
ln

(
a [zm]k + b

a [zm]k−1 + b

)
, otherwise

, (3.223)

where

a =

[
δzθi
Δzm

]
k−1/2

, (3.224)

b = [θi]k−1 − a [zm]k−1 . (3.225)

Subsequently, from Eq. (2.198), which discrete form writes

[P ]k = [cpT∗ ln (π) + gzm]k , (3.226)

the profile of the generalized pressure P is recovered.

Then, the buoyancy is obtained directly based on Eq. (2.202) which discrete form writes

[b]k−1/2 =

⎡⎢⎢⎣ g
δzP

Δzm

g − δzP

Δzm

⎤⎥⎥⎦
k−1/2

. (3.227)

And finally, the full 3D domain is initialized (including the halo) such as

∀ (i, j ∈ [(1− hx, 1− hy) : (Ni + hx, Nj + hy)] ⇒

⎧⎪⎨⎪⎩
[P ]i,j,k = [P ]k

[b]i,j,k = [b]k

. (3.228)
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3.4.2 Initialization of velocity components

All cases reproduced in this study are unsteady theoretical full ABL cases based on periodical

lateral boundary conditions with stationary large scale and surface forcing. They tend to a

permanent or quasi-steady state. As a consequence, the initial value of velocity components

should not affect the final permanent or quasi-steady results as opposed to the thermodynamic

variables. Nevertheless, if the evolution to reach that permanent state, or if the results are

compared before the permanent state is reached, it is important to use a similar initialization.

For such theoretical cases, the initial value of velocity components is commonly taken equal to

the geostrophic wind (Moeng and Sullivan, 1994) such as

v(t = 0) = vg, (3.229)

and with w set to 0 m/s. Thus, unless specified, this approach is followed when relying on the

classical column model.

In the LES context, some sort of perturbation further need to be added to velocity components

in order to trigger shear instabilities and ignite the energy cascade process that then allow a self-

sustained turbulent regime to develop. As a result, following Andren et al. (1994) and Moeng

and Sullivan (1994), TKE scaled random perturbations � = (�u, �v, �w) are introduced in

the initial velocity components (u, v, and w) such as

v(t = 0) = vg +�

√
k

‖�2‖ , (3.230)

where, in order to avoid having to provide the TKE (that is a priori unknown), k is replaced

by a linear or quadratic function that is going from its maximum k = 3�2
max at the surface to

k = 0 at a given height zref (often taken to be of the order of zi). We thus have

v(t = 0) = vg +�

[
1−min

(
1,

z

zref

)]√
3�2

max

�2
u +�2

v +�2
w

. (3.231)
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Perturbation of the three velocity components are obtained thanks to the default FORTRAN

random number generator. They are distributed between −�max and +�max, and care was

taken for the seed of the random number generator to be different for each run of the model

(and each processor). The seed is computed such as

seed = CPU index × 105 + minute × 104 + second × 103 + millisecond (3.232)

Concerning the value of �max, Moeng and Sullivan (1994) used ±0.1 m/s and Andren et al.

(1994) used ±0.5 m/s. However, the present model is fully compressible. As a consequence,

temperature may be prone to spurious effects if initial velocity fields do not satisfy the mass

conservation. The following simple development illustrates such a problem.

Starting with the velocity divergence that can be expressed as

∇ · v = ∇H · v +
∂w

∂z
, (3.233)

and assuming that the flow is divergence free, i.e. ∇ · v = 0, it comes that the vertical velocity

at the first zw level above the surface, i.e. [w]3/2, can be expressed as

[w]3/2 =

[
−Δzw

(
δxu

Δx
+

δyv

Δy

)]
1

. (3.234)

Then, considering that the temperature of an air parcel displaced vertically and adiabatically

follows the dry adiabatic lapse rate such as

[
δzT

Δzt

]
1

= − g

cp
, (3.235)

and that at the first level [Δzt]1 = [w]3/2 Δt, we get

[ΔT ]1 = − g

cp
[w]3/2 Δt. (3.236)
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Finally, substituting Eq. (3.234) in the above, an estimate of ΔT as a function of the horizontal

velocity divergence is obtained such as

[ΔT ]1 =
g

cp

[
Δzw

(
δxu

Δx
+

δyv

Δy

)]
1

Δt. (3.237)

By using values representative of LES of the ABL for the various quantities, i.e.

[Δzw]1 ∼ 10 m (≡ [Δx]1 ≡ [Δy]1), (3.238)

Δt ∼ 1 s, (3.239)

and considering random horizontal velocity perturbations with �max = 0.1 m/s such as

[(
δxu

Δx
+

δyv

Δy

)]
1

∼ 10−2 s−1, (3.240)

we obtain a temperature variation

[ΔT ]1 ∼ 1 K, (3.241)

which clearly illustrates the importance for random perturbation to satisfy mass conservation

in order not to impact temperature profile (in the context of a compressible solver). Such

spurious temperature differences, that were also observed in the results from MC2 when using

�max = 0.1 m/s, are of concern notably in the context of a perfectly neutral cases, since they

pollute the ABL temperature profile (and indirectly all the others quantities).

To avoid such a problem, the constraint of mass conservation must also be a criterion of the

initialization. This could be achieved by relying on the kinematic decomposition of flow fields

in a rotational and potential parts such as presented in Panton (1996, Chap. 17). In the mean-

time, small enough perturbations, such as �max = 0.01 m/s, were found sufficient to notably

reduce this initialization problem while still triggering turbulence. Thus, due to the more sensi-

tive compressible solver, the perturbations required to ignite turbulence are at least an order of
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magnitude smaller than in Moeng and Sullivan (1994) and Andren et al. (1994) studies while

properly triggering turbulent processes.

In addition of the above and to avoid any problems, it was decided to use �max = 0.01 m/s in

conjunction with a temporary heating surface (during an initialization period at the integration

beginning) as proposed by Moeng and Sullivan (1994). This approach allows perturbations to

propagate and organize faster due to the strong effect of convection, while the latter phenom-

ena evacuates spurious temperature perturbations that arise close to the surface (Moeng and

Sullivan, 1994). It is thus more robust than solely relying on random numbers.

3.5 Post-processing

The post-processing is the last necessary step that allows to appreciate and compare LES re-

sults. Indeed, while RANS approaches provide almost directly usable results (only a time

average needed), a more advanced post-processing is required for LES outputs to be valuable.

In this section, the main outcomes of the post-processing are illustrated. First, the general

organization and philosophy of the post-processing are introduced. Then, more details on the

computation of the resolved and subgrid turbulent quantities are presented. Note that further

specific details on the post-processing may be found in Chap. 4.

3.5.1 General organization of the post-processing

Concerning the organization of the post-processing, no treatment is achieved during the com-

putations. Instead, snapshots of the unsteady raw results are saved at constant time intervals

Δtout during the computation (as in Moeng and Sullivan (1994) and Andren et al. (1994)).

Then, all the post-processing is achieve based on these snapshots in an independent manner

after the integration is completed. The following 3D quantities are thus written to the output

files at every Δtout (and used in the post-processing): P , ũ, ṽ, w̃, θ̃, k, KM , KT and S; as
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well as the following 2D quantities that are all surface parameters: u∗, w′θ′|s, θs, and LMO
13.

The post-processing is based on Open-Source software and codes, for the most part relying on

FORTRAN, C, Octave (an open-source MATLAB like interpreter) and Gnuplot.

The larger drawback of this off-line post-processing approach is the huge disk space required to

store all the unsteady data which is somewhat restrictive. Indeed, as an example, roughly 20 GB

are required for the results of one typical LES computation, i.e. with a 963 mesh, Δt = 1.5 s,

Δtout = 150 s and that is run for a third of an inertial period (i.e. ∼ 22500 s which gives

150 snapshots of the flow in the output data). In addition, considering that each cases are

reproduced at least fives times, it comes that the full data for 963 cases requires not less than

100 GB of disk space for a single experiment. On the other hand, however, this post-processing

approach allows for more flexibility and to fully take advantage of the results. Indeed, com-

putations are worth to achieve even if the full post-processing is not implemented yet, and the

post-processing can be refined and reachieved as many times as required.

Concerning the model output data format, MC2 is relying on the binary RPN standard file for-

mat, also referred to as FST files. This format is similar to the World Meteorology Organization

(WMO) GRIB format, i.e. the files contain only 1D or 2D horizontal records. Thus, a 3D field

with Nk vertical levels is represented as Nk 2D records in a FST file. As a result, for conve-

nience reasons 3D fields are reconstructed before the data is used in the post-processing. In

addition to those specificities, such a format requires appropriate readers and it can not be used

straightforwardly in the usual post-processing software such as MATLAB or Octave. Thus,

a standalone converter of FST file to binary or ASCII common data formats was developed.

However, this approach appeared to be a too restrictive solution with regards to LES (due to

the additional disk space required by the converted data). As a consequence, a reader of FST

files was also developed directly in Octave so that the data could be used straightforwardly in

the latter toolboxes as conventional data files.

13 Note that others quantities are also written in the output FST files, such as the buoyancy b, the mixing and

dissipation length scales λ and λe, or the homogeneous and inhomogeneous surface terms βψ and αψ .

However, they are not directly used in the post-processing of turbulent quantities, but for validation purpose.
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Finally, it is noteworthy that the same post-processing is applied to every results, i.e. classical

column model and LES model. Thus, only the subgrid part of the vertical momentum and heat

turbulent fluxes are non-zero when applied to column model results. Furthermore, as discussed

in the next chapter, series of at least five LES computations are achieved (where only initial

random velocity perturbations are changed) for each model configurations/cases in order to

better appreciate the convergence and statistical behaviour of the solution. As a result, the usual

post-processing is applied to each computation of a series, and its non-dimensional output is

combined afterwards to obtain the ensemble averaged result and its statistical properties such

as the minimum and maximum from the series of results at each height or the root mean square

(RMS) of the scatter of the series across the vertical.

3.5.2 Resolved and subgrid turbulent quantities

The computation of the various resolved and subgrid turbulent quantities, such as momentum

and heat turbulent fluxes and variances as well as the resolved third order moments and corre-

lation coefficients is done on the staggered TKE levels horizontally at the centre of the mesh.

Thus, according to the location of the model variables, turbulent quantities are post-processed

on zw levels when relying on the new physics library (or the standalone turbulence model),

while this is done on zm levels when the original version of the physics is used. Similarity, the

non-dimensional vertical gradient of velocity and temperature are computed on staggered zt

levels (zm when the original version of the physics is used) at the centre of the mesh.

Concerning result parameters used to normalize the various turbulent quantity profiles, most

of them, i.e. u∗, w′θ′|s, θs, and LMO, are directly retrieved from the output data of the model

and averaged horizontally and in time. At the opposite, some others key quantities, such as zi,

w′θ′i and Δθ1 depends on the post-processing. Indeed, the height of the ABL zi correspond to

the location of the minimum total sensible heat flux at the inversion w′θ′i which is computed

by adding the horizontally and times averaged resolved and subgrid part of the turbulent heat

flux as discussed hereafter. Similarly, Δθ1 are computed based on the difference between the

horizontally and time averaged temperature at the surface and the first level.
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In the following, all the discussions refers to the post-processing involved when the new physics

library or the standalone turbulence model are used. Indeed, the post-processing used in con-

junction with the original version of the physics is very similar albeit offset by half a vertical

layer. Finally, before discussing the numerical method used to obtain the various resolved and

subgrid turbulent quantities, it is noteworthy that velocity components form the output of the

model are horizontally unstaggered and located at the centre of the mesh, i.e. all the data in the

output FST files is horizontally located at the pressure location.

Subgrid turbulent fluxes are obtained following a similar approach as described in Sec. 3.2.5.2.1,

i.e. Eqs. (3.57), (3.58), (3.60), (3.61), (3.63), (3.63), (3.66), (3.67) and (3.68). They are further

averaged horizontally and in time. However, horizontal velocity components are interpolated

to the appropriate horizontal location when needed (due to their unstaggering in the output

data). Concerning the temperature, the subgrid heat flux is also computed on staggered levels.

However, subgrid heat flux are first computed on momentum level (by interpolating KT on

momentum level as in the vertical turbulent diffusion implemented in the model), and then the

flux is interpolated on staggered levels.

Subgrid scale variances are obtained similarly as in Sec. 3.2.5.1, i.e. Eq. (3.41) to (3.43) (where

A is obtained as Adyn from Eq. (3.107)), albeit they are computed on staggered zw levels here

(instead of zm as in Sec. 3.2.5.1). Thus, u, v and w from the output data are interpolated at the

appropriate location before the computation of the variances. Subgrid scale variances are then

horizontally and time averaged.

Resolved part of turbulent fluxes and variances averaged in time are obtained following the

same approach as Andren et al. (1994), i.e.

〈
u′iu

′
j

〉
= 〈(ũi − 〈ũi〉) (ũj − 〈ũj〉)〉, (3.242)〈

u′iθ′
〉
=
〈
(ũi − 〈ũi〉)

(
θ̃ −

〈
θ̃
〉)〉

, (3.243)
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where 〈ũi〉 is the horizontally averaged instantaneous revolved velocity component ũi, and〈
u′iu

′
j

〉
and

〈
u′iu

′
j

〉
are respectively the instantaneous and time averaged turbulent flux/variance

profiles. They are computed at the same location as their subgrid counterpart, i.e. on zw levels

at the centre of the mesh, based on the same time interval. Thus, w and T can be used di-

rectly, while u and v are interpolated on staggered level zw prior to compute resolved turbulent

quantities based on Eq. (3.243).

Concerning the profiles of non-dimensional shear, as proposed in Stull (1988), the veloc-

ity shear is computed based on the modulus of the velocity. Thus, we first compute Ũ =

(ũ2 + ṽ2)
1/2

, that is then horizontally and time averaged to get
〈
Ũ
〉

, and finally the vertical

gradient of the latter quantity is computed, such as

φM =
κz

〈u∗〉
∂

∂z

(〈
(ũ2 + ṽ2)1/2

〉)
. (3.244)

Some authors first compute each components of the shear and combined them afterwards (An-

dren et al., 1994). Thus, horizontal velocity components are averaged in space and time, then

their vertical gradients are computed, which are finally combined such as

φM =
κz

〈u∗〉

(
∂〈ũ〉
∂z

2

+
∂〈ṽ〉
∂z

2
)1/2

. (3.245)

Both approaches lead to identical results in the region of interest, i.e. the lowest third of the

ABL, since there are almost no changes in the wind direction in the surface layer. At the

opposite, the results diverge in the upper part of the ABL (which is not of concern).

Finally, concerning the spectral analysis of the results, all the velocity spectra presented in this

study are time averaged one dimensional longitudinal velocity spectra. They are computed, at

each vertical levels of the domain and each Δtout, from the spanwise averaged squared am-

plitude of the longitudinal (one-dimensional) Fourier transforms of the resolved perturbation

of each velocity component. Spectra are then averaged in time such as Eui
(kx) is obtained at
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each height. In addition, it is to note that an ensemble average is also done from each velocity

spectra of the series of results for which only the initial random velocity perturbations differ.

3.6 Summary

In this chapter, the various aspects of the numerical method involved in the LES-capable ver-

sion of MC2 were thoroughly presented. The chapter was subdivided in four sections, each

presenting one of the main components of the approach, i.e. the dynamics, the physics, the ini-

tialization and the post-processing. In sections dedicated to the dynamics and the physics, the

inclusion of the 3D turbulent modelling with regards to the main specificities of the model was

clearly illustrated in addition to present the general numerical aspects of the method such as

the SISL dynamic kernel, space and time discretizations, boundary conditions and the general

structure of the model (and its main components). An important aspect was the description of

the practical splitting of the various turbulence related terms which have large influences on

the structure of the code as summarized in Fig. 3.2.

The compressible solver implies that volumetric and deviatoric parts of the Reynolds tensor are

split (see Sec. 2.2.1), the former being included in the dynamic kernel while the latter processed

as usual in the physics. Similarly due to the separation between the dynamics and the physics,

and the 1D implementation of the physics, the horizontal and vertical terms of both turbulent

diffusion and TKE equation must also be split. The horizontal components are explicit in time

and computed in the dynamics (outside of the dynamic kernel). Then, they are sent to the

physics to complete the turbulence modelling by including the vertical terms that are implicit

in time. These two separations require special care so that each term is properly computed

(based on the data at the proper time level) and recombined as illustrated in this chapter.

To avoid such a vertical-implicit/horizontal-explicit partitioning of turbulent diffusion terms

required in this standard version of the 3D turbulence model (and all the complications that

come with it), a standalone turbulence model (based on the same mathematical model but not

relying on the physics library anymore) was also developed and implemented. The latter is



276

based on the same UKMO Smagorinsky SGS model (as implemented in the physics), but the

3D turbulent diffusion is fully explicit in time and not split depending on the direction.

The implementation of several features necessary to reproduce and compare full ABL the-

oretical cases based on LES was introduced in the present chapter, such as the large scale

geostrophic forcing, the initialization and the post-processing. Concerning the initialization,

after introducing the numerical method used to obtain thermodynamic variable initial fields,

momentum initialization based on random velocity perturbations was discussed in the con-

text of a compressible solver. Concerning the post-processing, its organization was discussed

considering MC2 output data specificities, and numerical method used to obtain the various

resolved and subgrid turbulent quantities were introduced.

Finally, compared to the early version of the LES-capable MC2, the volumetric/deviatoric

splitting is an original contribution. Concerning the computation of the deviatoric terms, it

is noteworthy that a new (more recent) version of the physics featuring, among other things,

a refined vertical staggering, was integrate to MC2 during this study. It allowed to remove

numerical imperfections related to the previous versions, but required the 3D turbulence mod-

elling (both horizontal and vertical terms) to be reimplemented (since the discretization of the

new version of the physics changed and it did not originally include 3D turbulence modelling

features). In addition, the surface boundary was adapted to allow the imposition of a heat

flux, SGS models existing in the original version of the model (i.e. the UKMO Smagorinsky,

the hybrid TKE and the linear Kosović SGS models) were refined, and two new SGS mod-

els were added (i.e. the Deardorff and the Redelsperger SGS models). Finally, the large scale

geostrophic forcing, the sounding-like initialization of momentum and thermodynamics vari-

ables, and the post-processing were also fully implemented during this study.
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RESULTS AND VALIDATION

The present chapter focuses on the presentation and discussion of the results obtained using the

various configurations of the model introduced in Chap. 2 and Chap. 3. It thus serves to validate

the approach as a whole, as well as all the new components and enhancements introduced

during the present study. It is noteworthy that no thorough validation of the preliminary version

of the LES-capable MC2 model (Pelletier et al., 2005) had been undertaken previous to this

study. However, considering the nature of MC2 and its primary endeavours, a comprehensive

evaluation of both the SISL approach and the turbulent modelling is required in the context of

LES of the full ABL. In that sense, the approach followed in this study is to rely on relevant

reference cases well established in the literature.

In a first section, as a preliminary validation step, the generalized Ekman boundary layer analyt-

ical model developed by Berger and Grisogono (1998) is used to validate the new geostrophic

forcing terms, and various numerical aspects of the vertical turbulent diffusion from the orig-

inal and the new version of the physics library as well as from the standalone model. Then,

Moeng and Sullivan (1994) and Sullivan et al. (1994) shear and buoyancy driven full ABL

cases (i.e. from the earth surface to the free atmosphere fully considering the temperature) are

used as a direct benchmark for the first evaluation of the LES-capable MC2, discussing and

comparing, among other things, relevant turbulence statistics, flow structure and velocity spec-

tra across the ABL. Both the column model and the LES model are evaluated in this section.

In a third section, relying on the shear and convective cases previously reproduced but further

evaluating the post-processing parameters, numerical parameters of the model are studied, i.e.

horizontal grid, vertical grid, and time step. Finally, the new components and enhancements of

the method are evaluated in the context of LES of the full ABL, i.e. the five SGS models, the

original and new version of the physics library and the standalone model.
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Note finally that in this chapter, unless specified, all profiles displayed and quantities discussed

are generally time and horizontally averaged across the domain such as any Favre averaged

variable ψ would be written
〈
ψ̃
〉

. However in this chapter, in order to lighten notations, it

was decided to always drop Favre averaging formalism (as in the previous chapter), thus
〈
ψ̃
〉

becomes 〈ψ〉. Furthermore, time and space average formalism were also droped such as
〈
ψ̃
〉

is simply referred to as ψ. Finally, turbulent fluxes are written as u′w′ instead of
〈
ρu′w′/ρ

〉
.

This greatly simplifies notation in figures and the text.

4.1 Ekman boundary layer

Berger and Grisogono (1998) developed an analytical model of a generalized ideal Ekman

boundary layer for which horizontal pressure gradient (e.g. geostrophic wind, vg) as well as

the mixing coefficient, KM , are both a function of the height agl (as opposed to the simpler

classical Ekman boundary layer for which vg and KM are constant with height). At first, Berger

and Grisogono (1998) analytical model was elected in order to validate the new large scale

geostrophic forcing in presence of periodic lateral boundary conditions as describe in Sec. 2.4.

However, it proved to be helpful all along thid study. Indeed, it also served us to diagnose and

solve a discretization problem within the existing model. Finally, it was also used to validate

the vertical component of a standalone version of the turbulent diffusion (implemented directly

within the dynamics of the model).

In this section, after a brief description of Berger and Grisogono (1998) analytical solution, the

model setup used to reproduce that case is presented. Finally, results and enhancements of the

various configuration of the model are discussed with regards to the analytical solution.

4.1.1 Case description and model setup

In the present study, both barotropic (vg = const.) and baroclinic (vg evolve with height)1

cases are reproduced. They are based the geostrophic wind vg profiles provided by Berger

1 Note that, an advection of temperature is also present in a real baroclinic atmosphere, however the effects of

the vertically evolving vg is only taken into account in the momentum equation by Berger and Grisogono

(1998) non-dynamic model. The same hypothesis was thus used here.



279

and Grisogono (1998, Tab. 2) (i.e. dp/dn|1, dp/dn|2 and dp/dn|3 with dp/dn ≡ dp/dy in the

present study). Their generic expression can be written

vg = (ug, 0) with ug = F +Ge−γz, (4.1)

where γ =
√
f/2KM , F and G are constants (see Berger and Grisogono (1998, Tab. 2)).

The eddy viscosity is set to a constant throughout the domain. Thus, the analytical velocity

profile is given by Berger and Grisogono (1998, Eqs. (22) to (24)). It is similar to the standard

Ekman solution and writes

u = ug

(
1− e−γz cos γz

)
and v = ug

(
e−γz sin γz

)
. (4.2)

Note that z = 1/γ corresponds to the height at which the velocity first reaches geostrophic

wind direction (Holton, 2004)). Here, we have KM = 1.3 m2/s and thus 1/γ ∼ 500 m.

To reproduce this theoretical case with MC2, no changes were made within the dynamic ker-

nel of the model, but its operating mode was adapted. In fact, Berger and Grisogono (1998)

solution comes in the form of a profile not invoking neither the internal energy nor the vertical

velocity. Thus, while in the present model internal energy and vertical velocity conservation

equations are still solved, a proper initialization with appropriate boundary conditions was de-

veloped not to invoke them. For that purpose, the atmosphere was initialized in a hydrostatic

isothermal equilibrium minimizing generalized pressure and buoyancy perturbation (P = 0

and b = 0, see Eqs. (2.30) and (2.29)), while keeping the atmosphere in a stable static stability

state to inhibit vertical motion. The default bottom and top boundary conditions of the model

were used and lateral boundary conditions were periodical. However, as discussed in Sec. 2.4

and Sec. 3.2.4, the large scale pressure gradient, i.e. ug profile, was imposed through the use

of the new geostrophic forcing terms, Eq. (2.184), in order for the horizontal pressure field to

be periodical. Both terms in momentum and internal energy equations (allowing temperature

advection for baroclinic cases) were implemented but only the ones in momentum equations

were activated to properly reproduce Berger and Grisogono (1998) cases.
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Concerning the turbulent modelling, the rightmost branch of Fig. 3.2 is followed, i.e. the

simplified turbulent model of the physical library: the mixing coefficients are set constant

(KM = 1.3 m2/s and KT = 0 m2/s) and the surface boundary condition of momentum tur-

bulent diffusion is adapted. As discussed in Sec. 2.3, the turbulent diffusion surface boundary

condition of MC2 is based on the continuity of the fluxes across a given height in the surface

layer (Cauchy boundary condition) which writes for any variable ψ

Kψ
∂ψ

∂z

∣∣∣∣
z=0

= βψψ1 + αψ, (4.3)

where βψ and αψ are the homogeneous and the inhomogeneous boundary condition terms, and

ψ1 is the value of ψ at the first level above the surface (see Sec. 2.3 for further details). It is

noteworthy that stress is computed at z = 0 m agl, while it is the speed at the first grid point

level that is multiplied by βψ when solving turbulent diffusion.

Reverting this expression and computing the velocity vertical derivative based on the analytical

solutions, Eq. (4.2), surface flux value can be imposed through either αψ or βψ, such as

⎧⎪⎪⎨⎪⎪⎩
αu = KM

∂u

∂z

∣∣∣∣
z=0

; βu = 0,

αv = KM
∂v

∂z

∣∣∣∣
z=0

; βv = 0,

or

⎧⎪⎪⎨⎪⎪⎩
αu = 0 ; βu =

KM

u1

∂u

∂z

∣∣∣∣
z=0

,

αv = 0 ; βv =
KM

v1

∂v

∂z

∣∣∣∣
z=0

.

Note that using non-zero βψ implies that surface stress is proportional to velocity (at the first

model level) which allows to damp inertial oscillation faster in comparison with the use of a

constant surface stress when using αψ alone. Thus, even if both ways lead to the same final

result, the one based on non-zero βψ may converge faster to a steady solution.

Finally, because the solution is horizontally homogeneous, numerical results should not be

influenced by neither horizontal resolution nor domain size (in the limit of an acceptable

Courant–Friedrichs–Lewy (CFL) number). Indeed, the same results were obtained by using

several horizontal grid configurations (not shown here). The smallest possible horizontal grid,

i.e. a 3 by 3 grid with Δx = 0.5 km, was elected along a time step of 40 s (giving CFL = 0.69).
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In the vertical direction, a more classical definition of the grid (with respect to mesoscale

models) is first used, Sec. 4.1.2. It features a total of 45 grid points in the vertical direction,

23 being in the first 1.5 km, and a top level at 15 km. The first momentum level is located at

10 m with a vertical resolution of 20 m close to the surface. Subsequently in Sec. 4.1.3, various

stretched and homogeneous vertical grids with a top level going from 2 to 15 km are used to

evaluate the sensitivity of the various configuration of the model to the vertical mesh.

4.1.2 Model results

Fig. 4.1 summarizes the results obtained for the Ekman theoretical cases with three profiles of

geostrophic wind forcing. It is interesting to note that analytical profiles and numerical results

of velocity magnitude and direction superpose.

The departure of the velocity from the geostrophic wind can be appreciated comparing Fig. 4.1 a)

and c). Concerning the inertial oscillation, Fig. 4.1 b), note that the computations are initial-

ized with the exact analytical solution explaining the low amplitude oscillation and the value

of Cu = 1 at t = 0 s. Ten inertial oscillations are required to damp the oscillation by 95 %.

Starting from the geostrophic wind or any velocity profile leads to the same final steady state

solution but requires a longer time to converge (not shown here).

The value of Cu to which the model converge is however slightly higher than the theoretical

value of unity. This tiny (0.37 %) difference might be caused by the discrete nature of the

numerical results that is leading to numerical discrepancy during the computation and the post-

processing. The latter difference is reduced by refining the vertical mesh (not shown here).

Those results are thus very satisfactory and they confirm that:

• the new geostrophic forcing terms properly perform when used in conjunction with pe-

riodical boundary conditions;

• the chosen approach for the initialization of thermodynamical ABL state allows not to

excite neither internal energy nor vertical velocity;

• surface boundary conditions is properly implemented.
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To sharply evaluate the various configurations of the model, Fig. 4.2 presents the difference

between analytical and numerical results for the two baroclinic cases dp/dy|2 and dp/dy|3.
Note that, dp/dy|1 case (classical Ekman ABL) exhibits an error shape which is very similar

to the one of dp/dy|3. On each of the four graphics from Fig. 4.2 are presented four curves

showing results obtained based on the various configurations of the model. Results labels have

the following meaning:

Original: model based on the original version of the physics library (staggering between the

vertical discretization of the physics and the dynamics). A vertical interpolation (extrap-

olation at the lowest level) of the velocity components is needed at the interface of the

two components of the model (see Sec. 3.3.1.2.1 for more details).

Original+: model based on the original version of the physics library (as for the Original

configuration) but for which solely the extrapolation of the first momentum level at the

interface between physics and dynamics is refined, i.e. the latter is now perfectly linear

(c.f. Eqs. (3.135) and (3.136)).

New: model based on the new version of the physics library. Momentum levels are col-

located in every parts of the model and no more vertical interpolation is needed (see

Sec. 3.3.1.2.2).

Standalone (SA): model based on the standalone turbulent diffusion implemented directly

within the dynamics (the physics library is not anymore used, see Sec. 3.2.5.2.1).

The exact same grid as before is used here. Finally given the small amplitude of the differences,

and to avoid the effects of the inertial oscillation, a time average of 5Tinert (from 7Tinert

to 12Tinert with Tinert = 2π/f = 60928 s) was used to compute the differences between

numerical and analytical results. showing the inertial oscillation

The first thing to note in Fig. 4.2 is that while the general averaged trend of the difference

between the theory and numerical results is roughly equivalent below 0.3 km agl, notably for

the direction, the numerical results are very sensitive to the vertical discretization of the physics

library. A strong numerical mode (zigzag), increasing as the surface is approached, is exhibited
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Figure 4.1 Berger and Grisogono (1998) theoretical case: a) geostrophic wind profile;

b) integrated velocity coefficient; and analytical (theo) and modelled (num) profiles of:

c) horizontal wind velocity modulus; d) wind direction

in the results based on the Original model for velocity direction and magnitude for both cases.

This translates into an error of a few percents close to the surface. Note that the discrepancies

caused by this mode in momentum fluxes are higher (not shown here). This zigzag is notably

affected by the surface wind extrapolation required at the interface between physics library and

dynamics as seen on the curve labelled Original+, which show a reduced zigzag.

In fact, in order to totally remove this numerical mode, the harmonization of the vertical dis-

cretization of the various parts of the method is required as seen on the results from the New
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dp/dy|2: positive ug shear dp/dy|3: negative ug shear
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Figure 4.2 Velocity modulus and direction differences between modelled (num) and

analytical (theo) solution: a) and c) dp/dy|2; b) and d) dp/dy|3

model, Fig. 4.2. Indeed, velocity magnitude error for the New results are no larger than 0.15 %

of ug, which clearly demonstrates the necessity to avoid interpolations (and extrapolations at

the lowest level) of momentum when going back and forth (from/to the dynamics to/from the

physics library). These results are really promising since discrepancies caused by this numeri-

cal imperfection are totally removed in the New version of the model.

The other important point regards the results of the Standalone model. Indeed, while the verti-

cal turbulent diffusion and its boundary conditions are totally new in that version of the model
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(fully explicit in time and implemented directly within the dynamics in height coordinates), re-

sults are very similar to the ones obtained using the properly discretized version of the physics

library, i.e. results labelled New. Velocity magnitude error from the Standalone and New mod-

els almost superposes at all heights, and the main difference lies in the slight shift close to the

surface. This discrepancy is likely to be caused by the vertical coordinate transformation still

needed at the interface between the dynamics and the physics library in the New model (i.e.

going from height coordinate to sigma coordinate, see Chap. 3).

4.1.3 Vertical mesh impact

To further illustrate the impact of the vertical mesh on the two main versions of the full model,

i.e. the Original and the New, Fig. 4.3 shows results obtained for the negative ug shear case

(dp/dy|3) based on the three different vertical meshes allowing to appreciate the impact of the

stretching as well as the resolution notably close to the surface. They are labelled as follow:

Stretched: mesh identical to the one previously used.

Uniform 20 m: grid with an uniform resolution across the domain. It has a top level at 2 km

and 96 meshes in the vertical. As a result, close to the surface, levels height and resolu-

tion are similar to the stretched grid.

Uniform 40 m: same grid as Uniform 20 m mesh but with a top level at 2 km and with 48

meshes in the vertical. As a result, the vertical resolution is twice as coarse in the near-

surface region and equivalent to the stretched grid in the middle of the Ekman layer.

Uniform SA: mesh identical to Uniform 20 m grid but based on the Standalone model.

Concerning the results based on the Original model (i.e. original version of the physics),

Fig. 4.3 a) and c), the numerical mode is reduced when the resolution is increased close to

the surface for both velocity modulus and direction. Velocity modulus error close to the sur-

face is roughly divided by two when going from the 40 m to the 20 m resolution uniform grids.

However, the zigzag tends to propagate up to the top of the boundary layer (i.e. ∼ 500 m),

regardless of the grid. Both Uniform 20 m and Stretched grid results perfectly superpose close

to the surface for both velocity modulus and angular deviation indicating that the zigzag is
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Figure 4.3 Velocity modulus and direction differences between modelled (num) and

analytical (theo) solution for dp/dy|3: a) and c) Original model;

b) and d) New and Standalone models

strongly a function of the first mesh height. In the upper part of the boundary layer, the Uni-

form 20 m grid error oscillates between ±0.15 % of ug while the Stretched and the Uniform

40 m grid results are similar with a maximum departure from the analytical velocity modulus

of around −0.5 % at 400 m agl. By noting that the resolution of the Stretched grid becomes

coarser than 40 m above 300 m agl, one can conclude that the error at this height and above is

more likely to be the consequence of the resolution and not the stretching of the grid.
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Fig. 4.3 b) and d), present results for identical grids but relying on the properly staggered

physics, i.e. the New model (and results from the Standalone model using the Uniform 20 m

grid). It confirms that with these versions of the model, the numerical mode is totally avoided

regardless of the grid, and that differences with analytical solution are notably reduced close to

the surface. The latter is at least one order of magnitude smaller than with the Original model

as seen in Fig. 4.3 a) and c). In addition, and independently of the zigzag, the velocity modulus

error is always reduced and appears to be less a function of the mesh with the New model in

comparison of the Original model. Interestingly in Fig. 4.3 b) and d), both Uniform grids show

a similar velocity modulus error shape with an amplitude of roughly 0.25 % of ug within the

boundary layer. Surface error is however two times higher for the Uniform 40 m grid which

shape is shifted by −0.1 % and slightly smoothed. Finally, the Stretched grid velocity modulus

error is similar to the Uniform 20 m grid results very close to the surface but the shape of the

error above notably differs with an amplitude of only 0.12 % of ug.

Concerning the velocity direction error Fig. 4.2 c) and d), further than the improvement due to

the proper discretization of the turbulent diffusion, conclusions are less easily drawn. Indeed,

the general trend (not considering the zigzag) of this error is very similar for all the models. In

Fig. 4.3 d), the impact of the grid configuration is not clear, since, besides an notable reduc-

tion of the near-surface error for the coarse grid (the opposite would have been expected), no

significant differences are noted between results.

Finally, concerning the Standalone model, Fig. 4.2 confirms the remarks made in the previous

section. Its results are very close to the New model results regardless of the geostrophic wind

profile and the vertical grid. In fact, the Standalone model velocity modulus error appears to

tend to zero close to the surface while there is a little offset for the New model results. This is

true, independently of the geostrophic wind profile (see Fig. 4.2 a) and b)) and of the grid (see

Fig. 4.3 b)). Others geostrophic wind profiles and grids were tested with the same conclusion.
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4.1.4 Conclusion

To conclude this section, while the Berger and Grisogono (1998) cases were relatively simple,

they have been very helpful to appreciate and enhance several aspects of the model. Promising

results have been obtained. As a summary, it was shown that:

• momentum components of the large scale geostrophic forcing properly perform in pres-

ence of periodical lateral boundary condition for both barotropic and baroclinic cases;

• all model configurations tested were able to reproduce satisfactorily the barotropic and

baroclinic Ekman boundary layer with a maximum normalize absolute error lower than

3 % of ug for the Original model (original physics library) and lower than 0.2 % of ug

for the enhanced version of the model (New and Standalone);

• near-surface results are sensitive to the vertical extrapolation of momentum required at

the interface between the physics and the dynamics in the Original model. It generates

a numerical mode which is removed by using a contiguous discretization in the various

parts of the code as seen in the results from the New and Standalone models;

• error from Standalone and New model models is very little affected by neither the vertical

resolution nor its vertical stretching of the mesh;

4.2 LES of the full ABL: Moeng and Sullivan (1994) benchmark

In the context of developing and finely validating a LES-capable mesoscale model, well docu-

mented and representative microscale flow regimes have to be considered. In the present case,

this represents a two fold challenge, since, in addition to the various new features implemented

(i.e. new SGS models, new discretization in the physics library, new initialization and adapted

surface and lateral boundary conditions), the dynamic kernel of the MC2 which is compress-

ible has almost never been used at such fine scales. As a result, it is required to evaluate the

dynamical behaviour of the LES-capable MC2 at very fine scales, as well as to validate the

implementation of SGS models along with the various new features that allow LES with MC2.
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While the best way to achieve such a validation would have been to compare with experimen-

tal data, it was decided to focus on more theoretical numerical experiments which are based

on reference LES models that were, at first, intercompared with other models and evaluated

against experimental data. This approach, which is common in LES, was essentially motivated

by the richness of numerical results in the literature, their high level of detail (in comparison

to experimental data) and the more simple model setup required to reproduce a theoretical

full ABL. Hence, the shear and buoyancy driven full dry ABL cases presented by Moeng and

Sullivan (1994) and Sullivan et al. (1994) were elected as a basis of reference.

As a summary, Moeng and Sullivan (1994) and Sullivan et al. (1994) studied a range of full

ABL, i.e. from the surface to the free atmosphere, over an homogeneous surface going from a

shear only driven case (referred to as shear case), to a strongly buoyancy driven case (referred to

as convective case hereafter), based on a LES model presented in Sec. 1.3.2.2.1.2 and 1.3.2.3.2.

Those cases are simple, yet feature a relatively complete representation of the ABL since they

all incorporate the full ABL covered by a temperature inversion, and density is a function of

height. A full featured ABL is thus involved, albeit the latter is dry. This is clearly more

challenging than using a model only based on momentum equations, and results better reflect

how the model would behave for real cases where the full complexity of the ABL need to be

invoked. The study of Ding et al. (2001a) and Churchfield et al. (2010) are also based on the

exact same cases and while the general approach are similar, different LES models are used.

Moeng and Sullivan (1994) and Sullivan et al. (1994) studies were elected because in addition

to the range of ABL evaluated, the numerical protocol is well described and many flow features

are studied in addition to the classical turbulent quantities. Furthermore, flow structure is shown

at various heights of interest in the ABL for the various cases. Last but not least, the method and

SGS model used in Moeng and Sullivan studies have been thoroughly evaluated as discussed in

the literature review (Nieuwstadt et al., 1992; Andren et al., 1994; Mason, 1994; Sullivan et al.,

1994; Porté-Agel et al., 2000; Pope, 2000; Ding et al., 2001a; Chow et al., 2005; Churchfield

et al., 2010) which increases the confidence level of the results they obtained and will allow to

further evaluate ours results.
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In this section, a first evaluation of the LES-capable MC2 approach is done based on the shear

and convective cases of Moeng and Sullivan (1994) and Sullivan et al. (1994). Thus, in a

first part, flow set-up and computational procedure are presented underlining the challenges

of those microscale cases with regards to the present method. Then, after discussing the time

evolution of key variables obtained with the present model, a direct and thorough comparisons

with Moeng and Sullivan (1994) and Sullivan et al. (1994) is made. Finally, the flow struc-

ture, the near-surface results and the spectral analysis of the solution are studied in order to

thoroughly evaluate various aspects of the model abilities. It is to underline that in general

results from the most well known and simple SGS model are presented in this section, i.e. the

UKMO Smagorinsky SGS model presented in Sec. 2.2.3.1 (also referred to the Smagorinsky

SGS model hereafter). All cases were also reproduced based on the hybrid TKE SGS model

described in Sec. 2.2.3.3 (for debugging purposes). However, as presented in Sec. 4.4.1, both

results are very similar, if not identical. As a result and for clarity reasons, only the UKMO

Smagorinsky SGS model results are most of the time shown on the figures (except when the

subgrid TKE is needed), while result parameters are shown in all the tables of this section. The

standard ABL column model implemented in MC2 is also used as a reference.

Finally and before going any further, it is noteworthy that the exact same numerical parame-

ters (grid configuration/boundary conditions/initialization/...) and post-processing (time inter-

val/sampling method/...) as in Moeng and Sullivan (1994) are used in the present section. In

what follows, this later study is also referred to as MS94. The next section focuses on the study

of the latter parameters. However, it can be already said here that Moeng and Sullivan nu-

merical parameters are found to be perfectly appropriate while the post-processing parameters

would require refinements due to some scatter problems further discussed in Sec. 4.3.1. As a

result, and to clearly illustrate the latter fact in the present section, all results shown here are

based on the ensemble average of five realizations of the exact same model configuration but

for which only the initial random velocity perturbations are changed. The scatter or envelope

between the various results of the series is also displayed in the form of error bars on all the

figures of this section.
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4.2.1 Flow set-up: initialization and boundary conditions

As a general rule for this first evaluation of the model, the procedure presented by Moeng and

Sullivan (1994) is closely followed with few exceptions. The reader is referred to Tab. 4.1 that

summarizes the numerical parameters of each case reproduced here: SS (resp. SM ) refers to

shear case S results based on the Smagorinsky (resp. the hybrid TKE) SGS model, while S1d

refers to the same case based on the column model (and similarly for the convective case B).

Table 4.1 Numerical parameters of Moeng and Sullivan (1994) shear and convective

cases (S and B respectively) presented in Sec. 4.2

Name Model
Lxi Lz Nx ×Ny ×Nz

ug w′θ′s Δt Reali-

zations[km] [km] [m/s] [K m/s] [s]

S1d k − l column 0.3 1 3× 3× 96 15 0.0 2 1

SS Smagorinsky SGS 3 1 96× 96× 96 15 0.0 1.5 5

SM TKE hybrid SGS 3 1 96× 96× 96 15 0.0 1.5 5

B1d k − l column 0.3 2 3× 3× 96 10 0.24 4 1

BS Smagorinsky SGS 5 2 96× 96× 96 10 0.24 4 5

BM TKE hybrid SGS 5 2 96× 96× 96 10 0.24 4 5

To sum-up the procedure, a constant geostrophic wind vg = (ug, 0) is imposed through ap-

propriate source terms added to momentum equation as described in Sec. 2.4 and Sec. 3.2.4,

and already validated in Sec. 4.1. Lateral boundary condition are periodical for all the main

variables of the model. A sensible heat flux w′θ′s is imposed at the surface together with

an homogeneous surface roughness length2 of z0 = 0.16 m. The turbulent diffusion surface

boundary conditions are applied locally through MO similarity theory as described in Sec. 2.3

and Sec. 3.3.7 (Mailhot and Benoit, 1982; Delage and Girard, 1992), and Moeng’s approach

(but only with local quantities) is followed to compute surface stresses (Stoll and Porté-Agel,

2006). The surface temperature, Ts, is then diagnosed from LMO, w′θ′s and u∗ at every time

step (see Sec. 3.3.7). The top boundary of the physics is kept unchanged with regards to the

2 No value of the roughness length is given in Moeng and Sullivan (1994). It can be obtained by using velocity

and friction velocity from Moeng and Sullivan (1994, Tab. 2). However, on that table, the non-dimensional

velocity u/u∗ is displayed for S and SB (as opposed to what stated in the legend), while velocity u is shown

for B. This is confirmed by Sullivan et al. (1994, Fig. 3) who reproduced the same cases with the same

model. The roughness length is thus z0 = 0.16 m and velocity at the first level for S is u = 4.35 m/s.
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original mesoscale model (Mailhot and Benoit, 1982). In the dynamics, the same surface and

top boundaries as in the mesoscale configuration are also used (see Sec. 3.2.3), and a ten layer

sponge, i.e. roughly ∼ 100 m effective thickness, is applied at the top of the computational do-

main to prevent waves from being reflected downward. This sponge is based on the smoothing

approach proposed by Shuman (1957).

 0

 500

 1000

 1500

 2000

 300  302  304  306  308  310  312

z 
[m

]

θ [K]

S

B

Figure 4.4 Initial potential temperature profile of

Moeng and Sullivan (1994) shear and convective cases

Concerning the initialization of the thermodynamical atmospheric state, a profile of potential

temperature was used as described in Sec. 2.5 and Sec. 3.4.1 to compute the buoyancy b and

the generalized pressure P . The exact same profile of θ as Moeng and Sullivan (1994) was

used here. As illustrated in Fig. 4.4, it features a neutral region, θ = 300 K, going from the

surface to zi. This adiabatic layer is covered by a temperature inversion of ΔT = 8 K in 6Δz

(6Δz = 62.5 m for shear and moderate buoyant cases and 6Δz = 125 m for highly buoyant

case). This leads to a lapse rate at the inversion of 0.128 K/m and 0.064 K/m for the shear and

the convective case respectively. Finally, the remaining above atmosphere is set to a potential

temperature lapse rate of 0.003 K/m.



293

Finally, following Moeng and Sullivan (1994) and Andren et al. (1994) philosophy, momen-

tum is initialized equal to the geostrophic wind to which a random perturbation vector, � =

(�u, �v, �w), scaled with the TKE is added as described in Sec. 3.4.2. Furthermore, following

Moeng and Sullivan (1994), a positive surface sensible heat flux is imposed during a spin-up

period for all the cases reproduced. This flux is constant during the whole convective run (i.e.

w′θ′s = 0.24 K m/s), while it is set to 0.05 K m/s during the first 3000 s and then turn off for

the shear cases. Heating the surface during the initialization period triggers convective insta-

bilities which on the one hand, allows organized perturbations to efficiently propagate across

the ABL, and on the other hand, evacuate the spurious temperature perturbations related to the

slightly mass divergent random velocity perturbation added to the initial field. Note finally that

the same procedure is used for the 1D computation, i.e. with the heating surface but without

the initials random velocity perturbations, to consistently compare time evolution with LES.

4.2.2 Time evolution

Moeng and Sullivan (1994) and Sullivan et al. (1994) considered the flow as being in a statis-

tically quasi-steady state after a six large eddy turnover time, i.e. τ∗ = zi/u∗ or τ∗ = zi/w∗,

for all their cases (S, B and SB). In such a situation, dimensional first order moments, i.e.

velocity components (and temperature for convective cases), are constantly evolving, while

higher order as well as non-dimensional first order moments should be almost constant. Their

post-processing was based on a time interval of 5 τ∗ stating at 12 τ∗.

In the context of the shear case S, horizontal velocity components are expected to follow an

inertial oscillation as presented in Sec. 4.1 (with the same frequency but a different signature).

However, compared to Andren et al. (1994), the inertial oscillation of Moeng and Sullivan

(1994) cases should feature a smaller amplitude due to the presence of the temperature inver-

sion that acts as a damper (Moeng and Sullivan, 1994). In the context of the convective case B,

a constant heat flux is imposed at the surface. As a result, energy is permanently brought in the

ABL (and in the whole computational domain) causing both the temperature in the whole ABL
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and its height to rise constantly. Thus, while horizontal velocity components are also expected

to oscillate, the dominant effect should be the increase in temperature.

In order to better appreciate the time evolution of the flow for the shear and the convective cases,

Figs. 4.5 and 4.6 shows the evolution of the velocity integral coefficients, Cu and Cv, the drag

coefficient Cg, and the total TKE coefficient, CTKE for half an inertial period, Tinert = 2π/f

(which is equivalent to 30464 s when strictly at 45 deg . North, i.e. f = 0.0001031 s−1)3.

These quantities are commonly used as a reference (Nieuwstadt et al., 1992; Andren et al.,

1994; Mason, 1994) to diagnose the time evolution of ABL flows, and they write

Cu =− f

u′w′s

∫ ztop

0

(v − vg) dz, (4.4a)

Cv =+
f

v′w′s

∫ ztop

0

(u− ug) dz, (4.4b)

CTKE =
f

u∗3

∫ ztop

0

ktot dz, (4.4c)

Cg =
u∗

‖vg‖
. (4.4d)

where the various quantities are horizontally averaged before computing the integrals.

Curves in Figs. 4.5 and 4.6 were obtained from the ensemble average of several computations

for which only initial random velocity perturbations were changed: one computation for the

pure 1D cases (S1d and B1d), and five for the large grid LES cases (SM and BM )4. Further-

more, in order to better appreciate the scatter of the various solutions, the envelope of all the

realizations of each case is presented as a background grey shaded area. Note that changing

the initialization parameters, such as slightly increasing/reducing the random velocity pertur-

bations (or not heating the surface during the spin-up period of S) case had no impact on the

spread of the LES results (not shown here).

3 The initialization spin-up period is not included in Fig. 4.5 explaining why the graphs do not start at zero.
4 Only the hybrid TKE SGS model SM results are shown in Figs. 4.5 and 4.6 since the total TKE, ktot, is

required to fully compute CTKE . However, results from the UKMO Smagorinsky SGS model are very

similar, albeit only the resolved CTKE can be obtained instead of CTKE based on the total TKE.
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Figure 4.5 Time evolution of integral coefficients, Eq. (4.4), from the shear case: a) and

b) velocity integral coefficients; c) geostrophic drag coefficient; d) TKE integral coefficient.

Dark grey overlaid regions show the scatter of the results. Light grey overlaid background

areas show the post-processing time intervals

While a higher number of computations would have been needed to statistically quantify the

spread of the results, taking the averaged result of the five runs allowed to filter most of the

higher frequency oscillations related to unsteady turbulent phenomena. On the one hand, it

permitted to compare the average behaviour of the LES model with the column model. And,

on the other hand, it further allowed to better appreciate the oscillations that are caused by un-

steady turbulent phenomena. Finally, as confirmed in the following sections, such an approach

was required to properly compare ours results with Moeng and Sullivan (1994) and to study

the impact of various numerical parameters.

In Figs. 4.5 and 4.6, all results are surprisingly close considering the differences in the column

model and LES approaches, and it can be said that models are in good agreement for both
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the shear and the convective cases. For the two cases, both velocity components, shown in

Figs. 4.5 and 4.6 a) and b), are evolving rapidly before Cu reaches a maximum value at roughly

0.3 − 0.4Tinert. Then, the evolution of Cu and Cv slows down and tends to converge to an

equilibrium value (more details in a Sec. 4.3.1). The time evolution is more significant for Cv

which makes its prediction more challenging.

The evolution is also very rapid for Cg and CTKE before 0.15Tinert as seen in Figs. 4.5 and

4.6 c) and d). Cg (and thus u∗) first drop to a minimum value and then increase regularly. At

the opposite, CTKE quickly reaches a maximum, and then decreases slowly for the shear case,

while it oscillates around a plateau for the convective case. Minimum of Cg and maximum

of CTKE coincide in time, which corresponds to the on-set of the organized turbulent regime

as described in the literature (Mason and Thomson, 1987; Andren et al., 1994; Mason, 1994).

The latter is located at roughly 1.1Tinert for S and 0.2Tinert for B, which is slightly after six

large eddy turnover time τ∗ suggested by Moeng and Sullivan (1994). Those remarks hold for

both the shear and the convective cases, with extrema taking place later for the convective case

due to the different nature of the flow.

While they are in agreement, some differences between the 1D and the LES model are to un-

derline. Cu and Cv are generally very close for both models in both cases. Cu is however

somewhat underestimate (overestimated) by the LES model after 0.25Tinert for the shear (con-

vective) case but both models tend to converge to the same value after 0.5Tinert (more details

in a Sec. 4.3.1). At the opposite, Cg for the shear case, and CTKE for both cases, exhibit more

noticeable differences between 3D and 1D results.

Concerning Cg, and thus the friction velocity, Figs. 4.5 c) and 4.6 c), it is generally lower for

LES results with a notably lower and earlier minimum value for the shear case. In fact, since

no special treatment is done close to the surface for SGS model to properly perform (notably

in neutral conditions), u∗ is underestimated by the LES model (Andren et al., 1994; Sullivan

et al., 1994; Porté-Agel et al., 2000). At the opposite, the 1D model is shown to correctly

reproduce similarity profiles (Stull, 1988). Thus, the underestimation of u∗ by LES model after
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Figure 4.6 Same as Fig. 4.5 but from the convective case

0.25Tinert in Fig. 4.5 c), and to a lesser extent in Fig. 4.6 c), is related to the above mentioned

facts. Differences between column and LES results are lower in convective conditions since

LES model suffers less from this shortcoming as shown by Sullivan et al. (1994, Fig. 2 and 3).

Concerning CTKE of the shear case, Fig. 4.5 d), the total TKE level is notably lower and no

stringent maximum is present in the 1D results. This peak and time evolution of SM (and SS

- not shown here) is typical of a LES results based on a dissipative only SGS model (Mason,

1994). In fact, it is noteworthy that CTKE is based on the sum of the resolved and subgrid part

of the TKE. In the column model, the whole TKE is modelled while only a marginal part of the

total TKE is modelled in the LES model (roughly 5 % for S and B cases when the turbulent

regime is well established). The 1D model thus leads to a less realistic estimation of the TKE

notably in the mixed layer and the upper ABL when considering its parametrization level (one-

and-a-half order). In addition, the integrated TKE is normalized by u3
∗ to get CTKE . The lower
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u∗ of the LES model thus leads to a higher CTKE . In fact, the dimensional integrated TKE of

both models converge to similar values as computation evolves (not shown here). By defining

a new TKE integral coefficient that takes into account the real ABL height zi such as

C ′TKE =
1

ziu2∗

∫ ztop

0

ktotdz =
u∗
zif

CTKE, (4.5)

a value on par with Andren et al. (1994, Fig. 2) is obtained for the shear case.

Concerning the convective case, differences between models are also to note in CTKE , Fig. 4.6 d).

Here, there is almost a constant offset in CTKE between the 1D model and the LES model, and

both curves follow the same pattern. Only a small peak during the initialization period of the

LES model contradicts those facts. Interestingly, CTKE of the LES model oscillate around 1

after 0.2Tinert. This results compares well with Nieuwstadt et al. (1992, Fig. 1) when defining

a new TKE integral coefficient that takes into account the convective velocity scale, such as

C ′TKE =
k

w2∗
� u3

∗
zifw2∗

CTKE, (4.6)

which is fully valid in ours case since a uniform mesh is used in the vertical direction.

The last aspect of Figs. 4.5 and 4.6 to be discussed here regards the scatter between LES

results (the grey shaded area in the figures). As a reminder, the LES model was run five times

for each LES cases changing only the initial random velocity perturbations. All realizations

of both the shear and convective cases clearly follow the same trend for the four quantities

displayed in Figs. 4.5 and 4.6. Results oscillate rapidly around an equilibrium value which is

in agreement with the average of the five runs (oscillation of each result is included in the grey

area but roughly centred on the average curve). The latter oscillations have a notably higher

frequency than the inertial oscillation and their amplitudes stay roughly constant after the on-set

of turbulence. Finally, comparing the UKMO Smagorinsky and hybrid TKE SGS model results

(not shown here), the spread of the five results is generally larger than the differences between

the ensemble average result of the two SGS model which is in agreement with Nieuwstadt et al.

(1992) and Andren et al. (1994).
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To conclude this section, both 1D and LES models are in agreement and predict the same

time evolution of the reference flow variables. Achieving the ensemble average of several LES

computations, for which only initial random velocity perturbations were different, permitted

to better appreciate the general behaviour of the LES model. The time evolution of integrated

quantities studied in this section, Figs. 4.5 and 4.6, clearly shows that the on-set of the orga-

nized turbulent regime is occurring after six large eddy turnover time τ∗ as suggested by Moeng

and Sullivan (1994). Both the convective and the shear cases are in quasi-steady state during

the time interval used by Moeng and Sullivan (1994) for the post-processing (i.e. from 12 to

17 τ∗, hence from 0.172 to 0.25Tinert for the S case, and from 0.105Tinert to 0.148Tinert for B

case). Only the shear case appears to tend to a steady solution after at least 0.5Tinert as further

discussed in Sec. 4.3.1. As a consequence, managing to reproduce Moeng and Sullivan (1994)

results is a good indication of a well modelled time evolution.

To mitigate these thoughts, however, the inertial oscillation has a strong effect only on the first

order moments and related scaling parameters such as u∗ (Sorbjan, 2003). This is also later

confirmed in Sec. 4.3.1, along with the fact that non-dimensional profiles of all quantities reach

a roughly steady state after the turbulent regime is well established. This allows Moeng and

Sullivan (1994) to notably shorten the duration of the integrations while retaining the general

character of the results. Those points are studied more in detail in the next sections.

4.2.3 Direct comparison with Moeng and Sullivan (1994)

The first evaluation of the LES-capable MC2 model is achieved in this section. For that sake, a

direct comparison with the shear and convective cases of MS94 is intended. As a consequence

and as mentioned earlier, the guidelines presented by MS94 are followed as closely as possible

in order to be able to compare both dimensional and non-dimensional quantities as well as other

more specific aspects of the solution. In view of Figs. 4.5 and 4.6, the same start/end time as

MS94 are used to compute statistics (namely from/to 10445/15225 s for the shear cases and

6450/9000 s for the convective case, which is equivalent to 12 τ∗ to 17 τ∗ in Moeng’s results)

regardless of the τ∗ obtained with the present methods (cf. Figs. 4.5 and 4.6). Such an interval
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is short in comparison to the inertial oscillation period, i.e. 0.08Tinert for the shear case and

0.04Tinert for the convective case. Furthermore, as illustrated in the previous section, the time

evolution of horizontal velocity components (notably v) and others first order moments is non

negligible making their comparison more tricky.

All the results shown and discussed in this section are based on the k− l column model, named

S1d, and the Smagorinsky SGS model, named SS , described respectively in Sec. 2.2.5 and

Sec. 2.2.3.1. All cases were also reproduced based on the hybrid TKE SGS model described

in Sec. 2.2.3.3 and named SM . The configuration described in Tab. 4.1 is used. Results based

on others SGS models and configurations are presented and discussed in later sections.

Table 4.2 Result parameters for model setups shown in Tab. 4.1

Name
u∗ w∗ zi LMO θs w′θ′i U1 Δθ1

[m/s] [m/s] [m] [m] [K] [K m/s] [m/s] [K]

S1d 0.520 0.0 516 ∞ 300.55 -0.0330 4.45 -0.0024

SS 0.468 0.0 474 ∞ 300.36 -0.0032 4.17 -0.0008

SM 0.474 0.0 459 ∞ 300.38 -0.0034 4.01 -0.0009

Moeng et al. 0.50 0.0 478 ∞ NA -0.007 4.35 0.0

B1d 0.590 1.963 989 -39.2 307.31 -0.017 5.65 4.93

BS 0.573 1.956 981 -27.3 307.90 -0.023 5.35 5.11

BM 0.579 1.962 989 -28.8 307.79 -0.028 5.29 4.99

Moeng et al. 0.56 2.02 1030 -57.2 NA -0.040 5.1 2.8

Furthermore, slightly different results are obtained from computations based on the same model

but which are initialized with different random velocity perturbations. As a result, the ensemble

average of five SS and BS runs was made to obtain all result parameters and figures of the

present section. The error bars in the figures show the envelope, i.e. the scatter, of the series of

results based on the same model. They are referred to as scatter hereafter. This approach was

found necessary in order to reduce the uncertainty in the results associated with the variability

of the phenomena, while retaining the same post-processing time interval as MS94. This thus

allowed a direct comparison with MS94, however it also raised questions concerning the unicity

of MS94 and Sullivan et al. (1994) results. Those aspects are further studied in Sec. 4.3.1.
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In this section, after briefly discussing the general aspect of the results, the shear case is first

thoroughly investigated followed by the convective case. The results obtained are mostly dis-

cussed and validated with regards to Moeng and Wyngaard (1989), Moeng and Sullivan (1994)

and Sullivan et al. (1994) but other studies are invoked when required. In that sense, Figs. 4.7,

4.8, 4.9 and 4.10 are direct comparisons to Moeng and Sullivan (1994, Figs. 8, 9, 10) and

Sullivan et al. (1994, Figs. 11, 12 and 13) (profiles from these figures were digitized and are

labelled Moeng et al. and Sullivan et al. in Figs. 4.7, 4.8, 4.9 and 4.10). Furthermore, result

parameters are summarized in Tab. 4.2 along with the ones obtained by Moeng and Sullivan

(1994)5. Finally, The scatter of the result parameters is shown in Tab. 4.3.

Table 4.3 Scatter of the result parameters from Tab. 4.2, Eq. (4.9)

Name
o (u∗) o (w∗) o (zi) o (LMO) o (θs) o

(
w′θ′i

)
o (U1) o (Δθ1)

[m/s] [m/s] [m] [m] [K] [K m/s] [m/s] [K]

SS 0.014 0.0 32 ∞ 0.011 0.0015 0.13 0.010

SM 0.010 0.0 32 ∞ 0.009 0.0020 0.11 0.009

BS 0.008 0.014 21 1.81 0.045 0.008 0.10 0.029

BM 0.007 0.000 0 1.43 0.052 0.005 0.09 0.020

Before going in the detail of the two cases, it can be said from Tab. 4.2 and Figs. 4.7 to 4.9, that,

in a general manner, both scale parameters as well as the various profiles compare well with

MS94 and Sullivan et al. (1994) for the column and the LES models and for both the convective

and the shear case. Dimensional profiles of horizontal velocity components are also in agree-

ment with MS94 which is promising in view of the time evolution of both quantities during

the post-processing time interval. Scatter between SS/BS results (as shown by the intervals on

the curves and in Tab. 4.3) are generally not negligible, and only the first order moments show

small scatter in comparison to the mean profile values. Indeed, vertical momentum flux of the

convective case, Fig. 4.8 b), and, variance and third order moment of both cases, Figs. 4.8 c)

and d) and Figs. 4.9 a) and b), exhibit a rather large spread. As a result, MS94 results fall most

5 Note however that U1 of the shear case from that paper was corrected according to Sullivan et al. (1994,

Fig. 3) (see note in Sec. 1.3.2.2.1.2). “NA” is reported for θs since this value was not accessible from neither

Moeng and Sullivan (1994) nor Sullivan et al. (1994).
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of the time within the interval of the results obtained in this study. However, it can already be

said that due to this uncertainty, it is not always easy to draw quantitative conclusions. Those

facts seem to indicate that a longer period would be needed to compute more steady statistics.

4.2.3.1 Shear case

Concerning the shear case, the longitudinal velocity component, u, is slightly larger than MS94

across the whole ABL for SS as seen in Fig. 4.7 a). The difference with MS94 is nearly constant

through the ABL invoking a possible cause located in the near-surface region (Andren et al.,

1994). Concerning the lateral velocity component, v, differences are less significant and LES

results nearly superpose. When considering zi as shown in Tab. 4.2, the geostrophic wind is

reached at a lower height by SS than MS94. The difference between the various SS results

for both velocity component is very small across the ABL. The column model S1d, for its

part, exhibits a higher shear for both components close to the surface which results in lower

velocities between 0.1 and 0.5 zi. While this can appear odd here, the velocity profile of the

1D model is closer to the logarithmic solution as discussed in the literature review, Sec. 1.3. It

may thus be in better agreement with the analytical solution close to the surface. In the upper

ABL, the 1D model features a smoother transition to the free atmosphere, and it reaches the

geostrophic wind at higher altitude. In a general manner and given the time evolution of Moeng

and Sullivan (1994) shear case, both velocity components obtained with both the column and

the LES models are in good agreement with MS94 across the whole ABL.

The vertical momentum flux, Fig. 4.8 a), is in good agreement with MS94 for LES model and

only the 1D solution deviates from the other results at the inversion where 1D momentum fluxes

are higher. Indeed, in the absence of horizontal mixing and resolved turbulent perturbations,

vertical momentum flux needs to be higher to transport an equivalent amount of energy in

that region. It has a shape similar to Andren et al. (1994). As underlined by André et al.

(1978), u′w′ has a quasi-linear shape with height while v′w′ has a parabolic shape. The scatter

between the five SS runs, which is at its maximum in the middle of the ABL is not negligible,
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Figure 4.7 Dimensional profiles of horizontal velocity components:

a) shear case; b) convective case. Scatter of the results is shown by

error bars which are plotted every third mesh point

notably concerning u′w′. As illustrated in the TKE profiles Fig. 4.8 e) and the sensible heat

flux Fig. 4.10 a), this scatter is mostly originating from the resolved part of momentum fluxes.

Variances, Fig. 4.8 c), exhibit the same shape as MS946. Column model results are not dis-

played since the computation of the variance goes beyond the abilities of the k − l column

model. In fact, since no resolved part exists, variances are isotropic and equal to 2/3 k which

is a very rough estimate of the variances. Concerning the LES results, above 0.3 zi and the

inversion region put aside, MS94 results are within the scatter of SS except for w′2 which is

generally slightly lower than MS94 across the ABL. The scatter of SS results is notable for

u′2 while it is negligible for the two others components. Below 0.3 zi, u′2 and v′2 are higher

than MS94 especially for the former (u′2max/u
2
∗ ∼ 0.7). The calculated values are however

consistent with Andren et al. (1994) intercomparison results, where 0.6 < u′2/u2
∗ < 0.7 and

0.2 < v′2/u2
∗ < 0.30 for the non-backscatter models. As a reminder that, the “nose” exhib-

ited in the latter results (also present in SS) is typical of the dissipative SGS models but it is

6 Note that subgrid TKE is required in order to compute total variances and TKE, and compare with MS94.

However, it is not provided by the Smagorinsky SGS model. As a result, considering how close results from

Smagorinsky and the hybrid TKE SGS models are (see Sec. 4.4.1), subgrid TKE from SM and BM is used to

compute the total TKE and variances of SS and BS in Fig. 4.8 c), d), e) and f).
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Figure 4.8 Profiles of second order moments from the shear (left) and convective (right)

cases: a) and b) total vertical momentum fluxes; c) and d) total velocity variances; e) and

f) total and subgrid TKE
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erroneous (Andren et al., 1994; Mason, 1994; Sullivan et al., 1994; Porté-Agel et al., 2000;

Pope, 2000; Ding et al., 2001a). In Andren et al. (1994) study, Moeng’s u′2 featured the low-

est maximum value while Mason’s non-backscatter model, which is based on a Smagorinsky

SGS model equivalent to the one used here, is the highest (and equal to the values obtained

here). Concerning the vertical velocity variances, SS results also feature an inflection point at

around 0.25 zi with the value w′2/u2
∗ = 0.8. The height range of this plateau is in agreement

with MS94 but the present value is generally lower. Finally, at the inversion, the local maxi-

mum is more marked in SS than MS94 and they are also lower in height (1.0 zi here instead of

1.1 zi for MS94). This overshoot in the variances is coming from their resolved part. It is thus

reproduced thanks to the dynamics of the method (fully compressible).

The TKE profiles, Fig. 4.8 e), are also in agreement with the reference data from Sullivan et al.

(1994). Note that, as for the unresolved part of the variances, the results from a computation

based on the same general model (MC2) but using a TKE based SGS, SM , are shown here since

the Smagorinsky model does not provide the TKE. The total TKE differences between SM and

MS94 is similar to u′2 and v′2. As a summary, LES results are in good agreement above 0.3 zi,

while the proposed model features higher values below 0.3 zi. Total TKE of SM also exhibit

a “nose” such as the horizontal velocity variances. Interestingly, the SGS part of the TKE is

lower than MS94 above 0.2 zi meaning that the resolved part of the TKE is larger above that

height for the present model. Note also that, Fig. 4.8 e) clearly shows that the scatter between

SM results is coming from the resolved part of the variances. This is also the case for the other

variables (not shown here). Concerning the 1D results, the TKE profile varies linearly with

height and is located in between the total and the unresolved TKE from SM .

Vertical fluxes of velocity variance, Fig. 4.9 a), have also the same shapes as MS94 with max-

imum/minimum at the same heights. Both w′v′2 and w′3 are very close to MS94 (within the

scatter of the results) and w′u′2 clearly reproduce the local minimum at 0.08 zi and the local

maximum at 0.25 zi. However, mean values for the latter is nearly two times larger than those

of MS94. The scatter exhibited in the vertical flux of velocity variances is higher than in sec-
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Figure 4.9 Profiles of resolved third order moments from the shear (left) and convective

(right) cases: a) and b) velocity variances vertical fluxes; c) and d) correlation coefficients of

vertical momentum fluxes

ond order moment (which was higher than in first order moment). The scatter of turbulent

quantities thus appears to increase with their order.

Concerning the correlation coefficients of vertical momentum fluxes, Fig. 4.9 c), on the one

hand, the total coefficient nearly superpose with MS94. However, on the other hand, the up-

draft and downdraft correlations, besides having a similar shape, exhibit significantly different

values. Indeed, mean updraft momentum flux are more correlated than MS94 and nearly con-

stant from 0.1 to 0.7 zi while mean downdraft are less correlated than MS94. However, scatter
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Figure 4.10 Profiles of total and subgrid sensible heat flux: a) shear case; b) convective case

between results is high especially for γ+
uw. Furthermore, while correlation for downdraft be-

comes lower than the one for updraft at 0.9 zi, the total correlation coefficient, γtot
uw, tends to 0

at 1.2 zi such as MS94. However and as opposed to MS94, both updraft and downdraft cor-

relations show two crisscross between 0.9 and 1.2 zi. It thus clearly suggests that processes

taking place in that region are different from MS94. By further taking in consideration the lo-

cal maximum of horizontal velocity variances at the inversion, the implemented model features

a notably higher level of resolved fluctuation than MS94. This is attributable to the dynamics

of the model which appears to be more sensitive to the sharp temperature inversion.

Finally, concerning the sensible heat flux profile, Fig. 4.10 a), only the minimum value at the

inversion was given by MS94, but no profile is shown. In fact, such a profile is rarely found

in the literature for neutral case since temperature is not of prime interest for such a case and

heat flux are usually negligible. For the shear case of MS94, heat flux is expected to evolve

from zero at the surface to a minimum value at the inversion because of the entrainment of

hot air from the free atmosphere. SS and S1d results are correctly following this behaviour. It

is also interesting to underline the small region just above the inversion with positive subgrid

heat flux. This region exists in both column model and LES model results. As seen later in
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Fig. 4.27 b, it coincides with a region in the potential temperature profile that has a neutral (or

slightly unstable) stratification. While not present in the initial profile, this layer is created right

at the junction between the temperature inversion and the free atmosphere. Such a feature was

also observed by Sorbjan (2005b, Fig. 7 a) and 11 a)) using a LES model based on Deardorff

(1980) SGS model that includes internal energy conservation equation.

The predicted minimum heat flux at the inversion (see Tab. 4.2) is two times smaller for SS and

20 times higher for S1d than in MS94. The very high value for S1d is the consequence of the

lack of horizontal mixing and resolved motion at the inversion requiring an unrealistic increase

of the flux. Concerning the LES results, the scatter of the results is roughly equal to a quarter of

the heat flux, which is very high. Furthermore, the sensible heat flux values are very small. As

a result, the difference with MS94 is not critical. An aspect more of concerns however, is the

slight increase of the subgrid scale heat flux close to the surface. Indeed, as no surface forcing

is applied the later should be zero. After investigating this aspect by forcing the subgrid heat

flux to zero below 0.5 zi, it was found that this had no influence on the solution.

To summarize MS94 shear case results are satisfactorily reproduced using both the LES and the

column model. The column model however shows limitation at the inversion in comparison to

the LES models, and close to the surface the velocity profile also departs from both LES models

(see Sec. refsec:surface.MS1994). The present LES model is in very good agreement with

MS94 from 0.3 to 0.9 zi. In the inversion region, SS results feature more resolved motion than

MS94 impacting notably the resolved variances. The predicted friction velocity u∗ is slightly

lower than MS94 and the near-surface “nose” of the TKE, u′2 and v′2 is more significant than

MS94. These latter facts tend to indicate that MC2 is more dissipative than MS94, at least close

to the surface. Indeed, as noticed by Mason and Thomson (1992) and later Brown et al. (2000),

increasing the dissipation of an LES model (by increasing the Smagorinsky constant or using

a more dissipative advection scheme), has effects very similar to those noticed above. Finally,

the scatter of the results is mainly coming from the resolved part of the turbulent quantities.

The higher their order, the higher the scatter. In some cases, such as for the third order moments

of the heat flux, the scatter peaked at more than 15 % of the value of the variables.
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4.2.3.2 Convective case

The horizontal velocity components for the convective case shown in Fig. 4.7 b), are in good

agreement with MS94 in the whole ABL. The transition from the ABL to the free atmosphere,

namely the inversion, is however higher and thicker for BS featuring a less steep slope. Ac-

cording to Tab. 4.2, zi is lower than MS94 by 50 m for BS . This has the effect of shifting

by 0.05 zi upward the non-dimensional profiles of BS . It thus indicates that in fact velocity

transition to the free atmosphere of both LES models are roughly at the same height.

For the longitudinal component u, Fig. 4.7 b), all results nearly superpose below 0.15 zi. Both

LES models predicts a quasi uniform vertical profile of u while the 1D model predict a slight

increase of u with height across the ABL. The values of u obtained by MS94 are slightly

higher than BS but the difference is most often not larger than the scatter of BS . Concerning

the lateral component v, the column model result is perfectly uniform in the vertical direction

with a surface value equal to the one of BS (the same surface boundary condition is used for

both models). MS94 results feature a slightly different profile of v close to the surface with

lower speeds. BS results have a maximum value in the lower half of the ABL, then v decreases

by 0.2 m/s across the ABL, while the v component of MS94 increases by a similar amount

across the ABL and has a maximum just under the inversion.

Vertical momentum flux profiles of the convective case, Fig. 4.8 b), exhibit a rather large scatter

between results from the same model (in comparison to the maximum value which is small).

Indeed, the scatter of v′w′/w2
∗ reaches twice the value of that flux in the middle of the ABL. The

following general conclusion can however be drawn: BS momentum fluxes are reaching zero

at 1.15 zi, while it is roughly at 1.05 zi for MS94 and B1d. This difference is lowered when

considering the dimensional height instead of z/zi. The 1D results has a u′w′/w2
∗ surface

value higher by 10 % than the LES model results which are in agreement in that region. Note

that the slight deviation of u′w′/w2
∗ at the surface for BS can tentatively be attributed to the

difference between the similarity function used at the surface (Delage and Girard, 1992) and in

the atmosphere (Brown et al., 1994).
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Variances, Fig. 4.8 d), have nearly an identical shape to the one of MS94 but they generally

have lower valued by a nearly constant offset across the ABL. The values obtained here are

however in agreement with the results from a previous study of Moeng based on the same

model as in MS94 (see Moeng and Wyngaard (1989, Fig. 2)). Furthermore, they are also in

agreement with results from the convective intercomparison of Nieuwstadt et al. (1992). In

that study based on a freely convective ABL, a maximum value of w′2/w2
∗ � 0.4 is obtained

at ∼ 0.4 zi by LES models (in agreement with experimental data) and u′2/w2
∗ is around 0.2 at

the same height (u′2 = v′2 since a freely convective case is reproduced in that study). Those

latter values were also found to be representative by Stull (1988, p. 125, 370 and 375) and more

recently by Brown (1999) for freely convective cases.

Note nevertheless that geostrophic wind is non-zero in MS94 B case, and thus both shear and

buoyancy produce turbulence. But since −zi/LMO 	 4, the latter process is clearly dominant

and free convection scaling apply (Deardorff, 1980). The presence of shear slightly changes

the flow dynamics (compared to a free convective case), as demonstrated by MS94 and Sorbjan

(2005a). It introduces some anisotropy in the horizontal momentum fluctuations resulting in a

higher value of u′2/w2
∗ compared to v′2/w2

∗. Differences between those two terms exhibit the

very same features in our case as in MS94 but it is less pronounced in the upper part of the

ABL, just below the inversion.

In that sense, Sorbjan (2005a) also reproduced convective ABL based on LES going from

free to forced convection. This study clearly illustrated that increasing the shear production

(by increasing the geostrophic wind), tends to increase u′2 and v′2 at the surface and at the

peak just below the inversion as well as slightly increase w′2 maximum value in the mixed

layer. The profile of the two former quantities is also less uniform in the vertical direction

in such a case, notably close to the surface.Present LES results are thus in good agreement

with free convection variances results, due to the large value of the surface sensible heat flux

(making convection clearly the dominant process). However, the above mentioned features are

less noticeable, and variances value would be expected to be slightly higher than for a freely

convective case. It thus tends to show that the present model features too low variances values.
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Finally concerning the scatter, while generally smaller than for the vertical momentum flux, it

is not negligible notably for u′2 below 0.3 zi and above 0.7 zi.

Concerning the TKE profile shown in Fig. 4.8 f), the results from the TKE based SGS model,

BM , are shown here along with the column model results, B1d. Furthermore, since no TKE

profiles are directly provided in MS94, Moeng and Wyngaard (1989) results (which are based

on the same case and LES model as MS94) are used as reference. Column model results present

a notably higher level of TKE than the LES results. On the other hand and in comparison to

Moeng and Wyngaard (1989), BM results feature a notably lower TKE level, which is mainly

cause by a lower subgrid scale TKE level (50 % lower than Moeng’s results). The resolved

TKE is also slightly lower. This lower subgrid TKE may also be the cause of lower variances

values in the mixed layer. Interestingly, the subgrid TKE vanishes at the top of the ABL for

BM , while it retains a value similar to the one of the mixed layer for MS94. Thus, resolved

TKE contribute to 100 % of the TKE above the inversion for BM .

Vertical fluxes of velocity variances, Fig. 4.9 b), are for their part close to MS94. Most of

the time, the latter fall within the scatter of the present results. Interestingly, w′3 is slightly

higher than MS94 while it was the opposite for w′2, which may lead to a different vertical

velocity skewness shape (w′3/w′2
3/2

) in comparison to MS94 (not shown here). BS results

are also in agreement with Nieuwstadt et al. (1992). On the latter study, differences between

models is notably larger for the third order moments than for the variances. Here the scatter of

velocity variances vertical flux from BS model is generally of the same order as the one of the

momentum flux and the variances. It is higher for w′3 in the mixed layer. Concerning vertical

flux of u′2 and v′2, there are hardly differentiable in MS94 and the differences are more notable

here but values are generally lower. The scatter of those variable is lower than w′3.

The correlations of vertical momentum flux, Fig. 4.9 d), are also in agreement with MS94

while they are generally slightly lower for BS . In fact, the only obvious difference with BS

is in γ+
uw below 0.3 zi where, instead of smoothly returning to −0.3, updraft correlation keeps

decreasing to reach -0.55 at 0.09 zi. It then suddenly increases as the surface is getting closer.
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At the inversion, MS94 correlations are crossing at 1.1 zi while in our case there are just doing

a bottleneck at 1.05 zi and they cross at 1.2 zi. This time, only one small criss-cross is present

in our results between 1.2 and 1.25 zi (not shown here).

Finally, concerning the heat flux, Fig. 4.10 b), both B1d and BS predict a linear profile going

from roughly one at the surface to a slightly negative minimum value at the inversion cause by

the entrainment. A constant shift is however observed between BS and B1d (LES model show-

ing lower values). Interestingly, very close to the surface Moeng and Wyngaard (1989) total

heat flux (which is coming from the same case and model as MS94) is closer to B1d (which is

closer to one), while it superposes with BS between 0.3 and 0.9 zi. Both LES models predict

the same subgrid heat flux in the whole ABL. Above 0.9 zi, subgrid scale flux profile from

Moeng and Wyngaard (1989) is rather unusual (see Moeng and Sullivan (1994, Fig. 18) and

Nieuwstadt et al. (1992, Fig. 2) for more common subgrid scale heat flux profiles). However,

the low value of that part of the flux in comparison to the resolved part does not prevent us

to draw conclusions. The present LES results exhibit a less sharp countergradient flux with a

lower magnitude (half MS94 value as shown in Tab. 4.2). Such a profile of the heat flux at

the inversion is more representative of a convective ABL featuring a less sharp (weaker) inver-

sion that allows more turbulent mixing and thus a smoother transition between ABL and free

atmosphere as illustrated in Sorbjan (2005a, Figs. 7 b) and 12 a)). Furthermore, by applying

similarity function dedicated to the inversion that are proposed in the latter paper (see of Sor-

bjan (2005a, Eq. (9a))) one can quantitatively evaluate the entrainment heat flux. For MS94

B case, Sorbjan (2005a) similarity functions lead to an entrainment heat flux value of roughly

−0.05 K m/s which is twice the obtained value with BS but in agreement with MS94 value.

This difference can only be attributed to the resolved part of the flux (since subgrid scale heat

flux in negligible at the inversion), and thus to the dynamics of the model.

In conclusion of the direct comparison with Moeng and Sullivan (1994) convective case, results

are generally well reproduced, however, the scatter from the present LES model is sometimes

very high preventing to always properly compare results with Moeng and Sullivan (1994). All

profiles have a very similar shape to the reference study but the ABL height is 5 % lower for BS .
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Furthermore, variances and TKE obtained with BS/BM are also lower than Moeng and Sullivan

(1994). This is partly due to a lower subgrid scale TKE than Moeng and Sullivan (1994) in

the mixed layer. Finally, the inversion appear to be smoother than Moeng and Sullivan (1994).

This is particularly noticeable in the sensible heat flux. In consideration of Sorbjan (2005a)

similarity functions, it was found that BS predict a 50 % too low entrainment flux for the case

considered which was found to be coming from the dynamics of the model.

4.2.4 Flow structure

An aspect of LES which is of interest, is the ability of such an approach to resolve and re-

produce eddies, their evolution and their interaction throughout the whole ABL (with some

limitation in the surface layer). The spatial distribution of turbulent structure can thus be ex-

plicitly studied which is an important advantage over column models. The early LES studies

allowed to better explore qualitatively and quantitatively these aspects of the ABL. In our days,

measurement facilities such as SODAR and LIDAR allow to fully appreciate experimentally

such a process and enforce the early LES findings, see Drobinski et al. (2004) for an example.

In the present section, instantaneous turbulent fields from the S and B cases are discussed

with regards to the literature. Main features of the flow are illustrated along with the differ-

ences between the shear and convective ABL. To better appreciate and compare flow features,

Moeng and Sullivan (1994, Figs. 1 to 6) are reproduced here using the results from the LES

based on the Smagorinsky SGS model, i.e. SS and BS . Those figures were also reproduced by

Churchfield et al. (2010) based on a Smagorinsky model and a finer mesh than MS94.

4.2.4.1 Shear case

The shear case, reproduced here, includes features from: classical Ekman cases, channel flows,

and full scale real ABL. Hence, depending of the height in the ABL, the striking feature should

resemble one of the above mentioned flow types (Moeng and Sullivan, 1994). Flow structure

of shear driven ABL is often discussed by authors but, most of the time, only for the near-

surface region (with the objective to better appreciate the impact of model parameters such
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Figure 4.11 Instantaneous resolved-scales horizontal cross-sections from SS at 0.2 zi
and at time t = 10170 s (i.e. 17 τ∗): a) u′; b) u′w′; c) w′; d) w′θ′; e) θ′
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as the mesh or SGS model) (Sullivan et al., 1994; Ding et al., 2001a; Senocak et al., 2007;

Silva Lopes et al., 2007). Furthermore, temperature and heat are almost never studied for shear

cases. Here, the whole domain is investigated for both momentum and heat.

Fig. 4.11 shows the horizontal cross-section at 0.2 zi (i.e. ∼ 100 m agl, where the flow is more

than 90 % resolved, see Fig. 4.19 a)) of the longitudinal and vertical velocity perturbation,

potential temperature perturbation and resolved vertical momentum and heat fluxes. A spatial

average of the horizontal cross-section is made to obtain reference values used to compute

the perturbations. On this figure, well defined elongated structures (streaks) oriented along the

flow direction can clearly be observed. They span nearly across the whole domain. In spanwise

direction, low and high speed regions are alternating. The size of those structure is very similar

to those shown by MS94. Those near-surface streaks are caused by shear instabilities. They

occur in updraft/downdraft pairs (elongated in the flow direction). In high velocity regions, the

flow tends to go downwards (sweeps process, u+w−, featuring high-speed negative momentum

flux), while in low speed region, the flow is clearly going upwards (ejections process, u−w+,

featuring low-speed negative momentum flux) (Drobinski et al., 2004). As noted by MS94,

ejection regions concentrate large negative u′w′ values (see Fig. 4.11 b)).

The near-surface streaks were for the first time observed by means of LES by Deardorff (1972)

and they were later extensively described for the neutral ABL by Mason and Thomson (1987)

who further used two dimensional correlations to characterize the latter. It is also a well known

feature of the near-wall region of channel flow (Sagaut, 2006). More recent studies as well as

experimental data (wind tunnel and full scale data) confirm the presence of such eddies in the

surface layer (Mason, 1994; Sullivan et al., 1994; Ding et al., 2001a; Drobinski et al., 2004;

Senocak et al., 2007; Churchfield et al., 2010; Silva Lopes et al., 2007). They are present in all

flow variables but they are more noticeable in longitudinal velocity fluctuations.

Potential temperature fluctuations at 0.2 zi, Fig. 4.11 e), are relatively small (∼ 0.04 K) and

they can be assumed to be solely due to the advection caused by w′ fluctuations. Indeed,
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Figure 4.12 Instantaneous horizontal cross-sections of resolved streamwise velocity

fluctuations u′ from SS at time t = 10170 s at various heights: a) 0.1 zi; b) 0.5 zi; c) 0.2 zi;
d) 0.8 zi; e) 0.3 zi; f) 1.0 zi. Contours legend as in Fig. 4.11
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Figure 4.13 Instantaneous resolved-scales vertical cross-sections (x-z plane at Ly/2)

from SS at time t = 10170 s: a) u′; b) w′; c) u′w′. Contours legend as in Fig. 4.11

vertical velocity and temperature patterns are roughly similar and updraft (downdraft) regions

are generally located where temperature is lower (higher) than the environment.

Fig. 4.12 shows instantaneous horizontal cross-sections of longitudinal velocity fluctuations at

various heights in the ABL for the shear case. In this figure, contour intervals as well as colour

scheme are proper to each figure as opposed to MS94. It can be clearly seen that as z increases

streak structures gradually disappear while they turn toward geostrophic wind direction. The
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min/max values of fluctuations are also reduced as z increases (see min/max values displayed

above the figures). At z/zi = 0.5 and above, Fig. 4.12 b), streaks are no longer visible and

they are replaced by more spatially random structures. Mason and Thomson (1987), Moeng

and Sullivan (1994) and Churchfield et al. (2010) obtained the very same features (with finer

details for Churchfield et al. (2010) due to the finer mesh used). In the middle of the ABL, the

flow is almost fully resolved by the numerical mesh. Flow fields are smooth and few structure

of the size of the mesh are present which indicates, as underlined by Mason and Thomson

(1987), Mason (1994) and Klemp and Skamarock (2004); Takemi and Rotunno (2005), that

SGS model constants are correctly set and solution in not prone to discretization errors. Finally,

at the inversion, Fig. 4.12 f) no predominant direction can be observed and auto-correlation is

almost circular (not shown here).

The next figures discussed, Figs. 4.13 and 4.14, are vertical x-z cross-sections at y = 1.5 km

for the same variables as in Fig. 4.11. Perturbations are computed from the horizontal spatial

average at each height. Longitudinal velocity perturbations, Fig. 4.13 a), exhibit small elon-

gated structures organized in high/low speed pairs and mostly concentrate close to the surface,

i.e. below 200 m, which is in agreement with Fig. 4.12 and the observation of MS94. Ver-

tical velocity perturbations, Fig. 4.13 b), feature structures ranging up to scales equal to the

ABL height. They are located in updraft-downdraft pair with strong perturbations going up to

±1 m/s found above 0.1 zi. Eddies are also observed at the inversion. The influence of the lat-

ter goes up to the top of the domain and zero contour lines reach the top of the domain almost

vertically. A strong negative correlation of u′w′ can be observed in updraft/downdraft regions

(e.g. for x around 2 km in the middle of the ABL and for x between 2.5 km and 3 km) in

Fig. 4.13 c). Regions of negative (positive) vertical velocity coincide with regions of positive

(negative) u′ fluctuation. This latter fact is also in agreement with the previous findings, MS94

and Mason and Thomson (1987).

A last interesting feature of Fig. 4.13 a) to c) is the organized series of structures seen in the

ABL at x > 2.25 km and that reaches the inversion at x = 3 km. The latter is present in u′ and

w′ vertical cross sections Fig. 4.11 a) and b), and the correlation u′w′ is fairly high as seen in
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Figure 4.14 Instantaneous resolved-scales vertical cross-sections (x-z plane at Ly/2)

from SS at time t = 10170 s: a) θ′; b) w′θ′. Contours legend as in Fig. 4.11

Fig. 4.11 c). Those organized structures feature the same pattern and may be a gravity wave

triggered by surface shear instabilities.

Potential temperature perturbations, Fig. 4.14 a), show strong negative/positive extrema of a

few degrees all along the inversion. They are going by pair and hot regions appears to be

correlated with downdraft invoking entrainment of hot air from above the inversion (e.g. for

x < 250 m). This results in strong negative heat flux w′θ′, Fig. 4.14 b). In Fig. 4.14 a) and b),

a nearly strait line is seen at ∼ 620 m (just above the inversion). It coincide with a neutral (or

slightly unstable) region located just above the inversion as seen in Fig. 4.10 a) and 4.27 b).

While the latter can appear to be spurious, it was also observed by Sorbjan (2005a, Figs. 7 a)

and 11 a)) relying on Deardorff SGS model (Deardorff, 1980).
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Figure 4.15 Instantaneous resolved-scales horizontal cross-sections from BS at 0.2 zi
and at time t = 2200 s (i.e. 17 τ∗): a) u′; b) u′w′; c) w′; d) w′θ′; e) θ′
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4.2.4.2 Convective case

As already previously observed, buoyancy driven ABL presents notably different features com-

pared to a shear driven ABL. For such a case, vertical velocity w and potential temperature θ

are more of interest than horizontal velocity components. In MS94 B case, buoyancy is clearly

the dominant process as −zi/LMO 	 4.5 but a slight shear is also present, notably close to the

surface and at the inversion. As discussed by Moeng and Sullivan (1994); Churchfield et al.

(2010) and more extensively by Sorbjan (2005a), in such a case the flow structure is expected

to slightly differ close to the surface and at the inversion in comparison to free convective cases

while main patterns and structures (and scalings) should be largely similar. Free convection

results can thus be used as a basis of comparison. In this section, as for the shear case, the

cross-section for the same variable and at the same location as MS94 are discussed.

Fig. 4.15 show the horizontal cross-section at 0.2 zi (i.e. just above the surface layer and where

the flow is more than 95 % resolved, see Fig. 4.19) of longitudinal and vertical velocity per-

turbation, potential temperature perturbation and resolved vertical momentum and heat fluxes.

It is similar to Fig. 4.11 and was obtained in the same manner. Structures appear smaller than

for the shear case, but the domain as well as the meshes of the convective case are 40 % larger.

Flow structure is primary determined by a few narrow and powerful updrafts that concentrate

most of the positive vertical velocity and potential temperature fluctuations, Fig. 4.15 b) and

e). Strong positive correlation thus exist between those two variables in the updrafts as seen on

w′θ′ cross-sections, Fig. 4.15 d). Elsewhere, w′θ′ is close to zero. Those updraft structures are

isolated and surrounded by large smooth downdraft. Finally, almost all the large negative u′w′

at 0.2 zi is also found in these updrafts. The above described results are very similar to the one

of Moeng and Sullivan (1994) and Churchfield et al. (2010).

Mason (1989) and Sorbjan (2005a) clearly obtained similar strong updrafts in freely convective

conditions. However, the well defined closed cells they found close to the surface (similar to

the Rayleigh-Bénard convection structures), as shown by Mason (1989), are not found in the

convective case reproduced here, Fig. 4.15. In fact, narrow near-surface updrafts are oriented
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Figure 4.16 Instantaneous horizontal cross-sections of resolved vertical velocity

fluctuations w′ from BS at time t = 2200 s at various heights: a) 0.1 zi; b) 0.5 zi; c) 0.2 zi;
d) 0.8 zi; e) 1.0 zi. Contours legend as in Fig. 4.15
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along the flow direction similarly to Moeng and Sullivan (1994) and Churchfield et al. (2010).

This is due to the additional surface shear which cause the convective instabilities to have their

organization influenced by shear instabilities that tend to have a streak like structure. The

difference observed at 0.2 zi with free convective case is thus normal.

Fig. 4.16 shows instantaneous horizontal cross-sections of vertical velocity fluctuations at var-

ious height for the convective case BS . On this figure, contour intervals as well as colour

scheme are proper to each figures as opposed to MS94. It can be observed that strong con-

vective plumes (called “spokes” by Mason (1989)) generally span the whole ABL vertically,

illustrating their non-local effect. Few of them are however strong enough to overshoot the

inversion as illustrated in Fig. 4.16 d) and f). A clear example of such a strong updraft, that

overshoot the inversion, can be seen at x = 3 km, y = 2.5 km in Fig. 4.16 a) to f). Intensity

of w fluctuation is higher in the mixed layer than close to the surface and at the inversion. This

is in agreement with MS94 and Churchfield et al. (2010). In comparison with free convective

case as shown in Fig.2 c), d), g) and i) from Mason (1989), despite the differences previously

discussed in the near-surface region, the flow structure in the upper half of the ABL is very

similar confirming the free convective nature of the flow from B case in that region.

The next figures, Fig. 4.17 and Fig. 4.18, show vertical x-z cross-sections at y = 2.5 km for

the same variables as in Fig. 4.15. Perturbations are computed from the spatial average of

the horizontal cross-section at each height. Longitudinal velocity perturbation, Fig. 4.17 a),

show structures that appear to be smaller in size and more randomly located than MS94. Very

close to the surface (i.e. below 0.1 km) structures present some similarity with the shear case.

Concerning vertical velocity perturbation, Fig. 4.17 b) shows few strong updraft confirming

previous observations (two are seen at x = 0 km and x = 3 km). Their structure clearly

span the entire ABL and overshoot the inversion for the one at x = 3 km. Compared to a

free convective case where convective plumes are rising vertically, here updrafts are slightly

affected by shear which cause their deformation close to the surface. Finally, updrafts also

concentrate most of large u′w′ (positive or negative) as seen in Fig. 4.17 b).
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Figure 4.17 Instantaneous resolved-scales vertical cross-sections (x-z plane at Ly/2)

from BS at time t = 2200 s: a) u′; b) w′; c) u′w′. Contours legend as in Fig. 4.15

In Figs. 4.18 a) and b) which is equivalent to Moeng and Sullivan (1994, Figs. 6 d) and e)),

the contour scale in notably different from MS94. The features obtained here are however

qualitatively equivalent to MS94 in the mixed layer, i.e. positive perturbation regions located
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Figure 4.18 Instantaneous resolved-scales vertical cross-sections (x-z plane at Ly/2)

from BS at time t = 2200 s: a) θ′; b) w′θ′. Contours legend as in Fig. 4.15

in updraft regions (see at x = 3 km). And a strong positive relationship is observed between

vertical velocity and potential temperature leading to strong a positive w′θ′ within the updrafts.

Another striking feature in Fig. 4.18 is the presence along the inversion of alternating strong

positive/negative temperature perturbations (from −4 K to 2 K) to which correspond pairs of

positive/negative heat flux. Those strong negative temperature perturbations are due to the

updrafts that hit the inversion bringing with them air cooler than the environment (see at x =

3 km in Fig. 4.18 a)). Furthermore, hot air is pushed down (by continuity) which correspond

to the strong positive temperature perturbations. This is the entrainment process (Deardorff,

1974; Stull, 1988; Sommeria, 1976; Sorbjan, 2005a). Finally, a neutral region is also found for
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the BS case just above the inversion (at z = 1.225 km). It is however, less notable than for the

shear case. Sorbjan (2005a) free and force convective cases also present such a feature.

4.2.5 Near-surface behaviour

The ABL region close to the surface, i.e. the surface layer, is an area where LES models are

prone to large errors due to the lack of flow resolution as shown in Fig. 4.19. For the shear

case, only 60 % of the vertical momentum flux is resolved at the top of the surface layer,

i.e. 0.1 zi, while it is roughly 90 % for the buoyant case. This implies that the surface layer

results are heavily influenced by the SGS model notably in neutral conditions. As discussed

during the literature review, it can be seen as the Achilles’ heel of LES models dedicated to the

ABL. Furthermore, depending of the SGS model used and their adaptation, this error features

a particular shape, as clearly illustrated in Porté-Agel et al. (2000); Chow et al. (2005).

The similarity theory provides analytical solutions (derived from empirical data) that were

proven to be representative for the mean wind and temperature profiles in the surface layer

of the ABL (Stull, 1988; Andren et al., 1994; Chow et al., 2005; Sorbjan, 2005a) over a ho-

mogeneous terrain. This theory is thus generally used to provide boundary condition of ABL

flow models (which is the case for both the column model and the LES model presented here).

However and as a side note, this latter practice is more controversial for use in LES since these

law are only valid when considering the ensemble averaged velocity and temperature profiles

(not unsteady) (Porté-Agel et al., 2000; Redelsperger et al., 2001; Drobinski et al., 2004). The

similarity theory is however a good reference for comparisons and one would expect to see a

good agreement of numerical results with similarity in the surface layer.

In this subsection, near-surface results of the shear and convective cases are discussed and com-

pared against both similarity theory and literature results. The same post-processing approach

as in the previous section is used and the error bars show the envelope of the results based on

the same model but with difference initial random velocity perturbations.
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Figure 4.19 Ratio of resolved over total vertical momentum flux: a) shear case;

b) convective case. Scatter as in Fig. 4.7

4.2.5.1 Non-dimensional wind velocity and shear

Fig. 4.20 shows vertical profile of non-dimensional wind velocity and shear for the neutral and

convective cases. It includes theoretical solution from the similarity theory, results from the

1D column model, the Smagorinsky SGS model and from MS94 (e.g. Sullivan et al. (1994)

more precisely) for both cases. Note that for the convective case, while error bars are plotted,

the scatter between results is too small to be observed. Indeed, as underlined earlier, the spread

between all results from the same model become negligible close to the surface.

From Fig. 4.20 a) and b), it is interesting to underline the differences between the column

model and LES results, especially for the shear case. Indeed, for that case, in Fig. 4.20 a) (left)

S1d non-dimensional wind profile is closely following the log law profile up to 0.2 zi (100 m),

while LES results clearly depart for the similarity above 0.02 zi. This is in agreement with

the non-dimensional wind shear, φM , shown in Fig. 4.20 b) (left): the 1D result follows the

similarity up to 0.1 zi and then gradually deviates. At the opposite, the bias with the similarity

for the LES results quickly rise from zero at the surface to a maximum at around 0.1 zi (height

at which more the 50 % of the flow become resolved) and then decrease again up to 0.3 zi.
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Figure 4.20 Near-surface profiles from the shear (left) and convective

(right) cases: a) wind velocity; b) wind shear. Scatter is plotted every

second mesh point

Concerning the convective case, the picture is changed since the near-surface flow is notably

more resolved, and LES approaches rely less on the SGS model details than for the shear

case. In Fig. 4.20 a) (right), results from all models are much closer (in comparison to the

neutral case) and in agreement with similarity theory. Only MS94 results appears to feature
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a constant shift with the present results. This shift is caused by the slightly higher value of v

obtained here (for both the column and the LES model) and the lower value of u∗ obtained by

MS94. The non-dimensional wind shear of the convective case Fig. 4.20 b) (right) also feature

a much better agreement between all results and similarity than the shear case. The column

model superposes with similarity up to 0.1 zi, while both LES approaches are in agreement and

slightly overestimate (underestimate) the shear below (above) this height.

To explain the different behaviour of the LES and the column model close to the surface, few

facts can be considered. On the one hand, 1D closure fluxes are fully modelled. They most

of the time relying on the K-closure. On the other hand, LES turbulent fluxes are the sum

of resolved and subgrid scale components. The first order SGS model also explicitly follows

the flux-profile relationships, however, they are based on the hypothesis that the turbulence

is homogeneous and isotropic (i.e. Kolmogorov hypothesis). This makes the definition of the

mixing length and closure constant to differs between the two approaches as illustrated by

Redelsperger et al. (2001): closure constants from column model are computed by matching

similarity theory at the surface, while Kolmogorov hypothesis are used for SGS model.

Furthermore, due to the presence of the wall, eddy characteristic size becomes proportional

with the distance to the wall as the latter is approached. As a consequence, if the LES does not

resolve down to the viscous sublayer, the first few cells close to the surface have grid size that

become approximately equivalent or larger than the largest eddies letting the flow to be fully

unresolved, as illustrated in Fig. 4.19. This is far beyond the validity limit of the hypothesis

used to obtains the SGS model definition. As a result, close to the surface, solution heavily

rely on the SGS model while it is not anymore valid.

Considering the specific case of dissipative only SGS models such as the standard Smagorinsky

SGS model and the TKE based SGS model, their over-dissipative nature tend to reduce the

level of energy of the smallest resolved structures, as discussed by Porté-Agel et al. (2000). In

the near-surface region, this tend to over reduce the resolved vertical turbulent mixing, which

allows a higher vertical shear of horizontal velocity, resulting in a too low friction velocity. The
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nose shape in the dimensionless wind shear is thus very typical of LES based on dissipative

only SGS models (Andren et al., 1994; Sullivan et al., 1994; Porté-Agel et al., 2000; Ding

et al., 2001a; Redelsperger et al., 2001; Chow et al., 2005; Piomelli, 2008). To avoid this error,

the latter SGS model requires an adaptation to properly take into account the surface (wall) as

it is illustrated in Andren et al. (1994); Sullivan et al. (1994); Piomelli (2008).

Researchers devoted many efforts to avoid this shortcoming, and while some solution were

proposed at an early stage (Schumann, 1975), it is still an open field of research (Piomelli,

2008) that receive a lot of attention (Andren et al., 1994; Sullivan et al., 1994; Porté-Agel

et al., 2000; Ding et al., 2001a; Redelsperger et al., 2001; Chow et al., 2005; Piomelli, 2008;

Brasseur and Wei, 2010). Results from the proposed approach exhibit the very same features

as equivalent models in the literature (Andren et al., 1994; Sullivan et al., 1994).

4.2.5.2 Non-dimensional temperature and temperature gradient

Similarly as in the previous section, but only for the convective case, Fig. 4.21 a) and b) com-

pare respectively the non-dimensional potential temperature profile and the vertical gradient

of potential temperature of B1d and BS with the similarity theory and MS94 (e.g. Sullivan

et al. (1994) more precisely). In Fig. 4.21 a), all non-dimensional temperature profiles are in

good agreement with a departure from the similarity always lower than half θ∗ (i.e. 0.25 K).

The present results however feature a nearly constant shift of roughly +5 θ∗, i.e. +2.2 K, with

MS94. In fact, roughness length for temperature is five times smaller than the aerodynamic

roughness z0 in the present model (see Sec. 2.3). This quantity is used to diagnose the surface

temperature (since a surface sensible heat flux is imposed) which explains the shift in the re-

sults. By off-line computing θs based on a temperature roughness that equals z0 and relying

on values from BS in Tab. 4.2, one can obtain Δθ1 = 2.9 K, which is on part with the value

obtained by MS94. However, considering the accessible information from Moeng and Sullivan

(1994); Sullivan et al. (1994), surface temperature can not be directly compared 7.

7 No surface temperature was provided by neither MS94 nor Sullivan et al. (1994), and only the

non-dimensional profile of potential temperature, (θ − θs)/θ∗, was accessible along with the surface layer

temperature scale, θ∗ = w′θ′s/u∗.
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Figure 4.21 Near-surface profiles from the convective case: a) potential temperature;

b) potential temperature vertical gradient. Scatter as in Fig. 4.20

Concerning the profile of dimensionless vertical gradient of potential temperature in Fig. 4.21 b),

a good agreement is also obtained between all the approaches: column model result is closer to

the similarity, while both LES results show the same features (MS1994 results being slightly

better). Temperature gradient is overestimated (underestimated) below (above) 0.11 zi for

MS94 and BS . This figure confirms that the shift in MS94 result in Fig. 4.21 a) is roughly

constant since the vertical temperature gradient from both LES model is similar.

As a conclusion, a good agreement is obtained for near-surface potential temperature between

similarity, B1d, BS and MS94. As for the momentum, potential temperature obtained by means

of the column model is the closest to the similarity, then come MS94 results closely followed

by BS . Only the post-processed surface temperature of BS and B1d, which are diagnosed,

differs from MS94 due a different roughness associated to heat processes in MC2.
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4.2.6 Velocity spectra

Turbulent flow energy and velocity spectra contain an large amount of information as thor-

oughly explained by Pope (2000). Some of this information can only be retrieved by means of

a spectral analysis. As a result and for the sake of completeness, the analysis and evaluation of

a LES method requires the latter analysis (Nieuwstadt et al., 1992; Andren et al., 1994).

In the present section, theoretical spectral model and numerical results from other authors are

first introduced. They serve as a basis of reference in a second section where velocity spectra

from SS and BS cases are evaluated. In that second section, shear results are first discussed

followed by the results from the convective case.

4.2.6.1 Velocity spectra comparison background

As introduced in Appendix II, an energy cascade from the big eddies, that produce and transport

the kinetic energy, to the smallest ones, that dissipate it, take place in turbulent flows. This

cascade can be conveniently represented under a spectral form as seen in Fig. II-1.

Inertial subrange

In the high wave numbers, i.e. the smallest structures, one can demonstrate from the two first

Kolmogorov hypothesesthat, regardless of the thermal stratification, energy spectra in the in-

ertial subrange is equal to E(k) = CKolε
2/3k−5/3 where k is the wave number and CKol is

the universal Kolmogorov constant (found experimentally to be equal to 1.5 − 1.6). In the

context of isotropic turbulence, one dimensional velocity spectra (longitudinal and transverse)

also retain the same slope (for any velocity components) and only the proportionality constant

is changed (cf. Pope (2000, Sec. 6.5.2)). The streamwise and spanwise velocity component

longitudinal spectra can be expressed as

kxEu(kx) = C1ε
2/3k−2/3x (4.7)

kxEv(kx) = C ′1ε
2/3k−2/3x (4.8)
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where kx = 2πNi/Lx is the longitudinal wave number, C1 = 18/55CKol and C ′1 = 24/55CKol

(i.e. C ′1/C1 = 4/3 thus Eu(kx) = 3/4Ev(kx)). The Kolmogorov spectra model was verified

experimentally by many authors and shown to exist regardless of the thermal stratification and

the height in the ABL (Stull, 1988; Nieuwstadt et al., 1992; Andren et al., 1994; Mason and

Brown, 1999; Porté-Agel et al., 2000; Brown et al., 2000; Drobinski et al., 2004). Furthermore,

Busch and Panofsky (1968) found based on full scale ABL measurements, that in the inertial

subrange, the ratio of 4/3 between C1 and C ′1 (i.e. ratio between Eu and Ev) clearly hold and

that the ratio between Eu and Ew was likely to be of a same amount (leading to Eu(kx) =

4/3Ev(kx) = 4/3Ew(kx) = 18/55E(k)) (Drobinski et al., 2004).

In the context of LES, one could further consider the properties of the LES filter involved (as

illustrated in Fig. II-4) as well as the finite and discrete nature of the numerical results, to obtain

an analytical expression of the theoretical energy spectra of the inertial subrange (Moeng and

Wyngaard, 1988; Pope, 2000). The latter is more consistent with model results notably close to

the cut-off wave number where it exhibits a smaller slope than −5/3 (see Fig. II-4 and Moeng

and Wyngaard (1988)). This approach is however rarely followed in the literature and the −5/3

is most of the time preferred (Nieuwstadt et al., 1992; Andren et al., 1994; Mason and Brown,

1999; Porté-Agel et al., 2000; Brown et al., 2000; Drobinski et al., 2004).

Low wave numbers and transition

Spectra shape in the low wave numbers is largely influenced by the distance from the ground

(Drobinski et al., 2004) and large scale flow properties and forcing (Nieuwstadt et al., 1992;

Andren et al., 1994; Drobinski et al., 2004). As opposed to the inertial subrange, no universal

theory exists and the picture is less clear. In the mixed layer (i.e. region between the surface

layer and the inversion), there are however evidence that the longitudinal energy spectra of

low wave numbers become constant with kx (Busch and Panofsky, 1968; Drobinski et al.,

2004) for all velocity components (i.e. kxEu(kx) ∝ kxEv(kx) ∝ kxEw(kx) ∝ k+1
x ). Closer to

the surface (lowest part of the mixed layer and surface layer), a region with the same constant

slope (i.e. kxEui
(kx) ∝ k+1

x ) has also been observed in the lowest wave numbers for all velocity
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components as discussed by Drobinski et al. (2004). However, in the surface layer (and above

10 m) transition from the lowest wave numbers to the inertial subrange can feature a plateau

with kxEui
(kx) ∝ k0

x (see Drobinski et al. (2004, Fig. 9)). According to the latter study,

the plateau starts at kx = u∗/uzi which gives kx = 2.4 × 10−4 m−1 for SS using Tab. 4.2

parameters. Thus, Lx � 24 km using kxmin
= 2π/Lx which, in other words, would be the

domain size required for kxEui
(kx) to reach the +1 slopes at the first level above the surface.

Following Drobinski et al. (2004) suggestions, surface layer spectra from SS and BS should

only feature kxEui
(kx) ∝ k0

x, while kxEui
(kx) ∝ k+1

x is not likely to be present as Lx (the

horizontal domain size) of both shear and convective cases is too small.

In the surface layer, Ew also shows an increase of the energy with height (Mason and Brown,

1999; Brown et al., 2000) in the low wave numbers while Eu and Ev does not have such an

increase. This feature is clearly illustrated by Mason and Brown (1999); Brown et al. (2000);

Ding et al. (2001a) for both shear and convective cases using various configurations of a stan-

dard Smagorinsky SGS model. In that sense, the latter studies can serve as reference to quan-

titatively evaluate the results of the present model.

Finally, concerning the transition to the inertial subrange, it is known to evolve with height such

as, in neutral conditions, its location should be roughly constant with zkx such as zkx � 0.6−1

for Eu(kx) and zkx � 2.7 − 3.1 for Ew(kx) (Porté-Agel et al., 2000; Drobinski et al., 2004).

Furthermore, it was shown experimentally in neutral conditions that by plotting velocity spectra

against zkx on a log-log graph and normalizing them by zu2
∗ such as presented by Porté-Agel

et al. (2000), a merge of the spectra in two linear region, Eu(kx) ∝ k−1x and Eu(kx) ∝ k
−5/3
x is

observed. The transition between the two linear region is located at the transition to the iner-

tial subrange. Those features conveniently allow for a quantitative comparison of, at the same

time, the velocity spectra at various wave numbers as well as at various heights. Porté-Agel

et al. (2000) successfully applied these criteria (primarily obtained for a turbulent pipe flow)

to analyze various LES of a neutral ABL. In his study, Smagorinsky SGS model ranging from

the standard one (based on various CS values) to a state-of-the-art scale-dependent dynamic

SGS model were analyzed. Although the ABL they are simulating is more idealized (only mo-
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mentum is solved, friction velocity is imposed and constant, and Coriolis factor is not present),

it is an interesting basis of comparison that illustrates the limitation of the Smagorinsky SGS

model (i.e. departure from the theory above) and the spectral signature of the latter model.

Summary

As a summary of the above and regardless of the stratification and the velocity components:

• kxEui
(kx) ∝ k

−2/3
x is a good reference in the inertial subrange at all heights;

• kxEui
(kx) ∝ k+1

x is a good reference in the low wave numbers but only in the mixed

layer. Surface layer low wave number velocity spectra shape are more complex (see

Drobinski et al. (2004, Fig. 9)).

Note however that the above mentioned reference spectra slope (notably in the low wave num-

bers) are based on theoretical consideration and experimental measurements. When consid-

ering LES results found in the literature, the picture is however somewhat changed due to the

limitation inherent to the methods and SGS models (Mason, 1989; Nieuwstadt et al., 1992; An-

dren et al., 1994; Mason and Brown, 1999; Porté-Agel et al., 2000; Brown et al., 2000; Ding

et al., 2001a; Cuxart et al., 2000). As an example, the over-dissipative nature of the Smagorinky

SGS model tend to make velocity spectra falloff in the high wave number much quicker than

observed and predicted by Kolmogorov theory (Mason and Thomson, 1992; Porté-Agel et al.,

2000). As a result, in the discussion of the velocity spectra from SS and BS , while experimen-

tal and theoretical results serve as reference, LES results from other studies based on similar

cases and SGS models are always taken into account.

4.2.6.2 Spectra processing and figures

All the velocity spectra presented in this section, Figs. 4.22 to 4.25, are one dimensional lon-

gitudinal velocity spectra, i.e. Eui
(kx). They are referred to as “spectra” and denoted Eui

. At

each height, spectra are computed from the spanwise average of the squared amplitude of the

longitudinal (one-dimensional) Fourier transforms of a given velocity component perturbation.
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They are then averaged in time (same time windows as MS94). In addition, the ensemble av-

erage of five results for which only initial random velocity perturbations differ is also done.

Finally, spectra are normalized based on parameters presented in Tab. 4.2.

Every figures include both shear case SS and convective case BS results. In Figs. 4.22, 4.23

and 4.24 spectra are normalized by 1/zi and u2
∗/kx (w2

∗/kx for the convective case), while 1/z

and zu2
∗ (zw2

∗ for the convective case) is used in Fig. 4.25 in order to observe a merging of

the spectra (Porté-Agel et al., 2000) and further evaluate the location of the transition to the

inertial subrange at various heights(Drobinski et al., 2004). Fig. 4.22 show spectra of the three

velocity components at several heights from the surface to the upper mixed layer. To better

compare spectra of the various velocity components at the same height, Fig. 4.23 shows, on

the same graph, Eu, Ev and Ew in the centre of the ABL (centre of the mixed layer) along with

the discrete top-hat filtered Kolmogorov spectra corresponding to the inertial subrange of Eu

and Ev (grey curves, see Moeng and Wyngaard (1988) for a detailed expression of the latter).

Finally, Fig. 4.24 presents a comparison of Ew with Mason and Brown (1999); Brown et al.

(2000). This figure further illustrates Ew spectra at several heights along with the associated

scatter of the five results used in the ensemble average.

The discussions of the results are organized using the following criteria: low/high wave num-

bers and well resolved/near-surface regions. The inertial subrange is initially discussed, first in

the well resolved region and then in the near-surface region. Low wave numbers and the tran-

sition to the inertial subrange are then assessed following the same sequence. Finally, Fig. 4.25

comes as a summary as scaling mix both wave numbers and height agl.

4.2.6.3 Shear case

Concerning the shear case in the well resolved region, i.e. the mixed layer, all spectra reach the

inertial subrange slope and superpose each over the others but the curves quickly falloff in the

higher wave numbers as shown on dash-dot and solid black curves in Fig. 4.22 a), c) and e)

and Fig. 4.25 a), c) and e), in Fig. 4.23 a), and finally in Fig. 4.24 a).
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Figure 4.22 Longitudinal spectra of the three velocity components: a), c) and e) shear

case; b), d) and f) convective case. Grey solid lines show spectra at k = 1, 3, 5 vertical levels

indices (surface layer), dash-dot black spectra at k = 9, 14, 19 (lower mixed layer) and

black solid spectra at k = 24, 29, 34 (upper mixed layer). Reference lines, k+1
x and k

−2/3
x ,

are located arbitrarily
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This is in good agreement with spectra shown in the literature (based on similar SGS model

and numerical parameters) (Andren et al., 1994; Brown et al., 2000; Ding et al., 2001a), and

it indicates that the mesh is refined enough for the filter to be located at the beginning of

the inertial subrange. A coarser mesh might not be fined enough while a finer mesh would

definitely allows to better reproduce the −5/3 slope (Andren et al., 1994).

A more detailed picture of the mixed layer is presented in Fig. 4.23 a) where Eu, Ev and Ew

from the middle of the ABL are shown on the same graph along with the discrete top-hat

filtered Kolmogorov spectra computed relying on the averaged dissipation at the proper height

(see Appendix 2.2.2; Moeng and Wyngaard (1988); Pope (2000)). On that figure, it can be

seen that, while SS results depart from the theory at high wave numbers (notably for Eu),

the predicted energy level in the inertial subrange is in agreement with Kolmogorov theory,

i.e. theoretical spectra are nearly tangent to the energy spectra obtained from the LES results

(notably for Ew, Eu and Ev feature more energy). In addition, an offset of around 4/3 is also

present between Eu and Ev/Ew (for 10 < zkx < 30), but Eu falloff is more rapid than Ev and

Ew that are parallel and very close in the whole inertial subrange as predicted by the theory.

Comparing Fig. 4.23 a) with Moeng and Wyngaard (1988, Fig. 4) (that shows a much better fit

with the discrete filtered Kolmogorov spectra, albeit for a convective case), SS results appear

to feature a much higher dissipation of the finest scales. Indeed, the falloff of all the spectra is

much quicker for SS which feature notably less energy in the high wave numbers than Moeng’s

spectra. However, it is noteworthy that Moeng’s approach is based on a mixed pseudo-spectra

finite-difference method, i.e. finite differencing in the vertical and pseudo-spectral differencing

in the horizontal. The latter require an explicit filtering of the main variables of the model

allowing a better control. Furthermore, these approaches are known to better conserve the

energy of eddies up to the cut-off wave number. This contrast with finite differencing approach

that implicitly include a filter on which no control is allowed and that also dissipate the energy

of eddies larger than the cut-off. It thus partly explains the differences between SS and Moeng

and Wyngaard (1988, Fig. 4) in the highest wave numbers.
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Figure 4.23 Longitudinal spectra of the three velocity components in the centre of the

ABL: a) shear case (k = 24 ∼ z = 250 m); b) convective case (k = 24 ∼ z = 500 m).

Reference spectra (Theo.) shows the discrete top-hat filtered Kolmogorov spectra

Furthermore, as shown by Andren et al. (1994), model with lower SGS eddy diffusivity, KM ,

leads to a spectral peak that is moved to higher wave numbers, with a steeper falloff (i.e.

differences between Andren/Moeng/Nieuwstadt and Mason/Brown/Schumann/Graf in Andren

et al. (1994, Fig. 15)). SS results feature a lower KM than Moeng and Sullivan (1994) (not

shown here, but compared with Sullivan et al. (1994, Fig. 1)), thus further explaining the

steeper falloff in comparison to Moeng and Wyngaard (1988, Fig. 4).

In the near-surface region, grey solid curves in Fig. 4.22 a), c) and e), Fig. 4.25 a), c) and

e) and in Fig. 4.24 a), the spectra falloff happens sooner than in the mixed layer. Indeed, in

Fig. 4.22 a), c) and e) the −5/3 slope region is almost absent and the spectra are not merging

at the high wave numbers. Comparing with Brown et al. (2000) and Ding et al. (2001a), it can

be seen that a very similar evolution of the spectra with height is obtained for SS (albeit Eu

falloff is quicker in the present results). It thus clearly shows that, as expected in this region

of the ABL (see Sec. 4.2.5), the mesh is too coarse in order to properly resolve and reproduce

the near surface flow, and that the SGS model is clearly used beyond the limit of it validity

envelope (Andren et al., 1994; Porté-Agel et al., 2000; Brasseur and Wei, 2010).
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Concerning the lowest wave numbers in Fig. 4.22 a), c) and e), the slope of Eu evolves with

height from kxEu ∝ k2
x at the surface to kxEu ∝ k0

x in the mixed layer; the slope of kxEv, while

constant with height, is roughly equal to k2
x; and finally, kxEw ∝ kx is clearly reproduced in

the mixed layer, but it increases to k2
x at lower height, see Fig. 4.22 e) and Fig. 4.25 e). Those

values, while of the same order of magnitude, does not reproduce the reference slope except

for Ew in the mixed layer. However, as Andren et al. (1994); Ding et al. (2001a), the spectra

peak of Eu is most of the time located at the lowest wave number at that height (leading to

a slope of k0
x). Furthermore, as Ding et al. (2001a); Mason and Brown (1999); Brown et al.

(2000), Eu and Ev show a slight decrease of the energy with height (lowest wave number and

spectra peak) as opposed to Ew that features a clear increase of energy with height for the lower

wave numbers (which is in agreement with the profile of the resolved variances). Thus, as in

the previously mentioned studies, surface spectra cross mixed layer spectra in the middle range

wave numbers for Eu and Ev, while surface spectra never cross mixed layer spectra for Ew.

In order to further study the impact of height above the ground on the whole spectra, Fig. 4.24 a)

shows Ew obtained from SS at various heights (from the surface up to above the inversion)

along with results from Brown et al. (2000, Fig. 7 (Y08)). It this study, Andren et al. (1994)

test case was reproduced based on the standard Smagorinsky model studying various numer-

ical parameters. The Y08 case results were chosen for comparison as they have the closest

parameters to SS with Δx = 53.3 m and CS = 0.15. Results from Brown et al. (2000) nearly

superpose with SS However, Brown et al. (2000) Y08 case feature a coarser resolution than

SS with an equal Smagorinsky constant, which implies, seeing Fig. 4.24 a), that the present

model is more dissipative (Mason and Brown, 1999). The low wave number in the mixed layer

tend also to show more energy in Brown et al. (2000), but this might be due to the fact that

their case feature a notably different upper ABL (ABL is taller without inversion). Finally in

Fig. 4.24 a) and aside from the comparison with Brown, it is interesting to comment on the

shape of the spectra above the inversion. Indeed, the latter shows an earlier falloff which is

extremely fast confirming that there are no small structures and that the flow is almost laminar

in the free atmosphere.
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Figure 4.24 Longitudinal spectra of vertical velocity at various heights: a) shear case;

b) convective case. A vertical shift is applied as shown on the left of each spectra.

Scatter is plotted every third mesh point

The scatter, as shown for Ew in Fig. 4.24 a) (Eu and Ev present similar features), is generally

not significant notably close to the surface in the low wave numbers, and in the mixed layer

for all wave numbers. It is the highest in the surface layer at high wave number, and at the

inversion and above for almost all wave numbers. Interestingly, the scatter obtained for both

the velocity variances and the TKE profiles in Fig. 4.8 c) and e) is slightly larger in the mixed

layer than at the surface, which tends to differ from the scatter of the spectra.
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Finally, in Fig. 4.25 a) c) and e), a merge of the spectra is observed for all velocity components

similarly to what obtained by Porté-Agel et al. (2000, Fig. 5 b)) with a standard Smagorinsky

SGS model. Two linear regions (with a slope around k−1x and k
−5/3
x ) are present in the merge

spectra of Eu and Ev with a clear transition located at 0.6 zkx. This transition, which also

represent the height at which spectra reach effectively the inertial subrange, roughly coincide

with the peak of the spectra at z/zi = 0.2 (i.e. k = 9). At that height, 90 % of the flow is

resolved (see Fig. 4.19 a)). Below that height, spectra do not reach the inertial subrange, while

above that height, they feature a clear transition to the inertial subrange located between 0.6 zkx

and 1.0 zkx. This is in agreement with the suggestion of Drobinski et al. (2004) as illustrated by

the reference curves k−1x and k
−5/3
x (that were located in order to cross at the expected transition

to the inertial subrange in neutral conditions (Porté-Agel et al., 2000; Drobinski et al., 2004)).

Results of the spanwise velocity component are in very good agreement with reference slopes

and transition location (albeit the slope for zkx > 0.6 is slightly higher). Streamwise velocity

component merge spectra is also in agreement with the k−1x slope below 0.6 zkx, however, the

slope in the inertial subrange is too high (in agreement with the previous remarks).

Comparing Fig. 4.25 a) and c) with Porté-Agel et al. (2000, Figs. 5 a) and b)) that feature a

domain twice as large, a notably coarser resolution with Δx = 116 m, and CS = 0.1 and 0.17,

while the general feature are recovered, slope of the spectra in the low wave number differ

and spectra falloff seem to append sooner notably for Eu. Considering the Δx and CS values

used by Porté-Agel et al. (2000), and following the analysis from Mason and Brown (1999);

Brown et al. (2000), it can be conclude that the present method appears to be more dissipative.

However, it is noteworthy that as Moeng and Wyngaard (1988), Porté-Agel et al. (2000) is

based on a mixed pseudo-spectra finite-difference method, which may be the explanation for

the faster falloff of the spectra obtained with the present model.

Concerning the longitudinal spectra of the vertical velocity component, a merging of the curve

is also observed in Fig. 4.25 e). In the low zkx, spectra collapse perfectly at the lowest wave

number to a line with a slope of 2/3 (which contrast with Eu and Ev). The same feature is

obtained by rescaling Brown et al. (2000) results shown in Fig. 4.24 a). The merging spectra
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Figure 4.25 Longitudinal spectra of the three velocity components plotted against zkx: a),

c) and e) shear case; b), d) and f) convective case. Grey solid spectra show level indices

k = 1 to 7 (surface layer), dash-dot spectra k = 9 to 21 every first index (lower mixed layer)

and black solid spectra k = 23 to 35 every first index (upper mixed layer).

Only the nine lowest wave numbers are shown
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reaches a maximum at around 0.6 zkx, followed by a decrease with a slope of k−1x that change

to k
−5/3
x after 1.2 zkx. The constant slope regions are not well defined and two transitions (at

1.2 zkx and 3 zkx) seems to be present (with a slightly higher slope than k
−5/3
x in between).

As a conclusion it is to say that, besides the faster Eu falloff in the highest wave numbers,

spectra from the shear case SS are in agreement with theory and results found in the literature

for similar SGS model, i.e. Andren et al. (1994); Brown et al. (2000); Porté-Agel et al. (2000);

Ding et al. (2001a); Drobinski et al. (2004). However, the present model appears to be more

dissipative than the model used for the comparisons. This is not of concern in the well resolved

regions (Brown et al., 2000), but the near-surface region may be affected, and it is most likely

to be the cause of the higher deviation from the similarity theory at the surface than Moeng and

Sullivan (1994); Sullivan et al. (1994).

4.2.6.4 Convective case

Concerning the convective case in the well resolved region, all spectra clearly merge each

others in the higher wave numbers reaching the inertial subrange slope as shown on dash-dot

and solid black curves in Fig. 4.22 b), d) and f), in Fig. 4.25 b), d) and f), in Fig. 4.23 b),

and finally in Fig. 4.24 b). In that sense, Ew shown in Fig. 4.22 f), features a better well

defined and prolonged k
−5/3
x slope (from 4 to 12 zikx) than the slightly less clear one of Eu

and Ev, Fig. 4.22 b) and d). Thus, within the mixed layer the filter is correctly located in the

inertial subrange. This is also in agreement with results shown in the literature (Mason, 1989;

Nieuwstadt et al., 1992; Brown et al., 2000; Cuxart et al., 2000). In comparison to the shear

case, the inertial subrange slope is better defined and the spectra falloff is notably slower.

In Fig. 4.23 b), Eu and Ev are perfectly tangent with the discrete filtered Kolmogorov spectra

and the offset between Eu and Ev in the inertial subrange is in good agreement with the theory

(except for Ew that should superpose Ev) and very similar to the one obtained by Moeng and

Wyngaard (1988); Mason (1989) (that feature a Ew with more energy than Ev). The falloff of

spectra tail is quicker than the theory (but to a lesser extent than in the shear case). Furthermore,

the longitudinal spectra of the streamwive velocity component show a steeper falloff at high
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wave number than the other two components that are nearly parallel (as for the shear case).

Mason (1989, Fig. 20) results show the same feature for Eu. A quantitative comparison of Ew

with Brown et al. (2000, Fig. 6 (D14)) is presented in Fig. 4.24 b). On that figure, results in

the mixed layer nearly superpose with Brown et al. (2000). Brown’s D14 case is based on a

similar horizontal resolution as BS (Δx = 44.4 m), but with a Smagorinsky constant twice as

large as in BS (CS = 0.32). As a result, when considering the impact of CS on the spectra

in convective conditions as illustrated by Nieuwstadt et al. (1992); Mason and Brown (1999),

it can be concluded that the present model dissipates small structures at a higher rate than

Brown et al. (2000) and by extension than all the model presented in Nieuwstadt et al. (1992)

intercomparison (which includes the UKMO Smagorinsky SGS model).

In the near surface region, grey solid lines in Fig. 4.22 b), d) and f) and Fig. 4.25 b), d) and f),

Ew shows a clear increase of the energy with height for all wave numbers, while Eu and Ev

are merging with the spectra from the mixed layer in the high wave numbers. In the surface

layer, the latter two spectra do not feature a clear k
−5/3
x slope in comparison to Ew. It thus

indicates that in the near-surface region, while the filter is not located in the inertial subrange,

little structures are less dissipated by the SGS model than for the shear case. This is coherent

with the fact that the near-surface region is more resolved in the convective case, and thus, less

prone to the SGS model limitation at low resolution, see Fig. 4.19.

Compared to the freely convective ABL results from Brown et al. (2000) shown in Fig. 4.24 b),

the near-surface spectra in the high wave numbers are in less good agreement than for the

shear case. Indeed, all Brown et al. (2000) Ew spectra collapse in the highest wave numbers

(see Brown et al. (2000, Fig. 6) in comparison to Fig. 4.22 f)) which was not observed in

the shear case results. Brown et al. (2000) results shown are for a freely convective ABL

(no mean horizontal velocity) similar to the one of Nieuwstadt et al. (1992). However, as

previously illustrated in Sec. 4.2.4, the added near-surface shear in BS (caused by the mean

horizontal motion) tends to generate structures with features from both purely neutral and freely

convective cases. This thus appears to be a good explanation for a signature similar to the shear

case in the near-surface Ew of BS (in comparison to Brown et al. (2000)).
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Concerning the low wave numbers, from Fig. 4.22 b), d) and f) and Fig. 4.25 b), d) and f),

it can be seen that kxEw ∝ kx is clearly reproduced at all height which perfectly agree with

the theory, while the slope of Eu and Ev evolve with height and agree slightly less with the

theoretical value. Lowest wave number slopes of the two latter spectra evolve from roughly

kxEu ∝ kxEv ∝ kx close to the surface to kxEu ∝ k
1/2
x and kxEv ∝ k2

x in the mixed layer. A

clear change in slope between the low wave numbers and the inertial subrange is thus visible

for all spectra at all heights. In the mixed layer, Fig. 4.23 b), low wave numbers Ew feature

a higher level of energy than Eu and Ev. The transition to the inertial subrange of the former

is also earlier and more direct than for the latter spectra. Those features are on part with what

obtained by Mason and Brown (1999) (comparison of Fig. 4 and 5 of that study).

At the lowest wave number, energy in all the spectra evolve with height, see Fig. 4.22 b), d)

and f). Eu and more notably Ev have an energy that decrease with height, while Ew feature the

same clear increase of the energy with height as for the shear case. Fig. 4.24 b) shows that at

the lowest wave numbers, Ew energy increase is in good agreement with Brown et al. (2000)

from the surface to the mixed layer. Finally on that figure, the shape of Ew at the inversion

feature an elongated linear region in the low wave numbers in agreement with results of all

model in Nieuwstadt et al. (1992). Above the inversion, Ew show the exact same shape as for

the shear case: the fall down of the spectra is earlier than in the ABL and extremely rapid.

The scatter of the spectra, shown for Ew in Fig. 4.24 b), is generally not significant, notably in

the upper surface layer and the mixed layer for the whole range of wave numbers. The surface

layer and the inversion generally feature a higher scatter. However, the most striking feature in

Fig. 4.24 b), is the very high value of the scatter above the inversion notably in the high wave

numbers. This tends to indicate that the vertical inversion oscillation may impact the flow up

to 1.2 z/zi but most certainly only for the results featuring the highest inversion.

The last results to comment, Fig. 4.25 b) d) and f), show the spectra using a variant of the

scaling. No LES studies of the ABL were found that scale spectra in convective condition base

on such a scaling. However, the behaviour of the results in the inertial subrange is expected to
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be on part with the shear case: spectra should merge in a curve that follows the k
−5/3
x slope for

all velocity components before falling down. In the low wave numbers, while a slope of k−1x is

expected to be observed, no information was found concerning neither the merge spectra in the

low wave number, nor the transition to the inertial subrange. It was however chosen to display

reference curves located similarly as for the shear case.

In Fig. 4.25 b) d) and f), it can be seen that all velocity components spectra clearly merge

similarly as for the shear case. For the convective case, the inertial subrange region is notably

better reproduced and elongated for all velocity components. A linear region of a slope around

k−1x is also present in the low wave numbers of Eu and Ev, but the transition to the inertial

subrange is not well defined. The latter appears to be located at 0.3 zkx which also correspond

to the peak of the merge spectra of Ew. The Eu and Ev spectra that first reach the merge inertial

subrange spectra are located at height 0.1 zi. Interestingly, 0.1 zi is also the height above which

more than 90 % of the flow is resolved, see Fig. 4.19 b) (as for the shear case).

Concerning the vertical velocity spectra, a merge of the curves is also observed and two linear

regions can be observed. One not well defined with a slope of k−1x between 0.6 zkx and 2 zkx

followed by a well defined linear region with a slope of k
−5/3
x . In the low zkx, no merge is

observed in Ew. Slope of individual spectra is zero as predicted by the theory and spectra are

parallel. By rescaling Brown et al. (2000) results shown in Fig. 4.24 b), a similar merge as for

the shear case is obtained in the low wave numbers.

As a conclusion, longitudinal velocity spectra from the convective case modelled by means of

the UKMO Smagorinsky SGS model, BS , present feature similar to the ones of the neutral case.

Results are generally in good agreement with reference spectra and literature results based on

similar cases and approaches (Mason, 1989; Nieuwstadt et al., 1992; Mason and Brown, 1999;

Brown et al., 2000; Cuxart et al., 2000). The inertial subrange is well reproduced by all velocity

components (better than for SS). The faster falloff of Eu than Ev and Ew is also observed in

the highest wave numbers (as for SS). Finally, it was also found that the present model is more

dissipative than the equivalent approaches found in the literature.
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4.2.7 Conclusion of Moeng and Sullivan (1994) benchmark

As a summary of this first direct evaluation of the proposed LES-capable mesoscale model,

it is worth commenting both the obtained results and the cases selected for the benchmark.

Obtained results are very promising since first, second and third order moments, as well as

the velocity spectra are in good agreement with literature reference studies based on similar

SGS models. On the one hand, in the mixed layer and at the top of the ABL, results al-

most superpose with the comparison data for both the shear and the convective cases. On the

other hand, in the near-surface region which is the most challenging region of the flow, results

present characteristics similar to others LES results based on dissipative only SGS models (i.e.

Smagorinsky): surface velocity vertical shear is clearly over-predicted in comparison to exper-

imental data. This over-prediction appears to be slightly larger than in the numerical results

used as reference. In fact, as observed during the spectral analysis, the proposed model tends

to over-dissipate the smallest resolved eddies (more clearly seen for the shear case). Therefore,

the small structures feature less energy which is worsening the limitation of the Smagorinsky

SGS model notably in the near-surface region. Since the UKMO Smagorinsky SGS model

and the numerical parameters used here are similar to the ones from the models used for com-

parisons, the increase of the dissipation rate observed for the present model can uniquely be

attributed to the the SISL time and advective scheme of the numerical method.

Concerning the shear and convective benchmark cases from MS94 , it was seen that both cases

appear to be in a quasi-steady state during MS94 post-processing time interval, but further

evaluation of the time evolution is needed for a strict confirmation. Furthermore, non negligible

differences were observed between results based on the exact same model but for which only

initial random velocity perturbations were changed. These differences, also called scatter, were

sometimes high. To lower uncertainty and allow better comparisons, it was decided to achieve

an ensemble average of five computations based on the same model and time interval as MS94.

The scatter was very large in some parts of the domain advocating the needs for a longer time

interval for post-processing. These latter points are studied in further details in the next section

along with the impacts of the numerical parameters of the method.
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4.3 LES of the full ABL: numerical parameters

Since the beginning of the study, only results based on one set of numerical parameters for the

computations and the post-processing were evaluated. Indeed, in the previous section, it was

chosen to closely follow the well documented comparison cases of a full ABL from Moeng

and Sullivan (1994); Sullivan et al. (1994). As a result, with the exception of the time step, all

the other parameters were kept the same as in these referenced studies. This first evaluation

was promising. However, some aspects such as the scatter of the results, the sensitivity of the

results to the mesh and time step were found to require an further evaluation.

In this section, the post-processing parameters, i.e. the location and size of the time windows

involved to compute flow statistics, are first studied assessing the evolution and convergence as

well as the scatter of both the shear and convective cases discussed previously. This will allow

to define the optimum post-processing parameters that will be used afterwards. Then, the

impact of the horizontal grid, the vertical grid and the time step are evaluated. It is noteworthy

that all the evaluations presented in this section were achieved using two different SGS model

(for validation purpose as in the previous section): the UKMO Smagorinsky and the hybrid

TKE SGS models. However, as presented in Sec. 4.4.1, both results are very similar. As a

result for clarity reasons, only the UKMO Smagorinsky SGS model results are systematically

shown on the figures (except when the subgrid TKE is needed), while parameters and the

scatter of both series of results is shown in all the tables of this section.

4.3.1 Post-processing parameters

In the previous section, the shear and convective cases from Moeng and Sullivan (1994) ap-

peared to be in a quasi-steady state with a turbulent regime fully developed during the time

interval used for the post-processing (see Figs. 4.5 and 4.6). However, while there were strong

evidences, this could not be fully demonstrated solely based on the results shown previously.

It was also shown that, by using the same procedure and time interval as Moeng and Sullivan

(1994), computations based on the same model and configuration but for which only the ini-
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tial velocity perturbations were changed, led to different results. This scatter was illustrated

by errors bars in all the figures of the previous section. These differences, while generally

not critical, can significantly affected some of the higher order variables. As a consequence,

comparisons with MS1994 were not always easy to interpret (e.g. the momentum flux of the

convective case in Fig. 4.8 b)) and it was sometimes hard to draw clear conclusions. Moreover,

differences in the results based on various configuration of the model are almost always smaller

than the scatter of the results (further illustrated in Sec. 4.3.1.1.2 and 4.3.1.2.2).

The aim of the present section is thus twofold: study the impact of the time evolution of the flow

on the turbulence statistics, and evaluate post-processing parameters (location and length of the

post-processing time windows) allowing to keep the scatter of the results below an acceptable

level for all variables at all height in the ABL. As a consequence, the time evolution of the flow

is first studied based on three time windows. Then, the scatter of the results is further evaluated

using the same three time intervals. The shear case is first studied followed by the convective

case. As seen in Tab. 4.4, results from various model configurations (grid and domain size)

are used here to increase the number of samples. The thorough comparison of the results from

those latter configurations is discussed in Sec. 4.3.2. Here, we focus on the impact of the

post-processing time interval location and length on the results convergence and scatter.

Table 4.4 Numerical parameters of the shear and convective cases discussed in

Sec. 4.3.1 and Sec. 4.3.2, and used as reference all along Sec. 4.3 and Sec. 4.4

Name Model Nx ×Ny ×Nz
Lxi Lz Δt Iteration

max.

Reali-

zations[km] [km] [s]

S1d k − l column 3× 3× 96 0.3 1 2 60000 1

Ss
S 50× 50× 96 2 1 2 30000 10

Sm
S 64× 64× 96 2 1 1.5 40000 5

Sl
S (≡ SS)

Smagorinsky SGS

96× 96× 96 3 1 1.5 15000 5

Ss
M 50× 50× 96 2 1 2 30000 10

Sm
M 64× 64× 96 2 1 1.5 40000 5

Sl
M (≡ SM )

Hybrid TKE SGS

96× 96× 96 3 1 1.5 15000 5

B1d k − l column 3× 3× 96 0.3 2 4 10000 1

BS Smagorinsky SGS 96× 96× 96 5 2 4 10000 5

BM Hybrid TKE SGS 96× 96× 96 5 2 4 10000 5



351

4.3.1.1 Shear case

The evolution and scatter of the results from the shear case are studied here. Fig. 4.26 is similar

to Fig. 4.5 but it shows the time evolution of integral coefficients, Eq. (4.4), for a full inertial

period and for the four model configurations described in Tab. 4.4. The envelope of the scatter

of the various results is displayed in coloured shaded area. The three time intervals are shown

by the background light grey shaded area in Fig. 4.26, and they are defined as:

MS1994: from 0.172Tinert to 0.250Tinert, i.e. from 10445 s to 15255 s.

LONG: from 0.172Tinert to 0.369Tinert, i.e. from 10445 s to 22500 s.

TINERT: from 0.492Tinert to 0.985Tinert, i.e. from 30000 s to 60000 s.

The interval MS1994 is the same as in the previous section8. The interval LONG starts at the

same location as MS1994, but it is 2.5 times longer. Finally, the interval TINERT allows to

capture half an inertial period while not overlapping with MS1994 and LONG. It is located far

from the beginning of the integration (further reducing the possible influence of the initializa-

tion on the results). In addition, the inertial oscillation is almost damped after 0.5Tinert.

4.3.1.1.1 Steadiness of the solution

From Fig. 4.26, it can be seen that results from all model configurations follow the same time

evolution. This figure is similar to Fig. 4.5 but it now can be seen that the shear case features

a much damped inertial oscillation in comparison to Andren et al. (1994). This high damping

is caused by the presence of a strong and low height inversion that prevents the flow from

oscillating freely around the equilibrium Ekman spiral compared to a case where there would

be no inversion such as the one of Andren et al. (1994).

The general evolution of Cu, Cv, Cg and CTKE in the first half of the inertial period was already

commented in Sec. 4.2.2. Here, as discussed later, only the results from the small grid, i.e. Ss
S ,

depart from the other LES results before 0.2Tinert as seen in Fig. 4.26 a), c) and d).

8 Note that the acronym MS1994, which refers to the time interval used by Moeng and Sullivan (1994), is

different from MS94 used in the previous section, which refers to Moeng and Sullivan (1994) study.
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Figure 4.26 Time evolution of integral coefficients, Eq. (4.4), from the shear case: a) and

b) velocity integral coefficients; c) geostrophic drag coefficient; d) TKE integral coefficient.

The coloured overlaid regions show the scatter of the results. Grey overlaid background

areas show post-processing time intervals

After 0.5Tinert, S1d, Ss
S and Sm

S trends are in very good agreement. Both Cu and Cv converge

to one that is reached after 0.8Tinert. Concerning Cg and CTKE , both feature a plateau after

0.5Tinert, but the former slightly increase while the latter slightly decrease. The plateau value

and trend is the same for all LES results, while S1d show a nearly constant offset: Cg, and

thus u∗, is 10 % higher than in LES results, and CTKE is 20 % lower. Those features were

already discussed previously (see Sec. 4.2.2). They have the same origins after 0.5Tinert than

before: the higher friction velocity obtained with the column model is due to its thankful closer

reproduction of the similarity theory in comparison the the under resolved close surface LES

results. At the opposite, the fully parametrized turbulent mixing of the 1D model under predict

the TKE in the mixed layer leading to an under estimation of CTKE .
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Table 4.5 Result parameters from the shear case for model setups

shown in Tab. 4.4 and the three time intervals

Name Interval
u∗ zi θs w′θ′i U1 Δθ1

[m/s] [m] [K] [K m/s] [m/s] [K]

MS1994 0.520 516 300.55 -0.0330 4.45 -0.0024

LONG 0.547 516 300.76 -0.0311 4.50 -0.0023S1d

TINERT 0.639 589 302.38 -0.0226 5.58 -0.0016

MS1994 0.461 432 300.37 -0.0033 3.98 -0.0006

LONG 0.487 452 300.38 -0.0033 4.10 -0.0006Ss
S

TINERT 0.566 454 300.63 -0.0058 4.95 -0.0008

MS1994 0.468 451 300.37 -0.0029 4.18 -0.0008

LONG 0.499 453 300.38 -0.0036 4.29 -0.0008Sm
S

TINERT 0.587 465 300.67 -0.0062 5.17 -0.0011

MS1994 0.468 474 300.36 -0.0032 4.17 -0.0008
Sl
S LONG 0.499 459 300.38 -0.0037 4.29 -0.0009

MS1994 0.470 472 300.39 -0.0043 3.90 -0.0007

LONG 0.503 476 300.41 -0.0045 4.08 -0.0007Ss
M

TINERT 0.579 459 300.75 -0.0071 4.89 -0.0010

MS1994 0.470 459 300.38 -0.0030 3.95 -0.0009

LONG 0.512 461 300.40 -0.0048 4.17 -0.0010Sm
M

TINERT 0.601 465 300.77 -0.0076 5.06 -0.0012

MS1994 0.474 459 300.38 -0.0034 4.01 -0.0009
Sl
M LONG 0.515 465 300.40 -0.0047 4.20 -0.0010

As a result of the above discussion in Fig. 4.26, it is to say that the shear case appears to reach

a permanent state where averaged u, u∗ and k (i.e. Cv, Cg and CTKE) are almost constant

after 0.5Tinert and the v component take more time to stabilize. TINERT interval results are

thus representative of that state. They would not change significantly by changing the size and

location of the time windows, albeit it is wide enough and located after 0.5Tinert.

Tab. 4.5 shows result parameters for the three time intervals and all model configurations of

Tab. 4.4. In Tab. 4.5, friction velocity and velocity modulus at first level increase from MS1994

to TINERT intervals for all cases. Sm and Sl values are very similar while Ss values are smaller

(see Sec. 4.3.2 for explanation). Concerning the others parameters of the LES results: no clear

trend can be concluded for zi as well as for Δθ1, while θs shows a slight increase from MS1994

to TINERT, and w′θ′i becomes twice as large for TINERT than for MS1994.
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Figure 4.27 Dimensional profiles from Sm
S along with the scatter for the three time

intervals: a) horizontal velocity components; b) potential temperature

Those changes in result parameters are coherent with the evolution of the various profiles

shown in Fig. 4.27 and 4.28, as discussed hereafter. But, it can be already noted that only

dimensional profiles of velocity components differ notably from Moeng and Sullivan (1994)

(most visible during TINERT). In fact, in Fig. 4.27 a), both velocity components steadily in-

crease with time across the whole ABL. They appear to stabilize to a permanent state during

TINERT interval. As a results of the increase of momentum in the mixed layer, the surface

wind also gets higher, which make the surface shear u∗ to increase. An overshoot develops in

u just above zi for TINERT interval. This overshoot is naturally present at the top of the classi-

cal Ekman spiral (see Fig. 4.1 c)), but it may be amplified by the unbalance in the terms of the

momentum equations (Coriolis and momentum diffusion terms) cause by the sudden reduction

of the subgrid turbulent mixing (which vanish) in the inversion (similarly as in stable surface

layer (Stull, 1988; Cuxart et al., 2006; Beare et al., 2006)).

Concerning the ABL height, the sharp inversion prevents its proper vertical evolution. Indeed,

as seen in Fig. 4.27 b), the height and temperature lapse rate of the inversion evolve slowly

in time. The small negative sensible heat flux across the inversion, which is caused by the

entrainment of hot air from above, brings some energy in the adiabatic ABL causing a small
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increase of the whole mixed layer temperature. Since no heat is coming from the surface, and

assuming that the only source of heat in the mixed layer comes from above, one can obtain the

mixed layer averaged temperature increase, i.e. −w′θ′i/zi, based on the values from Tab. 4.5.

Considering Sm
S case, it gives a mixed layer averaged temperature increase of roughly 0.06 K

between the MS1994 and LONG and of 0.3 K between the LONG and TINERT. This is in very

good agreement with the value obtained from the computations (averaging θ from the surface

to zi) which thus justify the whole increase of potential temperature in the mixed layer.

Finally, it is to note that the resolved part of w′θ′i increases with time mostly because of the

slightly smoother and less stable inversion that allows more mixing (see variance peaks in

Fig. 4.28 e)). For its part, the small neutral region above the inversion, i.e. at z/zi = 1.4 in

Fig. 4.27 b), is also present for the three time intervals. This feature was also obtained by

Sorbjan (2005b, Fig. 7 a) and 11 a)). However, it is more clearly defined for MS1994 and

LONG intervals. Indeed, from Fig. 4.28 d), the total sensible heat flux above the inversion

become positive at that height for MS1994 and LONG, while it is still clearly negative for

TINERT where it smoothly reaches zero (not shown on the figure). This difference can also be

attributed to the increase of the mixing across the inversion with time.

Concerning the non-dimensional profiles of the first, second and third order moments, it can

be seen in Fig. 4.28 that there is nearly no changes between the three time intervals. Indeed,

at the exception of few differences that are always within the scatter of the MS1994 interval,

all results are in good agreement demonstrating that even during the interval MS1994, the

turbulence is fully developed and the initialization has no more influences.

In fact, the biggest change is the increase with time of total heat and momentum fluxes toward

a more linear profile with height as seen in Fig. 4.28 c) and d). According to Porté-Agel et al.

(2000), it indicates that turbulence is more developed during TINERT interval. Furthermore,

since subgrid scale flux is almost unchanged, this increase comes from the resolved part. The

same can be observed on variances (not shown here). As a result of this increase, the flow is

slightly more resolved for the TINERT interval.
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Figure 4.28 Profiles from Sm
S along with the scatter for the three time intervals: a) velocity

modulus (using a log scale in ordinate); b) horizontal velocity vertical gradient; c) total and

subgrid momentum flux; d) total and subgrid sensible heat flux; e) resolved velocity

variances; f) resolved vertical flux of velocity variances
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In the near-surface region, velocity and non-dimensional velocity gradient profiles, perfectly

superpose for the first few meshes above the surface, i.e. roughly up to 0.1 zi, Figs. 4.28 a)

and b). This is consistent with the fact that subgrid scale part of the turbulent quantities is

almost unchanged between the various intervals. At the top of the surface layer and above,

little discrepancies between results appear which are caused by the resolved part as described

above. The bias with the similarity theory of φM become lower with time since the flow is

more resolved, see Fig. 4.27 b). Finally, v′2 show an increased near-surface peak for LONG

and TINERT which can also been explained by the notable increase of that velocity component.

At the inversion, besides the doubling of the resolved part of w′θ′, it was also noted in Fig. 4.27

that for TINERT intervals, u overshoot the geostrophic wind while the gradient of v across the

inversion increases and reaches a maximum value during the permanent state. This has the

consequence to noticeably increase the local maximum in resolved v′2 at the inversion while

u′2 peak is removed as seen in Fig. 4.28 c). The vertical velocity variance at that height also

increases a little contributing to the increase of the resolved heat flux at the inversion.

The last comparison shown in Fig. 4.29 presents the streamwise and vertical velocity longitu-

dinal spectra at various heights. In the lower half of the ABL, energy of both u and w spectra

in the high wave numbers increases with time to reach its maximum for TINERT interval. This

energy increase is to be correlated with the increase of heat and momentum flux resolved parts.

In the middle of the ABL, spectra are almost unchanged. In the upper part of the ABL, spectra

feature a lower level of energy in the high wave numbers which is caused by the wider tran-

sition to the inversion that tend to render the top of the ABL more stable. In the low wave

numbers, u and w spectra tend to feature slightly more energy in the near-surface region while

w spectra show more energy in the upper ABL. However, those changes are not significant in

comparison to the increase of energy in the high wave numbers.

As a conclusion of the time evolution of the shear case, it can be said that although the dimen-

sional first order moments features notable evolution (that converge to an almost permanent

state after 0.5Tinert), the non-dimensional profiles are almost unchanged. This confirms that
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Figure 4.29 Longitudinal velocity spectra from Sm
S along with the scatter for the three

time intervals: a) streamwise component; b) vertical component

the turbulence, but not the first order moments, is already fully developed during MS1994 in-

terval (which is characteristic of a quasi-steady state). However, an increase of the resolved

part of momentum and heat fluxes as well as an increase of the energy of small resolved eddies

in the lower half of the ABL was noted for TINERT time interval.
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4.3.1.1.2 Scatter of the results

Now that the time evolution of the various quantities has been studied, the scatter of the results

is discussed in this section based on the same three time intervals, MS1994, LONG and TIN-

ERT. As a reminder, the scatter represents the difference between several simulations of the

same case but for which only the initial random perturbations of the velocity field are changed.

The number of realizations per model configurations is shown in Tab. 4.4. The scatter was

already introduced in Sec. 4.2 (but not discussed) and displayed as error bars in all the figures

of the previous section, i.e. in Figs. 4.27, 4.28 and 4.29 for the three time intervals.

In order to have a better overview of this scatter, Tab. 4.6 further presents the scatter of the

result parameters that are displayed in Tab. 4.5, i.e. for any variable ψ

o (ψ) = max (ψ)−min (ψ) , (4.9)

and Tab. 4.7 shows the root mean square from the surface to 1.2 zi of the dimensional scatter

of six variables of interest, i.e. for any variable ψ

σ (ψ) =

[
1

1.2zi

∫ 1.2zi

0

o (ψ)2 dz

]1/2
. (4.10)

The data of those two tables is shown in Fig. 4.30 to visually appreciate scatter trends as a

function of the time interval. Note that the scatter from Ss is divided by ten in Fig. 4.30.

From the various figures and tables illustrating the scatter of the results, it can be clearly seen

that the scatter generally decreases with the time interval length. Between MS1994 and LONG,

this reduction is clearer for the results based on the smallest domain and/or lowest resolution,

i.e. Sl and Sm. Tab. 4.6 and 4.7 and Fig. 4.30 further shows reduction of the scatter of Ss for

TINERT interval, while this improvement is not as clear for Sm. It thus appears that the coarser

the mesh, the more scatter there are, and the more noticeable the reduction is when the time

interval is lengthen.
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Table 4.6 Scatter of the result parameters from Tab. 4.5, Eq. (4.9), for

the shear case and for the three time intervals

Name Interval
o (u∗) o (zi) o (θs) o

(
w′θ′i

)
o (U1) o (Δθ1)

[m/s] [m] [K] [K m/s] [m/s] [K]

MS1994 0.124 295 0.054 0.0054 1.61 0.00055

LONG 0.084 137 0.050 0.0043 0.95 -0.00003Ss
S

TINERT 0.020 53 0.113 0.0014 0.13 -0.00013

MS1994 0.037 32 0.009 0.0026 0.39 0.00026

LONG 0.013 21 0.015 0.0007 0.13 0.00010Sm
S

TINERT 0.007 21 0.027 0.0002 0.05 0.00002

MS1994 0.014 32 0.011 0.0015 0.13 -0.00005
Sl
S LONG 0.015 11 0.010 0.0007 0.14 0.00001

MS1994 0.118 74 0.033 0.0074 1.52 0.00059

LONG 0.049 42 0.037 0.0025 0.58 0.00014Ss
M

TINERT 0.016 32 0.059 0.0009 0.13 0.00005

MS1994 0.017 21 0.005 0.0007 0.16 0.00003

LONG 0.004 21 0.007 0.0008 0.05 0.00002Sm
M

TINERT 0.005 21 0.020 0.0007 0.04 0.00000

MS1994 0.010 32 0.009 0.0020 0.11 0.00002
Sl
M LONG 0.007 11 0.012 0.0005 0.09 0.00000

The small grid Ss results feature a very large scatter notably before 0.5Tinert, i.e. MS1994

and LONG intervals. From Tabs. 4.6 and 4.7, it can be seen that Ss scatter is at least an

order of magnitude higher than the medium and large grid results for both MS1994 and LONG

intervals. In fact, after a closer inspection it was found that, the coarser grid is at the limit of

suitability to reproduce the shear case with the current model. Indeed, the turbulent regime of

few Ss computations appears to be delayed before reaching a permanent regime (in comparison

to Sm and Sl results). This explain the wide envelope of Cu and CTKE and the low level of the

envelope of Cg (i.e. u∗) for Ss cases between 0.15 and 0.35Tinert. In addition, spurious event

of turbulence extinction (followed by a prompt ignition illustrated by the three clear peaks in

the scatter of Ss in Fig. 4.26 d)) are also observed mostly during the first half of computation.

The ignition and self-sustainability of the fully developed turbulent regime is thus affected by

a too coarse grid. The delay observed in the ignition may unfortunately prevent from using

the coarse grid results, Ss, before 0.35Tinert (if not before 0.5Tinert), as they may not be

representative of a fully developed ABL flow. This discards MS1994 and LONG intervals with
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Table 4.7 Root mean square of the dimensional scatter from 0 to

1.2 zi, Eq. (4.10), of selected variables (shown on Figs. 4.27, 4.28 and

4.29) for the shear case and for the three time intervals

Name Interval

σ (u) σ (w) σ
(
u′w′

)
σ
(
u′2
)

σ
(
w′2
)

σ
(
w′θ′

)
[m/s] [m/s] [m2/s2] [m2/s2] [m2/s2] [K m/s]

×100 ×10−6 ×10−2 ×10−1 ×10−1 ×10−3

MS1994 1.962 1.434 8.776 7.459 1.130 1.409

LONG 1.271 1.299 6.907 6.082 0.978 1.097Ss
S

TINERT 0.334 0.502 1.217 1.324 0.381 0.407

MS1994 0.264 0.330 3.541 2.226 0.417 0.726

LONG 0.248 0.211 0.921 1.020 0.195 0.220Sm
S

TINERT 0.189 0.218 0.533 0.972 0.115 0.150

MS1994 0.140 0.136 1.163 0.996 0.206 0.333
Sl
S LONG 0.162 0.156 1.175 0.671 0.184 0.221

MS1994 1.764 1.508 10.098 8.239 1.573 1.917

LONG 1.322 0.617 3.002 2.546 0.592 0.663Ss
M

TINERT 0.496 0.459 0.989 1.288 0.281 0.347

MS1994 0.171 0.258 1.340 1.198 0.241 0.242

LONG 0.142 0.191 0.427 0.658 0.159 0.206Sm
M

TINERT 0.155 0.204 0.348 0.713 0.152 0.215

MS1994 0.229 0.140 0.965 0.903 0.233 0.463
Sl
M LONG 0.147 0.115 0.608 0.608 0.142 0.177

Ss grid. Consequently, to properly evaluate results from the small grid the interval TINERT

appears to be the least affected by the above mentioned problems, and thus the most suitable.

Concerning Sm and Sl results, it can be seen in Tabs. 4.6 and 4.7 and Fig. 4.30 that the scatter

of all variables and parameters of Sm
S for MS1994 interval is generally twice as large as the

one of Sl
S . Interestingly, Sm

M results for that interval feature a lower scatter which is almost of

the same order as the scatter of the fine grid Sl results from both SGS models. The picture is

changed for the LONG interval as the scatter difference for both the grid configurations and the

SGS model is small, albeit slightly higher for the Sm grid (see Figs. 4.35 and 4.36 that show

the detail of the scatter of the various grids for the LONG interval). There is thus a noticeable

reduction of the scatter for most of the quantities evaluated between MS1994 and LONG for

Sm results, while Sl also show a decrease of the scatter between those two intervals but only

in the higher order moments and most significantly in the lower part of the ABL.
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Figure 4.30 Evolution of the scatter as a function of time interval: a) scatter of the result

parameters shown in Tab. 4.6; b) RMS of scatter from 0 to 1.2 zi as shown in Tab. 4.7.

Variables names and scaling factors are shown in the centre of the graphs. Scatter from Ss is

divided by 10, and it is not shown for zi as it is too large

Finally, concerning TINERT interval, the scatter of the Sm results further decrease slightly

(except for θs and Δθ1) to become equal or lower to the scatter of Sl for LONG interval. From

Figs. 4.28 and 4.29, the scatter below 0.2 z/zi of Sm
S is clearly reduce for some variables going

from LONG to TINERT interval, while, in the mixed layer, both LONG and TINERT results

have a similar scatter. As a result, the decrease of scatter is not significant considering that

TINERT interval is three time longer than LONG.

As a conclusion, it thus clearly appears that the longer the time interval, the less scatter there

are. In addition, the coarser the mesh, the more scatter there are, and the more noticeable
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the scatter reduction is when the time interval is lengthen. It was shown that results from Ss

grid may not be representative before 0.5Tinert due to spurious phenomena. This is discarding

results based on that grid for MS1994 and LONG intervals. Concerning Sm, while scatter

is relatively high for MS1994, it is close to Sl results for the LONG interval, notably in the

middle of the ABL. The TINERT interval further shows a small reduction of the scatter of Sm

results but mostly in the near-surface region. Scatter of this last result is similar to Sl for the

LONG interval. Finally, Sl result also shows a reduction of the scatter going from MS1994 to

LONG. The latter is more noticeable for the higher order variables in the near-surface region.

As a consequence, MS1994 time interval appears to be at the edge of suitability even for

the finer grid Sl. LONG interval leads to acceptable scatter for Sm and Sl grids, while the

TINERT interval is required to use Ss results and for Sm scatter to be as low as Sl (during

LONG interval) at all heights in the ABL. Considering the increase of computational time, the

improvements going from LONG to TINERT are not significant with regards to the scatter.

4.3.1.2 Convective case

In the context of a buoyancy driven ABL where a constant heat flux is imposed at the ground

surface, energy is permanently brought in the ABL (and in the whole computational domain)

causing both the temperature in the whole ABL and its height to rise constantly. As a result, no

permanent regime is expected for the convective case, but a quasi-steady state with a constantly

increasing ABL temperature.

Furthermore, in such conditions the height of the top boundary may restrain the duration of

computations. An approach similar to Mason and Brown (1999) would be required to prevent

the inversion to rise (temperature above a given height is kept constant thanks to the addition

of another source term in the temperature equation). In the present case, the upper inversion

reaches the upper quarter of the domain after 0.49Tinert. Considering a ten layers sponge is

applied at the top boundary (roughly 400 m deep), results in the ABL after 0.49Tinert may be

affected. This explains the sudden increase of CTKE after 0.5Tinert in Fig. 4.31 d).



364

a) b)

 0

 0.5

 1

 1.5

 2

 0  0.1  0.2  0.3  0.4  0.5  0.6

C
u

tf/2π

                    

                    
 0

 0.5

 1

 1.5

 2

 0  0.1  0.2  0.3  0.4  0.5  0.6

C
u

tf/2π

MS1994

INTER

LONG

B1d

BM
 0

 2

 4

 6

 8

 10

 12

 14

 0  0.1  0.2  0.3  0.4  0.5  0.6

C
v

tf/2π

                    

                    

 0

 2

 4

 6

 8

 10

 12

 14

 0  0.1  0.2  0.3  0.4  0.5  0.6

C
v

tf/2π

B1d

BM

c) d)

 0.05

 0.06

 0.07

 0.08

 0  0.1  0.2  0.3  0.4  0.5  0.6

C
g

tf/2π

                    

                    
 0.05

 0.06

 0.07

 0.08

 0  0.1  0.2  0.3  0.4  0.5  0.6

C
g

tf/2π

B1d

BM
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  0.1  0.2  0.3  0.4  0.5  0.6

C
T

K
E

tf/2π

                    

                    
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  0.1  0.2  0.3  0.4  0.5  0.6

C
T

K
E

tf/2π

B1d

BM

Figure 4.31 Same as Fig. 4.26 but for the convective case

Considering the above mentioned characteristics of the B case, the following three time inter-

vals are elected here (shown in background light grey shaded area in Fig. 4.31 and that differ

from their counterparts in the S case) to compute the flow statistics and their scatter:

MS1994: from 0.105Tinert to 0.148Tinert, i.e. from 6400 s to 9000 s.

INTER: from 0.229Tinert to 0.354Tinert, i.e. from 14000 s to 21600 s.

LONG: from 0.105Tinert to 0.459Tinert, i.e. from 6400 s to 28000 s.

The interval MS1994 is the same as in Sec. 4.2 (Moeng and Sullivan, 1994)9. The interval

LONG starts at the same location as MS1994 but it ends just before the inversion starts to

interact with top boundary. It is nine times longer than MS1994. While the use of such a

long interval is not recommended (Mason and Brown, 1999; Sorbjan, 2005a), it is meant to

9 Note that MS1994, which refers to the time interval used by Moeng and Sullivan (1994), is different from the

acronym MS94 used in the previous section, which refers to Moeng and Sullivan (1994) study.
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Table 4.8 Result parameters from the convective case for model setups shown in

Tab. 4.4 and the three time intervals

Name Interval
u∗ w∗ zi LMO θs w′θ′i U1 Δθ1

[m/s] [m/s] [m] [m] [K] [K m/s] [m/s] [K]

MS1994 0.590 1.963 989 -39.2 307.31 -0.017 5.65 4.93

INTER 0.606 2.011 1074 -43.7 309.92 -0.025 5.22 4.75B1d

LONG 0.611 1.999 1053 -44.2 309.55 -0.012 5.43 4.75

MS1994 0.573 1.956 981 -27.3 307.90 -0.023 5.35 5.11

INTER 0.586 2.044 1128 -29.5 310.49 -0.025 5.09 5.07BS

LONG 0.593 2.034 1112 -30.3 310.26 -0.016 5.23 5.04

MS1994 0.579 1.962 989 -28.8 307.79 -0.028 5.29 4.99

INTER 0.599 2.039 1120 -32.5 310.26 -0.024 5.01 4.81BM

LONG 0.605 2.029 1103 -32.8 310.06 -0.015 5.18 4.81

better evaluate the scatter of the results. The last interval, INTER, is locate in an intermediate

region (almost centred at the same time as LONG) starting after the peak of TKE and finishing

well before the top boundary could have an impact on the solution. The coefficient CTKE is

almost constant during the whole INTER interval, advocating that a fully developed quasi-

steady turbulent regime is well established. INTER is three times longer than MS1994.

4.3.1.2.1 Steadiness of the solution

Concerning the time evolution of B, Fig. 4.31 shows the evolution of integral coefficients,

Eq. (4.4). Based on MS1994, INTER and LONG intervals, Tab. 4.8 summarize the various key

parameters, Figs. 4.32 and 4.33 present the vertical profiles of the dimensional first order mo-

ment and non-dimensional first, second and third order moments, and finally Fig. 4.34 shows

the streamwise and vertical velocity longitudinal spectra at various height agl in the ABL.

From Fig. 4.31 and Tab. 4.8, convective case results follow the same general trends as the shear

case. However, inertial oscillation amplitude and time advancement slightly differ, and, since

convection (originating from the heated surface) is the driving process of B, a clear increase

of the ABL height zi, and the temperature across the ABL is to note between MS1994 and the

other two intervals. From Tab. 4.8, zi is increased by roughly 10 % and θs by 2.5 K between

MS1994 and INTER/LONG which cause LMO to increase by more than 5 %.
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Figure 4.32 Dimensional profiles from BS along with the scatter for the three time

intervals: a) horizontal velocity components; b) potential temperature

Interestingly, as seen in Tab. 4.8 and Figs. 4.32, 4.33 and 4.34, results (even dimensional) from

INTER and LONG intervals are very close (below 1 % of difference), which is explained by

the fact that the two time intervals are centred at almost the same location. Only few of the

upper ABL properties present a differences, such as w′θ′i that is reduced by more than 20 %

for LONG in comparison of MS1994/INTER. This is a consequence of the reduction with time

of temperature slope and gap at the inversion (notably after 0.35Tinert as seen in Fig. 4.32 b))

causing a less powerful entrainment rate and a smoother shape of the countergradient flux.

Concerning dimensional profiles, Fig. 4.32, all three (i.e. u, v and θ) exhibit well-mixed pro-

files. Furthermore, while u is almost unchanged for the three intervals, v is nearly multiplied

by three. Both velocity components retains an almost vertical profile (notably for the u com-

ponent) all along the simulations due the intense vertical mixing. The potential temperature

profile, Fig. 4.32 b), also keeps an almost vertical profile in the mixed layer all along the com-

putation. Changes at the inversion put aside, profiles from INTER and LONG intervals are

very similar, and the increase of temperature in the mixed layer is of the same order as the one

at the surface, namely ∼ 2.5 K. This increase of the temperature is consistent with the value

obtained by considering the integral mixed layer, i.e.
(
w′θ′s + w′θ′i

)
Δt/zi.
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Figure 4.33 Profiles from BS along with the scatter for the three time intervals: a) velocity

modulus; b) potential temperature (both using a log scale in ordinate); c) total momentum

fluxes; d) total and subgrid sensible heat flux; e) resolved velocity variances; f) resolved

vertical flux of velocity variances
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Dimensionless profiles, Fig. 4.33, show a good agreement between the three time intervals

since results are almost always within the scatter. The only clear exception are the first order

moments that show an offset for MS1994, and profiles at the inversion of some variables for

LONG interval. Vertical momentum flux components, Fig. 4.33 c), also show notable differ-

ences between MS1994 and INTER/LONG. However, the vertical momentum flux magnitude

almost superpose for the three intervals (not shown here). As a result, it can be concluded that

the turbulent regime is fully developed and well established even for MS1994 time interval.

The evolution of the vertical momentum flux components as well as the slight changes in the

horizontal velocity variances and their vertical fluxes are due to the spanwise velocity com-

ponent increase with time in the mixed layer. It results in an increase of v vertical gradient

across the inversion and at the surface, which causes a larger absolute v′w′ and v′2 in those

regions. Furthermore, u′2 and v′2 are getting closer throughout the whole ABL while w′2 is

almost unchanged and w′u′2 and w′v′2 superpose above 0.6 zi. However, due to the fading out

of the inversion, the location of the peak of u′2 and v′2 at the inversion is lowered by 0.1 zi, and

w′2 is increased by more than 50 % just above the inversion between MS1994 and LONG.

Finally concerning the longitudinal spectra of u and w, Fig. 4.34, besides the obvious horizontal

offset between MS1994 and INTER/LONG intervals due to the increase of zi, the same remarks

as above can be done: spectra from the three intervals are very close at all heights, notably

concerning INTER and LONG, and almost always within the scatter of the results.

The biggest changes in Fig. 4.34 (when taking into account zi time evolution) are between

MS1994 and INTER/LONG and they are located in the lowest wave numbers notably at the

level z = 958 m. In the near-surface region for the lowest wave numbers of MS1994, the slope

of Eu differs from the mixed layer and a merge of the spectra appears when plot against zkx

(not shown here), as predicted by Drobinski et al. (2004) (albeit for the neutral ABL). Ew also

feature slightly more energy in that region of the spectra. At the top of the ABL, Ew feature a

drastic change with an large increase of the energy in the lowest wave numbers. This change is

to be correlated with the fact that, while zi increases, the spectra at a fixed height is shown (not
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Figure 4.34 Longitudinal velocity spectra from BS along with the scatter for the three

time intervals: a) streamwise component; b) vertical component

at a constant z/zi). For MS1994, z = 958 m almost correspond to the ABL height. The flow is

thus clearly affected by the inversion and there is less energy in the velocity fluctuations than

in the mixed layer. At the opposite this level is well below the inversion for INTER and LONG

(see Tab. 4.8 for numerical values).

To summarize the time evolution of the convective case, it can be say that a representative

quasi-steady convective ABL is already well established after 0.1Tinert, i.e. during MS1994

interval. After 0.5Tinert, the top of the ABL starts to interact with the top boundary condition
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of the model. Better and more converged statistics appear to be obtained with the use of a

interval longer than MS1994. However, a too long interval was proven to affect statistics

(notably at the top of the ABL). The interval INTER of roughly 15 τ∗ leads to optimum results.

4.3.1.2.2 Scatter of the results

Scatter of the result of the convective case was sometimes found to be large in Sec. 4.2. It was

displayed for MS1994, INTER and LONG time intervals in Figs. 4.32, 4.33 and 4.34. Tab. 4.9

further shows the scatter of the result parameters and Tab. 4.10 present the root mean square of

the scatter of selected variables from 0 to 1.2 zi.

Table 4.9 Scatter of the result parameters from Tab. 4.8, Eq. (4.9), for the convective

case and for the three time intervals

Name Interval
o (u∗) o (w∗) o (zi) o (LMO) o (θs) o

(
w′θ′i

)
o (U1) o (Δθ1)

[m/s] [m/s] [m] [m] [K] [K m/s] [m/s] [K]

MS1994 0.008 0.014 21 1.81 0.045 0.008 0.10 -0.015

INTER 0.004 0.013 21 1.51 0.060 0.006 0.11 -0.018BS

LONG 0.004 0.039 63 1.68 0.024 0.003 0.06 -0.001

MS1994 0.007 0.000 0 1.43 0.052 0.005 0.09 -0.032

INTER 0.005 0.013 21 1.58 0.025 0.006 0.07 -0.008BM

LONG 0.004 0.013 21 0.84 0.019 0.003 0.05 -0.012

The scatter of second and third order moments from the convective case was of most concern

in Sec. 4.2. As an example, v′w′ in the mixed layer based on MS1994 interval features a scatter

larger than its mean value, Fig. 4.8 b). The use of a longer the time interval such as INTER and

LONG avoid this short coming as shown in Fig. 4.33 c). Similarly, vertical fluxes of velocity

variances feature a scatter that is divided by two across the mixed layer.

More generally, from the Figs. 4.32, 4.33 and 4.34, there is a significant decrease of the scat-

ter for all the variables displayed between MS1994 and INTER/LONG intervals. The scatter

reduction for the first order moment, Figs. 4.32 and 4.33 a) and b), is less significant than for

the second and third order moments shown in Fig. 4.33 c) to f). Those remarks can readily

be confirmed in Tabs. 4.9 and 4.10. Between MS1994 and INTER, the scatter is generally
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reduced and notably more homogeneous across the ABL for INTER. The locally high scatter

values (close to the surface for u and v related quantities, and in the middle of the ABL for w

related quantities) are thus absent of the results based on INTER. Differences between INTER

and LONG are less notable, and while the scatter is reduced, it is far from being avoided.

Table 4.10 Root mean square of the dimensional scatter from 0 to 1.2 zi,
Eq. (4.10), of selected variables (shown in Figs. 4.32, 4.33 and 4.34) for the

convective case and for the three time intervals

Name Interval

σ (u) σ (w) σ (θ) σ
(
u′w′

)
σ
(
u′2
)

σ
(
w′2
)

σ
(
w′θ′

)
[m/s] [m/s] [K] [m2/s2] [m2/s2] [m2/s2] [K m/s]

×100 ×10−6 ×100 ×10−2 ×10−1 ×10−1 ×10−3

MS1994 0.130 5.009 0.037 2.754 0.697 0.621 3.045

INTER 0.111 3.246 0.041 2.500 1.436 0.696 1.972BS

LONG 0.076 1.828 0.028 0.827 1.031 0.560 1.133

MS1994 0.087 3.469 0.037 3.756 1.054 0.880 3.967

INTER 0.067 2.551 0.032 2.108 1.854 0.524 2.273BM

LONG 0.059 1.449 0.017 1.233 0.886 0.303 1.398

To conclude concerning the scatter of the convective case, it is to say that while the turbulent

regime is fully developed during MS1994 interval, a longer interval is required to reduce the

scatter to an acceptable level. The INTER interval, which is three times as long as MS1994,

presents a reduced and much more homogeneous scatter. All variables can be clearly evaluated

using INTER. Further increasing the time interval reduce the mean scatter but to a least extent

as shown with the LONG interval that is roughly three times longer than INTER. Considering

the results from the previous section, the medium size interval, i.e. INTER, thus appears to be

the best suited for the convective case reproduced here.

4.3.2 Horizontal grid

In order to evaluate the sensitivity of the LES results with regards to the horizontal properties of

the grid, i.e. horizontal resolution and size of the domain, computations based on three different

horizontal meshes, as shown in Tab. 4.4, are discussed here. As a reminder of the three grid

discussed in the present section are fully uniform and feature the same properties in the vertical
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with 96 uniformly distributed meshes in a Lz = 1 km deep domain leading to Δz = 10.4 m.

Their horizontal properties can be summarize as:

Small grid, Ss: Ni = Nj = 50 with Lxi
= 2 km, thus, Δx = Δy = 40 m.

Medium grid, Sm: Ni = Nj = 64 with Lxi
= 2 km, thus, Δx = Δy = 31.25 m.

Large grid, Sl: Ni = Nj = 96 with Lxi
= 3 km, thus, Δx = Δy = 31.25 m.

The large grid Sl is the usual mesh that was used to obtain all the results from Sec. 4.2. This

domain is roughly 2πzi wide, thus allowing for the largest eddies (of the size of the ABL) to

achieve two full turnover. This is a commonly used rule of thumb to define the horizontal size

of the domain (Mason and Thomson, 1987; Porté-Agel et al., 2000). The small Ss and medium

Sm grids feature the same width, and the latter have the same resolution as Sl while the former

is coarser. As a result, based on Sl, Sm and Ss, both impacts of a coarser grid and a smaller

domain can be evaluated. Those grids were also used successfully in the literature to reproduce

the very same case, i.e. by Sullivan et al. (1994) for the 64× 64 grid and by Ding et al. (2001a)

for the 50× 50 grid, an other similar cases (Porté-Agel et al., 2000; Chow et al., 2005).

In this section, Sm and Sl results are compared in Fig. 4.35 and 4.36 for LONG interval, which

allows to appreciate the impact of reducing the domain size while retaining the same resolution.

Then, Ss and Sm grid results are compared in Fig. 4.37 and 4.38 for TINERT interval which

allows to evaluate the impact of lowering the resolution while keeping the same domain size.

Results based on Ss, Sm and Sl were already introduced in the previous section and some of

the outcomes of the grid comparison were already discussed by evaluating the time evolution

and the scatter of the shear case (see the various tables and figures of Sec. 4.3.1.1). Indeed,

from Fig. 4.26 and Tabs. 4.5, 4.6 and 4.7, it was found that integral coefficients evolution are

very similar regardless of the grid used; the coarse grid results have larger scatter than the

fine resolution results. However, the horizontal size of the domain does not seem to affect

noticeably the scatter (of the integral coefficients).
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Figure 4.35 Profiles of first, second and third order moments for the small, medium and

large grids and based on LONG time interval
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Figure 4.36 Longitudinal spectra of streamwise and vertical velocities from the small,

medium and large grids and based on LONG time interval

More importantly, it was noted in Sec. 4.3.1.1.2 that for the 40 m resolution grid, i.e. Ss, the

on-set of the turbulent regime is sometimes delayed, and few sporadic extinction of turbulence

during the first half of computations are observed in few of the results based on Ss. This

happens regardless of the SGS model used. Indeed, the mesh starts to be too coarse to allow

resolving enough the flow close to the surface and let the shear instabilities develop for the

turbulence to be self-sustained. As a result, the smallest mesh (50 × 50) is found to be at the

edge of suitability for use with the present LES model and the shear case. Only TINERT time
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interval, i.e. from 0.5 to 1Tinert, allows to overcome troubles related to the on-set of turbulence.

This data is shown in Fig. 4.37. It is also displayed for LONG interval in Fig. 4.35 to better

appreciate the impact on statistics of the turbulence ignition delay caused by a too coarse grid.

From the comparison of the medium and large grid results, Sm and Sl in Fig. 4.35 and Tab. 4.5,

it is to say that going from a 3 km to a 2 km side mesh does not change ensemble averaged

results when using the same resolution (and all the other parameters). Indeed, results nearly

always perfectly superpose and result parameter values are very close if not equal. In fact, the

only notable (but small) difference between the two ensemble averaged results is in the vertical

flux of velocity variances Fig. 4.35 f). The scatter of the results, as previously discussed, is

slightly increased by reducing the domain size for the LONG interval. However, in Figs. 4.35

and 4.37 this increase is only notable on u′2 and w′u′2 profiles below 0.4 zi.

From Fig. 4.36, velocity spectra of the medium grid results, Sm, appear to have more energy

notably in the medium wave numbers (in the region where the spectra reach the −5/3 slope) for

both velocity components. In the highest wave numbers, medium grid results also tend to have

slightly more energy, notably in the mixed layer for the vertical velocity. These differences,

while small, are higher than the scatter of the result. They can hardly be explained. At the

lowest wave number, spectra slope are similar and the level of energy is generally the same

in the surface layer (albeit spectra from 2 km side grids consistently starts at a higher wave

number). Above, Sm results feature more energy. It is finally interesting to note (not shown

here) that the −1 slope in the low wave numbers is slightly better represented for Sl results

(i.e. a merge of the spectra is exhibit at a lower height).

Figs. 4.37 and 4.38 show comparisons between Ss and Sm based on TINERT interval. Differ-

ences in the results are all in line with what observed in the literature when a coarser mesh is

used in conjunction with a Smagorinsky SGS model (Mason, 1994; Sullivan et al., 1994; Ding

et al., 2001a; Brasseur and Wei, 2010). As illustrated in Fig. 4.37 c), while the total momentum

flux is almost unchanged, the subgrid part is increased for Ss indicating that the flow is less

resolved close to the surface than with Sm. Similarly the total heat flux is also unchanged,
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Figure 4.37 Profiles of first, second and third order moments for the small and medium

grids and based on TINERT time interval
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however, the subgrid heat flux increase is much less notable than for momentum. As a conse-

quence and due to the over dissipative nature of the Smagorinsky SGS model (Porté-Agel et al.,

2000), the near-surface velocity shear is increased for Ss, Fig. 4.37 a) and b), which translates

in a lower u∗, Tab. 4.5, and a larger departure from the similarity, Fig. 4.37 b). As illustrated

by Sullivan et al. (1994), and recently theoretically justified by Brasseur and Wei (2010), the

amplitude of deviation with Monin-Obukhov theory change slightly, while its height varies

more notably depending on the horizontal resolution (getting higher with a coarser mesh). In

parallel, the resolved u′2 and v′2 surface peak, Fig. 4.37 e), is higher in height and less intense

for Ss, which is in agreement with a more resolved surface layer (Mason and Thomson, 1992;

Sullivan et al., 1994; Porté-Agel et al., 2000). Finally, changes in the vertical flux of velocity

variances, Fig. 4.37 f), are consistent with the above remarks. At the opposite, the heat flux is

not sensitive to the mesh resolution.

Finally, the velocity spectra from Ss and Sm results are shown in Fig. 4.38, where it can be

seen that at all heights, the Eu and Ew from the two results start at the same location and

superpose for the two lowest wave numbers. Then, Ss results falloff more rapidly and they

feature a notably lower energy level in the medium and high wave numbers. Indeed, due to

it coarser resolution, the cut-off wave number of Ss (i.e. π/Δ) is roughly 10 zikx lower than

for Sm, and this difference holds from the middle to the highest wave numbers, notably in

the surface layer. As a consequence, spectra from the coarse grid hardly reaches the inertial

subrange −5/3 slope, which is particularly true in the surface layer. They falloff very rapidly

thus illustrating why Ss grid is at the edge of what can be used with the present model. As a

result of the above, and when further considering that the scatter of coarse resolution results Ss

is notably higher (often twice the scatter of Sm), results based on higher resolution grid thus

prove to be better, notably in the near-surface region.

As a summary from the evaluation of the three grids, it is to conclude that going from a 2 km to

a 3 km horizontal grid while keeping the same horizontal resolution does not change ensemble

averaged results, which also appears to be the case in the studies of Moeng and Sullivan (1994)

and Sullivan et al. (1994). Results perfectly superpose and only the scatter of u′2 and w′u′2
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Figure 4.38 Longitudinal spectra of streamwise and vertical velocities from the small and

medium grids and based on TINERT time interval

below 0.4 z/zi is increased in the 2 km side grid results for LONG interval. Furthermore,

going from a 31.25 m to a 40 m horizontal resolution while retaining the same domain size,

gives results in line with what obtained in the literature (Sullivan et al., 1994; Mason, 1994;

Brasseur and Wei, 2010). Flow close to the surface is notably less resolved and the departure

from the similarity is increased with a maximum higher in height. However, the coarse mesh

Ss, based on a 40 m resolution and 2 km side, prove to be at the edge of suitability to reproduce

the shear case of Moeng and Sullivan (1994) with the current methods. Based on that grid, the
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on-set of turbulence is sometimes delayed preventing the use of the results based on the LONG

interval. Furthermore, the scatter of the results from that grid is very high, even for the TINERT

interval. A better resolution grid must be used to allow an advance analysis of the results.

In the literature, similar or coarser grids than Ss have been used successfully in conjunction

with the classical Smagorinsky SGS model to reproduce similar shear driven ABL (Andren

et al., 1994; Brown et al., 2000; Porté-Agel et al., 2000; Ding et al., 2001a; Chow et al.,

2005). The present approach thus appears less suited for coarse meshes, which is perfectly in

agreement with the findings of the spectral analysis of Sec. 4.2 (where the current model was

found to over dissipate the fine structures in comparison to results from Brown et al. (2000) and

Porté-Agel et al. (2000) due to more dissipative numerics). As a result of the above remarks,

the medium grid appears to be as suited as the large grid to reproduce Moeng and Sullivan

(1994) shear case, while the small grid, being at the edge of suitability, should be avoided.

4.3.3 Vertical grid

Since the beginning of the study, the shear and convective cases were reproduced based on

a vertical grid with 96 uniformly distributed nodes in a 1 km and 3 km deep domain as in

MS94. However, this notably departs from a classical configuration of the MC2 where its

upper boundary is commonly located above 10 km, vertical grid is monotonically stretched

upward, and the width/height ratio of the near-surface cells is commonly higher than 100. In

addition, as described in Sec. 3.2.3, a multi-layer sponge is applied at the top of the domain

to absorb waves and avoid their spurious reflexion in the computational domain. This sponge

layer is based on the ten uppermost levels here, i.e. roughly ∼ 100 m depth for S based on the

uniform grid. When the roof of the model is lowered drastically, as in the present case, care

must be taken for the upper boundary condition not to interact with the results.

Concerning the hybrid TKE and UKMO Smagorinsky SGS model used to reproduce all the

cases in this section, it is noteworthy that following Brown et al. (1994) and Mason and Brown

(1999), the filter width equals ΔH , while it is set to (ΔxΔyxΔz)1/2 when Δz > ΔH for the

Smagorinsky SGS model (see Sec. 2.2.3.1 and Sec. 2.2.3.3). Thus, for Sm/Sl and B grids (that
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have an aspect ratio of ΔH/Δz = 3 and 2.5 respectively), the vertical resolution is not included

in the definition of the filter of both SGS models and Δ = ΔH . As a consequence, changing

the vertical mesh does not directly affect the filter width, and changes in the results may thus

primarily be associated to the resolved scales.

As the consequence of the above, many aspects of the vertical grid impact on the results need

to be studied. Furthermore, in the longer term, the current LES model might be used as a

last level of nesting (of a mesoscale model) for real cases. A vertical uniform grid is very

restrictive and the use of a non-uniform vertical grid would be desirable. Mainly, it would

allow to raise top boundary while retaining a sufficient resolution in the whole ABL. In this

section, the impact of the vertical grid on the results is evaluated by reproducing the shear

case based on various non-uniform vertical grids. The sensitivity of the results to the vertical

mesh (at various heights) is studied though the following aspects: increase of the top boundary

height, refinement of the grid in the surface layer, reduction of the resolution in the mixed

layer and at the inversion. These various cases also serve to complete the validation of the 3D

turbulent diffusion implementation with regards to non-uniform vertical mesh. Indeed, vertical

terms of the turbulent diffusion were already evaluated in Sec. 4.1.

The following three non-uniform vertical grids (obtained as described in Sec. 3.2.2.4), in addi-

tion to the usual uniform mesh, are used here to study the impact of the vertical grid:

Grid A: nk = 96, ztop = 1000 m, uniform (same grid as Moeng and Sullivan (1994)).

Grid B: nk = 60, ztop = 1500 m, α = 2, σ = 6 and zref = 500 m.

Grid C: nk = 60, ztop = 1500 m, α = 4, σ = 9 and zref = 550 m.

Grid D: nk = 96, ztop = 3000 m, α = 6, σ = 15 and zref = 600 m.

Tab. 4.11 shows k indices along with corresponding height and resolution for key locations in

the computational domain: “Surface” stands for the first level above the surface, “Mixed layer

max.” for the level with the maximum Δz within the mixed layer, “Inversion min.” for the level

with the minimum Δz at the inversion, “Inversion top” for the first level above the inversion

with Δz > 30 m, and finally “Sponge” for the first level in the sponge layer.



381

Table 4.11 Details of the vertical grid properties at various key locations in

the computational domain

Grid

Surface Mixed layer max. Inversion min. Inversion top Sponge

k z Δz k z Δz k z Δz k z Δz k z Δz
[m] [m] [m] [m] [m] [m] [m] [m] [m] [m]

A 1 10.4 10.4 10.4 10.4 10.4 86 895.8 10.4

B 1 8.3 8.3 24 329.1 18.4 34 482.1 12.4 44 691.0 32.4 50 937.3 46.4

C 1 5.9 5.9 24 293.5 16.9 35 460.4 13.6 46 684.8 31.6 50 845.6 45.5

D 1 3.7 3.7 32 282.6 12.5 49 473.0 9.9 67 778.9 30.3 86 1906.6 88.7

From Tab. 4.11, resolution at the surface of non-uniform grids is always better than the uniform

grid: it is divided by three going from grid A to grid D. At the opposite in the mixed layer,

resolution of the uniform grids is always better than non-uniform grids: grid B is the worst

case with Δz = 18.4 m at that height (which is almost twice as large as grid A) while grid D

has almost the same resolution as A. At the inversion, resolutions are very similar for all grids:

grid C is the worst case with 13.6 m followed by grid B with 12.4 m. Finally, there are 200 m

for grid B and C and 300 m for grid D above the inversion before the resolution get higher than

30 m (i.e. roughly the horizontal resolution of Sm and Sl). Below that height, and thus in the

entire ABL, Δz of all grids is much smaller than the horizontal resolution. Hence, and due

the definition of the filter width used here, results should not be significantly impacted by the

change of vertical resolution. The resolved part of the flow is expected not to decrease.

Result parameters from the column model, the Smagorinsky SGS model and the hybrid TKE

SGS model are summarized in Tab. 4.12 for all the vertical grid configurations and the previ-

ously explored horizontal grids and time intervals. It is important to note that U1 and Δθ1 are

values at the first grid level, they are thus directly a function of the grid.

Results from the column model are nearly unchanged and all vertical grids lead to the same

parameters as seen in Tab. 4.12. In fact, the vertical profiles of the various variables of interest

(not shown here) are also almost unaffected by the vertical grid. This further confirms that

the discretization of vertical terms in the turbulent diffusion (as well as the other parts of the

model), is correctly implemented with regards to a non-uniform vertical grid.
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Table 4.12 Result parameters from the shear case for the vertical grids evaluated in

Sec. 4.3.3 and based on model setups detailed in Tab. 4.4 and two time intervals

Name Interval Grid
Reali-

zations

u∗ zi θs w′θ′i U1 Δθ1
[m/s] [m] [K] [K m/s] [m/s] [K]

A 1 0.547 516 300.76 -0.0311 4.50 -0.0023

B 1 0.536 509 300.67 -0.0324 4.26 -0.0010

C 1 0.548 511 300.77 -0.0313 3.91 -0.0000
LONG

D 1 0.546 521 300.75 -0.0313 3.37 -0.0000

A 1 0.639 589 302.38 -0.0226 5.58 -0.0016

B 1 0.636 597 302.33 -0.0241 5.22 -0.0006

C 1 0.637 604 302.41 -0.0236 4.82 0.0003

S1d

TINERT

D 1 0.637 598 302.38 -0.0233 4.20 0.0001

A 10 0.566 454 300.63 -0.0058 4.95 -0.0008
Ss
S TINERT

B 10 0.571 485 300.50 -0.0063 4.63 0.0003

A 5 0.499 453 300.38 -0.0036 4.29 -0.0008

B 1 0.494 498 300.34 -0.0028 3.99 0.0005

C 1 0.500 450 300.37 -0.0038 3.68 0.0012
LONG

D 1 0.496 463 300.37 -0.0050 3.14 0.0007

A 5 0.587 465 300.67 -0.0062 5.17 -0.0011

B 1 0.583 429 300.53 -0.0053 4.83 0.0004

C 1 0.584 434 300.62 -0.0074 4.36 0.0011

Sm
S

TINERT

D 1 0.570 463 300.61 -0.0078 3.65 0.0007

A 5 0.499 459 300.38 -0.0037 4.29 -0.0009
Sl
S LONG

B 5 0.498 455 300.35 -0.0041 3.96 0.0004

A 10 0.579 459 300.75 -0.0071 4.89 -0.0010
Ss
M TINERT

B 10 0.574 480 300.60 -0.0072 4.54 0.0002

A 5 0.512 461 300.40 -0.0048 4.17 -0.0010

B 1 0.509 498 300.36 -0.0053 3.94 0.0004

C 1 0.509 450 300.38 -0.0045 3.64 0.0012
LONG

D 1 0.510 452 300.40 -0.0050 3.17 0.0007

A 5 0.601 465 300.77 -0.0076 5.06 -0.0012

B 1 0.592 412 300.61 -0.0069 4.69 0.0003

C 1 0.593 403 300.69 -0.0066 4.30 0.0010

Sm
M

TINERT

D 1 0.585 475 300.72 -0.0086 3.69 0.0006

A 5 0.515 465 300.40 -0.0047 4.20 -0.0010
Sl
M LONG

B 5 0.511 455 300.38 -0.0054 3.91 0.0003

Concerning the LES models, from in Tab. 4.12, changes in u∗ and θs between the results from

the four grids are generally lower than 1 %, except for the grid D that feature a value of u∗ that

is slightly lower (2.5 % lower than grid A results in the worst case for both SS and SM results).

It is also interesting to note that Δθ1 changes sign between grid A and others vertical grids. The
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absolute value of Δθ1 is however very small. Similarly, the minimum sensible heat flux at the

inversion w′θ′i appears to be very sensitive to the vertical mesh used. However, this quantity is

also very small and generally presents a relatively high scatter as discussed previously.

Finally at the opposite, the height of the ABL zi features notable changes between the various

results in Tab. 4.12. Indeed, grids B and C lead to a lower ABL than grid A and D. This is

particularly clear for TINERT interval were this difference is roughly 10 %. This may indicate,

together with the differences in the countergradient heat flux at the inversion, that processes

in that region are sensitive to the vertical grid: a lower resolution than grid A at the inversion

and above appears to impact the results, while a higher domain does not. As a result, and in

order to isolate those changes, all the figures presented in this section use the reference height

of 460 m to scale the results instead of the computed ABL height.

To further explore the impact of the vertical grid, Fig. 4.39 compares the results based on A and

B grids for the large domain Sl and LONG interval. Fig. 4.40 also shows the results for those

two vertical grids but for the small domain Ss and TINERT interval. Finally, Fig. 4.41 shows

the results for the four vertical grids based on the medium grid Sm and TINERT interval.

Close to the surface, it can be seen from Figs. 4.39, 4.40 and 4.41 that the results are almost in-

dependent of the vertical grids. In fact, the non-dimensional shear and the third order moments

differences are always lower than the scatter. The only noticeable difference (that is higher

than the scatter and which is clearly seen on the three figures) is the reduction with the increase

of the resolution of the small spurious negative heat flux in surface layer. From Fig. 4.41 d),

the latter, which has no effect on the results (as discussed previously), is almost divided by two

going from the uniform grid to grid D, which tends to indicate that it is caused by a discretiza-

tion error. It can thus be concluded that the increase of the vertical grid resolution close to the

surface has no impact on the results (when using Ss, Sm and Sl horizontal grids).

In the mixed layer, it can also be said from Figs. 4.39, 4.40 and 4.41 that changes related to the

vertical grid are very small if not absent. The most clear but small difference is in the vertical

flux of momentum that is always smaller in the upper part of the ABL for B, C and D grids,
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based on Sl
S and LONG time interval



385

see Figs. 4.41 c), 4.40 c) and 4.41 c). Furthermore, u′w′ from all non-uniform grids almost

perfectly superpose in the upper part of the ABL, as seen in Fig. 4.41 c). Those differences are

thus neither due to the scatter nor to the changes in vertical resolution in the mixed layer, but

they are most likely to be related with changes at the inversion.

In view of those results, it can be assume that at the surface and in the mixed layer, the increase

of vertical resolution (as well as a stretched vertical grid) does not affect the results. The re-

solved part of the flow is not increase (which is also confirmed by the longitudinal velocity

spectra, not shown here). Furthermore, due to the filter width definition used in the Smagorin-

sky and hybrid TKE SGS models, subgrid scales are also unchanged. Finally and since the

results are not a function of the vertical grid, it is also to conclude that the discretization of the

various terms with regards to a non-uniform vertical grids is correctly implemented.

The picture is changed at the inversion and neighbouring region, as the minimum heat flux as

well as the local maximum in velocity variances presents some notable differences. Others

variables are less affected, but they are all fading out to zero above the inversion (preventing a

clearly appreciation of their differences).

For the large domain Sl with the LONG interval, Fig. 4.39, grid A and B flow features in that

region are largely similar, notably when also considering that the scatter of the results is high.

The local maximum in velocity variances show a slightly lower height and amplitude, while

minimum heat flux is identical and only its return to zero shape above the inversion is different

between the two grids. Grid B features a smoother transition and the positive heat flux region

above the inversion is not anymore present. However, the scatter is this region is high.

When further considering Ss and Sm results for the TINERT interval as shown in Tab. 4.4,

Figs. 4.40 and 4.41, it becomes clear that the resolved heat flux at the inversion (and velocities

variances to a least extent) is sensitive to the vertical grid resolution, but not the height of the

top boundary. In Figs. 4.40 d) and 4.41 d), grid B heat flux presents a spurious zigzag (which

is also present for the LONG interval, not shown here). Resolved heat flux from grid C also

shows a discontinuity above the inversion. These unusual shapes are confirmed by the notably
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different zi value for those cases. Those remarks tend to indicate that grid B and C are too

coarse at the inversion causing the solver to struggle. However, with respectively Δz = 12.4 m

and Δz = 13.6 m at the inversion, the resolution is indeed coarser but it is not far from the

uniform grid resolution. In fact, and maybe more importantly, the stretching of the grid above

the inversion is high for those grids, and there are only 200 m before Δz > 30 m for grids B

and C. This height is of the same order as the depth required for the resolved heat flux to return

to zero above the inversion. In comparison, grid D show 300 m before Δz > 30 m, and none of

the above observed problems are present for that grid in Fig. 4.41. This latter grid is three times

taller than grid A (see Tab. 4.11). However at the inversion, both results feature very similar

shape (heat flux profiles superpose for the LONG interval, not shown here). Adding this to the

good agreement in predicted zi for both grids, it can be concluded that grid A is sufficiently

tall and that the results are not impacted by the top boundary condition of the model.

As a result, heat flux at the inversion is very sensitive to the vertical grid resolution at that height

and above in comparison to the other variables. A too high stretching above the inversion may

impact the resolved heat fluxes of the whole inversion and in turn affect zi. At the opposite,

increasing the height of the top boundary does not appears to affect the results. However, and

to mitigate those thoughts, the heat flux of the shear case is very small and not considered as a

dominant variable. Furthermore, the differences noted above the inversion are not affecting the

flow in the lowest two third of the ABL. It is thus somewhat confusing that a variable computed

based on a negligible quantity is used to scale the results.

Finally, concerning the scatter of the results, Figs. 4.39 and Fig. 4.40, some of the profiles

present a reduced scatter, while it is increased in other regardless of the vertical grid (i.e. the

second versus the third order moments in Figs. 4.39). As a consequence, no clear tendency

can be concluded. However, it is to note that small domain results Ss based on grid B are

less affected by the turbulence ignition delay problems (which is clear ŵhen considering at

statistics of Ss based on LONG interval - not shown here). For the TINERT interval however,

the reduction of the scatter between grid A and B is not clear.
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A, B, C and D vertical grids based on Sm
S and TINERT time interval.
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As a conclusion and from the four grid used here, the use of a finer vertical mesh close to the

surface, as well as a coarser vertical grid in the mixed layer does not change the results. Both

resolved and subgrid part of turbulent quantities are almost unaffected at these heights (and

only the very small spurious surface heat flux is reduced by increasing the resolution). This

shows that increasing the resolution anisotropically does not increase the resolved part of the

flow, and subgrid scale quantities are also unaffected thanks to the filter width definition. As

a consequence, non-uniform meshes have no impact on the results which confirms the proper

discretization of the various terms. Similarly, increasing the height of the domain does not

appears to affect the results. Thus, grid A seems to be perfectly suited even if a sponge is

used as top boundary on the ten uppermost level of the domain. At the opposite, heat flux

at the inversion is very sensitive to the vertical grid resolution (while other variables seem

unaffected). Depending of the mesh at the inversion and above, heat flux shape differs and a

spurious zigzag can develops. The mesh needs to be sufficiently fine not only in the upper part

of the ABL, but also up to the top of the temperature inversion, in order to properly reproduce

the heat flux minimum at the inversion. The computation based the large domain are generally

less sensitive to the changes in vertical resolution at the inversion. As a result, the use of the

minimum heat flux as the definition of the height of the boundary layer for shear case is very

demanding for the model, and a good prediction of zi may also imply that the processes at the

inversion and above are correctly reproduced.

4.3.4 Time step

The last numerical parameter tested was the time step. As illustrated in the model description,

Sec. 3.2.1, the current model is based on a Semi-Implicit Semi-Lagrangian (SISL) time step-

ping/advection scheme. This allows for the use of a rather large time step in comparison to

Eulerian approaches (Girard et al., 2005; Steppeler et al., 2003), at least in the NWP context.

Indeed, the commonly accepted maximum value of the CFL number that can be used with a

SISL approach equals unity10, while a value of roughly 0.25 is generally accepted for explicit

Eulerian methods (Girard et al., 2005; Steppeler et al., 2003).

10 Note however that the SL scheme is known to be stable for CFL higher than unity (Randall, 2011, Sec. 5.12).
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Considering the geostrophic wind velocity vg = (ug, vg) = (const., 0), which is also the free

atmosphere velocity vector modulus, a reference CFL can be defined such as

CCFL =
ugΔt

Δx
. (4.11)

Based on numerical parameters from Tab. 4.4, CCFL = 0.75 for Ss (Δt = 2 s, Δx = 40 m,

ug = 15 m/s), CCFL = 0.72 for Sl and Sm (Δt = 1.5 s, Δx = 31.25 m, ug = 15 m/s), and

CCFL = 0.77 for B (Δt = 4 s, Δx = 52.03 m, ug = 10 m/s). These values are conservative

in comparison to the generally accepted maximum CFL of the SISL scheme but still relatively

high. As an example, it is higher than for all models used in Andren et al. (1994).

In this section, the impact of the time step is explored for the shear and convective cases.

Concerning the shear case, results based on CCFL = 0.48 and CCFL = 0.96, in addition to

CCFL = 0.72, are discussed. For the convective case, given the conclusions from the shear

case, only CCFL = 0.38, in addition to CCFL = 0.77, is studied.

4.3.4.1 Shear case

Wind speed in the free atmosphere is the fastest of the domain during the first part of the

integrations of the shear case. Then, the velocity profile overshoot ug at the top of the ABL

after 0.5Tinert as seen in Figs. 4.26 b) and 4.27 a). As a result, the effective maximum CFL

increases getting closer to the generally accepted limit of the SISL.

Based on these considerations, the three following values of CCFL are evaluated here using the

medium domain11 Sm and the usual uniform vertical grid, Tab. 4.4:

CCFL = 0.48: Δt = 1.0 s for Sm. A priori conservative with regards to the SISL.

CCFL = 0.72: Δt = 1.5 s for Sm. A priori slightly conservative.

CCFL = 0.96: Δt = 2.0 s for Sm. Almost equal to the SISL generally accepted limit.

11 Note that cases with CCFL = 0.96 was also reproduced with the large grid, Sl, leading to the very same

conclusions. These latter results are thus not shown here.



391

a)

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1
m

ax
(u

Δ
t/Δ

x)

tf/2π

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1
m

ax
(u

Δ
t/Δ

x)

tf/2π
b)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

m
ax

(v
Δ

t/Δ
y)

tf/2π

   

   

   
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

m
ax

(v
Δ

t/Δ
y)

tf/2π

   CCFL = 0.48

   CCFL = 0.72

   CCFL = 0.96

c)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

m
ax

(w
Δ

z/
Δ

z)

tf/2π

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

m
ax

(w
Δ

z/
Δ

z)

tf/2π

Figure 4.42 Maximum instantaneous local CFL, i.e. Cmax
CFL,

for the three directions based on Sm
S with CCFL equal to 0.48,

0.72 and 0.96. Coloured overlaid regions show the scatter of

the results. Grey overlaid background areas show

post-processing time intervals

To better appreciate the effective maximum local instantaneous CFL of the shear case, i.e.

Cmax
CFL, Fig. 4.42 shows its evolution in the streamwise, spanwise and vertical directions. It

can be seen that Cmax
CFL > 1 in the streamwise direction after 0.4Tinert for CCFL = 0.96. The

trends are however almost similar for all computations, and in fact, all curves scale perfectly

when divided by their respective CCFL (which returns max(ui)/ug). Only computations based

on CCFL = 0.96 departs from the others for tf/2π > 0.55Tinert in the streamwise direction,

Fig. 4.42 a), and less significantly in the spanwise direction, Fig. 4.42 b) (see also the differ-

ences between LONG and TINERT intervals in Tab. 4.13 and Figs. 4.43 and 4.44). It thus tend

to indicate that computations using CCFL = 0.96 are biased after tf/2π > 0.55Tinert, while

results based on CCFL = 0.48 and CCFL = 0.72 appear always valid.
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Table 4.13 Result parameters from the shear case for the three CCFL evaluated in

Sec. 4.3.4.1 and based on model setups from Tab. 4.4 and two time intervals

Name Interval CCFL C
〈u〉
CFL

Cmax
CFL

u∗ zi θs w′θ′i U1 Δθ1
[m/s] [m] [K] [K m/s] [m/s] [K]

0.48 0.48 0.51 0.496 451 300.38 -0.0041 4.26 -0.0008

0.72 0.72 0.76 0.499 453 300.38 -0.0036 4.29 -0.0008LONG

0.96 0.96 1.00 0.502 429 300.46 -0.0047 4.28 -0.0011

0.48 0.50 0.54 0.576 446 300.70 -0.0062 5.10 -0.0010

0.72 0.76 0.82 0.587 465 300.67 -0.0062 5.17 -0.0011

Sm
S

TINERT

0.96 1.06 1.17 0.586 421 300.87 -0.0086 5.12 -0.0014

0.72 0.72 0.76 0.499 459 300.38 -0.0037 4.29 -0.0009
Sl
S LONG

0.96 0.96 1.01 0.498 438 300.46 -0.0049 4.25 -0.0011

0.48 0.48 0.51 0.508 463 300.40 -0.0056 4.13 -0.0009

0.72 0.72 0.75 0.512 461 300.40 -0.0048 4.17 -0.0010LONG

0.96 0.96 1.00 0.513 429 300.49 -0.0054 4.14 -0.0012

0.48 0.50 0.54 0.590 467 300.82 -0.0078 4.99 -0.0021

0.72 0.76 0.81 0.601 465 300.77 -0.0076 5.06 -0.0012

Sm
M

TINERT

0.96 1.06 1.15 0.599 425 300.97 -0.0092 5.00 -0.0015

0.72 0.72 0.76 0.515 465 300.40 -0.0047 4.20 -0.0010
Sl
M LONG

0.96 0.96 1.01 0.516 455 300.49 -0.0055 4.17 -0.0012

Tab. 4.13 shows the key parameters of results based on the three CCFL. On that table, two

others CFL are displayed: C
〈u〉
CFL = max(u(z))Δt/Δx is based on the maximum averaged

velocity shown in Fig. 4.27 (horizontal and time average during LONG and TINERT intervals),

and Cmax
CFL = max(u(x, y, z, t))Δt/Δx is based on the maximum instantaneous local velocity

during LONG and TINERT intervals (as shown in Fig. 4.42). The latter quantity thus represent

the worst situation. If Cmax
CFL < 1, one is certain that the condition CFL < 1 is never violated.

As a summary of Tab. 4.13, C
〈u〉
CFL is only different from CCFL for TINERT time interval where

is is at least 5 % higher. It thus reflects the overshooting of ug by the averaged velocity profile

illustrated in Fig. 4.27 a). For its part, Cmax
CFL is always higher than CCFL (reaching unity for

CCFL = 0.96 for LONG interval), and an increase is also to note going from LONG to TINERT

time intervals. The increase of both Cmax
CFL and C

〈u〉
CFL between LONG and TINERT interval is

notably higher for CCFL = 0.96 than for the cases with lower value of CCFL. It thus tend to

confirm the spurious behaviour of CCFL = 0.96 results during TINERT interval.
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The other result parameters in Tab. 4.13 are almost unchanged by going from CCFL = 0.48 to

0.96 (with differences lower than 2 %). Only parameters sensitive to the inversion processes,

i.e. w′θ′i and zi, show noticeable differences for CCFL = 0.96. In fact, zi is generally lower by

∼ 7 % during both LONG and TINERT intervals for CCFL = 0.96. This latter case also shows

a higher w′θ′i but only during TINERT interval (which is the reason of a higher θs).

As a consequence, surface parameters can be considered independent of CCFL (in the range

0.48 to 0.96), while the inversion properties seems to be affected when CCFL is close to its

generally accepted limit, even if, on the one hand, averaged velocity profile is not clearly

overshooting ug (i.e. C〈u〉CFL = CCFL), and on the other hand, Cmax
CFL ≤ 1. As a result, and in

order for the spurious changes in zi not to affect the whole profiles, all the figures presented in

this section are based on the reference height of 460 m (instead of the computed zi).

The shear case results obtained with the three CCFL values are further studied through the

comparison of their profile of first, second and third order moments, and longitudinal velocity

spectra as shown respectively in Figs. 4.43 and 4.45 for Sm
S during LONG interval, and in

Figs. 4.44 and 4.46 for Sm
S during TINERT interval.

4.3.4.1.1 Time step impact in the lower half of the ABL

Concerning the lower half of the ABL, it can be seen in Figs. 4.43 and 4.44 that all profiles for

CCFL = 0.48 and CCFL = 0.72 almost perfectly superpose. Only u′w′ and u′2 appears slightly

higher for CCFL = 0.48 in the mixed layer, and w′u′2 surface layer maximum is higher for that

same case but this difference is on par with the scatter. This confirm that results in the lower

half of the ABL are mostly unchanged by lowering CCFL below 0.72.

For their part, results based on CCFL = 0.96 are also similar to the ones with lower CCFL, but

with some exceptions. Momentum and momentum fluxes show almost no differences for both

intervals, albeit the departure of φM from the similarity is always slightly lower for CCFL =

0.96 (not shown here). The potential temperature is higher in the whole ABL for CCFL = 0.96

due to the increased negative heat flux at the inversion (see Tab. 4.13) that bring more energy
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Figure 4.43 Profiles of first, second and third order moments for CCFL equal to 0.48, 0.72
and 0.96 based on Sm

S and LONG time interval
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in the ABL, which clearly appears for TINERT interval. Finally, profiles of u′2 and w′u′2 for

CCFL = 0.96, Figs. 4.43 e) and f) and 4.44 e) and f), show a noticeably lower maximum in

the surface layer while there are similar in the mixed layer. These latter differences are higher

when based on LONG interval. At this point, while the changes in φM , u′2 and w′u′2 tend to

indicate that the computation using CCFL = 0.96 is less dissipative in the lower half of the

ABL, evidences are not strong enough for to draw conclusions.

When considering the streamwise and vertical velocity longitudinal spectra in the lower half

of the ABL shown in Fig. 4.45 and 4.46, the differences become clearer. Indeed, while for

zikx < 6, no changes are to note at all heights in the ABL, the differences between results

increase with wave numbers after zikx > 6 (reaching their maximum at the highest wave

number): the spectra falloff in the surface layer is faster when CCFL it lower.

During LONG interval, Fig. 4.45, spectra from CCFL = 0.48 and CCFL = 0.72 results are

similar very close to the surface. At the opposite, CCFL = 0.96 results clearly show more

energy in the middle and high wave numbers. Above, results based on CCFL = 0.72 show a

clear increase the with height of the little eddies energy, while CCFL = 0.96 results show a

decrease: at the top of the surface layer, i.e. z/zi ∼ 0.2, the energy level of the former case is

in between CCFL = 0.48 and CCFL = 0.96. Then, it reaches CCFL = 0.96 spectra in the mixed

layer. Thus, surface layer velocity spectra from CCFL = 0.96 always have more energy in the

middle and high wave numbers. Remarks for TINERT interval are similar when considering

the lowest half of the ABL, as CCFL = 0.96 results always have the highest level of energy in

the middle and high wave numbers, and CCFL = 0.48 results always have the lowest level.

The velocity spectra comparisons above show that in the lowest half of the ABL, the higher the

time step, the more there are energy in the small structures. This might be caused by a higher

numerical dissipation of the advection scheme of the method, i.e. the SL scheme, that is less

suited for CFL below 0.5 (Girard et al., 2005). Note however that both the lower wave numbers

and almost all profiles from Figs. 4.43 and 4.44 are not affected by CCFL, notably above the

surface layer. This thus supports the conclusion of Brown et al. (2000) that found that in
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Figure 4.44 Profiles of first, second and third order moments for CCFL equal to 0.48, 0.72
and 0.96 based on Sm

S and TINERT time interval
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the mixed layer, LES results are not affected by an advection scheme that is more dissipative

as long as the filter is located in the inertial subrange. At the opposite, since LES is clearly

under-resolved in the surface layer, the advection scheme dissipation has a higher impact on

the solution. The increased energy of the middle and high wave numbers for CCFL = 0.96

indicates that the flow is more resolved in the surface layer which helps to better reproduce

the inertial subrange at lower height (as confirmed by plotting the spectra of that case based

on similar scaling as in Fig. 4.25 - not shown here). Those remarks, thus explain the slightly

better results obtained with CCFL = 0.96 in the surface layer in Figs. 4.43 and 4.44.

4.3.4.1.2 Time step impact in the upper half of the ABL and the inversion

Clear differences are to underline in the upper half of the ABL and at the inversion, but only for

CCFL = 0.96. Results based on CCFL = 0.48 and CCFL = 0.72 are identical and only v′2 for

CCFL = 0.48 always feature a slightly higher peak at the inversion. Profiles for CCFL = 0.96

for the LONG interval, Fig. 4.43, are similar to cases with a lower CCFL, however: velocity

and temperature gradient at the inversion are smoother; peaks of v′2 and more notably w′2

above the inversion are increased while u′2 slightly decrease; v′w′ is also higher just below the

inversion; and the neutral (slightly unstable) region above the inversion is always absent for

CCFL = 0.96, causing the heat flux to smoothly return to zero above the inversion (no negative

subgrid heat flux layer). All those remark tend to indicate that the mixing at the ABL top and

across the inversion is increased when the effective CFL is close to one. It would explain the

lower inversion height and higher heat flux at the inversion for CCFL = 0.96.

Concerning the spectra for the LONG interval in the upper half of the ABL, Fig. 4.45, high

wave numbers energy level decreases with height for CCFL = 0.96 without affecting the mean

profiles. In the low wave numbers, spectra are identical below the inversion for all cases. Above

the inversion, spanwise and vertical velocity spectra have more energy for CCFL = 0.96 while

streamwise velocity spectra tend to have less energy. Considering changes in the variances

at the inversion for that case, there appears to be a redistribution of the large scale velocity

fluctuations from the x to y and z directions explaining the increased diffusion.
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Figure 4.45 Longitudinal spectra of streamwise and vertical velocities for CCFL equal to

0.48, 0.72 and 0.96 based on Sm
S and LONG time interval

Finally, concerning the results in the upper ABL and at the inversion for TINERT time interval,

Figs. 4.44 and 4.46, it is to underline a clear departure from the usual profiles for CCFL = 0.96.

Indeed, velocity, vertical momentum flux as well as vertical heat flux show a spurious departure

for CCFL = 0.96 while both CCFL = 0.48 and 0.72 results are in agreement. Furthermore,

velocity spectra for CCFL = 0.96 just below and above the inversion feature a spurious build-

up of energy in the little structures. Those erroneous regions for CCFL = 0.96 during TINERT,

perfectly correspond to locations where the velocity is higher than ug as seen in Fig. 4.44 a).



399

a) b)

100 101

k x
E

u(
k x

)/
u *2

zikx

10-4

10-6

10-8

10-10
kx

-2/3

 CCFL = 0.48

x1

z/zi = 0.01

x100

z/zi = 0.03

x10000

z/zi = 0.08
x1e+06

z/zi = 0.17

x1e+08

z/zi = 0.35

x1e+10

z/zi = 0.70

x1e+12

z/zi = 0.88
x1e+14

z/zi = 1.04

 CCFL = 0.72

 CCFL = 0.96

100 101

k x
E

w
(k

x)
/u

*2

zikx

10-4

10-6

10-8

10-10

kx
-2/3

 CCFL = 0.48

x1

z/zi = 0.02

x100

z/zi = 0.05

x10000

z/zi = 0.09

x1e+06

z/zi = 0.18

x1e+08

z/zi = 0.37

x1e+10

z/zi = 0.71
x1e+12

z/zi = 0.89
x1e+14

z/zi = 1.05

 CCFL = 0.72

 CCFL = 0.96

Figure 4.46 Longitudinal spectra of streamwise and vertical velocities for CCFL equal to

0.48, 0.72 and 0.96 based on Sm
S and TINERT time interval

As a result, and without going any further, it can be concluded that Cmax
CFL > 1 in the streamwise

direction is not suitable for MC2. This is perfectly in agreement with its generally accepted

limit of the SISL scheme. As a consequence, because the velocity overshoots ug at the inversion

after tf/2π > 0.55Tinert, results for CCFL = 0.96 are invalid at that height and during TINERT

interval. At the opposite, CCFL = 0.48 and CCFL = 0.72 both lead to equivalent results that

appears to be valid and unaffected by the increase of the effective CFL.
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To conclude the evaluation of the impact of the times step on the shear case, it is to say that the

SISL scheme generally accepted limit of CFL < 1 prove to be real. A notable degradation of

the results is observed where this condition is violated, such as at the inversion for CCFL = 0.96

during TINERT interval. Processes at the inversion are also affect, but still valid, when the

effective CFL equals the theoretical limits. At the opposite, lowering the time step (or the

effective CFL) below this critical limit does not appear to impact the results significantly. As

a consequence, the degradation of the results at the inversion for CCFL = 0.96 does not impact

surface flow. Finally, it was observed that the spectra falloff in the surface layer is always

faster when CCFL it lower. Thus, the shorter time step may also slightly increase the numerical

dissipation inherent to the SL advection. This translate in slightly better surface results and a

lower departure from the similarity for the case with the longest time step, i.e. CCFL = 0.96.

4.3.4.2 Convective case

In convective condition, the vertical mixing is largely increased across the whole atmosphere

due to buoyant structures that go from the surface to the top of the ABL. As a results, horizontal

velocity and temperature profiles are almost vertical, and as opposed to the shear case, the

velocity never overshoot ug, which indicates that the maximum CFL may be equal to CCFL, at

least in the horizontal direction.

However, as it was seen during the discussion of the flow structure, Sec. 4.2.4, the hot air is ris-

ing in narrow columns featuring large vertical velocities. As an example, for the instantaneous

horizontal slices shown in Fig. 4.16, the maximum vertical velocity found is around 5.25 m/s

leading to a CFL of 1.008 in the vertical direction which is slightly above the theoretical limit.

Those large vertical velocity fluctuation are confirmed by w′2 profile Fig. 4.33 e), which further

indicates that they are reaching their maximum at roughly 0.4 zi on average. Thus, when con-

sidering the consequences of having an effective maximum CFL larger than unity for the shear

case, it is of interest to further evaluate the convective case with a smaller time step proceeding

similarly as previously.
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Figure 4.47 Maximum instantaneous local CFL, i.e. Cmax
CFL,

for the three directions based on BS with CCFL equal to 0.38,

and 0.77. Coloured overlaid region show the scatter of the

results. Grey overlaid background areas show

post-processing time intervals

Based on these considerations, the two following values of CCFL are evaluated here using the

fully uniform domain B as described in Tab. 4.4:

CCFL = 0.38: Δt = 2 s for B. A priori conservative with regards to the SISL.

CCFL = 0.77: Δt = 4 s for B. A priori slightly conservative.

To better appreciate the effective maximum instantaneous local CFL of the convective case,

i.e. Cmax
CFL, Fig. 4.47 shows its evolution in the streamwise, spanwise and vertical directions.

As introduced above, the highest Cmax
CFL are found for the vertical direction, with a value os-

cillating between 1 and 1.4 for CCFL = 0.77. For that same case, the streamwise direction
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Cmax
CFL is notably higher than CCFL and also close to unity at the beginning and the end of the

integration. This higher instantaneous local CFL in the streamwise direction is caused by the

large fluctuations taking place at the inversion, as seen on horizontal velocity variances profiles,

Fig. 4.33 e) (vertical velocity of the rising plume transform in horizontal velocity fluctuations

due to the mass conservation when overshooting the inversion) (Moeng and Sullivan, 1994).

Table 4.14 Result parameters from the convective case for the two CCFL evaluated in

Sec. 4.3.4.2 and based on model setups from Tab. 4.4 and two time intervals

Name Interval CCFL C
〈u〉
CFL

Cmax
CFL

u∗ w∗ zi LMO θs w′θ′i U1 Δθ1
[m/s] [m/s] [m] [m] [K] [K m/s] [m/s] [K]

0.38 0.38 0.67 0.576 2.041 1116 -27.1 310.50 -0.027 5.02 5.11
INTER

0.77 0.77 1.21 0.586 2.044 1128 -29.5 310.49 -0.025 5.09 5.07

0.38 0.38 0.68 0.588 2.041 1116 -29.6 310.27 -0.018 5.25 5.06
BS

LONG
0.77 0.77 1.21 0.593 2.034 1112 -30.3 310.26 -0.016 5.23 5.04

0.38 0.38 0.60 0.589 2.054 1137 -29.1 310.26 -0.030 5.00 4.86
INTER

0.77 0.77 1.17 0.599 2.039 1120 -32.5 310.26 -0.024 5.01 4.81

0.38 0.38 0.66 0.599 2.029 1095 -31.6 310.07 -0.018 5.19 4.84
BM

LONG
0.77 0.77 1.27 0.605 2.029 1103 -32.8 310.06 -0.015 5.18 4.81

However, trends in Fig. 4.47 are similar for the two computations, and as opposed to the shear

case, all curves always scale perfectly when divided by their respective CCFL. As a result, both

case appears to be valid and an instantaneous CFL in the vertical direction locally larger than

unity does not seem to affect results. Indeed, the same order of magnitude is obtained for the

maximum velocity in the three direction for CCFL = 0.38 and CCFL = 0.77.

Tab. 4.13 shows key parameters of the convective case based on the two CCFL for INTER

and LONG intervals. On that table, C
〈u〉
CFL equals CCFL for both intervals which confirms that

averaged horizontal velocity never overshoot ug. At the opposite, Cmax
CFL is generally higher by

more than 50 %. This increase is caused by the large vertical velocity as shown in Fig. 4.47.

The other result parameters does not show clear differences. Only u∗ is generally slightly

higher for CCFL = 0.77 regardless of the time interval, which in turn, causes LMO to be higher.

However, those two changes are very small. As a result, it can be said from Tab. 4.13 that all

result parameters are largely independent of CCFL (in the range 0.38 to 0.77).
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Figure 4.48 Profiles of first, second and third order moments for CCFL equal to 0.38 and

0.77 based on BS and INTER time interval. Only CCFL = 0.77 is based on

the ensemble average of five results
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In order to further explore differences between CCFL = 0.38 and 0.77 for the convective case,

Fig. 4.48 shown first, second and third order moment profiles for INTER time interval. On

that figure, differences between the two cases are generally within the scatter of CCFL = 0.77

results, and only v and the velocity variances present differences above the scatter. However,

after further investigation (mainly by reproducing the same case with other SGS model as seen

later), it was found that differences in the variances are most likely caused by the scatter. In

fact, while the variances peaks in the middle of the ABL for w′2 and at the top of the ABL

for u′2 and v′2 might indeed be very slightly increased by reducing CCFL, differences observed

in Fig. 4.48 e) are larger in comparison to the other cases studied (not shown here). Thus,

the vertical velocity and its fluctuations does not appears to be a function of the CFL, albeit

CCFL = 0.77 seems to be at the edge of what can be used in both the streamwise and the vertical

direction. At the opposite, the spanwise velocity difference, Fig. 4.48 a), are not caused by the

scatter, since similar difference was observed in all the cases studied (not shown here).

Finally, concerning the longitudinal velocity spectra shown in Fig. 4.49, differences between

CCFL = 0.38 and 0.77 results are very similar to the ones observed in the shear case for

CCFL = 0.48 and 0.96 during LONG interval: there is clear reduction of the energy of the

higher wave numbers in the surface layer for CCFL = 0.38 starting at zikx > 1, while in the

low wave numbers, the largest changes are always lower than the scatter (allowing to conclude

that lowering the CFL have no impact on the lowest wave numbers). Such a reduction of the

small eddy energy is particularly visible for the vertical velocity longitudinal spectra where

spectra falloff at all heights is much faster for CCFL = 0.38. However, when considering

that there are almost no changes in all the profiles from Fig. 4.48, it appears that results are

unaffected by the increased dissipation of the small structures. This it thus in good agreement

with Brown et al. (2000) indicating that the filter is correctly located in the inertial subrange.

Finally in Fig. 4.49, no spurious build up of the energy is observe at high wave number, as

opposed to the shear case for CCFL = 0.96 during TINERT interval. It thus confirm that the

model still operates properly with CCFL = 0.77 while the generally accepted limit for the CFL

is clearly exceeded in the vertical direction and is very close in the streamwise direction.



405

a) b)

100 101 102

k x
E

u(
k x

)/
w

*2

zikx

10-4

10-5

10-6

 CCFL = 0.77

x1

z/zi = 0.01
x10

z/zi = 0.03
x100

z/zi = 0.07
x1000

z/zi = 0.14

x10000

z/zi = 0.29

x100000

z/zi = 0.57

x1e+06

z/zi = 0.77x1e+07

z/zi = 1.05

 CCFL = 0.38

kx
-2/3

100 101 102

k x
E

w
(k

x)
/w

*2

zikx

10-7

10-5

10-6

 CCFL = 0.77

x1

z/zi = 0.02

x10

z/zi = 0.04

x100

z/zi = 0.07

x1000

z/zi = 0.15

x10000

z/zi = 0.30x100000

z/zi = 0.58x1e+06

z/zi = 0.78

x1e+07

z/zi = 1.06

 CCFL = 0.38

kx
-2/3

Figure 4.49 Longitudinal spectra of streamwise and vertical velocities for CCFL equal to

0.38 and 0.77 based on BS and INTER time interval. Only CCFL = 0.77 is based on the

ensemble average of five results

To conclude this evaluation of the impact of the time step on the convective case, it is to note

that for such a case, the vertical direction feature the highest effective CFL. The vertical profile

of relevant quantities are almost identical for both CCFL = 0.38 and CCFL = 0.77, and only v

was slightly lowered by reducing of the time step. At the spectral level, similar conclusion as

for the shear case can be done: lowering the CFL decrease the energy of the smallest structures,

however, since profiles of turbulent quantities are not affected (even close to the surface), it can

be concluded that the filter is correctly located in the inertial subrange (Brown et al., 2000).
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Finally, it is to underline that, while valid, the results with CCFL = 0.77 appears to be at the

edge of suitability of the model: the instantaneous local maximum CFL of w and u (at the

beginning and the end of the integration) are equal or above than the theoretical limit. In fact,

further increasing the CCFL to 0.96 proved to crash the model.

4.3.5 Conclusion of the numerical parameters evaluation

In this section, the influence of the main numerical parameters on the results have been evalu-

ated considering the shear and convective cases from Moeng and Sullivan (1994) and Sullivan

et al. (1994). Here, a summary of the outcome of this section is presented.

First, and due to the large scatter of the results when using a similar time interval as Moeng and

Sullivan (1994) for both the shear and the convective case, the impact of the post-processing

parameters were evaluated by considering two longer time intervals. It allowed to assess the

steadiness of the flow and the uncertainty of the results. For the shear case, the turbulence

is already fully developed during MS1994 interval and an almost permanent state of the first

order moments is reached after 0.5Tinert. Furthermore, the longer the time interval, the less

scatter there is. However, the latter never disappears. Concerning the convective case, a rep-

resentative quasi-steady buoyancy driven ABL is already well established after 0.1Tinert, i.e.

during MS1994 interval, but the scatter is very high during this interval. As a result, a longer

time interval must be used to obtain better and more converged statistics. However, a too long

interval was proven to affect statistics (notably at the top of the ABL). After 0.5Tinert, the top

of the ABL starts to interact with top boundary condition. An interval of roughly 15 τ∗ was

found to lead to optimal results. As a consequence, MS1994 time interval appears to be limited

for both cases, and a longer interval is required to reduce the scatter to an acceptable level

allowing a better analysis of the results.

Concerning the horizontal grid and domain of the shear case, going from a 2 km to a 3 km

horizontal grid while retaining the same resolution does not change ensemble averaged results.

Furthermore, going from a 31.25 m to a 40 m horizontal resolution grid while retaining the

same domain size, gives results in line with what obtained in the literature (Sullivan et al.,
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1994; Mason, 1994). However, the coarser the mesh, the more scatter there are, and the more

noticeable the scatter reduction is when the time interval is lengthen. In addition, the coarse

mesh based on a 40 m resolution and 2 km side, prove to be at the edge of suitability to

reproduce the shear case with the current methods. Based on that grid, the on-set of turbulence

is sometimes delayed preventing the use of the results at the beginning of the integration.

Furthermore with that grid, the scatter of the results is very high even for the longest interval.

Given that similar or coarser grids have been used successfully in conjunction with classical

Smagorinsky SGS models to reproduce similar shear driven ABL (Andren et al., 1994; Brown

et al., 2000; Porté-Agel et al., 2000; Ding et al., 2001a; Chow et al., 2005), the present approach

thus appears less suited for coarse meshes, which is perfectly in line with the fact that the

current approach is more dissipative as found in the spectral analysis, Sec. 4.2.

In the vertical, the use of a finer vertical mesh close to the surface, as well as a coarser vertical

grid in the mixed layer does not change the results of the shear case, and both resolved and

subgrid part of turbulent quantities are almost unaffected in the lowest half of the ABL. This

is due to the fact that, unless Δz > ΔH = (ΔxΔy)1/2, the filter width is only defined by ΔH

in the UKMO Smagorinsky model. Thus, the non-uniform mesh has no impact on the results

which also demonstrates that the discretization is well implemented. In the upper part of the

ABL, and most notably at the inversion, some quantities, such as the heat flux, are very sensitive

to the vertical mesh (while other variables seems unaffected) and small changes of the mesh at

the inversion and above can prevent its proper reproduction. It was found that the mesh needs

to be sufficiently fine up to the top of the temperature inversion, in order to properly reproduce

the heat flux minimum at the inversion, i.e. entrainment process, and a good prediction of zi

also implies that the processes from above the inversion are correctly reproduced by the model.

Finally, concerning the times step, the SISL scheme generally accepted limit of CFL = 1

prove to be true, but only in the horizontal. For the shear case, a notable degradation of the

results is observed in places where this condition is violated. Processes are also affected, but

still valid, when the effective CFL equals unity. For the convective case, the vertical direction

features the highest instantaneous local CFL. However, maximum CFL above unity in the
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vertical direction does not appear to affect the results. Finally, lowering the time step, or the

effective CFL, does not appear to impact the results significantly. However, a shorter time step

also slightly increases the numerical dissipation inherent to the SL advection scheme especially

close to the surface, and the lower CCFL, the faster the spectral falloff is. But, since profiles

of turbulent quantities are not affected above the surface layer, it confirms that the filter is

correctly located in the inertial subrange (Mason and Brown, 1999; Brown et al., 2000).

4.4 LES of the full ABL: enhancements and new components

In the process of using MC2 for LES, some aspects of the method were refined in addition

to the implementation of all the required components as described in Chap. 2 and Chap. 3.

All results presented previously were based on the most advanced version of MC2 using both

the UKMO Smagorinsky model, and the hybrid TKE SGS model (in addition to the column

model). However, others SGS models as well as a new treatment of turbulent processes were

also implemented. It is thus of interest to further explore the enhancement brought by these

refinements and evaluate the new components.

In this section, the various SGS model implemented in MC2 and presented in Sec. 2.2.3 and

Sec. 3.3.5 are first evaluated and compared. Then, the impact of the new vertical discretization

of the physics introduced in Sec. 3.3.1.2 will be illustrated and discussed. Finally, a new version

of the model where all turbulent processes and their boundary conditions are implemented

directly within the dynamics, i.e. the standalone model (not relying anymore on the physics

library) as presented in Sec. 3.2.5.2.1 and Sec. 3.2.5.5 is evaluated.

4.4.1 New SGS models

All results shown and discussed previously in this thesis were either based on the UKMO

Smagorinsky SGS model (Brown et al., 1994), or the hybrid TKE SGS model primarily de-

veloped at EC (Pelletier et al., 2005) and refined during this study. Both approaches gave

very similar results. Taking advantage of the TKE prognostic equation already implemented in

MC2, the Deardorff (1980), the linear Kosović (1997) and the Redelsperger et al. (2001) SGS
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models have also been implemented as described in Sec. 2.2.3 and Sec. 3.3.5. The inclusion of

a prognostic equation for TKE theoretically allows to better take into account non-local flow

features thanks to the advection of TKE. It rises the order of the SGS model to 1.5. However,

and as opposed to the RANS for which an increase of the order of the model from first to one-

and-a-half clearly enhances the results and the general abilities of approach, there is a general

agreement that no clear improvement is obtained for LES of homogeneous dry cases (Andren

et al., 1994; Mason, 1994; Lesieur et al., 2005) due to the more local nature of the SGS stresses

computation in LES. In fact, the inclusion of the TKE proves to be useful when applying the

LES model to more complex cases where surface is not anymore homogeneous (Chow and

Street, 2009) or for cloud resolving LES models (Redelsperger and Sommeria, 1981; Cuxart

et al., 2000). It is nevertheless of interest to first evaluate and validate these additional SGS

models in the context of an homogeneous surface full ABL, before being able to apply those

approaches to more complex cases.

In the present section, based on the shear and convective cases thoroughly explored during the

two previous section, results obtained with the five SGS models are compared and discussed.

4.4.1.1 Shear case

In order to evaluate the five SGS models for the shear case, it was decided, based on the

evaluation of the Sec. 4.3.1, to use the medium grid Sm with the usual uniform vertical mesh

and numerical parameters described in Tab. 4.4.

Result parameters obtained for the shear case with the five SGS models are shown in Tab. 4.15.

In that table, SS stands for the UKMO Smagorinsky SGS model (Mason and Brown, 1999), SM

for the hybrid TKE SGS model (Pelletier et al., 2005), SD for the Deardorff SGS model (Dear-

dorff, 1980), SR for the Redelsperger SGS model (Redelsperger et al., 2001), and SK for the

linear Kosović SGS model (Kosović, 1997). Note that SS and SM results are based on the

ensemble average of five computations, while the others results are based only on one compu-

tation. The scatter of the two former results thus serves as reference. Note also that SK results

are discussed separately.
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Table 4.15 Result parameters from the shear case for the five SGS models and

based on Sm setup from Tab. 4.4 and two time intervals. Only SS and SM are based

on the ensemble average of five results

Interval Name
Reali-

zations

u∗ zi θs w′θ′i U1 Δθ1 φmax
m

[m/s] [m] [K] [K m/s] [m/s] [K]

SS 5 0.499 453 300.38 -0.0036 4.29 -0.0008 2.14

SM 5 0.512 461 300.40 -0.0048 4.17 -0.0010 2.08

SD 1 0.513 474 300.40 -0.0048 4.27 -0.0003 2.07

SR 1 0.528 442 300.41 -0.0045 4.21 -0.0002 1.97

LONG

SK 1 0.461 463 300.58 -0.0089 3.56 -0.0006 2.85

SS 5 0.587 465 300.67 -0.0062 5.17 -0.0011 2.06

SM 5 0.601 465 300.77 -0.0076 5.06 -0.0012 2.00

SD 1 0.600 463 300.75 -0.0070 5.10 -0.0004 2.08

SR 1 0.627 474 300.81 -0.0084 5.11 -0.0003 1.87

TINERT

SK 1 0.455 495 300.94 -0.0058 3.61 -0.0005 5.61

In Tab. 4.15, friction velocity u∗ is slightly lower for SS than for SM and SD which have an

identical value. At the opposite, u∗ of SR is 5 % higher than SD. This latter difference may be

associated with the improved representation of the surface layer by Redelsperger et al. (2001)

SGS model. Indeed, and while velocity at the first level also appears almost unchanged for all

the SGS models (except for SS where it is 1 % higher), SR always feature the lowest departure

from the similarity as illustrated by the maximum of dimensionless vertical shear φmax
M . During

TINERT, the peak of φM from SR is reduced by more than 10 % compared to SD, which is

solely due to the improved surface treatment of Redelsperger et al. (2001). Finally, Δθ1 is three

time higher for SS and SM than for the others SGS models, but, this quantities is very small

and it correspond to a temperature gradient of 10−4 K/m in the worst case.

Quantities related with the inversion, i.e. zi and w′θ′i, does not show any particular trends at

the exception of the slightly lower (higher) w′θ′i for SS (SR) during TINERT that may be the

explanation of the lower (higher) θs. However, the difference in w′θ′i between SR and SD can

be hardly explained as those two models are identical above the surface layer. It can thus be

attributed to the scatter of the results. As a result, except for SR surface parameters that appear

to be closer to the similarity, all the other parameters are largely unaffected by the SGS model

which is in agreement with the conclusions of Andren et al. (1994).
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Concerning SK results, u∗ as well as U1 are always notably lower than other results, while

φM is notably higher. In fact, after initial perturbations are damped, turbulence never develop

with Kosović SGS model. Shear instabilities located in the surface layer are not triggered

but damped. The SGS model thus appears too dissipative which is in agreement with its rather

large value of CSeqv . The exact reason of this phenomena is however not clear. In fact, the same

kind of results are obtained by using a van Driest like damping approach with the Deardorff

SGS model, i.e. by clipping the filter Δ with κz (which is considered to be controversial by

Redelsperger et al. (2001), but often used Sullivan et al. (1994)). It thus appears to be related

to the definition of the effective filter width close to the surface. However, no solution were

identified, and it was decided to focus on the others SGS model. Furthermore, this SGS model

normally includes backscatter terms which increase fluctuations, notably in the surface layer

and stably stratified regions (Kosović, 1997; Kosović and Curry, 2000). As a consequence, the

results from the linear Kosović SGS model, SK , are shown in Fig. 4.50 for illustration purpose

but they will not be further considered in this section.

In Fig. 4.50 are shown profiles of first, second and third order moments for the results based on

the five SGS models. On that figure, it can be seen that Redelsperger SGS model results, SR,

present some clear differences while the other SGS model give very similar results. Indeed, this

approach features a lower deviation from the similarity in the surface layer, and in comparison

to the other SGS models: the amplitude of φM nose is lower, Fig. 4.50 b), indicating that

the surface velocity shear is lower which propagates in the whole ABL velocity profile that is

closer to the similarity as shown in Fig. 4.50 a). Furthermore, surface maximum of resolved

u′2 (and v′2 to a less extent), Fig. 4.50 e), is lower for SR leading to a much shorter nose in

total u′2 (and in the TKE) than all other results (which is also in line with better taking into

account the surface (Mason and Thomson, 1992; Andren et al., 1994; Sullivan et al., 1994;

Porté-Agel et al., 2000)). However, the improvement in the surface layer using Redelsperger

SGS model are not as clear as observed in the literature (Redelsperger et al., 2001; Drobinski

et al., 2004). As a side note, the subgrid part of variances is almost unchanged between SD

and SR above 0.15 z/zi, but it is slightly higher for SR below that height due to the surface
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Figure 4.50 Profiles of first, second and third order moments from the five SGS models for

the shear case relying on Sm setup from Tab. 4.4 and TINERT time interval. Only SS and

SM are based on the ensemble average of five results
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matching approach. As a result, the flow very close to the surface is less resolved with SR than

with SD which was also described by Redelsperger et al. (2001). Finally, the above surface

layer maximum in w′u′2 seems also to be lower for SR however, the scatter for this quantity is

as large as the differences between results.

Concerning SS , SM and SD profiles shown in Fig. 4.50, differences are small, and they are

most of the time below the scatter in the mixed layer. The only clear differences are seen

for SS horizontal velocity profile and non-dimensional gradient at the surface, and for SM

subgrid heat flux at the inversion. It is also of interest to underline that in the mixed layer,

two groups are formed concerning the subgrid parts of the fluxes and variances: SS/SM and

SD/SR. This is due to the differences in the filter definition, i.e. ΔH in the former versus Δ3d

in the latter, causing a larger mixing length for SS and SM (and thus a larger value of CS 3d, i.e.

CS 3d = 0.216 for SS/SM and CS 3d = 0.181 for SD/SR). As a result, SS and SM SGS model

are more dissipative which increases the unresolved part of the flow. At the opposite, the total

heat flux is also similar for all approaches but its subgrid part is slightly higher for SR and SD

across the ABL due to the different Prt used (1/3 for SR and SD, 0.7 for SD and 0.85 for SM ).

Velocity profiles of the hybrid TKE and Deardorff SGS models are very similar, while the de-

viation from the similarity of the Smagorinsky model is higher, Fig. 4.50 a). This is associated

with the differences in φM very close to the surface, Fig. 4.50 b). Those changes are caused by

the aggregated effect of the differences in the filter definition, the Smagorinsky constant and

the surface matching of the length scales. Indeed, the flow is slightly less resolved in SS and

SM due to the filter definition causing theoretically a larger departure from the similarity than

for SD. However, a surface matching of the length scales is used in SS and SM which helps

to reproduce the surface layer (at different degree depending of the approach), while at the

opposite, there are no special treatment in SD. Differences of the same type were also found

by Porté-Agel et al. (2000, Fig. 2 a)) and Sullivan et al. (1994, Fig. 6).

Concerning the notable increase of subgrid heat flux of SM at the inversion (while the total

heat flux is unchanged), Fig. 4.50 d), it is most probably caused by the stability function used
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to take into account the stratification in the hybrid TKE SGS model. The stability functions of

the column model are applied similarly as in the UKMO Smagorinsky SGS model. However,

They do not include a critical Ri which is less appropriated for LES as discussed by Delage

and Girard (1992) and Brown et al. (1994). Indeed, the stratification of the inversion produces

Ri > Ric = 0.25, thus killing all subgrid fluxes in SS . At the opposite, mixing coefficient from

SM reach progressively zero at the inversion allowing more subgrid mixing.
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Figure 4.51 Longitudinal spectra of streamwise and vertical velocities from the four SGS

models for the shear case relying on Sm setup from Tab. 4.4 and TINERT time interval.

Only SS and SM are based on the ensemble average of five results
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In Fig. 4.50, horizontal and vertical velocity longitudinal spectra are shown for the results based

on the four SGS models. In the low wave numbers, spectra are not a function of the SGS model,

except for SR that have slightly less energy in Eu in the surface layer. In the medium and high

wave numbers, there are generally two families of spectra featuring similar properties: SD/SR

and SS/SM . This difference is most likely caused by the definition of the filter width (see

Sec. 2.2.3): SD and SR effective filter width is smaller than in SS and SM causing an increase

of the energy in the medium and higher wave numbers (which becomes clearly apparent in the

surface layer). Spectra from SS and SM are very similar in the surface layer while SM shows

more energy in the upper ABL. Concerning SR and SD, following Redelsperger et al. (2001),

Eu and Ew from SR in the surface layer should feature more energy than SD in the medium

and high wave numbers. This can be observed, but it is marginal. In fact, it would be better

observed on dimensional spectra as u∗ from SR is higher by 5 %. In the mixed layer and above,

SD tends to have a similar energy level as SM while SR has more energy. However, since SR

and SD are identical far from the surface, this differences can not be explained.

As a summary of the comparison of the five simple SGS models, Redelsperger et al. (2001)

SGS model clearly outperform the other SGS models when considering the lower part of the

ABL. However, improvements are not as clear as shown in the studies from Redelsperger et al.

(2001) and Drobinski et al. (2004). The others SGS model generally show similar results.

However, differences in the filter definition (and thus the effective equivalent Smagorinsky

constant CS 3d) have a clear impact on the results (which is clearly seen close to the surface):

the use of Δ = ΔH in SS/SM (versus Δ = Δ3d in SD/SR) lead to a higher CS 3d when relying

on Sm grid causing slightly larger subgrid fluxes and lower energy level in the resolved medium

and high wave numbers. At the opposite, the surface matching function from SS and SM only

cause very little changes. Similarly, in the upper ABL and at the inversion, no clear differences

are to underline (except the increase of SM subgrid heat flux caused by the absence of a critical

Ri). Finally, the linear Kosović (1997) SGS model, SK , fail to reproduce the shear case. This

appears to be related to the large value of CS for that model and the definition of the filter width

in the surface layer. However, those problems were not further investigated.
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4.4.1.2 Convective case

The convective case is reproduced here using the five SGS model in a similar way as done

for the shear case. However, considering that the flow is much more resolved in convective

conditions, the SGS model is expected to have a lower impact on the results than for the shear

case. Furthermore, as underlined in Sec. 4.3.1.2, the scatter of some of the higher order quan-

tities such as momentum flux, variances and vertical flux of variances, is higher than for the

shear case. This increases the uncertainty of the results (notably when no ensemble average of

several realizations of the same case is done) and may prevent a very fine comparison of the

SGS models for the convective case. However, it is of interest to assess the behaviour of the

current model using various SGS models when buoyant instabilities are the dominant process

producing turbulent mixing.

Tab. 4.16 shows result parameters for the five SGS models: BS is the UKMO Smagorinsky SGS

model (Mason and Brown, 1999), BM the hybrid TKE SGS model (Pelletier et al., 2005), BD

the Deardorff SGS model (Deardorff, 1980), BR the Redelsperger SGS model (Redelsperger

et al., 2001), and BK the linear Kosović SGS model (Kosović, 1997).

Table 4.16 Result parameters from the convective case for the five SGS models and based on

model setup detailed in Tab. 4.4 and two time intervals. Only BS and BM are based on the

ensemble average of five results

Interval Name
Reali-

zations

u∗ w∗ zi LMO θs w′θ′i U1 Δθ1
[m/s] [m/s] [m] [m] [K] [K m/s] [m/s] [K]

BS 5 0.586 2.044 1128 -29.5 310.49 -0.025 5.09 5.07

BM 5 0.599 2.039 1120 -32.5 310.26 -0.024 5.01 4.81

BD 1 0.584 2.041 1116 -28.1 310.36 -0.029 5.06 4.93

BR 1 0.591 2.054 1137 -30.9 310.16 -0.028 5.04 4.79

INTER

BK 1 0.590 2.091 1200 -29.7 310.44 -0.044 5.09 4.79

BS 5 0.593 2.034 1112 -30.3 310.26 -0.016 5.23 5.04

BM 5 0.605 2.029 1103 -32.8 310.06 -0.015 5.18 4.81

BD 1 0.590 2.029 1095 -29.6 310.14 -0.018 5.20 4.90

BR 1 0.599 2.042 1116 -32.2 309.93 -0.019 5.20 4.75

LONG

BK 1 0.595 2.042 1116 -31.1 310.19 -0.028 5.24 4.76
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In Tab. 4.16, differences are generally small, and most of the time of the same order as the

scatter as shown in Tab. 4.9. However, the order of magnitude for each parameters, except zi,

is the same regardless the time interval which thus tend to show that the trends in the small

differences are not only caused by the scatter, but also by the SGS model. In fact, the only

most notable difference is seen in the heat flux at the inversion for BK that is always at least

30 % lower than the others results. However, as opposed to the shear case no clear departure

of BK from the other SGS models can be observed in the others parameters. Further than that,

u∗ of BM and Δθ1 of BS are generally slightly higher than the other results.

To further explore the results of the five SGS models for the convective case, Fig. 4.52 shows

the profiles of interest of first, second and third order moments. It can be seen that at the

exception of the potential temperature, the heat flux and the velocity at the inversion for BK ,

all results are close and most of the time within the scatter.

Interestingly, results from the linear Kosović SGS model are in good agreement with the others

models, which comes as a surprise since results of the shear case were fully biased. In fact,

in the convective case the major instabilities originate from the heating surface. The latter

heats the air in the near-surface region which then rises by convection up to the inversion

following well known patterns. This process, which is mostly resolved, would take place even

without SGS model as it is shown by Brown et al. (2000). As a result, since the production of

turbulence due to buoyancy is dominant for the case B, a SGS model not properly triggering

shear instabilities close to the surface would not kill all the turbulence (as opposed to in the

shear case). It thus explains why BK provide good results.

Nevertheless, linear Kosović SGS model results shows some non-negligible differences. As a

reminder of Sec. 2.2.3, its dissipation length scales, λε, in stable and neutral regions is relying

on both ratios k1/2/N and k1/2/S (Kosović and Curry, 2000). In addition, it was found that,

the linear Kosović model has an equivalent CS = 0.3 which is notably higher than the other

models. As a consequence, the subgrid TKE of BK is roughly five times higher than for BD,

Fig. 4.52 e), which causes larger mixing coefficients and thus a stronger subgrid turbulent
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Figure 4.52 Profiles of first, second and third order moments from the five SGS models for

the convective case and INTER time interval. Only BS and BM are based on

the ensemble average of five results
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diffusion, and a larger dissipation. Resolved fields may thus feature less small structures than

the other SGS models. This does not appear clearly in the surface region of the fluxes since it is

unstable, but it become clear in the mixed layer and the above regions. Finally, in Fig. 4.52 c)

and d), since subgrid fluxes are very small within the mixed layer, such an increase of the SGS

part of the fluxes is only noticeable at the inversion on these figures.

The consequences of the increased subgrid diffusion in BK are clearly seen in the velocity

and temperature profiles, Fig. 4.52 a) and b) (featuring a smoother transition at the inversion

for BK). Furthermore, since the counter-gradient heat flux is larger (due to it subgrid part),

more energy is brought in the ABL which further explains its higher temperature of BK . As

a conclusion, the linear Kosović SGS model is clearly more diffusive than the others tested

here in convective conditions. However, the obtained large value of subgrid TKE is somewhat

suspect notably when considering that the resolved variances are almost unchanged for that

model. Further validation is thus clearly needed to assess Kosović SGS model.

Concerning the others SGS models, no major differences are to underline, except for the

slightly larger value of the non-dimensional momentum flux close to the surface for BM . The

latter correspond to a higher u∗ which confirms that the velocity profile is closer to the similar-

ity very close to the surface (as seen on the non-dimensional shear profile - not shown here).

In fact, the hybrid TKE SGS model is also the one which feature the least resolved flow close

to the surface. It is more relying on the SGS model, which includes the same stability function

as the ones used at the boundary condition to compute surface momentum and heat fluxes.

The flow very close to the surface thus tends to less depart from the similarity for BM , albeit

the improvement are just larger than the scatter. Finally, BR results are similar to the others

SGS models. It thus clearly show that the use of a similar matching function as in the neutral

conditions neither affect the abilities of the model, nor improve significantly the results over

Deardorff SGS model as opposed to the shear case.

Concerning the vertical and streamwise velocity longitudinal spectra shown in Fig. 4.53, it

clearly appears that BK feature less energy in the medium and high wave numbers across the
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Figure 4.53 Longitudinal spectra of streamwise and vertical velocities from the five SGS

models for the convective case and INTER time interval. Only BS and BM are based on the

ensemble average of five results

whole domain confirming that there are less small structures. It is perfectly in line with the

higher equivalent CS of that model. The others SGS models present differences only for the

smallest eddies in the surface layer. Concerning the streamwise velocity spectra, BD and BS

have slightly more energy than the other results, while for the vertical velocity spectra, this

difference is smaller than the scatter, and only BR departs from the other models very close to

the surface to reach BK at the spectra tail.
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As a conclusion, results from the convective case are almost independent of the SGS model.

Only, the linear Kosović SGS model showed difference due to an increased subgrid mixing

and dissipation. This model seemed to operate properly for the convective case, as opposed to

the shear case, but subgrid flux (notably at the inversion) are larger than with the other SGS

models. Further investigation and refinement are needed for that SGS model. All the others

SGS models performed properly leading to very similar results that are almost always within

the scatter, which is in agreement with the remarks from Nieuwstadt et al. (1992).

4.4.2 Vertical discretization of the physics

An important aspect not yet evaluated in the context of LES is the changes in the vertical

discretization of the physics library of MC2, i.e. of all the parametrized processes not taken

into account through the solving of the Euler equations of motion above a free slip wall.

As described in Sec. 3.3.1.2, the momentum and heat turbulent diffusion is staggered in MC2,

however, as summarized hereafter, the original and the new version of the physics library fea-

ture notable differences:

Original physics library: as described in Sec. 3.3.1.2.1, ui and T are located on the same

level and KM , KT and the TKE are obtained on intermediate levels (momentum levels

of the dynamics). As a result, T and w never change height while at every time steps u

and v are interpolated vertically (and extrapolated at the surface) to the temperature zt

levels prior to the physical processes modelling (including turbulence diffusion). Then,

horizontal velocity component tendencies from the physics are interpolated back on mo-

mentum level. As illustrated in Sec. 4.1 based on a simple Ekman theoretical case, this

approach introduces a strong numerical mode in the near-surface region whose ampli-

tude increases as the vertical mesh is refined. This original version of the physics library

is sometimes called “unstaggered”, but it is somewhat a misnomer as the turbulent diffu-

sion is fully staggered (Mailhot and Benoit, 1982). We will thus call it “original” version

and labelled with a “z” exponent hereafter.
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New physics library: as described in Sec. 3.3.1.2.2, all variables have the same vertical lo-

cation and staggering as in the dynamics, and TKE as well as mixing coefficients are

computed on the vertical velocity zw levels. As a result, the turbulent diffusion of the

momentum is straightforward as all quantities are at the proper height for discretizing

the differential operators, while for heat, KT is interpolated on momentum levels prior to

achieve the turbulent diffusion so that T never changes level. This version of the physics

is referred to as “new” or “staggered”, and it proved to totally remove the numerical

mode in u and v for the simple Ekman case as seen in Figs. 4.2.

All the LES and column model results presented to date are based on the new version of the

physics, and the impact of this change have not yet been evaluated in the context of a full ABL.

In the present section based on the shear case and the medium domain Sm, the original and

new version of the physics are compared and differences are discussed for the column model

and the LES models based on both the Smagorinsky and the hybrid TKE SGS schemes.

Table 4.17 Result parameters from the shear case for the original (i.e. with a

“z” exponent) and the new discretization of the physics. LES results are based

on Sm setup from Tab. 4.4. Only SS is based on

the ensemble average of five results

Interval Name
Reali-

zations

u∗ zi θs w′θ′i U1 Δθ1
[m/s] [m] [K] [K m/s] [m/s] [K]

S1d 1 0.547 516 300.76 -0.0311 4.50 -0.0023

Sz
1d 1 0.549 463 300.78 -0.0352 4.52 -0.0024

SS 5 0.499 453 300.38 -0.0036 4.29 -0.0008

Sz
S 1 0.490 474 300.36 -0.0037 4.42 -0.0011

SM 5 0.512 461 300.40 -0.0048 4.17 -0.0010

LONG

Sz
M 1 0.517 463 300.40 -0.0058 4.19 -0.0012

S1d 1 0.639 589 302.38 -0.0226 5.58 -0.0016

Sz
1d 1 0.638 832 302.46 -0.0536 5.57 -0.0017

SS 5 0.587 465 300.67 -0.0062 5.17 -0.0011

Sz
S 1 0.571 453 300.61 -0.0058 5.25 -0.0014

SM 5 0.601 465 300.77 -0.0076 5.06 -0.0012

TINERT

Sz
M 1 0.595 474 300.75 -0.0075 4.98 -0.0014
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Figure 4.54 Profiles from the original and the new staggered physics for the column model

and LONG time interval: a) horizontal velocity modulus; b) horizontal velocity shear;

c) momentum fluxes; d) heat flux

Tab. 4.17 summarizes result parameters obtained with the original and the new version of the

physics for the shear case and with both the column and LES models. At the exception of zi

from the column model, all parameters are almost unaffected by the changes in discretization.

Concerning 1D results, as noted in Sec. 4.3.1.1.1, both version of this model features the high-

est increase of zi and θs due to the largest value of w′θ′i (ten times larger than LES). S1d and

Sz
1d results are very similar during LONG interval, but this is not anymore the case for TINERT

interval as Sz
1d presents unrealistic high zi and w′θ′i which appears spurious in comparison to

the results of the column model based on the new version of the physics.
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Figure 4.55 Profiles of first, second and third order moments from the original and the

new staggered physics relying on Sm setup from Tab. 4.4 and TINERT time interval. Only

SS is based on the ensemble average of five results
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In Fig. 4.54, column model results are illustrated though non-dimensional profiles of velocity,

gradient function and momentum and heat fluxes. On that figure, new discretization impacts

are well illustrated: the numerical mode already present for the simple Ekman case is also

clearly observed when the column model is used to reproduce the shear case. Indeed, while

the velocity profile is almost unaffected, Fig. 4.54 a), other variables show a large zigzag.

Furthermore, there is a grid point offset of the zigzag between u′w′ and v′w′ leading to an

unusual profile for the modulus of the vertical momentum flux (not shown here). However, the

zigzag appears not to affect the mean transfer of energy across the ABL as result parameters

are almost unchanged and results from S1d seem to be the average profile of Sz
1d (while it is

effectively two computations based on new and original version of the physics library).

Nevertheless, the zigzag in the momentum flux, which is at first only present in the ABL,

increases with time and propagates above the inversion. This is most probably the cause of a

numerical instabilities that develop just above the inversion in w′θ′ as seen in Fig. 4.54 d). In

fact, this spurious peak also appears to increase with time up to a point where the whole solution

is affected (notably in the inversion region). As a consequence, results based on TINERT

interval for Sz
1d are biased and it was preferred to rely on LONG interval to compare column

model results. A reference ABL height of 516 m was used to scale the results in Fig. 4.54. As a

result of the above, it can be assumed that the new discretization of all the terms directly related

to the vertical turbulence diffusion is correctly implemented. Furthermore, results are clearly

improved with the new version of the model thanks to the removal of a numerical mode.

Concerning the LES results, parameters in Tab. 4.17 do not show clear differences between the

original and the new version of the physics. To go further, Fig. 4.55 shows the usual profiles of

interest, while Fig. 4.56 presents the longitudinal velocity spectra. LES results are notably less

affected by the numerical mode than column model results, yet a zigzag can be clearly observed

in the surface layer for φM and the vertical momentum fluxes. In fact, the numerical mode is

caused by a vertical interpolation of u and v done before modelling the turbulent diffusion

in the original version of the physics. As a result, only the subgrid part (modelled) of the

various quantities is directly impacted by the numerical mode in Sz
S , while resolved quantities
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Figure 4.56 Longitudinal spectra of streamwise and vertical velocities from the original

and the new staggered physics relying on Sm setup from Tab. 4.4 and TINERT time

interval. Only SS is based on the ensemble average of five results

are unaffected. Indeed, subgrid part of turbulent fluxes is only significant in the surface layer

in LES, the numerical mode is thus less of concern and its signature is only seen close to the

surface for φM , u′w′ and v′w′. Further than that, results are always within the scatter of SS ,

and only a slight increase of the subgrid heat flux at the inversion can be observed in Sz
S . The

subgrid and resolved part of u′v′ also superpose (not shown here) which further confirm that

horizontal terms of the turbulent diffusion, which computation is offset by half a level in the

new model, are correctly implemented.
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Differences in the velocity spectra, Fig. 4.56, are even smaller. Indeed, no particular pattern

is found, and velocity spectra of both results always superpose clearly showings that resolved

quantities are unaffected. Only, SS show very slightly more energy in the middle and high

wave numbers in the surface layer, while Sz
S have more energy in the low wave numbers, but

these differences are of the same order of the scatter which is very small for TINERT interval.

As a conclusion, it can be said that the new discretization of the physics improve the results,

notably for the 1D column model. Indeed, concerning the latter model, a large numerical

mode polluting the profile of variable such as φM , u′w′ and v′w′, but with no effect on the

averaged exchanges of energy with the surface, is removed when using the version of the

model properly staggered. Furthermore, column model is stable during the whole run for the

new version while numerical instabilities develop above the inversion for very long run for the

original version. Concerning LES results, the same variables are improved by the new physics

but only subgrid scale fluxes in the surface layer were found to be affected by the numerical

mode. Improvements are thus less significant. Finally, since result parameters and averaged

profiles are very similar between the two versions of the model, it can thus be assumed that the

changes in the new version of the model are correctly implemented.

4.4.3 Standalone turbulence model

In order to further validate the standard 3D turbulence modelling approach implemented in

MC2, and particularly the interface between the physics and the dynamics, and the splitting

of horizontal (explicit in time) and vertical turbulent diffusion terms (implicit in time), all

the turbulent modelling was implemented at the same location directly within the dynamics,

meaning in effect that the physics library is not anymore used. The model is thus somewhat

simplified and more importantly, limitations related to the physics library and its grid-to-grid

interface are avoided. As a result, turbulence modelling can be achieved seamlessly at one

location without splitting its horizontal and vertical terms. Furthermore, the model is more

flexible as implementing and testing new components is much more straightforward. However,

some of the mesoscale abilities of MC2 are lost in that version.
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This new version of the LES-capable MC2 model is also referred to as standalone (since the dy-

namics can be used as a standalone LES model without the physics library). The two following

version of the model are evaluated in this section:

Standard: standard version of the LES-capable MC2 (new version of the physics library)12.

Standalone: standalone version of the LES-capable MC2 (physics library not involved).

As a summary, the standalone 3D turbulence diffusion described in Sec. 3.2.5.2.1 is fully ex-

plicit in time and achieved directly in height coordinates; its surface and top boundary condi-

tions presented in Sec. 3.2.5.2.2 are similar to the standard model, i.e. fluxes are imposed at the

surface and set to zero at the top; surface boundary terms are computed iteratively as illustrated

in Sec. 3.3.7; and finally mixing coefficients are computed based on the UKMO Smagorinsky

SGS model as described in Sec. 3.2.5.5 and Sec. 3.2.5.4. In the standalone model, main vari-

ables and their turbulent diffusion tendencies are not anymore interpolated in neither vertical

(as required in the old version of the physics, see Sec. 4.4.2) nor horizontal directions (as al-

ways required when the physics library is involved, see Sec. 4.4.2) before and after turbulence

modelling. Considering the findings of the previous section, this may also improve the results.

In this section, the standalone turbulence model is evaluated against the standard version using

the shear and convective cases as benchmark. Both profiles of relevant quantities and longitu-

dinal velocity spectra are compared as previously done.

Table 4.18 Numerical parameters of the shear and convective cases

discussed in Sec. 4.4.3

Name Model Nx ×Ny ×Nz
Lxi Lz Δt Iteration

max.

Reali-

zations[km] [km] [s]

SS Standard 64× 64× 96 2 1 1. 60000 5

S
nophy
S Standalone 64× 64× 96 2 1 1. 60000 1

BS Standard 96× 96× 96 5 2 2. 20000 1

B
nophy
S Standalone 96× 96× 96 5 2 2. 20000 1

12 All the column model and LES results previously discussed (except in Sec. 4.4.2) are based on the standard

version of the model.
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As a reminder, in the standard version of the turbulence modelling in MC2, the vertical turbu-

lent diffusion is implicit in time and its horizontal components are explicit in time. Indeed, as

discussed in Sec. 3.1, the implicit solver of Euler equations allows a rather large time steps (Gi-

rard et al., 2005), and to take advantage of such a feature an implicit treatment of the vertical

diffusion is required. This is particularly true in the mesoscale context where meshes close

to the surface are highly deformated. In the LES context, while meshes are generally almost

isotropic, the largest gradients of velocity and temperature are still found in the vertical direc-

tion. As a result, the explicit treatment of horizontal diffusion terms appears to be appropriate

(while retaining the same implicit treatment in the vertical and the SISL CFL criteria discussed

in Sec. 4.3.4).This approach was used to obtain the results from the previous sections.

Table 4.19 Result parameters using the standard and the standalone LES models (i.e.
with a nophy exponent) for model setups shown in Tab. 4.18 and two time intervals.

Only SS is based on the ensemble average of five results

Interval Name
u∗ w∗ zi LMO θs w′θ′i U1 Δθ1

[m/s] [m/s] [m] [m] [K] [K m/s] [m/s] [K]

SS 0.496 0.0 451 ∞ 300.38 -0.0041 4.26 -0.0008
LONG

S
nophy
S 0.499 0.0 442 ∞ 300.37 -0.0044 4.28 -0.0008

SS 0.576 0.0 446 ∞ 300.70 -0.0062 5.10 -0.0010
TINERT

S
nophy
S 0.579 0.0 463 ∞ 300.68 -0.0065 5.12 -0.0010

BS 0.576 2.041 1116 -27.1 310.50 -0.027 5.02 5.11
INTER

B
nophy
S 0.578 2.038 1116 -27.3 310.48 -0.024 5.07 5.10

BS 0.588 2.041 1116 -29.6 310.27 -0.018 5.25 5.06
LONG

B
nophy
S 0.587 2.025 1095 -28.5 310.26 -0.016 5.23 5.07

In the standalone model, both vertical and horizontal turbulent diffusion are explicit in time.

As a result, a smaller time step may be required to satisfy the stability criteria of the new

explicit numerical scheme of vertical turbulent diffusion (the constraint is however lower in the

LES context than in the mesoscale context). Indeed, computations based on a CCFL = 0.72

quickly diverged after initialization with that model, and it was found that computations based

on CCFL = 0.48 properly performed. Similarly, CCFL = 0.38 was found appropriate for the

convective case. No further evaluation of the time step impact on the standalone model is
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discussed here. However, when considering the impact of the time step on the results of the

standard model, i.e. Sec. 4.3.4 for both the shear and the convective cases, it was decided to

compare results from the standard and the standalone model that are based on the same CFL

so that all numerical parameters are identical and the solver of the equation of motion presents

the same behaviour. As a summary, Tab. 4.18 present the numerical parameters of the shear

and convective cases which are compared in this section.

In Tab. 4.19 are presented result parameter from the standard and the standalone version of the

model for both the shear and the convective cases. On that table, results from both models are

almost identical regardless of the interval and for both neutral and convective conditions. In

fact, the differences are generally two order of magnitude lower than the parameter except for

zi where differences are slightly higher but they are still lower than the scatter. This is very

promising as it demonstrates that, on the one hand, standalone model appears to be valid, and

on the other hand, the large differences in the implementation of turbulent processes between

the standard and the standalone models have no impact on result parameters.

From Fig. 4.57, it can also be seen that both version of the model are in very good agreement

across the whole vertical domain for first and second order moments. Here only the main

variables are shown, however, it is noteworthy that even the more sensitive variables such as

the heat flux w′θ′, and third order moments w′u′2i from the shear case, as well as the momentum

flux from the convective case are almost identical (not shown here). The biggest difference is

seen in the variances of the convective case. However, it is to underline that no ensemble

average was achieved for the convective case and only one simulation is used for both BS and

Bnophy
S . However, as shown in Fig. 4.33 f), the scatter of these quantities is very high. As a

result, the differences observed are very likely to be less than the scatter of the results.

Finally, concerning the longitudinal velocity spectra, Fig. 4.58, results are also almost identical

for the standard and the standalone approaches. Only the lowest wave numbers present some

differences for the convective case. However, they are likely to be within the scatter.
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Figure 4.57 Profiles of first and second order moments from the standard and the

standalone models and setups shown in Tab. 4.18: a), c) and e) shear case; b), d) and f)

convective case. TINERT and INTER time intervals are used for the shear and convective

case respectively. Only SS is based on the ensemble average of five results
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Figure 4.58 Longitudinal spectra of vertical velocity from the standard and the standalone

models: a) shear case; b) convective case. TINERT and INTER time interval are used for

the shear and convective case. Only SS is based on the ensemble average of five results

As a conclusion, besides totally different implementations of the turbulent processes, the stan-

dard and standalone version of the LES-capable MC2 are in very good agreement and almost no

differences can be observed in the various aspects of the solution. The outcomes are twofold:

first, it proved that the standalone model is valid and that a proper time step was used with

respect to the explicit turbulent diffusion. Second, it also showed that in the standard version

of the model: the implicit-explicit approach (where horizontal and vertical turbulence diffusion
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terms are split) allows a longer time step with no effect on the results; and the physics-dynamics

interface (with the associated interpolations and transformation of the data) has no impact on

the results. However as a closing remark, it is to underline as discussed in Sec. 3.5, that hor-

izontal velocity components are interpolated linearly to the centre of the mesh prior to write

MC2 output data (in both the standard and the standalone version of the model). This inter-

polation may filter the smallest structure of the resolved velocity fields. A similar horizontal

interpolation is used at the interface between the physics and the dynamics in the standard ver-

sion of the model, while it was avoided in the standalone version of the model. As a result,

keeping u and v at their proper location to achieve the post-processing may be advantageous

for the standalone model, and it would be interesting the evaluate the gains (notably in the

velocity spectra at high wave number) that would be obtained by avoiding it.

4.5 Summary of the validation

During the present chapter, many aspects and new components of both the column model and

the LES-capable MC2 were evaluated in comparison with results from the literature. Here, we

come back on the main aspects discuss in this chapter along with the associated outcomes.

Ekman Boundary layer

In a first section, a simple Ekman theoretical case where the geostrophic wind can evolve with

height and for which analytical solutions are known (Berger and Grisogono, 1998) was used

to validate some fundamental aspects of the method. At first, this case was selected to assess

the periodicity of lateral boundary conditions in the presence of a large scale pressure gradient

and a Coriolis factor, but it further allowed to diagnose a problem in the vertical discretization

of the model causing a large numerical mode (with a maximum amplitude at the surface) in

the horizontal velocity components. This numerical mode was of concern in the context of

using the approach at high resolution for LES. A new version of the model, labelled New and

full based on a common vertical positioning of the main dynamical variables (i.e. where the

dynamics and the physics are now based on the same vertical discretization) was introduced

and it proved to fully solve the problem. Furthermore, based on that version, results were found
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to be insensitive to both the resolution and stretching of the vertical mesh (as opposed to the

original version of the model). Finally, the simple Ekman case also allowed to partially validate

another version of the model (for the horizontally homogeneous cases), labelled Standalone,

where all turbulence modelling is implemented directly in the dynamics of the model, and the

physics library is not needed anymore (thus simplifying the method). This version of the model

alleviates the need for interpolating main variables at the interface between the dynamics and

the physics. It led to results almost identical to the new version of the method showing that

the vertical components of the new turbulent diffusion were correctly implemented. All results

obtained in this first section were promising and in addition to validate the required components

for the LES of the full ABL, it allowed to improve the method.

LES of the full ABL: Shear and convective benchmark cases (Moeng and Sullivan, 1994)

In a second section, the shear and convective cases introduced by Moeng and Sullivan (1994)

and Sullivan et al. (1994) were reproduced. These two cases were selected because they in-

clude all the features of a real full ABL while sufficiently simplified to be easily reproduced by

LES. Furthermore, these studies are very detailed and many aspects of the solution from the

surface to the inversion are evaluated by Moeng and Sullivan (1994) and Sullivan et al. (1994).

In addition, the LES model used in those studies was thoroughly evaluated against other ap-

proaches (Nieuwstadt et al., 1992; Andren et al., 1994), and it is a reference in the domain

of LES of the ABL. Finally, many subsequent studies found in the literature, focused on very

similar cases allowing deeper comparisons and discussions.

This was the first evaluation of the introduced approach in the context of LES, as a result,

it was decided to follow the guidelines provided by Moeng and Sullivan (1994) and Sullivan

et al. (1994) and use identical numerical and post-processing parameters, in order to allow a

full comparison of the results (not only non-dimensional quantities). Furthermore, all com-

putations were achieved based on two different SGS model (the UKMO Smagorinsky and the

hybrid TKE SGS models) in order to be able to compare these two scheme and increase our

level of confidence. Obtained results were very satisfactory since first, second and third order
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moments, as well as the velocity spectra of all velocity components were in good agreement

with the comparison data and reference studies in the literature based on similar SGS models.

On the one hand, in the mixed layer and at the top of the ABL, results compared very well

with Moeng and Sullivan (1994) for both the shear and the convective cases. On the other

hand, in the near-surface region, the current approach led to an error similar to other LES re-

sults based on dissipative only SGS models (i.e. Smagorinsky/Deardorff): streamwise velocity

vertical gradient was clearly over-predicted in the surface layer in comparison to experimental

data (due to the over-dissipative nature of the Smagorinsky model) (Porté-Agel et al., 2000).

However, this departure from the similarity appeared to be higher than in Moeng and Sullivan

(1994) results. In fact, thanks to a spectral analysis, it was found that time stepping and ad-

vection numerical scheme of the LES-capable MC2, i.e. the SISL scheme, tends to dissipate

more the smallest resolved eddies in comparison to the results found in the literature (Moeng

and Wyngaard, 1988; Mason and Brown, 1999; Brown et al., 2000; Porté-Agel et al., 2000).

Therefore, the small structures have less energy, and the flow is less resolved which is worsen-

ing the limitation of the Smagorinsky SGS model notably in the near-surface region.

Another outcome of the second section regarded the shear and convective cases post-processing

parameters used in Moeng and Sullivan (1994) and Sullivan et al. (1994) studies. First, con-

cerning the time interval used by Moeng and Sullivan for the post-processing, it was clearly

shown that both cases are not in a steady state, partly due to the inertial oscillation, and even

though a fully developed turbulent regime is well established during the whole interval. Fur-

thermore and more importantly, non negligible differences were observed between computa-

tions based on the exact same model but for which only initial random velocity perturbations

were changed. These differences, also called scatter here, were sometimes high (larger than

the averaged variable itself) and an ensemble average of five computations based on the same

model was necessary to reduce the uncertainty in the results. As a consequence of the above

facts, and in order to be able to use those two cases to further evaluate various aspects of the

current model, the shear and convective case clearly needed to be further explored in order to

define the best suited post-processing parameters.
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LES of the full ABL: numerical parameters

The third section of the chapter was dedicated to the study of the main numerical parameters,

i.e. the horizontal resolution and domain size, the vertical resolution and domain size and the

time step. However, and considering the outcomes of the previous section, the time evolution

and scatter of both the shear and the convective cases were thoroughly explored in order to

define the optimum post-processing parameters, i.e. length and location of the time interval

used to compute flow statistics.

For the shear case, it was confirmed that the turbulence is already fully developed during the in-

terval used by Moeng and Sullivan (1994) and that an almost permanent state of the first order

moments is reached after 0.5Tinert. Furthermore, the longer the time interval, the less scatter

there are. However, the latter never disappeared totally even when using very long intervals.

Concerning the convective case, it was also confirmed that a representative quasi-steady con-

vective ABL is already well established after 0.1Tinert, i.e. during Moeng and Sullivan (1994)

interval. However, due to the constantly heating surface, this case never reaches a steady state.

As for the shear case, the longer the interval, the less scatter there are, but, the scatter was

always present regardless of the interval. Furthermore, a too long interval, was proven to affect

statistics (notably at the top of the ABL), and, after 0.5Tinert the top of the ABL starts to inter-

act with the top boundary of the model (the sponge layer), limiting the length of the integration.

As a result, considering the evolution of the scatter as a function of the time interval, it became

clear that the time interval used by Moeng and Sullivan (1994) was too short for both cases to

obtain converged statistics of the flow and a longer interval was required to reduce the scatter

to an acceptable level allowing a better analysis of the results.

Concerning the horizontal grid and domain size of the shear case, going from a 2 km to a 3 km

horizontal grid while retaining the same resolution did not change ensemble averaged results.

Furthermore, going from a 31.25 m to a 40 m horizontal resolution grid while retaining the

same domain size, gave results in line with the literature (Sullivan et al., 1994; Mason, 1994).

However, the coarser the mesh, the more scatter there is, and the more noticeable the scatter
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reduction is when the time interval is lengthened. In addition, the coarse mesh based on a 40 m

resolution and 2 km sides, proved to be at the edge of suitability to reproduce the shear case of

Moeng and Sullivan (1994) with the current version of the LES-capable MC2. Based on that

grid, the ignition of turbulence was sometimes delayed preventing the use of the results based

on that grid at the beginning of the integration (for Moeng and Sullivan (1994) time interval).

Such a grid has been used successfully in many studies found in the literature for similar cases,

which thus confirmed the finding of the spectra analysis that the introduced approach is more

dissipative due to its Semi-Lagrangian advection scheme.

In the vertical, the use of a finer vertical mesh close to the surface, as well as a coarser vertical

grid in the mixed layer did not changed the results of the shear case, and both resolved and

subgrid part of turbulent quantities were almost unaffected in the lowest half of the ABL. This

is due to the filter width definition of the UKMO Smagorinsky SGS model, but it showed

that the resolved part of the flow is not increased by using anisotropic grids. Furthermore,

it demonstrated that the discretization is well implemented with regards to no-uniform grids

since the latter had no impact on the results. In the upper part of the ABL, and most notably

at the inversion, it was found that the mesh needs to be sufficiently fine up to the top of the

temperature inversion in order to properly reproduce the heat flux minimum at the inversion. A

good prediction of zi may also implies that the processes from above the inversion are correctly

reproduced by the model. However, the heat flux minimum is very small with a high scatter in

the context of the shear case which render its accurate prediction more challenging.

Finally, concerning the time step, the SISL scheme generally accepted CFL = 1 limit was

observed, but only in the horizontal. For the shear case, a notable degradation of the results

is observed in places where CFL > 1. Processes are also affected, but still valid, when the

effective maximum CFL equals one. For the convective case, maximum CFL above one were

found in the vertical direction, but they did not appear to impact the results. On the other hand,

reducing the time step or the effective CFL, did not impact the results of both cases signif-

icantly. However, the numerical dissipation inherent to the SL advection scheme is slightly

increased by a shorter time step, especially close to the surface. The spectra falloff in the sur-
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face layer is always faster when CCFL is lower. But, since profiles of turbulent quantities are

not affected in the bulk of the ABL, it confirmed that the filter is correctly located in the inertial

subrange (Brown et al., 2000) for both the shear and the convective cases.

LES of the full ABL: enhancements and new components

The last section of the chapter was dedicated to the evaluation of the main enhancement and

new components of the model. First, five classical SGS models were compared and it was

seen that, at the exception of the Redelsperger et al. (2001) and the linear Kosović (1997) SGS

model, the other SGS models, i.e. the UKMO Smagorinsky (Mason and Brown, 1999), hybrid

TKE and Deardorff (1980) SGS models, showed very similar results for both the shear and the

convective cases (where differences are most of the time within the scatter). Yet, due to the filter

width definition that differs between Deardorff/Redelsperger and UKMO Smagorinsky/hybrid

TKE SGS models, small but clear differences were observed. For Sm and Sl grids (that have

an aspect ratio of 3), using Δ = (ΔxΔy)1/2 with CS = 0.15 is equivalent to using Δ =

(ΔxΔyΔz)1/3 with CS = 0.216. As a result, since Deardorff and Redelsperger SGS models

have an equivalent CS = 0.181, they led to slightly lower subgrid fluxes and to a higher level

of energy in the medium and high wave number eddies which was clearly seen close to the

surface for the shear case. The surface matching of length scale in UKMO Smagorinsky and

hybrid TKE SGS models only caused very little changes. Similarly, in the upper ABL and at

the inversion, no clear differences were observed, except the increased subgrid heat flux for

the hybrid TKE SGS model for the shear case most likely caused by the lack of a critical Ri.

Concerning the Redelsperger et al. (2001) SGS model, thanks to the near-surface refinements

it adds to the Deardorff model, this approach clearly outperformed all the other SGS models

when considering the surface layer. No adaptation of this approach was done for convective

condition (although it would be required for consistency with surface boundary), but results

were not affected in comparison to the other SGS models. Improvements obtained in neutral

condition were however not as significant as shown in Redelsperger et al. (2001) and Drobinski

et al. (2004). Finally, the linear Kosović (1997) SGS model (without backscatter) clearly failed

to reproduce the shear case. This appeared to be related to the large value of equivalent CS for
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that model and the definition of the filter width in the surface layer. At the opposite, and due the

buoyant production of turbulence, this model seemed to perform properly for the convective

case. However, and in agreement with the larger CS , resolved part of the flow was unchanged

while subgrid fluxes higher than for the other models. Further investigation and refinement are

needed to better evaluate Kosović SGS model.

The second aspect evaluated in that last section was the new vertical discretization of the

physics (where the main variables remains at the same levels as in the dynamics). This en-

hancement was included in all the results presented in the previous sections, but this section

permitted to show that the LES and most notably the column model results are improved by

such a modification. Indeed, concerning the latter, a large numerical mode polluting the profile

of momentum related variables such as φM , u′w′ and v′w′, but with no effect on the averaged

exchanges of energy with the surface, was removed when using the model version properly

staggered. Furthermore, column model was more stable during the whole time interval. Con-

cerning LES results, the same variables were improved but only subgrid scale fluxes in the

surface layer were found to be affected by that spurious numerical mode. Improvements were

thus less significant but still profitable. Finally, result parameters and averaged profiles were

very similar between the original and the new versions of the physics, it can thus be assumed

that the changes in the new version of the model were consistently implemented.

A last section was dedicated to the evaluation of a new version of the LES-capable MC2 (la-

belled standalone) where all turbulent modelling is achieve directly in the dynamics in height

coordinates, avoiding the need of the physics library and its pressure coordinate, thus sim-

plifying the approach. A very good agreement was obtained for the various aspects of the

solution between the standard and the standalone version of the LES model. It thus proved

that the standalone model is valid, and that the physics-dynamics interface (with the associated

interpolations and transformation of the variables) as well as splitting horizontal and vertical

turbulent diffusion terms had no impact on the results. However, a shorter time step was re-

quired due to the fully explicit turbulent diffusion implemented the standalone model. As a
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result, it also showed that the implicit-explicit approach used for the turbulent diffusion in the

standard model allows a longer the time step with no effect on the results.

As a conclusion of this chapter, although no new cutting edge features were introduced, the

first thorough evaluation of a LES method based on the MC2 mesoscale model was achieved.

Shear and convective full ABL cases from the literature were satisfactorily reproduced and the

sensitivity to the various numerical parameters was evaluated. This model is based on a SISL

advection scheme that allowed a rather large time step but which was found more dissipative

than the approaches used in the literature. However, this increased dissipation only slightly

affected the results in the near-surface region. A strong foundation was thus built for more

advanced studied such as LES over complex terrain or diurnal cycles.



CONCLUSION

The main objectives of this thesis were to select, implement and evaluate an approach allowing

for the modelling of the microscale and mesoscale ABL flows considering the various require-

ments and challenges of modern wind energy applications: complex environment in which

wind turbine operate; multiscale nature of ABL flows and wind energy production facilities;

increasing size of wind turbines and farms.

An extended literature review of ABL flow modelling ranging from microscales to mesoscales

was first achieved keeping in mind the challenges faced by the modern wind energy industry.

It allowed to provide a clear view of the specificities and abilities of the existing methods,

and more importantly, to identify a suitable approach. The combined mesoscale/large eddy

simulation (LES) modelling turned out to be the most promising approach. The Compressible

Community Mesoscale Model (MC2) was elected as a basis in which the components required

for LES had to be included. This effort began prior to the present thesis at Environment Canada

(EC) (Pelletier et al., 2005), however it was never completed and the LES-capable MC2 model

had never been thoroughly validated.

A detailed description of the mathematical model and the numerical method of the LES-capable

MC2 were then presented in order to have a complete view of the approach and to better ap-

preciate the specificities of its implementation. Fundamental aspects of the proposed approach

were finally evaluated based on both theoretical 1D Ekman boundary layer (Berger and Griso-

gono, 1998) and representative shear and buoyancy driven homogeneous surface full dry ABL

cases (Moeng and Sullivan, 1994). It allowed to complete the proper implementation of new

components required for LES in MC2 as well as to finely adapt and refine the mesoscale model.

In the end, the obtained LES-capable mesoscale model was shown to perform on par with other

similar LES models found in the literature, and it was thus demonstrated that MC2 was suitable

for both microscales and mesoscales.

In this general conclusion, the contributions and achievements of the thesis are summarized,

and recommendations for further work are briefly outlined.
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Contributions

The main contributions of this thesis reside in the development and the evaluation of a LES

model dedicated to the full ABL based on MC2. Several configurations of the LES-capable

MC2 were evaluated, i.e. the standard model based on the original or new physics, and the

standalone model. These allowed to show that:

• volumetric (diagonal) and deviatoric (non-diagonal) Reynolds tensor terms must to be

split in the context of LES based on a compressible solver with the former requiring to

be explicitly computed and added to the pressure;

• vertical interpolation (and extrapolation at the surface) of momentum related variables

before and after achieving the vertical turbulent diffusion, i.e. at the interface between the

dynamics and the physics, generates a spurious numerical mode in the vertical profiles

with a maximum amplitude at the surface. Column model and LES results are affected

and the extrapolation of momentum at the surface is particularly critical. The solution

to this imperfection of the original version of the model is to use a contiguous vertical

discretization in all the components of the model (as in the standard LES model based

on the new physics and the standalone LES model - which perform similarly);

• horizontal and vertical turbulent diffusion splitting (explicit/implicit in time and in sepa-

rate parts of the code as done in the standard model based on the original or new physics)

has no impact on the LES results. A larger time step can however be used when the split-

ting is involved thanks to the implicit treatment of vertical turbulent diffusion;

• scatter of LES results, i.e. from simulations based on the exact same model but for which

only initial random velocity perturbations are changed, is always present but it is influ-

enced by numerical and post-processing parameters. The larger the domain or the longer

the integration period, the lower the scatter is;

• the LES-capable MC2 appears to be more dissipative than reference models in the liter-

ature due to its SISL scheme.
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Furthermore, by evaluating the sensitivity of the LES-capable MC2 to the main numerical

parameters, it was found that:

• medium and large computational domain (with the same resolution) lead to similar re-

sults, while a coarser grid (with the same size as the medium computational domain) is

at the edge of suitability for the shear case. Scatter of the results is a function of the

resolution and the horizontal computational domain size;

• uniform and stretched vertical grids lead to the same results in the lower half of the ABL

(for the column model, the UKMO Smagorinsky and hybrid TKE SGS models). Only a

spurious but negligible heat flux at the surface of the shear case is reduced as the vertical

resolution increases. In the upper ABL, a sufficiently refined mesh up to the top of the

temperature inversion is required to properly reproduce the entrainment process;

• horizontal CFL must be lower than unity while this limit is less well defined in the ver-

tical direction. In addition, numerical dissipation of the model increases when lowering

the CFL which is clearly observed on the spectra notably close to the surface but not

on the turbulence quantity profiles advocating that the filter is correctly located in the

inertial subrange for the case reproduced (except in the near-surface region).

The last contribution concerning the LES-capable MC2 is the validation of five SGS mod-

els dedicated to the full ABL in neutral and convective conditions: the UKMO Smagorinsky,

the hybrid TKE and the Deardorff SGS models are found to perform similarly while the Re-

delsperger SGS model performs best for the shear case in the near-surface region. The shear

case is not correctly reproduced using the linear Kosovìc model. Definition of the filter width,

i.e. ΔH versus Δ3d, has little impact on the profile of the first, second and third order moments,

while small but clear differences are observed in velocity spectra.

Along the validation of the LES-capable MC2 approach, a detailed evaluation of Moeng and

Sullivan (1994) shear and convective cases was also undertaken showing that both cases are

in a quasi-steady state during the post-processing interval used by Moeng and Sullivan (1994).

More precisely, concerning the shear case, a quasi-steady state is reached after 0.15Tinert fol-
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lowed by a roughly statistically permanent state after 0.5Tinert with an ABL height almost con-

stant along the integration but with a velocity profile that features an overshoot at the top of the

ABL (which adds constraints on numerical parameters such as the time step). For its part, the

convective case is in a quasi-steady state after 0.1Tinert and for the rest of the integration with

an ABL height (and a mixed layer temperature) that steadily increases (restricting the integra-

tion duration). The scatter of the results based on Moeng and Sullivan (1994) post-processing

parameters is however far from been negligible. As a result, a two times longer post-processing

time interval than Moeng and Sullivan (1994) is required to obtain stable statistics for both the

neutral and convective cases.

Achievements

The above contributions were possible thanks to many achievements that can be sorted into

theoretical and practical realizations. The former mostly refer to the three first chapters of

this thesis where a review of the ABL modelling from microscales to mesoscales was first

achieved (Linear, RANS, Mesoscale, LES). Then, the formal development of the LES-capable

MC2 mathematical model was presented in terms of Favre averaging to isolate non-linear tur-

bulence terms which allowed to properly express the turbulent diffusion and closure. Finally,

the numerical methods involved in the dynamic kernel and physics library of the LES-capable

MC2 were thoroughly described, illustrating, among others things, all the specificities of the

implementation of the model.

For their part, the practical achievements consist in the various adaptations and new compo-

nents added to MC2 to obtain a LES-capable mesoscale model. This includes the adaptation

of the operating mode of MC2 with the addition of: large scale geostrophic forcing; a surface

boundary condition allowing the surface heat flux to be imposed instead of the surface temper-

ature; a sounding like initialization of thermodynamic variables based on an arbitrary potential

temperature and a geostrophic wind profiles; and an initialization of momentum based on truly

random velocity perturbations (which seeds are different in every simulation). In addition,

theoretical cases, i.e. sandbox to operate MC2 in special configurations, allowing to have ac-
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cess to the physics library (Ekman, surface homogeneous periodic full ABL cases) and parallel

processing were also implemented - both not possible before.

Many other refinements were brought to the model to allow for LES of the ABL. The most

important are: the inclusion of the volumetric part of Reynolds tensor (full variances) with the

pressure prior to solve the Euler equations of motion; the replacement of the original physics li-

brary by a new one featuring an improved staggering which required interfacing MC2 dynamic

kernel with a new physics, and an adaptation of all the existing 3D turbulence modelling.

Furthermore, several new components were also implemented in and around MC2 such as: a

standalone LES model in the dynamics (not relying on the physics) based on a non-split fully

explicit turbulent diffusion and a UKMO Smagorinsky SGS model; two new TKE based SGS

models in the physics: Deardorff, Redelsperger SGS models; and a fully independent post-

processing outside of MC2 (based on Octave and GNUPlot) to compute the first, second and

third order moments, as well as longitudinal velocity spectra, and other quantities of interest.

Finally, it is also to underline that, in order to achieve the various developments and computa-

tions of the thesis, a Linux cluster had to be installed (by ourselves) along with the MC2 model

and associated libraries and post-processing tools. A working environment to operate MC2 as

a LES model was also developed.

Future work

During this study, a strong foundation was built allowing for more advanced studies based on

the LES-capable MC2. Several features are still needed before considering the use of LES-

capable MC2 for real cases and for wind energy applications.

A first improvement that would be required is the implementation of an improved SGS model

that would allow to correct the usual bias of classical SGS models in the near-surface region

as well as to improve their dissipative only behaviour in the flow interior. The choice of the

approach is to be determined in a latter study, however in view of the literature review, an

hybrid RANS/LES approach based on a k − ω RANS model that alleviates the needs for wall
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functions and a dynamics Smagorinsky SGS model appears to be the most promising in the

long term. The inclusion of a reconstruction model would also be to consider.

Another aspect yet to be completed is the inclusion of the metric factors related to the topog-

raphy. These terms have already been implemented for the volumetric part of the Reynolds

tensor which is processed in the dynamic kernel. However, they are still missing from all the

horizontal components of the turbulent diffusion. It would allow the evaluation of the approach

in the context of complex terrain, and permit the reproduction of real cases.

Last but not least, it would be interesting to take into account wind turbines directly within

MC2. At first, this could be achieved based on the actuator disk approach. Such an addition

would allow to study the impact on the flow of wind turbine and wind farms and evaluate their

impact on the full ABL which is finely reproduced by means of LES.

Along these new features, it would also be interesting to evaluate the LES-capable MC2 based

on an ideal isotropic homogeneous decaying turbulence case. For such a case, periodical

boundary conditions need also to be implemented at the bottom and top boundaries (which

present some complications as no halo exist for these boundaries). This would allow to prop-

erly evaluate the numerical dissipation of the SISL. Similarly, it would also be of interest to

evaluate the model based on the purely adiabatic Ekman case of Andren et al. (1994). While

such a case could be already reproduced with the actual version of the model (setting a perfectly

neutral temperature profile across the vertical), it would be of interest to consider the flow as

strictly adiabatic and incompressible, namely where temperature is not anymore a variable of

importance. This could be achieved by manually setting the heat capacity at constant pressure

cp to a very large value, so that pressure and temperature become uncorrelated and tempera-

ture has no more an impact on the solution. This would further allow to strictly appreciate the

impact of a compressible solver in the adiabatic incompressible context.
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Abstract

The large size of modern wind turbines and wind farms triggers processes above the surface

layer, which extend to the junction between microscales and mesoscales, and pushes the limits

of existing approaches to predict the wind. The main objectives of this study are thus to in-

troduce and evaluate an approach which will better account for physical processes within the

Atmospheric Boundary Layer (ABL), and allow for both microscale and mesoscale modelling.

The proposed method, which mathematical model and main numerical aspects are presented,

combines a mesoscale approach with a Large-Eddy Simulation (LES) model based on the Com-

pressible Community Mesoscale Model (MC2). It is evaluated relying on a shear-driven ABL

case allowing to assess the model behaviour at very high resolution as well as more specific

numerical aspects such as the vertical discretization and time and space splitting of turbulence

related-terms. The proposed LES-capable mesoscale model is shown to perform on par with

other similar reference LES models, while being slightly more dissipative. A new vertical

discretization of the turbulent processes eliminates a spurious numerical mode in the solution.

Finally, the splitting of horizontal and vertical turbulence-related terms is shown to have no

impact on the results of the test cases. It is thus demonstrated that the revised MC2 is suitable

at both microscales and mesoscales setting a strong foundation for future work.
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TURBULENCE MODELLING BACKGROUND

The origin of turbulence modelling comes from the end of the nineteenth century with Boussi-

nesq (1877), who first achieve the analogy with molecular viscosity for the non-linear advection

(convection) term in Navier-Stokes equations. He introduced the eddy viscosity concept (ex-

changed fluid particles bring their own momentum that change the total momentum of the fluid

parcel). Reynolds (1895) followed by introducing the now famous time averaging method,

also called Reynolds averaging. Based on this latter averaging technique the Reynolds aver-

aged Navier-Stokes (RANS) equation were born. Later, Boussinesq (1903), introduced the idea

of shallow convection approximation i.e. neglect the density variation where it is not multiplied

by the gravity, while conserving its product by the gravity in the calculations. That allowed to

simplify Navier-Stokes equations for problems involving convection due to heat.

In the meantime, Prandtl (1904), had the idea of a mixing length (once again based on the

molecular analogy: the mean-free path of a gas i.e. the average distance covered by a particle

between successive impacts). This mixing length was the basis of a model for the eddy vis-

cosity. This was the first algebraic model (zero equation model). Later, Prandtl (1945) also

derived a model of the eddy viscosity based on the turbulent kinetic energy (TKE). This was

the first one equation approach. Including an equation representing the evolution (prognostic

equation) of the TKE allowed to consider the history of the flow. However, this kind of model

had an important drawback, i.e. the mixing length needed to be known/guessed in advance to

be able to compute the turbulent viscosity. As a result, this type of model are also referred to

as “incomplete” since flow properties were needed to be known in an a priori manner.

Kolmogorov (1942) developed the first complete (two equation) approach with a prognostic

equation for the TKE and an other for the so called specific dissipation, ω, defined as “the rate

of dissipation of energy per unit of volume and time”. This virtually permitted to compute the

mean turbulent properties by only prescribing the initial flow state and the boundary conditions.
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In the meantime, Kolmogorov also proposed hypothesis on the structure of the small scale

turbulent characteristic and motion at high Reynolds numbers. This contributions to the theory

of turbulence was very important since they describe the universal character of the small scales

that allowed a better modelling. During the same period, Rotta (1951) derived a model that

was not anymore based on the Boussinesq eddy viscosity approximation, but that had equation

for the evolution of the various components of the Reynolds stress tensor (six in total). This

model integrated in a natural manner the non-local and history effects (Wilcox, 1994) pushing

approximation and closure hypothesis a step further. This model is know today as the Reynolds

stress model or second order closure.

Interestingly, those various studies set the ground of the modern turbulence modelling even be-

fore the computer age started. Some of those models where more qualitative than quantitative,

but the specificities of the various main family of RANS approaches was set. However, the lack

of computational power at that time prevented those methods from being directly applicable

during at least the ten following years.

Lilly (1962) and Smagorinsky (1963) were the first to propose and implement an approach that

was based on a subgrid scale (SGS) model. The idea was to simulate the biggest scales/eddies

and to model the smallest ones (smaller than the grid size). The filtering of the equations was

thus spatial or spectral and not anymore in time. In that sense, Smagorinsky and Lilly are

the fathers of all the LES approaches. In the SGS model they used, the turbulent viscosity was

supposed to take into account subgrid scale dissipation through a Kolmogorov k−5/3 cascade. It

was express as the product of a squared characteristic length scale and the modulus of the strain

of rate tensor. As a result, it can be seen as the adaptation of Prandtl’s mixing-length theory to

subgrid scale modelling. Production and dissipation of TKE were assumed equal. Lilly (1962)

computed the model constants based on the Kolmogorov hypothesis (spectra model) and also

proposed a second order SGS model with a prognostic equation for each of the Reynolds tensor

components and for the TKE (Lilly, 1966). He also tried to include the effect of buoyancy in

the SGS through a Richardson number dependency.
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With the advent of computers, turbulence modelling became more realistic although being still

very theoretical. This explains why the seventies have seen the explosion of the available CFD

methods and applications.
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Figure-A II-1 Schematic view of the energy spectra of a turbulent flow. The

diagram below is associated to the spectra and it indicates the range in

wavenumber of the various regions of interest at very high Reynolds number.

The axis have a logarithmic scale
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1 Energy cascade and turbulent scales

As described by Richardson (1922), in a turbulent flow, big eddies (small wave numbers, k =

2π/l), break-up in smaller eddies that fed from the momentum of the former and so on to

viscosity (in the molecular sense). This process is called the energy cascade. Large eddies

produce and contain the main part of the turbulent energy (energy-containing range) while

smaller once (universal equilibrium range) transfer this energy (inertial subrange) and finally

dissipate it (dissipation range). In the inertial subrange, motion is mostly dominated by inertial

effect while in the dissipative range both viscous and inertial effect can be important. The rate

of dissipation ε is determined by the transfer of energy from the large scales T . A schematic

illustration is given in Fig. II-1 which is partly inspired by Pope (2000). When looked from

the spectral angle, as seen on the upper part of Fig. II-1, this cascade exhibit a typical energy

spectra shape where a maximum is found in the low wave numbers (large scale motion) then

the spectra only decrease, first linearly and then faster in an exponential manner to reach its

minimum at the highest wave numbers (small scale motion).

Bigger eddies can be characterized by the length scale l0 (which is of the order of the flow

scale) and by the speed u0 (of the order of turbulent intensity u′ ≡ (2/3E)1/2) (Pope, 2000).

Therefore, the energy contained by such an eddy is of the order of u2
0 and its timescale is

τ0 = l0/u0. This lead to a transfer of energy T , and thus a rate of dissipation ε that scales with

u3
0/l0. Finally, it is also of interest to introduce η, the characteristic length scale of the smallest

eddies i.e. the one that are destroyed by viscous dissipation (dissipative scales).

Kolmogorov (1941) (i.e. Kolmogorov (1991) for a translation) elaborated a theory for flows

with a sufficiently high Reynolds number in which are stated the following three hypothesis:

Local isotropy hypothesis: small scale eddies, l  l0 (i.e. in the universal equilibrium range),

are statistically isotropic.

First similarity hypothesis: statistics of motion of scales in the range l  l0 (i.e. in the uni-

versal equilibrium range), have an universal character that is determined by both the

dissipation rate ε and the molecular viscosity ν.
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Second similarity hypothesis: statistics of motion of scales in the range η  l  l0 (i.e.

in the inertial subrange) have an universal character that is uniquely determined by the

dissipation rate ε, and not the molecular viscosity, ν.

Given the two parameters ε and ν, the smallest eddy scale also called Kolmogorov dissipative

scales are defined as

η =

(
ν3

ε

)1/4

, (A II-1)

uη = (εν)1/4, (A II-2)

τη =
(ν
ε

)1/2
. (A II-3)

Interestingly, the Reynolds number computed based on these definition, Reη = uηη/ν, equals

one. In addition, the ratio between Kolmogorov scales and the bigger eddy can be expressed in

terms of large eddies Reynolds number, i.e.

l0
η
∼
(
l0u0

ν

)3/4

= Re3/4, (A II-4)

u0

uη

∼ Re1/4, (A II-5)

τ0
τη

∼ Re1/2. (A II-6)

The higher the Reynolds number of big eddies, the bigger the ratio between large and small

scales. It implies that to be able to fully resolve all eddies such as it is done in Direct Numerical

Simulation (DNS), we would require a domain of at least l0 size, with a mesh of η resolution

leading to a problem that have ∼ Re9/4 meshes. As an example of typical values in the ABL,

l0 = 1000 m, u0 = 1.5 m/s and ν = 1.5e−5 m2/s, we have Re = 108 and thus η ∼ 10−4 m.

To fully resolve this problem, we would require a grid with ∼ 1017 nodes. However, while it

would be also needed to account of the requirement in terms of time steps, this size of problem

is already unrealistic. Instead of the l0 and ν, we could also have used the integral length scale

and the Taylor microscale which would have led to very similar result (Lesieur et al., 2005).
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Small scale having an universal character, they can be modelled, which reduces significantly

the computational requirement. Indeed, by applying a spatial or spectral filter to the Navier-

Stokes equations, small scales can be treated separately (in a subfilter scale manner). Usually

the filter is located in the inertial subrange so that smaller scale motion statistics is uniquely

determined by the dissipation rate. As a result, one of the main implication of the energy

cascade and Kolmogorov hypothesis with regards to numerical modelling of turbulent flows is

that the filter width need to be small enough (the mesh resolution in our case) to be located in

region where turbulent motion is isotropic i.e. within the inertial subrange (region of validity of

SGS model) while the domain need to be large enough to capture the energy containing eddies

(for the flow to be self-sustained).

2 Filtering

The purpose of filtering a turbulent field, f(x, t) is to decompose the latter in a mean part (large

scale) f(x, t) and a fluctuating part (small scale) f ′(x, t) so that it can be written

f(x, t) = f(x, t) + f ′(x, t). (A II-7)

In the case of a compressible flow, it is convenient to define an operator that also take into

account the density fluctuations. It is called the Favre filtering

f̃ =
ρf

ρ
(A II-8)

and the decomposition can be written

f = f̃ + f ′ (A II-9)

In this section, we will introduce the various common approaches to achieving this filtering

and discuss the properties that are associated to them.
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2.1 Statistical average

The first way to achieve this decomposition may be through the use of a statistical averages

(also known under the name of ensemble average). Indeed, with this approach, the mean field

〈f(x, t)〉 of the turbulent field, f(x, t) is computed based on the average of n random and

independent realizations of the phenomenon. It thus comes that

〈f(x, t)〉 = lim
n←∞

1

n

n∑
i=1

f(x, t). (A II-10)

The Taylor hypothesis also know as the ergodicity principle states that for a random steady

function in time, it is equivalent to compute the average from an infinite number of independent

realizations and the average from one realization that is infinitely long. It thus comes that the

time average of f(x, t), also called Reynolds average, is expressed as

〈f(x)〉 = f(x) = lim
T←∞

1

T

∫ T

0

f(x, t′)dt′. (A II-11)

When considering two random function f and g, the properties of such a statistical averaging

approach are the following

〈f + g〉 = 〈f〉+ 〈g〉 , (A II-12a)

〈af〉 = a 〈f〉 with a = const., (A II-12b)

〈〈f〉 g〉 = 〈f〉 〈g〉 which imply 〈〈f〉〉 = 〈f〉 and 〈f ′〉 = 0, (A II-12c)〈
∂f

∂ξ

〉
=

∂ 〈f〉
∂ξ

with ξ = x, t, (A II-12d)〈∫∫∫∫
fdxdt

〉
=

∫∫∫∫
〈f〉 dxdt. (A II-12e)

Those properties are respectively called linearity, conservation of constant, idempotency, and

commutation of operator for the two last ones. Any operator that verifies these properties is

called a Reynolds operator.
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f(x, t)

〈f〉
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f

f − 〈f〉

f − f

Figure-A II-2 Illustration of the decomposition of a turbulent

signal, f , using both a convolution product based on a top-hat filter,

f , and a classical Reynolds operator, 〈f〉. The local character of the

convolution filtering can be observed

2.2 Spatial filters

Removing the small scale structures (that have a bigger wave number than ksg) from a fluc-

tuating field, f(x, t), can also be done throw the use of a filtering operator that is expressed

mathematically for the physical space as a convolution product between the signal f(x, t) and

a function G(x, t) which is associated to the characteristic filter size, Δ.

The filtered or resolved field f(x, t) is obtained by the relation

f(x, t) =

∫∫∫∫ +∞

−∞
f(x′, t′)G(x− x′; Δ)dx′dt′, (A II-13)

that can be written symbolically as

f(x, t) = f(x, t) � G(x; Δ). (A II-14)
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In the Fourier space, the convolution operator is directly express as a classical product such as

f̂(k, ω) = f̂(k, ω)Ĝ(k; ksg), (A II-15)

where ksg is a cut-off wave number associated to the filter Δ (usually ksg = π/Δ), k is the

wave vector associate to x, ω is the frequency associated to t, and f̂ and Ĝ are the Fourier

transforms of f and G.

The filter introduced above have to have the following properties in order to allow the proper

filtering of the prognostic equations: the linearity, the conservation of constants, idempotency

and also the commutation with derivation. To be fully satisfied, the latter property implies that

care has to be taken close to the boundaries in the case of non-periodical boundary conditions.

Those properties are shared by the Reynolds operator presented earlier. However, it is to note

that Reynolds operator filters are a restricted ensemble included in the filters verifying the three

properties, in other words

fg �= fg , f ′ �= 0 and f �= f. (A II-16)

As illustrated in Fig. II-2, the decomposition based on the convolution filter, f − f , has a local

character as opposed to the fluctuation related to the Reynolds operator, f − 〈f〉 for which the

reference value 〈f〉 never changes. This imply that every location has its proper f value. This

have great implications on the expression and thus the modelling of Navier-Stokes equations

non-linear terms.

2.2.1 Leonard decomposition

As a result of the above, the general convolution filter applied to the product of f = f + f ′ by

g = g + g′ can be written as (Leonard, 1974)

fg = fg + fg′ + f ′g︸ ︷︷ ︸
C

+ f ′g′︸︷︷︸
R

, (A II-17)
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where C is the cross term which take into account the coupling between resolved and subgrid

scales fluctuation, and R the product of filtered fluctuations (known as the Reynolds tensor).

By introducing L such as

L = fg − fg, (A II-18)

one can write

fg − fg = L+ C +R, (A II-19)

where L is fully defined by filtered quantities while the information on fluctuation is required

to compute C and R. This expression is known as the Leonard decomposition (Leonard, 1974).

2.2.2 Classical filters

Because of their features, three filters are mainly used for LES. They are relatively simple,

symmetric and fulfil the required properties eqs. (A II-12). There are illustrated in Fig. II-3.

Box or top-hat filter: it consists in the local averaging of the signal. In the Fourier space this

filter show oscillation, which can have the effect of incorporating non-local frequencies

G(x; Δ) =

⎧⎪⎨⎪⎩
1/Δ, if |x| ≤ Δ/2

0, otherwise

, (A II-20)

Ĝ(k; ksg) =
sin(kΔ/2)

kΔ/2
. (A II-21)

Gaussian filter: it also correspond to a local averaging of the signal but for which a weighting

with distance is applied. It has the advantage of having the same shape in the physical
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b) Gaussian filter
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Ĝ(k; ksg)

ksg = π/Δ

1
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Figure-A II-3 Illustration of the filter shapes commonly used in LES. G(x; Δ) of

the top-hat and Gaussian filters are normalized by Δ. The shape of the filters are

shown in the physical space on the left column, and in the Fourier space on the right
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and spectra domain, without oscillation (as opposed to the two other filters)

G(x; Δ) =

√
6

πΔ

2

e

−6x2

24 , (A II-22)

Ĝ(k; ksg) = exp

(−Δ2k2

24

)
. (A II-23)

Sharp or cut-off filter: generally used in the spectra space, it removes any fluctuation above

a given wave number ksg, i.e. a cut-off wave number associated to the filter Δ. When

the cut-off filter is used, there are no interaction between the large and small scale as

opposed to the two previous filter

G(x; Δ) =
sin(ksgx)

ksgx
with ksg =

π

Δ
, (A II-24)

Ĝ(k; ksg) =

⎧⎪⎨⎪⎩
1, if |k| ≤ ksg = π/Δ

0, otherwise

. (A II-25)

Fig. II-4 shows the effect on the energy spectra of the three filters presented above. The unfil-

tered filter is based on a refined Kolmogorov spectra model that intent to include the large scale

and dissipative scale behaviours (see Pope (2000, p. 232-234)). The cut-off wave number used

with all the filters is roughly located in the central part of inertial subrange. It is interesting

to remark that the top-hat and the Gaussian filtered spectra quickly deviate from the constant

slope of the inertial subrange i.e. -5/3. This is important to be considered when dealing with

spectra coming from model outputs (and us that are already filtered).

2.2.3 Differential filters

An alternative family of filters are differential filters (Sagaut, 2006). Although their present

interesting abilities, they have been less used in practice than the filters presented earlier. They
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Figure-A II-4 Energy spectrum unfiltered and filtered based on the

three filters presented in Fig. II-3. The same cutoff wave number,

ksg = 12.56 m−1, is used with every filter. The unfiltered filter in based

on a Kolmogorov simple model

can be defined such as

f = f + τ
∂f

∂t
+Δi

∂f

∂xi

+Δij
∂2f

∂xi∂xj

+ ... (A II-26)

Berselli et al. (2006) affirm that differential filters are a correct extension of filtering by convo-

lution to bounded domains.

2.2.4 Grid filter

A particular approach to filter fluctuating field is to use control volumes. First used by Dear-

dorff (1970), it is equivalent to the finite volume method which cut a domain in control vol-

umes. Based on those volumes, the conservation equations can then be solved.

A special case is to use the grid cells as control volume. That way, the filtering is implicit

and directly dependent on the grid of the computational domain. Mathematically, these cell
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Figure-A II-5 Effect on a turbulent signal of a classical convolution filtering (left) and a

filtering based on control volumes (right)

averages are equivalent to the top-hat convolution filtering with a filter characteristic length

being equal to the mesh resolution. However, this filtering operator is slightly more general

than the convolution product since it conveniently have the same properties as the Reynolds

operators, and we thus have again

fg = fg , f ′ = 0 and f = f. (A II-27)

Due to the straightforward application of this kind of filter and the great simplification it brings

(in comparison to explicit convolution filtering), this approach have been historically heavily

used. Fig. II-5 shows an illustration of the effect of such a filter on of fluctuating function.

However, such a filtering approach have to important shortcomings. Filtered fields are constant

within the control volume and a discontinuity is observed at the border. In addition, as opposed

to the convolution filtering, no flexibility is possible concerning the choice of filter for both the

shape and the characteristic size (that directly depends on the grid).



APPENDIX III

SOLUTION OF VERTICAL DIFFUSION EQUATION

Derived from the Benoit et al. (1989, Appendix C) and Mailhot et al. (1998, Appendix 2).

1 Transformation to σ coordinates

We want to solve the general vertical diffusion equation

∂ψ

∂t
= −1

ρ

∂

∂z

(
ρw′ψ′

)
=

1

ρ

∂

∂z

[
ρKψ

(
∂ψ

∂z
− γψ

)]
,

(A III-1)

for ψ = u, v, θ, q or E.

At the top of the domain, a no-flux condition is imposed (Neumann)

Kψ

(
∂ψ

∂z
− γψ

)
= 0, (A III-2)

while at the base of the domain, also taken to be the anemometer level, the condition is conti-

nuity of the flux for ψ �= E (Cauchy)

ρKψ

(
∂ψ

∂z
− γψ

)∣∣∣∣
a

= CψCMVa (ψa − ψs) , (A III-3)

and an imposed surface layer expression for ψ = E (Dirichlet)

ψ|a = Ea. (A III-4)

Before processing, eq. (A III-1)-(A III-4) are transformed for the sigma coordinate

∂ψ

∂t
=

∂

∂σ

[
K̃ψ

(
∂ψ

∂σ
+ γ̃ψ

)]
, (A III-5)
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with at the top and bottom boundaries

K̃ψ

(
∂ψ

∂σ
+ γ̃ψ

)∣∣∣∣
σ1

= 0, (A III-6)

K̃ψ

(
∂ψ

∂σ
+ γ̃ψ

)∣∣∣∣
σ=1

= −ACψCMVa (ψa − ψs) , (A III-7)

and where

A =
gσ

RT
, (A III-8)

K̃ψ = A2Kψ, (A III-9)

γ̃ψ = A−1γψ. (A III-10)

2 Time discretization

The time discretization is implicit, with the time step Δt′, being either 2Δt for ψ �= E or Δt,

for ψ = E. The initial value (at time n− 1 or n) is denoted by ψ∗

ψn+1 − ψ∗

Δt′
=

∂

∂σ

[
K̃∗

ψ

(
∂ψn+1

∂σ
+ γ̃ψ

)]
, (A III-11)

subject to

K̃∗
ψ

(
∂ψn+1

∂σ
+ γ̃ψ

)∣∣∣∣
σ1

= 0, (A III-12)

(ψ �= E): K̃∗
ψ

(
∂ψn+1

∂σ
+ γ̃ψ

)∣∣∣∣
σ=1

= −A (CψCMVa)
n−1 (ψn+1 − ψn+1

s

)
, (A III-13)

(ψ = E): ψn+1
∣∣
σ=1

= En
a . (A III-14)

For ψ = E, K̃∗
ψ is computed from En (not E∗), while for ψ �= E, K̃∗

ψ is computed from En+1.
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3 Vertical discretization

In terms of centred finite differences on a vertical grid, assuming that K̃ψ and γ̃ψ are lo-

cated on staggered levels σK with respect to main variable ψ, the vertical diffusion equation

eq. (A III-11) can be expressed as (within the domain)

ψn+1
k − ψ∗k
Δt′

=
1

σK
k−1 − σK

k

[
K̃∗

ψ,k−1

(
ψn+1
k−1 − ψn+1

k

σk−1 − σk

+ γ̃ψ,k−1

)
︸ ︷︷ ︸

(I)

− K̃∗
ψ,k

(
ψn+1
k − ψn+1

k+1

σk − σk+1

+ γ̃ψ,k

)
︸ ︷︷ ︸

(II)

]
.

(A III-15)

At the top of the domain (σ = σT ), term (I) is replaced using eq. (A III-12), while at the bottom

(σ = σB = 1), term (II) is replaced using eq. (A III-13) (ψ �= E). If ψ = E the boundary

values for ψn+1 is directly used (this case is not treated in what follows).

Going further in the development of eq. (A III-15) by first letting

dKk−1 =
K̃∗

ψ,k−1
(σk−1 − σk)

Δt′(
σK
k−1 − σK

k

) , (A III-16a)

dKk+1 =
K̃∗

ψ,k

(σk − σk+1)

Δt′(
σK
k−1 − σK

k

) , (A III-16b)

ΓK
k =

(
K̃∗

ψ,k−1 γ̃k−1 − K̃∗
ψ,k γ̃k

) Δt′(
σK
k−1 − σK

k

) , (A III-16c)

and rearranging terms, one can get

ψn+1
k − ψ∗k = dKk−1 ψ

n+1
k−1 −

(
dKk−1d

K
k+1

)
ψn+1
k + dKk+1 ψ

n+1
k+1 + ΓK

k , (A III-17)

which can be written as the matrix problem:

(
I −DK

)
Δψ = DKψ∗ + ΓK , (A III-18)
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and finally, adding the boundary conditions eqs. (A III-12) and (A III-13), the full problem can

be written (
I −DK −B

)
Δψ = DKψ∗ + ΓK +A+Bψ∗, (A III-19)

where I is the identity matrix, DK is the tridiagonal diffusion matrix with the non-zero ele-

ments

DK
k,k−1 =

K̃∗
ψ,k−1

(σk−1 − σk)

Δt′(
σK
k−1 − σK

k

) , (A III-20a)

DK
k,k+1 =

K̃∗
ψ,k

(σk − σk+1)

Δt′(
σK
k−1 − σK

k

) , (A III-20b)

DK
k,k = −DK

k,k−1 −DK
k,k+1, (A III-20c)

with

DK
1,0 = −DK

N−1,N = 0, (A III-20d)

and finally

Δψk = ψn+1
k − ψ∗k, (A III-20e)

Ak = −δk,N−1 (CψCMVa)
n−1 ψn+1

s

Δt′

σK
k−1 − σK

k

, (A III-20f)

Bi,k = δi,N−1 δk,N−1 (CψCMVa)
n−1 Δt′

σK
k−1 − σK

k

, (A III-20g)

ΓK
k =

(
K̃∗

ψ,k−1 γ̃k−1 − K̃∗
ψ,k γ̃k

) Δt′

σK
k−1 − σK

k

. (A III-20h)

Equation eq. (A III-19) is solved for Δψ. Note that the equation is not solved at k = N . Note

also that the discretized equation eq. (A III-19) (k = 1, N − 1) conserve the net boundary flux,

as does the continuous form eq. (A III-11).
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