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ESTIMATION DU DEBI"I‘ ET DE LA DISTORSION AU NIVEAU DU
MACROBLOC APPLIQUEE AU CALCUL DU MULTIPLICATEUR DE
LAGRANGE EN COMPRESSION AVEC LA NORME H.264

Alexandru COTOROS PETRULIAN

RESUME

La valeur optimale du multiplicateur de Lagrange (A), un facteur de compromis entre le
débit obtenu et la distorsion mesurée lors de la compression d’un signal, est un probléme

fondamental de la théorie de la débit-distorsion et particulierement de la compression vidéo.

Le standard H.264 ne spécifie pas comment déterminer la combinaison optimale des valeurs
des parametres de quantification (QP) et des choix de codage (vecteurs de mouvement, choix
de mode). Actuellement, le processus d’encodage est encore dépendant de la valeur statique
du multiplicateur de Lagrange, dont une dépendance exponentielle du QP est adoptée par la
communauté scientifique, mais qui ne peut pas accommoder la diversité des vidéos. La
détermination efficace de sa valeur optimale reste encore un défi a relever et un sujet de

recherche d’actualité.

Dans la présente recherche, nous proposons un nouvel algorithme qui adapte de facon
dynamique le multiplicateur de Lagrange en fonction des caractéristiques de la vidéo
d’entrée en utilisant la distribution des résidus transformés au niveau du macrobloc. Le but

recherché est d’augmenter la performance de codage de 1’espace débit-distorsion.

Nous appliquons plusieurs modéles aux coefficients résiduels transformés (Laplace,
Gaussien, densité de probabilité générique) au niveau du macrobloc pour estimer le débit et
la distorsion et étudier dans quelle mesure ils correspondent aux vraies valeurs. Nous
analysons ensuite les bénéfices et désavantages de quelques modeles simples (Laplace et un
mélange de Laplace et Gaussien) du point de vue du gain en compression et de 1’amélioration
visuelle en rapport avec le code de référence du standard H.264 (amélioration débit-

distorsion).



VIII

Plutdt que de calculer le multiplicateur de Lagrange basé sur un seul modele appliqué sur
toute la trame, comme proposé dans 1’état de 1’art, nous le calculons basé sur des modéles
appliqués au niveau du macroblock. Le nouvel algorithme estime, a partir de la distribution
des résidus transformés du macrobloc, le débit et la distorsion de chacun, pour ensuite

combiner la contribution de chacun pour calculer multiplicateur de Lagrange de la trame.

Les expériences sur des types variés de vidéos ont démontré que la distorsion calculée au
niveau du macrobloc est proche de la distorsion réelle offerte par le logiciel de compression
vidéo de référence pour la plupart des séquences vidéo testées, mais un mod¢le fiable pour le
débit est encore recherché particuliérement a trés bas débit. Néanmoins, les résultats de
compression de diverses séquences vidéo montrent que la méthode proposée performe

beaucoup mieux que le Joint Model du standard H.264 et un peu mieux que 1’état de ’art.



MACROBLOCK LEVEL RATE AND DISTORTION ESTIMATION APPLIED TO
THE COMPUTATION OF THE LAGRANGE MULTIPLIER IN H.264
COMPRESSION

Alexandru COTOROS PETRULIAN

ABSTRACT

The optimal value of Lagrange multiplier, a trade-off factor between the conveyed rate and
distortion measured at the signal reconstruction has been a fundamental problem of rate

distortion theory and video compression in particular.

The H.264 standard does not specify how to determine the optimal combination of the
quantization parameter (QP) values and encoding choices (motion vectors, mode decision).
So far, the encoding process is still subject to the static value of Lagrange multiplier, having
an exponential dependence on QP as adopted by the scientific community. However, this
static value cannot accommodate the diversity of video sequences. Determining its optimal

value is still a challenge for current research.

In this thesis, we propose a novel algorithm that dynamically adapts the Lagrange multiplier
to the video input by using the distribution of the transformed residuals at the macroblock
level, expected to result in an improved compression performance in the rate-distortion

space.

We apply several models to the transformed residuals (Laplace, Gaussian, generic probability
density function) at the macroblock level to estimate the rate and distortion, and study how
well they fit the actual values. We then analyze the benefits and drawbacks of a few simple
models (Laplace and a mixture of Laplace and Gaussian) from the standpoint of acquired

compression gain versus visual improvement in connection to the H.264 standard.

Rather than computing the Lagrange multiplier based on a model applied to the whole frame,

as proposed in the state-of-the-art, we compute it based on models applied at the macroblock



level. The new algorithm estimates, from the macroblock’s transformed residuals, its rate and
distortion and then combines the contribution of each to compute the frame’s Lagrange

multiplier.

The experiments on various types of videos showed that the distortion calculated at the
macroblock level approaches the real one delivered by the reference software for most
sequences tested, although a reliable rate model is still lacking especially at low bit rate.
Nevertheless, the results obtained from compressing various video sequences show that the
proposed method performs significantly better than the H.264 Joint Model and is slightly
better than state-of-the-art methods.
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INTRODUCTION

Context

This research endeavors to find the highest quality of the video that would allow exporting a
reasonably smaller amount of bits, so that the overall coding gain is superior to the actual

onc.

Problem statement

The fundamental problem in video compression is to obtain the best trade-off between the
conveyed rate and the perceived distortion of the reconstructed video. The H.264 standard
has only the syntax standardized, but it does not specify how the optimal values, e.g. the
Lagrange multiplier, may be obtained, nor the best encoder configuration or coding
decisions. Rate-distortion optimization is originally posed as a constrained problem of
finding the minimum distortion under a rate constraint. For simplicity, this problem is
converted into an unconstrained optimization one using a Lagrangian method in which the
Lagrange multiplier needs to be carefully selected. The rate, as a byproduct of distortion
calculation and Lagrange multiplier determination, is not always well-calculated and it is a
challenge to find its best value in combination with the other two. On the other hand, the
Lagrange multiplier depends on the video source features, while the distortion should be
calculated with the help of a modern visual quality metric, based on the human visual system
(HVS). Despite these difficulties, it is believed that there is enough room for significant
improvement of the bit allocation with video quality improvement, for any type of video

content. It is supported by the huge amount of research in this direction.

In the end, the problem of finding the optimal value of Lagrange multiplier that would
determine balanced values of the pair (distortion, rate) from the standpoint of video quality
and bit allocation is fundamental in these respects. Huge investments have been injected in

the related industries (entertainment, communication, social media, business, defense, health,



video surveillance, traffic management) that made video so widespread and continually
growing expressing the need to visually communicate at higher resolutions. YouTube, the
largest and most popular user-generated video-hosting site, has demonstrated the insatiable
and widespread demand for video content. In 2011, the site reported one trillion video
viewings in total - an average of 140 viewings per capita, on the entire world population; and

reports that approximately four billion hours of video are watched per month (Atkinson

2012). These staggering figures apply for just one site - and the demand is ever-growing.
Indeed, many broadcasting corporations have responded to the increasingly web-based desire
for content and have made television shows available for streaming off their individual

online sites (Barker, 2011). Ever since the slow but sure decline of video rental businesses

like Blockbuster (Carr, 2010), which loaned popular titles on physical disks, other companies
have taken up the torch of modern video subscription services. Netflix has seen its consumer

base grow to 30 million subscribers in 2012 (Etherington, 2012), and other providers such as

iTunes (Yarow, 2013) and Amazon Video (Stone, 2013) have been growing steadily as well.

One of the most important factors in the exponential growth of video demand is the
combination of social integration with increasingly more popular mobile devices. YouTube
reports 500 years of video being watched every day just through links on social platforms

like Facebook, and 700 videos being shared every minute on Twitter (Atkinson, 2012).

Bandwidth demand for mobile video has exploded since the growth of ever-more capable

portable devices, especially in the smartphone and tablet sector (Kovach, 2013). The

adoption of and desire for high-quality video has been a leading force in the hunger for
greater bandwidth capacity, speed and reliability, in the form of residential, corporate and
cellular data availability. Especially in the case of the latter, telecommunications companies
have invested billions of dollars into emerging technologies, like long-term evolution
networks that ensure faster and more reliable data transfers, while increasing bandwidth
capacity. The mass-adoption of these technologies by consumers will ensure their long-term
sustainability, although predictably, speeds are bound to suffer as more traffic is introduced.
The heaviest burden on these networks is undoubtedly the transfer of video content — whether

it is video conferencing over services like Microsoft’s Skype or Apple’s Face Time, watching



television (TV) shows on-the-go, or uploading home videos straight from mobile devices.
Clearly, there is an increasing demand to communicate and share information today that is

only the beginning of the years to come.

Short literature overview

The Lagrange multiplier A, the balancing factor between rate and distortion in rate-distortion
theory, evolved with the versions of the video standards. While H.263 used an expression
depending on the square of the quantization parameter (QP) only, H.264/AVC (Advanced
Video Coding) promoted a value that grows exponentially with QP, but both expressions of

A are static, regardless of the sequence. The state-of-the-art approach (Li and others, 2009)

has set the trend of using variable Lagrange multipliers, adaptive with the statistical
properties of the video content, which resulted in a different value of A for each frame. This
method allows getting compression improvements, especially on slow paced videos. New
visual quality metrics closer to HVS, such as the structural similarity index (SSIM) have

emerged, replacing the sum of squared errors (SSE) and giving a boost to A calculated per

frame and adjusted at the macroblock level as (Wang and others, 2012) propose.

The thesis is organized as follows: Chapter 1 centers on basic concepts related to video
compression and rate-distortion theory whereas chapter 2 presents the state-of-the-art
approaches and various types of distributions for the transformed residual coefficients. In
chapter 3, the focus is on the Laplace and Gauss equations for rate and distortion, while the
fourth one outlines the methods to determine the Lagrange multiplier at the macroblock level.

Chapter 5 presents the experimental results. Chapter 6 concludes this thesis.

Contributions

This work proposes a new algorithm to dynamically adapt the Lagrange multipliers based on

the distribution of transform residuals at the macroblock level, whose purpose is to improve

the performance in terms of rate-distortion.



We study the estimation of rate and distortion functions, at the macroblock level, using
various probability distribution functions for the transformed residuals, choosing from
Laplace, Gauss, generalized Gauss and a generic, numerically computed, probability density
function (pdf). We then conceive an algorithm for computing the Lagrange multiplier based
on each macroblock’s rate and distortion functions. This permits selecting the most
appropriate pdf per macroblock instead of assuming that a single distribution applies to the
whole frame. This permits to estimate adaptively the most appropriate A for each frame
based on macroblock’s statistics and use it both at the motion compensation and mode

decision stages of the compression.



CHAPTER 1

AN OVERVIEW OF VIDEO COMPRESSION

In this chapter, the fundamental notions and basic functionality of the H.264 standard are
presented, followed by a description of the Lagrangian multiplier technique, as an efficient
way to solve the rate distortion optimization problem. Finally, a block diagram summarizes
the way the rate distortion optimization mechanism integrates with the main coding flow and

how their functional relationship may be exploited for the benefit of the video compression.

1.1 Basic concepts in the H.264 standard

H.264/MPEG-4 Part 10 AVC (Advanced Video Coding) is the standard for video
compression that is the most widespread. It is based on concepts such as prediction, motion
estimation, motion compensation, mode decision, transformation, quantization, entropy

encoding, deblocking, visual quality, that are described next.

1.1.1 Prediction

The compression performance of the encoder depends on the efficiency of the prediction
methods. In order to create a slim residual, as scarce as possible of non-zero data, an accurate
prediction is detected and extracted from the original macroblock. Thus, the best match of the
current block, chosen inside one of the designated reference frames, is chosen so as to

minimize the necessary bits to encode the motion vectors.

The prediction block found is further used to generate the residual transformed coefficients.
In the case of the intra prediction, the best match of an I-type macroblock is searched by
using the adjacent and previously coded blocks in the same slice (frame). In this way, one

exploits the existing spatial correlation between the current block to be encoded and its



neighbors. The best intra prediction is searched at different block sizes. In AVC there are 9
possible prediction modes for a 4x4 and 8x8 luma blocks as illustrated in Figure 1.1.

For a luma macroblock or chroma block there are four possible intra prediction modes in
AVC as illustrated in Figure 1.2. In order to increase the coding efficiency, the most probable

prediction mode is calculated as the starting point before entering the search phase.

Since the nearest samples in the signal are not fully independent and identically distributed
(i.1.d.), high correlations between them exist in the temporal domain, i.e. between temporally

adjacent frames. The correlation degree increases with the sampling rate.

Figure 1.1 4x4 intra prediction modes.
Adapted from (Richardson, 2010)

Inter prediction comes into play, taking advantage of the previously reconstructed frames,
available in the decoded picture buffer (DPB), thus motion compensating the encoding with
the offset between the original and its prediction. The macroblock/block estimate is searched

in a region, usually a 32 pixel square, centered on the original macroblock.



The current macroblock can be predicted as predicted (P) type (also called inter) when the
samples chosen as reference are selected from the list of past encoded frames or bidirectional
(B) type, in which case, the prediction is based on samples in the list of past and respectively

the list of future encoded frames, from the standpoint of displaying order.

Figure 1.2 Intra 16x16 prediction modes.
Adapted from (Richardson, 2010)

A (P/B) Skip mode, which is only permitted in P/B slices, occurs when no data — MVs
(motion vectors) differences and transformed residual coefficients - are transmitted to the
decoder. Yet, the macroblock data is reconstructed at the decoder, through interpolation of
the previously coded data, using the motion compensated prediction with a MV derived from
previously sent vectors of a single reference frame in the case of P-Skip mode, or from two

adjacent reference frames in the case of B-Skip Direct mode.

When the motion in the scene is so complex that the macroblock size would be too big to
observe it in detail, the macroblock is divided into partitions (8x16, 16x8, and 8x8) and
further sub-partitions of the block 8x8 (4x8, 8x4 and 4x4) as illustrated in Figure 1.3. Though
the partitioning has the drawback of increasing the amount of motion vectors to transmit,
looking for smaller partitions (8x8, 4x8, 8x4, and 4x4) has the benefit of decreasing the
energy of the signal difference between the original and the best match. The optimal

prediction of a macroblock (block) is always accompanied by its associated motion vector.
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Figure 1.3 Macroblock/sub-macroblock partitions for interframe coding.
Adapted from (Richardson, 2010)

The motion vector refers to the offset between the positions of the current partition and its
best prediction in the reference frame(s). It can point to integer, half or quarter pixel positions
in the luma component of the reference picture, depending on the pixel accuracy with which
the search is performed. The half-pixel luma samples are generated using a 6 tap finite
impulse response (FIR) filter applied to integer-pixel samples in the reference frame, while
the quarter-pixel samples are inferred through linear interpolation between adjacent half pixel
samples. Alternately, in order to increase the motion accuracy at 4:2:0 resolution, the quarter
pixel positions are calculated for chroma samples using a 4 tap FIR to interpolate between

the neighboring integer and half pixel positions.

The motion estimation process, available for inter-prediction only, defines the space of pair
solutions (predicted region;, MV;) that are searched upon. The best prediction does not
necessarily involve the minimum effort to encode its motion vector (MV). Although small
(sub) partitions offer the best estimate, encoding their motion vectors can incur a significant
number of bits. The spatial and temporal correlation between nearby partitions is often found
at the level of their motion vectors; hence the motion vector of a block can be predicted from
those associated to the previously coded blocks. The motion vectors prediction applies
spatially, by considering the median of the surrounding blocks MVs. What is encoded in the
macroblock’s header is the difference between the current MV and the predicted motion

vector MVp.



The outcome of the prediction phase for the current block is the estimated block and the
associated motion vector that is used to motion compensate the encoded macroblock with
respect to reference frame(s). Only the motion vectors differences are encoded in the
bitstream, namely in the macroblock header, while the prediction is further used to shape the

coefficients of the residual block.

Among the most efficient methods of finding the best prediction are the zonal search
algorithms represented by PMVFAST (Tourapis, Au and Liou, 2001) and its extension,
Enhanced Predictive Zonal Search or EPZS for short (Tourapis, 2002). PMVFAST enhances

the speed and video quality by considering the following as initial predictors: the motion
vectors of spatially adjacent blocks in the current frame, the (0, 0) motion vector, the median
predictor, and the motion vector of the collocated block in the previous frame, all, as a matter
of temporal domain correlation. It introduces reliable early-stopping criteria, at any check-
point, based on correlations between adjacent blocks, though fixed thresholds are used to

compare with the sum of absolute differences (SAD) values.

The highly efficient EPZS algorithm, improves upon PMVFAST by considering at prediction
stage several highly likely predictors, based on multi-stage checking pattern. Key to its
performance is the fact that the MVs of the current block can be highly correlated with the
MVs of the spatially and temporally adjacent blocks and the introduction of the accelerator
MYV, to model the variable speed movement of the collocated block with respect to the
previous two encoded frames. The current block can also be highly correlated with the
adjacent blocks to the collocated block in the previous frame. The effect of these last
predictors translates into decreasing entropy of the differences between EPZS MVs
compared to PMVFAST MVs.

SAD, the distortion measure between the current frame /¢ and i-th previously encoded frame
I - i, displaced by MV with the components (vy, Vy),

SAD(v,,v,) = ZZ}ZJ L (x+m,y+n)—1I_(x+v . +m,y+v +n)] (1.1)
where M ,N e {4,8,16}
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is compared to the thresholds that are adaptively calculated in the case of EPZS. Simplified
search patterns, square or diamond of order one proved beneficial, significantly reducing the

number of checking points and algorithm complexity.

The result of EPZS is a significant reduction of bits necessary to encode the MVs.

1.1.2 Residual coefficients

The prediction stage is lossless and partially removes redundancy by extracting the best
matching estimation from the current macroblock (partition/sub-partition). The process of
motion compensation takes into account the difference between their positions in terms of
motion vector differences (MVD). The more precise the prediction is, the less energy in the
residual remains, and the data becomes easier to compress to lesser bits. The residuals, as a
difference between the original and predicted signals, contain much less energy than either

component, so it requires fewer amounts of bits to be sent to the decoder.

As a matter of fact, since the best mode decision depends on finding the most suitable
Lagrange multiplier to encode the macroblock, modeling the residuals has become a central

problem in rate-distortion optimization (RDO).

Although the majority of natural phenomena and processes statistically behave in the
Gaussian way, the residuals in video compression do not quite follow the same path. Similar
to audio signals compression, the residuals should behave according to Laplace probability
distribution only. In reality, as will be shown in chapter 4, at smaller QP, almost every
sequence contains a percentage of Gaussian-distributed residual coefficients, and there is a
tendency of macroblock residuals’ shape to morph from Laplace to Gauss distribution, when

QP decreases.
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The central problem of process modeling from the standpoint of macroblock distribution of
residuals has been to determine the suitable kind of probability density function (pdf), by
adequately evaluating its correctness according to the existing criteria of goodness of fit.
Further, using several mathematical models of distortion and entropy, based on distribution
of residuals, one can estimate better expressions for Lagrange multipliers.

1.1.3 Transform and quantization

The purpose of DCT is to further de-correlate, compact and translate the residual data into
the frequency space, represented by the DC(zero frequency)/AC(non-zero frequency)
transformed coefficients. In H.264, non-unitary and signal independent core matrices are

defined for the stages of forward and inverse transforms, respectively of a 4x4 block:

11 1 1] 11 1 1 (1.2)
21 -1 =2 o2 12 -l
Cf4"4_1 -1 -1 1 Cuans = 1 -1 -1 1
12 2 -] /2 -1 1 -1/2)

Alternatively, the transforms Cygxg and Cigxg for 8x8 blocks processing exist.

The purpose of the transform is to decorrelate the input signal X from the product C,, .XC;.

Since the forward transform is not perfectly unitary, a diagonal matrix is hard to obtain, yet,

beneficial is the fact that the signal energy is compacted in as little coefficients as possible.

Figure 1.4 The forward transform and quantization.
Adapted from (Richardson, 2010)
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At the end of the forward transform illustrated in Figure 1.4, the energy gets redistributed and
concentrated into a smaller number of coefficients which makes it easier for entropy
encoding. Although the product of orthogonal matrices for forward (Cuxa) and inverse (Cigxa)

transform, even normalized, is not perfectly equal to unit matrix, their elements were

intentionally multiplied/rounded to get a minimal set {£1,12, i1/2} of values that make the

transform easily implementable, by using only additions and left/right bit shifts. This way

one can avoid overwhelming floating point multiplication.

Due to the reversibility of the integer DCT, whose inverse matrix can be obtained through the
transposing of the normalized core transform (unitary), the overall forward/inverse transform

is lossless as well, as is the prediction stage.

In the case of 16x16 intra coded luma blocks and all-dimensions chroma blocks, the DC
coefficients are further de-correlated through a DC 4x4 Hadamard transform. In the
H.264/AVC standard, the transform and quantization phases overlap in order to minimize the
computational effort that would otherwise be overwhelming for the processing unit(s) had

they been performed separately.

In the intra-frame coding, DCT is applied to the macroblocks pertaining to the frame itself,
while in inter-frame compression its input is defined as the difference between the current

block and its prediction.

In addition, a normalization step, necessary to orthonormalize the core integer transform, is
integrated with the quantization phase in order to reduce the number of multiplications. Up to
this point, taking advantage of the spatial and temporal redundancy and de-correlating the

signal, the prediction and transform stages are deemed as lossless steps.

The quantization process is the only lossy phase in the encoder, accounting for the trade-off

between the compression performance and the perceived visual quality.



13

Figure 1.5 Inverse quantization and transform.
Adapted from (Richardson, 2010)

At the end of the re-scaling and inverse transform illustrated in Figure 1.5 the reconstructed
macroblock that emerges can be compared against the original one in order to assess the

distortion.

While from the energy compaction standpoint, the Karhunen—Lo¢ve transform (KLT) is the
best method. Its transformation matrix depends on the input signal statistics and lacks

computational speed compared with the discrete cosine transform (DCT).

The quantization seen as a down scaling/re-scaling process of signal discretization
/reconstruction is built on the linear scalar scheme containing the dead zone (DZ), an uniform
threshold scalar quantization (UTSQ), and a nearly uniform reconstruction quantization

(NURQ) as described in (Sun and others, 2013a) and (Wang, Yu and He, 2011). The

rounding offsets (z, /) domain of the forward quantization and reconstruction, illustrated in

Figure 1.6, are determined as:
ze(0.5...1), f€(0...0.5) under the linear constraint z—f =c, ce (0.5...1) (1.3)

with optimal values for intra (z = 2/3) and inter (z =5/6) coding.

LR BIF N H Y. {2+ 1]
. i T i’ 0 - IR} T, L} T
1 [ | [ | ]
1 i —1 » —= — 1 -
B, M " b A
e I T+ Tt = =(] == e [
# Bcooonataction leve. I Cwancization threshold

Figure 1.6 DZ + UTSQ/NURQ scheme.
Adapted from (Sun and others, 2013a)
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A non-linear quantizer would appropriately reduce the amplitude of the transformed data, but
would have to adaptively configure the threshold parameters (z, f), based on the density of

the transformed signal’s pdf.

1.14 Mode decision and the macroblock encoding

Mode selection is the process of determining the best block partitions to encode a

macroblock. It is governed by the RDO process, as presented in pseudo code in (Richardson

2010) which takes into account the available modes shown in Figure 1.7.

For every macroblock
For every available coding mode m
Code the macroblock residual through DCT and quantization using the specific
MV:s for that mode m
Calculate R, the number of bits required to code the macroblock
Reconstruct the macroblock through inverse quantization and IDCT
Calculate D, the distortion between the original and decoded macroblock
Calculate the mode cost Juone , with appropriate choice of Lagrange multiplier
end
Choose the mode that gives the minimum Juone
End
The calculation of the mode cost Juope was presented in section 1.2.1.

Figure 1.7 Available prediction modes.
Adapted from (Richardson, 2010)
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1.1.5 The bit cost of coding a macroblock

During the mode decision stage, when various modes are tested, the final decision is made
when the minimum is attained by the cost function Juooe . The number of bits necessary to

encode with the best mode is given in principal by two components (Richardson, 2010):

- The header bits, which contain the macroblock mode (I/intra, P/B inter coded), the
prediction parameters (the entry (es) in the reference list(s), motion vectors differences for

P/B macroblock, the search accuracy: full pel, (FPel), half pel (HPel), quarter pel (QPel).

- The transform coefficients bits as the bits necessary to encode the quantized transformed

coefficients, CBP, QP, optimal mode.

1.1.6 Entropy encoding

The entropy coding is the last lossless stage of reducing the video information redundancy.
The quantized coefficients are reordered through a zigzag scan to group together the non-
zero (DC) values at the beginning of the run-length encoding, followed by the higher

frequencies (AC) coefficients, most of them being runs of zeroes.

CAVLC (Context-based Adaptive Variable-Length Coding) maps the coefficients to a series

of variable length codewords, using Huffman codes, where frequently-occurring symbols are

represented with short variable-length code (VLC) (Richardson, 2010). It uses a context
adaptive scheme based on several VLC look-up tables containing the updated statistics of the

symbols to encode.

Unlike CAVLC, whose drawback is the assignment of an integral number of bits for each
symbol, CABAC (Context-based Adaptive Binary Arithmetic Coding) encodes the whole
message by mapping it to a subunit number. It uses context models (probability tables) and
binarization schemes that feed the arithmetic coding engine with the necessary updated

statistics of the symbols thus eliminating the multiplications operations. CABAC, though
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slower than CAVLC, achieves a better compression by allowing fractional number of bits to

represent a symbol, thus approaching the theoretical optimal compression ratio.

1.1.7 Visual quality and encoding performance indexes

Of all well-known measures utilized to compute the distortion between the original 7/ and the

decoded /’ images with resolution of (M.N) pixels,
Dsse=3 U (x.y)=1'(x. p)F 14

Duse = Dsse/(M .N)
DSAD=2f}’7:|1(x,y)—lv(x,y)| (1.5)
Dsarp = az XM;ZJ T(I(x,y)—1(x,y))|, where T = Hadamard transform (1.6)

the metric MSE (mean squared error) is given preference for its meaning — the energy of the

error signal (Wang and Bovik, 2006) and because it is preserved through unitary transform.

Despite being deemed as an objective visual quality measure, it is poorly correlated with the
perceived image quality. Peak signal-to-noise ratio (PSNR), as an objective visual
performance index, which is based on MSE, it does not relate with the human perception as

well.

2 1.7
PSNR = IOIOgIO(ZS—S) (19

MSE

Nevertheless, Table 1.1., as outlined in (Bouras and others, 2009) summarizes the
correlation between the values of PSNR and the perceived visual quality levels stated by the
mean opinion score (MOS), as a subjective visual quality index. Through its mapping to

MOS, PSNR gets an additional feature that brings it closer to the human visual perception.



Table 1.1 PSNR to MOS mapping.
Adapted from (Bouras and others, 2009)

PSMR{LE) W O3
237 Exvellenl(3)
2137 tinnd (4]
25-31 Fair (3]
20 25 roor (2)
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For this reason and the fact that PSNR is still the performance index of choice, PSNR was

adopted as the index to measure the visual quality of our experiments.

1.2 Rate distortion optimization in H.264

Since the video sequences mainly contain motion (quantified as motion vectors) and content
(coefficients resulting from techniques to reduce spatial and temporal redundancy, quantified
as luma and chroma total runs and trailing ones), the task of the encoder is to find the optimal
set [ of options of the coding parameters, i.e. encoding mode and side information (MVs-
motion vectors, macroblock type, skip information, delta QP), so that the distortion is

minimized and the resulting bitstream does not surpass a maximum allowable bandwidth.

The central problem of the rate distortion optimization consists in solving the bit allocation

approach, which has the constrained form as described in the equation (1.1).

min (S, 1), where R(S,1)<Rc (1.8)
1

The terms D(S, 1), whose minimum is looked for, and R(S, I) represent the total additive
distortion and rate respectively, for a quantized source signal S under an optimal set / of
options, chosen during the encoding. / may include an efficient motion estimation (ME)
method like Enhanced Predictive Zonal Search (EPZS), appropriate QP range, decision

thresholds, reconstructed levels, rounding offsets.
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1.2.1 Cost function

A practical, unconstrained form, useful to the discrete codec, looks to achieve the global
minimum of the cost function J:

J(S,I|A,0)=D(S,1,0)+AR(S,1,0) (1.9)
for a certain value of the Lagrangian parameter A that multiplies the rate term and it is

referred to as the bit-allocation technique using the Lagrange multiplier (Wiegand and others,

2003). In the equation above, Q is the quantizer value which is related to the quantization

factor QF.

The value of Lagrange multiplier can be determined for the convex hull of the rate-distortion

(RD) curves as:

8J(S,]|/1,Q):0 (1.10)
oR
Thus
__D__ oo (L1
dR  OR/OO

Finding its optimal value is a challenge for the research. With the new formulation, it is not
anymore necessary to look for the minimum value of the distortion, since a zero distortion
would lead to a large bitrate. Instead, a trade-off between the distortion and rate, attainable
through a certain set / of coding parameters, can lead to an overall global minimum of J. The
sum of the minimums of the local Jus cost functions, calculated for each macroblock MB
with the optimal coding options for ME and MD (mode decision), would result in the
minimum of J function at the frame level if we make the assumption that coding of MBs are
independent. The coding options may contain, among other parameters, the frame type
(INTER, INTRA), the transform coefficients values, the quantizer value Q, the motion
vectors for interframe, the reference list index(es) pointing to previously encoded frames.
Each macroblock has multiple mutual temporal and spatial dependencies with the neighbors

in the same frame or former/next encoded frames, which induces a large dependency and
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complexity in the codec, making from it a NP-hard problem, thus preventing from deriving a
tangible analytical form of global J. The difficulty to solve the optimal codec increases with
the frame’s resolution. The Cartesian product of all coding mode parameters forms the space
from which the optimal combination is selected that minimizes the cost function. For
progressive-scanned video H.264/AVC seven possible macroblock modes (INTRA4x4,
INTRA16x16, SKIP, INTERI16x16, INTER16x8, INTER8x16 and INTERS8x8) are
considered along with 3 sub-macroblock types (INTER8x4, INTER4x8, INTER4x4)
available in INTER8x8 mode only. The optimal bit allocation method using Lagrangian

multiplier in inter modes encoding applies to both to ME and MD, in this order.

The Lagrange multipliers method is firstly applied at the ME level to find the best match in
the decoded reference frame(s). Unlike the MD stage, the ME optimization process calculates
the motion compensation distortion between the original and matching block, displaced with

using the motion vector (MV), while the rate refers to the bits to encode M Vs difference.

The variable number of modes used to find the best macroblock match is based on a similar
cost function minimization, which depends on the search method and the refinement degree
(FPel, HPel, or QPel). PMVFAST and EPZS have the best results in terms of search time.
The successful MV candidate ms(M B) for the macroblock MB is found by solving the
equation:

ms(MB) = arg min Juorion(MB, mi) | where (1.12)
me{MV}

Jvorion(MB, mi) = Dorp(MB, ni) + Avoron. Rvorion(MB, mi)
where Dpor(MB,mi)is the distortion of the displaced frame difference calculated between the
original macroblock and the predicted one, displaced with the motion vector ., according

to (Wiegand and Girod, 2001). The term Rwomov(MB,n#) stands for the bitrate necessary to

encode each separate mi candidate. The phase of finding the MV is performed for interframe

coding only.
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The outcome of the ME stage is represented by the signal difference S(MV) and the allotted
bitrate to encode the final MVs, as displacements of all blocks, relative to the reference
frames. The signal S(MV) that contains the prediction error between the predicted and
original MB, is further processed - transformed, quantized, entropy coded - during the MD
phase, to get the rate (dependent on the transformed coefficients, quantization step, side

information and implicitly MV).

For the MD phase the optimization problem becomes:
I" = arg min Jwope(Sk, It | Q) , where (1.13)

Iie {modes}

Jope(Sk, I | Q) = Drec(Sk, I | Q)+ Avope. Rrec(Sk, Ik | Q)

where the Sk denotes the macroblock partition given the coding option /x and quantizer step
Q, Drec represents the distortion between the original and reconstructed MB for the coding
option /x, while Rrecstands for the rate obtained through entropy encoding. The bit
allocation in the process of finding the best mode is performed for both intraframe/interframe

coding and may include the SKIP mode.

All the aforementioned macroblock and sub-macroblock modes Ik are tested; the one (/")
whose cost function value is minimal is selected. Thus, the role of the mode decision is to
further refine the signal previously acquired during the motion compensation coding and find

the best rate by testing for optimal set of encoding parameters.

1.2.2 Optimal Lagrange multiplier

The optimal value of the Lagrangian parameter depends on multiple interdependent
parameters; its value must be adjusted in accordance to their values, at frame level and
further refined at MB (block) level. Among those parameters, the quantization step Q, the
side information (header bits, MV, quantized zeroes), the DCT (forward Discrete Cosine

Transform) transformed and quantized coefficients are the most important.
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Wiegand and Girod (Wiegand and Girod, 2001) have investigated the relationship between

an efficient A and the DCT plus the scalar quantizer. The expression of Awope was
experimentally deduced upon encoding the INTER frames of several test sequences with
various values of Amomov, QP and distortion metrics (SAD, SSE).

o2 (1.14)
Awope | sap & sse = (0.85).2 3

ﬂJ\/[OHON | SAD =~ ﬂMODE

/IMOTION | SSE = //iMODE

Evidently, the only parameter of the static A is the quantization parameter QP, as opposed to
the Q step that is generally used when determining A based on the statistical features of the

input sequence as in (Li and others, 2009) and (Wang and others, 2012). While QP ranges

from 1 to 51, Q step encompasses a domain 0.625...~230. For the same interval, Avope values
are (0.067... 6963), while Amorov values belong to the interval (0.26...83.44) when the

distortion metric is SAD.

The Lagrange multiplier determined with the formulae above is static and does not depend in
any way on the sequences’ characteristics (the type of distribution of residuals, the motion
vectors, the percentage of skipped macroblocks, the percentage of quantized zeroes, etc.), in
other words, two different sequences in terms of the objects’ motion speed in the scene,
would be encoded with the same A for a given QP. It has the drawback of considering the
macroblocks as being identical from the standpoint of the statistical content. The standard
encoding method uses Aur as described in equation 1.6 is not regarded as optimal because it
was determined while looking for the minimal distortion, which only occurs at higher bit
rates. It is only at higher rates that A (which converges to A ) depends asymptotically on QP
only. However, it might be more efficient to encode with a distortion just a bit higher and
have the benefit of a much lower bitrate, if possible. We can look for values of Athat are
more appropriate for the encoding of the lower bit rate, typically represented by slow-paced
sequences and the only solution is to relate 4, besides QP, to the statistical characteristics of

the input content that may dictate the value of A too. Encoding the slow-paced sequences with
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adaptive values of A other than Amr may result in lower bitrate at the same video quality or

even better.

Since the video sequences are so different in any terms and features, the current expression of
Awmope / Amorion is a wasteful approach in terms of bit allocation. An adaptive A with the
nature of the sequences, able to be used at lower bitrate too, would be more appropriate,
necessary, and sustainable with the ongoing technological progress, since Lagrange
multipliers will feed on these properties as they become available during the sequence
encoding. The statistical features and the probabilistic nature of the video sequence are the

key of the new optimal compression algorithms.

1.2.3 Lagrange multiplier for high rate encoding

An old-fashioned, empirical Lagrangian multiplier valid at high rates only is used in
encoding. It is employed at low rates too, even though the low rate region is unstable and less
predictable than the high rate domain. Consequently, there are no models for this region,
whatever the sequence type (fast, medium or slow). The expressions of rate, distortion and
Lagrange multiplier for the video compression standard H.263 was outlined in the articles

(Wiegand and others, 2003), (Sullivan and Wiegand, 1998),and (Wiegand and Girod, 2001).

The quadratic dependency in H.263 was replaced by H.264’s exponential behavior but the

dependency is still static with any sequence, as outlined in Table 1.2.

Table 1.2 Lagrange multiplier with high rate assumption

Distortion Rate AmopE Awmorion
H.263 0.850°
2 2
H.264/ D= Q_ R(D)=a ln(%) o2 Amorion | sse = AmopE
AVC 3 (0.85).2 3 Awmorion | sap =~ Amope
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1.3 General block diagram of video compression

A video encoder is a system that receives the video source as input and outputs an
approximation of it in order to deliver the minimum amount of bits that still maintains a high

quality of the image. Its components, featured in the previous subchapters, may be grouped

according to (Richardson, 2010) into several models, of which, the most important are the
prediction model (spatial and temporal), the image model (predictive coding, transform

coding and quantization), and the entropy encoder.

In a more detailed picture, the encoder in Figure 1.8 contains some of the elements of the
RDO mechanism as well. The video source is represented by the current frame, from which
the current MB is selected for encoding. The prediction model, which exploits both temporal
and spatial redundancy, finds the best estimation (multiple prediction blocks when MB is
partitioned as in Figure 1.3) from the previously encoded frames, and partially removes the
redundancy between the original macroblock (MB) and the estimated one in spatial and
temporal domains. This is where the RDO mechanism, by means of Amoron of the equation
(1.12), trades the number of bits to encode the MVs for the distortion calculated between the
current and estimated MBs. Once the best prediction and MVs are found, the residual signal
as a difference between the original MB and its prediction, motion compensated, is fed to the
image model. The residual is transformed, quantized, inverse quantized and inverse
transformed to produce the decoded residual which is added to the prediction to form the
reconstructed MB. The optimal mode is concurrently decided via Awmopr of the equation
(1.13) that helps negotiate between the number of bits to encode the transformed and
quantized coefficients, and the distortion D(mode), calculated between the reconstructed an
the original MBs. The bits required to separately encode the MVs difference and the

transformed/quantized coefficients of the best mode, are included into the final bitstream.

In the current reference implementation of H.264, the block that generates the Lagrangian
multipliers for the ME and MD stages, uses empirical values and is totally independent of

any of the processing blocks in the diagram. In this research, we improve the design by
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connecting it to the transform block of the mode decision loop and propose a new algorithm
to dynamically adapt the Lagrange multipliers with the image content, thereby improving the

performance in terms of rate-distortion.






CHAPTER 2

LITERATURE OVERVIEW

2.1 Lagrange multiplier selection

In H.264/AVC standard the Lagrange multiplier selection occurs at both motion estimation
and mode decision levels, this is why it has 2 components: Amoriov and Awmope . Yet, only
when the SSE metric is utilized in both processes these values are deemed equal, which is in
line with the way the distortion (PSNR) is calculated. The value of Awomov displays a weak
dependency on the search precision (FPel, HPel, QPel) and method (full search,
UMHexagon, EPZS with its refinement patterns) utilized in motion estimation. The best
prediction of a macroblock, once established, is used throughout the mode decision process
to establish the best trade-off between rate and distortion achievable for a certain encoding
mode. Even with a suboptimal prediction (generated by a sub-optimal search method) the
mode decision is the one that finally decides what is the best mode for a macroblock to be
encoded with, so the mode decision outweighs in importance the motion estimation stage. It
becomes stringent that the value of Lagrange multiplier is the right one, especially for the
mode decision stage; and this is an area where the research has been focusing in the latest

decade.

Currently, the reference software (Siihring, 2013) allows the encoding of the current MB by
using up to 16 frames as reference. A frame is encoded using one of the patterns I, P, B. To
encode a P frame, each MB, based on the RDO mode decision, (High, High Fast, and Low)
can be encoded as 16x16 8x16 16x8, 8x8 and each block from an 8x8 partition can be
encoded as an 8x4, 4x8 or 4x4 block. To encode a 4x4 block pertaining to I-type frame there
are 9 possibilities based on the samples supplied by the neighborhood.

Besides, in the process of the motion estimation, there are multiple ways of finding the best

match for a MB given the reference frame(s).
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When the discrete J cost function is calculated for a MB all these possibilities come into
play, and the optimum value is the one for which the minimum of J is achieved among the

entire set of possible configurations.

The H.264/AVC reference software implements a one-step encoding algorithm at the
macroblock level, where the value of Lagrange multiplier is calculated by taking into account

the rate and distortion dependency on the quantization parameter QP only.

Even so, the experiments on multiple sequences, with slow and fast movement, along with
the usage of different combinations of profiles and types (baseline, main, extended) have
proven that the rate and distortion models (or similarity as a measure of visual conformance)
also depend on many other factors among which the most important are the side information
(macroblock header bits, MV bits, frame and macroblock type, entropy model), the source
information, selection of the encoding modes, and especially the information contained in the

transformed coefficients, as pointed out in (Li and others, 2009) and (Li and others, 2007).

Indeed, more accurate rate and distortion models would have to consider these parameters as
well. The calculation of the Lagrange multiplier would then have to take into account the
partial derivatives with respect to all these parameters, for both continuous and discrete
cases. In this way, such models would get even closer to real data. Yet, an obvious downside
would be the increasing computational effort that would occur in this case. This is why, in
practice, the encoders follow the Wiegand-Girod RD model that depends on QP only
(Wiegand and Girod, 2001).

A quadratic or exponential dependency with QP is expressed in the case of H.263 or
H.264/AVC respectively. The rate-distortion model of Wiegand-Girod is based on the high
rate assumption, which allows expressing the Lagrangian multiplier Azz in terms of QP at
high rates. Any Lagrange multiplier expression, determined for any other model, should
asymptotically converge to this value, as a measure of the new approach correctness. As

such, the H.263 and even H.264/AVC adopted the Aur approach, regardless of the motion



29

degree in the scene, which experimentally proved satisfactory in combination with the
traditional distortion measures SAD, SATD, and SSE. Still, the high rate assumption might
not hold true in the case of video conferences or slow-paced sequences (ex: container.yuv,

bridge.yuv), where unnecessary bits might be sent into the resulting bitstream.

Since Ayr is only related to QP, as long as the other dependencies mentioned beforehand are
neglected, A is not optimally calculated and the calculated values of the cost function J are

higher, so the performance is weak.

The main drawback of the new models developed so far, resides in the fact that within the
calculation of the Lagrangian multiplier, the derivatives of the rate and distortion are

computed with respect to Q step (represented by the QP parameter) only.

Several trends related to bits allocation have been emerging in the recent years. Some of
them try to fit the best probability distribution function with the residual signal distribution.
Others replace the distortion with its complementary, which is based on a perceptual visual
quality metric, to explore for the optimal expression of A4, or they combine the compression
processes at the frame and macroblock levels successively optimizing for one parameter at a

time.

Their performances, benefits, and drawbacks are featured in the following sections.

2.1.1 Laplace distribution-based approach for inter-frame coding

The articles (Li and others, 2009) and (Li and others, 2007) constitute the first step taken to

model the rate and distortion functions from other perspective, beyond the traditional sole
dependence of QP. The novelty of the proposed method consists in a new Lagrange
multiplier determined at the frame level, equally applicable to all frame’s macroblocks, and
adaptive with the frame’s statistics. The algorithm efficiency was proved especially in the

case of the quasi-stationary sequences, though the authors needed to handle several special
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cases where the theoretical assumptions and the proposed model did not fit with the real-

world use.

There are several great contributions and interesting standpoints in this article, as follows:
1) The derived RD models are based on the zero-mean Laplace distribution of the
coefficients resulting from the transformed residuals. The Laplace parameter A and the

standard deviation o of the transformed residuals are related as follows:

A2 2.1)
o

The zero-mean Laplace distribution is defined as:

A (Ak) (22)

Sl X) =3

The Laplace distribution was chosen among other distributions (Cauchy, Gauss) due to its
single parameter A to be determined. It also has a good accuracy and a medium complexity
of the calculation. The hypothesis of Laplace distribution of the transformed residuals
overrides the high rate assumption, for it can be applied for low rate output too. Likewise, the
standard deviation o of the transformed residuals is strongly related to the source of video
signal, being considered an inherent statistical property of the input sequence. Consequently,
the Laplace distribution establishes itself as a unanimously agreed-upon choice for the

representation of the input signal distribution.

2) The entropy H of the quantized transformed residuals is calculated based on the uniform
reconstruction scalar quantizer, though, being dependent on the encoding method (CAVLC

or CABAC), its expression roughly represents the rate model. The authors of (Li and others

2009) refined the expression of the entropy, obtained on the following considerations:
- The probabilities of the transformed residuals, summed as the entropy, are calculated by
integrating the Laplace pdf of the uniform quantized residuals, within the quantization

intervals, corrected with the rounding offset . The offset constant values were separately

determined for intra/inter encoding, though it could itself constitute another parameter for

performance improvement.
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- The classical form of the entropy (H =-) P.log:P) was corrected in order to handle the

case of skipped macroblocks and get as close as possible to the real rate.

- Since the entropy cannot further handle the final stages of the compression (run length and
tree/arithmetic encoding), the authors were compelled to apply correction factors to the
probability Poof quantized-zeroes (computed on the dead zone) and probability P» of
quantized non-zeroes, respectively. The resulting rate model excludes the bitrate of the

skipped macroblocks.

- The ratior = Ps/ Py, where Py is the probability of the skipped blocks and Py represents the
percentage of the quantized zeroes per frame, is always sub unit. Therefore, this derived

parameter is considered as an inherent property of the input sequence too.

- A roughly linear dependency relationship, at the practical QP = 28..40 values, was
experimentally noticed between In(R / Hrefined) and the product ( A .Q). The linearity constant

S was determined under the convergence condition.

3) The closed form of the distortion model is determined by summing the second moment of

the Laplace pdf on each quantization interval.

4) The authors proved that for uniform distribution, which can be obtained from Laplace
distribution when A =0 :

A = lir(=c.Q%) (23)
as in the case of H.263. It means that when the Laplace signal extends to all frequencies

spectrum (O —>), Arsp becomes a particular case of Aur .

5) This is an adaptive algorithm whose parameters values (A, r) in the current frame are

estimated from the ones collected in the previous (up to five) frames. With the predicted
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values, the value of Az can be calculated from the derivatives of rate and distortion models

with respect to quantization step.

Finally, the Lagrange multiplier is calculated as

L __dD__2DjoQ (2.4)

OR  OR/O

The approach of Laplace-based rate distortion models has some limits, though.

Firstly, the derived rate model does not consider the side information (MV, MB type).
Fortunately, the effect of side information was taken into consideration in the escape methods

that accompany the algorithm for the cases that cannot be captured by the RD models.

Secondly, the algorithm considers that a single Laplace distribution applies to the whole
frame while different regions of the frame may have different Laplace parameters.
Estimating the Laplace parameter by taking advantage of each macroblock configuration

might be more effective.

The core algorithm and rate distortion models are derived based on several assumptions:
1) Laplace distribution of transformed residuals was the sole distribution considered
2) No side information

3) No sharp scene changes (only smooth scenes are allowed)

In order to manage the encoding of sequences with a large range of characteristics the
algorithm was supplemented with escape methods (corrections) to cope with the situations
when the assumptions above do not hold valid in the real world. A correction process is
initiated once an assumption is detected as invalid for the current frame. The correction is

considered as an adaptive process guided by a self-corrector algorithm.
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In order to detect sharp changes in the current frame, the standard deviation o, of the current
frame with respect to the previous same-type reconstructed frame is employed, and an
adjusting process for Aza, based on several constants experimentally determined, takes place.
When a non-Laplace distribution is detected in the transform residuals of the input sequence,

the index

RD1ap = Rreat. Dimodet (2.5)
Runodet. Dreat

is employed in order to appraise the proper weighting between rate and distortion calculated
using the model equations, and their real coded values in the frame. Then, the algorithm
provides formulae to clip the A value if a continuous non-Laplace (over the latest few
frames) occurred or just the current frame did not meet the Laplace distribution requirements.
In order to manage the side information (header, MV, macroblock type) in the derived

models, correction indexes (gaps between the model and the real world) for both rate and

distortion are defined.

Rg.p measures the ratio of the difference between the rates of residuals with zero motion

R(A'o,7',Q") and with motion compensation R(A’,7',Q"), and the real rate of the side

information R'rs . The Laplace parameter A'o is calculated for residuals with zero motion.

i _R(Ao,r',0)—R(A',r,0") (2.6)
R gap = 7

R
Dyap 1s calculated as the relative gain of the distortion calculated with zero motion
D(A'0,0") over the one that takes into account the motion compensation D(A’, Q") .
D(A'0,0") (2.7)
D(A', Q")

The empirically determined thresholds are used to assess the effect of the side information,

Digap = 1010g 10

either for fast/complex scenes or quasi-stationary sequences. Each evaluation of the three

assumptions is followed by a refresh process (clipping) of the Aisp back to the traditional

Aur as the last solution.
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In conclusion, the Laplace based RDO is an adaptive method to compute the Lagrangian
multiplier at the frame level, based on the information in the input sequence, that works fine
under certain conditions: Laplace distribution of the transformed residuals, no scene change

and no side information in the bitstream.

Figure 2.1 RD curves, from (Li and others, 2009)
with permission granted by IEEE

However, when these assumptions are not met, the algorithm has the necessary escape
techniques (Aza refresh technique) to switch back to the traditional Wiegand-Girod lambda
multiplier Aur .

On average, the algorithm achieves gains of 0.34dB in PSNR or 8.23% rate reduction as
illustrated in Figure 2.1. A single sequence, container.yuv, benefits massively from it, with a

gain in PSNR of 1.79dB and 32% rate reduction.

There is the inconvenient fact that the algorithm does not have great results for all sequences;
namely, even at the frame level the distribution of residuals is clearly of Laplace type, the
algorithm is however applied at macroblock level, whose distribution is not always Laplace.

This is why, in order to avoid drift, the algorithm contains correction steps.
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2.1.2 Laplace distribution-based approach for intra-frame coding

In (Li, Oertel and Kaup, 2007) the same authors of (Li and others, 2009) and (Li and others

2007), proposed an adaptive Lagrange multiplier selection, this time for intra frame coding.

The same R and D models deducted in (Li and others, 2009) were employed.

Figure 2.2 RD curves for Claire qcif.yuv, from (Li, Oertel and Kaup, 2007)
with permission granted by IEEE

A Laplace-based Lagrangian multiplier Ar,, was derived according to the variance ¢ of the
transformed residual coefficients. However, for the first frame, entirely intra-frame coded,
Ak was used since no variance information was available before the first frame. The

difference from the algorithm presented in (Li and others, 2009) reside in the fact that the

statistics regarding RDuisp, Reap, and Dep that would otherwise detect a non-Laplace

distribution of the transformed residuals and evaluate the importance of the side information

are not used. Nor the escape methods in (Li and others, 2009). Nevertheless, as in (Li and

others, 2009), the Laplace distribution parameter A gets its current value as the arithmetic

mean of the values recorded in the previous frames. The methods achieved gains of up to

0.3dB in PSNR, as illustrated in Figure 2.2.
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2.1.3 SSIM-based approach

Since the distortion calculated using the traditional measures (SSE, SAD, SATD) did not

prove to be related to the human perception (Wang and Bovik, 2006), the research focused

on other measures, capable of being better indicators of the perceived image quality. In this
way one can also avoid the use of the PSNR indicator (also related to the conventional metric
SSE) to compare the quality of the rendered sequences, since its values domain is unlimited,
and as result, it does not have a stated value or interval where the sequence quality might be

considered optimal.

SSIM is the indicator that successfully replaces the widely criticized distortion term (SSE) in
the functional J, defined as the unconstrained RD cost function to be minimized:
J=(1-SSIM)+ AR (2.8)
Although its computation is more elaborate, SSIM takes into consideration the perceptual
properties of the image - contrast, luminance, and structure — being considered an objective

quality measure.

It adds visual perception levels to the simple mathematical calculation of the error, by
considering visual properties (contrast, saturation, structure) at which the error can be

analyzed.

SSIM is calculated like its peer PSNR on all components Y, U, and V, of the image
decomposition. The overall SSIM is computed by the authors of (Wang and others, 2012) as:
SSIM = wy = SSIMY +wu + SSIMU + wv = SSIMV (2.9)

with the weights wy =0.8, wo =wyr =0.1.

SSIM is totally adaptive to the reference signal according to (Wang and others, 2004). The

value of the SSIM index at image level is calculated by averaging local SSIM values

obtained using a sliding window at both the reference and distorted images.
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Apart from its incontestable qualities in the detection of the image quality, the SSIM index
has several drawbacks. Firstly, it is a spatial static indicator since it is calculated at the
current image level and has yet to provide a hint with regard to the former or future image
quality, as it is the case with the inter frames (P or B). It faces the same issue with the
denominator as PSNR does when the error converges to 0; fortunately it uses several

empirical constants, to avoid the singularities.

Though the previous RD models and Lagrangian multipliers were derived without deeming
the perceptual qualities of the input sequence, the current research is focused on perceptual

RD models, based on perceptual measures.

The articles (Wang and others, 2012) and (Wang and others, 2011) would represent the state-

of-the art for the next generation of encoders by the novel approach they propose.

The main contributions of (Wang and others, 2012) and (Wang and others, 2011) are:

1) The best mode selection to encode the current MB, which results as a trade-off between
the distortion value and the number of necessary bits, represents the goal to be achieved by
the encoder. As a result, in the first step, the calculation of Assms is performed at the
macroblock level, with surrounding pixels participating as an extension of the current MB, to
avoid discontinuities at the original macroblock borders and to provide more samples for
calculation, hence increasing the method stability. This situation happens when the marginal

pixels of the original MB participate in the calculation of the parameters (4~ , Uy ,0x ,O0y ,
Ox ) for the current position of the 4x4 sliding windows, in both original and reconstructed

frame. Typically, three pixels wide extra side bands are added for luma and chroma
components. Thus, the MB’s distortion term of the functional J is calculated by means of

SSIM.

2) Prior to calculate Assns | SSIM and rate models are derived at frame level. As in the case of

(Li_and others, 2009), the same approach, based on the Laplace distribution of the
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transformed residuals is chosen to calculate the Lagrangian multiplier at the frame level, as a

first approximation of Assms which is further refined at the macroblock level.

3) Since the distorted frame is not available to calculate the full-reference SSIM model as
per definition, a reduced-reference model is derived. Typically, instead of calculating

(2.10)

[X(O)—Y(O)]2 Z[X(k)_y(k)]z
X(0)>+Y(0)’ +N.Ci :

SSIMrr = {1 - —
Y[ Xk +Y(k) |+ N.C

using the definition of SSIM evaluated between the original x and the distorted y 4x4 blocks,
the DCT coefficients are computed at the block level, with the same frequency coefficients

grouped into 16 subbands. The mean K and standard deviation o: are estimated for each

subband 7 of the current macroblock.

The total reduced-reference SSIM measure Mrr is computed as a product of reduced-
reference SSIM indexes of each AC frequency i through the reduced-reference SSIM

corresponding to the DC coefficients.

15 A 2.11
MRR:(I— ?0 J(l— ! Z ZDI J ( )
(200" +C) N-19"Q20" +C2)

In the final expression the coefficients D; are calculated as the second moment of the Laplace

pdf over all quantization intervals, as in the case of Laplace distribution-based Lagrangian

multiplier described in (Li and others, 2009). D; is a function depending on A and Q. Mgz ’s

design is based on the features (o,) extracted from the original frames in the DCT domain

and from residuals.

A nearly perfect linear dependence between SSIMrx and Mkr allows to predict SSIM based

on Mrr . However, the abscissa’s intercept ( Mzr ) is sequence dependent and is dynamically
estimated from the previous frame DCT transform i-th subband, while the convergence point

(SSIM, Mgg) is always equal to (1,1).
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4) The rate model is based on the entropy model H, described in (Li and others, 2009) and

does not take into consideration the bitrate of the skipped blocks, since the skipped blocks are

not coded in the final stream. As in (Li and others, 2009), the linear relationship between

In(R / Hreinea) and the product (A .Q) is fully exploited, by taking into consideration the side

information. The side information becomes important in low bitrate; the header bitrate is

proportional with the source bitrate. As in (Li_and others, 2009), the rate model is

proportional with the entropy model and exponentially increases with the product (A .QP),

where A describes the intrinsic properties of the source.

Finally, A, is calculated by minimizing J:

_ dSSIM _ aSSIM/9Q (2.12)
™M dR OR/0Q

The value of Ag,,, determined at frame level, is adapted with the inherent properties of the

source (0, ).

5) The second novelty of the paper consists in the refreshment of A,, at MB level. Any MB

(except the skipped ones) is associated the motion information, which is strongly related to

the perception quality, assessed every time by HVS.

The MV are used by motion compensation (MC) to reduce the amount of the bitrate, and
build the predicted image, used to construct the residuals, but, according to (Wang and Li,
2007), the perceptual information content in MBs is not the same in terms of motion

information content and perceptual uncertainty. The study (Wang and Li, 2007) concluded

that the Lagrangian multiplier varies directly proportional with total distortion D and inverse
proportional with total bitrate. This remark was used to adjust A at the MB level. As a result
more bits are assigned to MBs whose perceptual information content (in terms of MVs and
DCT coefficients) is more important but the perceptual uncertainty is less significant. The
weighting factor 1| that controls the adjustment of A is defined as:

Avs =1.1 (2.13)
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where A is the value calculated at frame level and:
n="4 om0 (2.14)
The spatiotemporal importance weight function was defined as:
w=1-U=(plogv:+v)—(logv,—7logc+0) (2.15)
where:
I = motion information content = self-information of the relative motion,
U = perceptual information function,

v; = relative motion vector,

vg = global background motion vector.

The constantsy ,v,7, and s are the result of the psychophysical research that employs the

power-law and log-normal distribution to determine the distribution of relative motion and

perceptual uncertainty respectively.

The variable ¢ represents the contrast measure that depends exponentially on MB’s (U ,o ).
With the assumption that the inherent properties of the input sequence can be considered
constant for a short period of time, the authors observed that the parameters A and hg
vary slowly enough to be considered constant. Consequently, they are predicted from the
previous frames. For the first frames, when the adaptive Lagrangian multiplier cannot be
calculated, the authors proposed a new expression for Ax#r , which is determined on the high
rate assumption and by using the expectation of the SSIM and uniform probability
distribution for MSE:

Aur = aQ’ —bQ"* (2.16)

The rate model proposed in (Wang and others, 2012) and (Wang and others, 2011) is valid

for high bitrate; at low bitrate the skipped blocks number increases and the source bitrate
tends to zero. The method achieved a gain of (0.002,..,0.01) in SSIM or a 5,...,21% rate

reduction, as illustrated in Figure 2.3.
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Figure 2.3 RD curves for the SSIM approach, from (Wang and others, 2012)
with permission granted by IEEE

As a conclusion, the new methods, based on the various probability distribution functions, in
particular the Laplace distribution, seem to be the key approach for the next generation of
encoders. The main benefits are the rate reduction corroborated with performance boost and

image quality closer to the HVS expectation level.

2.2 Types of distribution of the residual transformed coefficients

The article (Xie and Chia, 2008) is an exhaustive and detailed analysis of the DCT residues

from the standpoint of statistical properties. After DCT, the input can be regarded as
composite video signal of mostly uncorrelated frequencies. The distribution of DCT residues
is dependent of the DCT coefficients and the quantizer characteristics (Q, 7). Beside the DC
component, some frequencies contribute, after their quantization, to the final bitrate.
According to the authors, Xie, J., and L.T. Chia, the DC coefficients are best modeled by a

Gaussian pdf, whereas the AC components are best modeled as a Laplace source.
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Both DC and AC coefficients are passed through a uniform distribution quantizer without
threshold. Further, new models for rate and distortion are derived analytically. A rate control
algorithm based on the derived expressions of rate and distortion is also discussed. The
authors claim that their models can predict the possible distribution prior to actual encoding
and without using any empirical knowledge. However there is still a problem, namely, only

the entropy (but not the final rate) can be predicted by any of these models.

On the same note, E. Lam and J. Goodman, the authors of (Lam and Goodman, 2000), gave

an explanation as to why the most suitable distribution for AC DCT coefficients is Laplace
and how the width of the AC DCT distributions shrinks at high frequencies while preserving
the shape. The energy is smaller in higher frequency subbands and spatial correlations

contribute to the decreasing of the distribution width.

There are also other attempts to model the empirical data, made with other distribution types.

The authors of (Altunbasak and Kamaci, 2004) proposed the use of zero-mean Cauchy pdf

u (2.17)
z(l’ +x7)

pdfCauchy(X) =

claiming that it offers better fit with the AC DCT residuals than Laplace distribution. Unlike
Laplace whose parameter A can be easily deduced in relation to the variance o , Cauchy

distribution needs to have the parameter ¢ dynamically determined for each set of samples,

but has the advantage of having simpler approximated expressions for rate and distortion:

RQ)=~aQ", Q) ~b0’ (2.18)
where a,b,c, f>0. Nevertheless those expressions were determined for a rounding offset

y =1/2, no matter the frame type.

As a matter of fact, the curves R(Q) and D(Q), which were depicted for a single frame of
each encoding type (11+1P) and a range of quantization steps show Cauchy a perfect fit for
intra-compression while for interframe the low rates were advantaged by its use. However,
the results were not confirmed for a sufficient greater number of frames to draw a positive

conclusion.
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Guided by the knowledge acquired from the articles aforementioned, the first step of the
research involved the search of the best distribution to associate with the macroblocks DCT
residuals. The best candidates to take into consideration were the well-known Laplace and

Gauss distributions.

The choice is principally justified by the pdf shape, as noticed from the macroblock pdf
graphics in Figures 2.6 and 2.7.

2.2.1 Gaussian model

The reason why Gauss distribution is taken into account is due to its presence at the
macroblock level in all motion type sequences, when the criterion (2.31) is applied to each
macroblock. The Gaussian model fits macroblocks with symmetrical, mesokurtic
distributions of transformed residuals, showing concave shoulders and short, usually slender
tails. It appears more frequently at lower QP where the percentage of non-zero-mean

transformed coefficients is higher, even for slow-paced sequences, as shown in Figure 4.1.

2.2.1.1 Distribution equation

The complete form of the Gauss distribution is:
1 B [ x—pt jz (2.19)
pdfGauss(x) = e

oN2rx

where # and o are the mean value and standard deviation respectively.

2.2.2 Laplace model

The Laplace distribution can be represented by two side-by-side exponential probability
distributions functions. Like the normal distribution function, its shape is symmetric, but with

thicker tails and a sharp singularity located on the symmetry axis. In video encoding the
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distribution’s sharp peak is due to the high percentage of the zero value residues that occur

mainly at the encoding of the slow sequences.

The Laplace distribution fits the transformed residuals commonly found in quasi-stationary
sequences (container, bridge) and portrait-like sequences with flat background (akyio, miss-
america, claire, news) and small degree of motion in the scene. The Laplace distribution is

noticed at the transformed residuals quantized with higher QP values, as shown in Figure 4.1.

2.2.2.1 Distribution equation

The complete form of the symmetric Laplace distribution is.

el (2.20)

1
pdfia(x) == e 0

, where 77 and @ are the location and scale respectively.

The transformed residuals in the majority of the cases have their mean close to zero, which
leads to the following form of the Laplace pdf, which is used to compute the distortion,
entropy, and Lagrange multiplier:

A Al (2.21)

pdfiap(x) = B} e

where A stands for Laplace parameter.

The relation between A and o was determined from the condition of Laplace distribution
having the same variation as Gauss distribution, given that their expected values - location
(Laplace) and the mean (Gauss) - are the same. Table 2.1 presents a parameter comparison

between the Laplace and Gauss distribution.

Even if the location 77 was stripped out from the general formula of the Laplace distribution,

the form (2.20) can be considered quite exact at the frame level, where the number of
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Table 2.1 Laplace and Gauss distribution - parameters comparison

Distribution Variance Skewness Kurtosis
Laplace 26? 0 3
Gauss o’ 0 0

samples is big enough even for small resolutions i.e. 25,344/1,115,136 samples in the case of
QCIF/CIF (Quarter Common Intermediate Format/Common Intermediate Format) resolution
respectively. But it might miss accuracy and have the zero-mean assumption denied at the
macroblock level and further at its subbands level, where the number of samples cannot

surpass 256 and 16 samples respectively.

2.2.3 Generalized Gauss model

The generalized Gauss distribution (GGD), was taken into consideration in the articles

(Sun and others, 2013a), (Sun and others, 2013b), and (Zhao and others, 2010), though not

for the purpose of the RDO. GGD reduces to Laplace distribution and Gauss distribution

when =1 or =2 respectively as illustrated in Figure 2.4.

Figure 2.4 Zero-mean generalized Gaussian distribution.
Adapted from (Sun and others, 2013a)
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This model was considered for the cases where neither Laplace nor Gauss distributions fit the

real world, but the real distribution could fit an intermediate shape from the same family of

Laplace or Gauss distributions.

2.2.3.1 Distribution equation

The complete form of the zero-mean generalized Gauss distribution (GGD) as specified in

(Sun and others, 2013a) is:

[ x|

—-[g2(e) —]“J
pdfic(x) =2 ‘(ﬂ“) e( p

where:

_al3/a)"”

S

TG/ a) J”z

g(@) Z(F(l/a)

(2.22)

(2.23)

(2.24)

The discrete values of the parameters of GGD, « (shape parameter) and B (standard

deviation) can be estimated according to the formulas in (Sun and others, 2013b) and (Zhao

and others, 2010):

(1)

a*=F & :
N;(Xk)
pr= =3 cay
NS
The function
F(x) —m—O.IZM

©0.7697 — x

(2.25)

(2.26)

(2.27)
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designates the fit function for o', where Xk are the transformed coefficients of the residuals

of the macroblock % in the frame.

224 Proof test

The goodness of fit of Laplace distribution was discussed by Puig P. and Stephens M. in
(Puig_and Stephens, 2000) and (Puig and Stephens, 2007). The statistical test considers the

criterions of Kolmogorov-Smirnov and Cramer von Mises - based on the cumulative
distribution function - in order to compare two empirical distribution functions. A far
simpler, parameter-based criterion, to choose Laplace over Gauss distribution, was

demonstrated by Kundu D. (Kundu, 2005), using the ratio of maximized likelihood (RML).

A A

For a number of n i.i.d. samples X1,.., X, the maximum likelihood estimators (4,0) and

ACA

(17,0) of the characteristics (&#,0)and (77,8) of the Laplace and Gauss distributions are

calculated according to the following formulae for the estimated values:

PR N (2.28)
p==> X
n =

I3 ' (2.29)
o == (Xi-p)’

n iz
;7=median{X1,..,)6,} (2.30)

(2.31)

o
6=—>| X7

i=1
The statistical test 7" is based on RML (ratio of maximum likelihood) of the likelihood
functions of Laplace and Gauss distributions. If the value of the statistical test 7>0 then the

most likely pdfis Gauss type otherwise Laplace type with the significance level & = 0.05.

This criterion was intensively used in our research to decide for the particular case when the
distribution generated by the transform residuals may be restrictively considered either of

type Laplace or Gauss (closer of either Laplace or Gauss pdf). In this way, the macroblocks
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of a single frame were coded either with Laplace or Gauss-derived Lagrange multiplier. All
the same, the generalized Gauss distribution was used as an extra analytical comparator.

(s 2 (2.32)

n 1 2 O-

)
TzlniZIO-\/g :

_ :gln2—gln7r+nln6—nln0'+g
| Xi-n|

S

e ?
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2.2.5 Generic model based on numerical integration

Besides the widely known Gauss and Laplace distributions, the numerical integration was
considered as a mean to deal with cases where none of the above would fit the distribution
shape of macroblock samples, because of the lack of symmetry, or increased presence of the
outliers. While the majority of the transform residuals at the frame level clearly fits Laplace

distribution, as shown in the Figure 2.5, most of the real transformed residuals distributions

Figure 2.5 The real distribution of transform residuals; seq. Bus (QCIF), frame #6(P)

at the macroblock level do not show a perfect fit with either Laplace or Gauss distribution,
though the statistical criterion would indicate the adhesion to the respective probability

distribution class.
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Figure 2.6 The real distribution of transform residuals, frame #6(P), MB (5, 8),
sequence bus_qcif

Figure 2.7 The real distribution of transform residuals, frame #6(P), MB (3, 7),
sequence bus_qcif

In Figure 2.6 one can see that the macroblock (5,8) would be appropriate for encoding using
the Gaussian model formulas, though it lacks the symmetry, while the Figure 2.7 shows the
jagged shoulders of the real distribution macroblock (3,7) whose statistical test would entitle

it for encoding with the Laplace-based approach.
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2.2.5.1 Distribution equation

In practice, the well-known analytical models of Laplace, Gauss and even generalized Gauss
do not fit many of the sequence’s inputs. In this case, it is better to consider a numerical
integration of the distributions generated by the transformed coefficients of the residues. A
simple integration method like the trapeze or Simpson approach would deliver an accurate
result if the integration step is chosen sufficiently small without affecting too much the

computation time and method error. Matlab’s ksdensity (kernel smooth density) function
generates a sorted collection of discrete pairs {Xi,)i}of the generic probability density

function. The collections are utilized in the calculation of distortion, entropy and Lagrange

multiplier.



CHAPTER 3

RATE DISTORTION ESTIMATION ASSOCIATED TO LAPLACE, GAUSS,
GENERALIZED GAUSS, AND NUMERICAL INTEGRATION COEFFICIENT
MODELS

In this chapter we calculate the equations of entropy (which is linked to rate) and distortion
for the Laplace, Gauss, and generic coefficient models. Although many of these results are
available from the literature, the mathematical derivations are usually lacking. Therefore they
are derived here for completeness. Based on these formulas, we make a graphical comparison
between the Laplace and Gauss models and their counterparts that form the generalized

Gauss distribution.

3.1 General Rate-Distortion equations

When the distribution of the transform residual is known and close to zero-mean, the entropy
and distortion can be relatively easily calculated. The general formulas for entropy and

distortion contain three terms. The central term 1is associated to the dead zone
[—Q+ 7Q, +Q— }'Q] of the uniform reconstruction scalar quantizer. The other two terms are

calculated on symmetric and equally spaced intervals to the left and right side of the dead

zone, [H(n+DQ+ 0,10+ y0] and [nQ—y0,(n+1)O— Y] respectively.

The entropy is calculated according to Shannon’s extended formula

H=H +Hy+H' ==Y (P")loga(P")—(Po)log2(Po) =Y (P").log (P") G-D

n=1 n=1
where:

0-70 (3.2)
Po= [ pdf(x)dx
-(0-70)
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(n+)0-70 (3.3)
Bi= | pdods

nQ-yQ

0470 (3.4)
Bo= [ pdf(ods

—(nt)Q+y0

The entropy formula illustrates only the concept of uniform quantization applied to
transformed residuals. However, the final steps contained in the entropy encoding block (see
Figure 1.1), e.g. the run length and tree (Huffman) /arithmetic encoding, are not addressed by
the integration, thus the limitation of the formula that is being used to calculate the rate value
as the entropy. Since an analytical formula for the rate is difficult to achieve, at least for now,
the values obtained hardly represent the bitrate.

The distortion’s general formula:

w  —110-70] (3.5
D=) j (x+n0)* pdf (x)dx +

=[(n+DHQ-y0]

0-70
j x> pdf (x)dx +
-(0-70)

w (n+1)0-70
> | (=nQy pdf ()

n=l nQ-y0
is based on SSE metric and the uniform threshold scalar quantizer with the rounding offset ¥

at the dequantization (reconstruction).

3.2 Rate-Distortion equations associated to Laplace model

The zero-mean Laplace probability distribution function has the advantage of being an even

function, which makes it easy to integrate it using the formulas above. In the case of a zero-
mean Laplace-type signal (£4=0, A) the distortion, entropy and implicitly the Lagrange

multiplier depend on A , 7, and Q step of the uniform quantizer.
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3.2.1 Rate equation associated to Laplace model

The expression of the entropy is:
-1 (- P (3.6)
Hiop=—— (1= In(1—¢™ M)
n

-(1=-n)AQ
+—{ln2 ~In(1—e?)— 7AQ+1A—%Q}
—e

In2

and its demonstration is outlined in ANNEX I. This equation is a simplified version of the

one found in (Li and others, 2009) which considers the rate, while we calculate the entropy.

When a macroblock was skipped from encoding, a single bit is added to the final bitstream.

According to (Li and others, 2009), the relationship between rate and entropy is as follows:
R=S.He N G-

where S is a constant derived at the sequence level. (Li and others, 2009) have determined

the values of S (1.133 for intra frames and 1.982 for inter frames) from the condition of

convergence of Ararrace , at high rates, towards Az . The other constant, ¢ , depends on the

input video sequence, frame type, and entropy coding method and was experimentally

determined by (Li and others, 2009) as 0.35 for CAVLC and 0.30 for CABAC.

3.2.2 Distortion equation associated to Laplace model

For the general case (non-skipped macroblocks) the distortion shows a dependency of Qstep
denoted Q and A - Laplace parameter.

AQe™(2+ A0 —2)A0)+2—2e"? (3.8)

Da =
” A(1-e)

The distortion of a skipped macroblock Drapskir , is calculated when the dead zone extends to
the whole domain, which corresponds to the case when the quantization does not get applied

to the transformed signal.

(3.9)

Drapskip = —
A

The demonstration of the distortion formulae is described in ANNEX 1.
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3.3 Rate-Distortion equations associated to Gaussian model

In the case of a Gauss-type signal (4,0 ) the distortion, entropy, and Lagrange multiplier

depend on 4,0, ¥, and quantization step Q of the uniform quantizer.

3.3.1 Rate equation associated to Gaussian model

We calculated the closed form of the entropy Hoass that we use to express the bitrate. Its

demonstration is outlined in ANNEX II.

L) JA=-p—u Al-P+u|( < S .
Hcm—z{eff{ oy }+af( o J}+Zlflog1?+zfi*logﬁ*

(3.10)
n=1 n=1

where

pol {e,f((nH)Q—7Q+uj_eﬂ(ng—7g+uj} -

2 o2 o2

1 (04)0-y0-p)_ (n0-70-u
P:_z{e}f( o2 j ef( o2 j}

As in the case of Laplace distribution, when the macroblock is skipped from the encoding, a

single bit is added to the final bitstream.

We have not found any research providing a rate model for the Gaussian case. For simplicity,

we assume a similar relationship between rate and entropy as for the Laplace case.

3.11
S.HGauss.e_\/Eé’Q / o ( )

R Gauss =

Developing an accurate model would constitute a research project in itself.
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3.3.2 Distortion equation associated to Gaussian model

We have not found any research providing a distortion model for the Gaussian case. We

calculated the closed form of the distortion Dcass based on Gauss probability density

function.
o+ {Q(l—ﬂ—ﬂ} [Q(1—7)+ﬂ} 519
Doauss = pASE ANl IO
2 {e}f a2 ref a2
o _[Q(l—y)—ur _[Q(l—y)wf -
T [O(1— )+ ple +[O(-7)—ple +;(A1+A2+A3+A4)

where

2O (n0- ) {e,f{(nﬂ)QﬁQ—ﬂ}_erf{nQ—7Q—ﬂ}}

! 2 o2 oz
[wo-y0-uT [n0-y0-u
A== 0-00-p-ue ) gryo-gel

NGY:

_ O+ (nQ+p)’° (n+DQ-yQ+u| [ nQ-y0+u
S {f{ S Rt }}

(r+)0-y0+u MT

Afﬁ M0-Q=pie | ) [nga e o

The distortion of a skipped macroblock D Gaussskip , is calculated when the dead zone extends

to the whole domain, which corresponds to the case when the signal is not quantized
Dskip, Gauss = J” + 0 (3.13)

The demonstration is outlined in ANNEX II.
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34 Rate-Distortion equations associated to generalized Gaussian model

The complete form of entropy and distortion, as they are calculated by the authors of the

articles (Sun and others, 2013a) and (Sun and others, 2013b) depend on the quantization step

Q, shape parameter « , standard deviation ,B ,and z=1-y, the dead zone ratio of the dead

zone plus uniform threshold scalar quantization with nearly uniform reconstruction

quantization (DZ+UTSQ/NURQ).

34.1 Rate equation associated to generalized Gaussian coefficient model

For this model, we are using the closed form of the entropy in (Sun and others, 2013b)

Z.|:\/§.Q:|a Z.|:@:|a (314)
In(1-e ) .

B
HGG(Q) = - n2 +e

a7 p [Z+eﬂ 1 B ]

e —Z.e
[v201"
B
[l-e ].In2

A reliable model linking the rate and entropy for the generalized Gaussian model is still

¥

lacking. As in the case of Gaussian model, we assume a similar relationship between rate and

entropy as for the Laplace case.

3.4.2 Distortion equation associated to generalized Gaussian model

The closed form of the distortion is outlined in (Sun and others, 2013b)
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(3.15)

ﬂ 2a a
(0= 1o ﬁ-Q} ) {@}
Deo(Q) = B2 41+ — H 5 (1-22)-2 5

3.5 Rate-Distortion equations associated to generic model

The closed forms of the discrete formulas of distortion and entropy at the macroblock level
were deduced with respect to their continuous forms under the hypothesis of zero-mean

approximation.

The integration step was chosen sufficiently small in order to provide the most precise results

possible while avoiding the accumulation of rounding errors.

3.5.1 Rate equation associated to generic model

The discrete form of the entropy follows the same approach as in the continuous case.

i 3.16
Hint:—z Pn.lOgZPn ( )

with
Po=Y yihi (3.17)

where 4i=xi+1—xiand X, % +1€ [nQ— Y0, (n+1)0—y0|

The term P is calculated as the sum of products of the pairs {Xi, )i} generated by the

Matlab’s ksdensity function from the original vector of transform residuals where the
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quantization intervals are evenly spaced as an effect of using the uniform threshold scalar

quantizer. As in the previous cases, we assume linear relationship between rate and entropy.

3.5.2 Distortion equation associated to generic model

The distortion formula is a double summation over the product of SSE differences and values
of the generated pdf pairs {X, Ji} .
~ N (3.18)
Din = Z Z(Xi —n.0) . yihi

n=—oco =]

where the integration step /i =Xi+1—Xi

In practice, the value of n was restricted to the valid values of abscissae xi, where the pairs

{xi, )i} were generated by kernel smooth density function.

3.6 Comparison of the distortion models at different QPs

We assessed the range of values the distortion is capable to deliver through analytical

formulas. Besides QP, the sequence’s intrinsic properties # and o at the macroblock level,
were considered. The value of 4 was set to zero for these graphs, while the interval of o,

(0.06 — 58.1) was determined by collecting these values from a dozen of sequences with
slow, medium, and fast scene changes, encoded with the JM’s (reference software) standard
approach, where the parameter UseCustomLM of the configuration file (ANNEX VI) was set
to 1.

The Laplace model can estimate a distortion in the range (0.07 - 2814) while the Gaussian
model estimation values are situated in the interval (0.08 — 3312) as illustrated in Figure 3.1.
These results were confirmed by their counterparts in the generalized Gauss model described

in (Sun and others, 2013a) and (Sun and others, 2013b). The distortion calculated with the

generalized Gauss model for =1 (which emulates Laplace pdf) showed identical range of

values as previously determined with the original form of Laplace. All the same, GGD with
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o =2 produced the interval (0 - 3364), very close to the one generated by the original Gauss

distribution, as shown in Figure 3.2.

3.7 Comparison of entropy models at different QPs

The entropy models determined in the paragraphs 3.2 and 3.3 were compared using 3D
graphs. The highest value per sample for Laplace and Gauss models, 8.33 and respectively
8.35 are slightly higher than the number of bits (8) needed to encode the maximum value

(255) in the RGB system.

GGD with ar=1confirmed with the value 8.58 the result obtained by the original Laplace
distribution (8.33), while the value provided by the entropy model of GGD (& =2) indicated
in (Sun and others, 2013b) proved to be too big (14.5 compared to 8 bits/sample). This is

because the formula for generalized Gauss, as is provided in (Sun and others, 2013b), was

first computed for the Laplace case and then extended to the general case through a variable

change. The Figures 3.3 and 3.4 show these discrepancies.
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CHAPTER 4

MACROBLOCK LEVEL ADAPTIVE LAGRANGE MULTIPLIER COMPUTATION

4.1 Motivation

To recapitulate, there are several ideas related to the value of A and its usage per
frame/macroblock. Firstly, there was the idea of using a constant value for A, the same for
each macroblock, each frame and each sequence, given a QP value. It represents a static

approach, where potentially unnecessary bits are transmitted for the same video quality.

A second approach, the state-of-the-art outlined in (Li and others, 2009) and (Li, Oertel and

Kaup, 2007), taken over by the articles (Wang and others, 2012) and (Wang and others,

2011), makes the distinction between different sequences and different frames of the same
sequence. It aims for a Lagrange multiplier adaptive with the frame content and
characteristics, which constitutes a step ahead in bitstream optimization. It has the drawback
of considering the macroblocks as being identical from the standpoint of the statistical
content. However, macroblocks differ across a frame. They may have different RD curves
commanding different a Lagrange multiplier which is a function of the macrobloc
characteristics rather than based on a frame level model. We conjecture that if A had been
calculated using macroblock level characteristics, then the gain in terms of PSNR and video

quality would prevail over the case when A is computed at the frame level.

What we would like to get for optimal A is the value of the slope of the tangent to RD
operational curve at the QP we are encoding with, if possible, taking into account
macroblock level statistics. Generally, depending on the value of Lagrange multiplier used to
weigh in between distortion and rate, there could be two extreme situations. A greater
Lagrange multiplier value results in smaller rates, the encoder is biased toward minimizing

the rate and the winner mode in the decision process could be Skip mode or, at most, a mode



66

based on inter- prediction. On the contrary, if the Lagrange multiplier is small, the rate is big,
the distortion results in small value, so the encoder is biased toward small distortion and an

intra-mode might be declared winner in the mode decision race.

Moreover, since the inter frame prediction of larger blocks is not quite accurate, the allocated
bits for the quantized transformed coefficients are in greater number, while those for header
are quite a few. Smaller inter coded partitions, much easier to predict, deliver smaller amount
of bits per encoded coefficient in contrast with a larger volume for the header that contains

the MVs. Intra modes allocate most bits for the quantized transformed coefficients.

In order to assess the percentage of the Gauss/Laplace-type macroblocks several sequences
were run with QP = [1...51] and the standard configuration, e.g. UseCustomLM = 1 as
described in ANNEX VI. Each macroblock type was assessed using the discrimination
criterion described in 2.2.4. The percentage of Gauss macroblocks over the total number was
calculated on several frames (1-5) for various types of sequences and displayed in Figure 4.1.
The slow-paced sequences (bridge, container) show a saturation of the percentage of Gauss
type macroblocks in the first third of the QP range followed by a descending slope, while the
medium-paced (foreman, silent) and fast-paced (bus, ice, soccer, coastguard) sequences
display maximums. We can observe in some cases that over 70% of the macroblocks have
Gauss rather than Laplace distributions. This supports our belief that we should not limit our

study to the Laplace distribution.

As QP increases for lower rate, the Laplace-based macroblocks become predominant. Since
coding with Laplace has much lower complexity it is preferable to code using greater values
of QP. Another strong reason as to why it is preferable to consider macroblock level statistics
as opposed to frame level statistics is because Lagrange multiplier computed as a mean value
over the whole frame would not be appropriate for all macroblocks, since any macroblock’s

statistical properties values might be different from the ones of the frame.
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4.2 RDO using frame level Laplace distribution based Lagrange multiplier

This method has as starting point several experiments conducted at the MB level through
which macroblocks are adequately grouped to form entities, named coding units, having the
same Laplace parameter. Each coding unit has the same Laplace parameter which may vary
from one coding unit to another. The goal is to determine if another frame level model of rate

and distortion, better than the ones described in (Li and others, 2009) can be deduced using

the MB statistics.

Figure 4.2 Histogram of MB level Laplace parameters for frame 10 of QCIF sequences
Foreman and Container encoded at QP = 32

In the first phase of the experiments each coding unit is represented by a single MB and one
estimates its Laplace parameter. Figures 4.2 and 4.3 depict the histogram of MB level
Laplace parameters for all MBs pertaining to the frame 10 of the QCIF sequences Foreman
and Container, encoded in H.264 baseline at QP = 32 and QP = 40 respectively. One can see
that the MB level Laplace parameter varies quite significantly within the frame, due to the

fact that even for slow motion sequences the macroblocks differ in terms of variance.
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Figure 4.3 Histogram of MB level Laplace parameters for frame 10 of QCIF sequences
Foreman and Container encoded at QP =40

Similar variations have been noticed on other frames on same and different sequences coded

at various QPs.

4.2.1 Analysis of multiple coding units having Laplace distribution

We define multiple coding units, for short MCU, as MBs or regions of a frame containing
one or more MBs, contiguous or not, having various sizes (the number of MBs can change
from one MCU to another), with transformed residuals obeying the Laplace distribution and
having distinct Laplace parameters so that they can be easily clustered based on this criterion.
Based on this description, we analyze their performance in terms of rate-distortion,
mentioning that the results can be further generalized or enhanced based on other
supplementary features used as clustering criterion. As each coding unit obeys the Laplace
distribution with distinct parameter A; and occupies an area of »; MBs in the frame, there
can be up to K regions in a frame of N MBs and we can calculate the average distortion D

and rate R per MB as in (4.1),
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1 & 4.1)
D=—)>» ni.Di
N2

1 K
R=— i.Ri
22k

where D: and R: are respectively the distortion and rate of the i-th coding unit and obviously

K
Zni = N . Using (2.4) we can define the Lagrange multiplier for the MCU model Awnc. as in

i=1

(4.2).
K 9D, (4.2)
z .

When the regions have the same size in terms of number of MBs, i.e.ni=N/K,Vi the

expression (4.2) becomes

i oD (4.3)
=Y
lmcu -_ K aRl

= 00

One can see that when all coding units have the same Laplace parameter A= A then
Amen = ALap showing that the proposed approach is a generalization of (2.4). According to

(2.1), the Laplace parameter A: for the MCU model is estimated in terms of standard

deviation o of the transformed residuals of coding unit i as:

4.4
Ai=£ (#4)
Oi

where Oi is the standard deviation of the i-th coding unit. One can easily verify the
relationship (4.5) between the variances of the frame O (considered as a single region) and

coding unit levels O:.
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| & (4.5)
O'2 =— ni.O'i2
N

It turns out that the Laplace parameter A at the frame level can be calculated based on the

individual values of the coding units A: , i =1...K asin (4.6).

V2 V2 V2 1 (4.6)

A:—: = =

o ie - [ie 2 [1en
\/N ;nl.al \/N ;nl-/\iz \/N;Aiz

In order to have an early evaluation in terms of performance of the MCU approach we
consider a frame from the QCIF sequence Foreman in Figure 4.3 consisting of three coding
units of equal size having the parameters A; = (0.15, 0.25, 0.25). This choice is motivated by
the distribution of A:, one third situated roughly in the interval (0.1 - 0.2) and two thirds in
(0.2 - 0.3) respectively, as one can see in the picture. For this set of A: the calculated frame

level A =0.198 according to (4.6).
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Figure 4.4 Laplace distributions of coding units with A1 =0.15, A2 =0.25, and A; =0.25
and frame level approximation, for Foreman_qcif.yuv
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Figure 4.4 shows the Laplace distributions of the coding units along with the approximated

frame level distribution when all MCUs are merged according to (4.6), while Figures 4.5 and

4.6 show the R-D curves and the Lagrange multipliers Azsy and Ame« with respect to A,

used in the H.264 Joint Model (JM). We notice that a very small difference between the A:

compared to the span of Laplace parameter values observed in Figures 4.2 and 4.3 entails a

difference between the R-D curves and, what is more important, in the set of computed

Lagrangian multipliers. Figure 4.5 shows that it is more advantageous to use a Lagrange

multiplier based on the relation (4.2) than compute one at a frame level based on the merged

regions. In order to evaluate the effect of merging the regions according to (4.6) and

experiment with the Lagrangian multiplier based on the relation (4.2), we used a set of

possible values for the Lagrange multiplier, up to10>° .

le,
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Figure 4.5 R-D curve of MCU and frame level approximation for MCU comprised of
A1 =0.15, A2 =0.25, and As; =0.25, for Foreman_qcif.yuv
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Figure 4.6 Lagrange multiplier for MCU and frame level approximation for MCU comprised
of A1 =0.15, A2 =0.25, and A3 =0.25, for Foreman qcif.yuv

Interesting conclusions can be drawn from the analysis of Figure 4.6: for each value of the
Lagrange multiplier in the designated set, there is an optimal value of the QP (the optimal
range depicted in pink dots). Conversely, each QP is associated a range of optimal
Lagrangian multipliers. We notice that the A... values calculated using (4.2) situate within
the optimal range at each QP. As a matter of fact, starting from around QP = 28, Aur < Ameu
<Awsp . However, at high QPs, the frame level Lagrange multiplier value based on (4.6) fails

to reside within the optimal range, so for high QPs we should code using a Lagrangian based

on (4.2) formula.

We drew the same conclusions from other experiments with different sequences, MCU
configurations, and Laplace parameters. For example, Figure 4.7 shows the Laplace
distributions of the coding units with A1 =0.25, A> =0.35, As =0.45, A« =0.55, and As =
0.65, along with the approximated frame level distribution when all MCUs are merged
according to (4.6). The RD curves and Lagrange multipliers ( Arap, Ane. ) are depicted in
Figure 4.8 and 4.9 respectively.
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Figure 4.7 Laplace distributions of coding units and frame level approximation
for A1 =0.25, A2 =0.35, A5 =0.45, A+ =0.55, and As = 0.65, for Container_qcif.yuv

This configuration represents a distribution of MBs related to the sequence Container in
Figure 4.2, which is similar to the previous analyzed distribution. Now, the differences

between R-D curves and Lagrange multipliers have become larger.

So far, based on the assumption that the regions obey the Laplace distribution with different
Laplace parameters, the experiments showed that only a Lagrangian multiplier based on the
regional RD models might be optimal. In this case we need to calculate the derivatives of rate
and distortion at the region level with (4.2). A faster frame level approach, based on (4.6),
might be acceptable only when the regions have similar Laplace parameters. In practice, as
we will show in Figure 4.9, depending on QP and not only on it, a MB transformed residuals

setting might fit the Laplace, Gauss or mixtures of those.

These conclusions were drawn for the case when all regions obey Laplace distribution, but
they might be extended and enriched while experimenting with other distributions, such as

Gauss, or combinations of them. For those cases, appropriate models must to be put in place.
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As MCU-based method seems to be the approach of choice, the problem of predicting the
region size arises, namely if the regions are too small then the error of predicting the
distribution parameters increases too much, while larger regions would face the issue of
mixing distributions of same type or different types. For the case when the prediction error of
the distribution parameters is too high, a frame level Lagrangian based on (4.6) might prove a
better choice, but this case should be carefully analyzed, since a high QP might have an
undesired impact. In this work we considered MCU size limited to a single MB. Under this
assumption, a set of 256 transformed residuals coefficients is expected to be large enough to
reasonably estimate the parameters of any possible distribution under consideration,

including Laplace and Gauss and their mixtures.

4.2.2 Macroblock level processing

Firstly, the processing at MB level has to take into consideration the type of the distribution
that closest fits the transformed residual coefficients. We previously calculated the

expressions of R: and D: functions for several distributions such as Laplace (3.6 and 3.7),

and Gauss (3.9 and 3.10). From (Sun and others, 2013b), we have these expressions in the
case of generalized Gauss (3.12 and 3.13). We have also computed the derivatives of R and

Diwith respect to Q (see ANNEX I, ANNEX II, and ANNEX III).

For a skipped MB, we determined the distortion expressions namely (3.8) for Laplace
distribution and (3.11) for Gauss distribution respectively. In this case a single bit is
transmitted and both the derivatives of distortion and rate are considered equal to zero, since

their rate and distortion values do not depend on Q.

dDi/d0 =0 (4.7)
dRi/0Q =0

We want to compare this algorithm with to the state of the art (Li and others, 2009) to see

where we stand in terms of entropy. Let N be the number of MBs in the frame and N, ., the
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number of transformed coefficients in the i—¢t2 MB mapped to quantization level n. The

total number of transformed coefficients in the frame can be calculated in two ways:

(4.8)

i S Niw=256x N

i=l n=—oco

When all MB are treated equally, without the possibility that actually the MB be skipped, at

the frame level the initial probability associated to the n —th quantization level is:

(4.9)

N
D Nion
i=1

Pn= ,nEZ
Nx256

Of all N MBs, let W be the number of MBs that are coded as skipped. It follows that P,

adjusts to the following expression, noted as Pn* , which excludes the transformed coefficients

pertaining to the set S of skipped MBs:
yoo (4.10)

* i=l,ig S

P =——"————neZz
(N-W)x256

The authors of (Li and others, 2009) assumed that all transformed coefficients within skipped

MBs are quantized to level 0. In this case, one can define No, the total number of
transformed coefficients quantized to level zero (including those belonging to skipped MBs)
and Ns, the total number of transformed coefficients that belong to the set S of skipped
MBs only:

¥, 4.11)
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Thus, the probabilities P, of the transformed coefficients quantized to bin zero over all MBs

(including those in skipped MBs), and Ps of the skipped MBs, become:

N 4.12
Z Nio ( )
P _ No
Nx256 Nx256
N
Z Nio
__i=l,ieS _ Ns
Nx256 Nx256
The probability P that excludes the skipped MBs becomes:
P No—Ns No—Ns _ Po—Ps (4.13)
* (N-W)x256 (1-W/N)xNx256 1-Ps
It follows that:
P P (4.14)

So the average entropy per transformed coefficient (we assume skipped blocs do not affect

entropy):

. N—W[

H' === <B.log, B =23 F.log, |

n=1

] (4.15)

= (1 - PS)[_E)*IOg2 B)* - 22 R1*‘10g2 I)n*]

n=1

With this, it has been demonstrated that this new approach that computes the pair rate-

distortion at the MB level without taking in consideration the r factor but assigning zero
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value to the derivatives of rate and distortion when the MB is skipped is compatible with the

work of (Li and others, 2009) and might exceed their results.

4.3 Macroblock level adaptive Lagrangian multiplier computation

Following the cost function minimization (1.26), the Lagrange multiplier can be computed in
several ways, depending on the way the distortion and rate are expressed. The general
formula of the Lagrange multiplier is:

dD (4.16)

A=-
dR

When distortion and rate have analytical forms that depend on multiple variables, some of
which are described in 1.3.5. and 1.3.6., it is difficult to derive according to (4.1). For this

reason, the derivation is made with respect to Qstep.
2/ _ aQ _ i aQ
00 90
For the case of generic model, we calculate the value of A at discrete points QP.

AD Z AD: (4.18)

AR TS AR

A=-

4.3.1 The optimal Lagrange multiplier as a function of QP for Laplace distribution
based model

Laplace-based Lagrange multiplier calculated with the formula (see ANNEX I) ranges from
0 to 4390, a domain that is pretty close to the one (0.07- 4379) generated from a generalized

Gauss distribution with o =1 (ANNEX III), but much less than the maximum value (6963) of
Anr . It can be seen that up to QP = 28-30, the value of A is very low, after which a sharp,
exponential steep is recorded, as illustrated in Figure 4.10. The region where A values are

significant is an indicator to consider encoding with those values in order to save the bitrate.



80

(1=2) paseq-ano (q -paseq-doe[deT (e
(q

A

2R dnnw o3ueide| ()[4 2In31g
(e

i ] i
i i i
i i A

A=



81

4.3.2 The optimal Lagrange multiplier as a function of QP for Gauss distribution
based model

The maximum Lagrange multiplier attainable with Gauss probability distribution function is
3239, much smaller than that of Aur, 6963. Using the distortion and rate formulae as

mentioned in (Sun and others, 2013b), whose derivative with respect to QP(Qstep) are

considered in the calculation of A, a huge value of A4 (27816) was found. A 3D
representation, as in Figure 4.11, showed that 4 would only depend on QP (Qstep) and

practically is independent of S (which is equal to0). The huge value comes from the

problem signaled in paragraph 3.7.

4.3.3 The optimal Lagrange multiplier for generic distribution based model

For the model based on numerical integration, the Lagrangian multiplier was computed the
following formula:

ADun (4.19)
ARInt

i]nt = —

The discrete value of Aw was approximated by varying the Qstep with a small offset
AQP ==*(1-3)QP around the central value QP of the current encoding.

_ Din(QP = AQP) — Din(QP + AQP) (4.20)
Rin(OP — AOP) — Rin(OP + AQP)

ﬂ]nt =

The offset is chosen so that the video quality would not change drastically. Usually, the
operational curves D=D(R) display irregularities as in Figure 4.12, that translate into slope

sign changes.
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Figure 4.12 Operational RD and RD model curves.
Adapted from (Chen and Ngan, 2007)

Also, the difference Ru(QP — AQP) — Rin(QP + AQP) should not be higher than an acceptable
threshold. The iterative process of finding A skips the faulty values and proceeds until a

valid one is retrieved. Otherwise, it adopts the static Az as a last resort.

4.4 Rate distortion optimization using the macroblock level adaptive Lagrange
multiplier computation applied to H.264 compression

When it comes to finding the best prediction followed by the best mode of compression for a
macroblock, the Lagrange multiplier comes into play by trading the influence of distortion
term over the allocated rate in the cost function expression. As long as A is based on the QP
value only, the problem of deciding its share of rate in the final bitstream is completely
solved out. Things get more complicated when the macroblock statistical characteristics need

to be considered as part of the A calculation, as it is intended in the present research.
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With the new approach the value of the Lagrange multiplier A cannot be calculated before
knowing the residuals. On the other hand, the residuals of the current macroblock are only

available upon encoding with a beforehand known 4 since it influences the mode selection.

The solution to this dilemma can come from either using a value of A4 determined in the
previous frame or macroblock or encoding in two steps with several variants of the latter.
Secondly, Lagrange multiplier must be available even before deciding the modes, in order to
determine the M Vs of the motion compensated prediction with respect to the aimed accuracy

(FPel, HPel or QPel). The MVs are determined using a value of Awmorov as in the equation

(1.4).

After the ME process has completed the associated distortion is not retained for further
evaluation of the performance, but its resulting rate (number of bits to encode the motion
vectors, the prediction method) becomes part of the final bitstream necessary to encode that
macroblock, and, in the end, the whole frame. After all, the mode selection is the one that
determines the final encoding, that is why the Lagrange multiplier for mode decision

overweighs in importance the one associated to motion estimation.

Besides, one needs to select QP values around which the compression is performed. The
approach that keeps the same QP along the macroblock/frame encoding with small variations

in order to discern the most appropriate value of 4 has been adopted.

The one step encoding diagram in Figure 4.13 presents the algorithm that uses the values of
distortion, rate and Lagrange multiplier calculated in the previous frame (one frame delayed

method) to encode the current one.

A two-step encoding method would first acquire the transformed residuals necessary to
estimate the Lagrange multiplier and would encode the macroblock in the second step using
that value. Obviously this approach needs significantly more computational resources than

the current JM implementation to achieve the compression.
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4.5 Summary of the methodology used for experiments

A MB can be encoded using the Laplace model only, in which case the criterion (2.32) is

neglected. Otherwise, depending on the distribution type of its transformed residuals, it may

be encoded as either Laplace of Gauss. For each MB, that is not skipped, we compute [ and

R as in (AL.13) and (AI.15) for Laplace type or (AIL.28) and (AIL5) in the case of Gauss

distribution.

The derivatives of D) and R are computed using (Al.16) and (Al.17) in the case of Laplace

distribution or (AIl.30) and (AIL.6) when the distribution is of type Gauss. If the MB is
skipped, we use for the distortion calculation either the equation (Al.14) for Laplace type, or
(AIL45) for Gauss type. In both cases the rate counts as 1 bit/sample while both derivatives
count as zero values. A 4 at the frame level is calculated with (4.3) and is used to encode
each MB in the next frame. Alternatively, either Awwrice or Acauss can be calculated

respectively with (AI.18) or (AIl.46) while A at frame level would result by applying (4.6).

Unlike the Figure 1.8, the proposed algorithm connected the block that generates the
Lagrangian multipliers (in grey) to the transform block, which provides the samples
distributed according to Laplace/Gauss pdfs. Additionally, the block contains an evaluation

of the MB statistical parameters, necessary to compute the Lagrangian multipliers.
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CHAPTER 5

EXPERIMENTAL RESULTS

5.1 Experimental setup

The experiments were made using a computer Dell XPS 8500 powered by 8 CPUs 17-3770 at
3.40GHz, 12GB installed RAM, and running Windows 7 Enterprise 64-bit.

The experimental environment includes a set of twelve video sequences in format QCIF and

CIF of different types of motion (YUV test sequences, 2010):

- slow-paced: container, tempete.
- portrait-type with quasi-static background: foreman, silent.

- fast-paced: bus, coastguard, football, ice, mobile, soccer.

The ANNEX VI contains the configuration file used at the encoding of the sequence
carphone_qcif.yuv. All the sequences were rendered using this file adapted according to the

utilized method and video sequence.

The field UseCustomLM was added to the configuration file, whose values reflect the
encoding method utilized at the macroblock level: Laplace, Gauss, mixed (Laplace/Gauss),
numerical integration, and generalized Gauss. The results are compared to the standard
approach and the state-of-the-art - adaptive Lagrange multiplier at frame level based on

Laplace distribution - described in (Li and others, 2009) and (Wang and others, 2012).

JM version 18.3 was run on each sequence of 100 frames formatted as 11+99P, with five
reference frames and fixed quantization parameter QP = (24, 28, 32, 36, 40, 44), the same for
intra as for inter frame. These values were used along with the algorithm to compute the

BDPSNR and BDRATE metrics as recommended in (Bjontegaard, 2001). As in (Li_and

others, 2009), the first intra frame is not considered in the rate-distortion performance

analysis. The adaptive rounding and deblocking filters were disabled. RD optimization was
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set to high complexity mode to take advantage of the various partitioning modes of the
macroblock. The first intra frame is not considered in the encoding using the new approach.
The first inter frame is encoded using Axr and is only used to initialize statistics. The

inherent property  of the input sequence, primarily utilized in (Li and others, 2009) is not

employed here. Also, the refresh algorithm specific to (Li and others, 2009) was not utilized.

The constants, whose meaning was mentioned in the algorithm of (Li and others, 2009) were

utilized with the same values: ¢ = 0.35 (for CAVLC), S = 1.982 (for inter frame, either

Laplace or Gauss), ¥ = 1/6 (for inter frames).

For the encoding of the new approach that calculates Ana we have used two models: either
standalone Laplace or the mixed model Laplace-Gauss. Intra coding in interframe and PCM
were disabled. We chose to simulate only these two models for modifying the Lagrange
multiplier because they are the only two susceptible to be implemented in a final product and
are numerically stable for computing the Lagrange multiplier. Nevertheless, rate and
distortion estimation performance was performed on each of the models studied in this
research work mostly for comparison and cross-validation purposes (e.g. to make sure that

our Laplace and Gaussian models were well implemented and accurate enough).

For a non-skipped MB the distortion and rate derivatives are used to calculate the Lagrange
multiplier. On the contrary, for the skipped ones, the distortion and rate derivatives are

deemed equal to zero.

The Lagrange multiplier is calculated over all MBs in the frame. In each frame the current
value of the Lagrange multiplier 4 is calculated based on the current values of the distortion
and rate derivatives, which are based on the case of the Laplace distribution on the current

value of the Laplace parameter A .

Several levels of saturation were imposed: (0.9 ... 5.0) * Auzx and (0.9 ... 5.0) * Aprevious

whenever the computed value of A was too low or respectively too high. A mean of A values
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spanning the last five frames is performed to compute the final Lagrange multiplier of each

frame.

The search method for prediction was set to EPZS, the motion vectors were detected at FPel
level using SAD metric, while for the accuracy levels of HPel and Qpel, SATD was
employed. The modes were decided using the SATD metric.

5.2 Model parameters estimation at the macroblock level

This research firstly focused on modeling the DCT residuals with the probability distribution
functions of either Laplace or Gauss, considered separately, since at the macroblock level the
distribution of transform residuals might have been close to either one of them, as opposed to

the Laplace-type frame level.

For the cases where neither Laplace nor Gauss pdf is applicable entirely over the whole MBs
in the frame, a decision as to what distribution is a better fit for the residuals’ real shape was

made by using a goodness of fit test, outlined in paragraph 2.2.4.

A fourth way uses the generalized Gauss distribution, which covers symmetric Laplace,
Gauss, and uniform distributions. In this case, the statistical test to discriminate between
Laplace and Gauss is irrelevant because, based on the parameters value, the distortion and

rate are calculated using the formulae in (Sun and others, 2013Db).

A more general approach based on numerical integration, independent of the pdf shape,
skewness, and kurtosis has completed the analysis. It covers any type of shape of the real pdf,
discarding all assumptions previously made such as in the case of Laplace pdf, when the
integration was made with the assumption the samples set is zero-mean (mean = location =
0), which is true at the frame level, but it does not always occur at the macroblock level, due

to the insufficient number of samples. Using these five models at macroblock level, the
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distortion, rate and Lagrange multiplier were calculated, tested and compared to JM, the

standard implementation of H.264.

Further, using Matlab, we developed a helper application which receives as input data the
transformed residuals at the frame/MB levels and plots the whole map of the probabilities of
distribution functions at the frame/MB levels. These plots have shown a good fit of the
transformed residuals with the Laplace or Gauss pdf, discriminated with the criterion 2.2.4.

This application helped to better understand why one can rely on the distribution type
(Laplace) of the transformed residuals at the frame level, and why at the MB level, it is more
difficult to predict the distribution type, mainly due to the lack of a sufficient number of

samples to define the distribution parameters.

For example, the distribution of transformed residuals was analyzed at the frame level for
two values of QP, 20 and respectively 36, as in the Figure 5.1 a) and b). In Figure 5.1, it is
depicted the real distribution of the transformed residuals (77.Res.) along with the theoretical
distributions of the Laplace model (Laplace) and Gauss model (Gauss) that have the same

characteristics, (77,6 ) respective ( 4,0 ) as the real transformed residuals.

While at the frame level the transformed coefficients’ distribution is clearly of Laplace type
(frame 2(P) of Figure 5.1) no matter the value of the quantization parameter, at the
macroblock level, the distribution type depends on QP. The sequence container was rendered
with mixed model that selects the appropriate distribution, Laplace or Gauss, based on the

discrimination criterion described in 2.2.4.

For QP = 20, ten macroblocks ([7,1], [7,2], [7,3], [8,1], [8.2], [8.,3], [9,1], [9,2], [9,3], [9.4])
have fit the Gauss distribution as shown in Figure 5.2, while for QP=36, the same
macroblocks in the same frame have their transformed coefficients distributed according to

the Laplace distribution, as illustrated in Figure 5.3.
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Figure 5.1 Distribution of frame transformed residuals (container, frame 2(P)),
a) QP =20; b) QP =36

This confirms the conclusions related to Figure 4.1 and shows that one can estimate well the

parameters related to both distributions.

The problem is that the number of samples that is available for each MB is only 256, which
now seems insufficient to determine the exact parameters and even then nature of the

distribution of residuals.
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If it were to consider the g parameter in the D and H equations, the closed form of D and H

would be difficult to achieve. This is why (Li and others, 2009) preferred to assume a & =0

for the expressions of D and H and make several corrections on the fly in order to ensure the

encoding process does keep on the right track.

If the estimated Lagrange multiplier is below the value determined at high rate or if exceeds

the upper threshold then it is limited to 0.9 Aur and respectively up to five times the value of

/1HR .

5.3 H.264 rate and distortion estimation at macroblock level

In this set of simulations, the video clips were encoded with Axr and statistics were gathered
to estimate the various models’ parameters from residual information and measure how well
we could estimate the MB level rate and distortion values. It is important to note that in these
simulations, unlike those of the next sub-section, we did not interfere with the regular

encoding process by applying a different Lagrange multiplier.

The tables 5.1, 5.2, and A V-1 through A V-10 in the ANNEX V show that the distortion’s
relative error at the macroblock level, using the real value and the one calculated with each
model, has small mean and standard deviation values, under 10%, and decreases with QP for
slow (container qcif, container cif) and medium-paced sequences (coastguard qcif,
silent_qcif). Nevertheless, for fast sequences, the mean and standard deviation values
increase significantly (ice qcif, ice cif, and foreman_ qcif) for the whole QP domain. This
partly explains why the R-D gains are more important for slow sequences, like container. It
can also observed that, from the standpoint of relative error of distortion, the mixed Laplace-
Gauss model is just a little bit better than Laplace’s, but only for slow sequences. On the
contrary, the rate relative error with respect to the real rate has huge values increasing with
QP. Therefore, accuracy problems are expected when computing the Lagrange multiplier. In
summary, for both Laplace and Laplace-Gauss models, the distortion’s relative error

decreases with an increase of the QP.
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Table 5.1 Consolidated statistics of MB models applied to sequence container cif

Containzr «it, Laplzce P23 qp-32 aP-36 CP-A0
Listartion - rel. err. (3] {mean) AR 40H A 1.1
Listortion  rel, orr, (75) (std 2oy) 4.35 J34 5.b3 4.4
Rate reloerr, (%) (mcan) 32.17 24,65 200,08 13.44
Rale - 1al, anr, (%) (sld dev) 5140 52.16 50,53 411,84
Container naf, laplare-Gialss [P=i =3 [F=ih [ =100
Cistortlon  rel, orr, (73] (mcan) 597 .21 223 1.09
Cistortlon - rel, err, () (std Sev] 208 6.1 5.03 3.09
Rale - 1al, e, (5] (rmisan) 3205 21,86 20,05 13.51
Fate - r=l. arr. {%)] {std cev) 5158 5117 50,21 4492

Table 5.2 Consolidated statistics of MB models applied to sequence container qcif

Containzr gcit, Laplsc= ZP-_23 Qp-32 Jp_30 CP-A40
Fistartion - rel. err. (3] (mean) 4. a1 2 hA 1.k
Listortion  rel, orr, (75) (std Sov) 11 . 534 i.24
Rate  roloerer, %) (mcan) 38.36 29,74 13,52 249
Rales - 1al, e, (%) (sld dev) 52.31 1.3 50,51 33.56
Container onf, laplace-Lianss [IP=2H [P= 1F= iR [iP=a0
Cistortion  rel, orr (73] (mean) 591 341 L7l 0T
Cistortion - rel, err, (%) (std Sev) 202 5,77 el | 2.6
Rale - 1al, e, (5] (rmigan) 37.22 29,.HM 19,53 1043
Rate - r=l. arr. (%] {std cev) 5308 54.29 50,21 4103

The tables 5.3 and 5.4 show that at the MB level, for slow sequences, the new approach
based on mixed Laplace-Gauss method, either Laplace or Gauss, benefits from the low
values of the distortion prediction error. However, we see clearly that the rate prediction error
is very high. Therefore, the rate prediction model is not accurate. Even when the encoding is
made with SKIP mode activated, which leads to zero relative error of the distortion of the
skipped, when there is a better mode than SKIP, its bitrate relative error is too big to be
overridden by a smaller relative error of the distortion. Note that in practice Awill only

depend on non-SKIP MBs. Indeed, in the case when SKIP is used, the R and D derivatives
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become zero and non-SKIP MBs control the global value of An. Even so, we expect that
once the MCUs group more than a MB, we see improvements in the bitrate relative error too

and lead to more accurate Ame .



Table 5.3 The new approach applied to sequence container qcif
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Table 5.4 The new approach applied to the sequence silent_qcif.yuv
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5.4 H.264 RDO using frame level adaptive at the region level

As described in the section 4.5 the new approach proposes the calculation of the Lagrange
multiplier at the frame level using the R and D derivatives per each MB. The Lagrange
multipliers Ane computed in this manner is then used to encode each MB in the next frame.
The R and D derivatives can be calculated for two models at the MB level: either with the
Laplace model (standalone) or by using the combination of Laplace and Gauss models, a
decision that is made when the discrimination criterion (2.32) is employed. One considers a
MCU comprised of a single MB, but this new approach has the ability to group multiple MBs

having individual ¢ within a designated range.

The new proposed approach (named here MB LM) and our implementation of the state-of-

the-art described in (Li and others, 2009) (named here Frame LM) are compared with the

standard implementation JM baseline. The graphics PSNR vs. bitrate (Figures 5.5, 5.6 and A
IV-1 through A IV-10 in the ANNEX IV) compare these methods against the JM baseline
implementation (blue). The new approach is represented with its two versions: one that uses
the Laplace model (red) and a version that employs the mixed model Laplace-Gauss
(magenta). The Frame LM method curve is depicted in green. The method of Bjontegaard

was used to draw the graphs through four points.

We can observe in the Table 5.5 that the new approach gets several great improvements in
terms of BDPSNR for all tested sequences using the standalone Laplace model, except for
soccer_qcif, soccer cif, football cif, and ice qcif, where losses are small. The gains of
0.93dB and 0.5dB obtained in the case of container qcif and container cif respectively are
notable. This fact is accompanied by pronounced bit rate reductions of up to 18.72% and
15.78%, for the same sequences. These BDPSNR gains/BDRATE reductions were made
possible by disabling the adaptive rounding. With the combined method Laplace-Gauss we
also got BDPSNR gains/BDRATE reductions, although smaller than with Laplace standalone
approach: a gain in BDPSNR of 0.31dB and a bit rate reduction of 7.16% in the case of
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container_qcif, and a gain in BDPSNR of 0.18dB accompanied by a bit rate reduction of

5.64% for container in CIF format respectively.

Our Frame LM implementation of the state-of-the-art performs well as expected, acquiring a
solid gain of 0.88dB along with an impressive rate reduction of almost 19% when encoding

the sequence container qcif. Note that a huge gain of 1.79dB was reported in (Li and others

2009) during their experiments. But we have some differences in our test setup (e.g. no intra
in inter). Furthermore, we could not replicate their results even with the regular JM although
we used the same version as them (we could never elucidate this mystery). In the case of
Frame LM, one can see that its A at the frame level has the same values at various encoding
QPs as the ones of MCU’s model and JM baseline. The curves PSNR vs. bitrate and A vs.
QP of both Laplace and Laplace-Gauss models overlap since for the QP range that we
experiment with there is a small number of Gauss type MBs that cannot change the tendency

established by the Laplace type MBs.
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Figure 5.4 PSNR vs. bitrate and Ane vs. QP of container cif.yuv
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Figure 5.5 PSNR vs. bitrate and Awe vs. QP of container qcif.yuv

The proposed method is comparable from the performance’s standpoint with the Frame LM
method. Also, they overall perform better than the JM. When MCU approach performs worse
than the state-of-the-art method and JM, it is only by a small BDRATE percentage but gains
over the JM in the case of container in both QCIF and CIF formats, and silent are

noteworthy.

Quasi-static silent and container sequences perform better for Frame LM because the latter
computes much higher Lagrange multiplier values which forces more SKIP MBs and reduces
dramatically the rate. This makes our rate estimates much less accurate and affects our
performance. Thus, we believe that a better rate model would greatly improve the
performance of the proposed method. This is a very difficult problem since even (Li and
others, 2009) had to rely on several empirical adjustments to obtain a somewhat reliable

model (introduction of the S and r parameters and an exponential compensation factor).
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Note that the computational complexity of the proposed method is very small compared to
the video encoding process since it requires computing simple variance statistics and

evaluating a few simple equations per frame.

Table 5.5 Comparison between coding with Laplace at the frame level (FrameLM) and the
new approach with respect to the standard implementation of JM
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CONCLUSION

Summary of the work

We have proposed a new method for frame level Lagrange multiplier computation based on

MB level rate and distortion models.

Although the distortion model nearly attained the values of the real distortion with most
video sequences which were tested and especially at higher QP values, the rate, as a
byproduct of the motion estimation and mode decision process, did not meet the

expectations.

We conjecture that this is because we use a model at the MB level only, that amounts for an
insufficient number (256) of samples to correctly predict the distribution of transformed
residuals and we try to substitute the transform, quantization, and entropy encoding of each
MB coefficient with a global method at the MB level that integrates the distribution of the
transform residuals over the available quantization intervals (stated by the uniform scalar

quantizer) but does not cover the further stages of run-length and tree/arithmetic coding.

We have partially succeeded to solve the problem of using a single distribution for the whole
frame by proposing a new approach (based on MCU) that groups multiple MBs under the
same umbrella, as an intermediate case between a processing at the MB level only and frame
level processing. The tests were performed using the MB as the MCU and we have showed
that such division worked very well (despite the insufficient number of samples) especially
for slow paced sequences like container where there are impressive bit rate reductions up to

almost 19%.
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Contributions

Firstly, we have thoroughly demonstrated the analytical expressions of R, D, and A for
various models: Laplace, Gauss, GGD, etc. This is, to our knowledge, the first work
containing detailed derivation of these models. Then, we have proposed a novel MCU-based
framework where rate and distortion models for each MCU are used to compute the
Lagrange multiplier. The Laplace or Laplace-Gauss based distortion expressions proved to be
accurate but only for slow sequences and especially for high QP wvalues. We have
implemented the proposed method using the MB as the unit. We have tested the
BDRATE/BDPSNR performance of the proposed MCU-based approach achieved by
compressing several CIF/QCIF sequences and we observed that it was overall better than the
IM (up to 18.72% BDRATE reduction) and on average slightly better than the state-of-the-
art algorithm.

Future work

Further research should investigate the performance of the proposed method with larger
MCUs and improve the distortion and rate models at such larger MCU level. A more
accurate rate model that would extend the current entropy model with the actual encoding
process (run length and tree/arithmetic encoding) would be required to improve the
performance of the proposed method. The Gauss distribution was assumed to have a rate
model similar to the one associated with the Laplace distribution, but this needs to be

validated and modified if this is not the case.



ANNEX I

LAPLACE DISTRIBUTION-BASED DISTORTION, RATE, AND LAGRANGE
MULTIPLIER

The following shows the formulae deduction for distortion, rate and Lagrange multiplier

respectively in the case of a zero-mean Laplace-type signal (u# #0,A).

1) The calculation of entropy H
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The formula AIL.3 becomes:
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Finally, the entropy calculated with Laplace pdf is:
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2) The distortion calculation
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The distortion calculated for the SKIP mode depends on A parameter only.
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3) The Lagrange multiplier calculation

According to the article (Li and others, 2009), a logarithmic relationship between R and H
exists between rate and entropy.
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ANNEX II

GAUSS DISTRIBUTION-BASED DISTORTION, RATE, AND LAGRANGE
MULTIPLIER

In the case of a Gauss-type signal (4,0 ) the distortion, entropy and Lagrange multiplier
depend on £ , 0, and Q step of the uniform quantizer.

1) The entropy calculation
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2) As in the case of Laplace distribution, a logarithmic relationship between R and H may be
considered, with the same values for the constants S (1.982) and ¢ (0.35).
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The derivative of R with respect to Q becomes:
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Further one calculates the derivative of the entropy
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3) The distortion calculation
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I' =|o*y? e 27 ay=02[)? e 27 dy=c*[d(y)- B
0 £ V' oo py !y N y =0* [D(y) - yo(»)] |*




115

5 1,2 (AIL14)
> =2uc e 27 dv=2ucl- B
0 =2 ly e y=2p0-0()][;

1 1,2 (AIL15)

Do = {0 [®(y) - y8()] - 2u09(») + 12O} [1= (AIL16)
={(@* + 1D (y)- ooy +2)p(0)} =

1 2
O'2+u2 y 1 _Ey 5
= erf(—=)—oc(ocv+2UuU)—e —
5 e( E) (Oy+24)—— ¥

:#{erf(Q(l—7)—uj+erf(g(1—y)+ﬂ)}_

O'\/E O'\/E
{Q(l—V)—#T _[Q(l—y)wf
_% lo-prale b o2 L ifou-pule b o2
= Do+ Do+ Dos
o (1+)Q-70 .
D;=> [ (x=nQ) pdf(x)dx=31I; (AIL17)

n=l" n0-y0
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1 (x—pu 2
(n+10-70 S
= [ (x-n0) d

e
n0-70 o2z

with y=x—nQ+yQ

o2

0
2 1
--.—g(y—yg) rsd

{y+nQ—7Q—ﬂT
d

X =...

y:

o2

0
=£[(y+nQ—7Q—ﬂ)—nQ+ﬂ] oy

_[y+nQ—7Q—ﬂ
|

;

dy =...

with =2 tnQ=v0-p nQ-y0-u 5 (+DQ-yO-u

o o

—Uu

o

ZB nQ-u ? 1 2
=02 fu- e 2 du=c (I + 15+ 1)
A

2
—Uu
I = j \/;_;; 2 du =[ D)~ ug(w)] |’
2
N P10k A IR ST RN L A |
Inz—_[( 2)1{ - }\/ﬁe du (2){ > }.[u\/ge

=2 "0l )
o

—Uu

2 gu-=

(AIL18)

(AIL19)

(AIL20)
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—u’ (AIL21)

c Mno-puT 1 5 _[n0-u] 5
’"3‘{[ o }m d”‘[ e M‘I’W)'A]

-0’ {CI)(u) —u@(u)+ 2”QT—,U A(u)+ {n%T_'u} q)(u)} |fj _ (AIL22)

e {{1+(”%T_’ujz:|q)(u) " {2(”%%)—1/!%@)} 1=

5 {6 +(nQ—u)’ f(y+nQ y0- ﬂj
20° o2

{J’JFHQ—VQ—#T
200y n0y0n | ol

o\2x
o +(n0-u)’ (n+D)Q—-y0-u | nQ—y0— U
= 5 {erf{ o2 } ef{ =3 }}

{(HDQ—VQ—#T
+\/j—”[”Q—Q(1—7)—,U]€ V2

{nQ y0- /1}
—J;—”[nQWQ—ﬂ] o2
w  —n0+70 B
D;=> j (x+nQ)’ pdf(x)dxzz I (AIL23)

=1 —(n+1)Q+70
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V(x—pu ) (AIL.24)
nQijQ ( )2 -5 .
I = x+nQ — x =
—(n+1)0+y0 o 27[
2
_{y—nQH/Q—#}
d

0

> 1
= J.(y+7Q) o'\/ﬂe

-0

o2

with y=x+n0—-y0

0

= [[(y-nQ+70- )+ 0+ ] Gjﬁe

Y

o2

_{y—nQWQ—ﬂT
dy =...

y—nQ+yQ-u ,_—Q-nQ+y0-pu 5 -nQ+y0-u

with u =
o o o
2
T no+ul 1 -
:o‘z‘[{uﬁ- ,u} e 2 du=c (I +1,+1)
’ o 2
) —u? (AIL.25)
1
I u’ e 2 O(u)—up(u
i K [®@w) - up(w)]|
—u? ) —u2 (AI1.26)
- nQ+ u 1 2 |:nQ+,u:|
I =2 e u e
" { [ o 1/275 J; NGy
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—u’ (AIL27)

,_B nQ+u ! o nQ+ u
] e

- o2 {(I)(u)—u¢(u)_2 nQ+u WHPQW} (I)(u)} = (AIL28)
o o

=0’ {|:1 + (IZQJJ }(I)(u) — |:2(7le) + u} ¢(u)} |§ _
2 (o2

{a +H(nQ+ )’ }rf[y—nQWQ—ﬂj_

20° o2
2 -
? _[y—nQ+7Q—ﬂ} L
_y+nQ+y0+u o2
o227

_ o’ +(nQ+u) (n+D)Q-y0+u|  [nQ-y0+u
- 2 {erf{ o2 }erf[ o2 }}

_{(n+l)Q—7Q+yT
+— 2 [nQ-0(-y)+u]e o2

J2r
T

—sz—ﬁ[nQWQw
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D, =S (I +I) =S (4 + 4, + A + 4, (AI1.29)
where:
_ o +(mQ-p)’ (n+DQ-yQ-u nQ—yQ-u (AIL30)
. 2 {f{ o2 } ef{ o2 }}
{(ml)g—yg—uf
O |In0-00-7)-ple o2 -
2_E
{ nQ—y0- u}
1n0+70-ple - 02
_ o+ (nQ+u)’ (n+D)Q-y0+u| | nQ-yO+u
A= 2 {erf{ o2 } erf{ o2 }}
2
_[(HH)Q—?’Qﬂl}
L __ O [In0=0(1=7)+ e o2 -
4_E
[ nQ— 7Q+ﬂ}
10 +y0+ule - OV
4) The calculation of the distortion derivative
oD _ oD, 9D, (AIL31)
30 90 90
0D, _ Dy, 3Dy, 3Dy, (AIL32)
30 00 00 00
o4 oA, oA, o4, (AIL33)

)

20 z[ag 00" 90" a0
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{Q(l Y)+ ,U} (AIL34)
2,0 o2 ] 17
N o2

oD, o’ +u’| 2 .

0 2 |Jr o2

{Q(laj/’l ﬂ} {Q(laj/’lﬂl}

_(=n(@+1) ],
oN2rx

e

[Q(l y)- u} (AIL35)
SZa-pe L 2
[Q(l Y- ,U}
Hou-prule L V2 (—2){9“;g”}(;?}=
[Qa Y- ﬂ}
_ (= 7/) o2 21 N2 22
= 01—y -0 -4’ ]
[Q(l 7)+ﬂ} (AIL36)
Do Tia-pe L
[Q(l )w}
[00-p-ule b V2 <—2>[Q(1;$+”}(;‘J?}=
[Qa 7)+u}
_ (- 7) o2 21 AN 22
= (0 (1-y) -0 -]

Finally
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oD, _Q*(1-7)
0  o\2r

24

00

LT +(nQ—py

=n(nQ—u) {erf [

Nz

o2

fom] s

(n+1)Q—7’Q—ﬂ}_eU{

o2

01— 7)+ﬂ}2

o2

|

o2

=n(nQ— ) {eif {

LT +(nQ-py’

(n+1-yp)e
o271

o

04,

90

{

g

(n+1)Q—7Q—ﬂ}_eU{

o2

(n+)O-y0-u

1

o2

;

| (n+DO—yO—u

{(HH)Q—VQ—ﬂ
2 (n+l-y O'\/E
)
[nQ y0- ﬂ}
2 n-?’j o2

—(n—y)e

[n=(1=7)le {

o2

1eE

;

nQ—y0~ ﬂ}

=)

nQ-y0-u
o2

I,

(AIL37)

(AIL38
)

[

(AIL.39
)



_[(”H)Q—}’Q—ﬂ 2

HnO-0(0-y)—ule

o o

[nQ Q- u}

—(n+y)e o2

{nQ yO— ﬂ}
0+ y0-pe L V2 <—1)2{”Q‘7Q‘”}[”‘7}}=
2 o o

) (n+1)Q—7Q—ﬂT
+

J—{[(n 1+9) - 222100 - 1y’ Qz(l—m]e{ o2

{nQ yO- ﬂ}
1(nQ- ) -7 0] o2 }

+~ (ﬂ+7)+

oA _ (r+10-y0+u|_ [ n0-y0+z
o0 of| U |

(n+DQ-y0+u
i(nﬂ 7) o2
+62+(nQ+,U) Jr\ o2

2

[nQ 7Q+#}
2 [n J/j o2
Jr\o2

_ (n+D)O—yO+u nQ—yo+u
_n(nQ+,u){ely{ o2 } ef{ o2 }}

o2 } (—_1)2{(”+1)Q—?’Q—ﬂ}[nﬁ—}’}_
2
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(AIL40
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2 2 _[(HDQ—VQWT {Q Q+ﬂ}
LT FHOR |1 pe V2 ——pe L o2
o2
_{(n+1)Q—7/Q+,uT (AIL41
%_ o 1 0\/5 )
aQ__JZE{M (I1=p)le +

_[(nﬂ)Q—waT
o2 (;52FH+DQ—7Q+ﬂ}PH4—7}_
2

o o

HnQ—-0(-y)+ule

[nQ 7Q+ﬂ}
—(n+7y)e O-\/—
{nQ Q+ﬂ}
—nQ+y0+pe - V2 (‘—1>2{”Q‘7Q+”}{”‘q}=
2 o o

_{(n+l)Q—7Q+ﬂT
o,

¢ﬁﬂ011+ﬂ— |IQ+#) -Q*(1=-p)’1le
Q+ﬂ}
}

[ nQ -
+- <n+y)+ L1(nQ+uy -7 0Tl o2

Dgkip 1s calculated when the dead zone extends to the whole domain, so the quantization is

not applied to the transformed signal.
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1 [x —u T (AIL42)
T R 1 2| o
Dskip. 6auss = | x* pdf (x)dx = | x°. e dx =
_J;, _J; oN2rx
1 2
T(y+ayf L 27 dy = Dski1+ Dskipa + D
= . . . = SKIP1 + SKIP2 + SKIP3
e N2
_L2 . L (AIL43)

Dskipi = I,Uz. ! 2

1
L. vt [e 27 =i’
= ly =gt %_{ ly =gt

) 12 . L (AIL44)
Dskip2 = I 2u0o.y ! e 2 dy :2,L10'.I y ! e 2 dy =
. NGy LGy
=240 | y9(y).dy =2u0.(—4(»))[.=0
3 | _Lp2 - _Lp2 (AIL45)
Dskirs= | 6°.)° e 2 dy=0’.| e 2 dy =
[or 5 = g

=0°.[ " () dy =0" [©() -y 9] [ =
_o| Larl L] =
—ol.{zelyf(ﬁﬂLo o’

DSK]P, Gauss — ,le + 0—2 (AII46)

5) Finally, we calculate the Lagrange multiplier expression:
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y) __4ab __d90
GAUSS a

00



ANNEX III

GENERALIZED GAUSS DISTRIBUTION-BASED DISTORTION, RATE, AND

LAGRANGE MULTIPLIER
. . $2.0Y . o .
With the notation, ¢ = 7 the expressions of distortion and entropy in (Sun and others,
2013b) become:
In (1 —e# ) te ?t. [z +eloze } (AIIL1)
Hoo(t)=————L 477 Ly
In2 (l—e_t).ln2
o2 (AIIL2)
Dec(t) = B {1+ ————[ .(1-22) -2t |
2. (1 —e ! )

The entropy and distortion derivatives are:

o

t'=—1t (AIIL.3)
0
_ -zt
H oot = z.e o Ze_Z't iy (AIIL.4)
(1 _e 7 ).ln 2
{[t ve P e E '} (z velozet ) +te 2t [—e_t.t bzely 'H (1 —e ! )
+ 5 -
(1 _et ) In2
(t.e_z't )(Z ve ozt ).e_t ' .
= 7y o+

2 —z.t
(1=} n2 (1-e7 )2
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EE I T S

+ » 7
(l—e ) 1n2

}

> {—z.e‘z-’ b '.[tz.(l —2z)— 2t:| +e Z [20.(0-22)1"-21 ']1 (1-e (AIIL5)
D'G(}(t) = % J -

o]

ﬂz e_Z't.[tz.(l -2z)— ZtJ ety

2 (1—e‘f )2
:%{[—zz.z.a—zz)+2.t.(1—z)—2](1—e‘f )—[Zz.(l—Zz)—2t]e_t }
2.(1-¢7t

The Lagrangian multiplier is calculated using the above derivatives of distortion and entropy.

9Dc  9Dac (AIIL6)
dDée B 00 _ ot
dRoc  OReéc  ORcc
00 ot




ANNEX IV

EXPERIMENTAL CURVES PSNR VS. BITRATE

We list below more graphics that show the dependencies of PSNR vs. bitrate and Lagrange
multiplier Ana vs. QP for several sequences in format CIF/QCIF in the set utilized for
experiments. The comparison between sequences in terms of PSNR and bitrate is illustrated
in Table 5.5. The results displayed in these figures were obtained with SKIP mode activated

and adaptive rounding deactivated.
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Figure-A IV-1 PSNR vs. bitrate and Ane vs. QP of bus_qcif.yuv
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ANNEX V

CONSOLIDATED STATISTICS OF THE NEW APPROACH APPLIED AT THE
MACROBLOCK LEVEL

The results displayed in these tables were obtained with SKIP mode activated and adaptive

rounding deactivated.

Table-A V- 1 Consolidated statistics of MB models applied to sequence bus_qcif.yuv

bus_gof, Laplace P=24 =42 =it E=41
Nistortizn - rel. err. (%) [mean) R.O3 9.M 7.0 .40

Dislow Lz - el e, [35) [ald dew) 17.39 i3l 232.30 22.02
Rocte rel. orr. (%) imean) 21.96 2783 2203 17.96
Rete - rel. err. 1%) i std dev) 105,50 212 7447 47,64
bus guil, Laplave-Gauss QF=28 QF=32 QF=36 QP =10
Distorticn rel o, [32) [meon) T.E2 5.39 7.42 5.37

Distorticn - rel. err. [#) [ 5td dev) 17.78 203 2231 22,04
Rete - rel. e 1) imean) 3135 R0 71.93 17.8%
Rile - real, err. (%) (sld dev) 105,35 $2.30 .43 19,35

Table-A V- 2 Consolidated statistics of MB models applied to sequence coastguard qcif.yuv

Coastguard_gerf, Leplace pP=2s LP=3: P=3b JF=40
Nistortinn - r=l. =rr. (%) {m=an| 713 a.20n 1.70 (.07
Dislorlion - 12l an, (%) (sl dew) 3.56 7.28 4.65 2.28
Eote rel crr. (5] (mcan) 28,04 24.55 13.66 10,53
Rete - rel. err. (%) (z1d cev) 442 S0.50 40.47 41.13
Coaelguard goil, Leplacs-Sauss QP=28 oP=32 P=36 QR0
Distortion  rol orr (%) (mcan) 5.350 3.05 1.73 0,65
Distortion - rel, zrr, [%) {50C d=v) 3.00 210 4.63 2,30
Rete - rel err (%) (mean) iT.19 2n37 1%.406 1087
Rile - el err (3] (=1d dev) 3.4 5L11 1529 11.51
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Table-A V- 3 Consolidated statistics of MB models applied to sequence football qcif.yuv

Ttk _yil, Laplaws Qp-23 Op-32 QP-3a CP-40
Drislor Lion - rel. e, (32 (mmesan} 8.59 10.21 8.61 5.77

Drislu Lion - el an, (3 (=1 vey) 16,51 an3i 18,58 1741
Rale - ral, . [56) (rman) 29,51 146 20,318 18.35
Fatc rel,orn (%) (std dowv) 25,30 5794 62,15 53,53
roothall_goH, Laplaoe Gauss =2 ap=32 or=36 =30
Ihstertion - rel err. (%0 imean) H.8 LA HS5 4.4h

[hsterfian - rel err. (% (=71 riev) T AL TH.51 1744
ligte - rel. ere. [5) (mean) Ml A.aF Al TH. th
liate - rel. Are. [Eiln]- I::‘-ifd s I H5. 51 ST b 14 Sl

Table-A V- 4 Consolidated statistics of MB models applied to sequence foreman_qcif.yuv

T n_yeil, Laplass Op-28 ap-32 OF-3a CP-A0
Crislcrlion reloenn (7)) (meung 11.53 2.14 4,23 1.33
Distortion relorr, (3] (51d dov) 24,56 22,23 15.54 3,36
ligte - rel. ere. [5) (mean) MHOIH LR 1T 14 th
ligte - rel. err. [H) (st dev) Bl.54 Sk A = 44.14
reman_ycil, Laplawm-Gayse COp-28 ap-i2 CP-3g CP-40
Dvisli Lo - reale eer, (30 (rmesanf 11.50 2.12 4.24 134
Distcrton rel.orr. (3 (etd o) 24.73 £3,25 15.36 3.57
nate - rel. ere. [5) (mean) 2771 75 11,75 12.71
ligte - rel. ere. [5) (st dew) Bl SR 4H.5h L0114

Table-A V-5 Consolidated statistics of MB models applied to sequence ice qcif.yuv

iyl Laplaus Op-28 ap-32 Op-3a CP-40
Criolorlion reloorn, (72 (mcan 21.25 21.37 15.51 12.23
Materton reloerr, (3] (std doy) 50,17 ZL96 42,37 38,19
ligte - pel. ere. [ (mean) HH.h 4h.4H q1.44 M.A
ligte - ral. err. [5) (std dew) EVRE 211 b& 162 Br.
i _ygeil, Laplam-Gauss Op-23 op-32 QP-4 CP-A0
Dvisli Lo - reala eer, (%) (imezanf .35 il1.37 15,51 12,33
Distorton reloorr, (%) (s1d dov) 50,17 ZL96 42,37 38,19
nate - rel. fre. [5) (mean) SRR 4A.3R 3173 21.71
liate - rel. Prr. [Ei'u]-l::‘-'ufd ey O 17 R4 TE Al [ TR ]
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Table-A V- 6 Consolidated statistics of MB models applied to sequence mobile cif.yuv

riarbile_cil, Laplawm OP-23 QOp-33 JF-36 QP10
ri=roetian - rel. fre. (%] [ mean) R.TT 7.1 4.7 r.7R
Distortion - rel. err_ (%] 1524 dav 1993 1142 14.02 952
Rala - el g1, (%] (rnean) 16.37 21.53 21.81 13.33
fete - rel err. (%] (511 d=v) 574 6555 5726 d4.11
nerbile_cil, Leplos Guues oP=23 Oar=32 ar=36 QP=30
Ih=rortiam - rel. frr. (%] i mean) i Bt 4.1 2N
Distortion - rel. err_ (%] 1524 dav| 19.43 17.01 1372 9.49
Rule el oo (%) rncan) 16.43 2154 21.62 13.71
ligre - rel err. (%] (511 d=v) hlls f Bt 01T L4 b E L

Table-A V- 7 Consolidated statistics of MB models applied to sequence silent qcif.yuv

silen L_yil, Laplace OP-23 QOp-33 JF-36 QP10
rH=rortion - rel. err. (%] (mean) 7.0 317 1.7 (146
Digtortion - rel. err (%] 1504 daw) 2.53 5.4z 4.00 200
Rale- el e (5] (msan) 11.32 27.63 21.05 T.89
fere - rel err. (%] (511 d=w) 5274 54,15 5157 J6.A4
silenl_yeil, Luplace Gouus oP=23 ar=32 ar=36 QP=30
Ih=rortion - rel. err. (%] [ mean) 4.4 i 1.'11 (145
Distortion - rel. err. (%] i 504 dav) 051 5.43 .95 196G
Fule el e (5] (meun) 42,85 26,55 20.25 7.59
ligte - rel. err. I[‘F.] i st dew) A AT S1.00H AR

Table-A V- 8 Consolidated statistics of MB models applied to sequence soccer cif.yuv

soer_cil, Loplac on=23 on=32 GM=15 an=40
Lhstormom - rel. err. [%] {mean) 151 w1 444 1h4

Do Loar Lo - 12l e, (%] sld dav) 22.11 20055 15,73 1752
fiate - rel. =rr. (%) (m=an) T4UTR 2715 17,01 1427
Rste-rel, 2 ) (st cev) 94,20 93.21 <A1.00 12.17
soccer CIf, Leplace-fGauss LH-iE ] L] 4] LA L] ] T
CricLorion el (%) {mean) 3.01 741 TS 2.54

Lastornon - rel err. [H)] (st dev) Pl TR 20 s 15,44 £ua
Fale - pel, 2o, 178 (ingdn) 3515 2520 12,07 14.25
nzte - rel. =or () (50 el 5,50 9775 4.7 45210
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Table-A V- 9 Consolidated statistics of MB models applied to sequence soccer qcif.yuv

socuer_guil, Laplso QP-28 Qp-33 ZF-36 QP40
Dhisbi Lion - reals 2ir. (%) (rmisan) 11.51 11.77 E.59 5,32

Dhislu Lion - el 2. (%) (sLd dav) 22,53 28.03 33.93 21,75
Fale - rel aon, (%) (maan) 43,01 310 i1.59 17.50
Fatc rcl,oorr, (%) (51C dov) 145,33 111,38 7292 45,25
Socoer_gelt, Laplior Gauss =28 oP=3z Ir=36 =30
Ihsterfion - rel. s (%) (mean) 1701 1744 ok 5.0

Ihaterfion - rel. s (%) (std daw) sk AER P M.
ligte - rel. err. (%) im=3an] 4017 AN AR 1457
liate - Fel. err. I'ﬁ":- i 5t dF‘.’]- 14541 170814 e 1 s

Table-A V- 10 Consolidated statistics of MB models applied to sequence ice_cif.yuv

i il Laplace COp-28 Qp-3i iZF-36 P =30
Dvisbui Lo - real, g, (%) (rean) 13,76 13.0% 10.56 6,37

Drislor Lo - el 2o, (%) (sld Jdav) 38.18 A8.95 13.72 3171
Rale - rel, grn, (%) (imaan) 44,05 3123 i3l 17.32
Fatc roloerr, (3] (510 dev) 204,70 121,02 5907 45,79
loe oif, Laplace Gauss or=28 oP=3z Zr=36 =30
Ihsterhion - el =, (%) (mean] 1:4.4h TAIF! 156 fr.id

Instortam - rel. =, I{‘Pi':]- I::'-'|1T:| s I AL AN dQH. 4347 414
ligte - rel. err. (%) im=an] 44 114 it ) I A1 1482
liate - FRl. err. I'ﬁ":- i st dF‘-"} A A 12700 = 41,4




ANNEX VI

CONFIGURATION FILE

The following configuration file contains the settings utilized during the experiments with the
new Lagrange multiplier
# Files
InputFile = "carphone qcif.yuv", InputHeaderLength = 0, StartFrame = 0,
FramesToBeEncoded = 100, FrameRate = 30.0, SourceWidth = 176,
SourceHeight = 144, SourceResize = 0, OutputWidth = 176, OutputHeight = 144,
TraceFile = "trace enc.txt", ReconFile = "test rec.yuv", OutputFile = "test.264",
StatsFile = "stats.dat"
# MBLagrangeMultiplier

UseCustomLLM = 5 # the approach to calculate lambda

# 1 = standard approach

# 2 = Laplace at MB level

# 3 = Gauss at MB level

# 4 = mixt at MB level

# 5 = integral at MB level

# 6 = GGD at MB level

# 7 = Laplace at frame level
QPOFFSET =1

# FrameLagrangeMultiplier
TSC =0.3, TPSC = 0.8, TARD = 50.0, TPRD = 10.0, TRGapH = 15.0, TDGapH = 5.0,
TRGap = 7.5, TDGap = 3.0 DisplayLaplaceLambda = 0, WriteLaplaceLambda = 1,
LaplaceLambdaFile = "FrameData.txt"
# Encoder Control

ProfileIDC = 66, IntraProfile = 0, LevelIDC = 40, IntraPeriod = 0,
IDRPeriod = 0, AdaptivelntraPeriod = 1, AdaptiveIDRPeriod = 0,
IntraDelay = 0, EnableIDRGOP = 0, EnableOpenGOP = 0, QPISlice = 28,



140

QPPSlice = 28, FrameSkip = 0, ChromaQPOffset = 0, DisableSubpelME = 0,
SearchRange = 32, MEDistortionFPel = 0, MEDistortionHPel = 2,
MEDistortionQPel = 2, MDDistortion = 2, SkipDeBlockNonRef = 0,
ChromaMCBuffer = 1, ChromaMEEnable = 0, ChromaMEWeight = 1,
NumberReferenceFrames = 5, PListOReferences = 0, Log2MaxFNumMinus4 = 0,
Log2MaxPOCLsbMinus4 = -1, GenerateMultiplePPS = 0, SendAUD = 0,
ResendSPS = 2, ResendPPS = 0, MbLineIntraUpdate = 0, RandomIntraMBRefresh = 0
# PSlice Mode types
PSliceSkip = 0, PSliceSearch16x16 = 1, PSliceSearch16x8 = 1,
PSliceSearch8x16 = 1, PSliceSearch8x8 = 1, PSliceSearch8x4 = 1,
PSliceSearch4x8 = 1, PSliceSearch4x4 = 1, DisableIntra4x4 = 0,
Disablelntral6x16 = 0, DisablelntralnInter = 1, IntraDisableInterOnly = 0,
Intra4x4ParDisable = 0, Intra4x4DiagDisable = 0, Intra4x4DirDisable = 0,
Intral6x16ParDisable = 0, Intral 6x16PlaneDisable = 0, ChromalntraDisable = 0,
Enable]PCM = 0, DisposableP = 0, DispPQPOffset = 0, PreferDispOrder = 1,
PreferPowerOfTwo = 0, FrmStructBufferLength = 16, ChangeQPFrame = 0,
ChangeQPI = 0, ChangeQPP = 0, ChangeQPB = 0, ChangeQPSI = 0, ChangeQPSP = 0
# Output Control, NALs
OutFileMode = 0
# Picture based Multi-pass encoding
RDPictureDecision = 0, RDPSliceBTest = 0, RDPictureMaxPassISlice = 1,
RDPictureMaxPassPSlice = 2, RDPictureMaxPassBSlice = 3,
RDPictureFrameQPPSlice = 0, RDPictureFrameQPBSlice = 0,
RDPictureDeblocking = 0, RDPictureDirectMode = 0
# Deblocking filter parameters
DFParametersFlag = 0, DFDisableRefISlice = 0, DF AlphaRefISlice = 0,
DFBetaReflSlice = 0, DFDisableNRefISlice = 0, DFAlphaNRefISlice = 0,
DFBetaNReflISlice = 0, DFDisableRefPSlice = 0, DFAlphaRefPSlice = 0,
DFBetaRefPSlice = 0, DFDisableNRefPSlice = 0, DFAlphaNRefPSlice = 0,
DFBetaNRefPSlice = 0
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# Error Resilience / Slices
SliceMode = 0, SliceArgument = 50, num_slice groups minusl = 0,
slice_group map type =0, slice group change direction flag =0,
slice_group change rate minusl = 85, SliceGroupConfigFileName = "sgOconf.cfg",
UseRedundantPicture = 0, NumRedundantHierarchy = 1, PrimaryGOPLength = 10,
NumRefPrimary = 1

# Search Range Restriction / RD Optimization

RestrictSearchRange = 2, RDOptimization = 1, [I6RDOpt = 0,
SubMBCodingState = 1, DistortionSSIM = 1, DistortionMS SSIM = 0,
SSIMOverlapSize = 8, DistortionYUVtoRGB = 0, CtxAdptLagrangeMult = 0,
FastCrIntraDecision = 1, DisableThresholding = 0, SkipIntralnInterSlices = 0,
WeightY = 1, WeightCb = 1, WeightCr = 1

# Explicit Lambda Usage
UseExplicitLambdaParams = 0, UpdateLambdaChromaME = 0,
FixedLambdalSlice = 0.1, FixedLambdaPSlice = 0.1,
LambdaWeightlSlice = 0.65, LambdaWeightPSlice = 0.68,
LossRateA =5, LossRateB = 0, LossRateC = 0,
FirstFrameCorrect = 0, NumberOfDecoders = 30, RestrictRefFrames = 0

# Additional Stuff
UseConstrainedIntraPred = 0, NumberofLeakyBuckets = 8,
LeakyBucketRateFile = "leakybucketrate.cfg",
LeakyBucketParamFile = "leakybucketparam.cfg",
NumFramesInELayerSubSeq = 0, SparePictureOption = 0,
SparePictureDetectionThr = 6, SparePicturePercentageThr = 92,
PicOrderCntType = 0
#Rate control

RateControlEnable = 0, Bitrate = 45020, InitialQP = 0,
BasicUnit = 0, ChannelType = 0, RCUpdateMode = 0,
RCISliceBitRatio = 1.0, RCBSliceBitRatio0 = 0.5,
RCBSliceBitRatiol = 0.25, RCBSliceBitRatio2 = 0.25,
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RCBSliceBitRatio3 = 0.25, RCBSliceBitRatio4 = 0.25,
RCBoverPRatio = 0.45, RCloverPRatio = 3.80,

RCMinQPPSlice = 8§, RCMaxQPPSlice = 44, RCMinQPISlice = 8§,
RCMaxQPISlice = 36

#Fast Mode Decision
EarlySkipEnable =0
SelectivelntraEnable =0
ReportFrameStats =1
DisplayEncParams =1
Verbose =2

#Rounding Offset control
OffsetMatrixPresentFlag = 0, QOffsetMatrixFile = "q_offset.cfg"
AdaptiveRounding = 0, AdaptRoundingFixed = 0, AdaptRndPeriod = 16,
AdaptRndChroma = 1, AdaptRndWFactorIRef = 4, AdaptRndWFactorPRef = 4,
AdaptRndWFactorINRef = 4, AdaptRndWFactorPNRef = 4, AdaptRndCrWFactorIRef = 4,
AdaptRndCrWFactorPRef = 4, AdaptRndCrWFactorINRef= 4,
AdaptRndCrWFactorPNRef= 4
#Fast Motion Estimation Control Parameters
SearchMode = 3, UMHexDSR = 1, UMHexScale = 3, EPZSPattern = 5,
EPZSDualRefinement = 6, EPZSFixedPredictors = 2, EPZSTemporal = 1,
EPZSSpatialMem = 1, EPZSBlockType = 1, EPZSMinThresScale = 0,
EPZSMedThresScale = 1, EPZSMaxThresScale = 2, EPZSSubPelME =1,
EPZSSubPeIMEBiPred = 1, EPZSSubPelThresScale = 2, EPZSSubPelGrid = 1
# SEI Parameters
GenerateSEIMessage = 0
SEIMessageText = "H.264/AVC Encoder"
UseMVLimits = 0, SetMVXLimit =512, SetMVYLimit= 512
EnableVUISupport = 0
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