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 ESTIMATION DU DÉBIT ET DE LA DISTORSION AU NIVEAU DU 
MACROBLOC APPLIQUÉE AU CALCUL DU MULTIPLICATEUR DE 

LAGRANGE EN COMPRESSION AVEC LA NORME H.264 
 

Alexandru COTOROS PETRULIAN 

 

RÉSUMÉ 

 
La valeur optimale du multiplicateur de Lagrange ( λ ), un facteur de compromis entre le 

débit obtenu et la distorsion mesurée lors de la compression d’un signal, est un problème 

fondamental de la théorie de la débit-distorsion et particulièrement de la compression vidéo.  

 

Le standard H.264 ne spécifie pas comment déterminer la combinaison optimale des valeurs 

des paramètres de quantification (QP) et des choix de codage (vecteurs de mouvement, choix 

de mode). Actuellement, le processus d’encodage est encore dépendant de la valeur statique 

du multiplicateur de Lagrange, dont une dépendance exponentielle du QP est adoptée par la 

communauté scientifique, mais qui ne peut pas accommoder la diversité des vidéos. La 

détermination efficace de sa valeur optimale reste encore un défi à relever et un sujet de 

recherche d’actualité. 

 

Dans la présente recherche, nous proposons un nouvel algorithme qui adapte de façon 

dynamique le multiplicateur de Lagrange en fonction des caractéristiques de la  vidéo 

d’entrée en utilisant la distribution des résidus transformés au niveau du macrobloc. Le but 

recherché est d’augmenter la performance de codage de l’espace débit-distorsion.  

 

Nous appliquons plusieurs modèles aux coefficients résiduels transformés (Laplace, 

Gaussien, densité de probabilité générique) au niveau du macrobloc pour estimer le débit et 

la distorsion et étudier dans quelle mesure ils correspondent aux vraies valeurs. Nous 

analysons ensuite les bénéfices et désavantages de quelques modèles simples (Laplace et un 

mélange de Laplace et Gaussien) du point de vue du gain en compression et de l’amélioration 

visuelle en rapport avec le code de référence du standard H.264 (amélioration débit-

distorsion).  
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Plutôt que de calculer le multiplicateur de Lagrange basé sur un seul modèle appliqué sur 

toute la trame, comme proposé dans l’état de l’art, nous le calculons basé sur des modèles 

appliqués au niveau du macroblock. Le nouvel algorithme estime, à partir de la distribution 

des résidus transformés du macrobloc, le débit et la distorsion de chacun, pour ensuite 

combiner la contribution de chacun pour calculer multiplicateur de Lagrange de la trame. 

 

Les expériences sur des types variés de vidéos ont démontré que la distorsion calculée au 

niveau du macrobloc est proche de la distorsion réelle offerte par le logiciel de compression 

vidéo de référence pour la plupart des séquences vidéo testées, mais un modèle fiable pour le 

débit est encore recherché particulièrement à très bas débit. Néanmoins, les résultats de 

compression de diverses séquences vidéo montrent que la méthode proposée performe 

beaucoup mieux que le Joint Model du standard H.264 et un peu mieux que l’état de l’art. 
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ABSTRACT 

 
 
The optimal value of Lagrange multiplier, a trade-off factor between the conveyed rate and 

distortion measured at the signal reconstruction has been a fundamental problem of rate 

distortion theory and video compression in particular.  

 

The H.264 standard does not specify how to determine the optimal combination of the 

quantization parameter (QP) values and encoding choices (motion vectors, mode decision). 

So far, the encoding process is still subject to the static value of Lagrange multiplier, having 

an exponential dependence on QP as adopted by the scientific community. However, this 

static value cannot accommodate the diversity of video sequences. Determining its optimal 

value is still a challenge for current research.  

 

In this thesis, we propose a novel algorithm that dynamically adapts the Lagrange multiplier 

to the video input by using the distribution of the transformed residuals at the macroblock 

level, expected to result in an improved compression performance in the rate-distortion 

space. 

 

We apply several models to the transformed residuals (Laplace, Gaussian, generic probability 

density function) at the macroblock level to estimate the rate and distortion, and study how 

well they fit the actual values. We then analyze the benefits and drawbacks of a few simple 

models (Laplace and a mixture of Laplace and Gaussian) from the standpoint of acquired 

compression gain versus visual improvement in connection to the H.264 standard.  

 

Rather than computing the Lagrange multiplier based on a model applied to the whole frame, 

as proposed in the state-of-the-art, we compute it based on models applied at the macroblock 
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level. The new algorithm estimates, from the macroblock’s transformed residuals, its rate and 

distortion and then combines the contribution of each to compute the frame’s Lagrange 

multiplier. 

 

The experiments on various types of videos showed that the distortion calculated at the 

macroblock level approaches the real one delivered by the reference software for most 

sequences tested, although a reliable rate model is still lacking especially at low bit rate. 

Nevertheless, the results obtained from compressing various video sequences show that the 

proposed method performs significantly better than the H.264 Joint Model and is slightly 

better than state-of-the-art methods. 
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INTRODUCTION 

 

Context 

 

This research endeavors to find the highest quality of the video that would allow exporting a 

reasonably smaller amount of bits, so that the overall coding gain is superior to the actual 

one. 

 

Problem statement 

 

The fundamental problem in video compression is to obtain the best trade-off between the 

conveyed rate and the perceived distortion of the reconstructed video. The H.264 standard 

has only the syntax standardized, but it does not specify how the optimal values, e.g. the 

Lagrange multiplier, may be obtained, nor the best encoder configuration or coding 

decisions. Rate-distortion optimization is originally posed as a constrained problem of 

finding the minimum distortion under a rate constraint. For simplicity, this problem is 

converted into an unconstrained optimization one using a Lagrangian method in which the 

Lagrange multiplier needs to be carefully selected. The rate, as a byproduct of distortion 

calculation and Lagrange multiplier determination, is not always well-calculated and it is a 

challenge to find its best value in combination with the other two. On the other hand, the 

Lagrange multiplier depends on the video source features, while the distortion should be 

calculated with the help of a modern visual quality metric, based on the human visual system 

(HVS). Despite these difficulties, it is believed that there is enough room for significant 

improvement of the bit allocation with video quality improvement, for any type of video 

content. It is supported by the huge amount of research in this direction. 

 

In the end, the problem of finding the optimal value of Lagrange multiplier that would 

determine balanced values of the pair (distortion, rate) from the standpoint of video quality 

and bit allocation is fundamental in these respects. Huge investments have been injected in 

the related industries (entertainment, communication, social media, business, defense, health, 
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video surveillance, traffic management) that made video so widespread and continually 

growing expressing the need to visually communicate at higher resolutions. YouTube, the 

largest and most popular user-generated video-hosting site, has demonstrated the insatiable 

and widespread demand for video content. In 2011, the site reported one trillion video 

viewings in total - an average of 140 viewings per capita, on the entire world population; and 

reports that approximately four billion hours of video are watched per month (Atkinson, 

2012). These staggering figures apply for just one site - and the demand is ever-growing. 

Indeed, many broadcasting corporations have responded to the increasingly web-based desire 

for content and have made television shows available for streaming off their individual 

online sites (Barker, 2011). Ever since the slow but sure decline of video rental businesses 

like Blockbuster (Carr, 2010), which loaned popular titles on physical disks, other companies 

have taken up the torch of modern video subscription services. Netflix has seen its consumer 

base grow to 30 million subscribers in 2012 (Etherington, 2012), and other providers such as 

iTunes (Yarow, 2013) and Amazon Video (Stone, 2013) have been growing steadily as well.   

 

One of the most important factors in the exponential growth of video demand is the 

combination of social integration with increasingly more popular mobile devices. YouTube 

reports 500 years of video being watched every day just through links on social platforms 

like Facebook, and 700 videos being shared every minute on Twitter (Atkinson, 2012). 

Bandwidth demand for mobile video has exploded since the growth of ever-more capable 

portable devices, especially in the smartphone and tablet sector (Kovach, 2013). The 

adoption of and desire for high-quality video has been a leading force in the hunger for 

greater bandwidth capacity, speed and reliability, in the form of residential, corporate and 

cellular data availability. Especially in the case of the latter, telecommunications companies 

have invested billions of dollars into emerging technologies, like long-term evolution 

networks that ensure faster and more reliable data transfers, while increasing bandwidth 

capacity. The mass-adoption of these technologies by consumers will ensure their long-term 

sustainability, although predictably, speeds are bound to suffer as more traffic is introduced. 

The heaviest burden on these networks is undoubtedly the transfer of video content – whether 

it is video conferencing over services like Microsoft’s Skype or Apple’s Face Time, watching 
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television (TV) shows on-the-go, or uploading home videos straight from mobile devices. 

Clearly, there is an increasing demand to communicate and share information today that is 

only the beginning of the years to come. 

 

Short literature overview 

 

The Lagrange multiplier λ , the balancing factor between rate and distortion in rate-distortion 

theory, evolved with the versions of the video standards. While H.263 used an expression 

depending on the square of the quantization parameter (QP) only, H.264/AVC (Advanced 

Video Coding) promoted a value that grows exponentially with QP, but both expressions of 

λ are static, regardless of the sequence. The state-of-the-art approach (Li and others, 2009) 

has set the trend of using variable Lagrange multipliers, adaptive with the statistical 

properties of the video content, which resulted in a different value of λ  for each frame. This 

method allows getting compression improvements, especially on slow paced videos. New 

visual quality metrics closer to HVS, such as the structural similarity index (SSIM) have 

emerged, replacing the sum of squared errors (SSE) and giving a boost to λ  calculated per 

frame and adjusted at the macroblock level as (Wang and others, 2012) propose. 

 

The thesis is organized as follows: Chapter 1 centers on basic concepts related to video 

compression and rate-distortion theory whereas chapter 2 presents the state-of-the-art 

approaches and various types of distributions for the transformed residual coefficients. In 

chapter 3, the focus is on the Laplace and Gauss equations for rate and distortion, while the 

fourth one outlines the methods to determine the Lagrange multiplier at the macroblock level. 

Chapter 5 presents the experimental results. Chapter 6 concludes this thesis. 

 

Contributions 

 

This work proposes a new algorithm to dynamically adapt the Lagrange multipliers based on 

the distribution of transform residuals at the macroblock level, whose purpose is to improve 

the performance in terms of rate-distortion.  
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We study the estimation of rate and distortion functions, at the macroblock level, using 

various probability distribution functions for the transformed residuals, choosing from 

Laplace, Gauss, generalized Gauss and a generic, numerically computed, probability density 

function (pdf). We then conceive an algorithm for computing the Lagrange multiplier based 

on each macroblock’s rate and distortion functions. This permits selecting the most 

appropriate pdf per macroblock instead of assuming that a single distribution applies to the 

whole frame.  This permits to estimate adaptively the most appropriate λ  for each frame 

based on macroblock’s statistics and use it both at the motion compensation and mode 

decision stages of the compression.  



 

 CHAPTER 1
 
 

AN OVERVIEW OF VIDEO COMPRESSION 

 

In this chapter, the fundamental notions and basic functionality of the H.264 standard are 

presented, followed by a description of the Lagrangian multiplier technique, as an efficient 

way to solve the rate distortion optimization problem. Finally, a block diagram summarizes 

the way the rate distortion optimization mechanism integrates with the main coding flow and 

how their functional relationship may be exploited for the benefit of the video compression.  

 

1.1 Basic concepts in the H.264 standard  

H.264/MPEG-4 Part 10 AVC (Advanced Video Coding) is the standard for video 

compression that is the most widespread. It is based on concepts such as prediction, motion 

estimation, motion compensation, mode decision, transformation, quantization, entropy 

encoding, deblocking, visual quality, that are described next. 

 

1.1.1 Prediction 

The compression performance of the encoder depends on the efficiency of the prediction 

methods. In order to create a slim residual, as scarce as possible of non-zero data, an accurate 

prediction is detected and extracted from the original macroblock. Thus, the best match of the 

current block, chosen inside one of the designated reference frames, is chosen so as to 

minimize the necessary bits to encode the motion vectors.  

 

The prediction block found is further used to generate the residual transformed coefficients. 

In the case of the intra prediction, the best match of an I-type macroblock is searched by 

using the adjacent and previously coded blocks in the same slice (frame). In this way, one 

exploits the existing spatial correlation between the current block to be encoded and its 
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neighbors. The best intra prediction is searched at different block sizes. In AVC there are 9 

possible prediction modes for a 4x4 and 8x8 luma blocks as illustrated in Figure 1.1. 

For a luma macroblock or chroma block there are four possible intra prediction modes in 

AVC as illustrated in Figure 1.2. In order to increase the coding efficiency, the most probable 

prediction mode is calculated as the starting point before entering the search phase. 

 

Since the nearest samples in the signal are not fully independent and identically distributed 

(i.i.d.), high correlations between them exist in the temporal domain, i.e. between temporally 

adjacent frames. The correlation degree increases with the sampling rate.  

 

 

Figure 1.1  4x4 intra prediction modes.  
Adapted from (Richardson, 2010) 

 

Inter prediction comes into play, taking advantage of the previously reconstructed frames, 

available in the decoded picture buffer (DPB), thus motion compensating the encoding with 

the offset between the original and its prediction. The macroblock/block estimate is searched 

in a region, usually a 32 pixel square, centered on the original macroblock. 
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The current macroblock can be predicted as predicted (P) type (also called inter) when the 

samples chosen as reference are selected from the list of past encoded frames or bidirectional 

(B) type, in which case, the prediction is based on samples in the list of past and respectively 

the list of future encoded frames, from the standpoint of displaying order. 

 

 

Figure 1.2   Intra 16x16 prediction modes.  
Adapted from (Richardson, 2010) 

  

A (P/B) Skip mode, which is only permitted in P/B slices, occurs when no data – MVs 

(motion vectors) differences and transformed residual coefficients - are transmitted to the 

decoder. Yet, the macroblock data is reconstructed at the decoder, through interpolation of 

the previously coded data, using the motion compensated prediction with a MV derived from 

previously sent vectors of a single reference frame in the case of P-Skip mode, or from two 

adjacent reference frames in the case of B-Skip Direct mode. 

 

When the motion in the scene is so complex that the macroblock size would be too big to 

observe it in detail, the macroblock is divided into partitions (8x16, 16x8, and 8x8) and 

further sub-partitions of the block 8x8 (4x8, 8x4 and 4x4) as illustrated in Figure 1.3. Though 

the partitioning has the drawback of increasing the amount of motion vectors to transmit, 

looking for smaller partitions (8x8, 4x8, 8x4, and 4x4) has the benefit of decreasing the 

energy of the signal difference between the original and the best match. The optimal 

prediction of a macroblock (block) is always accompanied by its associated motion vector. 
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Figure 1.3 Macroblock/sub-macroblock partitions for interframe coding. 
Adapted from (Richardson, 2010) 

 

The motion vector refers to the offset between the positions of the current partition and its 

best prediction in the reference frame(s). It can point to integer, half or quarter pixel positions 

in the luma component of the reference picture, depending on the pixel accuracy with which 

the search is performed. The half-pixel luma samples are generated using a 6 tap finite 

impulse response (FIR) filter applied to integer-pixel samples in the reference frame, while 

the quarter-pixel samples are inferred through linear interpolation between adjacent half pixel 

samples. Alternately, in order to increase the motion accuracy at 4:2:0 resolution, the quarter 

pixel positions are calculated for chroma samples using a 4 tap FIR to interpolate between 

the neighboring integer and half pixel positions. 

 

The motion estimation process, available for inter-prediction only, defines the space of pair 

solutions (predicted regioni, MVi) that are searched upon. The best prediction does not 

necessarily involve the minimum effort to encode its motion vector (MV). Although small 

(sub) partitions offer the best estimate, encoding their motion vectors can incur a significant 

number of bits. The spatial and temporal correlation between nearby partitions is often found 

at the level of their motion vectors; hence the motion vector of a block can be predicted from 

those associated to the previously coded blocks. The motion vectors prediction applies 

spatially, by considering the median of the surrounding blocks MVs. What is encoded in the 

macroblock’s header is the difference between the current MV and the predicted motion 

vector MVp. 
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The outcome of the prediction phase for the current block is the estimated block and the 

associated motion vector that is used to motion compensate the encoded macroblock with 

respect to reference frame(s). Only the motion vectors differences are encoded in the 

bitstream, namely in the macroblock header, while the prediction is further used to shape the 

coefficients of the residual block. 

 

Among the most efficient methods of finding the best prediction are the zonal search 

algorithms represented by PMVFAST (Tourapis, Au and Liou, 2001) and its extension, 

Enhanced Predictive Zonal Search or EPZS for short (Tourapis, 2002). PMVFAST enhances 

the speed and video quality by considering the following as initial predictors: the motion 

vectors of spatially adjacent blocks in the current frame, the (0, 0) motion vector, the median 

predictor, and the motion vector of the collocated block in the previous frame, all, as a matter 

of temporal domain correlation.  It introduces reliable early-stopping criteria, at any check-

point, based on correlations between adjacent blocks, though fixed thresholds are used to 

compare with the sum of absolute differences (SAD) values. 

 

The highly efficient EPZS algorithm, improves upon PMVFAST by considering at prediction 

stage several highly likely predictors, based on multi-stage checking pattern. Key to its 

performance is the fact that the MVs of the current block can be highly correlated with the 

MVs of the spatially and temporally adjacent blocks and the introduction of the accelerator 

MV, to model the variable speed movement of the collocated block with respect to the 

previous two encoded frames. The current block can also be highly correlated with the 

adjacent blocks to the collocated block in the previous frame. The effect of these last 

predictors translates into decreasing entropy of the differences between EPZS MVs 

compared to PMVFAST MVs. 

 

SAD, the distortion measure between the current frame tI  and i-th previously encoded frame

t iI − , displaced by MV with the components (vx, vy), 

,

, 1
( , ) | ( , ) ( , ) |

M N

x y t t i x ym n
SAD v v I x m y n I x v m y v n−=

= + + − + + + +  
where  , {4,8,16}M N ∈  

(1.1)
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is compared to the thresholds that are adaptively calculated in the case of EPZS. Simplified 

search patterns, square or diamond of order one proved beneficial, significantly reducing the 

number of checking points and algorithm complexity. 

 

The result of EPZS is a significant reduction of bits necessary to encode the MVs. 

 

1.1.2 Residual coefficients 

The prediction stage is lossless and partially removes redundancy by extracting the best 

matching estimation from the current macroblock (partition/sub-partition). The process of 

motion compensation takes into account the difference between their positions in terms of 

motion vector differences (MVD). The more precise the prediction is, the less energy in the 

residual remains, and the data becomes easier to compress to lesser bits. The residuals, as a 

difference between the original and predicted signals, contain much less energy than either 

component, so it requires fewer amounts of bits to be sent to the decoder.  

 

As a matter of fact, since the best mode decision depends on finding the most suitable 

Lagrange multiplier to encode the macroblock, modeling the residuals has become a central 

problem in rate-distortion optimization (RDO).  

 

Although the majority of natural phenomena and processes statistically behave in the 

Gaussian way, the residuals in video compression do not quite follow the same path. Similar 

to audio signals compression, the residuals should behave according to Laplace probability 

distribution only. In reality, as will be shown in chapter 4, at smaller QP, almost every 

sequence contains a percentage of Gaussian-distributed residual coefficients, and there is a 

tendency of macroblock residuals’ shape to morph from Laplace to Gauss distribution, when 

QP decreases. 
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The central problem of process modeling from the standpoint of macroblock distribution of 

residuals has been to determine the suitable kind of probability density function (pdf), by 

adequately evaluating its correctness according to the existing criteria of goodness of fit. 

Further, using several mathematical models of distortion and entropy, based on distribution 

of residuals, one can estimate better expressions for Lagrange multipliers. 

 

1.1.3 Transform and quantization 

The purpose of DCT is to further de-correlate, compact and translate the residual data into 

the frequency space, represented by the DC(zero frequency)/AC(non-zero frequency) 

transformed coefficients. In H.264, non-unitary and signal independent core matrices are 

defined for the stages of forward and inverse transforms, respectively of a 4x4 block:   

    

4 4

1 1 1 1

2 1 1 2

1 1 1 1

1 2 2 1

f xC

 
 − − =
 − −
 − − 

     4 4

1 1 1 1

1 1/ 2 1/ 2 1

1 1 1 1

1/ 2 1 1 1/ 2

i xC

 
 − − =
 − −
 − − 

 

(1.2)

 

Alternatively, the transforms Cf8x8 and Ci8x8 for 8x8 blocks processing exist. 

 

The purpose of the transform is to decorrelate the input signal X from the product .f4 f4C X.CT . 

Since the forward transform is not perfectly unitary, a diagonal matrix is hard to obtain, yet, 

beneficial is the fact that the signal energy is compacted in as little coefficients as possible. 

 

 

Figure 1.4 The forward transform and quantization.  
Adapted from (Richardson, 2010) 
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At the end of the forward transform illustrated in Figure 1.4, the energy gets redistributed and 

concentrated into a smaller number of coefficients which makes it easier for entropy 

encoding. Although the product of orthogonal matrices for forward (Cf4x4) and inverse (Ci4x4) 

transform, even normalized, is not perfectly equal to unit matrix, their elements were 

intentionally multiplied/rounded to get a minimal set { 1, 2, 1 2}± ± ±  of values that make the 

transform easily implementable, by using only additions and left/right bit shifts. This way 

one can avoid overwhelming floating point multiplication. 

 

Due to the reversibility of the integer DCT, whose inverse matrix can be obtained through the 

transposing of the normalized core transform (unitary), the overall forward/inverse transform 

is lossless as well, as is the prediction stage. 

 

In the case of 16x16 intra coded luma blocks and all-dimensions chroma blocks, the DC 

coefficients are further de-correlated through a DC 4x4 Hadamard transform. In the 

H.264/AVC standard, the transform and quantization phases overlap in order to minimize the 

computational effort that would otherwise be overwhelming for the processing unit(s) had 

they been performed separately. 

 

In the intra-frame coding, DCT is applied to the macroblocks pertaining to the frame itself, 

while in inter-frame compression its input is defined as the difference between the current 

block and its prediction. 

 

In addition, a normalization step, necessary to orthonormalize the core integer transform, is 

integrated with the quantization phase in order to reduce the number of multiplications. Up to 

this point, taking advantage of the spatial and temporal redundancy and de-correlating the 

signal, the prediction and transform stages are deemed as lossless steps. 

 

The quantization process is the only lossy phase in the encoder, accounting for the trade-off 

between the compression performance and the perceived visual quality. 
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 Figure 1.5 Inverse quantization and transform.  
Adapted from (Richardson, 2010) 

 

At the end of the re-scaling and inverse transform illustrated in Figure 1.5 the reconstructed 

macroblock that emerges can be compared against the original one in order to assess the 

distortion.  

 

While from the energy compaction standpoint, the Karhunen–Loève transform (KLT) is the 

best method. Its transformation matrix depends on the input signal statistics and lacks 

computational speed compared with the discrete cosine transform (DCT).  

 

The quantization seen as a down scaling/re-scaling process of signal discretization 

/reconstruction is built on the linear scalar scheme containing the dead zone (DZ), an uniform 

threshold scalar quantization (UTSQ), and a nearly uniform reconstruction quantization 

(NURQ) as described in (Sun and others, 2013a) and (Wang, Yu and He, 2011). The 

rounding offsets (z, f) domain of the forward quantization and reconstruction, illustrated in 

Figure 1.6, are determined as:  

(0.5 1)z∈  , (0 0.5)f ∈   under the linear constraint z f c− = , (0.5 1)c∈   (1.3)

with optimal values for intra (z = 2/3) and inter (z =5/6) coding. 
 
 

 
 

Figure 1.6 DZ + UTSQ/NURQ scheme.  
Adapted from (Sun and others, 2013a) 
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A non-linear quantizer would appropriately reduce the amplitude of the transformed data, but 

would have to adaptively configure the threshold parameters (z, f), based on the density of 

the transformed signal’s pdf. 

 

1.1.4 Mode decision and the macroblock encoding 

Mode selection is the process of determining the best block partitions to encode a 

macroblock. It is governed by the RDO process, as presented in pseudo code in (Richardson, 

2010) which takes into account the available modes shown in Figure 1.7. 

    For every macroblock 
           For every available coding mode m 
                      Code the macroblock residual through DCT and quantization using the specific  
                      MVs for that mode m  
                      Calculate R, the number of bits required to code the macroblock 
                      Reconstruct the macroblock through inverse quantization and IDCT 
                      Calculate D, the distortion between the original and decoded macroblock 
                      Calculate the mode cost MODEJ , with appropriate choice of Lagrange multiplier 
            end 
            Choose the mode that gives the minimum MODEJ  
     End 
The calculation of the mode cost MODEJ  was presented in section 1.2.1. 
 

 

Figure 1.7  Available prediction modes.  
Adapted from (Richardson, 2010) 
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1.1.5 The bit cost of coding a macroblock 

During the mode decision stage, when various modes are tested, the final decision is made 

when the minimum is attained by the cost function MODEJ . The number of bits necessary to 

encode with the best mode is given in principal by two components (Richardson, 2010): 

 

- The header bits, which contain the macroblock mode (I/intra, P/B inter coded), the 

prediction parameters (the entry (es) in the reference list(s), motion vectors differences for 

P/B macroblock, the search accuracy: full pel, (FPel), half pel (HPel), quarter pel (QPel). 

 

- The transform coefficients bits as the bits necessary to encode the quantized transformed 

coefficients, CBP, QP, optimal mode. 

 

1.1.6 Entropy encoding 

The entropy coding is the last lossless stage of reducing the video information redundancy. 

The quantized coefficients are reordered through a zigzag scan to group together the non-

zero (DC) values at the beginning of the run-length encoding, followed by the higher 

frequencies (AC) coefficients, most of them being runs of zeroes.  

 

CAVLC (Context-based Adaptive Variable-Length Coding) maps the coefficients to a series 

of variable length codewords, using Huffman codes, where frequently-occurring symbols are 

represented with short variable-length code (VLC) (Richardson, 2010). It uses a context 

adaptive scheme based on several VLC look-up tables containing the updated statistics of the 

symbols to encode.          

 

Unlike CAVLC, whose drawback is the assignment of an integral number of bits for each 

symbol, CABAC (Context-based Adaptive Binary Arithmetic Coding) encodes the whole 

message by mapping it to a subunit number. It uses context models (probability tables) and 

binarization schemes that feed the arithmetic coding engine with the necessary updated 

statistics of the symbols thus eliminating the multiplications operations. CABAC, though 
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slower than CAVLC, achieves a better compression by allowing fractional number of bits to 

represent a symbol, thus approaching the theoretical optimal compression ratio.  

 

1.1.7 Visual quality and encoding performance indexes 

Of all well-known measures utilized to compute the distortion between the original I and the 

decoded I’ images with resolution of (M.N) pixels,  

 

( . )MSE SSED D M N=  

(1.4)

 

, '

, 1
| ( , ) ( , ) |

M N
SAD

x y
D I x y I x y

=
= −  (1.5)

 

, '

, 1
| ( ( , ) ( , )) |

M N
SATD

x y
D T I x y I x yα

=
= − , where T = Hadamard transform (1.6)

 

the metric MSE (mean squared error) is given preference for its meaning – the energy of the 

error signal (Wang and Bovik, 2006) and because it is preserved through unitary transform. 

Despite being deemed as an objective visual quality measure, it is poorly correlated with the 

perceived image quality. Peak signal-to-noise ratio (PSNR), as an objective visual 

performance index, which is based on MSE, it does not relate with the human perception as 

well.  

 

Nevertheless, Table 1.1., as outlined in (Bouras and others, 2009) summarizes the 

correlation between the values of PSNR and the perceived visual quality levels stated by the 

mean opinion score (MOS), as a subjective visual quality index. Through its mapping to 

MOS, PSNR gets an additional feature that brings it closer to the human visual perception. 

 

 

, ' 2

, 1
[ ( , ) ( , )]

M N
SSE

x y
D I x y I x y

=
= −

2

10

255
10log ( )

MSE

PSNR
D

=  
(1.7)
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Table 1.1 PSNR to MOS mapping.  Adapted from (Bouras and others, 2009)  

 

 

For this reason and the fact that PSNR is still the performance index of choice, PSNR was 

adopted as the index to measure the visual quality of our experiments.  

 

 

1.2 Rate distortion optimization in H.264  

Since the video sequences mainly contain motion (quantified as motion vectors) and content 

(coefficients resulting from techniques to reduce spatial and temporal redundancy, quantified 

as luma and chroma total runs and trailing ones), the task of the encoder is to find the optimal 

set I of options of the coding parameters, i.e. encoding mode and side information (MVs-

motion vectors, macroblock type, skip information, delta QP), so that the distortion is 

minimized and the resulting bitstream does not surpass a maximum allowable bandwidth.  

 

The central problem of the rate distortion optimization consists in solving the bit allocation 

approach, which has the constrained form as described in the equation (1.1). 

                        

min ( , )
I

D S I , where ( , ) CR S I R≤  (1.8)

The terms D(S, I), whose minimum is looked for, and R(S, I) represent the total additive 

distortion and rate respectively, for a quantized source signal S under an optimal set I of 

options, chosen during the encoding. I may include an efficient motion estimation (ME) 

method like Enhanced Predictive Zonal Search (EPZS), appropriate QP range, decision 

thresholds, reconstructed levels, rounding offsets. 
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1.2.1 Cost function  

A practical, unconstrained form, useful to the discrete codec, looks to achieve the global 

minimum of the cost function J: 

( , | , ) ( , , ) . ( , , )J S I Q D S I Q R S I Qλ λ= +   (1.9)

for a certain value of the Lagrangian parameter λ that multiplies the rate term and it is 

referred to as the bit-allocation technique using the Lagrange multiplier (Wiegand and others, 

2003). In the equation above, Q is the quantizer value which is related to the quantization 

factor QF. 

 

The value of Lagrange multiplier can be determined for the convex hull of the rate-distortion 

(RD) curves as: 

( , | , )
0

J S I Q

R

λ∂ =
∂

 
(1.10)

Thus 

D D Q

R R Q
λ ∂ ∂ ∂= − = −

∂ ∂ ∂
 

(1.11)

 

Finding its optimal value is a challenge for the research. With the new formulation, it is not 

anymore necessary to look for the minimum value of the distortion, since a zero distortion 

would lead to a large bitrate. Instead, a trade-off between the distortion and rate, attainable 

through a certain set I of coding parameters, can lead to an overall global minimum of J. The 

sum of the minimums of the local MBJ cost functions, calculated for each macroblock MB 

with the optimal coding options for ME and MD (mode decision), would result in the 

minimum of J function at the frame level if we make the assumption that coding of MBs are 

independent. The coding options may contain, among other parameters, the frame type 

(INTER, INTRA), the transform coefficients values, the quantizer value Q, the motion 

vectors for interframe, the reference list index(es) pointing to previously encoded frames. 

Each macroblock has multiple mutual temporal and spatial dependencies with the neighbors 

in the same frame or former/next encoded frames, which induces a large dependency and 
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complexity in the codec, making from it a NP-hard problem, thus preventing from deriving a 

tangible analytical form of global J. The difficulty to solve the optimal codec increases with 

the frame’s resolution. The Cartesian product of all coding mode parameters forms the space 

from which the optimal combination is selected that minimizes the cost function. For 

progressive-scanned video H.264/AVC seven possible macroblock modes (INTRA4x4, 

INTRA16x16, SKIP, INTER16x16, INTER16x8, INTER8x16 and INTER8x8) are 

considered along with 3 sub-macroblock types (INTER8x4, INTER4x8, INTER4x4) 

available in INTER8x8 mode only. The optimal bit allocation method using Lagrangian 

multiplier in inter modes encoding applies to both to ME and MD, in this order.  

 

The Lagrange multipliers method is firstly applied at the ME level to find the best match in 

the decoded reference frame(s). Unlike the MD stage, the ME optimization process calculates 

the motion compensation distortion between the original and matching block, displaced with 

using the motion vector (MV), while the rate refers to the bits to encode MVs difference.  

 

The variable number of modes used to find the best macroblock match is based on a similar 

cost function minimization, which depends on the search method and the refinement degree 

(FPel, HPel, or QPel). PMVFAST and EPZS have the best results in terms of search time. 

The successful MV candidate ( )sm M B for the macroblock MB is found by solving the 

equation: 

( ) arg min ( , )

{ }

s MOTION i

i

m MB J MB m

m MV

=
∈

    , where    

( , ) ( , ) . ( , )MOTION i DFD i MOTION MOTION iJ MB m D MB m R MB mλ= +   

(1.12)

where ( , )DFD iD MB m is the distortion of the displaced frame difference calculated between the 

original macroblock and the predicted one, displaced with the motion vector im , according 

to (Wiegand and Girod, 2001). The term ( , )MOTION iR MB m  stands for the bitrate necessary to 

encode each separate im candidate.  The phase of finding the MV is performed for interframe 

coding only.  
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The outcome of the ME stage is represented by the signal difference S(MV) and the allotted 

bitrate to encode the final MVs, as displacements of all blocks, relative to the reference 

frames. The signal S(MV) that contains the prediction error between the predicted and 

original MB, is further processed - transformed, quantized, entropy coded - during the MD 

phase, to get the rate (dependent on the transformed coefficients, quantization step, side 

information and implicitly MV).  

 

For the MD phase the optimization problem becomes: 

* arg min ( , | )

{modes}

MODE k k

k

I J S I Q

I

=
∈


  , where    

( , | ) ( , | ) . ( , | )MODE k k REC k k MODE REC k kJ S I Q D S I Q R S I Qλ= +  

(1.13)

where the kS  denotes the macroblock partition given the coding option kI and quantizer step 

Q, RECD  represents the distortion between the original and reconstructed MB for the coding 

option kI , while RECR stands for the rate obtained through entropy encoding. The bit 

allocation in the process of finding the best mode is performed for both intraframe/interframe 

coding and may include the SKIP mode. 

 

All the aforementioned macroblock and sub-macroblock modes kI are tested; the one ( *I ) 

whose cost function value is minimal is selected. Thus, the role of the mode decision is to 

further refine the signal previously acquired during the motion compensation coding and find 

the best rate by testing for optimal set of encoding parameters.  

 

1.2.2 Optimal Lagrange multiplier  

The optimal value of the Lagrangian parameter depends on multiple interdependent 

parameters; its value must be adjusted in accordance to their values, at frame level and 

further refined at MB (block) level. Among those parameters, the quantization step Q, the 

side information (header bits, MV, quantized zeroes), the DCT (forward Discrete Cosine 

Transform) transformed and quantized coefficients are the most important.  
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Wiegand and Girod (Wiegand and Girod, 2001) have investigated the relationship between 

an efficient λ  and the DCT plus the scalar quantizer. The expression of MODEλ  was 

experimentally deduced upon encoding the INTER frames of several test sequences with 

various values of MOTIONλ , QP and distortion metrics (SAD, SSE). 

12

3| & (0.85).2
QP

MODE SAD SSEλ
−

=  

|MOTION SAD MODEλ λ=  
|MOTION SSE MODEλ λ=  

(1.14)

 

Evidently, the only parameter of the static λ  is the quantization parameter QP, as opposed to 

the Q step that is generally used when determining λ  based on the statistical features of the 

input sequence as in (Li and others, 2009) and (Wang and others, 2012). While QP ranges 

from 1 to 51, Q step encompasses a domain 0.625...~230. For the same interval, MODEλ values 

are (0.067… 6963), while MOTIONλ  values belong to the interval (0.26…83.44) when the 

distortion metric is SAD. 

 

The Lagrange multiplier determined with the formulae above is static and does not depend in 

any way on the sequences’ characteristics (the type of distribution of residuals, the motion 

vectors, the percentage of skipped macroblocks, the percentage of quantized zeroes, etc.), in 

other words, two different sequences in terms of the objects’ motion speed in the scene, 

would be encoded with the same λ  for a given QP. It has the drawback of considering the 

macroblocks as being identical from the standpoint of the statistical content. The standard 

encoding method uses HRλ  as described in equation 1.6 is not regarded as optimal because it 

was determined while looking for the minimal distortion, which only occurs at higher bit 

rates. It is only at higher rates that λ (which converges to HRλ ) depends asymptotically on QP 

only. However, it might be more efficient to encode with a distortion just a bit higher and 

have the benefit of a much lower bitrate, if possible. We can look for values of λ that are 

more appropriate for the encoding of the lower bit rate, typically represented by slow-paced 

sequences and the only solution is to relate λ , besides QP, to the statistical characteristics of 

the input content that may dictate the value of λ too. Encoding the slow-paced sequences with 
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adaptive values of λ  other than HRλ  may result in lower bitrate at the same video quality or 

even better. 

 

Since the video sequences are so different in any terms and features, the current expression of 

MODEλ / MOTIONλ  is a wasteful approach in terms of bit allocation. An adaptive λ  with the 

nature of the sequences, able to be used at lower bitrate too, would be more appropriate, 

necessary, and sustainable with the ongoing technological progress, since Lagrange 

multipliers will feed on these properties as they become available during the sequence 

encoding. The statistical features and the probabilistic nature of the video sequence are the 

key of the new optimal compression algorithms. 

 

1.2.3 Lagrange multiplier for high rate encoding 

An old-fashioned, empirical Lagrangian multiplier valid at high rates only is used in 

encoding. It is employed at low rates too, even though the low rate region is unstable and less 

predictable than the high rate domain. Consequently, there are no models for this region, 

whatever the sequence type (fast, medium or slow). The expressions of rate, distortion and 

Lagrange multiplier for the video compression standard H.263 was outlined in the articles 

(Wiegand and others, 2003), (Sullivan and Wiegand, 1998),and (Wiegand and Girod, 2001). 

The quadratic dependency in H.263 was replaced by H.264’s exponential behavior but the 

dependency is still static with any sequence, as outlined in Table 1.2. 

 

Table 1.2 Lagrange multiplier with high rate assumption 

 Distortion Rate       MODEλ     MOTIONλ  

H.263  

2

3

Q
D =  

 

 

2

( ) ln( )R D a
D

σ=

 

20.85Q  
 

 
 

|MOTION SSE MODEλ λ=  

|MOTION SAD MODEλ λ=  
H.264/

AVC 

12

3(0.85).2
QP−

 
 

 



23 

1.3 General block diagram of video compression 

A video encoder is a system that receives the video source as input and outputs an 

approximation of it in order to deliver the minimum amount of bits that still maintains a high 

quality of the image. Its components, featured in the previous subchapters, may be grouped 

according to (Richardson, 2010) into several models, of which, the most important are the 

prediction model (spatial and temporal), the image model (predictive coding, transform 

coding and quantization), and the entropy encoder.  

 

In a more detailed picture, the encoder in Figure 1.8 contains some of the elements of the 

RDO mechanism as well.  The video source is represented by the current frame, from which 

the current MB is selected for encoding. The prediction model, which exploits both temporal 

and spatial redundancy, finds the best estimation (multiple prediction blocks when MB is 

partitioned as in Figure 1.3) from the previously encoded frames, and partially removes the 

redundancy between the original macroblock (MB) and the estimated one in spatial and 

temporal domains. This is where the RDO mechanism, by means of MOTIONλ  of the equation 

(1.12), trades the number of bits to encode the MVs for the distortion calculated between the 

current and estimated MBs. Once the best prediction and MVs are found, the residual signal 

as a difference between the original MB and its prediction, motion compensated, is fed to the 

image model. The residual is transformed, quantized, inverse quantized and inverse 

transformed to produce the decoded residual which is added to the prediction to form the 

reconstructed MB. The optimal mode is concurrently decided via MODEλ of the equation 

(1.13) that helps negotiate between the number of bits to encode the transformed and 

quantized coefficients, and the distortion D(mode), calculated between the reconstructed an 

the original MBs. The bits required to separately encode the MVs difference and the 

transformed/quantized coefficients of the best mode, are included into the final bitstream.  

 

In the current reference implementation of H.264, the block that generates the Lagrangian 

multipliers for the ME and MD stages, uses empirical values and is totally independent of 

any of the processing blocks in the diagram. In this research, we improve the design by  
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connecting it to the transform block of the mode decision loop and propose a new algorithm 

to dynamically adapt the Lagrange multipliers with the image content, thereby improving the 

performance in terms of rate-distortion.  

 

 





 

CHAPTER 2 
 
 

LITERATURE OVERVIEW 

2.1 Lagrange multiplier selection 

In H.264/AVC standard the Lagrange multiplier selection occurs at both motion estimation  

and mode decision levels, this is why it has 2 components: MOTIONλ  and MODEλ . Yet, only 

when the SSE metric is utilized in both processes these values are deemed equal, which is in 

line with the way the distortion (PSNR) is calculated. The value of MOTIONλ  displays a weak 

dependency on the search precision (FPel, HPel, QPel) and method (full search, 

UMHexagon, EPZS with its refinement patterns) utilized in motion estimation. The best 

prediction of a macroblock, once established, is used throughout the mode decision process 

to establish the best trade-off between rate and distortion achievable for a certain encoding 

mode. Even with a suboptimal prediction (generated by a sub-optimal search method) the 

mode decision is the one that finally decides what is the best mode for a macroblock to be 

encoded with, so the mode decision outweighs in importance the motion estimation stage. It 

becomes stringent that the value of Lagrange multiplier is the right one, especially for the 

mode decision stage; and this is an area where the research has been focusing in the latest 

decade. 

 

Currently, the reference software (Sühring, 2013) allows the encoding of the current MB by 

using up to 16 frames as reference. A frame is encoded using one of the patterns I, P, B. To 

encode a P frame, each MB, based on the RDO mode decision, (High, High Fast, and Low) 

can be encoded as 16x16 8x16 16x8, 8x8 and each block from an 8x8 partition can be 

encoded as an 8x4, 4x8 or 4x4 block. To encode a 4x4 block pertaining to I-type frame there 

are 9 possibilities based on the samples supplied by the neighborhood.  

 

Besides, in the process of the motion estimation, there are multiple ways of finding the best 

match for a MB given the reference frame(s).  
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When the discrete J cost function is calculated for a MB all these possibilities come into 

play, and the optimum value is the one for which the minimum of J is achieved among the 

entire set of possible configurations. 

 

The H.264/AVC reference software implements a one-step encoding algorithm at the 

macroblock level, where the value of Lagrange multiplier is calculated by taking into account 

the rate and distortion dependency on the quantization parameter QP only.  

 

Even so, the experiments on multiple sequences, with slow and fast movement, along with 

the usage of different combinations of profiles and types (baseline, main, extended) have 

proven that the rate and distortion models (or similarity as a measure of visual conformance) 

also depend on many other factors among which the most important are the side information 

(macroblock header bits, MV bits, frame and macroblock type, entropy model), the source 

information, selection of the encoding modes, and especially the information contained in the 

transformed coefficients, as pointed out in (Li and others, 2009) and (Li and others, 2007). 

 

Indeed, more accurate rate and distortion models would have to consider these parameters as 

well. The calculation of the Lagrange multiplier would then have to take into account the 

partial derivatives with respect to all these parameters, for both continuous and discrete 

cases. In this way, such models would get even closer to real data. Yet, an obvious downside 

would be the increasing computational effort that would occur in this case. This is why, in 

practice, the encoders follow the Wiegand-Girod RD model that depends on QP only 

(Wiegand and Girod, 2001). 

 

A quadratic or exponential dependency with QP is expressed in the case of H.263 or 

H.264/AVC respectively. The rate-distortion model of Wiegand-Girod is based on the high 

rate assumption, which allows expressing the Lagrangian multiplier HRλ  in terms of QP at 

high rates. Any Lagrange multiplier expression, determined for any other model, should 

asymptotically converge to this value, as a measure of the new approach correctness. As 

such, the H.263 and even H.264/AVC adopted the HRλ  approach, regardless of the motion 
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degree in the scene, which experimentally proved satisfactory in combination with the 

traditional distortion measures SAD, SATD, and SSE. Still, the high rate assumption might 

not hold true in the case of video conferences or slow-paced sequences (ex: container.yuv, 

bridge.yuv), where unnecessary bits might be sent into the resulting bitstream. 

 

Since λHR is only related to QP, as long as the other dependencies mentioned beforehand are 

neglected, λ  is not optimally calculated and the calculated values of the cost function J are 

higher, so the performance is weak.   

 

The main drawback of the new models developed so far, resides in the fact that within the 

calculation of the Lagrangian multiplier, the derivatives of the rate and distortion are 

computed with respect to Q step (represented by the QP parameter) only.  

 

Several trends related to bits allocation have been emerging in the recent years. Some of 

them try to fit the best probability distribution function with the residual signal distribution. 

Others replace the distortion with its complementary, which is based on a perceptual visual 

quality metric, to explore for the optimal expression of λ , or they combine the compression 

processes at the frame and macroblock levels successively optimizing for one parameter at a 

time. 

 

Their performances, benefits, and drawbacks are featured in the following sections. 

 

2.1.1 Laplace distribution-based approach for inter-frame coding 

The articles (Li and others, 2009) and (Li and others, 2007) constitute the first step taken to 

model the rate and distortion functions from other perspective, beyond the traditional sole 

dependence of QP. The novelty of the proposed method consists in a new Lagrange 

multiplier determined at the frame level, equally applicable to all frame’s macroblocks, and 

adaptive with the frame’s statistics. The algorithm efficiency was proved especially in the 

case of the quasi-stationary sequences, though the authors needed to handle several special 
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cases where the theoretical assumptions and the proposed model did not fit with the real-

world use. 

 

There are several great contributions and interesting standpoints in this article, as follows: 

1) The derived RD models are based on the zero-mean Laplace distribution of the 

coefficients resulting from the transformed residuals. The Laplace parameter Λ  and the 

standard deviation σ of the transformed residuals are related as follows: 

2

σ
Λ =  

(2.1)

The zero-mean Laplace distribution is defined as: 

( | |)( )
2

Lap
xf x e −Λ Λ=  

(2.2)

 

The Laplace distribution was chosen among other distributions (Cauchy, Gauss) due to its 

single parameter Λ  to be determined. It also has a good accuracy and a medium complexity 

of the calculation. The hypothesis of Laplace distribution of the transformed residuals 

overrides the high rate assumption, for it can be applied for low rate output too. Likewise, the 

standard deviation σ  of the transformed residuals is strongly related to the source of video 

signal, being considered an inherent statistical property of the input sequence. Consequently, 

the Laplace distribution establishes itself as a unanimously agreed-upon choice for the 

representation of the input signal distribution.  

 

2) The entropy H of the quantized transformed residuals is calculated based on the uniform 

reconstruction scalar quantizer, though, being dependent on the encoding method (CAVLC 

or CABAC), its expression roughly represents the rate model. The authors of (Li and others, 

2009) refined the expression of the entropy, obtained on the following considerations: 

- The probabilities of the transformed residuals, summed as the entropy, are calculated by 

integrating the Laplace pdf of the uniform quantized residuals, within the quantization 

intervals, corrected with the rounding offsetγ . The offset constant values were separately 

determined for intra/inter encoding, though it could itself constitute another parameter for 

performance improvement. 
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- The classical form of the entropy ( 2.logH P P= − ) was corrected in order to handle the 

case of skipped macroblocks and get as close as possible to the real rate.  

 

- Since the entropy cannot further handle the final stages of the compression (run length and 

tree/arithmetic encoding), the authors were compelled to apply correction factors to the 

probability 0P of quantized-zeroes (computed on the dead zone) and probability nP  of 

quantized non-zeroes, respectively. The resulting rate model excludes the bitrate of the 

skipped macroblocks. 

 

- The ratio 0/sr P P= , where Ps is the probability of the skipped blocks and P0 represents the 

percentage of the quantized zeroes per frame, is always sub unit. Therefore, this derived 

parameter is considered as an inherent property of the input sequence too. 

 

- A roughly linear dependency relationship, at the practical QP = 28..40 values, was 

experimentally noticed between ln( / )refinedR H and the product ( Λ .Q). The linearity constant 

S was determined under the convergence condition. 

 

3) The closed form of the distortion model is determined by summing the second moment of 

the Laplace pdf on each quantization interval. 

 

4) The authors proved that for uniform distribution, which can be obtained from Laplace 

distribution when 0Λ → : 

2( . )Lap HR cQλ λ→ =  (2.3)

as in the case of H.263. It means that when the Laplace signal extends to all frequencies 

spectrum (σ →∞), Lapλ becomes a particular case of HRλ .    

 

5) This is an adaptive algorithm whose parameters values ( Λ , r) in the current frame are 

estimated from the ones collected in the previous (up to five) frames. With the predicted 
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values, the value of Lapλ  can be calculated from the derivatives of rate and distortion models 

with respect to quantization step.  

 

Finally, the Lagrange multiplier is calculated as 

Lap
D D Q

R R Q
λ ∂ ∂ ∂= − = −

∂ ∂ ∂
 

(2.4)

 

The approach of Laplace-based rate distortion models has some limits, though.  

 

Firstly, the derived rate model does not consider the side information (MV, MB type).  

Fortunately, the effect of side information was taken into consideration in the escape methods 

that accompany the algorithm for the cases that cannot be captured by the RD models.  

 

Secondly, the algorithm considers that a single Laplace distribution applies to the whole 

frame while different regions of the frame may have different Laplace parameters. 

Estimating the Laplace parameter by taking advantage of each macroblock configuration 

might be more effective. 

 

The core algorithm and rate distortion models are derived based on several assumptions:  

1) Laplace distribution of transformed residuals was the sole distribution considered 

2) No side information 

3) No sharp scene changes (only smooth scenes are allowed) 

 

In order to manage the encoding of sequences with a large range of characteristics the 

algorithm was supplemented with escape methods (corrections) to cope with the situations 

when the assumptions above do not hold valid in the real world. A correction process is 

initiated once an assumption is detected as invalid for the current frame. The correction is 

considered as an adaptive process guided by a self-corrector algorithm.  
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In order to detect sharp changes in the current frame, the standard deviation 0σ  of the current 

frame with respect to the previous same-type reconstructed frame is employed, and an 

adjusting process for Lapλ , based on several constants experimentally determined, takes place.   

When a non-Laplace distribution is detected in the transform residuals of the input sequence, 

the index                     

.

.real model
Lap

model real

R D
RD

R D
=  

(2.5)

is employed in order to appraise the proper weighting between rate and distortion calculated 

using the model equations, and their real coded values in the frame. Then, the algorithm 

provides formulae to clip the Lapλ  value if a continuous non-Laplace (over the latest few 

frames) occurred or just the current frame did not meet the Laplace distribution requirements. 

In order to manage the side information (header, MV, macroblock type) in the derived 

models, correction indexes (gaps between the model and the real world) for both rate and 

distortion are defined. 

 

Rgap measures the ratio of the difference between the rates of residuals with zero motion  

0( , , )i i iR r QΛ  and with motion compensation ( , , )i i iR r QΛ , and the real rate of the side 

information i
rsR . The Laplace parameter 0

iΛ  is calculated for residuals with zero motion. 

0( , , ) ( , , )i i i i i i
i
gap

i
rs

R r Q R r Q
R

R

Λ − Λ=  
(2.6)

Dgap is calculated as the relative gain of the distortion calculated with zero motion 

0( , )i iD QΛ  over the one that takes into account the motion compensation ( , )i iD QΛ . 

0
10

( , )
10 log

( , )

i i
i
gap

i i

D Q
D

D Q

Λ=
Λ

 
(2.7)

The empirically determined thresholds are used to assess the effect of the side information, 

either for fast/complex scenes or quasi-stationary sequences. Each evaluation of the three 

assumptions is followed by a refresh process (clipping) of the Lapλ  back to the traditional 

HRλ  as the last solution. 
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In conclusion, the Laplace based RDO is an adaptive method to compute the Lagrangian 

multiplier at the frame level, based on the information in the input sequence, that works fine 

under certain conditions: Laplace distribution of the transformed residuals, no scene change 

and no side information in the bitstream. 

 

 

Figure 2.1  RD curves, from (Li and others, 2009)  
with permission granted by IEEE 

 

However, when these assumptions are not met, the algorithm has the necessary escape 

techniques ( Lapλ  refresh technique) to switch back to the traditional Wiegand-Girod lambda 

multiplier HRλ .  

On average, the algorithm achieves gains of 0.34dB in PSNR or 8.23% rate reduction as 

illustrated in Figure 2.1. A single sequence, container.yuv, benefits massively from it, with a 

gain in PSNR of 1.79dB and 32% rate reduction. 

 

There is the inconvenient fact that the algorithm does not have great results for all sequences; 

namely, even at the frame level the distribution of residuals is clearly of Laplace type, the 

algorithm is however applied at macroblock level, whose distribution is not always Laplace. 

This is why, in order to avoid drift, the algorithm contains correction steps. 
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2.1.2 Laplace distribution-based approach for intra-frame coding 

In (Li, Oertel and Kaup, 2007) the same authors of (Li and others, 2009) and (Li and others, 

2007), proposed an adaptive Lagrange multiplier selection, this time for intra frame coding. 

The same R and D models deducted in (Li and others, 2009) were employed.  

 

 

Figure 2.2  RD curves for Claire_qcif.yuv, from (Li, Oertel and Kaup, 2007)  
with permission granted by IEEE 

 

A Laplace-based Lagrangian multiplier λLap was derived according to the variance σ of the 

transformed residual coefficients. However, for the first frame, entirely intra-frame coded, 

HRλ  was used since no variance information was available before the first frame. The 

difference from the algorithm presented in (Li and others, 2009) reside in the fact that the 

statistics regarding LapRD , gapR , and gapD  that would otherwise detect a non-Laplace 

distribution of the transformed residuals and evaluate the importance of the side information 

are not used. Nor the escape methods in (Li and others, 2009).  Nevertheless, as in (Li and 

others, 2009), the Laplace distribution parameter Λ gets its current value as the arithmetic 

mean of the values recorded in the previous frames. The methods achieved gains of up to 

0.3dB in PSNR, as illustrated in Figure 2.2. 
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2.1.3 SSIM-based approach 

Since the distortion calculated using the traditional measures (SSE, SAD, SATD) did not 

prove to be related to the human perception (Wang and Bovik, 2006), the research focused 

on other measures, capable of being better indicators of the perceived image quality. In this 

way one can also avoid the use of the PSNR indicator (also related to the conventional metric 

SSE) to compare the quality of the rendered sequences, since its values domain is unlimited, 

and as  result, it does not have a stated value or interval where the sequence quality might be 

considered optimal. 

     

SSIM is the indicator that successfully replaces the widely criticized distortion term (SSE) in 

the functional J, defined as the unconstrained RD cost function to be minimized: 

(1 ) .J SSIM Rλ= − + (2.8)

Although its computation is more elaborate, SSIM takes into consideration the perceptual 

properties of the image - contrast, luminance, and structure – being considered an objective 

quality measure. 

 

It adds visual perception levels to the simple mathematical calculation of the error, by 

considering visual properties (contrast, saturation, structure) at which the error can be 

analyzed. 

 

SSIM is calculated like its peer PSNR on all components Y, U, and V, of the image 

decomposition. The overall SSIM is computed by the authors of (Wang and others, 2012)  as: 

* * *Y U VSSIM w SSIMY w SSIMU w SSIMV= + +  (2.9)

with the weights 0.8, 0.1Y U Vw w w= = = . 

 

SSIM is totally adaptive to the reference signal according to (Wang and others, 2004). The 

value of the SSIM index at image level is calculated by averaging local SSIM values 

obtained using a sliding window at both the reference and distorted images. 
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Apart from its incontestable qualities in the detection of the image quality, the SSIM index 

has several drawbacks. Firstly, it is a spatial static indicator since it is calculated at the 

current image level and has yet to provide a hint with regard to the former or future image 

quality, as it is the case with the inter frames (P or B). It faces the same issue with the 

denominator as PSNR does when the error converges to 0; fortunately it uses several 

empirical constants, to avoid the singularities. 

 

Though the previous RD models and Lagrangian multipliers were derived without deeming 

the perceptual qualities of the input sequence, the current research is focused on perceptual 

RD models, based on perceptual measures. 

 

The articles (Wang and others, 2012) and (Wang and others, 2011) would represent the state-

of-the art for the next generation of encoders by the novel approach they propose.   

 

The main contributions of (Wang and others, 2012) and (Wang and others, 2011) are: 

1)  The best mode selection to encode the current MB, which results as a trade-off between 

the distortion value and the number of necessary bits, represents the goal to be achieved by 

the encoder. As a result, in the first step, the calculation of SSIMλ  is performed at the 

macroblock level, with surrounding pixels participating as an extension of the current MB, to 

avoid discontinuities at the original macroblock borders and to provide more samples for 

calculation, hence increasing the method stability. This situation happens when the marginal 

pixels of the original MB participate in the calculation of the parameters ( xμ  , yμ  , xσ  , yσ  ,

xyσ ) for the current position of the 4x4 sliding windows, in both original and reconstructed 

frame. Typically, three pixels wide extra side bands are added for luma and chroma 

components. Thus, the MB’s distortion term of the functional J is calculated by means of 

SSIM. 

 

2)  Prior to calculate SSIMλ , SSIM and rate models are derived at frame level. As in the case of 

(Li and others, 2009), the same approach, based on the Laplace distribution of the 
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transformed residuals is chosen to calculate the Lagrangian multiplier at the frame level, as a 

first approximation of SSIMλ  which is further refined at the macroblock level. 

 

3)  Since the distorted frame is not available to calculate the full-reference SSIM model as 

per definition, a reduced-reference model is derived. Typically, instead of calculating  
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(2.10)

using the definition of SSIM evaluated between the original x and the distorted y 4x4 blocks, 

the DCT coefficients are computed at the block level, with the same frequency coefficients 

grouped into 16 subbands. The mean iμ  and standard deviation iσ  are estimated for each 

subband i of the current macroblock. 

 

The total reduced-reference SSIM measure RRM  is computed as a product of reduced-

reference SSIM indexes of each AC frequency i through the reduced-reference SSIM 

corresponding to the DC coefficients.  
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(2.11)

In the final expression the coefficients Di are calculated as the second moment of the Laplace 

pdf over all quantization intervals, as in the case of Laplace distribution-based Lagrangian 

multiplier described in (Li and others, 2009). Di is a function depending on Λ  and Q. RRM ’s 

design is based on the features ( iσ ) extracted from the original frames in the DCT domain 

and from residuals. 

 

  A nearly perfect linear dependence between FRSSIM  and RRM  allows to predict SSIM based 

on RRM . However, the abscissa’s intercept ( RRM ) is sequence dependent and is dynamically 

estimated from the previous frame DCT transform i-th subband, while the convergence point 

(SSIM, MRR) is always equal to (1,1). 
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4) The rate model is based on the entropy model H, described in (Li and others, 2009) and 

does not take into consideration the bitrate of the skipped blocks, since the skipped blocks are 

not coded in the final stream. As in (Li and others, 2009), the linear relationship between 

ln( / )refinedR H and the product ( Λ .Q) is fully exploited, by taking into consideration the side 

information. The side information becomes important in low bitrate; the header bitrate is 

proportional with the source bitrate. As in (Li and others, 2009), the rate model is 

proportional with the entropy model and exponentially increases with the product ( Λ .QP), 

where Λ describes the intrinsic properties of the source. 

 

Finally, SSIMλ  is calculated by minimizing J: 

SSIM

dSSIM SSIM Q

dR R Q
λ ∂ ∂= =

∂ ∂
 

(2.12)

The value of SSIMλ , determined at frame level, is adapted with the inherent properties of the 

source ( iσ ). 

 

5) The second novelty of the paper consists in the refreshment of SSIMλ  at MB level. Any MB 

(except the skipped ones) is associated the motion information, which is strongly related to 

the perception quality, assessed every time by HVS. 

 

The MV are used by motion compensation (MC) to reduce the amount of the bitrate, and 

build the predicted image, used to construct the residuals, but, according to (Wang and Li, 

2007), the perceptual information content in MBs is not the same in terms of motion 

information content and perceptual uncertainty. The study (Wang and Li, 2007) concluded 

that the Lagrangian multiplier varies directly proportional with total distortion D and inverse 

proportional with total bitrate. This remark was used to adjust λ at the MB level. As a result 

more bits are assigned to MBs whose perceptual information content (in terms of MVs and 

DCT coefficients) is more important but the perceptual uncertainty is less significant. The 

weighting factor η that controls the adjustment of λ is defined as: 

.MBλ η λ= (2.13)
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where λ is the value calculated at frame level and: 

4 avgη ω ω=  (2.14)

The spatiotemporal importance weight function was defined as: 

( log ) (log log )r gI U v v cω ϕ ν τ δ= − = + − − + (2.15)

where: 

I = motion information content = self-information of the relative motion, 

U = perceptual information function,  

vr = relative motion vector, 

vg = global background motion vector. 

 

The constantsϕ ,ν ,τ , and δ  are the result of the psychophysical research that employs the 

power-law and log-normal distribution to determine the distribution of relative motion and 

perceptual uncertainty respectively. 

 

The variable c represents the contrast measure that depends exponentially on MB’s ( μ ,σ ).  

With the assumption that the inherent properties of the input sequence can be considered 

constant for a short period of time, the authors observed that the parameters Λ  and avgω  

vary slowly enough to be considered constant. Consequently, they are predicted from the 

previous frames. For the first frames, when the adaptive Lagrangian multiplier cannot be 

calculated, the authors proposed a new expression for HRλ , which is determined on the high 

rate assumption and by using the expectation of the SSIM and uniform probability 

distribution for MSE: 

2 4
HR aQ bQλ = −  (2.16)

 

The rate model proposed in  (Wang and others, 2012) and (Wang and others, 2011)  is valid 

for high bitrate; at low bitrate the skipped blocks number increases and the source bitrate 

tends to zero. The method achieved a gain of (0.002,..,0.01) in SSIM or a 5,…,21% rate 

reduction, as illustrated in Figure 2.3. 
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Figure 2.3  RD curves for the SSIM approach, from (Wang and others, 2012)  

with permission granted by IEEE 
 

As a conclusion, the new methods, based on the various probability distribution functions, in 

particular the Laplace distribution, seem to be the key approach for the next generation of 

encoders. The main benefits are the rate reduction corroborated with performance boost and 

image quality closer to the HVS expectation level. 

 

2.2 Types of distribution of the residual transformed coefficients 

The article (Xie and Chia, 2008) is an exhaustive and detailed analysis of the DCT residues 

from the standpoint of statistical properties. After DCT, the input can be regarded as 

composite video signal of mostly uncorrelated frequencies. The distribution of DCT residues 

is dependent of the DCT coefficients and the quantizer characteristics (Q,γ ). Beside the DC 

component, some frequencies contribute, after their quantization, to the final bitrate. 

According to the authors, Xie, J., and L.T. Chia, the DC coefficients are best modeled by a 

Gaussian pdf, whereas the AC components are best modeled as a Laplace source. 
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Both DC and AC coefficients are passed through a uniform distribution quantizer without 

threshold. Further, new models for rate and distortion are derived analytically. A rate control 

algorithm based on the derived expressions of rate and distortion is also discussed. The 

authors claim that their models can predict the possible distribution prior to actual encoding 

and without using any empirical knowledge. However there is still a problem, namely, only 

the entropy (but not the final rate) can be predicted by any of these models. 

 

On the same note, E. Lam and J. Goodman, the authors of (Lam and Goodman, 2000), gave 

an explanation as to why the most suitable distribution for AC DCT coefficients is Laplace 

and how the width of the AC DCT distributions shrinks at high frequencies while preserving 

the shape. The energy is smaller in higher frequency subbands and spatial correlations 

contribute to the decreasing of the distribution width. 

 

There are also other attempts to model the empirical data, made with other distribution types. 

The authors of (Altunbasak and Kamaci, 2004) proposed the use of zero-mean Cauchy pdf  

2 2
( )

( )
Cauchypdf x

x

μ
π μ

=
+

 
(2.17)

claiming that it offers better fit with the AC DCT residuals than Laplace distribution. Unlike 

Laplace whose parameter Λ  can be easily deduced in relation to the varianceσ , Cauchy 

distribution needs to have the parameter μ  dynamically determined for each set of samples, 

but has the advantage of having simpler approximated expressions for rate and distortion: 

( )R Q aQ α−≈ , ( )D Q bQβ≈  (2.18)

where  , , , 0a b α β > .  Nevertheless those expressions were determined for a rounding offset

1 / 2γ = , no matter the frame type. 

 

As a matter of fact, the curves R(Q) and D(Q), which were depicted for  a single frame of 

each encoding type (1I+1P) and a range of quantization steps show Cauchy a perfect fit for 

intra-compression while for interframe the low rates were advantaged by its use. However, 

the results were not confirmed for a sufficient greater number of frames to draw a positive 

conclusion.  
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Guided by the knowledge acquired from the articles aforementioned, the first step of the 

research involved the search of the best distribution to associate with the macroblocks DCT 

residuals. The best candidates to take into consideration were the well-known Laplace and 

Gauss distributions. 

 

The choice is principally justified by the pdf shape, as noticed from the macroblock pdf 

graphics in Figures 2.6 and 2.7.  

 

2.2.1 Gaussian model 

The reason why Gauss distribution is taken into account is due to its presence at the 

macroblock level in all motion type sequences, when the criterion (2.31) is applied to each 

macroblock. The Gaussian model fits macroblocks with symmetrical, mesokurtic 

distributions of transformed residuals, showing concave shoulders and short, usually slender 

tails. It appears more frequently at lower QP where the percentage of non-zero-mean 

transformed coefficients is higher, even for slow-paced sequences, as shown in Figure 4.1. 

 

2.2.1.1 Distribution equation 

The complete form of the Gauss distribution is: 

2
1

21
( )

2

x

Gausspdf x e
μ

σ

σ π

− −  
 =  

(2.19)

where μ  and σ  are the mean value and standard deviation respectively. 

          

2.2.2 Laplace model 

The Laplace distribution can be represented by two side-by-side exponential probability 

distributions functions. Like the normal distribution function, its shape is symmetric, but with 

thicker tails and a sharp singularity located on the symmetry axis. In video encoding the 
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distribution’s sharp peak is due to the high percentage of the zero value residues that occur 

mainly at the encoding of the slow sequences. 

 

The Laplace distribution fits the transformed residuals commonly found in quasi-stationary 

sequences (container, bridge) and portrait-like sequences with flat background (akyio, miss-

america, claire, news) and small degree of motion in the scene. The Laplace distribution is 

noticed at the transformed residuals quantized with higher QP values, as shown in Figure 4.1. 

 

2.2.2.1 Distribution equation 

The complete form of the symmetric Laplace distribution is. 

| |
1

( )
2

Lap

x

pdf x e

η
θ

θ

−
−

=  

(2.20)

, where η  and θ  are the location and scale respectively.  

 

The transformed residuals in the majority of the cases have their mean close to zero, which 

leads to the following form of the Laplace pdf, which is used to compute the distortion, 

entropy, and Lagrange multiplier: 

| |( )
2

Lap
xpdf x e−Λ Λ=  

(2.21)

where Λ  stands for Laplace parameter. 

 

The relation between Λ  and σ  was determined from the condition of Laplace distribution 

having the same variation as Gauss distribution, given that their expected values - location 

(Laplace) and the mean (Gauss) - are the same. Table 2.1 presents a parameter comparison 

between the Laplace and Gauss distribution. 

 

Even if the location η  was stripped out from the general formula of the Laplace distribution, 

the form (2.20) can be considered quite exact at the frame level, where the number of 
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Table 2.1  Laplace and Gauss distribution - parameters comparison 

Distribution Variance Skewness Kurtosis 

Laplace 22θ  0 3 

Gauss 2σ  0 0 

  

samples is big enough even for small resolutions i.e. 25,344/1,115,136 samples in the case of 

QCIF/CIF (Quarter Common Intermediate Format/Common Intermediate Format) resolution 

respectively. But it might miss accuracy and have the zero-mean assumption denied at the 

macroblock level and further at its subbands level, where the number of samples cannot 

surpass 256 and 16 samples respectively. 

 

2.2.3 Generalized Gauss model 

The generalized Gauss distribution (GGD), was taken into consideration in the articles      

(Sun and others, 2013a), (Sun and others, 2013b), and (Zhao and others, 2010), though not 

for the purpose of the RDO. GGD reduces to Laplace distribution and Gauss distribution 

when 1α =  or 2α =  respectively as illustrated in Figure 2.4.  

 

 

Figure 2.4  Zero-mean generalized Gaussian distribution. 
Adapted from (Sun and others, 2013a) 
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This model was considered for the cases where neither Laplace nor Gauss distributions fit the 

real world, but the real distribution could fit an intermediate shape from the same family of 

Laplace or Gauss distributions. 

 

2.2.3.1 Distribution equation 

The complete form of the zero-mean generalized Gauss distribution (GGD) as specified in 

(Sun and others, 2013a) is:
 

1

| |
[ 2( ) ]

( )
( )GG

x
g

g
pdf x e

αα
βα

β

 − 
 =  

(2.22)

where: 
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(2.23)
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(1/ )

g
αα
α

 Γ=  Γ 
 

(2.24)

The discrete values of the parameters of GGD, α   (shape parameter) and β  (standard 

deviation) can be estimated according to the formulas in (Sun and others, 2013b) and (Zhao 

and others, 2010):  
2
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−
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designates the fit function for α∗, where kX  are the transformed coefficients of the residuals 

of the macroblock k in the frame.  

 

2.2.4 Proof test  

The goodness of fit of Laplace distribution was discussed by Puig P. and Stephens M. in 

(Puig and Stephens, 2000) and (Puig and Stephens, 2007). The statistical test considers the 

criterions of Kolmogorov-Smirnov and Cramer von Mises - based on the cumulative 

distribution function - in order to compare two empirical distribution functions. A far 

simpler, parameter-based criterion, to choose Laplace over Gauss distribution, was 

demonstrated by Kundu D. (Kundu, 2005), using the ratio of maximized likelihood (RML).  

For a number of n i.i.d. samples 1,.., nX X , the maximum likelihood estimators 
^ ^

( , )μ σ  and 

^ ^

( , )η θ  of the characteristics ( , )μ σ and ( , )η θ  of the Laplace and Gauss distributions are 

calculated according to the following formulae for the estimated values: 

^

1

1 n

i

i

X
n

μ
=

=   
(2.28)

2^ ^
2

1

1
( )

n

i

i

X
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σ μ
=

= −  
(2.29)

^

1{ ,.., }nmedian X Xη =  (2.30)

^ ^

1

1
| |

n

i

i

X
n

θ η
=

= −  
(2.31)

The statistical test T is based on RML (ratio of maximum likelihood) of the likelihood 

functions of Laplace and Gauss distributions.  If the value of the statistical test T >0 then the 

most likely pdf is Gauss type otherwise Laplace type with the significance level α = 0.05. 

 

This criterion was intensively used in our research to decide for the particular case when the 

distribution generated by the transform residuals may be restrictively considered either of 

type Laplace or Gauss (closer of either Laplace or Gauss pdf). In this way, the macroblocks 
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of a single frame were coded either with Laplace or Gauss-derived Lagrange multiplier. All 

the same, the generalized Gauss distribution was used as an extra analytical comparator. 

^
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(2.32)

 

2.2.5 Generic model based on numerical integration 

Besides the widely known Gauss and Laplace distributions, the numerical integration was 

considered as a mean to deal with cases where none of the above would fit the distribution 

shape of macroblock samples, because of the lack of symmetry, or increased presence of the 

outliers. While the majority of the transform residuals at the frame level clearly fits Laplace 

distribution, as shown in the Figure 2.5, most of the real transformed residuals distributions  

 

 

Figure 2.5  The real distribution of transform residuals; seq. Bus (QCIF), frame #6(P) 

 

at the macroblock level do not show a perfect fit with either Laplace or Gauss distribution, 

though the statistical criterion would indicate the adhesion to the respective probability 

distribution class. 
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Figure 2.6  The real distribution of transform residuals, frame #6(P), MB (5, 8),  
sequence bus_qcif 

                                                                   

 

Figure 2.7 The real distribution of transform residuals, frame #6(P), MB (3, 7),  
sequence bus_qcif 

 

In Figure 2.6 one can see that the macroblock (5,8) would be appropriate for encoding using 

the Gaussian model formulas, though it lacks the symmetry, while the Figure 2.7 shows the 

jagged shoulders of the real distribution macroblock (3,7) whose statistical test would entitle 

it for encoding with the Laplace-based approach. 
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2.2.5.1 Distribution equation 

In practice, the well-known analytical models of Laplace, Gauss and even generalized Gauss 

do not fit many of the sequence’s inputs. In this case, it is better to consider a numerical 

integration of the distributions generated by the transformed coefficients of the residues. A 

simple integration method like the trapeze or Simpson approach would deliver an accurate 

result if the integration step is chosen sufficiently small without affecting too much the 

computation time and method error. Matlab’s ksdensity (kernel smooth density) function 

generates a sorted collection of discrete pairs { , }i ix y of the generic probability density 

function. The collections are utilized in the calculation of distortion, entropy and Lagrange 

multiplier.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 CHAPTER 3
 
 

RATE DISTORTION ESTIMATION ASSOCIATED TO LAPLACE, GAUSS, 
GENERALIZED GAUSS, AND NUMERICAL INTEGRATION COEFFICIENT 

MODELS 

 

In this chapter we calculate the equations of entropy (which is linked to rate) and distortion 

for the Laplace, Gauss, and generic coefficient models. Although many of these results are 

available from the literature, the mathematical derivations are usually lacking. Therefore they 

are derived here for completeness. Based on these formulas, we make a graphical comparison 

between the Laplace and Gauss models and their counterparts that form the generalized 

Gauss distribution. 

 

3.1 General Rate-Distortion equations 

When the distribution of the transform residual is known and close to zero-mean, the entropy 

and distortion can be relatively easily calculated. The general formulas for entropy and 

distortion contain three terms. The central term is associated to the dead zone 

[ , ]Q Q Q Qγ γ− + + −  of the uniform reconstruction scalar quantizer. The other two terms are 

calculated on symmetric and equally spaced intervals to the left and right side of the dead 

zone, [ ( 1) , ]n Q Q nQ Qγ γ− + + − +  and [ ,( 1) ]nQ Q n Q Qγ γ− + −  respectively. 

 

The entropy is calculated according to Shannon’s extended formula  

2 0 2 0 20
1 1

( ) log ( ) ( ) log ( ) ( ).log ( )n n n n n n
n n

H H H H P P P P P P
∞ ∞

− + − − + +

= =

= + + = − − −   
(3.1)

where:  

0

( )

( )
Q Q

Q Q

P pdf x dx
γ

γ

−

− −

=   
(3.2)
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( 1)
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n Q Q

n
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+ −
+

−
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(3.3)

( 1)

( )
nQ Q

n

n Q Q

P pdf x dx
γ

γ

− +
−

− + +

=   
(3.4)

The entropy formula illustrates only the concept of uniform quantization applied to 

transformed residuals. However, the final steps contained in the entropy encoding block (see 

Figure 1.1), e.g. the run length and tree (Huffman) /arithmetic encoding, are not addressed by 

the integration, thus the limitation of the formula that is being used to calculate the rate value 

as the entropy. Since an analytical formula for the rate is difficult to achieve, at least for now, 

the values obtained hardly represent the bitrate. 

The distortion’s general formula:  
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= − + −

= + +   

2

( )

( )
Q Q

Q Q

x pdf x dx
γ

γ

−

− −

+  

( 1)
2

1

( ) ( )
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n nQ Q

x nQ pdf x dx
γ

γ

+ −∞

= −

−   

(3.5)

is based on SSE metric and the uniform threshold scalar quantizer with the rounding offset γ  

at the dequantization (reconstruction). 

 

3.2 Rate-Distortion equations associated to Laplace model 

The zero-mean Laplace probability distribution function has the advantage of being an even 

function, which makes it easy to integrate it using the formulas above. In the case of a zero-

mean Laplace-type signal ( 0μ ≈ , Λ ) the distortion, entropy and implicitly the Lagrange 

multiplier depend on Λ ,γ , and Q step of the uniform quantizer. 

 



53 

3.2.1 Rate equation associated to Laplace model 

The expression of the entropy is: 

(1 ) (1 )

(1 )

1
(1 ) ln(1 )

ln 2

ln 2 ln(1 )
ln 2 1

Q Q
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H e e
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− − Λ − − Λ

− − Λ
−Λ

−Λ

−= − − +

Λ + − − − Λ + − 

 

(3.6)

and its demonstration is outlined in ANNEX I. This equation is a simplified version of the 

one found in (Li and others, 2009) which considers the rate, while we calculate the entropy. 

When a macroblock was skipped from encoding, a single bit is added to the final bitstream. 

According to (Li and others, 2009), the relationship between rate and entropy is as follows: 

. . QR S H e ζ− Λ=  
(3.7)

where S is a constant derived at the sequence level.  (Li and others, 2009) have determined 

the values of S (1.133 for intra frames and 1.982 for inter frames) from the condition of 

convergence of LAPLACEλ , at high rates, towards HRλ . The other constant, ζ , depends on the 

input video sequence, frame type, and entropy coding method and was experimentally 

determined by (Li and others, 2009) as 0.35 for CAVLC and 0.30 for CABAC. 

 

3.2.2 Distortion equation associated to Laplace model  

For the general case (non-skipped macroblocks) the distortion shows a dependency of Qstep 

denoted Q and Λ - Laplace parameter.          

2

(2 2 ) 2 2

(1 )

Q Q

Lap
Q

Qe Q Q e
D

e

γ γΛ Λ

Λ

Λ + Λ − Λ + −=
Λ −

 
(3.8)

The distortion of a skipped macroblock LapSKIPD , is calculated when the dead zone extends to 

the whole domain, which corresponds to the case when the quantization does not get applied 

to the transformed signal. 

2

2
LapSKIPD =

Λ
 

(3.9)

The demonstration of the distortion formulae is described in ANNEX I. 
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3.3 Rate-Distortion equations associated to Gaussian model 

In the case of a Gauss-type signal ( μ ,σ ) the distortion, entropy, and Lagrange multiplier 

depend on μ ,σ ,γ , and quantization step Q of the uniform quantizer.  

 

3.3.1 Rate equation associated to Gaussian model 

We calculated the closed form of the entropy GaussH  that we use to express the bitrate. Its 

demonstration is outlined in ANNEX II. 

2 2
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(3.10)

 

As in the case of Laplace distribution, when the macroblock is skipped from the encoding, a 

single bit is added to the final bitstream. 

 

We have not found any research providing a rate model for the Gaussian case. For simplicity, 

we assume a similar relationship between rate and entropy as for the Laplace case.  

2 /. .Gauss Gauss
QR S H e ζ σ−=  

(3.11)

 

Developing an accurate model would constitute a research project in itself.  
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3.3.2 Distortion equation associated to Gaussian model 

We have not found any research providing a distortion model for the Gaussian case. We 

calculated the closed form of the distortion GaussD  based on Gauss probability density 

function.  
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(3.12)

The distortion of a skipped macroblock GaussSKIPD , is calculated when the dead zone extends 

to the whole domain, which corresponds to the case when the signal is not quantized 

2 2
,SKIP GaussD μ σ= +  (3.13)

The demonstration is outlined in ANNEX II. 
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3.4 Rate-Distortion equations associated to generalized Gaussian model 

The complete form of entropy and distortion, as they are calculated by the authors of the 

articles (Sun and others, 2013a) and (Sun and others, 2013b) depend on the quantization step 

Q, shape parameter α , standard deviation β , and 1z γ= − , the dead zone ratio of the dead 

zone plus uniform threshold scalar quantization with nearly uniform reconstruction 

quantization (DZ+UTSQ/NURQ). 

 

3.4.1 Rate equation associated to generalized Gaussian coefficient model 

For this model, we are using the closed form of the entropy in (Sun and others, 2013b) 
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(3.14)

A reliable model linking the rate and entropy for the generalized Gaussian model is still 

lacking. As in the case of Gaussian model, we assume a similar relationship between rate and 

entropy as for the Laplace case. 

 

3.4.2 Distortion equation associated to generalized Gaussian model 

The closed form of the distortion is outlined in (Sun and others, 2013b) 
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(3.15)

 

3.5 Rate-Distortion equations associated to generic model 

The closed forms of the discrete formulas of distortion and entropy at the macroblock level 

were deduced with respect to their continuous forms under the hypothesis of zero-mean 

approximation.  

 

The integration step was chosen sufficiently small in order to provide the most precise results 

possible while avoiding the accumulation of rounding errors.  

 

3.5.1 Rate equation associated to generic model 

The discrete form of the entropy follows the same approach as in the continuous case. 

int 2.logn n

n

H P P
∞

=−∞

= −  
(3.16)

with 

.n i i

i

P y h=  (3.17)

where 1i i ih x x+= − and 1, [ ,( 1) ]i ix x nQ Q n Q Qγ γ+ ∈ − + −  

The term nP  is calculated as the sum of products of the pairs { , }i ix y generated by the 

Matlab’s ksdensity function from the original vector of transform residuals where the 
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quantization intervals are evenly spaced as an effect of using the uniform threshold scalar 

quantizer. As in the previous cases, we assume linear relationship between rate and entropy. 

 

3.5.2 Distortion equation associated to generic model 

The distortion formula is a double summation over the product of SSE differences and values 

of the generated pdf pairs{ , }i ix y . 

2
int

1

( . ) . .
N

i i i

n i

D x n Q y h
∞

=−∞ =

= −  
(3.18)

where the integration step 1i i ih x x+= −  

 

In practice, the value of n was restricted to the valid values of abscissae ix , where the pairs 

{ , }i ix y  were generated by kernel smooth density function. 

 

3.6 Comparison of the distortion models at different QPs 

We assessed the range of values the distortion is capable to deliver through analytical 

formulas. Besides QP, the sequence’s intrinsic properties μ  and σ  at the macroblock level, 

were considered. The value of μ  was set to zero for these graphs, while the interval of σ , 

(0.06 – 58.1) was determined by collecting these values from a dozen of sequences with 

slow, medium, and fast scene changes, encoded with the JM’s (reference software) standard 

approach, where the parameter UseCustomLM of the configuration file (ANNEX VI) was set 

to 1.  

 

The Laplace model can estimate a distortion in the range (0.07 - 2814) while the Gaussian 

model estimation values are situated in the interval (0.08 – 3312) as illustrated in Figure 3.1.  

These results were confirmed by their counterparts in the generalized Gauss model described 

in (Sun and others, 2013a) and (Sun and others, 2013b). The distortion calculated with the 

generalized Gauss model for 1α =  (which emulates Laplace pdf) showed identical range of 

values as previously determined with the original form of Laplace.  All the same, GGD with  
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2α =  produced the interval (0 - 3364), very close to the one generated by the original Gauss 

distribution, as shown in Figure 3.2. 

 

3.7 Comparison of entropy models at different QPs 

The entropy models determined in the paragraphs 3.2 and 3.3 were compared using 3D 

graphs. The highest value per sample for Laplace and Gauss models, 8.33 and respectively 

8.35 are slightly higher than the number of bits (8) needed to encode the maximum value 

(255) in the RGB system.  

 

GGD with 1α = confirmed with the value 8.58 the result obtained by the original Laplace 

distribution (8.33), while the value provided by the entropy model of GGD ( 2α = ) indicated 

in (Sun and others, 2013b) proved to be too big (14.5 compared to 8 bits/sample). This is 

because the formula for generalized Gauss, as is provided in (Sun and others, 2013b), was 

first computed for the Laplace case and then extended to the general case through a variable 

change. The Figures 3.3 and 3.4 show these discrepancies. 
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 CHAPTER 4
 
 

MACROBLOCK LEVEL ADAPTIVE LAGRANGE MULTIPLIER COMPUTATION  

 

4.1 Motivation 

To recapitulate, there are several ideas related to the value of λ and its usage per 

frame/macroblock. Firstly, there was the idea of using a constant value forλ, the same for 

each macroblock, each frame and each sequence, given a QP value. It represents a static 

approach, where potentially unnecessary bits are transmitted for the same video quality.  

 

A second approach, the state-of-the-art outlined in (Li and others, 2009) and (Li, Oertel and 

Kaup, 2007), taken over by the articles (Wang and others, 2012) and (Wang and others, 

2011), makes the distinction between different sequences and different frames of the same 

sequence. It aims for a Lagrange multiplier adaptive with the frame content and 

characteristics, which constitutes a step ahead in bitstream optimization. It has the drawback 

of considering the macroblocks as being identical from the standpoint of the statistical 

content. However, macroblocks differ across a frame. They may have different RD curves 

commanding different a Lagrange multiplier which is a function of the macrobloc 

characteristics rather than based on a frame level model. We conjecture that if λ had been 

calculated using macroblock level characteristics, then the gain in terms of PSNR and video 

quality would prevail over the case when λ is computed at the frame level.  

 

What we would like to get for optimal λ  is the value of the slope of the tangent to RD 

operational curve at the QP we are encoding with, if possible, taking into account 

macroblock level statistics. Generally, depending on the value of Lagrange multiplier used to 

weigh in between distortion and rate, there could be two extreme situations. A greater 

Lagrange multiplier value results in smaller rates, the encoder is biased toward minimizing 

the rate and the winner mode in the decision process could be Skip mode or, at most, a mode 
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based on inter- prediction. On the contrary, if the Lagrange multiplier is small, the rate is big, 

the distortion results in small value, so the encoder is biased toward small distortion and an 

intra-mode might be declared winner in the mode decision race.  

 

Moreover, since the inter frame prediction of larger blocks is not quite accurate, the allocated 

bits for the quantized transformed coefficients are in greater number, while those for header 

are quite a few. Smaller inter coded partitions, much easier to predict, deliver smaller amount 

of bits per encoded coefficient in contrast with a larger volume for the header that contains 

the MVs. Intra modes allocate most bits for the quantized transformed coefficients.  

 

In order to assess the percentage of the Gauss/Laplace-type macroblocks several sequences 

were run with QP = [1...51] and the standard configuration, e.g. UseCustomLM = 1 as 

described in ANNEX VI. Each macroblock type was assessed using the discrimination 

criterion described in 2.2.4. The percentage of Gauss macroblocks over the total number was 

calculated on several frames (1-5) for various types of sequences and displayed in Figure 4.1. 

The slow-paced sequences (bridge, container) show a saturation of the percentage of Gauss 

type macroblocks in the first third of the QP range followed by a descending slope, while the 

medium-paced (foreman, silent) and fast-paced (bus, ice, soccer, coastguard) sequences 

display maximums. We can observe in some cases that over 70% of the macroblocks have 

Gauss rather than Laplace distributions. This supports our belief that we should not limit our 

study to the Laplace distribution.  

 

As QP increases for lower rate, the Laplace-based macroblocks become predominant. Since 

coding with Laplace has much lower complexity it is preferable to code using greater values 

of QP. Another strong reason as to why it is preferable to consider macroblock level statistics 

as opposed to frame level statistics is because Lagrange multiplier computed as a mean value 

over the whole frame would not be appropriate for all macroblocks, since any macroblock’s 

statistical properties values might be different from the ones of the frame. 
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4.2 RDO using frame level Laplace distribution based Lagrange multiplier  

This method has as starting point several experiments conducted at the MB level through 

which macroblocks are adequately grouped to form entities, named coding units, having the 

same Laplace parameter. Each coding unit has the same Laplace parameter which may vary 

from one coding unit to another. The goal is to determine if another frame level model of rate 

and distortion, better than the ones described in (Li and others, 2009) can be deduced using 

the MB statistics.  

 

 

Figure 4.2  Histogram of MB level Laplace parameters for frame 10 of QCIF sequences 
Foreman and Container encoded at QP = 32 

 

In the first phase of the experiments each coding unit is represented by a single MB and one 

estimates its Laplace parameter. Figures 4.2 and 4.3 depict the histogram of MB level 

Laplace parameters for all MBs pertaining to the frame 10 of the QCIF sequences Foreman 

and Container, encoded in H.264 baseline at QP = 32 and QP = 40 respectively. One can see 

that the MB level Laplace parameter varies quite significantly within the frame, due to the 

fact that even for slow motion sequences the macroblocks differ in terms of variance. 
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Figure 4.3 Histogram of MB level Laplace parameters for frame 10 of QCIF sequences 
Foreman and Container encoded at QP = 40 

 

Similar variations have been noticed on other frames on same and different sequences coded 

at various QPs.  

 

4.2.1 Analysis of multiple coding units having Laplace distribution 

We define multiple coding units, for short MCU, as MBs or regions of a frame containing 

one or more MBs, contiguous or not, having various sizes (the number of MBs can change 

from one MCU to another), with transformed residuals obeying the Laplace distribution and 

having distinct Laplace parameters so that they can be easily clustered based on this criterion. 

Based on this description, we analyze their performance in terms of rate-distortion, 

mentioning that the results can be further generalized or enhanced based on other 

supplementary features used as clustering criterion. As each coding unit obeys the Laplace 

distribution with distinct parameter iΛ  and occupies an area of in  MBs in the frame, there 

can be up to K regions in a frame of N MBs and we can calculate the average distortion D 

and rate R per MB as in (4.1),  
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where iD  and iR  are respectively the distortion and rate of the i-th coding unit and obviously 

1

K

i

i

n N
=

= . Using (2.4) we can define the Lagrange multiplier for the MCU model mcuλ as in 

(4.2). 
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When the regions have the same size in terms of number of MBs, i.e. / ,in N K i= ∀  the 

expression (4.2) becomes 
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(4.3)

 

One can see that when all coding units have the same Laplace parameter iΛ = Λ then 

mcu Lapλ λ= showing that the proposed approach is a generalization of (2.4). According to 

(2.1), the Laplace parameter iΛ  for the MCU model is estimated in terms of standard 

deviation iσ  of the transformed residuals of coding unit i as: 

 
2

i
iσ

Λ =  
(4.4)

where iσ  is the standard deviation of the i-th coding unit. One can easily verify the 

relationship (4.5) between the variances of the frame σ  (considered as a single region) and 

coding unit levels iσ . 
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It turns out that the Laplace parameter Λ  at the frame level can be calculated based on the 

individual values of the coding units iΛ  , 1...i K=  as in (4.6). 
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(4.6)

 

In order to have an early evaluation in terms of performance of the MCU approach we 

consider a frame from the QCIF sequence Foreman in Figure 4.3 consisting of  three coding 

units of equal size having the parameters iΛ  = (0.15, 0.25, 0.25). This choice is motivated by 

the distribution of iΛ , one third situated roughly in the interval (0.1 - 0.2) and two thirds in 

(0.2 - 0.3) respectively, as one can see in the picture. For this set of iΛ  the calculated frame 

level 0.198Λ = according to (4.6). 

 

 

Figure 4.4  Laplace distributions of coding units with 1Λ  = 0.15, 2Λ  = 0.25, and 3Λ  = 0.25 
and frame level approximation, for Foreman_qcif.yuv  
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Figure 4.4 shows the Laplace distributions of the coding units along with the approximated 

frame level distribution when all MCUs are merged according to (4.6), while Figures 4.5 and 

4.6 show the R-D curves and the Lagrange multipliers Lapλ  and mcuλ  with respect to HRλ , 

used in the H.264 Joint Model (JM). We notice that a very small difference between the iΛ  

compared to the span of Laplace parameter values observed in Figures 4.2 and 4.3 entails a 

difference between the R-D curves and, what is more important, in the set of computed 

Lagrangian multipliers. Figure 4.5 shows that it is more advantageous to use a Lagrange 

multiplier based on the relation (4.2) than compute one at a frame level based on the merged 

regions. In order to evaluate the effect of merging the regions according to (4.6) and 

experiment with the Lagrangian multiplier based on the relation (4.2), we used a set of 

possible values for the Lagrange multiplier, up to 3010 .  

 

 

Figure 4.5  R-D curve of MCU and frame level approximation for MCU comprised of  
1Λ  = 0.15, 2Λ  = 0.25, and 3Λ  = 0.25, for Foreman_qcif.yuv 
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Figure 4.6  Lagrange multiplier for MCU and frame level approximation for MCU comprised 
of 1Λ  = 0.15, 2Λ  = 0.25, and 3Λ  = 0.25, for Foreman_qcif.yuv 

 

Interesting conclusions can be drawn from the analysis of Figure 4.6: for each value of the 

Lagrange multiplier in the designated set, there is an optimal value of the QP (the optimal 

range depicted in pink dots). Conversely, each QP is associated a range of optimal 

Lagrangian multipliers. We notice that the mcuλ  values calculated using (4.2) situate within 

the optimal range at each QP. As a matter of fact, starting from around QP = 28, HRλ < mcuλ

< Lapλ . However, at high QPs, the frame level Lagrange multiplier value based on (4.6) fails 

to reside within the optimal range, so for high QPs we should code using a Lagrangian based 

on (4.2) formula. 

 

We drew the same conclusions from other experiments with different sequences, MCU 

configurations, and Laplace parameters. For example, Figure 4.7 shows the Laplace 

distributions of the coding units with 1Λ  = 0.25, 2Λ  = 0.35, 3Λ  = 0.45, 4Λ  = 0.55, and 5Λ  = 

0.65, along with the approximated frame level distribution when all MCUs are merged 

according to (4.6). The RD curves and Lagrange multipliers ( Lapλ , mcuλ ) are depicted in 

Figure 4.8 and 4.9 respectively. 
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Figure 4.7  Laplace distributions of coding units and frame level approximation  
for 1Λ  = 0.25, 2Λ  = 0.35, 3Λ  = 0.45, 4Λ  = 0.55, and 5Λ  = 0.65, for Container_qcif.yuv 

 

This configuration represents a distribution of MBs related to the sequence Container in 

Figure 4.2, which is similar to the previous analyzed distribution. Now, the differences 

between R-D curves and Lagrange multipliers have become larger.  

 

So far, based on the assumption that the regions obey the Laplace distribution with different 

Laplace parameters, the experiments showed that only a Lagrangian multiplier based on the 

regional RD models might be optimal. In this case we need to calculate the derivatives of rate 

and distortion at the region level with (4.2). A faster frame level approach, based on (4.6), 

might be acceptable only when the regions have similar Laplace parameters. In practice, as 

we will show in Figure 4.9, depending on QP and not only on it, a MB transformed residuals 

setting might fit the Laplace, Gauss or mixtures of those. 

 

These conclusions were drawn for the case when all regions obey Laplace distribution, but 

they might be extended and enriched while experimenting with other distributions, such as 

Gauss, or combinations of them. For those cases, appropriate models must to be put in place. 
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Figure 4.8  R-D curve of MCU and frame level approximation for MCU comprised of  
1Λ  = 0.25, 2Λ  = 0.35, 3Λ  = 0.45, 4Λ  = 0.55, and 5Λ  = 0.65, for Container_qcif.yuv 

 

 

 

Figure 4.9  Lagrange multiplier for MCU and frame level approximation for MCU comprised 
of 1Λ  = 0.25, 2Λ  = 0.35, 3Λ  = 0.45, 4Λ  = 0.55, and 5Λ  = 0.65, for Container_qcif.yuv 
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As MCU-based method seems to be the approach of choice, the problem of predicting the 

region size arises, namely if the regions are too small then the error of predicting the 

distribution parameters increases too much, while larger regions would face the issue of 

mixing distributions of same type or different types. For the case when the prediction error of 

the distribution parameters is too high, a frame level Lagrangian based on (4.6) might prove a 

better choice, but this case should be carefully analyzed, since a high QP might have an 

undesired impact. In this work we considered MCU size limited to a single MB. Under this 

assumption, a set of 256 transformed residuals coefficients is expected to be large enough to 

reasonably estimate the parameters of any possible distribution under consideration, 

including Laplace and Gauss and their mixtures.     

 

4.2.2 Macroblock level processing 

Firstly, the processing at MB level has to take into consideration the type of the distribution 

that closest fits the transformed residual coefficients. We previously calculated the 

expressions of iR  and iD  functions for several distributions such as Laplace (3.6 and 3.7), 

and Gauss (3.9 and 3.10). From (Sun and others, 2013b), we have these expressions in the 

case of generalized Gauss (3.12 and 3.13). We have also computed the derivatives of iR  and 

iD with respect to Q (see ANNEX I, ANNEX II, and ANNEX III). 

 

For a skipped MB, we determined the distortion expressions namely (3.8) for Laplace 

distribution and (3.11) for Gauss distribution respectively. In this case a single bit is 

transmitted and both the derivatives of distortion and rate are considered equal to zero, since 

their rate and distortion values do not depend on Q. 

 

0     

0

i

i

D Q

R Q

∂ ∂ =
∂ ∂ =

 
(4.7)

 

We want to compare this algorithm with to the state of the art (Li and others, 2009) to see 

where we stand in terms of entropy. Let N be the number of MBs in the frame and ,i nN , the 
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number of transformed coefficients in the i th−  MB mapped to quantization level n. The 

total number of transformed coefficients in the frame can be calculated in two ways: 

 

,

1

256
N

i n

i n

N N
∞

= =−∞

= ×      
(4.8)

 

When all MB are treated equally, without the possibility that actually the MB be skipped, at 

the frame level the initial probability associated to the n th− quantization level is: 
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(4.9)

 

Of all N MBs, let W be the number of MBs that are coded as skipped. It follows that nP  

adjusts to the following expression, noted as *
nP , which excludes the transformed coefficients 

pertaining to the set S  of skipped MBs: 
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The authors of (Li and others, 2009) assumed that all transformed coefficients within skipped 

MBs are quantized to level 0. In this case, one can define 0N , the total number of 

transformed coefficients quantized to level zero (including those belonging to skipped MBs) 

and SN , the total number of transformed coefficients that  belong to the set S  of skipped 

MBs only: 
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Thus, the probabilities 
0P of the transformed coefficients quantized to bin zero over all MBs 

(including those in skipped MBs), and SP of the skipped MBs, become: 
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(4.12)

 

The probability *

0
P that excludes the skipped MBs becomes: 
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It follows that: 
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So the average entropy per transformed coefficient (we assume skipped blocs do not affect 

entropy): 
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(4.15)

 

With this, it has been demonstrated that this new approach that computes the pair rate- 

distortion at the MB level without taking in consideration the r factor but assigning zero 
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value to the derivatives of rate and distortion when the MB is skipped is compatible with the 

work of (Li and others, 2009) and might exceed their results.  

4.3 Macroblock level adaptive Lagrangian multiplier computation 

Following the cost function minimization (1.26), the Lagrange multiplier can be computed in 

several ways, depending on the way the distortion and rate are expressed. The general 

formula of the Lagrange multiplier is: 

dD

dR
λ = −  

(4.16)

When distortion and rate have analytical forms that depend on multiple variables, some of 

which are described in 1.3.5. and 1.3.6., it is difficult to derive according to (4.1). For this 

reason, the derivation is made with respect to Qstep. 

i

i

i
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D D
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(4.17)

For the case of generic model, we calculate the value of  λ  at discrete points QP. 

i

i

i

i

D
D

R R
λ

Δ
Δ= − = −
Δ Δ


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(4.18)

 

4.3.1 The optimal Lagrange multiplier as a function of QP for Laplace distribution 
based model 

Laplace-based Lagrange multiplier calculated with the formula (see ANNEX I) ranges from 

0 to 4390, a domain that is pretty close to the one (0.07- 4379) generated from a generalized 

Gauss distribution with 1α = (ANNEX III), but much less than the maximum value (6963) of

. It can be seen that up to QP = 28-30, the value of λ  is very low, after which a sharp, 

exponential steep is recorded, as illustrated in Figure 4.10. The region where λ  values are 

significant is an indicator to consider encoding with those values in order to save the bitrate. 

    

HRλ
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4.3.2 The optimal Lagrange multiplier as a function of QP for Gauss distribution 
based model 

The maximum Lagrange multiplier attainable with Gauss probability distribution function is 

3239, much smaller than that of HRλ , 6963. Using the distortion and rate formulae as 

mentioned in (Sun and others, 2013b), whose derivative with respect to QP(Qstep) are 

considered in the calculation of λ , a huge value of λ  (27816) was found. A 3D 

representation, as in Figure 4.11, showed that λ  would only depend on QP (Qstep) and 

practically is independent of β  (which is equal toσ ). The huge value comes from the 

problem signaled in paragraph 3.7. 

  
4.3.3 The optimal Lagrange multiplier for generic distribution based model 

For the model based on numerical integration, the Lagrangian multiplier was computed the 

following formula: 

Int
Int

Int

D

R
λ Δ= −

Δ
 

(4.19)

The discrete value of Intλ  was approximated by varying the Qstep with a small offset 

(1 3)QP QPΔ = ± −  around the central value QP of the current encoding. 

( ) ( )

( ) ( )

Int Int
Int

Int Int

D QP QP D QP QP

R QP QP R QP QP
λ − Δ − + Δ= −

− Δ − + Δ
 (4.20)

The offset is chosen so that the video quality would not change drastically. Usually, the 

operational curves D=D(R) display irregularities as in Figure 4.12, that translate into slope 

sign changes.  
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Figure 4.12 Operational RD and RD model curves. 
Adapted from (Chen and Ngan, 2007) 

 

Also, the difference ( ) ( )Int IntR QP QP R QP QP− Δ − + Δ should not be higher than an acceptable 

threshold. The iterative process of finding Intλ  skips the faulty values and proceeds until a 

valid one is retrieved. Otherwise, it adopts the static HRλ  as a last resort. 

 

4.4 Rate distortion optimization using the macroblock level adaptive Lagrange 
multiplier computation applied to H.264 compression 

When it comes to finding the best prediction followed by the best mode of compression for a 

macroblock, the Lagrange multiplier comes into play by trading the influence of distortion 

term over the allocated rate in the cost function expression. As long as λ  is based on the QP 

value only, the problem of deciding its share of rate in the final bitstream is completely 

solved out. Things get more complicated when the macroblock statistical characteristics need 

to be considered as part of the λ  calculation, as it is intended in the present research.  
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With the new approach the value of the Lagrange multiplier λ  cannot be calculated before 

knowing the residuals. On the other hand, the residuals of the current macroblock are only 

available upon encoding with a beforehand knownλ  since it influences the mode selection. 

 

The solution to this dilemma can come from either using a value of λ  determined in the 

previous frame or macroblock or encoding in two steps with several variants of the latter.  

Secondly, Lagrange multiplier must be available even before deciding the modes, in order to 

determine the MVs of the motion compensated prediction with respect to the aimed accuracy 

(FPel, HPel or QPel). The MVs are determined using a value of MOTIONλ  as in the equation 

(1.4). 

 

After the ME process has completed the associated distortion is not retained for further 

evaluation of the performance, but its resulting rate (number of bits to encode the motion 

vectors, the prediction method) becomes part of the final bitstream necessary to encode that 

macroblock, and, in the end, the whole frame. After all, the mode selection is the one that 

determines the final encoding, that is why the Lagrange multiplier for mode decision 

overweighs in importance the one associated to motion estimation. 

 

Besides, one needs to select QP values around which the compression is performed. The 

approach that keeps the same QP along the macroblock/frame encoding with small variations 

in order to discern the most appropriate value ofλ  has been adopted. 

 

The one step encoding diagram in Figure 4.13 presents the algorithm that uses the values of 

distortion, rate and Lagrange multiplier calculated in the previous frame (one frame delayed 

method) to encode the current one.  

 

A two-step encoding method would first acquire the transformed residuals necessary to 

estimate the Lagrange multiplier and would encode the macroblock in the second step using 

that value. Obviously this approach needs significantly more computational resources than 

the current JM implementation to achieve the compression. 
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4.5 Summary of the methodology used for experiments 

A MB can be encoded using the Laplace model only, in which case the criterion (2.32) is 

neglected. Otherwise, depending on the distribution type of its transformed residuals, it may 

be encoded as either Laplace of Gauss. For each iMB  that is not skipped, we compute iD  and 

iR  as in (AI.13) and (AI.15) for Laplace type or (AII.28) and (AII.5) in the case of Gauss 

distribution.  

 

The derivatives of iD  and iR  are computed using (AI.16) and (AI.17) in the case of Laplace 

distribution or (AII.30) and (AII.6) when the distribution is of type Gauss. If the MB is 

skipped, we use for the distortion calculation either the equation (AI.14) for Laplace type, or 

(AII.45) for Gauss type. In both cases the rate counts as 1 bit/sample while both derivatives 

count as zero values. A λ   at the frame level is calculated with (4.3) and is used to encode 

each MB in the next frame. Alternatively, either LAPLACEλ  or GAUSSλ  can be calculated 

respectively with (AI.18) or (AII.46) while λ  at frame level would result by applying (4.6).  

 

Unlike the Figure 1.8, the proposed algorithm connected the block that generates the 

Lagrangian multipliers (in grey) to the transform block, which provides the samples 

distributed according to Laplace/Gauss pdfs. Additionally, the block contains an evaluation 

of the MB statistical parameters, necessary to compute the Lagrangian multipliers. 
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 CHAPTER 5
 
 

EXPERIMENTAL RESULTS 

5.1 Experimental setup 

The experiments were made using a computer Dell XPS 8500 powered by 8 CPUs i7-3770 at 

3.40GHz, 12GB installed RAM, and running Windows 7 Enterprise 64-bit. 

 

The experimental environment includes a set of twelve video sequences in format QCIF and 

CIF of different types of motion (YUV test sequences, 2010): 

    - slow-paced: container, tempete. 

    - portrait-type with quasi-static background: foreman, silent. 

    - fast-paced: bus, coastguard, football, ice, mobile, soccer. 

 

The ANNEX VI contains the configuration file used at the encoding of the sequence 

carphone_qcif.yuv. All the sequences were rendered using this file adapted according to the 

utilized method and video sequence. 

 

The field UseCustomLM was added to the configuration file, whose values reflect the 

encoding method utilized at the macroblock level: Laplace, Gauss, mixed (Laplace/Gauss), 

numerical integration, and generalized Gauss. The results are compared to the standard 

approach and the state-of-the-art - adaptive Lagrange multiplier at frame level based on 

Laplace distribution - described in (Li and others, 2009) and (Wang and others, 2012). 

 

JM version 18.3 was run on each sequence of 100 frames formatted as 1I+99P, with five 

reference frames and fixed quantization parameter QP = (24, 28, 32, 36, 40, 44), the same for 

intra as for inter frame. These values were used along with the algorithm to compute the 

BDPSNR and BDRATE metrics as recommended in (Bjontegaard, 2001). As in (Li and 

others, 2009), the first intra frame is not considered in the rate-distortion performance 

analysis. The adaptive rounding and deblocking filters were disabled. RD optimization was 
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set to high complexity mode to take advantage of the various partitioning modes of the 

macroblock.  The first intra frame is not considered in the encoding using the new approach. 

The first inter frame is encoded using HRλ  and is only used to initialize statistics. The 

inherent property r of the input sequence, primarily utilized in (Li and others, 2009) is not 

employed here. Also, the refresh algorithm specific to (Li and others, 2009) was not utilized. 

 

The constants, whose meaning was mentioned in the algorithm of (Li and others, 2009) were 

utilized with the same values: ζ = 0.35 (for CAVLC), S = 1.982 (for inter frame, either 

Laplace or Gauss), γ  = 1/6 (for inter frames).  

 

For the encoding of the new approach that calculates mcuλ  we have used two models: either 

standalone Laplace or the mixed model Laplace-Gauss. Intra coding in interframe and PCM 

were disabled. We chose to simulate only these two models for modifying the Lagrange 

multiplier because they are the only two susceptible to be implemented in a final product and 

are numerically stable for computing the Lagrange multiplier. Nevertheless, rate and 

distortion estimation performance was performed on each of the models studied in this 

research work mostly for comparison and cross-validation purposes (e.g. to make sure that 

our Laplace and Gaussian models were well implemented and accurate enough).  

 

For a non-skipped MB the distortion and rate derivatives are used to calculate the Lagrange 

multiplier. On the contrary, for the skipped ones, the distortion and rate derivatives are 

deemed equal to zero. 

 

The Lagrange multiplier is calculated over all MBs in the frame. In each frame the current 

value of the Lagrange multiplier λ  is calculated based on the current values of the distortion 

and rate derivatives, which are based on the case of the Laplace distribution on the current 

value of the Laplace parameter Λ . 

 

Several levels of saturation were imposed:  (0.9  ... 5.0) * HRλ  and (0.9  ... 5.0) * previousλ  

whenever the computed value of λ  was too low or respectively too high. A mean of λ  values 
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spanning the last five frames is performed to compute the final Lagrange multiplier of each 

frame. 

 

The search method for prediction was set to EPZS, the motion vectors were detected at FPel 

level using SAD metric, while for the accuracy levels of HPel and Qpel, SATD was 

employed. The modes were decided using the SATD metric.  

 

5.2 Model parameters estimation at the macroblock level 

This research firstly focused on modeling the DCT residuals with the probability distribution 

functions of either Laplace or Gauss, considered separately, since at the macroblock level the 

distribution of transform residuals might have been close to either one of them, as opposed to 

the Laplace-type frame level.  

 

For the cases where neither Laplace nor Gauss pdf is applicable entirely over the whole MBs 

in the frame, a decision as to what distribution is a better fit for the residuals’ real shape was 

made by using a goodness of fit test, outlined in paragraph 2.2.4. 

 

A fourth way uses the generalized Gauss distribution, which covers symmetric Laplace, 

Gauss, and uniform distributions. In this case, the statistical test to discriminate between 

Laplace and Gauss is irrelevant because, based on the parameters value, the distortion and 

rate are calculated using the formulae in (Sun and others, 2013b). 

 

A more general approach based on numerical integration, independent of the pdf shape, 

skewness, and kurtosis has completed the analysis. It covers any type of shape of the real pdf, 

discarding all assumptions previously made such as in the case of Laplace pdf, when the 

integration was made with the assumption the samples set is zero-mean (mean = location = 

0), which is true at the frame level, but it does not always occur at the macroblock level, due 

to the insufficient number of samples. Using these five models at macroblock level, the 
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distortion, rate and Lagrange multiplier were calculated, tested and compared to JM, the 

standard implementation of H.264. 

 

Further, using Matlab, we developed a helper application which receives as input data the 

transformed residuals at the frame/MB levels and plots the whole map of the probabilities of 

distribution functions at the frame/MB levels. These plots have shown a good fit of the 

transformed residuals with the Laplace or Gauss pdf, discriminated with the criterion 2.2.4. 

This application helped to better understand why one can rely on the distribution type 

(Laplace) of the transformed residuals at the frame level, and why at the MB level, it is more 

difficult to predict the distribution type, mainly due to the lack of a sufficient number of 

samples to define the distribution parameters. 

 

For example, the distribution of transformed residuals was analyzed at the frame level for 

two values of QP, 20 and respectively 36, as in the Figure 5.1 a) and b). In Figure 5.1, it is 

depicted the real distribution of the transformed residuals (Tr.Res.) along with the theoretical 

distributions of the Laplace model (Laplace) and Gauss model (Gauss) that have the same 

characteristics, ( ,η θ ) respective ( ,μ σ ) as the real transformed residuals. 

 

While at the frame level the transformed coefficients’ distribution is clearly of Laplace type 

(frame 2(P) of Figure 5.1) no matter the value of the quantization parameter, at the 

macroblock level, the distribution type depends on QP. The sequence container was rendered 

with mixed model that selects the appropriate distribution, Laplace or Gauss, based on the 

discrimination criterion described in 2.2.4.  

 

For QP = 20, ten macroblocks ([7,1], [7,2], [7,3], [8,1], [8,2], [8,3], [9,1], [9,2], [9,3], [9,4]) 

have fit the Gauss distribution as shown in Figure 5.2, while for QP=36, the same 

macroblocks in the same frame have their transformed coefficients distributed according to 

the Laplace distribution, as illustrated in Figure 5.3.  
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Figure 5.1  Distribution of frame transformed residuals (container, frame 2(P)), 
a) QP = 20; b) QP = 36 

 

This confirms the conclusions related to Figure 4.1 and shows that one can estimate well the 

parameters related to both distributions. 

 

The problem is that the number of samples that is available for each MB is only 256, which 

now seems insufficient to determine the exact parameters and even then nature of the 

distribution of residuals. 
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If it were to consider the μ parameter in the D and H equations, the closed form of D and H 

would be difficult to achieve. This is why (Li and others, 2009) preferred to assume a μ = 0 

for the expressions of D and H and make several corrections on the fly in order to ensure the 

encoding process does keep on the right track. 

 

If the estimated Lagrange multiplier is below the value determined at high rate or if exceeds 

the upper threshold then it is limited to 0.9 HRλ  and respectively up to five times the value of

HRλ . 

 

5.3 H.264 rate and distortion estimation at macroblock level  

In this set of simulations, the video clips were encoded with HRλ  and statistics were gathered 

to estimate the various models’ parameters from residual information and measure how well 

we could estimate the MB level rate and distortion values. It is important to note that in these 

simulations, unlike those of the next sub-section, we did not interfere with the regular 

encoding process by applying a different Lagrange multiplier. 

  

The tables 5.1, 5.2, and A V-1 through A V-10 in the ANNEX V show that the distortion’s 

relative error at the macroblock level, using the real value and the one calculated with each 

model, has small mean and standard deviation values, under 10%, and decreases with QP for 

slow (container_qcif, container_cif) and medium-paced sequences (coastguard_qcif, 

silent_qcif). Nevertheless, for fast sequences, the mean and standard deviation values 

increase significantly (ice_qcif, ice_cif, and foreman_qcif) for the whole QP domain. This 

partly explains why the R-D gains are more important for slow sequences, like container. It 

can also observed that, from the standpoint of relative error of distortion, the mixed Laplace-

Gauss model is just a little bit better than Laplace’s, but only for slow sequences. On the 

contrary, the rate relative error with respect to the real rate has huge values increasing with 

QP. Therefore, accuracy problems are expected when computing the Lagrange multiplier. In 

summary, for both Laplace and Laplace-Gauss models, the distortion’s relative error 

decreases with an increase of the QP.  
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Table 5.1  Consolidated statistics of MB models applied to sequence container_cif 

 

 

Table 5.2  Consolidated statistics of MB models applied to sequence container_qcif 

 

 

The tables 5.3 and 5.4 show that at the MB level, for slow sequences, the new approach 

based on mixed Laplace-Gauss method, either Laplace or Gauss, benefits from the low 

values of the distortion prediction error. However, we see clearly that the rate prediction error 

is very high. Therefore, the rate prediction model is not accurate. Even when the encoding is 

made with SKIP mode activated, which leads to zero relative error of the distortion of the 

skipped, when there is a better mode than SKIP, its bitrate relative error is too big to be 

overridden by a smaller relative error of the distortion. Note that in practice λwill only 

depend on non-SKIP MBs. Indeed, in the case when SKIP is used, the R and D derivatives 
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become zero and non-SKIP MBs control the global value of mcuλ . Even so, we expect that 

once the MCUs group more than a MB, we see improvements in the bitrate relative error too 

and lead to more accurate mcuλ .   



97 

Table 5.3 The new approach applied to sequence container_qcif  
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Table 5.4 The new approach applied to the sequence silent_qcif.yuv 
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5.4 H.264 RDO using frame level adaptive at the region level  

As described in the section 4.5 the new approach proposes the calculation of the Lagrange 

multiplier at the frame level using the R and D derivatives per each MB. The Lagrange 

multipliers mcuλ computed in this manner is then used to encode each MB in the next frame. 

The R and D derivatives can be calculated for two models at the MB level: either with the 

Laplace model (standalone) or by using the combination of Laplace and Gauss models, a 

decision that is made when the discrimination criterion (2.32) is employed. One considers a 

MCU comprised of a single MB, but this new approach has the ability to group multiple MBs 

having individual σ within a designated range. 

 

The new proposed approach (named here MB LM) and our implementation of the state-of-

the-art described in (Li and others, 2009) (named here Frame LM) are compared with the 

standard implementation JM baseline. The graphics PSNR vs. bitrate (Figures 5.5, 5.6 and A 

IV-1 through A IV-10 in the ANNEX IV) compare these methods against the JM baseline 

implementation (blue). The new approach is represented with its two versions: one that uses 

the Laplace model (red) and a version that employs the mixed model Laplace-Gauss 

(magenta). The Frame LM method curve is depicted in green. The method of Bjontegaard 

was used to draw the graphs through four points. 

 

We can observe in the Table 5.5 that the new approach gets several great improvements in 

terms of BDPSNR for all tested sequences using the standalone Laplace model, except for 

soccer_qcif, soccer_cif, football_cif, and ice_qcif, where losses are small. The gains of 

0.93dB and 0.5dB obtained in the case of container_qcif and container_cif respectively are 

notable. This fact is accompanied by pronounced bit rate reductions of up to 18.72% and 

15.78%, for the same sequences. These BDPSNR gains/BDRATE reductions were made 

possible by disabling the adaptive rounding. With the combined method Laplace-Gauss we 

also got BDPSNR gains/BDRATE reductions, although smaller than with Laplace standalone 

approach: a gain in BDPSNR of 0.31dB and a bit rate reduction of 7.16% in the case of 
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container_qcif, and a gain in BDPSNR of 0.18dB accompanied by a bit rate reduction of 

5.64% for container in CIF format respectively.    

 

Our Frame LM implementation of the state-of-the-art performs well as expected, acquiring a 

solid gain of 0.88dB along with an impressive rate reduction of almost 19% when encoding 

the sequence container_qcif. Note that a huge gain of 1.79dB was reported in (Li and others, 

2009) during their experiments. But we have some differences in our test setup (e.g. no intra 

in inter). Furthermore, we could not replicate their results even with the regular JM although 

we used the same version as them (we could never elucidate this mystery). In the case of 

Frame LM, one can see that its λ at the frame level has the same values at various encoding 

QPs as the ones of MCU’s model and JM baseline. The curves PSNR vs. bitrate and λ vs. 

QP of both Laplace and Laplace-Gauss models overlap since for the QP range that we 

experiment with there is a small number of Gauss type MBs that cannot change the tendency 

established by the Laplace type MBs. 

 

 

Figure 5.4  PSNR vs. bitrate and mcuλ  vs. QP of container_cif.yuv 
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Figure 5.5  PSNR vs. bitrate and mcuλ  vs. QP of container_qcif.yuv 

 

 

The proposed method is comparable from the performance’s standpoint with the Frame LM 

method. Also, they overall perform better than the JM. When MCU approach performs worse 

than the state-of-the-art method and JM, it is only by a small BDRATE percentage but gains 

over the JM in the case of container in both QCIF and CIF formats, and silent are 

noteworthy.  

 

Quasi-static silent and container sequences perform better for Frame LM because the latter 

computes much higher Lagrange multiplier values which forces more SKIP MBs and reduces 

dramatically the rate. This makes our rate estimates much less accurate and affects our 

performance. Thus, we believe that a better rate model would greatly improve the 

performance of the proposed method. This is a very difficult problem since even (Li and 

others, 2009) had to rely on several empirical adjustments to obtain a somewhat reliable 

model (introduction of the S and r parameters and an exponential compensation factor). 
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Note that the computational complexity of the proposed method is very small compared to 

the video encoding process since it requires computing simple variance statistics and 

evaluating a few simple equations per frame.   

 

 

Table 5.5  Comparison between coding with Laplace at the frame level (FrameLM) and the 
new approach with respect to the standard implementation of JM 

 

 
 
 
 
 
 



 

CONCLUSION 

 

Summary of the work 

 

We have proposed a new method for frame level Lagrange multiplier computation based on 

MB level rate and distortion models.  

 

Although the distortion model nearly attained the values of the real distortion with most 

video sequences which were tested and especially at higher QP values, the rate, as a 

byproduct of the motion estimation and mode decision process, did not meet the 

expectations.  

 

We conjecture that this is because we use a model at the MB level only, that amounts for an 

insufficient number (256) of samples to correctly predict the distribution of transformed 

residuals and we try to substitute the transform, quantization, and entropy encoding of each 

MB coefficient with a global method at the MB level that integrates the distribution of the 

transform residuals over the available quantization intervals (stated by the uniform scalar 

quantizer) but does not cover the further stages of run-length and tree/arithmetic coding. 

 

We have partially succeeded to solve the problem of using a single distribution for the whole 

frame by proposing a new approach (based on MCU) that groups multiple MBs under the 

same umbrella, as an intermediate case between a processing at the MB level only and frame 

level processing.  The tests were performed using the MB as the MCU and we have showed 

that such division worked very well (despite the insufficient number of samples) especially 

for slow paced sequences like container where there are impressive bit rate reductions up to 

almost 19%. 
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Contributions 

 

Firstly, we have thoroughly demonstrated the analytical expressions of R, D, and λ for 

various models: Laplace, Gauss, GGD, etc. This is, to our knowledge, the first work 

containing detailed derivation of these models. Then, we have proposed a novel MCU-based 

framework where rate and distortion models for each MCU are used to compute the 

Lagrange multiplier. The Laplace or Laplace-Gauss based distortion expressions proved to be 

accurate but only for slow sequences and especially for high QP values. We have 

implemented the proposed method using the MB as the unit. We have tested the 

BDRATE/BDPSNR performance of the proposed MCU-based approach achieved by 

compressing several CIF/QCIF sequences and we observed that it was overall better than the 

JM (up to 18.72% BDRATE reduction) and on average slightly better than the state-of-the-

art algorithm.  

 

Future work 

 

Further research should investigate the performance of the proposed method with larger 

MCUs and improve the distortion and rate models at such larger MCU level.  A more 

accurate rate model that would extend the current entropy model with the actual encoding 

process (run length and tree/arithmetic encoding) would be required to improve the 

performance of the proposed method. The Gauss distribution was assumed to have a rate 

model similar to the one associated with the Laplace distribution, but this needs to be 

validated and modified if this is not the case.  



 

ANNEX I 
 
 

LAPLACE DISTRIBUTION-BASED DISTORTION, RATE, AND LAGRANGE 
MULTIPLIER 

The following shows the formulae deduction for distortion, rate and Lagrange multiplier 

respectively in the case of a zero-mean Laplace-type signal ( 0μ ≠ , Λ ).  

1) The calculation of entropy H  
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The formula AI.3 becomes: 
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Finally, the entropy calculated with Laplace pdf is:     
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2) The distortion calculation 
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AI.10 becomes: 
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The distortion final expression is: 
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The distortion calculated for the SKIP mode depends on Λ parameter only. 
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3) The Lagrange multiplier calculation 

According to the article (Li and others, 2009), a logarithmic relationship between R and H 
exists between rate and entropy. 
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The derivatives of distortion and rate are: 
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Finally, we calculate the Lagrange multiplier expression 
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ANNEX II 
 
 

GAUSS DISTRIBUTION-BASED DISTORTION, RATE, AND LAGRANGE 
MULTIPLIER 

In the case of a Gauss-type signal ( μ ,σ ) the distortion, entropy and Lagrange multiplier 

depend on μ ,σ , and Q step of the uniform quantizer. 

1) The entropy calculation 
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2) As in the case of Laplace distribution, a logarithmic relationship between R and H may be 
considered, with the same values for the constants S (1.982) and ζ (0.35).  
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The derivative of R with respect to Q becomes: 
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Further one calculates the derivative of the entropy  
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3) The distortion calculation 
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4) The calculation of the distortion derivative  
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) 

DSKIP is calculated when the dead zone extends to the whole domain, so the quantization is 

not applied to the transformed signal. 
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5) Finally, we calculate the Lagrange multiplier expression: 
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ANNEX III 
 
 

GENERALIZED GAUSS DISTRIBUTION-BASED DISTORTION, RATE, AND 
LAGRANGE MULTIPLIER 

With the notation, 
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 the expressions of distortion and entropy in (Sun and others, 

2013b) become: 
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The entropy and distortion derivatives are: 
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The Lagrangian multiplier is calculated using the above derivatives of distortion and entropy. 
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ANNEX IV 
 
 

EXPERIMENTAL CURVES PSNR VS. BITRATE 

We list below more graphics that show the dependencies of PSNR vs. bitrate and Lagrange 

multiplier mcuλ  vs. QP for several sequences in format CIF/QCIF in the set utilized for 

experiments. The comparison between sequences in terms of PSNR and bitrate is illustrated 

in Table 5.5. The results displayed in these figures were obtained with SKIP mode activated 

and adaptive rounding deactivated. 

 

 

Figure-A IV-1 PSNR vs. bitrate and mcuλ  vs. QP of bus_qcif.yuv 
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Figure-A IV-2 PSNR vs. bitrate and mcuλ  vs. QP of coastguard_qcif.yuv 

 

 

Figure-A IV-3 PSNR vs. bitrate and mcuλ  vs. QP of football_qcif.yuv 
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Figure-A IV-4 PSNR vs. bitrate and mcuλ  vs. QP of foreman_qcif.yuv 

 

 

Figure-A IV-5 PSNR vs. bitrate and mcuλ  vs. QP of ice_qcif.yuv 
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Figure-A IV-6 PSNR vs. bitrate and mcuλ  vs. QP of mobile_cif.yuv 

 

 

Figure-A IV-7 PSNR vs. bitrate and mcuλ  vs. QP of silent_qcif.yuv 
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Figure-A IV-8 PSNR vs. bitrate and mcuλ  vs. QP of soccer_cif.yuv 

 

 

Figure-A IV-9 PSNR vs. bitrate and mcuλ  vs. QP of soccer_qcif.yuv 





 

ANNEX V 
 
 

CONSOLIDATED STATISTICS OF THE NEW APPROACH APPLIED AT THE 
MACROBLOCK LEVEL 

The results displayed in these tables were obtained with SKIP mode activated and adaptive 

rounding deactivated. 

 

Table-A V- 1 Consolidated statistics of MB models applied to sequence bus_qcif.yuv 

 

 
Table-A V- 2 Consolidated statistics of MB models applied to sequence coastguard_qcif.yuv 
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Table-A V- 3 Consolidated statistics of MB models applied to sequence football_qcif.yuv 

 

 

Table-A V- 4 Consolidated statistics of MB models applied to sequence foreman_qcif.yuv 

 

 

Table-A V- 5 Consolidated statistics of MB models applied to sequence ice_qcif.yuv 
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Table-A V- 6 Consolidated statistics of MB models applied to sequence mobile_cif.yuv 

 

 

Table-A V- 7 Consolidated statistics of MB models applied to sequence silent_qcif.yuv 

 

 

Table-A V- 8 Consolidated statistics of MB models applied to sequence soccer_cif.yuv 
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Table-A V- 9 Consolidated statistics of MB models applied to sequence soccer_qcif.yuv 

 

 

Table-A V- 10 Consolidated statistics of MB models applied to sequence ice_cif.yuv 



 

ANNEX VI 
 
 

CONFIGURATION FILE 

The following configuration file contains the settings utilized during the experiments with the 

new Lagrange multiplier 

# Files 

InputFile = "carphone_qcif.yuv", InputHeaderLength = 0, StartFrame = 0, 

FramesToBeEncoded = 100, FrameRate = 30.0, SourceWidth = 176, 

SourceHeight = 144, SourceResize = 0, OutputWidth = 176, OutputHeight = 144, 

TraceFile = "trace_enc.txt", ReconFile = "test_rec.yuv", OutputFile = "test.264", 

StatsFile = "stats.dat" 

# MBLagrangeMultiplier 

UseCustomLM = 5 # the approach to calculate lambda  

                                # 1 = standard approach  

                                # 2 = Laplace at MB level 

                                # 3 = Gauss at MB level 

                                # 4 = mixt at MB level 

                                # 5 = integral at MB level 

                                # 6 = GGD at MB level 

                                # 7 = Laplace at frame level 

QPOFFSET = 1  

# FrameLagrangeMultiplier 

TSC = 0.3, TPSC = 0.8, TARD = 50.0, TPRD = 10.0, TRGapH = 15.0, TDGapH = 5.0,  

TRGap = 7.5, TDGap = 3.0 DisplayLaplaceLambda = 0, WriteLaplaceLambda = 1,  

LaplaceLambdaFile = "FrameData.txt"        

# Encoder Control 

 ProfileIDC = 66, IntraProfile = 0, LevelIDC = 40, IntraPeriod = 0, 

IDRPeriod = 0, AdaptiveIntraPeriod = 1, AdaptiveIDRPeriod = 0, 

IntraDelay = 0, EnableIDRGOP = 0, EnableOpenGOP = 0, QPISlice = 28, 
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QPPSlice = 28, FrameSkip = 0, ChromaQPOffset = 0, DisableSubpelME = 0,  

SearchRange = 32, MEDistortionFPel = 0, MEDistortionHPel = 2,  

MEDistortionQPel = 2, MDDistortion = 2, SkipDeBlockNonRef = 0,  

ChromaMCBuffer = 1, ChromaMEEnable = 0, ChromaMEWeight = 1,  

NumberReferenceFrames = 5, PList0References = 0, Log2MaxFNumMinus4 = 0,  

Log2MaxPOCLsbMinus4 = -1, GenerateMultiplePPS = 0, SendAUD = 0,  

ResendSPS = 2, ResendPPS = 0, MbLineIntraUpdate = 0, RandomIntraMBRefresh = 0 

# PSlice Mode types 

PSliceSkip = 0, PSliceSearch16x16 = 1, PSliceSearch16x8 = 1,  

PSliceSearch8x16 = 1, PSliceSearch8x8 = 1, PSliceSearch8x4 = 1, 

PSliceSearch4x8 = 1, PSliceSearch4x4 = 1, DisableIntra4x4 = 0,  

DisableIntra16x16 = 0, DisableIntraInInter = 1, IntraDisableInterOnly = 0, 

Intra4x4ParDisable = 0, Intra4x4DiagDisable = 0, Intra4x4DirDisable = 0,   

Intra16x16ParDisable = 0, Intra16x16PlaneDisable = 0, ChromaIntraDisable = 0,  

EnableIPCM = 0, DisposableP = 0, DispPQPOffset = 0, PreferDispOrder = 1, 

PreferPowerOfTwo = 0, FrmStructBufferLength = 16, ChangeQPFrame = 0,  

ChangeQPI = 0, ChangeQPP = 0, ChangeQPB = 0, ChangeQPSI = 0, ChangeQPSP = 0 

# Output Control, NALs 

OutFileMode = 0  

# Picture based Multi-pass encoding 

RDPictureDecision = 0, RDPSliceBTest = 0, RDPictureMaxPassISlice = 1,   

RDPictureMaxPassPSlice = 2, RDPictureMaxPassBSlice = 3,    

RDPictureFrameQPPSlice = 0, RDPictureFrameQPBSlice = 0,   

RDPictureDeblocking = 0, RDPictureDirectMode = 0   

# Deblocking filter parameters 

DFParametersFlag = 0, DFDisableRefISlice = 0, DFAlphaRefISlice = 0,   

DFBetaRefISlice = 0, DFDisableNRefISlice = 0, DFAlphaNRefISlice = 0,   

DFBetaNRefISlice = 0, DFDisableRefPSlice = 0, DFAlphaRefPSlice = 0,   

DFBetaRefPSlice = 0, DFDisableNRefPSlice = 0, DFAlphaNRefPSlice = 0,  

DFBetaNRefPSlice = 0   



141 

 

# Error Resilience / Slices 

SliceMode = 0, SliceArgument = 50, num_slice_groups_minus1 = 0,  

slice_group_map_type = 0, slice_group_change_direction_flag = 0, 

slice_group_change_rate_minus1 = 85, SliceGroupConfigFileName = "sg0conf.cfg",  

UseRedundantPicture = 0, NumRedundantHierarchy = 1, PrimaryGOPLength = 10,   

NumRefPrimary = 1   

# Search Range Restriction / RD Optimization 

RestrictSearchRange = 2, RDOptimization = 1, I16RDOpt = 0,                           

SubMBCodingState = 1, DistortionSSIM = 1, DistortionMS_SSIM = 0,   

SSIMOverlapSize = 8, DistortionYUVtoRGB = 0, CtxAdptLagrangeMult = 0,                                           

FastCrIntraDecision = 1, DisableThresholding = 0, SkipIntraInInterSlices = 0,  

WeightY = 1, WeightCb = 1, WeightCr = 1  

# Explicit Lambda Usage 

UseExplicitLambdaParams = 0, UpdateLambdaChromaME = 0,   

FixedLambdaISlice = 0.1, FixedLambdaPSlice = 0.1,  

LambdaWeightISlice = 0.65, LambdaWeightPSlice = 0.68,  

LossRateA = 5, LossRateB = 0, LossRateC = 0,  

FirstFrameCorrect = 0, NumberOfDecoders = 30, RestrictRefFrames = 0  

# Additional Stuff 

UseConstrainedIntraPred = 0, NumberofLeakyBuckets = 8,    

LeakyBucketRateFile = "leakybucketrate.cfg",   

LeakyBucketParamFile = "leakybucketparam.cfg",  

NumFramesInELayerSubSeq = 0, SparePictureOption = 0, 

SparePictureDetectionThr = 6, SparePicturePercentageThr = 92, 

PicOrderCntType = 0 

#Rate control 

RateControlEnable = 0, Bitrate = 45020, InitialQP = 0, 

BasicUnit = 0, ChannelType = 0, RCUpdateMode = 0, 

RCISliceBitRatio = 1.0, RCBSliceBitRatio0 = 0.5, 

RCBSliceBitRatio1 = 0.25, RCBSliceBitRatio2 = 0.25, 
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RCBSliceBitRatio3 = 0.25, RCBSliceBitRatio4 = 0.25, 

RCBoverPRatio = 0.45, RCIoverPRatio = 3.80, 

RCMinQPPSlice = 8, RCMaxQPPSlice = 44, RCMinQPISlice = 8, 

RCMaxQPISlice = 36 

#Fast Mode Decision 

EarlySkipEnable         = 0      

SelectiveIntraEnable    = 0      

ReportFrameStats        = 1 

DisplayEncParams        = 1 

Verbose                 = 2 

#Rounding Offset control 

OffsetMatrixPresentFlag = 0, QOffsetMatrixFile = "q_offset.cfg"  

AdaptiveRounding = 0, AdaptRoundingFixed = 0, AdaptRndPeriod = 16,    

AdaptRndChroma = 1, AdaptRndWFactorIRef = 4, AdaptRndWFactorPRef = 4, 

AdaptRndWFactorINRef = 4, AdaptRndWFactorPNRef = 4, AdaptRndCrWFactorIRef = 4, 

AdaptRndCrWFactorPRef = 4, AdaptRndCrWFactorINRef= 4,  

AdaptRndCrWFactorPNRef= 4 

#Fast Motion Estimation Control Parameters 

SearchMode = 3, UMHexDSR = 1, UMHexScale = 3, EPZSPattern = 5, 

EPZSDualRefinement = 6, EPZSFixedPredictors = 2, EPZSTemporal = 1, 

EPZSSpatialMem = 1, EPZSBlockType = 1, EPZSMinThresScale = 0, 

EPZSMedThresScale = 1, EPZSMaxThresScale = 2, EPZSSubPelME = 1, 

EPZSSubPelMEBiPred = 1, EPZSSubPelThresScale = 2, EPZSSubPelGrid = 1 

# SEI Parameters 

GenerateSEIMessage = 0                     

SEIMessageText = "H.264/AVC Encoder"   

UseMVLimits = 0, SetMVXLimit = 512 , SetMVYLimit= 512    

EnableVUISupport = 0    
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