ÉCOLE DE TECHNOLOGIE SUPÉRIEURE UNIVERSITÉ DU QUÉBEC

MÉMOIRE PRÉSENTÉ À L'ÉCOLE DE TECHNOLOGIE SUPÉRIEURE

COMME EXIGENCE PARTIELLE À L'OBTENTION DE LA MAÎTRISE EN GÉNIE MÉCANIQUE M.Ing

PAR HINGRAY, Bertrand

ÉTUDE EXPÉRIMENTALE DU COMPORTEMENT DYNAMIQUE DES ENGRENAGES CYLINDRIQUES

MONTRÉAL, LE 14 JUILLET 2008

C Hingray Bertrand, 2008

CE MÉMOIRE A ÉTÉ ÉVALUÉ

PAR UN JURY COMPOSÉ DE :

M. Raynald Guilbault, directeur de mémoire Département de génie mécanique à l'École de technologie supérieure

M. Marc Thomas, codirecteur de mémoire Département de génie mécanique à l'École de technologie supérieure

M. Antoine Tahan, président du jury Département de génie mécanique à l'École de technologie supérieure

M. Zhaoheng Liu, membre du jury Département de génie mécanique à l'École de technologie supérieure

IL A FAIT L'OBJET D'UNE SOUTENANCE DEVANT JURY ET PUBLIC

LE 18 JUIN 2008

À L'ÉCOLE DE TECHNOLOGIE SUPÉRIEURE

REMERCIEMENTS

J'aimerais tout d'abord remercier particulièrement les professeurs Raynald Guilbault et Marc Thomas, mes directeurs de recherche, pour leur soutien technique, moral et financier durant la réalisation de ma maîtrise.

Je tiens aussi à remercier Serge Plamondon et Mario Corbin, techniciens à l'École de Technologie Supérieure, pour leur collaboration, leur disponibilité et la qualité de leur travail.

Enfin, je remercie tous mes amis, et amies de Montréal, sans qui la vie à côté de la maîtrise aurait été bien terne. Je remercie notamment Olivier, Ariane, les multiples Guillaume(s), Fred, pour ses solutions à tous les problèmes, Bastien, David et tant d'autres.....ah oui ma maman pour m'avoir laissé partir à Montréal.

ÉTUDE EXPÉRIMENTALE DU COMPORTEMENT DYNAMIQUE DES ENGRENAGES CYLINDRIQUES

HINGRAY, Bertrand

RÉSUMÉ

Les mesures expérimentales sur la dynamique des engrenages sont un domaine encore incomplet de la littérature. En général, seules l'influence des rapports de conduite ainsi que des dépouilles en tête de dent sont étudiées. Ces expériences se limitent souvent à vérifier les modèles numériques établis d'un engrenage. Certaines autres études portent sur l'influence de défauts sur la dynamique. Il demeure nécessaire d'étudier l'influence de divers paramètres de conception sur la dynamique afin de différencier l'influence des défauts à l'influence des paramètres de conception.

Les vibrations de l'arbre et les contraintes en compression subies par les dents sont étudiées à l'aide d'un plan d'expérience où le pas diamétral, l'angle d'hélice, la largeur de dent, le nombre de dents, le couple appliqué et la vitesse de rotation varient. Deux arbres en rotation composent ce banc, un des arbres reçoit le dynamomètre mécanique introduisant le couple, l'autre est entraîné par le moteur. Les paires de roues du plan d'expérience (16), sont placées à une extrémité des arbres, à l'autre extrémité, on trouve des roues possédants trois fois plus de dents pour fermer le circuit et ne pas perturber les vibrations des engrenages à tester.

Les contraintes sont mesurées à l'aide de jauges de déformations, et les vibrations sont mesurées en rotation à l'aide de deux accéléromètres. Le relevé des contraintes ne s'est pas révélé satisfaisant. En effet, les valeurs de contraintes trouvées ne correspondaient pas avec les valeurs théoriques prédites par l'AGMA. La vitesse de déformation des jauges s'est révélée trop lente pour suivre les déformations réelles des roues. Pour ce qui est des accélérations, les données recueillies montrent l'ensemble des fréquences participant à l'énergie vibratoire. Les harmoniques de la fréquence d'engrènement et leurs modulations ont été identifiées. Les valeurs efficaces, les kurtosis et les facteurs de crête ont été calculés et permettent de classer l'importance des paramètres sur les vibrations des engrenages.

De nouveaux paramètres plus pertinents se sont dégagés de cette étude. Tout d'abord, il est nécessaire de possèder un grade de qualité élevé pour étudier au mieux l'influence des autres paramètres, un grade de qualité faible augmente les erreurs de transmission. Un rapport de conduite élevé ou entier est préférable pour limiter l'énergie vibratoire. Des roues légères réduisent les vibrations par rapport à des roues pesantes. Les vibrations augmentent de manière importante avec la vitesse. Enfin, pour limiter l'influence du couple sur les vibrations, il est nécessaire de tenir compte du rapport entre le pas diamètral et le couple. En effet pour des roues à dents épaisses, le couple possèdera moins d'influence que pour des roues à dents minces.

EXPERIMENTAL STUDY OF THE DYNAMIC BEHAVIOR OF SPUR GEARS

HINGRAY, Bertrand

ABSTRACT

Experimental measurements on gear dynamic is still an incomplete field of literature. Generally, only influence of involute contact ratio as well as tip relief modification are studied. These experiences are often limited to verify numerical models developed for one gear. Some other studies focus on the influence of defects on the dynamics. It remains necessary to study influence of various design parameter on the dynamics in order to distinguish the influence of defects to the influence of design parameters.

The shaft's vibration and the compressive stresses are examined with a factorial design where the diametral pitch, helix angle, teeth width, teeth number, applied torque and rotational speed vary. Two rotating shafts make up the bench, one take the mechanical dynamometer introducing the torque, the other one is driven by an engine. The pairs of gears of the factorial design (16), are placed at one end of the shafts, at the other end, gears having three times more teeth can be found to close the torque circuit and not to disrupt the vibrations of the tested gears.

The stresses were measured using strain gages, and the rotational vibrations with a ring where two accelerometers were fastened. The stress statement hasn't been very conclusive. Indeed, the stress values found in general do not match with theoretical values of AGMA. The gages bending speed was to slow to monitor the gear real strains. For the accelerations, the data collected show the frequencies which are involved in the vibration range. Harmonics of the meshing frequency, and their variations were found. The root means square, kurtosis and crest factor were calculated and used to rank the design parameters importance on the gears vibrations.

New key parameters have emerged from this study. First, it is necessary to possess a high degree of quality to study well the influence of other parameters, a low grade of quality increases transmission errors. A high or entire involute contact ratio is preferable to limit the vibration amplitude. Lightweight wheels reduce vibration compared to heavy wheels. Vibrations increases significantly with speed. Finally, in order to limit the influence of torque on vibrations, it is necessary to take into account the ratio between the diametral pitch and the torque transmitted.

TABLE DES MATIÈRES

Page

INTE	ODUCTIO	N	1
CHA	PITRE 1 É	TUDE BIBLIOGRAPHIOUE	
LI	Les sour	ces de vibrations	
1.2	Influence	e des grandeurs caractéristiques	7
	1.2.1	Influence des paramètres de concention	
	1.0011	1.2.1.1 Effet de l'amortissement	8
		1212 Effet du counle transmis	0
		1.2.1.2 Influence du ranport de conduite	11
		1.2.1.4 Influence des corrections de denture	13
	122	Influence des défauts des engrenages	14
13	Modèles	et équations	15
1.2	131	Les différents modèles utilisés	15
	1.5.1	1311 Le modèle "un degré de liberté" « Iddl »	15
		1.3.1.2 Le modèle à plusieurs deorés de liberté	20
	132	Les équations des angranages nour l'étude des vibrations	21
1.4	Exnérier	ces équations des engrenages pour r'ende des vibrations	23
1.4	1.4.1	Mesure des contraintes	74
	1.4.2	Mesure des vibrations	27
	1,71.6	1.4.2.1. Price de mesure sur le bâti	27
		1.4.2.2 Prise de mesure sur les arbres	20
	143	Photoélasticité	32
1.5	Bilan du	chanitre	35
	Dilan da	enaprice	
CHA	PITRE 2 P	LAN D'EXPÉRIENCE	
2.1	Présenta	tion du plan d'expérience initiale	
2.2	Vérifica	tion de l'entraxe et du rapport de conduite	40
	2.2.1	Le rapport de conduite	40
	2.2.2	L'entraxe	
2.3	Vérifica	tion du couple transmissible	
	2.3.1	Formule de la norme AGMA	
	2.3.2	Vérification des grades de qualité	
		2.3.2.1 Grade de qualité sur le faux rond	
		2.3.2.2 Grade de qualité sur le pas	
		2.3.2.3 Grade de qualité sur le profil	
		2.3.2.4 Grade de qualité sur l'angle d'hélice	
		2.3.2.5 Interprétation des résultats	50
	2.3.3	Calcul de la contrainte au pied de dent o	
2.4	Plan d'e	xpérience corrigé	
2.5	Bilan du	i chapitre	58

CHA	PITRE 3	LE BANC D'ESSAI	
3.1	Descrip	otion du banc d'essai	59
	3.1.1	Caractéristiques du banc d'essai	
	3.1.2	Introduction du couple	61
3.2	Instrun	nentation du banc et des roues	62
	3.2.1	Mesure du couple	62
	3.2.2	Mesure des accélérations	
	3.2.3	Mesure de la contrainte dynamique des dents	
	3.2.4	Acquisition des données	
3.3	Bilan d	lu chapitre	75
CHA	PITRE 4	ESSAIS EXPÉRIMENTALIX	76
41	Déroul	ement des expériences	76
42	Feenie	sur les roues	81
1.4	421	Ce qui n'a pas fonctionné	81
	1.0.1	4.2.1.1 Anneau de conduction	81
		4.2.1.2 Collage des janges	82
		4.2.1.3 Détérioration des surfaces de contact	81
		4.2.1.5 Deterioration des surfaces de contact	
		4.2.1.5 Effat da la vitarra	
	422	Ca qui a fonctionné	
43	Bilan d	lu chanitre	90
СНА	PITRE 5	ANALYSE DES RÉSULTATS	
5.1	Fréque	nces remarquables	
5.2	Fréque	nces de résonance et résultats des différents montages	
	5.2.1	Roue P _d 4\u0076 V ₂ N24, roue 1	98
	5.2.2	Roue P ₂ 4\u00ft 0°F 1/2 N34, roue 2	117
	5.2.3	Résumé des résultats trouvés	126
5.3	Influen	ice des paramètres de conception	129
	5.3.1	Les indicateurs utilisés	130
	5.3.2	Les résultats généraux obtenus	133
	5.3.3	Influence des paramètres sur le volume et sur les contraintes	141
	5.3.4	Influence des paramètres sur la valeur efficace	145
		5.3.4.1 Étude de l'influence des paramètres sur la valeur efficace	145
		5.3.4.2 Étude de l'influence des interactions sur la valeur efficace	150
	5.3.5	Influence des paramètres sur le facteur de crête	153
	200	5.3.5.1 Étude de l'influence des paramètres sur le facteur de crête	
		5.3.5.2 Étude de l'influence des interactions sur le facteur de crête	156
	536	Influence des paramètres sur le Kurtosis	160
	0.010	5.3.6.1 Étude de l'influence des paramètres sur le Kurtosis	160
		5.3.6.2 Étude de l'influence des interactions sur le Kurtosis	163
5.4	Bilan d	lu chapitre	
-			
CON	CLUSIO	N	175

RECOMMAN	DATIONS	
ANNEXE I	COLLAGE DES JAUGES	
ANNEXE II	CONTRAINTE DE FLEXION SELON LA NORME AGMA	181
ANNEXE III	CARACTÉRISTIQUES DE L'ANNEAU DE CONDUCTION	190
ANNEXE IV	PRÉSENTATION DES RÉSULTATS	
Roue P	4w0°F3N34, roue 4	197
Roue P	4w20°F 1/, N24, roue 5	
Roue P	4w20°F 1/2 N34, roue 6	
Roue P	4w20°F3N24, roue 7	
Roue P	4\u00c720°F3N34, roue 8	
Roue P	,6ψ0°F ½ N24, roue 9	
Roue P	,6ψ0°F ½ N37, roue 10	225
Roue P	,6\u00c0 0°F3N24, roue 11	229
Roue P	,6µ0°F3N37, roue 12	
Roue P	,6\v/20°F \sqrt{2N24}, roue 13	
Roue P	64/20°F 1/2 N37, roue 14	
Roue P	64/20°F3N24, roue 15	
Roue P	,6ψ20°F3N37, roue 16	
ANNEXE V	PROGRAMME MATLAB POUR FOURIER	257
ANNEXE VI	PROPRIÈTÉ DE L'ACIER 1045	
ANNEXE VII	WAVEBOOK 516 ET WBK 16	
BIBLIOGRAP	HIE	

LISTE DES TABLEAUX

Tableau 2.1	Première partie du plan d'expérience initiale	
Tableau 2.2	Deuxième partie du plan d'expérience initiale	
Tableau 2.3	Calcul des entraxes désirés, mini et maxi	
Tableau 2.4	Nouvelles valeurs du rapport de conduite	
Tableau 2.5	Grade de qualité selon la norme	50
Tableau 2.6	Grade de qualité des roues de largeur 0,5 pouce	
Tableau 2.7	Grade de qualité des roues de largeur 3 pouces	53
Tableau 2.8	Première partie du plan d'expérience	
Tableau 2.9	Deuxième partie du plan d'expérience	
Tableau 3.1	Valeur recommandée de la fréquence d'échantillonnage	
Tableau 3.2	Calibration des accéléromètres	
Tableau 4.1	Entraxes expérimentaux.	
Tableau 4.2	Rapport Voltage/Vitesse-arbre/ValeurCommande	
Tableau 4.3	Comparaison des contraintes	89
Tableau 5.1	Plage de fréquence pour l'analyse des diagrammes de Fourier	
Tableau 5.2	Résultats des fréquences de résonance pour la roue 1	107
Tableau 5.3	Fréquence de résonance moyenne de la roue 1	108
Tableau 5.4	Grade de la qualité du montage 1 relié à la roue 1	109
Tableau 5.5	Résumé des fréquences obtenues par Fourier pour la roue 1	113
Tableau 5.6	Résumé des contraintes de la roue 1	117
Tableau 5.7	Résultats des fréquences de résonance pour la roue 2	118
Tableau 5.8	Fréquence de résonance moyenne de la roue 2	119

Tableau 5.9	Grade de la qualité du montage 1 relié à la roue 2 120
Tableau 5.10	Résumé des fréquences obtenues par Fourier pour la roue 2 122
Tableau 5.11	Résumé des fréquences obtenues pour la roue 2 (Suite) 123
Tableau 5.12	Résumé des contraintes de la roue 2 125
Tableau 5.13	Résultats des indicateurs pour les signaux « sinus » et « sinus modifié »Error! Bool
Tableau 5.14	Valeur des indicateurs pour un couple de 145Nm 135
Tableau 5.15	Valeur des indicateurs pour un couple de 160Nm 136
Tableau 5.16	Tableau résumé des contraintes, volumes et rapport de conduite 138
Tableau 5.17	Résultat des interactions sur la valeur efficace151
Tableau 5.18	Résultats des interactions sur le facteur de crête 156
Tableau 5.19	Influence de la largeur de dents sur le facteur de crête 159
Tableau 5.20	Résultats des interactions sur le Kurtosis 163
Tableau 5.21	Influence de l'angle d'hélice sur le Kurtosis 165
Tableau 5.22	Influence de la largeur de dent sur le Kurtosis 167
Tableau 5.23	Influence de la vitesse sur le Kurtosis
Tableau 5.24	Influence du nombre de dents sur le Kurtosis 169
Tableau I	Contraintes théoriques de flexion
Tableau II	Contraintes théoriques de flexion (Suite)
Tableau III	Résultats des fréquences de résonance pour la roue 3 192
Tableau IV	Fréquence de résonance moyenne de la roue 3 193
Tableau V	Grade de la qualité du montage 1 relié à la roue 3 193
Tableau VI	Résumé des fréquences obtenues par Fourier pour la roue 3 195
Tableau VII	Résumé des fréquences obtenues par Fourier pour la roue 3 (Suite) 196
Tableau VIII	Résumé des contraintes de la roue 3 196

Tableau IX	Résultats des fréquences de résonance pour la roue 4 1	97
Tableau X	Fréquence de résonance moyenne de la roue 4 1	98
Tableau XI	Grade de la qualité du montage 1 relié à la roue 4 1	98
Tableau XII	Résumé des fréquences obtenues par Fourier pour la roue 42	200
Tableau XIII	Résumé des contraintes de la roue 4 2	201
Tableau XIV	Résultats des fréquences de résonance pour la roue 5 2	201
Tableau XV	Fréquence de résonance moyenne de la roue 52	202
Tableau XVI	Grade de la qualité du montage 1 relié à la roue 5 2	202
Tableau XVII	Résumé des fréquences obtenues par Fourier pour la roue 5 2	204
Tableau XVIII	Résumé des fréquences obtenues par Fourier pour la roue 5 (Suite) 2	205
Tableau XIX	Résumé des contraintes de la roue 5 2	206
Tableau XX	Résultats des fréquences de résonance pour la roue 6 2	206
Tableau XXI	Fréquence de résonance moyenne de la roue 62	207
Tableau XXII	Grade de la qualité du montage 1 relié à la roue 62	207
Tableau XXIII	Résumé des fréquences obtenues par Fourier pour la roue 62	209
Tableau XXIV	Résumé des fréquences obtenues par Fourier pour la roue 6 (Suite)2	210
Tableau XXV	Résumé des contraintes de la roue 6	210
Tableau XXVI	Résultats des fréquences de résonance pour la roue 7	211
Tableau XXVII	Fréquence de résonance moyenne de la roue 7	212
Tableau XXVIII	Grade de la qualité du montage 1 relié à la roue 7	212
Tableau XXIX	Résumé des fréquences obtenues par Fourier pour la roue 7	214
Tableau XXX	Résumé des fréquences obtenues par Fourier pour la roue 7 (Suite)	215
Tableau XXXI	Résumé des contraintes de la roue 7	215
Tableau XXXII	Résultats des fréquences de résonance pour la roue 8	216

Tableau XXXIII	Fréquence de résonance moyenne de la roue 8 217
Tableau XXXIV	Grade de la qualité du montage 1 relié à la roue 8 217
Tableau XXXV	Résumé des fréquences obtenues par Fourier pour la roue 8 219
Tableau XXXVI	Résumé des fréquences obtenues par Fourier pour la roue 8 (Suite) 220
Tableau XXXVII	Résumé des contraintes de la roue 8
Tableau XXXVIII	Résultats des fréquences de résonance pour la roue 9 221
Tableau XXXIX	Fréquence de résonance moyenne de la roue 9 221
Tableau XL	Grade de la qualité du montage 1 relié à la roue 9 222
Tableau XLI	Résumé des fréquences obtenues par Fourier pour la roue 9 223
Tableau XLII	Résumé des fréquences obtenues par Fourier pour la roue 9 (Suite) 224
Tableau XLIII	Résumé des contraintes de la roue 9
Tableau XLIV	Résultats des fréquences de résonance de la roue 10 225
Tableau XLV	Fréquence de résonance moyenne de la roue 10 225
Tableau XLVI	Grade de la qualité du montage 1 relié à la roue 10 226
Tableau XLVII	Résumé des fréquences obtenues par Fourier pour la roue 10 227
Tableau XLVIII	Résumé des fréquences obtenues par Fourier pour la roue 10 (Suite) 228
Tableau XLIX	Résumé des contraintes de la roue 10 228
Tableau L	Résultats des fréquences de résonance de la roue 11
Tableau Ll	Fréquence de résonance moyenne de la roue 11
Tableau LII	Grade de la qualité du montage 1 relié à la roue 11
Tableau LIII	Résumé des fréquences obtenues par Fourier pour la roue 11
Tableau LIV	Résumé des fréquences obtenues par Fourier pour la roue 11 (Suite) 232
Tableau LV	Résumé des contraintes de la roue 11 233
Tableau LVI	Résultats des fréquences de résonance de la roue 12

Tableau LVII	Fréquence de résonance moyenne de la roue 12 234
Tableau LVIII	Grade de la qualité du montage 1 relié à la roue 12 234
Tableau LIX	Résumé des fréquences obtenues par Fourier pour la roue 12 236
Tableau LX	Résumé des fréquences obtenues par Fourier pour la roue 12 (Suite) 237
Tableau LXI	Résumé des contraintes de la roue 12
Tableau LXII	Résultats des fréquences de résonance de la roue 13 238
Tableau LXIII	Fréquence de résonance moyenne de la roue 13 238
Tableau LXIV	Grade de la qualité du montage 1 relié à la roue 13 239
Tableau LXV	Résumé des fréquences obtenues par Fourier pour la roue 13 240
Tableau LXVI	Résumé des fréquences obtenues par Fourier pour la roue 13 (Suite) 241
Tableau LXVII	Résumé des contraintes de la roue 13
Tableau LXVIII	Résultats des fréquences de résonance de la roue 14 242
Tableau LXIX	Fréquence de résonance moyenne de la roue 14
Tableau LXX	Grade de la qualité du montage 1 relié à la roue 14 243
Tableau LXXI	Résumé des fréquences obtenues par Fourier pour la roue 14 245
Tableau LXXII	Résumé des fréquences obtenues par Fourier pour la roue 14 (Suite) 246
Tableau LXXIII	Résumé des contraintes de la roue 14 247
Tableau LXXIV	Résultats des fréquences de résonance pour la roue 15 247
Tableau LXXV	Fréquence de résonance moyenne de la roue 15 248
Tableau LXXVI	Grade de la qualité du montage 1 relié à la roue 15
Tableau LXXVII	Résumé des fréquences obtenues par Fourier pour la roue 15 250
Tableau LXXVIII	Résumé des fréquences obtenues pour la roue 15 (Suite)
Tableau LXXIX	Résumé des contraintes de la roue 15 251
Tableau LXXX	Résultats des fréquences de résonance de la roue 16

Tableau LXXXI	Fréquence de résonance moyenne de la roue 16 253
Tableau LXXXII	Grade de la qualité du montage 1 relié à la roue 16 253
Tableau LXXXIII	Résumé des fréquences obtenues par Fourier pour la roue 16 255
Tableau LXXXIV	Résumé des fréquences obtenues pour la roue 16 (Suite) 256
Tableau LXXXV	Résumé des contraintes de la roue 16 256
Tableau LXXXVI	Tableau des propriétés mécanique de l'acier 1045 258

LISTE DES FIGURES

100			
\mathbf{p}	-54	én.	14
	c.	22	ω.

Figure 1.1	Résultats de vibration sur un engrenage sain6
Figure 1.2	Influence du couple sur l'amplitude de l'ETD 10
Figure 1.3	Effet du rapport de conduite sur l'ETD 12
Figure 1.4	Schéma du taillage de la dent
Figure 1.5	Modèle à un degré de liberté
Figure 1.6	Rigidité totale du contact
Figure 1.7	Modèle mécanique d'un engrenage sur des roulements déformables 21
Figure1.8	Schéma simplifié du banc d'essai
Figure 1.9	Position des jauges de contrainte25
Figure 1.10	Principe de la photoélasticité
Figure 1.11	Exemple de mesure
Figure 2.1	Ligne d'action et rapport de conduite41
Figure 2.2	Les différents pas et angles des engrenages
Figure 3.1	Banc d'essai
Figure 3.2	Dynamomètre mécanique61
Figure 3.3	Jauges de torsion
Figure 3.4	Les accéléromètres
Figure 3.5	Position de l'accéléromètre tridimensionnelle
Figure 3.6	Résultat temporel de l'accéléromètre 1 - calibration
Figure 3.7	Résultat fréquentiel de l'accéléromètre 1 - calibration
Figure 3.8	Résultat temporel de l'accéléromètre triaxial en X - calibration
Figure 3.9	Résultat fréquentiel de l'accéléromètre triaxial en X - calibration 69

Figure 3.10	Contrainte dans une dent d'engrenage
Figure 3.11	Instrumentation des roues droites de 0.5 po de large71
Figure 3.12	Instrumentation des roues droites de 3 po de large
Figure 3.13	Instrumentation des roues hélicoïdales de 0.5 po de large
Figure 3.14	Instrumentation des roues hélicoïdales de 3 po de large
Figure 3.15	Module d'acquisition Wavebook 516 et WBK16
Figure 4.1	Prise de mesure de l'entraxe
Figure 4.2	Maintien de la roue
Figure 4.3	Introduction du couple
Figure 4.4	Influence de la croix de positionnement82
Figure 4.5	Déformation de la jauge 2 de la roue 9, avec une vitesse de 500 tr/min84
Figure 4.6	Déformation de la jauge 2 de la roue 9, avec une vitesse de 200 tr/min85
Figure 4.7	Roue P4440° F 1/2 N 24, 500 tr/min 160Nm
Figure 5.1	Mesure de l'accélération verticale95
Figure 5.2	Roue P4 6y0° F 1/2 N37, accélération verticale
Figure 5.3	Roue $P_d 6\psi 0^\circ F \frac{1}{2} N37$, accélération en torsion, les deux accéléromètres 97
Figure 5.4	Roue 1, 1 dent en prise, 130Nm, 0-500Hz
Figure 5.5	Roue 1, 1 dent en prise, 130Nm, 500-1000Hz 100
Figure 5.6	Roue 1, 1 dent en prise, 130Nm, 1000-2200Hz 100
Figure 5.7	Roue 1, 1 dent en prise, 160Nm, 0-500Hz 101
Figure 5.8	Roue 1, 1 dent en prise, 160Nm, 500-1000Hz
Figure 5.9	Roue 1, 1 dent en prise, 160Nm, 1000-2200Hz 102
Figure 5.10	Roue 1, 2 dents en prise, 130Nm, 0-500Hz 103
Figure 5.11	Roue 1, 2 dents en prise, 130Nm, 500-1000Hz 104

Figure 5.12	Roue 1, 2 dents en prise, 130Nm, 1000-2200Hz	104
Figure 5.13	Roue 1, 2 dents en contact, 160Nm, 0-500Hz	105
Figure 5.14	Roue 1, 2 dents en prise, 160Nm, 500-1000Hz	106
Figure 5.15	Roue 1, 2 dents en prise, 160Nm, 1000-2200Hz	106
Figure 5.16	Spectre de Fourier de la roue 1 à 200tr/min et 145Nm	110
Figure 5.17	Spectres de Fourier pour le montage de la roue 1	111
Figure 5.18	Roue 1, déformation des jauges, pour le cas 200tr/min, 145Nm	115
Figure 5.19	Roue 1, déformation des jauges pour le cas 200tr/min et 160Nm	116
Figure 5.20	Transformée de Fourier de la roue 2 à 500tr/min et 160Nm	120
Figure 5.21	Transformées de Fourier pour le montage de la roue 2	121
Figure 5.22	Déformations des jauges 1 et 2 de la roue 2	126
Figure 5.23	Rigidité d'engrènement	127
Figure 5.24	Graphique des déformations de la jauge 1 de la roue 9	129
Figure 5.25	Comparaison entre la valeur réelle et calculée de la valeur efficace	137
Figure 5.26	Graphique de Pareto standardisé pour la Valeur efficace	139
Figure 5.27	Graphique de Pareto standardisé pour le Facteur de crête	140
Figure 5.28	Graphique de Pareto standardisé pour le Kurtosis	141
Figure 5.29	Influence des paramètres sur le Volume	142
Figure 5.30	Influence des paramètres sur la contrainte AGMA	. 144
Figure 5.31	Influence des paramètres sur la valeur efficace, partie 1	. 148
Figure 5.32	Influence des paramètres sur la valeur efficace, partie 2	. 149
Figure 5.33	Influence des paramètres sur la valeur efficace, partie 3	150
Figure 5.34	Influence du pas diamétral sur le facteur de crête	. 154
Figure 5.35	Influence de l'angle d'hélice et de la largeur de dent sur le facteur crête	de

XVIII

Figure 5.36	Influence de l'angle d'hélice et de la vitesse sur le facteur de crête 155
Figure 5.37	Influence des paramètres sur le Kurtosis, partie 1
Figure 5.38	Influence des paramètres sur le Kurtosis, partie 2
Figure 5.39	Influence du nombre de dents sur le Kurtosis
Figure I	Comment calculer les valeurs de S, S1 et S2 184
Figure II	Calcul du coefficient Kb
Figure III	Calcul du facteur J pour les engrenages droits
Figure IV	Calcul de J pour les roues hélicoïdales
Figure V	Coefficient de J pour les roues hélicoïdales
Figure VI	Transformées de Fourier pour le montage de la roue 3 194
Figure VII	Transformées de Fourier pour le montage de la roue 4 199
Figure VIII	Transformées de Fourier pour le montage de la roue 5 203
Figure IX	Transformées de Fourier pour le montage de la roue 6
Figure X	Transformées de Fourier pour le montage de la roue 7
Figure XI	Transformées de Fourier pour le montage de la roue 8
Figure XII	Transformées de Fourier pour le montage de la roue 9
Figure XIII	Transformées de Fourier pour le montage de la roue 10
Figure XIV	Transformées de Fourier pour le montage de la roue 11
Figure XV	Transformées de Fourier pour le montage de la roue 12
Figure XVI	Transformées de Fourier pour le montage de la roue 13
Figure XVII	Transformées de Fourier pour le montage de la roue 14 244
Figure XVIII	Transformées de Fourier pour le montage de la roue 15
Figure XIX	Transformées de Fourier pour le montage de la roue 16 254
Figure XX	Connexion des modules Wavebook

Figure XXI	Écran d'ouverture de WaveView	
Figure XXII	Calibration des jauges	
Figure XXIII	Comment calibrer les jauges	
Figure XXIV	Fenêtre de configuration de l'acquisition	
Figure XXV	WaveView Scope	
Figure XXVI	Acquisition terminée	

LISTE DES SYMBOLES ET UNITÉS DE MESURE

AGMA	American Gear Manufacturers Association
C	entraxe (mm)
Ca	matrice d'amortissement du système
ddl	degré de liberté
D_p	diamètre primitif
Ε	module de Young (N/mm ²)
ε	déformation
e_i	erreur de transmission
F	largeur de dents (mm)
H_{z}	fréquence (s ⁻¹)
I_i	matrice d'inertie de la roue i
J	facteur géométrique
Jf	jeu fonctionnel (mm)
K	matrice de rigidité du système
k	rigidité d'engrènement (N/mm)
K_b	facteur d'épaisseur de la roue
K_m	facteur de distribution de charge
Κ,	facteur de grosseur
K_0	facteur de chargement
m	rapport de conduite
Ma	matrice de masse du système
m_f	rapport de conduite de face
m,	rapport de conduite transversal
N	nombre de dents
NASA	National Aeronautics and Space Administration
Pd	pas diamétral (mm ⁻¹)
Px	pas axial (mm ⁻¹)
Po	pouce
Q_r	grade de qualite general de la roue
$Q_r V_{rT}$	grade de qualité sur le faux rond
Q.V.po	grade de qualité sur le pas
$Q_r V_{gT}$	grade de qualité sur le profil
$Q_{\tau}V_{\Psi T}$	grade de qualité sur l'angle d'hélice
r_1	rayon primitif de la roue 1 (mm)
r_2	rayon primitif de la roue 2 (mm)
R_b	rayon de base (mm)

R,	rayon de tête (mm)
RMS	« Root Mean Square », valeur efficace
T	couple transmis (Nm)
$V_{,\tau}$	tolérance sur le faux rond (mm)
V_{pa}	tolérance sur le pas (mm)
V_{qT}	tolérance sur le profil (mm)
$V_{\Psi T}$	tolérance sur l'angle d'hélice (mm)
Wt	charge transmise (N)
Z	longueur active de la ligne d'action (mm)
θ_1	angle de rotation de la roue 1 (rad)
θ_2	angle de rotation de la roue 2 (rad)
η	coefficient du rapport amortissement masse
ξ	coefficient du rapport amortissement rigidité
5	amortissement
Ψ	angle d'hélice
Ω	vitesse de rotation (rpm)
ø	angle de pression (°)
Ψ_b	angle d'hélice de base (°)
σ	contrainte (MPa)
$\mu m / m$	micromètre par mètre

INTRODUCTION

Depuis des décennies, les engrenages permettent le fonctionnement des machines tournantes et se retrouvent pratiquement dans tous les domaines; du simple robot ménager à l'hélicoptère le plus perfectionné. Le niveau de qualité requis n'est pas le même pour tous ces champs d'application. La tendance actuelle est à la réduction du poids, des vibrations et de l'encombrement pour fournir des montages de moins en moins consommateurs d'énergie. Pour répondre à ces besoins, les engrenages doivent devenir de plus en plus performants : résistance à l'usure, diminution du poids et du volume et réduction du bruit.

Lors de la conception d'un train d'engrenage, plusieurs paramètres de conception entrent en jeu. Pour s'assurer de transmettre la puissance de manière correcte, d'avoir une bonne résistance à la fatigue et de posséder une faible usure, les contraintes de flexion et de contact doivent être calculées pour vérifier que les limites en fatigue du matériau ne sont pas dépassées. Pour ce calcul, de nombreux paramètres doivent être choisis, tels que le pas diamétral, l'angle d'hélice, la largeur de dents, le nombre de dents, le couple et la vitesse de rotation. Afin de considérer les effets de la vitesse combinés à la qualité des roues, un facteur dynamique est introduit dans les calculs de la contrainte. Ce facteur demeure une évaluation approximative qui dépend de plusieurs paramètres intrinsèques de la roue, tels que la géométrie, l'état de surface.

L'étude menée à travers ce mémoire reprend les roues et le plan d'expérience d'une étude précédente sur l'analyse des contraintes dynamiques par photoélasticité. Ici, les expériences menées portent sur les vibrations de différents montages d'engrenages, ainsi que sur le relevé des déformations au pied des dents, nécessaire pour calculer les contraintes associées au chargement des roues. Les facteurs du plan d'expérience sont le pas diamétral (1), l'angle d'hélice (2), la largeur de dent (3), le nombre de dents (4), le couple transmis (5) et la vitesse de rotation (6). Le banc d'essai utilisé pour la photoélasticité a aussi été repris. Après avoir effectué les différentes mesures et analysé les résultats obtenus, il a été possible d'identifier quels sont les paramètres qui ont le plus d'influence sur le comportement dynamique des engrenages, tant au niveau de la contrainte, qu'au niveau des vibrations.

Le présent document se compose de cinq chapitres. Le premier chapitre présente une revue de la littérature permettant de mieux situer le projet dans le contexte scientifique. Le plan d'expérience étant déjà réalisé, le chapitre deux se consacre à la vérification des résultats trouvés précédemment, ainsi qu'aux changements apportés. Le troisième chapitre présente le banc d'essai, ses caractéristiques, ainsi que tout l'équipement nécessaire au bon déroulement de la partie expérimentale. Le quatrième chapitre présente le déroulement des expériences, les points concluants et non concluants de l'étude. Enfin, le dernier chapitre propose l'analyse des résultats expérimentaux.

CHAPITRE 1

ÉTUDE BIBLIOGRAPHIQUE

Il existe dans la littérature de nombreux articles relatifs aux comportements dynamiques des engrenages. Cette abondance d'articles est due à l'utilisation intensive des engrenages dans la plupart des machines actuelles. Dans un souci d'amélioration constante des niveaux de bruit, de la durée de vie et de la maintenance des trains d'engrenage, plusieurs articles ont été écrits sur des méthodes numériques permettant de décrire le comportement des engrenages sous l'effet de plusieurs facteurs importants, ceux de la conception mais aussi ceux d'usure. La plupart de ces articles proposent des études théoriques, avec une expérience sur un seul train d'engrenage pour ajuster et valider le modèle numérique construit.

Les vibrations dans les engrenages sont en premier lieu occasionnées par l'engrènement, qui s'effectue de manière périodique. De nombreux effets s'ajoutent à cela, tels que la flexion des dents qui modifie la ligne de contact, les défauts de montage (jeu, mauvais alignement), mais aussi les défauts de fabrication des engrenages (pas non constant, excentricités, erreur de profil, surface des dents). Toutes ces variations bien qu'elles puissent paraître minimes au premier abord viennent modifier le comportement dynamique des engrenages.

Il existe une multitude de modèles plus ou moins complexes pour représenter un train d'engrenage. Chacun de ces modèles possède une spécificité particulière, par exemple : utilisation des éléments finis (Parker, Vijayakar et al. 2000), méthode de résolution numérique (Cai and Hayashi 1994), ondelettes (Lin and McFadden 1997), théorie de Floquet (Vaishya and Singh 2001). Le nombre de degrés de liberté du modèle dépend du résultat que les auteurs veulent obtenir et de la partie du mécanisme étudiée. Ces modèles prennent en compte soit juste le train d'engrenage, soit le mécanisme au complet avec les arbres et le bâti. À travers tous les articles disponibles, il est possible de faire ressortir plusieurs parties importantes. Tout d'abord, les points les plus importants à étudier dans cette revue de littérature sont les diverses caractéristiques qui influencent les vibrations des engrenages, telles que les défauts de fabrication et de montage, les déformations élastiques, et les défauts d'usure. Il sera intéressant de montrer comment ces caractéristiques influent sur le comportement dynamique des engrenages. Ensuite, comme la plupart des articles s'intéressent beaucoup à l'analyse numérique du comportement dynamique des engrenages, il est nécessaire de répertorier les différentes équations qui ont été utilisées, et leurs méthodes de résolution. Enfin, il faudra répertorier les différentes expériences qui ont déjà été effectuées dans la littérature, en expliquant les bancs de montages et les différentes méthodes de prises de mesure.

1.1 Les sources de vibrations

Les vibrations dans les engrenages sont présentes même si l'engrenage est de très bonne qualité. En effet, lors de l'engrènement, le nombre de dents en contact varie, ce qui provoque un changement dans la rigidité de l'engrènement, d'où une modification de la dynamique du train.

Le rapport de conduite n'est pas le seul paramètre en cause dans la vibration des engrenages (Cai and Hayashi 1994), plusieurs erreurs peuvent perturber la dynamique de ceux-ci, telles que l'erreur de transmission qui représente l'écart entre la développante de cercle théorique et la développante réelle et qui génère l'équivalent d'une excitation extérieure. L'erreur de transmission peut être occasionnée par le manque de précision de fabrication ou volontairement par les corrections de denture. De plus, les défauts d'alignement et de centrage des roues sur les arbres perturbent aussi la dynamique des engrenages.

L'erreur de transmission dynamique (ETD) est la réponse la plus souvent mesurée pour connaître la dynamique des engrenages (Blankenship and Kahraman 1996). L'ETD est définie comme suit : $r_1\theta_1 - r_2\theta_2$, où r_1 et r_2 sont les rayons primitifs des deux roues et où θ_1 et θ_2 sont leur position angulaire.

La réponse classique d'un train d'engrenage en bon état est présentée sur la figure 1.1 (Parker, Vijayakar et al. 2000). Cette figure représente la valeur efficace de l'ETD en fonction de la fréquence d'engrènement. On voit apparaître sur ces courbes trois sauts d'amplitude à trois fréquences différentes. La fréquence la plus à droite correspond à la résonance primaire alors que les deux autres fréquences correspondent à des harmoniques de la fréquence primaire. Dans cet article (Parker, Vijayakar et al. 2000), les roues utilisées possèdent 50 dents, et une fréquence de résonance de 2700hz, fréquence que l'on retrouve sur la figure 1.1. Mais cette valeur de résonance varie en fonction des modifications apportées aux dents (Kahraman and Blankenship 1996), selon le couple transmis (Kahraman and Blankenship 1996), selon le couple transmis (Kahraman and Blankenship 1996) et selon le rapport de conduite (Parker, Vijayakar et al. 2000).

Aux fréquences de résonance, les engrenages peuvent prendre une multitude d'états instables (Blankenship and Kahraman 1996). Ces états dépendent des conditions initiales qui ont amené le système en ce point. Comme on peut le remarquer sur la figure 1.1, les courbes se chevauchent aux fréquences d'instabilités. En fait, une partie de la courbe est obtenue lorsque l'on augmente la vitesse de rotation et l'autre partie est obtenue quand on diminue cette vitesse. Ainsi, il existe une fréquence particulière entre la partie supérieure de la courbe et la partie inférieure, le saut d'amplitude se trouve à la résonance. À cette fréquence, l'engrenage possède un comportement chaotique; il n'existe pas d'état stable.

Source : Cette figure est tirée de Parker, Vijayakar et al. 2000 «Non-linear dynamic response of a spur gear pair : modelling and experimental comparisons» et correspond à la figure 5 «Finite element calculation of RMS of oscillating component of dynamic transmission error for T=150Nm» présentée en page 444 dans le document original.

Lors des périodes d'instabilités des engrenages, (aux environs des trois fréquences mentionnées précédemment), les engrenages perdent contact. Il existe alors plusieurs types de comportement quant à la suite de la perte du contact. Ces comportements dépendent en grande partie de l'amplitude du jeu inter dent (Blankenship and Kahraman 1996).

Si le jeu est très important, supérieur à l'amplitude des vibrations libres, les dents reprennent contact sur la face de transmission du mouvement, ce phénomène est appelé « impact simple ». Si le jeu est faible, inférieur à l'amplitude des vibrations libres, les dents entrent en contact sur la face opposée à la face de transmission, ce phénomène est appelé « double impact ». Ces différents phénomènes sont à éviter, car ils provoquent la détérioration rapide des dents, les dents subissent des chocs à fréquence élevée (Blankenship and Kahraman 1996).

Malgré que le jeu possède des conséquences négatives sur le comportement des engrenages, il est nécessaire à leur fonctionnement. Sans lui la lubrification est impossible. L'absence de lubrifiant entraînerait des forces de frottement très élevées entre les surfaces, provoquant une usure très rapide des zones en contact.

Les différentes grandeurs caractéristiques qui influencent le comportement dynamique des engrenages seront analysées dans la section suivante.

1.2 Influence des grandeurs caractéristiques

Les grandeurs caractéristiques peuvent être classées en deux grandes catégories. La première englobe les paramètres de conception des engrenages, par exemple le rapport de conduite, le couple à transmettre et les diverses rectifications et corrections que l'on peut apporter aux dents des engrenages.

La deuxième catégorie correspond aux défauts introduits lors de la fabrication, les défauts produits par l'usure, ou encore les défauts de montage. Par exemple, on retrouve dans cette catégorie, les balourds, les fissures, l'écaillement du matériau, l'alignement des arbres, etc....

1.2.1 Influence des paramètres de conception

Le couple, l'amortissement, le rapport de conduite utilisé ainsi que les corrections de denture font partie des paramètres de conception des engrenages. Cette partie présente les résultats obtenus de la littérature.

1.2.1.1 Effet de l'amortissement

Ce paramètre ne peut pas être contrôlé lors des phases expérimentales, car il dépend en grande partie du matériau utilisé et du lubrifiant.

Toutefois, ce paramètre est clairement défini lorsque les auteurs utilisent des modèles numériques (Amabili and Rivola 1997; Oh, Grosh et al. 1999; Parker, Vijayakar et al. 2000). La valeur de l'amortissement est souvent établie de manière plus ou moins précise. En règle générale, cette valeur est comprise entre 0.01 et 0.1 (Cai and Hayashi 1994; Amabili and Rivola 1997; Oh, Grosh et al. 1999; Wang, Zhang et al. 2003). Comme dans un système masse-ressort avec amortissement, l'augmentation de la valeur de l'amortissement diminue l'amplitude des oscillations de l'ETD et augmente la stabilité du système.

Dans l'article (Parker, Vijayakar et al. 2000), l'amortissement utilisé pour effectuer les calculs est un amortissement du type Rayleigh, où la matrice d'amortissement est proportionnelle à la matrice de rigidité et à la matrice de masse, $Ca = \eta . Ma + \xi . K$. Cette méthode permet de faciliter les calculs, mais aussi de se rapprocher de la réalité, car en fonction du nombre de dents en contact, la rigidité varie, et il est logique de penser que l'amortissement en fait de même.

Dans l'article (Amabili and Rivola 1997), l'amortissement est seulement proportionnel à la rigidité du système, cette méthode permet de prendre en compte la variation de l'amortissement en fonction du nombre de dents en contact tout en facilitant les calculs.

Dans l'article (Oh, Grosh et al. 1999), l'amortissement est fixe et ne varie pas en fonction du temps ou de la rotation, ainsi la résolution du système en est grandement simplifiée; il n'y a qu'une seule équation à résoudre. Cet article met en évidence l'effet stabilisant de l'amortissement sur toutes les fréquences de résonance (primaire et harmonique). Toutefois, même un amortissement élevé ne permet pas de faire disparaître les zones d'instabilité.

1.2.1.2 Effet du couple transmis

Dans toutes les études menées, le couple à transmettre possède un effet non négligeable sur l'amplitude des vibrations des engrenages. Lorsque l'on augmente le couple de manière importante, la charge que les dents subissent augmente aussi et les dents fléchissent de manière plus importante. De ce fait, l'erreur de transmission augmente ainsi que l'amplitude des vibrations.

La figure 1.2 présente l'amplitude de l'ETD pour trois couples transmis différents. La courbe avec les croix représente le couple le plus faible et la courbe avec les points représente le couple le plus important, la courbe avec les carrés vides représente le couple intermédiaire. Comme on peut le remarquer, plus le couple à transmettre est important, plus l'amplitude de l'ETD augmente et plus la zone instable des engrenages devient importante. Ces résultats ont été tirés des articles (Blankenship and Kahraman 1996; Kahraman and Blankenship 1996; Kahraman and Blankenship 1999; Oh, Grosh et al. 1999).

Figure 1.2 Influence du couple sur l'amplitude de l'ETD. (Tiré de Parker, Vijayakar et al. 2000)

Source : Cette figure est tirée de Parker, Vijayakar et al. 2000 «Non-linear dynamic response of a spur gear pair : modelling and experimental comparisons » et correspond à la figure 4 «Experimentally measured RMS of oscillating component of dynamic transmission error for T=150Nm» présentée en page 443 dans le document original.

Dans l'article (Oh, Grosh et al. 1999), il est montré que le couple a beaucoup plus d'influence sur les fréquences fondamentales, mais possède moins d'influence sur les fréquences harmoniques.

Pour une étude expérimentale correcte, il faudra veiller à utiliser un couple assez important pour bien voir les différentes fréquences caractéristiques d'un train d'engrenage, sans toutefois excéder la capacité de charge de l'engrenage.

1.2.1.3 Influence du rapport de conduite

Le rapport de conduite est certainement le facteur de conception ayant le plus d'influence sur la dynamique des engrenages. De nombreux articles (Kahraman and Blankenship 1996; Liou, Lin et al. 1996; Kahraman and Blankenship 1999; Wang, Zhang et al. 2003) se consacrent à relier le rapport de conduite aux vibrations des engrenages. Ce paramètre indique comment varie le nombre de dents en contact lors de la rotation des engrenages. De plus, il est évident que si le nombre de dents en contact augmente, la rigidité d'engrènement augmente aussi et modifie le comportement dynamique du train d'engrenage. Le rapport de conduite correspond donc aux fluctuations de la rigidité d'engrènement lors du parcours du point de contact.

Dans ces articles, les auteurs ont montré que le rapport de conduite a un effet sur toute la gamme de fréquences des engrenages. De plus, les différentes expériences réalisées ont démontré que le bruit et les vibrations deviennent minimums pour des valeurs entières du rapport de conduite, quelque soit la valeur du couple à transmettre, de la vitesse ou des modifications apportées sur les dents.

Selon les auteurs Kahraman et Blankenship (Kahraman and Blankenship 1996), si lors de la conception des engrenages, il n'est pas possible de réaliser un rapport de conduite de valeur entière il faut le choisir égale à m = n + u/r où n, u et r sont des entiers. n, u et r peuvent prendre n'importe quelle valeur entière. n représente le nombre de dents minimal en contact, u/r correspond à la moyenne de paire de dents supplémentaires en prise sur un tour. Couramment, le rapport de conduite m est compris entre un et trois. Ainsi si le rapport de conduite suit la formule précédente, l'amplitude de l'harmonique d'ordre r sera minimale.

Source : Cette figure est tirée de Kahraman and Blankenship 1996 «Gear experiments, part-II : effect of involute contact ratio» et correspond à la figure 1 «Measure Arms, a1, and A2 forced response curves of three unmodified gear pairs with ICR = 1.37, 1.77, and 2.01 at T = 340Nm. Natural frequencies fin are 2280, 3070, and 3200Hz for ICR = 1.37, 1.77, and 2.01, respectively» présentée en page 384 dans le document original.

Sur la figure 1.3, l'influence bénéfique d'avoir une valeur entière du rapport de conduite est facilement identifiable. À la fréquence de résonance, on remarque que pour un rapport de deux, il y a peu d'instabilité et la valeur efficace de l'ETD est très faible, comparativement aux deux autres rapports de conduite utilisés.

Les auteurs Kahraman et Blankenship (Kahraman and Blankenship 1996) ont aussi tracé les amplitudes des deux premiers harmoniques de l'ETD en fonction de la valeur du rapport de conduite. Pour des valeurs entières du rapport de conduite, par exemple m=1, 2 ou 3, la valeur des amplitudes est minimale. Ainsi, il y a toujours le même nombre de dents en contact. La rigidité d'engrènement demeure donc à peu près constante.

Par ailleurs, lors des analyses numériques le rapport de conduite est très bien maîtrisé. De nombreux articles(Blankenship and Kahraman 1996; Kahraman and Blankenship 1996;

Liou, Lin et al. 1996; Amabili and Rivola 1997; Kahraman and Blankenship 1999; Parker, Vijayakar et al. 2000; Wang, Zhang et al. 2003) décrivent la manière dont il influence le comportement des engrenages.

1.2.1.4 Influence des corrections de denture

Cette section s'intéresse uniquement à la dépouille en sommet de dent. La tête de la dent peut être facilement modifiée pour permettre un meilleur engrènement lors de la rotation des engrenages. Lorsque les dents sont en charge, elles subissent de la flexion, et lors du début de l'engrènement, il se peut que le contact entre les dents ne se fasse pas de manière progressive, mais sous la forme d'un choc. Pour limiter ce risque, il est possible de dépouiller la dent pour obtenir un engrènement plus doux (Kahraman and Blankenship 1996; Kahraman and Blankenship 1999).

Figure 1.4 Schéma du taillage de la dent. (Tiré de Kahraman and Blankenship 1999)

Source : Cette figure est tirée de Kahraman and Blankenship 1999 «Effete of involute tip relief on dynamic response of spur gear pairs» et correspond à la figure 1 «Definition of gear tip relief in terms of magnitude δ and starting roll angle α for the test gear pairs used in this study» présentée en page 314 dans le document original.

Kahraman et Blankenship ont montré que cette modification de la dent avait une influence sur l'amplitude de l'harmonique principale de l'ETD. Cette modification reste tout de même assez simple et ne permet pas de diminuer l'amplitude de l'ETD sur une grande plage de couple et de vitesse de rotation, les résultats variant beaucoup en fonction de ces deux paramètres. Ainsi pour utiliser au mieux la dépouille en sommet de dent, il est nécessaire de connaître les conditions d'utilisation de l'engrenage.

1.2.2 Influence des défauts des engrenages

Il existe de multiples défauts que l'on peut retrouver sur les engrenages, ces défauts peuvent être classés en deux catégories : les défauts de fabrication et les défauts d'usure.

Puisqu'il n'est pas possible d'obtenir des développantes de cercle parfaites, il existe une déviation inhérente sur la surface de la dent. Les défauts de fabrication sont relatifs à la précision des profils et peuvent donc être, en partie, diminués par une rectification de la surface de la dent.

Dans cette catégorie de défauts entrent aussi les erreurs de pas entre chaque dent. Même si minime, cette déviation influe sur la valeur du jeu fonctionnel, et donc sur les vibrations.

Les défauts d'usure sont des défauts que l'on voit apparaître au fur et à mesure de la vie des engrenages. Ces défauts vont du simple écaillement de la surface des dents, qui modifie la valeur de l'erreur de transmission, à l'apparition de fissures en pied de dent, diminuant la rigidité de l'engrènement. Cette perte de rigidité entraîne une augmentation des efforts sur les dents voisines à la dent abîmée. Comme les dents voisines subissent des efforts plus importants, elles fléchissent davantage et s'usent plus rapidement, ce qui provoque des fissures, de l'écaillement. Le défaut se propage alors de dent en dent jusqu'à ce que toutes les dents soient affectées.

Plusieurs auteurs s'intéressent aux vibrations d'engrenages défectueux. Si l'influence d'un défaut particulier peut être repérée par les données recueillies, il est alors possible de l'identifier sur un engrenage possédant plusieurs défauts. Ainsi, le diagnostic des engrenages pourra s'effectuer directement en industrie.

Les défauts influencent de manière différente le comportement dynamique des engrenages. Les défauts qui affectent la surface des dents modifient l'ETD. Ce type de défaut influence les périodes d'instabilité des engrenages, et introduit des vibrations supplémentaires. Les défauts volumiques (fissures en pied de dent), eux, influencent seulement la rigidité d'engrènement. La dynamique même de l'engrenage est modifiée.

1.3 Modèles et équations

Comme mentionné plus tôt, l'ETD $(r_1, \theta_1 - r_2, \theta_2)$ est l'indicateur le plus populaire dans la mesure du comportement des engrenages. C'est donc souvent cet indicateur que les simulations numériques étudient.

1.3.1 Les différents modèles utilisés

Il existe, dans la littérature, différents modèles qui permettent de modéliser un engrenage. Dans cette partie, les deux modèles les plus couramment utilisés sont présentés. Il s'agit du modèle à un seul degré de liberté et du modèle à plusieurs degrés de liberté.

1.3.1.1 Le modèle "un degré de liberté" « 1ddl »

Dans ce modèle, seules les deux roues qui composent l'engrenage sont représentées. Les roues possèdent un seul degré de liberté en rotation. Le contact entre les deux roues peut être modélisé de différentes manières. La complexité du modèle vient du nombre de paramètres intervenant au niveau du contact. Dans ce modèle, les arbres et les roulements sont supposés extrêmement rigides, leurs vibrations ne sont pas considérées et l'étude cible la vibration de rotation de l'engrenage.
Les 3 principales composantes du contact entre les dents sont :

- La rigidité d'engrènement k
- L'amortissement ζ
- · Le jeu fonctionnel

Sur la figure 1.5, le jeu fonctionnel n'est pas représenté. Dans ce modèle, les auteurs Parker et al. n'ont pas pris en compte ce paramètre (Parker, Vijayakar et al. 2000).

La rigidité d'engrènement k est le facteur le plus important dans l'étude du comportement dynamique des engrenages. Celle-ci n'est pas constante lors de la rotation du train d'engrenage et comme indiqué précédemment est déterminée par le rapport de conduite. Le rapport de conduite représente la moyenne du nombre de dents en contact lors d'une révolution complète des engrenages. Durant l'engrènement, le nombre de dents en contact varie ce qui provoque des changements plus ou moins brusques dans la rigidité de la transmission. De plus, la rigidité d'une dent n'est pas constante; le point de contact entre les deux dents se déplace sur la ligne d'engrènement, et donc sur la hauteur des dents. Toutefois, comme le point de contact varie de manière inverse sur les deux dents en prise, la rigidité résultante demeure à peu près constante.

Source : Cette figure est tirée de Parker, Vijayakar et al. 2000 «Non-linear dynamic response of a spur gear pair : modelling and experimental comparisons» et correspond à la figure 2 «Single-degree-offreedom modelling of the two gear system» présentée en page 438 dans le document original.

La rigidité peut être considérée de deux manières différentes : dans un premier cas, la rigidité est considérée comme une fonction du temps, ce qui suppose que la vitesse de rotation des engrenages est constante. Il est alors nécessaire de définir une fonction d'excitation en fonction de l'angle θ .

Dans le deuxième cas, la rigidité est plutôt considérée comme une fonction de l'angle de rotation de l'engrenage. L'angle est lui-même une fonction du temps. Les engrenages vibrent et leur vitesse de rotation n'est pas constante.

La rigidité est souvent représentée (Choy, Veillette et al. 1996; Kahraman and Blankenship 1997; Kahraman and Blankenship 1999; Oh, Grosh et al. 1999; Parker, Vijayakar et al. 2000; Vaishya and Singh 2001; Wang, Zhang et al. 2003) sous la forme d'une onde carrée (voir figure 1.6). Cette forme d'onde permet d'interpréter la plupart des résultats expérimentaux. La forme de l'onde dépend de la rigidité du matériau utilisé, mais aussi du rapport de conduite. C'est lui qui permet de définir les points de passage entre les valeurs de rigidité basse et élevée.

Source : Cette figure est tirée de Parker, Vijayakar et al. 2000 «Non-linear dynamic response of a spur gear pair : modelling and experimental comparisons» et correspond à la figure 13 «Mesh stiffness for rectangular wave approximation» présenté en page 451 dans le document original.

L'amortissement utilisé pour les calculs peut être considéré de plusieurs manières. Bien que son importance ne soit pas négligeable dans les vibrations des engrenages, il n'existe pas de modèles qui représentent parfaitement son effet. Dans certains modèles, l'amortissement est considéré comme un pourcentage de la rigidité (Amabili and Rivola 1997; Kar and Mohanty 2005), ainsi l'amortissement varie en même temps que la rigidité du train d'engrenage, c'est aussi le cas du taux d'amortissement $\xi = C/2\sqrt{km}$. Mais dans beaucoup de modèles (Cai and Hayashi 1994; Blankenship and Kahraman 1996; Choy, Veillette et al. 1996; Kahraman and Blankenship 1997; Amabili and Fregolent 1999; Richards and Pines 2000; Wang, Zhang et al. 2003; Tamminana, Kahraman et al. 2005), l'amortissement est considéré comme constant, ce qui simplifie les calculs. Le jeu fonctionnel représente le jeu qui existe entre les dents. Ce jeu est présent sur tous les engrenages. Lors du montage des roues, il n'est pas possible d'obtenir un jeu nul entre toutes les dents à moins de pré contraindre les engrenages, ce qui n'est pas souhaitable. Le jeu fonctionnel est nécessaire au bon fonctionnement des engrenages. Toutefois, comme discuté précédemment, il permet un mouvement nuisible lors des périodes d'instabilité.

Le jeu fonctionnel n'est pas toujours représenté dans les modèles, car il induit des effets non linéaires, tels que les chocs entre les dents. De plus, ce jeu ne possède une importance que si l'on considère les périodes d'instabilités des engrenages où le contact entre les dents peut être perdu. Si le contact se perd, la rigidité de l'engrènement devient nulle et la dynamique du train se réduit à la dynamique de corps rigides. Il existe deux possibilités pour le comportement du train : les dents retrouvent contact sur la face d'engrènement, ou retrouvent contact sur la face arrière. Dans ce dernier cas, les équations de mouvement changent : la roue menée devient la roue menante et vice versa. Lorsque les roues vibrent et alternent contact sur la face avant, contact sur la face arrière, les équations changent de manière continue et rapide. Afin de résoudre ce type de problème, les calculs (Amabili and Fregolent 1999; Parker, Vijayakar et al. 2000; Richards and Pines 2000; Li and Zhang 2002) sont effectués par étape. C'est pour cela que dans certains articles (Cai and Hayashi 1994), les auteurs essaient de linéariser les équations, en ne prenant pas en compte le jeu fonctionnel. Les périodes d'instabilité n'entraînent alors pas de perte de contact entre les dents. Les défauts des dents (erreur de transmission) et la variation de la rigidité sont néanmoins pris en compte dans ces modèles.

Les conclusions des auteurs de l'article (Cai and Hayashi 1994) sont que le modèle linéaire permet une bonne représentation du comportement des engrenages, mais seulement si la séparation entre les dents n'est pas importante. Dès que les engrenages approchent des zones d'instabilités, les équations linéarisées ne permettent pas de déduire le comportement des engrenages.

1.3.1.2 Le modèle à plusieurs degrés de liberté

Ce type de modèle peut encore se scinder en deux groupes distincts, d'une part il y a les modèles avec un seul train d'engrenages et de l'autre les modèles avec plusieurs trains d'engrenage.

Le modèle qui ne comprend qu'un seul train d'engrenage (Figure 1.7) prend en compte les rigidités des arbres, des roulements et des éléments qui entourent le train d'engrenage (Raghothama and Narayanan 1999; Howard, Jia et al. 2001; Wang, Zhang et al. 2003). Souvent avec ce modèle, la précision de l'évaluation du comportement dynamique de l'engrenage est plus faible, car les auteurs ne considèrent pas le jeu fonctionnel et simplifient parfois les termes de rigidité et d'amortissement.

Le deuxième type de modèle correspond à un système où plusieurs engrenages sont en contact. Dans ce type de modèle, les rigidités des arbres et des roulements sont supposés infinies, ainsi chaque engrenage est modélisé par un modèle « lddl » (Al-Shyyab and Kahraman 2005; Al-Shyyab and Kahraman 2005; Kar and Mohanty 2005). Ces représentations permettent d'étudier le comportement des boites de vitesse, où plusieurs engrenages se trouvent les uns à la suite des autres et où le premier engrenage induit des vibrations sur le dernier du train.

Figure 1.7 Modèle mécanique d'un engrenage sur des roulements déformables. (Tiré de Giagopulos, Salpistis et al. 2006)

Source : Cette figure est tirée de Giagopulos, Salpistis et al. 2006 «Effect of non-linearities in the idenvification and fault detection of gear-pair systems» et correspond à la figure 1 «Mechanical model of a spur gear-pair system on deformable bearings» présentée en page 215 dans le document original.

Contrairement au modèle à un seul degré de liberté, il n'existe pas de modèles types à plusieurs degrés de liberté, car les degrés de liberté sont choisi en fonction des éléments que les auteurs souhaitent étudier et de l'importance qu'ils leur accordent.

1.3.2 Les équations des engrenages pour l'étude des vibrations

Les équations utilisées pour le modèle « lddl » sont les suivantes (Équations (1.1) et (1.2)) et sont pour plusieurs auteurs (Cai and Hayashi 1994; Blankenship and Kahraman 1996; Amabili and Rivola 1997; Kahraman and Blankenship 1997; Amabili and Fregolent 1999; Wang, Zhang et al. 2003; Tamminana, Kahraman et al. 2005) presque les mêmes, seuls certains paramètres comme la valeur de l'amortissement, ou l'expression de l'erreur de transmission varient. Dans l'article (Amabili and Rivola 1997), l'amortissement dépend de la rigidité de l'engrenage. On peut remarquer aussi que les auteurs ont considéré l'erreur de transmission et la rigidité des engrenages comme étant des fonctions du temps et non de l'angle de rotation. De plus, ici la valeur du jeu fonctionnel n'est pas prise en compte, et le jeu est considéré comme infini ce qui simplifie un peu les termes non linéaires f_i et g_i . Le jeu n'est pas considéré nul, car il y a possibilité de perdre le contact entre les paires de dents. Mais il n'y a aucune possibilité de double impact.

$$\begin{split} m\ddot{x} + g_{1}(\dot{x}, t) + g_{2}(\dot{x}, t) + f_{1}(x, t) + f_{2}(x, t) &= W_{0} \\ x &= r_{1}\theta_{1} - r_{2}\theta_{2} \\ f_{i} &= \begin{cases} k_{i}(t)(x - e_{i}(t)) & si & x - e_{i}(t) \geq 0 \\ 0 & si & x - e_{i}(t) \leq 0 \end{cases} \\ g_{i} &= \begin{cases} qk_{i}(t)(\dot{x} - \dot{e}_{i}(t)) & si & \dot{x} - \dot{e}_{i}(t) \geq 0 \\ 0 & si & x - e_{i}(t) \leq 0 \end{cases} \\ W_{0} &= T_{1}/r_{1} = T_{2}/r_{2} \\ m &= I_{1}J_{2}/(I_{1}, x_{2}^{2} + I_{2}, x_{1}^{2}) \end{cases} \end{split}$$
(1.2)

e, représente l'erreur de transmission de la roue : erreur de profil, erreur de pas, erreur sur l'angle d'hélice. Cette erreur peut être modélisée en prenant des mesures sur un engrenage existant et en approximant la surface de la dent par une fonction mathématique qui puisse être facilement utilisable par la suite pour résoudre les équations.

Pour d'autres (Blankenship and Kahraman 1996), l'amortissement est supposé constant, l'équation (1.3) devient :

$$m.\ddot{x} + c.\dot{x} + f_1(x,t) + f_2(x,t) = W_0$$
 (1.3)

Certains auteurs comme Blankenship et al. ont introduit dans leurs modèles (Blankenship and Kahraman 1995; Blankenship and Kahraman 1996; Kahraman and Blankenship 1997) l'effet du jeu. La seule différence avec les équations précédentes se situe dans les termes f_i et g_i , où il faut rajouter des contraintes liées au jeu. Il faut donc rajouter deux équations, une pour le terme f_i et une autre pour le terme g_i . L'équation (1.4) montre les changements apportés sur le terme f_i , les changements pour le terme g_i sont les mêmes.

$$f_{i} = k(t) \begin{cases} x(t) - e_{i}(t) - b & si \quad x(t) - e_{i}(t) \ge b \\ 0 & si \quad |x(t) - e_{i}(t)| \le b \\ x(t) - e_{i}(t) + b & si \quad x(t) - e_{i}(t) \le -b \end{cases}$$
(1.4)

Où 2.b représente l'amplitude du jeu.

Les équations utilisées par tous les auteurs sont comparables aux équations précédentes, la différence entre les différents articles de la littérature concerne les rigidités utilisées (plus ou moins complexes, onde carrée ou une onde plus complexe), des valeurs de l'amortissement, et de la prise en compte du jeu fonctionnel.

1.4 Expériences développées dans la littérature et analyse des vibrations

Il existe dans la littérature plusieurs types d'expériences. On peut les diviser en trois groupes. Le premier regroupe les expériences qui prennent des mesures de contraintes, le deuxième celles qui utilisent des accéléromètres, et le troisième regroupe les autres méthodes, telles que la photoélasticité (Martin 2006), la mesure de bruit par micro (Singh, Houser et al. 1996; Singh, Houser et al. 1999), ou encore la mesure de la température (Britton, Elcoate et al. 2000).

1.4.1 Mesure des contraintes

Les mesures de contraintes sont effectuées au pied des dents. Cette position s'avère avantageuse, car il existe un lien direct entre la charge dynamique et la contrainte aux pieds des dents.

Dans les articles (Oswald, Townsend et al. 1996; Rebbechi, Oswald et al. 1996), le banc de tests utilisé est un banc qui a été conçu par la NASA. Il s'agit d'un banc relativement simple, un moteur entraîne un arbre par l'intermédiaire d'une courroie, cet arbre est scindé en deux à l'aide d'un accouplement, qui permet de réduire les fluctuations du couple et d'isoler les vibrations du moteur des engrenages que l'on veut tester. Ensuite, le train d'engrenage entraîne un deuxième arbre. Ce dernier est relié à un dynamomètre fixant le couple à transmettre.

Figure1.8 Schéma simplifié du banc d'essai. (Adapté de Liou, Lin et al. 1996)

Source : Cette figure est adaptée de Liou, Lin et al. 1996 «Effect of contact ratio on spur gear dynamic load with no tooth profile modifications» et correspond à la figure 3 «Simple gear transmision model» présentée en page 440 dans le document original.

Dans ces articles, les jauges de contraintes sont placées sur la face avant et la face arrière des dents. La position des jauges est définie sur la figure 1.9. Deux dents sont instrumentées sur la roue menée du train d'engrenage. Le nombre de dents sur chaque roue est identique. Ainsi, les dents de la roue menée engrènent toujours avec les mêmes dents de la roue menante.

Figure 1.9 Position des jauges de contrainte. (Tiré de Rebbechi, Oswald et al. 1996)

Les mesures peuvent être réalisées de manière statique ou dynamique. Le banc de la figure 1.10 permet d'effectuer les mesures statiques. Un des arbres de ce banc est libre seulement en rotation et l'autre arbre possède deux degrés de liberté, un en rotation et l'autre en translation. La translation s'effectue dans la direction du frottement (perpendiculaire à la ligne d'action). En appliquant le couple à la roue qui est seulement libre en rotation, l'autre roue libre peut bouger en translation et en rotation. Il faut donc appliquer une force dans la direction du frottement pour compenser la translation. Ces mesures permettent donc d'obtenir des courbes de l'effort tangentiel et de l'effort normal suivant la position du point de contact entre les deux dents. La mesure des contraintes dynamiques permet ensuite de calculer soit les forces dynamiques (Oswald, Townsend et al. 1996) soit les efforts de friction (Rebbechi, Oswald et al. 1996) et d'en déduire le coefficient de friction.

Source : Cette figure est tirée de Rebbechi, Oswald et al. 1996 «Measurement of gear tooth dynamic friction» et correspond à la figure 5 «Strain gage installation on test gear» présentée en page 361 dans le document original.

Figure 1.10 Banc de mesure statique. (Tiré de Rebbechi, Oswald et al. 1996)

Dans l'article (Oswald, Townsend et al. 1996), les résultats expérimentaux et les résultats prédits par calcul numérique (utilisation d'un code développé par la NASA) sont en accord aussi bien au niveau des amplitudes qu'au niveau des courbes de déformation.

Les résultats sur les pics des forces dynamiques s'accordent dans les dix pourcents, excepté pour les cas où le couple transmis est faible ou pour des hautes vitesses. Dans ces cas-là, les analyses numériques surestiment les effets dynamiques.

Les auteurs conseillent pour effectuer des essais similaires d'éviter les zones de vitesse de rotation élevée (entre 4000 et 6000tr/min) et les zones de faible couple. Les résultats les plus précis se trouvent dans les zones de couple élevé et/ou lorsqu'une seule dent est en contact (Rebbechi, Oswald et al. 1996). Lorsque le couple est plus élevé et/ou quand une seule dent est en contact, les efforts mis en jeu sont plus importants et donc plus facilement identifiables sur les données relevées par les jauges. De plus, le rapport bruit/effort diminue, ce qui augmente la précision des mesures.

1.4.2 Mesure des vibrations

Les mesures de vibration peuvent être effectuées de multiples manières. Les mesures les plus utilisées sont : la prise de mesure sur le bâti, la plupart du temps au niveau des paliers les plus proches des engrenages (Berri 2001) ou sur le bâti lui-même (Singh, Houser et al. 1996).

La deuxième est la prise de mesure des vibrations au niveau des arbres qui permet de trouver directement l'ETD. Mais cette deuxième méthode n'est souvent réalisée qu'en laboratoire, car elle nécessite des équipements particuliers (deux anneaux de conduction sont nécessaires pour mesurer l'ETD). En contrôle de vibration des machines, on utilise la première méthode.

1.4.2.1 Prise de mesure sur le bâti

Les articles traitant de la prise de mesure des vibrations sur le bâti ne sont pas nombreux. Dans l'article (Berri 2001), le banc d'essai est composé de deux arbres, d'un train d'engrenage, d'un moteur et d'un dynamomètre. L'accéléromètre est placé sur un des roulements. Il permet de mesurer l'accélération occasionnée par les vibrations des engrenages. Le but de l'article est de mettre en évidence l'influence d'une fissure sur les vibrations des engrenages. La fissure introduite dans les engrenages est située à la base de la dent, et a été usinée à l'aide d'une perceuse avec un outil en diamant.

Pour analyser les résultats, la transformée en ondelettes (ODWT : Orthogonal Discrete Wavelet Transform) a été utilisée. Dans cet article, pour des fissures inférieures à un millimètre, la rigidité de la dent n'est quasiment pas affectée. En conséquence, la dynamique des engrenages n'est quasiment pas modifiée et il est donc difficile d'établir le niveau de dommage des roues. Toutefois, plus la longueur de la fissure augmente, plus la rigidité de la dent diminue. Cette baisse de rigidité ne présente pas une correspondance linéaire avec la longueur de la fissure. La diminution de rigidité s'accentue avec la longueur de la fissure. Il est à noter que pour des petites fissures, moins de un millimètre, aucune différence entre les signaux n'a pu être visualisée.

Dans l'article (Singh, Houser et al. 1996), l'auteur compare deux procédés différents, l'un utilisant un accéléromètre et l'autre utilisant un micro pour enregistrer le bruit des engrenages. Dans cet article, seuls les signaux temporels ont été utilisés et comparés entre eux. L'étude d'usure en piqûres de surface est étudiée, ce phénomène apparaît lorsque des portions de la surface s'arrachent sous l'effet de contraintes concentrées et répétées.

Le but de cet article (Singh, Houser et al. 1996) est de savoir quand apparaît cette usure. Lorsque le contact se fait sur les surfaces usées, il se produit des impacts répétitifs de courte durée. Les régions affectées par cette usure causent des impacts hertziens, pouvant être détectées par des appareils appropriés, à savoir des capteurs EA (Émission Acoustique). L'avantage d'utiliser ces capteurs est le fait qu'ils peuvent opérer à de très hautes fréquences (jusqu'à 280 kHz). À ces fréquences, le niveau des bruits mécaniques est très faible, ainsi le rapport signal/bruit est beaucoup plus avantageux que pour des accéléromètres classiques, dont la fréquence d'utilisation ne dépasse pas 50 kHz. Le deuxième avantage est que les émissions acoustiques sont produites lors de l'initiation des fissures et de leur propagation, il serait donc possible de suivre l'évolution de l'usure par piqûres.

En comparant la prise de mesure par accéléromètre et celle avec le capteur EA, l'auteur note que les résultats fournis par l'accéléromètre ne permettent pas de voir l'apparition de l'endommagement de la surface de la dent, alors que les résultats obtenus par le micro permettent de mettre en évidence l'apparition d'un défaut de l'engrenage. Cette différence peut s'expliquer par le fait que même pour des faibles niveaux d'usure, la matière arrachée de la surface du matériau produit des émissions acoustiques. Alors que la différence au niveau dynamique d'un engrenage sain et d'un engrenage commençant à se détériorer est très faible.

1.4.2.2 Prise de mesure sur les arbres

Plusieurs parties sont nécessaires pour la prise de mesure des accélérations sur les arbres. Dans cette partie, tous les systèmes utilisés sont répertoriés et leur rôle expliqué.

Banc d'essai :

Il existe deux types de banc d'essai pour prendre les mesures, la différence se situe au niveau du chargement des engrenages.

Le premier montage est un montage en boucle ouverte où il y a un arbre de sortie et un arbre d'entrée, chacun des deux arbres porte une roue, un moteur relié à l'arbre d'entrée permet d'entraîner le système, et un dynamomètre sur l'arbre de sortie permet d'obtenir le couple désiré dans les engrenages à tester (Oswald, Townsend et al. 1996; Britton, Elcoate et al. 2000; Berri 2001).

Le deuxième montage en boucle fermée (Blankenship and Kahraman 1996; Kahraman and Blankenship 1996; Kahraman and Blankenship 1997; Kahraman and Blankenship 1999; Tamminana, Kahraman et al. 2005) est composé de deux trains d'engrenage. L'un des deux trains est appelé « engrenage esclave », son rôle est de faire circuler le couple à l'intérieur du système comparativement au premier montage où le couple circule du moteur vers le dynamomètre. L'autre train d'engrenage est celui étudié. Le couple est introduit à l'aide de disques de frottement permettant d'introduire un couple parasite par torsion. Cela permet d'obtenir un couple constant sur les engrenages (Blankenship and Kahraman 1996; Kahraman and Blankenship 1996; Kahraman and Blankenship 1996; Kahraman and Blankenship 1999). Dans l'article (Singh, Houser et al. 1996), une autre méthode est proposée pour obtenir un couple constant sur les engrenages. Sur les deux arbres parallèles, deux trains d'engrenage avec un rapport de réduction inverse sont montés. Un des deux arbres possède un système d'embrayage pour que le système puisse fonctionner.

Le type de montage le plus répandu est celui utilisé par Blankenship. Sur ce banc qui a été très optimisé, les deux trains d'engrenage sont séparés par des accouplements, qui permettent encore de réduire l'influence du train « esclave » sur le train d'engrenage à tester. Ce banc possède aussi un volant d'inertie par arbre, pour diminuer l'influence de la variation du couple du moteur sur les arbres. Pour que les fréquences d'engrènement des deux trains ne soient pas identiques et que les vibrations de l'un n'influencent pas les vibrations de l'autre, les « engrenages esclaves » sont choisis avec un nombre dents plus élevé, tout en conservant le même rapport de réduction afin que le système puisse fonctionner (Blankenship and Kahraman 1996). Les engrenages « esclave » ont aussi été modifiés pour réduire les bruits sous de nombreuses conditions de chargement.

Les accéléromètres :

Pour prendre les mesures de vibration de torsion sur l'arbre, il est nécessaire d'avoir au minimum deux accéléromètres. Ainsi, lorsque l'on somme vectoriellement leur valeur, l'effet de la gravité est annulé (Blankenship and Kahraman 1996). Il faut par contre veiller à ce que les accéléromètres soient bien placés à 180° de part et d'autre de l'arbre.

Le nombre d'accéléromètres peut varier, cela dépend de la précision que l'on souhaite obtenir pour effectuer les mesures. Le nombre d'accéléromètres doit être un multiple de deux, pour pouvoir annuler l'effet de la gravité. Les chercheurs Blankenship et Kahraman (Blankenship and Kahraman 1996; Kahraman and Blankenship 1996; Kahraman and Blankenship 1996; Kahraman and Blankenship 1997; Kahraman and Blankenship 1999; Kahraman and Blankenship 1999) ont utilisé quatre accéléromètres. L'avantage d'utiliser un plus grand nombre d'accéléromètres est la possibilité d'améliorer la qualité du signal final. En mesurant quatre fois la même information, les bruits liés à la transmission du signal, qui sont aléatoires auront plus de chance de se compenser mutuellement par rapport à un montage avec seulement deux accéléromètres (Blankenship and Kahraman 1996).

Dans l'article (Tamminana, Kahraman et al. 2005), un seul accéléromètre est utilisé, car l'auteur ne cherchait pas à connaître l'ETD, mais cherchait un moyen de retrouver les défauts des engrenages à partir des vibrations de celui-ci. De plus, comme la vitesse de rotation est constante, il est possible de reconnaître l'effet de la gravité sur les mesures que l'auteur a effectuées, car la gravité agira toujours à la même fréquence et avec la même amplitude.

Les méthodes d'analyse :

La méthode la plus utilisée pour analyser les résultats obtenus par les accéléromètres est la transformée de Fourrier (Kahraman and Blankenship 1996; Kahraman and Blankenship 1999; Wang, Zhang et al. 2003). L'analyse en fréquence permet de visualiser l'amplitude de chacune des harmoniques séparément. Ainsi en fonction du paramètre étudié, on peut examiner l'amplitude de chacune des harmoniques et voir comment le paramètre influence les différentes harmoniques. Par exemplé, le rapport de conduite ne possède pas la même influence sur toutes les harmoniques de l'ETD. Pour un rapport de conduite d'environ 1.4, l'amplitude de la première harmonique sera maximale, et l'amplitude de la deuxième sera minimale (Kahraman and Blankenship 1999). Cette méthode permet d'étudier l'influence la plupart des caractéristiques des engrenages.

Deux autres méthodes se montrent plus efficaces pour analyser les vibrations des engrenages en fonction de l'usure. La première d'entre elles est le diagramme temps fréquence, qui permet de voir l'apparition et l'évolution d'un phénomène. Le principe est de décomposer le signal temporel en plusieurs parties, et d'appliquer la transformée de Fourrier sur chacune de ces parties (STFT). Une autre méthode qui permet de visualiser un résultat similaire est la transformée en ondelettes du signal. Cette transformée permet de représenter sur un diagramme en trois dimensions des vibrations analysées (Lin and McFadden 1997). L'avantage de ces deux méthodes est la possibilité de voir les phénomènes temporels et fréquentiels en même temps offrant ainsi une vision globale de ce qui se passe avec le système analysé.

Entre les deux méthodes, il existe aussi une différence. Les diagrammes temps fréquence (STFT) ont une résolution constante en fréquence et en temps, il est de ce fait plus difficile d'analyser les résultats par rapport aux ondelettes où la précision temporelle est bonne dans les hautes fréquences, et la précision fréquentielle est bonne en basse fréquence.

Lorsque le but des études sur les engrenages est de connaître la position des défauts et leur amplitude, la méthode de la transformée en ondelette du signal s'avère une très bonne méthode, car elle permet de savoir à quel moment le défaut apparaît, et ainsi on peut connaître la dent qui est associée au défaut.

1.4.3 Photoélasticité

La photoélasticité utilise un matériau plastique dont les propriétés de réflexion de la lumière sont modifiées lorsqu'il est soumis à un champ de contrainte. Comme le montre la figure 1.11, trois éléments sont essentiels à la photoélasticité : une source de lumière, une caméra et le matériau. Ensuite il faut ajouter des lentilles pour avoir un faisceau de lumière polarisée.

Dans l'article (Wang 2003), le but était de déterminer le point où la contrainte en tension est maximale. Les roues sont ainsi réalisées avec un matériau biréfringent. Elles n'ont en conséquence pas les mêmes caractéristiques mécaniques que des roues en acier. Mais pour cette étude, cela demeure sans effet, car l'auteur cherchait seulement la position de la contrainte maximale et non sa valeur maximale, pour plusieurs vitesses et couples transmis. Les mesures qui ont été effectuées permettent une lecture aisée de la position de la contrainte maximale (voir figure 1.12), et de sa valeur. De plus, grâce à la caméra qui a été utilisée les résultats peuvent être fournis pour un grand éventail de vitesse de rotation, jusqu'à 1000tr/min.

Source : Cette figure est tirée de Wang 2003 «A new photoelastic investigation of the dynamic bending stress of spur gears» et correspond à la figure 3 «Digital photoelastic system with function of real time image taking» présentée en page 367 dans le document original.

Figure 1.12 Exemple de mesure. (Tiré de Wang 2003)

Source : Cette figure est tirée de Wang 2003 «A new photoelastic investigation of the dynamic bending stress of spur gears» et correspond à la figure 4 «Photograph of photoelastic images for a gear-meshing cycle» présentée en page 368 dans le document original.

L'étude de Wang (Wang 2003) a permis de vérifier les approches AGMA et de Niemann. Selon l'auteur, la méthode de la photoélasticité pourrait être utilisée dans l'industrie pour déterminer l'amplitude maximale ainsi que la position de la contrainte maximale.

Dans le mémoire de B. Martin (Martin 2006), la méthode de la photoélasticité a été appliquée à des engrenages en acier pour la mesure des contraintes dynamiques. Le matériel photoélastique a été collé sur les roues d'engrenage. Les premiers tests ont été effectués avec une poutre en flexion. Les tests sur les roues d'engrenage ne se sont pas révélés concluants en régime dynamique, car les ordres de franges et la position des contraintes maximales ne correspondaient pas aux valeurs théoriques attendues. En régime statique, les trois contraintes, en tension, en compression et de contact, étaient visibles. Par contre, en régime dynamique, seule la contrainte en tension était présente. Toutefois, sa position était erronée et sa valeur n'était pas la valeur attendue théoriquement. En effet, l'échauffement des pièces provoquait l'apparition de contraintes thermiques importantes qui se superposaient aux contraintes de fonctionnement. Selon l'auteur, l'échauffement explique les écarts obtenus entre les contraintes théoriques et les contraintes expérimentales.

1.5 Bilan du chapitre

D'une manière générale, les vibrations des engrenages sont un domaine complexe, où beaucoup de paramètres interviennent. Ce ne sont pas les défauts des engrenages qui créent des vibrations en premier lieu, mais les engrenages eux-mêmes, du fait de la rigidité d'engrènement non constante. Comme la rigidité n'est pas constante, et du fait de la présence de frottements et d'un jeu fonctionnel, la dynamique des engrenages est régie par des équations non linéaires. En plus des vibrations liées à la nature des engrenages se rajoutent les vibrations engendrées par les multiples défauts que l'on retrouve sur les roues : état de surface, usure de la dent, présence de fissures, etc.

Pour pouvoir identifier clairement les défauts des engrenages, il est primordial de connaître parfaitement leur comportement dynamique lorsqu'ils ne présentent pas de défaut. Ainsi par la suite, il est possible d'analyser les différences entre les signaux et d'identifier l'influence de chaque défaut sur l'ETD.

Les différents paramètres importants retrouvés dans la littérature sont les suivants : le rapport de conduite, la correction de denture, le couple, et la vitesse de rotation. Le paramètre le plus étudié est le rapport de conduite. C'est lui qui possède le plus d'influence sur les vibrations des engrenages par rapport aux autres paramètres cités. En ce qui concerne les méthodes numériques, les paramètres étudiés sont les mêmes que ceux étudiés expérimentalement. Les résultats fournis par ces méthodes sont en accord avec les résultats expérimentaux.

Il existe d'autres paramètres de conception des engrenages qui n'ont pas été étudiés tels que la largeur de dent, le module et l'angle d'hélice. Les expériences qui seront conduites dans la présente étude incluront ces paramètres. À la suite de ces expériences, il sera possible de classer l'effet des différents paramètres de conception sur le comportement des engrenages en fonction des critères de vibration et de contraintes admissibles par les dents des roues.

CHAPITRE 2

PLAN D'EXPÉRIENCE

L'étude bibliographique a permis de mettre en évidence plusieurs paramètres qui devront être absolument intégrés au plan d'expérience. La base du plan d'expérience a été construite par Martin (Martin 2006) lors des travaux de sa maîtrise sur l'application de la photoélasticité à la mesure de la contrainte dynamique des engrenages cylindriques. Dans ce plan, les paramètres sont : le pas diamétral Pd (1), l'angle d'hélice Ψ (2), la largeur des engrenages F (3), le couple transmis T (4), la vitesse de rotation Ω (5), et le nombre de dents utilisées N (6). Ces différents paramètres sont ceux qui qualifient judicieusement les roues dans la littérature.

Les valeurs de couple admissible, l'entraxe à respecter pour assurer un fonctionnement correct, ainsi que les grades de qualités pré établis seront vérifiés. Une fois ces vérifications effectuées, l'établissement du plan d'expérience final permettra de mener les expériences.

2.1 Présentation du plan d'expérience initiale

Le plan d'expérience est un plan de type factoriel 2⁷, ce plan a été choisi, car il permet de comparer chaque paramètre deux à deux sans changer les autres. De plus, le nombre de paramètres à comparer est encore faible, six en tout, donc le nombre d'expériences à réaliser est limité à 64. Ainsi pour une combinaison quelconque de cinq paramètres fixés, il y aura deux valeurs possibles pour le sixième paramètre. Ainsi, l'influence de ce paramètre sur la dynamique de l'engrenage sera mise en valeur. Les valeurs choisies par Martin pour les différents paramètres se trouvent dans les tableaux 2.1 et 2.2.

Tableau 2.1

Première partie du plan d'expérience initiale

1	2	3	4	5		6	
Pd	Ψ (degré)	F (pouce)	T (Nm)	Ω (tr/min)	m	Npignon	Nroue
				500	1.6	24	25
			275	1000	1.6	24	25
		0.5	215	500	1.675	34	35
				1000	1.675	34	35
		0.0		500	1.6	24	25
			300	1000	1.6	24	25
			500	500	1.675	34	35
	0			1000	1.675	34	35
				500	1.6	24	25
			275	1000	1.6	24	25
		3	2/5	500	1.675	34	35
				1000	1.675	34	35
			300	500	1.6	24	25
				1000	1.6	24	25
				500	1.675	34	35
4				1000	1.675	34	35
		0.5	275	500	1.77	24	25
				1000	1.77	24	25
				500	1.85	34	35
				1000	1.85	34	35
			300	500	1.77	24	25
				1000	1.77	24	25
				500	1.85	34	35
	20			1000	1.85	34	35
		3		500	3	24	25
			275	1000	3.1	24	25
				500	3	34	35
				1000	3.1	34	35
				500	3	24	25
			300	1000	3.1	24	25
				500	3	34	35
				1000	3.1	34	35

Tableau 2.2

Deuxième partie du plan d'expérience initiale

1	2	3	4	5		6	
Pd	Ψ (degré)	F (pouce)	T (Nm)	Ω (tr/min)	m	Npignon	Nroue
				500	1.6	24	25
			275	1000	1.6	24	25
			210	500	1.675	37	38
		0.5		1000	1.675	37	38
		0.0		500	1.6	24	25
			300	1000	1.6	24	25
			500	500	1.675	37	38
	0			1000	1.675	37	38
	Ů			500	1.6	24	25
			275	1000	1.6	24	25
		3	215	500	1.675	37	38
				1000	1.675	37	38
			300	500	1.6	24	25
				1000	1.6	24	25
				500	1.675	37	38
				1000	1.675	37	38
0		0.5	275	500	1.9	24	25
				1000	1.9	24	25
				500	2	37	38
				1000	2	37	38
			300	500	1.9	24	25
				1000	1.9	24	25
				500	2	37	38
	20			1000	2	37	38
	20			500	3.75	24	25
			275	1000	3.75	24	25
				500	3.85	37	38
				1000	3.85	37	38
		3		500	3.75	24	25
			200	1000	3.75	24	25
			300	500	3.85	37	38
				1000	3.85	37	38
			1		1	1	

Comme les roues sont déjà présentes, les seuls paramètres du plan d'expérience pouvant être modifiés ou ajustés sont le couple à transmettre, la vitesse de rotation et la valeur de l'entraxe. Les autres paramètres décrivant la forme des roues ne peuvent être modifiés. Par ailleurs, toutes les roues ont été mesurées pour construire leurs fiches techniques. Ces fiches permettent de connaître les grades de qualité des roues, à partir du profil, de l'angle d'hélice, du faux rond, et du pas. On peut remarquer que le nombre de dents n'est pas le même pour le pas diamétral de 4 po^{-1} et pour celui de 6 po^{-1} . Le plan ne peut donc pas être considéré comme fermé, mais est considéré comme un plan d'expérience double. Néanmoins, il sera possible en interpolant les valeurs obtenues pour les roues de 37 et 38 dents de les comparer avec les résultats des roues de 34 et 35 dents en supposant que la relation est linéaire.

2.2 Vérification de l'entraxe et du rapport de conduite

Dans cette partie, les rapports de conduite qui ont été introduits à l'origine sont vérifiés. Dans le même temps, les entraxes à utiliser pour assurer le respect de ce nouveau rapport de conduite sont calculés.

2.2.1 Le rapport de conduite

Le rapport de conduite (Joseph E. Shigley 2004) m est défini comme suit :

$$m = mf + mt$$
 (2.1)

$$mt = \frac{P_d Z}{\pi . \cos(\phi)}$$
(2.2)

Où mf représente le rapport de conduite de face. Pour les engrenages droits, ce rapport est nul. mt représente le rapport de conduite transversal. Il s'agit du nombre moyen de dents en contact sur une face de la roue durant une révolution. Ce rapport est calculé pour les engrenages à denture droite et hélicoïdale.

Z représente la longueur active de la ligne d'action et est calculée à partir de la formule suivante :

$$Z = \sqrt{R_{i-p}^2 - R_{b-p}^2} + \sqrt{R_{i-r}^2 - R_{b-r}^2} - C.\sin(\phi)$$
 2.3

Figure 2.1 Ligne d'action et rapport de conduite. (Tiré de Joseph E. Shigley 2004)

Source : Cette figure est tirée de Joseph E. Shigley 2004 «Mechanical engineering design» et correspond à la figure 13-15 «Definition of contact ratio» présentée en page 674 dans le document original.

La valeur de la ligne d'action est dirigée par le rayon de tête R_r du pignon (R_{r-p}) et de la roue (R_{r-r}) , de l'entraxe (C), et de l'angle de pression (ϕ) .

$$R_{t} = \frac{D_{p}}{2} + \frac{1}{P_{d}}$$
(2.4)

$$R_b = \frac{D_p}{2} \cdot \cos(\phi) \qquad (2.5)$$

Le rapport de conduite de face est régi par :

$$mf = \frac{F}{P_x}$$
(2.6)

 $P_{\scriptscriptstyle \! x}$ est le pas axial et se calcule de la manière suivante :

$$P_x = \frac{2.\pi R_b}{N \tan(\psi_b)}$$
(2.7)

Figure 2.2 Les différents pas et angles des engrenages. (Tiré de Joseph E. Shigley 2004)

Source : Cette figure est tirée de Joseph E. Shigley 2004 «Mechanical engineering design» et correspond à la figure 13-22 «Nomenclature of helical gears» présentée en page 682 dans le document original.

L'angle d'hélice de base ψ_b est calculé en fonction de l'angle d'hélice (ψ) et l'angle de pression normal (ϕ_a).

$$\psi_b = \sin^{-1}(\sin(\psi) \cdot \cos(\phi_a))$$
 (2.8)

Toutes les équations nécessaires au calcul du rapport de conduite ont été présentées, le calcul du rapport de conduite dépend encore de la valeur de l'entraxe, qui fait l'objet de la partie suivante.

2.2.2 L'entraxe

L'entraxe C est calculé en sommant le rayon primitif de la roue à celui du pignon, et en ajoutant un jeu fonctionnel pour permettre le bon fonctionnement du train d'engrenage.

Pour un pas diamétral de 4 po^{-1} , le jeu fonctionnel *Jf* recommandé par les normes est compris entre $1.778*10^{-1}$ et $2.794*10^{-1}$ mm, et pour un pas diamétral de 6 po^{-1} , ce jeu est compris entre $1.270*10^{-1}$ et $2.032*10^{-1}$ mm (Stokes 1992). Ensuite, grâce à la formule (2.9), l'augmentation d'entraxe (ΔC) est calculée en fonction du jeu fonctionnel (*Jf*). À l'aide des rapports de conduite établis par Martin (Martin 2006), l'entraxe qu'il aurait utilisé est calculé, ensuite grâce aux formules de la partie 2.3.1, le calcul de l'entraxe minimale et de l'entraxe maximale est calculé pour avoir le jeu fonctionnel recommandé.

$$\tan(\phi) = \frac{0.5 Jf}{\Delta C}$$
(2.9)

Le tableau 2.3 présente les valeurs de l'entraxe pour obtenir le rapport de conduite désiré par Martin, l'entraxe mini et l'entraxe maxi. Seulement quatre roues respectent la condition du jeu fonctionnel recommandé. Il faut donc établir de nouveaux rapports de conduite dans le but de respecter le jeu fonctionnel recommandé.

Tableau 2.3

Nom de la roue	Entraxe pour avoir le rapport de conduite désiré (mm)	Entraxe mini selon le jeu fonctionnel mini (mm)	Entraxe mini selon le jeu fonctionnel maxi (mm)	Validité	
Pd4w0N24F05	155.946	155.819	155.959	Oui	
Pd4w0N34F05	219.550	219.319	219.459	Non	
Pd4w0N24F3	155.946	155.819	155.959	Oui	
Pd4w0N34F3	219.550	219.319	219.459	Non	
Pd4\u00c024F05	165.788	165.788	165.920	Non	
Pd4y20N34F05	233.365	233.365	233.495	Non	
Pd4w20N24F3	159.512	165.788	165.920	Non	
Pd4w20N34F3	225.400	233.365	233.495	Non	
Pd6\0N24F05	103.965	103.891	103.995	Oui	
Pd6w0N37F05	159.690	158.925	159.029	Non	
Pd6y0N24F3	103.965	103.891	103.995	Oui	
Pd6y0N37F3	159.690	158.925	159.029	Non	
Pd6w20N24F05	110.470	110.536	110.635	Non	
Pd6y20N37F05	168.415	161.690	168.200	Non	
Pd6w20N24F3	103.022	110.536	110.635	Non	
Pd6w20N37F3	160.960	169.103	169.200	Non	

Calcul des entraxes désirés, mini et maxi

Les valeurs de l'entraxe *m* qui ont été choisies ne pourront pas être mesurées avec une précision supérieure au dixième de millimètre. Les valeurs trouvées sont donc approchées au dixième de millimètre le plus proche et les nouvelles valeurs du rapport de conduite sont calculées. L'approximation choisie est au dixième de millimètre, car positionner les arbres de manière plus précise demanderait un temps excessif.

Tableau 2.4

Nouvell	es val	leurs du	rapport	de	conduite
---------	--------	----------	---------	----	----------

Roue	Entraxe primitif (mm)	Entraxe expérimental (mm) (+/- 0.05mm)	m expéri mental	m recherché	Erreur (%)	
Pd4w0N24F05	155.575	155.9	1.6	1.6	0	
Pd4w0N34F05	219.075	219.4	1.677	1.675	-0.1	
Pd4w0N24F3	155.575	155.9	1.6	1.6	0	
Pd4w0N34F3	219.075	219.4	1.677	1.675	-0.1	
Pd4w20N24F05	165.557	165.9	1.788	1.77	-1	
Pd4w20N34F05	233.147	233.4	1.855	1.85	-0.3	
Pd4y20N24F3	165.557	165.9	2.877	3	4.1	
Pd4y20N34F3	233.147	233.4	2.944	3.1	5	
Pd6\0N24F05	103.962	104.0	1.6	1.6	0	
Pd6w0N37F05	158.750	159.0	1.694	1.675	-1.1	
Pd6y0N24F3	103.962	104.0	1.6	1.6	0	
Pd6y0N37F3	158.750	159.0	1.694	1.675	-1.1	
Pd6y20N24F05	110.363	110.6	1.896	1.9	0.2	
Pd6w20N37F05	168.935	169.2	1.978	2	1.1	
Pd6w20N24F3	110.363	110.6	3.529	3.75	5.9	
Pd6y20N37F3	168.935	169.2	3.611	3.85	6.2	

Lors des essais, les valeurs théoriques du tableau 2.4 seront approchées au maximum, elles tiennent compte de la valeur du jeu fonctionnel recommandé, mais aussi de la précision de la mesure obtenue lors des expériences. Dans le tableau 2.4, l'erreur commise sur la valeur du rapport de conduite par rapport à ce que Martin (Martín 2006) avait prédit ne dépasse pas 1% dans la plupart des cas, seulement pour les plus grosses roues hélicoïdales, l'erreur atteint 7%, ce qui demeure raisonnable.

2.3 Vérification du couple transmissible

Pour obtenir de bons résultats sur les valeurs de contrainte, il est nécessaire d'avoir un couple élevé pour que les déformations soient significatives. Ainsi, le signal des jauges possèdera une amplitude sensiblement supérieure aux niveaux du bruit. Pour trouver le couple maximal transmissible, la norme AGMA (Association 1988) est utilisée. Il existe dans cette norme une formule permettant de calculer la contrainte théorique de flexion en fonction des paramètres des roues. De plus, le calcul de cette contrainte servira à comparer les contraintes expérimentales et théoriques.

2.3.1 Formule de la norme AGMA

La contrainte théorique de flexion pour les engrenages (Association 1988) est donnée par l'équation suivante :

$$\sigma_f = W'.K_0.K_v.K_s.\frac{P_d}{F}.\frac{K_w.K_\theta}{J}$$
(2.10)

On remarque que la contrainte de flexion dépend de la charge tangentielle transmise $W^T = 2. \frac{T}{D_p}$. La charge dépend seulement du couple transmis (T) et du diamètre primitif de l'engrenage (D_p).

Ensuite il faut calculer les différents facteurs de correction, facteur de grosseur K_s , facteur de chargement K_0 , facteur de distribution de charge K_m , facteur d'épaisseur de la roue K_b et facteur géométrique J. L'utilisation d'abaques permet de trouver facilement leurs valeurs. Tous les abaques utilisés se trouvent dans la référence (Joseph E. Shigley 2004) et sont présents dans l'annexe II. Le dernier facteur, le facteur de vitesse K_r , dépend du grade de qualité Q_r (Joseph E. Shigley 2004) de la paire d'engrenages à étudier. Ce dernier facteur met donc en avant l'influence de la vitesse sur les contraintes subies par les dents des engrenages.

$$K_r = \left(\frac{A + \sqrt{V}}{A}\right)^{\theta}$$
(2.11)

$$V = \frac{D_{\rho} \Omega.\pi}{12} \quad en \quad ft / \min$$
 (2.12)

$$A = 50 + 56.(1 - B) \qquad (2.13)$$

$$B = 0.25 \cdot (12 - Q_{\star})^{\frac{7}{3}}$$
 (2.14)

Ainsi, si les roues possèdent un très bon grade de qualité, le facteur B peut tendre vers 0 et le facteur K_r vers 1. Ainsi pour des grades de qualité élevés, la vitesse aura moins d'influence sur les contraintes. Il est même possible théoriquement que les effets de la vitesse soient nuls.

2.3.2 Vérification des grades de qualité

Les grades de qualité des roues sont vérifiés, car ce sont eux qui indiqueront les différentes caractéristiques physiques qui influenceront les vibrations. Par exemple, un engrenage qui posséderait un grade de qualité médiocre sur le faux rond n'aura pas la même caractéristique vibratoire qu'un engrenage dont le grade qualité sur le profil est mauvais.

Selon les normes, il existe quatre aspects de qualité pour caractériser un engrenage, la qualité sur le faux rond, sur le pas, sur le profil, et sur l'angle d'hélice.

Les équations utilisées par la suite sont tirées de la norme AGMA (Association 1988). Ces équations permettent de situer la qualité des roues à étudier.

2.3.2.1 Grade de qualité sur le faux rond

L'équation normalisée selon la norme AGMA pour le faux rond est :

$$V_{eT} = 58.N_{e}^{0.238}.P_{ed}^{-0.722}.1,4^{(8-Q)}$$
(2.15)

Cette équation est valable pour des valeurs de Q comprise entre 3 et 15, un nombre de dents compris entre 6 et 1200, et un pas diamétral compris entre 0.5 et 20.

2.3.2.2 Grade de qualité sur le pas

L'équation normalisée (norme AGMA) pour le profil est :

$$V_{m} = 10.5 N_{i}^{0.177} P_{m}^{-0.401} .1,42^{(8-Q)}$$
(2.16)

Cette équation est valable pour des valeurs de Q comprise entre 6 et 15, un nombre de dents compris entre 6 et 1200, et un pas diamétral compris entre 0,5 et 20.

2.3.2.3 Grade de qualité sur le profil

L'équation normalisée (norme AGMA) pour le profil est :

$$V_{dT} = 21.5 N_i^{0.154} P_{ad}^{-0.389} .1, 4^{(8-Q)}$$
(2.17)

Cette équation est valable pour des valeurs de Q comprise entre 8 et 15, un nombre de dents compris entre 6 et 1200, et un pas diamétral compris entre 0,5 et 20.

2.3.2.4 Grade de qualité sur l'angle d'hélice

L'équation normalisée (norme AGMA) pour le profil est :

$$V_{q\bar{q}} = [-0,00244.Q^3 + 0,13638.Q^2 - 2.69177.Q + 18,956]$$
 si $F < 1 pouce$ (2.18)

$$V_{wr} = \left[-0,00244Q^3 + 0,13638Q^2 - 2.69177Q + 18,956\right]F^{0.72} \text{ si } F > 1 \text{ pouce}$$
(2.19)

Cette équation est valable pour des valeurs de Q comprise entre 8 et 15, un nombre de dents compris entre 6 et 1200, et un pas diamétral compris entre 0,5 et 20.

2.3.2.5 Interprétation des résultats

Avec les fiches techniques des engrenages, et les équations de la norme AGMA, il est possible de retrouver les tolérances sur les différents aspects de qualité des roues. Le tableau 2.5 montre les valeurs des différentes tolérances sur le pas, le profil, l'angle d'hélice et le faux rond en fonction du grade de qualité générale.

Tableau 2.5

		Paramètres du pignon									
		N	38	Ψ	20	Ni	40.4	Pd	6	F	3
				Gr	ade de	qualit	é génér	rale Qv	,		
Grade de qualit	6	7	8	9	10	11	12	13	14	15	
Le profil	VΦT	25.9	18.5	13.2	9.4	6.7	4.8	3.4	2.5	1.8	1.3
L'angle	VwT (si F<1)	7.2	6.0	4.9	4.0	3.2	2.6	2.1	1.7	1.3	1.0
d'inclinaison	VψT (si F>1)	15.9	13.1	10.8	8.8	7.1	5.7	4.6	3.6	2.9	2.3
Le faux rond	Vrt	75.2	53.7	38.4	27.4	19.6	14.0	10.0	7.1	5.1	3.6
Pas	Vpa	19.3	13.8	9.9	7.0	5.0	3.6	2.6	1.8	1.3	0.9

Grade de qualité selon la norme

En cherchant les valeurs des tolérances en pouce des différents aspects de la qualité, on se rend compte que peu de roues possèdent des grades Qv compris entre 6 et 15. Martin (Martin 2006) proposait dans son mémoire d'extrapoler les courbes en traçant une courbe de tendance qui dépendrait uniquement du grade de qualité Qv. Toutefois en effectuant les calculs avec les équations de la norme, les résultats de Martin obtenus à partir d'équations approximées ont été retrouvés.

En construisant des tableaux similaires au tableau 2.5, et en partant le grade Qv à zéro, le grade des roues peut être déterminé pour chaque aspect de la qualité. Le plus petit grade de qualité trouvé sur tous les aspects correspond au grade de qualité générale de la roue. Ensuite pour trouver le grade de qualité générale de l'engrenage, il faut prendre le plus petit grade de qualité générale des deux roues qui le composent. Il est ainsi possible de construire les tableaux 2.6 et 2.7. Dans ces tableaux, les grades de qualité sur chaque aspect de la qualité des différentes roues sont présents, ensuite l'avant-dernière colonne correspond au grade de qualité générale de la roue, et la dernière colonne correspond au grade de qualité générale de la roue, et la dernière colonne correspond au grade de qualité générale de la roue, et la dernière colonne correspond au grade de qualité générale de la roue, et la dernière colonne correspond au grade de qualité générale de la roue, et la dernière colonne correspond au grade de qualité générale de la roue, et la dernière colonne correspond au grade de qualité générale de la roue, et la dernière colonne correspond au grade de qualité générale de la roue, et la dernière colonne correspond au grade de qualité générale de l'engrenage.

Les qualités de ces engrenages sont très faibles, neuf d'entre eux possèdent un grade de qualité de 0 ou de 1, ce qui est médiocre et qui se traduira par des vibrations importantes. Ensuite six autres possèdent un grade de qualité entre deux et quatre, ce qui est également très faible. Enfin, un seul engrenage possède un grade de qualité très moyen, sa valeur étant 6. La valeur de 6 est la valeur minimale de validité des équations de la norme AGMA. Les grades de qualité très bas perturberont sûrement les résultats expérimentaux. En effet, le grade de qualité n'est pas homogène sur l'ensemble des roues à tester, les erreurs de transmission statique sont donc différentes pour chacune des roues.
10 C	1	-76	1
Lab	leau	2	0
1 1 N W	1.0.10.04		

		F =	0.5 Pouce			
Engrenage	$Qv \; V\Phi$	$Qv\;V\psi T$	Qv +/-Vpa	Qv VrT	Qv Roue	Qv paire
Pd4y0N24F05	8	8	9	8	8	
Pd4y0N25F05	6	7	5	4	4	-
Pd4w0N34F05	6	2	8	3	2	2
Pd4y0N35F05	7	8	9	10	7	2
Pd4w20N24F05	6	3	8	10	3	0
Pd4w20N25F05	5	0	6	8	0	0
Pd4w20N34F05	6	1	6	7	1	,
Pd4w20N35F05	6	2	8	10	2	1
Pd6w0N24F05	5	4	8	8	4	4
Pd6y0N25F05	6	5	9	8	5	4
Pd6w0N37F50	6	1	7	6	1	,
Pd6w0N38F05	7	5	8	7	5	
Pd6y20N24F05	7	3	9	10	3	
Pd6y20N25F05	6	4	8	9	4	
Pd6w20N37F05	5	0	7	7	0	0
Pd6y20N38F05	7	4	9	7	4	

Grade de qualité des roues de largeur 0,5 pouce

-			-	~
1.3	ibi	lean	2	7
	10.0	10-11-14	100	

		F	= 3 pouces			
Engrenage	Qv VΦ	Qv VψT	Qv +/-Vpa	Qv VrT	Qv Roue	Qv Paire
Pd4w0N24F3	7	6	8	8	6	
Pd4w0N25F3	6	7	8	8	6	0
Pd4w0N34F3	5	6	5	6	5	
Pd4y0N35F3	7	4	8	6	4	4
Pd4w20N24F3	6	6	7	11	6	0
Pd4w20N25F3	5	0	7	7	0	0
Pd4y20N34F3	5	5	9	10	5	
Pd4w20N35F3	6	3	7	6	3	3
Pd6w0N24F3	6	5	8	8	5	
Pd6y0N25F3	6	0	6	5	0	0
Pd6y0N37F3	6	0	8	7	0	
Pd6w0N38F3	6	1	7	5	1	0
Pd6y20N24F3	5	0	7	7	0	
Pd6y20N25F3	6	1	9	8	1	0
Pd6y20N37F3	7	1	6	4	1	
Pd6w20N38F3	6	6	8	6	6	

Grade de qualité des roues de largeur 3 pouces

2.3.3 Calcul de la contrainte au pied de dent o

Maintenant que tous les coefficients nécessaires au calcul de la contrainte théorique sont calculés, les calculs de la contrainte sont réalisés. En effectuant les calculs avec le couple donné par Martin (Martin 2006), on se rend compte que pour les roues minces à denture droite qui possèdent un pas diamétral de 6 po^{-1} , (Tableaux I et II, Annexe II) la valeur de la contrainte théorique est très élevée et dépasse la limite élastique du matériau. Il est donc nécessaire de revoir le couple à appliquer pour ne pas dépasser la limite élastique du matériau.

Pour un acier 1045 roulé à chaud, la limite élastique est de 310 Mpa⁻¹. Les contraintes maximales trouvées sont supérieures à 500MPa pour la plus petite roue du plan, celle qui possède le pas diamétral de 6 po^{-1} et 24 dents. Il est donc nécessaire de réduire le couple à transmettre pour pouvoir travailler sur toutes les roues dans le domaine élastique. La roue dont le pas diamétral est de 6 po^{-1} , d'une épaisseur de 0.5 po et dont le nombre de dents est 24 sera utilisée pour calculer le nouveau couple maximal transmissible.

La contrainte calculée sur cette roue selon la norme AGMA est de 565.4 MPa, pour le couple de 300 Nm. De plus, comme vu avec l'équation AGMA, la contrainte est directement proportionnelle au couple transmis. Donc, le nouveau couple sera de ³⁰⁹/_{565.4} 300 = 160 Nm, ce qui permet de rester sous la limite élastique du matériau. La valeur du deuxième couple sera de ²⁷⁵/_{565.4}160 = 145 Nm, le rapport entre les deux couples choisis demeure le même. Avec ces nouvelles valeurs du couple, et selon la norme AGMA, toutes les roues travailleront dans le domaine élastique.

http://www.matweb.com/search/DataSheet.aspx?MatID=6941

2.4 Plan d'expérience corrigé

Comme mentionné dans la partie précédente, certains paramètres du plan d'expérience original ont dû être retouchés. Le type de plan d'expérience demeure le même, seules les valeurs données au rapport de conduite et au couple changent par rapport à l'ancien plan.

Les éléments qui varient seront donc : le couple, la vitesse de rotation, l'angle d'hélice, le pas diamétral, la largeur de face, et le nombre de dents. Tous ces paramètres prendront deux valeurs différentes. Par exemple, si les cinq premiers paramètres (pas diamétral, angle d'hélice, couple, vitesse de rotation, largeur de face) sont fixés, alors il y aura deux valeurs possibles pour le nombre de dents. Ceci est valable pour tous les paramètres du plan d'expérience.

Les tableaux 2.8 et 2.9 présentent le nouveau plan d'expérience double. Les seules modifications qui ont été apportées par rapport à l'ancien plan sont le changement de la valeur du couple, et les rapports de conduite. Les anciens rapports de conduite ne permettaient pas d'obtenir un entraxe supérieur à l'entraxe minimum. Ils ont donc été recalculés pour être égales à la valeur de l'entraxe primitif plus un jeu fonctionnel nécessaire au bon fonctionnement de la paire d'engrenages. Le rapport de conduite est inclus dans les tableaux 2.8 et 2.9. Toutefois, il demeure une conséquence des autres facteurs choisis, notamment le nombre de dents, l'angle d'hélice, et ne peut être considéré comme un facteur à part entière.

La dernière remarque concerne le fait que le plan ne peut pas être considéré comme fermé, tout comme le premier plan d'expérience établi. Ce plan ressemble plus à plan d'expérience double. Les résultats obtenus pour les roues de 37 dents ne pourront pas être comparés de manière directe avec les roues de 34 dents, il faudra utiliser une interpolation pour pouvoir les comparer.

Tableau 2.8

Première partie du plan d'expérience

Pd	Ψ (degré)	F (pouce)	T (Nm) +/- 3Nm	Ω (tr/min) +/-20 tr/min	m	Npignon	Nroue		
				500	1.6	24	25		
				1000	1.6	24	25		
			145	500	1.675	34	35		
		0.5		1000	1.675	34	35		
		0.5		500	1.6	24	25		
			1/0	1000	1.6	24	25		
			160	500	1.675	34	35		
				1000	1.675	34	35		
	0			500	1.6	24	25		
				1000	1.6	24	25		
	1 1		145	500	1.675	34	35		
		3		1000	1.675	34	35		
			160	500	1.6	24	25		
	4			1000	1.6	24	25		
				500	1.675	34	35		
				1000	1.675	34	35		
4				500	1.77	24	25		
					1.46	1000	1.77	24	25
			145	500	1.85	34	35		
				1000	1.85	34	35		
		0.5		500	1.77	24	25		
			1/0	1000	1.77	24	25		
			160	500	1.85	34	35		
	20			1000	1.85	34	35		
	20			500	3	24	25		
			140	1000	3	24	25		
			145	500	3.1	34	35		
				1000	3.1	34	35		
		3		500	3	24	25		
			140	1000	3	24	25		
			160	500	3.1	34	35		
				1000	3.1	34	35		

Tableau 2.9

Deuxième partie du plan d'expérience

Pd	Ψ (degré)	F (pouce)	T (Nm) +/- 3 Nm	Ω (tr/min) +/- 20 tr/min	m	Npignon	Nroue			
				500	1.6	24	25			
			1.40	1000	1.6	24	25			
			145	500	1.694	37	38			
		0.6		1000	1.694	37	38			
		0.5		500	1.6	24	25			
			160	1000	1.6	24	25			
			160	500	1.694	37	38			
				1000	1.694	37	38			
	0			500	1.6	24	25			
				1000	1.6	24	25			
			145	500	1.694	37	38			
	6			1000	1.694	37	38			
		3	160	500	1.6	24	25			
				1000	1.6	24	25			
				500	1.694	37	38			
				1000	1.694	37	38			
0		0.5		500	1.896	24	25			
			0.5			145	1000	1.896	24	25
						145	500	1.978	37	38
					1000	1.978	37	38		
				0.5	0.5	0.5	0.5		500	1.896
			140	1000	1.896	24	25			
			100	500	1.978	37	38			
	20			1000	1.978	37	38			
				500	3.529	24	25			
			145	1000	3.529	24	25			
			145	500	3.611	37	38			
		2		1000	3.611	37	38			
		5		500	3.529	24	25			
			160	1000	3.529	24	25			
			100	500	3.611	37	38			
				1000	3.611	37	38			

2.5 Bilan du chapitre

Ce chapitre a permis de vérifier les calculs qui avaient été effectués et de se rendre compte de certaines erreurs qui auraient faussé les résultats obtenus lors des expériences, voir rendu impossible certaines de ces mesures. Ainsi, de nouvelles valeurs du couple et du rapport de conduite ont été introduites.

Les résultats obtenus à l'aide de la mesure de la contrainte et de la mesure vibratoire permettront de comparer toutes les roues entre elles, et de trouver le meilleur compromis à faire pour avoir une contrainte faible et peu de vibrations.

CHAPITRE 3

LE BANC D'ESSAI

Le banc d'essai doit répondre à plusieurs critères de fonctionnement. L'un des plus importants est que celui-ci doit posséder une fréquence de résonance basse, et ce, dans le but de ne pas perturber les vibrations des engrenages. Ensuite, il faut que le banc autorise un ajustement facile des entraxes, car toutes les roues testées ne possèdent pas le même rayon. Il doit permettre aussi le réglage de la vitesse de rotation et du couple à transmettre avec une précision adéquate.

Pour la variation de la vitesse de rotation, on utilise un moteur possédant une puissance de 10 Hp. Celui-ci est muni d'une commande électrique pour ajuster la vitesse de rotation.

Deux grandes parties seront décrites dans ce chapitre. Une première partie sera la description du banc d'essai et de ses principales caractéristiques. La deuxième partie traitera de l'instrumentation utilisée pour mener à bien les expériences.

3.1 Description du banc d'essai

Le banc d'essai utilisé est déjà en place, il possède différentes caractéristiques qui permettent de répondre aux besoins demandés par l'étude dynamique des engrenages.

3.1.1 Caractéristiques du banc d'essai

Un système à circuit fermé a été retenu, ce procédé permet de ne pas avoir de pertes énergétiques, car le couple à transmettre reste à l'intérieur du circuit. Pour ce type de système, il est nécessaire d'avoir une deuxième paire d'engrenages qui permet de transmettre le mouvement. Cette deuxième paire d'engrenages, appelés engrenage « esclave », doit posséder des caractéristiques différentes des engrenages à tester. En effet si les engrenages sont identiques, les vibrations de la paire esclave se superposent aux mesures de l'engrenage à tester et deviennent indiscernables.

On remarque sur la figure 3.1 les quatre grandes parties du banc : l'engrenage à tester, l'engrenage « esclave », l'introduction du couple et le moteur électrique.

Pour permettre un réglage aisé de l'entraxe, le banc d'essai est monté sur une plaque de fonte rainurée. Ainsi, il est possible de faire glisser toutes les parties du banc pour obtenir les entraxes désirés. La plaque de fonte a une masse d'environ 7000 kg pour ne pas être affectée par les vibrations des engrenages durant les essais. Cette condition assure que les vibrations de la plaque ne perturberont pas les mesures d'accélérations.

Figure 3.1 Banc d'essai.

Le banc se décompose en six modules (voir figure 3.1). Chacun des arbres comporte trois parties. Un des arbres reçoit la transmission, l'autre reçoit le dynamomètre mécanique. Pour l'arbre qui reçoit la transmission, les trois parties sont : l'arbre (1) portant la transmission ainsi que la roue « esclave » (2), un arbre nu (3), et un arbre (4) portant la roue à tester ainsi que l'anneau de conduction (5). L'arbre qui reçoit le dynamomètre est composé : d'un arbre (6) portant la roue « esclave », d'un arbre (7) avec le dynamomètre et d'un arbre (8) recevant le complément de la roue à tester. Chacune des parties des arbres est reliée à l'autre par un accouplement (9) qui permet d'isoler les vibrations d'une partie par rapport à l'autre.

3.1.2 Introduction du couple

Le couple est introduit de manière mécanique. Comme dans la plupart des articles de la revue de littérature, le système est en boucle fermée. Afin de faciliter l'identification des engrenages à tester et «esclaves » dans la mesure des vibrations, les engrenages «esclaves » auront un nombre de dents trois fois plus élevées, ce qui aura pour conséquence de monter leur fréquence d'engrènement au-delà de la fréquence d'engrènement des roues à tester. Leur largeur de face sera de trois pouces, ainsi les contraintes induites par le chargement seront faibles et n'ajouteront pas de vibrations supplémentaires aux arbres.

Figure 3.2 Dynamomètre mécanique.

Le système utilisé ici pour introduire le couple est un dynamomètre mécanique (Figure 3.2), celui-ci est constitué de deux réducteurs de vitesse montés en opposition. L'un d'eux est fixé à la plaque, l'autre est monté sur roulement et possède un bras d'application qui permet selon sa position de faire varier le couple introduit à l'intérieur du système.

3.2 Instrumentation du banc et des roues

Le banc d'essai possède quatre méthodes de mesure. Le banc lui-même intègre la mesure du couple par jauge de déformation au niveau des arbres, figure 3.3. Un des arbres est muni d'une bague montée avec deux accéléromètres, figure 3.4. Enfin, le palier le plus proche des roues à tester est muni d'un accéléromètre pour mesurer les accélérations radiales. Quant aux roues, elles sont munies de jauges de déformations en pied des dents du côté compression. Les mesures sont transmises à l'aide d'un anneau de conduction au système d'acquisition *Wavebook*, figure 3.4.

3.2.1 Mesure du couple

Le couple est lu par des jauges de torsion, placées juste avant la bague qui porte les accéléromètres sur l'arbre instrumenté (Figure 3.3).

Figure 3.3 Jauges de torsion.

3.2.2 Mesure des accélérations

La prise de mesure en rotation sur l'arbre de la roue instrumentée se fait à l'aide de deux accéléromètres placés à 180 degrés. Ce positionnement permet d'éliminer l'accélération gravitationnelle sur les mesures vibratoires. Seulement deux accéléromètres ont été utilisés, considérant que la précision atteinte avec deux accéléromètres est suffisante.

Figure 3.4 Les accéléromètres.

Il y a une deuxième prise de mesure par accéléromètre cette mesure s'effectue sur le palier le plus proche de la roue instrumentée. Les mesures sont prises dans le plan perpendiculaire à l'axe de rotation. Les accélérations verticales seront relevées sur le dessus du roulement (position 1 de l'accéléromètre, figure 3.5), et les accélérations horizontales le seront sur le côté du palier (position 2 de l'accéléromètre, figure 3.5). Cette prise de mesure sur le support du roulement permet de mesurer les composantes vibratoires dans un repère cartésien.

Figure 3.5 Position de l'accéléromètre tridimensionnelle.

Pour les accéléromètres, il est nécessaire de définir les fréquences d'échantillonnages permettant de mesurer toute l'information utile sur les roues. D'après le théorème de Shannon, il est nécessaire d'échantillonner le signal à plus de deux fois la fréquence maximale contenue dans le signal à observer. La fréquence maximale à observer est la troisième harmonique de la fréquence d'engrènement. Le tableau 3.1 présente les valeurs minimales et les valeurs utilisées de la fréquence d'échantillonnage. Il a aussi été décidé de prendre des mesures sur deux durées différentes pour observer les effets de coïncidence, fréquence à laquelle deux mêmes dents retrouvent contact. Ainsi pour la vitesse de 200 tr/min, et pour le couple 24-25 dents, la roue de 24 dents doit effectuer 25 tours pour se retrouver dans la position de départ, soit 7.5 s. Pour le couple de 34-35 dents, la durée minimale est de 10.5 s. Pour le couple 37-38 dents, la durée minimale est de 11.4 s. Les durées qui ont décidées pour cette vitesse sont 6s et 15s. Le même type de calcul a été effectué pour les vitesses de 500 et 1000 tr/min. Une seule durée est retenue pour la vitesse de 1000 tr/min pour éviter d'endommager les roues de manière importante.

Enfin pour lire les résultats des accéléromètres, il est nécessaire de faire un étalonnage de ceux-ci. La calibration est effectuée à l'aide d'un pot vibrant. La fréquence du pot vibrant est de 159.2Hz et l'amplitude est de 1g exprimé en valeur efficace crête à crête. Pour les accéléromètres 1 et 2 (mesure en rotation, figure 3.4), les valeurs trouvées correspondent pratiquement aux valeurs du constructeur (Tableau 3.2). Les valeurs sont de 102.3mV/g et 105.5mV/g, alors que le certificat de calibration des accéléromètres donnait une valeur de 104.9mV/g.

Tableau 3.1

Vitesse de rotation (tr/min)	Nombre de dents	Fréquence d'engrènement (Hz)	Fréquence minimale d'échantillonnage (Hz)	Fréquence d'échantillonnage utilisée (kHz)
	24	80.00	480	1 kUs durant 15s
200 34	113.33	680	2 S LH2 nondont 6	
37		123.33	740	2.5 KHZ pendant os
	24	200.00	1200	2 6 kHz anadomi 6a
500	34	283.33	1700	2.5 kHz pendant 6s
	37	308.33	1850	5 Kriz pendant 58
	24	400.00	2400	
1000	34 566.67		3400	5 kHz pendant 2s
	37	616.67	3700	

Valeurs recommandées de la fréquence d'échantillonnage

Par contre, pour l'accéléromètre tridimensionnel (mesure sur le palier, position 1 et 2 de la figure 3.5), on remarque un problème au niveau de la direction Y (Tableau 3.2), la valeur est beaucoup trop faible par rapport à la valeur du fabricant (98.1 mV/g). Après plusieurs vérifications, il n'a pas été possible de retrouver des résultats cohérents pour la direction Y, il a donc été décidé de ne pas l'utiliser pour relever les valeurs des accélérations. C'est pour cette raison que seules les mesures d'accélérations dans le plan perpendiculaire à l'axe de rotation seront prises (plan x, z mesure sur le palier). L'accéléromètre tridimensionnel a été placé è deux positions différents dans le but de prendre les accélérations radiales de l'arbre.

Tableau 3.2

	Calibration	Min (mV)	Max (mV)	Amplitude (mV)	mV/g	Valeur fabricant
	En X	-37.5	228.3	265.8	94.0	98.7
Accéléromètre tridimensionnel	En Y	-42.7	45.8	88.5	31.3	98.1
Mesure sur le paller	En Z	-175.5	98.9	274.4	97.1	99.2
Accéléromètre 1 Mesure en rotation	Accl	-166.9	122,4	289.3	102.3	104.9
Accéléromètre 2 Mesure en rotation	Acc2	-165.4	133.1	298.5	105.5	104.9

Calibration des accéléromètres

Les figures suivantes présentent les résultats temporels et fréquentiels de l'échantillonnage pour l'accéléromètre 1 et la direction X de l'accéléromètre triaxial.

Figure 3.6 Résultat temporel de l'accéléromètre 1 - calibration.

Figure 3.7 Résultat fréquentiel de l'accéléromètre 1 - calibration.

Figure 3.8 Résultat temporel de l'accéléromètre triaxial en X - calibration.

Figure 3.9 Résultat fréquentiel de l'accéléromètre triaxial en X - calibration.

3.2.3 Mesure de la contrainte dynamique des dents

Les jauges de déformation sont placées sur le pignon de l'engrenage à tester, c'est-à-dire la roue qui possède le plus petit nombre de dents. La figure 3.10 présente un état de charge dynamique, cette figure illustre le fait que l'on peut choisir le côté compression ou le côté tension pour la mesure de la contrainte. Dans le cas présent, le choix s'est porté sur le côté compression, car il est impossible de coller les jauges côté tension sous peine de détruire les jauges dès la première mise en charge des roues. Il est aussi à noter que le nombre de jauges collées sur les roues varie en fonction de l'angle d'hélice et de la largeur de la roue

Le nombre de dents consécutives sur lesquelles ont été collées les jauges a été choisi en fonction du rapport de conduite final calculé. En approximant le rapport de conduite à la valeur entière supérieure, le nombre maximal de dents en contact en même temps est obtenu. Ce nombre de dents maximal correspond au nombre de dents consécutives à instrumenter. Mais pour les grandes roues hélicoïdales, cette approche ne peut être respectée, le nombre de dents en contact maximal est quatre. L'anneau de conduction ne possède que 20 voies, il a donc été décidé de limiter le nombre de dents à instrumenter à trois.

Figure 3.10 Contrainte dans une dent d'engrenage. (Tiré de Wang 2003)

Source : Cette figure est tirée de Wang 2003 «A new photoelastic investigation of the dynamic bending stress of spur gears» et correspond à la figure 5 «Photoelastic images for single tooth contact and different torques in the static state» présentée en page 368 dans le document original.

Pour les roues droites, deux configurations possibles de jauges existent. Tout d'abord pour les roues de 0.5 po de large, quatre jauges seront disposées sur deux dents consécutives, soit deux jauges par dents, et collées au tiers et aux deux tiers de l'épaisseur (Figure3.11).

Figure 3.11 Instrumentation des roues droites de 0.5po de large.

Pour les roues droites de 3po de large, six jauges sont collées. Elles sont disposées sur deux dents consécutives, soit trois jauges par dents, et collées au quart, à la moitié, et aux trois quarts de l'épaisseur (Figure 3.12).

Figure 3.12 Instrumentation des roues droites de 3po de large.

Pour les roues hélicoïdales, il y a deux configurations possibles de jauges. Tout d'abord pour les roues de 0.5 po de large, quatre jauges sont disposées sur deux dents consécutives, soit deux jauges par dents, et collées au tiers et aux deux tiers de l'épaisseur (Figure 3.13).

Figure 3.13 Instrumentation des roues hélicoïdales de 0.5po de large.

Pour les roues hélicoïdales de 3*po* de large, sept jauges sont disposées sur trois dents consécutives, soit deux jauges sur la première et la troisième dent et trois sur la deuxième dent. Sur la première et la troisième dent, les jauges sont collées au tiers et aux deux tiers de l'épaisseur, et sur la deuxième dent, les jauges sont collées au quart, à la moitié et aux trois quarts de l'épaisseur (Figure 3.14).

Figure 3.14 Instrumentation des roues hélicoïdales de 3po de large.

3.2.4 Acquisition des données

Pour l'acquisition des données, deux modules différents sont utilisés. Le premier (*Wavebook 516*, figure 3.15) permet de brancher les accéléromètres et la mesure du couple. L'autre module est un module spécialisé (*WBK16*) dans l'acquisition de données provenant de jauges de déformations. Ce dernier permet de monter n'importe quel type de jauges et ceci dans n'importe quelle configuration, quart de pont, demi-pont, ou plein pont.

Tous les réglages de configuration des jauges sont effectués à l'aide du module WBK16, de l'ordinateur et du logiciel WaveBook. Tous les modules Wavebook peuvent être connectés entre eux et ainsi être montés en série.

Figure 3.15 Module d'acquisition Wavebook 516 et WBK16 et conditionneur.

La prochaine étape est d'utiliser le logiciel *Wavecal*, qui permet de choisir parmi les modules branchés sur l'ordinateur celui que nous voulons utiliser. Dans notre cas, le choix s'offre entre deux modules, un module permettant d'effectuer des simulations et le module réellement branché.

La dernière étape consiste à entrer les valeurs de résistance des jauges, leur facteur de jauges et le type de pont utilisé. Une fois ces réglages effectués, il faut calibrer les jauges. La démarche complète est fournie à l'annexe VII.

3.3 Bilan du chapitre

Dans ce chapitre, toutes les caractéristiques du banc d'essai, ainsi que l'instrumentation nécessaire au bon déroulement des expériences ont été décrites. Les essais peuvent être entrepris. Le chapitre suivant présente donc la campagne d'essai

Le collage des jauges a été une étape délicate de la préparation des expériences. En effet, l'espace disponible pour coller les jauges est faible, et il ne faut pas commettre d'erreur lors du soudage. Les jauges sont de plus très fragiles. Il se peut que durant les essais des valeurs de déformations soient inadéquates. La présence de bulles d'air dans la colle ou encore de déformations thermiques provoquées par le soudage des fils peut en effet dans certains cas perturber les lectures. Il faudra donc vérifier la valeur des jauges avant les essais pour voir si celles-ci ne sont pas déjà hors d'usage.

CHAPITRE 4

ESSAIS EXPÉRIMENTAUX

Ce chapitre a pour but de décrire les différents essais effectués, la prise de mesure des accélérations et des déformations, en passant par les différents réglages du banc et la vérification des différents composants. La procédure de réglage du banc et différents commentaires sur ce qui a fonctionné et mal fonctionné sont présentés.

Aussi un ajout sera fait au plan d'expérience dans le but d'obtenir une étude plus fine des déformations. Il s'agit d'une nouvelle vitesse de rotation de 200tr/min. Toutes les roues seront testées avec cette nouvelle vitesse de sorte que les résultats des déformations soient adéquats pour au moins une vitesse de rotation.

4.1 Déroulement des expériences

Pour faciliter le déroulement des expériences, des recommandations sur le réglage et l'utilisation du banc sont présentées ci-dessous. Dans un premier temps, le réglage le plus important pour étudier le comportement des roues est l'ajustement de l'entraxe. Afin de se rapprocher le plus exactement possible des entraxes théoriques du tableau 2.4, la mesure de l'entraxe a été prise à deux endroits distincts sur les arbres. Ainsi, le parallélisme des arbres peut être respecté (Figure 4.1). Ce réglage s'avère très important pour les roues de trois pouces de largeur. Le tableau 4.1 présente les valeurs d'entraxe réalisées lors des essais. Les résultats sont en millimètre, et la précision de chaque mesure est de 0.1mm. Cette mesure a été effectuée à l'aide d'un pied à coulisse dont la précision est de 0.01mm. L'instrument de mesure possède une meilleure précision que la précision voulue pour être assuré d'obtenir une mesure précise à 0.1mm. La translation nécessaire lors du montage des différents modules qui composent le banc ne permet pas une meilleure précision.

Tableau 4.1

Roue	Entraxe expérimental (mm +/- 0.05 mm)	Rapport de conduite m expérimental	Rapport de conduite recherché	Déviation sur m	Erreur (%) sur m
Pd4w0N24F05	156.7	1.59	1.60	-0.01	-0.83
Pd4w0N34F05	219.8	1.67	1.68	-0.01	-0.32
Pd4w0N24F3	156.7	1.59	1.60	-0.01	-0.83
Pd4w0N34F3	219.8	1.67	1.68	-0.01	-0.32
Pd4y20N24F05	166	1.79	1.77	0.02	0.91
Pd4w20N34F05	233.5	1.85	1.85	0.00	0.27
Pd4w20N24F3	166	2.87	3.00	-0.13	-4.17
Pd4w20N34F3	233.5	2.94	3.10	-0.16	-5.10
Pd6w0N24F05	104.5	1.59	1.60	-0.01	-0.83
Pd6\0N37F05	159.7	1.67	1.68	0.00	-0.08
Pd6y0N24F3	104.5	1.59	1.60	-0.01	-0.83
Pd6y0N37F3	159.6	1.68	1.68	-0.00	0.07
Pd6y20N24F05	111.0	1.88	1.90	-0.02	-0.88
Pd6y20N37F05	170.7	1.93	2.00	-0.07	-3.29
Pd6y20N24F3	111.0	3.52	3.75	-0.23	-6.23
Pd6y20N37F3	170.7	3.57	3.85	-0.28	-7.35

Entraxes expérimentaux.

Le montage des roues s'effectue de manière très aisée (voir figure 4.2), les roues sont maintenues sur les collets à l'aide de deux clavettes et de quatre vis. Il suffit d'insérer la roue dans le collet, puis de mettre en place les clavettes et ensuite les quatre vis.

Les fils des différentes jauges et des accéléromètres sont reliés à un anneau de conduction provenant de la compagnie *Michigan Scientific* dans le but de transmettre les signaux électriques au *Wavebook*. Cet anneau possède vingt connexions, et fournit aussi la position et la vitesse. Ces caractéristiques sont fournies à l'annexe III.

Figure 4.1 Prise de mesure de l'entraxe.

Figure 4.2 Maintien de la roue.

La mesure de vitesse intégrée à l'anneau permet de calibrer la commande moteur. La vitesse est obtenue de l'anneau sur une échelle de voltage 0-10 V. L'ajustement a été fait lors des essais de sorte que l'échelle 0-10 V corresponde à une plage 0-1000 tr/min. Cette échelle a par la suite été liée au contrôle du moteur. Le tableau 4.2 présente les valeurs de la vitesse de rotation de l'arbre par rapport au voltage de sortie de l'anneau et à la vitesse affichée sur la commande moteur. Il est ainsi possible de construire une équation permettant de passer de la vitesse de rotation de l'arbre à la valeur affichée sur la commande moteur. L'équation est en fait une courbe linéaire, équation (4.1) :

$$\Omega = 22.68 * Valeur - commande \qquad (4.1)$$

Tableau 4.2

Vitesse sur la commande moteur	Voltage de sortie de l'anneau	Vitesse de l'arbre Ω (tr/min)
2.5	0.58	58
5	0.98	98
10	2.135	213.5
15	3.30	330
20	4.45	445
25	5.64	564
30	6.78	678
35	7.96	796
40	9.13	913
41	9.34	934
42	9.60	960
43	9.81	981
44	10.04	1004
45	10.06	1006

Rapport Voltage/Vitesse-arbre/ValeurCommande

Réglage du couple :

Les jauges de déformation se situant sur l'arbre instrumenté permettent d'obtenir le couple introduit dans le montage. Les jauges ont été étalonnées par Martin (Martin 2006), et l'équation obtenue est :

Tension de voltage relative =
$$-\frac{Couple + 539.77}{2823.24}$$
 (5.2)

Dans l'équation précédente, la tension de voltage relative représente le rapport entre le voltage d'alimentation du pont et le voltage de sortie du pont. Ainsi à chaque mesure du couple, il est nécessaire de vérifier le voltage d'alimentation pour connaître la bonne valeur du voltage de sortie.

Le couple est appliqué par un bras lié au dynamomètre (voir figure 4.3). Le bras est déplacé jusqu'à ce que la valeur désirée du voltage soit atteinte.

Figure 4.3 Introduction du couple.

Autres vérifications :

Avant de commencer les essais, il faut s'assurer que tous les fils soient correctement branchés. Les conditionneurs des accéléromètres indiquent au moyen d'un voyant lumineux l'état de branchement. Ensuite pour savoir si les jauges fonctionnent, un premier test consiste à relever leur résistance. Si la valeur mesurée est de 350 Ohms, la calibration avec le logiciel *WaveBook* est effectuée. Si la calibration se déroule sans problème, alors le banc d'essai est prêt. Dans le cas contraire, les fils de connexions entre l'anneau et le module d'acquisition doivent être vérifiés.

4.2 Essais sur les roues

Cette partie présente et discute les points ayant fonctionné et ceux qui n'ont pas été satisfaisants. Dans les diverses expériences menées, les résultats obtenus à partir des accéléromètres ont été assez bons pour toutes les roues. Par contre, les résultats obtenus avec les jauges de déformations ont présenté une certaine imprécision.

4.2.1 Ce qui n'a pas fonctionné

Il y a plusieurs points dans les expériences qui n'ont pas fonctionné de manière adéquate.

4.2.1.1 Anneau de conduction

L'anneau de conduction possède seulement vingt connexions. Or les plus grosses roues ont été instrumentées avec sept jauges, ce qui demande d'avoir au minimum 21 connexions. De plus, le signal des jauges n'est pas le seul à être mesuré. Il est accompagné des signaux des accéléromètres en rotation qui demandent quatre fils, en plus des signaux permettant l'acquisition du couple, qui demandent lui aussi quatre fils. Ainsi, il aurait fallu un anneau possédant trente connexions pour relever toutes les données en une seule prise. Puisqu'il a été nécessaire de repartir les mesures, la mesure des jauges a été effectuée en les considérant quatre à la fois, ce qui introduit une erreur.

4.2.1.2 Collage des jauges

Le collage des jauges a été délicat. Tout d'abord, pour le positionnement des jauges, une croix de centrage a été faite sur les roues avec une pointe de métal. Ce marquage a pu influencer les valeurs de déformations de la jauge, car la partie active de la jauge est de l'ordre du millimètre, et un mauvais polissage ou une croix de positionnement trop profonde peuvent perturber les déformations de la jauge. Si la profondeur du marquage est importante, la déformation vue par la jauge sera plus élevée que la déformation réelle de la pièce. La déformation de la croix de marquage étant plus rapide que celle de la pièce, le marquage se ferme donc en V. La figure 4.4 présente ce phénomène.

Figure 4.4 Influence de la croix de positionnement.

Ensuite, pour sécher la colle, il a fallu appliquer une pression sur la jauge. Pour ce faire, une forme en silicone a été réalisée pour chaque roue. Toutefois, lors de la mise en position et lors de l'application de la charge, il est possible que la jauge se soit déplacée par rapport à la croix de centrage. Toute la procédure de collage se trouve à l'annexe I.

4.2.1.3 Détérioration des surfaces de contact

Certaines roues ont aussi subi du frottement pendant les essais, en raison d'un manque de lubrification. Certaines surfaces de contact se sont donc détériorées. Cette détérioration sera à prendre en compte lors de l'analyse des résultats et pourra permettre d'expliquer certains comportements des accélérations.

4.2.1.4 Mesure du couple

Pour la valeur du couple, il a fallu vérifier régulièrement durant les essais la valeur du couple, car celui-ci avait tendance à diminuer au fur et à mesure que les essais sur une même roue avançaient. Parfois il a été nécessaire de remettre la bonne valeur du couple entre deux essais pour une même roue. Ce phénomène a pu insérer une erreur sur la valeur du couple réellement transmis. De plus, la valeur affichée du couple pendant les essais était très bruitée et ne permettait pas de régler le couple lorsque les arbres étaient en rotation.

4.2.1.5 Effet de la vitesse

Les jauges de déformation collées aux pieds des dents ont aussi été sources d'erreur. Pour les valeurs de vitesse préétablies dans le plan d'expérience, c'est à dire 500 et 1000tr/min, les jauges présentent une erreur sur leur déformation. Il existe un temps de retard, ainsi avant que la valeur de la déformation ne revienne à zéro, la dent instrumentée a déjà effectué une rotation complète et la déformation augmente donc de nouveau (Figure 4.5). De plus, il n'est pas possible de voir avec la déformation résiduelle moyenne la vraie valeur de la déformation. Avec le logiciel *WaveBook*, il était impossible de mettre le zéro des jauges au zéro du graphique. Ainsi pour chacune des courbes de déformation, le zéro du graphique ne correspond pas à la position de la déformation nulle.

La roue utilisée pour réaliser les figures 4.5 et 4.6 est la roue 9, c'est-à-dire la roue possédant les caractéristiques suivantes $P_a 6\psi 0^* F \frac{1}{2}N24$. La jauge utilisée est la jauge numéro deux, sa position est représentée aux figures 4.5 et 4.6. Pour remédier au problème des déformations, il a été décidé de rajouter une vitesse de rotation au plan d'expérience. Cette nouvelle vitesse permet de mieux observer le comportement des dents pendant les cycles de chargement. La vitesse retenue est 200 tr/min. À cette vitesse, les jauges ont le temps de revenir à la position de déformation nulle. La vibration des dents, lors du déchargement, peut aussi être observée (voir la figure 4.6). La position des courbes selon l'axe des ordonnées n'est pas significative, car la position de la déformation nulle n'a jamais conduit à une mesure de déformation nulle. Comme les oscillations liées au déchargement de la dent sont présentes, l'amplitude maximale du signal est donc observable pour cette vitesse.

Figure 4.5 Déformation de la jauge 2 de la roue 9, avec une vitesse de 500 tr/min.

Figure 4.6 Déformation de la jauge 2 de la roue 9, avec une vitesse de 200 tr/min.

Sur les figures 4.5 et 4.6, l'amplitude de la déformation n'est pas la même. Une déformation plus importante est même trouvée pour la vitesse de 200 tr/min, alors qu'en théorie, c'est à une vitesse plus importante que la déformation devrait être la plus élevée, ce qui indique que les jauges ne peuvent donner une bonne évaluation de la déformation et par conséquent des contraintes aux vitesses de 500 et 1000 tr/min. De plus, ce phénomène est présent sur toutes les roues testées.

4.2.2 Ce qui a fonctionné

Les valeurs acquises par les accéléromètres sont représentatives du comportement attendu des roues. Ainsi, sur les graphiques présentant les transformées de Fourier du signal des accéléromètres en rotation, la fréquence d'engrènement, et la fréquence de rotation de l'arbre sont présentes. La figure 4.7 présente les résultats obtenus pour la roue 1, à une vitesse de 500 tr/min et un couple transmis de 160 Nm. Dans ce cas, la fréquence de rotation de l'arbre est de 500/60=8.333 Hz, et la fréquence d'engrènement est de 500/60*24=200 Hz. La fréquence d'engrènement est obtenue en multipliant la fréquence de rotation de l'arbre par le nombre de dents de la roue. La fréquence d'engrènement est présente sur le graphique, sa valeur est de 200.8 Hz, ce faible décalage est dû au fait que l'équation utilisée pour la commande de vitesse du moteur est une relation empirique linéaire, donc il se peut qu'il existe un écart entre les valeurs du plan d'expérience et les valeurs expérimentales de la vitesse. La vitesse de rotation était en réalité 502 tr/min ou 8.367 Hz. Ensuite, la fréquence de rotation n'est pas visible directement, mais elle est observable avec les modulations de la fréquence d'engrènement. Pour la fréquence de 200.8 Hz, des modulations apparaissent à 184, 192.3, 209.1 et 217.6 Hz. La movenne de l'écart entre chaque modulation est de 8.325, soit la fréquence de rotation de l'arbre. Il n'y a pas que les modulations de la fréquence d'engrènement qui sont présentes, les harmoniques de cette fréquence le sont aussi. Ainsi sur la figure 4.7, la fréquence de 401.7 Hz, et la fréquence de 602.5 Hz apparaissent, elles correspondent au deuxième et au troisième harmonique de la fréquence d'engrènement. Les fréquences auraient dû être de 401.6 Hz et de 602.4 Hz, soit un écart négligeable comparé à la valeur de la fréquence trouvée sur le graphique. Les différents défauts que l'on retrouve sur les roues sont à l'origine des harmoniques et des modulations de la fréquence d'engrènement présentes sur les diagrammes de Fourier.

Figure 4.7 Roue P, 4w0 F 1/2 N24, 500 tr/min 160Nm.

Sur tous les graphiques présentant les transformées de Fourier du signal des accéléromètres en torsion, il est possible de distinguer les fréquences caractéristiques de l'engrenage étudié.

Les contraintes sont aussi obtenues pour l'essai à 200 tr/min, comme souligné précédemment, les vitesses de 500 et 1000 tr/min ne permettront pas de trouver des valeurs de contraintes acceptables. Le tableau 4.3 compare les contraintes des roues étudiées aux contraintes théoriques de la norme AGMA. Les contraintes expérimentales sont calculées par l'expression suivante :

$$\sigma = E \cdot \varepsilon$$
 (4.2)

La formulation de la norme AGMA calcule les valeurs en tension de la contrainte. L'évaluation des contraintes par la norme AGMA devrait donc être inférieure à la mesure
réalisée du côté compression. La valeur du module de Young pour l'acier 1045 est de 205 GPa. Pour chaque roue, les déformations de toutes les jauges ont été calculées. Ainsi, les graphiques de déformation ont pu être tracés. Grâce à ces graphiques, il est possible de voir si les jauges reviennent à la position de déformation nulle. Si tel est le cas, la déformation maximale de la jauge sera calculée entre la valeur de la position de déformation nulle et la valeur minimale mesurée. Si on ne parvient pas à observer la position de déformation nulle, la déformation maximale en compression sera calculée en mesurant l'écart entre la valeur minimale et la valeur maximale mesurée. La jauge sur laquelle on mesure la déformation n'est pas fixe, et elle est différente d'une roue à l'autre. Seule la valeur maximale trouvée est prise en compte, car c'est elle qui sera responsable de l'endommagement des roues s'il a lieu.

La valeur de la contrainte théorique est obtenue à l'aide de la formule :

$$\sigma_{j} = W^{j}.K_{0}.K_{v}.K_{s}.\frac{P_{d}}{F}.\frac{K_{m}.K_{g}}{J}$$
(4.3)

Les différents facteurs utilisés ont été présentés dans la partie 2.4.1. L'influence du facteur dynamique sera étudiée ici, ce qui permettra d'identifier certaines causes d'erreur sur les résultats obtenus. Plus le grade de qualité est faible, plus les contraintes théoriques sont élevées, mais il est possible que les différents grades de qualité des roues n'influencent pas de la même manière les contraintes réelles.

Pour toutes les roues étudiées, c'est les défauts sur l'angle d'hélice qui ont déterminé le grade de qualité général (voir les tableaux 2.6 et 2.7). Pour les roues où les contraintes théoriques sont supérieures aux valeurs expérimentales, les grades de qualité ainsi que les courbes de déformation sont analysés. Lorsque les contraintes théoriques sont inférieures aux valeurs expérimentales, il faudra regarder les résultats des déformations, mais aussi regarder si les jauges sont bien collées pour éviter les problèmes mentionnés dans la partie 4.3.1. Il est aussi possible que les résonances aient perturbé les valeurs de la contrainte. Les valeurs du grade de qualité, de la contrainte, les fréquences de résonance des différents montages ainsi que les fréquences trouvées par l'analyse de Fourier seront reprises dans la partie 5.2.

Tableau 4.3

Comparaison des contraintes

	À 200 tr/min								
	145 Nm			160 Nm					
Roue	Expérimental (MPa)	Théorie (MPa)	Erreur (%)	Expérimental (MPa)	Théorie (MPa)	Erreur (%)			
Pd4w0N24F05	127.7	102.1	+25	97.6	112.6	-13			
Pd4w0N34F05	37.6	75.2	-50	42.1	83	-49			
Pd4y0N24F3	13.6	18.2	-25	15.1	20.1	-25			
Pd4w0N34F3	12.7	12.9	-2	13	14.2	-8			
Pd4w20N24F05	48.8	86.9	-44	52	95.9	-46			
Pd4w20N34F05	35.5	56	-37	37.2	61.8	-40			
Pd4w20N24F3	182.8	17	+975	28	18.7	+50			
Pd4w20N34F3	10.5	9.4	+12	15.1	10.4	+45			
Pd6w0N24F05	217.5	213.9	+2	277.6	236	+18			
Pd6w0N37F05	61.1	150	-59	56	165.6	-66			
Pd6w0N24F3	27.9	53.7	-48	28.8	59.2	-51			
Pd6w0N37F3	33.7	31.8	+6	36.1	35.1	+3			
Pd6w20N24F05	143.5	145.3	-1	134.7	160.3	-16			
Pd6w20N37F05	45.7	111.9	-59	45.7	123.4	-63			
Pd6y20N24F3	71.9	34.9	+106	87.3	38.5	+127			
Pd6w20N37F3	47.4	20.1	+136	47.2	22.1	+114			

Les lignes grisées du tableau 4.3 correspondent à des erreurs de plus de 50% de la contrainte expérimentale par rapport à la contrainte AGMA, 12 essais sur 32. Pour ces roues, l'écart est vraiment très important, et même en modifiant le grade de qualité pour approcher la valeur expérimentale, l'écart reste très élevé. Dans ces différents cas, on distingue deux types d'erreur. Pour les roues larges, la valeur de la contrainte mesurée est très supérieure à la valeur AGMA. Pour les roues minces, la valeur expérimentale est très inférieure à la valeur AGMA. Sur l'ensemble des résultats obtenus, il n'y a que peu de roues qui présentent une erreur inférieure à 15%, huit essais sur 32.

4.3 Bilan du chapitre

Ce chapitre a permis de voir les différentes étapes de préparations du banc avant les essais. Les étapes de réglage de l'entraxe, et de vérification du matériel (jauges et accéléromètres) sont très importantes pour les essais. Malgré que ces précautions aient été prises durant les essais, de nombreux points ne se sont pas montrés concluants. Les jauges de déformation n'ont pas fonctionné tel que prévu. À l'inverse, les relevés des accélérations se sont révélés de bonnes qualités, la présence des fréquences propres à l'engrenage le confirmant.

Les points non concluants induisent des erreurs sur les résultats obtenus, erreurs qui seront prises en compte dans la partie analyse des résultats, partie dans laquelle les fréquences de résonance des différents montages, ainsi que tous les résultats des roues (déformations et accélérations) seront présenté

CHAPITRE 5

ANALYSE DES RÉSULTATS

Ce chapitre présente les résultats et leur analyse. La présentation des résultats s'effectue en deux temps. Le premier est la présentation des fréquences de résonance de tous les montages. Les fréquences de résonance peuvent avoir un effet significatif sur la réponse en fonctionnement. Le deuxième porte sur la présentation des déformations des jauges ainsi que sur les accélérations de l'arbre instrumenté. Ces résultats seront exposés roue par roue. Les différences entre les contraintes calculées en pied de dents et les contraintes théoriques seront aussi discutées plus en détail dans la présentation des résultats.

La partie «analyse» montrera l'influence de chacun des paramètres de conception sur les valeurs de déformation et d'accélérations à travers certains indicateurs tels que le kurtosis ou la valeur efficace. Ainsi, il sera possible d'identifier quels sont les paramètres les plus influents lors de la conception des engrenages. Enfin, si tous les phénomènes présents sur les résultats ne peuvent s'expliquer par les paramètres du plan d'expérience, les erreurs des roues seront donc aussi prises en considération, ainsi que les fréquences de résonance du montage.

5.1 Fréquences remarquables

Avant d'entreprendre l'analyse proprement dite, il est important de remarquer que pour toutes les roues, les fréquences qui interviennent sont les mêmes. Bien sûr, leurs valeurs sont différentes, mais il n'existe que quelques fréquences observables pour les engrenages.

On retrouve sur les engrenages, cinq types de fréquences :

- la fréquence d'engrènement Fe

la fréquence de rotation de l'arbre 1 Ω,

la fréquence de rotation de l'arbre 2 Ω₂

- la fréquence de coïncidence Fc

- les fréquences de résonance en torsion et en flexion du banc.

Toutes ces fréquences peuvent être retrouvées sur les transformées de Fourier des accélérations. Des harmoniques et des modulations de ces fréquences seront aussi présentes. La fréquence de coïncidence, fréquence à laquelle deux mêmes dents entrent en prise, est égale à $fc = \frac{1}{25} \Omega_{arbreN34}$ pour les couples de roues 24-25dents, ou $fc = \frac{1}{35} \Omega_{arbreN34}$ pour les couples de roues 34-35dents et enfin $fc = \frac{1}{38} \Omega_{arbreN37}$. En effet, pour le couple 24-25dents, il faut que la roue N24 effectue 25 tours et que la roue N25 effectue 24 tours pour que les deux mêmes dents soient de nouveau en prise. Il en va de même pour les autres roues, car il n'y a qu'une seule dent en plus sur la roue par rapport au pignon.

Les fréquences de résonance se manifestent si elles se trouvent au même endroit que des fréquences remarquables des engrenages testés. Si tel est le cas, l'amplitude de cette fréquence sera beaucoup plus importante que si la résonance ne se trouvait pas au même endroit. Les fréquences de résonance ne seront jamais présentes d'elles-mêmes, leur effet est seulement limité à l'amplification des différentes harmoniques et modulation de la fréquence d'engrènement.

La présence de la fréquence de rotation Ω_i , et de ses harmoniques $n\Omega_i$, indique des chocs produits par n dents sur un tour. La présence de Ω_i , seul indique aussi la présence de balourd sur l'arbre i. La fréquence d'engrènement Fe correspond aux chocs produits à l'engrènement des dents. Il y a un choc à chaque fois qu'une paire de dents engrène. La deuxième harmonique de Fe correspond à l'effet du contact. Le frottement sur les profils s'inverse lors de la période d'engrènement. Les défauts des profils engendrent donc un effet à 2* Fe. La troisième harmonique de Fe est engendrée par le fait que le nombre de dents de l'engrenage esclave est trois fois plus grand que le nombre de dents de l'engrenage à tester. Donc sa fréquence d'engrènement est trois plus élevée que celle de l'engrenage à tester. harmonique. Il y a donc chevauchement des deux mesures vibratoires à partir de la troisième harmonique de la fréquence d'engrènement.

La liste établie ci-dessus permettra d'avoir un guide lors de l'analyse des graphiques. Un tableau résumera pour chaque roue les différentes fréquences remarquables, calculées à partir du premier harmonique de la fréquence d'engrènement. D'autres fréquences peuvent aussi faire leur apparition sur les transformées de Fourier, c'est notamment le cas de la fréquence du réseau électrique à 60Hz.

5.2 Fréquences de résonance et résultats des différents montages

Les résultats des différents montages seront présentés. Pour chaque roue, un tableau récapitulatif des fréquences de résonance trouvées, des fréquences d'engrènement, des contraintes trouvées ainsi que du grade de qualité des roues composant l'engrenage seront présentés. Toutefois, les résultats de la plupart des roues sont fournis seulement à l'annexe IV, pour éviter la surcharge du document.

Les différents montages effectués possèdent chacun leurs fréquences de résonance propres. Ces fréquences dépendent de la rigidité d'engrènement, mais aussi de la taille et du poids des roues, ainsi toutes les roues ont été analysées avec l'appareil LMS. Cet appareil permet à l'aide d'un marteau et d'accéléromètres et par l'entremise d'un logiciel « Modal Impact » de calculer les différentes fréquences de résonance des montages. En traçant la fonction de transfert entre le signal du marteau et la réponse des accéléromètres, il est possible de trouver ces fréquences. La fonction de transfert est présentée pour tous les montages dans un diagramme composé de deux parties, la première comporte la partie Imaginaire de la fonction de transfert en fonction de la fréquence, et la deuxième comporte la partie réelle de la fonction de transfert en fonction de la fréquence. Sur ces graphiques, les fréquences de résonance sont identifiées lorsque la partie imaginaire du signal produit un pic et lorsque la partie réelle change de signe(Thomas 2005). La première étape consiste à effectuer les tests avec un accéléromètre placé aux 4 différentes positions de la figure 5.1 pour voir où sont les fréquences de résonance en flexion. En même temps, les deux accéléromètres placés pour la torsion permettent de trouver les valeurs de la fréquence de résonance en torsion, mais aussi de vérifier les fréquences de résonance en flexion. Lors de la torsion, les deux accéléromètres montés en tête bêche permettent de distinguer la torsion de la flexion. Pour la flexion, les valeurs recueillies par les accéléromètres auront des signes différents sur la partie imaginaire de la fonction de transfert, alors que pour la torsion le signe sera le même pour les deux accéléromètres.

A l'aide d'un exemple, il est montré que la seule mesure des résonances par les accéléromètres en torsion est nécessaire pour trouver les fréquences de résonance en torsion et en flexion. La figure 5.2 présente les résultats d'un accéléromètre vertical (position 1 à 4) pour la roue $P_d 6\psi 0^{\circ} F \not/_2 N37$ sur la plage 0-500 Hz. À l'intérieur de cette plage de fréquence, deux fréquences apparaissent, une à 188.07 et l'autre à 349.44 Hz. La figure 5.3, quand à elle, montre les résultats obtenus pour les accéléromètres 1 et 2 positionné sur l'anneau de conduction. On retrouve les fréquences de 188.07 et de 348.57 et une nouvelle fréquence à 280.53 Hz en torsion. Comme prévu pour les fréquences de résonance en flexion, les valeurs de l'amplitude de la partie imaginaire sur les deux accéléromètres en torsion est de signe opposé, alors que pour les fréquences de résonance en torsion, la partie imaginaire est de même signe pour les deux accéléromètres.

Figure 5.1 Mesure de l'accélération verticale.

Figure 5.2 Roue P4 6y0° F 1/2 N37, accélération verticale.

Figure 5.3 Roue Pd 6w0' F 1/2 N37, accélération en torsion, les deux accéléromètres.

Pour la suite des essais, seuls les résultats des accélérations en torsion seront analysés, car les fréquences de résonance en flexion et en torsion sont trouvées avec cette seule information. Les deux couples choisis pour l'analyse des fréquences de résonance des différents montages, sont respectivement de 130 Nm et de 160 Nm. Le couple maximal du plan d'expérience et un couple inférieur au couple minimal du plan d'expérience ont été choisis dans le but d'encadrer le couple de 145 Nm. De plus en prenant une échelle plus large, l'effet du couple est mieux mis en valeur à travers ces différents essais. Ensuite le nombre de dents en prise a été modifié, dans un premier temps, un test a été effectué avec la position qui offrait un nombre minimal de paires de dents en prise (un pour un rapport de conduite compris entre un et deux, deux pour un rapport de conduite compris entre deux et trois, etc.), un autre test a été effectué avec la position qui offrait le nombre maximal de paires de dents en prise (deux pour un rapport de conduite compris entre un et deux, trois pour un rapport de conduite compris entre deux et trois, etc.). Soit en tout quatre tests par engrenage.

La plage de fréquence analysée est de 0-2200 Hz. L'analyse des transformées de Fourier s'arrêtera à 3.5 fois la fréquence d'engrénement des roues. Par exemple, à 1000 tr/min, pour les roues possédant 24 dents, l'analyse se terminera à 1400 Hz alors que pour les roues de 37 dents, l'analyse se terminera à 2158 Hz. Sur les figures 5.4 à 5.15, les courbes rouges représentent les valeurs obtenues de l'accéléromètre 1 et les courbes vertes représentent les valeurs obtenues de l'accéléromètre 2. En se limitant à la plage 0 à 3,5 fois la fréquence d'engrènement, il est possible d'obtenir les trois premiers harmoniques de la fréquence de d'engrènement pour toutes les roues étudiées. Le tableau 5.1 présente les plages de fréquences utilisées en fonction du nombre de dents et de la vitesse de rotation de l'arbre.

Tableau 5.1

Nombre de dents	11.1.1	Vitesse de rota		
	200	500	1000	Fréquence d'engrènement
24	0-280 Hz	0-700 Hz	0-1400 Hz	80-200-400 Hz
34	0-397 Hz	0-992 Hz	0-1983 Hz	113-283-567 Hz
37	0-432 Hz	0-1079 Hz	0-2158 Hz	123-308-617 Hz

Plage de fréquence pour l'analyse des diagrammes de Fourier

5.2.1 Roue P, 4w0 F 1/2 N24, roue 1

Pour cette roue, le module *m* est de 1.6, donc il y aura au maximum sur cette roue deux paires de dents en prise en même temps et au minimum une seule paire. Pour cette roue, bien que l'analyse ait été faite sur la plage de fréquence 0-2200 Hz, seuls les résultats se situant sur la plage 0-1400 Hz seront maintenus. Cette plage correspond à la plage 0 à 3,5 fois la fréquence d'engrènement. Les trois premières figures présentent les résultats obtenus pour une seule paire de dents en pris et un couple de 130 Nm. Bien qu'il s'agisse du même essai, les résultats sont présentés sur trois graphiques distincts afin d'augmenter la visibilité.

Sur la figure 5.4, (plage 0-500 Hz), de nombreuses fréquences de résonance apparaissent. Trois fréquences de flexion (185, 201, et 344 Hz), et quatre fréquences de torsion (56, 90, 163, et 173 Hz). À la figure 5.5, (plage 500-1000 Hz), une seule fréquence en flexion apparaît (768 Hz), celle-ci n'est clairement visible que sur la courbe verte présentant les résultats de l'accéléromètre 2. Sur la figure 5.6, 1000-2200 Hz, une fréquence en flexion (1318 Hz) et trois fréquences en torsion (1941, 2070, et 2166 Hz) sont présentes, mais l'analyse pour cette roue s'arrête à 1400 Hz, 3.5 fois la fréquence d'engrènement.

Figure 5.4 Roue 1, 1 dent en prise, 130Nm, 0-500Hz.

Figure 5.5 Roue 1, 1 dent en prise, 130Nm, 500-1000Hz.

Figure 5.6 Roue 1, 1 dent en prise, 130Nm, 1000-2200Hz.

Dans le deuxième test effectué, la position des roues n'a pas été changée, mais le couple a été augmenté à 160 Nm. L'influence du couple est ainsi visible sur les résultats. Sur la figure 5.7, (plage 0-500 Hz), on remarque que les fréquences de résonance en flexion sont restées les mêmes, 344 Hz, 201 Hz et 183 Hz. Par contre, les deux premières résonances en torsion se sont décalées vers la droite, on les retrouve maintenant à 70 et 94 Hz, comparativement à 56 et 90 Hz. Les deux autres fréquences n'ont pas bougé, mais les graphiques sont un peu modifiés, car les fréquences de résonance ont une amplitude un peu plus grande que pour le couple de 130 Nm. Sur la figure 5.8, (plage 500-1000 Hz), on observe la fréquence de 781 Hz, et sur la figure 5.9, (1000-2200 Hz), les fréquences de 1350, 1941, 2070 et 2166 Hz.

Figure 5.7 Roue 1, 1 dent en prise, 160Nm, 0-500Hz.

Figure 5.8 Roue 1, 1 dent en prise, 160Nm, 500-1000Hz.

Figure 5.9 Roue 1, 1 dent en prise, 160Nm, 1000-2200Hz.

Pour le troisième essai, la position des roues a été modifiée pour obtenir deux paires de dents en prise. Les couples précédents ont été appliqués tour à tour. Dans un premier temps, les roues subissent un couple de 130Nm.

En comparant la figure 5.10 à la figure 5.4, on remarque que les fréquences en torsion ont complètement changé. Plus aucune des fréquences précédemment trouvées pour la torsion n'est présente. Les fréquences de flexion sont restées les mêmes. Une fréquence de flexion s'est même ajoutée à 170Hz. Pour la figure 5.11 et la figure 5.12, aucune différence n'apparaît comparativement aux figures 5.5 et 5.6. Les fréquences de résonance restent les mêmes.

Figure 5.10 Roue 1, 2 dents en prise, 130Nm, 0-500Hz.

Figure 5.11 Roue 1, 2 dents en prise, 130Nm, 500-1000Hz.

Figure 5.12 Roue 1, 2 dents en prise, 130Nm, 1000-2200Hz.

Pour le dernier essai, la position des roues reste inchangée par rapport à l'essai précédent, mais le couple est augmenté à 160 Nm. Comme lorsqu'il n'y avait qu'une seule paire de dents en prise, l'augmentation du couple décale les premières fréquences de résonance en torsion vers la droite. Ainsi, la fréquence de 285 Hz pour 130 Nm est passée à 294 Hz pour 160 Nm. La fréquence de flexion à 768 Hz a aussi augmenté à la valeur 782 Hz, comme pour le cas une seule paire de dents en prise. Les autres fréquences restent inchangées.

Figure 5.13 Roue 1, 2 dents en contact, 160Nm, 0-500Hz.

Figure 5.14 Roue 1, 2 dents en prise, 160Nm, 500-1000Hz.

Figure 5.15 Roue 1, 2 dents en prise, 160Nm, 1000-2200Hz.

Le tableau 5.2 présente les différentes valeurs obtenues pour les fréquences de résonance sur l'intervalle d'étude du montage 0-3.5*Fe, soit 0-1400 Hz. L'analyse de ce tableau permet de constater que le couple possède un effet restreint, au maximum une dizaine de Hertz, sur les valeurs de résonance trouvées. Ceci étant la première roue analysée, il conviendra de vérifier cette hypothèse sur les autres montages testés.

Tableau 5.2

	Une paire de den	its en prise	Deux paires de d	lents en prise
	En torsion (Hz)	En flexion (Hz)	En torsion (Hz)	En flexion (Hz)
	56			170
130Nm	90	185		185
	162	201		201
	173	344		344
		768	285	768
		1318		1318
	70			170
-	94	183		185
Nm	162	201		201
60	173	344		344
-		782	294	782
		1350		1344

Résultats des fréquences de résonance pour la roue 1

Pour les fréquences en flexion, l'augmentation du nombre de paires de dents en prise ne change pas les valeurs trouvées. Les fréquences de flexion dépendent en grande partie du montage roue-arbre et très peu du contact entre les dents. Par contre, l'augmentation du nombre de dents en prise possède une influence sur les valeurs de résonance en torsion. Celles-ci augmentent avec le nombre de dents en prise. Ainsi, dans le cas de la roue 1, quatre fréquences en torsion inférieures à 170 Hz ont été trouvées pour une seule paire de dents en prise, et seulement une fréquence de torsion à 285 Hz a été trouvée pour le cas où deux paires de dents étaient en prise. Avec deux paires de dents en prise, la rigidité du montage augmente sensiblement sans pour autant changer la géométrie, d'où l'explication de l'augmentation de la fréquence de résonance.

Sur une révolution complète du système, le nombre de paires de dents en prise varie. Chacune des fréquences de résonance agit donc seulement sur une partie de la révolution, la durée de l'effet d'une résonance dépend du rapport de conduite. Il est donc nécessaire de calculer la fréquence de résonance moyenne en torsion, à l'aide du rapport de conduite (m). Le rapport de conduite représente le nombre moyen de paires de dents en contact sur un tour complet de la roue.

$$R = R_i(i+1-m) + R_{i+1}(m-i)$$
(5.1)

Où R_i représente la fréquence de résonance à i paire de dents en prise, et où R_{i+1} représente la fréquence de résonance à i+1 paires de dents en prise. Dans cette étude, i est compris entre un et trois.

Le rapport de conduite expérimental pour la roue 1 est de 1.59. Le tableau 5.3 présente les résultats obtenus pour les fréquences moyennes pour les cas 130 et 160 Nm. Pour calculer le cas 145 Nm, le passage des fréquences de résonance à 130 Nm à celle à 160 Nm est supposé linéaire, puisque la rigidité de l'engrènement qui détermine ces fréquences est principalement influencée par la flexion, la rigidité de contact étant beaucoup plus élevée.

Tableau 5.3

Fréquence de résonance moyenne de la roue 1

Fréquence moye	nne de résonance	en torsion (Hz)
130Nm	160Nm	145Nm
191.11	202.16	202.16
205.05	212	208.53
234.57	239.88	237.22
239.08	244.39	241.73

Ces fréquences seront insérées sur les spectres de Fourier pour voir si elles possèdent une influence sur les vibrations des engrenages.

Après la présentation des fréquences de résonance de la roue, les accélérations en torsion pour les différentes vitesses et couple ont été relevées. Les transformées de Fourier de toutes ces accélérations sont présentées dans le texte qui suit. Ces graphiques permettent de voir quelles sont les fréquences qui participent à l'amplitude vibratoire des montages. La taille des graphiques a été réduite pour limiter l'encombrement. Mais tout d'abord, les grades de qualité de la roue I et de sa roue associée sont présentés.

Le tableau 5.4 rappelle les mesures obtenues (présentée dans la partie 2.5.3). Le grade de qualité de la paire de roues est de 4, ce qui est assez faible. C'est le faux rond qui détermine le grade pour ce montage.

Tableau 5.4

Roue :	Grade de qualité						
	Qv VΦ	Qv VyT	Qv +/-Vpa	Qv Vrt	Qv Roue	Qv paire	
P,440° F 1/2 N24	8	8	9	8	8		
$P_{a} 4\psi 0^{\circ} F \frac{1}{2} N25$	6	7	5	4	4		

Grade de la qualité du montage 1 relié à la roue 1

Les figures 5.16 et 5.17 présentent les mesures réalisées par les accéléromètres montés en torsion pour les trois vitesses et les deux valeurs du couple. Les lignes verticales noires représentent les valeurs des fréquences de résonance moyennes. On remarque sur ces figures que la vitesse de rotation augmente l'amplitude des signaux de manière générale. La première harmonique de la fréquence d'engrènement diminue légèrement entre 500 et 1000 tr/min, mais la deuxième et la troisième harmonique augmente fortement, l'amplitude est multipliée plus de quatre fois pour ces deux dernières.

Figure 5.16 Spectre de Fourier de la roue 1 à 200tr/min et 145Nm.

Figure 5.17 Spectres de Fourier pour le montage de la roue 1.

Le tableau 5.5 résume les fréquences trouvées sur la figure 5.17. Dans la première colonne, on retrouve la vitesse théorique de rotation. La deuxième colonne indique le couple avec la fréquence de rotation expérimentale de l'arbre 1 (Ω 1) et de l'arbre 2 (Ω 2). La troisième indique les trois premiers harmoniques de la fréquence d'engrènement. La quatrième colonne montre les modulations de l'harmonique par les vitesses de rotation des arbres, la première ligne correspond aux modulations par la vitesse de l'arbre 1, et la deuxième ligne aux modulations par la fréquence de l'arbre 2. Le nombre entre parenthèses, qui est précédé des signes * ou *- représente le nombre de fois que l'on a additionné ou retranché la fréquence de rotation de l'arbre à l'harmonique de la fréquence d'engrènement pour obtenir la fréquence modulée. La dernière colonne présente les autres fréquences obtenus expérimentalement. Dans cette dernière colonne, on peut donc trouver la fréquence du réseau électrique, des fréquences ne possédant pas d'origines identifiables, et des fréquences proches des harmoniques de la fréquence de rotation.

Pour tous les essais, les trois premières harmoniques de la fréquence d'engrènement sont nettement visibles. Ensuite, pour certains essais, les fréquences d'engrènement sont modulées. À 200 tr/min, la fréquence de la modulation est de 3.427 Hz, soit 205.63 tr/min vitesse de rotation du montage. À 500 tr/min, la modulation est de 8.35 Hz, soit 501 tr/min, vitesse de rotation du montage. Enfin à 1000 Hz, la fréquence de la modulation est de 16.45 Hz soit 987 tr/min vitesse de rotation du montage de rotation du montage. La modulation des fréquences d'engrénement par la vitesse de rotation de l'arbre 2 ou de l'arbre 1 indique l'effet du faux rond présent sur la roue de cet arbre.

Pour la vitesse de 200 tr/min, on voit apparaître plusieurs fréquences, d'amplitude faible à 9.462, 19.08, 22.59 et 28.54 Hz. On ne retrouve pas la fréquence de rotation en divisant ces fréquences par trois, mais une fréquence légèrement inférieure. Il aurait fallu trouver des fréquences de 9.87 ou de 10.281 Hz. Pour la vitesse de 500 et 1000 tr/min, on voit apparaître une fréquence possédant une amplitude assez élevée aux alentours de 650 Hz. Cette fréquence n'a pourtant pas été identifiée lors de la prise de mesure des fréquences de résonance du banc, son origine demeure donc inconnue. Pour la vitesse de 1000 tr/min, on voit apparaître une fréquence de rotation, or cette fréquence est une fréquence de résonance en flexion. Il est donc possible d'avoir excité cette fréquence avec une modulation ou une harmonique de la fréquence d'engrènement.

Pour la vitesse de 500 tr/min, les effets des deux résonances vers 200 Hz sont ressentis, ainsi on remarque que l'amplitude de Fe est beaucoup plus importante par rapport à ces harmoniques, alors que pour les vitesses de 200 et 1000 tr/min, les harmoniques de Fe ont une plus grande amplitude.

Tableau 5.5

Résumé des fréquences obtenues par analyse fréquentielle pour la roue 1

Vitesse de rotation Vitesse & Couple Fréquence d'engrènement et harmonique (Hz) Modulation de Fe (Hz) Autres fréque (Hz) Image: Vitesse de rotation \hat{B} (Uz) \hat{B} (Hz) </th <th></th>		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ces	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	9.462;	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		
NH 83.32 Aucune modulation 9.462; 166.8 170.3(*1) 9.462; 18.92 ; 166.8 159.9(*-2) 166.8 253.8(*1) 56.92 ; 250.1 243.4(*-2) ; 246.8(*-1) 59.97 No.5 192.3(*-1); 208.8(*1) 59.97	_	
R 166.8 170.3(*1) 9.402, 18.92; 18.92; 18.92; 56.92; 56.92; 59.97 10 250.1 243.4(*-2); 246.8(*-1) 59.97 59.97 11 200.5 192.3(*-1); 208.8(*1) 59.97		
100,0 (25) 56.92 ; 253.8(*1) 59.97 243.4(*-2) ; 246.8(*-1) 59.97 2 200.5 192.3(*-1); 208.8(*1)		
T 250.1 250.1(1) 59.97 T T 243.4(*-2) ; 246.8(*-1) 59.97 T T 200.5 192.3(*-1); 208.8(*1)		
원 <u>8</u> 200.5 192.3(*-1); 208.8(*1)		
5 4 340.5 (85)	_	
₹ E 240.5 (*5) 22 59 • 44 87 • 7	0.13	
2 2 401 Aucune modulation 67.45 ; 90.0	4	
· 들 변 성 · · · · · · · · · · · · · · · · · ·		
G G 673.6(*9)		
00 곳 곳 곳 200.8 175.8(*-3); 184(*-2); 192.3(*-1); 209.1(*1); 217.6(*2)		
8 8 Z Pas de modulation 673.9		
∞ m ≤ 401.7 Aucune modulation		
G G 602.5 593.9(*-1) 610.7(*1)		
378.5(*-1): 411.4(*1)	_	
Aucune modulation par Fr2		
9 9 E 756 6(*-2): 806 4(*1) (57.1-1052-1	150.	
9 5 Z 789.6 Aucune modulation par Fr2 1388	220,	
c 1168(*-1)		
E C 1185 1200(*1); 1311(*8); 1327(*9); 1343(*10); 1358(*11)		
8 397.1 Aucune modulation		
² ² ² ² ³ ⁴ ⁵ ⁵ ⁵ ⁵ ⁷		
Aucune modulation par Fr2 627.5;	627.5;	
1175(*-1); 1389(*12)		
Ci + 1191 1033(*-10);1160(*-2); 1350(*10)		

Les fréquences comme celle de 673.9Hz dans le cas 500tr/min, et 160Nm peuvent être reliées aux vibrations de l'arbre en flexion. En effet, lorsque le banc est en fonctionnement, les modes de vibration de l'arbre ne sont pas connus et peuvent donc engendrer des pics d'amplitude à des fréquences qui n'ont aucun rapport avec le comportement dynamique des engrenages. Dans le tableau 5.5, on remarque aussi que pour certains cas les harmoniques de la fréquence d'engrènement sont modulés par plusieurs fois la fréquence de rotation de l'arbre 1 ou de l'arbre 2. La valeur par laquelle on multiplie la fréquence de rotation des arbres est équivalente aux nombres de dents abîmées sur la roue. Par exemple, dans le cas 1000tr/min, et 160Nm, la troisième harmonique de la fréquence d'engrènement est modulée par douze fois la fréquence de rotation de l'arbre 1 et par dix fois la fréquence de l'arbre 2. Cela signifie que le nombre de dents ayant un défaut sur la roue montée sur l'arbre 1 est au nombre de douze, et dix dents possèdent un défaut sur la roue montée sur l'arbre 2. Or, l'évaluation de la qualité des roues a été réalisée uniquement à partir de mesures sur trois dents

Évaluation des contraintes :

Concernant les valeurs de la déformation, des graphiques en trois dimensions ont été réalisés. À travers ces graphiques, les valeurs maximales et minimales des déformations peuvent être observées. De plus, si la position zéro déformation des jauges est atteinte, leur valeur sera elle aussi mesurable. Dans le cas de la roue 1, on ne distingue sur aucune des deux figures, la position zéro déformation des jauges, donc la valeur utilisée pour le calcul de la contrainte sera la différence entre la valeur maximale et la valeur minimale de la déformation. Pour le cas où le couple est de 145Nm, l'amplitude maximale de la déformation est de $622.82 \,\mu m/m$ (la valeur minimale relevée est de $-751.3 \,\mu m/m$, et la valeur maximale trouvée est de $-128.5 \,\mu m/m$), ce qui donne avec le module de Young de l'acier utilisé une valeur de contrainte de 127,7MPa.

Figure 5.18 Roue 1, déformation des jauges, pour le cas 200tr/min, 145Nm.

Pour le cas où le couple est de 160 Nm, l'amplitude maximale de la déformation est de $476.1 \,\mu m/m$ (la valeur minimale relevée est de $-579.5 \,\mu m/m$, et la valeur maximale trouvée est de $-103.5 \,\mu m/m$), soit une contrainte de 97.6 MPa. La contrainte que l'on trouve pour le couple de 160Nm est inférieure à la contrainte trouvée pour le couple de 145 Nm, cette baisse peut provenir de la détérioration des jauges, décollement ou déformation plastique des jauges. Il n'est pas improbable que la jauge se soit décollée. Comme le signal obtenu est de même nature que pour le cas précédent, il n'est pas possible de savoir s'il y a eu détérioration de la jauge avant les essais ou pendant. De plus, l'ordre des expériences est 145 Nm à 200 tr/min, puis 145 Nm à 500 tr/min, puis 1000 tr/min à 145 Nm, puis 200 tr/min à 160 Nm, 500 tr/min à 160 Nm et enfin 1000 tr/min à 160 Nm. Il est ainsi possible que lors du test à 1000 tr/min et 145 Nm, les jauges se soient détériorées. De plus avec la hausse de la vitesse, les vibrations augmentent et peuvent avoir abîmé les jauges.

Figure 5.19 Roue 1, déformation des jauges pour le cas 200tr/min et 160Nm.

Le tableau 5.6 compare les résultats obtenus pour les contraintes expérimentales à 200 tr/min avec les contraintes théoriques découlant de la norme AGMA. On remarque que pour le couple de 145 Nm, la contrainte trouvée est supérieure à la contrainte théorique, ce qui correspond bien à ce qui était prévu puisqu'il s'agit de contraintes de compression et de tension respectivement. Il demeure possible que la croix centrage (partie 4.3.1.2) ait eu une influence. Enfin pour le couple de 160 Nm, la contrainte expérimentale est inférieure à la contrainte théorique. Mais l'écart entre les valeurs théoriques et expérimentales reste tout de même réaliste, +25% pour le couple de 145 Nm, et -13% pour le couple de 160 Nm. Il faut noter ici que les contraintes sont comparées en valeur absolue.

Tableau 5.6

	Vitesse de rota	tion : 200tr/min		
	145Nm	160Nm		
Contrainte théorique (MPa)	Contrainte expérimentale (MPa)	Contrainte théorique (MPa)	Contrainte expérimentale (MPa)	
102.1	127.7	112.6	97.6	

Résumé des contraintes de la roue 1

Pour la roue 1, l'analyse des vibrations a permis de retrouver la valeur de la fréquence d'engrènement. Des harmoniques et des modulations de cette fréquence sont aussi présents, cela est synonyme que des dents sur l'une ou l'autre des deux roues possèdent un défaut et viennent donc perturber les vibrations du montage. Ce défaut ici correspond surement au fait que le grade de qualité de la roue n'est pas très bon. L'effet du faux rond a été constaté sur les accélérations. Le faux rond modifie l'entraxe du système et par conséquent peut venir perturber les valeurs de déformations. Si l'on regarde sur toute la période de temps allouée à la prise de mesure, on remarque des modulations de la déformation, prouvant ainsi la présence du faux rond, un exemple sera montré dans la partie 5.2.3. Sur cette roue, les résonances ont augmenté l'amplitude de la première harmonique de Fe dans le cas 500tr/min. Cette hausse modifie donc le signal, en affectant la puissance du signal. Les résonances, dans le cas de cette roue ont modifié l'amplitude du premier harmonique de la fréquence d'engrènement pour le cas 500tr/min. À cette vitesse, la fréquence de résonance moyenne en torsion coïncidait avec le deuxième harmonique de Fe. Dans les autres essais, les résonances n'ont pas eu d'influences sur les résultats. Comme cette fréquence a été amplifiée, la puissance des accélérations en torsion est augmentée.

5.2.2 Roue P, 4w0 F 1/2 N34, roue 2

Suivant la même approche d'analyse que la roue 1, le tableau 5.7 est construit à partir des relevés des fréquences de résonance. Ce tableau présente les mêmes similitudes que le

tableau 5.2, les fréquences de flexion ne sont modifiées ni par le couple, ni par le nombre de dents en prise. Les premières fréquences de torsion disparaissent en augmentant le nombre de dents en prise, alors que les deux fréquences à 1357 et 1910 Hz se sont décalées sur la droite à 1373 Hz et 1947 Hz, lors du passage une paire de dents en prise à deux paires de dents en prise.

Tableau 5.7

	Une paire de den	t en prise	Deux paires de d	lents en prise
	En torsion (Hz)	En flexion (Hz)	En torsion (Hz)	En flexion (Hz)
	56	162		162
Zm	110	181		181
	118	194		194
	1357	334	1373	334
30	1910	500	1947	500
1		638		621
		762		762
	1	1179		1179
	108	162		162
	120	184		181
	1361	193	1374	194
Zu	1916	332	1951	334
60		503		500
-		654		642
		790		764
		1179	2	1179

Résultats des fréquences de résonance pour la roue 2

Il faut maintenant calculer les fréquences de résonance moyenne. Le rapport de conduite expérimental pour la roue 2 est de 1.67. On peut maintenant calculer les fréquences de résonance moyennes pour les cas 130 et 160Nm. Pour le cas 145Nm, le passage des fréquences à 130Nm à celle à 160Nm est supposé linéaire. Le tableau 5.8 présente les fréquences de résonance moyennes en torsion sur un tour pour la roue 2. Il y a pour cette roue, deux fréquences de résonance en torsion pour le cas deux paires de dents en prise. Donc, pour chaque fréquence de résonance pour une paire de dents en prise, il faudra

calculer deux fréquences de résonance moyenne en torsion, une modulée par la première fréquence de résonance trouvée pour le cas deux paires de dents en prise, et la deuxième modulée par la deuxième fréquence de résonance trouvée pour le cas deux paires de dents en prise. C'est pour cela qu'il y a deux valeurs par case dans le tableau 5.8.

Ces fréquences seront ajoutées sur les spectres fréquentiels pour identifier si elles possèdent une influence sur les vibrations des engrenages

Tableau 5.8

Fréquence moyenne de résonance en torsion (Hz)						
130Nm	160Nm	145Nm				
938.39 / 1322.97						
956.21 / 1340.79	956.22 / 1342.81	956.21/1341.80				
958.85 / 1343.43	960.18 / 1346.77	959.51/1345.1				
1367.72 / 1752.3	1369.71 / 1756.3	1368.71 / 1754.3				
1550.21/1934.79	1552.86 / 1939.45	1551.53 / 1937.12				

Fréquence de résonance moyenne de la roue 2

En considérant l'article de Blankenship (Blankenship and Kahraman 1996) et les résultats trouvés pour ces deux premières roues, on remarque que la variation du couple change la valeur des fréquences de résonance du montage en torsion, en les augmentant légèrement. Les fréquences de résonance en flexion restent les mêmes, peu importe le couple (130Nm et 160Nm). Les auteurs Blankenship et Kahraman (Kahraman and Blankenship 1996) montrent un tableau des fréquences de résonance libre de l'engrenage qu'ils ont testé, les mêmes conclusions peuvent être tirées. La diminution du couple modifie la valeur de la fréquence de résonance naturelle du montage en torsion.

Le tableau 5.9 présente les valeurs du grade de qualité pour le montage de la roue 2. Par rapport à la roue 1, on remarque que la roue menée possède un grade de qualité moyen, par contre ici c'est la roue menante (celle qui est instrumentée) qui possède un grade de qualité faible fixé par le faux rond et l'angle d'hélice. Toutefois, l'erreur sur l'angle d'hélice peut se trouver sur plusieurs dents. Il faudra donc s'attendre à voir apparaître les harmoniques de la vitesse de rotation de la roue menante ($\Omega 1$). Le faux rond pour sa part fera apparaître la fréquence de rotation de cette roue.

Tableau 5.9

Grad	le d	e la	a qual	ité du	montage	l re	lié à	la	roue	2
------	------	------	--------	--------	---------	------	-------	----	------	---

Roue :	Grade de qualité						
	Qv VΦ	Qv VyT	Qv +/-Vpa	Qv Vrt	Qv Roue	Qv paire	
P. 4w0 F 1/2 N34	6	2	8	3	2		
P_44\u007700° F 1/2 N 35	7	8	9	10	7	2	

Les figures 5.20 et 5.21 présentent les transformées de Fourier des accélérations en torsion pour toutes les vitesses et couples du plan d'expérience. Après analyse du graphique, les tableaux 5.10 et 5.11 sont construits avec les fréquences d'engrènement et ses harmoniques, leurs modulations, ainsi que les autres fréquences remarquables.

Figure 5.20 Transformée de Fourier de la roue 2 à 500tr/min et 160Nm.

Figure 5.21 Transformées de Fourier pour le montage de la roue 2.

Tableau 5.10

Résumé des fréquences obtenues par Fourier pour la roue 2

Ro	ue 3	Fré	quences obtenues sur les diagrammes de Fo	ourier	
Vitesse de rotation	Vitesse & Couple	Fréquence d'engrènemen t et harmonique (Hz)	Modulation de Fe (Hz)	Autres fréquences (Hz)	
9Hz Hz		117.4	Pas de modulation par Fr1 57.07(*-18)	-	
	3.35 SNr	234.7	Aucune modulation	18.92	
min	21=3. Ω2=3.	352.2	Aucune modulation	7	
200 tr/ Ω1=3.5088Hz Ω2=3.408Hz 160Nm	=3.5088Hz 2=3.408Hz 160Nm	200 tr 8Hz 8Hz 8Hz	119.3	115.8(*-1); 122.8(*1) Pas de modulation par Fr2	
		238.7	182.5(*-16) Pas de modulation par Fr2	57.23; 59.97	
	358	Aucune modulation			
2Hz Hz		282.9	291.2(*1); 416(*16) 275(*-1);	44.87; 60.13;	
	8.3206 8.0829 45Nm	566.2	432.8(*-16); 699.5(*16); 707.8(*16) 452.9(*-14);	66.84; 67.45; 90.04; 421.1;	
/min 01= 02=	849,4	716(*-16);873.5(*3) Pas de modulation par Fr2	679.4		
500 tr 8.3294Hz 8.0914Hz 60Nm	283.2	Pas de modulation par Fr1 Pas de modulation par Fr2	-		
	566.8	433.4(*-16); Pas de modulation par Fr2	44.56; 100.2; 425.2		
	Ω1=8 Ω2=8 16	850	708.4(*-17) 680(*-21);	-	

Tableau 5.11

Roue 3		Fréquences obtenues sur les diagrammes de Fourier		
Vitesse de rotation	Vitesse & Couple	Fréquence d'engrènement et harmonique (Hz)	Modulation de Fe (Hz)	Autres fréquences (Hz)
1000 tr/min	Ω1=16.5Hz Ω2=16.021Hz 145Nm	561	Aucune modulation	430.7; 857; 899; 1385; 1418; 1961
		1121	Pas de modulation par Fr1 1346(*14);	
		1681	1402(*-17)	
			Pas de modulation par Fr2	
	Ω1=16.5706Hz Ω2=16.0971Hz 160Nm	563.4	265.2(*-18); 281.7(*-17); 298.2(*-16); 315(*-15); 530.5(*-2); 546.9(*-1); 580.2(*1)	Présence d'harmonique de Ω ₁ (16.48;32.96;4 9.75; 666.23;83.02;99.5; 116;132.5;149.2; 165.7) 182.2; 862.2; 1393
			Pas de modulation par Fr2	
		1127	1094(*-2); 1144(*1); 1409(*17) 1111(*-1);1353(*14)	
		1691	1707(*1); 1723(*2)	
			1675(*-1);	

Résumé des fréquences obtenues pour la roue 2 (Suite)

Pour la vitesse de 200 tr/min, on remarque que les trois premières harmoniques de la fréquence d'engrènement sont présents. Les amplitudes sont assez faibles, et de ce fait le bruit est important et on ne distingue que peu de modulations de la fréquence d'engrènement. Seules les fréquences de18.92 et 57.23 Hz n'ont pas été identifiées.

Pour la vitesse de 500 tr/min, les trois premières harmoniques de la fréquence d'engrènement sont toujours présentes. Les modulations des harmoniques de Fe sont plus présentes que pour le cas 200 tr/min. Les modulations de Fe par la fréquence de rotation sont assez élevées, jusqu'à 21 fois. Ce qui signifie qu'il y a 21 dents sur la roue menante qui introduisent un choc, soit 21 chocs par tour de roue. Plusieurs fréquences restent sans origine discernable, c'est le cas pour les fréquences de 44.87, 67.45, 90.04, 100.2, 421.1, 425.2, et 679.4 Hz.
Pour la vitesse de 1000 tr/min, les trois premières harmoniques de la fréquence d'engrènement sont toujours présentes. Les modulations des harmoniques de Fe sont présentes en même proportion que pour la vitesse de 500 tr/min. Des modulations jusqu'à 18 fois la fréquence de rotation de l'arbre 1, soit 18 dents induisant un choc pour chaque tour de la roue I. On voit apparaître beaucoup de fréquences étant quasiment égales à des harmoniques de la fréquence de rotation, dans la colonne autres fréquences. Mais il y a encore quelques fréquences dont l'origine est inconnue. C'est le cas pour les fréquences de 862.2 et 1393Hz.

lci, les résonances moyennes en torsion n'ont eu que peu d'effets sur les différentes fréquences remarquables de l'engrenage testé. En effet, la première fréquence de résonance se situe à 950 Hz, elle est donc seulement visible pour la vitesse de 1000 tr/min. La seule fréquence qui a été amplifiée est la modulation par quatorze fois $\Omega 2$ de la deuxième harmonique de la fréquence d'engrènement. L'effet du faux rond est identifiable pour la vitesse de 1000 tr/min et pour le couple de 160 Nm, où l'on voit apparaître de nombreux harmoniques de $\Omega 1$. Son influence est aussi visible pour les cas 200 tr/min et 160 Nm, et le cas 500 tr/min et 145 Nm où le premier harmonique de Fe est modulé par +1 et -1 fois $\Omega 1$. Ces différents ajouts de fréquences augmentent la valeur des vibrations de la roue.

Évaluation des contraintes :

En parcourant le tableau 5.12, on remarque que les contraintes expérimentales sont très inférieures aux contraintes théoriques calculées par la formule de la norme AGMA. La figure 5.22 présente les résultats des déformations pour la vitesse de 200 tr/min et un couple de 145 Nm, pour cette roue les jauges retournent à la position de déformation nulle. Il est aussi possible d'apercevoir un phénomène de vibration lorsque la dent n'est plus en prise, elle ne s'arrête pas immédiatement à la position de déformation nulle, mais dépasse cette position et effectue des oscillations autour de cette position. On peut aussi apercevoir sur cette figure, l'écart important qui se trouve entre les valeurs de la jauge 1 et les valeurs de la jauge 2. Cet écart est explicable si on se réfère au grade de qualité de la roue, car la roue 2 possède un grade de qualité très faible sur l'angle d'hélice, ce qui signifie que sur la largeur de la roue l'angle d'hélice possède une variation importante induisant un contact plus important sur une partie de la roue. Ce problème est apparu sur quasiment l'ensemble des roues testées, car comme indiqué dans les tableaux 2.6 et 2.7, c'est souvent le grade de qualité sur l'angle d'hélice qui est très mauvais, et la plupart du temps compris entre 0 et 2. Les équations de l'AGMA demeurent valables pour un grade de qualité compris entre 6 et 12.

Tableau 5.12

Résumé des contraintes de la roue 2

	Vitesse de rota	tion : 200tr/min				
1	45Nm	160Nm				
Contrainte théorique (MPa)	Contrainte expérimentale (MPa)	Contrainte théorique (MPa)	Contrainte expérimentale (MPa)			
75.2	37.6	83	42.1			

La contrainte théorique a été calculée en considérant un grade de qualité très faible de la roue. Il est cependant possible que le grade de qualité n'influe pas autant sur les contraintes subies par les roues. L'effet du grade de qualité est perçu par les jauges en fonction de leur position. Or, l'erreur sur l'angle d'hélice a pour conséquence de concentrer la charge à l'extrémité des dents. Aucune jauge ne se trouvait complètement à l'extrémité d'une dent. Il est donc fort possible que les mesures ne correspondent pas exactement à la contrainte maximale théorique.

Dans les équations des normes AGMA, le grade exerce une influence importante sur le facteur dynamique Qv. Ainsi si on passe du grade de qualité 2 à un grade 8 les contraintes théoriques passent de 75.2 à 54.8 MPa et de 83 à 60.5 MPa, ce qui se rapproche plus des valeurs trouvées expérimentalement bien que l'erreur soit encore importante, 30%.

Figure 5.22 Déformations des jauges 1 et 2 de la roue 2.

Étant donné que l'analyse des résultats pour chaque roue est similaire, et que les tableaux et figures présentés par roue sont très nombreux, tous les résultats des roues 3 à 16 sont mis en annexe dans le but de ne pas surcharger la lecture. Seules les conclusions générales sont présentées, ces conclusions sont valables pour toutes les roues.

5.2.3 Résumé des résultats trouvés

À travers tous les essais réalisés, certaines conclusions se dégagent quant aux changements subis par les fréquences de résonance en fonction du couple et du nombre de dents en prise. Tout d'abord, l'effet du couple est minime quelque soit la position des roues (le minimum ou le maximum de paire de dents possible en prise), la variation est au maximum d'une dizaine de Hertz ce qui confirme l'article de Blankenship (Blankenship and Kahraman 1996). Par contre, l'augmentation du nombre de dents en prise accroît la rigidité torsionelle du système, plusieurs exemples de la littérature (Kahraman and Blankenship 1999; Wang,

Zhang et al. 2003) présentent les formes de variation de la rigidité. En augmentant la rigidité du montage sans en modifier la géométrie, et en se rapportant à un système masse ressort, l'augmentation de la rigidité augmente la fréquence de résonance du montage, $f = \sqrt{k/m}$ où k est la rigidité du montage et m sa masse. Ce dernier point est délicat à analyser lorsque les roues sont en mouvement, car le nombre de dents en contact varie en fonction du temps, donc toutes les fréquences de résonance doivent être calculées à partir du rapport de conduite pour l'analyse des résultats. De plus, la rigidité n'est pas seulement en palier, mais varie aussi en fonction de la position des roues. (Figure 5.23)

Figure 5.23 Rigidité d'engrènement. (Adapté de Kahraman and Blankenship 1996)

Source : Cette figure est adaptée de Kahraman and Blankenship 1996 «Gear dynamics experiments, part-II : effect of involute contact ratio» et correspond à la figure 11 «Characterization of gear mesh stiffness variation» présentée en page 388 dans le document original.

Les fréquences de résonances moyennes en torsion, si elles sont situées aux environs d'une fréquence remarquable des engrenages, harmoniques et modulations de la fréquence d'engrènement, augmenteront l'amplitude de cette fréquence sur les spectres fréquentiels. Les fréquences de résonance ne modifient pas la forme du signal. Ce sont toujours les fréquences remarquables des engrenages qui apparaissent sur les spectres fréquentiels, mais les fréquences de résonance modifient les amplitudes des fréquences remarquables. Cette modification entraîne nécessairement une modification de la valeur efficace, du facteur de crête ainsi que du Kurtosis du signal, qui sont tous les trois des indicateurs importants pour analyser les résultats (partie 5.3.1). Ensuite au niveau des contraintes, les jauges de déformation n'ont pas permis d'avoir des résultats corrects sur l'ensemble des roues. Tout d'abord, les jauges ne pouvaient donner de lecture précise permettant de retrouver les contraintes aux vitesses de 500 et 1000 tr/min. Seule la vitesse de 200 tr/min a permis de s'approcher des résultats de la contrainte théorique.

De plus, toutes les roues, possédant un grade de qualité très faible sur l'angle d'hélice, possèdent des déformations inégales sur la largeur de la dent; il y a toujours une portion qui est plus chargée que les autres. Les différents problèmes liés aux jauges, discutés dans la partie 4.3.1.2, ainsi que la surestimation des contraintes par la norme AGMA ne montrent pas une bonne cohérence entre les valeurs des contraintes expérimentales et théoriques. Malgré tout, les essais se sont révélés concluants en ce qui concerne les roues 4 et 12 pour les couples de 145 et 160 Nm, et les roues 9 et 13 pour le couple de 145 Nm, pour lesquels l'écart entre les valeurs théoriques et expérimentales des contraintes est inférieur à 10%.

Sur les graphiques de déformation, des modulations de la déformation ont été constatées (Figure 5.24). La roue étudiée ici possède les caractéristiques suivantes : $Pd = 6po^{i}$, $\psi = 0^{\circ}$, F = 0.5 po, N = 24, $\omega = 200$ tr/min et T = 145 Nm. Cette modulation sur les déformations se retrouve sur les diagrammes de Fourier de cette roue, où les modulations des fréquences d'engrènement sont importantes et où on voit apparaître de nombreux harmoniques de la fréquence de rotation de l'arbre. La modulation sur les déformations est présente sur toutes les roues, mais son amplitude varie d'une roue à l'autre. Ici, pour la roue 9, il est de l'ordre de 200 $\mu m/m$ (Roue 6, jauge 1, alors que pour d'autres roues cette mesure est de l'ordre de 20 $\mu m/m$ (Roue 6, jauge 4 à 200 tr/min et 145 Nm).

Figure 5.24 Graphique des déformations de la jauge 1 de la roue 9.

Quant aux fréquences trouvées sur les spectres fréquentiels, on retrouve à chaque essai les trois premières harmoniques de la fréquence d'engrènement. La remarque la plus importante concerne le fait que les harmoniques de la fréquence d'engrènement sont modulés de nombreuses fois par les vitesses de rotation des arbres. Ces nombreuses modulations laissent présager un très mauvais état des roues, qui est confirmé par les grades de qualité en général médiocre. Ces vibrations supplémentaires introduisent donc une source d'erreurs sur les différents relevés des accélérations. Le nombre de modulations des harmoniques de Fe donne une idée du nombre de dents qui comportent un défaut.

5.3 Influence des paramètres de conception

La présente partie tentera de déterminer parmi les paramètres des roues qui ont été identifiés dans le plan d'expérience lesquels possèdent une influence significative sur le comportement dynamique des roues. Les paramètres sont au nombre de six. Ce sont le pas diamétral Pd, l'angle d'hélice ψ , la largeur de dent F, le couple transmis T, la vitesse de rotation Ω et le nombre de dents N. Dans cette section, l'influence de ces différents paramètres sur la réponse vibratoire et sur les contraintes au niveau des dents sera étudiée. Dans un premier temps, la présentation de plusieurs critères d'analyse des réponses vibratoires temporelles sera effectuée. Ensuite, l'analyse détaillée indicateur par indicateur sera entreprise.

Dans la littérature, le critère le plus souvent utilisé pour mesurer les vibrations est la valeur efficace « RMS » (Blankenship and Kahraman 1996; Kahraman and Blankenship 1996; Kahraman and Blankenship 1996; Tamminana, Kahraman et al. 2005) de l'Erreur de Transmission Dynamique (ETD). Dans bon nombre d'études, le montage possède deux arbres instrumentés, ce qui permet de calculer $d^2 ETD/dt^2 = r1.\ddot{\theta}_i + r2.\ddot{\theta}_2$. Lorsqu'intégrée, cette équation permet d'obtenir l'ETD. Avec le banc d'essai utilisé ici, un seul des arbres est instrumenté. L'ETD ne pourra donc pas être calculé pour les différents montages. Mais l'ETD dans la littérature est surtout utilisé pour des expériences où la fréquence d'engrènement varie entre 415 et 3300 Hz, soit une très grande plage de fréquence (Tamminana, Kahraman et al. 2005). La plupart du temps, une seule roue est testée sur cette plage de fréquence et sert à étalonner les valeurs numériques. Avec le plan d'expérience choisi, la fréquence d'engrènement varie entre 80 et 615 Hz. Le but n'est pas d'étudier le comportement d'un engrenage sur une plage de vitesse, mais de vérifier l'influence des différents paramètres sur le comportement dynamique des engrenages. L'ETD n'est donc d'aucune utilité dans le contexte de l'étude présente.

5.3.1 Les indicateurs utilisés

Le premier indicateur est la valeur moyenne des signaux. La moyenne ne servira pas directement à l'analyse des résultats, mais à calculer d'autres indicateurs beaucoup plus significatifs. La moyenne est utilisée dans le calcul de la valeur efficace et du Kurtosis. La moyenne se calcule comme suit :

$$\overline{a} = \frac{1}{N} \sum_{k=1}^{N} a_k$$
(5.1)

La valeur efficace fait intervenir la racine carrée de la moyenne des carrés d'un signal. Il est très utilisé pour connaître les puissances de signaux. Ici, pour les vibrations de l'arbre en torsion, plus ce critère sera élevé plus l'arbre vibrera de manière importante. Ainsi, on peut s'attendre à ce que ce facteur augmente avec la vitesse de rotation. Ce facteur est peu sensible aux différents pics d'amplitude du signal. La valeur efficace se calcule comme suit :

$$a_{RMS} = \sqrt{\frac{1}{N} \sum_{k=1}^{N} (a_k - \overline{a})^2}$$
(5.2)

Où a, est l'amplitude du signal au temps k.

La valeur efficace permet de mesurer l'énergie contenue dans un signal. Cet indicateur est de ce fait très utile, car il permet de comparer tous les signaux entre eux et de savoir lequel possède le plus de puissance.

Le troisième indicateur utilisé est le facteur de crête. Il permet de savoir si le signal est plus constant ou chaotique avec des pics prononcés d'amplitude à certains temps particuliers. Ce facteur doit néanmoins être manipulé avec précaution, car le maximum utilisé ne se situe qu'en un seul point. Si ce point est une erreur de mesure, cela peut fausser l'analyse. Il est donc important de vérifier le maximum qui sera utilisé pour chaque mesure du facteur de crête. Si celui-ci paraît trop éloigné des autres valeurs trouvées, il vaudra mieux l'écarter et prendre le suivant. Ce facteur indique donc si le signal présente des pics d'amplitude et en donne sa force par rapport à la valeur efficace du signal. Cet indicateur permet de mettre en place une idée de la forme du signal.

132

Le facteur de crête se calcule comme suit :

$$a_{critic} = \sup_{1 \le k \le N} |a_k|$$
(5.3)

Facteur de Crête =
$$\frac{a_{crite}}{a_{RAG}}$$
 (5.4)

Le quatrième indicateur est le Kurtosis, ou quatrième moment normalisé. Il se calcule à l'aide de la moyenne du signal et de sa valeur efficace. Le Kurtosis possède sensiblement la même signification que le facteur de crête, car il est sensible aux pics d'amplitudes, mais grâce à la sommation sur tous les points de mesure, il est moins sensible aux erreurs de mesure, il est donc plus robuste que le facteur de crête. Cet indicateur renseigne sur la forme du signal. Ainsi, si le Kurtosis est élevé, la plupart des points seront proches de la moyenne, et ceux qui en seront éloignés le seront de beaucoup (le facteur de crête donne aussi ce renseignement, mais de manière moins précise).

Le Kurtosis se calcule comme suit :

$$Kurtosis = \frac{1/N \sum (a_k - \overline{a})^4}{a_{RMS}^4}$$
(5-5)

Le Kurtosis et le facteur de crête sont plus représentatifs de la forme du signal que la valeur efficace. Dans le cas de l'étude des engrenages, pour deux signaux possédant la même valeur efficace, celui qui aura le Kurtosis et le facteur de crête le plus élevé sera un signal synonyme de chocs importants. Ces chocs proviennent des défauts des roues.

Dans l'ensemble, sur les quatre indicateurs présentés, trois sont utiles :

-La valeur efficace

-Le Kurtosis

-Le facteur de crête

La valeur efficace est un indicateur général qui permettra de donner le niveau de vibrations de chaque roue. Ce niveau pourra être comparé roue par roue, car la valeur efficace élimine les effets chaotiques.

Le facteur de crête et le Kurtosis sont plus particuliers, au cas par cas, car deux roues possédant une valeur efficace très éloignée pourraient avoir ces indicateurs égaux, puisque ces indicateurs donnent de l'information sur la forme du signal (pour un Kurtosis élevé, des sommets et des creux locaux près de la valeur moyenne, mais en même temps des pics d'amplitude).

Deux autres indicateurs seront le volume des roues et les contraintes. Bien que les contraintes expérimentales ne se soient pas révélées concluantes, il est tout de même intéressant d'étudier l'influence des paramètres sur celles-ci, dans cette étude, les contraintes théoriques de la norme AGMA sont utilisées. Les paramètres d'études ne possèdent pas tous la même influence sur le volume et les contraintes. De plus, ces deux paramètres se révèlent très importants dans les vibrations des engrenages.

5.3.2 Les résultats généraux obtenus

Ce paragraphe introduit les différents résultats obtenus sur l'ensemble des roues testées. Dans le plan d'expérience choisi, le nombre de dents sur les roues disponibles passe de 34 à 37 lorsque le pas diamétral passe de 4 à 6 po^{-1} (Tableaux 2.1 et 2.2). Le plan d'expérience est donc un plan d'expérience double. Dans le but d'étudier l'influence des différents paramètres de manière générale, une interpolation est effectuée pour le pas diamétral de 6 po^{-1} pour passer de 37 à 34 dents, ce qui permet de les comparer aux valeurs associées au pas diamétral de 4 po^{-1} . En supposant une variation linéaire des différents indicateurs selon l'évolution des paramètres et en utilisant la droite des moindres carrés, les valeurs des indicateurs sont calculées pour les roues fictives possédant un pas diamétral de 6 po^{-1} et 34 dents. Tous ces calculs ont été effectués à l'aide du logiciel JMP de la société SAS. Les tableaux 5.14 et 5.15 présentent les résultats obtenus expérimentalement ainsi que les valeurs obtenues par interpolation pour les roues fictives. Les cases grisées de ces tableaux correspondent à des essais où les résonances se sont superposées aux fréquences propres des engrenages.

À l'aide des tableaux 5.14 et 5.15, il est possible d'étudier l'influence de chacun des paramètres du plan d'expérience sur les différents indicateurs retenus. Comme vu dans l'analyse des roues, les grades de qualité possèdent une influence non négligeable sur les vibrations des différents montages. L'analyse de l'influence des paramètres néglige les effets du grade de qualité et sera donc plus ou moins affectée. Il sera donc nécessaire pour chaque paramètre étudié de compléter l'analyse par l'introduction des grades de qualité.

Tableau 5.13

Valeur des indicateurs pour un couple de 145Nm

		-		Vitess	e de rotati	ion (tr/min)		-	
145Nm	200			500			1000			
Roue	RMS	Facteur de crête	Kurtosis	RMS	Facteur de crête	Kurtosis	RMS	Facteur de crête	Kurtosis	
Pd4w0N24F05	1.31	4.84	3.38	4.83	4.67	3.90	12.029	3.19	2.80	
Pd4\u0N34F05	1.94	5.38	2.81	6.20	4.60	4.03	15.75	4.13	3.56	
Pd4w0N24F3	0.69	6.70	4.57	3.92	5.57	3.86	16.45	3.98	3.18	
Pd4y0N34F3	1.71	5.07	3.63	15.46	3.78	2.78	24.24	4.13	2.90	
Pd4y20N24F05	0.94	5.34	3.37	2.72	4.63	3.11	8.39	3.62	3.20	
Pd4y20N34F05	1.48	4.04	2.64	3.72	4.48	2.93	9.88	5.46	3.46	
Pd4y20N24F3	2.68	4.59	3.29	3.03	5.14	4.08	10.18	4.83	4.55	
Pd4y20N34F3	1.22	3.32	2.13	2.51	4.70	3.76	7.95	3.50	3.24	
Pd6\0N24F05	2.11	8.31	7.79	1.98	5.18	3.64	11.76	3.52	2.57	
Pd6\0N34F05	0.53	6.20	5.16	5.58	5.03	4.15	13.98	3.07	2.46	
Pd6y0N24F3	1.31	4.83	2.92	4.69	3.57	2.25	9.52	3.69	3.33	
Pd6\0N34F3	0.00	6.10	4.49	5.91	4.92	3.68	16.36	2.95	2.33	
Pd6y20N24F05	0.78	4.63	3.44	2.98	3.82	2.55	5.88	3.80	2.90	
Pd6y20N34F05	0.30	4.55	3.59	3.25	4.10	3.09	8.15	3.36	2.27	
Pd6y20N24F3	0.69	7.52	8.97	2.12	4.31	3.22	5.53	5.45	3.51	
Pd6y20N34F3	0.77	5.64	4.57	4.94	5.18	4.28	11.89	4.41	3.78	
Pd6y0N37F05	0.89	5.83	5.26	5.00	4.07	3.73	16.44	3.41	2.53	
Pd6y0N37F3	0.62	6.64	4.20	5.68	5.12	3.80	16.54	3.13	2.63	
Pd6y20N37F05	1.81	3.31	2.40	2.78	4.06	2.97	7.86	3.68	2.70	
Pd6y20N37F3	0.88	6.47	3.93	3.12	5.40	4.59	16.36	3.46	3.55	

Tableau 5.14

Vitesse de rotation (tr/min) 160Nm 200 500 1000 Facteur Facteur Facteur Roue RMS de Kurtosis RMS de Kurtosis RMS de Kurtosis crête crête crête Pd4w0N24F05 1.76 3.35 5.06 12.87 3.04 4.61 4.30 3.67 3.49 Pd4u0N34F05 1.54 4.98 2.83 5.53 4.99 3.47 18.42 3.79 3.35 Pd4w0N24F3 15.79 3.22 0.82 7.48 4.95 4.16 4.79 3.55 3.75 Pd4w0N34F3 7.45 24.52 4.89 3.39 1.68 3.67 2.705.44 3.63 Pd4w20N24F05 1.24 8.04 3.16 5.04 3.58 7.89 4.57 3.38 6.21 Pd4u20N34F05 9.45 2.43 1.92 3.88 2.34 3.50 4.08 2.88 2.97Pd4w20N24F3 1.77 8.51 7.35 2.95 6.24 4.30 8.70 5.96 4.25 Pd4w20N34F3 0.72 3.51 1.96 5.29 7.12 3.52 5.44 4.52 4.01 6.51 Pd6w0N24F05 2.941.98 5.75 3.40 3.50 2.56 11.87 3.66 Pd6w0N34F05 0.64 5.71 4.41 6.23 4.81 3.93 15.54 3.33 3.12 Pd6u0N24F3 1.23 6.46 3.58 5.27 3.43 2.54 12.85 3.36 2.79 2.67 Pd6u0N34F3 0.76 5.31 3.42 7.58 4.41 3.14 18.93 2.90Pd6w20N24F05 2.98 1.26 3.66 3.02 4.07 3.33 2.35 6.56 3.54 Pd6w20N34F05 0.00 3.98 2.603.32 3.87 2.63 9.13 3.53 2.693.22 Pd6w20N24F3 2.04 5.04 2.42 3.87 2.94 6.08 5.74 3.83 Pd6w20N34F3 1.32 4.77 3.27 6.03 4.59 3.50 13.89 4.29 3.89 Pd6w0N37F05 1.10 5.53 5.21 5.18 4.76 3.84 17.33 2.87 2.42 Pd6y0N37F3 5.74 5.61 4.37 22.75 0.81 4.33 3.50 3.12 2.63 2.48 2.97 7.30 Pd6v20N37F05 1.01 5.31 3.01 4.47 3.83 3.06 Pd6v20N37F3 2.23 3.20 2.29 4.12 19.48 3.54 4.88 4.27 3.42

Valeur des indicateurs pour un couple de 160Nm

La première figure (figure 5.26) présente les résultats de valeur efficace obtenus du logiciel JMP, versus les résultats obtenus expérimentalement. Pour les seize engrenages, trois vitesses et deux couples sont testés, soit en tout 96 points différents pour les différents indicateurs. Sur la figure 5.26, les 96 points sont présentés.

Figure 5.25 Comparaison entre la valeur réelle et calculée de la valeur efficace.

Le tableau suivant permet de visualiser les contraintes théoriques, les volumes et les rapports de conduite des roues. Les contraintes théoriques de la norme AGMA sont utilisées dans ce tableau. Les contraintes ont été calculées pour un grade de qualité de 10 pour toutes les roues. Ce grade de qualité correspond à un grade de qualité commercial de la norme. Le volume des roues a été calculé en approximant les roues à un cylindre de diamètre le diamètre primitif et de hauteur la largeur des dents. Le rapport de conduite a été calculé à partir des entraxes expérimentaux utilisés.

Tableau 5.15

Roue		Contrainte ,	Volume	Rapport	Grade		
	500tr/min 145Nm	500 tr/min 160Nm	1000 tr/min 145Nm	1000tr/min 160Nm	*10^5 mm ³	de conduite	de qualité
Pd4w0N24F05	84,5	93,2	87,9	97	2,317	1.59	4
Pd4w0N34F05	53,1	58,6	55,5	61,2	4,649	1.67	2
Pd4w0N24F3	16,5	18,2	17,1	18,9	13,900	1.59	6
Pd4y0N34F3	10,4	11,4	10,8	12	27,896	1.67	4
Pd4y20N24F05	54,6	60,2	56,8	62,7	2,624	1.79	0
Pd4y20N34F05	36,1	39,9	37,8	41,7	5,265	1.85	1
Pd4w20N24F3	10,7	11,8	11,1	12,2	15,741	2.87	0
Pd4w20N34F3	7,1	7,8	7,4	8,1	31,592	2.94	3
Pd6w0N24F05	182,6	201,5	188,9	208,4	1,030	1.59	4
Pd6y0N34F05	103	113,6	107,2	118,2	2,447	1.67	1
Pd6y0N24F3	36,5	40,3	37,8	41,7	6,178	1.59	0
Pd6y0N34F3	20,1	22,2	20,9	23,1	14,683	1.68	0
Pd6w20N24F05	117,9	130,1	122	134,7	1,166	1.88	3
Pd6y20N34F05	69,9	77,1	72,8	80,3	2,771	1.93	0
Pd6y20N24F3	23,5	25,9	24,3	26,8	6,996	3.52	0
Pd6w20N34F3	13,6	15	14,2	15,7	16,628	3.57	1

Tableau résumé des contraintes, volumes et rapport de conduite

Maintenant que le plan d'expérience double a été converti en un plan d'expérience complet, il est possible d'analyser les données avec le logiciel STATGRAPHICS. Ce logiciel permet de trouver quels sont les paramètres et les interactions qui possédent l'influence la plus significative sur les indicateurs. Pour chacun des indicateurs, STATGRAPHICS propose un graphique de Pareto standardisé qui permet de trouver les paramètres et les différentes interactions qui influencent ce même indicateur. L'ordre maximal des interactions est choisi à deux. Les trois figures qui suivent présentent les graphiques de Pareto pour la valeur efficace, le facteur de crête et le Kurtosis. L'intervalle de confiance est fixé à 95%. La ligne bleue servant de référence pour savoir si les paramètres et les différentes interactions possèdent une influence importante est définie par le logiciel en fonction de l'écart type sur les mesures expérimentales.

Figure 5.26 Graphique de Pareto standardisé pour la Valeur efficace.

Sur la figure 5.27, les interactions Vitesse (A) Angle d'hélice (F), Angle d'hélice (A) Nombre dents (D), Angle d'hélice (A) Pas diamétral (E), Nombre de dents (D) Vitesse (F), Largeur de dents (C) Nombre de dents (D), Angle d'hélice (A) Largeur de dents (C) et l'interaction Couple (B) Pas diamétral (E) possèdent un rôle important dans la détermination de la valeur efficace. En parcourant cette liste, on remarque que tous les paramètres du plan d'expérience sont présents. L'étude de la valeur efficace sera donc effectuée pour chacun des paramètres du plan d'expérience. La figure 5.28 présente les résultats sur le facteur de crête. Seules les interactions Angle d'hélice (A) Largeur de dent (C) et Angle d'hélice (A) Vitesse (F) ont une réelle influence sur le facteur de crête. On remarque que le pas diamétral n'est pas compris à l'intérieur des interactions alors que son influence n'est pas négligeable sur le facteur de crête. L'analyse du facteur de crête sera donc effectuée pour ces quatre paramètres : la vitesse (F), le pas diamétral (E), la largeur de dents (C) et la vitesse (F). Il ne sera pas nécessaire d'étudier l'influence du couple et du nombre de dents sur le facteur de crête.

Figure 5.27 Graphique de Pareto standardisé pour le Facteur de crête.

La figure 5.29 présente les résultats pour le Kurtosis. Les différentes interactions trouvées pour le facteur de crête devraient être retrouvées. En parcourant la figure, ces interactions sont retrouvées, mais deux autres apparaissent, il s'agit de l'interaction entre le Nombre de dents (D) et le Pas diamétral (E) et celle entre le Nombre de dents (D) et la Vitesse (F). L'analyse du Kurtosis sera donc effectuée pour tous les paramètres à l'exception du couple (B).

Figure 5.28 Graphique de Pareto standardisé pour le Kurtosis.

Les différents graphiques de Pareto ont permis de déterminer les interactions les plus significatives pour chacun des indicateurs retenus. Le logiciel STATGRAPHICS permet aussi de tracer les graphiques des interactions avec la possibilité d'afficher les intervalles de confiance. Ces intervalles de confiance permettent de valider les tendances, accroissement ou diminution des indicateurs en fonction des paramètres.

La suite de l'analyse s'effectue en quatre parties. La première s'intéresse à l'influence des différents paramètres sur les contraintes et le volume. La deuxième traitera de l'influence des paramètres sur la valeur efficace. La troisième et la quatrième partie s'intéresseront respectivement au facteur de crête et au Kurtosis.

5.3.3 Influence des paramètres sur le volume et sur les contraintes

Le volume et les contraintes fonctionnent de manière opposée. En effet, lorsque l'on augmente le volume des roues, les contraintes en pied de dents diminuent. Il y a plusieurs manières d'influencer le volume. Dans l'étude présente, le pas diamétral (E), l'angle

d'hélice (A), la largeur de dents (C) et le nombre de dents (D) dictent la géométrie des roues.

Figure 5.29 Influence des paramètres sur le Volume.

Les quatre figures précédentes permettent d'identifier l'influence de chacun des paramètres sur le volume, la largeur de dents (C) étant celle qui a le plus d'influence et l'angle d'hélice (A) le moins. Les graphiques présentent les valeurs moyennes ainsi que l'écart type sur les mesures expérimentales. Par exemple, dans le cas où le pas diamétral est de 4 po⁻¹, la valeur moyenne du volume est de 1300000mm³ sur l'ensemble des combinaisons possibles des autres paramètres. L'écart type des mesures est lui aussi visible. Celui-ci permet de vérifier que le paramètre étudié possède bien une influence significative sur les résultats expérimentaux.

Le pas diamétral, lors du passage de 6 à 4 po⁻¹, augmente le volume de 125%. L'angle d'hélice augmente le volume de 13%, la largeur de dents de 500% et le nombre de dents de 100%.

Les quatre figures qui suivent présentent l'influence des paramètres sur les contraintes. Le pas diamétral (E), lors du passage de 6 à 4 po⁻¹, diminue les contraintes de 50%. L'angle d'hélice (A) réduit les contraintes de 35%, la largeur de dents (C) de 80% et le nombre de dents (D) de 37%.

Figure 5.30 Influence des paramètres sur la contrainte AGMA.

En combinant les résultats sur le volume et sur les contraintes, il est possible de classer les paramètres par ordre d'importance. Les valeurs moyennes trouvées précédemment ont été utilisées et ramenées à un gain de volume de 1% pour trouver quel est le paramètre qui permet la meilleure réduction de contrainte. Ainsi, l'angle d'hélice (A) permet de réduire considérablement les contraintes en augmentant très légèrement le volume, ainsi pour un gain de volume de 1%, les contraintes sont diminuées de 3%. Ceci est dû à l'accroissement de la ligne d'action et du nombre de paires de dents en contact. Ensuite c'est le pas diamétral (E) et le nombre de dents (D) qui permettent une réduction moyenne des contraintes en augmentant le volume, une augmentation de volume de 1% permet de réduire les contraintes de 0.4%. Enfin, la largeur de dents (C) ne permet de réduire efficacement les contraintes. En effet pour une augmentation de 1% du volume, les contraintes sont seulement diminuées de 0.16%.

Le couple (B) et la vitesse (F) ont eux aussi une influence sur les contraintes. Les contraintes théoriques de la norme AGMA sont directement proportionnelles au couple appliqué dans le système. L'effet de la vitesse est quant à lui intégré par le biais du facteur de vitesse, dépendant en grande partie de la vitesse et du grade de qualité de la roue (voir partie 2.4.1).

5.3.4 Influence des paramètres sur la valeur efficace

Avant d'étudier le facteur de crête et le Kurtosis, il est nécessaire d'étudier la valeur efficace, car c'est elle qui permet de calculer les autres indicateurs. Les différentes interactions qui possèdent de l'importance sur les graphiques de Pareto mettent en jeu tous les paramètres du plan d'expérience. Les graphiques de l'influence des différentes interactions sur la valeur efficace sont présentés sur les figures 5.32, 5.33 et 5.34. L'intervalle de confiance utilisé sur ces figures est de 95%. Dans le cas de la valeur efficace, tous les paramètres possèdent une influence significative en interaction avec un autre paramètre. Seul le couple ne possède pas d'influence sur la valeur efficace. L'influence de chaque paramètre est d'abord étudiée. Les interactions seront étudiées par la suite.

5.3.4.1 Étude de l'influence des paramètres sur la valeur efficace

Cinq paramètres sur six possèdent une influence seule sur la valeur efficace. Cette partie montre comment ils agissent sur celle-ci. Un des paramètres ayant le plus d'influence sur la valeur efficace est la vitesse (F). Comme on peut le voir sur la figure 5.32, le passage de 500 à 1000tr/min multiplie presque la valeur efficace par trois. Plus la vitesse augmente, plus l'énergie à transmettre est importante, un autre élément est le rapprochement des chocs à l'engrènement avec la vitesse. Ces deux effets combinés augmentent de manière importante l'amplitude vibratoire du montage.

Le deuxième facteur qui possède un effet très significatif sur la valeur efficace est l'angle d'hélice (A). En effet, en augmentant l'angle d'hélice, la valeur efficace diminue de moitié.

En regardant les valeurs du rapport de conduite dans le tableau 5.16 on se rend compte que celui-ci augmente de manière très importante. Ce changement dans le rapport de conduite vient modifier le comportement vibratoire des roues. La rigidité du contact dévient plus constante en se rapprochant d'un nombre entier de paires de dents en prise, ou en augmentant celui-ci. Par exemple, si le contact s'effectue sur une ou deux paires de dents en prise, la variation de rigidité est importante, la rigidité d'une paire de dents représente de 50% (deux paires de dents en prise) à 100% (une seule paire de dents en prise) de la rigidité totale du contact. Alors que si le contact se fait entre trois ou quatre paires de dents, la variation de rigidité est plus faible, la rigidité d'une paire de dents représentant de 25% (quatre paires de dents en prise) à 33% (trois paires de dents en prise) de la rigidité totale du contact.

Les résultats observés correspondent bien à la littérature [6, 9, 12, 13], le rapport de conduite possède un effet non négligeable sur les vibrations. Ainsi en s'approchant d'un nombre entier, l'amplitude vibratoire du montage diminue sur l'ensemble de la plage de fréquences, et ce, pour n'importe quelles vitesses et couples appliqués.

Le troisième facteur ayant une grande importance dans la valeur efficace est le nombre de dents (D). En effet, en passant de 24 à 34 dents, le nombre de chocs par tour, la masse et le diamètre des roues sont augmentés entraînant la hausse de l'inertie et de l'énergie à transmettre. En effet, l'inertie est égal à $I = \frac{1}{2}mr^2$, la masse et le diamètre combinés

possèdent donc une influence sur l'inertie à la puissance trois. Les chocs à l'engrènement sont donc plus importants et l'amplitude vibratoire du système est plus importante.

Le quatrième facteur est la pas diamétral (E) (figure 5.32 III, figure 5.34 VII). Son augmentation permet de réduire la taille des roues, donc leur masse, leur diamètre et leur inertie. Ainsi, l'énergie à transmettre est plus faible, les vibrations sont donc moins importantes, c'est l'effet inverse de celui de l'augmentation du nombre de dents.

La largeur (C) est l'avant-dernier facteur, le couple (B) étant le dernier, mais ses effets sont jumelés à ceux du pas diamétral (E). Sur la figure 5.33 V, l'augmentation de la largeur de dents (C) accroît la valeur efficace des vibrations. Bien que les contraintes diminuent de manière importante avec l'augmentation de la largeur, l'augmentation des surfaces en contact combinée avec un grade de qualité médiocre et une masse plus importante entraîne la hausse des vibrations. L'erreur de position engendrée par une erreur sur l'angle d'hélice est aussi croissante avec une augmentation de la largeur de la roue, ce qui augmente l'erreur de transmission, donc les vibrations. La masse et l'inertie des roues sont augmentées, l'énergie à transmettre est donc plus importante, les chocs deviennent plus violents. Pour des petites roues (24 dents), la largeur montre moins d'effet négatif.

Figure 5.31 Influence des paramètres sur la valeur efficace, partie 1.

Figure 5.32 Influence des paramètres sur la valeur efficace, partie 2.

Figure 5.33 Influence des paramètres sur la valeur efficace, partie 3.

Certains paramètres en combinaison avec d'autres ne possèdent pas la même influence sur la valeur efficace. L'étude des interactions permet donc de voir comment les paramètres interfèrent entre eux.

5.3.4.2 Étude de l'influence des interactions sur la valeur efficace

Dans un premier temps, le tableau récapitulatif de l'influence des interactions est présenté. Les numéros font référence aux différentes figures présentées précédemment. Les cases grisées du tableau 5.17 correspondent aux effets dont l'influence est négligeable pour les données expérimentales acquises.

Tableau 5.16

	Vitesse	Angle d'hélice	Nombre de dents	Pas diamétral	Largeur de dents	Couple
Vitesse		1	IV	1		
Angle d'hélice			11	III	VI	
Nombre de dents					V	
Pas diamétral						VII
Largeur de dents				1		
Couple				1		

Résultat des interactions sur la valeur efficace

Il n'existe pas d'interaction entre l'angle d'hélice (A) et la vitesse (F). En effet, la diminution de la valeur efficace pour les vitesses de 500 et 1000tr/min est équivalente.

Pour tous les paramètres qui interagissent avec l'angle d'hélice (A), leur influence est moins prononcés pour les roues hélicoïdales par rapport aux roues droites. L'augmentation de l'angle d'hélice (A) modifie de manière importante le rapport de conduite. Avec cette hausse du rapport de conduite, la valeur efficace du signal est grandement diminuée, ce qui atténue l'effet des autres paramètres.

Pour l'interaction entre le couple (B) et le pas diamétral (E) (figure 5.34 VII) on remarque deux pentes différentes pour les deux valeurs du pas. Pour le pas de 4 po⁻⁻, le couple ne possède pas d'effet significatif, les deux intervalles de confiance se chevauchent. Par contre pour le pas de 6 po⁻⁻, l'augmentation du couple vient modifier les conclusions précédentes. En effet la valeur efficace augmente. En augmentant, le pas diamétral et la taille des dents diminuent. Les dents deviennent donc plus sensibles aux variations du couple. Si le couple augmente, les dents fléchiront davantage par rapport à des dents plus épaisses, ces déformations entraînent des vibrations supplémentaires et donc une augmentation de la valeur efficace des vibrations. Le couple seul ne possède pas d'influence significative sur la valeur efficace. On peut ainsi supposer que pour chaque pas diamétral, il y aura une valeur seuil du couple au-delà de laquelle les fluctuations du couple auront un effet plus important.

Pour des roues minces l'augmentation du nombre de dents (D) agit de manière moins importante sur la valeur efficace comparativement aux roues larges. L'influence de la largeur (C) est non négligeable car le volume et donc l'inertie des roues augmentent plus fortement dans l'étude présente avec la largeur. En effet, la variation de rayon de la roue avec le nombre de dents n'augmente pas d'autant l'inertie des roue que la largeur. Mais si la variation sur le nombre de dents avaient été plus importante, il est possible que ce soit le nombre de dents et non la largeur qui possède l'influence la plus grande sur la valeur efficace.

Malgré le fait que pour l'étude présente, certaines interactions ne se soient pas révélés significatives, il ne faut pas les mettre de côté. En effet, la plage de variation des paramètres étant limité dans cette étude, il est possible que certaines interactions possèdent une plus grande influence que dans la présente étude.

En conclusion de cette partie, on peut remarquer que ce ne sont pas tout à fait les paramètres du plan d'expérience qui influencent les vibrations, mais d'autres paramètres qui sont des conséquences des paramètres retenus. En effet, les paramètres ayant influencé les résultats ici sont la vitesse, les grades de qualité, le rapport de conduite, la masse et le rapport entre le couple et le pas diamétral. De mauvais grades de qualité, une vitesse élevée, ou des roues de masse plus importante auront donc tendance à augmenter la valeur efficace des vibrations. Si le rapport entre le couple et le pas diamétral est trop faible, les déformations subies par les roues seront importantes et les vibrations augmenteront. Enfin, pour le rapport de conduite, il est préférable de choisir un rapport de conduite élevé, supérieur à 2, ou un rapport de conduite entier pour limiter les variations de rigidité dans le système. C'est cette variation qui est la première cause de vibration dans les engrenages.

5.3.5 Influence des paramètres sur le facteur de crête

Les graphiques de Pareto présentés précédemment permettent d'éliminer des paramètres qui n'ont pas d'influences significatives sur le facteur de crête. C'est le cas du couple (B) et du nombre de dents (D). Comparativement à la valeur efficace, moins de paramètres influencent de manière significative le facteur de crête. Seulement quatre paramètres et deux interactions ont été identifiés comme significative par STATGRAPHICS.

5.3.5.1 Étude de l'influence des paramètres sur le facteur de crête

Le pas diamétral (E) n'agit pas en interactions avec d'autres paramètres de manière significative. Cela signifie que pour n'importe quelles combinaisons de paramètres, le changement de pas diamétral possèdera toujours le même effet. La figure 5.35 montre ce résultat. L'écart type pour les deux valeurs du pas est assez grand, mais les deux domaines ne se chevauchent pas. Le pas diamétral permet donc bien de diminuer le facteur de crête. En effet, l'augmentation du pas diamétral diminue le volume, donc l'inertie de la roue. Ainsi, il y a moins d'énergie à transmettre lors de l'engrènement. De plus, les dents sont plus petites pour un pas diamétral de 6po⁻¹, les défauts sont donc moins importants par rapport à un pas diamétral de 4po⁻¹. Les chocs sont donc de moindres importances et le facteur de crête diminue.

Figure 5.34 Influence du pas diamétral sur le facteur de crête.

Lorsque la vitesse (F) augmente, l'amplitude des pics devient moins importante par rapport à la valeur efficace. En effet lorsque la valeur efficace d'un signal augmente, ce n'est pas le signal entier qui est multiplié par un certain facteur. Le signal change de forme, on discerne moins de chocs, car ceux-ci sont de plus en plus rapprochés, réduisant le facteur de crête et le Kurtosis. Ce résultat est retrouvé ici, on remarque que le facteur de crête diminue avec la vitesse.

Figure 5.35 Influence de l'angle d'hélice et de la largeur de dent sur le facteur de crête.

Figure 5.36 Influence de l'angle d'hélice et de la vitesse sur le facteur de crête.

Sur les figures 5.36 et 5.37, on remarque que la largeur de dent (C) et l'angle d'hélice (A) n'ont pas de comportement bien défini. En effet, on peut remarque la présence de pentes différentes pour les deux valeurs de ces paramètres. L'étude des interactions permettra de voir quels sont les effets des paramètres les uns sur les autres.

5.3.5.2 Étude de l'influence des interactions sur le facteur de crête

Dans un premier temps, le tableau récapitulatif de l'influence des interactions est présenté. Les numéros font référence aux différentes figures présentées précédemment. Les cases grisées du tableau 5.18 correspondent aux effets dont l'influence est négligeable pour les données expérimentales acquises. Comme pour la valeur efficace, ce n'est pas parce que les interactions ne possèdent pas d'influence dans cette étude qu'elles ne pourraient pas en avoir dans une autre étude où la plage de variation des paramètres serait plus importante.

Tableau 5.17

	Vitesse	Angle d'hélice	Nombre de dents	Pas diamétral	Largeur de dents	Couple
Vitesse		5.37				
Angle d'hélice					5.36	
Nombre de dents						
Pas diamétral			-		-	
Largeur de dents						
Couple			-			

Résultats des interactions sur le facteur de crête

Les interactions agissant sur le facteur de crête sont l'angle d'hélice (A) avec la largeur de dent (C), et l'angle d'hélice (A) avec la vitesse de rotation (F). Les figures 5.36 et 5.37 montrent les résultats obtenus lors des expériences. La première remarque concerne la largeur des écarts type, ceux-ci sont très importants. Ainsi pour la largeur de 0.5 po, le changement d'angle d'hélice ne semble pas avoir d'influence sur le facteur de crête, alors que pour les roues de trois pouces de large, l'augmentation de l'angle d'hélice augmente le facteur de crête. Il en est de même pour l'influence de la vitesse. À 500tr/min, les changements d'angle d'hélice ne modifient pas le facteur de crête. Alors que pour la vitesse de 1000tr/min, le changement d'angle d'hélice augmente le facteur de crête. Ces résultats s'expliquent par le fait que l'augmentation de l'angle d'hélice modifie la longueur de la ligne de contact et le nombre de paires de dents en contact. Les défauts des roues sur l'angle d'hélice sont très prononcés, donc en augmentant la longueur de la ligne d'action on retrouve plus de défauts pour une même période d'engrénement. Cette accumulation de défauts entraîne donc une augmentation des chocs, qui se traduit ici par la hausse du facteur de crête. Pour les roues de 0.5 po de large, cette augmentation est minime et ne se fait pas ressentir au niveau des résultats. Mais pour des roues de 3 po de large, cet effet est plus important. Les changements apportés par l'angle d'hélice s'accentuent aussi avec la largeur des dents. Pour des roues minces, augmenter l'angle d'hélice ne modifie que très peu le rapport de conduite, alors que pour des roues larges, le rapport de conduite peut être doublé en passant d'un angle d'hélice de 0 à 20 degrés. Le nombre de paires de dents en contact augmente et avec lui le nombre de défauts qui agissent sur l'erreur de transmission. Le point non concluant ici est le fait que le passage de 0.5 po à 3 po de large pour des roues droites ne semble pas modifier le facteur de crête, or l'augmentation de la taille des dents accroît le nombre de défaut et devrait par la même occasion augmenter le facteur de crête. De plus, comme vu dans la partie précédente, la valeur efficace est fortement diminuée pour des roues larges en passant d'un angle d'hélice de 0 à 20 degrés. De ce fait, les chocs prennent beaucoup plus d'importance et devraient contribuer à l'augmentation du facteur de crété.

Le tableau 5.17 montre les résultats obtenus pour le facteur de crête aux vitesses de 500 et 1000tr/min. Pour tenter d'expliquer le phénomène pour les roues droites, les grades de qualité sont introduits dans le tableau. On remarque tout d'abord que pour quasiment l'ensemble des roues droites (lignes grisés du tableau), le grade de qualité diminue pour le passage de 0.5 à 3 po de largeur, c'est l'inverse pour les roues hélicoïdales. L'erreur de transmission risque ainsi d'être augmentée. Le facteur de crête devrait donc faire de même. Or ce n'est pas le cas, celui-ci diminue. Pour les roues hélicoïdales, les résultats de la figure 5.36 et les hypothèses sont vérifiés, augmentation du facteur de crête avec la largeur de dents. Il est donc difficile de comprendre pourquoi les roues droites ne possèdent pas le même comportement que les roues hélicoïdales par rapport à la largeur de dents. L'usure

des roues droites n'était pourtant pas plus importante que celles des roues hélicoïdales à la fin des essais. Le seul point qui diffère entre les roues droites et hélicoïdales est le nombre de paires de dents en contact. En fait, augmenter le grade en passant de 0.5 à 3 po de large avec $\psi = 20^{\circ}$ fait augmenter le facteur de crête alors que réduire le grade en passant de 0.5 à 3 po avec $\psi = 0^{\circ}$ réduit le facteur de crête. Il y a probablement un effet des déformations élastiques (inférieur avec une roue de 3 po de large) combiné au grade de qualité.

Il est éventuellement possible de penser que les erreurs d'angle d'hélice sur les roues droites soient compatibles et finalement augmentent le rapport de conduite. En effet si les erreurs sur la roue et le pignon sont orientés dans la même direction, les roues droites deviennent des roues hélicoïdales.

Tableau 5.18

145Nm	Grade de	1.5	500tr/min			1000tr	m			
	Largeur en po		Largeur en po		Écart (%)	Largeur en po		Écart (%)	Largeur en po	
	0.5	3	0,5	3		0,5 3		0,5	3	
Pd4 @0N24	4	6	4.67	5.57	+19.3	3.19	3.98	+24.8	1.59	1.59
Pd4 9/20N24	2	4	4.63	5.14	+11	3.62	4.83	+33.4	1.79	2.87
Pd4 \P0N34	0	0	4.60	3.78	-17.8	4.13	4.13	0	1.67	1.67
Pd4 #20N34	1	3	4.48	4.70	+4.9	5.46	3.50	-35.9	1.85	2.94
Pd6 @0N24	4	0	5.18	3.57	-31.1	3.52	3.69	+4.8	1.59	1.59
Pd6 \P20N24	1	0	3.82	4.31	+12.8	3.80	5.45	+43.4	1.88	3.52
Pd6 \0N34	3	0	5.03	4.92	-2.2	3.07	2.95	-3.9	1.67	1.68
Pd6 #20N34	0	1	4.10	5.18	+26.3	3.36	4.41	+31.3	1.93	3.57
	Grade de qualité		500tr/min			1000tr/min			m	
160Nm	Largeur en po		Largeur en po		Écart (%)	Largeur en po		Écart (%)	Largeur en po	
	0.5	3	3	3		0,5	3		0,5	3
Pd4 \0N24	4	6	4.30	4,79	+11.4	3.49	3.75	+7.4	1.59	1.59
Pd4 @20N24	2	4	5.04	6.24	+23.8	4.57	5.96	+30.4	1.79	2.87
Pd4 @0N34	0	0	4.99	5.44	+9	3.79	4.89	+29	1.67	1.67
Pd4 #20N34	1	3	4.08	5.29	+29.7	2.97	4.01	+35	1.85	2.94
Pd6 40N24	4	0	3.50	3.43	-2	3.66	3.33	-9	1.59	1.59
Pd6 @20N24	1	0	3.33	3.87	+16.2	3.54	5.74	+62.1	1.88	3.52
Pd6 40N34	3	0	4.81	4.41	-8.3	3.36	2.90	-13.7	1.67	1.68
D46 (0203/24	0	1	3.87	4.59	+18.6	3.53	4 29	+21.5	1.93	3.57

Influence de la largeur de dents sur le facteur de crête

En résumé, la taille de la roue semble jouer un rôle important dans l'amplitude des chocs représentée par le facteur de crête. En effet, en changeant le pas diamétral, passage de 4 à 6 po⁻⁻¹, le volume de la roue diminue de 50%, l'énergie à transmettre est donc plus faible, et les chocs moins importants. Ensuite, le nombre de paires de dents en contact est un paramètre important dans la détermination du facteur de crête. En effet, dans les expériences réalisées, le facteur de crête augmente avec l'angle d'hélice, cette hausse est encore plus prononcée pour les roues larges comparativement aux roues minces.
5.3.6 Influence des paramètres sur le Kurtosis

Les résultats trouvés sur le facteur de crête devraient se retrouver dans l'étude du Kurtosis. Tout d'abord, les deux interactions ayant de l'influence sur le facteur de crête sont retrouvées pour le Kurtosis, il s'agit des interactions Angle d'hélice (A) Largeur de dent (C) et Angle d'hélice (A) Vitesse (F). Deux nouvelles interactions ont une importance dans le Kurtosis, Nombre de dents (D) Pas diamétral (E) et Nombre de dents (D) Vitesse (F). Par rapport au facteur de crête, le nombre dents est apparu comme paramètre significatif pour déterminer la valeur du Kurtosis. Mais l'angle d'hélice (A) et le nombre de dents (D) agissent seulement sur le Kurtosis de manière combiné avec un autre paramètre. Tous les paramètres possédant une influence significative se retrouvent dans les interactions.

5.3.6.1 Étude de l'influence des paramètres sur le Kurtosis

Les figures qui suivent présentent les résultats obtenus pour les différentes interactions possédant une influence significative sur le Kurtosis. La première chose que l'on peut remarquer est que la plupart des graphiques présentent des résultats croisés. En effet, l'influence d'un paramètre ne possède pas la même influence sur le Kurtosis en fonction des autres paramètres.

Figure 5.37 Influence des paramètres sur le Kurtosis, partie 1.

Figure 5.38 Influence des paramètres sur le Kurtosis, partie 2.

Seul le pas diamétral (E) semble posséder la même influence dans tous les cas, figure 5.38 I. Le pas diamétral permet de réduire le Kurtosis. L'explication reste la même que pour le facteur de crête. C'est la diminution du volume et de l'inertie des roues qui est à l'origine de cette diminution.

Pour les autres paramètres, les figures 5.38 I, 5.38 II, 5.39 III et 5.39 IV présentent des résultats croisés. L'analyse des interactions doit donc être effectuée.

5.3.6.2 Étude de l'influence des interactions sur le Kurtosis

Quasiment l'ensemble des paramètres agissent de manière combinée. Le tableau 5.20 montre quelles sont les interactions qui agissent sur le Kurtosis. Les numéros font référence aux différentes figures (5.38 et 5.39) présentées précédemment. Les cases grisées du tableau 5.20 correspondent aux effets dont l'influence est négligeable pour les données expérimentales acquises. Comme pour la valeur efficace et le facteur de crête, ce n'est pas parce que les interactions ne possèdent pas d'influence dans cette étude qu'elles ne pourraient pas en avoir dans une autre étude où la plage de variation des paramètres serait plus importante.

Tableau 5.19

	Vitesse	Angle d'hélice	Nombre de dents	Pas diamétral	Largeur de dents	Couple
Vitesse		IV	III			
Angle d'hélice					1	
Nombre de dents				II		
Pas diamétral						
Largeur de dents						
Couple						

Résultats des interactions sur le Kurtosis

Sur la figure 5.38 I, les résultats sur l'angle d'hélice (A) et sur la largeur de dents (C) sont croisés. Ainsi pour les roues droites, augmenter la largeur diminue le Kurtosis (mais les intervalles de confiance se chevauchent), les déformations des dents sont moins importantes, les chocs sont donc moins violent. Alors que pour des roues hélicoïdales, augmenter la largeur augmente le Kurtosis, malgré le fait que les déformations soient diminuées, la hausse du rapport de conduite et de la largeur augment le nombre de défauts qui entrent en jeu sur un cycle d'engrènement. Cette hausse peut donc contrer l'effet de la diminution des déformations élastiques. Sur la figure 5.38 II, le pas diamétral réduit le Kurtosis. Cette réduction est plus prononcée pour des roues de 24 dents que pour des roues de 34 dents. Pour des roues plus petites, les chocs sont moins importants, en effet l'inertie et la masse de ces roues sont réduites, l'énergie à transmettre est donc moins importante. Les chocs sont moins violents. Le Kurtosis diminue.

Sur la figure 5.39 III, les résultats pour la vitesse (F) et le nombre de dents (D) sont croisés. Enfin sur la figure 5.39 IV, les résultats sur la vitesse (F) et l'angle d'hélice (A) sont croisés. Il faudra donc réaliser les tableaux de résultats pour la vitesse, le nombre de dents, l'angle d'hélice et la largeur de dents. Il sera alors possible d'identifier si le grade de qualité ou les résonances ont perturbé les résultats.

Le premier tableau (tableau 5.21) montre les résultats de l'angle d'hélice (A) sur le Kurtosis. Les résultats montrent dans l'ensemble une augmentation du Kurtosis. La diminution de la valeur efficace peut être à l'origine de cette hausse, mais aussi le grade de qualité des roues. En effet, ce grade est très faible sur l'angle d'hélice et en passant d'un angle d'hélice de 0 à 20 degrés, on augmente la longueur de la ligne d'action et le nombre de paires de dents en prise. Les défauts sont donc eux aussi augmentés ce qui introduit des chocs supplémentaires. Pour la vitesse de 500 tr/min, les roues de 24 dents possèdent un effet opposé à l'effet des roues de 34 dents. Comme les roues sont de plus petits diamètres, moins lourdes et possèdent moins d'inertie, il est possible que le passage à une roue hélicoïdale permette de diminuer l'amplitude des chocs, ce résultat est confirmé par l'influence du pas diamètral. En effet, il a été remarqué que la diminution de la taille de la roue par modification du pas diamétral permet de réduire le Kurtosis.

Pour la vitesse de 1000tr/min, on distingue moins ce résultat. Lorsque l'on augmente la vitesse, l'énergie à transmettre est beaucoup plus importante. De ce fait, les roues minces se déforment davantage et produisent plus de vibrations. Ici ce sont les chocs qui voient leur amplitude augmenter. Pour les roues de 24 dents et de 3 po de large, le Kurtosis diminue, les dents étant plus larges, elles résistent mieux à l'effet de la vitesse. On remarque tout de même que la diminution du Kurtosis est moins importante que pour la vitesse de 500 tr/min

Tableau 5.20

	Grade d	e qualité	5	500tr/n	nin	10	000tr/n	nin	n	n	
145Nm	Angle	d'hélice	An d'ha	Angle d'hélice		An d'ho	gle flice	Écart	An d'hé	gle	
	0	20	0	20	1.01	0	20	1.01	0	20	
Pd4N24F0.5	4	0	3.90	3.11	-20.3	2.80	3.20	+14.3	1.59	1.79	
Pd4N24F3	6	0	4.03	2.93	-27.3	3.56	3.46	-2.8	1.59	2.87	
Pd4N34F0.5	2	1	3.86	4.08	+5.7	3.18	4.55	+43.1	1.67	1.85	
Pd4N34F3	4	3	2.78	3.76	+35.3	2.90	3.24	+11.7	1.67	2.94	
Pd6N24F0.5	4	3	3.64	2.55	-29.9	2.57	2.90	+12.8	1.59	1.88	
Pd6N24F3	0	0	4.15	3.09	-25.5	2.46	2.27	-7.7	1.59	3.52	
Pd6N34F0.5	1	0	2.25	3.22	+43.1	3.33	3.51	+5.4	1.67	1.93	
Pd6N34F3	0	1	3.68	4.28	+16.3	2.33	3.78	+62.2	1.68	3.57	
	Grade d	le qualité		500tr/n	nin	10	000tr/n	nin	m		
160Nm	Angle	d'hélice	Angle d'hélice		Écart (%)	Angle d'hélice		Écart (%)	Angle d'hélice		
	0	20	0	20	1.00	0	20	()	0	20	
Pd4N24F0.5	-4	0	3.67	3.58	-2.5	3.04	3.38	+11.2	1.59	1.79	
Pd4N24F3	6	0	3.47	2.88	-17	3.35	2.43	-27.5	1.59	2.87	
Pd4N34F0.5	2	1	3.55	4.30	+21.1	3.22	4.25	+32	1.67	1.85	
Pd4N34F3	4	3	3.63	4.52	+24.5	3.39	3.52	+3.8	1.67	2.94	
Pd6N24F0.5	4	3	2.56	2.35	-8.2	2.94	2.98	+1.4	1.59	1.88	
Pd6N24F3	0	0	3.93	2.63	-33.1	3.12	2.69	-13.8	1.59	3.52	
Pd6N34F0.5	1	0	2.54	2.94	+15.7	2.79	3.83	+37.3	1.67	1.93	
Pd6N34F3	0	1	3.14	3.50	+11.5	2.67	3.89	+45.7	1.68	3.57	

Influence de l'angle d'hélice sur le Kurtosis

Le tableau 5.22 s'intéresse à l'effet de la largeur de dent (C) sur le Kurtosis. En augmentant la largeur de dents, la masse et l'inertie des roues sont augmentées. De plus, les grades de qualité médiocres se traduisent par une accumulation des défauts sur la largeur des dents. Comme les erreurs sont plus nombreuses avec la largeur, les chocs devraient être plus nombreux eux aussi. Dans l'ensemble, les résultats trouvés pour le Kurtosis concordent avec cette hypothèse. Seuls quelques cas sortent du lot. Les combinaisons de paramètres qui se distinguent sont : Pd6Ψ0N34 et Pd6Ψ0N24. Pour ces deux combinaisons, le grade de qualité diminue en passant de la roue de 0.5 po à la roue de 3 po de large, on aurait donc dû s'attendre à une augmentation des différents indicateurs, or ceux-ci diminuent.

Pour la combinaison Pd640N24, il n'existe pas de fréquence de résonance qui aurait pu amplifier un signal par rapport à un autre. Par contre pour la combinaison Pd640N34, des fréquences de résonance sont venues amplifier certaines fréquences caractéristiques des engrenages, de plus il est impossible de dire en quelle proportion ces résonances influencent les vibrations. La raison de la diminution des indicateurs pour cette combinaison peut alors s'expliquer par les résonances. Pour l'autre combinaison, dont les résultats ne concordent pas avec les autres roues, il se peut que des erreurs de mesure aient été effectuées.

Comme il a été remarqué dans la partie 5.3.5, l'effet de la largeur de dents est plus prononcé pour des roues hélicoïdales que pour des roues droites. En comparant les résultats expérimentaux, on remarque tout de suite que les roues hélicoïdales possèdent plus d'influence sur le Kurtosis que les roues droites. À 1000tr/min, l'augmentation du Kurtosis est en moyenne pour les roues hélicoïdales de 33% alors que pour les roues droites, cette augmentation est de l'ordre de 1%, soit négligeable. Ces résultats confirment ceux obtenus sur le facteur de crête.

Tableau 5.21

	Grade d	e qualité	-	00tr/n	nin	1	000tr/n	nin	m	
145Nm	Largeu	ir en po	Larg	Largeur en po		Lar	geur po	Écart (%)	Largeur en po	
	0,5	3	0,5	3	1.141	0,5	3	(74)	0,5	3
Pd4 \0N24	4	6	3,90	3.86	-1	2.80	3.18	+13.6	1.59	1.59
Pd4 @20N24	0	0	3.11	4.08	+31.2	3.20	4.55	+42.2	1.79	2.87
Pd4 \P0N34	2	4	4.03	2.78	-31	3.56	2.90	-18.5	1.67	1.67
Pd4 @20N34	1	3	2.93	3.76	+28.3	3,46	3.24	-6.4	1.85	2.94
Pd6 \P0N24	4	0	3.64	2.25	-38.2	2.57	3.33	+29.6	1.59	1.59
Pd6 @20N24	3	0	2.55	3.22	+26.3	2.90	3.51	+21	1.88	3.52
Pd6 #0N34	1	0	4.15	3.68	-11.3	2.46	2.33	-5.3	1.67	1.68
Pd6 \presspectrum 20N34	0	1	3.09	4.28	+38.5	2.27	3.78	+66.5	1.93	3.57
	Grade d	de de qualité		500tr/min		1000tr/min			n	n
160Nm	Largeu	Largeur en po		Largeur en po		Largeur en po		Écart (%)	Largeur en po	
	0.5 3		0,5	3	(70)	0,5	3	(24)	0,5	3
Pd4 @0N24	4	6	3.67	3.55	-3.3	3.04	3.22	+5.9	1.59	1.59
Pd4 \psilon24	0	0	3.58	4.30	+20.1	3.38	4.25	+25.7	1.79	2.87
Pd4 @0N34	2	4	3.47	3.63	+4.6	3.35	3.39	+1.2	1.67	1.67
Pd4 \u00c020N34	1	3	2.88	4.52	+56.9	2.43	3.52	+44.9	1.85	2.94
Pd6 @0N24	4	0	2.56	2.54	-0.8	2.94	2.79	-5.1	1.59	1.59
Pd6 @20N24	3	0	2.35	2.94	+25.1	2.98	3.83	+28.5	1.88	3.52
Pd6 / P0N34	1	0	3.93	3.14	-20.1	3.12	2.67	-14.4	1.67	1.68
the second state water and the										

Influence de la largeur de dent sur le Kurtosis

Le tableau 5.23 présente les résultats de la vitesse (F) sur le Kurtosis. Les résultats par rapport à la vitesse sont très hétérogènes. En effet il est difficile de remarquer une tendance particulière. Les résultats varient en fonction des autres paramètres. En regroupant l'ensemble des résultats, l'influence de la vitesse est peu significative. En effet, en augmentant la valeur efficace du signal d'un certain pourcentage, ce n'est pas la totalité de celui-ci qui est multiplié. Il change complètement. La forme du signal évolue. Les chocs sont plus rapprochés, et se discerne moins facilement ce qui a tendance à diminuer les valeurs du Kurtosis. Mais comme la vitesse augmente, l'énergie à transmettre est plus importante. Les petites roues se déforment davantage et les chocs sont sensiblement équivalents ou plus forts. Ainsi pour les roues avec un pas diamétral de 4 po⁻⁻⁻, le Kurtosis est sensiblement le même entre les vitesses de 500 et 1000 tr/min. Alors que pour les roues

dont le pas diamétral est de 6 po⁻¹, le Kurtosis augmente, car les dents plus petites se déforment davantage.

Tableau 5.22

		145Nm			160Nm		Grade
Roue	500 tr/min	1000 tr/min	Écart (%)	500 tr/min	1000 tr/min	Écart (%)	de qualité
Pd4y0N24F05	3.90	2.80	-28	3.67	3.04	-17	4
Pd4w0N34F05	4.03	3.56	-11	3.47	3.35	-3	2
Pd4w0N24F3	3.86	3.18	-17	3.55	3.22	-9	6
Pd4w0N34F3	2.78	2.90	+4	3.63	3.39	-7	4
Pd4w20N24F05	3.11	3.20	+3	3.58	3.38	-6	0
Pd4y20N34F05	2.93	3.46	+18	2.88	2.43	-15	1
Pd4w20N24F3	4.08	4.55	+11	4.30	4.25	-1	0
Pd4w20N34F3	3.76	3.24	-14	4.52	3.52	-22	3
Pd6w0N24F05	3.64	2.57	-29	2.56	2.94	+15	4
Pd6w0N34F05	4.15	2.46	-41	3.93	3.12	-21	1
Pd6y0N24F3	2.25	3.33	+48	2.54	2.79	+10	0
Pd6y0N34F3	3.68	2.33	-37	3.14	2.67	-15	0
Pd6w20N24F05	2.55	2.90	+14	2.35	2.98	+27	3
Pd6y20N34F05	3.09	2.27	-26	2.63	2.69	+2	0
Pd6y20N24F3	3.22	3.51	+9	2.94	3.83	+30	0
Pd6w20N34F3	4.28	3.78	-12	3 50	3.89	+11	1

Influence de la vitesse sur le Kurtosis

Le nombre de dents (D) possède des influences croisées avec la vitesse et le pas diamétral sur le Kurtosis. Le tableau 5.24 présente les résultats expérimentaux, les grades de qualité, les essais où des résonances se sont superposées aux fréquences propres des engrenages et les rapports de conduite. Les résultats sur le nombre de dents sont très hétérogènes. Il y a peu de correspondance entre tous les essais. Ainsi, les résultats sont différents entre les vitesses de 500 et 1000tr/min et entre les couples de 145 et 160Nm. Il est donc très difficile de tirer des conclusions. En regardant le graphique de Pareto, on se rend compte que le nombre de dents n'est un paramètre significatif. En effet, sur la figure 5.29, il est l'un des derniers paramètres. En traçant le graphique des moyennes avec le logiciel STATGRAPHICS, les résultats sont confirmés, voir figure 5.40. Les moyennes pour la valeur de 24 et 34 dents sont quasiment identiques, et les intervalles de confiance sont très larges.

Tableau 5.23

Influence du nombre de dents sur le Kurtosis

	Grade de	e qualité	5	00tr/m	in	10	000tr/n	nin	n	n
145Nm	Nombre	de dents	Non de d	Nombre de dents		Non de d	nbre ents	Écart (%)	Nombre de dents	
	24	34	24	34	(70)	24	34	(10)	24	34
Pd4P0F05	4	2	3.90	4.03	+3.3	2.80	3.56	+27.1	1.59	1.67
Pd440F3	6	4	3.86	2.78	-28	3.18	2.90	-8.8	1.59	1.67
Pd4\20F05	0	1	3.11	2.93	-5.8	3.20	3.46	+8.1	1.79	1.85
Pd4420F3	0	3	4.08	3.76	-7.8	4.55	3.24	-28.8	2.87	2.94
Pd640F05	4	1	3.64	4.15	+14	2.57	2.46	-4.3	1.59	1.67
Pd6\0F3	0	0	2.25	3.68	+63.6	3.33	2.33	-30	1.59	1.68
Pd6\20F05	3	0	2.55	3.09	+21.2	2.90	2.27	-21.7	1.88	1.93
Pd6\20F3	0	1	3.22	4.28	+32.9	3.51	3.78	+7.7	3.52	3.57
	Grade de qualité		500tr/min			1	000tr/m	in	n	n
160Nm	Nombre	Nombre de dents		Nombre de dents		Nombre de dents		Écart	Nombre de dents	
Concerns 13	24	34	24	34	(70)	24	34	(74)	24	34
Pd440F05	4	2	3.67	3.47	-5.4	3.04	3.35	+10.2	1.59	1.67
Pd4¥0F3	6	4	3.55	3.63	+2.3	3.22	3.39	+5.3	1.59	1.67
Pd4\20F05	0	1	3.58	2.88	-19.6	3.38	2.43	-28.1	1.79	1.85
Pd4920F3	0	3	4.30	4.52	+5.1	4.25	3.52	-17.2	2.87	2.94
Pd640F05	4	1	2.56	3.93	+53.5	2.94	3.12	+6.1	1.59	1.67
Pd6P0F3	0	0	2.54	3.14	+23.6	2.79	2.67	-4.3	1.59	1.68
Pd6\20F05	3	0	2.35	2.63	+11.9	2.98	2.69	-9.7	1.88	1.93

Figure 5.39 Influence du nombre de dents sur le Kurtosis.

En conclusion de cette partie sur le Kurtosis, les résultats trouvés sur le facteur de crête sont retrouvés avec le Kurtosis. Ainsi, la taille de la roue joue un rôle important au niveau de l'amplitude des chocs. Tout d'abord, la réduction de la taille des roues par modification du pas diamétral permet de réduire l'amplitude des chocs. L'augmentation de l'angle d'hélice augmente en moyenne les chocs, mais cet effet est moins prononcé pour les petites roues et les roues minces. En effet, c'est surtout l'augmentation du rapport de conduite qui est à l'origine de la hausse du Kurtosis. Ensuite, la largeur de dents agit en même temps que l'angle d'hélice. Ainsi pour des roues droites, l'augmentation de la largeur ne possède que peu d'influence sur le Kurtosis, alors que pour des roues hélicoïdales, l'accroissement de la largeur provoque une hausse du Kurtosis. Enfin, la vitesse agit de manière distincte sur les roues à dents minces et sur les roues à dents minces et sur les roues à dents minces. Les dents minces se déformeront par contre davantage avec la vitesse, ce qui induit plus de chocs et donc la hausse du Kurtosis.

5.4 Bilan du chapitre

Au vu des résultats pour chacun des six paramètres étudiés, il est possible de donner une influence de leur variation sur le comportement dynamique des engrenages. Pour certains paramètres, les conclusions n'ont pu se faire sur l'ensemble des indicateurs, car le grade de qualité très faible des roues est venu perturber les réponses vibratoires des différents montages.

Le pas diamétral permet en l'augmentant de diminuer la valeur efficace, le Kurtosis et le facteur de crête. Ces diminutions sont liées à l'augmentation du rapport de conduite. Ces diminutions signifient une baisse de l'amplitude des chocs et un meilleur engrènement. Le volume diminue de 55.6% en passant d'un pas de 4 à 6 po¹, mais les contraintes augmentent de 115%, point très important qui est à l'origine du choix du pas diamétral. La taille des roues et le rapport de conduite dictent les résultats. Même si les vibrations diminuent un peu, le changement de pas augmente manière importante les contraintes, et le matériau à utiliser pour des petites roues sera sûrement différents (donc plus cher) pour supporter les contraintes dues à la réduction du volume. Pour compenser cette augmentation de contrainte, les roues pourraient être plus épaisses.

Le passage d'une largeur de dent de 0.5 à 3 po a été délicat à analyser dans cette étude. L'ensemble des roues possède un grade de qualité faible sur l'angle d'hélice. Ainsi plus la roue sera large, plus les défauts de fabrication seront importants. Ces défauts introduisent donc des variations sur le profil théorique des dents, variations qui contribuent à l'erreur de transmission. Cette erreur de transmission est à l'origine de vibrations supplémentaires lors de l'augmentation de la largeur de dent. Il semblerait que l'augmentation de la masse possède une influence sur les vibrations. Il serait tout de même intéressant de mener une étude avec des roues de très bonne qualité pour diminuer les erreurs de transmission, et vérifier l'influence réelle de la masse. Au niveau des contraintes, celles-ci sont réduites de 80%, mais l'expansion de volume est de 500%. La taille des roues, le rapport de conduite et le grade de qualité sont à l'origine des résultats obtenus.

Le passage d'un angle d'hélice de 0 à 20 degrés permet de diminuer de manière importante les vibrations, baisse de 40% de la valeur efficace, ceci s'explique par le fait que l'introduction d'un angle d'hélice non nul mène à une hausse du rapport de conduite. Il a été montré dans la littérature que cette hausse est bénéfique pour les engrenages, elle entraîne une diminution de la valeur efficace des vibrations. Le Kurtosis et le facteur de crête ont tendance à augmenter lorsque le changement d'angle d'hélice implique une modification importante du rapport de conduite (roues hélicoïdales larges), mais ils restent stables pour les roues droites. Les roues possèdent des grades de qualité très faible, en passant d'un angle de 0 à 20 degrés la longueur de la ligne d'action et le nombre de dents en contact augmentent, augmentant aussi les défauts et par conséquent les impacts isolés. Les contraîntes sont diminuées de 35% et l'expansion de volume n'est que de 13.5%, ce qui représente un très bon rapport réduction de contraîntes sur gain de volume. Ici les vibrations et les contraîntes sont fonction du rapport de conduite et de la taille de la roue.

La hausse du couple transmis augmente de manière proportionnelle les contraintes. lei la hausse était assez faible, donc les contraintes n'ont que peu augmenté. Le couple possède seulement une influence significative pour la valeur efficace. Deux cas se distinguent par celle-ci. Pour un pas diamétral de $4 po^{-1}$, le changement de couple n'affecte que les vibrations. À l'inverse pour un pas diamétral de $6 po^{-1}$, la valeur efficace des vibrations augmente. Les dents plus petites et donc moins rigides pour un pas diamétral de $6 po^{-1}$ sont plus sensibles à la variation du couple. Peu importe la taille des dents, il y aura toujours un couple seuil à partir duquel la variation de ce même couple aura un effet plus marqué sur les vibrations. Ici, le rapport entre le couple et le pas diamétral permet d'expliquer les résultats différents pour les deux pas diamétraux choisis. La vitesse augmentant aussi les contraintes joue un rôle dans la valeur du couple seuil.

L'augmentation de vitesse se fait beaucoup ressentir au niveau des vibrations, la vitesse n'est un paramètre significatif que pour la valeur efficace et le couple. La valeur efficace des vibrations est plus que multipliée par quatre lors du passage de 200 à 1000tr/min. Les contraintes augmentent elles aussi, 10%. L'effet de la vitesse est intégré dans la norme AGMA pour le calcul des contraintes. Pour le Kurtosis, on retrouve sensiblement le même comportement que pour l'influence du couple sur le facteur de crête. Ainsi pour des dents larges, l'augmentation de la vitesse ne possède que peu d'effets sur les amplitudes des chocs, alors que pour des dents minces combinées à une qualité médiocre des roues, l'augmentation de la vitesse implique une hausse non négligeable des contraintes qui déforment les dents de manière plus importantes, augmentant ainsi l'amplitude des chocs et done le Kurtosis.

L'augmentation du nombre de dents réduit les contraintes de 80%, mais l'expansion de volume est de 100%. Le rapport entre réduction de contrainte et gain de volume est correct, mais l'augmentation de la taille de la roue est à l'origine de nombreux problèmes vibratoires. Le nombre de dents joue un rôle significatif seulement pour la valeur efficace. La masse et le nombre de chocs par tour étant augmentés avec 34 dents par rapport à 24 dents, il est clair que la valeur efficace des vibrations est elle aussi en hausse.

Plusieurs défauts de fabrication ont aussi influencé les résultats des vibrations. De par la mauvaise qualité des engrenages, des erreurs de transmission se sont ajoutées à la variation de rigidité du contact. Ces erreurs entraînent une augmentation des vibrations. Le balourd est présent lorsque l'on peut repérer la fréquence de rotation de l'arbre possédant le faux rond sur les diagrammes de Fourier. Les modulations des harmoniques de la fréquence d'engrènement sont synonymes de dents en mauvais état. Le nombre de modulations révèle le nombre de dents de mauvaise qualité, celles qui induisent des vibrations supplémentaires. Des modulations de la fréquence d'engrènement ont été trouvées, et ce, sur un grand nombre de roues. Les modulations sont de plus très nombreuses, indiquant qu'un grand nombre de dents sur les roues sont en mauvais état. Sur les fiches techniques des roues, seules trois dents ont été mesurées, mais il se peut que beaucoup plus de dents soient en

mauvais état. Il se peut également que les roues possèdent des dents avec des défauts plus importants que ceux mesurés sur les fiches techniques. La présence de la deuxième harmonique de la fréquence d'engrènement est liée au changement de direction du frottement le long de la ligne d'engrènement. Ce changement apporte des vibrations amplifiées par le fait que les roues sont de mauvaises qualités. Enfin, les roues esclaves introduisent elles aussi des vibrations. Ces vibrations se trouvent à la troisième harmonique de la fréquence d'engrènement des engrenages étudiés, puisque les engrenages esclaves avaient trois fois plus de dents. De plus si la qualité des engrenages esclaves est la même que celle des engrenages testés, leurs vibrations sont très importantes et se répercutent sur les vibrations étudiées.

CONCLUSION

Les travaux portant sur la dynamique des engrenages droits et hélicoïdaux ont été répertoriés dans la revue de littérature, permettant de situer le projet dans le contexte actuel. Cette revue met en évidence le faible nombre d'études expérimentales en comparaison au nombre d'études numériques des engrenages. Plusieurs modèles numériques ont été développés, de un à plusieurs degrés de liberté, mais ces études se contentent généralement de valider leur modèle par un seul essai pour un engrenage particulier. La plupart des études expérimentales, quant à elles, étudient un engrenage spécifique sur un domaine de vitesse assez grand pour trouver les résonances primaires et subharmoniques. Mais peu d'études s'intéressent à l'influence de paramètres de conceptions.

L'un des paramètres les plus étudiés est le rapport de conduite. Ce paramètre bien qu'influençant de manière non négligeable les vibrations des engrenages n'a pas été considéré ici comme un paramètre de conception proprement dit. Sa valeur dépend grandement d'autres paramètres tels que l'entraxe, le pas diamétral, l'angle d'hélice, la largeur de dent, et le nombre de dents. La présente étude tente de répondre aux manques de tests sur des roues, en vérifiant l'influence de différents paramètres sur les vibrations et sur les contraintes en pied de dents. Le plan d'expérience choisi est un plan d'expérience double, les résultats de certaines roues ont été interpolés afin de construire un plan d'expérience complet. Ce plan se décompose en deux parties distinctes, l'une portant sur les accélérations de l'arbre instrumenté et l'autre portant sur les contraintes en pied de dents.

Les différents paramètres dont l'influence a été analysée sur le comportement dynamique des engrenages (contraintes et vibrations) sont les suivants :

- a. le pas diamétral ($Pd = 4po^{1}$ et $6po^{1}$)
- b. l'angle d'hélice (ψ=0° et 20°)
- c. la largeur de face ($F = \frac{1}{2} po$ et 3 po)

d. le nombre de dents (N = 24 - 25 et N = 34 - 35 pour $Pd = 4po^{1}$ et N = 24 - 25et N = 37 - 38 pour $Pd = 6po^{1}$)

e. le couple transmis (T = 145Nm et 160Nm)

f. la vitesse de rotation ($\omega = 200tr / \min$, $500tr / \min$ et $1000tr / \min$)

Pour mener à bien les expériences, le banc d'essai disponible est comparable aux bancs utilisés dans la littérature. Il s'agit d'un banc à circuit fermé. Ce banc comporte deux axes principaux. Un des arbres comporte un dynamomètre mécanique permettant l'introduction du couple. À une des extrémités, la paire de roues du plan d'expérience est installée. À l'autre extrémité, un engrenage est utilisé afin de fermer le circuit de puissance.

Les relevés des fréquences de résonances des différents montages étudiés ont ensuite été effectués. Pendant les essais, les fréquences de résonance ont pu coïncider avec les fréquences propres des engrenages entraînant ainsi une augmentation de l'amplitude de cette fréquence. Les fréquences de résonance étant différentes en fonction du nombre de paires de dents en prise, il a fallu moyenner leurs valeurs sur un tour à l'aide du rapport de conduite. Ce sont ces valeurs moyennées qui ont été introduites sur les graphiques de Fourier. Une fois les valeurs des résonances relevées, les essais ont été conduits. Pour certaines combinaisons de paramètres, les résonances ont perturbé les résultats escomptés.

L'analyse des résultats de contraintes et d'accélérations a été réalisée, les paramètres choisis pour cette étude ne sont pas les paramètres les plus significatifs pour rendre compte de la dynamique des engrenages. D'autres paramètres étant des conséquences de ceux choisis pourraient permettre de mieux caractériser la dynamique des engrenages. Ces paramètres sont le rapport de conduite, la masse ou le diamètre et la largeur, les grades de qualité, la vitesse de rotation, ainsi que le rapport entre le pas diamétral et le couple transmis, ou les contraintes.

En effet, modifier les dimensions des engrenages permet de réduire les contraintes, il existe plusieurs façons de les modifier, augmenter le nombre de dents, le pas diamétral, l'angle d'hélice, ou encore la largeur. Ces changements ont des conséquences sur les vibrations des engrenages. Mais ce n'est pas le facteur ayant le plus d'influence, le rapport de conduite comme il a été souligné maintes fois dans la littérature est un excellent paramètre pour caractériser la dynamique des engrenages. En effet si celui-ci est choisi entier, l'amplitude des vibrations sera très faible. La vitesse de rotation des arbres est elle aussi très importante. Comme vu dans cette étude, l'augmentation de la vitesse est néfaste pour les vibrations, la valeur efficace de celle-ci augmente énormément. Ensuite, comme remarqué le rapport entre la taille des dents et le couple transmis est important, il peut aussi se traduire par le niveau de contraintes dans les dents, qui prend en compte la taille totale de la dent. Si les dents sont assez larges, il sera possible d'augmenter le couple de manière importante sans trop perturber les vibrations des engrenages, alors que pour des dents minces, de petites variations de couple modifieront les caractéristiques vibratoires de l'engrenage testé.

Le dernier paramètre à étudier beaucoup plus précisément est le grade de qualité des roues. Ici, les grades de qualités médiocres sont à l'origine de plusieurs résultats faussés, notamment sur la largeur des dents, mais aussi sur l'angle d'hélice, les défauts étant plus nombreux à agir sur l'engrènement pour des roues larges ou avec plusieurs paires de dents en prise. Il faudrait étudier chaque défaut de façon distincte, et voir leur influence sur les accélérations. En effet, un mauvais grade de qualité sur le faux rond n'agira pas de la même manière qu'un grade de qualité faible sur le profil.

En conclusion, la mesure des déformations pour des engrenages en mouvement à haute vitesse n'est pas adaptée. Par contre, elle peut s'avérer utile pour des mesures statiques ou à faible vitesse. Enfin, la partie accélération permet d'identifier quelles sont les fréquences participant aux vibrations des engrenages. La valeur efficace permet de classer les différentes roues sur une échelle de puissance de vibration. Le facteur de crête et le Kurtosis permettent eux de connaître l'amplitude des chocs lors de l'engrènement. Des paramètres plus adaptés sont apparus au cours de cette étude, les futures études devraient donc se limiter à ceux-ci : le rapport de conduite, la masse, le grade de qualité, la vitesse, et le rapport entre le couple et le pas diamétral.

RECOMMANDATIONS

Cette section s'intéresse aux points qui devraient être corrigés si une future étude était menée sur le même sujet, la dynamique des engrenages en fonction de différents paramètres de conception.

Le grade de qualité de l'ensemble des roues devrait être le même, non seulement le grade de qualité générale, mais aussi tous les grades qui servent à son identification. Ainsi pour les engrenages, les grades de qualité sur le faux rond, le profil, le pas et l'angle d'hélice devraient posséder la même valeur pour toutes les roues. Par exemple si seulement le grade de qualité générale est égal pour toutes les roues, il est possible que pour certaines, ce soit la qualité sur le faux rond qui soit mauvais et pour d'autres la qualité sur le profil. Le faux rond n'influence pas de la même façon les vibrations que les erreurs de profil.

Durant les expériences effectuées, ne connaissant pas la capacité de la colle des jauges à résister au bain d'huile, l'engrenage à tester a simplement été graissé entre chaque essai pour éviter le frottement. Malgré que la graisse utilisée ait été de la graisse pour de forts couples, le frottement a été présent sur les roues, et en a abîmé quelques-unes. Les prochains essais, où il n'y aura probablement pas de jauges devraient se faire avec des conditions de lubrification optimales pour préserver la qualité des roues qui seront testées, surtout si celles-ci possèdent un grade de qualité élevé.

Pour la prochaine campagne d'essai, les paramètres importants qu'il faudra tester sont le rapport de conduite, la masse des roues, la vitesse de rotation, et le rapport entre le couple et le pas diamétral. Pour ces paramètres, les roues à tester devraient être choisies avec le meilleur grade de qualité possible dans le but d'éliminer au maximum toutes les erreurs de transmission, et conserver ainsi l'influence propre de chaque paramètre. Les vibrations occasionnées seront seulement celles produites par l'engrènement et influencées par les paramètres contrôlés, cela permettra l'identification du comportement général des roues. L'influence de chaque paramètre pourra être identifiée de manière plus précise. Ensuite, une autre étude devrait se pencher sur l'étude des différentes dimensions contrôlées par la norme AGMA. La norme définit le grade de qualité d'une roue d'engrenage en fonction d'une plage de tolérance pour un certain nombre d'éléments géométriques. Il s'agissait ici du profil, de l'angle d'hélice, du faux rond et du pas diamétral. Chacun de ces éléments géométriques pourrait être étudié de façon distincte. Une campagne expérimentale de ce type permettrait de définir l'influence réelle de chacun des paramètres géométriques sur la réponse vibratoire des engrenages.

Il existe quatre grades de qualité différents. L'influence de chacun d'eux sur le comportement dynamique des engrenages devrait être étudiée. Ainsi lorsque les roues ne possèderont pas une qualité élevée sur un ou plusieurs grades, il sera possible de déterminer comment cette mauvaise qualité influencera le comportement des engrenages.

ANNEXE I

COLLAGE DES JAUGES

Le collage des jauges est une étape cruciale de l'expérimentation car c'est elle qui déterminera la qualité des mesures des contraintes sur les dents. La première étape du collage des jauges est le sablage. Son but est de créer une surface de rugosité régulière, sans marques, pour pouvoir coller la jauge dessus. Par contre la finition de la surface ne doit pas être un poli miroir, il faut garder une certaine rugosité pour permettre à la colle d'adhérer à la surface. Une fois cette étape complétée, il faut nettoyer la pièce avec de l'alcool Isopropyl, puis avec le conditionneur M Prep-A, et essuyer assez vite avec une gaze avant que la solution ne sèche.

Ensuite il est possible de marquer le positionnement des jauges à l'aide d'un stylo à bille, ou d'une pointe de métal. Une fois marquée, il faut re-nettoyer la surface avec du conditionneur jusqu'à ce que le coton-tige avec lequel on enlève le produit ne soit plus coloré. Il faut applique beaucoup de neutraliseur MPrep5A avec un coton-tige, et essuyer avec une gaze dans une seule direction pour éviter de re-contaminer la surface nettoyée.

Il faut maintenant préparer la jauge, la sortir de son emballage à l'aide de pinces pour éviter de la contaminer, la poser sur une surface chimiquement neutre. Il faut ensuite coller du scotch MJG-2 sur la moitié de la jauge et sur l'ensemble du terminal. Il faut maintenant aligner le tout avec les repères effectués précédemment. La jauge est retirée à l'aide du scotch, et une fine couche de colle est mise sur la jauge et le spécimen. Il faut laisser sécher de 5 à 30 minutes à $24 \, {}^{\circ}C$ et 50% d'humidité. Remettre la jauge en position, recouvrir le tout avec une bande de téflon, placer un tampon de silicone dessus, et appliquer une pression de 70 à $480 \, kN / mm^2$.

La dernière étape est la mise au four de la pièce pour activer la colle. Le spécimen doit être mis dans le four froid et la température doit progressivement augmenter pour éviter les problèmes de bulles d'air et de collage inégale. La température doit ensuite retomber à $55 \,^{\circ}C$ avant de retirer le spécimen. Pour notre colle, la température de cure est de $325 \,^{\circ}F$ pendant 2 heures.

Dans cette étude, les jauges sont très petites et la méthode avec le scotch ne peut être employée, une autre méthode est donc utilisée pour mettre les jauges en place. Cette méthode est le « hot tack point ». Dans cette méthode, on recouvre d'une fine couche de colle, la jauge et le spécimen, et on laisse sécher au moins quinze minutes. Ensuite on place la jauge à la position prévue. Pour la fixer, on utilise une aiguille chauffée qui vient marquer la jauge en quatre points. Ainsi quatre points d'ancrage sont créés, ils empêcheront la jauge de se déplacer pendant l'étape de cure de la colle.

ANNEXE II

CONTRAINTE DE FLEXION SELON LA NORME AGMA

Tableau 1

Contraintes théoriques de flexion

Num.	Vitesse (w en	Couple (T	Velocité (V	Charge Transmise	K'V	Ks	Km	Kb	7	Sigma (e
inve.	torning #00	en (vm)	en rumin)	[V1165 N]	1.00	1.000	1.0.10	-	0.24	ovintm*2
-	500	2/5	785	3609	1,56	1,036	1,048	1	0,34	223,0
-	500	300	/85	3937	1,550	1,036	1,048	1	0,340	243,3
-	1000	215	15/1	3009	1,783	1,036	1,048	1	0,340	230,2
-	1000	300	15/1	3937	1,793	1,036	1,048	1	0,340	279,5
2	500	2/5	1113	2547	1,995	1,039	1,048	1	0,390	1/5,9
4	500	300	1113	2//8	1,395	1,039	1,048	1	0,390	191,9
4	1000	2/5	2225	2547	2,431	1,039	1,048	1	0,390	214,3
2	1000	300	2225	2779	2,431	1,039	1,048	1	0,390	233,8
5	500	275	830	3391	2,297	1,035	1,048	1	0,495	211,4
5	500	300	836	3700	2,297	1.035	1,048	1	0,495	230,6
5	1000	2/5	16/2	3391	2,900	1,036	1,048	1	0,496	266,9
5	1000	300	16/2	3700	2,900	1,035	1,048	1	0,496	291,1
6	500	275	1184	2394	2,264	1,039	1,048	1	0,540	135,4
6	500	300	1184	2611	2,264	1,039	1,048	1	0,540	147,7
6	1000	275	2368	2394	2,837	1,039	1,048	1	0,540	169,6
6	1000	300	2368	2611	2,837	1,039	1,048	1	0,540	185,1
9	500	275	524	5413	1,458	1,014	1,048	1	0,340	458,6
9	500	300	524	5906	1,458	1,014	1,048	1	0,340	500.3
9	1000	275	1047	.5413	1,647	1.014	1,048	1	0,340	518,3
9	1000	300	1047	5905	1,647	1,014	1,048	1	0,340	565,4
10	500	275	807	3511	2,030	1,017	1,048	1	0,400	353,2
10	500	300	807	3831	2,030	1,017	1,048	1	0,400	385,3
10	1000	275	1614	3511	2,493	1,017	1,048	1	0,400	433,6
10	1000	300	1614	3831	2,493	1,017	1,048	1	0,400	473,1
13	500	275	557	5087	1,572	1,014	1,048	1	0,496	318,6
13	500	300	557	5549	1,572	1,014	1,048	1	0,496	347,6
13	1000	275	1114	5087	1,815	1,014	1,048	1	0,496	367,7
13	1000	300	1114	5549	1,815	1,014	1,048	1	0,496	401,1
14	500	275	859	3300	2,316	1,017	1.048	1	0,556	272,5
14	500	300	859	3600	2,316	1,017	1,048	1	0,556	297,3
14	1000	275	1718	3300	2,929	1,017	1,048	1	0,556	344,6
14	1000	300	1718	3600	2,929	1,017	1,048	1	0,556	375,9
3	500	275	785	3609	1,374	1,140	1,115	1	0,340	38,3
3	500	300	785	3937	1,374	1,140	1,115	1	0,340	41,8
3	1000	275	1571	3609	1,522	1,140	1,115	1	0,340	42,4
3	1000	300	1571	3937	1,522	1,140	1,115	1	0,340	46,3
4	500	275	1113	2547	1,667	1,143	1,115	1	0,390	28,7
4	500	300	1113	2779	1,667	1,143	1,115	1	0,390	31,3
4	1000	275	2225	2547	1,943	1,143	1,115	1	0.390	33.4
4	1000	300	2225	2779	1,943	1,143	1,115	1	0,390	36,5
7	500	275	836	3391	2,297	1,140	1,115	1	0,495	41,3
7	500	300	836	3700	2,297	1,140	1,115	1	0,496	45,0
7	1000	275	1672	3391	2,900	1,140	1,115	1	0.496	52,1
7	1000	300	1672	3700	2,900	1.140	1,115	1	0.495	55,8
8	500	275	1184	2394	1,840	1,143	1,115	1	0,540	21,5
8	500	300	1184	2611	1,840	1,143	1,115	1	0,540	23,4
8	1000	275	2368	2394	2,198	1.143	1,115	1	0,540	25,6
8	1000	300	2368	2611	2.198	1 143	1.115	1.1	0.540	28.0

Tableau II

Contraintes théoriques de flexion (Suite)

Num. roue	Vitesse (w en tr/min)	Couple (T en Nm)	Velocité (V en ft/min)	Charge Transmise (Wt en N)	КV	Ks	Km	Kb	1	Sigma (en N/mm*2)
11	500	275	524	5413	2,007	1,116	1,143	1	0,340	126,2
11	500	300	524	5906	2,007	1,116	1,143	1	0,340	137,7
11	1000	275	1047	5413	2,467	1,116	1,143	1	0,340	155,2
11	1000	300	1047	5906	2,467	1,116	1,143	1	0,340	169,3
12	500	275	807	3511	2,273	1,119	1,115	1	0,400	77.1
12	500	300	807	3831	2,273	1,119	1,115	1	0,400	84,2
12	1000	275	1614	3511	2,863	1,119	1,115	1	0,400	97,2
12	1000	300	1614	3831	2,863	1,119	1,115	1	0,400	106,0
15	500	275	557	5087	2,041	1,116	1,138	1	0,496	82,3
15	500	300	557	5549	2,041	1,116	1,138	1	0,496	89,8
15	1000	275	1114	5087	2,518	1,116	1,138	1	0,496	101.6
15	1000	300	1114	5549	2,518	1,116	1,138	1	0,496	110,8
16	500	275	859	3300	2,065	1,119	1,115	1	0.556	47,4
16	500	300	859	3600	2,065	1,119	1,115	1	0,556	51,7
16	1000	275	1718	3300	2,544	1,119	1,115	1	0,556	58,4
16	1000	300	1718	3600	2,544	1,119	1,115	1	0.556	63,7

Le facteur de grosseur Ks

Pour calculer ce facteur, il est nécessaire de connaître la valeur du facteur de forme de Lewis qui dépend du nombre de dents de la roue étudiée.

$$K_s = 1,192 \left(\frac{F \sqrt{Y}}{P_d}\right)^{0.0535}$$
 (II.1)

Le facteur de chargement K0

Ce facteur dépend uniquement du type de chargement que les roues auront à subir. Ici, pour nos expériences, on suppose que la source de puissance est continue et on peut choisir un facteur $K_0 = 1$.

Le facteur de distribution de charge Km

Ce facteur dépend de la position de la roue par rapport aux paliers, de la largeur de la roue, et du diamètre primitif.

$$K_m = 1 + C_{mc} \cdot (C_{pf} \cdot C_{pm} + C_{mv} \cdot C_c)$$
 (II. 1)

Où :

Cmc = 1 pour des roues non bombées

 $C_e = 1$ pour des conditions de fonctionnement non optimisés

$$C_{pm} = \begin{cases} 1 & S1/S < 0,175 \\ 1.1 & S1/S \ge 0,175 \end{cases}$$
(II. 2)

Figure I Comment calculer les valeurs de S, S1 et S2. (Adapté de Joseph E. Shigley 2004)

Source : Cette figure est adaptée de Joseph E. Shigley 2004 «Mechanical engineering design» et correspond à la figure 14-10 «Definition of distances S and S1 used in evaluating Cpm» présentée en page 748 dans le document original.

S1 est la distance entre le pignon et le centre des deux paliers, et S est la distance entre les deux paliers.

$$C_{pf} = \begin{cases} \frac{F}{10.D_{p}} - 0,025 & -F \leq 1pouce \\ \frac{F}{10.D_{p}} - 0,0375 + 0,0125.F & -1 < F \leq 17 pouces \\ \frac{F}{10.D_{p}} - 0,1109 + 0,0207.F - 0,000228.F^{2} & -17 < F \leq 40 pouces \end{cases}$$
(II. 3)

Si
$$\frac{F}{10.D_p}$$
 < 0.05, alors on choisit $\frac{F}{10.D_p}$ = 0.05.

$$C_{m} = A + B.F + C.F^2$$
(II. 4)

Avec A = 0,247, B = 0,0167 et $C = -0,765.(10^{-4})$, car les roues utilisées sont des roues qui ne sont pas fabriqués en chaîne et qui ont un garde de qualité assez bas.

Le facteur d'épaisseur de la roue Kb

Dans cette étude, ce facteur est égal à 1. Ce facteur correspond au rapport entre la hauteur de la jante sur la hauteur de la dent. Pour les roues testées ici, la hauteur de la jante est pour toutes les roues au minimum deux fois plus grande que la hauteur de la dent.

Figure II Calcul du coefficient Kb. (Tiré de Joseph E. Shigley 2004)

Source : Cette figure est tirée de Joseph E. Shigley 2004 «Mechanical engineering design» et correspond à la figure 14-16 «Rim thickness factor Kb» présentée en page 752 dans le document original.

Le Facteur géométrique J

Le facteur géométrique est obtenu à l'aide d'abaques. Pour utiliser les abaques il suffit de connaître le nombre de dents des deux engrenages en contact, et on peut obtenir le facteur géométrique. Un abaque suffit pour les engrenages à denture droite, mais il faut utiliser deux abaques pour pouvoir trouver le facteur J pour les engrenages à dentures hélicoïdales.

Source : Cette figure est tirée de Joseph E. Shigley 2004 «Mechanical engineering design» et correspond à la figure 14-6 «Spur gear geometry factors J» présentée en page 741 dans le document original.

Pour les roues hélicoïdales, il faut d'abord utiliser l'abaque présenté sur la figure IV, puis multiplier la valeur trouvée par un coefficient multiplicateur provenant de l'abaque présenté à la figure V.

Source : Cette figure est tirée de Joseph E. Shigley 2004 «Mechanical engineering design» et correspond à la figure 14-8 «J'-factor multipliers for use with Fig.14-7 to find J» présentée en page 743 dans le document original.

Figure V Coefficient de J pour les roues hélicoïdales. (Tiré de Joseph E. Shigley 2004)

Source : Cette figure est tirée de Joseph E. Shigley 2004 «Mechanical engineering design» et correspond à la figure 14-7 «Helical-gear geometry factor» présentée en page 742 dans le document original.

ANNEXE III

CARACTÉRISTIQUES DE L'ANNEAU DE CONDUCTION

ANNEXE IV

PRÉSENTATION DES RÉSULTATS

Roue P, 4w0' F3N24, roue 3

Le rapport de conduite de la roue 3 est de 1.59.

Tableau III

	Une parie de der	ts en prises	Deux paires de d	lents en prises
	En torsion (Hz)	En flexion (Hz)	En torsion (Hz)	En flexion (Hz)
	61	133	90	133
в	76	153	194	153
N		325		325
13		537		541
		724		725
	56	133	98	135
Ε	80	153	207	157
S	108	325		324
16		580	8	581
	-	724	5	725

Résultats des fréquences de résonance pour la roue 3

Le tableau IV présente les résultats du calcul des fréquences de résonance moyennes. Le nombre de lignes du tableau représente le nombre de fréquences de résonance en torsion pour le cas une paire de dents en prise, et le nombre de fréquences par case représente le nombre de fréquences de résonance en torsion pour le cas deux dents en prise. Pour le couple de 145Nm, une interpolation linéaire est effectuée entre le couple de 130 et de 160Nm. Comme il existe trois fréquences pour le cas 160Nm, et seulement deux pour le cas 145Nm, on suppose que toutes les fréquences trouvées en plus sur le cas 160Nm se retrouvent au couple de 145Nm avec la même valeur.

Tableau IV

Fréquence de résonance moyenne de la roue 3

 Fréquence moyenne de résonance en torsion (Hz)

 130Nm
 160Nm
 145Nm

 78 / 139
 81 / 145
 79 / 142

 84 / 146
 91 / 155
 88 / 150

 102 / 166
 102 / 166

Tableau V

Grade de la qualité du montage 1 relié à la roue 3

		Grade de qualité								
Roue :	Qv VΦ	Qv VyT	Qv +/-Vpa	Qv Vrt	Qv Roue	Qv paire				
$P_4 4\psi 0^{\circ} F3N24$	7	6	8	8	6	6				
P4440 F3N25	6	7	8	8	6	0				

Figure VI Transformées de Fourier pour le montage de la roue 3.

Tableau VI

Résumé des fréquences obtenues par Fourier pour la roue 3

Rou	ic 3	F	réquences obtenues sur les diagrammes de Fourier			
Vitesse de rotation	Vitesse & Couple	Vitesse & d'engrènement Couple (Hz) Modulation de Fe (Hz)				
		82.1	78.9(*-1); 85.46(*1)			
	N N	02.1	Pas de modulation par Fr2			
	B 24H		161(*-1)	9.6; 19.23;		
6	=3.42 =3.25 145N	164.2	144.5(*-6); 147.9(*-5); 151.1(*-4); 180.7(*5); 184(*6); 197.2(*10)	28.69;38.3 57.23;59.97		
	22	246.6	249.7(*1); 253(*2)			
		240.5	213.6(*-10); 243.1(*-1)	1		
iu			Pas de modulation par Fr1			
200tr/	.4717Hz .3328Hz 60Nm	NN		83.32	86.68(*1); 89.27(*2); 113.2(*9) 116.6(*10); 119.9(*11);	1
		166.5	Pas de modulation par Fr1 133.2(*-10); 149.9(*-5); 183.1(*5); 186.5(*6); 199.8(*10)	9.614 ; 19.08 ;		
	1=3		246 3(*.1)	57.23 ; 59.93		
	aa	249.7	216.4(*-10); 233(*-5); 236.4(*-4); 253(*1); 256.4(*2); 259.7(*3); 266.5(*5); 269.8(*6); 273.2(*7)			
			191.4(*-1)	22.59;		
	7Hz 4Hz	199.6	127(*-9); 136(*-8); 159.6(*-5); 207.5(*1); 215.8(*2); 239(*5)	44.87; 60.13;		
	316 98 5Nr	200.5	391(*-1); 407.8(*1)	67.45;		
	2 2 8	399.3	Pas de modulation par Fr2	89.73;		
6	gg	509.5	590.6(*-1); 615(*2); 623.6(*3); 631.5(*4);	354200.8		
m/		370.3	606.8(*1); 638.5(*5); 670.6(*9)	1		
000			209.1(*1); 217(*3)			
50	67Hz 92Hz m	200.8	128.5(*-9); 160.8(*-5); 185(*-2); 192.6(*-1); 224.9(*3)	22.68; 44.87;		
	=8.36 2=8.03 160N	402	393.7(*-1) 434(*4); 441.9(*5); 450.2(*6)	60.13; 67.15;562.		
	gg	602.5	611.3(*1) 562.5(*-5); 595.2(*-1)			
Tableau VII

Résumé des fréquences obtenues par Fourier pour la roue 3 (Suite)

Rou	ie 3	F	réquences obtenues sur les diagrammes de Fourier				
Vitesse de rotation	Vitesse & Couple	Fréquence d'engrènement et harmonique (Hz)	Modulation de Fe (Hz)	Autres fréquences (Hz)			
	Hz Hz	394.9	Pas de modulation par Fr1 379.1(*-1); 410.8(*1); 552.7(*10)				
	=16.558Hz Ω1=16.454 =15.896Hz Ω2=15.796 160Nm 145Nm	16.558Hz Ω1=16.454 15.896Hz Ω2=15.796 160Nm 145Nm	16.454 15.796 45Nm	16.454 15.796 45Nm	790.5	806.1(*1) 631.5(*-10); 774(*-1)	594.1 ; 932.7
			1185	1202(*1); 1217(*2); 1249(*4) 1106(*-5); 1169(*-1); 1264(*5); 1327(*9)			
)tr/min				397.4	464(*4); 596.1(*12) 143.1(*-16); 302.2(*-6); 318(*-5); 381.5(*-1); 413.3(*1); 476.7(*5); 540.5(*9); 556.5(*10)		
1000			794.8	811.3(*1); 993.5(*12) 635.8(*-10); 651.8(*-9); 715.4(*-5); 826.5(*2); 858.6(*4); 874.1(*5); 890(*6); 937.9(*9); 953.8(*10)	1334 ; 1350 ; 1373 ; 1389		
	88	1191	1142(*-3); 1159(*-2); 1175(*-1); 1033(*-10); 1049(*-9); 1111(*-5); 1128(*-4); 1208(*1); 1224(*2); 1239(*3); 1256(*4); 1272(*5); 1287(*6); 1303(*7)				

Tableau VIII

Résumé des contraintes de la roue 3

	Vitesse de rotat	ion : 200tr/min			
145Nm 160Nm					
Contrainte théorique (MPa)	Contrainte expérimentale (MPa)	Contrainte théorique (MPa)	Contrainte expérimentale (MPa)		
18.2	13.6	20.1	15.1		

Roue P, 4w0' F3N34, roue 4

Le rapport de conduite de la roue 4 est de 1.67.

Tableau IX

Résultats des fréquences de résonance pour la roue 4

	Fréquence de la rou	ie 4, 1 dent en prise	Fréquence de la rou	e 4, 2 dents en prise
	En torsion (Hz)	En flexion (Hz)	En torsion (Hz)	En flexion (Hz)
	1409	104	1417	105
Nm	1964	112	1962	111
		118		303
Z		306		(366)
30]		360		458
-		465		738
		747		1202
		1296		
	1445	104	1437	107
	1979	111	1962	116
		116		303
Ξ		(225)		382
S		308		458
16		380		745
		473		1269
		762		
		1309		

Le tableau X représente le les fréquence de résonance moyenne en torsion. Le nombre de lignes du tableau représente le nombre de fréquences de résonance en torsion pour le cas une paire de dents en prise, et le nombre de fréquences par case représente le nombre de fréquences de résonance en torsion pour le cas deux dents en prise.

Tableau X

Fréquence de résonance moyenne de la roue 4

Fréquence moyenne de résonance en torsion (Hz)						
130Nm	160Nm	145Nm				
1414 / 1779	1439 / 1791	1426 / 1785				
1597 / 1963	1616 / 1968	1606 / 1965				

Tableau XI

		Grade de qualité				
Roue :	Qv VΦ	Qv VyT	Qv +/-Vpa	Qv Vrt	Qv Roue	Qv paire
$P_d 4\psi 0$ F3N34	5	6	5	6	5	4
P,440' F3N35	7	4	8	6	4	•

Figure VII Transformées de Fourier pour le montage de la roue 4.

Tableau XII

Ro	ue 4	F	réquences obtenues sur les diagrammes de Fourier							
Vitesse de rotation	Vitesse & Couple	Fréquence d'engrènement et harmonique (Hz)	Modulation de Fe (Hz)	Autres fréquences (Hz)						
	NN	115.1	112(*-1)							
	BH 8H	112.1	Pas de modulation par Fr2	9.46;						
	38 SNt	230.3	176(*-16)	19.08;						
	14 2=3		Pas de modulation par Fr2	57.23						
nin	a d	345.3	Aucune modulation							
00tr/m	N. N.	110.4	121.8(*1)							
200	SH2	118.4	115.1(*-1)	10.02.						
~	Nn 24	(228.9)	Aucune modulation	37.85						
	3.3		358.6(*1); 362.1(*2)	59.97						
	88	355.1	351.9(*-1)							
		280.2	288.4(*1); 198.3(*-10)							
	HzHz	200.2	168.2(*-14);	1						
500	Ω1=8.2412 Ω2=8.0057 145Nm	Vm 412	Nm 051	08 Nm	550.2	568.9(*1); 692.5(*16)	1			
		560.7	544.2(*-2); 552.7(*-1)	1						
		a a	12	840.6	824.4(*-2); 849.4(*1); 972.4(*16)	1				
			040.0	832.6(*-1), 952.6(*14)	1					
	21=8.3588Hz Ω2=8.12Hz 160Nm	21=8.3588Hz Ω2=8.12Hz 160Nm	284.2	275.9(*-1); 4178(*16)						
			Hz Hz	Hz	Hz	Hz	Hz	204.2	292.1(*1); 300.3(*2); 397.7(*14)]
			568.3	434.6(*-16); 560.1(*-1); 702(*16)	44 86					
			Ω1=8.3 Ω2=8 160	21=8.3 02=8.1		681.8(*14)	44.50			
					182	852.2	843.9(*-1); 835.7(*-2)			
	5	072.2	860.4(*1); 868.6(*2)							
		\$60	280.(*-17); 313.1(*-15); 824.1(*16)							
	¥ N 57	575.6(*1)]							
	Nm 16H	1120	1384(*16)]						
	2=16	1120	1102(*-1); 1135(*1); 1343(*14)							
	aa	1680	1714(*2)							
8		1000	1920(*15)							
100	NN	561.9	545.4(*-1); 578.4(*1); 810.3(*15); 826.5(*16)							
	65F		786.8(*14)	-						
	S2 80	1124	1388(*16)	1018:134						
	G G 345.3 Aucu ZHSELF E 118.4	899.2(*-14); 1092(*-2); 1284(*10); 1349(*14)								
	55	1686	Pas de modulation par Fr1	-						
	Ω1=16.5265Hz Ω1 Ω2=16.054Hz Ω 160Nm		1460(*-14)							

Tableau XIII

Résumé des contraintes de la roue 4

	Vitesse de rot	ation : 200tr/min		
145Nm 160Nm				
Contrainte théorique (MPa)	Contrainte expérimentale (MPa)	Contrainte théorique (MPa)	Contrainte expérimentale (MPa)	
12.9	12.7	14.2	13	

Roue P, 4w20' F05N24, roue 5

Le rapport de conduite calculé pour la roue 5 en fonction de l'entraxe expérimental est de 1.79.

Tableau XIV

Résultats des fréquences de résonance pour la roue 5

	Fréquence de la rou	ae 5, 1 dent en prise	Fréquence de la rou	e 5, 2 dents en prise
	En torsion (Hz)	En flexion (Hz)	En torsion (Hz)	En flexion (Hz)
	143	165	146	168
		187	621	183
Z		198		198
30		340	6	340
-		639		750
		750		
	148	170	222	170
-		187	649	187
z		198		198
60		340		340
-		657		767
		766		

Le tableau XV représente les fréquences de résonance moyenne en torsion. Le nombre de lignes du tableau représente le nombre de fréquences de résonance en torsion pour le cas une paire de dents en prise, et le nombre de fréquences par case représente le nombre de fréquences de résonance en torsion pour le cas deux dents en prise.

Tableau XV

Fréquence de résonance moyenne de la roue 5

Fréquence moye	nne de résonance	e en torsion (Hz)
130Nm	160Nm	145Nm
145 / 520	206 / 544	320 / 532

Tableau XVI

	Grade de qualité					
Roue :	Qv VΦ	Qv VyT	Qv +/-Vpa	Qv Vrt	Qv Roue	Qv paire
$P_{d}4\psi 20^{\circ}F \frac{1}{2}N24$	6	3	8	10	3	0
$P_d 4\psi 20^{\circ} F \frac{1}{2} N25$	5	0	6	8	0	0

Figure VIII Transformées de Fourier pour le montage de la roue 5.

Tableau XVII

Rou	ue 5	Fréc	quences obtenues sur les diagrammes de Fourier (Ha	z)																
Vitesse de rotation	Vitesse & Couple	Fréquence d'engrènement et harmonique (Hz)	Modulation de Fe (Hz)	Autres fréquences (Hz)																
min		91.9	78.44(*-1);	3.357																
	NN	01.0	Pas de modulation par Fr2	3.357; 9.614;																
	83H		156.9(*-2); 160.1(*-1); 204.3(*12)	19.08;																
	=3.40 =3.27 145N	163.4	147.3(*-5); 166.8(*1); 170.3(*2); 173.4(*3); 176.4(*4)	28.54; 38.15;																
	22	246.2	238.5(*-2); 241.9(*-1); 252.1(*2)	57.23;																
		245.2	248.6(*1); 261.7(*5)	59.97																
100			68.98(*-4); 72.49(*-3); 75.69(*-2); 79.05(*-1);																	
2(3.4462Hz 3.3084Hz 60Nm	Hz Z	Hz	HZ ZH	82.71	85.76(*1); 88.97(*2); 92.63(*3); 115.7(*10)	9 462													
		462 084	462 084	462 084	462 184	462 184	462 084 084	462 084 Vm	462 384 Vm		154.9(*-3); 158.6 (*-2); 161.5(*-1);	19.08;								
		164.7	168.5(*1); 171.8(*2); 174.9(*3)	57.23;																
	55-	247.0	240.4(*-2); 244.5(*-1); 251.2(*1);	59.97;																
		247.0	254.4(*2)	200.2																
	=8.329Hz =7.996Hz 45Nm	100.0	191.7(*-1);	8.241;																
		HzHzHz	HzHz	HzHz	Hz Hz	Hz Hz	Hz Hz	HzHz	Hz Hz	HzHz	HzHz	Hz	HzHz	HzHz	HzHz	HzHz	HzHz	177,7	207.9(*1); 239.9(*5)	22.59;
		300.8	499.6(*12)	44.87;																
		-7.	8.	-7.6	8 45	-7.9	8. 45	377.0	407.8(*1)	59.82;										
	85	599.7	591.2(*-1);	90.04: 507																
nin			607.7(*1); 639.7(*5); 671.8(*9)	50.04, 507																
Dtr/		200.2	191.7(*-1); 208.5(*1); 216.7(*2)	-																
200	Hz		184.3(*-2); 240.2(*5)	7.936:																
	417 Vm	400.7	363(**2); 410.9(*2); 300.9(*12)	16.18;																
	8.3		392.8(*-1); 408.4(*1); 440.7(*5); 472.8(*9)	60.13;																
	28-	601	583.3(*-2); 608.9(*1); 617.1(*2);	67.15																
		001	561(*-5); 592.7(*-1); 640.9(*5)																	

Tableau XVIII

Ro	ue 5	Fréquences obte	nues sur les diagrammes de Fourier (Hz)			
Vitesse de rotation	Vitesse & Couple	Fréquence d'engrènement et harmonique (Hz)	Modulation de Fe (Hz)	Autres fréquences (Hz)		
1000tr/min	NN	395.3	Pas de modulation par Fr1 363.5(*-2); 379.4(*-1); 411.1(*1); 474.3(*5); 533.4(*10)			
	1=16.4542Hz Ω1=16.471Hz 22=15.796Hz Ω2=15.812Hz 160Nm 145Nm	790.8	724.9(*-4); 741.4(*-3); 757.8(*-2); 774.9(*-1); 807.3(*1); 823.8(*2); 840.3(*3); 939.1(*9); 955.3(*10); 971.8(*11); 988.3(*12); 1005(*13) 632.4(*-10); 711.8(*-5); 854(*4); 869.9(*5); 886(*6); 902.8(*7); 933(*9); 948.9(*10);	43.34; 60.13		
		1185	1038(*-9); 1202(*1); 1384(*12) 1170(*-1); 1265(*5); 1281(*6); 1328(*9);			
		1=16.4542Hz 22=15.796Hz 160Nm		394.9	329.3(*-4) 316.2(*-5); 347.6(*-3); 363.5(*-2); 379.4(*-1); 410.8(*1); 426.7(*2); 442.6(*3); 506(*7); 521.6(*8); 553(*10);	
			790.2	724.3(*-4); 757.2 (*-2); 806.1(*1); 823.2(*2); 839.6(*3); 971.2(*11); 987.7(*12) 600.4(*-12); 632(*-10); 648(*-9); 663.8(*-8); 679.4(*-7); 95.3(*-6); 727(*-4); 742.6(*-3); 774.3(*-1); 853.4(*4); 869.2(*5); 884.8(*6); 916.6(*8); 948.3(*10)	43.34; 60.13; 66.2; 933.4; 1092	
	Gu	1185	1201(*1); 1218(*2); 1233(*3) 995.6(*-12); 1011(*-11); 1027(*-10); 1043(*-9); 1075(*-7); 1124(*-4); 1138(*-3); 1154(*-2); 1169(*-1); 1248(*4); 1264(*5); 1296(*7); 1359(*11)			

Tableau XIX

Résumé des contraintes de la roue 5

	Vitesse de rotat	ion : 200tr/min	
145Nm 160Nm			
Contrainte théorique (MPa)	Contrainte expérimentale (MPa)	Contrainte théorique (MPa)	Contrainte expérimentale (MPa)
86.9	48.8	95.9	52

Roue P, 4w20" F 1/2 N34, roue 6

Le rapport de conduite expérimental pour le montage de la roue 6 est de 1.85.

Tableau XX

Résultats des fréquences de résonance pour la roue 6

	Une paire de	dents en prise	Deux paires de	dents en prises
	En torsion (Hz)	En flexion (Hz)	En torsion (Hz)	En flexion (Hz)
	40	157	138	157
130Nm	100	170	981	169
	981	184	1220	184
Е	(1170)	328	1950	332
S	1295	372		600
13	1910	430		764
		609		(1156)
		771		
		1165		
	46	158	138	157
	102	170	981	169
	981	184	1220	184
E	(1192)	328	1960	332
S	1358	376		608
16(1910	439		767
		616		(1158)
		773		
		1165		

La variation des fréquences de résonance entre 130 et 160Nm est minime, on supposera donc qu'elles sont les mêmes pour 145Nm. Le tableau XXI représente le les fréquence de résonance moyenne en torsion. Le nombre de lignes du tableau représente le nombre de fréquences de résonance en torsion pour le cas une paire de dents en prise, et le nombre de fréquences par case représente le nombre de fréquences de résonance en torsion pour le cas deux dents en prise.

Tableau XXI

Fréquence de résonance moyenne de la roue 6

Fréquence moyenne de résonance en torsion (Hz)
130Nm-145Nm-160Nm
123 / 840 / 1043 / 1663
132 / 849 / 1052 / 1672
264 / 981 / 1184 / 1805
311 / 1028 / 1231 / 1852
404 / 1120 / 1323 / 1944

Tableau XXII

	Grade de qualité					
Roue :	Qv VΦ	Qv VyT	Qv +/-Vpa	Qv Vrt	Qv Roue	Qv paire
P, 4\v20° F 1/2 N34	6	1	6	7	1	
$P_4 4 \psi 20^{\circ} F \frac{1}{2} N35$	6	2	8	10	2	1

Figure IX Transformées de Fourier pour le montage de la roue 6.

Tableau XXIII

Rou	ie 6	F	réquences obtenues sur les diagrammes de Fourier								
Vitesse de rotation	Vitesse & Couple	Fréquence d'engrènement et harmonique (Hz)	Modulation de Fe (Hz)	Autres fréquences (Hz)							
		115.5		Pas de modulation par Fr1							
	Hz		138.7(*7)	9.614;							
	39.3B	231.2	224.5(*-2); 234.6(*1)	19.08;							
	145		185(*-14); 208(*-7); 254.2(*7); 257.6(*8)	57.07 ;59.9							
iu.	aa	346.7	Pas de modulation par Fr1	1, 170							
-E			369.8(*7)								
50	Hz Iz	118.3	114.6(*-1)								
	38F		121.6(*1); 165.6(*14)	19.08;38							
	236.5	292.4(*16)	57.07;								
		-85	344	253.8(*14) Pas de modulation par Er2	29.91						
_		355									
	1=8.2765Hz 22=8.04Hz 145Nm	201.4	297.9(*2); 413.9(*16)	_							
		261.4	257.3(*-3); 265.2(*-2); 289.6(*1); 305.5(*3)								
		1=8.2765H 22=8.04Hz 145Nm	1-8.2765H 22-8.04Hz 145Nm	1-8.2765H 22-8.04Hz 145Nm	1=8.2765H 22=8.04Hz 145Nm		554.6(*-1); 571.1(*1); 579.3(*2); 685.3(*16);	8.241;			
						1=8.2 02=8.0	562.8	506.3(*-7); 538.7(*-3); 546.6(*-2); 619(*7); 675.4(*14)	44.87		
	a -		711.8(*-16);	1							
.c			844.2	828(*-2); 852.2(*1); 868.3(*3); 876(*4); 892.4(*6); 908(*8); 948.6(*13); 956.5(*14)	1						
r/m			299.74(*2); 416(*16)								
SOOt			283.2	234.7(*-6); 242.6(*-5); 250.8(*-4); 258.8(*-3); 267.1(*-2); 275(*-1); 291.2(*1); 299.4(*2); 307.3(*3); 315.8(*4);	22.28;						
	HI	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HI		699.5(*16)	44.56;
	1=8.32 2=8.09 160N	566.5	509.7(*-7); 542.1(*-3); 550(*-2); 574(*1); 582.7(*2); 622.9(*7); 679.7(*14)	89.12; 130.3							
	dd		832.2(*-2);	136.4:							
		849.4	792.9(*-7); 841.5(*-1); 857.6(*1); 865.6(*2); 873.8(*3); 882.1(*4); 897.6(*6); 906.2(*7); 962(*14)	136.4;							

Tableau XXIV

Résumé des fréquences obtenues par Fourier pour la roue 6 (Suite)

Rot	ae 6	- 1	Fréquences obtenues sur les diagrammes de Fourier	
Vitesse de rotation	Vitesse & Couple	Fréquence d'engrènement et harmonique (Hz)	Modulation de Fe (Hz)	Autres fréquences (Hz)
		561.3	544.8(*-1); 577.5(*1); 594.2(*2); 825.6(*16) 529.2(*-2); 1347(*14)	-
	Ω1=16.535Hz Ω1=16.51H Ω2=16.063Hz Ω2=16.04H 160Nm 145Nm	1123	1139(*1); 1156(*2); 1189(*4) 1059(*-4); 1075(*-3); 1091(*-2); 1107(*-1); 1171(*3)	1302; 1909
		1685	1420(*-16); 1634(*-3); 1701 1909(*14)	
1000tr/min		562.2	496(*-4); 595.2(*2); 611.6(*3); 628.4(*4); 810(*15); 826.8(*16) 337.3(*-14); 433.7(*-8); 449.9(*-7); 465.8(*-6); 481.9(*-5) 514(*-3); 530.2(*-2); 546(*-1); 578.4(*1); 658.3(*6); 674.5(*7); 690.2(*8);	1303;
		1124	107.5(*9); 722.7(*10); 771(*13) 1044(*-5); 1108(*-1); 1157(*2); 1191(*4) 899.5(*-14); 931.8(*-12); 995.9(*-8); 1060(*-4); 1076(*-3); 1092(*-2); 1140(*1); 1173(*3)	1345;
		1687	11653(*-2); 1670(*-1); 1703(*1); 1951(*16); 1462(*-14); 1638(*-3); 1783(*6); 1799(*7); 1863(*11); 1895(*13); 1911(*14); 2072(*24)	

Tableau XXV

Résumé des contraintes de la roue 6

	Vitesse de rota	tion : 200tr/min	
1	45Nm	1	60Nm
Contrainte théorique (MPa)	Contrainte expérimentale (MPa)	Contrainte théorique (MPa)	Contrainte expérimentale (MPa)
56	35.5	61.8	37.2

Roue P, 4w20' F3N24, roue 7

Le rapport de conduite de la roue 7 est de 2.87.

Tableau XXVI

Résultats des fréquences de résonance pour la roue 7

	Fréquence de la rou	e 7, 2 dents en prise	Fréquence de la rou	e 7, 3 dents en prise
	En torsion (Hz)	En flexion (Hz)	En torsion (Hz)	En flexion (Hz)
	71	129	84	129
-	86	142	188	142
Ξ		154	203	158
Z		329		329
13		659		544
		755		754
				899
	63	129	90	135
	75	142	189	142
a	103	154	204	1610
N		329		329
16		690	0	596
		755		767
				944

Le tableau XXVII représente les fréquences de résonance moyenne en torsion. Le nombre de lignes du tableau représente le nombre de fréquences de résonance en torsion pour le cas deux paires de dents en prise, et le nombre de fréquences par case représente le nombre de fréquences de résonance en torsion pour le cas trois dents en prise

Tableau XXVII

Fréquence de résonance moyenne de la roue 7

Fréquence moyenne de résonance en torsion (Hz)					
130Nm	160Nm	145Nm			
82 / 173 / 186	86 / 172 / 186	84 / 172 / 186			
84 / 175 / 188	88 / 174 / 187	86 / 174 / 187			
	92 / 178 / 191	92 / 178 / 191			

Toutes les fréquences moyennes de torsion se situent autour de 85, 175 et 190.

Tableau XXVIII

Grade de qualité						
Roue :	Qv VΦ	Qv VyT	Qv +/-Vpa	Qv Vrt	Qv Roue	Qv paire
$P_{d}4\psi 20^{\circ}F3N24$	6	6	7	11	6	0
$P_{d}4\psi 20^{\circ}F3N25$	5	0	7	7	0	0

Figure X Transformées de Fourier pour le montage de la roue 7.

Tableau XXIX

Ro	ue 7	Fré	quences obtenues sur les diagrammes de Fourier (Hz)
Vitesse de rotation	Vitesse & Couple	Fréquence d'engrènement et harmonique	Modulation de Fe	Autres fréquences (Hz)
38Hz 05Hz 05Hz		80.12	76.61(*-1); 83.48(*1); 86.83(*2)	20.91;
	NN	· · · · · · · · · · · · · · · · · · ·		13.89;
	38H 05H		Pas de deuxième harmonique	34.79; 17.4;
tr/min	Ω1=3.3 Ω2=3.2 145N		Pas de troisième harmonique	31.28; 135.7; 152.8; 213.5; 90.04
200	Hz 4Hz n	82.56	10.38(*-21); 13.79(*-20); 17.24 (*-19); 20.6(*- 18); 37.85(*-13); 44.71(*-11); 75.69(*2); 89.27(*2)	3.357;
	3.44 302		72.95(*-3); 79.2(*-1); 85.27(*1);	24.11;
	16.1	161.9	134.3(*-9); 168.6(*1)	57.23
	d g		152.1(*-4); 158.7(*-2); 155.4(*-3)	
_		Pas de troisième harmonique		
	łz z	200.5	100.1(*-12); 108.7(*-11); 116.9(*-10); 133.7(*-8); 141.9(*-7); 192(*-1)	8.2; 16.74;
		Hz z		88.2(*-14); 184.3(*-2); 208.5(*1); 216.4(*2); 224.3(*3); 232.6(*4); 240.5(*5); 280.5(*10)
	12H		Pas de modulation par Fr1	41.81;
	-8.3: 22-8.0	400.7	384.9(*-2); 393.1(*-1); 408.7(*1); 416.9(*2); 449.3(*6); 456.6(*7);	67.15;
/mim	ga	601.3	593.3(*-1); 693.4(*11) 585.5(*-2); 609.2(*1); 617.1(*2); 625.7(*3); 633(*4); 641.3(*5); 648.9(*6); 657.1(*7); 665.1(*8); 673(*9); 681.2(*10)	75.01; 133.4; 180.4
00tr	500tr		191.4(*-1); 207.9(*1);	
50		199.6	175.8(*-3); 183.7(*-2); 215.8(*2); 223.7(*3); 231.7(*4); 23.9.6(*5); 279.6(*10)	
	Hz		366.3(*-4); 407.5(*1);	22.28;
	-7.984	399.2	375.1(*-3); 383(*-2); 391.6(*-1); 415.4(*2); 423.3(*3); 431.3(*4); 439.2(*5); 447.4(*6); 455.4(*7); 463.3(*8); 471.2(*9)	44.87; 60.13;
	88	599.1	590.6(*-1); 607.4(*1); 615.3(*2); 623.2(*3); 566.8(*-4); 575.3(*-3); 583.3(*-2); 631.2(*4); 639.1(*5); 647.1(*6); 655(*7); 662.9(*9); 670.9(*9); 679.1(*10); 695(*12)	67.15; 99.8

Tableau XXX

Résumé des fréquences obtenues par Fourier pour la roue 7 (Suite)

Rot	ic 7	F	réquences obtenues sur les diagrammes de Fourier (Hz)	
Vitesse de rotation	Vitesse & Couple	Fréquence d'engrènement et harmonique	Modulation de Fe (Hz)	Autres fréquences (Hz)
1000tr/min		396.2	231(*-10) 364.4(*-2); 380.3(*-1); 412(*1); 427.9(*2); 443.8(*3); 459.7(*4); 491.7(*6); 507(*7); 554.6(*10)	
	16.508H 15.848H 45Nm	792.3	Pas de modulation par Fr1 760.3(*-2); 776.5(*-1); 808.2(*1); 824.1(*2) ; 839.9(*3); 855.2(*4); 871.7(*5); 887(*6)	1295
	Δ1- 10- 1	1188	1140(*-3); 1271(*5); 1354(*10); 1371(*11); 1386(*12) 1125(*-4); 1156(*-2); 1173(*-1); 1204(*1); 1220(*2); 1236(*3); 1253(*4); 1283(*6); 1315(*8); 1331(*9)	
		395.6	Pas de modulation par Fr1 332.4(*-4); 348.2(*-3); 364.1(*-2); 380(*-1); 411.4(*1); 427.3(*2); 443.2(*3); 459(*4); 554(*10)	
	-16.4833Hz =15.824Hz 160Nm	791.4	989.2(*10) 695.9(*-6); 712.4(*-5); 726.4(*-4); 743.8(*-3); 759.4(*-2); 775.5(*-1); 807.3(*1); 822.9(*2); 838.7(*3); 854.6(*4); 870.5(*5); 886.3(*6)	
	8	1186	1368(*11); 1386(*12) 1045(*-9); 1061(*-8); 1091(*-6); 1124(*-4); 1156(*- 2); 1172(*-1); 1202(*1); 1219(*2); 1235(*3); 1266(*5); 1281(*6); 1299(*7); 1329(*9); 1346(*10);	

Tableau XXXI

Résumé des contraintes de la roue 7

	Vitesse de rota	tion : 200tr/min		
145Nm 160Nm				
Contrainte théorique (MPa)	Contrainte expérimentale (MPa)	Contrainte théorique (MPa)	Contrainte expérimentale (MPa)	
17	182.8	18.7	28	

Roue P, 4w20' F3N34, roue 8

Le rapport de conduite de la roue 8 est 2.94.

Tableau XXXII

Résultats des fréquences de résonance pour la roue 8

	Fréquence de la rou	e 8, 2 dents en prise	Fréquence de la rou	e 8, 3 dents en prise
	En torsion (Hz)	En flexion (Hz)	En torsion (Hz)	En flexion (Hz)
	36	98	89	100
	50	110		111
-		240		220
ž		315		814
30		455		1362
_		832		
		1127	(
		1304		
	37	103	90	100
1	53	113		110
E		257		221
S		319		814
16		458		1371
		833	1	
		1391		

Le tableau XXXIII représente les fréquences de résonance moyenne en torsion. Le nombre de lignes du tableau représente le nombre de fréquences de résonance en torsion pour le cas deux paires de dents en prise, et le nombre de fréquences par case représente le nombre de fréquences de résonance en torsion pour le cas trois paires de dents en prise

Tableau XXXIII

Fréquence de résonance moyenne de la roue 8

Fréquence moyenne de résonance en torsion (Hz)					
130Nm	160Nm	145Nm			
86	87	86.5			
87	88	87.5			

Tableau XXXIV

			Grade de	qualité		
Roue :	Qv VΦ	Qv VψT	Qv +/-Vpa	Qv Vrt	Qv Roue	Qv paire
P_44\u02c6220 F3N34	5	5	9	10	5	
$P_d 4\psi 20^{\circ} F 3N 35$	6	3	7	6	3	3

Figure XI Transformées de Fourier pour le montage de la roue 8.

Tableau XXXV

Rou	ue 8	1	Fréquences obtenues sur les diagrammes de Fouri	er			
de rotatio n	Vitesse & Couple (Nm)	Fréquence d'engrènement et harmonique (Hz)	Modulation de Fe (Hz)	Autres fréquences (Hz)			
200ur/min 236Hz Ω1=3.309Hz 3.26Hz Ω2=3.214Hz 5Nm 145Nm	4z 1z	112.5	92.94(*-6); 102.6(*-3); 116.3(*1); 119.6(*2); 123(*3); 139.5(*8); 159.3(*14); 162.5(*15)	director and			
	-3.309 -3.214 45Nm	224.9	106.1(*-2); 198.4(*8); 239.3(*4); 252.4(*8); 262.5(*11); 270(*17)	9.614; 19.08; 28.69; 38.15; 57.32; 59.97			
	337.1	287.2(*-15); 351.9(*4)	21.00, 21.11				
	ZH92.6 2H92.6		87.14(*-8); 90.85(*-7); 94.01(*-6); 97.52(*- 5); 100.3(*-4); 103.8(*-3); 107.1(*-2); 110.6(*1); 117.7(*1); 120.9(*2); 124.5(*3); 127.9(*4); 161.2(*14)	3.51; 9.462; 19.08; 28.54; 38: 59.97;			
	-0 -0 -1	228.3	231.7(*1); 238.5(*3); 242(*4); 255.2(*8); 176.2(*-16); 287.1(*18);	293.9; 356.2			
	Ω1=8,2412Hz Ω2=8,006Hz 160Nm	Ω1=8.2412Hz Ω2=8.006Hz 160Nm	280.2	Pas de modulation par Fri 256(*-3);	1.1.1		
			Ω1=8.2412H Ω2=8.006H2 160Nm	8.2412H 8.006H2 60Nm	560.4	568.6(*1); 692.5(*16); 701(*17); 709(*18) 600.7(*5); 608(*6); 616.5(*7); 625(*8); 672.7(*14);	22.28; 44.56; 60.13; 66.84; 89; 150;
				841.2	799.7(*-5); 832.4(*-1); 848.8(*1); 915(*9); 964(*15); 973(*16); 981(*17) 807(*7); 928.8(*11);	300; 450.5	
)tr/min		282	141(*-17); 157.5(*-15); 166(*-14); 249.1(*- 4); 257.3(*-3); 267.4(*-2); 273.8(*-1); 209.6(*1); 298.8(*2); 306.7(*3); 315.3(*4); 406.5(*15); 415(*16);				
50C	1z Iz		330.1(*6); 338.5(*7); 346.7(*8); 370.2(*11); 403(*15);	8 241, 22 2 .			
Ω1=8.294H Ω2=8.057H	456.3(*-13); 464. 514.9(*-6); 522.9(*- 2); 556(*-1); 572.6(* 663(*12); 688.6(*1);	456.3(*-13); 464.8(*-12); 506.3(*-7); 514.9(*-6); 522.9(*-5); 531.1(*-4); 547.6(*- 2); 556(*-1); 572.6(*1); 580.8(*2); 597(*4); 663(*12); 688.6(*15); 697(*16); 705(*17);	8.241; 22.3; 44.5; 66.8; 89.1; 91.26; 386.7				
			612(*6); 621(*7); 629(*8); 637(*9); 669(*13); 677.3(*14); 685.5(*15); 713.6(*-16); 804(*-5); 862.5(*2); 962.6(*14);				
	_	846.4	971(*15); 782(*-7); 797(*-6); 838.4(*-1);				

Tableau XXXVI

Résumé des fréquences obtenues par Fourier pour la roue 8 (Suite)

Roue 8			Fréquences obtenues sur les diagrammes de Four	rier	
Vitesse de rotation	Vitesse & Couple	Fréquence d'engrènement et harmonique (Hz)	Modulation de Fe (Hz)	Autres fréquences (Hz)	
	z	561	578.1(*1); 809.1(*15); 825.6(*16); 842.4(*17);	1163: 1308-	
	High High		Pas de modulation par Fr2	1348: 1364:	
	1123	858.6(*-16); 1106(*-1); 1140(*1); 1331(*13);	1371; 1387; 1404; 1420;		
.5	ag		Pas de troisième harmonique	1612; 1644	
1000tr/m	12Hz 26Hz n	Pas de modulation par I Pas de modulation par I 247(*-20); 529.2(*-3); 545.4(*-2) 594.9(*1); 793.2(*13); 809. 842.7(*16);	Pas de modulation par Fr1 247(*-20); 529.2(*-3); 545.4(*-2); 561.9(*-1); 594.9(*1); 793.2(*13); 809.7(*14); 842.7(*16);	16.48; 353.4; 433.1; 690.7; 786.5; 915; 1011;	
	0.1=17.01 0.2=16.52 160Nr	1157	1084(*-4); 1140(*-1); 1428(*16); 826.2(*-20); 876(*-17); 1041(*-7); 1091(*-4); 1107(*-3); 1124(*-2); 1140(*-1); 1388(*14);	1163; 1180; 1213; 1253; 1332; 1348; 1365; 1467;	
		(1725)	Pas de modulation par Fr1 1685(*-3); 1934(*12);	1613; 1952	

Tableau XXXVII

Résumé des contraintes de la roue 8

	Vitesse de rotat	ion : 200tr/min		
145Nm 160Nm				
Contrainte théorique (MPa)	Contrainte expérimentale (MPa)	Contrainte théorique (MPa)	Contrainte expérimentale (MPa)	
9.4	10.5	10.4	15.1	

Roue P, 6w0" F 1/2 N24, roue 9

Le rapport de conduite de la roue 9 est 1.59

Tableau XXXVIII

	Une paire de der	nts en prise	Deux paires de dents en prise		
	En torsion (Hz)	En flexion (Hz)	En torsion (Hz)	En flexion (Hz)	
_	114	191	122	191	
ž	231	203	299	203	
30		346		346	
-		733		743	
	117	191	137	191	
E.Z	235	206	333	208	
8		349		355	
-		744		763	

Résultats des fréquences de résonance pour la roue 9

Le tableau XXXIX représente les fréquences de résonance moyenne en torsion. Le nombre de lignes du tableau représente le nombre de fréquences de résonance en torsion pour le cas une paire de dents en prise, et le nombre de fréquences par case représente le nombre de fréquences de résonance en torsion pour le cas deux paires de dents en prise

Tableau XXXIX

Fréquence de résonance moyenne de la roue 9

Fréquence moyenne de résonance en torsion (Hz)					
130Nm	160Nm	145Nm			
119/223	129/244	124 / 233			
167/271	177/293	172/282			

Tableau XL

			Grade d	e qualité		
Roue :	Qv VΦ	Qv VyT	Qv+/-Vpa	Qv Vrt	Qv Roue	Qv paire
P, 6\00 F 1/2 N 24	5	4	8	8	4	
P4640° F 1/2 N25	6	5	9	8	5	4

Figure XII Transformées de Fourier pour le montage de la roue 9.

Tableau XLI

Rot	ue 9		Fréquences obtenues sur les diagrammes de Fourier		
Vitesse de rotation	Vitesse & Couple	Fréquence d'engrènement et harmonique (Hz)	Modulation de Fe (Hz)	Autres fréquences (Hz)	
ht/min Ω1=3.453Hz			114.3(*9);		
		82.87	72.95(*-3); 79.51(*-1); 86.22(*1); 89.58(*2); 92.78(*3);		
	3.453Hz 3.315Hz 45Nm	165.7	148.5(*-5); 152.1(*-4); 155.4(*-3); 158.9(*-2); 162.4(*-1); 169.1(*1); 172.6(*2); 176.1(*3); 179.5(*4); 183(*5); 186.5(*6)	6.867; 16.02; 28.54;	
	85		129.9(*-11)	56.46	
	a a	248.6	238.2(*-3); 241.7(*-2); 245.2(*-1); 252.1(*1); 255.5(*2)		
200			232.1(*-5);		
	Ω1=3.434Hz Ω2=3.296Hz 160Nm	82.41	79.05(*-1); 85.76(*1); 88.97(*2); 92.33(*3); 95.68(*4); 98.89(*5)		
		164.8	154.6(*-3); 168.2(*1); 171.7(*2); 175.3(*3) 158.3(*-2); 161.5(*-1); 174.9(*3)	3.5; 57.23	
		- 5 - 5 - 5	247.5	236.8(*-3); 250.6(*1); 254.1(*2); 257.4(*3); 260.8(*4)	
			227.7(*-6); 240.7(*-2); 244.2(*-1);		
	łz iz	Hz Iz		101(*-12); 108.7(*-11); 116.9(*-10); 133.7(*-8); 141.9(*-7); 150.2(*-6); 167(*-4);	
			Iz	Hz Iz	200.5
	354 02]		509.1(*13);	32.37:41.8	
	21=8. 02=8. 145	400.7	360.8(*-5); 384.9(*-2); 408.7(*1); 416.9(*2); 424.9(*3); 449(*6);	50.05; 58.3 456.6;	
r/min	G	601.3	542.7(*-7); 560.4(*-5); 576.2(*-3); 585.1(*-2); 593.3(*-1);	692.5	
500		001.5	609.2(*1); 617.1(*2); 625.7(*3); 633(*4); 641.3(*5); 648.9(*6); 657.1(*7); 665.1(*8); 672.7(*9);		
	4z z	199	182.5(*-2); 190.8(*-1); 207.5(*1); 215.8(*2)		
	92F 96H		222.8(*3); 231(*4); 239(*5); 246.9(*6); 254.9(*7)		
	1=8.2 12=7.5	398	381.5(*-2); 389.8(*-1); 406.5(*1); 414.2(*2) 358.3(*-5); 366.3(*-4); 374.2(*-3); 422.1(*3)		
	aa	597.3	580.5 605.5 622		
			289.1 013.8		

Tableau XLII

Résumé des fréquences obtenues par Fourier pour la roue 9 (Suite)

Rou	ue 9		Fréquences obtenues sur les diagrammes de Fourier		
Vitesse de rotation	Vitesse & Couple	Fréquence d'engrènement et harmonique (Hz)	Modulation de Fe (Hz)	Autres fréquences (Hz)	
			327.5(*-4); 360.2(*-2); 376.9(*-1); 589.4(*12)		
		393.1	251.5(*-9); 345.8(*-3); 408.7(*1); 424.6(*2); 440.1(*3); 456(*4); 471.5(*5);		
	79Hz 24Hz m	-	671.5(*-7); 687.6(*-6); 753.3(*-2); 769.4(*-1); 802.7(*1); 851.5(*4); 884.2(*6); 933.3(*9);		
	-16.3 -15.7 145N	785.9	597.3(*-12); 613.2(*-11); 707.5(*-5); 817.4(*2); 832.9(*3); 864.7(*5);		
	85		1130(*-3); 1146(*-2); 1163(*-1); 1376(*12)		
nin		1179	990.4(*-12); 1021(*-10); 1037(*-9); 1053(*-8); 1084(*-6); 1100(*-5); 1116(*-4); 1195(*1); 1211(*2); 1226(*3); 1242(*4); 1257(*5); 1321(*9)		
)tr/			246.6(*-9); 328.7(*-4); 361.7(*-2);	1	
1000	~ ~	394.3	157.8(*-15); 221(*-11); 252.4(*-9); 268.3(*-8) 331.5(*-4); 347(*-3); 378.2(*-1); 410.2(*1); 426.1(*2); 441.6(*3); 457.8(*4)		
	9H		673.9(*-7); 723(*-4); 756(*-2); 886.6(*6);		
	789 599.4(*-12); 615.3(*- 599.4(*-12); 615.3(*- 772.5(*-1); 836.3(*		599.4(*-12); 615.3(*-11); 709.9(*-5); 740.8(*-3); 772.5(*-1); 836.3(*3); 820.4(*2); 852.8(*4); 867(*5);	16.48; 447.4; 1045	
	ad	1103	1085(*-6); 1117(*-4); 1133(*-3); 1166(*-1); 1201(*1); 1232(*3); 1265(*5)		
		1183	994.1(*-12); 1104(*-5); 1152(*-2); 1215(*2); 1247(*4)		

Tableau XLIII

Résumé des contraintes de la roue 9

	Vitesse de rotation : 200tr/min					
145Nm 160Nm						
Contrainte théorique (MPa)	Contrainte expérimentale (MPa)	Contrainte théorique (MPa)	Contrainte expérimentale (MPa)			
213.9	217.5	236	277.6			

Roue P, 6w0' F 1/ N37, roue 10

Le rapport de conduite de la roue 10 est 1.67.

Tableau XLIV

	Une paire de der	its en prise	Deux paires de d	lents en prise
	En torsion (Hz)	En flexion (Hz)	En torsion (Hz)	En flexion (Hz)
	259	170	291	170
130Nm	1793	187	1793	187
	1989	200	1989	200
		342		342
		725		725
		1356		1356
	290	174	297	173
	1793	187	1793	187
m Z	2002	200	1989	200
160)		342		342
		726		744
		1355		1356

Résultats des fréquences de résonance de la roue 10

Le tableau XLV représente les fréquences de résonance moyenne en torsion. Le nombre de lignes du tableau représente le nombre de fréquences de résonance en torsion pour le cas une paire de dents en prise, et le nombre de fréquences par case représente le nombre de fréquences de résonance en torsion pour le cas deux paires de dents en prise

Tableau XLV

Fréquence de résonance moyenne de la roue 10

Fréquence moyenne de résonance en torsion (Hz)				
130Nm	160Nm	145Nm		
280/1287/1418	295 / 1297 / 1428	287.5 / 1292 / 1423		
787 / 1793 / 1924	791 / 1793 / 1924	789 / 1793 / 1924		
851 / 1858 / 1989	860 / 1862 / 1993	855.5 / 1860 / 1991		

Ta	Ы	laan	VI	VI.
1.41	U.	Cdu	~1	/ V I

	Grade de qualité						
Roue :	Qv VΦ	Qv VψT	Qv +/-Vpa	Qv Vrt	Qv Roue	Qv paire	
P4640 F 1/2 N 37	6	1	7	6	1		
P. 640 F 1/2 N38	7	5	8	7	5	1	

Figure XIII Transformées de Fourier pour le montage de la roue 10.

Tableau XLVII

Rou	e 10		Fréquences obtenues sur les diagrammes de Fourier		
Vitesse de rotation	se Vitesse & d'engrènen on Couple (Hz)		Vitesse & d'engrènement Couple (Hz) Modulation de Fe (Hz)		
	N	127.6	375.6(*2)		
	Hz Hz	127.0	124.2(*-1); 130.9(*1)	9.462;	
e	358 Nn	255.2	248.3(*-2); 251.8(*1)	19.08;	
	3.45	100 V 10	Pas de modulation par Fr2	57.23;	
	55	387.4	379.1(*1)	59.97	
/um	~	502.4	362.5(*-6); 385.9(*1)		
0fr		130	165.1(*10)	9.462:	
200	HzHz	120	133.4(*1)	19.08;	
	Ω1=3.513 Ω2=3.421 160Nm		Pas de deuxième harmonique	32.05; 47.46;	
		a a	88		Pas de troisième harmonique
	t1=8.289Hz 2=8.071Hz 145Nm	NN	306.4	190.5(*-14); 223.7(*-10); 232(*-9); 248.4(*-7); 389.1(*10); 153.2(*-19); 242(*-8); 256.7(*-6); 314.7(*1); 332.6(*2); 459.7(*10)	8.24; 22.28; 44.56; 60.13;
			552.0(*2), 459.7(*17) 604.6(*1), 670.0(*7), 605.6(*10),	66.84;	
		145N	612.9	548.2(*-8); 621.1(*1); 629(*2); 637.6(*3); 677.7(*8); 749.9(*17); 766.1(*19);	89.12; 133.7; 836.3
min	GG	919	853.1(*-8); 862.8(*-7); 870.8(*-6); 879(*-5); 911.1(*-1); 1002(*10);	1010; 1018; 1079	
Otr			927.2(*1); 960.5(*5); 985.5(*8); 993.9(*9)		
500	Hz Hz	Hz Hz	310	134.3(*-21); 193.2(*-14); 201.4(*-13); 226.8(*-10); 235(*-9); 260.3(*-6); 327.5(*2); 335.1(*3); 394.4(*10);	22.28:
	378 158 Nm		155.4(*-19); 179.5(*-16); 245.4(*-8); 358.9(*6);	60.13 :	
	11=8.1 150	621.4	637.2(*2); 687(*8); 705.3(*10); 556.1(*-8); 777.1(*19);	67.14 ; 89.43;	
	dd	932	1014(*10) 848 5(*-10): 883(*-6):	466.1	

Tableau XLVIII

Résumé des fréquences obtenues p	r Fourier pour la rou	ie 10 (Suite)
----------------------------------	-----------------------	---------------

Rou	ie 10	1	Fréquences obtenues sur les diagrammes de Fourier		
Vitesse de rotation	Vitesse & Couple	Fréquence d'engrènement et harmonique (Hz)	Modulation de Fe (Hz)	Autres fréquences (Hz)	
	4z 4z	610	445(*-10); 544(*-4); 626.3(*1);775.2(*10); 594.2(*-1); 915.3(*19)	_	
	5.486 5.053 5.053 5.053	1221	1237(*1); 1254(*2); 1386(*9) 1076(*-9); 1188(*-2); 1204(*-1);	730.4; 1340; 1505;	
min	a a 1831 1571(*-		1847(*1); 1863(*2); 1571(*-16); 1735(*-6); 1749(*-5); 1798(*-2); 1814(*-1);	2082	
000tr/		613.8	447.7(*-10); 779.5(*10); 306.7(*-19); 597.6(*-1); 630(*1); 920.5(*19);	-	
-	CH685 9 1228	1228	1013(*-13); 1211(*-1); 1244(*1); 1261(*2); 1393(*10) 1195(*-2); 1357(*8);	705.7; 1219; 1319;	
	-10 -10 -10	1841	1676(*-10); 1709(*-8); 1775(*-4); 1824(*-1); 1858(*1); 2007(*10) 1727(*-7); 1744(*-6); 1873(*2)	1619	

Tableau XLIX

Résumé des contraintes de la roue 10

Vitesse de rotation : 200tr/min					
145Nm 160Nm					
Contrainte théorique (MPa)	Contrainte expérimentale (MPa)	Contrainte théorique (MPa)	Contrainte expérimentale (MPa)		
150	61.1	165.6	56		

Roue P, 6w0' F3N24, roue 11

Le rapport de conduite de la roue 11 est 1.59.

Tableau L

	Une paire de	dents en prise	Deux paires de	e dents en prise
	En torsion (Hz)	En flexion (Hz)	En torsion (Hz)	En flexion (Hz)
	114	167	140	167
	209	183	269	183
Ε		194		194
S		344		344
13		601		772
		764		1294
		1294		
	114	167	148	167
	209	184	281	185
Ξ		195		194
N		344		344
16		608		782
		778		1324
	-	1294		

Résultats des fréquences de résonance de la roue 11

Le tableau LI représente les fréquences de résonance moyenne en torsion. Le nombre de lignes du tableau représente le nombre de fréquences de résonance en torsion pour le cas une paire de dents en prise, et le nombre de fréquences par case représente le nombre de fréquences de résonance en torsion pour le cas deux paires de dents en prise

Tableau LI

Fréquence de résonance moyenne de la roue 11

Fréquence moyenne de résonance en torsion (Hz)					
130Nm	160Nm	145Nm			
129 / 205	134/212	131.5 / 208.5			
168/244	173/251	170.5 / 247.5			

Tableau LII

Roue :	Grade de qualité					
	Qv VΦ	Qv V ψT	Qv +/-Vpa	Qv Vrt	Qv Roue	Qv paire
P, 6w0° F3N24	6	5	8	8	5	
P, 6w0 F3N25	6	0	6	5	0	0

Figure XIV Transformées de Fourier pour le montage de la roue 11.

Tableau LIII

Roue 11		Fréquences obtenues sur les diagrammes de Fourier		
Vitesse de rotation	Vitesse & Couple	Fréquence d'engrènement et harmonique (Hz)	Modulation de Fe (Hz)	Autres fréquences (Hz)
200tr/min	Ω1=3.357Hz Ω2=3.223Hz 145Nm	80.58	73.86(*-2); 83.93(*1);	19.08; 57.38; 59.97
			77.37(*-1); 109.6(*9);	
		161	151.1(*-3); 154.6(*-2); 164.5(*1); 167.9(*2); 171.2(*3)	
			141.6(*-6); 157.9(*-1);	
		241.6	245.2(*1); 248.6(*2) 209.4(*-10); 212.4(*-9); 225.4(*-5); 232.1(*-3); 235.2(*-2); 238.7(*-1); 254.9(*4); 270.4(*9)	
	Ω1=3.434Hz Ω2=3.296Hz 160Nm	82.41	85.92(*1); 89.27(*2) 76.15(*-2); 79.2(*-1); 98.89(*5); 112.2(*9)	3.51 ; 19.08 ; 57.07 ; 59.97
		165	168.3(*1); 171.8(*2); 175.2(*3)	
			135.2(*-9); 148.5(*-5); 151.7(*-4); 154.9(*-3); 158.1(*- 2); 161.5(*-1); 181.4(*5)	
		247.7	250.9(*1); 254.2(*2); 257.8(*3); 261.3(*4)	
			214.4(*-10); 221(*-8); 230.9(*-5); 234.3(*-4); 237.5(*- 3); 240.7(*-2); 244.2(*-1)	
500tc/min	Ω1=8.633Hz Ω2=8288Hz 145Nm	207.2	138(*-8); 146.8(*-7); 163.9(*-5); 172.8(*-4); 181.3(*- 3); 198.4(*-1); 224.3(*2); 232.9(*3); 241.4(*4); 310.7(*12); 140.7(*-8); 157.5(*-6); 190.5(*-2); 215.5(*1); 248.4(*5)	8.241 ; 60.13 ; 70.2
			405.9(*-1): 440(*3)	
		414.2	331.5(*-10); 339.7(*-9); 347.9(*-8); 356.2(*-7); 364.7(*-6); 373(*-5); 381.2(*-4); 389.5(*-3); 397.7(*- 2); 422.4(*1); 431(*2); 447.4(*4); 455.2(*5)	
			595.8(*-3); 604(*-2); 612.6(*-1)	
		621.4	571.7(*-6); 579.9(*-5); 613.2(*-1); 629.7(*1); 638.2(*2); 646.1(*3); 662.9(*5)	
	Ω1-8.7125Hz Ω2-8.364Hz 160Nm	209.1	70.2(*-16); 139.5(*-8); 148(*-7); 156.9(*-6); 182.8(*-3); 200.5(*-1); 226.2(*2); 235(*3); 243.9(*4) 133.7(*-9); 142.2(*-8); 150(*-7); 192.3(*-2); 217.3(*1); 250.9(*5); 259.1(*6)	8.5 ; 46.7
		417.85	Pas de modulation par Fr1	
			359.5(*-7); 367.8(*-6); 401.4(*-2); 409.6(*-1); 426.4(*1); 451.4(*4)	
		626.9	601.3(*-3); 609.5(*-2); 618.4(*-1); 635.5(*2) 543.3(*-10); 585.1(*-5); 610.1(*-2); 644(*2); 652.9(*3); 668.7(*5); 685.5(*7)	
Tableau LIV

Résumé des fréquences obtenues par Fourier pour la roue 11 (Suite)

Roue 11			Fréquences obtenues sur les diagrammes de Fourier			
Vitesse de rotation	Vitesse & Couple	Fréquence d'engrènement et harmonique (Hz)	Modulation de Fe (Hz)	Autres fréquences (Hz)		
1000tr/min		391.6	440.4(*3) 141(*-16); 219.1(*-11); 297.6(*-6); 344.6(*-3); 359.5(*-2); 376(*-1); 407.2(*1); 423.6(*2); 455.1(*4)			
	=8.378Hz 2=8.158Hz 145Nm	783.2	734(*-3); 831.4(*3); 896.7(*7) 642.2(*-9); 689.2(*-6); 702.9(*-5); 720(*-4); 751.7(*-2); 767.6(*-1); 798.7(*1); 814.6(*2); 845.7(*4); 877.2(*6);	322.9; 862.8; 824.2; 1102;		
	55	a a 1175	947.1(*-14); 978(*-12); 1126(*-3); 1223(*3) 1002(*-11); 1018(*-10); 1034(*-9); 1081(*-6); 1097(*-5); 1111(*-4); 1143(*-2); 1159(*-1); 1190(*1); 1206(*2); 1237(*4); 1254(*5); 1269(*6); 1301(*8)	1119; 1135; 116		
	1=16.379Hz 2=15.724Hz 160Nm			393.1	441.6(*3); 458.6(*4) 141.6(*-16); 251.5(*-9); 314.4(*-5); 330.2(*-4); 345.8(*-3); 361.7(*-2); 337.2(*-1); 409(*1); 424.6(*2); 471.9(*5); 503(*7)	
		786.2	737.1(*-3); 629(*-10); 691.9(*-6); 707.5(*-5); 722.1(*-4); 754.8(*-2); 770.4(*-1); 801.8(*1); 817.7(*2); 833.2(*3); 850.6(*4); 865.6(*5); 880.5(*6); 927.8(*9)	16.18 ; 33.66 ; 47.92		
	aa	1180	1196(*1); 1230(*3); 1006(*-11); 1039(*-9); 1054(*-8); 1070(*-7); 1085(*-6); 1102(*-5); 1116(*-4); 1132(*-3); 1148(*-2); 1164(*-1); 1211(*2); 1242(*4); 1274(*6); 1322(*9)			

Tableau LV

Résumé des contraintes de la roue 11

	Vitesse de rota	tion : 200tr/min	
1	45Nm	1	60Nm
Contrainte théorique (MPa)	Contrainte expérimentale (MPa)	Contrainte théorique (MPa)	Contrainte expérimentale (MPa)
53.7	27.9	59.2	28.8

Roue P, 6w0' F3N37, roue 12

Le rapport de conduite de la roue 12 est 1.68

Tableau LVI

Résultats des fréquences de résonance de la roue 12

	Une paire de den	ts en prise	Deux paires de dents en prise		
	En torsion (Hz)	En flexion (Hz)	En torsion (Hz)	En flexion (Hz)	
		130	90	132	
Ε	107	152	144	154	
S	1722	323	1722	(268)	
13		570	1981	323	
	2118		2117	538	
		135	104	132	
ε	163	152	149	159	
Z	1799	323	1759	(273)	
16		623	2018	321	
	2093		2137	580	

Le tableau LVII représente les fréquences de résonance moyenne en torsion. Le nombre de lignes du tableau représente le nombre de fréquences de résonance en torsion pour le cas une paire de dents en prise, et le nombre de fréquences par case représente le nombre de fréquences de résonance en torsion pour le cas deux paires de dents en prise

Tableau LVII

Fréquence de résonance moyenne de la roue 12

Fréquer	nce moyenne de résonance e	n torsion (Hz)
130Nm	160Nm	145Nm
95 / 132 / 1205 / 1381 / 1473	123 / 153 / 1248 / 1424 / 1505	109 / 142.5 / 1226.5 / 1402.5 / 1489
612 / 649 / 1722 / 1898 / 1991	646 / 677 / 1772 / 1948 / 2029	629 / 663 / 1747 / 1923 / 2010
739 / 776 / 1849 / 2025 / 2117	740 / 771 / 1866 / 2042 / 2123	739.5 / 773.5 / 1857.5 / 2033.5 / 2120

Tableau LVIII

Grade de la qualité du montage 1 relié à la roue 12

			Grade d	e qualité		
Roue :	Qv VΦ	Qv VyT	Qv +/-Vpa	Qv Vrt	Qv Roue	Qv paire
P, 6\00 F3N34	6	0	8	7	0	
$P_d 6 \psi 0^+ F 3 N 35$	6	1	7	5	1	0

Figure XV Transformées de Fourier pour le montage de la roue 12.

Tableau LIX

Résumé des fréquences obtenues par Fourier pour la roue 12

Rou	e 12		Fréquences obtenues sur les diagrammes de Fourier												
Vitesse de rotation	Vitesse & Couple	Fréquence d'engrènement et harmonique (Hz)	Modulation de Fe (Hz)	Autres fréquences (Hz)											
	0Hz 0Hz	126.5	130(*1); 133.4(*2); 136.9(*3); 143.8(*5); 123.2(*-1); 189.7(*19);	4.426											
	SNa 41	253	198.2(*-16); 218.8(*-10); 225.9(*-8); 229.2(*-7);	57.07;											
g	Ω1=3 Ω2=3 14	(380)	Pas de modulation par Fr1 ou Fr2	218.8											
200tr/mi	Hz Iz	127.7	131.2(*1); 138.1(*3); 148(*6); 183(*16); 100.9(*-8); 124.4(*-1);	-											
	11=3.4511 22=3.36F 160Nm	255.5	197(*-17); 200.2(*-16); 217.5(*-11); 221(*-10); 231.4(*-7); 282.3(*8); 319.6(*19)	57; 59.97; 61.05											
	d a		Pas de troisième harmonique	1											
	Ω1=8.67Hz Ω2=8.442Hz 145Nm	Ω1=8.67Hz Ω2=8.442Hz 145Nm	Ω1=8.67Hz Ω2=8.442Hz 145Nm	320.8	138.6(*-21); 147.4(*-20); 182.2(*-16); 199.6(*-14); 208.5(*-13); 217(*-12); 225.6(*-11); 234.1(*-10); 242.9(*-9); 251.5(*-8); 303.4(*-2); 312.2(*-1); 329.6(*1); 347(*3); 355.6(*4); 407.8(*10); 459.7(*16)										
				Ω1=8.67H Ω2=8.442H 145Nm	Ω1=8.67H. Ω2=8.442H 145Nm	Ω1=8.67H. Ω2=8.442H 145Nm	Ω1=8.67H Ω2=8.442H 145Nm								
500		962.3	875.7(*-10); 945.2(*-2); 953.8(*-1); 971.2(*1); 1049(*10) 851.2(*-13); 895.2(*-8); 911.7(*-6); 996.5(*4); 1030(*8)												
		320.8	208.2(*-13); 303.7(*-2); 216.7(*-12); 311.9(*-1); 346.7(*3); 242.6(*-9); 329.3(*1); 338.2(*2); 147.4(*-20); 407.5(*10); 433.7(*13); 10.2(*-19); 185.9(*-16); 388.5(*5); 481.2(*19);												
	021=8.67Hz 02=8.442Hz 160Nm	641.9	546.3(*-11); 554.9(*-10); 607.1(*-4); 615.9(*-3); 624.2(*-2); 632.4(*-1); 650.4(*1); 659.3(*2); 667.8(*3); 728.5(*10); 789.3(*17) 574.1(*.8); 709.3(*8);	46.3											
		962.6	876(*-10); 893.4(*-8); 945.2(*-2); 971.2(*1); 979.4(*2); 988(*3); 997.4(*4); 1049(*10) 802.1(*-19); 954.1(*-1)												

Tableau LX

Résumé des fréquences obtenues par Fourier pour la roue 12 (Suite)

Rou	e 12		Fréquences obtenues sur les diagrammes de Fourier			
Vitesse de rotation	Vitesse & Couple	Fréquence d'engrènement et harmonique (Hz)	Modulation de Fe (Hz)	Autres fréquences (Hz)		
		611	445.9(*-10); 578.4(*-2); 643.7(*2); 726.7(*7); 776.2(*10)			
	HzHzH		594.9(*-1); 916.9(*19)			
	B 29	1222	1239(*1); 1272(*3) 1256(*2); 1388(*10)			
	Ω1=16.5 Ω2=16.0 145N	200 X 1447	1094(*-8); 1190(*-2); 1207(*-1); 1351(*8);	1529		
		Ω1=1 Ω2=1 14	19 19 19 19 19 19 19 19 19 19 19 19 19 1	1652(*-11); 1669(*-10); 1818(*-1); 1850(*1); 1883(*3); 1900(*4); 1999(*10); 2032(*12)		
0		1834	1640(*-12); 1705(*-8); 1944(*7); 1963(*8); 2107(*17);			
100				611.3	578.7(*-2); 594.9(*-1); 627.8(*1); 644.3(*2); 660.5(*3); 776.5(*10)	
	NN		755.2(*9); 917.2(*19)			
	5221 0.0871	5.522H 5.087H Nm	1223	1190(*-2); 1206(*-1); 1239(*1); 1256(*2); 1335(*7); 1388(*10);		
	1991	199	1078(*-9); 1528(*19);			
	55		1669(*-10); 1784(*-3); 1883(*3); 1999(*10)			
		1834	1639(*-12); 1705(*-8); 1802(*-2); 1818(*-1); 1850(*1); 1866(*2); 1898(*4); 1944(*7)			

Tableau LXI

Résumé des contraintes de la roue 12

	Vitesse de rota	tion : 200tr/min	
14	45Nm	1	60Nm
Contrainte théorique (MPa)	Contrainte expérimentale (MPa)	Contrainte théorique (MPa)	Contrainte expérimentale (MPa)
31.8	33.7	35.1	36.1

Roue P, 6w20" F 1/2 N 24, roue 13

Le rapport de conduite de la roue 13 est 1.88.

Tableau LXII

	Une paire de der	its en prise	Deux paires de d	lents en prise
	En torsion (Hz)	En flexion (Hz)	En torsion (Hz)	En flexion (Hz)
	124	179	141	179
	241	190	329	190
Ξ	264	203	639	203
NO		215	£	215
13		346		353
		625		(795)
		(795)		
-	130	179	148	179
	248	192	333	190
Ξ	264	203	663	203
S		215		215
16	-	348	1	241
		625		352
		(807)		(795)

Résultats des fréquences de résonance de la roue 13

Le tableau LXII représente les fréquences de résonance moyenne en torsion. Le nombre de lignes du tableau représente le nombre de fréquences de résonance en torsion pour le cas une paire de dents en prise, et le nombre de fréquences par case représente le nombre de fréquences de résonance en torsion pour le cas deux paires de dents en prise

Tableau LXIII

Fréquence de résonance moyenne de la roue 13

Fréquence mo	yenne de résonan	ce en torsion (Hz)
130Nm	160Nm	145Nm
139/304/577	146/309/599	142.5 / 306.5 / 588
153 / 318 / 591	160/323/613	156.5 / 320.5 / 602
156 / 321 / 594	162/325/615	159 / 323 / 604.5

Tableau LXIV

Grade de la qualité du montage 1 relié à la roue 13

	Grade de qualité					
Roue :	Qv VΦ	Qv VyT	Qv +/-Vpa	Qv Vrt	Qv Roue	Qv paire
P. 6w20" F 1/2 N24	7	3	9	10	3	
P, 6\20" F 1/2 N25	6	4	8	9	4	3

Figure XVI Transformées de Fourier pour le montage de la roue 13.

Tableau LXV

Résumé des fréquences obtenues par Fourier pour la roue 13

Rou	e 13		Fréquences obtenues sur les diagrammes de Fourier						
Vitesse de rotation Vitesse & Couple		Fréquence d'engrènement et harmonique (Hz)	it e Modulation de Fe (Hz)						
		81.03	97.97(*5); 101.3(*6); 104.8(*7);						
		81.05	84.24(*1);						
	376Hz 241Hz Nm	161.9	138.6(*-7); 141.6(*-6); 145.4(*-5); 152(*-3); 155.4(*-2); 158.6(*-1); 179.2(*5); 182.5(*6); 202.8(*12)	9.46; 19.08;					
	3.3		165.3(*1); 168.6(*2)	57.07;					
	89	242.2	206.2(*-13); 219.6(*-7); 226.2(*-5); 236.1(*-2); 250(*2); 250(*3); 259.7(*5)	59.97					
)tr/mi		243.3	214.1(*-9); 223.1(*-6); 236.8(*-2); 240.1(*-1); 246.2(*1); 262.9(*6); 272.7(*9)						
200		03.33	Pas de modulation par Fr1						
	Ω1=3.419Hz Ω2=3.329Hz 145Nm				83.32	79.97(*-1); 86.68(*1)			
		EII66.8	145.9(*-6); 170.2(*1); 173.7(*2); 180.5(*4); 184(*5); 187.6(*6); 208.5(*12)	19.08; 28.69;					
			159.9(*-2); 163.4(*-1); 176.7(*3);	57.23;					
		<u>a</u> 8	ag	ag	ag	250.1	243.1(*-2); 246.6(*-1); 253.5(*1); 257(*2); 260.3(*3); 270.9(*6); 274.4(*7)	59.97	
_			220.1(*-9); 239.9(*-3);						
		197.5	181(*-2); 214(*2); 246.9(*6); 254.9(*7); 263.1(*8)						
	NN	2	134(*-8); 189.5(*-1); 205.4(*1); 236.8(*5)	7.936;					
	9H:	9H3	29H	9H3	9H3	29H 9H3	394.9	378.5(*-2); 386.7(*-1); 44.1(*6)	22.28;
	8.2 45h		410.8(*2)	44.50;					
	20 20 21	10 - 59	592.4	559.5(*-4); 567.7(*-3); 575.9(*-2); 609.2(*2); 617.1(*3); 634.2(*5); 691(*12)	66.84				
.5			584.5(*-1); 600(*1); 663(*9)						
m/n			183.1 216.4 241.4 266.5	22.28;					
500t	z z	199.6	191.4 224.6 249.7 274.4 207.9 232.9 257.9	44.50; 60.13;					
	191 E	300 5	375 391 415.4 432.8	00.84;					
	3.4	379.5	383.3 407.8 424.2 441	279.6;					
	8	599.1	566.5 590.9 623.2 574.4 607.4 640.6	499.3; 657.4;					
			582.3 615.3 648.9	670.9;					

Tableau LXVI

Résumé des fréquences obtenues par Fourier pour la roue 13 (Suite)

Roue 13			Fréquences obtenues sur les diagrammes de Fourier			
Vitesse de rotation	Vitesse & Couple	Fréquence d'engrènement et harmonique (Hz)	Modulation de Fe (Hz)	Autres fréquences (Hz)		
		394.9	181(*-11); 246.9(*-9); 263.1(*-8); 179.9(*-7); 296.6(*-6); 312.5(*-5); 329(*-4); 378.5(*-1); 411.4(*1)			
			Pas de modulation par Fr2			
	6.454Hz 5.796Hz 5Nm	789.9	658(*-8); 691(*-6); 707.5(*-5); 724(*-4); 740.4(*- 3); 756.9(*-2); 773.4(*-1);806.4(*1); 822.9(*2); 855.5(*4); 937.9(*9); 954.4(*10); 987.4(*12);			
	1114		742.6(*-3); 837.2(*3);			
	.442Hz Ω .784Hz Ω SNm	1185	1086(*-6); 1102(*-5); 1119(*-4); 1135(*-3); 1152(*-2); 1168(*-1); 1201(*1); 1217(*2); 1234(*3); 1250(*4); 1267(*5); 1333(*9); 1382(*12)			
E			994.7(*-12); 1011(*-11); 1327(*9)			
1000tr/m				394.6	131.9(*-16); 181(*-13); 246.6(*-9); 279.6(*-7); 296.6(*-6); 312.5(*-5); 328.7(*-4); 361.7(*-2); 3782(*-1); 410.8(*1); 427.6(*2)	
			552.4(*10);			
		$\begin{array}{c c} & & \\ & &$	657.7(*-8); 690.7(*-7); 706.9(*-5); 723.4(*-4); 756.3(*-2); 805.5(*1); 821.9(*2); 838.4(*3); 887.9(*6); 953.8(*10); 970(*11); 986.4(*12); 1003(*13);	60.13		
	21-10 1-12 14		584.9(*-13); 742(*-3); 773.4(*-1); 883.9(*6); 931.2(*9);	1		
		1184	1036(*-9); 1052(*-8); 1085(*-6); 1102(*-5); 1118(*-4); 1151(*-2); 1167(*-1); 1201(*1); 1217(*2); 1249(*4); 1266(*5); 1282(*6); 1132(*-2); 1325(*20)			

Tableau LXVII

Résumé des contraintes de la roue 13

	Vitesse de rota	tion : 200tr/min	
1	45Nm	1	60Nm
Contrainte théorique (MPa)	Contrainte expérimentale (MPa)	Contrainte théorique (MPa)	Contrainte expérimentale (MPa)
145.3	143.5	160.3	134.7

Roue P, 6w20' F 1/ N37, roue 14

Le rapport de conduite de la roue 14 est 1.93

Tableau LXVIII

	Une paire de der	nts en prise	Deux paires de d	ents en prise
	En torsion (Hz)	En flexion (Hz)	En torsion (Hz)	En flexion (Hz)
	156	184	227	167
-	1565	198		184
Z	1736	338	1742	196
30]	1886	594	1886	338
-	2114	690	2128	(552)
				690
	209	168	250	167
	1668	184	1637	184
E	1829	196		196
60	1963	338	1950	338
-	2149	602	2161	(576)
		714	1	715

Résultats des fréquences de résonance de la roue 14

Le tableau LXIX représente les fréquences de résonance moyenne en torsion. Le nombre de lignes du tableau représente le nombre de fréquences de résonance en torsion pour le cas une paire de dents en prise, et le nombre de fréquences par case représente le nombre de fréquences de résonance en torsion pour le cas deux paires de dents en prise

Tableau LXIX

Fréquen	Fréquence moyenne de résonance en torsion (Hz)						
130Nm	160Nm	145Nm					
222 / 1631 / 1764 / 1990	247 / 1537 / 1828 / 2024	234.5 / 1584 / 1796 / 2007					
321 / 1730 / 1863 / 2089	349 / 1639 / 1930 / 2126	335 / 1684.5 / 1896.5 / 2107.5					
333 / 1741 / 1875 / 2101	361 / 1650 / 1941 / 2138	347 / 1695.5 / 1908 / 2119.5					
343 / 1752 / 1886 / 2111	370 / 1660 / 1951 / 2147	356.5 / 1706 / 1918.5 / 2137					
359 / 1768 / 1902 / 2127	383 / 1673 / 1964 / 2160	371 / 1720.5 / 1933 / 2143.5					

Fréquence de résonance moyenne de la roue 14

Tableau LXX

Grade de la qualité du montage 1 relié à la roue 14

	Grade de qualité					
Roue :	Qv VΦ	Qv VyT	Qv +/-Vpa	Qv Vrt	Qv Roue	Qv paire
P46\u00f720°F 1/2N37	5	0	7	7	0	0
$P_4 6 \psi 20^{\circ} F \frac{1}{2} N38$	7	4	9	7	4	0

Figure XVII Transformées de Fourier pour le montage de la roue 14.

Tableau LXXI

Résumé des fréquences obtenues par Fourier pour la roue 14

Rou	c 14	line and the	Fréquences obtenues sur les diagrammes de Fourier				
Vitesse de rotation	Vitesse & Couple	Fréquence d'engrènement et harmonique (Hz)	Modulation de Fe (Hz)	Autres fréquences (Hz)			
200tr/min	NN	128.3	131.9(*1); 135.4(*2); 142.2(*4); 163.1(*10)				
	HI HI	120.0	Pas de modulation par Fr2	18.77;			
	5Nr	256.8	251.5(*-1)	37.69;			
	2-3	120.0	Pas de modulation par Fr2	50.02;			
	ag		Pas de troisième harmonique	37.51			
	6Hz SHz	129	132.5(*10; 135.8(*2); 139.3(*3); 142.8(*4); 163.7(*10)	9.462;			
	39. 39. Nr		Pas de modulation par Fr2	19.08;			
	Ω1=3. Ω2=3. 160	257.8	254.5(*-1)	57.07;			
		22	23	8 8	22		225.9(*-10); 234.1(*-7); 2261.3(*1)
	-		Pas de troisieme narmonique				
	Ω1=8.365Hz Ω2=8.145Hz 145Nm			309.5	309.5	150.5(*-19); 217.6(*-11); 225.9(*-10); 234.1(*-9); 301.2(*-1); 326.3(*2); 393.1(*10); 452.3(*17)	
			244.5(*-8); 300.0(*7); 374.8(*8);	22.28;			
		12=8.365F 12=8.145F 145Nm 145Nm 145Nm 145Nm	644(*3): 652 5(*4): 702 6(*10)	44.56; 60.13; 66.84;			
			554(*-8); 561.9(*-7); 570.1(*-6); 578.4(*-5); 651.6(*4); 684.3(*3)				
		aa	aa	aa	1 a	945.2(*2); 1012(*10)	09.12
g						928.8	863.4(*-8); 871.4(*-7); 879.6(*-6); 904(*-3); 912(*-2); 920.5(*-1); 993.8(*8); 1002(*9)
n/1100			200.2	216.4(*-16); 234.1(*-9); 317.7(*1); 326(*2); 334.5(*3); 393.1(*10);			
40	NN	309.2	130.8(*-22); 244.2(*-8); 261(*-6); 374.5(*8); 391.6(*10)	22.28;			
	357H 137H	619 7	601.9(*-2); 635.5(*2); 643.1(*3); 652.2(*4); 702.3(*10);	60.13; 66.84;			
	Ω1-8 Ω2-8 16(018.7	521.9(*-12); 561.6(*-7); 569.8(*-6); 593.6(*-3); 684(*8);	85.76;			
			944.9(*2);	197.5			
		928.2	863.1(*-8); 879(*-6); 895(*-4); 903.7(*-3); 911.4(*-2); 919.9(*-1); 993.2(*8)	1			

Tableau LXXII

Résumé des fréquences obtenues par Fourier pour la roue 14 (Suite)

Rou	e 14		Fréquences obtenues sur les diagrammes de Fourier		
Vitesse de rotation	Vitesse & Couple	Fréquence d'engrènement et harmonique (Hz)	Modulation de Fe (Hz)	Autres fréquences (Hz)	
		613.5	646.4(*2); 762.9(*9); 779.2(*10); 597.5(*-1); 742.6(*8);		
	1=16.581Hz 2=16.145Hz 145Nm	1227	994,7(*-14); 1011(*-13); 1127(*-6); 1144(*-5); 1177(*-3); 1194(*-2); 1260(*2); 1276(*3); 1392(*10); 952.3(*-17); 1033(*-12); 1243(*1); 1356(*8);	1319; 1513	
	ag		1874(*2)		
1000tr/min		1841	1759(*-5); 1808(*-2); 1824(*-1); 1856(*1); 1970(*8)		
	2HLS F 91 E 1218 2000 2017		608.9	575.6(*-2); 592.4(*-1); 625.4(*1); 641.9(*2); 658.3(*3); 674.2(*4); 691(*5); 707.5(*6); 724(*6); 740.4(*7); 756.5(*8); 773.4(*9)	
		1004(*-13); 1020(*-12);1037(*-11); 1052(*-10); 1069(*-9); 1086(*-8); 1102(*-7); 1119(*-6); 1136(*- 5); 1151(*-4); 1169(*-3); 1184(*-2); 1201(*-1); 1058(*-10); 1090(*-8); 1105(*-7); 1122(*-6); 1233(*1); 1250(*2)			
	8	1826	1630(*-12); 1645(*-11); 1661(*-10); 1679(*- 9);1695(*-8); 1761(*-4); 1778(*-3); 1793(*-2); 1810(*-1); 1844(*1); 1859(*2); 1974(*9); 1992(*10); 2006(*11); 2022(*12) 1523(*-19); 1715(*-7); 1747(*-5); 1875(*3); 1890(*4): 1906(*5): 1923(*6): 1940(*7): 1955(*8)		

Avec les accélérations en torsion, aucune fréquence ne semble convenir pour le cas 1000tr/min et 160Nm, les accélérations verticales sont donc utilisées pour trouver les valeurs des fréquences remarquables.

Tableau LXXIII

Résumé des contraintes de la roue 14

	Vitesse de rota	tion : 200tr/min	
1	45Nm	1	60Nm
Contrainte théorique (MPa)	Contrainte expérimentale (MPa)	Contrainte théorique (MPa)	Contrainte expérimentale (MPa)
111.9	45.7	123.4	45.7

Roue P, 6w20° F3N24, roue 15

Le rapport de conduite de la roue 15 est 3.52.

Tableau LXXIV

Résultats des fréquences de résonance pour la roue 15

	Trois paires de d	ents en prise	Quatre paires de	dents en prise
	En torsion (Hz)	En flexion (Hz)	En torsion (Hz)	En flexion (Hz)
	119	163	252	135
	215	184		162
		196		184
ε		338		196
N		611		338
13		761		565
		1308		614
				764
				1303
	140	163		145
	231	182		163
		197		183
F		338		196
NZ.		619		338
160		774		578
		1307		679
				761
				1262

Le tableau LXXV représente les fréquences de résonance moyenne en torsion. Le nombre de lignes du tableau représente le nombre de fréquences de résonance en torsion pour le cas trois paires de dents en prise, et le nombre de fréquences par case représente le nombre de fréquences de résonance en torsion pour le cas quatre paires de dents en prise

Tableau LXXV

Fréquence de résonance moyenne de la roue 15

Fréquence moyenne de résonance en torsion (Hz)					
130Nm	160Nm	145Nm			
188	140	164			
234	231	232.5			

Tableau LXXVI

Grade de la qualité du montage 1 relié à la roue 15

			Grade de	qualité		
Roue :	Qv VΦ	Qv VyT	Qv +/-Vpa	Qv Vrt	Qv Roue	Qv paire
P _d 6\u03c6 20° F3N24	5	0	7	7	0	
$P_{d} 6 \psi 20^{\circ} F 3 N 25$	6	1	9	8	1	0

Figure XVIII Transformées de Fourier pour le montage de la roue 15.

Tableau LXXVII

Résumé des fréquences obtenues par Fourier pour la roue 15

Rou	e 15		Fréquences obtenues sur les diagrammes de Fourier			
Vitesse de rotation	Vitesse & Couple	Fréquence d'engrènement et harmonique (Hz)	Modulation de Fe (Hz)	Autres fréquences (Hz)		
		81.34	88.05(*2); 94.92(*4); 118.6(*11); 121.9(*12); 125.4(*13);	2 367.		
	NN	01.04	78.13(*-1); 84.54(*1); 91.11(*3)	9.614;		
	3.389H 3.254H 60Nm	162.7	132.2(*-9); 139(*-7); 145.7(*-5); 156(*2); 159.3(*- 1);	19.08; 28.69; 38.15;		
	22=		136.6(*-8); 143.3(*-9); 150.2(*-4); 165.9(*1); 169.29*2); 172.6(*3); 182.2(*6)	57.38;		
tr/min		243.9	233.8(*-3);237.5(*-2); 240.7(*-1); 247.5(*1); 250.7(*2)	66.84		
500			253.6(*3)	1		
	Ω1=3.427Hz Ω2=3.29Hz 160Nm			82.25	75.39(*-2); 78.9(*-1); 88.97(*2); 119.9(*11);	
		00.00	85.46(*1); 92.17(*3);	9.462:		
		164.5	130.2(*-10); 137(*-8); 147.7(*-5);	19.08 ; 28.54; 57.07 ;		
			151.7(*-4); 157.9(*-2); 161.2(*-1); 167.9(*1);			
			171.2(*2); 174.6(*3); 177.9(*4); 184.2(*6)			
		246.8	243.3(*-1); 253.5(*2);	59.97		
			210.6(*-11); 217.2(*-9); 233.5(*-4); 236.7(*-5); 240.2(*-2); 250(*1); 256.7(*2); 260.2(*4)			
	42Hz 12Hz Vim	197.8	123(*-9); 140.1(*-7); 156.6(*-5); 165.4(*-4); 181.6(*-2); 189.5(*-1); 206(*1); 214(*2); 230.7(*4); 238.7(*5); 296.7(*12); 304.9(*13)	8.241; 22.58;		
		421 421 421		134(*-8); 173.7(*-3); 221.6(*3)	44.56;	
	8.2	205.0	403.8(*1);	60.13;		
	- a a -	393.9	356.8(*-5); 387.6(*-1); 411.7(*2); 419.7(*3);	66.84;		
u	G G	593.3	535.3(*-7); 601.6(*1); 610.1(*2); 692.5(*12) 577.5(*-2); 585.4(*-1); 618.1(*1); 664.8(*9);	89.43		
00tr/n		199.9	124.3(*-9); 134.3(*-8); 166.3(*-4); 191.7(*-1); 216.4(*2); 299.7(*12)			
v	NN		183.7(*-2); 207.9(*1); 223.7(*3)	22.20		
	329H 996H	200.9	332.1(*-8); 383.3(*-2); 391.6(*-1); 441.3(*5);	:44.87;		
	=8.	399.0	407.8(*1)	60.13;		
	8 B	599.4	583.3(*-2); 591.2(*-1); 608(*1); 691(*11); 699.5(*12)	67.15		
			615.9(*2); 623.9(*3); 671.5(*9);	1		

Tableau LXXVIII

Résumé des fréquences obtenues par Fourier pour la roue 15 (Suite)

Rou	e 15		Fréquences obtenues sur les diagrammes de Fourier	
Vitesse de rotation	Vitesse & Couple	Fréquence d'engrènement et harmonique (Hz)	Modulation de Fe (Hz)	Autres fréquences (Hz)
de rotation	lz Iz	395.3	115.4(*-17); 131.3(*-16); 197.8(*-12); 214.3(*-11); 313.1(*-5); 328.7(*-4); 346.4(*-3); 362.3(*-2); 378.8(*-1); 428.1(*2); 461.2(*4); 527.1(*5); 543.6(*6); 560.1(*7); 593(*12)	
	1=16,471F 2=15,812F 160Nm	790.5	411.1(*1); 442.9(*3); 609(*-11); 724.9(*-4); 741.4(*-3); 757.8(*-2); 807(*1); 839.9(*3); 856.4(*4); 922(*8); 955(*10); 680(*-7); 774.9(*-1); 822.9(*2); 885(*6);	44.26
	ad	1186	1005(*-11); 1038(*-9); 1071(*-7); 1104(*-5); 1137(*-3); 1153(*-2); 1170(*-1); 1203(*1); 1219(*2); 1235(*3); 1252(*4); 1384(*12)	
1000tr/min		396.5	1328(*9) 115.7(*-17); 132.2(*-16); 165.1(*-14); 214.6(*-11); 231(*-10); 313.8(*-5); 347.3(*-3); 363.3(*-2); 380(*- 1); 429.4(*2); 462.4(*4); 478.9(*5); 512.1(*7); 561.6(*10); 578.1(*11)	
	21=16.521Hz 22=15.86Hz 160Nm	792.9	333(*-4); 412.6(*1); 444.1(*3); 594.6(*-12); 611(*-11); 644(*-9); 726.4(*-4); 742.6(*-3); 760.3(*-2); 776.2(*-1); 809.1(*1); 825.9(*2); 842.4(*3); 858.9(*4); 875.4(*5); 891.8(*6); 924.8(*8); 957.8(*10) 713(*-5); 887.9(*6); 935.5(*9);	16.18 ; 48.22 ; 60.13 ; 87.29
	G	1189	1025(*-10); 1058(*-8); 1073(*-7); 1091(*-6); 1107(*-5); 1123(*-4); 1222(*2); 1255(*4); 1272(*5); 1288(*6); 1322(*8); 1371(*11); 1387(*12) 1141(*-3); 1157(*-2); 1173(*-1); 1205(*1); 1237(*3); 1332(*9); 1348(*10)	

Tableau LXXIX

Résumé des contraintes de la roue 15

	Vitesse de rota	tion : 200tr/min	and the second second
1.	45Nm	1	160Nm
Contrainte théorique (MPa)	Contrainte expérimentale (MPa)	Contrainte théorique (MPa)	Contrainte expérimentale (MPa)
34.9	71.9	38.5	87.3

Roue P, 6w20' F3N37 , roue 16

Le rapport de conduite de la roue16 est 3.57.

Tableau LXXX

Résultats des fréquences de résonance de la roue 16

. Г	Trois paires of	de dents en prise	Quatre paires d	e dents en prise
	En torsion (Hz)	En flexion (Hz)	En torsion (Hz)	En flexion (Hz)
	1810	(92)	1801	(92)
	2134	134	2110	132
		152		152
E		321		321
S		552		515
12		588	X	587
		658		645
1		753		753
		1271		1270
	1810	(92)	1998	(92)
Ē	2134	132	2110	132
Ē		152		156
εľ		321		321
ΞĪ		515		509
2		587		565
- t		645	1	647
L L		753	1	752
t		1270	8	1270

Le tableau LXXXI représente les fréquences de résonance moyenne en torsion. Le nombre de lignes du tableau représente le nombre de fréquences de résonance en torsion pour le cas trois paires de dents en prise, et le nombre de fréquences par case représente le nombre de fréquences de résonance en torsion pour le cas quatre paires de dents en prise

Tableau LXXXI

Fréquence de résonance moyenne de la roue 16

Fréquence moyenne de résonance en torsion (Hz)										
130Nm	160Nm	145Nm								
1805 / 1981	1917 / 1981	1861 / 1981								
1944 / 2120	2056 / 2120	2000 / 2120								

Tableau LXXXII

Grade de la qualité du montage 1 relié à la roue 16

	Grade de qualité						
Roue :	Qv VΦ	Qv VyT	Qv +/-Vpa	Qv Vrt	Qv Roue	Qv paire	
$P_{d} 6 \psi 20^{\circ} F 3 N 37$	7	1	6	4	1		
P_46\u00fc/20°F3N38	6	6	8	6	6	1	

Figure XIX Transformées de Fourier pour le montage de la roue 16.

Tableau LXXXIII

Résumé des fréquences obtenues par Fourier pour la roue 16

Rou	c 16		Fréquences obtenues sur les diagrammes de Fourier				
Vitesse de rotation	Vitesse & Couple	Fréquence d'engrénement et harmonique (Hz)	Modulation de Fe (Hz)	Autres fréquences (Hz)			
	Hz Hz	127	116.6(*-3); 113.2(*-4); 120.1(*-2); 123.5(*-1); 137.2(*3); 140.6(*4)	9.614; 19.08;			
Roue 16 Fréquences obtenues sur Vitesse de rotation Vitesse & Couple Fréquence d'engrènement et harmonique (Hz) Modulation 116.6(*-3); 113.2(*-4 137.2(*3) Image: State	842 A32		130.3(*1); 133.7(*2)	28.54;			
	Ω1=3. Ω2=3. 160	253.8	202.1(*-15); 212.7(*-12); 240.2(*-4) 243.6(*-3); 246.9(*-2); 250.4(*-1); 264.2(*3)	38.15; 57.07;			
			257.1(*1); 260.7(*2); 267.5(*4)	59.97			
	7Hz 6Hz	128.3	100.6(*-8); 114.5(*-4); 118(*-3); 121.3(*-2); 124.8(*-1); 131.7(*1); 135.2(*2); 138.6(*3)	18.92;			
	376 Nn		Pas de modulation par Prz	28.54: 38:			
	1=3	253.2	206.9(*3)	57.07; 60.13			
	ad		240.2(*-5)				
	Pas de troisseme harmonique						
		307.3	216.1(*-11); 224.3(*-10); 274.1(*-4); 315.6(*1); 323.8(*2)	22.28:			
	21=8.305Hz 22=8.087Hz 160Nm	21=8.305Hz 22=8.087Hz 160Nm	-8.305Hz -8.087Hz 60Nm	=8.305Hz =8.087Hz 60Nm	=8.305Hz =8.087Hz 60Nm		291.5(*-2); 299.1(*-1); 404.7(*12);
						8.305 8.087 8.087 8.087	615.6
				557.3(*-7); 590.6(*-3); 598.8(*-2); 606.8(*-1)	89.43		
		922.7	914.1(*1); 940.4(*2)				
.e			849.1(*-1)				
)0tr/m		308	133.7(*-21); 168.9(*-17); 299.1(*-1); 358(*6); 366.3(*7); 374.5(*8); 383(*9); 391.7(*10);				
50			211.5(*-12); 316.2(*1)	22.20.			
	8.324Hz 8.105Hz 60Nm	615.9	532.6(*-10); 541.1(*-9); 549.4(*-8); 557.6(*-7); 574.4(*-5); 583(*-4); 591.2(*-3); 599.4(*-2); 607.7(*-1); 624.2(*1); 699.2(*10)	44.56; 60.13;			
	12-11-		632.4(*2); 640.6(*3); 680.9(*8)	66.84;			
	au	924.2	849.1(*-9); 899.2(*-3); 907.4(*-2); 915.6(*-1); 940.7(*2); 948.9(*3)	67.12, 99.			
de otation uim/n002			875.4(*-6); 932.1(*1)	1			

Tableau LXXXIV

Résumé des fréquences obtenues par Fourier pour la roue 16 (Suite)

Rou	e 16		Fréquences obtenues sur les diagrammes de Fourier					
Vitesse de rotation	Vitesse & Couple	Fréquence d'engrènement et harmonique (Hz)	Modulation de Fe (Hz)	Autres fréquences (Hz)				
Rou Vitesse de rotation		609.5	214(*-24); 428.2(*-11); 576.9(*-2); 626(*1); 642.5(*2); 659(*3) 561.3(*.3): 593.3(*-1)					
	16.473Hz 16.039Hz 60Nm	1219	1071(*-9); 1154(*-4); 1170(*-3); 1186(*-2); 1203(*- 1); 1236(*1); 1252(*2); 1269(*3); 1384(*10) 1348(*8)	43.65; 60.13				
uit	a a _	1829	1664(-10); 1681(*-9); 1747(*-5); 1763(*-4); 1780(*- 3); 1796(*-2); 1846(*1); 1862(*2); 1878(*3); 1894(*4); 1910(*5); 1959(*8)					
u/n			1717(*-7); 1732(*-6); 1813(*-1)					
10001			608.9	608.9 444.4(*-10); 493.5(*-7); 510(*-6); 542.7(*-4); 560.1(*- 3); 592.4(*-1); 625.4(*1); 641.9(*2); 690.4(*5)				
	457Hz 024Hz Nm	1218	1152(*-4); 1168(*-3); 1185(*-2); 1201(*1); 1267(*3); 1299(*5); 1382(*10); 1415(*12);	43.34;				
	100		1105(*-7); 1233(*1); 1250(*2); 1345(*8); 1523(*19)					
	āā	1826	1661(*-10); 1678(*-9); 1744(*-5); 1793(*-2); 1826 1844(*1); 1859(*2); 1959(*8); 1990(*10)					
			1636(*-12); 1715(*-7); 1731(*-6); 1763(*-4); 1810(*- 1); 1778(*-3); 1875(*3); 1891(*4);					

Tableau LXXXV

Résumé des contraintes de la roue 16

	Vitesse de rota	tion : 200tr/min	
1	45Nm	1	60Nm
Contrainte théorique (MPa)	Contrainte expérimentale (MPa)	Contrainte théorique (MPa)	Contrainte expérimentale (MPa)
20.1	47.4	22.1	47.2

ANNEXE V

PROGRAMME MATLAB POUR FOURIER

disp('transforme de fourrier') disp(' ') disp(' ') disp('A est la matrice des points de mesure, c'est une matrice colonne') disp('A peut être une matrice avec plusieurs colonnes, chaque colonne sera transforme en fonction de fourrier') disp('la fréquence d échantillonnage du signal est de: '); Fs=1/(temps(11,1)-temps(10,1)) %temps est la matrice colonne du temps T = 1/Fs: % Sample time disp('le nombre de points d échantillonnage est de'); L = length(A)t = (0:L-1)*T;% Time vector % Sum of a 50 Hz sinusoid and a 120 Hz sinusoid v = B;plot(Fs*t(1:L/2),y(1:L/2)) title('Signal Corrupted with Zero-Mean Random Noise') xlabel('time (milliseconds)') pause NFFT = 2^{nextpow2}(L); % Next power of 2 from length of y Y = fft(y, NFFT)/L;f = Fs/2*linspace(0,1,NFFT/2); % Plot single-sided amplitude spectrum. plot(f,2*abs(Y(1:NFFT/2))) title('Single-Sided Amplitude Spectrum of y(t)') xlabel('Frequency (Hz)')

vlabel('|Y(f)|')

ANNEXE VI

PROPRIÉTÉ DE L'ACIER 1045

Tableau LXXXVI

Tableau des propriétés mécanique de l'acier 10452

Physical Properties	Metric	English	Comments
Density	7.87 g/cc	0.284 lb/in ³	Typical for steel.
Mechanical Properties	Metric	English	Comments
Hardness, Brinell	163	163	
Hardness, Knoop	184	184	Converted from Brinell hardness
Hardness, Rockwell B	84.0	84.0	Converted from Brinell hardness
Hardness, Vickers	170	170	Converted from Brinell hardnes
Tensile Strength, Ultimate	565 MPa	81900 psi	
Tensile Strength, Yield	310 MPa	45000 psi	
Elongation at Break	16.0 %	16.0 %	in 50 mm
Reduction of Area	40.0 %	40.0 %	
Modulus of Elasticity	200 GPa	29000 ksi	Typical for steel
Bulk Modulus	140 GPa	20300 ksi	Typical for steel.
Poissons Ratio	0.290	0.290	Typical For Steel
Shear Modulus	80.0 GPa	11600 ksi	Typical for steel

AISI 1045 Steel, hot rolled, 19-32 mm (0.75-1.25 in) round

Material Components Properties	Metric	English
Carbon, C	0.420 - 0.500 %	0.420 - 0.500 %
Iron, Fe	98.51 - 98.98 %	98.51 - 98.98 %
Manganese, Mn	0.600 - 0.900 %	0.600 - 0.900 %
Phosphorous, P	<= 0.0400 %	<= 0.0400 %
Sulfur, S	<= 0.0500 %	<= 0.0500 %

² http://www.matweb.com/search/DataSheet.aspx?MatID=6941, consulté le 17 novembre 2007

ANNEXE VII

WAVEBOOK 516 ET WBK 16

Mise en place du module Wavebook 516 et WBK16

Les différents modules *Wavebook* peuvent se monter en série, le module *Wavebook 516* étant celui qui est indispensable pour relier les autres à l'ordinateur. À la suite de ce module, il est possible de relier une multitude de modules qui ont chacun des caractéristiques particulières.

Le module complémentaire utilisé ici est le module WBK16, ce module est spécialisé dans l'acquisition de données de jauges de déformation. Une fois que les deux modules sont reliés entre eux, comme le montre la figure XX, ils peuvent être à l'ordinateur grâce au port parallèle.

Figure XX Connexion des modules Wavebook.

Pour que l'ordinateur détecte les modules *Wavebook*, il est nécessaire d'effectuer quelques opérations de configuration du port imprimante. Car avec la configuration originale du port parallèle, l'ordinateur ne détectera pas les modules *Wavebook*. Pour configurer le port parallèle correctement, il faut se rendre dans le panneau de configuration, gestionnaire de périphériques, puis choisir le port où est branché le module, ouvrir les propriétés de ce port et dans l'onglet paramètre choisir l'option « utiliser toute interruption attribuée au port ». Une fois cette configuration du port effectuée, l'ordinateur détectera le module. Pensez à allumer les modules.

Choix des modules à utiliser

Maintenant que les modules sont branchés sur l'ordinateur et que le port parallèle est bien configuré, le logiciel *Wavecal* doit être utilisé, celui-ci permet de choisir le groupe de modules à utiliser. La plupart du temps, un seul groupe de module est branché sur l'ordinateur. Bien qu'il n'y ait qu'un seul groupe de brancher *Wavecal* offre le choix dans la boîte de dialogue entre deux modules, *Simulated device* et *WaveBook0*. Le choix se portera sur *WaveBook0*. Une fois le choix effectué, une fenêtre s'ouvre avec les propriétés des modules branchés. Le logiciel *WaveView* peut être lancé.

Configuration des voies

Dans la fenêtre principale de WaveView (Figure XXI), toutes les voies disponibles sont insérées dans un tableau, pour chaque voie, il y a différentes options disponibles. Ces options dépendent des modules branchés sur l'ordinateur. Dans cette étude, un module permet de recueillir des données depuis des câbles BNC, huit voies disponibles (*WaveBook516*), et un autre module permet de recevoir des informations provenant de câbles DB9, huit voies disponibles (*WBK16*).

(h) W	aveView	v - WAVEV	HEW.CEG (V	VaveBo	ookO)	14-5	0.0-440.	Part In	1		25
rie.	Edt View	w System									
(weight)		A.	-	10.00	P. 65 C.	1.0	5478				
WD .	R.	Nº 18		1.1	× -0.1	1	C C				
		_	1 miles	1 martin	a						
Chan	inel Config	noitesus	-	-							
On (A	ctive) / Di	f [inactive].	18	A 105			000		mm	F	
6.50	1. 2 2 1	N. PART	E			•	6 6	幸		1	
	1				/	New	7.00 105	LUDE	Course	Didan	
CH	110'cn0	Label	Readings	Units	Range	Zero	Offset	LPE Cutoti Ner	lel	Type	Invert
CHLo	Off	Cilo		1			L	ancer Acquisiti	on		
CtHi	017	CitHi		1			1				
Dig	OH	Dig		counts							
0.1	Off	CH01		V	-10 to 10	Yes	0, 0n	20000.00			
0-2	Dn.	CH02	-2,441	mil	10000 to 100	Yes	0, 0n	20000.00			
0.3	On	CH03	-16.174	miv	-10000 to 100	Yes	0. On	20000.00			
0.4	0H	CH04		mi/	-10000 to 100	Yes	0. On	20000.00			
0.5	0#	CH05		W	-10000 to 100	Yes	0, On	20000,00			
0.6	90	CH06		Wm	-10000 to 100	Yes	0. On	20000.00			
0.7	0#	CH07		V	-10 to 10	No	0. Bypes	s 20000.00			
0.8	Off	CH08		V	-10 to 10	No	0, Bypas	1 20000.00			
1-1	0#	CH09		40	8385 to -8367	Yes	0, On	10,00 DC	10.0V	1/4 Bridge	No
1-2	Off	CH10		24	8387 to -8394	Yes	0, On	10,00 DC	10.0V	1/4 Bridge	No
1-3	Off	CH11		ye .	8385 to -8360	Yes	0, 0n	10.00 DC	10.0V	1/4 Bridge	No
1-4	Ott	CH12		20	1774276 to -1	No	0, Bypas	s 10.00 DC	10.0 V	Full Bridge	No
1.5	On	CH13	93704.414	24	864573 to -70	Yes	0, 0n	10,00 DC	10.0 V	1/4 Bridge	No
1.6	Ott	CH14		28	8385 to -8383	Yes	0, On	10,00 DC	100V	1/4 Bridge	No
1.7	00	CH15		pe	8384 to -8375	No	0, Sypas	a 10,00 DC	10.0 V	1/4 Bridge	No
1.8	Off	CH16		pe.	-3.9 to 3.9	No	0, Bypas	s 10,00 DC	10.0V	Full Bridge	No

Figure XXI Écran d'ouverture de WaveView.

Maintenant que WaveView est totalement ouvert, il est possible de configurer les jauges. La configuration des accéléromètres se fait en post traitement car on ne peut lire que le voltage des voies du WaveBook516. La configuration des jauges s'effectue dans l'onglet System, il faut choisir WBK16 Sensor Calibration, figure XXII. En cliquant sur cet onglet, une fenêtre WBK16 Sensor Calibration apparaît, figure XXIV.

Dans cette fenêtre, il va être possible de régler le type de jauges, le type de pont dans lequel est introduit la jauge, la méthode de calibration, le facteur de jauge, ainsi que la valeur de la résistance. Une fois tous les paramètres des jauges réglées, la calibration de la jauge peut s'effectuer. Avec WaveView, la calibration se fait de manière automatique, il suffit de cliquer sur le bouton « Bouton pour la calibration », figure XXIV.

ite w	aveView	· WAVE	IEW.CFG (VaveB	ookU)	a child	Seators.	13.31 54	A HEATING	er pi	1972	Tor miles	1000
File	Edit Vier	. Spillen			and the second	-				-	10000		1000
No.	Bi.	E Select	t Device		0.1	-	9 2	>					
Char	nel Config	M. BERNER	6 Sensor Call	1251	100000								
On IA	ctive) / Of	HI WEKI	6 Shunt Mode		BT.	- 6	1000	-		100	mm	100	
1221	1010	WEKI	6 LPF Corner	Frequen	cies	1	4	0	÷.	•001•			
СН	0n/0tf	Label	Readings	Units	Range	Auto Zero	Zero Offset	LPF Mode	LPF Cutoff	HPF	Source	Bridge Type	Invert
OrLo	0#	ChLo		5									
ChHi.	Off	CtrHi		8									
Dig	Off	Dig		counts									
0.1	Off	CH01		V	-10 to 10	Yes	0,	. On	20000,00				
0.2	On	CH02	-2,441	Vin	-10000 to 100	Yes	0,	On	20000,00				
0.3	0n	CH03	-16,174	niV	-10000 to 100	Yes	0.	On	20000.00				
0.4	0!!	CH04		wW	-10000 to 100	Yes	0.	. On	20000,00				
0.5	Off	CH05		mW	-10000 to 100	Yes	0,	. On	20000,00				
0.6	Off	CH05		Vm	-10000 to 100	Yes	0.	On	20000.00				
0.7	Off	CH07		V	-10 to 10	No	0,	Bypass	20000.00				
0.8	Off	CH08		V	-10 to 10	No	0,	Bypass	20000,00				
1-1	Off	CH09		µe .	8385 to -8367	Yes	0,	On	10,00	DC	10.0 V	1/4 Bridge	No
1.2	Off	CH10		μο	8387 to -8394	Yes	0,	, On	10,00	DC	10.0 V	1/4 Bridge	No
1.3	Off	CH11		µe .	8385 to -8360	Yes	0.	. On	10,00	DC	10.0V	1/4 Bridge	No
1.4	Off	CH12		μe	1774276 to -1	No	0,	Bypass	10.00	DC	10.0 V	Full Bridge	No
1-5	On	CH13	93704,414	μe	864573 to -70	Yes	0,	. On	10,00	DC	10.0 V	1/4 Bridge	No
1.6	Off	CH14		µe .	8385 to -8383	Yes	0,	. On	10,00	DC	10.0 V	1/4 Bridge	No
1.7	Off	CH15		ue .	8384 to -8375	No	0.	Bypass	10.00	DC	10.0 V	1/4 Bridge	No
1-8	Off	CH16		µe .	-3.9 to 3.9	No	0,	Bypass	10.00	DC	10.0 V	Full Bridge	No

Figure XXII Calibration des jauges.

Une fois la calibration effectuée, WaveView demande d'enregistrer la configuration actuelle, ainsi il sera possible de revenir à cette configuration ultérieurement. Si la configuration n'a pas fonctionnée, il faut penser à vérifier les fils de connexion, les prises DB9, si la jauge est encore en état de marche, et toutes les différentes connexions qui peuvent exister entre la jauge et le module *WBK16*.

Figure XXIII Comment calibrer les jauges.

Réglage des temps d'acquisition et des fréquences d'échantillonnage

Maintenant que les jauges ont été configurées, et avant de passer à l'acquisition de données, il faut configurer les temps et fréquence d'échantillonnages. Cette étape est aisée, il faut juste savoir combien de temps et à quelle fréquence le phénomène que l'on doit observer se produit. Une fois ces données connues, il faut aller dans l'onglet *View*, et choisir *Acquisition Configuration*, une fenêtre s'ouvre, figure XXIV. Dans cette fenêtre, les durées d'acquisition et les fréquences d'échantillonnages peuvent être modifiées. Il est aussi possible d'inclure un déclencheur, option non utilisée dans le cas de l'acquisition de données d'accéléromètres et de jauges.

Pre-Trigger s 1000 Hz		Duration	Rate Internal External	⊆lose
Pre-ingger s 1000 Hz -	T.:	Curatori		
Post-Trigger 10. s 1000 Hz -	1 119961	5	1 1 2 2	
	t-Trigger	10, s	1000 Hz 💌	
Convention Seconds	vention	Seconds 💌	Frequency	

Figure XXIV Fenêtre de configuration de l'acquisition.

Acquisition des données

Pour lancer l'acquisition des données, il faut cliquer sur le bouton Lancer acquisition, figure XXI. Une fenêtre s'ouvre, figure XXV. Dans cette fenêtre, il est possible de choisir les voies que l'on veut observer parmi celle qui ont été activées. Ensuite pour lancer l'acquisition, il suffit de cliquer sur la flèche verte.

Figure XXV WaveView Scope.

Une fois le temps d'acquisition atteint, plusieurs options s'offrent, figure XXVI. Les données peuvent être enregistrées sous différents formats, MatLab, Texte, DasyLab...

Figure XXVI Acquisition terminée.

BIBLIOGRAPHIE

- Al-Shyyab, A. and A. Kahraman (2005). "Non-linear dynamic analysis of a multi-mesh gear train using multi-term harmonic balance method: Period-one motions." Journal of Sound and Vibration 284(1-2): 151-172.
- Al-Shyyab, A. and A. Kahraman (2005). "Non-linear dynamic analysis of a multi-mesh gear train using multi-term harmonic balance method: Sub-harmonic motions." <u>Journal of</u> <u>Sound and Vibration</u> 279(1-2): 417-451.
- Amabili, M. and A. Fregolent (1999). "Identification of gear errors by vibrations of a spur gearpair." <u>Noise and Vibration Worldwide</u> 30(10): 11-17.
- Amabili, M. and A. Rivola (1997). "Dynamic analysis of spur gear pairs: Steady-state response and stability of the sdof model with time-varying meshing damping." Journal of Engineering and Applied Science 11(3): 375-390.

Association, A. G. M. (1988). Gear classification and inspection handbook. Virginie.

- Berri, S. M. (2001). <u>Gear vibration analysis. An analytical and experimental study</u>. 18th Biennial Conference on Mechanical Vibration and Noise, Sep 9-12 2001, Pittsburgh, PA, United States, American Society of Mechanical Engineers.
- Blankenship, G. W. and A. Kahraman (1995). "Steady state forced response of a mechanical oscillator with combined parametric excitation and clearance type non-linearity." Journal of Sound and Vibration 185(5): 743-765.
- Blankenship, G. W. and A. Kahraman (1996). <u>Gear dynamics experiments</u>, Part I: <u>Characterization of forced response</u>. Proceedings of the 1996 7th International Power Transmission and Gearing Conference, Oct 6-9 1996, San Diego, CA, USA, ASME, New York, NY, USA.
- Britton, R. D., C. D. Elcoate, et al. (2000). "Effect of surface finish on gear tooth friction." Journal of Tribology. Transactions of the ASME 122(1): 354-360.
- Cai, Y. and T. Hayashi (1994). "Linear approximated equation of vibration of a pair of spur gears (theory and experiment)." <u>Journal of Mechanical Design, Transactions Of the</u> <u>ASME</u> 116(2): 558-564.
- Choy, F. K., R. J. Veillette, et al. (1996). "Quantification of gear tooth damage by optimal tracking of vibration signatures." <u>NASA Technical Memorandum</u>(107100): 18.
- Giagopulos, D., C. Salpistis, et al. (2006). "Effect of non-linearities in the identification and fault detection of gear-pair systems." <u>International Journal of Non-Linear Mechanics</u> 41(2): 213-230.
- Howard, I., S. Jia, et al. (2001). "The dynamic modelling of a spur gear in mesh including friction and a crack." <u>Mechanical Systems and Signal Processing 15(5): 831-853.</u>
- Joseph E. Shigley, C. R. M., Richard G. Budynas (2004). <u>Mechanical engineering design</u>. New York.
- Kahraman, A. and G. W. Blankenship (1996). <u>Gear dynamics experiments, Part-II: Effect of involute contact ratio</u>. Proceedings of the 1996 7th International Power Transmission and Gearing Conference, Oct 6-9 1996, San Diego, CA, USA, ASME, New York, NY, USA.
- Kahraman, A. and G. W. Blankenship (1996). <u>Gear dynamics experiments, Part-III: Effect</u> of involute tip relief. Proceedings of the 1996 7th International Power Transmission and Gearing Conference, Oct 6-9 1996. San Diego, CA, USA, ASME, New York, NY, USA.
- Kahraman, A. and G. W. Blankenship (1997). "Experiments on nonlinear dynamic behavior of an oscillator with clearance and periodically time-varying parameters." <u>Journal of</u> Applied Mechanics, Transactions ASME 64(1): 217-226.
- Kahraman, A. and G. W. Blankenship (1999). "Effect of involute contact ratio on spur gear dynamics." Journal of Mechanical Design, Transactions of the ASME 121(1): 112-118.
- Kahraman, A. and G. W. Blankenship (1999). "Effect of involute tip relief on dynamic response of spur gear pairs." Journal of Mechanical Design, Transactions of the ASME 121(2): 313-315.
- Kar, C. and A. R. Mohanty (2005). <u>Torsional vibration response of helical gears under nonlinear time-varying parameters using HBM</u>. DETC2005: ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Sep 24-28 2005, Long Beahc, CA, United States, American Society of Mechanical Engineers, New York, NY 10016-5990, United States.
- Li, H. and F. Zhang (2002). <u>Study on vibration problems of a gear system with backlash</u>. Proceedings of IMAC-XX: A Conference on Structural Dynamics, Feb 4-7 2002. Los Angeles, CA, United States, The International Society for Optical Engineering.
- Lin, S. T. and P. D. McFadden (1997). "Gear vibration analysis by B-spline wavelet-based linear wavelet transform." Mechanical Systems & Signal Processing 11(4): 603-609.

- Liou, C.-H., H. H. Lin, et al. (1996). "Effect of contact ratio on spur gear dynamic load with no tooth profile modifications." <u>Journal of Mechanical Design</u>, <u>Transactions of the</u> <u>ASME</u> 118(3): 439-443.
- Martin, B. (2006). Application de la photoélasticité à la mesure de la contrainte dynamique des engrenages cylindriques. Mémoire de maîtrise en génie Mécanique. Montreal, Ecole de Technologie Supérieure: 228.
- Oh, S., K. Grosh, et al. (1999). "Dynamic stability analysis of spur gears in a steady state." <u>Noise Control and Acoustics Division - 1999 (The ASME</u> International Mechanical Engineering Congress and Exposition), Nov 14-Nov 19 1999 <u>American Society of Mechanical Engineers, Noise Control and Acoustics Division</u> (Publication) NCA 26: 161-168 BN - 0-7918-1637-0.
- Oswald, F. B., D. P. Townsend, et al. (1996). <u>Dynamic forces in spur gears measurement</u>, <u>prediction, and code validation</u>. Proceedings of the 1996 7th International Power Transmission and Gearing Conference, Oct 6-9 1996, San Diego, CA, USA, ASME, New York, NY, USA.
- Parker, R. G., S. M. Vijayakar, et al. (2000). "Non-linear dynamic response of a spur gear pair: modelling and experimental comparisons." <u>Journal of Sound and Vibration</u> 237(3): 435-455.
- Raghothama, A. and S. Narayanan (1999). "Bifurcation and chaos in geared rotor bearing system by incremental harmonic balance method." <u>Journal of Sound and Vibration</u> 226(3): 469-492.
- Rebbechi, B., F. B. Oswald, et al. (1996). <u>Measurement of gear tooth dynamic friction</u>. Proceedings of the 1996 7th International Power Transmission and Gearing Conference, Oct 6-9 1996, San Diego, CA, USA, ASME, New York, NY, USA.
- Richards, D. and D. J. Pines (2000). "Effects of tooth damage on spur gear vibrations." <u>Smart Structures and Materials 2000 - Smart Structures and Integrated Systems, Mar</u> <u>6-Mar 9 2000</u> <u>Proceedings of SPIE - The International Society for Optical Engineering</u> 3985: 306-322.
- Singh, A., D. R. Houser, et al. (1996). <u>Early detection of gear pitting</u>. Proceedings of the 1996 7th International Power Transmission and Gearing Conference, Oct 6-9 1996, San Diego, CA, USA, ASME, New York, NY, USA.
- Singh, A., D. R. Houser, et al. (1999). "Detecting gear tooth breakage using acoustic emission: A feasibility and sensor placement study." <u>Journal of Mechanical Design</u>, <u>Transactions of the ASME</u> 121(4): 587-593.

- Stokes, A. (1992). <u>Gear Handbook: design and calculations / Alec Stokes</u>. Oxford, Angleterre, Butterworth-Heinemann.
- Tamminana, V. K., A. Kahraman, et al. (2005). <u>A study of the relationship between the dynamic factor and the dynamic transmission error of spur gear pairs</u>. DETC2005: ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Sep 24-28 2005, Long Beahc, CA, United States, American Society of Mechanical Engineers, New York, NY 10016-5990, United States.
- Thomas, M., Laville, Frédéric, (2005). <u>Simulation des vibrations mécaniques par Matlab</u>, <u>Simulink et Ansys / Marc Thomas, Frédéric Laville</u>. Montréal, Université du Québec, École de technologie supérieure, c2005.
- Vaishya, M. and R. Singh (2001). "Analysis of periodically varying gear mesh systems with Coulomb friction using Floquet theory." <u>Journal of Sound and Vibration</u> 243(3): 525-545.
- Wang, J., Q. Zhang, et al. (2003). "Effect of involute contact ratio on the dynamic performance of spur gear with no tooth profile modification." <u>Chinese Journal of</u> <u>Mechanical Engineering (English Edition)</u> 16(4): 417-419.
- Wang, M.-J. (2003). "A new photoelastic investigation of the dynamic bending stress of spur gears." Journal of Mechanical Design, Transactions of the ASME 125(2): 365-372.