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RÉSUMÉ 
 
 

Ce projet de doctorat étudie l'influence  du contact de bord sur la pression, l'épaisseur du film 
de lubrifiant, la température et la distribution des contraintes des contacts en ligne de 
dimension finie sous le régime de lubrification élastohydrodynamique (LEH). Ce type de 
contact  représente une source fréquente de problèmes dans les structures d'ingénierie telles 
que les engrenages, les cames et les roulements, puisque les surfaces de contact non 
conformes dans ces structures subissent une pression intense pendant le transfert de charge 
par des zones de contact relativement petites. De plus, ils provoquent des zones de 
concentration de contraintes aux extrémités. En conséquence, une modification de profil 
devient nécessaire. 
La présente étude analyse l’influence des frontières libres sur les caractéristiques du régime 
LEH pour des contacts en ligne de dimension finie. La première phase de la recherche 
développe un modèle numérique général 3D du régime LEH incluant les effets thermiques et 
non-newtonien du problème. Une méthode semi-analytique (SAM) basée sur la théorie de 
Boussinesq pour des espaces semi-infinis est combinée à un procédé de correction des 
frontières libres pour fournir une description rapide et précise des conditions de contact de 
bord. Une expansion modifiée en différences finies du terme de Couette contenu dans 
l'équation de Reynolds garantit la stabilité du calcul, tandis que l'expression Carreau définit 
la réponse de fluidification par cisaillement du lubrifiant. L'impact des frontières libres sur la 
distribution tridimensionnelle des contraintes est également étudié par l'extension de la 
procédure de correction de frontière libre pour évaluer les niveaux de contraintes de surface 
et sous la surface en utilisant SAM. Les données sur la répartition des contraintes dérivées de 
cette procédure sont alors mis en contraste avec les résultats de la méthode des éléments finis 
(MEF) en utilisant une comparaison factorielle à deux niveaux. Trois facteurs sans dimension 
à savoir le minceur du contact, rapport de longueur de contact et la charge sont examinés. La 
comparaison montre que le nouveau modèle développé dans cette thèse fournit un haut 
niveau de précision dans l'évaluation des distributions de contraintes, tout en calculant plus 
de 125 fois plus rapide que des simulations MEF. Ce modèle puissant est ensuite utilisé pour 
étudier et établir l'influence de différentes modifications de profils de rouleau sur la forme de 
film LEH, les distributions de pression et la température. En se basant sur une série 
d'analyses détaillées des différentes corrections de profil de rouleau, il est constaté qu'un 
grand rayon couronnant combiné avec des coins arrondis fournit l'ajustement de profil le plus 
efficace. 
Dans la dernière étape de cette étude, ce modèle nouvellement développé est combiné avec 
une optimisation par essaim de particules (PSO) multi-objectif pour arriver aux formules 
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établissant les rayons du couronnement et du coin arrondi, qui peuvent être appliquées à la 
conception rapide des rouleaux optimaux. Les formules prennent en compte trois facteurs 
sans dimension - minceur, charge, et la viscosité du lubrifiant - et les coefficients pour les 
formules sont dérivés à partir des résultats PSO en utilisant une conception factorielle à cinq 
niveaux. En optimisant simultanément trois fonctions objectives - l'uniformité de la pression 
de contact, la stabilité de l'épaisseur du film, et la capacité de charge maximale - les 
prédictions de ces formules garantissent des modifications optimales de profil. Cette étude 
contribue à la compréhension de l'influence du bord sur les caractéristiques de LEH des 
contacts en ligne fini, tandis que propose un modèle robuste pour les corrections de profil 
axiales des problèmes de contact lubrifié. 
 
 
Mots-clés: Lubrification Élastohydrodynamique, contact de bord, fluide non-newtonien, 
l'épaisseur du film, la pression, la température, la contrainte, optimisation, PSO. 
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ABSTRACT 

 
 
This doctoral project investigates edge contact influence on pressure, lubricant film 
thickness, temperature, and stress distribution of finite line contacts under an 
elastohydrodynamic lubrication (EHL) regime. This type of contact represents a common 
source of problems in engineering structures such as gears, cams and roller bearings, since 
non-conforming contact surfaces in such structures undergo intense stresses while 
transferring loads through relatively small contact areas. Additionally, they induce stress 
concentration zones at their extremities; as a result, profile modification becomes necessary. 
The present study investigates influence of free edges on EHL characteristics of finite line 
contacts. The initial stage of the research develops a 3D numerical model for the thermal, 
non-Newtonian EHL of general contact problems. A semi-analytical method (SAM), based 
on the Boussinesq half-space theory, is combined with a free boundary correction process to 
provide a fast and precise description of edge contact conditions. A modified finite difference 
expansion of the Couette term of the Reynolds equation guarantees computational stability, 
while the Carreau expression defines the shear-thinning response of the lubricant. Free 
boundary impact on tridimensional stress distribution is also investigated by extending the 
free-edge correction procedure to evaluate the levels of surface and subsurface stresses using 
SAM. The stress distribution data derived from this procedure are then contrasted with Finite 
Element Method (FEM) results using a two-level factorial comparison. Three dimensionless 
factors — contact slenderness, contact length ratio, and load — are examined. The 
comparison shows that the new model developed in this thesis provides a high level of 
precision in the evaluation of stress distributions, while computing more than 125 times 
faster than FEM simulations. This powerful model is then used to investigate and establish 
the influence of different roller profile modifications on EHL film shape, pressure and 
temperature distributions. Based on a series of detailed analyses of different roller profile 
corrections, it is found that a large radius crowning combined with rounding corners provides 
the most effective profile adjustment. 
In the last step of this study, this newly developed model is combined with a multi-objective 
particle swarm optimization (PSO) to arrive at formulas establishing crowning and corner 
rounding radii, which can be applied to the rapid design of optimal rollers. The formulas take 
into account three dimensionless factors — slenderness, load, and lubricant viscosity — and 
coefficients for the formulas are derived from the PSO results using a five-level factorial 
design. By concurrently optimizing three objective functions — contact pressure uniformity, 
film thickness stability, and maximum load capacity — the predictions of these formulas 
guarantee optimal profile modifications. This study contributes to the understanding of edge 
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influence on EHL characteristics of finite line contacts, while offering a robust model for 
axial profile corrections of lubricated contact problems. 
 
 
Keywords: Elastohydrodynamic lubrication, edge-contact, non-Newtonian fluid, film-
thickness, pressure, temperature, stress, optimization, PSO. 
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INTRODUCTION 

 

This document presents research works dedicated to elastohydrodynamic lubrication (EHL) 

taking place in non-conformal contacts. The study examines the influence of solid-fluid 

interactions appearing at the ends of finite line contacts on pressure, lubricant film thickness 

and temperature, and stress tridimensional distributions. As a concluding contribution, the 

developments exposed in the first parts of the thesis lead to a correction tool for optimal 

design of cylindrical rolling contact elements. 

 

The scientific contributions resulting from this research are covered in three published (or 

submitted for publication) articles. These papers compose the chapters of the present 

document. 

 

Background overview 

Rolling contact elements, such as bearings and gears are widely used in industrial equipment 

to transfer force through contact surfaces in relative motion. The two most important 

problems associated with rolling contact elements are (i) undesired friction, which wastes a 

portion of the transmitted energy, and (ii) contact fatigue caused by repeated contact loads, 

which results in surface material losses producing gradual changes of the initial shapes, and 

ultimately leading to machine failures. The annual cost associated with friction energy and 

material losses is estimated at more than $100 billion in the United States alone (Mang et al., 

2011). 

 

Figures 0.1 and 0.2 illustrate the process of contact fatigue failure with some examples. 

Flaking failures of bearings occur when the surface of the raceway and the rolling element 

peels off due to excessive load, or improper mounting (Figure 0.1a). Figure 0.1b shows 

spalling failures, which occur when a tapered roller bearing experiences undue stress as a 



2 

result of misalignment or heavy loading. Gears commonly fail due to pitting (surface damage 

caused by cyclic contact stress). Figure 0.2a presents initial pitting on a helical gear, where 

misalignment caused surface pits to form in over-stressed areas. Destructive pitting (Figure 

0.2b) is the advanced stage of pit growth. Destructive pitting ultimately results in complete 

destruction of the tooth profiles, causing the operation to become extremely rough and noisy. 

 

                     

     (a)     (b) 
 

Figure 0.1 (a) Flaking failure (Taken from Koyo catalogue), 
(b) Spalling failure (Taken from TIMKEN catalogue) 

 

 

                        
     (a)     (b) 

 
Figure 0.2 (a) Initial pitting, (b) Destructive pitting  

     (Taken from Shipley, 1967) 
 

Contact fatigue may originate from surface or subsurface regions. Under Hertzian conditions, 

the maximum shear stress appears at a short distance beneath the surface.  

Therefore, the material inner regions undergo fatigue crack initiation and propagation 

(Johnson, 1987). These cracks propagate toward the surface, leading to material separation. 

On the other hand, non-Hertzian contact conditions, resulting from free boundary nearness, 

asperity contacts, or surface sliding may bring the maximum stress values close to the 
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surface, causing cracks to initiate in that region (Bold et al., 1992; Olver, 2005). However, 

under any conditions, the overall stress distribution controls the contact fatigue life (Littmann 

and Widner, 1965; Elsharkawy and Hamrock, 1991; Ioannides et al., 1999; Nelias et al., 

1999; Dong et al., 2009). 

 

Since they force the load to be distributed over a relatively small contact area, non-

conforming contact conditions generate intense pressures. In rolling contact elements, contact 

pressures commonly reach up to 1.5 GPa. This pressure level corresponds to the weight of 

five male African elephants supported over a surface the size of the Canadian dime. With 

such high operating pressures, it is not surprising that contact surface deteriorations are 

common during the lifespan of these elements. 

 

In many gears and roller bearings, contact happens along finite length lines. This type of 

contact presents stress concentration near the extremities (Figure 0.3a) drastically reducing 

the service life (Johnson, 1987). Usually, an axial crowning is provided (Figure 0.3b) to 

reduce edge-stress concentration, and more evenly distribute the load over the complete 

contact length. Moreover, an axial crowning allows the system to tolerate slight 

misalignments, and therefore function for longer periods of time (Hamrock and Anderson, 

1983). 

 

 
 

Figure 0.3 (a) Cylindrical roller, (b) Profiled roller 

(a) (b)

y

z

y 

z
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Rolling contact elements usually operate under lubricated conditions.  Lubricants produce 

viscous oil films over contact areas which prevent metal-on-metal contact, and therefore, 

play an important role in controlling surface degradation (Figure 0.4). Elastic deformations of 

the contact interface caused by the extreme pressure generate an almost parallel gap for the 

fluid to pass through. This phenomenon is designated as elastohydrodynamic lubrication 

(EHL). This lubrication regime modifies the dry pressure distributions associated with 

elastostatic contact conditions. With pressure distributions of the order of GPa and film 

thickness in the micrometer range, it is easy to conceive that the lubricant properties may be 

affected from point to point over the contact area. 

 

 

 
Figure 0.4 Elastohydrodynamic lubrication 

 

Wymer and Cameron (1974) were pioneers in the experimental investigation of EHL of finite 

line contacts. They introduced optical interferograms of oil film shape for rollers with and 

without end profiling (Figure 0.5). Figure 0.5 illustrates different fluid film conditions 

existing over the roller contact area. These authors demonstrated that minimum film 

thickness tend to exist at roller ends, and in the case of straight rollers, film breakdowns are 

likely to occur at the edges. 

oil flow 

pressure 

film thickness 

x 
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Figure 0.5 EHL footprints of finite line contacts, (a) Profiled end,  

(b) Straight roller (Taken from Wymer and Cameron, 1974) 
 

Over the past decades, many researchers worked on extensive mathematical modeling of the 

impact of edge contact on rolling contact elements (Lundberg and Palmgren, 1947, 1949, 

Nikpur and Gohar, 1975, Nayak and Johnson, 1979, Hartnett and Kannel, 1981, Reusner, 

1987, Chen et al., 2001). Studies on this topic demonstrated that a logarithmic roller axial 

profile provides the best edge-stress reduction.  However, all those profiling calculations 

were established based on elastic half-space theory, which does not take into consideration 

the influence of free boundaries. 

 

Although during the past five decades many researchers addressed EHL problems associated 

with elliptical contacts and infinite line contacts (Figure 0.4 illustrates this condition), so far, 

only a few recent studies have investigated the EHL of finite line contacts (Chen et al., 2006, 

Lugt and Morales-Espejel, 2011, Zhu and Wang, 2011). Current EHL theory successfully 

predicts film thickness and pressure distributions in rolling direction (or flow direction in 

Figure 0.4) at the roller axial mid-position. However, the film thickness and pressure 

variations along the axial direction, particularly near the edges, cannot be accurately 

evaluated using the existing EHL analytical knowledge. Therefore, introducing corrective 

procedures to design axial profile of rolling contact elements, in such a way that lubricant 

behavior and free edge influence are taken into consideration remains indispensable. 

center end center end

rolling direction

(a) (b) 
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At the present time, no analytical approach is able to satisfactorily produce optimum roller 

profiles under EHL conditions including free edge influence; the governing equations are 

highly nonlinear, and require numerical approaches, making the task difficult and often time 

consuming. 

 

Research problem 

Precise evaluation of oil film thickness and pressure distribution near the edge of a finite line 

contact under EHL regime is essential for accurate fatigue life estimation. Experimental work 

by Wymer and Cameron (1974) revealed a contrast in edge state between rollers with and 

without axial profiles. Chen et al. (1997) examined rollers with Lundberg profile under EHL 

conditions, and introduced the concept of optimum crowning. Mostofi and Gohar (1983) 

were the first to develop a numerical solution for the EHL of axially profiled rollers. Later, 

refinements of this approach appeared in Kuroda and Arai (1985), Xu et al. (1998), Park and 

Kim (1998), Kushwaha et al. (2002), Sun et al. (2004), Zhu et al. (2012). However, to the 

author’s knowledge, none of these studies have successfully corrected the problem of edge-

pressure overestimation inherent to the half-space formulation forming the basis of their 

models. 

 

Actually, the elastic half-space approach effectively predicts contact stress and deformation 

distributions at a distance far away from the roller ends, where plain strain conditions apply. 

On the other hand, this approach remains unable to describe the situation near the roller ends. 

In reality, when the roller presents a sharp end, while the mating surface extends beyond it 

(Figure 0.3a), stress concentration occurs at the free boundary (Johnson, 1987). Conversely, 

the plane stress condition at the free edges of coincident-end rollers permits slight axial 

expansion and, consequently, reduces the edge pressure (Figure 0.6). 

 



7 

In order to tackle this problem and accurately simulate the free boundary influence, the first 

chapter of the thesis introduces an elastic quarter-space modeling strategy into the 

representation. Figure 0.7 shows a typical elastic quarter-space problem.  

 

 

 
Figure 0.6 Rollers with coincident ends 

 

 

 
Figure 0.7 Elastic quarter-space problem 

 

When the original Boussinesq force-displacement relationship (half-space formulation) is 

applied, it generates artificial shear and normal stress along traction-free boundaries. Hetenyi 

(1960, 1970) proposed a numerical correction method that implies an iterative mirrored load 

solution to release the model free-boundaries, and obtain accurate results. First, mirrored 

loads are introduced with respect to the xz plane to remove the artificial shear stress from the 

free boundary (Figure 0.8). At the same time, this operation results in a doubling of the 

artificial normal stress (σy). Hence, a second stage mirrored solution superimposes a -σy 

distribution with respect to the xy plane, resulting in an additional σz distribution (Figure 0.9). 

contact surface

free boundary 

σy = 0 
τyx = τyz = 0 

P

y

z

y
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Thus, through a repetitive solution alternating between the horizontal and vertical planes, 

both artificial shear and normal stresses are finally eliminated. 

 

More recently, based on the Hetenyi’s approach, Guilbault (2011) introduced a simple 

corrective coefficient which accomplishes an equivalent free-boundary correction, but 

eliminates the iterative procedure; the coefficient multiplies the mirrored loads to 

simultaneously eliminate the artificial shear and normal stress influence on displacements, 

resulting therefore in significantly lower computational cost, while preserving the precision. 

The first stage of the present study analyses the response of the Guilbault’s correction 

method when introduced in thermal EHL modeling of finite line contacts. 

 

 

 
Figure 0.8 Mirrored solution with respect to xz plane 

 

 
 

Figure 0.9 Mirrored solution with respect to xy plane 
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In addition to the lubricant film conditions, the contact pressure distribution determines the 

subsurface stress tridimensional field. While the finite element method (FEM) represents a 

common simulation approach to any stress evaluations, for contact problem, obtaining the 

necessary precision exploiting this option requires very fine meshes often leading to 

unreasonable calculation times. On the other hand, the half-space theory, which deals with 

contact pressure calculations, also offers closed-form expressions for stress calculations (de 

Mul et al., 1986; Johnson, 1987). In this case again, the original half-space stress expressions 

cannot account for the free boundaries of a finite line contact, and consequently leads to 

unrealistic stress values close to contact extremities. Hence, developing an efficient 

procedure for proper evaluation of the internal stress fields close to the body limits represents 

the second challenging aspect of the problem tackled in the present research. 

    

Profile crowning aims to eliminate edge pressure and stress concentration. However, when 

the applied load exceeds the crowned profile design load, the edge effect reappears as a 

dominant problem, and the contact zone takes on a “dog bone” shape (similar to Figure 0.5b). 

Under EHL condition, an optimum geometry correction (maximizing the load carrying 

capacity) should yield longitudinally uniform film thickness and pressure distributions, and 

ensure that no edge stress increase develops over the load operating range. The last part of  

the study investigates this aspect of the line contact EHL problem, and focuses on the 

development of simple formulas for determining optimal crowning profiles.  The realization 

of this portion of the research combines the numerical thermal EHL model developed in the 

thesis first parts with the particle swarm optimization (PSO) evolutionary algorithm. 

 

Objectives 

The main research objectives are: 

i- To develop and validate a precise thermal 3D EHL model integrating the edge 

influence on pressure, lubricant film thickness and temperature, and stress 

distributions produced under finite line contact conditions.  
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ii- To investigate the behavior and consequences of profile modifications in non-

conformal rolling element EHL, and identify optimal corrections.  

 

These global objectives involve the following sub-objectives: 

1. Develop a numerical thermal EHL model for point or line contacts integrating non-

Newtonian lubricant physical behavior. 

 

2. Integrate the free-boundary influence in the EHL model. 

  

3. Develop a numerical model for determination of tridimensional contact stress fields. 

 

4. Investigate edge contact impacts on surface and subsurface stress distributions under 

EHL conditions. 

 

5. Investigate and establish the influence of different common roller profile corrections 

under EHL conditions on film shape, pressure, and temperature distributions. 

 

6. Develop a design tool based on PSO for optimal profile correction of cylindrical 

rolling contacts. 

 

Organization 

The objectives outlined above are addressed in Chapters 1 to 3. Since this research thesis is 

arranged as a manuscript-based document, each of these chapters presents the analyses and 

developments already published in (or submitted as) a journal paper. The chapter 

presentation preserves the article structure, and only adapts the text form to guaranty the 

required document continuity. 
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Chapter 1 develops the thermal EHL model designed to simulate the edge effects in line 

contacts. To the author’s knowledge, this model is the first able to characterize the free-edge 

influence on EHL film. In addition to its accuracy, the developed model offers rapid solution 

for EHL problems involving low-to-extreme pressures. The chapter also includes a detailed 

numerical investigation of the potential influence of solid-fluid interactions on pressure, film 

thickness, and temperature near the contact zone extremities of finite line contact. This part 

of the investigation examines and compares the response of crowned roller with rounded 

corners to the well-known logarithmic modification. This work has been published in 

Tribology International journal (Najjari and Guilbault, 2014, “Edge contact effect on thermal 

elastohydrodynamic lubrication of finite contact lines”). 

 

Chapter 2 presents the preparation of a semi-analytical model developed to characterize 

contact stress fields affected by discontinuities inherent to finite line contact problems. The 

analysis examines the relation existing between contact half-width and transition of the axial 

stress from a plane strain condition in the inner body region towards a plane stress state at a 

free boundary. The chapter includes a detailed validation of the model based on a two-level 

factorial comparison contrasting the model stress prediction with results obtained from FEM 

analyses. The validation considers three dimensionless factors: the contact slenderness, the 

contact length ratio, and the load. This part of the study has been published in Tribology 

International journal (Najjari and Guilbault, 2014, “Modeling the edge contact effect of finite 

contact lines on subsurface stresses”). 

 

Chapter 3 discusses the preparation of the design tool for optimal roller profile corrections.  

The research works presented in Chapter 3 combine the 3D thermal EHL model constructed 

in the previous chapters to a modified version of the particle swarm optimization (PSO) 

algorithm to develop formulas for rapid design of optimal roller profiles. Based on Chapter 1 

conclusions demonstrating that a crowned roller with rounded corners can generate uniform 

film thickness and pressure distributions equivalent to that produced by a logarithmic profile, 

Chapter 3 focuses on the crowned roller form, and develops formulas offering instant 
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evaluations of the shape definition parameters. In order to generalize the application range of 

the formulas, a dimensional analysis reduces the basic dimensions to dimensionless 

parameters (slenderness and load). The analysis also integrates the lubricant viscosity 

contributions. The final outcome is a rapid design-tool defining corrections that maximize 

EHL load-carrying capacity. This part of the thesis has been submitted to the journal of 

Mechanism and machine theory (Najjari and Guilbault, 2014, “Formula derived from 

particle swarm optimizations (PSO) for optimum design of cylindrical roller profile under 

EHL regime”). 

 

Finally, the two last sections conclude the document, summarize the important scientific 

contributions of the thesis and formulate some recommendations for future developments in 

the domain.   

 



 

CHAPITRE 1 
 
 

ARTICLE 1: EDGE CONTACT EFFECT ON THERMAL 
ELASTOHYDRODYNAMIC LUBRICATION OF FINITE CONTACT LINES 

Morteza Najjari and Raynald Guilbault 

 

Department of Mechanical Engineering, École de technologie supérieure, 

1100 Notre-Dame Street West, Montréal, Québec, Canada H3C 1K3 

This Article was published in Tribology International Journal in March, 2014 

 

1.1 Abstract 

Minimum lubricant film thickness and maximum pressure every so often appear close to 

roller ends. This study combines the Boussinesq-Cerruti half-space equations with a free 

boundary correction procedure for precise modeling of edge contact conditions. The thermal 

EHL model developed associates this representation to a standard finite difference of the 

energy equation, and to a modified finite difference expansion of the Couette term of the 

Reynolds equation. To complete the model, the Carreau expression describes the shear-

thinning response of the lubricant. The investigation includes different roller profile 

corrections. The results show that a large radius crowning modification combined with a 

rounding of the corners constitutes the most effective profile adjustment. 

 

Keywords: Thermal EHL, non-Newtonian lubrication, finite line contact, edge contact. 

 

1.2 Introduction 

An elastohydrodynamic lubrication regime (EHL) develops when high pressures (compared 

to Young modulus of the bodies) generate significant surface deformations, impacting the 
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lubricant film shape. Usually, in real applications such as gears, cams and roller bearings, 

contact lines are of a finite length, a condition which leads to the edge contact problem, with 

the most severe case arising between contacting surfaces of different lengths. To reduce the 

damaging effect of finite contact lines, mechanical designers commonly round off or axially 

profile the surfaces close to the body ends. The well-known studies published by Gohar and 

Cameron (1963, 1967), Wymer and Cameron (1974) and Bahadoran and Gohar (1974) are 

among the very few to have investigated the finite line contact problem. Their experimental 

investigations analyzed the effects of roller geometry on EHL lubricant film shape and 

thickness. For instance, the optical fringe obtained by Wymer and Cameron (1974) 

demonstrated that the film thickness thins down near the roller ends. Even though recent 

reviews (Chen et al., 2006; Lugt and Morales-Espejel, 2011; Zhu and Wang, 2011) show that 

analyses of infinite line contact and point contact problems have been well developed over 

the past decades, the early finite line contact numerical simulations (Mostofi and Gohar, 

1983; Kuroda and Arai, 1985; Xu et al., 1998; Park and Kim, 1998) were limited to light or 

moderate loads. More recent publications have examined the influence of assembly precision 

and surface modifications. For example, Kushwaha et al. (2002) investigated the influence of 

alignment on the film shape between rollers and raceways; Chen et al. (2001) studied the 

effect of crowning and logarithmic roller end profiles, and Liu and Yang (2002), and Sun and 

Chen (2004) analyzed the thermal EHL of finite line contact under heavy loads with the 

multigrid approach developed by Lubrecht (1987). Recently, Zhu et al. (2012) presented a 

mixed EHL investigation including realistic geometries and surface roughness effects on 

finite line contact modeling. Xue et al. (2012) carried out experimental EHL studies of finite 

rollers with logarithmic end profiles under heavy loads, and found that the film at the roller 

ends may be thinner than the outlet film at the mid-length position. 

 

While increasing the treatment sophistication of the Reynolds equation, the advent of the 

multigrid approach facilitated numerical investigations of high pressure EHL problems, and 

consequently, the description of the lubricant behavior in finite line contact conditions. 

However, in addition to the oil flow perturbations accounted for in the Reynolds equation, 

the free surfaces at the ends of a contact line also strongly affect the deformation of the 
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loaded surfaces. Nevertheless, to the author’s knowledge, the potential localized solid-fluid 

interactions have never been thoroughly described. 

 

Under dry contact conditions, the free boundaries have a significant influence on the contact 

stresses and deformation (Johnson, 1987). For example, the finite length roller-half space 

contact condition is well known to generate high stress concentration at the roller limits. 

Conversely, the plane stress condition at the free boundaries of coincident end rollers permits 

small axial expansions, and consequently, local contact pressure reductions, which may be 

approximated by Eq. (1.1) (Johnson, 1987). 

 

General contact solutions are often based on the classical elastic half-space theory 

(Boussinesq-Cerruti), which establishes the relation between the surface tractions and 

displacements. However, because of the underlying half-space assumption, when employed 

without any correction, the relation produces incorrect pressure increases near free edges. 

Over four decades ago, Hetényi (1960, 1970) proposed a correction process involving a shear 

stress elimination from mirrored pressure distributions, in combination with an iterative 

treatment for normal stress correction. Recently, Guilbault (2011) introduced a correction 

factor (Eq. 1.2) which multiplies the mirrored pressures to simultaneously correct the shear 

and normal stress influence on displacements, thereby guaranteeing significantly lower 

calculation times as compared to a complete Hetényi process. 

 

 2
0 0(1 )p pν′ ≈ −  (1.1)

   

 ( )1
1.29 0.08 0.5

1
ψ ν

ν
= − −

−
 (1.2)

 

This paper presents a detailed numerical investigation of the potential influence of solid-fluid 

interactions on the pressure, film thickness and temperature distributions at the ends of finite 
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contact lines. The study develops a model combining accuracy and high solution speed for 

low- to extreme-pressure EHL problems. In this model, the general non-Hertzian contact 

solution presented by Hartnett (1980) to calculate surface deformations and pressure 

distributions is completed with the Hetényi shear stress elimination process and the Guilbault 

correction factor for the relief of the normal stress effect on the free boundaries. While a 

standard finite difference formulation ensures an energy equation solution, a simple 

algorithm based on a modified forward finite difference iterative method, presented by Cioc 

(2004), resolves the Reynolds equation for the thermal EHL part of the global solution. The 

section following the model preparation compares the numerical results to experimental 

measurements published by Wymer and Cameron (1974). In the third section, the free 

boundary correction contribution is analyzed in two steps: first using only the mirrored 

pressures for shear correction, and thereafter integrating Guilbault correction factor for a 

complete correction. The last section investigates the influence of common roller profile 

axial modifications. 

 

1.3 Model preparation and governing equations 

1.3.1 Contact problem 

The general dry contact problem resolution procedure is well described and validated by 

Guilbault (2011). The EHL model developed in the present paper uses the same algorithm: 

the solution domain is divided into constant pressure cells, and the flexibility matrix written 

for the resulting mesh. The pressure cells are mirrored with respect to the free boundaries, 

and their influence is integrated into the flexibility matrix to eliminate the free boundary 

artificial shear stress. To remove the remaining normal stress influence, each mirror cell 

contribution is multiplied by Guilbault’s factor prior to its integration into the flexibility 

matrix. This last operation completely releases the boundaries. 
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1.3.2 Thermal EHL problem 

Assuming that the lubricant flow is parallel to the x-axis and that the roller length coincides 

with the y-axis (see Figure 1.1), and considering the following hypotheses, the Reynolds 

equation is given by Eq. (1.3). 

• The film thickness and fluid density are time-independent 

• The surface speed in the y direction is negligible 

 

 
3 3 ( )

12 e

h p h p h
u

x x y y x

ρ ρ ρ
η η

   ∂ ∂ ∂ ∂ ∂+ =   ∂ ∂ ∂ ∂ ∂   
 (1.3)

 

where ue is the entraining speed (x-axis), and the pressure boundary conditions are: pressure 

equal to zero at the body limits as well as at positions far before the inlet and after the outlet 

(p = 0 at y = ± L/2, xmin and xend) and pressure gradient equal to zero after the outlet p = ∂p/∂x 

= 0 at xend. 

 

  

 

 

 

Figure 1.1 Coordinate system 
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1.3.3 Lubricant modeling 

1.3.3.1 Viscosity-pressure-temperature relationship 

The shear-independent viscosity is often expressed by one of the following two variants of 

the Roelands equation (Eqs. 1.4a and 1.4b). Eq. (1.4b) is however considered more accurate, 

but nevertheless, Sadeghi and Sui (1990), Lee and Hsu (1993) and Hsu and Lee (1994) 

employed Eq. (1.4a). For the model validation, section 1.4.2 repeats the tests published by 

Sadeghi and Sui (1990), Lee and Hsu (1993), Hsu and Lee (1994), Guilbault (2013) and 

compares the temperatures and friction coefficients obtained with published values. 

Therefore, for consistency, during this comparison, the present model also uses Eq. (1.4a). 

For all other calculations of this study, Eq. (1.4b) is preferred. 
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where z0 is related to α as follows: 
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1.3.3.2 Rheological model  

The influence of severe shear conditions leading to a shear-thinning response of the lubricant 

is also well-established (Guilbault, 2013), and is often described by the Carreau expression. 

On the other hand, the limiting shear stress is nearly proportional to the pressure, and 
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influenced by the temperature. Equation 1.6 establishes the limiting shear stress. The value of 

Λ oscillates around 0.04 - 0.08. Incorporating Eq. 1.6 into the Carreau relation leads to a 

simple and accurate rheological model (Guilbault, 2013). 

 

 L pτ = Λ  (1.6)
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1.3.3.3 Density-pressure-temperature relationship 

The equation proposed by Dowson and Higginson (1959) for a compressible fluid formulates 

the density-pressure-temperature relationship: 
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1.3.4 Energy equation 

Neglecting the heat conduction along x and y directions, the energy equation within the 

lubricant film is written as: 
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Where 
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The heat repartition between the loaded solids is calculated during the solution of the energy 

equation, which is written for solid bodies as follows (Eq. 1.11): 
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The solution process ensures that the temperature inside the solids at a depth greater than 3C 

is equal to the bulk temperature (Tbulk). Moreover, if the bulk temperatures of bodies a and b 

are assumed to be equal to the ambient temperature (T0), the boundary conditions are: 
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1.3.5 Film thickness 

The EHL film thickness is classically formulated as given by Eq. 1.12 a. 
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where h0 corresponds to the initial body separation, g(x,y) represents the axial profile of the 

roller, and finally, the integral term is the elastic deformation of the contact surfaces, 

established here with the model of Guilbault (2011). Therefore, when adopting the 

discretization process of the contact model (Guilbault, 2011), the solution domain is 

discretized into constant pressure rectangular cells. The film shape expression then becomes: 

 

 , 0 , , , , ,
1 1

2 yx
nn

i j i j i j k l k l
k l
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where fi,j,k,l  is known as the deformation matrix (Hartnett, 1980). 

 

1.3.6 Load 

The load balance equation (Eq. 1.13) ensures the load equilibrium over the solution domain. 

This equation is expressed as: 

 

 ( , )p x y dxdy w
Ω

=   (1.13)

 
 

 

1.3.7 Numerical thermal EHL Model 

1.3.7.1 Modified forward iterative method 

To determine the pressure distribution within the lubricant film, the Reynolds equation (Eq. 

1.3) must simultaneously be solved with the equations for film thickness (Eq. 1.12 b), 

lubricant properties (Eqs. 1.7 and 1.8) and load balance (Eq. 1.13). The solution of the energy 

equation (Eqs. 1.9 and 1.11) gives the temperature within the fluid and the solid bodies. 

Therefore, since the viscosity, the density, the pressure and the temperature are nonlinearly 
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interconnected elements, the solution of the equation system is extremely sensitive, and may 

rapidly become unstable when submitted to high loads. Consequently, special approaches, 

such as the combination of the line relaxation scheme and the multigrid method, are required 

to overcome instability problems. The forward iterative method is probably the simplest 

approach used in the past to solve this nonlinear problem. Unfortunately, in presence of 

heavy loads resulting in pressures greater than 1 GPa, the method was rapidly proven to be 

unstable. However, recently Cioc (2004) observed that the instability was related to the 

Couette term finite difference formulation, and thus suggested a modified approach capable 

of overcoming the solution instability for pressures higher than 1 GPa; the modified method 

separates the pressures of finite difference mesh points i, i-1 and i+1 between the two 

consecutive iterations k-1 and k. The Couette term is thus written as in Eq. 1.14: 
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Figure 1.2 presents the flowchart of the modified iterative method developed by Cioc (2004). 

 

1.4 Model validation 

The model validation involves a comparison along the two axes: the film thicknesses in the 

rolling direction (x-axis), at the mid-length section (y = 0), and along the initial contact line 

(y-axis) are compared to those published by Wymer and Cameron (1974). The geometry of 

the roller and the lubricant properties corresponding to the experiments of Wymer and 

Cameron (1974) are given in Table 1.1. 



23 

Read Input Data

Establish the solution 
domain using a 

rectangular mesh

Expansion of 
Reynolds equation 

into its finite 
difference form over 
the solution domain

Initial guess for h0, 
take dry contact 

pressure and ambient 
temperature for the 

first iteration

Calculate the 
viscosity, density 
and film thickness

Solve the Reynolds 
equation for the new 

pressure

Under-relaxation 
adjustment for the 

pressure

Check 
convergence for 

pressure

Expansion of the energy 
equation into its finite 

difference form across the 
film thickness and inside 

the solid bodies

Solve the energy equation 
for the new temperature 

distribution

Check convergence  
for temperature

Check the overall 
convergence for both 

pressure and     
temperature

Check
load balance

Adjust h0

End

No

Yes

Yes

Yes

Yes

No

No

No

 

 
Figure 1.2 Flowchart for model solution 
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The roller profile approximation is identical to that of Sun and Chen (2006). Since the precise 

information was not available in the study, Sun and Chen assumed that the location of the 

first measured point in the Wymer and Cameron’s experiments was located at yd = 0.2mm. 

However, the lateral film constriction they calculated did not precisely coincide with the 

experimental results. Their assumption is therefore adjusted in this study to yd = 0.1mm. 

Figure 1.3 draws the resulting axial modification of the roller profile. As mentioned by 

Wymer and Cameron (1974), Shell HVI 650 mineral oil was used during the experiments. 

The lubricant properties are obtained from Evans and Johnson (1986). 

 

After validation with experimental measurements, the temperature distributions and friction 

coefficients obtained from the model were compared to numerical values published by 

Sadeghi and Sui (1990), Hsu and Lee (1993, 1994) and Guilbault (2013). The roller and the 

lubricant properties definition of  Sadeghi and Sui (1990) are given in Table 1.2. 

 

For the following results, the label “No-Correction” refers to calculations made without 

accounting for the mirrored pressure or Guilbault’s correction factor. The designation 

“Mirror Correction” refers to results obtained after the integration of the mirrored pressure 

cell contribution into the flexibility matrix. Finally, the label “Complete Correction” 

identifies the values established from calculations incorporating both the mirrored pressure 

cell contribution and Guilbault’s factor into the flexibility matrix. 

 

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

0.0018

0 0.1 0.2 0.3 0.4 0.5

Z
 (

m
m

)

Distance from the roller end (mm)

Curve fit

Experiment

 
 

Figure 1.3 Roller profiling 
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Table 1.1 Roller and lubricant properties (Wymer and Cameron, 1974; 
Evans and Johnson, 1986) 

 
Roller Lubricant 

Radius R 4.1 mm Ambient temperature T0 313 K 

Length L 13.7 mm Viscosity at 303 K 0.900 Pa.s 

Total cone angle 7.9° Viscosity at 393 K 0.015 Pa.s

Young modulus E 206 GPa Visc.-Press. coef. α at 303 K 30.2 GPa-1

Poisson ratio ν 0.3 Visc.-Press. coef. α at 393 K 16.4 GPa-1

Density ρ 7850 kg/m3 Density ρ at 313 K 888 kg/m3

Thermal conduct. k 46 W/(m.K) Density ρ at 373 K 853 kg/m3

Specific heat c 470 J/(kg.K) Thermal conduct. k 0.125 W/(m.K)

Glass Specific heat c 2000 J/(kg.K) 

Young modulus E 75 GPa Modulus G at 303 K 0.1 + 3.0×P  GPa 

Poisson ratio ν 0.22 Slope factor* n at 313 K  0.570 

Density ρ 2500 kg/m3 Slope factor n at 373 K 0.993 

Thermal conduct. k 0.78 W/(m.K)   

Specific heat c 840 J/(kg.K) *  The values were taken from Guilbault (2013) 

 

 

Table 1.2 Roller and lubricant properties, from Sadeghi and Sui (1990) 
 

Roller Lubricant 

Equivalent radius R 20 mm Ambient temperature T0 313 K 

Young modulus E 200 GPa Viscosity at T0 0.04 Pa.s 

Poisson ratio ν 0.3 Visc.-Press. coef. α 15.9 GPa-1 

Density ρ 7850 kg/m3 Visc.-Temp. coef. γ 0.042 K-1 

Thermal conduct. k 47 W/(m.K) Density ρ 846 kg/m3

Specific heat c 460 J/(kg.K) Density-Temp. coef. β 6.4×10-4 K-1 

  Thermal conduct. k 0.14 W/(m.K) 

  Specific heat c 2000 J/(kg.K) 
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1.4.1 Film thickness comparison 

The central film thickness in the rolling direction is presented in Figure 1.4. The graph in 

Figure 1.4 includes three dimensionless speeds. The results were established with a complete 

relief of the free boundaries at the ends of the roller (Hetényi and Guilbault corrections). The 

calculated results show high correspondence with the experiments. Figure 1.5 shows the film 

thickness in the axial direction. The calculations again include three dimensionless speeds. 

The graph also compares the results obtained with a complete relief of the free boundaries to 

the no-correction conditions. The film thickness distributions are in close agreement; the 

constriction location is well predicted by the model regardless of the condition of the 

boundaries at the ends of the roller. In fact, because of the precision of the experimental 

measurements, and the axial profile modification of the roller, which reduces the end 

influence, it is difficult to describe the contribution of the free boundaries to the simulation 

results with a high level of certainty. Nevertheless, the curves indicate that because of the 

rigidity reduction associated with the complete correction, the axial constriction shape and 

position are affected by the free boundary representation. Therefore, since the film thickness 

is significantly lower at the roller ends than at the central outlet position, an accurate 

depiction of the boundary behavior is very important. 

 

1.4.2 Temperature and coefficient of friction comparison 

The simulations  integrate one dimensionless load W ( =1.3×10-4) and four dimensionless 

speeds U (1.8×10-11, 3.6×10-11, 5.5×10-11 and 7.3×10-11). The material parameter is G = 3500. 

Table 1.3 compares the maximum mid-film and average temperature rise, and the 

dimensionless minimum film thickness evaluated at the central position of the roller (y = 0) 

to the reference values. Table 1.3 indicates that compared to the result of Sadeghi and Sui 

(1990), the maximum difference for the maximum mid-film temperature increase is 4°C 

(within 8% margin of error). On the other hand, considering the maximum average 

temperature rise, compared to Lee and Hsu (1993) the difference is less than 2°C. Finally, the  
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Figure 1.4 Central film thickness in rolling direction 
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Figure 1.5 Film thickness in the axial direction 
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maximum deviation of the minimum film thickness is 8.3% (case of U=1.8×10-11 and 30% 

slip). All simulations integrated a complete relief of the free boundaries. 

  

Table 1.3 Temperature comparison for W=1.3×10-4 
 

U Slip 

(%) 

Maximum mid-film temperature 

increase (°C) 

Maximum average 

temperature increase (°C) 

Dimensionless minimum 

film thickness 

  

Sadeghi 

(1990) 

Hsu-Lee 

(1994) 

Guilbault 

(2013) 

Model Lee-Hsu 

(1993) 

Guilbault 

(2013) 

Model Sadeghi 

(1990)

Hsu-Lee 

(1994) 

Model

1.8 ×10-11 0 0.91 - 0.43 0.53 - 0.43 0.49 0.0555 - 0.0600

10 10.64 - 14.66 14.71 - 12.64 12.52 0.0551 - 0.0585

20 31.61 - 31.55 32.54 - 27.17 27.8 0.0526 - 0.0564

30 46.57 - 44.55 46.09 - 38.35 39.47 0.0502 - 0.0544

3.6 ×10-11 0 2.76 - 1.59 3.28 - 1.59 2.63 0.0891 - 0.0924

10 26.64 27.28 28.16 28.42 21.31 22.94 22.51 0.0867 0.0871 0.0893

20 53.46 51.17 51.02 52.48 40.00 41.38 41.61 0.0831 0.0834 0.0860

30 71.12 67.19 66.90 69.03 53.09 54.27 54.83 0.0803 0.0808 0.0832

5.5 ×10-11 0 6.15 - 3.34 7.00 - 3.34 5.34 0.1145 - 0.1155

10 40.37 39.54 40.43 40.30 29.76 32.15 30.89 0.1118 0.1078 0.1113

20 69.95 67.50 66.66 67.83 50.09 52.67 52.01 0.1077 0.1035 0.1073

30 89.10 85.50 84.11 86.09 64.46 66.45 66.08 0.1037 0.1001 0.1039

7.3 ×10-11 0 9.97 - 5.27 10.43 - 5.27 7.83 0.1351 - 0.1358

10 51.33 51.18 50.26 50.46 38.77 39.59 37.77 0.1305 0.1201 0.1304

20 82.95 79.70 78.45 80.42 59.76 61.29 60.16 0.126 0.1156 0.1260

30 102.67 99.18 96.78 99.73 73.28 75.58 74.67 0.1226 0.1119 0.1226

 

Figures 1.6 and 1.7 compare the coefficients of friction (load W=1.3×10-4 and material 

parameter G=3500) at different rolling speeds to those published in Sadeghi and Sui (1990) 

and Lee and Hsu (1993). The curves demonstrate a very good agreement. 
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Figure 1.6 Friction coefficient for W=1.3×10-4, G=3500 
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Figure 1.7 Friction coefficient for W=1.3×10-4, G=3500 
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1.5 Profiled roller 

Cylindrical bodies are often designed with axial crown profiles in order to compensate for 

misalignment errors. The ends are also often rounded or chamfered to eliminate stress 

concentrations resulting from edge contact. Logarithmic profiles represent another alternative 

to smooth contact pressure distributions. In this section, five roller profile sample cases are 

examined and compared to unprofiled roller responses (crowned, rounded corners, crowned 

with rounded corners, chamfered corners and logarithmic profile). The general properties of 

the roller and lubricant are as shown in Table 4. For all simulations, the load and speed are 

8000 N (corresponding to a maximum Hertz pressure of 1.25 GPa) and 7.5 m/s, with the slip 

ratio equal to 20%. The computational domain stretches from xmin = -3C to xend = 1.5C in the 

x direction, while half of the roller length is considered in the y direction. Along the z-axis, 

the solution domain includes the film thickness and extends to a depth of 3C into both solids.  

The model convergence is illustrated in Table 1.5 for the coincident end straight roller case. 

Nx and Ny correspond to the number of divisions along the x- and y-axes, respectively. The 

left column of the table illustrates the influence of Nx, and the right column shows the 

influence of Ny. Although the pressure variation is less than 0.3% for the different mesh 

sizes, the central film thickness convergence trend demonstrates the more significant 

influence of the mesh size. The value variations indicate that the solution stabilizes between 

the 120×80 and 120×100 meshes. Therefore, comparing all film thicknesses to the 120×100 

solution leads to the precision levels shown in the table. Table 1.5 also includes the 

calculation times. Thus, when accounting for the time aspect, the 120×80 mesh assuring a 

precision of 99.8% appears to be the optimal option, while the 100×40 mesh with a precision 

higher than 88% represents an efficient trade-off.  All of the results presented in this section 

were obtained with the mesh size 120×80. Along the z-axis, the film thickness and solid 

bodies were described by 30 and 20 nodes, respectively. 

 
 
 
 
 
 



31 

Table 1.4 Roller and lubricant properties, from Guilbault (2013) 
 

Roller Lubricant 

Radius R 17.5 mm Ambient temperature T0 313 K 

Length L 10.0 mm Viscosity at 313 K 0.19580 Pa.s 

Young modulus E 200 GPa Viscosity at 373 K 0.01664 Pa.s

Poisson ratio ν 0.3 Visc.-Press. coef. α at 313 K 20.2031 GPa-1

Density ρ 7850 kg/m3 Visc.-Press. coef. α at 373 K 14.8490 GPa-1

Thermal conduct. k 46.6 W/(m.K) Density ρ at 313 K 890 kg/m3

Specific heat c 475 J/(kg.K) Density ρ at 373 K 876 kg/m3

  Thermal conduct. k 0.14 W/(m.K) 

  Specific heat c 1880 J/(kg.K) 

  Modulus G at 313 K 7.0  MPa

  Modulus G at 373 K 0.9  MPa

  Slope factor n at 313 K  0.570 

  Slope factor n at 373 K 0.993 

 

 

Table 1.5 Mesh convergence 
 

Mesh refinement along x Mesh refinement along y 

Nx×Ny pcenter 

(MPa) 

hcenter 

(μm) 

hcenter 

Precision (%)

Calculation 

Time (min)

Nx×Ny pcenter 

(MPa) 

hcenter 

(μm) 

hcenter 

Precision (%)

Calculation 

Time (min)

50×40 1280.1 1.084 32.7 0.82 120×60 1279.8 0.652 99.4 28.02 

60×40 1279.8 0.981 48.6 1.72 120×80 1279.7 0.649 99.8 59.08 

70×40 1278.1 0.902 60.8 2.07 120×100 1279.8 0.648 100 137.9 

80×40 1280.9 0.833 71.5 2.63  

90×40 1281.2 0.769 81.3 3.47 

100×40 1280.8 0.723 88.4 5.87 

110×40 1281.1 0.675 95.8 7.52 

120×40 1280.9 0.658 98.5 8.68 
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1.5.1 Crowned roller 

The axial crowning modification is defined by a crowning radius Ry. Therefore, when the 

roller radius is Rx, the profile modification g(x,y) is given by: 

 

 2 2( , ) xg x y R xδ= − −  (1.15)

 

where ( )2 2
x y yR R R yδ = − − − . 

 

For this section, the crowning radius is Ry = 560 mm. Figure 1.8(a) illustrates the 

modification. Because of the symmetry, only half of the domain is considered in the 

computations. This case is similar to the point contact problem, since the film thickness 

forms the horse-shoe shape. Figure 1.8 shows the axial film thickness, pressure and 

temperature at x = 0. The results presented in Figure 1.8 were obtained with no correction, a 

mirror correction and a complete correction of the free boundaries of the roller. 

 

Figure 1.8(b) indicates that the correction effect is localized near the roller end. At 

Y/L = 0.456, the graph reveals that the 0.317 pressure estimated with no correction is reduced 

to close to zero as soon as the mirror or the complete correction are integrated into the 

calculations. At the first non-zero pressure point established with the complete correction 

procedure (Y/L = 0.443), compared to the no-correction case, the mirror correction induces a 

pressure reduction of 11.5%, while the complete correction reduces the pressure by 21.1%. 

The maximum film thickness increases are 51.7% and 69.0% at the roller end (Y/L = 0.494) 

for the mirror and complete correction, respectively. The effect of the correction procedure 

on the temperature is less significant, and limited to 1.2% for the mirror correction and 2.3% 

for the complete correction at Y/L = 0.443. 
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1.5.2 Roller with rounded corners 

For this case, a rounding radius of 30 mm is added at a distance of 1 mm from the roller end. 

Figure 1.9(a) illustrates the modified roller. The curves in Figure 1.9(b) demonstrate that the 

lateral pressure spike is not sharp for this case. In addition, the graph shows that the 0.452 

pressure estimated at Y/L = 0.468 with no correction is reduced to 0.183 and to zero with the 

mirror correction and complete correction procedures, respectively. Furthermore, at the first 

non-zero pressure point established with the complete correction procedure (Y/L = 0.456), the 

pressure is reduced by 11.2% with the mirror correction and by 16.0% with the complete 

correction, when compared to the no-correction calculations. The film thickness at the roller 

end (Y/L = 0.494) is increased by 33.3% with the mirror correction and by 47.6% with the 

complete correction. Finally, at Y/L = 0.456 the temperature values present a 0.8% and a 

1.7% reduction for the mirror correction and the complete correction, respectively. 
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Figure 1.8 Correction effect for crowned roller 
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1.5.3 Crowned roller with rounded corners 

For this roller shape (Figure 1.10(a)), a crowned profile (Ry = 1500 mm) is combined with a 

rounded corner (rounding radius of 30 mm at a distance of 1 mm from the roller end). 

Figure 1.10 presents the pressure, the temperature and film thickness evaluations along the 

axial direction. For the modeled shape, the no-correction condition resulted in a 0.287 

pressure at Y/L = 0.456, while when including the mirror or complete corrections the 

pressures obtained reduce to zero. At the first non-zero pressure point found with the 

complete correction procedure (Y/L = 0.443), the mirror and complete corrections produce 

pressure reductions of 10.6% and 15.6%, respectively, when compared with the no-

correction case. At the same location, the corresponding temperature reductions are 1.2% and 

1.7%. Finally, at the roller ends (at Y/L = 0.494), the film thickness increases by 15.1% and 

21.4% when incorporating the mirror and complete corrections, respectively. 
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Figure 1.9 Correction effect for roller with rounded corners 



35 

  

 

 

 

1.5.4 Roller with chamfered corners 

This roller profile modification involves a 5° chamfering applied at a 0.5 mm distance from 

the roller end (Figure 1.11(a)). Figure 1.11 presents the pressure, temperature and film 

thickness curves. Because of the profile shape, the figure shows no considerable difference 

between the mirror and complete correction results. Compared to the results of the 

uncorrected condition at Y/L = 0.443, the pressure spike is reduced by 11.3%, while the 

temperature decreases by 2.2%, and the film thickness increases by 7.7%. More importantly, 

for the uncorrected free boundary condition, the results predict a complete collapse of the 

lubricant film close to the chamfer beginning (Y/L = 0.456). Nevertheless, as evaluated with 

the correction processes, the bodies remain separated. 
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Figure 1.10 Correction effect for crowned roller with rounded corners 
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1.5.5 Logarithmic profile 

This section analyzes the Lundberg profile, well known for its smoothing of pressure 

distributions. Although the pressure and temperature distributions are more uniform, as 

compared to the previous cases, a lateral film constriction remains visible. The correction 

process has a significant effect on the results. As shown in Figure 1.12, the estimated 

pressure value near the roller extremity obtained without any free boundary relief is 0.293 (at 

Y/L = 0.494), while the mirror and complete correction processes predict a null pressure at 

this location. At the first non-zero pressure point found with the complete correction 

procedure (Y/L = 0.481), the mirror correction generates a pressure reduction of 22.0%, when 

compared with the no-correction case. This reduction increases to 32.0% with the complete 

correction. At the same point, the maximum temperature reduction is 2.4% for the mirror 

correction and 4.1% for the complete correction. Moreover, the film constriction predicted at 

the roller boundary for the no-correction case is moved toward the center when the free 

boundaries are not artificially restrained. The completely corrected minimum film thickness 

is 9.3 times higher than the uncorrected value.  
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Figure 1.11 Correction effect for roller with chamfered corners 
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1.5.6 Non-profiled roller 

The free edge effect of non-profiled rollers is evaluated following two conditions: 1- 

coincident ends, and 2- non-coincident ends. These two conditions are common in cam and 

gear applications. 

 

1.5.6.1 Coincident end 

When the boundaries of two contacting bodies coincide, the free surface expansion causes a 

pressure reduction at the extremities. Figure 1.13 shows the pressure, temperature and film 

thickness distributions. The curves clearly indicate that the pressure drop at the boundary ( 

Y/L = 0.494) is predicted only when the correction process is integrated into the simulations; 

the uncorrected boundary pressure is 2.6 times the pressure calculated with the mirror 

correction, and 4.1 times that of the complete correction. At the same point, the temperature 

evaluated with the no-correction condition is more than 1.2 times the temperatures evaluated 

with the mirror or complete correction procedures. In addition, over the 0.400 ≤ Y/L ≤ 0.494 
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Figure 1.12 Correction effect for roller with logarithmic profile 
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range, the average film thickness increases by 1.9 % and 4.4% with the mirror and complete 

correction, respectively. 

 

  

 

 

 

1.5.6.2 Non-coincident end 

This condition arises when the mating surface extends beyond the roller boundaries. In this 

case, the pressure domain remains unchanged. However, to simulate the influence of the 

longer cylinder, the flexibility matrix only integrates the mirrored pressure cells and 

Guilbault’s correction factor for the shorter roller. Figure 1.14 presents the results. As with 

the previous case, the minimum film thickness occurs at the roller end (Y/L = 0.494). The 

partial mirror correction reduces the edge pressure by 37.6%, while the complete correction 

produces a 48.4% decrease. At the same position, the temperature calculated with the mirror 

and complete corrections are 92.9% and 90.5% of the non-corrected condition. Over the 

0.400 ≤ Y/L ≤ 0.494 range, the average film thickness increases by 1.1% and 1.5% with the 

mirror and complete correction, respectively. 
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Figure 1.13 Correction effect for unprofiled coincident roller ends 
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Figure 1.15 compares the seven cases studied; the film thickness (H), pressure (P) and 

temperature (T) contour plots obtained with a complete relief of the free boundaries of the 

roller are juxtaposed to show the influence of the profile modification. In addition, Table 1.6 

gives the film thickness, pressure and temperature values evaluated along the contact line at 

the mid-length position and at the constriction location. 

 

Table 1.6 Film thickness, pressure and temperature at mid-length position  
and constriction location along contact line 

 
 H (10-6 m) P (GPa) T (oC) 

 Mid-Length Constric. Hcons./HM-L Mid-Length Constric. Pcons./PM-L Mid-Length Constric. Tcons./TM-L 

Crowned 0.6643 0.9211 1.39 1.6239 0.4165 0.26 112 62.9 0.56 

Rounded 0.6648 0.6031 0.91 1.2777 1.6302 1.28 103.2 112.1 1.09 

Crowned with rounded 0.6607 0.6362 0.96 1.4212 1.3634 0.96 107 106.2 0.99 

Chamfered 0.6594 0.3952 0.60 1.2668 2.7863 2.20 102.9 147.5 1.43 

Logarithmic 0.6428 0.5893 0.92 1.3121 1.1004 0.84 104.1 97.7 0.94 

Unprofiled-coincident 0.649 0.0921 0.14 1.2797 1.2959 1.01 103.2 103.7 1.00 

Unprofiled-noncoincident 0.6374 0.0989 0.16 1.2358 1.4969 1.21 102 115.7 1.13 
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Figure 1.14 Correction effect for unprofiled non-coincident roller ends 
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Figure 1.15 Contours of film thickness, pressure and temperature  
(a) crowned, (b) rounded corners, (c) crowned with rounded corners,  

(d) chamfered corners, (e) logarithmic, (f) unprofiled, coincident ends,  
(g) unprofiled, non-coincident ends 
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The values of Table 1.6 clearly demonstrate that profiling the roller reduces the pressure and 

increases the film thickness at the constriction location. On the other hand, the modification 

has inverse consequences at the mid-length position. Therefore, it is rational to assume that 

an optimal profile modification would lead to a pressure ratio between the pressure at the 

constriction and the pressure at the mid-length position (Pcons./PM-L) being close to a unitary 

value. Hence, Table 1.6 shows that the crowned roller with rounded ends and the logarithmic 

profile are the most efficient options among the cases studied. Table 1.6 also indicates that 

the temperature ratio follows a behavior similar to the pressure response. Additionally, the 

film thickness ratio reveals that the film at the constriction position is thinner with a 

logarithmic modification than with a roller with a crowned rounded end. Therefore, even 

though the study did not involve any profiling optimization, the results suggest that a large 

radius crowning modification combined with rounded ends probably represents the most 

advantageous profile alteration. 

 

In addition to the optimal mechanical response of the modification, since the pressure values 

at some points largely exceeded the 1 GPa limit of the original finite difference formulation 

of the Reynolds equation, Table 1.6 also demonstrates the numerical stability of the modified 

method promoted in this study.  

 

1.6 Conclusions 

The influence of the edge on pressure distribution has been well documented for dry 

contacts. Conversely, the lubrication problem involving finite contact lines has undergone 

much less investigation. Moreover, the high pressure condition presents a particularly 

challenging problem, since resolving the Reynolds equation may rapidly lead to unstable 

computations. 

 

This paper has presented an efficient solution approach to the problem of thermal lubricated 

edge contacts submitted to high pressures. The model includes a standard finite difference 
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solution of the energy equations, combined with a modified finite difference treatment of the 

Reynolds equation; to eliminate computation instability, the finite difference expansion of the 

Couette term of the Reynolds equation is distributed over successive iterations during the 

solution process. The modified iterative method results in a very stable, precise and simple 

calculation approach. Finally, a non-Hertzian contact representation completes the model, 

while the solution procedure integrates the non-Newtonian response of the lubricant by 

means of the Carreau expression. 

 

The general non-Hertzian contact representation is based on the Boussinesq and Cerruti 

solution, complemented by a correction procedure to eliminate the shear and normal internal 

stresses artificially generated on the traction-free surfaces defining any finite contact line. 

The final contact simulation offers fast calculations and precision, and ensures a particularly 

efficient description of edge contact conditions. 

 

The first sections of the paper validate and evidence the accuracy of the evaluation made 

with the complete thermal elastohydrodynamic model, through a comparison with 

experimental measurements and numerical results obtained from the literature. 

 

The third part of the paper investigates the consequences of edge contact on the film 

thickness, pressure and temperature distributions. The study demonstrates the importance of 

an accurate representation of the free boundaries. For example, the Hartnett non-Hertzian 

contact model applied without any free boundary relief predicted a null film thickness at the 

contact edge of the chamfered roller. Conversely, both Hetényi’s partial mirror correction 

and complete procedures indicated that while presenting a substantial constriction, the film 

thickness separates the surfaces along the complete contact line. Likewise, for the straight 

rollers with non-coincident ends, the pressure distributions reveal the significant consequence 

of an inadequate treatment of the free boundaries; at the constriction position, the partial 

mirror correction reduces the pressure evaluation by 37.6%, while the complete relief showed 

a reduction of 48.4% as compared to the non-corrected conditions. Similarly, with coincident 
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ends, the non-corrected representation leads to pressure overestimations of 160% and 310%, 

as compared to partial mirror correction and complete correction, respectively. The obvious 

influence of the free boundary calls for precise modeling. Therefore, since the combination 

of the correction factor of Guilbault (2011) with the Hetényi shear stress correction does not 

increase the calculation times, and offers accurate estimations, the procedure is 

recommended for reliable descriptions of elastohydrodynamic conditions of finite contact 

lines. 

 

The last part of the study utilizes the proposed thermal model to investigate the influence of 

axial profiling. The analysis includes seven common roller profile forms and contact 

conditions. In summary, the simulations show that chamfering the ends generates high-

pressure concentration, leading to a complete collapse of the film thickness close to the 

chamfer beginning. On the other hand, assuming that an optimal profiling should produce 

constant maximum pressure along a contact line, the well-known logarithmic modification 

and a crowning profiling combined with a rounding of the corner were shown to offer the 

best pressure distributions. In addition, the crowned with rounded corner profile also ensures 

a more uniform film thickness along the contact line. Hence, the simulations presented 

suggest that a large radius crowning modification combined with a rounding of the corners 

probably represents the most effective profile adjustment. 
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2.1 Abstract 

Finite contact line conditions lead to subsurface stress distributions determined by the free 

boundaries. Combined with a correction procedure, Semi-Analytical Methods (SAMs) 

accurately include the free boundary effects, and represent a rapid alternative to the Finite 

Element Method (FEM) for contact pressure calculation. This paper extends the free 

boundary correction procedure to the evaluation of surface and subsurface stresses from 

SAMs. The investigation integrates a validation based on a two-level factorial comparison 

confronting the stress distributions established with the developed procedure to results 

obtained from FEM models. The comparison examines three dimensionless factors, and 

shows that the stress distributions are evaluated with a high level of precision. The model 

also offers evaluation more than 125 times faster than FEM simulations.  

 

Keywords: subsurface stresses, finite line contact, edge influence, quarter-space. 

 

2.2 Introduction 

Non-conformal contact interfaces undergo severe stress fields (Sadeghi, Jalalahmadi et al. 

2009). Finite contact line conditions existing in applications such as gears or cams may 
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present additional stress concentrations close to the associate free boundaries and resulting 

edges (Najjari and Guilbault 2014). Under Hertzian conditions, the maximum shear defining 

the contact critical area appears at a short distance beneath the surface. The presence of free 

boundaries, asperity contact or sliding (non-Hertzian contact) may affect the location of the 

maximum value of the stresses (Bold, Brown et al. 1992; Olver 2005). However, under any 

conditions, the surface and subsurface stress distributions are controlling factors of the 

contact fatigue life. Therefore, accurate rolling contact fatigue life prediction requires precise 

descriptions of stress fields near discontinuity zones (Lundberg and Palmgren 1947; 

Lundberg and Palmgren 1949; Littmann and Widner 1965; Elsharkawy and Hamrock 1991; 

Ioannides, Bergling et al. 1999; Nélias, Champiot et al. 1999; Dong, Ning et al. 2009). 

 

Since contact pressure distribution evaluation is essential for obtaining the surface and 

subsurface stress fields, under non-Hertzian contact conditions, numerical modeling becomes 

inevitable. The Finite Element Method (FEM) often appears as the easiest approach. 

Nevertheless, obtaining the necessary precision requires very fine FEM meshes, normally 

resulting in prohibitive calculation times. Alternatively, semi-analytical methods (SAMs) 

based on the Boussinesq-Cerruti solution for point tractions acting on elastic half-space 

represent an efficient way to deal with the pressure distribution problem. The half-space 

assumption also offers closed-form expressions for stress calculation (de Mul, Kalker et al. 

1986; Johnson 1987). However, this approach is obviously unable to account for finite 

contact interfaces, and, consequently, leads to non-realistic values close to or at the contact 

extremities. Hence, when applied to such conditions, SAMs need to be corrected. For the 

pressure calculation, Hetényi (Hetenyi 1960; Hetényi 1970) proposed the application of 

virtual mirrored pressures for shear stress elimination and an iterative treatment for normal 

stress correction. Recently, Guilbault (Guilbault 2011) introduced a correction factor (Eq. 

2.1) which multiplies the mirrored pressures to simultaneously correct the shear and normal 

stress influence on the surface displacements. Compared to the complete Hetényi process, 

because it eliminates the iterative treatment, this last procedure drastically reduces the 

calculation times. Once the corrected pressure distribution is established, the surface and 

subsurface stresses may be evaluated with the closed-form expressions available in the 
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literature (Love 1929; M'Ewen 1949; Smith and Liu 1954; Sackfield and Hills 1983; Kalker 

1986; Ahmadi, Keer et al. 1987; Sourty, Sullivan et al. 2002). However, to the author’s 

knowledge, the literature provides no particular adaptation procedure for those expressions, 

and therefore, the underlying half-space assumption once again leads to unsound stress 

evaluations close to the body limits. 

 

 
1

1.29 (0.08 0.5 )
1

ψ ν
ν

= − −
−

 (2.1)

 

This paper introduces a simple complementary correction procedure for surface and 

subsurface stress evaluation in real delimited bodies. The study includes a validation section 

in which a two-level factorial comparison incorporating three dimensionless factors confronts 

the stress distributions established with the developed procedure to results obtained from 

FEM models. 

 

2.3 Contact of two elastic bodies 

2.3.1 Pressure distribution 

The general dry contact problem resolution procedure is well described and validated in 

Ref. (Guilbault 2011). In the present paper, the contact pressure distributions are obtained 

from the same algorithm. Figure 2.1 illustrates the procedure when applied on two of the free 

boundaries (Fb1 and Fb2) of a roller/rectangular body contact problem: the solution domain is 

divided into constant pressure cells of lengths 2a and 2b in the x and y directions, and the 

flexibility matrix written for the resulting mesh. Equation 2.2 gives the flexibility coefficients 

for a cell ij of the surface, when a pressure (P) is applied on a cell kl. In order to account for 

the body limits, the pressure cells are mirrored with respect to the free boundaries (P’ for Fb1 

and P” for Fb2), and their influence integrated into the flexibility matrix. The first correction 

eliminates the free boundary artificial shear stress. To remove the remaining normal stress 
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influence, each mirror cell contribution is multiplied by Guilbault’s factor (ψ, Eq. 2.1) prior 

to its integration into the flexibility matrix. This last operation completely releases the 

boundaries. Equation 2.3 establishes the relation between the pressure distribution and the 

surface displacement at position (i, j). 
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Figure 2.1 Roller and rectangular body contact 
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2.3.2 Stress distribution 

The expressions for the surface and subsurface stress produced by a contact pressure acting 

on a rectangular patch on the surface of an elastic half-space were first presented by Love 

(Love 1929). Based on these expressions, the stress tensor at any point p(xp, yp, zp) of the 

half-space resulting from pressures distributed over constant pressure cells kl is written as 

presented by Eqs. 2.4 to 2.10 (Sourty, Sullivan et al. 2002): 
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where 2 2 2x y zζ = + + , k px x x= − , k py x y= −  and ( 0)p pz z z= ≥ . 

 

Figure 2.2 shows the 3D stress state obtained for a quarter-space defined by one free 

boundary, when treated with the previous equation. As before with the pressure calculation, 

the half-space assumption generates artificial normal and shear stresses on the free surface. In 

reality, σyy, σyz and σyx are null at the free boundary. Therefore, once the pressure distribution 

is evaluated, the stress distribution computation also demands a free boundary stress 

elimination. 

 

As suggested by Hetényi (Hetenyi 1960; Hetényi 1970), mirroring the pressure eliminates the 

shear stress σyz. Actually, since the pressure distribution resulting from the correction 

procedure for the contact surface displacement along the z-axis (section 2.2) incorporates the 

mirrored pressure influence, the final σzz, σyz and σyx distributions are also shaped by these 

mirror pressures. Their contribution is therefore combined to the pressure cell contribution 

for the evaluation of Eqs. 2.7, 2.8 and 2.10. 

 

The free boundary normal stress σyy effect on the contact surface rigidity is compensated by 

an overcorrection of the shear contribution introduced by the correction factor ψ (Eq. 2.1). 

However, ψ exerts no real influence on σyy. On the other hand, as demonstrated by Hetényi 

(Hetenyi 1960; Hetényi 1970), this stress component could be eliminated from the free 

surface by the addition of an inverse analogous distribution. Nevertheless, since compared to 

σyz and σzz the influence of σyy remains of lower importance, and in order to optimize the 
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calculation times, it seems preferable to simply set σyy to zero all over the free surface. Its 

distribution in the y-axis direction remains however to be corrected; the plane stress state 

close to the free boundary evolves to a plain strain state towards the internal body positions. 

The body shape and dimensions of the stress-affected region control this transition. Since σyy 

shows more or less a constant amplitude along the y-axis, the present analysis merely 

considers that the reduction from the inner body region towards the zero value at the free 

boundary follows a constant radius curved transition. To account for the body shape and 

stress-affected region, this radius is fixed at γ times the contact half-width (γ C). All 

calculations below considered γ to be equal to 15. Section 2.4.5 examines and validates this 

choice. 
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Figure 2.2 3D stress state 

 

 

2.4 Stress model validation 

The finite element method is recognized for its general precision and reliability. This study 

considers that with sufficiently fine meshes, contact FEM models offer valuable estimates of 

the contact pressures and associated stress distribution. This validation section compares the 

results obtained from the proposed model to FEM values. The analysis integrates a two-level 
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factorial comparison combining three dimensionless factors. The dimensionless approach 

generalizes the validation. The factors are the contact slenderness Sl = R/L1, the contact 

length ratio Lrc = L2/L1 and the load W = w/(E'L1R), where 

12 2
1 2

1 2

1 1
E

E E

υ υ
−

 − −′ = + 
 

. In all the 

following simulations, the material properties are E=200 GPa and ν=0.3 for both bodies.   

 

2.4.1 Geometry definition 

The two-level factorial comparisons with three factors leads to the eight cases defined in 

Table 2.1. To cover the coincident and non-coincident end conditions, Lrc is set to 1 and 1.4, 

while with values of 0.2 and 2, Sl describes long and short roller problems. Finally, W equals 

1.036×10-5 and 9.366×10-5 which represents maximum Hertzian pressures of 200 and 600 

MPa, respectively. The studied cases are designated by descriptive abbreviations: C and NC 

correspond to coincident and non-coincident ends, respectively, while S and L indicate short 

or long roller conditions. The maximum Hertzian pressure completes the designation. For 

example, the S600NC case corresponds to a short roller, a 600 MPa maximum Hertzian 

pressure and non-coincident end condition. 

 

Table 2.1 Case studies 
 

 

W 

Lrc = 1 Lrc = 1.4 

Sl = 2 Sl = 0.2 Sl = 2 Sl = 0.2 

1.036×10-5 S200C L200C S200NC L200NC 

9.366×10-5 S600C L600C S600NC L600NC 

 

 

2.4.2 FEM model preparation 

All 3D FEM analyses were realized with the ABAQUS software. Figure 2.3 shows a sample 

model of the non-coincident end condition. Using the xz and yz symmetry planes, the 
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quadratic wedge element (15 nodes) meshes only integrate a quarter of each body. The 

models also assure a smaller element size close to the free boundaries by means of a bias 

division approach. The non-coincident end conditions generate local singularities, which 

under purely elastic simulations lead to stress concentration increases inversely proportional 

to the element size. Therefore, to compensate for the plastic deformation influence neglected 

in the FEM models, the mesh size in the singularity region was decreased until the calculated 

pressure reached a maximum value of 1.7 times the yield strength (contact elastic limit based 

on the Tresca criteria). It was assumed that local plastic deformation would redistribute the 

load and maintain the pressure below this elastic-plastic transition. This strategy resulted in 

minimum element lengths of 12.5 μm and 35 μm along the radial and axial directions, 

respectively. The following validation imposes the same contact elastic limit to the proposed 

modeling approach. In all simulations, the bottom surface of the lower body was fixed, while 

the load was applied on the top surface of the upper body. Finally, the contact interfaces 

assured frictionless conditions. 
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Figure 2.3 FEM model 
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2.4.3 Surface and subsurface stress results 

Figure 2.1 illustrates the model tangent plane division in contact cells. For purposes of 

comparison, this tangent plane meshing is adjusted to the FEM mesh sizes (60 divisions 

along x and 30 along y for all cases). For the FEM simulations, 30 divisions along the z-axis 

complete the model. As with the FEM models, the proposed modeling approach also 

incorporates a bias factor in the y direction. However, since this approach offers a higher 

precision level than the FEM for contact modelling, the bias factor is simply adjusted to 

produce the free edge pressure obtained from the FEM models. 

 

To illustrates the model precision for pressure calculation, Figure 2.4(a) compares the half-

contact width pressure distribution obtained at the mid-section (y=0) for cases S200C and 

S600C to the Hertz theory and FEM results, whereas 2.4(b) presents the maximum pressure 

values along the contact lines close to the free boundary zones for the coincident end case, 

S200C, and the non-coincident condition, S200NC. The charts in Figure 2.4 show a high 

correspondence among the results, and, therefore demonstrate the reliability of the correction 

procedure proposed in Ref. (Guilbault 2011). 
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Figure 2.4 Pressure comparison (a) mid-section (y = 0), (b) along the contact lines (x = 0)
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Figure 2.5 plots the subsurface stresses calculated at the mid-section of the S200C case. The 

average differences for σxx, σyy, σzz and the maximum shear stress (τmax) are 1.5%, 5.2%, 0.3% 

and 0.2%, respectively. Figure 2.6 shows the equivalent curves at the free surface of the 

upper body. The corresponding average differences for σxx, σzz and τmax are 0.6%, 5% and 

10.4%. However, since τmax plays a significant role in rolling contact fatigue, it is important 

to mention that the correspondence between the proposed model and the FEM simulation at 

the τmax maximum value is 96.6%. The surface stresses along the centerlines are depicted in 

Figure 2.7. The curves indicate that the plane strain-to-plane stress transition assumption 

leads to a good agreement between the model and FEM results; the average differences in 

Figure 2.7 are limited to 3.2%, 7.8%, 0.3% and 6.8% for σxx, σyy, σzz and τmax, respectively. 
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Figure 2.5 Internal subsurface stresses at  
mid-section - S200C 
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Figure 2.6 Subsurface stresses at upper body  
free boundary (y=0.5L1) - S200C 
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Figure 2.7 Surface stresses along the contact  
lines (x=0) - S200C 

 

To illustrate the model capacities for the non-coincident end problem, Figures 2.8 to 2.10 

present the subsurface and surface stress distributions established for S200NC. Since the 

stress distributions at the mid-section remain unaffected compared to the coincident end 

conditions, the chart is not repeated. Figure 2.8 plots the internal stresses calculated below 

the contact line in the lower body at the upper body free surface position (beneath the stress 
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concentration). The corresponding average differences for σxx, σyy, σzz and τmax are 4.3%, 

6.1%, 3.9% and 4.0%, respectively. Figure 2.9 shows the same stresses calculated for the 

upper body (at the free surface). For this case, the average differences are 3.9% and 11% for 

σzz and τmax, respectively. On the other hand, the average difference for σxx reaches 34.8%. 

However, again for this problem, the maximum value established for τmax remains in good 

agreement with the FEM evaluation, with the difference being less than 2%. In reality, the 

maximum value of τmax is mainly determined by σzz. Therefore, a precise evaluation of this 

stress component is vital. Figure 2.10 presents the surface stress distribution along the 

contact lines. Again, the curves reveal a high correspondence; the average differences for σxx, 

σyy, σzz and τmax are 1.6%, 1.5%, 3.3% and 2.7%, respectively. 
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Figure 2.8 Lower body internal subsurface stresses at  
stress concentration zone (y=0.5L1) - S200NC 
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Figure 2.9 Upper body subsurface stresses at free  
surface (y=0.5L1) - S200NC 

 

-2

-1.5

-1

-0.5

0

0.5

1

0 0.1 0.2 0.3 0.4 0.5

σ/
P 0

Y/L1

σXX-FEM σYY-FEM
σZZ-FEM τmax-FEM
σXX-Model σYY-Model
σZZ-Model τmax-Model

 
 

Figure 2.10 Surface stresses along contact  
lines (x=0) - S200NC 

 

2.4.4 Dimensionless factor influence 

This section examines the average relative difference between the model and FEM results for 

all cases in Table 2.1. The following graphs compare the stress distribution difference in 

percentage at the positions chosen in the previous section: the mid-section (y=0), the free 
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boundary of the upper body and the corresponding position in the lower body (y=0.5L1), for 

the subsurface stress distributions and along the contact lines (x=0) for the surface values. 

 

Figure 2.11 shows the internal mid-section average subsurface stress differences. As 

demonstrated by the charts, σxx, σzz and τmax present evaluations in close agreement (more 

than 96%) with the FEM reference results. Although the correspondence remains higher than 

89%, σyy demonstrates slightly more apparent variations. 

 

 

 

 

 

Figure 2.12 describes the situation at the upper body free boundary (y=0.5L1). Since the σyy 

values at this position are set to zero, the graphs do not include this component in the 

comparison. On the other hand, the proposed model includes no special adjustment for σxx. 

Therefore, under the non-coincident end conditions, it generates the more visible differences. 

However, considering the information given in Figure 2.9, we see that even with the highest 

relative variation of all stress components, the σxx distribution remains close to the reference 

FEM evaluations. The two other investigated stresses, σzz and τmax, demonstrate high 

agreement for all eight studied dimensionless configurations: above 89% and 92% for the 

lower and higher loads, respectively. 
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Figure 2.11 Internal subsurface stress comparison at mid-section (a) W = 1.036×10-5, 

(b) W = 9.366×10-5 
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Figure 2.13 compares the internal subsurface stresses calculated at the stress concentration 

zone in the lower body. The global correspondence is greater than 83%. Moreover, the σzz 

and τmax evaluations appear to be even more precise, with a maximum difference of 12%. 

This maximum difference occurs with the L200NC case. However, increasing W or reducing 

Sl reduces this variation. 

 

Finally, Figure 2.14 shows the differences evaluated at the surface along the contact lines. 

The maximum pressures are also included in the graphs. The precision demonstrated for this 

parameter is above 94%. The component σzz, which is controlled by the pressure, presents the 

same precision. The σxx evaluations also present values similar to the FEM results (above 

96%). Moreover, the arc-form reduction of σyy towards the free boundary offers a good trend 

description, with a minimum correspondence higher than 88%. Finally, the surface 

evaluation of τmax shows a precision higher than 91%. However, since the rolling contact 

fatigue problem is controlled by the maximum value of τmax located beneath the surface, the 

real precision of τmax should be evaluated from Figures 2.11 to 2.13. Figures 2.12 and 2.13 

indicate that the proposed model assures a minimum precision higher than 88% when 

compared to the FEM results.  
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Figure 2.12 Subsurface stress comparison at upper body free boundary  

(a) W = 1.036×10-5, (b) W = 9.366×10-5 
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Figure 2.13 Lower body internal subsurface stress comparison at  
stress concentration zone (y=0.5L1) 

 

 

 

 

 

2.4.5 Plane strain to plane stress transition 

In order to maintain high computation speeds, the results presented in the previous sections 

simulated the σyy evolution from a plane strain to a plain stress state towards the free 

boundary with a constant radius curved transition set to λC, with λ=15. The results showed 

that this assumption is suitable for the dimensionless cases of Table 2.1. To conclusively 

verify the acceptability of this approach, the FEM calculations presented below examine 

eight new dimensionless configurations taken outside the domain defined by the factor range 

of Table 2.1. Figure 2.15 illustrates the study domain. Since Lrc corresponds to the coincident 
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Figure 2.14 Surface stress comparison along contact lines  

(a) W = 1.036×10-5, (b) W = 9.366×10-5 
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or non-coincident end conditions, this factor remains fixed at the same values Lrc =1 or 1.4. 

The first four cases (1 to 4) evaluate the slenderness influence with Sl=0.1 and 4, while W is 

maintained at a mid-domain load of (4.162×10-5), leading to a contact pressure of 400 MPa. 

The following four cases examine the load influence; W is set to (2.602×10-6) and  

(2.602×10-4) to generate contact pressures of 100 MPa and 1000 MPa, while Sl is fixed at the 

mid-domain value of 1.1. Figure 2.15 presents the studied configuration, where points 1 to 8 

correspond to the following designations: case 1: S400C, case 2: L400C, case 3: S400NC, 

case 4: L400NC, case 5: M100C, case 6: M1000C, case 7: M100NC, and case 8: M1000NC. 
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Figure 2.15 Dimensionless cases  

 

The resulting σyy distributions established along the contact lines for both cases of Table 2.1 

and the eight new cases are drawn in the graphs in Figure 2.16. This figure clearly 

demonstrates that, following an arc-form reduction, the σyy value reaches more than 90% of 

its central amplitude on average, at a distance close to 15 times the semi-width of contact (C). 

Therefore, the simple assumption of a constant radius curved reduction for σyy in the 

transition zone appears to be a good estimation of the real behavior. 
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2.4.6 Calculation time comparison 

The previous sections demonstrated the good precision levels obtained from the proposed 

correction procedure. However, the real worth of the method also largely depends on the 

associated calculation times. All the studied cases were solved on the same computer with 

the proposed model and by FEM simulations, concurrently. The FEM representation was 

optimized to offer converged solutions with the lowest computation times. On the other hand, 

the current model meshes were refined to reach the FEM precision on pressure estimates, and 

to assure calculation points at positions close to FEM nodes. On average, the FEM models 

involved 20,000 elements and 60,000 nodes. Table 2.2 reports the solution times obtained 

with both modeling approaches for the Table 2.1 cases. Table 2.2 clearly shows that the 
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Figure 2.16 Plane strain-to-plane stress transition zone  

(a) W = 1.036×10-5, (b)  W = 9.366×10-5, (c) W = 4.162×10-5,  
(d) W = 2.602×10-6 and W = 2.602×10-4 
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presented free boundary treatment established the contact pressure and associated subsurface 

stress distributions, by far faster than the FEM models.  In fact, Table 2.2 indicates that, on 

average, the proposed model is more than 125 times faster than FEM simulations. 

 

Table 2.2 CPU time(s) 
 

Case S200C S200NC L200C L200NC S600C S600NC L600C L600NC 

Model 25.5 47.6 26.3 47.4 25.1 48 25.9 47.7 

FEM 3392 4307 3598 3943 4880 5247 4436 5090 

 

 

2.5 Conclusion 

Free boundary conditions have a dominant influence on the surface and subsurface stress 

distributions of finite line contact problems. Because when corrected to integrate the free 

boundaries, SAMs based on the half-space theory offer accurate and rapid evaluation of the 

contact interface displacements and pressure distribution, this paper extends the free 

boundary correction procedure to the surface and subsurface stress calculations in real 

delimited contact problems: with z normal to the contact interface, y in the direction of the 

principal axis of the contact area, and x perpendicular to y and z, once the pressure 

distribution is determined, virtual mirror pressures added to incorporate the free boundary 

influence on the displacement are also integrated in the σzz, σyz and σyx evaluation, whereas 

the normal (to the free boundary) component σyy is simply set to zero. The axial evolution σyy 

from a plane strain at the mid-section to a plane stress condition close to the free boundary is 

also corrected; the analysis demonstrates that the distribution follows an arc-form reduction 

from the inner body region towards the zero value at the free surface. The first observations 

suggested a radius equal to 15C. This estimation was later verified and validated through 

FEM analyses; the proposed axial behavior offers a trend description in conformity with the 

FEM representation. 
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 A comparison between FEM evaluations and the values resulting from the developed model 

also demonstrates the global precision of the complete procedure. A two-level factorial 

comparison constructed with three dimensionless factors (the contact slenderness Sl, the 

contact length ratio Lrc and the load W) generalizes the validation. The studied domain 

includes short and long rollers, coincident and non-coincident end conditions, while the W 

levels correspond to maximum Hertzian pressures of 200 and 600 MPa. 

 

The σxx, σzz and τmax comparison shows that at the contact area mid-position, the average 

correspondence between the proposed model and the FEM reference results is greater than 

96%, while the correspondence for σyy remains greater than 89% for all studied 

dimensionless configurations. The σzz and τmax distributions obtained at the free boundary of 

the upper body (y=0.5L1) also demonstrate a high concordance with the FEM estimates: 

above 89% for the lower loads and 92% for the higher loads. At the corresponding position 

inside the lower body, the overall correspondence with FEM results remains above 83%, 

while the σzz and τmax individual agreement presents a minimum value of 88%.  

 

The developed correction procedure also offers very fast evaluations. A comparison of the 

calculation times obtained for the eight dimensionless configurations considered in this study 

indicated that the proposed approach established the contact pressure and associated stress 

distributions at least 125 times more rapidly than the FEM avenue. Therefore, this model 

certainly presents a powerful modeling option, particularly suited for profile optimization of 

rolling elements involving iterative search processes. 
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3.1 Abstract 

Roller profile corrections play an important role in EHL load capacity of cylindrical contacts. 

Recently, the authors demonstrated that when considering pressure distribution uniformity, 

crowning modifications combined with rounded corners offer similar performances to that of 

logarithmic profiles, while conceivably being less difficult to manufacture. This paper 

develops formulas establishing crowning and corner rounding radii for rapid design of 

optimal roller. These formulas amalgamate results obtained from multi-objective particle 

swarm optimizations (PSO) completed over a five-level dimensionless factorial design, with 

the factors being the slenderness, the load and the lubricant viscosity. Since the PSO 

optimizations integrated three concurrent objective functions: the contact pressure 

uniformity, the film thickness stability, and the maximum load capacity, the formula 

predictions guarantee optimal profile corrections. 

 

Keywords: Optimum roller profile, thermal EHL, multi-objective, particle swarm 

optimization. 
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3.2 Introduction 

The axial crowning of cylindrical rolling elements prevents contact pressure concentration 

near the extremities and compensates for slight misalignments (Hamrock and Anderson, 

1983). A circular crowning profile eliminates edge stress concentrations at low to moderate 

loads, but develops edge effects under heavy loads. On the other hand, logarithmic profiling 

of rollers not only removes edge effects at low, medium and heavy loads, but also results in 

nearly uniform axial pressure distributions (Rahnejat and Gohar, 1979; Johns and Gohar, 

1981). Recently, the authors of the present work studied the influence of edge contacts on 

thermal elastohydrodynamic lubrication (EHL) for different roller contact conditions, and 

demonstrated that a large radius crowning modification combined with a rounding of the 

corners is as effective as a logarithmic profile, while being probably easier to produce 

(Najjari and Guilbault, 2014). 

 

Mechanical design problems relate to the sizing of machine elements to certain precise 

requirements. However, the numbers of unknowns (generally geometric dimensions) are 

commonly larger than the number of governing equations, thus leading to infinite numbers of 

potential solutions. In such situations, some of the unknowns may be assigned values based 

on experience or on the literature, and the system for the remaining unknowns solve. This 

strategy does not however guarantee optimal designs. On the other hand, optimization 

techniques allow the adjustment of more than one variable at a time, and therefore, the 

generation of the best solutions. This study implements a particle swarm optimization (PSO) 

approach to optimize the three geometric parameters defining a crowning profile correction, 

namely, the crowning radius, the rounding radius and the rounded corner distance. An 

optimal cylindrical roller profile design maximizes the load capacity, and offers uniform 

contact pressures and stable film thickness distributions along the roller length. 

 

Many optimization research studies on various machine elements have been reported (Seireg, 

1972), but very few documents have investigated rolling contact elements. Using a gradient-
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based search method, Seireg and Ezzat (1968) optimized the bearing length, radial clearance 

and average lubricant viscosity of a hydrodynamic journal bearing. Their design objective 

was to minimize both the oil supply and the temperature rise. Maday (1970) and Wylie and 

Maday (1970) studied optimum configurations for hydrodynamic bearings; they applied 

bounded variable methods to maximize the load carrying capacity of bearings. Later, Hirani 

et al. (2000) presented a design method for selecting the optimal diametric clearance and 

length of an engine journal bearing. The procedure controls the minimum film thickness, the 

maximum pressure and the maximum temperature. On the other hand, because of larger 

deformations, higher temperatures and piezoviscous effects, EHL conditions existing in roller 

bearings usually result in more complex tribological conditions. 

 

Changsen (1991) described the application of a gradient-based numerical optimization 

technique to the design of cylindrical roller bearings. The author identified five design 

parameters to be optimized: the fatigue life, the wear life, the static load rating, the frictional 

moment and the spin-to-roll ratio. Since contact bearing fatigue degradation is the main 

failure mode in rolling, Changsen finally suggested a single-objective function, namely, the 

basic dynamic capacity with associated geometric constraints. Changsen also put forward the 

concept of the multi-objective optimization of rolling element bearings. More recently, 

evolutionary algorithms have been applied to the optimal design of rolling contact bearings. 

Chakraborty et al. (2003) employed a binary-coded genetic algorithm to solve Changsen’s 

formulation for maximizing the fatigue life of deep-groove and tapered-roller bearings. 

However, some of the considered optimization constraints later appeared to be unrealistic, 

and therefore, Rao and Tiwari (2007) introduced practical constraints. Kumar et al. (2009) 

developed an optimum design for cylindrical roller bearings with the help of real-coded 

genetic algorithm. They chose the basic dynamic load rating as the objective function, and 

included the roller profiling effect. Two logarithmic profile generating parameters were also 

considered. The optimization results showed that the multiplier of the logarithmic profile 

deviation parameter has a greater effect on the fatigue life, as compared to other geometric 

parameters. Gupta et al. (2007) used a genetic algorithm in a multi-objective framework for 

the design optimization of a deep-groove ball bearing. The authors simultaneously optimized 
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three primary factors: the basic dynamic load rating, the basic static load rating and the EHL 

minimum film thickness. Savsani et al. (2009) later used a modified particle swarm 

optimization (PSO) approach to solve the same problem, and reported better results, 

compared to those of Gupta. 

 

This paper develops formulas for the rapid design of optimal roller profiles. The formulas for 

their part derive from optimal results obtained during a multi-objective PSO campaign 

conducted with a five-level factorial design. This factorial design combines two 

dimensionless factors: the slenderness and the load, complemented by the lubricant 

viscosities of three mineral oil ISO grades (ISO-VG 100, 220 and 460). The final formulas 

establish the optimal crowning and corner rounded shape for rollers of any slenderness and 

load, resulting in EHL conditions inside the studied domain. The analysis validates the 

formulas through a comparison of the pressure and film thickness distributions for three 

lubricants, each with four combinations of slenderness and load selected in between the 

design evaluation points. 

 

3.3 Thermal EHL model for rolling contacts with edge effects 

The investigation presented by Najjari and Guilbault (2014) describes the edge effects of 

finite contact lines on thermal EHL. Using an accurate description of the free boundaries, the 

thermal EHL model developed by them offers precise simulations of edge contact conditions. 

The model also incorporates the Carreau expression to describe the shear-thinning response 

of the lubricant. Table 3.1 gives the roller material and lubricant properties considered by 

Najjari and Guilbault (2014). The present study makes use of the model developed by Najjari 

and Guilbault (2014), and integrates the lubricant shear-thinning properties provided in 

Table 3.1. 
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Table 3.1 Roller and lubricant properties, (Najjari and Guilbault, 2014) 
 

Roller  Lubricant  

Diameter Deq 12.0 mm Ambient temperature T0 313 K 

Young modulus E 200 GPa Visc.-Press. coef. α at 313 K 20.2031 GPa-1 

Poisson ratio ν 0.3 Visc.-Press. coef. α at 373 K 14.8490 GPa-1 

Density ρ 7850 kg/m3 Density ρ at 313 K 890 kg/m3

Thermal conduct. k 46.6 W/(m.K) Density ρ at 373 K 876 kg/m3

Specific heat c 475 J/(kg.K) Thermal conduct. k 0.14 W/(m.K)

  Specific heat c 1880 J/(kg.K)

  Modulus G at 313 K 7.0  MPa

  Modulus G at 373 K 0.9  MPa

  Slope factor n at 313 K  0.570 

  Slope factor n at 373 K 0.993 

 

 

3.4 Particle swarm optimization algorithm 

The PSO algorithm introduced by Eberhart and Kennedy (1995) belongs to the intelligent 

optimization technique group. The algorithm is inspired by a bird swarm searching for 

optimal food sources. In PSO, the moving direction of every single bird is influenced by 1- 

its current movement, 2- the best food source it found so far, and 3- the best food source any 

bird in the swarm ever experienced. In other words, the particles move based on their inertia, 

their personal knowledge and the social knowledge of the swarm. An important review 

published by Poli et al. (2007) describes the major developments and applications in the 

domain. 

 

PSO initiates the process with a randomly distributed population of particles (potential 

solutions) over the search domain. Each particle is represented by its position xi = (xi0, xi1,…, 

xiD), where D is the dimensionality of the problem. Its displacement velocity is written as vi = 

(vi0, vi1,…, viD). In order to prevent any escape from the search space, the particle velocity is 
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also controlled by a limiting value (vmax). For each particle i, the previous optimal position 

(last best fitness) is stored in pbesti = (pbesti0, pbesti1,…, pbestiD). Among pbesti, the swarm 

global best value is identified as gbest = (gbest0, gbest1,…, gbestD). For each iteration, the 

new velocity and position of the particles are expressed as: 

 

 1 1 2 2( ) ( )new old old old
id id id id d idv v c r pbest x c r gbest xω= × + × × − + × × −  (3.1)

 

 new old new
id id idx x v= +                i = 1, 2,…, n ,   d = 1, 2,…, D (3.2)

 

where, n is the number of particles in the swarm, ω is the inertia weight, c1 and c2 are 

learning factors, and r1 and r2 are random numbers between 0 and 1. The impact of the 

previous velocity on the current one is controlled by ω. In other words, ω controls the global 

and local exploration abilities of the particles. A value between 0.8 and 1.2 has been reported 

to offer a promising balance between performance and convergence rate (Shi and Eberhart, 

1998). Engelbrecht (2007) showed that a linear variation between 0.4 and 0.9 also offers an 

efficient alternative. 

 

In the present analysis, c1 and c2 are set to 1.49618 and ω equals 0.72984. These values were 

set based on the article published by Clerc and Kennedy (2002) for multi-dimensional 

complex spaces. Moreover, as suggested by Cheng-San et al. (2008), to prevent premature 

convergence (stagnation), a virtual global best position vector (vgbest) is produced by 

averaging the previous best positions pbesti (Eq. 3.3). The fitness of this virtual best position 

is subsequently compared to that of the global best position gbest, and if the fitness of vgbest 

is better than the value representing gbest, gbest is replaced by vgbest in Eq. 3.1. 

 

 1

n

id
i

d

pbest
vgbest

n
==


 
(3.3)
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Schoene, Ludwig et al. (2012) proposed a procedure to handle particle escapes from the 

search space. The strategy simply returns the escapee particle back to the search space 

following the breakout path through a series of iterations producing backward displacements. 

Eq. 3.4 formulates the correction procedure: 

 

 1 1k k k
id id idx x v+ += −      0,1,...,k N=  (3.4)

 

Where N is the limit number of correcting iterations and 1k
idv +  is the corrected velocity 

calculated as: 

 

 1k k
id idv vα+ =              0,1,...,k N=  (3.5)

 

Where α is a correction factor. The initial corrected position 0
idx  is set to the first position 

new
idx outside the search space, while the initial corrected velocity 0

idv  is set to the velocity 

new
idv  that caused the particle breakout. Eq. 3.4 is solved iteratively until the particle position 

returns to the search space or until the limit number of iteration N is reached. Based on 

empirical tests, the authors suggested values of α = 0.54 and N = 4. 

 

The swarm size is often set empirically based on the dimensionality and perceived difficulty 

of the problem. The literature (Poli, Kennedy et al., 2007) suggests values between 20-50. In 

this study, the swarm size (n = 25) is determined by a swarm density refinement process 

described later. Finally, the convergence criterion terminates the search after ten consecutive 

iterations of fitness fluctuations inferior to 1%.  The following pseudo-code presents the PSO 

algorithm. 
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Algorithm 3.1 Particle swarm optimization 

initialize randomly distributed swarm 

for each particle in swarm do 

evaluate fitness 

pbestid = xid
0 

if fitness of pbestid is better than fitness of gbestd then 

gbestd = pbestid 

end 

end 

calculate vgbestd from Eq. 3.3 

if fitness of vgbestd is better than fitness of gbestd then 

gbestd = vgbestd 

end 

while (number of iterations, or convergence criteria is not met) do 

for each particle in swarm do 

calculate vid
new from Eq. 3.1 

if abs(vid
new) is greater than vmax then 

vid
new = sign(vid

new)× vmax 

end 

update new position from Eq. 3.2 

if abs(xid
new) is greater than xmax then 

correct new position from Eqs. 3.4 and 3.5 

end 

evaluate fitness 

if fitness of xid
new is better than fitness of pbestid then 

pbestid = xid
new 

end 

if fitness of xid
new is better than fitness of gbestd then 

gbestd = xid
new 

end 

end 

calculate vgbestd from Eq. 3.3 

if fitness of vgbestd is better than fitness of gbestd then 

gbestd = vgbestd 

end 

end 
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3.5 Design variables 

Figure 3.1 defines the crowned roller with rounded corners geometry. The characteristics of 

the roller profile can be defined by three dimensionless variables: the crowning radius rc = Rc 

/L, the rounding radius rr = Rr /L and the rounded corner length rl = Lro /L. 

 

In order to illustrate the profile form influence, Figure 3.2 presents along the roller half-

length the axial pressure distributions and the central film thicknesses evaluated for different 

types of profiles. As shown in the graph, with a straight Un-profiled roller, a pressure spike 

appears near the roller extremities, producing a constriction resulting in a lubrication film 

thickness reduction close to a breakdown. On the other hand, while significantly increasing 

the central pressure, a Crowned profile eliminates the pressure spike at the roller end. The 

profile identified as Rounded corners exhibits a pressure spike near the roller effective length 

end similar to the un-profiled case. Moreover, the oil film shows a complete collapse, while 

the reduction of load carrying length of the roller causes higher pressure values. Figure 3.2 

also includes a crowned with rounded corners form. The graphs demonstrate that this 

modification can reduce the pressure spike at the roller end and eliminate the associated 

lubricant film thickness reduction, while the pressure distribution contains no excessive 

central increase. In light of these examples, the properties characterizing an optimal roller 

profile design can be defined as follows. An optimal profile should: 

 

1. flatten the pressure distribution and minimize the spike at the roller ends; 

2. flatten the lubricant film distribution and maximize its thickness; 

3. maximize the load capacity. 
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Figure 3.1 Roller geometry 
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Figure 3.2 Profile effect on axial distribution of: (a) pressure, (b) central film thickness 
 

The above properties lead to the following mathematical interpretation: the ratios Pspike /P0, 

Hconst. /Hc and P0 /PHertz should all be close to a unitary value. P0 and Pspike are the maximum 

pressures at the roller center and at the pressure spike close to the roller ends, respectively. 

PHertz is the maximum Hertzian contact pressure established for an infinite contact line. Hc 

and Hconst are the central film thickness and the film thickness at the constriction, 

respectively. These ratios can then be combined to form the fitness function presented in Eq. 

3.6. An optimal profile form will therefore minimize this expression: 

 

 . 0

0

( , , ) 1 1 1spike const
c r l

c Hertz

P H P
f r r r

P H P
= − + − + −  (3.6)

 

Rr 

Lro Lro Deq 

L 

Rc 

x 
y 
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The scrutinized space should be large enough to include all potential optimal solutions. The 

crowning radius (rc) range starts from a reduction of the line contact to point contact 

conditions generating a maximal pressure equal to 1.3 times PHertz, and goes up to the quasi 

straight roller conditions defined by an Rc maximal value equal to 1.0e6 mm. The lower 

bound of the rounding radius (rr) is set equal to the rolling radius 

1 1 1
1 20.5 0.5( )eqD D D− − −= + where D1 and D2 are the diameters of cylinder 1 and 2, 

respectively. The upper bound is limited to 500 times the roller length. The rounded corner 

length (rl) covers the no-rounded-corner conditions to 0.2 times the roller length. The studied 

ranges are then 
2 4

6
2 3

1.0 10 /
1.5 (4 (1.3 ) ) c

x Hertz

w E
r L

L R Pπ
′

≤ ≤ × , Rx / L ≤ rr ≤ 500 and 0 ≤ rl ≤ 0.2. 

These ranges are initial limits, and could be extended whenever the search process tends to 

identify a global optimum outside the initial domain. 

 

The five-level factorial design assembled for the prediction formula preparation includes two 

dimensionless factors: the contact slenderness Sl = Deq/L and the load W = w/E'LD, 

where
2 2
1 2

1 2

1 12

E E E

ν ν− −= +
′

. In order to cover the long and short roller conditions, the 

considered Sl values are 0.2, 0.4, 0.6, 0.8 and 1. W equals 1.63×10-5, 3.66×10-5, 6.50×10-5, 

1.02×10-4 and 1.46×10-4. These loads represent maximum Hertzian pressures of 500, 750, 

1000, 1250 and 1500 MPa, respectively. The optimization process is conducted for three 

mineral oils of ISO viscosity grade 100, 220 and 460. Table 3.2 gives the corresponding 

viscosities for two reference temperatures. 

 

Table 3.2 Constituent lubricant viscosities (Pa s) 
 

Temperature (K) 
ISO VG 

100 220 460 

313 0.089000 0.195800 0.409400 

373 0.009636 0.016640 0.026280 
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3.6 Optimization results 

Preparatory swarm density refinements established the appropriate swarm size. The objective 

was to reduce the search process time, while preserving the optimization quality. Figure 

3.3(a) shows the global fitness variation obtained with different swarm sizes. The charts 

indicate that swarms larger than 20 particles do not significantly improve the final global 

fitness (Eq. 3.6). Moreover, to better illustrate the swarm size influence, Figure 3.3(b) 

presents the rc evaluations obtained with five swarm sizes as a function of the iteration 

number. The graph shows that all sizes converged to the same rc, indicating therefore that 

PSO successfully found the global optimum. The curves also reveal that compared to 20 

particles, a swarm size of 25 significantly reduces the number of iterations required to find 

the optimal rc, while further increasing the number of particles roughly involved similar 

numbers of iterations to reach an equivalent precision. Therefore, in this study, the swarm 

size was set to 25 particles. Moreover, in order to increase the confidence level, three 

optimization runs were realized for each evaluated case, and the best solution selected as the 

optimal configuration. 
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Figure 3.3 Swarm density refinement 
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Table 3.3 present the optimum values established for rc, rr, rl and the three lubricants of 

Table 3.2. These results represent the constituent values for the preparation of the design 

formulas described in the next section. 

 

Table 3.3 Optimum design variables 
 

Sl 

rc rr rl 

W (×10-5) W (×10-5) W (×10-5) 

1.63 3.66 6.5 10.2 14.6 1.63 3.66 6.5 10.2 14.6 1.63 3.66 6.5 10.2 14.6 

lubricant ISO-VG 100 

0.2 19917.7 18026.8 8868.3 6628.6 4258.5 2.944 78.494 12.885 29.987 11.833 0.0235 0.0843 0.0424 0.0809 0.0589

0.4 17390.8 8574.8 4473.0 2677.7 2132.3 28.412 48.696 18.046 12.845 31.966 0.0487 0.0847 0.0643 0.0657 0.1310

0.6 10181.2 5895.6 3266.4 2001.1 1317.3 13.562 42.682 33.787 32.474 10.849 0.0411 0.0912 0.1060 0.1292 0.0817

0.8 7725.8 4284.8 2423.7 1370.5 974.7 12.328 29.507 28.167 10.031 9.936 0.0413 0.0832 0.1062 0.0734 0.0850

1 6973.5 3371.7 1933.4 1128.1 803.6 23.585 36.616 49.857 11.050 16.123 0.0589 0.1070 0.1608 0.0822 0.1220

 lubricant ISO-VG 220 

0.2 19774.0 17698.9 9268.2 6527.0 4332.8 1.458 120.527 20.425 23.105 31.232 0.0153 0.1133 0.0531 0.0703 0.0997

0.4 19041.4 9016.2 4605.1 3147.1 2000.6 24.901 100.754 24.659 24.004 16.148 0.0404 0.1263 0.0757 0.0932 0.0882

0.6 12289.7 5969.0 3305.9 2083.7 1312.6 25.815 75.247 26.839 23.590 8.661 0.0492 0.1264 0.0930 0.1067 0.0721

0.8 8284.7 4329.7 2526.0 1499.9 1051.3 13.941 50.853 34.591 33.191 17.880 0.0416 0.1191 0.1186 0.1451 0.1201

1 7166.4 3472.8 1833.3 1154.7 797.0 24.564 44.150 13.017 11.519 10.465 0.0610 0.1194 0.0733 0.0840 0.0937

 lubricant ISO-VG 460 

0.2 19972.3 19618.9 10887.4 6242.9 4253.6 22.362 132.335 73.008 16.666 9.084 0.0733 0.1082 0.1050 0.0583 0.0502

0.4 14938.7 9105.2 3847.7 3026.7 1948.3 166.076 71.661 12.765 14.986 9.039 0.1578 0.1062 0.0630 0.0715 0.0637

0.6 9929.3 6078.0 3221.1 2042.8 1350.2 122.213 52.396 26.992 22.236 11.945 0.1583 0.1057 0.0953 0.1040 0.0852

0.8 7653.7 4583.9 2486.5 1517.9 1051.1 154.050 44.353 28.030 13.108 15.088 0.1908 0.1063 0.1069 0.0834 0.1080

1 5987.4 3681.1 1943.8 1270.0 809.0 142.411 38.629 23.760 21.270 11.673 0.1964 0.1068 0.1074 0.1196 0.0996

 

 

3.7 Optimum profile calculation 

The results of Table 3.3 are combined by means of the quadratic Lagrange interpolation 

functions to predict the optimum profile variables (rc, rr and rl). The two-dimensional version 

of the functions allows the connection of the constituent values rc, rr and rl obtained for one 

lubricant viscosity grade, while the one-dimensional variant establishes the relation between 

the lubricant ISO grades. 
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Figure 3.4(a) illustrates the node indexing for the one-dimensional shape functions given by 

Eqs. 3.7-a, b and c. Eqs. 3.8-a, b and c give the evaluations at any given position x' between 

x'1 and x'2, where x' can be W, Sl or η. 
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Figure 3.4(b) describes the node indexing for the two-dimensional shape functions 

determined from Eqs. 3.7 combined as prescribed by Eq.  3.9, and given by Eqs. 3.10-a, b 

and c. Eqs. 3.10-a, b and c produce the design variables for a combination of W and Sl. 

 

 , ( , ) ( ) ( )i j l i j lW S W SΦ = Φ Φ   , , 1, 2,3i j =  (3.9)
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Figure 3.4 Node indexing for quadratic Lagrange shape function, (a) 1-D, (b) 2-D 
 

The calculation procedure for selected W, Sl and η involves the following steps: 1-

 Evaluation of rc, rr and rl for the three lubricants, Eqs. 3.10-a, and c; 2- One-dimensional 

evaluation through the viscosity ISO grades with respect to η by means of Eqs. 3.8-a, b and c. 

 

 

3.8 Validation 

This section compares the roller profiles predicted with the help of the formulas to the 

optimum profiles established with PSO. This comparison integrates the four test points 

x'1 23 

Sl

W

1,2 3,2 2,2 

1,1 3,1 2,1 

1,3 3,3 2,3

(a) 

(b) 
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indicated in Figure 3.5 for selected W and Sl. Since Eqs. 3.10-a, b and c account for nine 

constituent values at a time, the (W, Sl) domain is divided into four subareas. The validation 

points are thus selected in each subarea: Case 1 (W = 2.34×10-5and Sl = 0.5), Case 2 (W = 

12.7×10-5 and Sl = 0.3), Case 3 (W = 4.7×10-5and Sl = 0.9) and Case 4 (W = 8.6×10-5and Sl = 

0.7). The validation procedure encompasses two levels: first, the precision obtained with the 

two-dimensional Lagrange functions when varying W and Sl is evaluated for a constituent 

lubricant, and Cases 1 to 4 are examined for the ISO-VG 100 lubricant. Secondly, the one-

dimensional Lagrange functions predictions are appraised when testing Cases 1 to 4 with two 

extraneous lubricants ISO-VG 150 and 320 selected in between the three constituent 

lubricants. The considered lubricant viscosities are given in Table 3.4. 

 

Table 3.4 Tested lubricant viscosities (Pa s) 
 

Temperature (K) 

ISO VG 

150 320 

313 0.13350 0.28480 

373 0.01310 0.02145 

 

 

 
 

Figure 3.5 Validation points 
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Table 3.5 shows the design variable values predicted with Eqs. 3.10 and evaluated with the 

PSO approach for the lubricant ISO 100. For rc the maximum deviation (-6.6%) appears with 

Case 1. On the other hand, while with Cases 2 and 4 the precision remains excellent for all 

three design variables, a rapid analysis of the values of Table 3.3 shows that Sl changes have 

strong impacts on rr and rl when W is lower than 6.5x10-5. The table inspection also indicates 

and that the design variable response presents high-order variations. Therefore, the quadratic 

Lagrange functions can only assure a limited precision. Consequently, Cases 1 and 3 show 

noticeable rr and rl relative deviations. Nevertheless, the accuracy level could be improved 

by a simple additional subdivision of the domain below W = 6.5x10-5. On the other hand, 

Figure 3.6 draws the pressure and film thickness axial distributions established for these first 

four cases. The curves clearly indicate that the imprecision observed on rr and rl in Cases 1 

and 3 has no disadvantageous influence on the resulting pressure distributions and film 

thickness behavior. In addition, Table 3.5 presents the pressure spike to the central pressure 

and the axial film constriction to the central film thickness ratios. The pressure ratio values 

are all very close to 1, while the film ratios remain higher than 76%, even for Case 2, which 

corresponds to the highest load case (1.4 GPa). 

 

Table 3.5 Lubricant ISO-VG 100 
 

 

Case 1 Case 2 Case 3 Case 4 

PSO Model 
Devia.

(%) 
PSO Model

Devia.

(%) 
PSO Model

Devia. 

(%) 
PSO Model

Devia.

(%) 

rc 11319.7 10570.4 -6.6 3327.0 3418.6 2.8 2748.8 2883.8 4.9 2079.9 2024.7 -2.7 

rr 116.872 36.880 -68.5 21.404 22.054 3.0 12.370 33.642 172.0 24.572 21.966 -10.6 

rl 0.1204 0.0694 -42.4 0.0887 0.0874 -1.5 0.0610 0.1063 74.3 0.1072 0.0967 -9.8 

Pspike /P0 1.000 1.001 - 1.004 1.004 - 1.001 0.997 - 1.000 0.998 - 

Hconst./Hc 1.000 0.999 - 0.998 0.761 -23.7 0.995 0.999 - 0.998 0.816 -18.2 
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Figure 3.6 Pressure and film thickness, lubricant ISO-VG 100,  

(a) Case 1, (b) Case 2, (c) Case 3, (d) Case 4 
 

Table 3.6 presents the results for the four cases and the lubricant ISO-VG 150. The values of 

rc are evaluated with a precision greater than 85%. A pattern of deviation similar to the 

previous one appears for rr and rl, with the maximum deviation occurring for rr. Figure 3.7 

presents the pressure and film thickness distributions. Again, all pressure distributions appear 

to be smooth and practically uniform, while the film thickness reveals no significant 

reduction at the contact limit. The Pspike/P0 and Hconst/Pc ratios given in Table 3.6 better 

illustrate the response quality. In reality, the curves of Figures 3.6 and 3.7 expose the 

effectiveness of the predicted rc, rr and rl, and what is even more important, reveal the 

robustness of the model; the established variable values correspond to suitable profile 

corrections, although they are not exactly equal to the real PSO evaluations. 
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Table 3.6 Lubricant ISO-VG 150 
 

 

Case 1 Case 2 Case 3 Case 4 

PSO Model 
Devia.

(%) 
PSO Model

Devia.

(%) 
PSO Model

Devia. 

(%) 
PSO Model

Devia.

(%) 

rc 11310.7 11259.8 -0.5 3039.5 3490.5 14.8 2840.3 2889.0 1.7 2020.8 2089.4 3.4 

rr 101.890 50.001 -50.9 17.005 23.263 36.8 16.615 39.496 137.7 19.401 29.048 49.7 

rl 0.1120 0.0799 -28.7 0.0773 0.0903 16.8 0.0700 0.1157 65.3 0.0949 0.1179 24.2 

Pspike /P0 1.000 1.002 - 1.000 1.004 - 1.000 0.998 - 1.000 1.000 - 

Hconst./Hc 1.000 0.999 - 0.999 0.847 -15.2 0.997 0.988 - 0.998 0.999 - 
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Figure 3.7 Pressure and film thickness, lubricant ISO-VG 150,  

(a) Case 1, (b) Case 2, (c) Case 3, (d) Case 4 

 

Table 3.7 gives the results obtained with the lubricant ISO-VG 320. As before, rc is evaluated 

with a better precision (more than 80%). The maximum deviations appear under Case 1 

conditions with 240% and 110% for rr and rl, respectively. Nevertheless, as for the previous 

ISO-VG, the pressure and film thickness ratios given in Table 3.7 as well as the pressure 
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distributions and film thicknesses presented in Figure 3.8 demonstrate the effectiveness of 

the suggested profile corrections. While the agreement between the prediction model and the 

PSO curves confirm the model robustness, the differences between the predicted rr and rl and 

the real optimal values indicate that rc is the controlling variable, whereas the rounded corner 

definition plays a complementing role. Since the precision observed for rc remained high for 

all validation tests, it can be concluded that the proposed model offers profile corrections 

producing optimized forms. 

 

Table 3.7 Lubricant ISO-VG 320 
 

 

Case 1 Case 2 Case 3 Case 4 

PSO Model 
Devia. 

(%) 
PSO Model

Devia.

(%) 
PSO Model

Devia.

(%) 
PSO Model 

Devia. 

(%) 

rc 9795.4 11715.3 19.6 3148.6 3550.6 12.8 3111.9 3004.7 -3.4 2119.3 2183.7 3.0 

rr 26.217 89.321 240.7 13.850 20.268 46.3 40.543 41.910 3.4 34.931 35.111 0.5 

rl 0.0544 0.1139 109.4 0.0702 0.0833 18.7 0.1191 0.1216 2.1 0.1295 0.1365 5.4 

Pspike /P0 1.000 1.002 - 1.000 1.004 - 1.000 0.999 - 1.000 1.005 - 

Hconst./Hc 1.000 0.999 - 0.998 0.897 -10.1 0.999 0.999 - 0.999 0.998 - 

 

 

3.9 Conclusion 

In the absence of profile correction, cylindrical rolling contacts develop pressure 

concentrations near the roller extremities. Crowning modifications are therefore often 

incorporated to eliminate the pressure spikes at the contact limits. However, under heavy 

loads, this profile modification does not generally generate the desired pressure flattening. 

Recently, the authors of the present work demonstrated that crowning modifications 

combined with rounded corners could result in uniform contact pressure distributions. This 

paper presents formulas for the rapid design of optimal profiles. The proposed analysis 

assumes that an optimal profile correction maximizes the load capacity and assures uniform 

contact pressure distributions as well as nearly constant film thicknesses along the contact 

line. The developed formulas amalgamate effective results obtained from multi-objective 
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particle swarm optimizations (PSO) completed over a five-level dimensionless factorial 

design, with the factors being the slenderness, the load and the lubricant viscosity. 
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Figure 3.8 Pressure and film thickness, lubricant ISO-VG 320, (a) Case 1, (b) Case 2, (c) 

Case 3, (d) Case 4 
 

Three dimensionless design variables define the roller profile corrections: the crowning 

radius (rc), the rounding radius (rr) and the length of the rounded corner (rl). The validation 

section of the study compared the design variable evaluations produced with the formulas to 

the real PSO calculated values. Globally, the analysis showed that rc has a decisive influence 

on the final pressure and film thickness distributions, while rr and rl make complementary 

contributions. The comparison also demonstrated that, although the rr and rl formula 

predictions and PSO values could be significantly different, the rc evaluations were in close 

agreement for all tested conditions. Moreover, considering that the test points were all 

located at positions chosen in between the formula constituent points, the reported precision 

estimates virtually describe the lowest accuracy positions of the model. On the other hand, 
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when complemented by the simulated physical response of the corrected rollers, showing that 

the pressure distributions and film thickness behavior exhibit the desired smoothness, the 

presented results illustrate the robustness of the design variable estimates, even though no 

detailed analysis of this aspect was conducted during the present study. In reality, the tested 

points indicate that the optimal values established with PSO to generate the formulas are 

presumably situated in low curvature zones of the search space; the optimization algorithm 

found areas of optimal behavior more than unique positions situated at pointed maxima. 

Therefore, variations of the predicted rr and rl in the optimal areas still guarantee efficient 

profile corrections. Consequently, the developed prediction model represents a powerful 

design tool for optimal profile correction of cylindrical rolling contacts. 

 



 

CONCLUSION 

 

Rolling contact elements, such as gears and bearings are prone to contact fatigue damages. 

Their non-conforming contact surfaces repeatedly expose to extreme contact pressures, 

leading to nucleation of fatigue cracks over the surface or subsurface regions, where micro 

cracks propagate during the course of operation and eventually result in surface material 

losses. In many of these elements contact happens along a line with finite length. As 

described at the beginning of this thesis, this type of contact presents stress concentration 

near the free boundaries which is usually being reduced by providing an axial crowning in 

order to evenly distribute the load over the complete contact length. Nevertheless, lubricants 

are used to separate the contact surfaces by a viscous oil film; the so called 

elastohydrodynamic lubrication (EHL) which is an important controlling agent in surface 

degradation. Although experimental investigations demonstrated strong influence of free 

edges on the EHL behavior of finite line contacts, the effects of free boundaries on contact 

stress distribution and EHL characteristics in such problems remain unknown. Few studies 

have investigated the EHL of finite line contacts, but their solution was based on half-space 

theory which is unable to describe the situation near the contact extremities. Therefore, this 

thesis presents an EHL model integrating a correction procedure extracted from elastic 

quarter-space model and investigates the edge influence on pressure, oil film thickness and 

temperature, and stress distribution of finite line contacts. 

 

In terms of first global objective, the present research began with the development of a 3D 

numerical model for general lubricated contacts which is addressed in chapter 1. The 

resulting model incorporates finite difference expansion of energy and Reynolds equations 

over solution domain and solves them simultaneously while accounting for elastic 

deformation and pressure-dependent lubricant properties. The model also uses the Carreau 

expression to integrate non-Newtonian lubricant responses. However, computational 

instability is a major challenge encountered when solving such a system of equations. This 

problem emerges mainly from high sensitive interconnected pressure-dependent variables, 
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where their rapid fluctuation can lead to divergent iterations especially at high pressures. In 

order to achieve a stable solution, the model distributes a finite difference expansion of the 

Couette term of the Reynolds equation over successive iterations during the solution process. 

This technique provides smooth transition from previous converged iteration to the current 

step. As a result, a very stable and precise model is obtained which is capable of addressing 

thermal EHL problems with extreme loads. 

 

As a scientific contribution, the model integrates free boundary influence by means of a 

corrective procedure that applies a mirrored load multiplied by Guilbault’s factor. In fact, the 

model effectively eliminates shear and normal stresses from traction-free boundaries, while 

offering a fast and precise simulation of general non-Hertzian lubricated contacts. 

Furthermore, a comparison with experimental and numerical results obtained from the 

literature validates the accuracy of the proposed model. 

 

Chapter 1 also presents an investigation of the consequences of profile modifications in the 

EHL of finite line contacts. In other words, the influence of different roller profile corrections 

on film thickness, pressure and temperature distributions was established using the developed 

EHL model. Seven common roller profiles and contact conditions were investigated with and 

without free-edge correction (i.e., using the corrected and non-corrected model). The fallout 

of this section revealed the significant consequence of incomplete treatment of free 

boundaries. A few examples can help clarifying the picture. The non-corrected model 

predicted a film breakdown and metal-to-metal contact at the contact edge of a chamfered 

roller; by contrast, under the corrected model, the chamfered roller surface continued to 

preserve a thin film along the complete contact line even in the context of considerable 

constriction. When the corrected model is applied to the contact between two straight rollers 

with non-coincident ends, the evaluated pressure at the constriction position is reduced by 

approximately 50% as compared to the pressure produced under the non-corrected model. On 

the other hand, in the case of coincident ends, the non-corrected model produced nearly a 

310% overestimation of edge pressure as compared to the corrected model. Eventually, the 
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boundary effects identified in the study suggest that the corrected model is a reliable tool that 

enhances our ability to accurately describe finite line contacts under the EHL condition. 

 

Among the seven different roller profiles investigated in this study, two profiles—the 

logarithmic profile and a crowning modification with rounded corners—produce the most 

uniform pressure distributions along the contact line. Furthermore, a crowned roller with 

rounded corners offers a more uniform film thickness across the contact line. This latter 

finding suggests an interesting fact; the most effective profile adjustment would be a large 

crowning radius combined with a rounding radius at the corners. 

 

In chapter 2, free boundary correction concept is extended to tridimensional contact stress 

evaluation. The developed model for stress field calculation is on the basis of closed-form 

expressions from half-space theory, coupled with free-edge correction which offers a rapid 

and accurate evaluation of surface and subsurface stress distributions. The extended 

corrective procedure developed for stress field calculations is as follows. By defining the z 

axis as normal to the contact surface, with y along the axial direction and x along the rolling 

direction, virtual mirrored pressures were used to account for the free boundary influence on 

displacement, and were also integrated into the σzz, σyz and σyx evaluations. The normal stress 

component at the free boundary σyy was simply set to zero. The proposed procedure also 

associates the evolution of σyy from plain strain at mid-section to a plane stress condition 

close to the free boundary. The analysis of edge contact impacts on surface and subsurface 

stress distributions demonstrates that the normal stress component σyy follows an arc-form 

reduction from its central value towards zero at the free surface. Accordingly, the 

investigation suggested a radius equal to 15 times the contact width and validated through 

FEM analyses. 

 

Once the complementary model for stress field evaluations was established, validation was 

completed through a two-level factorial comparison constructed with three dimensionless 
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factors: contact slenderness, contact length ratio, and load. The domain under consideration 

included short and long rollers, coincident and non-coincident end conditions, and loads 

corresponding to maximum Hertzian pressures of 200 and 600 MPa. Comparison of σxx, σzz 

and τmax at mid-section revealed a greater-than-96% correspondence between the newly 

developed model and the FEM reference results, while the correlation for σyy remained 

greater than 89%. At the free boundary, distributions of σzz and τmax obtained by the model 

also showed a greater-than-90% coherence with the FEM simulations. In the case of non-

coincident ends, internal stresses σzz and τmax at positions beneath the free edge of the shorter 

roller presented a minimum value of 88% conformity with FEM results. As a matter of fact, 

the proposed model provides accuracy and speed at the same time. Since, contact pressure 

distribution and associated stresses are evaluated at least 125 times faster than when using the 

FEM. 

 

Developing formulas for rapid design of optimal roller profiles was the final step of this 

research which is addressed in chapter 3. The study assumes that an optimum profile 

modification should maximize load-carrying capacity while assuring a uniform distribution 

of contact pressure as well as near-constant film thickness along the contact line. As 

concluded in chapter 1, a crowning modification combined with rounded corners can 

generate uniform film thickness and pressure distribution similar to that of logarithmic 

profile. Accordingly, chapter 3 concentrates on the crowned form profile which is defined 

along three dimensionless design variables: crowning radius rc, rounding radius rr and 

rounded corner length rl. A five-level dimensionless factorial design with the factors 

slenderness, load, and lubricant viscosity was used as the basis for a series of particle swarm 

optimizations (PSO). The proposed formulas incorporated the effective results obtained from 

the multi-objective PSO to determine roller profile for any combination of slenderness, load 

and lubricant viscosity inside the studied domain. 

 

The validation section of the last step compared the design variables evaluated by the 

proposed formulas to the values obtained from PSO alone. Analyses demonstrated the crucial 
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influence of rc on final pressure and film thickness distributions, while rr and rl were shown 

to have complementary roles. Actually, the value for rc predicted for all test conditions by the 

proposed formulas corresponded closely to the value produced by the PSO, while the values 

for rr and rl showed considerable discrepancy in some cases. On the other hand, comparison 

of pressure and film thickness distributions for all test cases revealed that, despite some 

deviation in the values of rr and rl, the resultant physical response possessed the desired 

smoothness; this finding confirms the robustness of the design variable estimation. In fact, 

primary optimal values from the PSO establishing the formulas are apparently found in low 

curvature zones of search space. In other words, the optimization algorithm identified an area 

of optimal values rather than single optima. Thus, variations of rr and rl do not detract from 

the development of efficient profile modifications. 

 

Through accomplished objectives, this research work contributed into understanding the 

behavior of finite line contacts subjected to EHL conditions. The origin of edge contact 

effects was studied by numerical modeling. The outcome of this thesis is a novel and 

powerful model which is capable to describe the EHL characteristics all over the contact 

zone, including discontinuities. In addition, a new design tool for optimal profile correction 

of cylindrical rolling elements under EHL regime was also presented. Industries dealing with 

the applications such as gears, cams, bearings and wheel-rails can be served by the research 

outline suggested in this thesis. 

 

 





 

RECOMMENDATIONS 

 

This section presents some recommendations for future work based on the results obtained in 

this research. 

 

From the results of Chapter 1, the lubricant temperature is shown to increase rapidly in 

proportion to slip ratio. Lubricant shear heating induces a heat flux over the contact surface 

which conducts inward to each roller over the time. Roller surface exposes shortly to the heat 

flux when passing through contact, where it generates sharp temperature gradient near the 

contact surface. Thus, materials at the vicinity of contact zone expand more than in depth 

areas, which might result in a tiny bump. This surface evolution from heat expansion will 

change pressure and film thickness distribution. Hence, as a next step, the current EHL 

model could further be developed integrating thermo-elastic effects. 

 

The level of subsurface stresses is also affected by localized thermal expansion of solids. 

Once a thermo-elastic model establishing the evolved pressure distribution is obtained, it is 

recommended that the variation of subsurface stresses because of material expansion gradient 

at different depths be investigated. 

 

The current research has assumed no roughness or surface deteriorations. An interesting topic 

for future studies is the potential effect of pitting over the contact surface. Surface pits are 

generated from contact fatigue, and once they grow to a certain size, failure occurs. 

Therefore, machine elements run with small surface pits before being changed. Further 

studies are needed to evaluate the impact of pits of different sizes on the EHL characteristics 

such as pressure distribution and lubricant film shape. 
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